
 Exim’s interface to mail filtering

Exim is a mail transfer agent for Unix systems. This document describes the user interface to its in-
built mail filtering facility, and is copyright University of Cambridge 2001. It corresponds to Exim
version 3.30.

1. Introduction

Most Unix mail transfer agents (programs that deliver mail) permit individual users to specify
automatic forwarding of their mail, usually by placing a list of forwarding addresses in a file called
.forward in their home directories. Exim extends this facility by allowing the forwarding instructions
to be a set of rules rather than just a list of addresses, in effect providing ‘.forward with conditions’.
Operating the set of rules is called filtering, and the file that contains them is called a filter file.

The ability to use filtering has to be enabled by the system administrator, and some of the individual
facilities can be separately enabled or disabled. A local document should be provided to describe
exactly what has been enabled. In the absence of this, consult your system administrator.

It is important to realize that no deliveries are actually made while a filter file is being processed. The
result of filtering is a list of destinations to which a message should be delivered – the deliveries
themselves take place later, along with all other deliveries for the message. This means that it is not
possible to test for successful deliveries while filtering. It also means that duplicate addresses gener-
ated by filtering are dropped, as with any other duplicate addresses.

This document describes how to use a filter file and the format of its contents. It is intended for use by
end-users. How the system administrator can set up and control the use of filtering is described in the
full Exim specification.

2. Testing a new filter file
Filter files, especially the more complicated ones, should always be tested, as it is easy to make
mistakes. Exim provides a facility for preliminary testing of a filter file before installing it. This tests
the syntax of the file and its basic operation, and can also be used with ordinary .forward files.

Because a filter can do tests on the content of messages, a test message is required. Suppose you have
a new filter file called new-filter and a test message called test-message. Assuming that Exim is
installed with the conventional path name /usr/lib/sendmail (some operating systems use
/usr/sbin/sendmail), the following command can be used:

/usr/lib/sendmail -bf new-filter <test-message

The -bf option tells Exim that the following item on the command line is the name of a filter file
which is to be tested. There is also a -bF option, which is similar, but which is used for testing system
filter files, as opposed to user filter files, and which is therefore of use only to the system
administrator.

The test message is supplied on the standard input. If there are no message-dependent tests in the filter,
then an empty file can be used. A supplied message must start with header lines or the ‘From’
message separator line which is found in many multi-message folder files. Note that blank lines at the
start terminate the header lines. A warning is given if no headers are read.

The result of running this command, provided no errors are detected in the filter file, is a list of the
actions that Exim would try to take if presented with the message for real. For example, the output

Deliver message to: gulliver@lilliput.fict.example
Save message to: /home/lemuel/mail/archive

means that one copy of the message would be sent to gulliver@lilliput.fict.example, and another
would be added to the file /home/lemuel/mail/archive, if all went well.

[1]

The actions themselves are not attempted while testing a filter file in this way; there is no check, for
example, that any forwarding addresses are valid. If you want to know why a particular action is being
taken, add the -v option to the command. This causes Exim to output the results of any conditional
tests and to indent its output according to the depth if nesting of if commands. Further additional
output from a filter test can be generated by the testprint command, which is described below.

When Exim is outputting a list of the actions it would take, if any text strings are included in the
output, non-printing characters therein are converted to escape sequences. In particular, if any text
string contains a newline character, this is shown as ‘\n’ in the testing output.

When testing a filter in this way, Exim makes up an ‘envelope’ for the message. The recipient is by
default the user running the command, and so is the sender, but the command can be run with the -f
option to supply a different sender. For example,

/usr/lib/sendmail -bf new-filter -f islington@neverwhere <test-message

Alternatively, if the -f option is not used, but the first line of the supplied message is a ‘From’
separator from a message folder file (not the same thing as a From: header line), the sender is taken
from there. If -f is present, the contents of any ‘From’ line are ignored.

The ‘return path’ is the same as the envelope sender, unless the message contains a Return-path:
header, in which case it is taken from there. You need not worry about any of this unless you want to
test out features of a filter file that rely on the sender address or the return path.

It is possible to change the envelope recipient by specifying further options. The -bfd option changes
the domain of the recipient address, while the -bfl option changes the ‘local part’, that is, the part
before the @ sign. An adviser could make use of these to test someone else’s filter file.

The -bfp and -bfs options specify the prefix or suffix for the local part. These are relevant only when
support for multiple personal mailboxes is implemented; see the description in section 26 below.

3. Installing a filter file

A filter file is normally installed under the name .forward in your home directory – it is distinguished
from a conventional .forward file by its first line (described below). However, the file name is
configurable, and some system administrators may choose to use some different name or location for
filter files.

4. Testing an installed filter file

Testing a filter file before installation cannot find every potential problem; for example, it does not
actually run commands to which messages are piped. Some ‘live’ tests should therefore also be done
once a filter is installed.

If at all possible, test your filter file by sending messages from some other account. If you send a
message to yourself from the filtered account, and delivery fails, the error message will be sent back to
the same account, which may cause another delivery failure. It won’t cause an infinite sequence of
such messages, because delivery failure messages do not themselves generate further messages.
However, it does mean that the failure won’t be returned to you, and also that the postmaster will have
to investigate the stuck message.

If you have to test a filter from the same account, then a sensible precaution is to include the line

if error_message then finish endif

as the first filter command, at least while testing. This causes filtering to be abandoned for a delivery
failure message, and since no destinations are generated, the message goes on to get delivered to the
original address. Unless there is a good reason for not doing so, it is recommended that the above test
be left in all filter files.

[2]

5. Format of filter files

Apart from leading white space, the first text in a filter file must be

Exim filter

This is what distinguishes it from a conventional .forward file. If the file does not have this initial line
it is treated as a conventional .forward file, both when delivering mail and when using the -bf testing
mechanism. The white space in the line is optional, and any capitalization may be used. Further text
on the same line is treated as a comment. For example, you could have

Exim filter <<== do not edit or remove this line!

The remainder of the file is a sequence of filtering commands, which consist of keywords and data
values, separated by white space or line breaks, except in the case of conditions for the if command,
where round brackets (parentheses) also act as separators. For example, in the command

deliver gulliver@lilliput.fict.example

the keyword is deliver and the data value is gulliver@lilliput.fict.example. The
commands are in free format, and there are no special terminators. If the character # follows a
separator, then everything from # up to the next newline is ignored. This provides a way of including
comments in a filter file.

There are two ways in which a data value can be input:

• If the text contains no white space then it can be typed verbatim. However, if it is part of a
condition, it must also be free of round brackets (parentheses), as these are used for grouping in

 conditions.

• Otherwise it must be enclosed in double quotation marks. In this case, the character \ (backslash)
is treated as an ‘escape character’ within the string, causing the following character or characters
to be treated specially:

\n is replaced by a newline
\r is replaced by a carriage return
\t is replaced by a tab

Backslash followed by up to three octal digits is replaced by the character specified by those
digits, and \x followed by up to two hexacimal digits is treated similarly. Backslash followed by
any other character is replaced by the second character, so that in particular, \" becomes " and \\
becomes \ . A data item enclosed in double quotes can be continued onto the next line by ending
the first line with a backslash. Any leading white space at the start of the continuation line is
ignored.

In addition to the escape character processing that occurs when strings are enclosed in quotes, most
data values are also subject to string expansion (as described in the next section), in which case the
characters $ and \ are also significant. This means that if a single backslash is actually required in such
a string, and the string is also quoted, \\\\ has to be entered.

6. String expansion

Most data values are expanded before use. Expansion consists of replacing substrings beginning with $
with other text. The full expansion facilities are described from section 29 below onwards, but the
most common case is the substitution of a simple variable. For example, the substring

$reply_address

is replaced by the address to which replies to the message should be sent. If such a variable name is
followed by a letter or digit or underscore, it must be enclosed in curly brackets (braces), for example,

${reply_address}

[3]

If a $ character is actually required in an expanded string, it must be escaped with a backslash, and
because backslash is also an escape character in quoted input strings, it must be doubled in that case.
The following two examples illustrate the two cases:

if $local_part contains \$ then ...
if $local_part contains "\\$" then ...

The variable substitutions most likely to be useful in filter files are:

$home: The user ’s home directory.

$local_part: The part of the email address that precedes the @ sign – normally the user ’s login name.
If support for multiple personal mailboxes is enabled (see section 26 below) and a prefix or suffix for
the local part was recognized, it is removed from the string in this variable.

$local_part_prefix: If support for multiple personal mailboxes is enabled (see section 26 below), and
a local part prefix was recognized, then this variable contains the prefix. Otherwise it contains an
empty string.

$local_part_suffix: If support for multiple personal mailboxes is enabled (see section 26 below), and a
local part suffix was recognized, then this variable contains the suffix. Otherwise it contains an empty
string.

$message_body: The initial portion of the body of the message. By default, up to 500 characters are
read into this variable, but the system administrator can configure this to some other value. Newlines
in the body are converted into single spaces.

$message_body_end: The final portion of the body of the message, formatted and limited in the same
way as $message_body.

$message_body_size: The size of the body of the message, in bytes.

$message_headers: The header lines of the message, concatenated into a single string, with newline
characters between them.

$message_id: The message’s local identification string, which is unique for each message handled by a
single host.

$message_size: The size of the entire message, in bytes.

$original_local_part: When a top-level address is being processed, this contains the same value as the
variable $local_part. However, if an address generated by an alias, forward, or filter file is being
processed, this variable contains the local part of the original address.

$reply_address: The contents of the Reply-to: header, if the message has one; otherwise the
contents of the From: header. It is the address to which normal replies to the message should be sent.

$return_path: The return path – that is, the sender field that will be sent as part of the message’s
envelope, and which is the address to which delivery errors are sent. In many cases, this has the same
value as $sender_address, but if, for example, an incoming message to a mailing list has been
expanded, then $return_path may contain the address of the list maintainer instead.

$sender_address: The sender address that was received in the envelope of the message. This is not
necessarily the same as the contents of the From: or Sender: header lines. For delivery error
messages (‘bounce messages’) there is no sender address, and this variable is empty.

$tod_full: A full version of the time and date, for example: Wed, 18 Oct 1995 09:51:40 +0100. The
timezone is always given as a numerical offset from GMT.

$tod_log: The time and date in the format used for writing Exim’s log files, for example: 1995-10-12
15:32:29.

[4]

7. Header variables

There is a special set of expansion variables containing the headers of the message being processed.
These variables have names beginning with $header_ followed by the name of the header, termin-
ated by a colon. For example,

$header_from:
$header_subject:

The whole item, including the terminating colon, is replaced by the contents of the message header. If
there is more than one header with the same name, their contents are concatenated, with a single
newline character between them. The capitalization of the name following $header_ is not signifi-
cant. Because any printing character except colon may appear in the name of a message’s header (this
is a requirement of RFC 822, the document that describes the format of a mail message) curly brackets
must not be used in this case, as they will be taken as part of the header name. Two shortcuts are
allowed in naming header variables:

• The initiating $header_ can be abbreviated to $h_.

• The terminating colon can be omitted if the next character is white space. The white space
character is retained in the expanded string. However, this is not recommended, because it makes
it easy to forget the colon when it really is needed.

If the message does not contain a header of the given name, an empty string is substituted. Thus it is
important to spell the names of headers correctly. Do not use $header_Reply_to when you really
mean $header_Reply-to.

You can test for the presence or absence of a header by means of the ‘def’ condition, which is
described in section 32.

8. User variables

There are ten user variables with names $n0 – $n9 that can be incremented by the add command (see
section 11). These can be used for ‘scoring’ messages in various ways. If Exim is configured to run a
‘system filter’ on every message, the values left in these variables are copied into the variables $sn0 –
$sn9 at the end of the system filter, thus making them available to users’ filter files. How these values
are used is entirely up to the individual installation.

9. Significant deliveries

When in the course of delivery a message is processed by a filter file, what happens next, that is, after
the whole filter file has been processed, depends on whether the filter has set up any significant
deliveries or not. If there is at least one significant delivery, then the filter is considered to have
handled the entire delivery arrangements for the current address, and no further processing of the
address takes place. If, however, no significant deliveries have been set up, Exim continues processing
the current address as if there were no filter file, and typically sets up a delivery of a copy of the
message into a local mailbox. In particular, this happens in the special case of a filter file containing
only comments.

The delivery commands deliver, save, and pipe are by default significant. However, if such a
command is preceded by the word unseen, then its delivery is not considered to be significant. In
contrast, other commands such as mail and vacation do not count as significant deliveries unless
preceded by the word seen.

10. Filter commands

The filter commands which are described in subsequent sections are listed below, with the section in
which they are described in brackets:

[5]

add increment a user variable (11)
deliver deliver to an email address (12)
finish end processing (17)
if test condition(s) (18)
logfile define log file (16)
logwrite write to log file (16)
mail send a reply message (15)
pipe pipe to a command (14)
save save to a file (13)
testprint print while testing (17)
vacation tailored form of mail (15)

In addition, when Exim’s filtering facilities are being used as a system filter, the fail, freeze, and
headers commands are available. However, since they are usable only by the system administrator and
not by ordinary users, they are described in the main Exim specification rather than in this document.

11. The add command

add <number> to <user variable>
e.g. add 2 to n3

There are 10 user variables of this type, and their values can be obtained by the normal expansion
syntax (for example $n3) in other commands. At the start of filtering, these variables all contain zero.
Both arguments of the add command are expanded before use, making it possible to add variables to
each other. Subtraction can be obtained by adding negative numbers.

12. The deliver command

deliver <mail address>
e.g. deliver "Dr Livingstone <David@somewhere.africa>"

This provides a forwarding operation. The message is sent on to the given address, exactly as happens
if the address had appeared in a traditional .forward file. To deliver a copy of the message to your
normal mailbox, your login name can be given. Once an address has been processed by the filtering
mechanism, an identical generated address will not be so processed again, so doing this does not cause
a loop.

However, if you have a mail alias, you should not refer to it here. For example, if the mail address
L.Gulliver is aliased to lg103 then all references in Gulliver ’s .forward file should be to lg103.
A reference to the alias will not work for messages that are addressed to that alias, since, like
.forward file processing, aliasing is performed only once on an address, in order to avoid looping.

Only a single address may be given to a deliver command, but multiple occurrences of the command
may be used to cause the message to be delivered to more than one address. However, duplicate
addresses are discarded.

Following the new address, an optional second address, preceded by errors_to may appear. This
changes the address to which delivery errors on the forwarded message will be sent. Instead of going
to the message’s original sender, they go to this new address. For ordinary users, the only value that is
permitted for this address is the user whose filter file is being processed. For example, the user lg103
whose mailbox is in the domain lilliput.example could have a filter file that contains

deliver jon@elsewhere.example errors_to lg103@lilliput.example

Clearly, using this feature makes sense only in situations where some (but not all) messages are being
forwarded. In particular, bounce messages must not be forwarded in this way, as this is likely to create
a mail loop if something goes wrong.

[6]

13. The save command

save <file name>
e.g. save $home/mail/bookfolder

This causes a copy of the message to be appended to the given file (that is, the file is used as a mail
folder). More than one save command may appear; each one causes a copy of the message to be
written to its argument file, provided they are different (duplicate save commands are ignored).

If the file name does not start with a / character, then the contents of the $home variable are
prepended. The user must of course have permission to write to the file, and the writing of the file
takes place in a process that is running as the user, under the user ’s primary group. Any secondary
groups to which the user may belong are not normally taken into account, though the system
administrator can configure Exim to set them up. In addition, the ability to use this command at all is
controlled by the system administrator – it may be forbidden on some systems. An optional mode
value may be given after the file name, for example,

save /some/folder 0640

The value for the mode is interpreted as an octal number, even if it does not begin with a zero. This
makes it possible for users to override the system-wide mode setting for file deliveries, which is
normally 600. If an existing file does not have the correct mode, it is changed.

An alternative form of delivery may be enabled on your system, in which each message is delivered
into a new file in a given directory. If this is the case, this functionality can be requested by giving the
directory name terminated by a slash after the save command, for example

save separated/messages/

There are several different formats for such deliveries; check with your system administrator or local
documentation to find out which (if any) are available on your system. If this functionality is not
enabled, the use of a path name ending in a slash causes an error.

14. The pipe command

pipe <command>
e.g. pipe "$home/bin/countmail $sender_address"

This command causes a separate process to be run, and a copy of the message is passed on its
standard input. The process runs as the user, under the user ’s primary group. Any secondary groups to
which the user may belong are not normally taken into account, though the system administrator can
configure Exim to set them up. More than one pipe command may appear; each one causes a copy of
the message to be written to its argument pipe, provided they are different (duplicate pipe commands
are ignored).

The command supplied to pipe is split up by Exim into a command name and a number of arguments,
delimited by white space except for arguments enclosed in double quotes, in which case backslash is
interpreted as an escape, or in single quotes, in which case no escaping is recognized. Note that as the
whole command is normally supplied in double quotes, a second level of quoting is required for
internal double quotes. For example:

pipe "$home/myscript \"size is $message_size\""

String expansion is performed on the separate components after the line has been split up, and the
command is then run directly by Exim; it is not run under a shell. Therefore, substitution cannot
change the number of arguments, nor can quotes, backslashes or other shell metacharacters in variables
cause confusion.

Documentation for some programs that are normally run via this kind of pipe often suggest the the
command start with

IFS=" "

[7]

This is a shell command, and should not be present in Exim filter files, since it does not normally run
the command under a shell.

However, there is an option that the administrator can set to cause a shell to be used. In this case, the
entire command is expanded as a single string and passed to the shell for interpretation. It is
recommended that this be avoided if at all possible, since it can lead to problems when inserted
variables contain shell metacharacters.

The default PATH set up for the command is determined by the system administrator, usually containing
at least /usr/bin so that common commands are available without having to specify an absolute file
name. However, it is possible for the system administrator to restrict the pipe facility so that the
command name must not contain any / characters, and must be found in one of the directories in the
configured PATH. It is also possible for the system administrator to lock out the use of the pipe
command altogether.

When the command is run, the following environment variables are set up:

DOMAIN the local domain of the address
HOME your home directory
LOCAL_PART your login name
LOGNAME your login name
MESSAGE_ID the message’s unique id
PATH the command search path
SENDER the sender of the message
SHELL /bin/sh
USER your login name

If you run a command that is a shell script, be very careful in your use of data from the incoming
message in the commands in your script. RFC 822 is very generous in the characters that are legally
permitted to appear in mail addresses, and in particular, an address may begin with a vertical bar or a
slash. For this reason you should always use quotes round any arguments that involve data from the
message, like this:

/some/command "$SENDER"

so that inserted shell meta-characters do not cause unwanted effects.

The pipe command should return a zero completion code if all has gone well. Most non-zero codes are
treated by Exim as indicating a failure of the pipe. This is treated as a delivery failure, causing the
message to be returned to its sender. However, there are some completion codes which are treated as
temporary errors. The message remains on Exim’s spool disc, and the delivery is tried again later,
though it will ultimately time out if the delivery failures go on too long. The completion codes to
which this applies can be specified by the system administrator; the default values are 73 and 75.

The pipe command should not normally write anything to its standard output or standard error file
descriptors. If it does, whatever is written is normally returned to the sender of the message as a
delivery error, though this action can be varied by the system administrator.

15. Mail commands
There are two commands which cause the creation of a new mail message, neither of which count as a
significant delivery unless the command is preceded by the word seen. This is a powerful facility, but
it should be used with care, because of the danger of creating infinite sequences of messages. The
system administrator can forbid the use of these commands altogether.

To help prevent runaway message sequences, these commands have no effect when the incoming
message is a delivery error message, and messages sent by this means are treated as if they were
reporting delivery errors. Thus they should never themselves cause a delivery error message to be
returned. The basic mail-sending command is

[8]

mail [to <address-list>]
[cc <address-list>]
[bcc <address-list>]
[from <address>]
[reply_to <address>]
[subject <text>]
[text <text>]
[[expand] file <filename>]
[return message]
[log <log file name>]
[once <note file name>]
[once_repeat <time interval>]

e.g. mail text "Your message about $h_subject has been received"

As a convenience for use in one common case, there is also a command called vacation. It behaves in
the same way as mail, except that the defaults for the file, log, once, and once_repeat
options are

expand file .vacation.msg
log .vacation.log
once .vacation
once_repeat 7d

respectively. These are the same file names and repeat period used by the traditional Unix vacation
command. The defaults can be overridden by explicit settings, but if a file name is given its contents
are expanded only if explicitly requested. The vacation command is normally used conditionally,
subject to the personal condition (see section 21 below) so as not to send automatic replies to non-
personal messages from mailing lists or elsewhere.

For both commands, the key/value argument pairs can appear in any order. At least one of text or
file must appear (except with vacation); if both are present, the text string appears first in the
message. If expand precedes file, then each line of the file is subject to string expansion as it is
included in the message.

Several lines of text can be supplied to text by including the escape sequence ‘\n’ in the string
where newlines are required. If the command is output during filter file testing, newlines in the text are
shown as ‘\n’.

Note that the keyword for creating a Reply-To: header is reply_to, because Exim keywords may
contain underscores, but not hyphens. If the from keyword is present and the given address does not
match the user who owns the forward file, Exim normally adds a Sender: header to the message,
though it can be configured not to do this.

If no to argument appears, the message is sent to the address in the $reply_address variable (see
section 6 above). An In-Reply-To: header is automatically included in the created message, giving
a reference to the message identification of the incoming message.

If return message is specified, the incoming message that caused the filter file to be run is added to
the end of the message, subject to a maximum size limitation.

If a log file is specified, a line is added to it for each message sent.

If a once file is specified, it is used to hold a database for remembering who has received a message,
and no more than one message is ever sent to any particular address, unless once_repeat is set.
This specifies a time interval after which another copy of the message is sent. The interval is specified
as a sequence of numbers, each followed by the initial letter of one of ‘seconds’, ‘minutes’, ‘hours’,
‘days’, or ‘weeks’. For example,

once_repeat 5d4h

causes a new message to be sent if 5 days and 4 hours have elapsed since the last one was sent. There
must be no white space in a time interval.

[9]

Commonly, the file name specified for once is used as the base name for direct-access (DBM) file
operations. There are a number of different DBM libraries in existence. Some operating systems
provide one as a default, but even in this case a different one may have been used when building
Exim. With some DBM libraries, specifying once results in two files being created, with the suffixes
.dir and .pag being added to the given name. With some others a single file with the suffix .db is
used, or the name is used unchanged.

Using a DBM file for implementing the once feature means that the file grows as large as necessary.
This is not usually a problem, but some system administrators want to put a limit on it. The facility
can be configured not to use a DBM file, but instead, to use a regular file with a maximum size. The
data in such a file is searched sequentially, and if the file fills up, the oldest entry is deleted to make
way for a new one. This means that some correspondents may receive a second copy of the message
after an unpredictable interval. Consult your local information to see if your system is configured this
way.

More than one mail or vacation command may be obeyed in a single filter run; they are all honoured,
even when they are to the same recipient.

16. Logging commands
A log can be kept of actions taken by a filter file. This facility is normally available in conventional
configurations, but there are some situations where it might not be. Also, the system administrator may
choose to disable it. Check your local information if in doubt.

Logging takes place while the filter file is being interpreted. It does not queue up for later like the
delivery commands. The reason for this is so that a log file need be opened only once for several write
operations. There are two commands, neither of which constitutes a significant delivery. The first
defines a file to which logging output is subsequently written:

logfile <file name>
e.g. logfile $home/filter.log

The file name may optionally be followed by a mode for the file, which is used if the file has to be
created. For example,

logfile $home/filter.log 0644

The number is interpreted as octal, even if it does not begin with a zero. The default for the mode is
600. It is suggested that the logfile command normally appear as the first command in a filter file.
Once logfile has been obeyed, the logwrite command can be used to write to the log file:

logwrite "<some text string>"
e.g. logwrite "$tod_log $message_id processed"

It is possible to have more than one logfile command, to specify writing to different log files in
different circumstances. Writing takes place at the end of the file, and a newline character is added to
the end of each string if there isn’t one already there. Newlines can be put in the middle of the string
by using the ‘\n’ escape sequence. Lines from simultaneous deliveries may get interleaved in the file,
as there is no interlocking, so you should plan your logging with this in mind. However, data should
not get lost.

In earlier versions of Exim the logwrite command was called log, and this name remains available for
backwards compatibility. However, it is not possible to use the name log as a command name
following a mail command, because it will be interpreted as the log option of that command.

17. Other commands
The command finish, which has no arguments, causes Exim to stop interpreting the filter file. This
is not a significant action unless preceded by seen. A filter file containing only seen finish is a
black hole.

[10]

It is sometimes helpful to be able to print out the values of variables when testing filter files. The
command

testprint <text>
e.g. testprint "home=$home reply_address=$reply_address"

does nothing when mail is being delivered. However, when the filtering code is being tested by means
of the -bf option, the value of the string is written to the standard output.

When Exim’s filtering facilities are being used as a system filter, the fail and freeze commands are
available. However, since they are usable only by the system administrator and not by ordinary users,
they are described in the main Exim specification rather than in this document.

18. Obeying commands conditionally
Most of the power of filtering comes from the ability to test conditions and obey different commands
depending on the outcome. The if command is used to specify conditional execution, and its general
form is

if <condition>
then <commands>
elif <condition>
then <commands>
else <commands>

 endif

There may be any number of elif and then sections (including none) and the else section is also
optional. Any number of commands, including nested if commands, may appear in any of the
<commands> sections.

Conditions can be combined by using the words and and or, and round brackets (parentheses) can be
used to specify how several conditions are to combine. Without brackets, and is more binding than
or. For example,

if
$h_subject: contains "Make money" or
$h_precedence: is "junk" or
($h_sender: matches ^\\d{8}@ and not personal) or
$message_body contains "this is spam"

then
seen finish

endif

A condition can be preceded by not to negate it, and there are also some negative forms of condition
that are more English-like.

19. String testing conditions
There are a number of conditions that operate on text strings, using the words ‘begins’, ‘ends’, ‘is’,
‘contains’ and ‘matches’. If the condition names are written in lower-case, the testing of letters is done
without regard to case; if they are written in upper-case (for example, ‘CONTAINS’) then the case of
letters is significant.

<text1> begins <text2>
 <text1> does not begin <text2>
e.g. $header_from: begins "Friend@"

A ‘begins’ test checks for the presence of the second string at the start of the first, both strings having
been expanded.

[11]

 <text1> ends <text2>
 <text1> does not end <text2>
e.g. $header_from: ends "public.com"

An ‘ends’ test checks for the presence of the second string at the end of the first, both strings having
been expanded.

<text1> is <text2>
 <text1> is not <text2>
e.g. $local_part_suffix is "-foo"

An ‘is’ test does an exact match between the strings, having first expanded both strings.

<text1> contains <text2>
 <text1> does not contain <text2>
e.g. $header_subject: contains "evolution"

A ‘contains’ test does a partial string match, having expanded both strings.

<text1> matches <text2>
 <text2> does not match <text2>
e.g. $sender_address matches "(Bill|John)@"

For a ‘matches’ test, after expansion of both strings, the second one is interpreted as a regular
expression. Exim uses the PCRE regular expression library, which provides regular expressions that
are compatible with Perl.

Care must be taken if you need a backslash in a regular expression, because backslashes are
interpreted as escape characters both by the string expansion code and by Exim’s normal string reading
code. For example, if you want to test the sender address for a domain ending in .com the regular
expression is

\.com$

The backslash and dollar sign in that expression have to be escaped when used in a filter command, as
otherwise they would be interpreted by the expansion code. Thus what you actually write is

if $sender_address matches \\.com\$

However, if the expression is given in quotes (mandatory only if it contains white space) you have to
write

if $sender_address matches "\\\\.com\\$"

with ‘\\\\’ for a backslash and ‘\\$’ for a dollar sign. Hence, if you actually require the string ‘\$’ in a
regular expression that is given in double quotes, you need to write ‘\\\\\\$’.

If the regular expression contains bracketed sub-expressions, then numeric variable substitutions such
as $1 can be used in the subsequent actions after a successful match. If the match fails, the values of
the numeric variables remain unchanged. Previous values are not restored after endif – in other
words, only one set of values is ever available. If the condition contains several sub-conditions
connected by and or or, it is the strings extracted from the last successful match that are available in
subsequent actions. Numeric variables from any one sub-condition are also available for use in
subsequent sub-conditions, since string expansion of a condition occurs just before it is tested.

20. Numeric testing conditions
The following conditions are available for performing numerical tests:

<number1> is above <number2>
 <number1> is not above <number2>
 <number1> is below <number2>
 <number1> is not below <number2>
e.g. $message_size is not above 10k

[12]

The <number> arguments must expand to strings of digits, optionally followed by one of the letters K
or M (upper-case or lower-case) which cause multiplication by 1024 and 1024x1024 respectively.

21. Testing for personal mail

A common requirement is to distinguish between incoming personal mail and mail from a mailing list.
In particular, this test is normally required for so-called ‘vacation messages’. The condition

personal

is a shorthand for

$header_to: contains $local_part@$domain and
$header_from: does not contain $local_part@$domain and
$header_from: does not contain server@ and
$header_from: does not contain daemon@ and
$header_from: does not contain root@ and
$header_subject: does not contain "circular" and
$header_precedence: does not contain "bulk" and
$header_precedence: does not contain "list" and
$header_precedence: does not contain "junk"

The variable $local_part contains the local part of the mail address of the user whose filter file is
being run – it is normally your login id. The $domain variable contains the mail domain. This
condition tests for the appearance of the current user in the To: header, checks that the sender is not
the current user or one of a number of common daemons, and checks the content of the Subject:
and Precedence: headers.

If prefixes or suffixes are in use for local parts – something which depends on the configuration of
Exim (see section 26 below) – then the first two tests above are also done with

$local_part_prefix$local_part$local_part_suffix

instead of just $local_part. If the system is configured to rewrite local parts of mail addresses, for
example, to rewrite ‘dag46’ as ‘Dirk.Gently’, then the rewritten form of the address is also used in the
tests.

This example shows the use of personal in a filter file that is sending out vacation messages:

if personal then
 mail

to $reply_address
subject "Re: $h_subject:"
file $home/vacation/message
once $home/vacation/once
once_repeat 10d

 endif

It is quite common for people who have mail accounts on a number of different systems to forward all
their mail to one system, and in this case a check for personal mail should test all their various mail
addresses. To allow for this, the personal condition keyword can be followed by

alias <address>

any number of times, for example

personal alias smith@else.where alias jones@other.place

This causes messages containing the alias addresses in any places where the local address is tested to
be treated as personal.

[13]

22. Testing for significant deliveries
Whether or not any previously obeyed filter commands have resulted in a significant delivery can be
tested by the condition delivered, for example:

if not delivered then save mail/anomalous endif

23. Testing for error messages
The condition error_message is true if the incoming message is a mail delivery error message.
Putting the command

if error_message then finish endif

at the head of your filter file is a useful insurance against things going wrong in such a way that you
cannot receive delivery error reports, and is highly recommended. Note that error_message is a
condition, not an expansion variable, and therefore is not preceded by $.

24. Testing delivery status
There are two conditions which are intended mainly for use in system filter files, but which are
available in users’ filter files as well. The condition first_delivery is true if this is the first
attempt to deliver the message, and false otherwise. In a user filter file it will be false only if there was
previously an error in the filter, or if a delivery for the user failed owing to, for example, a quota error,
or forwarding to a remote address that was deferred for some reason.

The condition manually_thawed is true only if the message was ‘frozen’ for some reason, and was
subsequently released by the system administrator. It is unlikely to be of use in users’ filter files.

25. Testing a list of addresses
There is a facility for looping through a list of addresses and applying a condition to each of them. It
takes the form

foranyaddress <string> (<condition>)

where <string> is interpreted as a list of RFC 822 addresses, as in a typical header line, and
<condition> is any valid filter condition or combination of conditions. The parentheses surrounding the
condition are mandatory, to delimit it from possible further sub-conditions of the enclosing if com-
mand. Within the condition, the expansion variable $thisaddress is set to the non-comment portion of
each of the addresses in the string in turn. For example, if the string is

B.Simpson <bart@springfield>, lisa@springfield (his sister)

then $thisaddress would take on the values bart@springfield and lisa@springfield in
turn.

If there are no valid addresses in the list, the whole condition is false. If the internal condition is true
for any one address, the overall condition is true and the loop ends. If the internal condition is false for
all addresses in the list, the overall condition is false. This example tests for the presence of an eight-
digit local part in any address in a To: header:

if foranyaddress $h_to: ($thisaddress matches ^\\d{8}@) then ...

When the overall condition is true, the value of $thisaddress in the commands that follow then is the
last value it took on inside the loop. At the end of the if command, its value is reset to what it was
before. It is best to avoid the use of multiple occurrences of foranyaddress, nested or otherwise, in a
single if command, if the value of $thisaddress is to be used afterwards, because it isn’t always clear
what the value will be. Nested if commands should be used instead.

Header lines can be joined together if a check is to be applied to more than one of them. For example:

if foranyaddress $h_to:,$h_cc:

scans through the addresses in both the To: and the Cc: headers.

[14]

26. Multiple personal mailboxes

The system administrator can configure Exim so that users can set up variants on their email addresses
and handle them separately. Consult your system administrator or local documentation to see if this
facility is enabled on your system, and if so, what the details are.

The facility involves the use of a prefix or a suffix on an email address. For example, all mail
addressed to lg103-<something> would be the property of user lg103, who could determine how it was
to be handled, depending on the value of <something>.

There are two possible ways in which this can be set up. The first possibility is the use of multiple
.forward files. In this case, mail to lg103-foo, for example, is handled by looking for a file called
.forward-foo in lg103’s home directory. If such a file does not exist, delivery fails and the message is
returned to its sender.

The alternative approach is to pass all messages through a single .forward file, which must be a filter
file in order to distinguish between the different cases by referencing the variables $local_part_prefix
or $local_part_suffix, as in the final example in section 28 below. If the filter file does not handle a
prefixed or suffixed address, delivery fails and the message is returned to its sender.

It is possible to configure Exim to support both schemes at once. In this case, a specific .forward-foo
file is first sought; if it is not found, the basic .forward file is used.

The personal test (see section 21) includes prefixes and suffixes in its checking.

27. Ignoring delivery errors

As was explained above, filtering just sets up addresses for delivery – no deliveries are actually done
while a filter file is active. If any of the generated addresses subsequently suffers a delivery failure, an
error message is generated in the normal way. However, if the filter command which sets up a delivery
is preceded by the word noerror, then errors for that delivery, and any deliveries consequent on it
(that is, from alias, forwarding, or filter files it invokes) are ignored.

28. Examples of filter commands

Simple forwarding:

Exim filter
deliver baggins@rivendell.middle.earth

Vacation handling using traditional means, assuming that the .vacation.msg and other files have been
set up in your home directory:

Exim filter
unseen pipe "/usr/ucb/vacation \"$local_part\""

Vacation handling inside Exim, having first created a file called .vacation.msg in your home directory:

Exim filter
if personal then vacation endif

File some messages by subject:

Exim filter
if $header_subject: contains "empire" or

$header_subject: contains "foundation"
 then

save $home/mail/f&e
endif

Save all non-urgent messages by weekday:

[15]

Exim filter
if $header_subject: does not contain "urgent" and

$tod_full matches "^(...),"
 then

save $home/mail/$1
 endif

Throw away all mail from one site, except from postmaster:

Exim filter
if $reply_address contains "@spam.site" and

$reply_address does not contain "postmaster@"
 then

seen finish
 endif

Handle multiple personal mailboxes

Exim filter
if $local_part_suffix is "-foo"

 then
save $home/mail/foo

elif $local_part_suffix is "-bar"
then
save $home/mail/bar

 endif

29. More about string expansion

The description which follows in the next section is an excerpt from the full specification of Exim,
except that it lists only those expansion variables that are likely to be useful in filter files.

Expanded strings are copied verbatim from left to right except when a dollar or backslash character is
encountered. A dollar specifies the start of a portion of the string which is interpreted and replaced as
described below.

An uninterpreted dollar can be included in the string by putting a backslash in front of it – if the string
appears in quotes, two backslashes are required because the quotes themselves cause interpretation of
backslashes when the string is read in. A backslash can be used to prevent any special character being
treated specially in an expansion, including itself.

A backslash followed by one of the letters ‘n’, ‘r’, or ‘t’ is recognized as an escape sequence for the
character newline, carriage return, or tab, respectively. A backslash followed by up to three octal digits
is recognized as an octal encoding for a single character, while a backslash followed by ‘x’ and up to
two hexadecimal digits is a hexadecimal encoding. A backslash followed by any other character causes
that character to be added to the output string uninterpreted. These escape sequences are also
recognized in quoted strings as they are read in; their interpretation in expansions as well is useful for
unquoted strings and other cases such as looked-up strings that are then expanded.

30. Expansion items
The following items are recognized in expanded strings. White space may be used between sub-items
that are keywords or substrings enclosed in braces inside an outer set of braces, to improve readability.
Within braces, however, white space is significant.

$<variable name> or ${<variable name>}

Substitute the contents of the named variable, for example

$local_part
 ${domain}

[16]

The second form can be used to separate the name from subsequent alphanumeric characters. This
form (using curly brackets) is available only for variables; it does not apply to message headers.
The names of the variables are given in section 33 below. If the name of a non-existent variable is
given, the expansion fails.

$header_<header name>: or $h_<header name>:

Substitute the contents of the named message header line, for example

$header_reply-to:

The header names follow the syntax of RFC 822, which states that they may contain any printing
characters except space and colon. Consequently, curly brackets do not terminate header names,
and should not be used to enclose them as if they were variables. Attempting to do so causes a
syntax error.

Upper-case and lower-case letters are synonymous in header names. If the following character is
white space, the terminating colon may be omitted, but this is not recommended, because you may
then forget it when it is needed. When white space terminates the header name, it is included in
the expanded string. If the message does not contain the given header, the expansion item is
replaced by an empty string. (See the def condition in section 32 for a means of testing for the
existence of a header.) If there is more than one header with the same name, they are all
concatenated to form the substitution string, with a newline character between each of them.

 However, if the length of this string exceeds 64K, any further headers of the same name are
ignored.

${<op>:<string>}

The string is first itself expanded, and then the operation specified by <op> is applied to it. For
 example,

${lc:$local_part}

A list of operators is given in section 31 below. The string starts with the first character after the
colon, which may be leading white space.

${extract{<key>}{<string1>}{<string2>}{<string3>}}

The key and <string1> are first expanded separately. The key must not consist entirely of digits.
For the string, the result must be of the form:

<key1> = <value1> <key2> = <value2> ...

where the equals signs and spaces are optional. If any of the values contain white space, they must
be enclosed in double quotes, and any values that are enclosed in double quotes are subject to
escape processing as described in section 5. The expanded <string1> is searched for the value that
corresponds to the key. If it is found, <string2> is expanded, and replaces the whole item;
otherwise <string3> is used. During the expansion of <string2> the variable $value contains the
value that has been extracted. Afterwards, it is restored to any previous value it might have had.

If {<string3>} is omitted, the item is replaced by an empty string if the key is not found. If
 {<string2>} is also omitted, the value that was looked up is used. Thus, for example, these two

expansions are identical, and yield ‘2001’:

${extract{gid}{uid=1984 gid=2001}}
${extract{gid}{uid=1984 gid=2001}{$value}}

Instead of {<string3>} the word ‘fail’ (not in curly brackets) can appear, for example:

${extract{Z}{A=... B=...}{$value} fail }

{<string2>} must be present for ‘fail’ to be recognized. When this syntax is used, if the extraction
fails, the entire expansion fails. This causes processing of the filter file to fail, which either delays
delivery of the message, or causes the filter file to be ignored, depending on how the administrator
has configured Exim.

[17]

${extract{<number>}{<separators>}{<string1>}{<string2>}{<string3>}}

The <number> argument must consist entirely of decimal digits. This is what distinguishes this
form of extract from the previous kind. It behaves in the same way, except that, instead of
extracting a named field, it extracts from <string1> the field whose number is given as the first

 argument. The first field is numbered one. If the number is greater than the number of fields in the
string, the result is the expansion of <string3>, or the empty string if <string3> is not provided; if
it is zero, the entire string is returned. The fields in the string are separated by any one of the
characters in the separator string. For example:

${extract{2}{:}{x:42:99:& Mailer::/bin/bash}}

yields ‘42’. Two successive separators mean that the field between them is empty (for example,
the fifth field above).

${if <condition> {<string1>}{<string2>}}

If <condition> is true, <string1> is expanded and replaces the whole item; otherwise <string2> is
used. For example,

${if eq {$local_part}{postmaster} {yes}{no} }

The second string need not be present; if it is not and the condition is not true, the item is
replaced with nothing. Alternatively, the word ‘fail’ may be present instead of the second string
(without any curly brackets). In this case, the expansion is forced to fail if the condition is not
true. The available conditions are described in section 32 below.

${lookup{<key>} <search type> {<file>} {<string1>} {<string2>}}

${lookup <search type> {<query>} {<string1>} {<string2>}}

These items specify data lookups in files and databases, as discussed in chapter 6 of the main
Exim specification. The first form is used for single-key lookups, and the second is used for
query-style lookups. The <key>, <file>, and <query> strings are expanded before use.

If there is any white space in a lookup item which is part of a filter command, the lookup item
must be enclosed in double quotes. The use of data lookups in users’ filter files may be locked out
by the system administrator.

If the lookup succeeds, <string1> is expanded and replaces the entire item. During its expansion,
the variable $value contains the data returned by the lookup. Afterwards it reverts to the value it
had previously (at the outer level it is empty). If the lookup fails, <string2> is expanded and
replaces the entire item. If {<string2>} is omitted, the replacement is null on failure. Alternatively,

 <string2> can itself be a nested lookup, thus providing a mechanism for looking up a default
value when the original lookup fails.

If a nested lookup is used as part of <string1>, $value contains the data for the outer lookup
while the parameters of the second lookup are expanded, and also while <string2> of the second
lookup is expanded, should the second lookup fail.

Instead of {<string2>} the word ‘fail’ can appear, and in this case, if the lookup fails, the entire
expansion is forced to fail. If both {<string1>} and {<string2>} are omitted, the result is the
looked up value in the case of a successful lookup, and nothing in the case of failure.

For single-key lookups, the string ‘partial-’ is permitted to precede the search type in order to do
partial matching, and * or *@ may follow a search type to request default lookups if the key does
not match (see sections 6.6 and 6.7 of the main Exim specification).

If a partial search is used, the variables $1 and $2 contain the wild and non-wild parts of the key
during the expansion of the replacement text. They return to their previous values at the end of the
lookup item.

This example looks up the postmaster alias in the conventional alias file.

${lookup {postmaster} lsearch {/etc/aliases} {$value}}

[18]

This example uses NIS+ to look up the full name of the user corresponding to the local part of an
address, forcing the expansion to fail if it is not found.

"${lookup nisplus {[name=$local_part],passwd.org_dir:gcos} \
{$value}fail}"

${lookup{<key:subkey>} <search type> {<file>} {<string1>} {<string2>}}

This is just a syntactic variation for a single-key lookup, surrounded by an extract item. It
searches for <key> in the file as described above for single-key lookups; if it succeeds, it extracts
from the data a subfield which is identified by the <subkey>. For example, if a line in a linearly
searched file contains

alice: uid=1984 gid=2001

then expanding the string

${lookup{alice:uid}lsearch{<file name>}{$value}}

yields the string ‘1984’. If the subkey is not found in the looked up data, then <string2>, if
present, is expanded and replaces the entire item. Otherwise the replacement is null. The example
above could equally well be written like this:

${extract{uid}{${lookup{alice}lsearch{<file name>}}}}

and this is recommended, because this approach can also be used with query-style lookups.

${sg{<subject>}{<regex>}{<replacement>}}

This item works like Perl’s substitution operator (s) with the global (/g) option; hence its name. It
takes three arguments: the subject string, a regular expression, and a substitution string. For
example

${sg{abcdefabcdef}{abc}{xyz}}

yields ‘xyzdefxyzdef’. Because all three arguments are expanded before use, if any $ or \
characters are required in the regular expression or in the substitution string, they have to be
escaped. For example

${sg{abcdef}{^(...)(...)\$}{\$2\$1}}

yields ‘defabc’, and

${sg{1=A 4=D 3=C}{(\\d+)=}{K\$1=}}

yields ‘K1=A K4=D K3=C’.

${tr{<subject>}{<characters>}{<replacements>}}

This item does single-character translation on its subject string. The second argument is a list of
characters to be translated in the subject string. Each matching character is replaced by the
corresponding character from the replacement list. For example

${tr{abcdea}{ac}{13}}

yields ‘1b3de1’. If there are duplicates in the second character string, the last occurrence is used.
If the third string is shorter than the second, its last character is replicated. However, if it is empty,
no translation takes place.

31. Expansion operators

The following operations can be performed on portions of an expanded string. The substring is first
expanded before the operation is applied to it.

[19]

${domain:<string>}

The string is interpreted as an RFC 822 address and the domain is extracted from it. If the string
does not parse successfully, the result is empty.

${escape:<string>}

If the string contains any non-printing characters, they are converted to escape sequences starting
with a backslash.

${expand:<string>}

The expand operator causes a string to be expanded for a second time. For example,

${expand:${lookup{$domain}dbm{/some/file}{$value}}}

first looks up a string in a file while expanding the operand for expand, and then re-expands what
it has found.

${hash_<n>_<m>:<string>}

The two items <n> and <m> are numbers. If <n> is greater than or equal to the length of the
string, the operator returns the string. Otherwise it computes a new string of length <n> by
applying a hashing function to the string. The new string consists of characters taken from the first

 <m> characters of the string

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQWRSTUVWXYZ0123456789

and if <m> is not present the value 26 is used, so that only lower case letters appear. These
examples:

${hash_3:monty}
${hash_5:monty}
${hash_4_62:monty python}

yield

jmg
 monty

fbWx

respectively. The abbreviation h can be used instead of hash.

${nhash_<n>:<string>}

The string is processed by a hash function which returns a numeric value in the range 0– <n>-1.

${nhash_<n>_<m>:<string>}

The string is processed by a div/mod hash function which returns two numbers, separated by a
slash, in the ranges 0– <n>-1 and 0– <m>-1, respectively. For example,

${nhash_8_64:supercalifragilisticexpialidocious}

returns the string ‘6/33’.

${md5:<string>}

The md5 operator computes the MD5 hash value of the string, and returns it as a 32-digit
hexadecimal number.

${lc:<string>}

This forces the letters in the string into lower-case, for example:

${lc:$local_part}

[20]

${uc:<string>}

This forces the letters in the string into upper-case.

${length_<number>:<string>}

The length operator can be used to extract the initial portion of a string. It is followed by an
underscore and the number of characters required. For example

${length_50:$message_body}

The result of this operator is either the first <number> characters or the whole string, whichever is
the shorter. The abbreviation l can be used instead of length.

${local_part:<string>}

The string is interpreted as an RFC 822 address and the local part is extracted from it. If the string
does not parse successfully, the result is empty.

${mask:<IP address>/<bit count>}

If the form of the string to be operated on is not an IP address followed by a slash and an integer,
the expansion fails. Otherwise, this operator converts the IP address to binary, masks off the least
significant bits according to the bit count, and converts the result back to text, with mask
appended. For example,

${mask:10.111.131.206/28}

returns the string ‘10.111.131.192/28’. Since this operation is expected to be mostly used for
looking up masked addresses in files, the result for an IPv6 address uses fullstops (periods) to
separate components instead of colons, because colon terminates a key string in lsearch files. So,
for example,

${mask:5f03:1200:836f:0a00:000a:0800:200a:c031/99}

returns the string

5f03.1200.836f.0a00.000a.0800.2000.0000/99

Letters in IPv6 addresses are always output in lower case.

${quote:<string>}

The quote operator puts its argument into double quotes if it contains anything other than letters,
digits, underscores, full stops (periods), and hyphens. Any occurrences of double quotes and
backslashes are escaped with a backslash. For example,

${quote:ab"*"cd}

becomes

"ab\"*\"cd"

The place where this is useful is when the argument is a substitution from a variable or a message
 header.

${quote_<lookup-type>:<string>}

This operator applies lookup-specific quoting rules to the string. Each query-style lookup type has
its own quoting rules which are described with the lookups in chapter 6 of the main Exim
specification. For example,

${quote_ldap:two + two}

returns ‘two%20%5C+%20two’. For single-key lookup types, no quoting is necessary and this
operator yields an unchanged string.

[21]

${rxquote:<string>}

The rxquote operator inserts a backslash before any non-alphanumeric characters in its argument.
This is useful when substituting the values of variables or headers inside regular expressions.

${substr_<start>_<length>:<string>}

The substr operator can be used to extract more general substrings than length. It is followed by
an underscore and the starting offset, then a second underscore and the length required. For
example

${substr_3_2:$local_part}

If the starting offset is greater than the string length the result is the null string; if the length plus
starting offset is greater than the string length, the result is the right-hand part of the string,
starting from the given offset. The first character in the string has offset zero. The abbreviation s
can be used instead of substr.

The substr expansion operator can take negative offset values to count from the righthand end of
its operand. The last character is offset -1, the second-last is offset -2, and so on. Thus, for
example,

${substr_-5_2:1234567}

yields ‘34’. If the absolute value of a negative offset is greater than the length of the string, the
substring starts at the beginning of the string, and the length is reduced by the amount of
overshoot. Thus, for example,

${substr_-5_2:12}

yields an empty string, but

${substr_-3_2:12}

yields ‘1’.

If the second number is omitted from substr, the remainder of the string is taken if the offset was
positive. If it was negative, all characters in the string preceding the offset point are taken. For
example, an offset of -1 and no length yields all but the last character of the string.

32. Expansion conditions
The following conditions are available for testing by the ${if construct while expanding strings:

!<condition>

Preceding any condition with an exclamation mark negates the result of the condition.

<symbolic operator> {<string1>}{<string2>}

There are a number of symbolic operators for doing numeric comparisons. They are:

= equal
== equal
> greater
>= greater or equal
< less
<= less or equal

For example,

${if >{$message_size}{10M} ...

Note that the general negation operator provides for inequality testing. The two strings must take
the form of optionally signed decimal integers, optionally followed by one of the letters ‘K’ or
‘M’ (in either upper or lower case), signifying multiplication by 1024 or 1024*1024, respectively.

[22]

def:<variable name>

The def condition must be followed by the name of one of the expansion variables defined in
section 33. The condition is true if the named expansion variable does not contain the empty
string, for example

${if def:sender_ident {from $sender_ident}}

Note that the variable name is given without a leading $ character. If the variable does not exist,
the expansion fails.

def:header_<header name>: or def:h_<header name>:

This condition is true if a message is being processed and the named header exists in the message.
For example,

${if def:header_reply-to:{$h_reply-to:}{$h_from:}}

Note that no $ appears before header_ or h_ in the condition, and that header names must be
terminated by colons if white space does not follow.

exists {<file name>}

The substring is first expanded and then interpreted as an absolute path. The condition is true if
the named file (or directory) exists. The existence test is done by calling the stat() function. The
use of the exists test in users’ filter files may be locked out by the system administrator.

eq {<string1>}{<string2>}

The two substrings are first expanded. The condition is true if the two resulting strings are
identical, including the case of letters.

match {<string1>}{<string2>}

The two substrings are first expanded. The second is then treated as a regular expression and
applied to the first. Because of the pre-expansion, if the regular expression contains dollar, or
backslash characters, they must be escaped with backslashes. Care must also be taken if the
regular expression contains braces (curly brackets). A closing brace must be escaped so that it is
not taken as a premature termination of <string2>. It does no harm to escape opening braces, but
this is not strictly necessary. For example,

${if match {$local_part}{^\\d\{3\}} ...

If the whole expansion string is in double quotes, further escaping of backslashes is also required.

The condition is true if the regular expression match succeeds. At the start of an if expansion the
values of the numeric variable substitutions $1 etc. are remembered. Obeying a match condition
that succeeds causes them to be reset to the substrings of that condition and they will have these
values during the expansion of the success string. At the end of the if expansion, the previous
values are restored. After testing a combination of conditions using or, the subsequent values of
the numeric variables are those of the condition that succeeded.

pam {<string1>:<string2>:...}

Pluggable Authentication Modules (http://www.kernel.org/pub/linux/libs/pam/) are a facility
which is available in the latest releases of Solaris and in some GNU/Linux distributions. The
Exim support, which is intended for use in conjunction with the SMTP AUTH command, is
available only if Exim is compiled with

SUPPORT_PAM=yes

in Local/Makefile. You probably need to add -lpam to EXTRALIBS, and in some releases of
GNU/Linux -ldl is also needed.

The argument string is first expanded, and the result must be a colon-separated list of strings. The
 PAM module is initialized with the service name ‘exim’ and the user name taken from the first

item in the colon-separated data string (i.e. <string1>). The remaining items in the data string are

[23]

passed over in response to requests from the authentication function. In the simple case there will
only be one request, for a password, so the data will consist of just two strings.

There can be problems if any of the strings are permitted to contain colon characters. In the usual
 way, these have to be doubled to avoid being taken as separators. If the data is being inserted

from a variable, the sg expansion item can be used to double any existing colons. For example,
the configuration of a LOGIN authenticator might contain this setting:

server_condition = ${if pam{$1:${sg{$2}{:}{::}}}{yes}{no}}

first_delivery

This condition, which has no data, is true during a message’s first delivery attempt. It is false
during any subsequent delivery attempts.

queue_running

This condition, which has no data, is true during delivery attempts that are initiated by queue-
runner processes, and false otherwise.

or {{<cond1>}{<cond2>}...}

The sub-conditions are evaluated from left to right. The condition is true if any one of the sub-
conditions is true. For example,

${if or {{eq{$local_part}{spqr}}{eq{$domain}{testing.com}}}...

When a true sub-condition is found, the following ones are parsed but not evaluated. If there are
several ‘match’ sub-conditions the values of the numeric variables afterwards are taken from the
first one that succeeds.

and {{<cond1>}{<cond2>}...}

The sub-conditions are evaluated from left to right. The condition is true if all of the sub-
conditions are true. If there are several ‘match’ sub-conditions, the values of the numeric variables
afterwards are taken from the last one. When a false sub-condition is found, the following ones
are parsed but not evaluated.

Note that and and or are complete conditions on their own, and precede their lists of sub-conditions.
Each sub-condition must be enclosed in braces within the overall braces that contain the list. No
repetition of if is used.

33. Expansion variables

This list of expansion variable substitutions contains those that are likely to be of use in filter files.
Others that are not relevant at filtering time, or are of interest only to the system administrator, are
omitted.

$0, $1, etc: When a matches expansion condition succeeds, these variables contain the captured
substrings identified by the regular expression during subsequent processing of the success string of
the containing if expansion item. They may also be set externally by some other matching process
which precedes the expansion of the string. For example, the commands available in Exim filter
files include an if command with its own regular expression matching condition.

$domain: When an address is being directed, routed, or delivered on its own, this variable contains the
domain. In particular, it is set during user filtering, but not during system filtering, since a message
may have many recipients and the system filter is called just once.

$home: This is set to the user ’s home directory when user filtering is configured in the normal way.
When running a filter test via the -bf option, $home is set to the value of the environment variable

 HOME.

$local_part: When an address is being directed, routed, or delivered on its own, this variable contains
the local part. If a local part prefix or suffix has been recognized, it is not included in the value.

[24]

$local_part_prefix: When an address is being directed or delivered locally, and a specific prefix for
the local part was recognized, it is available in this variable. Otherwise it is empty.

$local_part_suffix: When an address is being directed or delivered locally, and a specific suffix for the
local part was recognized, it is available in this variable. Otherwise it is empty.

$message_body: This variable contains the initial portion of a message’s body while it is being
delivered, and is intended mainly for use in filter files. The maximum number of characters of the
body that are used is set by the message_body_visible configuration option; the default is 500.
Newlines are converted into spaces to make it easier to search for phrases that might be split over a
line break.

$message_body_end: This variable contains the final portion of a message’s body while it is being
delivered. The format and maximum size are as for $message_body.

$message_body_size: When a message is being received or delivered, this variable contains the size
of the body in bytes. The count starts from the character after the blank line that separates the body
from the header. Newlines are included in the count. See also $message_size and $body_linecount.

$message_headers: This variable contains a concatenation of all the header lines when a message is
being processed. They are separated by newline characters.

$message_id: When a message is being received or delivered, this variable contains the unique
message id which is used by Exim to identify the message.

$message_precedence: When a message is being delivered, the value of any Precedence: header is
made available in this variable. If there is no such header, the value is the null string.

$message_size: When a message is being received or delivered, this variable contains its size in bytes.
In most cases, the size includes those headers that were received with the message, but not those
(such as Envelope-to:) that are added to individual deliveries as they are written. See also
$message_body_size and $body_linecount.

$n0 – $n9: These variables are counters that can be incremented by means of the add command in
filter files.

$original_domain: When a top-level address is being processed for delivery, this contains the same
value as $domain. However, if a ‘child’ address (for example, generated by an alias, forward, or
filter file) is being processed, this variable contains the domain of the original address. This differs
from $parent_domain when there is more than one level of aliasing or forwarding.

$original_local_part: When a top-level address is being processed for delivery, this contains the same
value as $local_part. However, if a ‘child’ address (for example, generated by an alias, forward, or
filter file) is being processed, this variable contains the local part of the original address. This

 differs from $parent_local_part when there is more than one level of aliasing or forwarding.

$originator_gid: The value of $caller_gid that was set when the message was received. For messages
received via the command line, this is the gid of the sending user. For messages received by SMTP
over TCP/IP, this is normally the gid of the Exim user.

$originator_uid: The value of $caller_uid that was set when the message was received. For messages
received via the command line, this is the uid of the sending user. For messages received by SMTP
over TCP/IP, this is normally the uid of the Exim user.

$parent_domain: This variable is empty, except when a ‘child’ address (generated by aliasing or
forwarding, for example) is being processed, in which case it contains the domain of the immedi-
ately preceding parent address.

$parent_local_part: This variable is empty, except when a ‘child’ address (generated by aliasing or
forwarding, for example) is being processed, in which case it contains the local part of the
immediately preceding parent address.

$primary_hostname: The value set in the configuration file, or read by the uname() function.

$qualify_domain: The value set for this option in the configuration file.

[25]

$qualify_recipient: The value set for this option in the configuration file, or if not set, the value of
 $qualify_domain.

$received_protocol: When a message is being processed, this variable contains the name of the
protocol by which it was received.

$reply_address: When a message is being processed, this variable contains the contents of the Reply-
 To: header line if one exists, or otherwise the contents of the From: header line. However, if the

message contains a set of Resent- header lines, their contents are used in preference.

$return_path: When a message is being delivered, this variable contains the return path – the sender
field that will be sent as part of the envelope. It is not enclosed in <> characters. In many cases,

 $return_path has the same value as $sender_address, but if, for example, an incoming message to
a mailing list has been expanded by a director which specifies a specific address for delivery error
messages, $return_path contains the new error address, while $sender_address contains the
original sender address that was received with the message.

$sender_address: When a message is being processed, this variable contains the sender ’s address that
was received in the message’s envelope. For delivery failure reports, the value of this variable is the
empty string.

$sender_address_domain: The domain portion of $sender_address.

$sender_address_local_part: The local part portion of $sender_address.

$sender_fullhost: When a message is received from a remote host, this variable contains the host
name and IP address in a single string, which always ends with the IP address in square brackets. If
log_incoming_port is set, the port number on the remote host is added to the IP address, separated
by a full stop. The format of the rest of the string depends on whether the host issued a HELO or
EHLO SMTP command, and whether the host name was verified by looking up its IP address. A
plain host name at the start of the string is a verified host name; if this is not present, verification
either failed or was not requested. A host name in parentheses is the argument of a HELO or EHLO

command. This is omitted if it is identical to the verified host name or to the host’s IP address in
square brackets.

$sender_helo_name: When a message is received from a remote host that has issued a HELO or EHLO

command, the first item in the argument of that command is placed in this variable. It is also set if
HELO or EHLO is used when a message is received using SMTP locally via the -bs or -bS options.

$sender_host_address: When a message is received from a remote host, this variable contains that
 host’s IP address.

$sender_host_name: When a message is received from a remote host, this variable contains the host’s
name as verified by looking up its IP address. If verification failed, or was not requested, this
variable contains the empty string.

$sender_host_port: When a message is received from a remote host, this variable contains the port
number that was used on the remote host.

$sender_ident: When a message is received from a remote host, this variable contains the identifi-
cation received in response to an RFC 1413 request. When a message has been received locally,
this variable contains the login name of the user that called Exim.

$sn0 – $sn9: These variables are copies of the values of the $n0 – $n9 accumulators that were current
at the end of the system filter file. This allows a system filter file to set values that can be tested in
users’ filter files. For example, a system filter could set a value indicating how likely it is that a
message is junk mail.

$thisaddress: This variable is set only during the processing of the foranyaddress command in a filter
file. Its use is explained in the description of that command.

$tod_bsdinbox: The time of day and date, in the format required for BSD-style mailbox files, for
example: Thu Oct 17 17:14:09 1995.

[26]

$tod_full: A full version of the time and date, for example: Wed, 16 Oct 1995 09:51:40 +0100. The
timezone is always given as a numerical offset from GMT.

$tod_log: The time and date in the format used for writing Exim’s log files, for example: 1995-10-12
 15:32:29.

$value: This variable contains the result of an expansion lookup or extraction operation, as described
above. If $value is used in other circumstances, its contents are null.

$version_number: The version number of Exim.

[27]

