
University of Cambridge Computing Service

Specification of the Exim Mail Transfer Agent

by

Philip Hazel

University Computing Service
New Museums Site
Pembroke Street
Cambridge CB2 3QG
United Kingdom

phone: +44 1223 334600
fax: +44 1223 334679
email: ph10@cus.cam.ac.uk

Edition for Exim 3.30, June 2001

Copyright University of Cambridge 2001

 Contents

1. Introduction 1
1.1 Web site and Mailing list 1
1.2 Availability 2
1.3 Limitations 3
1.4 Features 3
1.5 Support for IPv6 5
1.6 Calling interface 5
1.7 Terminology 5

2. Incorporated code 7

3. How Exim delivers mail 8
3.1 Philosophy 8
3.2 Message reception 8
3.3 Life of a message 9
3.4 Drivers 9
3.5 Delivery in detail 10
3.6 Temporary delivery failures 12

4. Building and installing Exim 13
4.1 Unpacking 13
4.2 Multiple machine architectures and operating systems 13
4.3 DBM libraries 13
4.4 Pre-building configuration 14
4.5 Including TLS/SSL encryption support 14
4.6 Use of tcpwrappers 15
4.7 Including support for IPv6 15
4.8 The building process 15
4.9 Overriding build-time options for Exim 15
4.10 OS-specific header files 17

 4.11 Overriding build-time options for the monitor 17
4.12 Installing commands and scripts 18
4.13 Installing info documentation 18
4.14 Setting up the spool directory 18
4.15 Testing 18
4.16 Switching Exim on 19
4.17 Exim on heavily loaded hosts 19
4.18 Stopping Exim on Solaris 20

5. The Exim command line 21
5.1 Setting options by program name 21
5.2 Trusted and admin users 21
5.3 Command line options 22

6. File and database lookups 36
6.1 Single-key lookup types 36
6.2 An lsearch file is not an item list 37
6.3 Query-style lookup types 37
6.4 Use of data lookups 37
6.5 Temporary errors in lookups 38
6.6 Default values in single-key lookups 38
6.7 Partial matching in single-key lookups 38
6.8 Lookup caching 39
6.9 Quoting lookup data 39
6.10 More about NIS+ 40

 6.11 More about LDAP 40

[i]

6.12 More about MySQL and PostgreSQL 42
6.13 More about dnsdb 43

7. The Exim configuration file 44
7.1 Configuration file format 44
7.2 Macros in the configuration file 45
7.3 Common option syntax 45
7.4 Integer 46
7.5 Octal integer 46
7.6 Fixed point number 46
7.7 Time interval 46
7.8 String 46
7.9 Expanded strings 47
7.10 User and group names 47

 7.11 List construction 47
7.12 Domain lists 48
7.13 Host lists 50
7.14 Mixing host names and addresses in host lists 52
7.15 Use of RFC 1413 identification in host lists 52
7.16 Address lists 52
7.17 Case of letters in address lists 54

8. Regular expressions 55
8.1 Testing regular expressions 55

9. String expansions 56
9.1 Testing string expansions 56
9.2 Expansion items 56
9.3 Expansion operators 60
9.4 Expansion conditions 62
9.5 Expansion variables 65

10. Embedded Perl 72

11. Main configuration 74

12. Driver specifications 104

13. Environment for running local transports 106
13.1 Uids and gids 106
13.2 Current and home directories 106
13.3 Expansion variables derived from the address 107

14. Generic options for transports 108

15. The appendfile transport 112
15.1 Private options for appendfile 112
15.2 Operational details for appending 120
15.3 Operational details for delivery to a new file 121

16. The autoreply transport 124
16.1 Private options for autoreply 124

17. The lmtp transport 127

18. The pipe transport 129
18.1 Returned status and data 129
18.2 How the command is run 129
18.3 Environment variables 130
18.4 Private options for pipe 130
18.5 Using an external local delivery agent 135

19. The smtp transport 137

20. Generic options common to both directors and routers 142

[ii]

20.1 Skipping directors and routers 146

21. Additional generic options for directors 148
21.1 Skipping directors 149

22. Options common to the aliasfile and forwardfile directors 150

23. The aliasfile director 153
23.1 Specifying a transport for aliasfile 153
23.2 Alias file format 153
23.3 Types of alias item 154
23.4 Duplicate addresses 155
23.5 Repeated alias expansion 156
23.6 Errors in alias files 156
23.7 Aliasfile private options 156

24. The forwardfile director 158
24.1 Forward file items 158
24.2 Repeated forwarding expansion 160
24.3 Errors in forward files 160
24.4 Filter files 160
24.5 The home directory 160
24.6 Special treatment of home_directory and current_directory 160
24.7 Forwardfile private options 161

25. The localuser director 165

26. The smartuser director 166

27. Additional generic options for routers 168

28. The domainlist router 170
28.1 Routing rules 172
28.2 Host list format 172
28.3 Options format 173
28.4 Application of routing rules 173
28.5 Domainlist examples 174

29. The ipliteral router 177

30. The iplookup router 178

31. The lookuphost router 180

32. The queryprogram router 182

33. Retry configuration 184
33.1 Retry rules 184
33.2 Retry rule examples 186
33.3 Timeout of retry data 186
33.4 Long-term failures 187
33.5 Ultimate address timeout 187

34. Address rewriting 188
34.1 Testing the rewriting rules that apply on input 189
34.2 Rewriting rules 189
34.3 Rewriting patterns 189
34.4 Rewriting replacements 191
34.5 Rewriting flags 191
34.6 Flags specifying which headers and envelope addresses to rewrite 191
34.7 The SMTP-time rewriting flag 192
34.8 Flags controlling the rewriting process 192
34.9 The additional relay checking flag 192
34.10 Rewriting examples 193

[iii]

35. SMTP authentication 194
35.1 Generic options for authenticators 195
35.2 Authentication on an Exim server 195
35.3 Testing server authentication 196
35.4 Authenticated senders 196
35.5 Authentication by an Exim client 197

36. The plaintext authenticator 198
36.1 Using plaintext in a server 198
36.2 Using plaintext in a client 199

37. The cram_md5 authenticator 200
37.1 Using cram_md5 as a server 200
37.2 Using cram_md5 as a client 200

38. Encrypted SMTP connections using TLS/SSL 201
38.1 Configuring Exim to use TLS as a server 201
38.2 Configuring Exim to use TLS as a client 203
38.3 Multiple messages on the same TCP/IP connection 203
38.4 Certificates and all that 203

39. Customizing error and warning messages 205
39.1 Customizing error messages 205
39.2 Customizing warning messages 206

40. The default configuration file 207
40.1 Main configuration settings 207
40.2 Transport configuration settings 207
40.3 Director configuration settings 208
40.4 Router configuration settings 209
40.5 Default retry rule 209
40.6 Rewriting configuration 209
40.7 Authenticators configuration 209

41. Multiple user mailboxes 210

42. Using Exim to handle mailing lists 211
42.1 Syntax errors in mailing lists 211
42.2 NFS-mounted mailing lists 211
42.3 Re-expansion of mailing lists 212
42.4 Closed mailing lists 212

43. Virtual domains 213
43.1 All mail to a given host 213
43.2 Virtual domains not preserving envelopes 213
43.3 Virtual domains preserving envelopes 213

44. Intermittently connected hosts 215
44.1 Exim on the upstream host 215
44.2 Exim on the intermittently connected host 215
44.3 Handling many intermittently connected hosts 215

45. Verification of incoming mail 216
45.1 Host verification 216
45.2 Sender verification 216
45.3 Sender verification with callback 218
45.4 Fixing bad senders 218
45.5 Header verification 219
45.6 Receiver verification 219

46. Other policy controls on incoming mail 220
46.1 Host checking using RBL 220
46.2 Other host checking 221

[iv]

46.3 Sender checking 222
46.4 Control of relaying 222
46.5 Customizing prohibition messages 224

47. System-wide message filtering 226
47.1 The system message filter 226
47.2 Additional commands for system filters 226
47.3 Per-address filtering 227

48. SMTP processing 229
48.1 Outgoing SMTP over TCP/IP 229
48.2 Errors in outgoing SMTP 230
48.3 Variable Envelope Return Paths (VERP) 231
48.4 Incoming SMTP messages over TCP/IP 232
48.5 The VRFY, EXPN, and DEBUG commands 233
48.6 The ETRN command 233
48.7 Incoming local SMTP 234
48.8 Outgoing batched SMTP 234
48.9 Incoming batched SMTP 235

49. Message processing 236
49.1 Unqualified addresses 236
49.2 The UUCP From line 236
49.3 The Bcc: header 237
49.4 The Date: header 237
49.5 The Delivery-date: header 237
49.6 The Envelope-to: header 237
49.7 The From: header 237
49.8 The Message-id: header 237
49.9 The Received: header 237
49.10 The Return-path: header 238

 49.11 The Sender: header 238
49.12 The To: header 238
49.13 Adding and removing headers 238
49.14 Constructed addresses 238
49.15 Case of local parts 239
49.16 Dots in local parts 239
49.17 Rewriting addresses 239

50. Automatic mail processing 240
50.1 System-wide automatic processing 240
50.2 Taking copies of mail 240
50.3 Automatic processing by users 241
50.4 Simplified vacation processing 241

51. Log files 242
51.1 Logging to local files 242
51.2 Logging to syslog 243
51.3 Logging message reception 244
51.4 Logging deliveries 245
51.5 Deferred deliveries 245
51.6 Delivery failures 246
51.7 Fake deliveries 246
51.8 Completion 246
51.9 Other log entries 246
51.10 Log level 246

 51.11 Message log 247

52. Day-to-day management 248
52.1 The panic log 248
52.2 The reject log 248

[v]

52.3 Log cycling 248
52.4 Statistics 248
52.5 What is Exim doing? 248
52.6 Changing the configuration 248
52.7 Watching the queue 249
52.8 Holding domains 249

53. Exim utilities 250
53.1 Querying Exim processes 250
53.2 Summarising the queue 250
53.3 Extracting log information 250
53.4 Cycling log files 251
53.5 Making DBM files 251
53.6 Individual retry times 252
53.7 Database maintenance 252
53.8 Mail statistics 254
53.9 Mailbox maintenance 255

54. The Exim monitor 257
54.1 Running the monitor 257
54.2 The stripcharts 257
54.3 Main action buttons 258
54.4 The log display 258
54.5 The queue display 259
54.6 The queue menu 259

55. Security considerations 262
55.1 Root privilege 262
55.2 Running Exim without privilege 263
55.3 Alternate configurations and macros 264
55.4 Reading forward files 264
55.5 Delivering to local files 265
55.6 IPv4 source routing 265
55.7 The VRFY, EXPN, and ETRN commands in SMTP 265
55.8 Privileged users 265
55.9 Spool files 266
55.10 Use of argv[0] 266

 55.11 Use of %f formatting 266
55.12 Embedded Exim path 266
55.13 Use of sprintf() 266
55.14 Use of debug_printf() and log_write() 266
55.15 Use of strcat() and strcpy() 266

56. Format of spool files 267

57. Adding new drivers or lookup types 270

Index 271

[vi]

1. Introduction

If I have seen further it is by standing on the shoulders of giants. (Isaac Newton)

Exim is a mail transfer agent (MTA) for Unix systems connected to the Internet. Configuration files
currently exist for the following operating systems: AIX, BSDI, Darwin (Mac OS X), DGUX,
FreeBSD, GNU/Hurd, GNU/Linux, HI-OSF (Hitachi), HP-UX, IRIX, MIPS RISCOS, NetBSD,
OpenBSD, QNX, SCO, SCO SVR4.2 (aka UNIX-SV), Solaris (aka SunOS5), SunOS4, Tru64-Unix
(formerly Digital UNIX, formerly DEC-OSF1), Ultrix, and Unixware. However, code is not available
for determining system load averages under Ultrix.

The terms and conditions for the use and distribution of Exim are contained in the file NOTICE. Exim
is distributed under the terms of the GNU General Public Licence, a copy of which may be found in
the file LICENCE.

The use, supply or promotion of Exim for the purpose of sending bulk, unsolicited electronic mail is
incompatible with the basic aims of the program, which revolve around the free provision of a service
that enhances the quality of personal communications. The author of Exim regards indiscriminate
mass-mailing as an antisocial, irresponsible abuse of the Internet.

Exim owes a great deal to Smail 3 and its author, Ron Karr. Without the experience of running and
working on the Smail 3 code, I could never have contemplated starting to write a new mailer. Many of
the ideas and user interfaces were originally taken from Smail 3, though the actual code of Exim is
entirely new, and has developed far beyond the initial concept.

Many people, both in Cambridge and around the world, have contributed to the development and the
testing of Exim, and to porting it to various operating systems. I am grateful to them all.

This document is very much a reference manual; it is not a tutorial. Although there are some
discussions and examples in places, the information is mostly organized in a way that makes it easy to
look up, rather than in a natural order for sequential reading. Furthermore, the manual aims to cover
every aspect of Exim in detail, including a number of rarely-used, special-purpose features that are
unlikely to be of very wide interest.

An ‘easier’ discussion of Exim which provides more in-depth explanatory, introductory, and tutorial
material can be found in my book Exim The Mail Transport Agent, published by O’Reilly (ISBN
0-596-00098-7). Inevitably, however, the book is unlikely to be fully up-to-date with the latest release.
This specification is the definitive reference.

This edition of the Exim specification applies to version 3.30 of Exim. Substantive changes from the
3.20 edition are marked by bars in the right-hand margin in the PostScript, PDF, and plain text
versions of the document. Changes are not marked in the Texinfo version, because Texinfo doesn’t
support change bars. In the HTML version, a different colour is used. Minor corrections and
rewordings are not marked.

As the program is still developing, there may be features in later versions of the program that have not
yet made it into this document, which is updated only when the most significant digit of the fractional
part of the version number changes. However, all changes are noted briefly in the file called
doc/ChangeLog, and specifications of new features that are not yet in this manual are placed in
doc/NewStuff. Complete lists of options are maintained in doc/OptionsLists.txt. All these files can be
found within the Exim source distribution.

1.1 Web site and Mailing list
There is a web site at http://www.exim.org by courtesy of Energis Squared, formerly Planet Online
Ltd, who are situated in the UK. The site is mirrored in the USA and a number of of other countries;
links to the mirrors are listed on the home page. Energis also provide resources for the following
mailing lists:

Exim 3.30 [1] introduction (1)

 exim-users@exim.org general discussion list
 exim-announce@exim.org moderated, low volume announcements list
 pop-imap@exim.org discussion of POP/IMAP issues

You can subscribe to these lists, change your existing subscription, and view or search the archives via
the ‘mailing lists’ link on the Exim home page.

By courtesy of Martin Hamilton, there is also an archive of the exim-users list in plain text form at
http://www.roads.lut.ac.uk/lists/exim-users/exim-users.archive and in HTML via Hypermail at
http://www.roads.lut.ac.uk/lists/exim-users/. The list is also forwarded to
http://www.egroups.com/list/exim-users, which is another archiving system with searching
capabilities.

1.2 Availability
The master ftp site for the Exim distribution is

ftp://ftp.csx.cam.ac.uk/pub/software/email/exim

Those mirror sites that I know about are listed in the file

ftp://ftp.csx.cam.ac.uk/pub/software/email/exim/Mirrors

The current release of Exim is always to be found in files called

exim-n.nn.tar.gz
and

 exim-n.nn.tar.bz2

where n.nn is the highest such version number in the directory. The two files contain identical data; the
only difference is the type of compression. The .bz2 file is usually a lot smaller than the .gz file. When
there is only a small amount of change from one version to the next, a patch file may be provided,
with a final component name of the form

exim-patch-n.nn-m.mm.gz

For each released version, the log of changes is made separately available in the directory

ftp://ftp.csx.cam.ac.uk/pub/software/email/exim/ChangeLogs

so that it is possible to find out what has changed without having to download the entire distribution.
The main distribution contains ASCII versions of this specification and other documentation; other
formats of the documents are available in separate files:

exim-html-n.nn.tar.gz
 exim-pdf-n.nn.tar.gz
 exim-postscript-n.nn.tar.gz
 exim-texinfo-n.nn.tar.gz

These tar files contain only the /doc directory, not the complete distribution, and are also available in
.bz2 as well as .gz forms.

An FAQ is available in two different formats from

ftp://ftp.csx.cam.ac.uk/pub/software/email/exim/FAQ.txt.gz
 ftp://ftp.csx.cam.ac.uk/pub/software/email/exim/FAQ.html.gz

The FAQ and other HTML documentation is also available online at the web site and its mirrors.

At the ftp site, there is a directory called

ftp://ftp.csx.cam.ac.uk/pub/software/email/exim/Contrib/

which contains miscellaneous files contributed to the Exim community by Exim users, and there is
also a collection of contributed configuration examples in

ftp://ftp.csx.cam.ac.uk/pub/software/email/exim/config.samples.tar.gz

Exim 3.30 [2] introduction (1)

1.3 Limitations

• Exim is written in ANSI C. This should not be much of a limitation these days. However, to help
with systems that lack a true ANSI C library, Exim avoids making any use of the value returned
by the sprintf() function, which is one of the main incompatibilities. It has its own version of

 strerror() for use with SunOS4 and any other system that lacks this function, and a macro can be
defined to turn memmove() into bcopy() if necessary. Exim uses file names that are longer than
fourteen characters.

• Exim is intended for use as an Internet mailer, and therefore handles addresses in RFC 822
domain format only. It cannot handle ‘bang paths’, though simple two-component bang paths can
be converted by a straightforward rewriting configuration. This restriction does not prevent Exim
from being interfaced to UUCP, provided domain addresses are used.

• Exim insists that every address it handles has a domain attached. For incoming local messages,
domainless addresses are automatically qualified with a configured domain value. Configuration
options specify from which remote systems unqualified addresses are acceptable. These are then
qualified on arrival.

• The only external transport currently implemented is an SMTP transport over a TCP/IP network
(using sockets, including support for IPv6). However, a pipe transport is available, and there are
facilities for writing messages to files and pipes, optionally in batched SMTP format; these
facilities can be used to send messages to some other transport mechanism such as UUCP,
provided it can handle domain-style addresses. Batched SMTP input is also catered for.

• Exim is not designed for storing mail for dial-in hosts. When the volumes of such mail are large,
it is better to get the messages ‘delivered’ into files (that is, off Exim’s queue) and subsequently
passed on to the dial-in hosts by other means.

• It used not to be easy to set up Exim to rewrite addresses only in some copies of a message and
not others, for example, to retain locally-meaningful addresses locally, but rewrite them for any
copies of messages that are sent off-site. From release 3.20, doing this has been made a lot
simpler by adding a facility for rewriting at transport time.

1.4 Features
These are some of the main features of Exim:

• Exim follows the same general approach of decentralized control that Smail does. There is no
central process doing overall management of mail delivery. However, unlike Smail, the indepen-
dent delivery processes share data in the form of ‘hints’, which makes delivery more efficient in
some cases. The hints are kept in a number of DBM files. If any of these files are lost, the only

 effect is to change the pattern of delivery attempts and retries.

• Many configuration options can be given as expansion strings, which are transformed in various
ways when they are used. As these can include file lookups, much of Exim’s operation can be
made table-driven if desired. For example, it is possible to do local delivery on a machine on
which the users do not have accounts. The ultimate flexibility can be obtained (at a price) by
running a Perl interpreter while expanding a string.

• Exim has flexible retry algorithms, applicable to directing and routing addresses as well as to
 delivery.

• Exim contains header and envelope rewriting facilities.

• Unqualified addresses are accepted only from specified hosts or networks.

• Exim can perform multiple deliveries down the same SMTP channel after deliveries have been
delayed.

• Exim can be configured to do local deliveries immediately but to leave remote (SMTP) deliveries
until the message is picked up by a queue-runner process. This increases the likelihood of
multiple messages being sent down a single SMTP connection.

Exim 3.30 [3] introduction (1)

• Remote deliveries of the same message to different hosts can optionally be done in parallel.

• Incoming SMTP messages start delivery as soon as they are received, without waiting for the
SMTP call to close.

• Exim has support for the SMTP AUTH extension for authenticating clients, and for the
 STARTTLS extension for setting up encrypted connections.

• Perl-compatible regular expressions are available in a number of configuration parameters.

• Domain lists can include file lookups, making it possible to support very large numbers of local
domains.

• Exim supports optional checking of incoming return path (sender) and receiver addresses as they
are received by SMTP.

• SMTP calls from specific machines, optionally from specific idents, can be locked out, and
incoming SMTP messages from specific senders can also be locked out. Exim also supports the
use of the Realtime Blackhole List (RBL).

• Hosts that are permitted to relay mail through a machine to another external domain can be
controlled by IP number or IP network number. Relay control by recipient domain and sender
address is also available.

• Messages on the queue can be ‘frozen’ and ‘thawed’ by the administrator.

• Exim can handle a number of independent local domains on the same machine; each domain can
have its own alias files, etc. This facility is sometimes known as ‘virtual domains’.

• Simple mailing lists can be handled directly by Exim itself (but for ‘serious’ mailing list
operations, it is best to use it in conjunction with specialist mailing list software).

• Exim stats a user ’s home directory before looking for a .forward file, in order to detect the case
of a missing NFS mount. Delivery is delayed if the directory is unavailable.

• Exim contains an optional built-in mail filtering facility. This can be configured to allow users to
provide personal filter files, and it is also possible for a system-wide filter file to be applied to
every message.

• There is support for multiple user mailboxes controlled by prefixes or suffixes on the user name,
either via the filter mechanism or through multiple .forward files.

• Periodic warnings are automatically sent to messages’ senders when delivery is delayed – the
time between warnings is configurable. The warnings can be made conditional on the contents of
the message.

• A queue run can be manually started to deliver just a particular portion of the queue, or those
messages with a recipient whose address contains a given string. There is support for the ETRN

command in SMTP to interface to this.

• Exim can be configured to run as root all the time, except when performing local deliveries,
which it always does in a separate process under an appropriate uid and gid. Alternatively, it can
be configured to run as root only when needed; in particular, it need not run as root when
receiving incoming messages or when sending out messages over SMTP. See chapter 55 for a
discussion of security issues.

• I have tried to make the wording of delivery failure messages clearer and simpler, for the benefit
of those less-experienced people who are now using email. Alternative wording for these mess-
ages can be provided in a separate file.

• The Exim Monitor is an optional extra; it displays information about Exim’s processing in an X
 window, and an administrator can perform a number of control actions from the window

interface. However, all such actions are also available from the command line interface.

Exim 3.30 [4] introduction (1)

1.5 Support for IPv6
IPv6 is the next generation of IP protocol which will in time replace IPv4; it is currently in an
experimental state. A number of vendors have already released IPv6 versions of their systems and
networking libraries.

If Exim is built with HAVE_IPV6 set, it uses the IPv6 API for TCP/IP input and output. IP addresses can
be given in IPv6 as well as IPv4 notation; incoming IPv4 calls use the embedded IPv6 address
notation. In the DNS, two new record types, A6 and AAAA, are used for finding IPv6 addresses. A6
records are supposed, in time, to supersede AAAA records. At present, to be on the safe side, when
trying to find host addresses from the DNS, Exim looks for all three record types: A6, AAAA, and A,
in that order, and builds a combined list of addresses found (dropping any duplicates). In future this
may change (for example, to stop once one kind of address has been found).

1.6 Calling interface
Like many MTAs, Exim has adopted the Sendmail interface so that it can be a straight replacement for
/usr/lib/sendmail or /usr/sbin/sendmail when sending mail. Other compatible options also exist, but
those that produce output (for example, -bp, which lists the messages on the queue) do so in Exim’s
own format. All the relevant Sendmail options are implemented, with two reservations. There are also
some additional options that are compatible with Smail 3, and some further options that are new to
Exim.

The -t option, for taking a list of recipients from a message’s headers, is documented (for several
versions of Sendmail) as suppressing delivery to any addresses on the command line (see ‘man’ pages
on a number of operating systems). However, it appears that this is not the case in practice. For this
reason, Exim has an option called extract_addresses_remove_arguments which controls its behav-
iour in this regard.

Sendmail uses the -bi option as a request to rebuild the alias file. As Exim does not have the concept
of a single alias file, it cannot mimic this behaviour. It can be configured to run a particular script
when this option is received; otherwise the option is ignored.

The run time configuration is held in a single text file which is divided into a number of sections. The
entries in this file consist of keywords and values, in the style of Smail 3 configuration files. A default
configuration file which is suitable for simple installations is provided in the distribution.

Control of messages on the queue can be done via certain privileged command line options. There is
also an optional monitor program called eximon, which displays current information in an X window,
and contains a menu interface to Exim’s command line administration options.

1.7 Terminology
The term local part, which is taken from RFC 822, is used to refer to that part of an email address that
precedes the @ sign. The part that follows the @ sign is called the domain or mail domain.

The word domain is sometimes used to mean all but the first component of a machine’s name. It is not
used in that sense here, where it normally refers to the part of an email address following the @ sign.

Local domains are mail domains for which the current host is responsible for handling the entire
address; in other words, it has special knowledge of what to do with messages sent to such domains,
and normally that means using the local part of the address either to deliver the message on the local
host or to transform the address using an alias file or something similar. All other domains are remote
domains, which normally cause the message to be transmitted to some other host.

The distinction between local and remote domains is not always entirely clear-cut, since a host can
have special knowledge about routing for remote domains, and messages for local domains may under
some circumstances be passed to other hosts.

The terms local delivery and remote delivery are used to distinguish delivery to a file or a pipe on the
local machine from delivery by SMTP to some remote machine. The type of delivery does not
necessarily correspond to the type of address. Mail for a local domain may get passed on to some

Exim 3.30 [5] introduction (1)

other host, while mail for a remote domain might get delivered locally to a file or pipe for onward
transmission by some other means. However, these are special cases.

The term default appears frequently in this manual. It is used to qualify a value which is used in the
absence of any setting in the configuration. It may also qualify an action which is taken unless a
configuration setting specifies otherwise.

The term defer is used when the delivery of a message to a specific destination cannot immediately
take place for some reason (a remote host may be down, or a user ’s local mailbox may be full). Such
deliveries are deferred until a later time.

The term mailmaster is used to refer to the person in charge of maintaining the mail software on a
given computer. Commonly this will be the same person who fulfils the postmaster role, but this may
not always be the case.

The term queue is used to refer to the set of messages awaiting delivery, because this term is in
widespread use in the context of MTAs. However, in Exim’s case the reality is more like a pool than a
queue, because there is normally no ordering of waiting messages.

The term queue-runner is used to describe a process that scans the queue and attempts to deliver those
messages whose retry times have come. This term is used by other MTAs, and also relates to the
command runq, but in Exim the waiting messages are normally processed in an unpredictable order.

Exim 3.30 [6] introduction (1)

2. Incorporated code

A number of pieces of external code are included in the Exim distribution.

• Regular expressions are supported in the main Exim program and in the Exim monitor using the
freely-distributable PCRE library, copyright 2000 University of Cambridge. The source is
distributed in the directory src/pcre.

• RFC 1413 callbacks are supported in the main Exim program using the libident library made
freely available by Peter Eriksson at ftp://ftp.lysator.liu.se. Some modifications have been made
in order to support IPv6. The source is distributed in the directory called src/libident.

• Support for the cdb (Constant DataBase) lookup method is provided by code contributed by
Nigel Metheringham of Planet Online Ltd. which contains the following statements:

Copyright 1998 Nigel Metheringham, Planet Online Ltd

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free

Software Foundation; either version 2 of the License, or (at your option) any later version.

This code implements Dan Bernstein’s Constant DataBase (cdb) spec. Information, the spec and sample code for cdb can be obtained from

 http://www.pobox.com/~djb/cdb.html. This implementation borrows some code from Dan Bernstein’s implementation (which has no license restrictions

applied to it).

The implementation is completely contained within the code of Exim. It does not link against an
external cdb library.

• The Exim Monitor program, which is an X-Window application, includes modified versions of
the Athena StripChart and TextPop widgets. This code is copyright by DEC and MIT, and their
permission notice appears below, in accordance with the conditions expressed therein.

Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the Massachusetts Institute of Technology, Cambridge, Massachusetts.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above

copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the names of

Digital or MIT not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL

DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Exim 3.30 [7] incorporated code (2)

3. How Exim delivers mail

3.1 Philosophy
Exim is designed to work efficiently on systems that are permanently connected to the Internet and are
handling a general mix of mail. In such circumstances, most messages can be delivered immediately.
Consequently, Exim does not maintain independent queues of messages for specific domains or hosts,
though it does try to send several messages in a single SMTP connection after a host has been down,
and it also maintains per-host retry information.

3.2 Message reception
When Exim receives a message, it writes two files in its spool directory. The first contains the
envelope information, the current status of the message, and the headers, while the second contains the
body of the message.

The envelope information consists of the address of the message’s sender and the address(es) of the
recipient(s). This information is entirely separate from any addresses contained in the headers. The
status of the message includes a list of recipients who have already received the message. The format
of the first spool file is described in chapter 56.

Address rewriting that is specified in the rewrite section of the configuration (see chapter 34) is done
once and for all on incoming addresses, both in the header and the envelope, at the time the message
is received. If during the course of delivery additional addresses are generated (for example, via
aliasing), these new addresses get rewritten as soon as they are generated. At the time a message is
actually delivered (transported) further rewriting can take place; because this is a transport option, it
can be different for different forms of delivery. It is also possible to specify the addition or removal of
certain headers at the time the message is delivered (see chapters 14 and 20).

Every message handled by Exim is given a message id which is sixteen characters long. It is divided
into three parts, separated by hyphens. Each part is a sequence of letters and digits, representing a
number in base 62:

• The first six characters are the time the message was received, as a number in seconds – the
normal Unix way of representing a time of day. If the clock goes backwards (due to resetting) in
a process that is receiving more than one message, the later time is retained.

• After the first hyphen, the next six characters are the id of the process that received the message.

• The final two characters, after the second hyphen, are used to ensure uniqueness of the id. There
are two different formats:

(a) If the localhost_number option is not set, uniqueness is required only within the local host.
This portion of the id is ‘00’ except when a process receives more than one message in a
single second, when the number is incremented for each additional message.

(b) If the localhost_number option is set, uniqueness among a set of hosts is required. This
portion of the id is set to the base 62 encoding of

<sequence number> * 256 + <host number>

where <sequence number> is the count of messages received by the current process within
the current second. As the maximum value of the host number is 255, this allows for a
maximum value of 14 for the sequence number. If this limit is reached, a delay of one
second is imposed before reading the next message, in order to allow the clock to tick and
the sequence number to get reset.

The names of the two spool files consist of the message id, followed by -H for the file containing the
envelope and headers, and -D for the data file.

Exim 3.30 [8] delivering mail (3)

By default all these spool files are held in a single directory called input inside the general Exim spool
directory. Some operating systems do not perform very well if the number of files in a directory gets
very large; to improve performance in such cases, the split_spool_directory option can be used. This
causes Exim to split up the input files into 62 sub-directories whose names are single letters or digits.

Exim can be configured not to start a delivery process when a message is received; this can be
unconditional, or depend on the number of incoming SMTP connections or the system load. In these
situations, new messages wait on the queue until a queue-runner process picks them up. However, in
standard configurations under normal conditions, delivery is started as soon as a message is received.

3.3 Life of a message
A message remains in the spool directory until it is completely delivered to its recipients or to an error
address, or until it is deleted by an administrator or by the user who originally created it. In cases
when delivery cannot proceed – for example, when a message can neither be delivered to its recipients
nor returned to its sender, the message is marked ‘frozen’ on the spool, and no more deliveries are
attempted.

An administrator can ‘thaw’ such messages when the problem has been corrected, and can also freeze
individual messages by hand if necessary. In addition, an administrator can force a delivery error,
causing an error message to be sent.

There is also an auto_thaw option, which can be used to cause Exim to retry frozen messages after a
certain time. When this is set, no message will remain on the queue for ever, because the delivery
timeout will eventually be reached. Delivery failure reports that reach this timeout are discarded.

When an Exim process starts to deliver a message, it takes out a lock on the -D file, to prevent any
other Exim process from working on it. As delivery proceeds, Exim writes timestamped information
about each address to a per-message log file; this includes any delivery error messages. This log is
solely for the benefit of the administrator, and is normally deleted with the spool files when processing
of a message is complete. However, Exim can be configured to retain it (a dangerous option, as the
files can accumulate rapidly on a busy system). Exim also writes delivery messages to its main log
file, whose contents are described in chapter 51.

All the information Exim itself needs to set up a delivery is kept in the first spool file with the headers.
When a successful delivery occurs, the address is immediately written at the end of a journal file,
whose name is the message id followed by -J. At the end of a delivery run, if there are some
addresses left to be tried again later, the first spool file (the -H file) is updated to indicate which these
are, and the journal file is then deleted. Updating the spool file is done by writing a new file and
renaming it, to minimize the possibility of data loss.

Should the system or the program crash after a successful delivery but before the spool file has been
updated, the journal is left lying around. The next time Exim attempts to deliver the message, it reads
the journal file and updates the spool file before proceeding. This minimizes the chances of double
deliveries caused by crashes.

3.4 Drivers
The main delivery processing elements of Exim are called directors, routers, and transports, and
collectively these are known as drivers. Code for a number of them is provided, compile-time options
specify which ones are included in the binary, and run time options specify which ones are actually
used.

A transport is a driver that transmits a copy of the message from Exim’s spool to some destination.
There are two kinds of transport: for a local transport, the destination is a file or a pipe on the local
host, whereas for a remote transport the destination is some other host. A message is passed to a
specific transport as a result of successful directing or routing. If a message has several recipients, it
may be passed to a number of different transports.

A director is a driver that operates on a local address, either determining how its delivery should
happen, or converting the address into one or more new addresses (for example, via an alias file). A

Exim 3.30 [9] delivering mail (3)

local address is one whose domain matches an entry in the list given in the local_domains option, or
has been determined to be local by a router – see below. The fact that an address is local does not
imply that the message has to be delivered locally; it can be directed either to a local or to a remote
transport.

A router is a driver that operates on an apparently remote address, that is an address whose domain
does not match anything in the list given in local_domains. When a router succeeds it can route an
address either to a local or to a remote transport, or it can change the domain, and pass the address on
to subsequent routers.

In exceptional cases, a router may determine that an address is local after all, and cause it to be passed
to the directors. This happens automatically if a host lookup expands an abbreviated domain into one
that is local. It can also be made to happen (optionally) if an MX record or other routing information
points to the local host, though by default this situation is treated as a configuration error. This is the
only case in which the directors are used to process an address that may not match anything in
local_domains. The diagram below illustrates the relationship between the three kinds of driver.

address

matches
local_domains?

transport
queues

yes

directors

no

routers

 local after all

 new address

Driver interactions

As new features have been added to Exim, the distinction between routers and directors has become
less clear-cut than it once was. It is possible that in some future release the difference will be
abolished and they will be merged into one type of driver. However, at present, they remain distinct.

3.5 Delivery in detail
When a message is to be delivered, the sequence of events is roughly as follows:

• If a system-wide filter file is specified, the message is passed to it. The filter may add recipients
to the message, replace the recipients, discard the message, cause a new message to be generated,
or cause the message delivery to fail. The format of the filter file is the same as for user filter
files, described in the separate document entitled Exim’s interface to mail filtering. Some
additional features are available in system filters – see chapter 47 for details. Note that a message
is passed to the system filter only once per delivery attempt, however many recipients it has.

 However, if there are several delivery attempts because one or more addresses could not be
immediately delivered, the system filter is run each time. The filter condition first_delivery can
be used to detect this.

Exim 3.30 [10] delivering mail (3)

• Each recipient address is parsed and a check is made to see if it is local, by comparing the
domain with the list in the local_domains option. This can contain wildcards and file lookups.

• If an address is local, it is offered to each configured director in turn until one is able to handle
it. When a director cannot handle an address, it is said to decline. If no directors can handle the
address, that is, if they all decline, the address is failed. Directors can be targeted at particular
local domains, so several local domains can be processed entirely independently of each other.

• A director that accepts an address may set up a local or a remote transport for it. The transport is
not run at this time; the address is placed on a queue for the particular transport, to be run later.

 Alternatively, the director may generate one or more new addresses (typically from alias, for-
ward, or filter files). New addresses are fed back into this process from the top, but in order to
avoid loops, a director ignores any address which has an identically-named ancestor that was
processed by itself.

• If an address is not local, it is offered to each configured router in turn, until one is able to
handle it. If none can, the address is failed.

• A router that accepts an address may set up a transport for it, or may pass an altered address to
subsequent routers, or it may discover that the address is a local address after all. This typically
happens when a partial domain name is used and (for example) the DNS lookup is configured to
try to extend such names. In this case, the address is passed to the directors. Exim can also be
configured to do this for any domain whose lowest MX record or other routing information
points to the local host.

• Routers normally set up remote transports for messages that are to be delivered to other
machines. However, a router can pass a message to a local transport, and by this means such
messages can be routed to transport mechanisms other than SMTP by means of pipes or files.

• When all the directing and routing is done, addresses that have been successfully handled are
passed to their assigned transports. When local transports are doing real local deliveries, they
handle only one address at a time, but if a local transport is being used as a pseudo-remote
transport (for example, to collect batched SMTP messages for transmission by some other means)
multiple addresses can be handled. Remote transports can always handle more than one address
at once, but can be configured not to do so, or to restrict multiple addresses to the same domain.

• Each local delivery runs in a separate process under a non-privileged uid, and they are run in
sequence. Exim can be configured so that remote deliveries run under a uid that is private to
Exim, instead of running as root. By default the remote deliveries run one at a time in the main
Exim process, but a configuration option is available to allow multiple remote deliveries for a
single message to be run simultaneously, each in its own sub-process.

• When it is doing a queue run, Exim checks its retry database to see if there has been a previous
temporary delivery failure for the address before running any local transport. If it finds one, it
does not attempt a new delivery until the retry time for the address is reached. However, this
happens only for delivery attempts that are part of a queue run. Local deliveries are always
attempted when delivery immediately follows message reception.

• Remote transports do their own retry handling, since an address may be deliverable to one of a
number of hosts, each of which may have a different retry time. If there have been previous
temporary failures and no host has reached its retry time, no delivery is attempted, whether in a
queue run or not. See chapter 33 for details of retry strategies.

• If there were any errors, a message is returned to an appropriate address (the sender in the
common case), with details of the error for each failing address. Exim can be configured to send
copies of error messages to other addresses.

• If one or more addresses suffered a temporary failure, the message is left on the queue, to be
tried again later. Otherwise the spool files and message log are deleted, though the message log
can optionally be preserved if required.

Exim 3.30 [11] delivering mail (3)

Delivery is said to be deferred when the message remains on the queue for a subsequent delivery
attempt after a temporary failure. Such messages get processed again by queue-runner processes that
are periodically started, either by an Exim daemon or via cron or by hand.

Temporary failures may be detected during routing and directing as well as during the transport stage.
Exim uses a set of configured rules to determine when next to retry the failing address (see chapter
33). These rules also specify when Exim should give up trying to deliver to the address, at which point
it generates a failure report.

When a delivery is not part of a queue run (typically an immediate delivery on receipt of a message),
the directors are always run for local addresses, and local deliveries are always attempted, even if retry
times are set for them. This makes for better behaviour if one particular message is causing problems
(for example, causing quota overflow, or provoking an error in a filter file). If such a delivery suffers a
temporary failure, the retry data gets updated as usual, for use by the next queue-runner process.

When a message cannot be delivered to some or all of its intended recipients, a delivery failure report
is generated. All the addresses that failed in a given delivery attempt are listed in a single failure
report. If a message has many recipients, it is possible for some addresses to fail in one delivery
attempt and others to fail subsequently, giving rise to more than one failure report for a single
message. The wording of delivery failure reports can be customized by the administrator. See chapter
39 for details.

Delivery failure messages contain an X-Failed-Recipients: header, listing all failed addresses, for the
benefit of programs that try to analyse such messages automatically.

A failure report is normally sent to the sender of the original message, as obtained from the message’s
envelope. For incoming SMTP messages, this is the address given in the MAIL command. However,
when an address is expanded via a forward or alias file, an alternative address can be specified for
delivery failures of the generated addresses. For a mailing list expansion (see chapter 42) it is common
to direct failure reports to the manager of the list.

If a failure report (either locally generated or received from a remote host) itself suffers a delivery
failure, the message is left on the queue, but is ‘frozen’, awaiting the attention of an administrator.
There are options which can be used to make Exim discard such failure reports, or to keep them for
only a short time.

3.6 Temporary delivery failures
There are many reasons why a message may not be immediately deliverable to a particular address.
Failure to connect to a remote machine (because it, or the connection to it, is down) is one of the most
common. Local deliveries may also be delayed if NFS files are unavailable, or if a mailbox is on a file
system where the user is over quota. Exim can be configured to impose its own quotas on local
mailboxes; where system quotas are set they will also apply.

A machine that is connected to the Internet can normally deliver most mail straight away (the usual
figure at Cambridge University is 98%). In its default configuration, Exim starts a delivery process
whenever it receives a message, and usually this completes the entire delivery. This is a lightweight
approach, avoiding the need for any centralized queue managing software. There are those who argue
that a central message manager would be able to batch up messages for the same host and send them
in a single SMTP call. I do not myself believe this would occur much in general, unless messages
were significantly delayed in order to create a batch.

However, if a host is unreachable for a period of time, a number of messages may be waiting for it by
the time it recovers, and sending them in a single SMTP connection is clearly beneficial. Whenever a
delivery to a remote host is deferred, Exim makes a note in its hints database, and whenever a
successful SMTP delivery has happened, it looks to see if any other messages are waiting for the same
host. If any are found, they are sent over the same SMTP connection, subject to a configuration limit
as to the maximum number in any one connection.

Exim 3.30 [12] delivering mail (3)

4. Building and installing Exim

4.1 Unpacking
Exim is distributed as a gzipped or bzipped tar file which, when upacked, creates a directory with the
name of the current release (for example, exim-3.30) into which the following files are placed:

CHANGES contains a reference to where changes are documented
LICENCE the GNU General Public Licence
Makefile top-level make file
NOTICE conditions for the use of Exim
README list of files, directories and simple build instructions

Other files whose names begin with README may also be present. The following subdirectories are
created:

OS OS-specific files
doc documentation files
exim_monitor source files for the Exim monitor
scripts scripts used in the build process

 src remaining source files
util independent utilities

Some utilities are contained in the src directory, and are built with the Exim binary; those distributed
in the util directory are things like the log file analyser, which do not depend on any compile-time
configuration.

4.2 Multiple machine architectures and operating systems
The building process for Exim is arranged to make it easy to build binaries for a number of different
architectures and operating systems from the same set of source files. Compilation does not take place
in the src directory. Instead, a build directory is created for each architecture and operating system.
Symbolic links to the sources are installed in this directory, which is where the actual building takes
place.

In most cases, Exim can discover the machine architecture and operating system for itself, but the
defaults can be overridden if necessary.

4.3 DBM libraries
Licensed versions of Unix normally contain a library of DBM functions operating via the ‘ndbm’
interface, and this is what Exim expects by default. Free versions of Unix seem to vary in what they
contain as standard. In particular, some versions of Linux have no default DBM library, and different
distributors have chosen to bundle different libraries with their packaged versions. However, the more
recent releases seem to have standardised on the Berkeley DB library.

Different DBM libraries have different conventions for naming the files they use. When a program
opens a file called dbmfile, there are four possibilities:

(1) A traditional ndbm implementation, such as that supplied as part of Solaris 2, operates on two
files called dbmfile.dir and dbmfile.pag.

(2) The GNU library, gdbm, operates on a single file, but makes two different hard links to it with
names dbmfile.dir and dbmfile.pag.

(3) The Berkeley DB package, if called via its ndbm compatibility interface, operates on a single file
called dbmfile.db, but otherwise looks to the programmer exactly the same as the traditional
ndbm implementation.

(4) If the Berkeley package is used in its native mode, it operates on a single file called dbmfile; the
programmer ’s interface is somewhat different to the traditional ndbm interface.

Exim 3.30 [13] building/installing (4)

(5) Yet another DBM library, called tdb, has become available from

http://download.sourceforge.net/tdb

It has its own interface, and also operates on a single file.

Exim and its utilities can be compiled to use any of these interfaces. By default it assumes an interface
of type (1), though some operating system configuration files default to assuming (4). In order to use
the Berkeley DB package in native mode, it is necessary to set USE_DB in an appropriate configuration
file, and to use tdb you must set USETDB. It may also be necessary to set DBMLIB, as in one of these
lines:

DBMLIB = -ldb
DBMLIB = -ltdb

To complicate things further, there are now three very different versions of the Berkeley DB package.
Version 1.85 has been stable for quite some time, releases 2.x were current for a while, but the latest
versions are numbered 3.x. Releases 2 and 3 are very different internally and externally from the 1.85
release. All versions of Berkeley DB can be obtained from

http://www.sleepycat.com/

but maintenance of version 1.85 has been phased out, and it may not compile on some systems.
Maintenance for the 2.x releases will cease shortly. There is further discussion about the various DBM
libraries in the file doc/dbm.discuss.txt.

4.4 Pre-building configuration
Before building Exim, a local configuration file that specifies options independent of any operating
system has to be created with the name Local/Makefile. A template for this file is supplied as the file
src/EDITME, and it contains full descriptions of all the option settings therein. If you are building
Exim for the first time, the simplest thing to do is to copy src/EDITME to Local/Makefile, then read
it and edit it appropriately.

Default values are supplied for everything except the settings that specify the locations of the run time
configuration file and the directory for holding Exim binaries. These must be given, as Exim will not
build without them. There are a few parameters that can be specified either at build time or at run time
to enable the same binary to be used on a number of different machines. However, if the locations of
Exim’s spool directory and log file directory (if not within the spool directory) are fixed, it is
recommended that you specify them in Local/Makefile instead of at run time so that errors detected
early in Exim’s execution (such as a malformed configuration file) can be logged.

If you are going to build the Exim monitor, a similar configuration process is required. The file
exim_monitor/EDITME must be edited appropriately for your installation and saved under the name
Local/eximon.conf. If you are happy with the default settings described in exim_monitor/EDITME,
Local/eximon.conf can be empty, but it must exist.

This is all the configuration that is needed in straightforward cases for known operating systems.
However, the building process is set up so that it is easy to override options that are set by default or
by operating-system-specific configuration files, for example to change the name of the C compiler,
which defaults to gcc. See section 4.9 below for details of how to do this.

4.5 Including TLS/SSL encryption support
Exim can be built to support encrypted SMTP connections, using the STARTTLS command (RFC 2487).
Before you can do this, you must install the OpenSSL library, which Exim uses for this purpose. There
is no cryptographic code in Exim itself. Once OpenSSL is installed, you can set

SUPPORT_TLS = yes
TLS_LIBS=-lssl -lcrypto

in Local/Makefile. You may also need to specify the locations of the OpenSSL library and include
files. For example:

Exim 3.30 [14] building/installing (4)

SUPPORT_TLS = yes
TLS_LIBS=-L/usr/local/openssl/lib -lssl -lcrypto
TLS_INCLUDE=-I/usr/local/openssl/include/

You don’t need to set TLS_INCLUDE if the relevant directory is already specified in INCLUDE.

4.6 Use of tcpwrappers
Exim can be linked with the tcpwrappers library in order to check incoming SMTP calls using the
tcpwrappers control files. This may be a convenient alternative to Exim’s own checking facilities for
installations that are already making use of tcpwrappers for other purposes. To do this, you should set
USE_TCP_WRAPPERS in Local/Makefile, arrange for the file tcpd.h to be available at compile time, and
also ensure that the library libwrap.a is available at link time, typically by including -lwrap in
EXTRALIBS_EXIM. For example, if tcpwrappers is installed in /usr/local, you might have

USE_TCP_WRAPPERS=yes
CFLAGS=-O -I/usr/local/include
EXTRALIBS_EXIM=-L/usr/local/lib -lwrap

in Local/Makefile. The name to use in the tcpwrappers control files is ‘exim’. For example, the line

exim : LOCAL 192.168.0. .friendly.domain

in your /etc/hosts.allow file allows connections from the local host, from the subnet 192.168.0.0/24,
and from all hosts in friendly.domain. All other connections are denied. Consult the tcpwrappers
documentation for further details.

4.7 Including support for IPv6
Exim contains code for use on systems that have IPv6 support. Setting HAVE_IPV6=YES in
Local/Makefile causes the IPv6 code to be included; it may also be necessary to set IPV6_INCLUDE and
IPV6_LIBS on systems where the IPv6 support is not fully integrated into the normal include and library
files.

4.8 The building process
Once Local/Makefile (and Local/eximon.conf, if required) have been created, run make at the top
level. It determines the architecture and operating system types, and creates a build directory if one
does not exist. For example, on a Sun system running Solaris 2.5.1, the directory build-
SunOS5-5.5.1-sparc is created. Symbolic links to relevant source files are installed in the build
directory.

If this is the first time make has been run, it calls a script which builds a make file inside the build
directory, using the configuration files from the Local directory. The new make file is then passed to
another instance of make which does the real work, building a number of utility scripts, and then
compiling and linking the binaries for the Exim monitor (if configured), a number of utilities, and
finally Exim itself. The command make makefile can be used to force a rebuild of the make file in the
build directory, should this ever be necessary.

If you have problems building Exim, check for any comments there may be in the README file
concerning your operating system, and also take a look at the FAQ, where some common problems are
covered.

4.9 Overriding build-time options for Exim
The main make file that is created at the beginning of the building process consists of the concat-
enation of a number of files which set configuration values, followed by a fixed set of make
instructions. If a value is set more than once, the last setting overrides any previous ones. This
provides a convenient way of overriding defaults. The files that are concatenated are, in order:

Exim 3.30 [15] building/installing (4)

 OS/Makefile-Default
 OS/Makefile-<ostype>

Local/Makefile
 Local/Makefile-<ostype>
 Local/Makefile-<archtype>
 Local/Makefile-<ostype>-<archtype>

OS/Makefile-Base

where <ostype> is the operating system type and <archtype> is the architecture type. Local/Makefile
is required to exist, and the building process fails if it is absent. The other three Local files are
optional, and are often not needed.

The values used for <ostype> and <archtype> are obtained from scripts called scripts/os-type and
scripts/arch-type respectively. If either of the environment variables EXIM_OSTYPE or EXIM_ARCHTYPE is
set, their values are used, thereby providing a means of forcing particular settings. Otherwise, the
scripts try to get values from the uname command. If this fails, the shell variables OSTYPE and
ARCHTYPE are inspected. A number of ad hoc transformations are then applied, to produce the standard
names that Exim expects. You can run these scripts directly from the shell in order to find out what
values are being used on your system.

OS/Makefile-Default contains comments about the variables that are set therein. Some (but not all)
are mentioned below. If there is something that needs changing, review the contents of this file and the
contents of the make file for your operating system (OS/Makefile-<ostype>) to see what the default
values are.

If you need to change any of the values that are set in OS/Makefile-Default or in
OS/Makefile-<ostype>, or to add any new definitions, do so by putting the new values in an
appropriate Local file. For example, to specify that the C compiler is called cc rather than gcc when
compiling in the OSF1 operating system, and that it is to be to be called with the flag -std1, create a
file called Local/Makefile-OSF1 containing the lines

CC=cc
CFLAGS=-std1

This makes it easy to transfer your configuration settings to new versions of Exim simply by copying
the contents of the Local directory.

Exim contains support for doing LDAP, NIS, NIS+, and other kinds of file lookup, but not all systems
have these components installed, so the default is not to include the relevant code in the binary. All the
different kinds of file and database lookup that Exim supports are implemented as separate code
modules which are included only if the relevant compile-time options are set. In the case of LDAP,
NIS, and NIS+, the settings for Local/Makefile are:

LOOKUP_LDAP=yes
LOOKUP_NIS=yes
LOOKUP_NISPLUS=yes

and similar settings apply to the other lookup types. In most cases the relevant include files and
interface libraries need to be installed before compiling Exim. However, in the case of cdb, which is
included in the binary only if

LOOKUP_CDB=yes

is set, the code is entirely contained within Exim, and no external include files or libraries are required.

When a lookup type is not included in the binary, attempts to configure Exim to use it cause
configuration errors.

Exim can be linked with an embedded Perl interpreter, allowing Perl subroutines to be called during
string expansion. To enable this facility,

EXIM_PERL=perl.o

must be defined in Local/Makefile. Details of this facility are given in chapter 10.

Exim 3.30 [16] building/installing (4)

The location of the X11 libraries is something that varies a lot between operating systems, and of
course there are different versions of X11 to cope with. The following three variables are set in
OS/Makefile-Default:

X11=/usr/X11R5
 XINCLUDE=-I$(X11)/include
XLFLAGS=-L$(X11)/lib

These are overridden in some of the operating-system configuration files. For example, in
OS/Makefile-SunOS5 there is

X11=/usr/openwin
XINCLUDE=-I$(X11)/include
XLFLAGS=-L$(X11)/lib -R$(X11)/lib

If you need to override the default setting for your operating system, place a definition of all three of
these variables into your Local/Makefile-<ostype> file.

If you need to add any extra libraries to the link steps, these can be put in a variable called EXTRALIBS,
which appears in all the link commands, but by default is not defined. In contrast, EXTRALIBS_EXIM is
used only on the command for linking the main Exim binary, and not for any associated utilities.
There is also DBMLIB, which appears in the link commands for binaries that use DBM functions (see
also section 4.3). Finally, there is EXTRALIBS_EXIMON, which appears only in the link step for the Exim
monitor binary, and which can be used, for example, to include additional X11 libraries.

Another variable which is not normally defined is STDERR_FILE. This defines a file to which debugging
output is written if the -df flag is set, and is of use when running Exim under inetd.

Yet another variable which should not normally be needed is ERRNO_QUOTA. Exim needs to know which
error the operating system gives when writing to a file fails because the user is over quota. POSIX
specifies an error called EDQUOT and this is present in the latest versions of all the systems Exim has
been ported to at the time of writing. However, it is not present in earlier versions of SunOS5, which
use ENOSPC instead. The code of Exim defaults to using EDQUOT if it is defined, and ENOSPC otherwise.
You should set ERRNO_QUOTA only if your system uses some completely different error code.

The make file copes with rebuilding Exim correctly if any of the configuration files are edited.
However, if an optional configuration file is deleted, it is necessary to touch the associated non-
optional file (that is, Local/Makefile or Local/eximon.conf) before rebuilding.

4.10 OS-specific header files
The OS directory contains a number of files with names of the form os.h-<ostype>. These are system-
specific C header files that should not normally need to be changed. There is a list of macro settings
that are recognized in the file OS/os.configuring, which should be consulted if you are porting Exim
to a new operating system.

4.11 Overriding build-time options for the monitor
A similar process is used for overriding things when building the Exim monitor, where the files that
are involved are

OS/eximon.conf-Default
 OS/eximon.conf-<ostype>
 Local/eximon.conf
 Local/eximon.conf-<ostype>
 Local/eximon.conf-<archtype>
 Local/eximon.conf-<ostype>-<archtype>

As with Exim itself, the final three files need not exist, and in this case the OS/eximon.conf-<ostype>
file is also optional. The default values in OS/eximon.conf-Default can be overridden dynamically by
setting environment variables of the same name, preceded by EXIMON_. For example, setting
EXIMON_LOG_DEPTH in the environment overrides the value of LOG_DEPTH at run time.

Exim 3.30 [17] building/installing (4)

4.12 Installing commands and scripts
The script scripts/exim_install copies binaries and utility scripts into the directory whose name is
specified by the BIN_DIRECTORY setting in Local/Makefile. Files are copied only if they are newer than
any versions already in the binary directory, and old versions are renamed by adding the suffix .O to
their names.

The command make install runs the exim_install script with no arguments. It can be run indepen-
dently with arguments specifying which files are to be copied, from within a build directory. For
example,

(cd build-SunOS5-sparc; ../scripts/exim_install exim)

copies just the main binary file. The main exim binary is required to be owned by root and setuid, for
normal configurations. In some special cases (for example, if a host is doing no local deliveries) is is
possible to run Exim in other ways. If the binary is run by a root process, the effect is the same as if it
were setuid root. The install script tries to set root as the owner of the main binary, and to make it
setuid. It should therefore normally be run as root. If you want to see what the script will do before
running it for real, use the -n option (for which root is not needed):

(cd build-SunOS5-5.5.1-sparc; ../scripts/exim_install -n)

Exim’s run time configuration file is named by the CONFIGURE_FILE setting in Local/Makefile. If this
file does not exist, the default configuration file src/configure.default is copied there by the instal-
lation script. If a run time configuration file already exists, it is left alone. The default configuration
uses the local host’s name as the only local domain, and is set up to do local deliveries into the shared
directory /var/mail, running as the local user. Aliases in /etc/aliases and .forward files in users’ home
directories are supported, but no NIS or NIS+ support is configured. Remote domains are routed using
the DNS, with delivery over SMTP.

4.13 Installing info documentation
Not all systems use the GNU info system for documentation, and for this reason, the Texinfo source of
Exim’s documentation is not included in the main distribution. Instead it is available separately from
the ftp site (see section 1.2).

If you have defined INFO_DIRECTORY in Local/Makefile and the Texinfo source of the documentation is
found in the source tree, running make install automatically builds the info files and installs them.

4.14 Setting up the spool directory
When it starts up, Exim tries to create its spool directory if it does not exist. If a specific Exim uid and
gid are specified, these are used for the owner and group of the spool directory. Sub-directories are
automatically created in the spool directory as necessary.

4.15 Testing
Having installed Exim, you can check that the run time configuration file is syntactically valid by
running the command

exim -bV

If there are any errors in the configuration file, Exim will output error messages. Otherwise it just
outputs the version number and build date. Some simple routing tests can be done by using the address
testing option. For example,

exim -v -bt <local username>

should verify that it recognizes a local mailbox, and

exim -v -bt <remote address>

a remote one. Then try getting it to deliver mail, both locally and remotely. This can be done by
passing messages directly to Exim, without going through a user agent. For example:

Exim 3.30 [18] building/installing (4)

exim postmaster@your.domain
From: user@your.domain
To: postmaster@your.domain
Subject: Testing Exim

This is a test message.
 ^D

If you encounter problems, look at Exim’s log files (mainlog and paniclog) to see if there is any
relevant information there. Another source of information is running Exim with debugging turned on,
by specifying the -d option. The larger the number after -d (up to 9), the more information is output.
With -d2, for example, the sequence of directors or routers that process an address is output. If there’s
a message stuck on Exim’s spool, you can force a delivery with debugging turned on by a command
of the form

exim -d9 -M <message-id>

One specific problem that has shown up on some sites is the inability to do local deliveries into a
single shared mailbox directory that does not have the ‘sticky bit’ set on it. By default, Exim tries to
create a lock file before writing to a mailbox file, and if it cannot create the lock file, the delivery is
deferred. You can get round this either by setting the ‘sticky bit’ on the directory, or by setting a
specific group for local deliveries and allowing that group to create files in the directory (see the
comments above the local_delivery transport in the default configuration file). Another approach is to
configure Exim not to use lock files, but just to rely on fcntl() locking instead. However, you should do
this only if all user agents also use fcntl() locking. For further discussion of locking issues, see
chapter 15.

One thing that cannot be tested on a system that is already running a mailer is the receipt of incoming
SMTP mail on the standard SMTP port. However, the -oX option can be used to run an Exim daemon
that listens on some other port, or inetd can be used to do this. The -bh option can be used to check
out any policy controls on incoming SMTP mail.

Testing a new version on a system that is already running Exim can most easily be done by building a
binary with a different CONFIGURE_FILE setting. From within the run time configuration, all other file
and directory names that Exim uses can be altered, in order to keep it entirely clear of the production
version.

4.16 Switching Exim on
Building and installing Exim does not of itself put it in general use. The name by which the system
message transfer agent is called by mail user agents is either /usr/lib/sendmail, or /usr/sbin/sendmail
(depending on the operating system), and it is necessary to make this name point to the exim binary in
order to get them to use it. This is normally done by renaming any existing file and making
/usr/lib/sendmail or /usr/sbin/sendmail a symbolic link to the exim binary. It is a good idea to
remove any setuid privilege and executable status from the old MTA. It is then necessary to stop and
restart the mailer daemon, if one is running.

You should consider what to tell your users about the change of MTA. Exim may have different
capabilities to what was previously running, and there are various operational differences such as the
text of messages produced by command line options and in bounce messages. If you allow your users
to make use of Exim’s filtering capabilities, you should make the document entitled Exim’s interface to
mail filtering available to them.

4.17 Exim on heavily loaded hosts
If you are running Exim on a heavily loaded host you should consider installing a current release of
bind (from http://www.isc.org) as caching nameserver, either locally or on a nearby host with a fast
network connection. You should also consider enabling Exim’s split_spool_directory if you expect to
have large numbers of messages awaiting delivery.

Exim 3.30 [19] building/installing (4)

4.18 Stopping Exim on Solaris
The standard command for stopping the mailer daemon on Solaris is

/etc/init.d/sendmail stop

If /usr/lib/sendmail has been turned into a symbolic link, this script fails to stop Exim because it uses
the command ps -e and greps the output for the text ‘sendmail’; this is not present because the actual
program name (that is, ‘exim’) is given by the ps command with these options. A fix that appears to
work on Solaris 2.5 and above is to change the script so that the ps command reads

ps -e -o pid,comm

which causes the name by which the daemon was started (that is, /usr/lib/sendmail) to be output.
However, this fails if the daemon has been restarted with SIGHUP because Exim restarts itself using the
real file name. A better solution is to replace the line that finds the process id with something like

pid=‘cat /var/spool/exim/exim-daemon.pid‘

to obtain the daemon’s pid directly from the file that Exim saves it in. See the description of the -bd
option for details of where Exim writes the daemon’s process id file.

Exim 3.30 [20] building/installing (4)

5. The Exim command line

Exim’s command line takes the standard Unix form of a sequence of options, each starting with a
hyphen character, followed by a number of arguments. The options are compatible with the main
options of Sendmail, and there are also some additional options, some of which are compatible with
Smail 3. Certain combinations of options do not make sense, and provoke an error if used. The form
of the arguments depends on which options are set.

5.1 Setting options by program name
If Exim is called under the name mailq, it behaves as if the option -bp were present before any other
options. This is for compatibility with some systems that contain a command of that name in one of
the standard libraries, symbolically linked to /usr/lib/sendmail or /usr/sbin/sendmail.

If Exim is called under the name rsmtp it behaves as if the option -bS were present before any other
options, for compatibility with Smail. The -bS option is used for reading in a number of messages in
batched SMTP format.

If Exim is called under the name rmail it behaves as if the -i and -oee options were present before any
other options, for compatibility with Smail. The name rmail is used as an interface by some UUCP
systems.

If Exim is called under the name runq it behaves as if the option -q were present before any other
options, for compatibility with Smail. The -q option causes a single queue-runner process to be started.

If Exim is called under the name newaliases it behaves as if the option -bi were present before any
other options, for compatibility with Sendmail. This option is used for rebuilding Sendmail’s alias file.
Exim does not have the concept of a single alias file, but can be configured to run a given command if
called with the -bi option.

5.2 Trusted and admin users
Some Exim options are available only to trusted users and others are available only to admin users. In
the description below, the phrases ‘Exim user’ and ‘Exim group’ mean the user and group defined by
EXIM_UID and EXIM_GID in Local/Makefile or set by the exim_user and exim_group options. These do
not necessarily have to use the name ‘exim’.

• A trusted user is root or the Exim user or any user listed in the trusted_users configuration
option, or any user for whom the currently set group is the Exim group (if defined) or whose
current group or any supplementary group is one of those listed in the trusted_groups configur-
ation option.

Trusted users are always permitted to use the -f option or a leading ‘From ’ line to specify the
envelope sender of a message that is passed to Exim through the local interface (see the -bm and
-f options below). For a trusted user, there is never any check on the contents of the From:
header line, and a Sender: line is never added. Furthermore, any existing Sender: line in
incoming local (non-TCP/IP) messages is not removed.

Trusted users may also specify a host name, host address, interface address, protocol name, and
ident value. Thus they are able to insert messages into Exim’s queue locally that have the
characteristics of messages received from a remote host. Untrusted users may in some circum-
stances use -f, but can never set the other values that trusted users can.

From: headers are not checked to see if Sender: is needed when the caller is trusted.

• An admin user is root or the Exim user or any user that is a member of the Exim group (if
defined), or of any group listed in the admin_groups configuration option. The current group
does not have to be one of these groups.

Exim 3.30 [21] command line (5)

Admin users are permitted to operate on messages in the queue, for example, to force delivery
failures. It is also necessary to be an admin user in order to see the full information provided by
the Exim monitor, and full debugging output.

By default, the use of the -M, -q, -R, and -S options to cause Exim to attempt delivery of
messages on its queue is restricted to admin users. However, this restriction can be relaxed by
setting the prod_requires_admin option false (that is, specifying no_prod_requires_admin).

Similarly, the use of the -bp option to list all the messages in the queue is restricted to admin
users unless queue_list_requires_admin is set false.

5.3 Command line options
The command options are described in alphabetical order below.

-- This is a pseudo-option whose only purpose is to terminate the options and therefore to cause
subsequent command line items to be treated as arguments rather than options, even if they
begin with hyphens.

-B<type>
This is a Sendmail option for selecting 7 or 8 bit processing. Exim is entirely 8-bit clean; it
ignores this option.

-bd Run Exim as a daemon, awaiting incoming SMTP connections. This option can be used only
by an admin user. If either of the -d or -dm options are set, the daemon does not disconnect
from the controlling terminal. By default, Exim listens for incoming connections on all the

 host’s interfaces, but it can be restricted to specific interfaces by setting the local_interfaces
option in the configuration file. The standard SMTP port is used, but this can be varied by
means of the daemon_smtp_port configuration option or the -oX command line option. Most

 commonly, the -bd option is combined with the -q<time> option, to cause periodic queue runs
to happen as well.

The process id of a daemon that is both listening on the standard SMTP port and periodically
starting queue runners is written to a file called exim-daemon.pid in Exim’s spool directory.
If a non-standard port is used, the file name is exim-daemon.<port-number>.pid. If a daemon
is run with only one of -bd or -q<time>, that option is added on to the end of the file name,
allowing sites that run two separate daemons to distinguish them.

It is possible to change the directory in which these pid files are written by changing the
setting of PID_FILE_PATH in Local/Makefile. The files are written while Exim is still running as
root. Further details are given in the comments in src/EDITME.

The SIGHUP signal can be used to cause the daemon to re-exec itself. This should be done
whenever Exim’s configuration file is changed, or a new version of Exim is installed. It is not
necessary to do this when other files (for example, alias files) are changed.

-be Run Exim in expansion testing mode. Exim discards its root privilege, to prevent ordinary
users from using this mode to read otherwise inaccessable files. If no arguments are given, it
runs interactively, prompting for lines of data. Each argument (or data line) is passed through
the string expansion mechanism, and the result is output. Variable values from the configur-
ation file (for example, $qualify_domain) are available, but no message-specific values (such
as $domain) are set because no message is being processed.

-bF <filename>
This option is the same as -bf except that it assumes that the filter being tested is a system

 filter. The additional commands that are available only in system filters are recognized.

-bf <filename>
Run Exim in filter testing mode; the file is the filter file to be tested, and a test message must
be supplied on the standard input. If there are no message-dependent tests in the filter, an
empty file can be supplied. If a system filter file is being tested, -bF should be used instead of

 -bf. If the test file does not begin with the special line

Exim 3.30 [22] command line (5)

Exim filter

then it is taken to be a normal .forward file, and is tested for validity under that interpret-
ation. The result of this command, provided no errors are detected, is a list of the actions that
Exim would try to take if presented with the message for real. More details of filter testing
are given in the separate document entitled Exim’s interface to mail filtering.

When testing a filter file, the envelope sender can be set by the -f option, or by a ‘From ’ line
at the start of the test message. Various parameters that would normally be taken from the
envelope recipient address of the message can be set by means of additional command line
options. These are:

-bfd <domain> default is the qualify domain
-bfl <local_part> default is the logged in user
-bfp <local_part_prefix> default is null
-bfs <local_part_suffix> default is null

The local part should always be set to the incoming address with any prefix or suffix stripped,
because that is how it appears when a message is actually being delivered.

-bh <IP address>
This option runs a fake SMTP session as if from the given IP address, using the standard
input and output. The IP address may include a port number at the end, after full stop. For
example:

exim -bh 10.9.8.7.1234
exim -bh fe80::a00:20ff:fe86:a061.5678

Comments as to what is going on are written to the standard error file. These include lines
beginning with ‘LOG’ for anything that would have been logged. This facility is for testing
configuration options for blocking hosts and/or senders and for checking on relaying control.
Messages supplied during the testing session are discarded, and nothing is written to any of
the real log files. There may be pauses when DNS (and other) lookups are taking place, and
of course these may time out. The -oMi option can be used to specify a specific IP interface
if this is important.

-bi Sendmail interprets the -bi option as a request to rebuild its alias file. Exim does not have the
concept of a single alias file, and so it cannot mimic this behaviour. However, calls to
/usr/lib/sendmail -bi tend to appear in various scripts such as NIS make files, so the option
must be recognized.

If -bi is encountered, the command specified by the bi_command configuration option is run,
under the uid and gid of the caller of Exim. If the -oA option is used, its value is passed to
the command as an argument. The command set by bi_command may not contain arguments.
The command can use the exim_dbmbuild utility, or some other means, to rebuild alias files
if this is required. If the bi_command option is not set, calling Exim with -bi is a no-op.

-bm Accept an incoming, locally-generated message on the current input, and deliver it to the
addresses given as the command arguments (except when -t is also given – see below). Each

 argument can be a comma-separated list of RFC 822 addresses. This is the default option for
selecting the overall action of an Exim call; it is assumed if no other conflicting option is

 present.

The format of the message must be as defined in RFC 822, except that, for compatibility with
Sendmail and Smail, a line in one of the forms

From sender Fri Jan 5 12:55 GMT 1997
From sender Fri, 5 Jan 97 12:55:01

(with the weekday optional, and possibly with additional text after the date) is permitted to
appear at the start of the message. There appears to be no authoritative specification of the
format of this line. Exim recognizes it by matching against the regular expression defined by
the uucp_from_pattern option, which can be changed if necessary. The specified sender is

Exim 3.30 [23] command line (5)

treated as if it were given as the argument to the -f option, but if a -f option is also present,
its argument is used in preference to the address taken from the message. The caller of Exim
must be a trusted user for the sender of a message to be set in this way.

-bp List the contents of the mail queue on the standard output. If the -bp option is followed by a
list of message ids, just those messages are listed. By default, this option can be used only by
an admin user. However, the queue_list_requires_admin option can be set false to allow any
user to see the queue.

Each message on the queue is displayed as in the following example:

25m 2.9K 0t5C6f-0000c8-00 <alice@wonderland.fict.book>
red.king@looking-glass.fict.book

 <other addresses>

The first line contains the length of time the message has been on the queue (in this case 25
minutes), the size of the message (2.9K), the unique local identifier for the message, and the
message sender, as contained in the envelope. If the message is a delivery error message, the
sender address is empty, and appears as ‘<>’. If the message was submitted locally by an
untrusted user who overrode the default sender address, the user ’s login name is shown in
parentheses before the sender address. If the message is frozen (attempts to deliver it are
suspended) then the text ‘*** frozen ***’ is displayed at the end of this line.

The recipients of the message (taken from the envelope, not the headers) are displayed on
subsequent lines. Those addresses to which the message has already been delivered are
marked with the letter D. If an original address gets expanded into several addresses via an
alias or forward file, the original is displayed with a D only when deliveries for all of its child
addresses are complete.

-bpa This option operates like -bp, but in addition it shows delivered addresses that were generated
from the original top level address(es) in each message by alias or forwarding operations.
These addresses are flagged with ‘+D’ instead of just ‘D’.

-bpc This option counts the number of messages on the queue, and writes the total to the standard
output. It is restricted to admin users, unless queue_list_requires_admin is set false.

-bpr This option operates like -bp, but the output is not sorted into chronological order of message
arrival. This can speed it up when there are lots of messages on the queue, and is particularly
useful if the output is going to be post-processed in a way that doesn’t need the sorting.

-bpra This option is a combination of -bpr and -bpa.

-bpru This option is a combination of -bpr and -bpu.

-bpu This option operates like -bp but shows only undelivered top-level addresses for each mess-
age displayed. Addresses generated by aliasing or forwarding are not shown, unless the
message was deferred after processing by a director with the one_time option set.

-bP If this option is given with no arguments, it causes the values of all Exim’s main configur-
ation options to be written to the standard output. The values of one or more specific options
can be requested by giving their names as arguments, for example:

exim -bP qualify_domain local_domains

However, any configuration setting that was preceded by the word ‘hide’ is not shown in full,
except to an admin user. For other users, output such as

mysql_servers = <value not displayable>

is used. If configure_file is given as an argument, the name of the run time configuration file
is output. If log_file_path or pid_file_path are given, the names of the directories where log
files and daemon pid files are written are output, respectively. If these values are unset, log
files are written in a sub-directory of the spool directory called log, and pid files are written
directly into the spool directory.

Exim 3.30 [24] command line (5)

If one of the words director, router, transport, or authenticator is given, followed by the
name of an appropriate driver instance, the option settings for that driver are output. For
example:

exim -bP transport local_delivery

The generic driver options are output first, followed by the driver ’s private options. A list of
the names of drivers of a particular type can be obtained by using one of the words

 director_list, router_list, transport_list, or authenticator_list, and a complete list of all
drivers with their option settings can be obtained by using directors, routers, transports, or

 authenticators.

-brt This option is for testing retry rules, and it must be followed by up to three arguments. It
causes Exim to look for a retry rule that matches the values and to write it to the standard
output. For example:

exim -brt bach.comp.mus
Retry rule: *.comp.mus F,2h,15m; FG,4d,30m;

See chapter 33 for a description of Exim’s retry rules. The first argument, which is required,
can be a complete address in the form local_part@domain, or it can be just a domain name.
The second argument is an optional second domain name; if no retry rule is found for the first

 argument, the second is tried. This ties in with Exim’s behaviour when looking for retry rules
for remote hosts – if no rule is found that matches the host, one that matches the mail domain
is sought. The final argument is the name of a specific delivery error, as used in setting up
retry rules, for example ‘quota_3d’.

-brw This option is for testing address rewriting rules, and it must be followed by a single
 argument, consisting of either a local part without a domain, or a complete address with a

fully qualified domain. Exim outputs how this address would be rewritten for each possible
place it might appear. See chapter 34 for further details.

-bS This option is used for batched SMTP input, where messages have been received from some
external source by an alternative transport mechanism. It causes Exim to accept one or more
messages by reading SMTP on the standard input, but to generate no responses. If any error is
encountered reports are written to the standard output and error streams, and Exim gives up

 immediately.

If the caller is trusted, or untrusted_set_sender is set, the senders in the MAIL commands are
believed; otherwise the sender is always the caller of Exim. Unqualified senders and receivers
are not rejected (there seems little point) but instead just get qualified. Sender addresses are
verified if sender_verify is set, unless sender_verify_batch is unset (which is the default).
Receiver verification and administrative rejection is not done, even if configured. HELO and
EHLO act as RSET; VRFY, EXPN, ETRN, HELP, and DEBUG act as NOOP; QUIT quits. The return code
is 0 if no error was detected; it is 1 if one or more messages were accepted before the error
was detected; otherwise it is 2. More details of input using batched SMTP are given in
section 48.9.

-bs This option causes Exim to accept one or more messages by reading SMTP commands on the
standard input, and producing SMTP replies on the standard output. Some user agents use this
interface as a way of passing locally-generated messages to the MTA. The option can also be
used to run Exim from inetd, as an alternative to using a listening daemon, in which case the
standard input is the connected socket. Exim distinguishes between the two cases by
attempting to read the IP address of the peer connected to the standard input. If it is not a
socket, the call to getpeername() fails, and Exim assumes it is dealing with a local message.

If the caller of Exim is trusted, or untrusted_set_sender is set, the senders of messages are
taken from the SMTP MAIL commands. Otherwise the content of these commands is ignored
and the sender is set up as the calling user.

-bt Run in address testing mode, in which each argument is taken as an address to be tested. The
results are written to the standard output. If no arguments are given, Exim runs in an

Exim 3.30 [25] command line (5)

interactive manner, prompting with a right angle bracket for addresses to be tested. Each
address is handled as if it were the recipient address of a message and passed to the
appropriate directors or routers (compare the -bv option); the result is written to the standard
output. The return code is 2 if any address failed outright; it is 1 if no address failed outright
but at least one could not be resolved for some reason. Return code 0 is given only when all
addresses succeed.

Warning: -bt can only do relatively simple testing. If any of the directors or routers in the
configuration makes any tests on the sender address of a message, you can use the -f option to
set an appropriate sender when running -bt tests. Without it, the sender is assumed to be the
calling user at the default qualifying domain. However, if you have set up (for example)
directors and routers whose behaviour depends on the contents of an incoming message, you
cannot test those conditions using -bt. The -N option provides a possible way of doing such

 tests.

-bV Write the current version number, compilation number, and compilation date of the exim
binary to the standard output.

-bv Verify the addresses that are given as the arguments to the command, and write the results to
the standard output. If no arguments are given, Exim runs in an interactive manner, prompting
with a right angle bracket for addresses to be tested. Verification differs from address testing
(the -bt option) in that directors and routers that have no_verify set are skipped, and if the
address is accepted by a director or router that has fail_verify set, verification fails. This is
the same logic that is used when verifying addresses of incoming messages (see chapter 45).
The address is verified as a recipient if -bv is used; to verify as for a sender address, -bvs
should be used.

If the -v (or -d) option is not set, the output consists of a single line for each address, stating
whether it was verified or not, and giving a reason in the latter case. Otherwise, more details
are given of how the address has been handled, and in the case of aliases or forwarding, all
the generated addresses are also considered. Otherwise, generating an address by forwarding,
or more than one address by aliasing, causes verification to end sucessfully.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at
least one could not be resolved for some reason. Return code 0 is given only when all
addresses succeed.

If any of the directors or routers in the configuration makes any tests on the sender address of
a message, you should use the -f option to set an appropriate sender when running -bv tests.

 Without it, the sender is assumed to be the calling user at the default qualifying domain.

-bvs This option acts like -bv, but verifies the address as a sender rather than a recipient address.
This affects any rewriting and qualification that might happen.

-C <filename>
Read the run time configuration from the given file instead of from the default file specified
by the CONFIGURE_FILE compile-time setting. When this option is used by an unprivileged
caller and the file name given is different from the compiled-in name, Exim gives up its root
privilege immediately, and runs with the real and effective uid and gid set to those of the

 caller, to avoid any security exposure. It does not do this if the caller is root or the Exim user
defined by EXIM_UID in Local/Makefile. The facility is useful for ensuring that configuration
files are syntactically correct, but cannot be used for test deliveries, unless the caller is
privileged, or unless it’s an exotic configuration that does not require privilege. No check is
made on the owner or group of the file specified by this option.

-D<macro>=<value>
This option can be used to override macro definitions in the configuration file (see section
7.2). However, like -C, if it is used by an unprivileged caller, it causes Exim to give up its
root privilege. This option may be repeated up to 10 times on a command line.

Exim 3.30 [26] command line (5)

-d<number>
Set a debug level, causing debugging information to be written to the standard error file.
White space between -d and the number is optional. If no number is given, 1 is assumed, and
the higher the number, the more output is produced. A value of zero turns debugging output

 off and is the default. A value of 9 gives the maximum amount of general information, 10
gives in addition details of the interpretation of filter files, and 11 or higher also turns on the
debugging option for DNS lookups.

For non-admin users, the number is ignored, and a debug level of 1 is always used. This
restriction exists because debugging output may show database queries that contain password
information, and also the details of users’ filter files should be protected.

-df If this option is set and STDERR_FILE was defined when Exim was built, debugging information
is written to the file defined by that variable instead of to the standard error file. This option
provides a way of obtaining debugging information when Exim is run from inetd.

-dm This option causes information about memory allocation and freeing operations to be written
to the standard error file.

-dropcr At least one MUA (dtmail) that calls an MTA via the command line is broken in that it
terminates each line with CRLF, instead of just LF, which is the usual Unix convention, and
although this bug has been admitted, it apparently won’t get fixed. There is also some UUCP
software which leaves CR at the ends of lines in messages. As a slight pander to these
programs, the -dropcr option causes Exim to drop all CR characters in an incoming non-
SMTP message.

-E This option specifies that an incoming message is a locally-generated delivery failure report.
It is used internally by Exim when handling delivery failures and is not intended for external
use. Its only effect is to stop Exim generating certain messages to the mailmaster, as
otherwise message cascades could occur in some situations. As part of the same option, a
message id may follow the characters -E. If it does, the log entry for the receipt of the new
message contains the id, following ‘R=’, as a cross-reference.

-ex There are a number of Sendmail options starting with -oe which seem to be called by various
programs without the leading o in the option. For example, the vacation program uses -eq.
Exim treats all options of the form -ex as synonymous with the corresponding -oex options.

-F <string>
Set the sender ’s full name for use when a locally-generated message is being accepted. In the
absence of this option, the user ’s gecos entry from the password file is used. As users are
generally permitted to alter their gecos entries, no security considerations are involved. White
space between -F and the <string> is optional.

-f <address>
Set the address of the envelope sender of a locally-generated message (also known as the
return path). This option can normally be used only by root or the Exim user or by one of the
configured trusted users, but if untrusted_set_sender is set, its use is not restricted. However,
even when untrusted_set_sender is not set, anyone may use it when testing a filter file with
-bf or when testing or verifying addresses using the -bt or -bv options. There is also no
restriction of the use of the special setting -f <> to send a message with an empty sender;
such a message can never provoke a bounce. In other cases, the sender of a local message is
set up as the user who ran the exim command, and -f is ignored,

Allowing untrusted users to change the sender address does not of itself make it possible to
send anonymous mail. Exim still checks that the From: header refers to the local user, and if
it does not, it adds a Sender: header, though this can be overridden by setting

 no_local_from_check.

White space between -f and the <address> is optional. The sender of a locally-generated
message can also be set (when permitted) by an initial ‘From ’ line in the message – see the
description of -bm above, but if -f is also present, it overrides ‘From ’.

Exim 3.30 [27] command line (5)

-h <number>
This option is accepted for compatibility with Sendmail, but at present has no effect. (In
Sendmail it overrides the ‘hop count’ obtained by counting Received: headers.)

-i This option, which has the same effect as -oi, specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. I can find no documentation for this option in
Solaris 2.4 Sendmail, but the mailx command in Solaris 2.4 uses it.

-M <message id> <message id> ...
Exim runs a delivery attempt on each message in turn. If any of the messages are frozen, they
are automatically thawed before the delivery attempt. The settings of

 queue_remote_domains, queue_smtp_domains, and hold_domains are ignored. Retry hints
for any of the addresses are overridden – Exim tries to deliver even if the normal retry time
has not yet been reached. This option requires the caller to be an admin user. However, there
is an option called prod_requires_admin which can be set false to relax this restriction (and
also the same requirement for the -q, -R, and -S options).

-Mar <message id> <address> <address> ...
The first argument must be a message id, and the remaining ones must be email addresses.
Exim adds the addresses to the list of recipients of the message (‘ar’ for ‘add recipients’).

 However, if the message is active (in the middle of a delivery attempt), its status is not
altered. This option can be used only by an admin user.

-MC <transport> <hostname> <sequence number> <message id>
This option is not intended for use by external callers. It is used internally by Exim to invoke
another instance of itself to deliver a waiting message using an existing SMTP channel, which
is passed as the standard input. Details are given in chapter 48. This must be the final option,
and the caller must be root or the Exim user in order to use it.

-MCA This option is not intended for use by external callers. It is used internally by Exim in
conjunction with -MC option. It signifies that the connection to the remote host has been
authenticated.

-MCQ <process id> <pipe fd>
This option is not intended for use by external callers. It is used internally by Exim in
conjunction with -MC option when the original delivery was started by a queue runner. It
passes on the process id of the queue runner, together with the file descriptor number of an
open pipe. Closure of the pipe signals the final completion of the sequence of processes that
are passing messages through the same SMTP channel.

-MCS This option is not intended for use by external callers. It is used internally by Exim in
conjunction with -MC option, and passes on the fact that the SMTP SIZE option should be
used on messages delivered down the existing channel.

-MCT This option is not intended for use by external callers. It is used internally by Exim in
conjunction with -MC option, and passes on the fact that the host to which Exim is connected
supports TLS encryption.

-Mc <message id> <message id> ...
Exim runs a delivery attempt on each message in turn, but unlike the -M option, it does check
for retry hints, and respects any that are found. This option is not very useful to external
callers. It is provided mainly for internal use by Exim when it needs to re-invoke itself in
order to regain root privilege for a delivery (see chapter 55). However, -Mc can be useful
when testing, in order to run a delivery that respects retry times and other options such as
hold_domains that are overridden when -M is used. Such a delivery does not count as a
queue run. If you want to run a specific delivery as if in a queue run, you should use -q with
a message id argument. A distinction between queue run deliveries and other deliveries is
made in one or two places.

-Meb <message id>
This runs, under /bin/sh, the command defined in the shell variable VISUAL or, if that is not

Exim 3.30 [28] command line (5)

defined, EDITOR or, if that is not defined, the command vi, on a copy of the spool file
containing the body of message (‘eb’ for ‘edit body’). If the editor exits normally, the result
of editing replaces the spool file. The message is locked during this process, so no delivery
attempts can occur. Note that the first line of the spool file is its own name; care should be
taken not to disturb this. The thinking behind providing this feature is that an administrator
who has had to mess around with the addresses to get a message delivered might want to add
some comment at the start of the message text. This option can be used only by an admin

 user.

-Mes <message id> <address>
There must be exactly two arguments. The first argument must be a message id, and the
second one an email address. Exim changes the sender address in the message to the given
address, which must be a fully qualified address or ‘<>’ (‘es’ for ‘edit sender’). However, if
the message is active (in the middle of a delivery attempt), its status is not altered. This
option can be used only by an admin user.

-Mf <message id> <message id> ...
Each listed message is marked ‘frozen’. This prevents any delivery attempts taking place until
the message is ‘thawed’, either manually or as a result of the auto_thaw configuration option.

 However, if any of the messages are active (in the middle of a delivery attempt), their status
is not altered. This option can be used only by an admin user.

-Mg <message id> <message id> ...
Exim gives up trying to deliver the listed messages, including any that are frozen. A delivery
error message is sent, containing the text ‘cancelled by administrator ’. However, if any of the
messages are active, their status is not altered. This option can be used only by an admin user.

-Mmad <message id> <message id> ...
Exim marks all the recipient addresses in the messages as already delivered (‘mad’ for ‘mark
all delivered’). However, if any message is active (in the middle of a delivery attempt), its
status is not altered. This option can be used only by an admin user.

-Mmd <message id> <address> <address> ...
The first argument must be a message id, and the remaining ones must be email addresses.
Exim marks the given addresses as already delivered (‘md’ for ‘mark delivered’). However, if
the message is active (in the middle of a delivery attempt), its status is not altered. This
option can be used only by an admin user.

-Mrm <message id> <message id> ...
Each message is completely removed from Exim’s queue, and forgotten. However, if any of
the messages are active, their status is not altered. This option can be used only by an admin
user or by the user who originally caused the message to be placed on the queue.

-Mt <message id> <message id> ...
Each of the listed messages that was ‘frozen’ is now ‘thawed’, so that delivery attempts can
resume. However, if any of the messages are active, their status is not altered. This option can
be used only by an admin user.

-Mvb <message id>
The contents of the message body (-D) spool file are written to the standard output. This
option can be used only by an admin user.

-Mvh <message id>
The contents of the message headers (-H) spool file are written to the standard output. This
option can be used only by an admin user.

-Mvl <message id>
The contents of the message log spool file are written to the standard output. This option can
be used only by an admin user.

-m This is apparently a synonym for -om that is accepted by Sendmail, so Exim treats it that
way too.

Exim 3.30 [29] command line (5)

-N This is a debugging option that inhibits delivery of a message at the transport level. It implies
at least -d1. Exim goes through many of the motions of delivery – it just doesn’t actually
transport the message, but instead behaves as if it had successfully done so. However, it does
not make any updates to the retry database, and the log entries for deliveries are flagged with

 ‘*>’ rather than ‘=>’.

Because -N discards any message to which it applies, only root or the Exim user are allowed
to use it with -bd, -q, -R or -M. In other words, an ordinary user can use it only when
supplying an incoming message to which it will apply. Although transportation never fails
when -N is set, an address may be deferred because of a configuration problem on a transport,
or a routing or directing problem. Once -N has been used for a delivery attempt, it sticks to
the message, and applies to any subsequent delivery attempts that may happen for that

 message.

-n This option is interpreted by Sendmail to mean ‘no aliasing’. It is ignored by Exim.

-oA <file name>
This option is used by Sendmail in conjunction with -bi to specify an alternative alias file
name. Exim handles -bi differently; see the description above.

-oB <n> This is a debugging option which limits the maximum number of multiple SMTP deliveries
down one channel to <n>, overriding the value set in the smtp transport. If <n> is omitted,
the limit is set to 1 (no batching).

-odb This option applies to all modes in which Exim accepts incoming messages, including the
listening daemon. It requests ‘background’ delivery of such messages, which means that the
accepting process automatically starts another delivery process for each message received.
Exim does not wait for such processes to complete (it can take some time to perform SMTP
deliveries). This is the default action if none of the -od options are present.

-odf This option (compatible with Smail) requests ‘foreground’ (synchronous) delivery when Exim
has accepted a locally-generated message. (For the daemon it is exactly the same as -odb.)
For a single message received on the standard input, if the protection regime permits it (see
chapter 55), Exim converts the reception process into a delivery process. In other cases, it
creates a new delivery process, and then waits for it to complete before proceeding.

-odi This option is synonymous with -odf. It is provided for compatibility with Sendmail.

-odq This option applies to all modes in which Exim accepts incoming messages, including the
listening daemon. It specifies that the accepting process should not automatically start a
delivery attempt for each message received. Messages are placed on the queue, and remain
there until a subsequent queue-running process encounters them. The queue_only configur-
ation option has the same effect.

-odqr This option applies to all modes in which Exim accepts incoming messages, including the
listening daemon. It causes Exim to process local addresses when a message is received, but
not even to try routing remote addresses. Contrast with -odqs below, which does the routing,
but not the delivery. The remote addresses will be picked up by the next queue runner. The

 queue_remote_domains configuration option has the same effect for specific domains.

-odqs This option is a hybrid between -odb and -odq. A delivery process is started for each
incoming message, the addresses are all processed, and local deliveries are done in the normal

 way. However, if any SMTP deliveries are required, they are not done at this time. Such
messages remain on the queue until a subsequent queue-running process encounters them.
Because routing was done, Exim knows which messages are waiting for which hosts, and so a
number of messages for the same host will get sent in a single SMTP connection. The
queue_smtp_domains configuration option has the same effect for specific domains. See also
the -qq option.

-oee If an error is detected while a non-SMTP message is being received (for example, a mal-
formed address), the error is reported to the sender in a mail message. Provided the message

Exim 3.30 [30] command line (5)

is successfully sent, Exim exits with a return code of zero. If not, the return code is 2 if the
error was that the message had no recipients, and 1 otherwise. This is the default -oex option
if Exim is called as rmail.

-oem This is the same as -oee, except that Exim always exits with a non-zero return code, whether
or not the error message was successfully sent. This is the default -oex option, unless Exim is
called as rmail.

-oep If an error is detected while a non-SMTP message is being received, the error is reported by
writing a message to the standard error file (stderr).

-oeq This option is supported for compatibility with Sendmail, but has the same effect as -oep.

-oew This option is supported for compatibility with Sendmail, but has the same effect as -oem.

-oi This option, which has the same effect as -i, specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. This is the default if Exim is called as rmail.

-oitrue This option is treated as synonymous with -oi.

-oMa <host address>
This option sets the sender host address value, and can be used only by a trusted caller,
except in conjunction with the -bh, -bf, -bF, -bt, or -bv testing options. The host address may
include a port number at the end, after full stop. For example

exim -bs -oMa 10.9.8.7.1234

A real incoming connection overrides the address set by -oMa. The value is used in log
entries and can appear in Received: headers. The option is intended for use when handing to
Exim messages received by other means, either via the command line or by using the -bs
option. If -oMt is set then -oMa should normally be set as well.

-oMas <address>
This option sets the authenticated sender value, and can be used only by a trusted caller. It
overrides the sender address that is created from the caller ’s login for messages from local
sources. However, it may be overridden in turn by a message that is received over an
authenticated SMTP connection. See chapter 35 for more discussion of authenticated senders.

-oMai <string>
This option sets the authenticated id value, and can be used only by a trusted caller. It
overrides the default value (the caller ’s login id) for messages from local sources. However, it
may be overridden in turn by a successful authentication on an SMTP connection. See chapter
35 for more discussion of authenticated ids.

-oMi <interface address>
This option sets the IP interface address value, and can be used only by a trusted caller,
except in conjunction with the -bh, -bf, -bF, -bt, or -bv testing options. A real incoming
connection overrides the address set by -oMi. The option is intended for use when handing to
Exim messages received by other means, either via the command line or by using the -bs
option.

-oMr <protocol name>
This option sets the received protocol value, and can be used only by a trusted caller, except
in conjunction with the -bh, -bf, -bF, -bt, or -bv testing options. The value is used in log
entries and can appear in Received: headers. The option is intended for use when handing to
Exim messages received by other means. It applies only to non-SMTP and batched SMTP
input.

-oMs <host name>
This option sets the sender host name value, and can be used only by a trusted caller, except
in conjunction with the -bh, -bf, -bF, -bt, or -bv testing options. The value is used in log
entries and can appear in Received: headers. The option is intended for use when handing to
Exim messages received by other means.

Exim 3.30 [31] command line (5)

-oMt <ident string>
This option sets the sender ident value, and can be used only by a trusted caller, except in
conjunction with the -bh, -bf, -bF, -bt, or -bv testing options. The value is used in log entries
and can appear in Received: headers. The default setting for local callers is the login id of the
calling process. This can be overridden by supplying an empty argument. The option is
intended for use when handing to Exim messages received by other means.

-om In Sendmail, this option means ‘me too’, indicating that the sender of a message should
receive a copy of the message if the sender appears in an alias expansion. Exim always does
this, so the option does nothing.

-oo This option is ignored. In Sendmail it specifies ‘old style headers’, whatever that means.

-or <time>
This option sets a timeout value for incoming non-SMTP messages. If it is not set, Exim will
wait forever for the standard input. The value can also be set using the accept_timeout
configuration variable. The format used for specifying times is described in section 7.7.

-ov This option has exactly the same effect as -v.

-oX <number>
This option is relevant only when the -bd option is also given. It overrides any setting of the
daemon_smtp_port option, and specifies an alternative TCP/IP port number for the listening
daemon. When used, the process number of the daemon is written to a file whose name is

 exim-daemon.<number>.pid in Exim’s spool directory or the directory specified by PID_FILE_

 PATH in Local/Makefile.

-pd This option applies when an embedded Perl interpreter is linked with Exim (see chapter 10).
It overrides the setting of the perl_at_start option, forcing the starting of the interpreter to be
delayed until it is needed.

-ps This option applies when an embedded Perl interpreter is linked with Exim (see chapter 10).
It overrides the setting of the perl_at_start option, forcing the starting of the interpreter to
occur as soon as Exim is started.

-q If the -q option is not followed by a time value, it requests a single queue run operation. This
option requires the caller to be an admin user. However, there is an option called

 prod_requires_admin which can be set false to relax this restriction (and also the same
requirement for the -M, -R, and -S options).

Exim starts up a delivery process for each (inactive) message on the queue in turn, and waits
for it to finish before starting the next one. If the delivery process spawns other processes to
deliver other messages down passed SMTP connections, the queue runner waits for these to
finish before proceeding. When all the queued messages have been considered, the original
process terminates. In other words, a single pass is made over the waiting mail, one message
at a time. Use -q with a time (see below) if you want this to be repeated periodically.

Exim processes the waiting messages in an unpredictable order. It isn’t very random, but it is
likely to be different each time, which is all that matters. If one particular message screws up
a remote MTA, other messages to the same MTA have a chance of getting through if they get
tried first.

It is possible to cause the messages to be processed in lexical message id order, which is
essentially the order in which they arrived, by setting the queue_run_in_order option, but
this is not recommended for normal use.

When scanning the queue (either randomly or in order), Exim can be made to skip over
messages whose ids are lexically less than a given value by following the -q option with a
starting message id. For example:

exim -q 0t5C6f-0000c8-00

Exim 3.30 [32] command line (5)

Messages that arrived earlier than 0t5C6f-0000c8-00 are not inspected. If a second message id
is given, messages whose ids are lexically greater than it are also skipped. If the same id is
given twice, for example,

exim -q 0t5C6f-0000c8-00 0t5C6f-0000c8-00

just one delivery process is started, for that message. This differs from -M in that retry data is
respected, and it also differs from -Mc in that it counts as a delivery from a queue run. Note
that the selection mechanism does not affect the order in which the messages are scanned.
There are also other ways of selecting specific sets of messages for delivery in a queue run –
see -R and -S.

-q <time>
This version of the -q option (which again can be run only by an admin user) causes Exim to
run as a daemon, starting a queue-runner process at intervals specified by the given time value
(whose format is described in section 7.7). This form of the -q option is commonly combined
with the -bd option, in which case a single daemon process handles both functions. A
common way of starting up a combined daemon at system boot time is to use a command
such as

/opt/exim/bin/exim -bd -q30m

Such a daemon listens for incoming SMTP calls, and also fires up a queue-runner process
every 30 minutes. The process id of such a daemon is written to a file called exim-
daemon.pid in Exim’s spool directory, unless the -oX option has been used, in which case the
file is called exim-daemon.<port-number>.pid. The location of the pid file can be changed by
defining PID_FILE_PATH in Local/Makefile. If a daemon is started without -bd then the -q
option used to start it is added to the pid file name.

-qf This option operates like -q, and may appear with or without a following time. The difference
is that a delivery attempt is forced for each non-frozen message, whereas with -q only those
non-frozen addresses that have passed their retry times are tried.

-qff This option operates like -qf and may appear with or without a following time. The difference
is that any frozen messages are automatically thawed, and delivery is attempted for them.

-qfl This option operates like -ql, and may appear with or without a following time. The differ-
ence is that a delivery attempt is forced for the local addresses in each non-frozen message,
whereas with -ql only those non-frozen local addresses that have passed their retry times are

 tried.

-qffl This option operates like -qfl and may appear with or without a following time. The differ-
ence is that any frozen messages are automatically thawed, and delivery is attempted for any
local addresses in them.

-ql This option operates like -q, and may appear with or without a following time. The difference
is that only local addresses (those with domains that match local_domains) are considered for

 delivery. Note that -ql cannot detect apparently remote addresses that actually turn out to be
local when their domains get fully qualified.

-qq... If any command line option starting with -q is specified with an additional q (for example,
 -qqf) then all the resulting queue runs are done in two stages. In the first stage, the queue is

scanned as if the queue_smtp_domains option matched every domain. This causes remote
addresses to be routed, but no transportation to be done. The database that remembers which
messages are waiting for specific hosts is updated, as if delivery to those hosts had been
deferred. After this is complete, a second, normal queue scan happens, and normal directing,
routing, and delivery takes place. Messages which are routed to the same host should mostly
be delivered down a single SMTP connection because of the hints that were set up during the
first queue scan. This option may be useful for hosts that are connected to the Internet

 intermittently.

Exim 3.30 [33] command line (5)

-qR<flags> <string>
This option is synonymous with -R. It is provided for Sendmail compatibility.

-qS<flags> <string>
This option is synonymous with -S.

-R<flags> <string>
The <flags> may be empty, in which case the white space before the string is optional, unless
the string is ‘f’, ‘ff ’, ‘r ’, ‘rf ’, or ‘rff ’, which are the possible values for <flags>. White space
is required if <flags> is not empty.

This option is similar to -q with no time value, that is, it causes Exim to perform a single
queue run, except that, when scanning the messages on the queue, Exim processes only those
that have at least one undelivered address containing the given string, which is checked in a
case-independent way. If the <flags> start with ‘r’, <string> is interpreted as a regular
expression; otherwise it is a literal string. If the <flags> contain ‘ff ’ then frozen messages are
included; otherwise they are omitted.

Once a message is selected, all its addresses are processed. For the first selected message,
Exim overrides any retry information and forces a delivery attempt for each undelivered
address. This means that if delivery of any address in the first message is successful, any
existing retry information is deleted, and so delivery attempts for that address in subsequently
selected messages (which are processed without forcing) will run. However, if delivery of any
address does not succeed, the retry information is updated, and in subsequently selected
messages, the failing address will be skipped.

If the <flags> contain ‘f’ or ‘ff ’ then the delivery forcing applies to all selected messages, not
just the first.

The -R option makes it straightforward to initiate delivery of all messages to a given domain
after a host has been down for some time. When the SMTP command ETRN is permitted (see
the smtp_etrn_hosts option), its default effect is to run Exim with the -R option, but it can
be configured to run an arbitrary command instead.

-r This is a documented (for Sendmail) obsolete alternative name for -f.

-S<flags> <string>
This option acts like -R except that it checks the string against each message’s sender instead
of against the recipients. If -R is also set, both conditions must be met for a message to be
selected. If either of the options has ‘f’ or ‘ff ’ in its flags, the associated action is taken.

-t When Exim is receiving a locally-generated, non-SMTP message on the current input, the -t
option causes the recipients of the message to be obtained from the To:, Cc:, and Bcc:
headers in the message instead of from the command arguments. The addresses are extracted
before any rewriting takes place.

If there are in fact any arguments, they specify addresses to which the message is not to be
delivered. That is, the argument addresses are removed from the recipients list obtained from
the headers. This is compatible with Smail 3 and in accordance with the documented behav-
iour of several versions of Sendmail, as described in man pages on a number of operating
systems (e.g. Solaris 2.6, IRIX 6.5, HP-UX 11). However, some versions of Sendmail add

 argument addresses to those obtained from the headers, and a 1994 Sendmail book documents
it that way. Exim can be made to behave in this way by setting the option extract_addresses_

 remove_arguments false.

If a Bcc: header is present, it is removed from the message unless there is no To: or Cc:
 header, in which case a Bcc: header with no data is created, in accordance with RFC 822.

-U Sendmail uses this option for ‘initial message submission’, and its documentation states that
in future releases, it may complain about syntactically invalid messages rather than fixing
them when this flag is not set. Exim ignores this option.

Exim 3.30 [34] command line (5)

-v This option has exactly the same effect as -d1; it causes Exim to be ‘verbose’ and produce
some output describing what it is doing on the standard error file. In particular, if an SMTP
connection is made, the SMTP dialogue is shown.

-x AIX uses -x for a private purpose (‘mail from a local mail program has National Language
Support extended characters in the body of the mail item’). It sets -x when calling the MTA
from its mail command. Exim ignores this option.

Exim 3.30 [35] command line (5)

6. File and database lookups

Exim can be configured to look up data in files or databases in a number of different circumstances
(see 6.4 below). Two different styles of data lookup are implemented:

• The single-key style requires the specification of a file in which to look, and a single key to
search for. The lookup type determines how the file is searched.

• The query style accepts a generalized database query, which may contain one or more keys.

The code for each lookup type is in a separate source file which is compiled and included in the binary
of Exim only if the corresponding compile-time option is set. The default settings in src/EDITME are:

LOOKUP_DBM=yes
LOOKUP_LSEARCH=yes

which means that only linear searching and DBM lookups are included by default.

6.1 Single-key lookup types
The following single-key lookup types are implemented:

• lsearch: The given file is a text file which is searched linearly for a line beginning with the
single key, terminated by a colon or white space or the end of the line. White space between the
key and the colon is permitted. The remainder of the line, with leading and trailing white space
removed, is the data. This can be continued onto subsequent lines by starting them with any
amount of white space, but only a single space character is included in the data at such a
junction. If the data begins with a colon, the key must be terminated by a colon, for example:

baduser: :fail:

Empty lines and lines beginning with # are ignored, even if they occur in the middle of an item.
This is the traditional textual format of alias files.

• dbm: Calls to DBM library functions are used to extract data from the given DBM file by
looking up the record with the given key. The terminating binary zero is included in the key that
is passed to the DBM library.

• dbmnz: This is the same as dbm, except that the terminating binary zero is not included in the
key that is passed to the DBM library. You may need this if you want to look up data in files that
are created by or shared with some other application that does not use terminating zeros. For
example, you need to use dbmnz rather than dbm if you want to authenticate incoming SMTP
calls using the passwords from Courier ’s /etc/userdbshadow.dat file. Exim’s utility program for
creating DBM files (exim_dbmbuild) includes the zeros by default, but has an option to omit
them (see section 53.5).

• nis: The given file is the name of a NIS map, and a NIS lookup is done with the given key,
excluding the terminating binary zero. There is a variant called nis0 which does include the
terminating binary zero in the key. This is reportedly needed for Sun-style alias files. Exim does
not recognize NIS aliases; the full map names must be used.

• cdb: The given file is searched as a Constant DataBase file, using the key string without the
terminating binary zero. The cdb format is designed for indexed files that are read frequently and
never updated, except by total re-creation. As such, it is particulary suitable for large files
containing aliases or other indexed data referenced by an MTA. Information about cdb can be
found at

http://www.pobox.com/~djb/cdb.html

The cdb distribution is not needed in order to build Exim with cdb support, as the code for
reading cdb files is included directly in Exim itself. However, no means of building or testing cdb
files is provided with Exim because these are available within the cdb distribution.

Exim 3.30 [36] file/database lookups (6)

6.2 An lsearch file is not an item list
There has been some confusion about the way lsearch lookups work, in particular in domain and host
lists. An item in one of these lists may be a plain file name, or a file name preceded by a search type,
and these behave differently. For a plain file name, for example

local_domains = /etc/local-mail-domains

each line of the file is treated as if it appeared as an item in the list, and negated items, wild cards, and
regular expressions may be present. However, if an item is specified as an lsearch lookup, for example

local_domains = lsearch;/etc/local-mail-domains

then negated items, wild cards, and regular expressions may not be used, because lsearch is an
indexed lookup method which, when given a key (the domain in the above example), yields a data
value that corresponds to that key. The fact that the file is searched linearly does not make this kind of
search any different from the other single-key lookup types, and an lsearch file can always be directly
converted into one of the other types without change of function. Thus, the keys in lsearched files are
literal strings and are not interpreted in any way.

6.3 Query-style lookup types
The following query-style lookup types are implemented:

• nisplus: This does a NIS+ lookup using a query that may contain any number of keys, and which
can specify the name of the field to be returned. See section 6.10 below.

• ldap: This does an LDAP lookup using a query in the form of a URL, and returns attributes from
a single entry. There is a variant called ldapm which permits values from multiple entries to be
returned. A third variant called ldapdn returns the Distinguished Name of a single entry instead
of any attribute values. See section 6.11 below.

• mysql: The format of the query is an SQL statement that is passed to a MySQL database. See
section 6.12 below.

• pgsql: The format of the query is an SQL statement that is passed to a PostgreSQL database. See
section 6.12 below.

• dnsdb: This does a DNS search for a record whose domain name is the supplied query. The
resulting data is the contents of the record. See section 6.13 below.

• testdb: This is a lookup type which is for use in debugging Exim. It is not likely to be useful in
normal operation.

6.4 Use of data lookups
There are three different types of configuration item in which data lookups can be specified:

(1) Any string that is to be expanded may contain explicit lookup requests. String expansions are
described in chapter 9.

(2) Some drivers can be configured directly to look up data in files.

(3) Lists of domains and other items can contain lookup requests as a way of avoiding excessively
long linear lists. In this case, any data that is returned by the lookup is normally discarded;
whether the lookup succeeds or fails is all that counts. However, in the case of the domains and
local_parts options for directors and routers, the data is preserved in variables for later use. See
sections 7.12, 7.13, and 7.16 for descriptions of the different list types.

In a string expansion, all the parameters of the lookup are specified explicitly, while for the other types
there is always one implicit key involved. For example, the local_domains option contains a list of
local domains; when it is being searched there is some domain name that is an implicit key.

This is not a problem for single-key lookups; the relevant file name is specified, and the key is
implicit. For example, the list of local domains could be given as

Exim 3.30 [37] file/database lookups (6)

local_domains = dbm;/local/domain/list

However, for query-style lookups the entire query has to be specified, and to do this, some means of
including the implicit key is required. The special expansion variable $key is provided for this
purpose. NIS+ could be used to look up local domains by a setting such as

local_domains = nisplus;[domain=$key],domains.org_dir

In cases where drivers can be configured to do lookups, there are always three alternative configuration
options: file is used for single-key lookups, using an implicit key, and query or queries is specified for
query-style lookups. In these cases the query is an expanded string, and the implicit key that would be
used for file is always available as one of the normal expansion variables. The difference between
query and queries is that in the latter case the string is treated as a colon-separated list of queries that
are tried in order until one succeeds.

6.5 Temporary errors in lookups
Lookup functions can return temporary error codes if the lookup cannot be completed. (For example, a
NIS or LDAP database might be unavailable.) For this reason, it is not advisable to use a lookup that
might do this for critical options such as (to give an extreme example) local_domains.

When a lookup cannot be completed in a transport, director, or router, delivery of the message is
deferred, as for any other temporary error. In other circumstances Exim may assume the lookup has
failed, or may give up altogether. These are some specific cases:

• local_domains, hold_domains, or queue_remote_domains during delivery: the address it is
checking is deferred; other addresses may succeed if they match something earlier in the list.

• domains, local_parts, senders, or condition on a router or director: delivery is deferred.

• local_domains, percent_hack_domains, or relay_domains while receiving SMTP: a 451 tem-
porary error is given to the RCPT command.

• local_domains during verification: a temporary error given.

• mx_domains during lookuphost: delivery is deferred.

• mx_domains in the smtp transport (for hosts specified on the transport): treat as not matching.

• queue_smtp_domains in the smtp transport: treat as not matching – otherwise all SMTP
deliveries would be held up.

6.6 Default values in single-key lookups
In this context, a ‘default value’ is a value specified by the administrator that is to be used if a lookup
fails.

If ‘*’ is added to a single-key lookup type (for example, lsearch*) and the initial lookup fails, the key
‘*’ is looked up in the file to provide a default value. See also the section on partial matching below.

Alternatively, if ‘*@’ is added to a single-key lookup type (for example dbm*@) then, if the initial
lookup fails and the key contains an @ character, a second lookup is done with everything before the
last @ replaced by *. This makes it possible to provide per-domain defaults in alias files that include
the domains in the keys. If the second lookup fails (or doesn’t take place because there is no @ in the
key), ‘*’ is looked up.

6.7 Partial matching in single-key lookups
The normal operation of a single-key lookup is to search the file for an exact match with the given
key. However, in a number of situations where domains are being looked up, it is useful to be able to
do partial matching. In this case, information in the file that has a key starting with ‘*.’ is matched by
any domain that ends with the components that follow the full stop. For example, if a key in a DBM
file is

Exim 3.30 [38] file/database lookups (6)

 *.dates.fict.book

then when partial matching is enabled this is matched by (amongst others) 2001.dates.fict.book and
1984.dates.fict.book. It is also matched by dates.fict.book, if that does not appear as a separate key in
the file.

Partial matching is implemented by doing a series of separate lookups using keys constructed by
modifying the original subject key. This means that it can be used with any of the single-key lookup
types, provided that the special partial-matching keys beginning with ‘*.’ are included in the data file.
Keys in the file that do not begin with ‘*.’ are matched only by unmodified subject keys when partial
matching is in use.

Partial matching is requested by adding the string ‘partial-’ to the front of the name of a single-key
lookup type, for example, partial-dbm. When this is done, the subject key is first looked up
unmodified; if that fails, ‘*.’ is added at the start of the subject key, and it is looked up again. If that
fails, further lookups are tried with dot-separated components removed from the start of the subject
key, one-by-one, and ‘*.’ added on the front of what remains.

A minimum number of two non-* components are required. This can be adjusted by including a
number before the hyphen in the search type. For example, partial3-lsearch specifies a minimum of
three non-* components in the modified keys. Omitting the number is equivalent to ‘partial2-’. If the
subject key is 2250.dates.fict.book then the following keys are looked up when the minimum number
of non-* components is two:

2250.dates.fict.book
*.2250.dates.fict.book

 *.dates.fict.book
 *.fict.book

As soon as one key in the sequence is successfully looked up, the lookup finishes. If ‘partial0-’ is
used, the original key gets shortened right down to the null string, and the final lookup is for ‘*’ on its
own.

If the search type ends in ‘*’ or ‘*@’ (see section 6.6 above), the search for an ultimate default that
this implies happens after all partial lookups have failed. If ‘partial0-’ is specified, adding ‘*’ to the
search type has no effect, because the ‘*’ key is already included in the sequence of partial lookups.

The use of ‘*’ in lookup partial matching differs from its use as a wildcard in domain lists and the
like. Partial matching works only in terms of dot-separated components; a key such as *fict.book
in a database file is useless, because the asterisk in a partial matching subject key is always followed
by a dot.

6.8 Lookup caching
Exim caches the most recent lookup result on a per-file basis for single-key lookup types, and keeps
the relevant files open. In some types of configuration this can lead to many files being kept open for
messages with many recipients. To avoid hitting the operating system limit on the number of simulta-
neously open files, Exim closes the least recently used file when it needs to open more files than its
own internal limit, which can be changed via the lookup_open_max option. For query-style lookups,
a single data cache per lookup type is kept. The files are closed and the caches flushed at strategic
points during delivery – for example, after all directing and routing is complete.

6.9 Quoting lookup data
When data from an incoming message is included in a query-style lookup, there is the possibility of
special characters in the data messing up the syntax of the query. For example, a NIS+ query that
contains

[name=$local_part]

will be broken if the local part happens to contain a closing square bracket. For NIS+, data can be
enclosed in double quotes like this:

Exim 3.30 [39] file/database lookups (6)

 [name="$local_part"]

but this still leaves the problem of a double quote in the data. The rule for NIS+ is that double quotes
must be doubled. Other lookup types have different rules, and to cope with the differing requirements,
an expansion operator of the following form is provided:

${quote_<lookup-type>:<string>}

For example, the safest way to write the NIS+ query is

[name="${quote_nisplus:$local_part}"]

See chapter 9 for full coverage of string expansions. The quote operator can be used for all lookup
types, but has no effect for single-key lookups, since no quoting is ever needed in their key strings.

6.10 More about NIS+
NIS+ queries consist of a NIS+ indexed name followed by an optional colon and field name. If this is
given, the result of a successful query is the contents of the named field; otherwise the result consists
of a concatenation of field-name=field-value pairs, separated by spaces. Empty values and values
containing spaces are quoted. For example, the query

[name=mg1456],passwd.org_dir

might return the string

name=mg1456 passwd="" uid=999 gid=999 gcos="Martin Guerre"
home=/home/mg1456 shell=/bin/bash shadow=""

(split over two lines here to fit on the page), whereas

[name=mg1456],passwd.org_dir:gcos

would just return

Martin Guerre

with no quotes. A NIS+ lookup fails if NIS+ returns more than one table entry for the given indexed
key. The effect of the quote_nisplus expansion operator is to double any quote characters within the
text.

6.11 More about LDAP
The original LDAP implementation came from the University of Michigan; this has become ‘Open
LDAP’, and there are now two different releases. Another implementation comes from Netscape, and
Solaris 7 and subsequent releases contain inbuilt LDAP support. Unfortunately, though these are all
compatible at the lookup function level, their error handling is different. For this reason it is necessary
to set a compile-time variable when building Exim with LDAP, to indicate which LDAP library is in
use. One of the following should appear in your Local/Makefile:

LDAP_LIB_TYPE=UMICHIGAN
LDAP_LIB_TYPE=OPENLDAP1

 LDAP_LIB_TYPE=OPENLDAP2
 LDAP_LIB_TYPE=NETSCAPE
LDAP_LIB_TYPE=SOLARIS

If LDAP_LIB_TYPE is not set, Exim assumes OpenLDAP 1, which has the same interface as the
University of Michigan version.

There are three LDAP lookup types, which behave slightly differently in the way they handle the
results of a query.

• ldap requires the result to contain just one entry; if there are more, it gives an error.

• ldapdn also requires the result to contain just one entry, but it is the Distinguished Name that is
returned rather than any attribute values.

Exim 3.30 [40] file/database lookups (6)

• ldapm permits the result to contain more than one entry; the attributes from all of them are
 returned.

An LDAP query takes the form of a URL as defined in RFC 2255. For example, in the configuration
of an aliasfile director one might have these settings:

search_type = ldap
query = ldap:///cn=$local_part,o=University%20of%20Cambridge,\

 c=UK?mailbox?base?

Two levels of quoting are required in LDAP queries, the first for LDAP and the second because the
LDAP query is represented as a URL. The quote_ldap expansion operator implements the following
rules:

• For LDAP quoting, the characters #,+"\<>;*() have to be preceded by a backslash. (In fact, only
some of these need to be quoted in Distinguished Names, and others in LDAP filters, but it does
no harm to have a single quoting rule for all of them.)

• For URL quoting, all characters except alphanumerics and !$’()*+-._ are replaced by %xx where
xx is the hexadecimal character code. Note that backslash has to be quoted in a URL, so
characters that are escaped for LDAP end up preceded by %5C in the final encoding.

The example above does not specify an LDAP server. A server can be specified in a query by starting
it with

ldap://<hostname>:<port>/...

If the port (and preceding colon) are omitted, the standard LDAP port (389) is used. When, however,
no server is specified in a query, a list of default servers is taken from the ldap_default_servers
configuration option. This supplies a colon-separated list of servers which are tried in turn until one
successfully handles a query, or there is a serious error. Successful handling either returns the
requested data, or indicates that it does not exist. Serious errors are syntactical, or multiple values
when only a single value is expected. Errors which cause the next server to be tried are connection
failures, bind failures, and timeouts.

For each server name in the list, a port number can be given. The standard way of specifing a host and
port is to use a colon separator (RFC 1738). Because ldap_default_servers is a colon-separated list,
such colons have to be doubled. For example

ldap_default_servers = ldap1.example.com::145:ldap2.example.com

If ldap_default_servers is unset, a URL with no server name is passed to the LDAP library with no
server name, and the library’s default (normally the local host) is used.

The LDP URL syntax provides no way of passing authentication and other control information to the
server. To make this possible, the URL in an LDAP query may be preceded by any number of
‘<name>=<value>’ settings, separated by spaces. If a value contains spaces it must be enclosed in
double quotes, and when double quotes are used, backslash is interpreted in the usual way inside them.
The following names are recognized:

USER set the DN, for authenticating the LDAP bind
PASS set the password, likewise
SIZE set the limit for the number of entries returned
TIME set the maximum waiting time for a query

The values may be given in any order. The default is no time limit, and no limit on the number of
entries returned. Here is an example of an LDAP query in an Exim lookup which uses some of these
values. This is a single line, folded for ease of reading:

${lookup ldap
{user="cn=manager,o=University of Cambridge,c=UK" pass=secret
ldap:///o=University%20of%20Cambridge,c=UK?sn?sub?(cn=foo)}

 {$value}fail}

Exim 3.30 [41] file/database lookups (6)

The encoding of spaces as %20 is a URL thing which should not be done for any of the auxiliary data.
Exim configuration settings that include lookups which contain password information should be
preceded by ‘hide’ to prevent non-admin users from using the -bP option to see their values.

The ldapdn lookup type returns the Distinguished Name from a single entry as a sequence of values,
for example

cn=manager, o=University of Cambridge, c=UK

For ldap and ldapm, if a query finds only entries with no attributes, Exim behaves as if the entry did
not exist, and the lookup fails.

The ldap lookup type generates an error if more than one entry matches the search filter, whereas
ldapm permits this case, and inserts a newline in the result between the data from different entries. It
is possible for multiple values to be returned for both ldap and ldapm, but in the former case you
know that whatever values are returned all came from a single entry in the directory.

In the common case where you specify a single attribute in your LDAP query, the result is not quoted,
and if there are multiple values, they are separated by commas. If you specify multiple attributes, they
are returned as space-separated strings, quoted if necessary, preceded by the attribute name. For
example,

ldap:///o=base?attr1,attr2?sub?(uid=fred)

might yield

attr1="value one" attr2=value2

If you do not specify any attributes in the search, the same format is used for all attributes in the entry.
For example,

ldap:///o=base??sub?(uid=fred)

might yield

objectClass=top attr1="value one" attr2=value2

The extract operator in string expansions can be used to pick out individual fields from such data.

6.12 More about MySQL and PostgreSQL
If any MySQL or PostgreSQL lookups are used, the mysql_servers or pgsql_servers option (as
appropriate) must be set to a colon-separated list of slash-separated host, database, user, password,
tuples. Because password data is sensitive, you should precede the setting with ‘hide’, to prevent non-
admin users from obtaining the setting via the -bP option. For example:

hide mysql_servers = localhost/users/root/secret:\
 otherhost/users/root/othersecret

For MySQL, an empty server name causes a connection to the server on the local host by means of a
Unix domain socket.

For each query, these parameter groups are tried in order until a connection and a query succeeds. For
MySQL, no database need be supplied – if it is absent, it must be given in the queries. A host may be
specified as <name>:<port> but because this is a colon-separated list, the colon has to be doubled.
Queries are SQL statements, so an example might be

${lookup mysql{select mailbox from users where id=’ph10’}{$value}fail}

If the result of the query contains more than one field, the data for each field in the row is returned,
preceded by its name, so the result of

${lookup pgsql{select home,name from users where id=’ph10’}{$value}}

might be

home=/home/ph10 name="Philip Hazel"

Exim 3.30 [42] file/database lookups (6)

Values containing spaces and empty values are double quoted, with embedded quotes escaped by a
backslash.

If the result of the query contains just one field, the value is passed back verbatim, without a field
name, for example:

Philip Hazel

If the result of the query yields more than one row, it is all concatenated, with a newline between the
data for each row.

The quote_mysql and quote_pgsql expansion operators convert newline, tab, carriage return, and
backspace to \n, \t, \r, and \b respectively, and the characters single-quote, double-quote, and backslash
are escaped with backslashes. The quote_pgsql expansion operator, in addition, escapes the percent
and underscore characters. This cannot be done for MySQL because these escapes are not recognized
in contexts where these characters are not special.

6.13 More about dnsdb
The dnsdb lookup type uses the DNS as its database. A query consists of a record type and a domain
name, separated by an equals sign. For example, an expansion string could contain:

${lookup dnsdb{mx=a.b.example}{$value}fail}

The supported record types are A, CNAME, MX, NS, PTR, and TXT, and, when Exim is compiled
with IPv6 support, AAAA and A6. If no type is given, TXT is assumed. When the type is PTR, the
address should be given as normal; it gets converted to the necessary inverted format internally. For
example:

${lookup dnsdb{ptr=192.168.4.5}{$value}fail}

For MX records, both the preference value and the host name are returned, separated by a space. If
multiple records are found (or, for A6 lookups, if a single record leads to multiple addresses), the data
is returned as a concatenation, separated by newlines. The order, of course, depends on the DNS
resolver.

Exim 3.30 [43] file/database lookups (6)

7. The Exim configuration file

Exim uses a single run time configuration file which is read whenever an Exim binary is executed. The
name of the file is compiled into the binary for security reasons, and is specified by the CONFIGURE_FILE

compilation option.

Some sites may wish to use the same Exim binary on different machines that share a file system, but
to use different configuration files on each machine. If CONFIGURE_FILE_USE_NODE is defined in
Local/Makefile, Exim first looks for a file whose name is the configuration file name followed by a
dot and the machine’s node name, as obtained from the uname() function. If this file does not exist, the
standard name is tried.

In some esoteric situations different versions of Exim may be run under different effective uids and the
CONFIGURE_FILE_USE_EUID is defined to help with this. See the comments in src/EDITME for details.

The run time configuration file must be owned by root or by the user that is specified at compile time
by the EXIM_UID option, and it must not be world-writeable or group-writeable, unless its group is the
one specified at compile time by the EXIM_GID option.

Macros in the configuration file can be overridden by the -D command line option, and a one-off
alternative configuration file can be specified by the -C command line option, but if either of these
options are used, Exim immediately gives up its root privilege, unless called by root or the Exim user.
-C is useful mainly for checking the syntax of configuration files before installing them. No owner or
group checks are done on a configuration file specified by -C.

A default configuration file, which will work correctly in simple situations, is provided in the file
src/configure.default. The installation process copies this into CONFIGURE_FILE if there is no previously-
existing configuration file.

If a syntax error is detected while reading the configuration file, Exim writes a message on the
standard error, and exists with a non-zero return code. The message is also written to the panic log.

7.1 Configuration file format
Exim’s configuration file is in seven parts, which must appear in the correct order in the file, separated
by lines containing just the word ‘end’. However, any parts at the end of the file that are not required
may be omitted. The file contains:

• Main configuration settings: options for controlling input, and other overall parameters that are
not specific to any of the drivers.

• Configuration settings for the transport drivers. Transports define mechanisms for copying mess-
ages to destinations.

• Configuration settings for the director drivers. Directors process local addresses, that is, those
with domains that match local_domains. These are typically (but not necessarily) delivered on
the local host.

• Configuration settings for the router drivers. Routers process remote addresses, that is, those with
domains that do not match local_domains.

• Retry rules, for use when a message cannot be immediately delivered.

• Address rewriting rules, for use when a message arrives and when new addresses are generated
during delivery.

• Configuration settings for the authenticator drivers. These are concerned with the SMTP AUTH

command (see chapter 35), and this part of the configuration can be omitted when AUTH is not
in use.

Exim 3.30 [44] configuration file (7)

Blank lines in the file, and lines starting with a # character (ignoring leading white space) are treated
as comments and are ignored. Note that a # character other than at the beginning of a line is not
treated specially, and does not introduce a comment.

Any non-comment line can be continued by ending it with a backslash. Trailing white space after the
backslash is ignored, and leading white space at the start of continuation lines is also ignored.
Comment lines may appear in the middle of a sequence of continuation lines.

A convenient way to create a configuration file is to start from the default, which is supplied in
src/configure.default, and add, delete, or change settings as required.

The retry and rewriting rules have their own syntax which is described in chapters 33 and 34,
respectively. The other parts of the configuration file (whose settings are described in chapters 11– 32
and 35–37) have some syntactic items in common, and these are described below, from section 7.3
onwards. Before that, the simple macro facility is introduced.

7.2 Macros in the configuration file
If a line in the main part of the configuration (that is, before the first ‘end’ line) begins with an upper-
case letter, it is taken as a macro definition, and must be of the form

<name> = <rest of line>

The name must consist of letters, digits, and underscores, and need not all be in upper-case, though
that is recommended. The rest of the line, including any continuations, is the replacement text, and has
leading and trailing white space removed. Quotes are not removed. The replacement text can never
end with a backslash character, but this doesn’t seem to be a serious limitation.

Once a macro is defined, all subsequent lines in the file are scanned for the macro name; if there are
several macros, the line is scanned for each in turn, in the order in which they are defined. The
replacement text is not re-scanned for the current macro, though it will be for subsequently defined
macros. For this reason, a macro name may not contain the name of a previously defined macro as a
substring. You could, for example, define

ABCD_XYZ = <<something>>
ABCD = <<something>>

but putting the definitions in the opposite order would provoke a configuration error.

As an example of macro usage, suppose you have lots of local domains, but they fall into three
different categories. You could set up

LOCAL1 = domain1:\
 domain2
LOCAL2 = domain3:domain4
LOCAL3 = dbm;/list/of/other/domains

local_domains = LOCAL1:LOCAL2:LOCAL3

and then use the domains option on appropriate directors to handle each set of domains differently.
This avoids having to list each domain in more than one place. Warning: This technique is convenient
only for positive lists. Because it is just a textual replacement, preceding a macro name in a list with !
has the effect of negating just the first item within the macro, not all of them.

7.3 Common option syntax
For the main set of options and for driver options, each setting is on a line by itself, and starts with a
name consisting of lower-case letters and underscores. Many options require a data value, and in these
cases the name must be followed by an equals sign (with optional white space) and then the value. For
example:

qualify_domain = mydomain.example.com

Exim 3.30 [45] configuration file (7)

Some option settings may contain sensitive data, for example, passwords for accessing databases. To
stop non-admin users from using the -bP command line option to read their values, you can precede
them with the word ‘hide’. For example:

hide mysql_servers = localhost/users/admin/secret-password

For non-admin users, such options are displayed like this:

mysql_servers = <value not displayable>

If ‘hide’ is used on a driver option, it hides the value of that option on all instances of the same driver.

Options whose type is given as boolean are on/off switches that are not always followed by a data
value. If the option name is specified on its own without data, the switch is turned on; if it is preceded
by ‘no_’ or ‘not_’ the switch is turned off. However, boolean options may be followed by an equals
sign and one of the words ‘true’, ‘false’, ‘yes’, or ‘no’. For example:

sender_verify
 no_smtp_verify
queue_only = true

The types of data that are used by non-boolean options are described in the following sections.

7.4 Integer
If a numerical data item starts with the characters ‘0x’, the remainder of it is interpreted as a
hexadecimal number. Otherwise, it is treated as octal if it starts with the digit 0, and decimal if not. If
an integer value is followed by the letter K, it is multiplied by 1024; if it is followed by the letter M, it
is multiplied by 1024x1024.

When the values of integer option settings are output, values which are an exact multiple of 1024 or
1024x1024 are printed using the letters K and M. The printing style is independent of the actual input
format that was used.

7.5 Octal integer
The value of an option specified as an octal integer is always interpreted in octal, whether or not it
starts with the digit zero. Such options are always output in octal.

7.6 Fixed point number
A fixed point number consists of a decimal integer, optionally followed by a decimal point and up to
three further digits.

7.7 Time interval
A time interval is specified as a sequence of numbers, each followed by one of the following letters,
with no intervening white space:

s seconds
m minutes
h hours
d days
w weeks

For example, ‘3h50m’ specifies 3 hours and 50 minutes. The values of time intervals are output in the
same format.

7.8 String
If a string data item does not start with a double-quote character, it is taken as consisting of the
remainder of the line plus any continuation lines, starting at the first character after any white space,
with trailing white space characters removed, and with no interpretation of the characters therein.

Exim 3.30 [46] configuration file (7)

Because Exim removes comment lines (those beginning with #) at an early stage, they can appear in
the middle of a multi-line string. The following settings are therefore equivalent:

trusted_users = uucp:mail

trusted_users = uucp:\
This comment line is ignored

 mail

If a string does start with a double-quote, it must end with a closing double-quote, and any backslash
characters other than those used for line continuation are interpreted as escape characters, as follows:

\\ single backslash
\n newline
\r carriage return
\t tab

 \<octal digits> up to 3 octal digits specify one character
 \x<hex digits> up to 2 hexadecimal digits specify one character

If a backslash is followed by some other character, including a double-quote character, that character
replaces the pair.

Quoting is necessary only if you want to make use of the backslash escapes to insert special
characters, or if you need to specify a value with leading or trailing spaces. However, in versions of
Exim before 3.14, quoting was required in order to continue lines, so you may come across older
configuration files and examples that apparently quote unnecessarily.

7.9 Expanded strings
Some strings in the configuration file are subjected to string expansion, by which means various parts
of the string may be changed according to the circumstances (see chapter 9). The input syntax for such
strings is as just described; in particular, the handling of backslashes in quoted strings is done as part
of the input process, before expansion takes place. However, backslash is also an escape character for
the expander, so any backslashes that are required for that reason must be doubled if they are within a
quoted configuration string.

7.10 User and group names
User and group names are specified as strings, using the syntax described above, but the strings are
interpreted specially. In the main section of the configuration file, a user or group name must either
consist entirely of digits, or be a name that can be looked up using the getpwnam() or getgrnam()
function, as appropriate.

When a user or group is specified as an option for a driver, it may alternatively be a string that gets
expanded each time the user or group value is required. The presence of a $ character in the string
causes this action to happen. Each time the string is expanded, the result must either be a digit string,
or a name that can be looked up using getpwnam() or getgrnam(), as appropriate.

7.11 List construction
Some configuration settings accept a colon-separated list of items. In these cases, the entire list is
treated as a single string as far as the input syntax is concerned. The trusted_users setting in section
7.8 above is an example. If a colon is actually needed in an item in a list, it must be entered as two
colons. Leading and trailing white space on each item in a list is ignored. This makes it possible to
include items that start with a colon, and in particular, certain forms of IPv6 address. For example,
the list

local_interfaces = 127.0.0.1 : ::::1

contains two IP addresses, the IPv4 address 127.0.0.1 and the IPv6 address ::1. IPv6 addresses are
going to become more and more common as the new protocol gets more widely deployed. Doubling
their colons is an unwelcome chore, so a mechanism was introduced to allow the separator character to

Exim 3.30 [47] configuration file (7)

be changed. If a list begins with a left angle bracket, followed by any punctuation character, that
character is used instead of colon as the list separator. For example, the list above can be rewritten to
use a semicolon separator like this:

local_interfaces = <; 127.0.0.1 ; ::1

This facility applies to all lists, with the exception of the lists in log_file_path and tls_verify_ciphers.
It is recommended that the use of non-colon separators be confined to circumstances where they really
are needed.

7.12 Domain lists
Domain lists are constructed as described in section 7.11. They contain patterns that are to be matched
against a mail domain. For example, the local_domains option is a domain list, one of whose patterns
must match every domain that Exim is to treat as local.

Items in a domain list may be positive or negative. Negative items are indicated by a leading
exclamation mark, which may be followed by optional white space. The list is scanned from left to
right. If the domain matches a positive item, it is in the set of domains which the list defines; if it
matches a negative item, it is not in the set. If the end of the list is reached without the domain having
matched any of the patterns, it is accepted if the last item was a negative one, but not if it was a
positive one. For example,

relay_domains = !a.b.c : *.b.c

matches any domain ending in .b.c except for a.b.c. Domains that match neither a.b.c nor
*.b.c are not accepted, because the last item in the list is positive. However, if the setting were

relay_domains = !a.b.c

then all domains other than a.b.c would be accepted because the last item in the list is negative. In
effect, a list that ends with a negative item behaves as if it had : * appended to it.

The following types of item may appear in domain lists:

• If an item in a domain list is a plain absolute file name (beginning with a slash character), each
line of the file is read and processed as if it were an independent item in the list, except that
further plain file names are not allowed. This happens each time the list is searched. If a #
character appears anywhere in a line of the file, it and all following characters are ignored. Blank
lines are also ignored. Wild cards, negation, and regular expressions may be used in the lines of
the file, just as in the main list. For example, if

local_domains = /etc/local-domains

then the file could contain lines like

^.*\d{3}\.mydomain\.com$

If a plain file name is preceded by an exclamation mark, the sense of any match within the file is
inverted. For example, if

hold_domains = !/etc/nohold-domains

and the file contains the lines

!a.b.c
 *.b.c

then a.b.c is in the set of domains defined by hold_domains, whereas any domain matching
*.b.c is not.

• If a pattern consists of a single @ character, it matches the local host name, as set in the
primary_hostname option. This makes it possible to use the same configuration file on several

 different hosts that differ only in their names.

Exim 3.30 [48] configuration file (7)

• If a pattern starts with an asterisk, the remaining characters of the pattern are compared with the
terminating characters of the domain. The use of ‘*’ in domain lists differs from its use in partial
matching lookups. In a domain list, the character following the asterisk need not be a dot,
whereas partial matching works only in terms of dot-separated components. For example, a
domain list item such as *key.ex matches donkey.ex as well as cipher.key.ex.

• If a pattern starts with a circumflex character, it is treated as a regular expression, and matched
against the domain using a regular expression matching function. The circumflex is treated as
part of the regular expression. References to descriptions of the syntax of regular expressions are
given in chapter 8, but note that if a backslash is required in the regular expression, it must be
given as two backslashes if the string is in quotes.

There are some cases where a domain list is the result of string expansion, for example the
domains option in routers and directors. In these cases you must escape any backslash and dollar
characters in regular expressions, to prevent them from being interpreted by the string expander,
and if the string is specified in quotes, the resulting backslashes must themselves also be escaped.

• If a pattern starts with the name of a single-key lookup type followed by a semicolon (for
example, ‘dbm;’ or ‘lsearch;’) then the remainder of the pattern must be a file name in a suitable
format for the lookup type. For example, for ‘cdb;’ it must be an absolute path:

local_domains = cdb;/etc/mail/local_domains.cdb

The appropriate type of lookup is done on the file using the domain name as the key. In most
cases, the data that is looked up is not used; Exim is interested only in whether or not the key is
present in the file. However, when a lookup is used for the domains option on a director or
router, the data is preserved in the $domain_data variable and can be referred to in other
options.

Note that this type of entry is not an ‘include’ facility when the lookup type is ‘lsearch’. The
keys in the file are not interpreted specially, as they would be if they appeared as individual items
in the domain list, or as lines in a file referenced without a search type.

• Any of the single-key lookup type names may be preceded by ‘partial<n>-’, where the <n> is
optional, for example,

partial-dbm;/partial/domains

This causes partial matching logic to be invoked; a description of how this works is given in
section 6.7.

• Any of the single-key lookup types may be followed by an asterisk. This causes a default lookup
for a key consisting of a single asterisk to be done if the original lookup fails. This is not a
useful feature when using a domain list to select particular domains (because any domain would
match), but it might have value if the result of the lookup is being used via the $domain_data
expansion variable.

• If the pattern starts with the name of a query-style lookup type followed by a semicolon (for
example, ‘nisplus;’ or ‘ldap;’), the remainder of the pattern must be an appropriate query for the
lookup type, as described in chapter 6. The query is expanded before use, and the expansion
substitution $key can be used to insert the domain that is being tested into the query. For
example:

local_domains = mysql;select domain from domainlist \
where domain = ’$key’;

In most cases, the data that is looked up is not used (so for an SQL query, for example, it doesn’t
matter what field you select). Exim is interested only in whether or not the key is present in the
file. However, when a lookup is used for the domains option on a director or router, the data is
preserved in the $domain_data variable and can be referred to in other options.

• If none of the above cases apply, a caseless textual comparison is made between the pattern and
the domain.

Exim 3.30 [49] configuration file (7)

Here is an example which uses several different kinds of pattern:

local_domains = @:\
lib.unseen.edu:\
*.foundation.fict.book:\
^[1-2]\d{3}\.fict\.book$:\
partial-dbm;/opt/data/penguin/book:\

 nis;domains.byname:\
nisplus;[name=$key,status=local],domains.org_dir

There are obvious processing trade-offs among the various matching modes. Using an asterisk is faster
than a regular expression, and listing a few names explicitly probably is too. The use of a file or
database lookup is expensive, but may be the only option if hundreds of names are required. Because
the patterns are tested in order, it makes sense to put the most commonly matched patterns earlier.

7.13 Host lists
Host lists are constructed as described in section 7.11. They contain patterns which are matched
against host names or IP addresses. Host lists are used to control what remote hosts are allowed to do
(for example, use the local host as a relay). Their patterns define a set of hosts that the list matches.

Items in the list may be positive or negative. Negation is indicated by preceding an item with an
exclamation mark. A plain absolute file name (beginning with a slash) can be used to include items
from a file. Negation and included files operate exactly as for domain lists – see section 7.12 for
examples.

The following types of pattern may appear in a host list:

• If the entire item is ‘*’ it matches any host.

• If the item is in the form of an IP address, it is matched against the IP address of the subject
host. The presence of a colon is taken as an indication that it is an IPv6 address (when IPv6
support is compiled into Exim); such colons have to be doubled when colon is the item separator
in the list (the default).

• If the item is in the form of an IP address followed by a slash and a mask length (for example
 10.11.0.0/16) then it is matched against the IP address of the subject host under the given mask,

which specifies the number of address bits that must match, starting from the most significant
end. Thus an entire network of hosts can be included (or excluded) by a single item.

IPv4 addresses are given in the normal ‘dotted-quad’ notation. IPv6 addresses are given in colon-
separated format, but the colons have to be doubled so as not to be taken as item separators. This
example shows both kinds of address:

receiver_unqualified_hosts = 172.16.0.0/12: \
 5f03::1200::836f::::/48

The doubling of list separator characters applies only when such addresses appear inline in a host
list. It is not required when indirecting via a file. For example,

receiver_unqualified_hosts = /opt/exim/unqualnets

could make use of a file containing

172.16.0.0/12
5f03:1200:836f::/48

to have exactly the same effect as the previous example. When listing small numbers of IPv6
addresses inline, is is usually more convenient to use the facility for changing separator charac-
ters. This list contains the same two addresses:

receiver_unqualified_hosts = <; 172.16.0.0/12; \
5f03:1200:836f::/48

Exim 3.30 [50] configuration file (7)

If an IPv4 host calls an IPv6 host, the incoming address actually appears in the IPv6 host as
 ‘::ffff:<v4address>’. When such an address is tested against a host list, it is converted into a

traditional IPv4 address first.

• If the item is of the form

net<number>-<search-type>;<search-data>

for example:

net24-dbm;/networks.db

then the IP address of the subject host is masked using <number> as the mask length; a textual
string is then constructed from the masked value, followed by the mask, and this is then used as
the key for the lookup. For example, if the host’s IP address is 192.168.34.6 then the key that is
looked up for the above example is ‘192.168.34.0/24’. IPv6 addresses are converted to a text
value using lower case letters and full stops (periods) as separators instead of the more usual
colon, because colon is the key terminator in lsearch files. Full, unabbreviated IPv6 addresses are
always used.

• If the item is of the form

net-<search-type>;<search-data>

then the text form of the IP address of the subject host is used unmasked as the lookup key. This
is not the same as specifying net32 for an IPv4 address or net128 for an IPv6 address, because
the mask value is not included in the key. However, IPv6 addresses are still converted to an
unabbreviated form, using lower case letters and full stops as separators.

• If the entire item is ‘@’ the primary host name is used as the match item, and the following
 applies:

• If the item is a plain domain name, Exim calls gethostbyname() to find its IP address(es). This
typically causes a forward DNS lookup of the name. The result is compared with the IP address
of the subject host.

The remaining items are wildcarded patterns for matching against the host name. If the host name is
not already known, Exim calls gethostbyaddr() to obtain it from the IP address. This typically causes a
reverse DNS lookup to occur. If the lookup fails, Exim takes a hard line by default and access is not
permitted. If the list is an ‘accept’ list, Exim behaves as if the current host is not in the set defined by
the list, whereas if it is a ‘reject’ list, it behaves as if it is.

To change this behaviour, the special item ‘+allow_unknown’ may appear in the list (at top level – it
is not recognized in an indirected file). If any subsequent items require a host name, and the reverse
DNS lookup fails, Exim permits the access, that is, its behaviour is the opposite to the default. For
example,

host_reject = +allow_unknown:*.enemy.ex

rejects connections from any host whose name matches *.enemy.ex, but only if it can find a host
name from the incoming IP address. If ‘+warn_unknown’ is used instead of ‘+allow_unknown’, the
effect is the same, except that Exim writes an entry to its log when it accepts a host whose name it
cannot look up.

As a result of aliasing, hosts may have more than one name. When processing any of the following
items, all the host’s names are checked.

• If the item starts with ‘*’ then the remainder of the item must match the end of the host name.
For example, *.b.c matches all hosts whose names end in .b.c. This special simple form is
provided because this is a very common requirement. Other kinds of wildcarding require the use
of a regular expression.

• If the item starts with ‘^’ then it is taken to be a regular expression which is matched against the
host name. For example,

Exim 3.30 [51] configuration file (7)

 ^(a|b)\.c\.d$

matches either of the two hosts a.c.d or b.c.d. If the option string in which this occurs is given in
quotes, the backslash characters must be doubled, because they are significant in quoted strings.
The following two settings are exactly equivalent:

host_reject = ^(a|b)\.c\.d$
host_reject = "^(a|b)\\.c\\.d$"

• If the item is of the form

<search-type>;<filename or query>

for example

dbm;/host/accept/list

then the host name is looked up using the search type and file name or query (as appropriate). If
the lookup succeeds, the host matches the item. The actual data that is looked up is not used.

Warning: when using this kind of lookup, you must have host names as keys in the file, not IP
addresses. If you want to do lookups based on IP addresses, you must precede the search type
with ‘net-’ (see above). There is, however, no reason why you could not use two items in a list,
one doing an address lookup and one doing a name lookup, both using the same file.

7.14 Mixing host names and addresses in host lists
If you have both names and IP addresses in the same host list, you should normally put the IP
addresses first. For example:

host_accept_relay = 10.9.8.7 : *.friends.domain

The reason for this lies in the left-to-right way that Exim processes lists. It can test IP addresses
without doing any DNS lookups, but when it reaches an item that requires a DNS lookup, it normally
fails if the DNS lookup fails, because it cannot find a host name to compare with the pattern. (There is
the ‘+allow_unknown’ facility – described above – for changing this, but it is not recommended.) If
the above list were in the other order, Exim would reject relaying from any host whose name could not
be found, even if it were 10.9.8.7.

7.15 Use of RFC 1413 identification in host lists
Any item in a host list (other than a plain file name or ‘+allow_unknown’) can optionally be
preceded by

<ident>@
or

 !<ident>@

where <ident> is an RFC 1413 identification string. For example,

host_reject = !exim@my.mail.gate:192.168.111.111:!root@public.host

If an <ident> string is present, it must match the RFC 1413 identification sent by the remote host,
unless it is preceded by an exclamation mark, in which case it must not match. The remainder of the
item, following the @, may be either positive or negative.

7.16 Address lists
Address lists are constructed as described in section 7.11. They contain patterns which are matched
against mail addresses. As in the case of domain lists, the list is searched from left to right, any item
may be preceded by an exclamation mark to negate it, and a plain file name may appear as an entire
item, causing each line of the file to be read and treated as a separate pattern. Because local parts may
legitimately contain # characters, a comment in the file is recognized only if # is followed by white
space or the end of the line.

Exim 3.30 [52] configuration file (7)

The following kinds of pattern may appear inline or as lines in an included file:

• If a pattern starts with ^ then a regular expression match is done against the complete address,
using the entire pattern as the regular expression.

• Otherwise, if there is no @ in the pattern, it is first matched against the domain part of the
subject address, the local part being ignored. This match is done exactly as for an entry in a
domain list, so, for example, the item may begin with * or it may be a (partial) lookup (see
section 7.12). If there is no match, and the pattern consists of a single lookup, the entire subject
address is looked up in the file, with partial matching disabled. This means that an item such as

sender_reject_recipients = partial-dbm;/black/list

can reference a single file whose keys are a mixture of complete domains, partial domains, and
individual mail addresses.

Note that this is not an ‘include’ facility when the lookup type is lsearch. The keys in the file are
not interpreted specially, as they would be if they appeared as individual items in the address list,
or lines in a file given as a plain file name without a search type.

You might think of using a lookup type ending in *@ (as described in section 6.6) to match
entries in a file of the form

*@penguin.book

However, this does not currently work, because the presence of an @ in the pattern causes Exim
to think the item is one of the forms described below. In some future release this may be
changed. Meanwhile, the effect you want (matching any local part at a particular domain) is
achieved by simply listing the domain name in the file.

• If the pattern starts with ‘@@<lookup-item>’ (for example, ‘@@lsearch;/some/file’), the address
that is being checked is split into a local part and a domain. The domain is looked up in the file.
If it is not found, there is no match. If it is found, the data that is looked up from the file is
treated as a colon-separated list of local part patterns, each of which is matched against the
subject local part in turn.

The lookup may be a partial one, and/or one involving a search for a default keyed by ‘*’. The
local part patterns that are looked up can be regular expressions or begin with ‘*’, or even be
further lookups. They may also be independently negated. For example, with

sender_reject_recipients = @@dbm;/etc/reject-by-domain

the data from which DBM file is built could contain lines like

baddomain.com: !postmaster : *

If a local part that actually begins with an exclamation mark is required, it has to be specified
using a regular expression. In lsearch files, an entry may be split over several lines by indenting
the second and subsequent lines, but the separating colon must still be included at line breaks.
White space surrounding the colons is ignored. For example:

aol.com: spammer1 : spammer2 : ^[0-9]+$:
spammer3 : spammer4

As in all colon-separated lists in Exim, a colon can be included in an item by doubling.

If the last item in the list starts with a right angle-bracket, the remainder of the item is taken as a
new key to look up in order to obtain a continuation list of local parts. The new key can be any
sequence of characters. Thus one might have entries like

aol.com: spammer1 : spammer 2 : >*
xyz.com: spammer3 : >*
*: ^\d{8}$

in a file that was searched with @@dbm*, to specify a match for 8-digit local parts for all
domains, in addition to the specific local parts listed for each domain. Of course, using this

Exim 3.30 [53] configuration file (7)

feature costs another lookup each time a chain is followed, but the effort needed to maintain the
data is reduced. It is possible to construct loops using this facility, and in order to catch them, the
chains may be no more than fifty items long.

• If none of the above cases apply, the local part of the subject address is compared with the local
part of the pattern, which may start with an asterisk. If the local parts match, the domains are
compared in exactly the same way as entries in a domain list, except that a regular expression is
not permitted for a domain only. However, file lookups are permitted. For example:

sender_reject = *@*.spamming.site:\
 bozo@partial-lsearch;/list/of/dodgy/sites

The domain may be given as a single @ character, as in a domain list, standing for the local host
name, leading to items of the form ‘user@@’. If a local part that actually begins with an
exclamation mark is required, it has to be specified using a regular expression, as otherwise the
exclamation mark is treated as a sign of negation.

7.17 Case of letters in address lists
Domains in email addresses are always handled caselessly, but for local parts case may be significant
on some systems (see locally_caseless for how Exim deals with this when processing local addresses).
However, RFC 2505 (Anti-Spam Recommendations for SMTP MTAs) suggests that matching of
addresses to blocking lists should be done in a case-independent manner. Since most address lists in
Exim are used for this kind of control, Exim attempts to do this by default.

The domain portion of an address is always lowercased before matching it to an address list. The local
part is lowercased by default, and any string comparisons that take place are done caselessly. This
means that the data in the address list itself, in files included as plain file names, and in any file that is
looked up using the ‘@@’ mechanism, can be in any case. However, the keys in files that are looked
up by a search type other than lsearch (which works caselessly) must be in lower case, because these
lookups are not case-independent.

To allow for the possibility of caseful address list matching, if an item in the list is the string
‘+caseful’ then the original case of the local part is restored for any comparisons that follow, and
string comparisons are no longer case-independent. This does not affect the domain, which remains in
lower case. However, although independent matches on the domain alone are still performed
caselessly, regular expressions that match against an entire address are by default caseful after
‘+caseful’ has been seen.

Exim 3.30 [54] configuration file (7)

8. Regular expressions

Exim uses the PCRE regular expression library; this provides regular expression matching that is
compatible with Perl 5. The syntax and semantics of these regular expressions is discussed in many
Perl reference books, and also in Jeffrey Friedl’s Mastering Regular Expressions (O’Reilly, ISBN
1-56592-257-3).

The documentation for PCRE, in plain text and HTML, is included in the doc directory of the Exim
distribution. This describes the features of the regular expressions that PCRE supports, so no further
description is included here. The PCRE functions are called from Exim using the default option
settings, except that the PCRE_CASELESS option is set when the matching is required to be independent
of the case of letters.

8.1 Testing regular expressions
A program called pcretest forms part of the PCRE distribution and is built with PCRE during the
process of building Exim. It is primarily intended for testing PCRE itself, but it can also be used for
experimenting with regular expressions. The binary can be found in the util sub-directory of the Exim
build directory. There is documentation of various options in doc/pcretest.txt, but for simple testing,
none are needed. This is the output of a sample run of pcretest:

re> /^([^@]+)@.+\.(ac|edu)\.(?!kr)[a-z]{2}$/
data> x@y.ac.uk
0: x@y.ac.uk
1: x
2: ac
data> x@y.ac.kr
No match
data> x@y.edu.com
No match
data> x@y.edu.co
0: x@y.edu.co
1: x
2: edu

Input typed by the user is shown in bold face. After the ‘re>’ prompt, a regular expression enclosed in
delimiters is expected. If this compiles without error, ‘data>’ prompts are given for strings against
which the expression is matched. An empty data line causes a new regular expression to be read. If the
match is successful, the captured substring values (that is, what would be in the variables $0, $1, $2,
etc.) are shown. The above example tests for an email address whose domain ends with either ‘ac’ or
‘edu’ followed by a two-character top-level domain that is not ‘kr’. The local part is captured in $1
and the ‘ac’ or ‘edu’ in $2.

Exim 3.30 [55] regular expressions (8)

9. String expansions

A number of configuration strings are expanded before use. Some of them are expanded every time
they are used; others are expanded only once.

Expanded strings are copied verbatim from left to right except when a dollar or backslash character is
encountered. A dollar specifies the start of a portion of the string which is interpreted and replaced as
described below.

An uninterpreted dollar can be included in the string by putting a backslash in front of it – if the string
appears in quotes in the configuration file, two backslashes are required because the quotes themselves
cause interpretation of backslashes when the string is read in. A backslash can be used to prevent any
special character being treated specially in an expansion, including itself.

A backslash followed by one of the letters ‘n’, ‘r’, or ‘t’ is recognized as an escape sequence for the
character newline, carriage return, or tab, respectively. A backslash followed by up to three octal digits
is recognized as an octal encoding for a single character, while a backslash followed by ‘x’ and up to
two hexadecimal digits is a hexadecimal encoding. A backslash followed by any other character causes
that character to be added to the output string uninterpreted. These escape sequences are also
recognized in quoted strings as they are read in; their interpretation in expansions as well is useful for
unquoted strings and other cases such as looked-up strings that are then expanded.

9.1 Testing string expansions
Many expansions can be tested by calling Exim with the -be option. This takes the command
arguments, or lines from the standard input if there are no arguments, runs them through the string
expansion code, and writes the results to the standard output. Variables based on configuration values
are set up, but since no message is being processed, variables such as $local_part have no value.
Nevertheless the -be option can be useful for checking out file and database lookups, and the use of
expansion operators such as substr and hash.

Exim gives up its root privilege when it is called with the -be option, and instead runs under the uid
and gid it was called with, to prevent users from using -be for reading files to which they normally do
not have access.

9.2 Expansion items
The following items are recognized in expanded strings. White space may be used between sub-items
that are keywords or substrings enclosed in braces inside an outer set of braces, to improve readability.
Within braces, however, white space is significant.

$<variable name> or ${<variable name>}

Substitute the contents of the named variable, for example

$local_part
 ${domain}

The second form can be used to separate the name from subsequent alphanumeric characters. This
form (using curly brackets) is available only for variables; it does not apply to message headers.
The names of the variables are given in section 9.5 below. If the name of a non-existent variable
is given, the expansion fails.

$header_<header name>: or $h_<header name>:

Substitute the contents of the named message header line, for example

$header_reply-to:

The header names follow the syntax of RFC 822, which states that they may contain any printing
characters except space and colon. Consequently, curly brackets do not terminate header names,

Exim 3.30 [56] string expansions (9)

and should not be used to enclose them as if they were variables. Attempting to do so causes a
syntax error.

Upper-case and lower-case letters are synonymous in header names. If the following character is
white space, the terminating colon may be omitted, but this is not recommended, because you may
then forget it when it is needed. When white space terminates the header name, it is included in
the expanded string. If the message does not contain the given header, the expansion item is
replaced by an empty string. (See the def condition in section 9.4 for a means of testing for the
existence of a header.) If there is more than one header with the same name, they are all
concatenated to form the substitution string, with a newline character between each of them.

 However, if the length of this string exceeds 64K, any further headers of the same name are
ignored.

${<op>:<string>}

The string is first itself expanded, and then the operation specified by <op> is applied to it. For
 example,

${lc:$local_part}

A list of operators is given in section 9.3 below. The string starts with the first character after the
colon, which may be leading white space.

${extract{<key>}{<string1>}{<string2>}{<string3>}}

The key and <string1> are first expanded separately. The key must not consist entirely of digits.
For the string, the result must be of the form:

<key1> = <value1> <key2> = <value2> ...

where the equals signs and spaces are optional. If any of the values contain white space, they must
be enclosed in double quotes, and any values that are enclosed in double quotes are subject to
escape processing as described in section 7.8. The expanded <string1> is searched for the value
that corresponds to the key. If it is found, <string2> is expanded, and replaces the whole item;
otherwise <string3> is used. During the expansion of <string2> the variable $value contains the
value that has been extracted. Afterwards, it is restored to any previous value it might have had.

If {<string3>} is omitted, the item is replaced by an empty string if the key is not found. If
 {<string2>} is also omitted, the value that was looked up is used. Thus, for example, these two

expansions are identical, and yield ‘2001’:

${extract{gid}{uid=1984 gid=2001}}
${extract{gid}{uid=1984 gid=2001}{$value}}

Instead of {<string3>} the word ‘fail’ (not in curly brackets) can appear, for example:

${extract{Z}{A=... B=...}{$value} fail }

{<string2>} must be present for ‘fail’ to be recognized. When this syntax is used, if the extraction
fails, the entire string expansion fails in a way that can be detected by the code in Exim which
requested the expansion. This is called ‘forced expansion failure’, and its consequences depend on
the circumstances. In some cases it is no different from any other expansion failure, but in others
a different action may be taken. See for example the new_address option of the smartuser

 director.

${extract{<number>}{<separators>}{<string1>}{<string2>}{<string3>}}

The <number> argument must consist entirely of decimal digits. This is what distinguishes this
form of extract from the previous kind. It behaves in the same way, except that, instead of
extracting a named field, it extracts from <string1> the field whose number is given as the first

 argument. The first field is numbered one. If the number is greater than the number of fields in the
string, the result is the expansion of <string3>, or the empty string if <string3> is not provided. If
the number is zero, the entire string is returned. The fields in the string are separated by any one
of the characters in the separator string. For example:

Exim 3.30 [57] string expansions (9)

${extract{2}{:}{x:42:99:& Mailer::/bin/bash}}

yields ‘42’. Two successive separators mean that the field between them is empty (for example,
the fifth field above).

${if <condition> {<string1>}{<string2>}}

If <condition> is true, <string1> is expanded and replaces the whole item; otherwise <string2> is
used. For example,

${if eq {$local_part}{postmaster} {yes}{no} }

The second string need not be present; if it is not and the condition is not true, the item is
replaced with nothing. Alternatively, the word ‘fail’ may be present instead of the second string
(without any curly brackets). In this case, the expansion is forced to fail if the condition is not
true. The available conditions are described in section 9.4 below.

${lookup{<key>} <search type> {<file>} {<string1>} {<string2>}}

${lookup <search type> {<query>} {<string1>} {<string2>}}

These items specify data lookups in files and databases, as discussed in chapter 6. The first form
is used for single-key lookups, and the second is used for query-style lookups. The <key>, <file>,
and <query> strings are expanded before use.

If there is any white space in a lookup item which is part of a filter command, a rewrite rule, a
routing rule for the domainlist router, or any other place where white space is significant, the
lookup item must be enclosed in double quotes. The use of data lookups in users’ filter files may
be locked out by the system administrator.

If the lookup succeeds, <string1> is expanded and replaces the entire item. During its expansion,
the variable $value contains the data returned by the lookup. Afterwards it reverts to the value it
had previously (at the outer level it is empty). If the lookup fails, <string2> is expanded and
replaces the entire item. If {<string2>} is omitted, the replacement is null on failure. Alternatively,

 <string2> can itself be a nested lookup, thus providing a mechanism for looking up a default
value when the original lookup fails.

If a nested lookup is used as part of <string1>, $value contains the data for the outer lookup
while the parameters of the second lookup are expanded, and also while <string2> of the second
lookup is expanded, should the second lookup fail.

Instead of {<string2>} the word ‘fail’ can appear, and in this case, if the lookup fails, the entire
expansion is forced to fail. If both {<string1>} and {<string2>} are omitted, the result is the
looked up value in the case of a successful lookup, and nothing in the case of failure.

For single-key lookups, the string ‘partial-’ is permitted to precede the search type in order to do
partial matching, and * or *@ may follow a search type to request default lookups if the key does
not match (see sections 6.6 and 6.7).

If a partial search is used, the variables $1 and $2 contain the wild and non-wild parts of the key
during the expansion of the replacement text. They return to their previous values at the end of the
lookup item.

This example looks up the postmaster alias in the conventional alias file.

${lookup {postmaster} lsearch {/etc/aliases} {$value}}

This example uses NIS+ to look up the full name of the user corresponding to the local part of an
address, forcing the expansion to fail if it is not found.

"${lookup nisplus {[name=$local_part],passwd.org_dir:gcos} \
{$value}fail}"

Exim 3.30 [58] string expansions (9)

${lookup{<key:subkey>} <search type> {<file>} {<string1>} {<string2>}}

This is just a syntactic variation for a single-key lookup, surrounded by an extract item. It
searches for <key> in the file as described above for single-key lookups; if it succeeds, it extracts
from the data a subfield which is identified by the <subkey>. For example, if a line in a linearly
searched file contains

alice: uid=1984 gid=2001

then expanding the string

${lookup{alice:uid}lsearch{<file name>}{$value}}

yields the string ‘1984’. If the subkey is not found in the looked up data, then <string2>, if
present, is expanded and replaces the entire item. Otherwise the replacement is null. The example
above could equally well be written like this:

${extract{uid}{${lookup{alice}lsearch{<file name>}}}}

and this is recommended, because this approach can also be used with query-style lookups.

${perl{<subroutine>}{<arg>}{<arg>}...}

This item is available only if Exim has been built to include an embedded Perl interpreter. The
subroutine name and the arguments are first separately expanded, and then the Perl subroutine is
called with those arguments. No arguments need be given; the maximum number permitted is

 eight.

The return value of the subroutine is inserted into the expanded string, unless the return value is
 undef. In that case, the expansion fails in the same way as an explicit ‘fail’ on a lookup item. If

the subroutine exits by calling Perl’s die function, the expansion fails with the error message that
was passed to die.

More details of the embedded Perl facility are given in chapter 10.

${sg{<subject>}{<regex>}{<replacement>}}

This item works like Perl’s substitution operator (s) with the global (/g) option; hence its name. It
takes three arguments: the subject string, a regular expression, and a substitution string. For
example

${sg{abcdefabcdef}{abc}{xyz}}

yields ‘xyzdefxyzdef’. Because all three arguments are expanded before use, if any $ or \
characters are required in the regular expression or in the substitution string, they have to be
escaped. For example

${sg{abcdef}{^(...)(...)\$}{\$2\$1}}

yields ‘defabc’, and

${sg{1=A 4=D 3=C}{(\\d+)=}{K\$1=}}

yields ‘K1=A K4=D K3=C’.

${tr{<subject>}{<characters>}{<replacements>}}

This item does single-character translation on its subject string. The second argument is a list of
characters to be translated in the subject string. Each matching character is replaced by the
corresponding character from the replacement list. For example

${tr{abcdea}{ac}{13}}

yields ‘1b3de1’. If there are duplicates in the second character string, the last occurrence is used.
If the third string is shorter than the second, its last character is replicated. However, if it is empty,
no translation takes place.

Exim 3.30 [59] string expansions (9)

9.3 Expansion operators
The following operations can be performed on portions of an expanded string. The substring is first
expanded before the operation is applied to it.

${domain:<string>}

The string is interpreted as an RFC 822 address and the domain is extracted from it. If the string
does not parse successfully, the result is empty.

${escape:<string>}

If the string contains any non-printing characters, they are converted to escape sequences starting
with a backslash. Whether characters with the most significant bit set (so-called ‘8-bit characters’)
count as printing or not is controlled by the print_topbitchars option.

${expand:<string>}

The expand operator causes a string to be expanded for a second time. For example,

${expand:${lookup{$domain}dbm{/some/file}{$value}}}

first looks up a string in a file while expanding the operand for expand, and then re-expands what
it has found.

${hash_<n>_<m>:<string>}

The two items <n> and <m> are numbers. If <n> is greater than or equal to the length of the
string, the operator returns the string. Otherwise it computes a new string of length <n> by
applying a hashing function to the string. The new string consists of characters taken from the first

 <m> characters of the string

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQWRSTUVWXYZ0123456789

and if <m> is not present the value 26 is used, so that only lower case letters appear. These
 examples:

${hash_3:monty}
 ${hash_5:monty}

${hash_4_62:monty python}

yield

jmg
monty

 fbWx

respectively. The abbreviation h can be used instead of hash.

${nhash_<n>:<string>}

The string is processed by a hash function which returns a numeric value in the range 0– <n>-1.

${nhash_<n>_<m>:<string>}

The string is processed by a div/mod hash function which returns two numbers, separated by a
slash, in the ranges 0– <n>-1 and 0– <m>-1, respectively. For example,

${nhash_8_64:supercalifragilisticexpialidocious}

returns the string ‘6/33’.

${md5:<string>}

The md5 operator computes the MD5 hash value of the string, and returns it as a 32-digit
hexadecimal number.

Exim 3.30 [60] string expansions (9)

${lc:<string>}

This forces the letters in the string into lower-case, for example:

${lc:$local_part}

${uc:<string>}

This forces the letters in the string into upper-case.

${length_<number>:<string>}

The length operator can be used to extract the initial portion of a string. It is followed by an
underscore and the number of characters required. For example

${length_50:$message_body}

The result of this operator is either the first <number> characters or the whole string, whichever is
the shorter. The abbreviation l can be used instead of length.

${local_part:<string>}

The string is interpreted as an RFC 822 address and the local part is extracted from it. If the string
does not parse successfully, the result is empty.

${mask:<IP address>/<bit count>}

If the form of the string to be operated on is not an IP address followed by a slash and an integer,
the expansion fails. Otherwise, this operator converts the IP address to binary, masks off the least
significant bits according to the bit count, and converts the result back to text, with mask
appended. For example,

${mask:10.111.131.206/28}

returns the string ‘10.111.131.192/28’. Since this operation is expected to be mostly used for
looking up masked addresses in files, the result for an IPv6 address uses fullstops (periods) to
separate components instead of colons, because colon terminates a key string in lsearch files. So,
for example,

${mask:5f03:1200:836f:0a00:000a:0800:200a:c031/99}

returns the string

5f03.1200.836f.0a00.000a.0800.2000.0000/99

Letters in IPv6 addresses are always output in lower case.

${quote:<string>}

The quote operator puts its argument into double quotes if it contains anything other than letters,
digits, underscores, full stops (periods), and hyphens. Any occurrences of double quotes and
backslashes are escaped with a backslash. For example,

${quote:ab"*"cd}

becomes

"ab\"*\"cd"

The place where this is useful is when the argument is a substitution from a variable or a message
 header.

${quote_<lookup-type>:<string>}

This operator applies lookup-specific quoting rules to the string. Each query-style lookup type has
its own quoting rules which are described with the lookups in chapter 6. For example,

${quote_ldap:two + two}

Exim 3.30 [61] string expansions (9)

returns ‘two%20%5C+%20two’. For single-key lookup types, no quoting is necessary and this
operator yields an unchanged string.

${rxquote:<string>}

The rxquote operator inserts a backslash before any non-alphanumeric characters in its argument.
This is useful when substituting the values of variables or headers inside regular expressions.

${substr_<start>_<length>:<string>}

The substr operator can be used to extract more general substrings than length. It is followed by
an underscore and the starting offset, then a second underscore and the length required. For
example

${substr_3_2:$local_part}

If the starting offset is greater than the string length the result is the null string; if the length plus
starting offset is greater than the string length, the result is the right-hand part of the string,
starting from the given offset. The first character in the string has offset zero. The abbreviation s
can be used instead of substr.

The substr expansion operator can take negative offset values to count from the righthand end of
its operand. The last character is offset -1, the second-last is offset -2, and so on. Thus, for
example,

${substr_-5_2:1234567}

yields ‘34’. If the absolute value of a negative offset is greater than the length of the string, the
substring starts at the beginning of the string, and the length is reduced by the amount of
overshoot. Thus, for example,

${substr_-5_2:12}

yields an empty string, but

${substr_-3_2:12}

yields ‘1’.

If the second number is omitted from substr, the remainder of the string is taken if the offset was
positive. If it was negative, all characters in the string preceding the offset point are taken. For
example, an offset of -1 and no length yields all but the last character of the string.

9.4 Expansion conditions
The following conditions are available for testing by the ${if construct while expanding strings:

!<condition>

Preceding any condition with an exclamation mark negates the result of the condition.

<symbolic operator> {<string1>}{<string2>}

There are a number of symbolic operators for doing numeric comparisons. They are:

= equal
== equal
> greater
>= greater or equal
< less
<= less or equal

For example,

${if >{$message_size}{10M} ...

Exim 3.30 [62] string expansions (9)

Note that the general negation operator provides for inequality testing. The two strings must take
the form of optionally signed decimal integers, optionally followed by one of the letters ‘K’ or
‘M’ (in either upper or lower case), signifying multiplication by 1024 or 1024*1024, respectively.

def:<variable name>

The def condition must be followed by the name of one of the expansion variables defined in
section 5. The condition is true if the named expansion variable does not contain the empty string,
for example

${if def:sender_ident {from $sender_ident}}

Note that the variable name is given without a leading $ character. If the variable does not exist,
the expansion fails.

def:header_<header name>: or def:h_<header name>:

This condition is true if a message is being processed and the named header exists in the message.
For example,

${if def:header_reply-to:{$h_reply-to:}{$h_from:}}

Note that no $ appears before header_ or h_ in the condition, and that header names must be
terminated by colons if white space does not follow.

exists {<file name>}

The substring is first expanded and then interpreted as an absolute path. The condition is true if
the named file (or directory) exists. The existence test is done by calling the stat() function. The
use of the exists test in users’ filter files may be locked out by the system administrator.

eq {<string1>}{<string2>}

The two substrings are first expanded. The condition is true if the two resulting strings are
identical, including the case of letters.

crytpeq {<string1>}{<string2>}

This condition is included in the Exim binary if it is built to support any authentication mechan-
isms (see chapter 35). Otherwise, it is necessary to define SUPPORT_CRYPTEQ in Local/Makefile to
get crypteq included in the binary.

The crypteq condition has two arguments. The first is encrypted and compared against the second,
which is already encrypted. The second string may be in the LDAP form for storing encrypted
strings, which starts with the encryption type in curly brackets, followed by the data. For example:

{md5}CY9rzUYh03PK3k6DJie09g==

If such a string appears directly in an expansion, the curly brackets have to be quoted, because
they are part of the expansion syntax. For example:

${if crypteq {test}{\{md5\}CY9rzUYh03PK3k6DJie09g==}{yes}{no}}

Two encryption types are currently supported:

• md5 first computes the MD5 digest of the string, and then expresses this as printable
characters by means of base64 encoding.

• crypt calls the crypt() function as used for encrypting login passwords.

If the second string does not begin with ‘{’ it is assumed to be encrypted with crypt(), since such
strings cannot begin with ‘{’. Typically this will be a field from a password file.

Exim 3.30 [63] string expansions (9)

match {<string1>}{<string2>}

The two substrings are first expanded. The second is then treated as a regular expression and
applied to the first. Because of the pre-expansion, if the regular expression contains dollar, or
backslash characters, they must be escaped with backslashes. Care must also be taken if the
regular expression contains braces (curly brackets). A closing brace must be escaped so that it is
not taken as a premature termination of <string2>. It does no harm to escape opening braces, but
this is not strictly necessary. For example,

${if match {$local_part}{^\\d\{3\}} ...

If the whole expansion string is in double quotes, further escaping of backslashes is also required.

The condition is true if the regular expression match succeeds. At the start of an if expansion the
values of the numeric variable substitutions $1 etc. are remembered. Obeying a match condition
that succeeds causes them to be reset to the substrings of that condition and they will have these
values during the expansion of the success string. At the end of the if expansion, the previous
values are restored. After testing a combination of conditions using or, the subsequent values of
the numeric variables are those of the condition that succeeded.

pam {<string1>:<string2>:...}

Pluggable Authentication Modules (http://www.kernel.org/pub/linux/libs/pam/) are a facility
which is available in the latest releases of Solaris and in some GNU/Linux distributions. The
Exim support, which is intended for use in conjunction with the SMTP AUTH command, is
available only if Exim is compiled with

SUPPORT_PAM=yes

in Local/Makefile. You probably need to add -lpam to EXTRALIBS, and in some releases of
GNU/Linux -ldl is also needed.

The argument string is first expanded, and the result must be a colon-separated list of strings. The
 PAM module is initialized with the service name ‘exim’ and the user name taken from the first

item in the colon-separated data string (i.e. <string1>). The remaining items in the data string are
passed over in response to requests from the authentication function. In the simple case there will
only be one request, for a password, so the data will consist of just two strings.

There can be problems if any of the strings are permitted to contain colon characters. In the usual
 way, these have to be doubled to avoid being taken as separators. If the data is being inserted

from a variable, the sg expansion item can be used to double any existing colons. For example,
the configuration of a LOGIN authenticator might contain this setting:

server_condition = ${if pam{$1:${sg{$2}{:}{::}}}{yes}{no}}

first_delivery

This condition, which has no data, is true during a message’s first delivery attempt. It is false
during any subsequent delivery attempts.

queue_running

This condition, which has no data, is true during delivery attempts that are initiated by queue-
runner processes, and false otherwise.

or {{<cond1>}{<cond2>}...}

The sub-conditions are evaluated from left to right. The condition is true if any one of the sub-
conditions is true. For example,

${if or {{eq{$local_part}{spqr}}{eq{$domain}{testing.com}}}...

When a true sub-condition is found, the following ones are parsed but not evaluated. If there are
several ‘match’ sub-conditions the values of the numeric variables afterwards are taken from the
first one that succeeds.

Exim 3.30 [64] string expansions (9)

and {{<cond1>}{<cond2>}...}

The sub-conditions are evaluated from left to right. The condition is true if all of the sub-
conditions are true. If there are several ‘match’ sub-conditions, the values of the numeric variables
afterwards are taken from the last one. When a false sub-condition is found, the following ones
are parsed but not evaluated.

Note that and and or are complete conditions on their own, and precede their lists of sub-conditions.
Each sub-condition must be enclosed in braces within the overall braces that contain the list. No
repetition of if is used.

9.5 Expansion variables

The variable substitutions that are available for use in expansion strings are:

$0, $1, etc: When a matches expansion condition succeeds, these variables contain the captured
substrings identified by the regular expression during subsequent processing of the success string of
the containing if expansion item. They may also be set externally by some other matching process
which precedes the expansion of the string. For example, the commands available in Exim filter
files include an if command with its own regular expression matching condition.

$address_file: When, as a result of aliasing or forwarding, a message is directed to a specific file, this
variable holds the name of the file when the transport is running. For example, using the default
configuration, if user r2d2 has a .forward file containing

/home/r2d2/savemail

then when the address_file transport is running, $address_file contains ‘/home/r2d2/savemail’. At
other times, the variable is empty.

$address_pipe: When, as a result of aliasing or forwarding, a message is directed to a pipe, this
variable holds the pipe command when the transport is running.

$authenticated_id: When a server successfully authenticates a client it may be configured to preserve
some of the authentication information in the variable $authenticated_id (see chapter 35). For
example, a user/password authenticator configuration might preserve the user name for use in the
directors or routers.

$authenticated_sender: When a client host has authenticated itself, Exim pays attention to the AUTH=

parameter on the SMTP MAIL command, provided the setting of server_mail_auth_condition (see
chapter 35) permits it. Otherwise, it accepts the syntax, but ignores the data. Unless the data is the
string ‘<>’, it is set as the authenticated sender of the message, and the value is available during
delivery in the $authenticated_sender variable.

$body_linecount: When a message is being received or delivered, this variable contains the number of
lines in the message’s body.

$caller_gid: The group id under which the process that called Exim was running. This is not the same
as the group id of the originator of a message (see $originator_gid). If Exim re-execs itself, this
variable in the new incarnation normally contains the Exim gid.

$caller_uid: The user id under which the process that called Exim was running. This is not the same
as the user id of the originator of a message (see $originator_uid). If Exim re-execs itself, this
variable in the new incarnation normally contains the Exim uid.

$compile_date: The date on which the Exim binary was compiled.

$compile_number: The building process for Exim keeps a count of the number of times it has been
compiled. This serves to distinguish different compilations of the same version of the program.

$domain: When an address is being directed, routed, or delivered on its own, this variable contains the
domain. In particular, it is set during user filtering, but not during system filtering, since a message
may have many recipients and the system filter is called just once.

Exim 3.30 [65] string expansions (9)

For remote addresses, the domain that is being routed can change as routing proceeds, as a result of
router actions (see, for example, the domainlist router). However, the value of $domain remains as
the original domain. The current routing domain can often be accessed by other means.

When a remote or local delivery is taking place, if all the addresses that are being handled
simultaneously contain the same domain, it is placed in $domain. Otherwise this variable is empty.

 Transports should be restricted to handling only one domain at once if its value is required at
transport time – this is the default for local transports. For further details of the environment in
which local transports are run, see chapter 13.

At the end of a delivery, if all deferred addresses have the same domain, it is set in $domain during
the expansion of delay_warning_condition.

Because configured address rewriting happens at the time a message is received, $domain normally
contains the value after rewriting. However, when a rewrite item is actually being processed (see
chapter 34) $domain contains the domain portion of the address that is being rewritten; it can be
used in the expansion of the replacement address, for example, to rewrite domains by file lookup.

When the smtp_etrn_command option is being expanded, $domain contains the complete argu-
ment of the ETRN command (see section 48.6).

$domain_data: When a director or a router has a setting of the domains generic option, and that
involves a lookup which succeeds, the data read by the lookup is available during the running of
the director or router as $domain_data. In addition, if the driver directs or routes the address to a
transport, the value is available in that transport. In all other situations, this variable expands to

 nothing.

$errmsg_recipient: This is set to the recipient address of an error message while Exim is creating it.
It is useful if a customized error message text file is in use (see chapter 39).

$home: A home directory may be set during a local delivery, either by the transport or by the director
that handled the address. When this is the case, $home contains its value and may be used in any
expanded options for the transport. The forwardfile director also makes use of $home. Full details
are given in chapter 24. When interpreting a user ’s filter file, Exim is normally configured so that
$home contains the user ’s home directory. When running a filter test via the -bf option, $home is
set to the value of the environment variable HOME.

$host: When the smtp transport is expanding its options for encryption using TLS, $host contains the
name of the host to which it is connected. Likewise, when used in the client part of an authenticator
configuration (see chapter 35), $host contains the name of the server to which the client is
connected.

When used in a transport filter (see chapter 14) $host refers to the host involved in the current
connection.

When a local transport is run as a result of routing a remote address, this variable is available to
access the host name that the router defined. A router may set up many hosts; in this case $host
refers to the first one. It is expected that this usage will be mainly via the domainlist router, setting
up a single host for batched SMTP output, for example.

$host_address: This variable is set to the remote host’s IP address whenever $host is set for a remote
connection.

$host_lookup_failed: This variable contains ‘1’ if the message came from a remote host and there
was an attempt to look up the host’s name from its IP address, but the attempt failed. Otherwise the
value of the variable is ‘0’.

$interface_address: For a message received over a TCP/IP connection, this variable contains the
address of the IP interface that was used. See also the -oMi command line option.

$key: When a domain, host, or address list is being searched, this variable contains the value of the
 key, so that it can be inserted into strings for query-style lookups. See section 6.4 for further details

and an example. In other circumstances this variable is empty.

Exim 3.30 [66] string expansions (9)

$local_part: When an address is being directed, routed, or delivered on its own, this variable contains
the local part. If a local part prefix or suffix has been recognized, it is not included in the value.
When a number of addresses are being delivered in a batch by a local or remote transport,
$local_part is not set.

When a message is being delivered to a pipe, file, or autoreply transport as a result of aliasing or
forwarding, $local_part is set to the local part of the parent address.

In all cases, all quoting is removed from the local part. For example, for both the addresses

"abc:xyz"@test.example
abc\:xyz@test.example

the value of $local_part is

abc:xyz

If you use this variable to create another address, for example, in the new_address option of a
smartuser director, you should always wrap it inside a quoting operator:

new_address = ${quote:$local_part}@new.domain

Because global address rewriting happens at the time a message is received, $local_part normally
contains the value after rewriting. However, when a rewrite item is actually being processed (see
chapter 34) $local_part contains the local part of the address that is being rewritten; it can be used
in the expansion of the replacement address, for example, to rewrite local parts by file lookup.

$local_part_data: When a director or a router has a setting of the local_parts generic option, and that
involves a lookup which succeeds, the data read by the lookup is available during the running of
the director or router as $local_part_data. In addition, if the driver directs or routes the address to
a transport, the value is available in that transport. In all other situations, this variable expands to

 nothing.

$local_part_prefix: When an address is being directed or delivered locally, and a specific prefix for
the local part was recognized, it is available in this variable. Otherwise it is empty.

$local_part_suffix: When an address is being directed or delivered locally, and a specific suffix for the
local part was recognized, it is available in this variable. Otherwise it is empty.

$localhost_number: This contains the expanded value of the localhost_number option. The expan-
sion happens after the main options have been read.

$message_age: This variable is set at the start of a delivery attempt to contain the number of seconds
since the message was received. It does not change during a single delivery attempt.

$message_body: This variable contains the initial portion of a message’s body while it is being
delivered, and is intended mainly for use in filter files. The maximum number of characters of the
body that are used is set by the message_body_visible configuration option; the default is 500.
Newlines are converted into spaces to make it easier to search for phrases that might be split over a
line break.

$message_body_end: This variable contains the final portion of a message’s body while it is being
delivered. The format and maximum size are as for $message_body.

$message_body_size: When a message is being received or delivered, this variable contains the size
of the body in bytes. The count starts from the character after the blank line that separates the body
from the header. Newlines are included in the count. See also $message_size and $body_linecount.

$message_headers: This variable contains a concatenation of all the header lines when a message is
being processed. They are separated by newline characters.

$message_id: When a message is being received or delivered, this variable contains the unique
message id which is used by Exim to identify the message.

$message_precedence: When a message is being delivered, the value of any Precedence: header is
made available in this variable. If there is no such header, the value is the null string.

Exim 3.30 [67] string expansions (9)

$message_size: When a message is being received or delivered, this variable contains its size in bytes.
In most cases, the size includes those headers that were received with the message, but not those
(such as Envelope-to:) that are added to individual deliveries as they are written. However, there is
one special case: during the expansion of the maildir_tag option in the appendfile transport while
doing a delivery in maildir format, the value of $message_size is the precise size of the file that has
been written. See also $message_body_size and $body_linecount.

$n0 – $n9: These variables are counters that can be incremented by means of the add command in
filter files.

$original_domain: When a top-level address is being processed for delivery, this contains the same
value as $domain. However, if a ‘child’ address (for example, generated by an alias, forward, or
filter file) is being processed, this variable contains the domain of the original address. This differs
from $parent_domain when there is more than one level of aliasing or forwarding. When more
than one address is being delivered in a batch by a local or remote transport, $original_domain is
not set.

Address rewriting happens as a message is received. Once it has happened, the previous form of the
address is no longer accessible. It is the rewritten top-level address whose domain appears in this
variable.

$original_local_part: When a top-level address is being processed for delivery, this contains the same
value as $local_part. However, if a ‘child’ address (for example, generated by an alias, forward, or
filter file) is being processed, this variable contains the local part of the original address. This

 differs from $parent_local_part when there is more than one level of aliasing or forwarding. When
more than one address is being delivered in a batch by a local or remote transport,
$original_local_part is not set.

Address rewriting happens as a message is received. Once it has happened, the previous form of the
address is no longer accessible. It is the rewritten top-level address whose local part appears in this

 variable.

$originator_gid: The value of $caller_gid that was set when the message was received. For messages
received via the command line, this is the gid of the sending user. For messages received by SMTP
over TCP/IP, this is normally the gid of the Exim user.

$originator_uid: The value of $caller_uid that was set when the message was received. For messages
received via the command line, this is the uid of the sending user. For messages received by SMTP
over TCP/IP, this is normally the uid of the Exim user.

$parent_domain: This variable is empty, except when a ‘child’ address (generated by aliasing or
forwarding, for example) is being processed, in which case it contains the domain of the immedi-
ately preceding parent address.

$parent_local_part: This variable is empty, except when a ‘child’ address (generated by aliasing or
forwarding, for example) is being processed, in which case it contains the local part of the
immediately preceding parent address.

$pipe_addresses: This is not an expansion variable, but is mentioned here because the string
‘$pipe_addresses’ is handled specially in the command specification for the pipe transport and in
transport filters. It cannot be used in general expansion strings, and provokes an ‘unknown variable’
error if encountered.

$primary_hostname: The value set in the configuration file, or read by the uname() function.

$prohibition_reason: This variable is set only during the expansion of prohibition messages. See
section 46.5 for details.

$qualify_domain: The value set for this option in the configuration file.

$qualify_recipient: The value set for this option in the configuration file, or if not set, the value of
 $qualify_domain.

Exim 3.30 [68] string expansions (9)

$rbl_domain: While expanding prohibition_message when rejecting a recipient because of an RBL
failure (see section 46.5), $rbl_domain contains the name of the RBL domain that caused the
rejection.

$rbl_text: While expanding prohibition_message when rejecting a recipient because of an RBL
failure (see section 46.5), $rbl_text contains the text of a DNS TXT record that is associated with
the block, if one exists.

$received_for: If there is only a single recipient address in an incoming message, then when the
Received: header line is being built, this variable contains that address. Otherwise it is empty.

$received_protocol: When a message is being processed, this variable contains the name of the
protocol by which it was received.

$recipients: This variable contains a list of envelope recipients for a message, but is recognized only
in the system filter file, to prevent exposure of Bcc recipients to ordinary users. A comma and a
space separate the addresses in the replacement text.

$recipients_count: When a message is being processed, this variable contains the number of envelope
recipients that came with the message. Duplicates are not excluded from the count.

$reply_address: When a message is being processed, this variable contains the contents of the Reply-
 To: header line if one exists, or otherwise the contents of the From: header line. However, if the

message contains a set of Resent- header lines, their contents are used in preference.

$return_path: When a message is being delivered, this variable contains the return path – the sender
field that will be sent as part of the envelope. It is not enclosed in <> characters. In many cases,

 $return_path has the same value as $sender_address, but if, for example, an incoming message to
a mailing list has been expanded by a director which specifies a specific address for delivery error
messages, $return_path contains the new error address, while $sender_address contains the
original sender address that was received with the message.

$return_size_limit: This contains the value set in the return_size_limit option, rounded up to a
multiple of 1000. It is useful when a customized error message text file is in use (see chapter 39).

$route_option: A router may set up an arbitrary string to be passed to a transport via this variable.
 Currently, only the queryprogram router has the ability to do so.

$self_hostname: The generic router option self can be set to the values ‘local’ or ‘pass’ (amongst
others). These cause the address to be passed over to the directors, as if its domain were a local
domain, or to be passed on to the next router, respectively. While subsequently directing or routing
(and doing any deliveries) $self_hostname is set to the name of the local host that the router
encountered. In other circumstances its contents are null.

$sender_address: When a message is being processed, this variable contains the sender ’s address that
was received in the message’s envelope. For delivery failure reports, the value of this variable is the
empty string.

$sender_address_domain: The domain portion of $sender_address.

$sender_address_local_part: The local part portion of $sender_address.

$sender_fullhost: When a message is received from a remote host, this variable contains the host
name and IP address in a single string, which always ends with the IP address in square brackets. If
log_incoming_port is set, the port number on the remote host is added to the IP address, separated
by a full stop. The format of the rest of the string depends on whether the host issued a HELO or
EHLO SMTP command, and whether the host name was verified by looking up its IP address.
(Looking up the IP address can be forced by the host_lookup option, independent of verification.)
A plain host name at the start of the string is a verified host name; if this is not present, verification
either failed or was not requested. A host name in parentheses is the argument of a HELO or EHLO

command. This is omitted if it is identical to the verified host name or to the host’s IP address in
square brackets.

Exim 3.30 [69] string expansions (9)

$sender_helo_name: When a message is received from a remote host that has issued a HELO or EHLO

command, the first item in the argument of that command is placed in this variable. It is also set if
HELO or EHLO is used when a message is received using SMTP locally via the -bs or -bS options.

$sender_host_address: When a message is received from a remote host, this variable contains that
 host’s IP address. The value is set as soon as the connection is established, so it is available, for

example, during the expansion of prohibition_message.

$sender_host_authenticated: During message delivery, this variable contains the name (not the public
name) of the authenticator driver which successfully authenticated the client from which the
message was received. It is empty if there was no successful authentication.

$sender_host_name: When a message is received from a remote host, this variable contains the host’s
name as verified by looking up its IP address. If verification failed, or was not requested, this
variable contains the empty string.

$sender_host_port: When a message is received from a remote host, this variable contains the port
number that was used on the remote host.

$sender_ident: When a message is received from a remote host, this variable contains the identifi-
cation received in response to an RFC 1413 request. When a message has been received locally,
this variable contains the login name of the user that called Exim.

$sender_rcvhost: This is provided specifically for use in Received: headers. It starts with either the
verified host name (as obtained from a reverse DNS lookup) or, if there is no verified host name,
the IP address in square brackets. After that there may be text in parentheses. When the first item is
a verified host name, the first thing in the parentheses is the IP address in square brackets. There
may also be items of the form ‘helo=xxxx’ if HELO or EHLO was used and its argument was not
identical to the real host name or IP address, and ‘ident=xxxx’ if an RFC 1413 ident string is
available. If all three items are present in the parentheses, a newline and tab are inserted into the
string, to improve the formatting of the Received: header.

$sn0 – $sn9: These variables are copies of the values of the $n0 – $n9 accumulators that were current
at the end of the system filter file. This allows a system filter file to set values that can be tested in
users’ filter files. For example, a system filter could set a value indicating how likely it is that a
message is junk mail.

$spool_directory: The name of Exim’s spool directory.

$thisaddress: This variable is set only during the processing of the foranyaddress command in a filter
file. Its use is explained in the description of that command.

$tls_cipher: When a message is received from a remote host over an encrypted SMTP connection, this
variable is set to the cipher that was negotiated, for example DES-CBC3-SHA. See chapter 38.

$tls_peerdn: When a message is received from a remote host over an encrypted SMTP connection,
and Exim is configured to request a certificate from the client, the value of the Distinguished Name
of the certificate is made available in the $tls_peerdn during subsequent processing.

$tod_bsdinbox: The time of day and date, in the format required for BSD-style mailbox files, for
example: Thu Oct 17 17:14:09 1995.

$tod_full: A full version of the time and date, for example: Wed, 16 Oct 1995 09:51:40 +0100. The
timezone is always given as a numerical offset from GMT.

$tod_log: The time and date in the format used for writing Exim’s log files, for example: 1995-10-12
 15:32:29.

$value: This variable contains the result of an expansion lookup or extraction operation, as described
above. Also, if a domainlist router has a lookup pattern in a route item, $value contains the data
that was looked up during the expansion of the host list. If $value is used in other circumstances,
its contents are null.

$version_number: The version number of Exim.

Exim 3.30 [70] string expansions (9)

$warnmsg_delay: This variable is set only during the creation of a message warning about a delivery
 delay. Details of its use are explained in section 39.2.

$warnmsg_recipients: This variable is set only during the creation of a message warning about a
delivery delay. Details of its use are explained in section 39.2.

Exim 3.30 [71] string expansions (9)

10. Embedded Perl

Exim can be built to include an embedded Perl interpreter. When this is done, Perl subroutines can be
called as part of the string expansion process. To make use of the Perl support, you need version 5.004
or later of Perl installed on your system. To include the embedded interpreter in the Exim binary,
include the line

EXIM_PERL = perl.o

in your Local/Makefile and then build Exim in the normal way.

Access to Perl subroutines is via a global configuration option called perl_startup and an expansion
string operator ${perl ...}. If there is no perl_startup option in the Exim configuration file then no
Perl interpreter is started and there is almost no overhead for Exim (since none of the Perl library will
be paged in unless used). If there is a perl_startup option then the associated value is taken to be Perl
code which is executed in a newly created Perl interpreter.

The value of perl_startup is not expanded in the Exim sense, so you do not need backslashes before
any characters to escape special meanings. The option should usually be something like

perl_startup = do ’/etc/exim.pl’

where /etc/exim.pl is Perl code which defines any subroutines you want to use from Exim. Exim can
be configured either to start up a Perl interpreter as soon as it is entered, or to wait until the first time
it is needed. Starting the interpreter at the beginning ensures that it is done while Exim still has its
setuid privilege, but can impose an unnecessary overhead if Perl is not in fact used in a particular run.
Also, note that this does not mean that Exim is necessarily running as root when Perl is called at a
later time. By default, the interpreter is started only when it is needed, but this can be changed in two
ways:

• Setting perl_at_start (a boolean option) in the configuration requests a startup when Exim is
entered.

• The command line option -ps also requests a startup when Exim is entered, overriding the setting
of perl_at_start.

There is also a command line option -pd (for delay) which suppresses the initial startup, even if
perl_at_start is set.

When the configuration file includes a perl_startup option you can make use of the string expansion
item to call the Perl subroutines that are defined by the perl_startup code. The operator is used in any
of the following forms:

${perl{foo}}
${perl{foo}{argument}}
${perl{foo}{argument1}{argument2} ... }

which calls the subroutine foo with the given arguments. A maximum of eight arguments may be
passed. Passing more than this results in an expansion failure with an error message of the form

Too many arguments passed to Perl subroutine "foo" (max is 8)

The return value of the subroutine is inserted into the expanded string, unless the return value is undef.
In that case, the expansion fails in the same way as an explicit ‘fail’ on an ${if ...} or ${lookup...}
item. If the subroutine aborts by obeying Perl’s die function, the expansion fails with the error
message that was passed to die.

Within any Perl code called from Exim, the function Exim::expand_string is available to call back
into Exim’s string expansion function. For example, the Perl code

my $lp = Exim::expand_string(’$local_part’);

Exim 3.30 [72] embedded Perl (10)

makes the current Exim $local_part available in the Perl variable $lp. Note those are single quotes
and not double quotes to protect against $local_part being interpolated as a Perl variable.

If the string expansion is forced to fail by a ‘fail’ item, the result of Exim::expand_string is undef. If
there is a syntax error in the expansion string, the Perl call from the original expansion string fails
with an appropriate error message, in the same way as if die were used.

Exim 3.30 [73] embedded Perl (10)

 11. Main configuration

The first part of the run time configuration file contains the main configuration settings. Each setting
occupies one line of the file, possibly continued by a terminating backslash. If any setting is preceded
by the word ‘hide’, the -bP option displays its value to admin users only (see section 7.3).

All macro definitions must be in this part of the file – they differ from options settings by starting with
an upper-case letter (see section 7.2).

The available options are listed in alphabetical order below, along with their types and default values.
Those that undergo string expansion before use are marked with †.

accept_8bitmime Type: boolean Default: false

This option causes Exim to send 8BITMIME in its response to an SMTP EHLO command, and to accept
the BODY= parameter on MAIL commands. However, though Exim is 8-bit clean, it is not a protocol

 converter, and it takes no steps to do anything special with messages received by this route.
 Consequently, this option is turned off by default.

accept_timeout Type: time Default: 0s

This sets the timeout for accepting a non-SMTP message, that is, the maximum time that Exim
waits when reading a message on the standard input. If the value is zero, it will wait for ever. This
setting is overridden by the -or command option. The timeout for incoming SMTP messages is
controlled by smtp_receive_timeout.

admin_groups Type: string list Default: unset

If the current group or any of the supplementary groups of the caller is in this list, the caller has
admin privileges. If all your system programmers are in a specific group, for example, you can give
them all Exim admin privileges by putting that group in admin_groups. However, this does not
permit them to read Exim’s spool files (whose group owner is the Exim gid). To permit this, you
have to add individuals to the Exim group.

allow_mx_to_ip Type: boolean Default: false

It appears that more and more DNS zones are breaking the rules and putting IP addresses on the
right hand side of MX records. Exim follows the rules and rejects this, giving an error message that
explains the mis-configuration. However, some other MTAs support this practice, so to avoid ‘Why

 can’t Exim do this?’ complaints, allow_mx_to_ip exists, in order to enable this heinous activity. It
is not recommended, except when you have no other choice.

always_bcc Type: boolean Default: false

Exim adds a To: header to messages whose recipients are given on the command line when there is
no To:, Cc:, or Bcc: in the message. In other cases of missing recipient headers, it just adds an
empty Bcc: header to make the message conform with RFC 822. Setting always_bcc causes it to
add an empty Bcc: in all cases. This can be helpful in conjunction with mailing list software that
passes recipient addresses on the command line.

auth_always_advertise Type: boolean Default: true

This option is available only when Exim is compiled with authentication support. Normally, if any
server authentication mechanisms are configured, Exim advertises them in response to any EHLO

command. However, if auth_always_advertise is set false, Exim advertises availability of the AUTH

command only if the calling host is in auth_hosts, or if it is in host_auth_accept_relay and not in
 host_accept_relay. In other words, it advertises only when the host is required always to

authenticate or to authenticate in order to relay.

Otherwise, Exim does not advertise AUTH, though it is always prepared to accept it. Certain mail
clients (for example, Netscape) require the user to provide a name and password for authentication
if AUTH is advertised, even though it may not be needed (the host may be in host_accept_relay).

Exim 3.30 [74] main configuration (11)

Unsetting auth_always_advertise makes these clients more friendly in these circumstances, while
still allowing you to use combinations such as

host_auth_accept_relay = *
host_accept_relay = 10.9.8.0/24

without needing to fill up host_auth_accept_relay with exceptions.

auth_hosts Type: host list Default: unset

Any hosts in this list that connect to an Exim server as clients are required to authenticate
themselves using the SMTP AUTH command before any commands other than HELO, EHLO, HELP,

 AUTH, NOOP, RSET, or QUIT are accepted. See chapter 35 for details of SMTP authentication.

auth_over_tls_hosts Type: host list Default: unset

Any hosts in this list must start an encrypted TLS session before issuing an SMTP AUTH command,
but it does not of itself require them to authenticate. See chapter 38 for details of SMTP encryption.

auto_thaw Type: time Default: 0s

If this option is set to a time greater than zero, a queue runner will try a new delivery attempt on
any frozen message if this much time has passed since it was frozen. This may result in the
message being re-frozen if nothing has changed since the last attempt. It is a way of saying ‘keep
on trying, even though there are big problems’. See also timeout_frozen_after,

 ignore_errmsg_errors, and ignore_errmsg_errors_after.

bi_command Type: string Default: unset

This option supplies the name of a command that is run when Exim is called with the -bi option
(see chapter 5). The string value is just the command name, it is not a complete command line. If
an argument is required, it must come from the -oA command line option.

check_log_inodes Type: integer Default: 0

See check_spool_space below.

check_log_space Type: integer Default: 0

See check_spool_space below.

check_spool_inodes Type: integer Default: 0

See check_spool_space below.

check_spool_space Type: integer Default: 0

The four check_... options allow for checking of disc resources before a message is accepted:
check_spool_space and check_spool_inodes check the spool partition if either value is greater than
zero, for example:

check_spool_space = 10M
check_spool_inodes = 100

The spool partition is the one which contains the directory defined by SPOOL_DIRECTORY in
 Local/Makefile.

check_log_space and check_log_inodes check the partition in which log files are written if either
is greater than zero. These should be set only if log_file_path and spool_directory refer to different
partitions.

If there is less space or fewer inodes than requested, Exim refuses to accept incoming mail. In the
case of SMTP input this is done by giving a 452 temporary error response to the MAIL command. If
ESMTP is in use and there was a SIZE parameter on the MAIL command, its value is added to the
check_spool_space value, and the check is performed even if check_spool_space is zero, unless
no_smtp_check_spool_space is set.

Exim 3.30 [75] main configuration (11)

For non-SMTP input and for batched SMTP input, the test is done at start-up; on failure a message
is written to stderr and Exim exits with a non-zero code, as it obviously cannot send an error
message of any kind.

collapse_source_routes Type: boolean Default: false

From version 3.10, this option is obsolete and does nothing. Formerly, it caused source-routed mail
addresses to be stripped down to their final components. This now happens automatically, and
cannot be suppressed.

daemon_smtp_port Type: string Default: unset

This option specifies the numerical port number or the service name equivalent on which the
daemon is to listen for incoming SMTP calls. It is overridden by -oX on the command line. If this
option is not set, the service name ‘smtp’ is used.

daemon_smtp_service Type: string Default: unset

This option is a synonym for daemon_smtp_port.

debug_level Type: integer Default: 0

This option sets the debug level, thus enabling it to be set when calling Exim from an MUA, but it
is overridden by the use of -d on the command line.

delay_warning Type: time list Default: 24h

When a message is delayed, Exim sends a warning message to the sender at intervals specified by
this option. If it is set to a zero, no warnings are sent. The data is a colon-separated list of times
after which to send warning messages. Up to 10 times may be given. If a message has been on the
queue for longer than the last time, the last interval between the times is used to compute
subsequent warning times. For example, with

delay_warning = 4h:8h:24h

the first message is sent after 4 hours, the second after 8 hours, and subsequent ones every 16 hours
 thereafter. To stop warnings after a given time, set a huge subsequent time.

delay_warning_condition Type: string† Default: see below

The string is expanded at the time a warning message might be sent. If all the deferred addresses
have the same domain, it is set in $domain during the expansion. Otherwise $domain is empty. If
the result of the expansion is a forced failure, an empty string, or a string matching any of ‘0’, ‘no’
or ‘false’ (the comparison being done caselessly) then the warning message is not sent. The
default is

delay_warning_condition = \
${if match{$h_precedence:}{(?i)bulk|list|junk}{no}{yes}}

which suppresses the sending of warnings about messages that have ‘bulk’, ‘list’ or ‘junk’ in a
 Precedence: header. Note that the colon to terminate the header name cannot be omitted, because

brace characters may legally occur in header names.

deliver_load_max Type: fixed-point Default: unset

When this option is set, no message deliveries are ever done if the system load average is greater
than its value, except for deliveries forced with the -M option. If deliver_queue_load_max is not
set and the load gets this high during a queue run, the run is abandoned. There are some operating
systems for which Exim cannot determine the load average (see chapter 1); for these this option has
no effect.

Exim 3.30 [76] main configuration (11)

deliver_queue_load_max Type: fixed-point Default: unset

If this option is set, its value is used to determine whether to abandon a queue run, instead of the
value of deliver_load_max.

delivery_date_remove Type: boolean Default: true

Exim’s transports have an option for adding a Delivery-date: header to a message when it is
delivered – in exactly the same way as Return-path: is handled. Delivery-date: records the actual
time of delivery. Such headers should not be present in incoming messages, and this option causes
them to be removed, to avoid any problems that might occur when a delivered message is
subsequently sent on to some other recipient.

dns_again_means_nonexist Type: domain list Default: unset

DNS lookups give a ‘try again’ response for the DNS error ‘non-Authoritive host found or
 SERVERFAIL’. This can cause Exim to keep trying to deliver a message, or to give repeated temporary

errors to incoming mail. Sometimes the effect is caused by a badly set up nameserver and may
persist for a long time. If a domain which exhibits this problem matches anything in dns_again_
means_nonexist then it is treated as if it did not exist. This option should be used with care.

dns_check_names Type: boolean Default: true

This option causes Exim to check domain names for illegal characters before handing them to the
DNS resolver, because some resolvers give temporary errors for bad names. If a domain name
contains any illegal characters, a ‘not found’ result is forced. The check is done by matching the
domain name against the regular expression specified by the dns_check_names_pattern option.

dns_check_names_pattern Type: string Default: see below

This option defines the regular expression that is used when the dns_check_names option is set.
The default value is

dns_check_names_pattern = \
 (?i)^(?>(?(1)\.|())[^\W_](?>[a-z0-9-]*[^\W_])?)+$

which permits only letters, digits, and hyphens in components, but they may not start or end with a
 hyphen.

dns_retrans Type: time Default: 0s

The options dns_retrans and dns_retry can be used to set the retransmission and retry parameters
for DNS lookups. Values of zero (the defaults) leave the system default settings unchanged. The
first value is the time between retries, and the second is the number of retries. It isn’t totally clear
exactly how these settings affect the total time a DNS lookup may take. I haven’t found any
documentation about timeouts on DNS lookups; these parameter values are available in the external
resolver interface structure, but nowhere does it seem to describe how they are used or what you
might want to set in them.

dns_ipv4_lookup Type: boolean Default: false

When Exim is compiled with IPv6 support, it looks for IPv6 address records (AAAA and A6) as
well as IPv4 address records when trying to find IP addresses for hosts. However, if
dns_ipv4_lookup is set, it disables DNS lookups for AAAA and A6 records. This is a fudge to
help with name servers that give big delays or otherwise do not work for these new record types. If
Exim is handed either of these record types as part of an MX lookup (for example), it still handles
them, and may as a result make outgoing IPv6 calls. All this option does is to make it look only for
IPv4-style A records when it needs to find an IP address for a host name. In due course, when the

 world’s name servers have all been upgraded, there should be no need for this option.

Exim 3.30 [77] main configuration (11)

dns_retry Type: integer Default: 0

See dns_retrans above.

envelope_to_remove Type: boolean Default: true

Exim’s transports have an option for adding an Envelope-to: header to a message when it is
delivered – in exactly the same way as Return-path: is handled. Envelope-to: records the original
recipient address in the envelope that caused the delivery. Such headers should not be present in
incoming messages, and this option causes them to be removed, to avoid any problems that might
occur when a delivered message is subsequently sent on to some other recipient.

errmsg_text Type: string Default: unset

If errmsg_text is set, its contents are included in the default error message immediately after ‘This
message was created automatically by mail delivery software.’ It is not used if errmsg_file is set.

errmsg_file Type: string Default: unset

This option defines a template file containing paragraphs of text to be used for constructing the
message which is sent by Exim in the case of a delivery failure. Details of the file’s contents are
given in chapter 39. See also warnmsg_file.

errors_address Type: string Default: "postmaster"

The mail address to which Exim will send certain error reports. As the default is specified without a
domain, it will be sent to the domain specified by the qualify_recipient option. If this address is
specified with a domain, it must be a fully qualified domain. There are actually only a few
situations where this address is used:

• When freeze_tell_mailmaster is set, and a message that is not a failing, locally generated
bounce message is frozen. However, if the errors_address is one of the recipients of the
frozen message, nothing is sent, in order to avoid potential loops.

• Delivery failed, and there is no other address to which a bounce message can be sent, except
for bounce messages that are timing out (they are just discarded).

• -Mg was used to cancel delivery, and there is no other address to which to send a message.

errors_copy Type: string list† Default: unset

Setting this option causes Exim to send bcc copies of delivery failure reports that it generates to
other addresses. The value is a colon-separated list of items; each item consists of a pattern and an
address list, separated by white space. If the pattern matches the recipient of the delivery error
report, the message is copied to the addresses on the list. The items are scanned in order, and once
a matching one is found, no further items are examined. For example:

errors_copy = spqr@mydomain postmaster@mydomain :\
rqps@mydomain mailmaster@mydomain,\

 postmaster@mydomain

Each pattern can be a single regular expression, indicated by starting it with a circumflex;
 alternatively, either portion (local part, domain) can start with an asterisk, or the domain can be in

any format that is acceptable as an item in a domain list, including a file lookup. A regular
expression is matched against the entire (fully qualified) recipient; non-regular expressions must
contain both a local part and domain, separated by @.

The address list is a string which is expanded, and must end up as a comma-separated list of
addresses. It is used to construct a Bcc: header which is added to the error message. The expansion
variables $local_part and $domain are set from the original recipient of the error message, and if
there was any wildcard matching, the expansion variables $0, $1, etc. are set in the normal way.

Exim 3.30 [78] main configuration (11)

errors_reply_to Type: string Default: unset

Exim’s delivery error messages contain the header

From: Mail Delivery System <Mailer-Daemon@${qualify_domain}>

(where string expansion notation is used to show a variable substitution). Experience shows that a
 large number of people reply to such messages. If the errors_reply_to option is set, a Reply-To:

header is added. The option must specify the complete header body.

exim_group Type: string
Default: compile-time configured (can be unset)

This option sets the gid under which Exim runs when it gives up root privilege. It is used only
when exim_user is also set. Unless it consists entirely of digits, the string is looked up using

 getgrnam(), and failure causes a configuration error. See chapter 55 for a discussion of security
issues.

exim_path Type: string Default: see below

This option specifies the path name of the Exim binary, which is used when Exim needs to re-exec
itself. The default is set up to point to the file exim in the directory configured at compile time by
the BIN_DIRECTORY setting. It is necessary to change exim_path if Exim is run from some other

 place.

exim_user Type: string
Default: compile-time configured (can be unset)

This option sets the uid under which Exim runs when it gives up root privilege. However, unless
there is some compelling reason for not doing so, it is best to specify the uid by setting EXIM_UID in
Local/Makefile rather than using this option, because ownership of the run time configuration file
and the use of the -C and -D command line options is checked against the compile-time setting of
this parameter, not what is set here.

Unless it consists entirely of digits, the string is looked up using getpwnam(), and failure causes a
configuration error. If exim_group is not also supplied, the gid is taken from the result of
getpwnam() if it is used. If the resulting uid is the root uid, it has the effect of unsetting this option.
See chapter 55 for a discussion of security issues.

extract_addresses_remove_arguments Type: boolean Default: true

According to Sendmail documentation, if any addresses are present on the command line when the
-t option is used to build an envelope from a message’s headers, they are removed from the
recipients list. This is also how Smail behaves. However, it has been reported that some versions of
Sendmail in fact add the argument addresses to the recipients list. By default Exim follows the
documented behaviour, but if this option is set false it adds rather than removes argument addresses.

finduser_retries Type: integer Default: 0

On systems running NIS or other schemes in which user and group information is distributed from
a remote system, there can be times when getpwnam() and related functions fail, even when given
valid data, because things time out. Unfortunately these failures cannot be distinguished from
genuine ‘not found’ errors. If finduser_retries is set greater than zero, Exim will try that many
extra times to find a user or a group, waiting for one second between tries.

forbid_domain_literals Type: boolean Default: false

If this option is set, the RFC 822 domain literal format is not permitted in addresses. The option is
set in the default configuration file, because the domain literal format is not normally required these
days, and few people know about it. It has, however, been exploited by mail abusers.

Exim 3.30 [79] main configuration (11)

freeze_tell_mailmaster Type: boolean Default: false

On encountering certain errors, Exim freezes a message, which means that no further delivery
attempts take place until an administrator thaws it. If this option is set, a message is sent to

 errors_address every time a message is frozen, unless the message is itself a delivery error
message. (Without this exception there is the possibility of looping.) If several of the message’s
addresses cause freezing, only a single message is sent to the mail administrator. The reason(s) for
freezing will be found in the message log.

gecos_name Type: string† Default: unset

Some operating systems, notably HP-UX, use the ‘gecos’ field in the system password file to hold
other information in addition to users’ real names. Exim looks up this field for use when it is
creating Sender: or From: headers. If either gecos_pattern or gecos_name are unset, the contents
of the field are used unchanged, except that, if an ampersand is encountered, it is replaced by the
user ’s login name with the first character forced to upper-case, since this is a convention that is
observed on many systems.

When these options are set, gecos_pattern is treated as a regular expression that is to be applied to
the field (again with & replaced by the login name), and if it matches, gecos_name is expanded and
used as the user ’s name. Numeric variables such as $1, $2, etc. can be used in the expansion to pick
up sub-fields that were matched by the pattern. In HP-UX, where the user ’s name terminates at the
first comma, the following can be used:

gecos_pattern = ([^,]*)
gecos_name = $1

gecos_pattern Type: string Default: unset

See gecos_name above.

headers_check_syntax Type: boolean Default: false

This option causes Exim to check the syntax of all headers that can contain lists of addresses
 (Sender:, From:, Reply-To:, To:, Cc:, and Bcc:) on all incoming messages (both local and

SMTP). This is a syntax check only, to catch real junk such as

To: user@

Like the headers_sender_verify options, the rejection happens after the end of the data, but it is
also controlled by headers_checks_fail; if that is unset, the message is accepted and a warning is
written to the reject log.

If the message contains any headers starting with Resent- then it is that set of headers which is
 checked.

headers_checks_fail Type: boolean Default: true

If this option is true, failure of any header check (see below) causes the message to be rejected. If it
is false, a warning message is written to the reject log.

headers_sender_verify Type: boolean Default: false

If this option is set with sender_verify, and the sending host matches sender_verify_hosts, Exim
insists on there being at least one verifyable address in one of the Sender:, Reply-To:, or From:
headers (which are checked in that order) on all incoming SMTP messages. If one cannot be found,
the message is rejected, unless headers_checks_fail is unset, in which case a warning entry is
written to the reject log.

If there are any headers whose names start with Resent-, it is that set of headers which is
checked. If there is more than one instance of a particular header, all of them are checked.

Unfortunately, because it has to read the message before doing this check, the rejection happens
after the end of the data, and it is known that some mailers do not treat hard (5xx) errors correctly

Exim 3.30 [80] main configuration (11)

at this point – they keep the message on their spools and try again later, but that is their problem,
though it does waste some resources.

headers_sender_verify_errmsg Type: boolean Default: false

This option acts like headers_sender_verify, except that it applies only to messages whose
envelope sender is ‘<>’, that is, delivery error messages whose sender cannot be verified at the time
the SMTP MAIL command is received.

helo_accept_junk_hosts Type: host list Default: unset

Exim checks the syntax of HELO and EHLO commands for incoming SMTP mail, and gives an error
response for invalid data. Unfortunately, there are some SMTP clients that send syntactic junk.
They can be accommodated by setting this option.

helo_strict_syntax Type: boolean Default: false

Because so many systems have been found to use underscores in the names they send in the SMTP
HELO command, Exim by default permits them, though it is not in fact legal to use underscores in
domain names in SMTP. If helo_strict_syntax is set, underscores are not permitted in HELO or EHLO

commands.

helo_verify Type: host list Default: unset

The RFCs mandate that a server must not reject a message because it doesn’t like the HELO or EHLO

command. However, some sites like to be stricter. If helo_verify is set, Exim checks each incoming
call from any host that matches it, and accepts the call only if:

• A HELO or EHLO command is received;

and

• The host name given in that command either:

(i) is an IP literal matching the calling address of the host (the RFCs specifically allow
this), or

(ii) matches the host name that Exim obtains by doing a reverse lookup of the calling host
address, or

(iii) when looked up using gethostbyname() yields the calling host address.

If no HELO or EHLO is given, MAIL commands are rejected; if a bad HELO or EHLO is given, it is
rejected with a 550 error. Rejections are logged in the main and reject logs.

hold_domains Type: domain list Default: unset

This option allows mail for particular domains to be held on the queue manually. The option is
overridden if a message delivery is forced with the -M, -qf, -Rf or -Sf options. Otherwise, if a
domain matches an item in hold_domains, no routing or delivery for that address is done, and it is
deferred every time the message is looked at.

This option is intended as a temporary operational measure for delaying the delivery of mail while
some problem is being sorted out, or some new configuration tested. It does not override Exim’s
message clearing away code, which removes messages from the queue if they have been there
longer than the longest retry time in any retry rule. If you want to hold messages for longer than the
normal retry times, insert a dummy retry rule with a long retry time.

host_accept_relay Type: host list Default: unset

This option provides a list of hosts that are permitted to relay via the local host to any arbitrary
domains. Section 46.4 contains a discussion of relay control.

Exim 3.30 [81] main configuration (11)

host_auth_accept_relay Type: host list Default: unset

This option provides a list of hosts that are permitted to relay via the local host to any arbitrary
domains, provided the calling host has authenticated itself. Section 46.4 contains a discussion of
relay control, and chapter 35 discusses authentication.

host_lookup Type: host list Default: unset

Exim does not look up the name of a calling host from its IP address unless it is required to
compare against some host list, or helo_verify is set, or the address matches this option (which
normally contains IP addresses rather than host names, since the presence of names in itself implies
a DNS lookup). The default configuration file contains

host_lookup = *

which causes a lookup to happen for all hosts. If the expense of these lookups is felt to be too
great, the setting can be changed or removed. However, Exim always does a lookup if the domain
name quoted in a HELO or EHLO command is the local host’s own name or any of its local mail
domains.

host_reject Type: host list Default: unset

If this option is set, incoming SMTP calls from the hosts listed (possibly also qualified by an RFC
1413 identification) are rejected as soon as the connection is made. See chapter 46 for more details.

host_reject_recipients Type: host list Default: unset

If this option is set, all recipients in incoming SMTP calls from the hosts listed, possibly also
qualified by an RFC 1413 identification, are rejected. Chapter 46 contains details of this facility,
which differs from host_reject only in the point in the SMTP dialogue at which the rejection

 occurs.

hosts_treat_as_local Type: domain list Default: unset

If this option is set, any host names that match the domain list are treated as if they were the local
host when Exim is scanning host lists obtained from MX records, and also at other times when it is
checking whether a host to which a message has been routed is the local host. If it is required that
the matching host names also be treated as local domains for mail delivery, they must appear in
local_domains as well as in this option.

See also the allow_localhost option in the smtp transport. Both these options are needed in a setup
with different hosts for incoming and outgoing mail if the resulting system is used for MX backup.

ignore_errmsg_errors Type: boolean Default: false

If this option is set, failed addresses in error reports (that is, bounce messages, whose senders are
‘<>’) are discarded (with a log entry). The default action is to freeze such messages for human
attention.

ignore_errmsg_errors_after Type: time Default: 0s

This option, if it is set to a non-zero time, acts as a delayed version of ignore_errmsg_errors,
which must be unset for this option to take effect. When an error message that was frozen because
of delivery failure has been on the queue for more than the given time, it is unfrozen at the next
queue run, and a further delivery is attempted. If delivery fails again, the error message is
discarded. This makes it possible to keep failed error messages around for a shorter time than the
normal maximum retry time for frozen messages. For example,

ignore_errmsg_errors_after = 12h

retries failed error message deliveries after 12 hours, discarding any further failures. For ways of
automatically dealing with other kinds of frozen message, see auto_thaw and

 timeout_frozen_after.

Exim 3.30 [82] main configuration (11)

ignore_fromline_hosts Type: host list Default: unset

Some broken SMTP clients insist on sending a UUCP-like ‘From’ line before the headers of a
message. By default this is treated as the start of the message’s body, which means that any
following headers are not recognized as such. Exim can be made to ignore it by setting

 ignore_fromline_hosts to match those hosts that insist on sending it. If the sender is actually a
local process rather than a remote host, and is using -bs to inject the messages, ignore_fromline_
local can be set to deal with this case.

ignore_fromline_local Type: boolean Default: false

See ignore_fromline_hosts above.

keep_malformed Type: time Default: 4d

This option specifies the length of time to keep messages whose spool files have been corrupted in
some way. This should, of course, never happen. At the next attempt to deliver such a message, it
gets removed. The incident is logged.

kill_ip_options Type: boolean Default: true

IP packets can contain options which are source routing data that enables one host to pretend to be
 another. (Don’t confuse IP source routing with source-routed mail addresses, which are something

entirely different.) IP source routing is an obvious security risk, and many sites lock out such
packets in their routers. Also, some operating systems are able to disable IP source routing at the
kernel level.

If Exim receives an SMTP call with IP options set, it logs the options if log_ip_options is set.
Then, if refuse_ip_options is set, it drops the call; otherwise, if kill_ip_options is set, it unsets the
options on the outgoing socket and attempts to continue. To read the IP options, getsockopt() is
used. On some versions of SunOS 4.1 this causes system crashes. There is a patch that fixes this
problem, but it can be avoided by setting all three Exim options false.

ldap_default_servers Type: string list Default: unset

This option provides a list of LDAP servers which are tried in turn when an LDAP query does not
contain a server. See section 6.11. The option is available only when Exim has been built with
LDAP support.

local_domains Type: domain list Default: see below

This specifies a list of domains which are recognized as ‘local’, that is, their delivery is handled in
a special way by this MTA using directors rather than routers. If this option is not set, it defaults to
the value of qualify_recipient.

The name of the local host is not by default recognized as a local mail domain; either it must be
included in local_domains, or the local_domains_include_host option must be set. If you want to
accept mail addressed to your host in RFC 822 domain literal format, local_domains must also
include the appropriate ‘domains’, consisting of IP addresses enclosed in square brackets. The
local_domains_include_host_literals option can be set to add all IP addresses automatically.

It is possible to specify no local domains by specifying no data for this option, for example,

local_domains =

If there are very many local domains, they can be stored in a file and looked up whenever this
string is searched. See the discussion of domain lists in section 7.12.

local_domains_include_host Type: boolean Default: false

If this option is set, the value of primary_hostname is added to the value of local_domains, unless
it is already present. This makes it possible to use the same configuration file on a number of

 different hosts. The same effect can be obtained by including the conventional item ‘@’ (which
matches the primary host name) in local_domains.

Exim 3.30 [83] main configuration (11)

local_domains_include_host_literals Type: boolean Default: false

If this option is set and local_interfaces is unset, the IP addresses of all the interfaces on the local
host, with the exception of 127.0.0.1 (and ::1 on IPv6 systems), are added to the value of

 local_domains, in domain literal format, that is, as strings enclosed in square brackets. If
local_interfaces is set, only those addresses it contains (again excluding 127.0.0.1 and ::1) are used.

local_from_check Type: boolean Default: true

When a message is submitted locally (that is, not over a TCP/IP connection) by a non-trusted user,
Exim checks that the From: header line matches the login of the calling user, and if not, it adds a
Sender: header. If local_from_check is set false, this checking is disabled, and no Sender: header
is ever added. Nevertheless, the envelope sender is still forced to be the login id at the qualify

 domain.

local_from_prefix Type: string Default: unset

When Exim checks the From: header line of locally submitted messages for matching the login id
(see local_from_check above), it can be configured to ignore certain prefixes and suffixes in the
local part of the address. This is done by setting local_from_prefix and/or local_from_suffix to
appropriate lists, in the same form as the prefix and suffix options of directors (see chapter 21). For
example, if

local_from_prefix = *-

is set, then a From: line containing

From: anything-user@your.domain

will not cause a Sender: header to be added if user@your.domain matches the actual sender
address that is constructed from the login name and qualify domain.

local_from_suffix Type: string Default: unset

See local_from_prefix above.

local_interfaces Type: string list Default: unset

The string must contain a list of IP addresses, in dotted-quad format for IPv4 addresses, or in
colon-separated format (with colons doubled) for IPv6 addresses. These are used for two different

 purposes:

• When a daemon is started to listen for incoming SMTP calls, it listens only on the interfaces
identified here, that is, it calls bind() for these interfaces only. An error occurs if it is unable to
bind a listening socket to any interface.

• Only the IP addresses listed here are taken as the local host’s addresses when routing mail and
checking for mail loops.

If local_interfaces is unset, the daemon issues a generic listen() that accepts incoming calls from
any interface, and it also gets a complete list of available interfaces and treats them all as local
when routing mail. On most systems the default action is what is wanted. However, some systems
set up large numbers of virtual interfaces in order to provide many different virtual web servers. In
these cases local_interfaces can be used to restrict SMTP traffic to one or two interfaces only. See
also hosts_treat_as_local.

localhost_number Type: string Default: unset

Exim’s message ids are normally unique only within the local host. If uniqueness among a set of
hosts is required, each host must set a different value for the localhost_number option. The string
is expanded immediately after reading the configuration file (so that a number can be computed
from the host name, for example) and the result of the expansion must be a number in the range
0– 255. This is available in subsequent string expansions via the variable $localhost_number. The
final two characters of the message id, instead of just being a sequence count of the number of
messages received by one process in one second, are the base 62 encoding of

Exim 3.30 [84] main configuration (11)

 <sequence count> * 256 + <local host number>

This reduces the possible range of the sequence count to 0 – 14. If the count ever reaches 14 in a
receiving process, a delay of one second is imposed to allow the clock to tick, thereby allowing the
count to be reset to zero.

locally_caseless Type: boolean Default: true

Domains in mail addresses are specified as being case-independent, but this it not true of local
parts. For most Unix systems, however, it is desirable that local parts of local mail addresses be
treated in a case-independent manner, since most users expect that mail to OBailey and obailey, for
example, will end up in the same mailbox. By default, when it is processing an address whose
domain is local, Exim lower-cases the local part at the start of processing, on the assumption that
account names in the password file are in lower-case.

For installations that want to draw case distinctions, this option is provided. When turned off, local
local parts are handled verbatim during delivery. If there are names containing upper case letters in
the password file, the most convenient way to provide for caseless mail delivery is to set up a
smartuser director as the first director, and to make it do a lowercased lookup of the local part, in
order to translate it to the correctly cased version, using the new_address option.

log_all_parents Type: boolean Default: false

This option applies to deliveries of local addresses, where the original envelope address may be
converted by (for example) an alias file into a ‘child’ address which might itself be an alias. Thus
in general there can be a chain of several addresses between the original one and the address to
which the actual delivery is made. By default Exim logs the final address, followed by the original
address in angle bracket.

Turning log_all_parents on causes all intermediate addresses between the original envelope address
and the final delivery address to be included in delivery log lines in parentheses after the first
address. Without this, intermediate addresses are not included, except that if the final delivery is to
a pipe or file or autoreply, the immediately preceding parent address is listed.

log_arguments Type: boolean Default: false

Setting this option causes Exim to write the arguments with which it was called to the main log.
This is a debugging feature, added to make it easy to find out with what arguments certain MUAs
call /usr/lib/sendmail. The logging does not happen if Exim has given up root privilege because it
was called with the -C or -D options. This facility cannot log illegal arguments, because the

 arguments are checked before the configuration file is read. The only way to log such cases is to
interpose a script such as util/logargs.sh between the caller and Exim.

log_file_path Type: string list Default: set at compile time

This option sets the path which is used to determine the names of Exim’s log files, or indicates that
logging is to be to syslog, or both. Chapter 51 contains further details. If this string is fixed at your
installation (contains no expansion variables) it is recommended that you do not set this option in
the configuration file, but instead supply the path using LOG_FILE_PATH in Local/Makefile so that it is
available to Exim for logging errors detected early on – in particular failure to read the configur-
ation file.

If no specific path is set for the log files, they are written in a sub-directory called log in Exim’s
spool directory.

log_incoming_port Type: boolean Default: false

If this option is set, the remote port number (separated by a dot) is added to the IP address of
incoming calls in all log entries, and in Received: header lines. For example:

127.0.0.1.48433
 ::1.48433

Exim 3.30 [85] main configuration (11)

This is implemented by changing the value that is put in the $sender_fullhost and $sender_rcvhost
variables. Recording the remote port number has become more important with the widening use of

 NAT (see RFC 2505).

log_ip_options Type: boolean Default: true

See kill_ip_options above.

log_level Type: integer Default: 5

This controls the amount of data written to the main log and to the individual message logs (see
section 51.10). The higher the number, the more is written. At present a value of 6 or higher causes
all possible messages to appear.

log_queue_run_level Type: integer Default: 0

This option specifies the log level for the messages ‘start queue run’ and ‘end queue run’. Setting it
higher than the value of log_level causes them to be suppressed.

log_received_recipients Type: boolean Default: false

When this option is set, the recipients of a message are listed in the main log as soon as the
message is received. The list appears at the end of the log line that is written when a message is
received, preceded by the word ‘for ’. The addresses are listed after they have been qualified, but
before any rewriting has taken place.

log_received_sender Type: boolean Default: false

If this option is set, the unrewritten original sender of a message is added to the end of the log line
that records the message’s arrival, after the word ‘from’ (before the recipients if

 log_received_recipients is also set).

log_refused_recipients Type: boolean Default: false

If this option is set, an entry is written in the main and reject logs for each recipient that is refused
for policy reasons. Otherwise cases where all recipients are to be refused just cause a single log
entry for the message.

log_rewrites Type: boolean Default: false

This option causes all address rewriting to get logged, as an aid to debugging rewriting rules.

log_sender_on_delivery Type: boolean Default: false

Setting log_sender_on_delivery causes Exim to add an F=<sender> item to delivery and bounce
log lines (F is for ‘envelope from’ – the same letter as is used in rewriting rules). By default, the
sender is not shown on these lines.

log_smtp_confirmation Type: boolean Default: false

This option causes the response to the final ‘.’ in the SMTP dialog for outgoing messages to be
added to delivery log lines in the form ‘C="<text>"’. A number of MTAs (including Exim from
release 1.60) return an identifying string in this response, so logging this information allows
messages to be tracked more easily. This global option applies to all SMTP transports.

log_smtp_connections Type: boolean Default: false

This option turns on more verbose logging of incoming SMTP connections, at log level 4. This
does not apply to batch SMTP, but it does apply to SMTP connections from local processes that use
the -bs option, including incoming calls using inetd. A log line is written whenever a connection is
established or closed. If a connection is dropped in the middle of a message, a log line is always
written, but otherwise nothing is written at the start and end of connections unless log_smtp_
connections is set.

Exim 3.30 [86] main configuration (11)

log_smtp_syntax_errors Type: boolean Default: false

If this option is set, syntax errors in incoming SMTP commands are logged at level 4. An
unrecognized command is treated as a syntax error. For an external connection, the host identity is
given; for an internal connection using -bs the sender identification (normally the calling user) is

 given.

log_subject Type: boolean Default: false

This option causes a message’s subject to be included in the arrival log line, in the form
 ‘T="<subject text>"’. T stands for ‘topic’ (S is already used for ‘size’).

lookup_open_max Type: integer Default: 25

This option limits the number of simultaneously open lookup files. Exim normally keeps files open
during directing and routing, since often the same file is required several times. This limit applies
only to those lookup types which use regular files, namely lsearch, dbm, and cdb. If the limit is
reached, Exim closes the least recently used file. Note that if you are using the NDBM library, it
actually opens two files for each logical DBM database, though it still counts as one for the
purposes of lookup_open_max. If you are getting ‘too many open files’ errors with NDBM, you
need to reduce the value of lookup_open_max.

max_username_length Type: integer Default: 0

Some operating systems are broken in that they truncate the argument to getpwnam() to eight
characters, instead of returning ‘no such user’. If this option is set greater than zero, any attempt to
call getpwnam() with an argument that is longer behaves as if getpwnam() failed.

message_body_visible Type: integer Default: 500

This option specifies how much of a message’s body is to be included in the message_body
expansion variable.

message_filter Type: string Default: unset

This option specifies a filter file which is applied to all messages before any routing or directing is
done. This is called the ‘system message filter’. If the filter generates any deliveries to files or
pipes, or any new mail messages, the appropriate message_filter_..._transport option(s) must be
set, to define which transports are to be used. Details of this facility are given in chapter 47.

message_filter_directory_transport Type: string Default: unset

This sets the name of the transport driver that is to be used when the save command in a system
message filter specifies a path ending in ‘/’, implying delivery of each message into a separate file
in some directory.

message_filter_directory2_transport Type: string Default: unset

This sets the name of the transport driver that is to be used when the save command in a system
message filter specifies a path ending in ‘//’. The reason for having both message_filter_directory
and message_filter_directory2 is to allow for the rare circumstance in which both maildir and non-
maildir format delivery is required.

message_filter_file_transport Type: string Default: unset

This sets the name of the transport driver that is to be used when the save command in a system
message filter specifies a path not ending in ‘/’.

message_filter_group Type: string Default: unset

This option sets the gid under which the system message filter is run. The seteuid() or setresuid()
function must be available in the operating system for a temporary change to be possible. If the
filter generates any pipe, file, or reply addresses, the gid under which the filter is run is used when
delivering to them. Unless the string consists entirely of digits, it is looked up using getgrnam(),
and failure causes a configuration error. If the option is not set, and either message_filter_user is

Exim 3.30 [87] main configuration (11)

unset or consists entirely of digits, the gid is not changed when running the filter. Otherwise the
group is taken from the result of getpwnam().

message_filter_pipe_transport Type: string Default: unset

This sets the name of the transport driver that is to be used when a pipe command is used in a
system message filter.

message_filter_reply_transport Type: string Default: unset

This sets the name of the transport driver that is to be used when a mail command is used in a
system message filter.

message_filter_user Type: string Default: unset

This option sets the uid under which the system message filter is run. The seteuid() or setresuid()
function must be available in the operating system for a temporary change to be possible. If the
filter generates any pipe, file, or reply addresses, the uid under which the filter is run is used when
delivering to them. Unless it consists entirely of digits, the string is looked up using getpwnam(),
and failure causes a configuration error. If the option is not set, the uid is not changed from the
Exim user (or root if there is no Exim user) when running the system filter.

message_id_header_text Type: string† Default: unset

If this variable is set, the string is expanded and used to augment the text of the Message-id:
header that Exim creates if an incoming message does not have one. The text of this header is
required by RFC 822 to take the form of an address. By default, Exim uses its internal message id
as the local part, and the primary host name as the domain. If this option is set, it is expanded and
provided the expansion does not yield an empty string, is is inserted into the header immediately
before the @, separated from the internal message id by a dot. Any characters that are illegal in an
address are automatically converted into hyphens. This means that constructions like ${tod_log} can
be used, as the spaces and colons will become hyphens.

message_size_limit Type: integer Default: 0

This option limits the maximum size of message that Exim will process. Zero means no limit. It
should be set somewhat larger than return_size_limit if the latter is non-zero. Incoming SMTP
messages are failed with a 552 error if the limit is exceeded; locally-generated messages either get a
stderr message or a delivery failure message to the sender, depending on the -oe setting, in the
normal way. Rejection of an oversized message is logged in both the main and the reject logs. See
also the generic transport option message_size_limit, which limits the size of message that an
individual transport can process.

message_size_limit_count_recipients Type: boolean Default: false

If this option is set, the value of message_size_limit is a maximum for the size of a message times
the number of envelope recipients it has. For example, if message_size_limit is set to 10M, a
message with 4 recipients can be no bigger than 2.5M, and a message with 100 recipients is limited
to around 100K.

move_frozen_messages Type: boolean Default: false

This option, which is available only if Exim has been built with the setting

SUPPORT_MOVE_FROZEN_MESSAGES=yes

in Local/Makefile, causes frozen messages and their message logs to be moved from the input and
msglog directories on the spool to Finput and Fmsglog. There is currently no support in Exim or
the standard utilities for handling such moved messages, and they do not show up in lists generated
by -bp or by the Exim monitor.

Exim 3.30 [88] main configuration (11)

mysql_servers Type: string list Default: unset

This option provides a list of MySQL servers and associated connection data, to be used in
conjunction with mysql lookups (see section 6.12). The option is available only if Exim has been
built with MySQL support.

never_users Type: string list Default: unset

Local mail deliveries are run in processes that are setuid to the recipient. However, it is usually
desirable to lock out root from this, as a safety precaution. If a message is to be delivered locally as
any of the users on the never_users list, the process is run as ‘nobody’ instead (see nobody_user
below). A common example is

never_users = root:daemon:bin:exim

This option overrides the pipe_as_creator option of the pipe transport driver. If Exim is unable to
find a uid for ‘nobody’, it panics.

nobody_group Type: string Default: unset

This specifies the group to use when a process is to be run as ‘nobody’. If it is unset, the value of
the ‘nobody’ user ’s default group is used.

nobody_user Type: string Default: unset

This specifies the user to use when a process is to be run as ‘nobody’. If it is unset, Exim looks up
the user ‘nobody’ using getpwnam(). If this fails, Exim panics, writing a message to the panic log
and exiting immediately.

percent_hack_domains Type: domain list Default: unset

The ‘percent hack’ is the convention whereby a local part containing a percent sign is re-interpreted
as a remote address, with the percent replaced by @. This is sometimes called ‘source routing’,
though that term is also applied to RFC 822 addresses that begin with an @ character. If this option
is set, Exim implements the percent facility for those local domains listed, but no others. The option
can be set to ‘*’ to allow the percent hack for all local domains.

If options are set to control message relaying from incoming SMTP envelopes, they are also applied
to relaying that is requested via the ‘percent hack’. See section 46.4.

perl_at_start Type: boolean Default: false

This option is available only when Exim is built with an embedded Perl interpreter. See chapter 10
for details of its use.

perl_startup Type: string Default: unset

This option is available only when Exim is built with an embedded Perl interpreter. See chapter 10
for details of its use.

pgsql_servers Type: string list Default: unset

This option provides a list of PostgreSQL servers and associated connection data, to be used in
conjunction with pgsql lookups (see section 6.12). The option is available only if Exim has been
built with PostgreSQL support.

pid_file_path Type: string Default: set at compile time

This option sets the path which is used to determine the name of the file to which the Exim daemon
writes its process id. The string is expanded, so it can contain, for example, references to the host
name. After expansion it must contain the string ‘%s’ somewhere within it; this will be replaced by
the null string or a non-standard port number to form the final file name. For example,

pid_file_path = /var/log/${primary_hostname}/exim%s.pid

If no specific path is set for the file, it is written in Exim’s spool directory.

Exim 3.30 [89] main configuration (11)

preserve_message_logs Type: boolean Default: false

If this option is set, message log files are not deleted when messages are completed. Instead, they
are moved to a sub-directory of the spool directory called msglog.OLD, where they remain
available for statistical or debugging purposes. This is a dangerous option to set on systems with
any appreciable volume of mail. Use with care!

primary_hostname Type: string Default: see below

This specifies the name of the current host. This is used in the HELO command for outgoing SMTP
messages, and as the default for qualify_domain. If it is not set, Exim calls uname() to find it. If
this fails, Exim panics and dies. If the name returned by uname() contains only one component,
Exim passes it to gethostbyname() in order to obtain the fully qualified version.

print_topbitchars Type: boolean Default: false

By default, Exim considers only those characters whose codes lie in the range 32–126 to be
printing characters. In a number of circumstances (for example, when writing log entries) non-
printing characters are converted into escape sequences, primarily to avoid messing up the layout. If
print_topbitchars is set, code values of 128 and above are also considered to be printing

 characters.

prod_requires_admin Type: boolean Default: true

The -M, -R, and -q command-line options require the caller to be an admin user unless
 prod_requires_admin is set false. See also queue_list_requires_admin.

prohibition_message Type: string† Default: unset

This option adds a site-specific message to the error response that is sent when an SMTP command
fails for policy reasons, for example if the sending host is in a host reject list. Details of this facility
are given in chapter 46.

qualify_domain Type: string Default: see below

This specifies the domain name that is added to any sender addresses that do not have a domain
qualification. It also applies to recipient addresses if qualify_recipient is not set. Such addresses are
accepted by default only for locally-generated messages – messages from external sources must
always contain fully qualified addresses, unless the sending host matches one of the

 receiver_unqualified or sender_unqualified options. If qualify_domain is not set, it defaults to
the primary_hostname value.

qualify_recipient Type: string Default: see below

This specifies the domain name that is added to any recipient addresses that do not have a domain
qualification. Such addresses are accepted by default only for locally-generated messages – mess-
ages from external sources must always contain fully qualified addresses, unless the sending host
matches one of the receiver_unqualified or sender_unqualified options (see below). If

 qualify_recipient is not set, it defaults to the qualify_domain value.

queue_list_requires_admin Type: boolean Default: true

The -bp command-line option requires the caller to be an admin user unless queue_list_requires_
admin is set false. Otherwise, only messages that the caller submitted are displayed. See also

 prod_requires_admin.

queue_only Type: boolean Default: false

If queue_only is set (which is equivalent to the -odq command line option), a delivery process is
not automatically started whenever a message has been received. Instead, the message waits on the
queue for the next queue run. Even if queue_only is false, incoming SMTP messages may not get
delivered immediately if a lot of them arrive at once – see the queue_only_load and
smtp_accept_queue options.

Exim 3.30 [90] main configuration (11)

queue_only_file Type: string Default: unset

This option can be set to a colon-separated list of absolute path names, each one optionally
preceded by ‘remote’ or ‘smtp’. When it is receiving a message, Exim tests for the existence of
each listed path using a call to stat(), and if this succeeds, the corresponding queuing option is set.
If there is no prefix to the path, queue_only is set; ‘remote’ corresponds to

 queue_remote_domains and ‘smtp’ to queue_smtp_domains. So, for example,

queue_only_file = remote/some/file

causes Exim to behave as if queue_remote_domains were set to ‘*’ whenever /some/file exists.

queue_only_load Type: fixed-point Default: unset

If the system load average is higher than this value, all incoming messages are queued, and no
automatic deliveries are started. If this happens during local or remote SMTP input, all subsequent
messages on the same connection are queued. Deliveries will subsequently be performed by queue
running processes, unless the load is higher than deliver_load_max. There are some operating
systems for which Exim cannot determine the load average (see chapter 1); for these this option has
no effect. See also smtp_accept_queue and smtp_load_reserve.

queue_remote_domains Type: domain list Default: unset

This option lists domains for which local delivery is not immediately required. It is checked against
the domains supplied in the incoming addresses, before any widening is done (because that is part
of routing). The -odqr option is equivalent to setting queue_remote_domains to ‘*’. A delivery
process is started whenever a message is received, but only local addresses are handled, and only
local deliveries take place. All remote deliveries wait until the next queue run. See also

 queue_smtp_domains, which is subtly different.

queue_run_in_order Type: boolean Default: false

If this option is set, queue runs happen in order of message arrival instead of in an arbitrary order.
In order for this to happen, a complete list of the entire queue must be set up before the deliveries
start. When the queue is all in a single directory (the default), this happens anyway, but if

 split_spool_directory is set it does not – for delivery in random order, the sub-directories are
processed one at a time (in random order), to avoid setting up one huge list. Thus, setting
queue_run_in_order with split_spool_directory may degrade performance when the queue is

 large. In most situations, queue_run_in_order should not be set.

queue_run_max Type: integer Default: 5

This controls the maximum number of queue-running processes that an Exim daemon will run
 simultaneously. This does not mean that it starts them all at once, but rather that if the maximum

number are still running when the time comes to start another one, it refrains from starting it. This
can happen with very large queues and/or very sluggish deliveries. This option does not, however,
interlock with other processes, so additional queue-runners can be started by other means, or by
killing and restarting the daemon.

queue_smtp_domains Type: domain list Default: unset

When this option is set, a delivery process is started whenever a message is received, directing and
routing is performed, and local deliveries take place. However, if any SMTP deliveries are required
for domains that match queue_smtp_domains, they are not immediately delivered, but instead the
message waits on the queue for the next queue run. Since routing of the message has taken place,
Exim knows to which remote hosts it must be delivered, and so when the queue run happens,
multiple messages for the same host are delivered over a single SMTP connection. This option is
checked against the domains supplied in the incoming addresses, before any widening is done
(because that is part of routing). The -odqs command line option causes all SMTP deliveries to be
queued in this way, and is equivalent to setting queue_smtp_domains to ‘*’. See also

 queue_remote_domains, which is subtly different.

Exim 3.30 [91] main configuration (11)

rbl_domains Type: string list Default: unset

This option is part of the support for Realtime Blackhole Lists (RBL). It can be set to a colon-
separated list of DNS domains in which to look up the IP address of a calling host. A full
description of how this is used is given in section 46.1.

rbl_hosts Type: host list Default: *

This option specifies the set of hosts for which RBL checking is to be performed when
rbl_domains is set. The default matches all hosts. The normal usage of this option is to specify
exceptions to RBL checking by means of negated items in the host list.

rbl_log_headers Type: boolean Default: false

When this option is set, the headers of each message received from a host that matches an RBL
domain are written to the reject log. This can occur only if the recipients of the message are not
rejected, that is, if the RBL check is configured to warn only.

rbl_log_rcpt_count Type: boolean Default: false

When this option is set and rbl_reject_recipients is false, the number of RCPT commands for each
message received from a host that is in the RBL is written to the reject log. This may be greater
than the number of valid recipients in the message.

rbl_reject_recipients Type: boolean Default: true

This option controls the action taken when a remote host is found in an RBL domain that has
neither ‘/warn’ nor ‘/reject’ following it. The default value specifies rejection.

rbl_warn_header Type: boolean Default: true

When this option is set and a message from an RBL-matching host is not rejected, an X-RBL-
 Warning: header is added. The header contains the contents of the DNS TXT record, if one was

found. Scanning of further RBL domains continues, which means that more than one X-RBL-
 Warning: header may be added to a message.

received_header_text Type: string† Default: see below

This string defines the contents of the Received: message header that is added to each message,
except for the timestamp, which is automatically added on at the end, preceded by a semicolon. The
string is expanded each time it is used, and the default is:

received_header_text = "Received: \
${if def:sender_rcvhost {from ${sender_rcvhost}\n\t}\
{${if def:sender_ident {from ${sender_ident} }}\
${if def:sender_helo_name {(helo=${sender_helo_name})\n\t}}}}\
by ${primary_hostname} \
${if def:received_protocol {with ${received_protocol}}} \
${if def:tls_cipher {($tls_cipher)\n\t}}\
(Exim ${version_number} #${compile_number})\n\t\
id ${message_id}\
${if def:received_for {\n\tfor $received_for}}"

Note the use of quotes, to allow the sequences \n and \t to be used for newlines and tabs,
 respectively. The reference to the TLS cipher is omitted when Exim is built without TLS support.

The use of conditional expansions ensures that this works for both locally generated messages and
messages received from remote hosts, giving header lines such as the following:

Received: from scrooge.carol.book ([240.1.12.25] ident=root)
by marley.carol.book with smtp (Exim 3.30 #1)
id E0tS3Ga-0005C5-00
for cratchit@dickens.book; Mon, 25 Dec 2000 14:43:44 +0000

Received: by scrooge.carol.book with local (Exim 3.30 #1)
id E0tS3GW-0005C2-00; Mon, 25 Dec 2000 14:43:41 +0000

Exim 3.30 [92] main configuration (11)

Note the automatic addition of the date and time in the required format.

received_headers_max Type: integer Default: 30

When a message is to be delivered, the number of Received: headers is counted, and if it is greater
than this parameter, a mail loop is assumed to have occurred, the delivery is abandoned, and an
error message is generated. This applies to both local and remote deliveries. Earlier versions of
Exim did this test only for remote deliveries, but because local deliveries (as Exim sees them) may
in fact still cause a message to be transported to a remote host, it was changed.

receiver_try_verify Type: boolean Default: false

See receiver_verify.

receiver_unqualified_hosts Type: host list Default: unset

This option lists those hosts from which Exim is prepared to accept unqualified receiver addresses
in message envelopes. The addresses are made fully qualified by the addition of the

 qualify_recipient value. Typically the hosts are local ones, but if you want to imitate the behaviour
of mailers that accept unqualified addresses from anywhere, specify

receiver_unqualified_hosts = *

This option also affects message header lines. Exim does not reject unqualified receiver addresses in
headers, but qualifies them only if the message came from a host that matches

 receiver_unqualified_hosts.

receiver_verify Type: boolean Default: false

When this option is set, the addresses of recipients received from a remote host are verified as they
are received, provided the sending host matches receiver_verify_hosts, the incoming address
matches receiver_verify_addresses, and the sender address matches receiver_verify_senders, if
either of the last two are set.

If an address is invalid, an incoming SMTP call gets an error response to the RCPT command. If an
address cannot immediately be verified, a temporary error code is given. The receiver_try_verify
option is less severe: it operates in the same way, except that an address is accepted if it cannot
immediately be verified. Verification failures are logged.

receiver_verify_addresses Type: address list Default: unset

If set, this option restricts receiver verification to those addresses it matches. The option is inspected
only if receiver_verify or receiver_try_verify is set.

receiver_verify_hosts Type: host list Default: *

See receiver_verify above.

receiver_verify_senders Type: address list Default: unset

This option, if set, allows receiver verification to be conditional upon the sender. It is inspected only
if receiver_verify or receiver_try_verify is set.

If the null sender is required in the list of addresses, it must not be the last item, as a null last item
in a list is ignored. It is best placed at the start of the list. For example, to restrict receiver
verification to messages with null senders and senders in the .com and .org domains, you could
have

receiver_verify
receiver_verify_senders = :*.com:*.org

If the null sender is the only entry required, the list should consist of a single colon.

Exim 3.30 [93] main configuration (11)

recipients_max Type: integer Default: 0

If this is set greater than zero, it specifies the maximum number of recipients for any message. This
applies to the original list of recipients supplied with the message. SMTP messages get a 452
response for all recipients over the limit; earlier recipients are delivered as normal. Non-SMTP
messages with too many recipients are failed, and no deliveries are done. Note that the RFCs
specify that an SMTP server should accept at least 100 RCPT commands in a single message.

recipients_max_reject Type: boolean Default: false

If this option is set true, Exim rejects SMTP messages containing too many recipients by giving
552 errors to the surplus RCPT commands, and a 554 error to the eventual DATA command.
Otherwise (the default) it gives a 452 error to the surplus RCPT commands and accepts the message
on behalf of the initial set of recipients. The remote server should then re-send the message for the
remaining recipients at a later time.

recipients_reject_except Type: address list Default: unset

This option lists recipient addresses which are exceptions to any policy for recipient rejection, that
is, as a result of sender_reject_recipients, etc. This option is entirely independent of any checks
for unwanted message relaying. However, it does interact with the RBL options.

recipients_reject_except_senders Type: address list Default: unset

This option lists sender addresses for which recipients are excepted from any policy rejections. That
is, if a message comes from any of these senders, all its recipients are excepted from policy

 rejections.

refuse_ip_options Type: boolean Default: true

See kill_ip_options above.

relay_domains Type: domain list Default: unset

This option lists domains for which the local host is prepared to relay. See section 46.4 for details
of relay control.

relay_domains_include_local_mx Type: boolean Default: false

This option permits any host to relay to any domain that has an MX record pointing at the local
host. It causes any domain with an MX record pointing at the local host to be treated as if it were
in relay_domains. See section 46.4 for details of relay control.

relay_match_host_or_sender Type: boolean Default: false

By default, if relaying controls are specified on both the remote host and the sender address, a
message is accepted only if both conditions are met. If relay_match_host_or_sender is set, either
condition is good enough. It does not make sense to set this option without setting

 sender_address_relay, since if that option is unset it matches all senders. Exim therefore diagnoses
a configuration error in this case. See section 46.4 for details of relay control.

remote_max_parallel Type: integer Default: 1

This option controls parallel delivery to remote sites. If the value is less than 2, parallel delivery is
disabled, and Exim does all the remote deliveries for a message one by one, from a single delivery
process. Otherwise, if a message has to be delivered to more than one remote host, or if several
copies have to be sent to the same remote host, then up to remote_max_parallel deliveries are
done simultaneously, each in a separate process. If more than remote_max_parallel deliveries are
required, the maximum number of processes are started, and as each one finishes, another is begun.
The order of starting processes is the same as if sequential delivery were being done, and can be
controlled by the remote_sort option. If parallel delivery takes place while running with debugging
turned on, the debugging output from each delivery process is tagged with its process id.

The overhead in doing this is a fork to set up a separate process for each delivery, and the
associated management of the subprocess (including getting back the result of the delivery attempt).

Exim 3.30 [94] main configuration (11)

As well as the process overhead, there may be a small additional penalty paid for parallel delivery.
If a host is found to be down, this fact cannot be communicated to any deliveries that are running
in parallel, though it will be passed on to any that start afterwards. This is no worse than if there
were two separate messages being delivered simultaneously.

The option controls only the maximum number of parallel deliveries from one Exim process. Since
Exim has no central queue manager, there is no way of controlling the total number of simultaneous
deliveries if the configuration allows a delivery attempt as soon as a message is received. If you
want to control the total number of deliveries on the system, you need to set the queue_only
option, which ensures that all incoming messages are simply added to the queue. Then set up an
Exim daemon to start queue runner processes at appropriate intervals (probably fairly often, for
example, every minute), and limit the total number of queue runners by setting the queue_run_
max parameter. Because each queue runner delivers only one message at a time, the maximum
number of deliveries that can then take place at once is queue_run_max multiplied by

 remote_max_parallel.

If it is purely remote deliveries you want to control, use queue_smtp instead of queue_only. This
has the added benefit of doing the SMTP routing before queuing, so that several messages for the
same host will eventually get delivered down the same connection.

remote_sort Type: domain list Default: unset

When there are a number of remote deliveries for a message, they are sorted by domain into the
order given by this list. For example,

remote_sort = *.cam.ac.uk:*.uk

would attempt to deliver to all addresses in the cam.ac.uk domain first, then to those in the uk
domain, then to any others.

retry_data_expire Type: time Default: 7d

This option sets a ‘use before’ time on retry information in Exim’s hints database. Any older retry
data is ignored. This means that, for example, once a host has not been tried for 7 days, Exim
behaves as if it has no knowledge of past failures.

retry_interval_max Type: time Default: 24h

Chapter 33 describes Exim’s mechanisms for controlling the intervals between delivery attempts for
messages that cannot be delivered straight away. This option sets an overall limit to the length of
time between retries.

return_path_remove Type: boolean Default: true

RFC 822 states that the Return-path: header is ‘added by the final transport system that delivers
the message to its recipient’ (section 4.3.1), which implies that this header should not be present in
an incoming message, where the return path is carried in the envelope. If this option is true, any
existing Return-path: headers are removed from messages as they are read. Exim’s transports have
options for adding Return-path: headers at the time of delivery. They are normally used only for
final local deliveries.

return_size_limit Type: integer Default: 100K

This option sets a limit in bytes on the size of messages that are returned to senders. If it is set to
zero there is no limit. If the body of any message that is to be included in an error report is greater
than the limit, it is truncated, and a comment pointing this out is added at the top. The actual cutoff
may be greater than the value given, owing to the use of buffering for transferring the message in
chunks. The idea is just to save bandwidth on those undeliverable 15-megabyte messages. If either
the global or generic transport message_size_limit is set, the value of return_size_limit should be
somewhat smaller.

Exim 3.30 [95] main configuration (11)

rfc1413_hosts Type: host list Default: *

RFC 1413 identification calls are made to any host which matches an item in the list. The items in
the host list should not themselves contain ident data.

rfc1413_query_timeout Type: time Default: 30s

This sets the timeout on RFC 1413 identification calls. If it is set to zero, no RFC 1413 calls are
ever made.

security Type: string Default: see below

When exim_user is set non-zero in the run time configuration or an Exim uid is compiled into the
 binary, Exim gives up root privilege for some of the time. As there are trade-offs between increased

security and efficiency, this option is provided to control exactly how this is done. The option can
be set to one of the strings ‘seteuid’, ‘setuid’, ‘setuid+seteuid’ or ‘unprivileged’, provided that a uid
for Exim is defined. Otherwise it must be left unset. A full description of what these values mean is
given in chapter 55. The default for this option is unset if no special Exim uid is defined, otherwise
it is either ‘setuid+seteuid’ or ‘setuid’, depending on whether the seteuid() function is configured as
being available or not.

sender_address_relay Type: address list Default: unset

This option specifies a set of address patterns, one of which the sender of a message must match in
order for the message to be accepted for outgoing relaying, that is, relaying from specified hosts to
arbitrary domains. The check does not operate for incoming relaying, that is, for addresses that
match relay_domains.

If this option is not set, all sender addresses are permitted. By default, the check operates in
addition to any relaying checks on the sending host (see host_accept_relay above). However, if

 relay_match_host_or_sender is set, either a host match or a sender match is sufficient to allow the
relaying to proceed. For this reason, sender_address_relay is required to be set if

 relay_match_host_or_sender is set.

Warning: Sender addresses can be trivially forged. For this reason, setting
 relay_match_host_or_sender is strongly discouraged.

The rewrite flag X (see section 34.9) provides a special-purpose facility we have a use for in
Cambridge. It adds additional checking to sender_address_relay. Whenever a sender address
passes the check, if there are any rewriting rules with the X flag set, the address is rewritten using
those rules, and if this makes any change to the address, the new address must verify successfully
for the relaying to be permitted.

sender_address_relay_hosts Type: host list Default: *

The hosts to which sender_address_relay is applied can be controlled by this option. This is useful
in a cluster where one host is delegated as a fallback to hold all the delayed deliveries. It needs to
be able to relay from the other hosts without sender checking (for example, for messages forwarded
by local users) but might want to check senders in messages relayed from other hosts.

sender_reject Type: address list Default: unset

This option can be set in order to reject mail from certain senders. The check is done on the
sender ’s address as given in the MAIL command in SMTP, but not for local senders where the
logged-in user ’s address is going to override anyway.

The check is not done for batch SMTP input. If the check fails, a 550 return code is given to MAIL.
This doesn’t always stop remote mailers from trying again. See sender_reject_recipients for an
alternative. Typical examples of the use of this option might be:

sender_reject = spamuser@some.domain:spam.domain
sender_reject = partial-dbm;/etc/mail/blocked/senders

Exim 3.30 [96] main configuration (11)

Note that this check operates on sender address domains independently of the sending host;
 host_reject can be used to block all mail from particular hosts, while host_accept_relay, and
 sender_address_relay can be used to prevent unwanted relaying.

sender_reject_recipients Type: address list Default: unset

This operates in exactly the same way as sender_reject except that the rejection is given in the
form of a 550 error code to every RCPT command instead of rejecting MAIL. This seems to be the
only way of saying ‘no’ to some mailers. Note that this is not an option for rejecting specific
recipients. The way to do that is to set receiver_verify and arrange for those recipients to fail
verification.

sender_try_verify Type: boolean Default: false

See sender_verify.

sender_unqualified_hosts Type: host list Default: unset

This option lists those hosts from which Exim is prepared to accept unqualified sender addresses.
The addresses are made fully qualified by the addition of qualify_domain. Typically the hosts are
local ones, but if you want to imitate the behaviour of mailers that accept unqualified addresses
from anywhere, specify

sender_unqualified_hosts = *

This option also affects message header lines. Exim does not reject unqualified addresses in headers
containing sender addresses, but qualifies them only if the message came from a host that matches

 sender_unqualified_hosts.

sender_verify Type: boolean Default: false

If this option is true, envelope sender addresses on incoming SMTP messages are checked to ensure
that they are valid. Messages with invalid envelope senders are rejected with a permanent error
code if sender_verify_reject is set (the default). Otherwise a warning is logged. See section 45.2
for details of the rejection, which can happen at three different points in the SMTP dialogue. If a
sender cannot immediately be verified, a temporary error code is returned after reading the data (so
the headers can be logged). The sender_try_verify option is less severe: it operates in exactly the
same way as sender_verify except that if an address cannot immediately be verified, it is accepted
instead of being temporarily rejected.

sender_verify_batch Type: boolean Default: false

If this option is unset, the sender_verify options are not applied to batched SMTP input.

sender_verify_callback_domains Type: domain list Default: unset

When a sender address is being verified, an SMTP ‘callback’ to one of the hosts that handle mail
for its domain occurs if the sender ’s domain matches sender_verify_callback_domains and the
sending host matches sender_verify_hosts_callback (in addition to sender_verify_hosts). See
section 45.3 for details.

sender_verify_callback_timeout Type: time Default: 30s

This option specifies a timeout for sender verification callbacks.

sender_verify_fixup Type: boolean Default: false

Experience shows that many messages are sent out onto the Internet with invalid sender addresses
in the envelopes (that is, in the MAIL command of the SMTP dialogue), but with valid addresses in
the Sender:, From:, or Reply-To: header fields. If sender_verify and sender_verify_reject are
true and this option is also true, an invalid envelope sender or one that cannot immediately be
verified is replaced by a valid value from the headers. If sender_verify_reject is false, the envelope
sender is not changed, but Exim writes a log entry giving the correction it would have made. See
chapter 45 for details.

Exim 3.30 [97] main configuration (11)

sender_verify_hosts Type: host list Default: *

If sender_verify or sender_try_verify is true, this option specifies a list of hosts and RFC 1413
identifications to which sender verification applies. The check caused by headers_sender_verify
also happens only for matching hosts. See chapter 45 for further details.

sender_verify_hosts_callback Type: host list Default: unset

See sender_verify_callback_domains above.

sender_verify_max_retry_rate Type: integer Default: 12

If this option is greater than zero, and the rate of temporary rejection of a specific incoming sender
address from a specific host, in units of rejections per hour, exceeds it, the temporary error is
converted into a permanent verification error. Temporary rejections most commonly occur when a
sender address cannot be verified because a DNS lookup fails to complete.

The intent of this option is to stop hosts hammering too frequently with temporarily failing sender
addresses. The default value of 12 means that a sender address that has a temporary verification
error more than once every 5 minutes will eventually get permanently rejected. Once permanent
rejection has been triggered, subsequent temporary failures all cause permanent errors, until there
has been an interval of at least 24 hours since the last failure. After 24 hours, the hint expires.

sender_verify_reject Type: boolean Default: true

When this is set, a message is rejected if sender verification fails. If it is not set, a warning message
is written to the main and reject logs, and the message is accepted (unless some other error occurs).

smtp_accept_keepalive Type: boolean Default: true

This option controls the setting of the SO_KEEPALIVE option on incoming TCP/IP socket connections.
This causes the kernel periodically to send some OOB (out-of-band) data on idle connections. The
reason for doing this is that it has the beneficial effect of freeing up certain types of connection that
can get stuck when the remote host is disconnected without tidying up the TCP/IP call properly.

smtp_accept_max Type: integer Default: 20

This specifies the maximum number of simultaneous incoming SMTP calls that Exim will accept. It
applies only to the listening daemon; there is no control (in Exim) when incoming SMTP is being
handled by inetd. If the value is set to zero, no limit is applied. However, it is required to be non-
zero if smtp_accept_max_per_host or smtp_accept_queue is set.

smtp_accept_max_per_host Type: integer Default: 0

This option restricts the number of simultaneous IP connections from a single host (strictly, from a
single IP address) to the Exim daemon. Once the limit is reached, additional connection attempts
are rejected with error code 421. The default value of zero imposes no limit. If this option is not
zero, it is required that smtp_accept_max also be non-zero.

smtp_accept_queue Type: integer Default: 0

If the number of simultaneous incoming SMTP calls handled via the listening daemon exceeds this
value, messages received are simply placed on the queue, and no delivery processes are started

 automatically. A value of zero implies no limit, and clearly any non-zero value is useful only if it is
less than the smtp_accept_max value (unless that is zero). See also queue_only, queue_only_load,

 queue_smtp_domains, and the various -od command line options.

smtp_accept_queue_per_connection Type: integer Default: 10

This option limits the number of delivery processes that Exim starts automatically when receiving
messages via SMTP, whether via the daemon or by the use of -bs or -bS. If the value of the option
is greater than zero, and the number of messages received in a single SMTP session exceeds this

 number, subsequent messages are placed on the spool, but no delivery process is started. This helps
to limit the number of Exim processes when a server restarts after downtime and there is a lot of

Exim 3.30 [98] main configuration (11)

mail waiting for it on other systems. On large systems the default should probably be increased,
while on dial-in client systems it should probably be set to zero (that is, disabled).

smtp_accept_reserve Type: integer Default: 0

When smtp_accept_max is set greater than zero, this option specifies a number of SMTP connec-
tions that are reserved for connections from the hosts that are specified in smtp_reserve_hosts. The
value set in smtp_accept_max includes this reserve pool. For example, if smtp_accept_max is set
to 50 and smtp_accept_reserve is set to 5, once there are 45 active connections, new ones are
accepted only from hosts listed in smtp_reserve_hosts.

smtp_banner Type: string† Default: see below

This string, which is expanded every time it is used, is output as the initial positive response to an
SMTP connection. The default setting is:

smtp_banner = $primary_hostname ESMTP Exim $version_number \
#$compile_number $tod_full

Failure to expand the string causes a panic error. If you want to create a multiline response to the
initial SMTP connection, use ‘\n’ in the string at appropriate points, but not at the end. Note that
the 220 code is not included in this string. Exim adds it automatically (several times in the case of a
multiline response).

smtp_check_spool_space Type: boolean Default: true

When this option is set, if an incoming SMTP session encounters the SIZE option on a MAIL

command, it checks that there is enough space in the spool directory’s partition to accept a message
of that size, while still leaving free the amount specified by check_spool_space (even if that value
is zero). If there isn’t enough space, a temporary error code is returned.

smtp_connect_backlog Type: integer Default: 5

This specifies a maximum number of waiting SMTP connections. Exim passes this value to the
TCP/IP system when it sets up its listener. Once this number of connections are waiting for the

 daemon’s attention, subsequent connection attempts are refused at the TCP/IP level. At least, that is
what the manuals say. In Solaris 2.4 such connection attempts have been observed to time out. The
default value of 5 is a conservative one, suitable for older and smaller systems. For large systems is
it probably a good idea to increase this, possibly substantially (to 50, say). It also gives some
protection against denial-of-service attacks by SYN flooding.

smtp_etrn_command Type: string† Default: unset

If this option is set, the given command is run whenever an SMTP ETRN command is received from
a host that is permitted to issue such commands (see smtp_etrn_hosts below). The string is split up
into separate arguments which are independently expanded. The expansion variable $domain is set
to the argument of the ETRN command, and no syntax checking is done on it. For example:

smtp_etrn_command = /etc/etrn_command $domain $sender_host_address

A new process is created to run the command, and Exim does not wait for it to complete.
 Consequently, its status cannot be checked. If the exec of the command fails, a line is written to the

panic log, but the ETRN caller still receives a 250 success response. Exim is normally running under
its own uid when receiving SMTP, so it is not possible for it to change the uid before running the

 command.

You must disable smtp_etrn_serialize if you use this option to run something other than a call of
Exim with the -R option, because otherwise the serialization lock never gets removed.

Exim 3.30 [99] main configuration (11)

smtp_etrn_hosts Type: host list Default: unset

This option lists hosts that are permitted to issue an SMTP ETRN to the local host. See section 48.6
for details.

smtp_etrn_serialize Type: boolean Default: true

When this option is set, it prevents the simultaneous execution of more than one queue run for the
same argument string as a result of an ETRN command. See section 48.6 for details.

smtp_expn_hosts Type: host list Default: unset

The SMTP EXPN command is supported only if the calling host matches smtp_expn_hosts. You
must add ‘localhost’ explicitly if you want calls to 127.0.0.1 to be able to use it. A single-level
expansion of the address is done, as if the address were being tested using the -bt option. If an
unqualified local part is given, it is qualified with qualify_domain. There is a generic option for
directors which permits them to be skipped when processing an EXPN command (compare with
verification).

smtp_load_reserve Type: fixed-point Default: unset

If the system load average ever gets higher than this, incoming SMTP calls are accepted only from
those hosts that match an entry in smtp_reserve_hosts. If smtp_reserve_hosts is not set, no
incoming SMTP calls are accepted when the load is over the limit. There are some operating
systems for which Exim cannot determine the load average (see chapter 1); for these this option has
no effect.

smtp_receive_timeout Type: time Default: 5m

This sets a timeout value for SMTP reception. If a line of input (either an SMTP command or a
data line) is not received within this time, the SMTP connection is dropped and the message is
abandoned. For non-SMTP input, the reception timeout is controlled by accept_timeout.

smtp_reserve_hosts Type: host list Default: unset

This option defines hosts for which SMTP connections are reserved; see smtp_accept_reserve and
 smtp_load_reserve above.

smtp_verify Type: boolean Default: false

If this option is true, the SMTP command VRFY is supported on incoming SMTP connections;
otherwise it is not.

split_spool_directory Type: boolean Default: false

If this option is set, it causes Exim to split its input directory into 62 subdirectories, each with a
single alphanumeric character as its name. The sixth character of the message id is used to allocate
messages to subdirectories; this is the least significant base-62 digit of the time of arrival of the

 message.

Splitting up the spool in this way may provide better performance on systems where there are long
mail queues, by reducing the number of files in any one directory. The msglog directory is also split
up in a similar way to the input directory; however, if preserve_message_logs is set, all old msglog
files are still placed in the single directory msglog.OLD.

It is not necessary to take any special action for existing messages when changing
 split_spool_directory. Exim notices messages that are in the ‘wrong’ place, and continues to

process them. If the option is turned off after a period of being on, the subdirectories will
eventually empty and be automatically deleted.

When split_spool_directory is set, the behaviour of queue runner processes changes. Instead of
creating a list of all messages in the queue, and then trying to deliver each one in turn, it constructs
a list of those in one sub-directory and tries to deliver them, before moving on to the next sub-

 directory. The sub-directories are processed in a random order. This spreads out the scanning of the
input directories, and is beneficial when there are lots of messages on the queue. However, if

Exim 3.30 [100] main configuration (11)

queue_run_in_order is set, none of this new processing happens. The entire queue is scanned and
sorted before any deliveries start.

spool_directory Type: string Default: set at compile time

This defines the directory in which Exim keeps its mail spool. The default value is taken from the
compile-time configuration setting, if there is one. If not, this option must be set. The string is
expanded, so it can contain, for example, a reference to $primary_hostname.

If the spool directory name is fixed on your installation, it is recommended that you set it at build
time rather than from this option, particularly if the log files are being written to the spool directory
(see log_file_path). Otherwise log files cannot be used for errors that are detected early on, such as
failures in the configuration file.

Even with a compiled-in path, however, this option makes it possible to run testing configurations
of Exim without using the standard spool.

strip_excess_angle_brackets Type: boolean Default: false

If this option is set, redundant pairs of angle brackets round ‘route-addr’ items in addresses are
stripped. For example, <<xxx@a.b.c.d>> is treated as <xxx@a.b.c.d>. If this is in the envelope
and the message is passed on to another MTA, the excess angle brackets are not passed on. If this
option is not set, multiple pairs of angle brackets cause a syntax error.

strip_trailing_dot Type: boolean Default: false

If this option is set, a trailing dot at the end of a domain in an address is ignored. If this is in the
envelope and the message is passed on to another MTA, the dot is not passed on. If this option is
not set, a dot at the end of a domain causes a syntax error.

syslog_timestamp Type: boolean Default: true

If syslog_timestamp is set false, the timestamps on Exim’s log lines are omitted when these lines
are sent to syslog. See chapter 51 for details of Exim’s logging.

timeout_frozen_after Type: time Default: 0s

If timeout_frozen_after is set to a time greater than zero, a frozen message of any description that
has been on the queue for longer than the given time is automatically cancelled at the next queue
run. If it is a bounce message, it is just discarded; otherwise, a bounce is sent to the sender, in a
similar manner to cancellation by the -Mg command line option. If you want to timeout frozen
bounce messages earlier than other kinds of frozen message, see ignore_errmsg_errors_after.

timestamps_utc Type: boolean Default: false

If timestamps_utc is set, all timestamps generated by Exim (for example, in log entries and
Received: header lines) are in UTC (aka GMT) rather than in local wall-clock time.

timezone Type: string Default: unset

When timestamps_utc is not set, the value of timezone is used to set the environment variable TZ

while running Exim (if it is different on entry). This ensures that all timestamps created by Exim
are in the required timezone. The default value is taken from TIMEZONE_DEFAULT in Local/Makefile,

 or, if that is not set, from the value of the TZ environment variable when Exim is built. If timezone
is set to the empty string, either at build or run time, then any existing TZ variable is removed from
the environment when Exim runs. This is appropriate behaviour for obtaining wall-clock time on
some, but unfortunately not all, operating systems.

tls_advertise_hosts Type: host list Default: unset

When Exim is built with support for TLS encrypted connections, the availability of the STARTTLS

command to set up an encrypted session is advertised only to those client hosts that match this
option. See chapter 38 for details of Exim’s support for TLS.

Exim 3.30 [101] main configuration (11)

tls_certificate Type: string† Default: unset

The value of this option is expanded, and must then be the absolute path to a file which contains
the server ’s certificate.

tls_dhparam Type: string† Default: unset

The value of this option is expanded, and must then be the absolute path to a file which contains
the server ’s DH parameter values.

tls_host_accept_relay Type: host list Default: unset

Client hosts which match this list are allowed to relay, provided they make use of TLS to send the
message over an encrypted channel.

tls_hosts Type: host list Default: unset

Client hosts which match this list are required to use TLS to set up an encrypted channel before
Exim will accept any messages from them.

tls_log_cipher Type: boolean Default: true

If this option is set, the cipher which was used to transmit a message is logged using the tag ‘X=’.
This applies to both incoming and outgoing messages.

tls_log_peerdn Type: boolean Default: false

If this option is set, the Distinguished Name of the server ’s certificate is logged, using the tag
‘DN=’, for all outgoing messages delivered over TLS. For incoming messages, the DN from the

 client’s certificate is logged if a certificate was requested from the client (see
 tls_verify_certificates).

tls_privatekey Type: string† Default: unset

The value of this option is expanded, and must then be the absolute path to a file which contains
the server ’s private key.

tls_verify_certificates Type: string† Default: unset

The value of this option is expanded, and must then be the absolute path to a file or a directory
containing permitted certificates for clients that match tls_verify_hosts.

tls_verify_ciphers Type: string† Default: unset

The value of this option is expanded, and must then be a colon-separated list of permitted ciphers
for the clients that match tls_verify_hosts. Exim’s syntax for alternate separator characters cannot
be used for this list, because it is passed directly to the SSL library.

tls_verify_hosts Type: host list Default: unset

Any client that matches this list is constrained by tls_verify_certificates and tls_verify_ciphers,
that is, it must use one of the permitted ciphers, and present one of the listed certificates. Client
hosts that do not match the list are not so constrained.

trusted_groups Type: string list Default: unset

If this option is set, any process that is running in one of the listed groups, or which has one of
them as a supplementary group, is trusted. See section 5.2 for details of what trusted callers are
permitted to do. If neither trusted_groups nor trusted_users is set, only root and the Exim user
are trusted.

trusted_users Type: string list Default: unset

If this option is set, any process that is running as one of the listed users is trusted. See section 5.2
for details of what trusted callers are permitted to do. If neither trusted_groups nor trusted_users
is set, only root and the Exim user are trusted.

Exim 3.30 [102] main configuration (11)

unknown_login Type: string Default: unset

This is a specialized feature for use in unusual configurations. By default, if the uid of the caller of
Exim cannot be looked up using getpwuid(), Exim gives up. The unknown_login option can be
used to set a login name to be used in this circumstance. It is expanded, so values like
user$caller_uid can be set. When unknown_login is used, the value of unknown_username is
used for the user ’s real name (gecos field), unless this has been set by the -F option.

unknown_username Type: string Default: unset

See unknown_login.

untrusted_set_sender Type: boolean Default: false

By default, the only form in which untrusted users can use the -f command line option when
submitting a local message is with an empty address, to declare that a message should never
generate any bounces. If untrusted_set_sender is true, this restriction is lifted, and untrusted users
may set any sender value using -f. This does not make all users trusted; they may use only -f, not
the other options which override message parameters. Furthermore, this does not stop Exim from
adding a Sender: header if necessary (unless this is disabled by no_local_from_check).

The log line for a message’s arrival shows the envelope sender following ‘<=’. For local messages,
the user ’s login always follows, after ‘U=’. In -bp displays, and in the Exim monitor, if an
untrusted user sets a sender address by this method, the user ’s login is shown in parentheses after
the sender address.

uucp_from_pattern Type: string Default: see below

Some applications that pass messages to an MTA via a command line interface use an initial line
starting with ‘From’ to pass the envelope sender. In particular, this is used by UUCP software.
Exim recognizes such a line by means of a regular expression that is set in uucp_from_pattern,
and when the pattern matches, the sender address is constructed by expanding the contents of

 uucp_from_sender, provided that the caller of Exim is a trusted user. The default pattern
recognizes lines in the following two forms:

From ph10 Fri Jan 5 12:35 GMT 1996
From ph10 Fri, 7 Jan 97 14:00:00 GMT

The pattern can be seen by running ‘exim -bP uucp_from_pattern’. It checks only up to the hours
and minutes, and allows for a 2-digit or 4-digit year in the second case. The first word after ‘From’
is matched in the regular expression by a parenthesized subpattern. The default value for

 uucp_from_sender is ‘$1’, which therefore just uses this first word (‘ph10’ in the example above)
as the message’s sender. See also ignore_fromline_hosts.

uucp_from_sender Type: string† Default: "$1"

See uucp_from_pattern above.

warnmsg_file Type: string Default: unset

This option defines a template file containing paragraphs of text to be used for constructing the
warning message which is sent by Exim when a message has been on the queue for a specified
amount of time, as specified by delay_warning. Details of the file’s contents are given in chapter
39. See also errmsg_file.

Exim 3.30 [103] main configuration (11)

12. Driver specifications

The second, third, and fourth parts of Exim’s configuration file specify which transport, director, and
router drivers are to be used. Directors and routers are similar, in that an address is passed to a list of
them in the order in which they are defined, whereas the order in which transports are specified is
immaterial, because a transport is invoked only after being passed an address by a director or a router.
Section 3.4 discusses how the different kinds of delivery driver interact.

The seventh part of the configuration file (if present) specifies the authenticators that are to be used for
SMTP connections (see chapter 35). These are a somewhat different kind of ‘driver’ to the others, but
they are configured in a similar way.

The format of the configuration data is the same for all four types of driver, and is as follows:

<instance name>:
 <option>

...
 <option>

There are two kinds of option: generic and private. The generic options are those that apply to all
drivers of the same type (that is, all directors, all routers, all transports or all authenticators). There is
always at least one generic option, called driver, which specifies which particular driver is being used.
The private options are particular to each driver, and none need appear.

The options may appear in any order, except that the driver option must precede any private options,
since these depend on the particular driver. For this reason, it is recommended that driver always be
the first option.

In earlier versions of Exim, commas were used between options, and the generic options had to
precede the private ones and be terminated by a semicolon. This has not been the case for some time,
and at release 3.00 the backwards-compatibility code for ignoring commas and semicolons was
removed.

Each instance of a driver is given an identifying instance name name for reference in logging and
elsewhere. The name can be any sequence of letters, digits, and underscores (starting with a letter) and
must be unique among drivers of the same type. A router and a transport (for example) can each have
the same name, but no two router instances can have the same name. The name of a driver instance
should not be confused with the name of the underlying driver. The configuration lines

remote_smtp:
driver = smtp

create an instance of the smtp transport driver whose name is remote_smtp. The same driver code can
be used more than once, with different instance names and different option settings each time. A
second instance of the smtp transport, with different options, might be defined thus:

special_smtp:
driver = smtp
port = 1234
command_timeout = 10s

The names remote_smtp and special_smtp would be used to reference these driver instances from
directors or routers, and would appear in log lines.

Comment lines may appear in the middle of driver specifications. The full list of option settings for
any particular driver instance, including all the defaults, can be extracted by making use of the -bP
command line option (see chapter 5).

The next chapter describes the environment in which local deliveries are done, and how this is affected
by the configurations of the relevant directors, routers, and transports. Then there is a chapter
describing the generic options for transports, followed by descriptions of the available transport

Exim 3.30 [104] driver specifications (12)

drivers. Directors and routers have some generic options in common, and these are covered in chapter
20 before the descriptions of the generic options that are specific to each type of driver, and the drivers
themselves. The SMTP AUTH mechanism for client authentication is described in chapter 35, which is
followed by descriptions of the available authenticators.

Exim 3.30 [105] driver specifications (12)

13. Environment for running local transports

Local transports handle deliveries to files and pipes. (The autoreply transport can be thought of as
similar to a pipe.) Whenever a local transport is run, Exim forks a subprocess for it. Before running
the transport code, it sets a specific uid and gid by calling setuid() and setgid(). It also sets a current
file directory; for some transports a home directory setting is also relevant. The pipe transport is the
only one which sets up environment variables; see section 18.3 for details.

The values used for the uid, gid, and the directories may come from several different places. In many
cases the director that handles the address associates settings with that address. However, values may
also be given in the transport’s own configuration, and these override anything that comes with the
address. The sections below contain a summary of the possible sources of the values, and how they
interact with each other.

13.1 Uids and gids
All local transports have the options group and user. If group is set, it overrides any group that may
be set in the address, even if user is not set. This makes it possible, for example, to run local mail
delivery under the uid of the recipient, but in a special group. For example:

group_delivery:
driver = appendfile
file = /var/spool/mail/$local_part
group = mail

If user is set for a transport, its value overrides what is set in the address. If user is non-numeric and
group is not set, the gid associated with the user is used. If user is numeric, group must be set.

The pipe transport contains the special option pipe_as_creator. If this is set and user is not set, the
uid of the process that called Exim to receive the message is used, and if group is not set, the
corresponding original gid is also used.

When the uid is taken from the transport’s configuration, the initgroups() function is called for the
groups associated with that uid if the initgroups option is set for the transport; pipe is the only
transport that has such an option.

When the uid is not specified by the transport, but is associated with the address by a director or
router, the option for calling initgroups() is taken from the director or router configuration. All
directors and routers have group, user, and initgroups options, which are used as follows:

For the aliasfile director they specify the uid and gid for local deliveries generated directly – that is,
deliveries to pipes or files. They have no effect on generated addresses that are processed
independently.

The forwardfile director ’s check_local_user option causes a password file lookup for the local part of
an address. The uid and gid obtained from this lookup are used for any directly generated local
deliveries, but they can be overridden by the group and user options of the director. As for aliasfile,
these values are not used for generated addresses that are processed independently.

The localuser director looks up local parts in the password file, and sets the uid and gid from that file
for local deliveries, but these values can be overridden by the director ’s options.

For the smartuser director and all the routers, the group, user, and initgroups options are used only
if the driver sets up a delivery to a local transport.

13.2 Current and home directories
The pipe transport has a home_directory option. If this is set, it overrides any home directory set by
the director for the address. The value of the home directory is set in the environment variable HOME

while running the pipe. It need not be set, in which case HOME is not defined.

Exim 3.30 [106] local transport environment (13)

The appendfile transport does not have a home_directory option. The only uses for a home directory
in this transport are the appearance of the expansion variable $home in one of its options, and the
‘inhome’ or ‘belowhome’ settings of the create_file option. In both cases the value set by the director
is used.

The appendfile and pipe transports have a current_directory option. If this is set, it overrides any
current directory set by the director for the address. If neither the director nor the transport sets a
current directory, then Exim uses the value of the home directory, if set. Otherwise it sets the current
directory to ‘/’ before running a local transport.

All directors have current_directory and home_directory options, which are associated with any
addresses they explicitly direct to a local transport.

For forwardfile, if home_directory is not set and there is a file_directory value, that is used instead.
If it too is not set, but check_local_user is set, the user ’s home directory is used. For localuser, if
home_directory is not set, the home directory is taken from the password file entry that this director
looks up. There are no defaults for current_directory in the directors, because it defaults to the value
of home_directory if it is not set at transport time.

Routers have no means of setting up home and current directory strings; consequently any local
transport that they use must specify them for itself if they are required.

13.3 Expansion variables derived from the address
Normally a local delivery is handling a single address, and in that case the variables such as $domain
and $local_part are set during local deliveries. However, in some circumstances more than one
address may be handled at once (for example, while writing batch SMTP for onward transmission by
some other means). In this case, the variables associated with the local part are never set, $domain is
set only if all the addresses have the same domain, and $original_domain is never set.

Exim 3.30 [107] local transport environment (13)

14. Generic options for transports

The generic options for transports are as follows:

body_only Type: boolean Default: false

If this option is set, the message’s headers are not transported. It is mutually exclusive with
 headers_only. If it is used with the appendfile or pipe transports, the settings of prefix and suffix

should be checked, since this option does not automatically suppress them.

debug_print Type: string Default: unset

If this option is set and debugging is enabled (see -d, -v, and debug_level), the string is expanded
and included in the debugging output when the transport is run. This is to help with checking out
the values of variables and so on when debugging driver configurations. For example, if a
headers_add option is not working properly, debug_print could be used to output the variables it
references. A newline is added to the text if it does not end with one.

delivery_date_add Type: boolean Default: false

If this option is true, a Delivery-date: header is added to the message. This gives the actual time
the delivery was made. As this is not a standard header, Exim has a configuration option

 (delivery_date_remove) which requests its removal from incoming messages, so that delivered
messages can safely be resent to other recipients.

driver Type: string Default: unset

This specifies which of the available transport drivers is to be used. For example:

driver = smtp

There is no default, and this option must be set for every transport.

envelope_to_add Type: boolean Default: false

If this option is true, an Envelope-to: header is added to the message. This gives the original
address(es) in the incoming envelope that caused this delivery to happen. More than one address
may be present if batch or bsmtp is set on transports that support them, or if more than one
original address was aliased or forwarded to the same final address. As this is not a standard header,
Exim has a configuration option (envelope_to_remove) which requests its removal from incoming
messages, so that delivered messages can safely be resent to other recipients.

headers_add Type: string Default: unset

This option specifies a string of text which is expanded and added to the header portion of a
message as it is transported. If the result of the expansion is an empty string, or if the expansion is
forced to fail, no action is taken. Other expansion failures are treated as errors and cause the
delivery to be deferred. The expanded string should be in the form of one or more RFC 822 header
lines, separated by newlines (coded as ‘\n’ inside a quoted string), for example:

headers_add = "X-added: this is a header added at $tod_log\n\
X-added: this is another"

Exim does not check the syntax of these added headers. A newline is supplied at the end if one is
not present. The text is added at the end of any existing headers. If you include a blank line within
the string, you can subvert this facility into adding text at the start of the message’s body.

The name add_headers was formerly used for this option, and is retained as a synonym for
backward compatibility. Additional headers can also be specified by directors and routers. See
chapter 20 and section 49.13.

Exim 3.30 [108] generic transport options (14)

headers_only Type: boolean Default: false

If this option is set, the message’s body is not transported. It is mutually exclusive with body_only.
If it is used with the appendfile or pipe transports, the settings of prefix and suffix should be
checked, since this option does not automatically suppress them.

headers_remove Type: string Default: unset

This option is expanded; the result must consist of a colon-separated list of header names, not
including the terminating colon, for example:

headers_remove = return-receipt-to:acknowledge-to

Any existing headers matching those names are not included in any message that transmitted by the
transport. However, added headers may have these names. Thus it is possible to replace a header by
specifying it in headers_remove and supplying the replacement in add_headers.

The name remove_headers was formerly used for this option, and is retained as a synonym for
backward compatibility. Headers to be removed can also be specified by directors and routers. See
chapter 20 and section 49.13.

headers_rewrite Type: string Default: unset

This option allows addresses in header lines to be rewritten at transport time, that is, as the message
is being copied to its destination. The contents of the option are a colon-separated list of rewriting
rules. Each rule is in exactly the same form as one of the general rewriting rules that are applied
when a message is received. These are described in chapter 34. For example,

headers_rewrite = a@b c@d f : \
x@y w@z

changes a@b into c@d in From: header lines, and x@y into w@z in all address-bearing header
lines. The rules are applied to the header lines just before they are written out at transport time, so
they affect only those copies of the message that pass through the transport. However, only the

 message’s original header lines, and any that were added by a system filter, are rewritten. If a
 router, director, or transport adds header lines, these are not affected. These rewriting rules are not

applied to the envelope. You can change the return path using return_path; you cannot change
envelope recipients at this time.

message_size_limit Type: integer Default: 0

This option controls the size of messages passed through the transport. If its value is greater than
zero and the size of a message message exceeds the limit, the address is failed. If there is any
chance that the resulting bounce message could be routed to the same transport, you should ensure
that return_size_limit is less than the transport’s message_size_limit, as otherwise the bounce
message will fail to get delivered.

return_path Type: string† Default: unset

If this option is set, the string is expanded at transport time and replaces the existing return path
(envelope sender) value. The expansion can refer to the existing value via $return_path. If the
expansion is forced to fail, no replacement occurs; if it fails for another reason, Exim panics. This
option can be used to support VERP (Variable Envelope Return Paths) – see chapter 48.

return_path_add Type: boolean Default: false

If this option is true, a Return-path: header is added to the message. Although the return path is
normally available in the prefix line of BSD mailboxes, this is commonly not displayed by MUAs,
and so the user does not have easy access to it.

RFC 822 states that the Return-path: header is ‘added by the final transport system that delivers
the message to its recipient’ (section 4.3.1), which implies that this header should not be present in
incoming messages. Exim has a configuration option, return_path_remove, which requests
removal of this header from incoming messages, so that delivered messages can safely be resent to
other recipients.

Exim 3.30 [109] generic transport options (14)

shadow_condition Type: string† Default: unset

See shadow_transport below.

shadow_transport Type: string Default: unset

This facility is somewhat experimental, and may change in future. A local transport may set the
shadow_transport option to the name of another, previously-defined, local transport. Shadow
remote transports are not supported.

Whenever a delivery to the main transport succeeds, and either shadow_condition is unset, or its
expansion does not result in a forced expansion failure or the empty string or one of the strings ‘0’
or ‘no’ or ‘false’, the message is also passed to the shadow transport, with the same delivery
address or addresses. However, the result of the shadow transport is discarded and does not affect
the subsequent processing of the message. Only a single level of shadowing is provided; the
shadow_transport option is ignored on any transport when it is running as a shadow. Options
concerned with output from pipes are also ignored.

The log line for the successful delivery has an item added on the end, of the form

ST=<shadow transport name>

If the shadow transport did not succeed, the error message is put in parentheses afterwards.

Shadow transports can be used for a number of different purposes, including keeping more detailed
log information than Exim normally provides, and implementing automatic acknowledgement poli-
cies based on message headers that some sites insist on.

transport_filter Type: string Default: unset

This option sets up a filtering (in the Unix shell sense) process for messages at transport time. It
should not be confused with mail filtering as set up by individual users or via a system filter.

When the message is about to be written out, the command specified by transport_filter is started
up in a separate process, and the entire message, including the headers, is passed to it on its
standard input (this in fact is done from a third process, to avoid deadlock). This happens before
any SMTP-specific processing, such as turning ‘\n’ into ‘\r\n’ and escaping lines beginning with a
dot, and also before any processing implied by the settings of check_string and escape_string in
the appendfile or pipe transports.

The filter ’s standard output is read and written to the message’s destination. The filter can perform
any transformations it likes, but of course should take care not to break RFC 822 syntax. A
demonstration Perl script is provided in util/transport-filter.pl; this makes a few arbitrary modifi-
cations just to show the possibilities. Exim does not check the result, except to test for a final
newline when SMTP is in use. All messages transmitted over SMTP must end with a newline, so
Exim supplies one if it is missing.

A problem might arise if the filter increases the size of a message that is being sent down an SMTP
channel. If the receiving SMTP server has indicated support for the SIZE parameter, Exim will have
sent the size of the message at the start of the SMTP session. If what is actually sent is substantially
more, the server might reject the message. This can be worked round by setting the size_addition
option on the smtp transport, either to allow for additions to the message, or to disable the use of
SIZE altogether.

The value of the option is the command string for starting up the filter, which is run directly from
Exim, not under a shell. The string is parsed by Exim in the same way as a command string for the
pipe transport: Exim breaks it up into arguments and then expands each argument separately. The
special argument $pipe_addresses is replaced by a number of arguments, one for each address that
applies to this delivery. (This isn’t an ideal name for this feature here, but as it was already
implemented for the pipe transport, it seemed sensible not to change it.)

The expansion variables $host and $host_address are available when the transport is a remote one.
They are set only for the expansion of a transport filter command, as that is the only thing that is
expanded after a connection has been set up. For example:

Exim 3.30 [110] generic transport options (14)

transport_filter = /some/directory/transport-filter.pl \
$host $host_address $sender_address $pipe_addresses

The filter process is run under the same uid and gid as the normal delivery. For remote deliveries
this is the exim uid/gid if they are defined.

If a transport filter is set on an autoreply transport, the original message is passed through the filter
as it is being copied into the newly generated message, which happens if the return_message
option is set.

Exim 3.30 [111] generic transport options (14)

15. The appendfile transport

The appendfile transport delivers a message by appending it to a file in the local file system, or by
creating an entirely new file in a specified directory. Single files to which messages are appended can
be in the traditional Unix mailbox format, or optionally in the MBX format supported by the Pine
MUA and University of Washington IMAP daemon, inter alia. When each message is being delivered
as a separate file, ‘maildir’ format can optionally be used to give added protection against failures that
happen part-way through the delivery. A third form of separate-file delivery known as ‘mailstore’ is
also supported. For all file formats, Exim attempts to create as many levels of directory as necessary,
provided that create_directory is set.

The code for the optional formats is not included in the Exim binary by default. It is necessary to set
SUPPORT_MBX, SUPPORT_MAILDIR and/or SUPPORT_MAILSTORE in Local/Makefile to have the appropriate
code included.

Appendfile can be used by routers as a pseudo-remote transport for putting messages into files for
remote delivery by some means other than Exim, though it is more commonly used by directors for
local deliveries to users’ mailboxes. It is also used for delivering messages to files or directories whose
names are obtained directly from alias, forwarding, or filtering operations. In these cases, $local_part
contains the local part that was aliased or forwarded, while $address_file contains the name of the file
or directory.

As appendfile is a local transport, it is always run in a separate process, under a non-privileged uid
and gid, which are set by setuid(). In the common local delivery case, these are the uid and gid
belonging to the user to whom the mail is being delivered. The current directory is also normally set to
the user ’s home directory. See chapter 13 for a discussion of the local delivery environment.

If the transport fails for any reason, the message remains on the input queue so that there can be
another delivery attempt later. If there is an error while appending to a file (for example, quota
exceeded or partition filled), Exim attempts to reset the file’s length and last modification time back to
what they were before. Exim supports a local quota, for use when the system facility is unavailable or
cannot be used for some reason.

Before appending to a file, a number of security checks are made, and the file is locked. A detailed
description is given below, after the list of private options.

15.1 Private options for appendfile

allow_fifo Type: boolean Default: false

Setting this option permits delivery to named pipes (FIFOs) as well as to regular files. If no process
is reading the named pipe at delivery time, the delivery is deferred.

allow_symlink Type: boolean Default: false

By default, appendfile will not deliver if the path name for the file is that of a symbolic link.
Setting this option relaxes that constraint, but there are security issues involved in the use of
symbolic links. Be sure you know what you are doing if you set this. Details of exactly what this
option affects are included in the discussion which follows this list of options.

batch Type: string Default: "none"

Normally, each address that is directed or routed to an appendfile transport is handled separately. In
special cases it may be desirable to handle several addresses at once, for example, when passing a
message with several addresses to a different mail regime (for example, UUCP), though this is
more often done using the pipe transport. If this option is set to the string ‘domain’, all addresses
with the same domain that are directed or routed to the transport are handled in a single delivery. If
it is set to ‘all’ then multiple domains are batched. The list of addresses is included in the
Envelope-to: header if the generic envelope_to_add option is set. When more than one address is

Exim 3.30 [112] appendfile transport (15)

being delivered, $local_part is not set, and $domain is set only if they all have the same domain.
The only difference between this option and bsmtp is the inclusion of SMTP command lines in the
output for bsmtp, and the escaping of lines that begin with a full stop (period).

batch_max Type: integer Default: 100

This limits the number of addresses that can be handled in a batch, and applies to both the batch
and the bsmtp options.

bsmtp Type: string Default: "none"

This option is used to set up an appendfile transport as a pseudo-remote transport for delivering
messages into local files in batch SMTP format for onward transmission by some non-Exim means.
It is usually necessary to suppress the default settings of the prefix and suffix options when using
batch SMTP. The check_string and escape_string options are forced to the values

check_string = "."
escape_string = ".."

when batched SMTP is in use. The value of bsmtp must be one of the strings ‘none’, ‘one’,
‘domain’, or ‘all’. The first of these turns the feature off. A full description of the batch SMTP
mechanism is given in section 48.8. When bstmp is set, the batch option automatically takes the
same value. See also the use_crlf option.

bsmtp_helo Type: boolean Default: false

When this option is set, a HELO line is added to the output at the start of each message written in
batch SMTP format. Some software that reads batch SMTP is unhappy without this.

check_group Type: boolean Default: false

The group owner of the file is checked to see that it is the same as the group under which the
delivery process is running when this option is set. The default setting is false because the default
file mode is 0600, which means that the group is irrelevant.

check_owner Type: boolean Default: true

The owner of the file is checked to ensure that it is the same as the user under which the delivery
process is running when this option is set.

check_string Type: string Default: "From "

As appendfile writes the message, the start of each line is tested for matching check_string, and if
it does, the initial matching characters are replaced by the contents of escape_string. The value of
check_string is a literal string, not a regular expression, and the case of any letters it contains is
significant. For backwards compatibility, if no_from_hack is specified, the values of check_string
and escape_string are forced to be unset.

The default settings, along with prefix and suffix, are suitable for traditional ‘BSD’ mailboxes,
where a line beginning with ‘From ’ indicates the start of a new message. All four options need
changing if another format is used. For example, to deliver to mailboxes in MMDF format:

check_string = "\1\1\1\1\n"
escape_string = "\1\1\1\1 \n"
prefix = "\1\1\1\1\n"
suffix = "\1\1\1\1\n"

When the bsmtp option is set, the contents of check_string and escape_string are forced to values
that implement the SMTP escaping protocol. Any settings made in the configuration file are

 ignored.

Exim 3.30 [113] appendfile transport (15)

create_directory Type: boolean Default: true

When this option is true, Exim creates any missing superior directories for the file that it is about to
write. A created directory’s mode is given by the directory_mode option.

create_file Type: string Default: "anywhere"

This option constrains the location of files that are created by this transport. It must be set to one of
the words ‘anywhere’, ‘inhome’, or ‘belowhome’. In the second and third cases, a home directory
must have been set up for the address by the director that handled it. This option isn’t useful when
an explicit file name is given for normal mailbox deliveries; it is intended for the case when file
names have been generated from user ’s .forward files, which are usually handled by an appendfile
transport called address_file. See also file_must_exist.

current_directory Type: string† Default: unset

If this option is set, it specifies the directory to make current when running the delivery process.
The string is expanded at the time the transport is run. See chapter 13 for details of the local
delivery environment.

directory Type: string† Default: unset

This option is mutually exclusive with the file option. When it is set, the string is expanded, and the
message is delivered into a new file or files in or below the given directory, instead of being
appended to a single mailbox file. A number of different formats are provided (see maildir_format
and mailstore_format), and see section 15.3 for further details of this form of delivery.

directory_mode Type: octal integer Default: 0700

If appendfile creates any directories as a result of the create_directory option, their mode is
specified by this option.

escape_string Type: string Default: ">From "

See check_string above.

file Type: string† Default: unset

This option is mutually exclusive with the directory option. It need not be set when appendfile is
being used to deliver to files whose names are obtained from forwarding, filtering, or aliasing
address expansions (by default under the instance name address_file), as in those cases the file
name is associated with the address. Otherwise, the file option must be set unless the directory
option is set. Either use_fcntl_lock or use_lockfile (or both) must be set with file. If you are using
more than one host to deliver over NFS into the same mailboxes, you should always use lock files.

The string value is expanded for each delivery, and must yield an absolute path. The most common
settings of this option are variations on one of these examples:

file = /var/spool/mail/$local_part
file = /home/$local_part/inbox
file = $home/inbox

In the first example, all deliveries are done into the same directory. If Exim is configured to use
lock files (see use_lockfile below) it must be able to create a file in the directory, so the ‘sticky’ bit
must be turned on for deliveries to be possible, or alternatively the group option can be used to run
the delivery under a group id which has write access to the directory.

If there is no file name, or the expansion fails, or a local part contains a forward slash character, a
delivery error occurs.

Exim 3.30 [114] appendfile transport (15)

file_format Type: string Default: unset

This option requests the transport to check the format of an existing file before adding to it. The
check consists of matching a specific string at the start of the file. A list of check strings may be
given, and associated with each is the the name of a transport. If the transport associated with a
matched string is not the current transport, control is passed over to the other transport. There
should always be an even number of items in a file_format setting. For example, if the standard
local_delivery transport has this added to it:

file_format = "From : local_delivery :\
\1\1\1\1\n : local_mmdf_delivery"

then mailboxes that begin with ‘From’ are handled by this transport, but if a mailbox begins with
four binary ones followed by a newline, control is passed to a transport called local_mmdf_
delivery which presumably is configured to do the delivery in MMDF format. If a mailbox does not
exist or is empty, it is assumed to match the current transport. If the start of a mailbox doesn’t
match any string, or if the transport named for a given string is not defined, delivery is deferred.

file_must_exist Type: boolean Default: false

If this option is true, the file specified by the file option must exist, and an error occurs if it does
not. Otherwise, it is created if it does not exist.

from_hack Type: boolean Default: true

This option is obsolete and is retained only for backwards compatibility. It has been replaced by
check_string and escape_string. If it is explicitly unset (that is, if no_from_hack is specified), it
causes both the new options to be unset. Otherwise it is ignored.

group Type: string Default: unset

If this option is set, it specifies the group under whose gid the delivery process is to be run, and, if
 check_group is set, the group owner of an existing file to which the message is to be appended. If

the option is not set, a value associated with a user may be used (see below); otherwise a value
must have been associated with the address by the director which handled it. If the string contains
no $ characters, it is resolved when Exim starts up. Otherwise, the string is expanded at the time
the transport is run, and must yield either a digit string or a name which can be looked up using

 getgrnam().

The group option is commonly set for local deliveries on systems where the set of user mailboxes
is in a single directory owned by a group such as ‘mail’. Note that it should not be set on the
instance of appendfile that is used for deliveries to files specified by users in their forward files
(called address_file in the default configuration), because such deliveries should take place under
the individual users’ personal uids and gids.

lock_fcntl_timeout Type: time Default: 0s

By default, the appendfile transport uses non-blocking calls to fcntl() when locking an open
mailbox file. If the call fails, it sleeps for lock_interval and tries again, up to lock_retries times.
Non-blocking calls are used so that the file is not kept open during the wait for the lock; the reason
for this is to make it as safe as possible for deliveries over NFS in the case when processes might
be accessing an NFS mailbox without using a lock file. This should not be done, but misunder-
standings and hence misconfigurations are not unknown.

On a busy system, however, the performance of a non-blocking lock approach is not as good as
using a blocking lock with a timeout. In this case, the waiting is done inside the system call, and

 Exim’s delivery process acquires the lock and can proceed as soon as the previous lock holder
releases it.

If lock_fcntl_timeout is set to a non-zero time, blocking locks, with that timeout, are used. There
may still be some retrying: the maximum number of retries is

(lock_retries * lock_interval) / lock_fcntl_timeout

Exim 3.30 [115] appendfile transport (15)

rounded up to the next whole number. In other words, the total time during which appendfile is
trying to get a lock is roughly the same, unless lock_fcntl_timeout is set very large.

You should consider setting this option if you are getting a lot of delayed local deliveries because
of errors of the form

failed to lock mailbox /some/file (fcntl)

lock_interval Type: time Default: 3s

This specifies the time to wait between attempts to lock the file. See below for details of locking.

lock_retries Type: integer Default: 10

This specifies the maximum number of attempts to lock the file. A value of zero is treated as 1. See
below for details of locking.

lockfile_mode Type: octal integer Default: 0600

This specifies the mode of the created lock file, when a lock file is being used (see use_lockfile).

lockfile_timeout Type: time Default: 30m

When a lock file is being used (see use_lockfile), if a lock file already exists and is older than this
value, it is assumed to have been left behind by accident, and Exim attempts to remove it.

maildir_format Type: boolean Default: false

If this option is set with the directory option, the delivery is into a new file in the ‘maildir’ format
that is used by some other mail software. The option is available only if SUPPORT_MAILDIR is present
in Local/Makefile. See section 15.3 below for further details.

maildir_retries Type: integer Default: 10

This option specifies the number of times to retry when writing a file in ‘maildir’ format. See
section 15.3 below.

maildir_tag Type: string† Default: unset

This option applies only to deliveries in maildir format, and is described in section 15.3 below.

mailstore_format Type: boolean Default: false

If this option is set with the directory option, the delivery is into two new files in ‘mailstore’
format. The option is available only if SUPPORT_MAILSTORE is present in Local/Makefile. See section
15.3 below for further details.

mailstore_prefix Type: string† Default: unset

This option applies only to deliveries in mailstore format, and is described in section 15.3 below.

mailstore_suffix Type: string† Default: unset

This option applies only to deliveries in mailstore format, and is described in section 15.3 below.

mbx_format Type: boolean Default: false

This option is available only if Exim has been compiled with SUPPORT_MBX set in Local/Makefile. If
mbx_format is set with the file option, the message is appended to the mailbox file in MBX format
instead of traditional Unix format. This format is supported by Pine4 and its associated IMAP and
POP daemons, and is implemented by the c-client library that they all use. The prefix and suffix
options are not automatically changed by the use of mbx_format; they should normally be set

 empty.

If none of the locking options are mentioned in the configuration, use_mbx_lock is assumed and
the other locking options default to false. It is possible to specify the other kinds of locking with

 mbx_format, but use_fcntl_lock and use_mbx_lock are mutually exclusive. MBX locking inter-
works with c-client, providing for shared access to the mailbox. It should not be used if any
program that does not use this form of locking is going to access the mailbox, nor should it be used

Exim 3.30 [116] appendfile transport (15)

if the mailbox file is NFS mounted, because it works only when the mailbox is accessed from a
single host.

If you set use_fcntl_lock with an MBX-format mailbox, you cannot use the standard version of c-
 client, because as long as it has a mailbox open (this means for the whole of a Pine or IMAP

session), Exim will not be able to append messages to it.

mode Type: octal integer Default: 0600

If the output file is created, it is given this mode. If it already exists and has wider permissions,
they are reduced to this mode. If it has narrower permissions, an error occurs unless mode_fail_

 narrower is false. However, if the delivery is the result of a save command in a filter file specifing
a particular mode, the mode of the output file is always forced to take that value, and this option is

 ignored.

mode_fail_narrower Type: boolean Default: true

This option applies in the case when an existing mailbox file has a narrower mode than that
specified by the mode option. If mode_fail_narrower is true, the delivery is frozen (‘mailbox has
the wrong mode’); otherwise Exim continues with the delivery attempt, using the existing mode of
the file.

notify_comsat Type: boolean Default: false

If this option is true, the comsat daemon is notified after every successful delivery to a user
mailbox. This is the daemon that notifies logged on users about incoming mail.

prefix Type: string† Default: see below

The string specified here is expanded and output at the start of every message. The default is

prefix = "From ${if def:return_path{$return_path}{MAILER-DAEMON}}\
${tod_bsdinbox}\n"

This line can be suppressed by setting

prefix =

and this is usually necessary when doing batch SMTP deliveries, or delivering into individual files
or MBX-format mailboxes.

quota Type: string† Default: unset

This option imposes a limit on the size of the file to which Exim is appending, or to the total space
used in the directory tree if the directory option is set. In the latter case, computation of the space
used is expensive, as all the files in the directory (and any sub-directories) have to be individually
inspected and their sizes summed (but see quota_size_regex below). Also, there is no interlock
against two simultaneous deliveries into a multi-file mailbox. For single-file mailboxes, of course,
an interlock is a necessity.

A file’s size is take as its used value. Because of blocking effects, this may be a lot less than the
actual amount of disc space allocated to the file. If the sizes of a number of files are being added
up, the rounding effect can become quite noticeable, especially on systems that have large block
sizes. Nevertheless, it seems best to stick to the used figure, because this is the obvious value which
users will understand most easily.

The value of the option is expanded, and must then be a numerical value (decimal point allowed),
optionally followed by one of the letters K or M. The expansion happens while Exim is running as
root or the Exim user, before setuid() is called for the delivery, so files that are inaccessible to the
end user can be used to hold quota values that are looked up in the expansion. When delivery fails
because this quota is exceeded, the handling of the error is as for system quota failures.

By default, Exim’s quota checking mimics system quotas, and restricts the mailbox to the specified
maximum size, though the value is not accurate to the last byte, owing to separator lines and
additional headers that may get added during message delivery. When a mailbox is nearly full, large

Exim 3.30 [117] appendfile transport (15)

messages may get refused even though small ones are accepted, because the size of the current
message is added to the quota when the check is made. This behaviour can be changed by setting
quota_is_inclusive false. When this is done, the check for exceeding the quota does not include the
current message. Thus, deliveries continue until the quota has been exceeded; thereafter, no further
messages are delivered. See also quota_warn_threshold.

quota_filecount Type: integer Default: 0

This option applies when the directory option is set. It limits the total number of files in the
directory (compare the inode limit in system quotas). It can only be used if quota is also set.

quota_is_inclusive Type: boolean Default: true

See quota above.

quota_size_regex Type: string Default: unset

This option applies when one of the delivery modes that writes a separate file for each message is
being used. When Exim wants to find the size of one of these files in order to test the quota, it first
checks quota_size_regex. If this is set to a regular expression that matches the file name, and it
captures one string, that string is interpreted as a representation of the file’s size. This feature is
useful only when users have no shell access to their mailboxes – otherwise they could defeat the
quota simply by renaming the files. This facility can be used with maildir deliveries, by setting
maildir_tag to add the file length to the file name. For example:

maildir_tag = ,S=$message_size
quota_size_regex = S=(\d+)$

The string is not expanded.

quota_warn_message Type: string† Default: see below

See below for the use of this option. If it is not set when quota_warn_threshold is set, it
defaults to

quota_warn_message = "\
To: $local_part@$domain\n\
Subject: Your mailbox\n\n\
This message is automatically created \
by mail delivery software.\n\n\
The size of your mailbox has exceeded \
a warning threshold that is\n\
set by the system administrator.\n"

quota_warn_threshold Type: string† Default: "0"

This option is expanded in the same way as quota (see above). If the resulting value is greater than
zero, and delivery of the message causes the size of the file or total space in the directory tree to
cross the given threshold, a warning message is sent. If quota is also set, the threshold may be
specified as a percentage of it by following the value with a percent sign. For example:

quota = 10M
quota_warn_threshold = 75%

If quota is not set, a setting of quota_warn_threshold that ends with a percent sign is ignored.

The warning message itself is specified by the quota_warn_message option, and it must start with
a To: header line containing the recipient(s). A Subject: line should also normally be supplied. The
quota option does not have to be set in order to use this option; they are independent of one
another except when the threshold is specified as a percentage.

Exim 3.30 [118] appendfile transport (15)

require_lockfile Type: boolean Default: true

When a lock file is being used (see use_lockfile) and require_lockfile is true, a lock file must be
created before delivery can proceed. If the option is not true, failure to create a lock file because of
a ‘permission denied’ error is not treated as an error, though failure of the fcntl() locking function
is. This option should always be set when delivering from more than one host over NFS. It is
required to be set if the file option is set and use_fcntl_lock is not set, except when mbx_format
is set.

retry_use_local_part Type: boolean Default: true

When a local delivery suffers a temporary failure, both the local part and the domain are normally
used to form a key that is used to determine when next to try the address. This handles common
cases such as exceeding a quota, where the failure applies to the specific local part. However, when
local delivery is being used to collect messages for onward transmission by some other means, a
temporary failure may not depend on the local part at all. Setting this option false causes Exim to
use only the domain when handling retries for this transport.

suffix Type: string† Default: "\n"

The string specified here is expanded and output at the end of every message. The default blank
line can be suppressed by setting

suffix =

and this is usually necessary when doing batch SMTP deliveries, or delivering into individual files
or MBX-format mailboxes.

use_crlf Type: boolean Default: false

This option causes lines to be terminated with the two-character CRLF sequence (carriage return,
linefeed) instead of just a linefeed character. In the case of batched SMTP, the byte sequence
written to the file is then an exact image of what would be sent down a real SMTP connection.

The contents of the prefix and suffix options are written verbatim, so must contain their own
carriage return characters if these are needed. Since the default values for both prefix and suffix
end with a single linefeed, their values almost always need to be changed if use_crlf is set.

use_fcntl_lock Type: boolean Default: see below

This option controls the use of the fcntl() function to lock a file for exclusive use when a message
is being appended. It is set by default unless use_mbx_lock is set. Otherwise, it should be turned

 off only if you know that all your MUAs use lock file locking. When use_fcntl_lock is off,
use_lockfile and require_lockfile must both be on if mbx_format is not set.

use_lockfile Type: boolean Default: see below

If this option is turned off, Exim does not attempt to create a lock file when appending to a file.
Thus the only locking is by fcntl(). This option is set by default unless use_mbx_lock is set. It is
not possible to turn both use_lockfile and use_fcntl_lock off, except when mbx_format is set. You
should only turn use_lockfile off if you are absolutely sure that every MUA that is ever going to
look at your users’ mailboxes uses fcntl() rather than a lock file, and even then only when you are
not delivering over NFS from more than one host. In order to append to an NFS file safely from
more than one host, it is necessary to take out a lock before opening the file, and the lock file
achieves this. Otherwise, even with fcntl() locking, there is a risk of file corruption. See also the

 require_lockfile option.

use_mbx_lock Type: boolean Default: see below

This option is available only if Exim has been compiled with SUPPORT_MBX set in Local/Makefile.
Setting the option specifies that special MBX locking rules be used. It is set by default if
mbx_format is set and none of the locking options are mentioned in the configuration. The locking
rules are the same as are used by the c-client library that underlies Pine4 and the IMAP4 and POP

Exim 3.30 [119] appendfile transport (15)

daemons that come with it (see the discussion below). The rules allow for shared access to the
mailbox. However, this kind of locking does not work when the mailbox is NFS mounted.

user Type: string Default: unset

If this option is set, it specifies the user under whose uid the delivery process is to be run, and
which must be the owner of an existing file to which the message is appended. If the option is not
set, a value must have been associated with the address by the director that handled it. If the string
contains no $ characters, it is resolved when Exim starts up. Otherwise, the string is expanded at
the time the transport is run, and must yield either a digit string or a name which can be looked up
using getpwnam(). When getpwnam() is used, either at start-up time or later, the group id value
associated with the user is taken as the value to be used if the group option is not set.

15.2 Operational details for appending

Before appending to a file, Exim proceeds as follows:

• If the name of the file is /dev/null, no action is taken, and a success return is given.

• If any directories on the file’s path are missing, Exim creates them if the create_directory option
is set. A created directory’s mode is given by the directory_mode option.

• If file_format is set, the format of an existing file is checked. If this indicates that a different
transport should be used, control is passed to that transport.

• If use_lockfile is set, a lock file is built in a way that will work reliably over NFS, as follows:

• Create a ‘hitching post’ file whose name is that of the lock file with the current time,
primary host name, and process id added, by opening for writing as a new file. If this fails
with an access error, the message is frozen unless require_lockfile is false. Otherwise
delivery is deferred.

• Close the hitching post file, and hard link it to the lock file name.

• If the call to link() succeeds, creation of the lock file has succeeded. Unlink the hitching
post name.

• Otherwise, use stat() to get information about the hitching post file, and then unlink hitching
post name. If the number of links is exactly two, creation of the lock file succeeded but
something (for example, an NFS server crash and restart) caused this fact not to be
communicated to the link() call.

• If creation of the lock file failed, wait for lock_interval and try again, up to lock_retries
times. However, since any program that writes to a mailbox should complete its task very

 quickly, it is reasonable to time out old lock files that are normally the result of user agent
and system crashes. If an existing lock file is older than lockfile_timeout Exim attempts to
unlink it before trying again.

• A call is made to lstat() to discover whether the main file exists, and if so, what its characteristics
are. If lstat() fails for any reason other than non-existence, delivery is deferred.

• If the file does exist and is a symbolic link, delivery is deferred and the message is frozen, unless
the allow_symlinks option is set, in which case the ownership of the link is checked, and then
stat() is called to find out about the real file, which is then subjected to the checks below. The
check on the top-level link ownership prevents one user creating a link for another ’s mailbox in a
sticky directory, though allowing symbolic links in this case is definitely not a good idea. If there
is a chain of symbolic links, the intermediate ones are not checked.

• If the file already exists but is not a regular file, or if the file’s owner and group (if the group is
being checked – see check_group above) are different from the user and group under which the
delivery is running, delivery is deferred, and the message is frozen.

Exim 3.30 [120] appendfile transport (15)

• If the file’s permissions are more generous than specified, they are reduced. If they are insuf-
ficient, delivery is deferred, and the message is frozen, unless mode_fail_narrower is set false,
in which case the delivery is tried using the existing permissions.

• The file’s inode number is saved, and it is then opened for appending. If this fails because the file
has vanished, appendfile behaves as if it hadn’t existed (see below). If the open failure is

 EWOULDBLOCK, just defer delivery; otherwise defer and freeze the message.

• If the file is opened successfully, check that the inode number hasn’t changed, that it is still a
regular file, and that the owner and permissions have not changed. If anything is wrong, defer
and freeze the message.

• If the file did not exist originally, defer delivery and freeze the message if the file_must_exist
option is set. Otherwise, check that the file is being created in a permitted directory if the

 create_file option is set (deferring and freezing on failure), and then open for writing as a new
file, with the O_EXCL and O_CREAT options, except when dealing with a symbolic link (the
allow_symlinks option must be set). In this case, which can happen if the link points to a non-
existent file, the file is opened for writing using O_CREAT but not O_EXCL, because that prevents
link following.

• If opening fails because the file exists, obey the tests given above for existing files. However, to
avoid looping in a situation where the file is being continuously created and destroyed, the
exists/not-exists loop is broken after 10 repetitions, and the message is then frozen.

• If opening fails with any other error, defer delivery.

• Once the file is open, unless both use_fcntl_lock and use_mbx_lock are false, it is locked using
 fcntl(). In the former case, an exclusive lock is requested, while in the latter, Exim takes out a

shared lock on the open file, and an exclusive lock on the file whose name is

/tmp/.<device-number>.<inode-number>

using the device and inode numbers of the open mailbox file, in accordance with the MBX
locking rules.

If fcntl() locking fails, there are two possible courses of action, depending on the value of
 lock_fcntl_timeout. If its value is zero, the file is closed, Exim waits for lock_interval and then

goes back and re-opens it as above and tries to lock it again. This happens up to lock_retries
times, after which the delivery is deferred.

If lock_fcntl_timeout has a value greater than zero, a blocking call to fcntl() with that timeout is
used, so there has already been some waiting involved. Nevertheless, Exim does not give up

 immediately. It retries up to

(lock_retries * lock_interval) / lock_fcntl_timeout

times (rounded up).

At the end of delivery, Exim closes the file (which releases the fcntl() lock) and then deletes the lock
file if one was created.

15.3 Operational details for delivery to a new file
When the directory option is set, each message is delivered into a newly-created file or set of files. No
locking is required while writing the message, so the various locking options of the transport are
ignored. The ‘From’ line that by default separates messages in a single file is not normally needed, nor
is the escaping of message lines that start with ‘From’, and there is no need to ensure a newline at the
end of each message. Consequently, the default settings in appendfile need changing as follows:

check_string = ""
prefix = ""
suffix = ""

Exim 3.30 [121] appendfile transport (15)

There are three different ways in which delivery to individual files can be done, depending on the
settings of the maildir_format and mailstore_format options. Note that code to support maildir and
mailstore formats is not included in the binary unless SUPPORT_MAILDIR or SUPPORT_MAILSTORE, respect-
ively, are set in Local/Makefile.

In all three cases an attempt is made to create the directory and any necessary sub-directories if they
do not exist, provided that the create_directory option is set (the default). A created directory’s mode
is given by the directory_mode option. If creation fails, or if the create_directory option is not set
when creation is required, the delivery is deferred.

• If neither maildir_format nor mailstore_format is set, a single new file is created directly in the
named directory. For example, when delivering messages into files using the bsmtp option (see
section 48.8), a setting such as

directory = /var/bsmtp/${host}

might be used. A message is written to a file with a temporary name, which is then renamed
when the delivery is complete. The final name is constructed from the time and the file’s inode

 number, and starts with the letter ‘q’ for compatibility with smail.

• If the maildir_format option is true, Exim delivers each message by writing it to a file whose
name is tmp/<time>.<pid>.<host> in the given directory, and then renaming it into the new sub-
directory if all goes well.

Before opening the temporary file, Exim calls stat() on its name. If any response other than
ENOENT (does not exist) is given, it waits 2 seconds and tries again, up to maildir_retries times.

If Exim is required to check a quota setting before a maildir delivery, it looks for a file called
maildirfolder in the maildir directory (alongside new, cur, tmp). If this exists, it assumes the
directory is a maildir++ folder directory, which is one level down from the user ’s toplevel
mailbox directory. This causes it to start at the parent directory instead of the current directory
when calculating the amount of space used.

If maildir_tag is set, the string is expanded for each delivery. This is done after the message has
been written, so that the value of the $message_size variable can be set accurately during the
expansion. If the expansion is forced to fail, the tag is ignored, but a non-forced failure causes
delivery to be deferred. The expanded tag may contain any printing characters except ‘/’. Any
other characters in the string are ignored; if the resulting string is empty, it is ignored. If it starts
with an alphanumeric character, a leading colon is inserted.

When the temporary maildir file is renamed into the new sub-directory, the tag is added to its
name. However, if adding the tag takes the length of the name to the point where the test stat()
call fails with ENAMETOOLONG, the tag is dropped and the maildir file is created with no tag. Tags
can be used to encode the size of files in their names; see quota_size_regex above for an
example.

• If the mailstore_format option is true, each message is written as two files in the given
 directory. A unique base name is constructed from the message id and the current delivery

process, and the files that are written use this base name plus the suffixes .env and .msg. The
.env file contains the message’s envelope, and the .msg file contains the message itself.

During delivery, the envelope is first written to a file with the suffix .tmp. The .msg file is then
written, and when it is complete, the .tmp file is renamed as the .env file. Programs that access
messages in mailstore format should wait for the presence of both a .msg and a .env file before
accessing either of them. An alternative approach is to wait for the absence of a .tmp file.

The envelope file starts with any text defined by the mailstore_prefix option, expanded and
terminated by a newline if there isn’t one. Then follows the sender address on one line, then all
the recipient addresses, one per line. There can be more than one recipient only if the batch
option is set. Finally, mailstore_suffix is expanded and the result appended to the file, followed
by a newline if it does not end with one.

Exim 3.30 [122] appendfile transport (15)

If expansion of the prefix or suffix ends with a forced failure, it is ignored. Other expansion
errors are treated as serious configuration errors, and delivery is deferred.

Exim 3.30 [123] appendfile transport (15)

16. The autoreply transport

The autoreply transport is not a true transport in that it does not cause the message to be transmitted.
Instead, it generates another mail message. It is usually run as the result of mail filtering. A ‘vacation’
message is the standard example.

Autoreply is implemented as a local transport so that it runs under the uid and gid of the local user
and with appropriate current and home directories (see chapter 13). The parameters of the message to
be sent can be specified in the configuration by the options described below, but in the common case
when autoreply is activated as a result of filtering, none of them are normally set, because all the
information is obtained from the filter file.

In an attempt to reduce the possibility of message cascades, messages created by the autoreply
transport always take the form of delivery error messages. That is, the envelope sender field is empty.

There is a subtle difference between directing a message to a pipe transport that generates some text to
be returned to the sender, and directing it to an autoreply transport. This difference is noticeable only
if more than one address from the same message is so handled. In the case of a pipe, the separate
outputs from the different addresses are gathered up and returned to the sender in a single message,
while if autoreply is used, a separate message is generated for each address passed to it.

The private options of the autoreply transport that describe the message are used only when the
address passed to it does not contain any reply information. Thus the message is specified entirely by
the director or by the transport; it is never built from a mixture of options. The remaining private
options (file_optional, group, initgroups, mode, return_message, and user) apply in all cases.

Non-printing characters are not permitted in the header lines generated for the message that autoreply
creates, with the exception of space and tab. Other non-printing characters are converted into escape
sequences. Whether characters with the top bit set count as printing characters or not is controlled by
the print_topbitchars global option.

If any of the generic options for manipulating headers (for example, headers_add) are set on an
autoreply transport, they apply to the copy of the original message that is included in the generated
message when return_message is set. They do not apply to the generated message itself.

If the autoreply transport receives return code 2 from Exim when it submits the message, indicating
that there were no recipients, it does not treat this as an error. This means that autoreplies sent to
$sender_address when this is empty (because the incoming message is a delivery failure report) do
not cause problems.

16.1 Private options for autoreply

bcc Type: string† Default: unset

Specifies the addresses that are to receive ‘blind carbon copies’ of the message when the message is
specified by the transport. The string is expanded.

cc Type: string† Default: unset

Specifies recipients of the message and the contents of the Cc: header when the message is
specified by the transport. The string is expanded.

file Type: string† Default: unset

The contents of the file are sent as the body of the message when the message is specified by the
transport. The string is expanded. If both file and text are set, the text string comes first.

Exim 3.30 [124] autoreply transport (16)

file_expand Type: boolean Default: false

If this is set, the contents of the file named by the file option are subjected to string expansion as
they are added to the message.

file_optional Type: boolean Default: false

If this option is true, no error is generated if the file named by the file option does not exist or
cannot be read.

from Type: string† Default: unset

The contents of the From: header when the message is specified by the transport. The string is
 expanded.

group Type: string Default: unset

If this option is set, it specifies the group under whose gid the delivery process is to be run. If it is
not set, a value associated with a user may be used (see below); otherwise a value must have been
associated with the address by the director which handled it. If the string contains no $ characters,
it is resolved when Exim starts up. Otherwise, the string is expanded at the time the transport is
run, and must yield either a digit string or a name which can be looked up using getgrnam().

headers Type: string† Default: unset

Specified additional RFC 822 headers that are to be added to the message when the message is
specified by the transport. The string is expanded. Several can be given by using ‘\n’ to separate
them. There is no check on the format.

initgroups Type: boolean Default: false

If this option is true and the uid is provided by the transport, the initgroups() function is called
when running the transport to ensure that any additional groups associated with the uid are set up.
By default no additional groups are present.

log Type: string† Default: unset

This option names a file in which a record of every message sent is logged when the message is
specified by the transport (as opposed to the director). The string is expanded.

mode Type: octal integer Default: 0600

If either the log file or the ‘once’ file has to be created, this mode is used.

once Type: string† Default: unset

This option names a file or DBM database in which a record of each recipient is kept when the
message is specified by the transport. The string is expanded. If once_file_size is not set, a DBM
database is used, and it is allowed to grow as large as necessary. If a potential recipient is already in
the database, no message is sent by default. However, if once_repeat specifies a time greater than
zero, the message is sent if that much time has elapsed since a message was last sent to this
recipient. If once is unset, the message is always sent.

If once_file_size is set greater than zero, it changes the way Exim implements the once option.
Instead of using a DBM file to record every recipient it sends to, it uses a regular file, whose size
will never get larger than the given value. In the file, it keeps a linear list of recipient addresses and
times at which they were sent messages. If the file is full when a new address needs to be added,
the oldest address is dropped. If once_repeat is not set, this means that a given recipient may
receive multiple messages, but at unpredictable intervals that depend on the rate of turnover of
addresses in the file. If once_repeat is set, it specifies a maximum time between repeats.

Exim 3.30 [125] autoreply transport (16)

once_file_size Type: integer Default: 0

See once above.

once_repeat Type: time Default: 0s

See once above.

reply_to Type: string† Default: unset

Specifies the contents of the Reply-To: header when the message is specified by the transport. The
string is expanded.

return_message Type: boolean Default: false

If this is set, a copy of the original message is returned with the new message, subject to the
maximum size set in the return_size_limit general configuration option.

subject Type: string† Default: unset

The contents of the Subject: header when the message is specified by the transport. The string is
 expanded.

text Type: string† Default: unset

This specifies a single string to be used as the body of the message when the message is specified
by the transport. The string is expanded. If both text and file are set, the text comes first.

to Type: string† Default: unset

Specifies recipients of the message and the contents of the To: header when the message is
specified by the transport. The string is expanded.

user Type: string Default: unset

If this option is set, it specifies the user under whose uid the delivery process is to be run. If it is
not set, a value must have been associated with the address by the director that handled it. If the
string contains no $ characters, it is resolved when Exim starts up. Otherwise, the string is
expanded at the time the transport is run, and must yield either a digit string or a name which can
be looked up using getpwnam(). When getpwnam() is used, either at start-up time or later, the group
id value associated with the user is taken as the value to be used if the group option is not set.

Exim 3.30 [126] autoreply transport (16)

17. The lmtp transport

The lmtp transport runs the LMTP protocol (RFC 2033) over a pipe to a specified command. It is
something of a cross between pipe and smtp. Exim also has support for using LMTP over TCP/IP;
this is implemented as an option for the smtp transport. Because LMTP is expected to be of minority
interest, the default built-time configure in src/EDITME has it commented out. You need to
ensure that

TRANSPORT_LMTP=yes

is present in your Local/Makefile in order to have the lmtp transport included in the Exim binary.

The private options of the lmtp transport are as follows:

batch Type: string Default: "none"

As for other local transports, by default each address that is directed or routed to an lmtp transport
is handled separately. However, the whole point of lmtp is to be able to pass a single copy of a
message with more than one recipient, so batch should normally be set to something other than the
default.

If it is set to the string ‘domain’, all addresses with the same domain that are directed or routed to
the transport are handled in a single delivery. If it is set to ‘all’, multiple domains are batched. The
list of addresses is included in the Envelope-to: header if envelope_to_add is set. When more than
one address is being delivered, $local_part is not set, and $domain is set only if they all have the
same domain.

batch_max Type: integer Default: 100

This limits the number of addresses that can be handled in a batch.

command Type: string Default: unset

This is a mandatory option, which must be set. The string is a command which is run in a separate
process. It is split up into a command name and list of arguments, each of which is separately
expanded (so expansion cannot change the number of arguments). The command is run directly, not
via a shell. The message is passed to the new process using the standard input and output to operate
the LMTP protocol.

group Type: string Default: unset

If this option is set, it specifies the group under whose gid the delivery process is to be run. If it is
not set, a value associated with a user may be used (see below); otherwise a value must have been
associated with the address by the director which handled it. If the string contains no $ characters,
it is resolved when Exim starts up. Otherwise, the string is expanded at the time the transport is
run, and must yield either a digit string or a name which can be looked up using getgrnam().

initgroups Type: boolean Default: false

If this option is true and the uid is provided by the transport, the initgroups() function is called
when running the transport to ensure that any additional groups associated with the uid are set up.
By default no additional groups are present.

retry_use_local_part Type: boolean Default: true

When a local delivery suffers a temporary failure, both the local part and the domain are normally
used to form a key that is used to determine when next to try the address. This handles common
cases such as exceeding a quota, where the failure applies to the specific local part. However, when
local delivery is being used to collect messages for onward transmission by some other means, a
temporary failure may not depend on the local part at all. Setting this option false causes Exim to
use only the domain when handling retries for this transport.

Exim 3.30 [127] lmtp transport (17)

timeout Type: time Default: 5m

The transport is aborted if the created process does not respond to LMTP commands or message
input within this timeout.

user Type: string Default: unset

If this option is set, it specifies the user under whose uid the delivery process is to be run. If it is
not set, a value must have been associated with the address by the director that handled it. If the
string contains no $ characters, it is resolved when Exim starts up. Otherwise, the string is
expanded at the time the transport is run, and must yield either a digit string or a name which can
be looked up using getpwnam(). When getpwnam() is used, either at start-up time or later, the group
id value associated with the user is taken as the value to be used if the group option is not set.

Here is an example of a typical LMTP transport:

lmtp:
driver = lmtp
command = /some/local/lmtp/delivery/program
batch = all
batch_max = 20
user = exim

This delivers up to 20 addresses at a time, in a mixture of domains if necessary, running as the user
exim.

Exim 3.30 [128] lmtp transport (17)

18. The pipe transport

The pipe transport is used to deliver messages via a pipe to a command running in another process.
This can happen when when a director explicitly directs a message to a pipe transport, and also when
an address is expanded via an alias, filter, or forward file that specifies a pipe command. In this case,
$local_part contains the local part that was aliased or forwarded, while $address_pipe contains the
text of the pipe command itself.

A pipe transport can also be used from a router as a pseudo-remote transport for passing messages for
remote delivery by some means other than Exim.

As pipe is a local transport, it is always run in a separate process, normally under a non-privileged uid
and gid. In the common case, these are the uid and gid belonging to the user whose .forward file
directed the message at the pipe. In other cases the uid and gid have to be specified explicitly, either
on the transport or on the director or router that handled the address. Current and ‘home’ directories
are also controllable. See chapter 13 for details of the local delivery environment.

18.1 Returned status and data
If the command exits with a non-zero return code, the delivery is deemed to have failed, unless either
the ignore_status option is set (in which case the return code is treated as zero), or the return code is
one of those listed in the temp_errors option, which are interpreted as meaning ‘try again later’. In
this case, delivery is deferred.

If the return code is greater than 128 and the command being run is a shell script, it normally means
that the script was terminated by a signal whose value is the return code minus 128.

The return_output option can affect the result of a pipe delivery. If it is set and the command
produces any output on its standard output or standard error files, it is considered to have failed, even
if it gave a zero return code or if ignore_status is set. The output from the command is sent as part of
the delivery failure report. However, if return_fail_output is set, output is returned only when the
command exits with a failure return code, that is, a value other than zero or a code that matches
temp_errors.

18.2 How the command is run
The command line is (by default) broken down into a command name and arguments by the pipe
transport. The allow_commands and restrict_to_path options can be used to restrict the commands
that may be run. Unquoted arguments are delimited by white space; in double-quoted arguments,
backslash is interpreted as an escape character in the usual way. This does not happen for single-
quoted arguments.

String expansion is applied to the command line except when it comes from a traditional .forward file
(commands from a filter file are expanded). The expansion is applied to each argument in turn rather
than to the whole line. For this reason, any string expansion item that contains white space must be
quoted so as to be contained within a single argument. A setting such as

command = /some/path ${if eq{$local_part}{postmaster}{xxx}{yyy}}

will not work, because the expansion item gets split between several arguments. You have to write

command = /some/path "${if eq{$local_part}{postmaster}{xxx}{yyy}}"

to ensure that it is all in one argument. If the whole command line is quoted, then the internal quotes
have to be escaped with backslashes (or single quotes can be used). The expansion is done in this way,
argument by argument, so that the number of arguments cannot be changed as a result, and quotes or
backslashes in inserted variables do not interact with external quoting.

Special handling takes place when an argument consists precisely of the text ‘$pipe_addresses’.
This is not a general expansion variable; the only place this string is recognized is when it appears as

Exim 3.30 [129] pipe transport (18)

an argument for a pipe or transport filter command. It causes each address that is being handled to be
inserted in the argument list at that point as a separate argument. This avoids any problems with
spaces or shell metacharacters, and is of use when a pipe transport is handling groups of addresses in
a batch (see the batch option below).

The resulting command is then run in a subprocess directly from the transport, not under a shell, with
the message supplied on the standard input, and the standard output and standard error both connected
to a single pipe that is read by Exim. The max_output option controls how much output the command
may produce, and the return_output and return_fail_output options control what is done with it.

Not running the command under a shell (by default) lessens the security risks in cases when a
command from a user ’s filter file is built out of data that was taken from an incoming message. If a
shell is required, it can of course be explicitly specified as the command to be run. However, there are
circumstances where existing commands (for example, in .forward files) expect to be run under a
shell and cannot easily be modified. To allow for these cases, there is an option called use_shell,
which changes the way the pipe transport works. Instead of breaking up the command line as just
described, it expands it as a single string and passes the result to /bin/sh. The restrict_to_path option
and the $pipe_addresses facility cannot be used with use_shell, and the whole mechanism is
inherently less secure.

18.3 Environment variables
The following environment variables are set up when the command is invoked:

DOMAIN the local domain of the address
HOME the ‘home’ directory – see below
HOST the host name when called from a router
LOCAL_PART see below
LOGNAME see below
MESSAGE_ID the message’s id
PATH as specified by the path option below

 QUALIFY_DOMAIN the configured qualification domain
SENDER the sender of the message
SHELL /bin/sh
USER see below

The environment option can be used to add additional variables to this environment.

When a pipe transport is called directly from (for example) a smartuser director, LOCAL_PART is set to
the local part of the address. When it is called as a result of a forward or alias expansion, LOCAL_PART

is set to the local part of the address that was expanded. LOGNAME and USER are set to the same value
as LOCAL_PART for compatibility with other MTAs.

HOST is set only when a pipe transport is called from a router as a pseudo-remote transport (for
example, for handling batched SMTP). It is set to the first host name specified by the router (if any).

If the transport’s home_directory option is set, its value is used for the HOME environment variable.
Otherwise, certain directors may set a home directory value, as described in chapter 13.

18.4 Private options for pipe

allow_commands Type: string list† Default: unset

The string is expanded, and then is interpreted as a colon-separated list of permitted commands. If
 restrict_to_path is not set, the only commands permitted are those in the allow_commands list.

They need not be absolute paths; the path option is still used for relative paths. If restrict_to_path
is set with allow_commands, the command must either be in the allow_commands list, or a name
without any slashes that is found on the path. In other words, if neither allow_commands nor

 restrict_to_path is set, there is no restriction on the command, but otherwise only commands that
are permitted by one or the other are allowed. For example, if

Exim 3.30 [130] pipe transport (18)

allow_commands = /usr/ucb/vacation

and restrict_to_path is not set, the only permitted command is /usr/ucb/vacation. The
allow_commands option may not be set if use_shell is set.

batch Type: string Default: "none"

Normally, each address that is directed or routed to a pipe transport is handled separately. In special
cases it may be desirable to handle several addresses at once, for example, when passing a message
with several addresses to a different mail regime (for example, UUCP). If this option is set to the
string ‘domain’, all addresses with the same domain that are directed or routed to the transport are
handled in a single delivery. If it is set to ‘all’, multiple domains are batched. The list of addresses
is included in the Envelope-to: header if envelope_to_add is set. The addresses can also be set up
as separate arguments to the pipe command by means of the specially-recognized argument

 $pipe_addresses (see above). Otherwise, the only difference between this option and bsmtp is the
inclusion of SMTP command lines in the output for bsmtp. When more than one address is being
delivered, $local_part is not set, and $domain is set only if they all have the same domain.

batch_max Type: integer Default: 100

This limits the number of addresses that can be handled in a batch, and applies to both the batch
and the bsmtp options.

bsmtp Type: string Default: "none"

This option is used to set up a pipe transport as a pseudo-remote transport for delivering messages
in batch SMTP format for onward transmission by some non-Exim means. The value of the option
must be one of the strings ‘none’, ‘one’, ‘domain’, or ‘all’. The first of these turns the feature off.
When bstmp is set, the batch option automatically takes the same value. The check_string and
escape_string options are forced to the values

check_string = "."
escape_string = ".."

when batched SMTP is in use. It is usually necessary to suppress the default settings of the prefix
and suffix options. A full description of the batch SMTP mechanism is given in section 48.8. See
also the use_crlf option.

bsmtp_helo Type: boolean Default: false

When this option is set, a HELO line is added to the output at the start of each message written in
batch SMTP format. Some software that reads batch SMTP is unhappy without this.

check_string Type: string Default: unset

As pipe writes the message, the start of each line is tested for matching check_string, and if it
does, the initial matching characters are replaced by the contents of escape_string, provided both
are set. The value of check_string is a literal string, not a regular expression, and the case of any
letters it contains is significant. When the bsmtp option is set, the contents of check_string and
escape_string are forced to values that implement the SMTP escaping protocol. Any settings made
in the configuration file are ignored.

command Type: string† Default: unset

This option need not be set when pipe is being used to deliver to pipes obtained from address
expansions (usually under the instance name address_pipe). In other cases, the option must be set,
to provide a command to be run. It need not yield an absolute path (see the path option below).
The command is split up into separate arguments by Exim, and each argument is separately
expanded, as described in section 18.2 above.

Exim 3.30 [131] pipe transport (18)

current_directory Type: string† Default: unset

If this option is set, it specifies the directory to make current when running the delivery process.
The string is expanded at the time the transport is run. If this is not set, the current directory is
taken from data associated with the address. See chapter 13 for full details of the local delivery
environment.

environment Type: string† Default: unset

This option is used to add additional variables to the environment in which the command runs (see
section 18.3 for the default list). Its value is a string which is expanded, and then interpreted as a
colon-separated list of environment settings of the form ‘<name>=<value>’.

escape_string Type: string Default: unset

See check_string above.

freeze_exec_fail Type: boolean Default: false

Failure to exec the command in a pipe transport is by default treated like any other failure while
running the command. However, if freeze_exec_fail is set, failure to exec is treated specially, and
causes the message to be frozen, whatever the setting of ignore_status.

from_hack Type: boolean Default: false

This option is obsolete and is retained only for backwards compatibility. Its value is ignored. It has
been replaced by check_string and escape_string.

group Type: string Default: unset

If this option is set, it specifies the group under whose gid the delivery process is to be run. If it is
not set, a value associated with a user may be used (see below); otherwise a value must have been
associated with the address by the director which handled it. If the string contains no $ characters,
it is resolved when Exim starts up. Otherwise, the string is expanded at the time the transport is
run, and must yield either a digit string or a name which can be looked up using getgrnam().

home_directory Type: string† Default: unset

If this option is set, its expanded value is used to set the HOME environment variable before running
the command. This overrides any value that is set by the director. If no current directory is supplied
by the director or the transport, the home directory value is used for that as well. See chapter 13 for
details of the local delivery environment.

ignore_status Type: boolean Default: false

If this option is true, the status returned by the subprocess that is set up to run the command is
ignored, and Exim behaves as if zero had been returned. Otherwise, a non-zero status causes an
error return from the transport unless the value is EX_TEMPFAIL, which causes the delivery to be
deferred and tried again later.

initgroups Type: boolean Default: false

If this option is true and the uid for the local delivery is specified by the user option, then the
 initgroups() function is called when running the transport to ensure that any additional groups

associated with the uid are set up.

log_defer_output Type: boolean Default: false

If this option is set, and the status returned by the command is one of the codes listed in
 temp_errors (that is, delivery was deferred), and any output was produced, the first line of it is

written to the main log.

Exim 3.30 [132] pipe transport (18)

log_fail_output Type: boolean Default: false

If this option is set, and the command returns any output, and also ends with a return code that is
neither zero nor one of the return codes listed in temp_errors (that is, the delivery failed), the first
line of output is written to the main log.

log_output Type: boolean Default: false

If this option is set and the command returns any output, the first line of output is written to the
main log, whatever the return code.

max_output Type: integer Default: 20K

This specifies the maximum amount of output that the command may produce on its standard
output and standard error file combined. If the limit is exceeded, the process running the command
is killed. This is intended as a safety measure to catch runaway processes. The limit is applied
whether any return_output option is set or not. Because of buffering effects, the amount of output
may exceed the limit by a small amount before Exim notices.

path Type: string list Default: "/usr/bin"

This option specifies the string that is set up in the PATH environment variable of the subprocess. If
the command option does not yield an absolute path name, the command is sought in the PATH

directories, in the usual way.

pipe_as_creator Type: boolean Default: false

If user is not set and this option is true, the delivery process is run under the uid that was in force
when Exim was originally called to accept the message. If the group id is not otherwise set (via the

 group option above, or by the director that processed the address), the gid that was in force when
Exim was originally called to accept the message is used. Setting this option may be necessary in
order to get some free-standing local delivery agents to work correctly. Note, however, that the
never_users configuration option overrides.

prefix Type: string† Default: see below

The string specified here is expanded and output at the start of every message. The default is the
same as for the appendfile transport, namely

prefix = "From ${if def:return_path{$return_path}{MAILER-DAEMON}}\
 ${tod_bsdinbox}\n"

This is required by the commonly used /usr/ucb/vacation program, but it must not be present if
delivery is to the Cyrus IMAP server, or to the tmail local delivery agent. The prefix can be
suppressed by setting

prefix =

This is also usually necessary when doing batch SMTP deliveries.

restrict_to_path Type: boolean Default: false

When this option is set, any command name not listed in allow_commands must contain no
slashes. The command is searched for only in the directories listed in the path option. This option
is intended for use in the case when a pipe command has been generated from a user ’s .forward
file. This is usually handled by a pipe transport called address_pipe.

retry_use_local_part Type: boolean Default: true

When a local delivery suffers a temporary failure, both the local part and the domain are normally
used to form a key that is used to determine when next to try the address. This handles common
cases such as exceeding a quota, where the failure applies to the specific local part. However, when
local delivery is being used to collect messages for onward transmission by some other means, a
temporary failure may not depend on the local part at all. Setting this option false causes Exim to
use only the domain when handling retries for this transport.

Exim 3.30 [133] pipe transport (18)

return_fail_output Type: boolean Default: false

If this option is true, and the command produced any output and ended with a return code other
than zero or one of the codes listed in temp_errors (that is, the delivery failed), the output is
returned in the delivery error message. However, if the message has a null sender (that is, it is itself
a delivery error message), output from the command is discarded.

return_output Type: boolean Default: false

If this option is true, and the command produced any output, the delivery is deemed to have failed
whatever the return code from the command, and the output is returned in the delivery error
message. Otherwise, the output is just discarded. However, if the message has a null sender (that is,
it is a delivery error message), output from the command is always discarded, whatever the setting
of this option.

suffix Type: string† Default: "\n"

The string specified here is expanded and output at the end of every message. The default is the
same as for the appendfile transport. It can be suppressed by setting

suffix =

and this is usually necessary when doing batch SMTP deliveries.

temp_errors Type: string Default: see below

This option contains a colon-separated list of numbers. If ignore_status is false and the command
exits with a return code that matches one of the numbers, the failure is treated as temporary and the
delivery is deferred. The default setting contains the codes defined by EX_TEMPFAIL and

 EX_CANTCREAT in sysexits.h. If Exim is compiled on a system that does not define these macros, it
assumes values of 75 and 73, respectively.

timeout Type: time Default: 1h

If the command fails to complete within this time, it is killed. This normally causes the delivery to
fail. A zero time interval specifies no timeout. In order to ensure that any subprocesses created by
the command are also killed, Exim makes the initial process a process group leader, and kills the
whole process group on a timeout. However, this can be defeated if one of the processes starts a
new process group.

umask Type: octal integer Default: 022

This specifies the umask setting for the subprocess that runs the command.

use_crlf Type: boolean Default: false

This option causes lines to be terminated with the two-character CRLF sequence (carriage return,
linefeed) instead of just a linefeed character. In the case of batched SMTP, the byte sequence
written to the pipe is then an exact image of what would be sent down a real SMTP connection.

The contents of the prefix and suffix options are written verbatim, so must contain their own
carriage return characters if these are needed. Since the default values for both prefix and suffix
end with a single linefeed, their values almost always need to be changed if use_crlf is set.

use_shell Type: boolean Default: false

If this option is set, it causes the command to be passed to /bin/sh instead of being run directly
from the transport as described in section 18.2. This is less secure, but is needed in some situations
where the command is expected to be run under a shell and cannot easily be modified. The
allow_commands and restrict_to_path options, and the ‘$pipe_addresses’ facility are incompatible
with use_shell. The command is expanded as a single string, and handed to /bin/sh as data for its
-c option.

Exim 3.30 [134] pipe transport (18)

user Type: string Default: unset

If this option is set, it specifies the user under whose uid the delivery process is to be run. If it is
not set, a value must have been associated with the address by the director that handled it. If the
string contains no $ characters, it is resolved when Exim starts up. Otherwise, the string is
expanded at the time the transport is run, and must yield either a digit string or a name which can
be looked up using getpwnam(). When getpwnam() is used, either at start-up time or later, the group
id value associated with the user is taken as the value to be used if the group option is not set.

18.5 Using an external local delivery agent
The pipe transport can be used to pass all messages that require local delivery to a separate local
delivery agent such as procmail. When doing this, care must be taken to ensure that the pipe is run
under an appropriate uid and gid. In some configurations one wants this to be a uid that is trusted by
the delivery agent to supply the correct sender of the message. It may be necessary to recompile or
reconfigure the delivery agent so that it trusts an appropriate user. The following is an example
transport and director configuration for procmail:

transport
 procmail_pipe:

driver = pipe
command = /opt/local/bin/procmail -d $local_part

 return_path_add
 delivery_date_add
 envelope_to_add

check_string = "From "
escape_string = ">From "
user = $local_part
group = mail

director
 procmail:

driver = localuser
transport = procmail_pipe

In this example, the pipe is run as the local user, but with the group set to mail. An alternative is to
run the pipe as a specific user such as mail or exim, but in this case you must arrange for procmail to
trust that user to supply a correct sender address. If you don’t specify either a group or a user option,
the pipe command is run as the local user. The home directory is the user ’s home directory by default.

Note that the command that the pipe transport runs does not begin with

IFS=" "

as shown in the procmail documentation, because Exim does not by default use a shell to run pipe
commands.

The next example shows a transport and a director for a system where local deliveries are handled by
the Cyrus IMAP server.

transport
 local_delivery_cyrus:

driver = pipe
command = /usr/cyrus/bin/deliver \

-m ${substr_1:$local_part_suffix} -- $local_part
user = cyrus
group = mail

 return_output
 log_output

prefix =
suffix =

Exim 3.30 [135] pipe transport (18)

director
 local_user_cyrus:

driver = localuser
suffix = .*
transport = local_delivery_cyrus

Note the unsetting of prefix and suffix, and the use of return_output to cause any text written by
Cyrus to be returned to the sender.

Exim 3.30 [136] pipe transport (18)

19. The smtp transport

The smtp transport delivers messages over TCP/IP connections using the SMTP protocol. The list of
hosts to try can either be taken from the address that is being processed, or specified explicitly for the
transport. Timeout and retry processing (see chapter 33) is applied to each IP address independently.
The private options are as follows:

allow_localhost Type: boolean Default: false

When a host specified in hosts or fallback_hosts (see below) turns out to be the local host, or is
listed in hosts_treat_as_local, Exim freezes the message by default. However, if allow_localhost is
set, it goes on to do the delivery anyway. This should be used only in special cases when the
configuration ensures that no looping will result (for example, a differently configured Exim is
listening on the SMTP port).

authenticate_hosts Type: host list Default: unset

This option is available only when Exim is built to contain support for at least one of the SMTP
authentication mechanisms. It provides a list of servers to which, provided they announce
authentication support, Exim will attempt to authenticate as a client when it connects. See chapter
35 for details.

batch_max Type: integer Default: 500

This controls the maximum number of separate message deliveries that can take place over a single
TCP/IP connection. If the value is zero, there is no limit.

When a message has been successfully delivered over a TCP/IP connection, Exim looks in its hints
database to see if there are any other messages awaiting a connection to the same host. If there are,
a new delivery process is started for one of them, and the current TCP/IP connection is passed on
to it. The new process may in turn create yet another process. Each time this happens, a sequence
counter is incremented, and if it ever gets to the (non-zero) batch_max value, no further messages
are sent on the same TCP/IP connection.

For testing purposes, this value can be overridden by the -oB command line option.

command_timeout Type: time Default: 5m

This sets a timeout for receiving a response to an SMTP command that has been sent out. It is also
used when waiting for the initial banner line from the remote host. Its value must not be zero.

connect_timeout Type: time Default: 5m

This sets a timeout for the connect() function, which sets up a TCP/IP call to a remote host. A
setting of zero allows the system timeout (typically several minutes) to act. To have any effect, the
value of this option must be less than the system timeout. However, it has been observed that on
some systems there is no system timeout, which is why the default value for this option is 5
minutes, a value recommended by RFC 1123.

data_timeout Type: time Default: 5m

This sets a timeout for the transmission of each block in the data portion of the message. As a
result, the overall timeout for a message depends on the size of the message. Its value must not be
zero. See also final_timeout.

delay_after_cutoff Type: boolean Default: true

This option controls what happens when all remote IP addresses for a given domain have been
inaccessible for so long that they have passed their retry cutoff times.

In the default state, if the next retry time has not been reached for any of them, the address is
bounced without trying any deliveries. In other words, Exim delays retrying an IP address after the

Exim 3.30 [137] smtp transport (19)

final cutoff time until a new retry time is reached, and can therefore bounce an address without ever
trying a delivery, when machines have been down for a long time. Some people are unhappy at this
prospect, so...

If delay_after_cutoff is set false, Exim behaves differently. If all IP addresses are past their final
 cutoff time, Exim tries to deliver to those IP addresses that have not been tried since the message

arrived. If there are none, of if they all fail, the address is bounced. In other words, it does not
delay when a new message arrives, but immediately tries those expired IP addresses that haven’t
been tried since the message arrived. If there is a continuous stream of messages for the dead hosts,
unsetting delay_after_cutoff means that there will be many more attempts to deliver to them.

dns_qualify_single Type: boolean Default: true

If the hosts or fallback_hosts option is being used and names are being looked up in the DNS, the
option to cause the resolver to qualify single-component names with the local domain is set.

dns_search_parents Type: boolean Default: false

If the hosts or fallback_hosts option is being used and names are being looked up in the DNS, the
resolver option to enable the searching of parent domains is set. Many resolvers default this option
to be on, but its use in resolving mail addresses has caused problems in cases where wildcard MX
records exist, so the default was changed to false in Exim version 1.80.

fallback_hosts Type: string list Default: unset

String expansion is not applied to this option. The argument must be a colon-separated list of host
names or IP addresses. Fallback hosts can also be specified on routers and directors which then
associate them with the addresses they process; as for the hosts option without hosts_override,
fallback_hosts specified on the transport is used only if the address does not have its own
associated fallback host list. Unlike hosts, a setting of fallback_hosts on an address is not
overridden by hosts_override, and neither does hosts_randomize apply to fallback host lists.

If Exim is unable to deliver to any of the hosts for a particular address, and the errors are not
permanent rejections, the address is put on a separate transport queue with its host list replaced by
the fallback hosts, unless the address was routed via MX records and the current host was in the
original MX list. In that situation, the fallback host list is not used.

Once normal deliveries are complete, the fallback queue is delivered by re-running the same
transports with the new host lists. If several failing addresses have the same fallback hosts (and

 max_rcpt permits it), a single copy of the message is sent.

The resolution of the host names on the fallback list is controlled by the gethostbyname() and
mx_domains options, as for the hosts option. Fallback hosts apply both to cases when the host list
comes with the address and when it is taken from hosts. This option provides a ‘use a smart host
only if delivery fails’ facility.

final_timeout Type: time Default: 10m

This is the timeout that applies while waiting for the response to the final line containing just ‘.’
that terminates a message. Its value must not be zero.

gethostbyname Type: boolean Default: false

If this option is true when the hosts and/or fallback_hosts options are being used, names are
looked up using gethostbyname() instead of using the DNS with MX processing. Of course,
gethostbyname() may in fact use the DNS to look up A (but not MX) records, but it may also
consult other sources of information such as /etc/hosts.

Exim 3.30 [138] smtp transport (19)

helo_data Type: string† Default: "$primary_hostname"

The value of this option is expanded, and used as the argument for the EHLO or HELO command that
starts the outgoing SMTP session.

hosts Type: string list† Default: unset

Hosts are associated with an address by a router such as lookuphost, which finds the hosts by
looking up the address domain in the DNS. However, addresses can be passed to the smtp transport
by any router or director, not all of which provide an associated host list. This option specifies a list
of hosts which are used if the address being processed does not have any hosts associated with it,
or if the hosts_override option is set.

The string is first expanded, before being interpreted as a colon-separated list of host names or IP
addresses. If the expansion fails, delivery is deferred. Unless the failure was caused by the inability
to complete a lookup, the error is logged to the panic log as well as the main log. Host names are
looked up either in the DNS (using MX processing) or using gethostbyname(), depending on the
setting of the gethostbyname option. When Exim is compiled with IPv6 support, if a host that is
looked up in the DNS has both A and AAAA or A6 records, all the addresses are used.

This option is typically used in association with a smartuser director that wants to direct messages
to a particular host or hosts. The given hosts are tried in order, subject to their retry status. This
option is ignored when the address has been routed by a router that supplies a host list (for
example, lookuphost), unless hosts_override is set.

hosts_avoid_tls Type: host list Default: unset

Exim will not try to start a TLS session when delivering to any host that matches this list. See
chapter 38 for details of TLS.

hosts_require_tls Type: host list Default: unset

Exim will insist on using a TLS session when delivering to any host that matches this list. See
chapter 38 for details of TLS.

hosts_override Type: boolean Default: false

If this option is set and the hosts option is also set, any hosts that are attached to the address are
ignored, and instead the hosts specified by the hosts option are always used. This option does not
apply to fallback_hosts.

hosts_max_try Type: integer Default: 5

This option limits the number of IP addresses that will be tried for any one delivery. Some large
domains have very many MX records, each of which may refer to several IP addresses. Trying
every single one of such a long list does not seem sensible; if several at the top of the list fail, it is
reasonable to assume there is some problem that is likely to affect all of them. The value of
hosts_max_try is the maximum number of IP addresses that will actually be tried; any that are
skipped because their retry times have not arrived do not count.

hosts_randomize Type: boolean Default: false

If this option is set on an smtp transport that uses its hosts list, the order of items in the list is
randomized each time it is used. This does not apply to fallback_hosts.

interface Type: string Default: unset

This option specifies which interface to bind to when making an outgoing SMTP call. The string
must be an IP address, for example:

interface = 192.168.123.123

If interface is not set, the system’s IP functions choose which interface to use if there is more than
one. In an IPv6 system, the type of interface specified must be of the same kind as the address to
which the call is being made. If not, it is ignored.

Exim 3.30 [139] smtp transport (19)

keepalive Type: boolean Default: true

This option controls the setting of SO_KEEPALIVE on outgoing socket connections. This causes the
kernel periodically to send some OOB (out-of-band) data on idle connections. The option is
provided for symmetry with the global smtp_accept_keepalive option that has the same effect on
incoming SMTP connections.

max_rcpt Type: integer Default: 100

This option limits the number of RCPT commands that are sent in a single SMTP message transac-
tion. Each set of addresses is treated independently, and so can cause parallel connections to the
same host if remote_max_parallel permits this.

multi_domain Type: boolean Default: true

When this option is set, the smtp transport can handle a number of addresses containing a mixture
of different domains provided they all resolve to the same list of hosts. Turning the option off
restricts the transport to handling only one domain at a time. This is useful if you want to use
$domain in an expansion for the transport, because it is set only when there is a single domain
involved in a remote delivery.

mx_domains Type: domain list Default: unset

If the hosts or fallback_hosts options are being used and names are being looked up in the DNS,
that is, the gethostbyname option is not set, any domain name that matches this list is required to
have an MX record; an A record is not sufficient.

port Type: string Default: see below

This option specifies the TCP/IP port on the server to which Exim connects. If it begins with a digit
it is taken as a port number; otherwise it is looked up using getservbyname(). The default value is
normally ‘smtp’, but if protocol is set to ‘lmtp’, the default is ‘lmtp’.

protocol Type: string Default: "smtp"

If this option is set to ‘lmtp’ instead of ‘smtp’, the default value for the port option changes to
‘lmtp’, and the transport operates the LMTP protocol (RFC 2033) instead of SMTP. This protocol is
sometimes used for local deliveries into closed message stores. Exim also has support for running
LMTP over a pipe to a local process – see chapter 17.

retry_include_ip_address Type: boolean Default: true

Exim normally includes both the host name and the IP address in the key it constructs for indexing
retry data after a temporary delivery failure. This means that when one of several IP addresses for a
host is failing, it gets tried periodically (controlled by the retry rules), but use of the other IP
addresses is not affected.

However, in some dialup environments hosts are assigned a different IP address each time they
connect. In this situation the use of the IP address as part of the retry key leads to undesirable

 behaviour. Setting this option false causes Exim to use only the host name. This should normally be
done on a separate instance of the smtp transport, set up specially to handle the dialup hosts.

serialize_hosts Type: host list Default: unset

Because Exim operates in a distributed manner, if several messages for the same host arrive at
around the same time, more than one simultaneous connection to the remote host can occur. This is
not usually a problem except when there is a slow link between the hosts. In that situation it may
be helpful to restrict Exim to one connection at a time. This can be done by setting serialize_hosts
to match the relevant hosts.

Exim implements serialization by means of a hints database in which a record is written whenever a
process connects to one of the restricted hosts, and deleted when the connection is completed.
Obviously there is scope for records to get left lying around if there is a system or program crash.

 To guard against this, Exim ignores any records that are more than six hours old.

Exim 3.30 [140] smtp transport (19)

 However, if you set up any serialization, you should also arrange to delete the hints database
whenever your system reboots. The names of the files all start with serialize-<transport name> and
they are kept in the spool/db directory. There may be one or two files per serialized transport,
depending on the type of DBM in use.

service Type: string Default: "smtp"

This option is a synonym for the port option.

size_addition Type: integer Default: 1024

If a remote SMTP server indicates that it supports the SIZE option of the MAIL command, Exim uses
this to pass over the message size at the start of an SMTP transaction. It adds the value of
size_addition to the value it sends, to allow for headers and other text that may be added during
delivery by configuration options or in a transport filter. It may be necessary to increase this if a lot
of text is added to messages.

Alternatively, if the value of size_addition is set negative, it disables the use of the SIZE option
 altogether.

tls_certificate Type: string† Default: unset

The value of this option is expanded, and must then be the absolute path to a file which contains
the client’s certificate, for use when sending a message over an encrypted connection. The values of
$host and $host_address are set to the name and address of the server during the expansion. See
chapter 38 for details of TLS.

tls_privatekey Type: string† Default: unset

The value of this option is expanded, and must then be the absolute path to a file which contains
the client’s private key, for use when sending a message over an encrypted connection. The values
of $host and $host_address are set to the name and address of the server during the expansion. See
chapter 38 for details of TLS.

tls_verify_certificates Type: string† Default: unset

The value of this option is expanded, and must then be the absolute path to a file or a directory
containing permitted server certificates, for use when setting up an encrypted connection. The
values of $host and $host_address are set to the name and address of the server during the
expansion. See chapter 38 for details of TLS.

tls_verify_ciphers Type: string† Default: unset

The value of this option is expanded, and must then be a list of permitted ciphers, for use when
setting up an encrypted connection. The values of $host and $host_address are set to the name and
address of the server during the expansion. See chapter 38 for details of TLS.

Exim 3.30 [141] smtp transport (19)

20. Generic options common to both directors and routers

Directors and routers have sufficiently many generic options in common to make it worth documenting
them jointly in this chapter, to save duplication. Any of these options can be used on any director or
router. Subsequent chapters describe the generic options that are specific either to directors or to
routers.

condition Type: string† Default: unset

This option specifies a test that has to succeed for the driver to be called. The string is expanded,
and if the result is a forced failure or an empty string or one of the strings ‘0’ or ‘no’ or ‘false’
(checked without regard to the case of the letters), the driver is not run, and the address is offered
to the next one. This provides a means of applying special-purpose conditions to the running of
directors and routers. The $home variable is available in the expansion for directors that set it up. If
the expansion fails, it causes Exim to panic. Some of the other options below are common special
cases that could in fact be specified using condition.

debug_print Type: string† Default: unset

If this option is set and debugging is enabled (see -d, -v, and debug_level), the string is expanded
and included in the debugging output. This is to help with checking out the values of variables and
so on when debugging driver configurations. For example, if a condition option appears not to be
working, debug_print could be used to output the variables it references. The output happens after
checks for domains, local_parts, suffix and prefix, but before checking require_files and con-

 dition. A newline is added to the text if it does not end with one.

domains Type: domain list† Default: unset

If this option is set, the string is expanded, and is then interpreted as a colon-separated list. Because
of the expansion, if any of the items contain backslash or dollar characters, they must be escaped
with a backslash. If the string is given in quotes, backslashes have to be escaped a second time.

 However, a special case is made for the string ‘$key’, which is commonly used in query-style
lookups. Because such lookups are individually re-expanded later, when they are used, the string
‘$key’ is passed unchanged through the initial overall expansion.

The driver is skipped unless the current domain matches the list. If the match is achieved by means
of a file lookup, the data that the lookup returned for the domain is placed in the $domain_data
variable for use in string expansions of the driver ’s private options. For directors, this option is the
means by which a host can handle several independent local domains. For routers, it can be used to
reduce the use of an expensive router such as queryprogram by doing a preliminary plausibility
check on the domain. Note that the current domain may change as routing proceeds, as a router
may replace the original with a different one for subsequent routers to use.

driver Type: string Default: unset

This option must always be set. It specifies which of the available directors or routers is to be used.

errors_to Type: string† Default: unset

Delivery errors for any addresses handled or generated by the director or router are sent to the
address that results from expanding this string, if it is set, and if it verifies as valid. In other words,
this option sets the value of the envelope sender address to be used for deliveries associated with
the driver. If it is unset, or fails to verify, the errors address associated with the incoming address
(normally the sender) is used. A typical use might be

errors_to = aliasmaster

The errors_to setting associated with an address can be overridden if it subsequently passes
through other directors or routers that have their own errors_to settings.

Exim 3.30 [142] generic director/router options (20)

fail_verify Type: boolean Default: false

Setting this option has the effect of setting both fail_verify_sender and fail_verify_recipient to the
same value.

fail_verify_recipient Type: boolean Default: false

If this option is true and an address is accepted by this driver when verifying a recipient,
verification fails. This option has no effect if the verify_recipient option is false.

fail_verify_sender Type: boolean Default: false

If this option is true and an address is accepted by this driver when verifying a sender, verification
fails. This option has no effect if the verify_sender option is false.

fallback_hosts Type: string list Default: unset

String expansion is not applied to this option. The argument must be a colon-separated list of host
names or IP addresses. If a driver queues an address for a remote transport, this host list is
associated with the address, and used instead of the transport’s fallback host list. See the
fallback_hosts option of the smtp transport for further details.

group Type: string Default: see below

If a driver queues an address for a local transport, and the transport does not specify a group, the
group given here is used when running the delivery process. If the string contains no $ characters, it
is resolved when Exim starts up. Otherwise, the string is expanded at the time the director or router
is run, and must yield either a digit string or a name which can be looked up using getgrnam(). For
most directors and routers the default is unset, but for the forwardfile director with
check_local_user set, and for the localuser director, the default is taken from the passwd file. See
also initgroups and user and the discussion in chapter 13.

headers_add Type: string† Default: unset

This option specifies a string of text which is expanded at directing or routing time, and associated
with any addresses that are processed by the driver. If the expanded string is empty, or if the
expansion is forced to fail, the option has no effect. Other expansion failures are treated as
configuration errors.

The expanded string must be in the form of one or more RFC 822 header lines, separated by
newlines (coded as ‘\n’ inside a quoted string). For example:

headers_add = X-added-header: added by $primary_hostname

Exim does not check the syntax of these added headers, except that a newline is supplied at the end
if one is not present. If an address passes through several directors and/or routers as a result of
aliasing or forwarding operations, any headers_add or headers_remove specifications are cumulat-
ive. This does not apply for multiple directors and/or routers that result from the use of ‘unseen’.

At transport time, for each address, all original headers listed in headers_remove are removed, and
those specified by headers_add are added, in the order in which they were attached to the address.
Then any additional headers specified by the transport are added. It is not possible to remove
headers added to an address by headers_add.

Addresses with different headers_add or headers_remove settings cannot be batched.

headers_remove Type: string† Default: unset

The string is expanded at directing or routing time and is then associated with any addresses that
are processed by the driver. If the expansion is forced to fail, the option has no effect. Other
expansion failures are treated as configuration errors. After expansion, the string must consist of a
colon-separated list of header names, not including the terminating colon, for example:

headers_remove = return-receipt-to:acknowledge-to

It is used at transport time as described under headers_add above.

Exim 3.30 [143] generic director/router options (20)

initgroups Type: boolean Default: false

If the driver queues an address for a local transport, and this option is true, and the uid supplied by
the router or director is not overridden by the transport, the initgroups() function is called when
running the transport to ensure that any additional groups associated with the uid are set up. See
also group and user and the discussion in chapter 13.

local_parts Type: string list† Default: unset

If this option is set, the string is expanded, and is then interpreted as a colon-separated list. Because
of the expansion, if any of the items contain backslash or dollar characters, they must be escaped
with a backslash. However, a special case is made for the string ‘$key’, which is commonly used in
query-style lookups. Because such lookups are individually re-expanded later, when they are used,
the string ‘$key’ is passed unchanged through the initial overall expansion.

The driver is run only if the local part of the address matches the list, which is tested in the same
way as a domain list and which may therefore include plain file names, file lookups, and negation.
Because the string is expanded, it is possible to make it depend on the domain, for example:

local_parts = dbm;/usr/local/specials/$domain

If the match is achieved by a lookup, the data that the lookup returned for the local part is placed in
the variable $local_part_data for use in expansions of the driver ’s private options. You might use
this option, for example, if you have a large number of local virtual domains, and you want to send
all postmaster mail to the same place without having to set up an alias in each virtual domain:

postmaster:
local_parts = postmaster
driver = smartuser
new_address = postmaster@real.dom.ain

more Type: boolean Default: true

If this option is false, and the driver declines to handle an address, no further drivers are tried, and
directing or routing fails. This applies even in the case of address verification where the driver was
not run because the verify option was off (see section 20.1). However, if a router explicitly passes
an address to the following router by means of the setting

self = pass

or by some other means, the setting of more is ignored.

require_files Type: string list† Default: unset

The value of this option is first expanded and then interpreted as a colon-separated list of strings. If
the option is used on a localuser director, or on a forwardfile director that has either of the
check_local_user or file_directory options set, the expansion variable $home may appear in the
list, referring to the home directory of the user whose name is that of the local part of the address.

If any string is empty, it is ignored. Otherwise, except as described below, each string must be a
fully qualified file path, optionally preceded by ‘!’. The paths are passed to the stat() function to
test for the existence of the files or directories. The driver is skipped if any paths not preceded by
‘!’ do not exist, or if any paths preceded by ‘!’ do exist.

The stat() function is normally run under the exim uid (or root if such is not defined). During the
delivery of a message, it is possible to arrange for this test to be run under a specific uid and gid
(which is set by means of seteuid() and setegid()).

Warning: Unfortunately, this is not possible when the driver is being run to verify addresses for an
incoming SMTP message, because at that time, Exim has given up its root privilege. Therefore, this
facility is useful only if you can set no_verify on drivers that use it.

If an item in a require_files list does not contain any forward slash characters, it is taken to be the
user (and optional group, separated by a comma) to be used for testing subsequent files in the list.

Exim 3.30 [144] generic director/router options (20)

If no group is specified but the user is specified symbolically, the gid associated with the uid is
used; otherwise the gid is not changed. For example:

require_files = mail:/some/file
require_files = ${local_part}:${home}/.procmailrc

The second example works because the require_files string is expanded before use. If a user or
group name in a require_files list does not exist, the require_files condition fails.

If stat() cannot determine whether a file exists or not, delivery of the message is deferred. This can
happen when NFS-mounted filesystems are unavailable.

Sometimes stat() yields the error EACCES (‘Permission denied’). This means that the user is not
permitted to read one of the directories on the file’s path. The default action is to consider this a
configuration error, and delivery is deferred because the existence or non-existence of the file
cannot be determined. However, in some circumstances it may be desirable to treat this condition as
if the file did not exist. If the file name (or the exclamation mark that precedes the file name for
non-existence) is preceded by a plus sign, then the EACCES error is treated as if the file did not exist.
For example:

require_files = +/some/file

This option provides a general mechanism for predicating the running of a director or router on the
existence or non-existence of certain files or directories. A failure to expand the string, or the
presence of a path within it that is not fully qualified causes a panic error. This includes forced
failure, because the whole string is expanded once, before being interpreted as a list. If you want a
particular variant of the expansion to specify that no files are to be checked, you should cause it to
yield an empty string rather than forcing failure.

senders Type: address list† Default: unset

The value of this option is expanded, and the result of the expansion must be a colon-separated
address list, in the same format as used for general options like sender_reject. The driver is run
only if the sender address matches something in the senders list (when it is set). Using this option
on a director makes it possible to implement closed mailing lists (see chapter 42).

There are issues concerning verification when the running of directors or routers is dependent on
the sender. When Exim is verifying an errors_to setting in either forwardfile or aliasfile, it sets the
sender to the null string. If using the -bt option to check a configuration file, it is necessary also to
use the -f option to set an appropriate sender. For incoming mail, the sender is unset when verifying
the sender, but is available when verifying any recipients. If the SMTP VRFY command is enabled, it
must be used after MAIL if the sender address matters.

transport Type: string† Default: unset

Some directors and routers require a transport to be supplied, except when verify_only is set, where
it is not relevant. Others require that a transport not be supplied, and for some it is optional. The
string must be the name of a configured transport instance, or an expandable string, thus allowing
transports to be dynamically selected. At directing or routing time, when a driver decides to accept
an address, the string is expanded, and must yield the name of an available transport. If it does not,
delivery is deferred. This isn’t as safe as fixed transports, whose existence is checked at
initialization time.

unseen Type: boolean Default: false

Setting this option has a similar effect to the unseen command qualifier in filter files. It causes a
copy of the incoming address to be passed on to subsequent drivers, when the current one succeeds
in handling it. It can be used to cause copies of messages to be delivered elsewhere. The effect is to
clone the address before processing one copy of it, so options such as headers_add on the current
director do not affect the other copy.

Exim 3.30 [145] generic director/router options (20)

user Type: string Default: see below

If the driver queues an address for a local transport, and the transport does not specify a user, the
user given here is used when running the delivery process. If the string contains no $ characters, it
is resolved when Exim starts up. Otherwise, the string is expanded at the time the director or router
is run, and must yield either a digit string or a name which can be looked up using getpwnam(). In
the latter case, the group associated with the user is used as a default for the group option.

For most directors and routers the default for user is unset, but for the forwardfile director with
check_local_user set, and for the localuser director, the default is taken from the passwd file. See
also initgroups and group and the discussion in chapter 13.

verify Type: boolean Default: true

Setting this option has the effect of setting verify_sender and verify_recipient to the same value.

verify_only Type: boolean Default: false

If this option is set, the driver is used only when verifying an address or testing with the -bv option,
not when actually doing a delivery, testing with the -bt option, or running the SMTP EXPN

command (see the expn generic option for directors). It can be further restricted to verifying only
senders or recipients by means of verify_sender and verify_recipient.

verify_recipient Type: boolean Default: true

If this option is false, this driver is skipped when verifying recipient addresses. It is usual to set it
false for instances of the smartuser director that have no other conditions imposed on the address.

verify_sender Type: boolean Default: true

If this option is false, this driver is skipped when verifying sender addresses. It is usual to set it
false for instances of the smartuser director that have no other conditions imposed on the address.

20.1 Skipping directors and routers
A number of the generic options that are common to directors and routers are concerned with
controlling which drivers are run in particular circumstances. They interact with each other in the
following way:

If the domain and local part of an address are not in agreement with domains and local_parts (when
set), or if the condition option fails, or if verification is happening and the verify_sender or
verify_recipient option (as appropriate) is turned off, or if verify_only is set and verification is not
happening, the director or router is skipped and the next one is tried.

Otherwise, if the more option is false, no subsequent drivers are ever called, except when a router
explicitly passes an address that routes to the local host on to the following driver, by means of the
generic self option or the host_find_failed option of the domainlist router. The current driver is itself
called unless

• The existence or non-existence of files listed in the require_files option is not as expected, or

• The sender of the message is not in agreement with senders.

Both the senders and condition tests are done after checking for file existence, so that they can
contain references to files whose existence is tested. The order of testing the options which are
expanded strings is: domains, local_parts, require_files, senders, condition. When any test fails, no
further expansions are done.

In the case of directors, there are some additional conditions that are tested here (see section 21.1).

The unseen option causes directing or routing to continue when it would otherwise cease. This is the
complementary action to no_more, which causes it to cease when it would otherwise continue.

The verify, fail_verify, and verify_only options make it possible to separate those addresses which
correspond to a real delivery from those which are recognized, but which do something else if actually
encountered in a message.

Exim 3.30 [146] generic director/router options (20)

For example, a smartuser director might be used to pass all unrecognized local parts to a script that
tries to generate a helpful error message, or to a different machine that might be able to handle them.
This means that no local part will ever cause a directing failure. However, if (for example) verification
of senders is taking place (the sender_verify main configuration option), you probably don’t want
<random-local-part@your.domain> to be accepted. The solution is to set no_verify or no_verify_
sender on the smartuser director.

On our systems in Cambridge we can identify users whose accounts have recently been cancelled, and
their mail is piped to a script which sends back a more helpful message than ‘user unknown’.
Verification of such local parts as senders should fail, but just setting no_verify on the director doesn’t
work, because the local part is then passed to a localuser director that may still find it in the password
file. (Initially, cancellation just resets the password.) This is the sort of case for which fail_verify was
invented. It makes it possible to fail a set of local parts that is defined by what a specific director
matches.

Exim 3.30 [147] generic director/router options (20)

21. Additional generic options for directors

The following additional generic options apply to all directors, in addition to the generic options
common to both directors and routers which are described in chapter 20. Directors are concerned with
addresses whose domains match something in local_domains, or which have been explicitly deter-
mined to be local by a router.

current_directory Type: string† Default: unset

This option associates a current directory with any address that a director directs to a local
transport. This can happen either because a transport is explicitly configured for the director, or
because it generates a delivery to a file or a pipe. During the delivery process (that is, at transport
time), this option string is expanded and is set as the current directory, unless overridden by a
setting on the transport. See chapter 13 for details of the local delivery environment. The
forwardfile director handles this option in a special way (see section 24.6).

expn Type: boolean Default: true

If this option is turned off, the director is skipped when testing an address as a result of processing
an SMTP EXPN command. You might, for example, want to turn it off on a director for users’
.forward files, while leaving it on for the system alias file. The use of the SMTP EXPN command is
permitted only from hosts that match the smtp_expn_hosts main configuration option.

This option is specific to directors because EXPN applies only to local addresses, so no address that
is an argument to EXPN is ever passed to any router. When Exim is running an EXPN command, it is
similar to testing an address with -bt. Compare VRFY, whose counterpart is -bv.

home_directory Type: string† Default: unset

This option associates a home directory with any address that a director directs to a local transport.
This can happen either because a transport is explicitly configured for the director, or because it
generates a delivery to a file or a pipe. During the delivery process (that is, at transport time), the
option string is expanded and is set as the home directory, unless overridden by a setting on the
transport. This means that the expansion variable $home does not take on this value at directing
time. In particular, it cannot be used in the require_files option. See chapter 13 for details of the
local delivery environment. The forwardfile and localuser directors handle this option in a special
way (see section 24.6).

new_director Type: string Default: unset

Sometimes an administrator knows that it is pointless to reprocess addresses generated from alias or
forward files with the same director again. For example, if an alias file translates real names into
login ids there is no point searching the alias file again, especially if it is a large file.

The new_director option can be set to the name of any director instance. It causes the directing of
any generated local addresses to start at the named director instead of the first director. The named
director can be any configured director. This option has no effect if the director in which it is set
does not generate new addresses, or if such addresses are not in local domains.

prefix Type: string list Default: unset

If this option is set, the director is skipped unless the local part starts with one of the given strings,
or the prefix_optional option is true. The list is scanned from left to right, and the first prefix that
matches is used. A limited form of wildcard is available; if the prefix begins with an asterisk, it
matches the longest possible sequence of arbitrary characters at the start of the local part. An
asterisk should therefore always be followed by some character that does not occur in normal local
parts. Wildcarding can be used to set up multiple user mailboxes, as described in chapter 41.

While the director is running, the prefix is removed from the local part, and is available in the
expansion variable local_part_prefix. If the director succeeds, this remains true during subsequent

 delivery.

Exim 3.30 [148] generic director options (21)

The prefix facility is commonly used to handle local parts of the form owner-something. Another
common use is to support local parts of the form real-username to bypass a user ’s .forward file –
helpful when trying to tell a user their forwarding is broken – by placing a director like this one
immediately before the director that handles .forward files:

real_localuser:
driver = localuser
transport = local_delivery
prefix = real-

If both prefix and suffix are set for a director, both conditions must be met if not optional. Care
must be taken if wildcards are used in both a prefix and a suffix on the same director. Different
separator characters must be used to avoid ambiguity.

prefix_optional Type: boolean Default: false

See prefix above.

suffix Type: string list Default: unset

This option operates in the same way as prefix, except that the local part must end (rather than
start) with the given string, the suffix_optional option determines whether the suffix is mandatory,
and the wildcard * character, if present, must be the last character of the suffix. This option facility
is commonly used to handle local parts of the form something-request and multiple user mailboxes
of the form username-foo.

suffix_optional Type: boolean Default: false

See suffix above.

21.1 Skipping directors
Section 20.1 above describes the circumstances in which the generic options that are common to both
directors and routers cause a driver to be skipped. Directors have additional generic options which
impose some further condition.

The new_director generic option causes the directing of a generated local address to start at a
particular director, thus skipping those above it for that address.

Processing of the prefix and suffix options does not happen until after the check of local_parts is
done, so the local part that is checked at that stage is the full local part. If you want to select a director
based on a partial local part, you can use a regular expression, or make use of the condition option to
do more complicated processing (such as looking up a prefix-stripped local part in a file).

The following additional conditions, which are applied after the initial checks on the domain etc.,
prevent the current director from being run:

• An SMTP EXPN command is being processed and the director ’s expn option is turned off, or

• There is a prefix or suffix mismatch, or

• The address was generated by aliasing or forwarding and is identical to an ancestor address that
was processed by this director. This restriction breaks addressing loops.

Exim 3.30 [149] generic director options (21)

22. Options common to the aliasfile and forwardfile
directors

The aliasfile and forwardfile directors have a lot in common. Each of them generates a list of new
destinations from an incoming address; the main difference is in the way the list is obtained. As Exim
has developed, they have grown more and more similar, and one day they may merge into a single
director. There are a substantial number of private options that are identical in both these directors, so
in order to avoid too much duplication, these common options are described separately in this chapter.

check_ancestor Type: boolean Default: false

This option is concerned with handling generated addresses which are the same as some address in
the list of aliasing or forwarding ancestors of the current address. Although it is turned off by
default in the code, it is set in the default configuration file for handling users’ .forward files. It is
recommended for this use of the forwardfile director, but is not commonly set for aliasfile.

When check_ancestor is set, if a generated address is the same as any ancestor of the current
address, it is not used, but instead a copy of the current address is passed on to subsequent
directors. This helps in the case where local part A is aliased to B, and B has a .forward file
pointing back to A. For example: ‘Joe.Bloggs’ is aliased to ‘jb’ and ~jb/.forward contains:

\Joe.Bloggs, <other item(s)>

Without the check_ancestor setting, either local part (‘jb’ or ‘joe.bloggs’) gets processed once by
each director and so ends up as it was originally. If ‘jb’ is the real mailbox name, mail to ‘jb’ gets
delivered (having been turned into ‘joe.bloggs’ by the .forward file and back to ‘jb’ by the alias),
but mail to ‘joe.bloggs’ fails. Setting check_ancestor on the forwardfile director prevents it from
turning ‘jb’ back into ‘joe.bloggs’ when that was the original address.

directory_transport Type: string† Default: unset

An aliasfile or forwardfile director sets up a direct delivery to a directory when a path name
ending with a slash is specified as a new ‘address’. The transport used is specified by this option,
which, after expansion, must be the name of a configured transport.

directory2_transport Type: string† Default: unset

An aliasfile or forwardfile director sets up an alternative direct delivery to a directory when a path
name ending with two slashes is specified as a new ‘address’. The transport used is specified by this
option, which, after expansion, must be the name of a configured transport.

file_transport Type: string† Default: unset

An aliasfile or forwardfile director sets up a direct delivery to a file when a path name not ending
in a slash is specified as a new ‘address’. The transport used is specified by this option, which, after
expansion, must be the name of a configured transport.

forbid_file Type: boolean Default: false

If this option is true, this director may not generate a new address which specifies delivery to a
local file or directory. If it attempts to do so, a delivery failure occurs.

forbid_include Type: boolean Default: false

If this option is true, items of the form

:include:<path name>

are not permitted in alias or forward files, and if one is encountered, the message is frozen.

Exim 3.30 [150] aliasfile & forwardfile common options (22)

forbid_pipe Type: boolean Default: false

If this option is true, this director may not generate a new address which specifies delivery to a
pipe. If it attempts to do so, a delivery failure occurs.

freeze_missing_include Type: boolean Default: true

If a file named by the ‘include’ mechanism fails to open, delivery is frozen if this option is true.
Otherwise, delivery is just deferred. Unsetting this option can be useful if included files are NFS
mounted and may not always be available.

hide_child_in_errmsg Type: boolean Default: false

If this option is set true, it prevents Exim from quoting a child address if it generates a bounce or
delay message for it. Instead it says ‘an address generated from <the top level address>’. Of course,
this applies only to bounces generated locally. If a message is forwarded to another host, its bounce
may well quote the generated address.

modemask Type: octal integer Default: 022

This specifies mode bits which must not be set for a forward file, or for an alias file which is an
actual file. It does not apply when aliases are being looked up using a database query. If any of the
forbidden bits is set, delivery is deferred.

one_time Type: boolean Default: false

Sometimes the fact that Exim re-evaluates aliases and reprocesses forward files each time it tries to
deliver a message causes problems. This is particularly true in the case of mailing lists and so is
more likely to be a problem with forward files than with alias files.

If one_time is set and any addresses generated by the director fail to deliver at the first attempt, the
failing addresses are added to the message as ‘top level’ addresses, and the parent address that
generated them is marked ‘delivered’. Thus, aliasing or forwarding does not happen again at the
next delivery attempt. Warning: This means that any header line addition or removal that is
specified by this director will be lost if delivery does not succeed at the first attempt.

To ensure that the director generates only addresses (as opposed to pipe or file deliveries or auto-
replies) forbid_file and forbid_pipe must also be set, and for forwardfile with filter set,

 forbid_reply must also be set.

The original top-level address is remembered with each of the generated addresses, and is output in
any log messages. However, any intermediate parent addresses are not recorded. This makes a

 difference to the log only if log_all_parents is set. It is expected that one_time will typically be
used for mailing lists, where there is normally just one level of expansion.

owners Type: string list Default: unset

This specifies a list of permitted owners for a forward file, or for an alias file which is an actual file.
It does not apply when aliases are being looked up using a database query. In the case of

 forwardfile, this list is in addition to the local user when check_local_user is set. If owners is
unset (and check_local_user is false for forwardfile), no check on the ownership is done. If the file
is not correctly owned, delivery is deferred and the message is frozen.

owngroups Type: string list Default: unset

This specifies a list of permitted groups for a forward file, or for an alias file which is an actual file.
It does not apply when aliases are being looked up using a database query. In the case of

 forwardfile, the list is addition to the local user ’s group in the case when check_local_user is set.
 However, group ownership of forward files is checked only when check_group (an option private

to forwardfile) is set. If owngroups is unset, no check on the file’s group is done. If the file’s
group is incorrect, the delivery is deferred and the message is frozen.

Exim 3.30 [151] aliasfile & forwardfile common options (22)

pipe_transport Type: string† Default: unset

An aliasfile or forwardfile director sets up a direct delivery to a pipe when a string starting with a
vertical bar character is specified as a new ‘address’. The transport used is specified by this option,
which, after expansion, must be the name of a configured transport.

qualify_preserve_domain Type: boolean Default: false

If this is set and an unqualified address (one without a domain) is generated, it is qualified with the
domain of the incoming address instead of the global setting in qualify_recipient.

rewrite Type: boolean Default: true

If this option is set false, addresses generated by the director are not subject to address rewriting.
Otherwise, they are treated like new addresses.

skip_syntax_errors Type: boolean Default: false

If skip_syntax_errors is set, a malformed address in an alias list or a non-filter forward file that
causes a parsing error is skipped, and an entry is written to the main log. This may be useful for
mailing lists that are automatically managed, but note the inherent danger.

For aliasfile, Exim always considers it to be an error if no addresses at all are generated, even if
this option is set. However, for forwardfile, if all the addresses in the list are malformed, the
original address is passed on to subsequent directors.

If skip_syntax_errors is set for an Exim filter file, any syntax error in the filter file causes filtering
to be abandoned, the incident is logged, and the address is passed on to the next director.

syntax_errors_text Type: string† Default: unset

See syntax_errors_to.

syntax_errors_to Type: string Default: unset

This option applies only when skip_syntax_errors is set. If any addresses are skipped because of
syntax errors, a mail message is sent to the address specified by syntax_errors_to, giving details of
the failing address(es). If syntax_errors_text is set, its contents are expanded and placed at the
head of the error message. Often it will be appropriate to set syntax_errors_to to be the same
address as the generic errors_to option.

Exim 3.30 [152] aliasfile & forwardfile common options (22)

23. The aliasfile director

The aliasfile director expands local parts by consulting a file or database of aliases. An incoming local
part is looked up, and the result is a list of one or more replacement addresses, file names, pipe
commands or certain special items. The expansion may safely contain the same local part as the input
as one of its items, because a director is automatically skipped if it has an identical ancestor that was
processed by that director. For the case of a new alias address that is identical to the input address, this
rule means in effect that it starts its processing at the following director.

The alias list can be obtained from a text file that is searched linearly, a DBM direct-access file, a NIS
or NIS+ map, an LDAP database, or any other kind of lookup supported by Exim (see chapter 6).

Unless the locally_caseless option has been set false, local parts are forced to lower case, and so the
keys in alias files should normally be in lower case. For linearly searched files this isn’t in fact
necessary, because the searching is done in a case-independent manner, but it is relevant for other
forms of alias lookup. The exim_dbmbuild utility can be used to convert a text file into a DBM
database; the keys are lower-cased by default.

23.1 Specifying a transport for aliasfile
The generic transport option must not be specified for aliasfile when it is fulfilling a traditional
aliasing function. If transport is specified, the director behaves differently, and doesn’t really ‘alias’ at
all. Its lookup facilities are used as a means of validating the incoming address, but if it is successful,
the message is directed to the given transport while retaining the original address. The data that is
returned from the lookup is not used. For example, a file containing a list of cancelled users can be
used to direct messages addressed to them to a particular script.

Another common use of aliasfile with a transport is for handling local deliveries without reference to
/etc/passwd. Local parts are validated by using aliasfile to look them up in a file or database, which
can also be used to hold information for use during delivery (for example, the uid to use, or the
location of the mailbox). There is a sample configuration that gives more detail.

23.2 Alias file format
A textual alias file to be searched linearly consists of entries that start with the alias name, terminated
by a colon or white space. However, a colon must be used if data for the alias starts with a colon,
because white space is permitted between the alias name and its terminating colon. This is Exim’s
standard lsearch format (see chapter 6).

The remainder of the entry, up to the end of the line, consists of a list of addresses, file names, pipe
commands, or certain special items (see below). The items in the list are separated by commas. The
list can be continued over several lines by starting each of the continuation lines with white space. A
single space is retained at each junction. However, a comma is still required following an item that
ends at the end of a line, because the lsearch lookup code removes newlines from the string it returns.

Lines in textual alias files that start with a # character are comments, and are ignored, and a # may
also appear following a comma in an item list, in which case everything after the # is ignored. Other
forms of alias file (DBM, NIS, LDAP, etc.) involve lookups using the local part as a key on files and
databases. The value returned is a list of items separated by commas or newlines. The returned list is
normally used exactly as it stands, but if the expand option is set, it is first passed through the string
expansion mechanism.

By default, alias names are simple local parts such as ‘postmaster ’, but if the include_domain option
is set, they must contain both a local part and a domain, thus allowing aliases for more than one
domain to be held in a single file.

It is possible to set up a default in an alias file that uses a single-key lookup type. This matches
incoming local parts that do not match any other entry when the lookup type name is followed by an

Exim 3.30 [153] aliasfile director (23)

asterisk, for example dbm* (see section 6.6). For query-style lookups, the queries option specifies a
list of queries to be tried.

23.3 Types of alias item
If an item is entirely enclosed in double quotes, these are removed. Otherwise double quotes are
retained because some forms of mail address require their use (but never to enclose the entire address).
In the following description, ‘item’ refers to what remains after any surrounding double quotes have
been removed. An item may safely be the same as the local part currently under consideration, because
any director is automatically skipped if any ancestor has the same local part and was processed by that
director.

• If an item begins with ‘\’ and the rest of the item parses as a valid RFC 822 address that does not
include a domain, the item is qualified using the domain of the incoming address. The use of ‘\’
makes a difference only if there is more than one local domain. In the absence of a leading ‘\’,
unqualified addresses are qualified using the value in qualify_recipient, unless qualify_

 preserve_domain is set. It is not necessary to include ‘\’ in aliases to prevent directing loops,
because Exim has its own method of loop detection.

• An item is treated as a pipe command if it begins with ‘|’ and does not parse as a valid RFC 822
address that includes a domain. A transport for running the command must be specified by the
pipe_transport option. Either the director or the transport must specify a user and group under
which to run the delivery.

Either single or double quotes can be used for enclosing the individual arguments of the pipe
command; no interpretation of escapes is done for single quotes. If the command contains a
comma character, it is necessary to put the whole item in double quotes, for example:

"|/some/command ready,steady,go"

since items are terminated by commas. Do not, however, quote just the command. An item
such as

|"/some/command ready,steady,go"

is interpreted as a pipe with a rather strange command name, and no arguments.

• An item is interpreted as a path name if it begins with ‘/’ and does not parse as a valid RFC 822
address that includes a domain. For example,

/home/world/minbari

is treated as a file name, but

/s=molari/o=babylon/@x400gate.way

is treated as an address. For a file name, a transport must be specified using the file_transport
option. However, if the generated path name ends with a forward slash character, it is interpreted
as a directory name rather than a file name, and directory_transport is used instead. If it ends
with two slashes, directory2_transport is required. This makes it possible to support two

 different kinds of directory delivery simultaneously.

If a generated path is /dev/null, delivery to it is bypassed at a high level, and the log entry shows
 ‘**bypassed**’ instead of a transport name. This avoids the need to specify a user and group,

which are necessary for a genuine delivery to a file. When the file name is not /dev/null, either
the director or the transport must specify a user and group under which to run the delivery.

• An item of the form

:include:<path name>

may appear in an alias file, in which case a list of further items is taken from the given file and
included at that point. The items in the list are separated by commas or newlines and are not
subject to expansion, even when the expand option is set. If this is the first item in an alias list, a
colon must be used to terminate the alias name. This example is incorrect:

Exim 3.30 [154] aliasfile director (23)

list1 :include:/opt/lists/list1

It must be given as

list1: :include:/opt/lists/list1

• Sometimes you want to throw away mail to a particular local part. An alias entry with no
addresses causes Exim to generate an error, so that cannot be used. However, another special
item that may appear in an alias file is

:blackhole:

which does what its name implies. No delivery is done for it, and no error message is generated.
If this is the first item in an alias list, a colon must be used to terminate the alias name.

This used to be more efficient than directing a message to /dev/null because it happens at
directing time, and also there was no need to specify a user and group to run the transport
process for delivery to a file. However, from Exim version 1.90 onwards /dev/null is recognized

 specially, and handled in essentially the same way as :blackhole:.

• An attempt to deliver to a particular local part can be deferred or forced to fail by aliasing the
local part to

:defer:
or

 :fail:

respectively. As this is normally the only item in an alias list, a colon must be used to terminate
the alias name. When an alias list contains such an item, it applies to the entire alias; any other
items in the list are ignored (:blackhole: is different). Any text following :fail: or :defer: is
placed in the error text associated with the failure. For example:

X.Employee: :fail: Gone away, no forwarding address

In the case of an address that is being verified for the SMTP RCPT or VRFY commands, the text is
included in the SMTP error response, which has a 451 code for a :defer: failure, and 550 for

 :fail:. In other cases it is included in the error message that Exim generates.

Normally the error text is the rest of the alias entry – a comma does not terminate it – but a
newline does act as a terminator. Newlines are not normally present in alias expansions. In

 lsearch lookups they are removed as part of the continuation process, but they may exist in other
kinds of lookup and in :include:d files.

During message delivery, an alias containing :fail: causes an immediate failure of the incoming
address, whereas :defer: causes the message to remain on the queue so that a subsequent delivery
attempt can happen at a later time. If an address is :defer:red for too long, it will ultimately fail,
since normal retry rules apply.

• Sometimes it is useful to use a search type with a default (see chapter 6) for aliases. However,
there may be a need for exceptions to the default. These can be handled by aliasing them to

:unknown:

This differs from :fail: in that it causes aliasfile to pass the address on to the next director,
whereas :fail: forces directing to fail immediately. If :unknown: is the first item in an alias list, a
colon must be used to terminate the alias name.

23.4 Duplicate addresses
Exim removes duplicate addresses from the list to which it is delivering, so as to deliver just one copy
to each address. This does not apply to deliveries directed at pipes by different immediate parent
addresses, but an indirect aliasing scheme of the type

Exim 3.30 [155] aliasfile director (23)

pipe: |/some/command ${local_part}
localpart1: pipe
localpart2: pipe

does not work with a message that is addressed to both local parts, because when the second is aliased
to the intermediate local part ‘pipe’ it gets discarded as being the same as a previously handled
address. However, a scheme such as

localpart1: |/some/command ${local_part}
localpart2: |/some/command ${local_part}

does result in two different pipe deliveries, because the immediate parents of the pipes are distinct.

23.5 Repeated alias expansion
When a message cannot be delivered to all of its recipients immediately, leading to two or more
delivery attempts, alias expansion is carried out afresh each time for those addresses whose children
were not all previously delivered. If an alias is being used as a mailing list, this can lead to new
members of the list receiving copies of old messages. The one_time option can be used to avoid this.

23.6 Errors in alias files
If skip_syntax_errors is set, a malformed address that causes a parsing error is skipped, and an entry
is written to the main log. This may be useful for mailing lists that are automatically managed, but
note the inherent danger. Otherwise, if an error is detected while generating the list of new addresses,
the message is frozen, except for the special case of inability to open an included file, when
no_freeze_missing_include is set. In this case, delivery is simply deferred.

23.7 Aliasfile private options
This section lists the private options that aliasfile does not have in common with forwardfile. Those
that they share are given in chapter 22.

expand Type: boolean Default: false

If this option is set true, the text obtained by looking up the local part is passed through the string
expansion mechanism before being interpreted as a list of alias items. Addresses that are subse-
quently added by means of the ‘include’ mechanism are not expanded.

file Type: string† Default: unset

This option specifies the name of the alias file, and it must be set if search_type specifies a single-
key lookup; if it does not, an error occurs. (For query-style lookups, query must be set instead.)
See chapter 6 for details of different lookup styles. The string is expanded before use; if expansion
fails, Exim panics. The resulting string must be an absolute path for linear search and DBM
lookups. If the original string does not start with ‘/’ or ‘$’ in these cases, Exim gives a configur-
ation error when it starts up; otherwise, if an expanded string does not begin with ‘/’ delivery is

 frozen.

forbid_special Type: boolean Default: false

If this option is set, the special items :defer:, :fail:, :blackhole: and :unknown: are forbidden. If
any are encountered, delivery is deferred.

include_domain Type: boolean Default: false

Setting this option true causes the key that is looked up to be ‘local-part@domain’ instead of just
‘local-part’. Thus a single file can be used to hold aliases for many local domains. This option has
no effect if the search type specifies a query-style lookup.

If you want include defaults for each domain in an alias file in the form

*@domain1: default@domain1
*@domain2: default@domain2

Exim 3.30 [156] aliasfile director (23)

then you need to include ‘*@’ in the search type (for example, dbm*@). See section 6.1 for details
of this kind of search.

optional Type: boolean Default: false

For a single-key lookup type, if the file cannot be opened because it does not exist (the ENOENT

error) and this option is set, the director simply declines to handle the address. Otherwise any
failure to open the file causes an entry to be written to the log and delivery to be deferred.

For a query-style lookup type, optional causes the director to decline if no query can be completed
(for example, all databases are down). Without optional, delivery is deferred.

queries Type: string† Default: unset

This option is an alternative to query; the two options are mutually exclusive. The difference is that
queries contains a colon-separated list of queries, which are tried in order until one succeeds or
defers, or all fail. Any colon characters actually required in an individual query must be doubled, in
order that they not be treated as query separators.

query Type: string† Default: unset

This option specifies a database query, and either it or queries must be set if search_type specifies
a query-style lookup; if neither is set, an error occurs. (For single-key lookups, file must be set
instead.) See chapter 6 for details of different lookup styles. The query is expanded before use, and
would normally contain a reference to the local part. For example,

search_type = nisplus
query = [alias=${local_part}],mail_aliases.org_dir:expansion

could be used for a NIS+ lookup. Sometimes a lookup cannot be completed (for example, a NIS+
database might be inaccessible) and in this case the director causes delivery to be deferred.

search_type Type: string Default: unset

This option must be set to the name of a supported search type (‘lsearch’, ‘dbm’, etc.), specifying
the type of data lookup. For query-style lookups, the query option specifies the search query, and
file must not be set. For the other search types, file is required and query must not be set. See
chapter 6 for details of the different lookup styles.

Single-key search types for aliasfile can be preceded by partial- and/or followed by *. The
former isn’t likely to be useful very often, but the latter provides a default facility. Note, however,
that if two addresses in the same message provoke the use of the default, only one copy gets
delivered, but any added Envelope-to: header contains all the original addresses. Exceptions to the
default can be set up by aliasing them to :unknown:.

Exim 3.30 [157] aliasfile director (23)

24. The forwardfile director

The forwardfile director can be used for two different but related operations. Its effect is to replace a
local part with a list of addresses, file names, or pipe commands, taken from a single file, or from an
inline string. It gets its name from the common case where the file is in a user ’s home directory and is
called .forward, but another common use is for expanding mailing lists, which are discussed in more
detail in chapter 42.

A standard transport must not be specified for this director. That is, the generic transport option must
not be set. A configuration error occurs if one is given. However, the special transports for handling
files, pipes, and autoreplies must be set if needed.

When handling a user ’s .forward file, a uid, gid, and home directory are commonly obtained from the
password file by calling getpwnam(). However, these may alternatively be specified by options to the
director, in which case getpwnam() is not called.

24.1 Forward file items
The contents of the file or inline string are a list of addresses, file names, or pipe commands, separated
by commas or newlines. Items that are empty are ignored. This includes items consisting solely of
RFC 822 address comments. If an item is entirely enclosed in double quotes, these are removed, but
otherwise double quotes are retained, because some forms of mail address require the use of double
quotes, though never enclosing the whole address.

Lines starting with a # character are comments, and are ignored, and # may also appear following a
comma, in which case everything between the # and the end of the line is ignored. If the file is empty,
or contains only blank lines and comments, the director behaves as if it did not exist.

If a message is addressed to two or more different local parts, each of which results in an expansion
that generates an identical file name or pipe command, different deliveries occur, though of course
each delivery process runs with different values in the LOCAL_PART environment variable, and with
different uids (in the common case). This happens only if the immediate ancestors of the pipes or files
are different local parts. If several different local parts generate an intermediate alias which in turn
generates a pipe or file delivery, only a single delivery is done, because the duplicate intermediate
addresses are discarded.

• An address item may safely be the same local part as the one currently under consideration,
because a director is automatically skipped if any ancestor has the same local part and was
processed by that director. Thus a user with login name spqr who wants to preserve a copy of
mail and also forward it somewhere else can set up a file such as

spqr, spqr@st.else.where

without provoking a loop. A backslash before an unqualified local part is permitted for compati-
bility with other mailers, but is not necessary for loop prevention. The presence or absence of a
backslash does, however, make a difference when there is more than one local domain. Without a
backslash, an unqualified local part is qualified with the contents of qualify_recipient unless

 qualify_preserve_domain is set, but if a backslash is present, the local part is always qualified
with the domain of the incoming address.

Care must be taken if there are alias names for local users. For example if the system alias file
 contains

Sam.Reman: spqr

then

Sam.Reman, spqr@reme.else.where

Exim 3.30 [158] forwardfile director (24)

in spqr’s forward file fails on an incoming message addressed to Sam.Reman, because the
aliasfile director does not process Sam.Reman the second time round, having previously done
so. The forward file should really contain

spqr, spqr@reme.else.where

but because this is such a common error, the check_ancestor option (see chapter 22) exists to
provide a way to get round it.

• An item is interpreted as a file name if it begins with ‘/’ and does not parse as a valid RFC 822
address that includes a domain. For example,

/home/world/shadow

is treated as a file name, but

/s=molari/o=babylon/@x400gate.way

is treated as an address. For a file name, a transport must be specified using the file_transport
option. However, if the generated path name ends with a forward slash character, it is interpreted
as a directory name rather than a file name, and directory_transport is used instead. If it ends
with two slashes, directory2_transport is required. This makes it possible to support two

 different kinds of directory delivery simultaneously.

If an item is /dev/null, delivery to it is bypassed at a high level, and the log entry shows
 ‘**bypassed**’ instead of a transport name. This avoids the need for a user and group, which are

necessary for a genuine delivery to a file. When the file name is not /dev/null, either the director
or the transport must specify a user and group under which to run the delivery. If
check_local_user is set, the uid and gid from the passwd file are used as defaults for the generic
user and group options.

• An item is treated as a pipe command if it begins with ‘|’ and does not parse as a valid RFC 822
address that includes a domain. A transport for running the command must be specified by the
pipe_transport option. Either the director or the transport must specify a user and group under
which to run the delivery. If check_local_user is set, the uid and gid from the passwd file are
used as defaults for the generic user and group options.

Both single and double quotes can be used for enclosing individual arguments to the pipe
command; no interpretation of escapes is done for single quotes. If the command contains a
comma character, it is necessary to put the whole item in double quotes, for example:

"|/some/command ready,steady,go"

since items are terminated by commas. Do not, however, quote just the command. An item
such as

|"/some/command ready,steady,go"

is interpreted as a pipe with a rather strange command name, and no arguments.

• Instead of an address, file name, or pipe command, an item of the form

:include:<path name>

may appear, in which case a list of addresses is taken from the given file and included at that
point, unless the forbid_include option is set. There are some security considerations when such
an item is included in a user ’s .forward file:

(i) If the seteuid() function is being used to read the main file as a specific user (see seteuid
below) then the included file is read as the same user.

(ii) Otherwise Exim is running as root at this point. If check_local_user is set, or if an explicit
directory is specified by file_directory, then any included files must be within the home or
given directory, and no symbolic links are permitted below the directory name.

Exim 3.30 [159] forwardfile director (24)

(iii) If neither check_local_user nor file_directory is set when seteuid() is not in use, included
files are not permitted.

24.2 Repeated forwarding expansion
When a message cannot be delivered to all of its recipients immediately, leading to two or more
delivery attempts, forwarding expansion is carried out afresh each time for those addresses whose
children were not all previously delivered. If a forward file is being used as a mailing list, this can lead
to new members of the list receiving copies of old messages. The one_time option can be used to
avoid this.

24.3 Errors in forward files
If skip_syntax_errors is set, a malformed address that causes a parsing error is skipped, and an entry
is written to the main log. This may be useful for mailing lists that are automatically managed, but
note the inherent danger. The option should never be set for users’ .forward files. Otherwise, if any
error is detected while generating the list of new addresses, the message is frozen, except for the
special case of inability to open an included file when no_freeze_missing_include is set. In this case,
delivery is simply deferred.

24.4 Filter files
As an alternative to treating the file as a simple list of addresses, the forwardfile director can be
configured, by means of the filter option, to read a file and interpret it as a list of filtering instructions
if it conforms to a specific format. The instructions can specify various actions such as appending the
message to certain mail folders, or forwarding it to other users, predicated on the content of the
message. Details of the syntax and semantics of filter files are described in a separate document
entitled Exim’s interface to mail filtering; this is intended for use by end users. If filters are permitted
to generate mail messages (see forbid_reply) then the reply_transport option must be set.

24.5 The home directory
The $home expansion variable can be used in a number of local options for forwardfile. Its value
depends on the way the options are set up, as follows:

• If check_local_user is set and file_directory is unset, $home is set to the user ’s home directory
when expanding the file option that specifies a forward or filter file.

• If check_local_user is unset and file_directory is set, $home is set to the expanded value of
 file_directory when expanding the file option. If $home appears in file_directory, its substitution

value is the empty string.

• If both check_local_user and file_directory are set, $home contains the user ’s home directory
when expanding file_directory, but subsequently $home contains the value of file_directory
when expanding the file option.

• If neither check_local_user not file_directory are set, $home is empty.

If the generic require_files option, or any other expanded option, contains $home, it takes the same
value as it does when expanding the file option, and this value is also used for $home if encountered
in a filter file, and as the default value to pass with the address when a pipe or file delivery is
generated.

Note that the value of the home_directory generic option is not used during directing; it specifies a
directory for use at transport time.

24.6 Special treatment of home_directory and current_directory
The generic options home_directory and current_directory (specified in chapter 21) are handled in a
special way by the forwardfile director. Neither has any effect during the running of the director; they

Exim 3.30 [160] forwardfile director (24)

act only when it directs an address to a local transport because it specifies a file name, pipe command,
or autoreply – the values are passed with the address for use at transport time.

If home_directory is not set, the directory specified by file_directory, or if that is not set, the home
directory obtained from check_local_user is used as the default value.

In installations where users’ .forward files are not kept in their home directories, both check_local_
user and file_directory may be set, which leads to the file_directory value being used as the default,
when the actual home directory may be wanted. It is no good specifying

home_directory = $home

because the same value is used for $home. A special string value is therefore provided for use in this
case. If home_directory is set to the string ‘check_local_user’ it is converted into the user ’s home
directory path. The same magic string can also be used for current_directory.

24.7 Forwardfile private options

This section lists the private options that forwardfile does not have in common with aliasfile. Those
that they share are given in chapter 22.

allow_system_actions Type: boolean Default: false

Setting this option permits the use of freeze and fail in filter files. This should not be set on the
director for users’ .forward files, but can be useful if you want to run a system-wide filter for each
address, as opposed to the system filter, which runs just once per message. See chapter 47.

check_group Type: boolean Default: false

The group of the file is checked only when this option is set. If check_local_user is set, the user ’s
default group is permitted; otherwise the group must be one of those listed in the owngroups

 option.

check_local_user Type: boolean Default: true

If this option is true, the local part that is passed to this director is checked to ensure that it is the
login of a local user by calling the getpwnam() function. The director declines to handle the address
if it is not. In addition, when this option is true, the string specified for the file option is taken as
relative to the user ’s home directory if it is not an absolute path, unless the file_directory option
is set.

When this option is set, the local user is always one of the permitted owners of the file, and the
local user ’s uid is used when reading the forward file if the seteuid option is set or if the global
security setting is not ‘setuid’. In addition the uid and gid read from the passwd file are used as
defaults for the generic user and group options.

data Type: string† Default: unset

This option is mutually exclusive with file. One or other of them must be set, but not both. The
contents of data are expanded, and then used as the list of forwarding items, or as a set of filtering
instructions, just as if they were the contents of the file. Essentially, data allows you to provide the
filtering instructions inline, but because it is expanded, you can, for example, look them up in a
database or indexed file. When filtering instructions are used, the string must start off with ‘#Exim
filter ’, and all comments in the string, including this initial one, must be terminated with newline
characters. For example:

data = "#Exim filter\n\
if $h_to: contains Exim then save $home/mail/exim endif"

If you are reading the data from a database where newlines cannot be included, you can use the
${sg} expansion item to turn the escape string of your choice into a newline.

Exim 3.30 [161] forwardfile director (24)

file Type: string† Default: unset

This option is mutually exclusive with data. One or other of them must be set, but not both. The
contents of file are expanded – see above for a discussion of the home expansion variable. If
expansion fails, Exim defers the address and freezes the message. The expanded string is
interpreted as a file name, and must start with a slash character unless check_local_user is true, or
a file_directory option is set. A non-absolute path is interpreted relative to the file_directory
setting if it exists; otherwise it is interpreted relative to the user ’s home directory. The contents of
the file are the list of forwarding items or a set of filtering instructions.

If a non-absolute path is used, Exim uses the stat() function to check the directory before
attempting to open the file therein. If the directory is inaccessible, the delivery to the current
address is deferred. This distinguishes between the cases of a non-existent file (where the director
cannot handle the address, and must decline) and an unmounted NFS directory (where delivery
should be deferred). Thus the difference between the two settings

file = .forward
file = $home/.forward

is that in the second case the directory is not checked with stat().

If the file exists but is empty or contains only blank and comment lines starting with #, Exim
behaves as if it did not exist, and the director declines to handle the address. Note that this is not
the case when the file contains syntactically valid items that happen to yield empty addresses, for
example, items containing only RFC 822 address comments.

file_directory Type: string† Default: unset

The string is expanded before use – see above for a discussion of the home expansion variable.
The option sets a directory path which is used if the file option does not specify an absolute path.
This on its own is not very useful, since the directory string could just as well be prepended to the
file string. However, if a separate directory is given, it is treated like a directory obtained from

 check_local_user, and its existence is tested before trying to open the file. If the directory appears
not to exist, delivery is deferred. Thus, a setting such as

file_directory = /usr/forwards
file = ${local_part}.forward

defers delivery if /usr/forwards appears not to exist. This can be useful if the directory is NFS
mounted. If check_local_user is also set, file_directory takes precedence in determining the
directory name for non-absolute files.

If forwardfile sets up a delivery to a file or a pipe command and the home_directory option is not
set, the directory specified by file_directory, or if that is not set, the home directory obtained from
check_local_user is associated with the address during delivery.

filter Type: boolean Default: false

If this option is set, and the forward file or inline forwarding data starts with the text ‘# Exim
filter ’, it is interpreted as a set of filtering commands instead of a list of forwarding addresses.
Details of the syntax and semantics of filter files are described in a separate document entitled

 Exim’s interface to mail filtering; this is intended for use by end users.

In addition to the commands described therein, there are some extra commands that are permitted
only in system filter files, or if allow_system_actions is set. These are described in chapter 47.

Filter files may contain string expansions, but some administrators may not want to permit those
expansion features that involve accessing files. The options forbid_filter_existstest, forbid_filter_

 lookup, and forbid_filter_perl (see below) can be used to lock out these features.

The logging facility in filter files is available only if the filter is being run under some unprivileged
uid. The system configuration must specify that seteuid() is available, either user or
check_local_user must be set on the director, forbid_filter_log must not be set, and the global
security setting must not be ‘setuid’. Writing the log takes place while the filter file is being

Exim 3.30 [162] forwardfile director (24)

interpreted, that is, at directing time. It does not queue up for later like the delivery commands. The
reason for this is so that a log file need be opened only once for several write operations.

forbid_filter_existstest Type: boolean Default: false

If this option is true, string expansions in filter files are not allowed to make use of the exists
condition.

forbid_filter_logwrite Type: boolean Default: false

If this option is true, use of the logging facility in filter files is not permitted. This is in any case
available only if the filter is being run under some unprivileged uid, which is normally the case for
ordinary users’ .forward files on a system with seteuid() available.

forbid_filter_lookup Type: boolean Default: false

If this option is true, string expansions in filter files are not allowed to make use of lookup items.

forbid_filter_perl Type: boolean Default: false

This option is available only if Exim is built with embedded Perl support. If it is true, string
expansions in filter files are not allowed to make use of the embedded Perl support.

forbid_filter_reply Type: boolean Default: false

If this option is true, this director may not generate an automatic reply message. If it attempts to do
so, a delivery failure occurs. Automatic replies can be generated only from filter files, not from
traditional forward files.

ignore_eacces Type: boolean Default: false

If this option is set and an attempt to open the forward file yields the EACCES error (permission
denied) then forwardfile behaves as if the file did not exist.

ignore_enotdir Type: boolean Default: false

If this option is set and an attempt to open the forward file yields the ENOTDIR error (something on
the path is not a directory) then forwardfile behaves as if the file did not exist.

match_directory Type: string† Default: unset

If this option is set with check_local_user, the user ’s home directory, as obtained from getpwnam(),
must match the given string. If it does not, the director declines to handle the address. The string is
expanded before use. If the expansion fails, Exim defers the address and freezes the message,
unless the failure was explicitly triggered by a ‘fail’ item in a conditional sub-expression in the
expansion, in which case the director just declines to handle the address.

If the expanded string starts with an asterisk, the remainder must match the end of the home
directory name; if it starts with a circumflex, a regular expression match is performed. In fact, the
matching process is the same as is used for domain list items and may include file lookups.

If the pattern starts with an exclamation mark, the user ’s home directory must not match the rest of
the given string. For example, with

match_directory = !^/group

the director declines if the user ’s home directory starts with /group.

reply_transport Type: string† Default: unset

A forwardfile director sets up a delivery to an autoreply transport when a mail or vacation
command is used in a filter file. The transport used is specified by this option, which, after
expansion, must be the name of a configured transport.

Exim 3.30 [163] forwardfile director (24)

seteuid Type: boolean Default: false

This option may not be set unless the compile-time configuration in the OS-specific configuration
files specifies that the seteuid() function is available in the operating system. In addition, either the
check_local_user or the generic user and group options must be set. A configuration error occurs
if these conditions do not hold.

When this option is true, the seteuid() and setegid() functions are called to change the effective uid
and gid before accessing the home directory and the file. If both check_local_user and user are set,
the uid is taken from the latter. If the generic initgroups option is set, initgroups() is called to
initialise the group list with all the user ’s groups. The user remains set during interpretation of a
filter file; if it writes log entries the log file must be accessible to the uid or gid. Changing uid is
necessary in two circumstances:

(i) When Exim is configured to change the effective uid from root to the Exim user (using
 seteuid()) while running the directors. See chapter 55 for details.

(ii) When users’ home directories are NFS mounted, and root access is not exported to the local
host, to allow for cases when the files are not world-readable.

The forwardfile director can detect the first of these cases, and it always uses seteuid(), regardless
of the setting of this option, since it does not make sense to do otherwise.

On a system without the seteuid() function, but with NFS home directories that do not export root,
it is necessary for forward files to be world-readable.

Exim 3.30 [164] forwardfile director (24)

25. The localuser director

The localuser director checks whether the local part of an address is the login of a local user, by
calling the getpwnam() function. If it is, and if other conditions set by options are met, it accepts the
address and sets up a transport for it. The generic transport option must always be specified, unless
the generic verify_only option is set.

The user ’s uid and gid are set up by default to be used while running the delivery process. If the
generic home_directory option (see chapter 21) is unset, the user ’s home directory is passed to the
transport for use during delivery. Setting

home_directory = $home

does not work, because $home is not set during the expansion of home_directory.

When processing the require_files generic option, the value of $home is the value of home_directory
if set, and otherwise the user ’s home directory. Using require_files it is possible to pick out all users
with particular files in their home directories and route their mail to a specific transport. This could be
used, for example, to check for a .procmailrc file and then to direct delivery via procmail if one is
found.

match_directory Type: string† Default: unset

If this option is set, the user ’s home directory, as obtained from getpwnam(), must match the given
string. If it does not, the director declines to handle the address. This provides a way of partitioning
the local users by home directory. The string is expanded before use. If the expansion fails, Exim
defers the address and freezes the message, unless the failure was explicitly triggered by a ‘fail’
item in a conditional sub-expression in the expansion, in which case the director just declines to
handle the address.

If the expanded string starts with an asterisk, the remainder must match the end of the home
directory name; if it starts with a circumflex, a regular expression match is performed. In fact, the
matching process is the same as is used for domain list items and may include file lookups.

If the pattern starts with an exclamation mark, the user ’s home directory must not match the rest of
the given string. For example, with

match_directory = !^/group

the director declines if the user ’s home directory starts with /group.

On central systems at Cambridge University, when a user account is cancelled, it remains in the
password file for a while, with the home directory set to /home/CANCELLED. We use the
match_directory option to detect mail addressed to such users and bounce it with an explanatory
message.

Exim 3.30 [165] localuser director (25)

26. The smartuser director

The smartuser director matches any local part, so it can be used to handle local addresses that all
other directors have declined. It is, of course, subject to the generic director options, so specific
instances can be used for all addresses in certain domains, or all local parts with certain prefixes or
suffixes, or specific local parts, or any other generic condition.

If a transport is specified, smartuser directs the message to that transport, either using the original
address, or, if new_address is set, using a new envelope address. No checking for duplication takes
place. The original address is available to the transport via the expansion variables $original_local_
part and $original_domain.

If no transport is specified, new_address must be set, and smartuser treats its value as if it were a
line from an alias file. It must consist of a comma-separated list of items as defined in section 23.3.
The special values :blackhole:, :defer:, and :fail: (but not :include:) may be used, and file or pipe
items may also appear. If any new address is a duplicate of any other address in the message, it is
discarded.

directory_transport Type: string† Default: unset

A smartuser director sets up a direct delivery to a directory when a path name ending with a slash
is specified as a new ‘address’. The transport used is specified by this option, which, after
expansion, must be the name of a configured transport.

directory2_transport Type: string† Default: unset

A smartuser director sets up an alternative direct delivery to a directory when a path name ending
with two slashes is specified as a new ‘address’. The transport used is specified by this option,
which, after expansion, must be the name of a configured transport.

file_transport Type: string† Default: unset

A smartuser director sets up a direct delivery to a file when a path name not ending in a slash is
specified as a new ‘address’. The transport used is specified by this option, which, after expansion,
must be the name of a configured transport.

forbid_file Type: boolean Default: false

If this option is true, this director may not generate a new address which specifies delivery to a
local file or directory. If it attempts to do so, a delivery failure occurs.

forbid_pipe Type: boolean Default: false

If this option is true, this director may not generate a new address which specifies delivery to a
pipe. If it attempts to do so, a delivery failure occurs.

hide_child_in_errmsg Type: boolean Default: false

If this option is set true, it prevents Exim from quoting a child address if it generates a bounce or
delay message for it. Instead it says ‘an address generated from <the top level address>’. Of course,
this applies only to bounces generated locally. If a message is forwarded to another host, its bounce
may well quote the generated address.

new_address Type: string† Default: unset

When transport is not set, this option is treated like a line from an alias file. Any unqualified
addresses it contains are qualified using the value of qualify_recipient. This is the most common
configuration for smartuser.

When transport is set, new_address specifies a single new address, to replace the current one in
the message’s envelope when it is transported. The address must be qualified (that is, contain an @

 character).

Exim 3.30 [166] smartuser director (26)

In both cases, new addresses are rewritten by Exim’s normal rewriting rules (see chapter 34) unless
the rewrite option is turned off.

The value of new_address is expanded, so settings such as

new_address = ${quote:$local_part}@some.new.host

can be used, or a file lookup on the local part can be done. Note the use of the quote operator
above, to ensure that the local part is quoted if it contains any special characters.

If the expansion fails as a result of an explicit ‘fail’ item in an expansion sub-expression, the
director just declines to handle the address. Otherwise, an expansion failure is treated as a serious
configuration error, and causes a panic, unless panic_expansion_fail is set false, in which case the
same action is taken as for ‘fail’.

panic_expansion_fail Type: boolean Default: true

See new_address above.

pipe_transport Type: string† Default: unset

A smartuser director sets up a direct delivery to a pipe when a string starting with a vertical bar
character is specified as a new ‘address’. The transport used is specified by this option, which, after
expansion, must be the name of a configured transport.

qualify_preserve_domain Type: boolean Default: false

If this is set and an unqualified address (one without a domain) is present in new_address, it is
qualified with the domain of the incoming address instead of the global setting in

 qualify_recipient.

rewrite Type: boolean Default: true

If this option is set false, addresses specified by new_address are not subject to rewriting.

Exim 3.30 [167] smartuser director (26)

27. Additional generic options for routers

The following additional generic options apply to all routers, in addition to the common generic
options for both directors and routers which are described in chapter 20. Routers are concerned with
addresses whose domains do not match something in local_domains.

ignore_target_hosts Type: host list† Default: unset

Although this option is a host list, it would normally contain IP address entries rather than names.
If any host that is looked up by the router matches an item in this list, Exim behaves as if the host
did not exist. This option allows you to cope with rogue DNS entries like

some.remote.domain A 127.0.0.1

by setting

ignore_target_hosts = 127.0.0.1

on the relevant router. Attempts to mail to such a domain then receive the ‘unrouteable domain’
 error, and verifications fail. This option may also be useful for ignoring link local IPv6 addresses.

The string value of ignore_target_hosts is expanded before use as a list, so it is possible to make it
dependent on the domain that is being routed.

pass_on_timeout Type: boolean Default: false

If a router times out during a host lookup, it normally causes deferral of the address. If
pass_on_timeout is set, the address is passed on to the next router, overriding no_more. This may
be helpful for systems that are intermittently connected to the Internet, or those that want to pass to
a smart host any messages that cannot immediately be delivered.

There are occasional other temporary errors that can occur while doing DNS lookups. They are
treated in the same way as a timeout, and this option applies to all of them.

self Type: string Default: "freeze"

This option specifies what is to happen if routing a remote address ends up pointing at the local
host (checked by comparing IP addresses), or at a host whose name matches hosts_treat_as_local.
Normally this indicates either an error in Exim’s configuration (for example, the domain should be
listed as local), or an error in the DNS (for example, the MX shouldn’t point at this host). However,
this situation is not confined to the use of MX records, and the self option can be used on any

 router.

The default action is to freeze the message. The following alternatives are provided for use in
special cases:

• defer
Delivery of the message is tried again later.

• reroute: <domain>
The domain is changed to the given domain, and the address is passed back to be reprocessed
by the directors and routers. No rewriting of headers takes place.

• reroute: rewrite: <domain>
The domain is changed to the given domain, and the address is passed back to be reprocessed
by the directors and routers. Any headers that contain the original domain are rewritten.

• local
The address is passed to the directors, as if its domain were a local domain, even though it
does not match anything in local_domains. This can be used to treat all domains whose
lowest MX records point to the host as local domains. During subsequent directing and
delivery the variable $self_hostname is set to the name of the local host that the router

Exim 3.30 [168] generic router options (27)

encountered. This can be used to distinguish between different cases for hosts with multiple
 names.

• pass
The router declines, passing the address to the following router, and overriding no_more.
During subsequent routing and delivery, the variable $self_hostname contains the name of the
local host that the router encountered. This can be used to distinguish between different cases
for hosts with multiple names. A combination of pass and no_more ensures that only those
addresses that routed to the local host are passed on. Without no_more, addresses that were
declined for other reasons would also be passed to the next router.

In earlier versions of Exim fail_soft was used instead of pass. It will remain as a synonym for
some time.

• fail
The router declines, but the address is not passed to any following routers. Consequently,
delivery fails and an error report is generated.

In earlier versions of Exim fail_hard was used instead of fail. It will remain as a synonym for
some time.

• send
The anomaly is ignored and the message is transmitted anyway. This setting should be used
with extreme caution. It makes sense only in cases where the program that is listening on the
SMTP port is not this version of Exim. That is, it must be some other MTA, or Exim with a

 different configuration file that handles the domain in another way.

When a router just rewrites, that is, does not set up IP addresses, the self option is not relevant.

translate_ip_address Type: string† Default: unset

There exist some rare networking situations (for example, packet radio) where it is helpful to be
able to translate IP addresses generated by normal routing mechanisms into other IP addresses, thus
performing a kind of manual IP routing. This should be done only if the normal IP routing of the
TCP/IP stack is inadequate or broken. Because this is an extremely uncommon requirement, the
code to support this option is not included in the Exim binary unless SUPPORT_TRANSLATE_IP_

 ADDRESS=yes is set in Local/Makefile.

The translate_ip_address string is expanded for every IP address generated by the router, with the
generated address set in $host_address. If the expansion is forced to fail, no action is taken. If it
returns an IP address, that replaces the original address; otherwise the result is assumed to be a host
name – this is looked up using gethostbyname() to produce one or more replacement IP addresses.
For example, to subvert all IP addresses in some specific networks, this could be added to a router:

translate_ip_address = \

 ${lookup{${mask:$host_address/26}}lsearch{/some/file}{$value}fail}

The file would contain lines like

10.2.3.128/26 some.host
10.8.4.34/26 10.44.8.15

You should not make use of this facility unless you really understand what you are doing.

Exim 3.30 [169] generic router options (27)

28. The domainlist router

The domainlist router compares a list of domain patterns with the domain it is trying to route. When a
match is found, the information associated with the pattern can specify several different actions:

• The message can be sent to a specific host, or one of a number of hosts.

• The domain name can be replaced by a new name, which can be

(i) passed to the next router; or

(ii) looked up directly in the DNS, with or without MX processing; or

(iii) looked up using gethostbyname().

Of course, gethostbyname() may well do its own DNS lookup, but it does not do MX processing,
and it may also reference other sources of information, such as /etc/hosts. When Exim is
compiled with IPv6 support, if a host that is looked up in the DNS has both A and AAAA or A6
records, all the addresses are used.

The list of patterns can be specified as an option string, or looked up in a file or database, or both; at
least one of route_list, route_file, route_query, or route_queries must be set. A transport must be set
when the routing is completed by this router, that is, when the address is not passed on to subsequent
routers, unless verify_only is set. Each routing entry can specify its own transport, with the generic
transport option acting as a default for those that don’t.

host_find_failed Type: string Default: "freeze"

This option controls what happens if a host which domainlist tries to look up because an address
has been specifically routed to it does not exist. The option can be set to one of

freeze
defer

 pass
fail

The default assumes that this state is a serious configuration error. The difference between ‘pass’
and ‘fail’ is that the former causes the address to be passed to the next router, overriding no_more,
while the latter does not, causing the address to fail completely.

In earlier versions of Exim fail_soft and fail_hard were used instead of pass and fail. They will
remain as synonyms for some time.

This option applies only to a definite ‘does not exist’ state; if a host lookup gets a temporary error,
delivery is deferred unless the generic pass_on_timeout option is set.

hosts_randomize Type: boolean Default: false

If this option is set, the order of the items in a host list in a routing rule is randomized each time it
is used. This can be used to do crude load sharing. However, there is a complication when a
message has more than one address that is routed by the same rule. Without randomization, each
such address ends up with an identical host list, and so they are all eligible for batching and
sending in a single SMTP transaction. When the host order is randomized, the addresses won’t all
end up with the same host list, and so they will not be batched in the same way.

If there are only two hosts in the list, this probably doesn’t matter too much, because, on average,
50% of addresses will have them one way round, and 50% the other, so you just get two SMTP
calls instead of one, however many addresses there are. With more than two hosts, however, the
number of permutations increases very rapidly, leading to very many more SMTP calls being made.
The way to solve this problem is to put a single, dummy host in the routing rule, and route the
addresses to a special smtp transport, which has hosts, hosts_randomize, and hosts_override set.
Now all the addresses can be batched up and sent to the transport together.

Exim 3.30 [170] domainlist router (28)

modemask Type: octal integer Default: 022

This specifies mode bits which must not be set for the route file. If they are set, delivery is deferred
and the message is frozen.

owners Type: string list Default: unset

This specifies a list of permitted owners for the route file. If it is unset, no check on the ownership
is done. If the file is not owned by a user in the list, delivery is deferred and the message is frozen.

owngroups Type: string list Default: unset

This specifies a list of permitted groups for the route file. If it is unset, no check on the file’s group
is done. If the file’s group is not in the list, delivery is deferred and the message is frozen.

qualify_single Type: boolean Default: true

For any domain that is looked up in the DNS, the resolver option that causes it to qualify single-
component names with the default domain (RES_DEFNAMES) is set. For example, on a machine called

 dictionary.ref.book, looking up the domain thesaurus would cause the name thesaurus.ref.book
to be looked up.

route_file Type: string† Default: unset

If this option is set, search_type must be set to one of the single-key lookup types, and
 route_query must not be set. See chapter 6 for details of file and database lookups. The domain

being routed is used as the key for the lookup, and the resulting data must be a routing rule, in the
form described below. The file name is expanded before use.

route_list Type: string list, semicolon-separated Default: unset

This string is a list of routing rules, in the form defined below. Note that, unlike most string lists,
the items are separated by semicolons. This is so that they may contain colon-separated host lists.
The list is not expanded as a whole, but host lists within it are expanded during processing.

route_queries Type: string† Default: unset

This option is an alternative to route_query; the two options are mutually exclusive. The difference
is that route_queries contains a colon-separated list of queries, which are tried in order until one
succeeds or defers, or all fail. Any colon characters actually required in an individual query must be
doubled, in order that they not be treated as query separators.

route_query Type: string† Default: unset

If this option is set, search_type must be set to a query-style lookup type, and route_file must not
be set. See chapter 6 for details of file and database lookups. The query is expanded before use, and
the expansion variable $domain contains the domain being routed. The data returned from the
lookup must be a routing rule, in the form described below.

search_parents Type: boolean Default: false

For any domain that is looked up in the DNS, the resolver option that causes it to search parent
domains (RES_DNSRCH) is set if this option is true. This is different from the qualify_single option in
that it applies to domains containing dots. For example, on a machine in the fict.book domain,
when looking up teaparty.wonderland initially fails, the resolver automatically tries

 teaparty.wonderland.fict.book if this option is set.

search_type Type: string Default: unset

This option is mandatory when route_file, route_query, or route_queries is specified. It must be
set to one of the supported search types (for example, lsearch). See chapter 6.

For single-file lookups, the name may be preceded by partial-, indicating a simple wildcard file
lookup that works as follows:

(a) Exim first tries to look up the domain exactly as given.

Exim 3.30 [171] domainlist router (28)

(b) If that fails, it adds ‘*.’ on the front of the domain, and looks that up.

(c) If that fails, it replaces the first component of the domain with ‘*’ and tries that, and continues
chopping off components in this way until either the lookup succeeds, or there are fewer than
two non-* components left.

Thus, for example, if you put an entry keyed by *.austen.fict.film in your database, that
entry will be used for

(1) austen.fict.film by rule (b) above, having failed on rule (a). (If you are worried about the
resource waste implied by this, you can always add an entry for austen.fict.film as well.)

(2) emma.austen.fict.film at the first attempt in rule (c), having failed on rules (a) and (b).

A domain such as jane.fict.film will fail, having tried 3 lookups: jane.fict.film,
 *.jane.fict.film, *.fict.film, but it won’t waste effort looking up *.film because

that has only one non-* component. In fact, the minimum number of components can be altered by
including a number immediately before the hyphen. For example, ‘partial4-dbm’ specifies a mini-
mum of four non-* components.

28.1 Routing rules
Routing rules specified in route_list are scanned before route_file, route_query or route_queries are
used. The contents of route_list is a string consisting of a sequence of routing rules, separated by
semicolons. If a semicolon is needed in a rule, it can be entered as two semicolons. Empty rules are
ignored. The format of each rule is

<domain pattern> <host list> <options>

The following example contains a simple domain pattern and just one rule:

route_list = dict.ref.book mail-1.ref.book:mail-2.ref.book byname

The three parts of a rule are separated by white space. Each rule in a route_list must start with a
single domain pattern, which is the only mandatory item in the rule. The pattern is in the same format
as one item in a domain list (see section 7.12), that is, it may be wildcarded or a regular expression, or
a file or database lookup (with semicolons doubled, because of the use of semicolon as a separator in a
route_list). The rules in route_list are searched in order until one of the patterns matches the domain
that is being routed. The host list and options are then used as described below.

If no rule in route_list matches the domain, it is used as the key for a lookup of the type specified by
search_type, using route_file, route_query, or route_queries, as appropriate. The data returned from
a successful lookup must be a string containing a host list and options, separated by white space. For
example, a line in a linearly searched route file might be:

dict.ref.book: mail-1.ref.book:mail-2.ref.book byname

Note that there are two different uses of the colon character in this line. The first one is the delimiter
of the key in the file, while the second is the normal list delimiter in the host list, which in this
example consists of two host names. As both the host list and the options are not compulsory in a rule,
the data returned from a lookup can legitimately be an empty string in some circumstances (see
Application of routing rules below).

If the domain does not match anything in route_list and looking it up using route_file, route_query
or route_queries also fails, the router declines to handle the address, and it gets passed on to the next
router, unless no_more is set.

28.2 Host list format
If a host list is present in the rule which matches the domain, it is expanded before use. If the pattern
that matched the domain was a lookup item, the data that was looked up is available in the expansion
variable $value.

Exim 3.30 [172] domainlist router (28)

The result of the expansion must be a colon-separated list of host names and/or IP addresses. Some
string expansion items may contain white space, and if this is the case, the host list must be enclosed
in single or double quotes, because otherwise white space terminates it. The numeric expansion
variables are available during host list expansion. These are mainly used when the domain is matched
against a regular expression domain pattern in a route_list string, but $1 is also set when partial
matching is done in a file lookup, and $0 is always set to the entire domain.

The value of $domain is the original domain for the address. This may differ from $0 if the address
has been processed by a previous domainlist router which passed on a different routing domain.

If the expansion of the host list is forced to fail (by using the ‘fail’ item in a conditional construction),
the router just declines to handle the address, and (unless no_more is set) it gets passed on to the next
router. If expansion fails for some other reason, the message is frozen, since this is considered to be a
configuration error.

28.3 Options format
Options can be present only if there is a host list. They are a sequence of words, but in practice no
more than two are ever present. One of the words can be the name of one of the configured transports,
and this overrides the transport option on the router for this particular routing rule only. The other
word (if present) specifies how the IP addresses of the hosts in the host list are to be found:

• byname: use gethostbyname(), or use literal IP addresses if present. Literal IP addresses are
written without any surrounding square brackets.

• bydns: use the DNS, doing the full MX and A record processing.

• bydns_a: look up A records for the host(s) in the DNS; fail if there are none.

• bydns_mx: look up MX records for the host(s) in the DNS; fail if there are none.

The qualify_single and search_parents options apply to any DNS lookups that are done. If no IP
address for a host can be found, what happens is controlled by the host_find_failed option.

28.4 Application of routing rules
When a rule has been found that matches the current domain, either by matching one of the rules in
route_list, or by a successful lookup in route_file or using route_query or route_queries, the host
list and options are used in a number of different ways, depending on which are present and on
whether a transport has been specified.

• If there is no host list (and therefore necessarily no options either), a local transport (that is, not
an SMTP transport) must be specified for the router via the generic transport option, unless the
driver is being used only for verification (verify_only is set). In this case, if there is no transport
and no host list, the address is taken as verified. Otherwise, failure to specify a local transport in
the absence of a host list is a configuration error. The address is routed to the transport. In all
other cases, a host list must be provided.

• If there is a host list, and a local transport is specified either by the generic transport option, or
by an option item in the rule, the host list must contain just a single host name which is passed to
the transport in the $host variable. Any byxxx options are ignored.

• If no byxxx option is present, any remote transport setting is ignored, and there must be just one
name in the host list. The address is passed on to the next router, overriding no_more, with the
domain being routed being replaced by the name from the host list. However if the expansion
variable $domain is used in any subsequent router, it still refers to the original domain.

• Otherwise, a remote (that is, SMTP) transport must be specified, unless the driver is being used
only for verification (verify_only is set), or the routing rule specifies the local host, and the
generic self option is set to something other than ‘send’.

The transport is specified either via the generic transport option or by a transport name as an
option setting, and there may be many hosts in the list. Their IP addresses are looked up

Exim 3.30 [173] domainlist router (28)

according to the byxxx option. If any of them are found to be the local host, that one and all
those that follow it are discarded. If the first host is found to be the local host, the generic self
option specifies what happens. Otherwise, the address is passed to the specified transport, along
with the ordered list of hosts. The transport will try delivering to each host in turn, until one
accepts the message.

If the attempt to look up an IP address for a host fails, the host_find_failed option controls what
 happens.

The various different possibilities for configuring the domainlist router make it possible to use it for a
number of different routing requirements, as shown in the examples in the next section.

28.5 Domainlist examples

In some of the examples that follow, the presence of the remote_smtp transport, as defined in the
default configuration file, is assumed.

• Routing to a gateway to another mail environment can be set up using a wildcarded domain
pattern that matches some pseudo top-level domain. For example, to route certain addresses to
UUCP and Bitnet gateways:

uucp_bitnet:
driver = domainlist
route_list = *.uucp uugateway.fict.book; \

*.bitnet bngateway.ref.book

The two rules match domains ending in .uucp and .bitnet respectively, and because no options or
transport are specified in either case, the name of the appropriate gateway domain is taken from
the host list and passed to subsequent routers for further routing. So, for example, mail addressed
to user@faraway.uucp is routed by applying subsequent routers to the domain

 uugateway.fict.book to determine where to send it.

If there are two hosts servicing one of these domains and they are not connected to a single
domain name (by MX records for example), you may want to quote two names in the host list
portion of a rule. In this case, you have to specify one of the byxxx options, to get the names
looked up by domainlist, since it can pass on only a single domain name to other routers. A
transport must also be provided:

uucp:
driver = domainlist
transport = remote_smtp
route_list = \
*.uucp uugate1.fict.book:uugate2.fict.book byname

In this case, no further routers are called.

• A host that is itself a gateway can ‘deliver’ messages to pipes or into files in batched SMTP
format for onward transportation by some other means. In this case, the route list entry can be as
simple as a single domain name in a configuration like this:

route_append:
driver = domainlist
transport = batchsmtp_appendfile
route_list = gated.domain

though often a pattern is used to pick up more than one domain. If there are several domains or
groups of domains with different transport requirements, different transports can be listed in the
routing information:

Exim 3.30 [174] domainlist router (28)

 route_append:
driver = domainlist
route_list = \

*.gated.domain1 $domain batch_appendfile; \
*.gated.domain2 \
${lookup{$domain}dbm{/domain2/hosts}{$value}fail} \
batch_pipe

The first of these just passes the domain in the $host variable, which doesn’t achieve much (since
it is also in $domain) but the second does a file lookup to find a value to pass, causing the router
to decline to handle the address if the lookup fails.

• Routing mail directly to UUCP software is a specific case of the use of domainlist in a gateway
to another mail environment. This is an example of one way it can be done, taken from a real
configuration:

Transport
uucp:
driver = pipe
user = nobody
command = /usr/local/bin/uux -r - \
${substr_-5:$host}!rmail ${local_part}

return_fail_output = true

Router
uucphost:
transport = uucp
driver = domainlist
route_file = /usr/local/exim/uucphosts
search_type = lsearch

The file /usr/local/exim/uucphosts contains entries like

darksite.ethereal.ru: darksite.UUCP

It can be set up more simply without adding and removing ‘.UUCP’ but this way makes clear the
distinction between the domain name darksite.ethereal.ru and the UUCP host name darksite.

• A mail hub is a machine which receives mail for a number of domains via MX records in the
DNS and delivers it via its own private routing mechanism. Often the final destinations are
behind a firewall, with the mail hub being the one machine that can connect to machines both
inside and outside the firewall. The domainlist router can be set up for this kind of purpose:

through_firewall:
driver = domainlist
transport = remote_smtp
route_file = /internal/host/routes
search_type = lsearch

For a small number of cases, the routing could be inline, using the route_list option, but for a
 larger number a file lookup would be easier to manage, and the file containing the internal

routing might contain lines like this:

dict.ref.book: mail-1.ref.book:mail-2.ref.book byname

The DNS would be set up with an MX record for dict.ref.book pointing to the mail hub, which
would then then forward mail for dict.ref.book to one of the two specified machines, looking up
their addresses using gethostbyname().

If the domain names are in fact the names of the machines to which the mail is to be sent by the
mail hub, the configuration can be quite simple. For example,

Exim 3.30 [175] domainlist router (28)

 hub_route:
driver = domainlist
transport = remote_smtp
route_list = *.rhodes.tvs $domain byname

This configuration routes domains that match *.rhodes.tvs by calling gethostbyname() on
the domain that matched. A similar approach can be taken if the host name can be obtained from
the domain name by simple manipulation that the expansion facilities can handle.

• The domainlist router can also be used to forward all non-local mail to a smart host by using a
configuration like

smart_route:
driver = domainlist
transport = remote_smtp
route_list = * smarthost.ref.book bydns_a

which causes all messages containing remote addresses to be sent to the single host
 smarthost.ref.book, whose address (in this example) is obtained from its DNS address record. If

a colon-separated list of smart hosts is given, they are tried in order. A router like this should be
the last one in the configuration file, since it will route any domain whatsoever.

• A domainlist router can be used to force success or failure on verification of remote addresses
by setting verify_only (and verify_sender or verify_recipient if required). If failure is wanted,
set fail_verify. No transports or hosts need be defined.

Exim 3.30 [176] domainlist router (28)

29. The ipliteral router

This router succeeds if the ‘domain’ being routed takes the form of an RFC 822 domain literal, that is,
an IP address in dotted-quad notation enclosed in square brackets. For example, this router handles the
address

root@[192.168.1.1]

by setting up delivery to the host with that IP address. If an IP literal turns out to refer to the local
host, the generic self option determines what happens. The RFCs require support for domain literals,
though it seems anachronistic in today’s Internet. There are no private options for this router; a
transport must be set using the generic transport option.

Exim 3.30 [177] ipliteral router (29)

30. The iplookup router

The iplookup router was written to fulfil a specific requirement in Cambridge. For this reason, it is not
included in the binary of Exim by default. If you want to include it, you must set

ROUTER_IPLOOKUP=yes

in your Local/Makefile configuration file.

The iplookup router routes an address by sending it over a TCP or UDP connection to one or more
specific hosts. The host can then return the same or a different address – in effect rewriting the
recipient address in the message’s envelope. If this process fails, the address can be passed on to other
routers, or delivery can be deferred.

Background, for those that are interested: We have an Oracle database of all Cambridge users, and one
of the bits of data it maintains for each user is where to send mail addressed to <user>@cam.ac.uk.
The MX records for cam.ac.uk point to a central machine that has a large alias list that is abstracted
from the database. Mail from outside is switched by this system, and originally internal mail was also
done this way. However, this resulted in a fair number of messages travelling from some of our larger
systems to the switch and back again. The Oracle machine now runs a UDP service that can be called
by the iplookup router in Exim to find out where <user>@cam.ac.uk addresses really have to go; this
saves passing through the central switch, and in many cases saves doing any remote delivery at all.

Since iplookup is just a rewriting router, a transport must not be specified for it.

hosts Type: string Default: unset

This option must be supplied. Its value is a colon-separated list of host names. The hosts are looked
up using gethostbyname() and are tried in order until one responds to the query.

optional Type: boolean Default: false

If optional is true, if no response is obtained from any host, the address is passed on to the next
 router, overriding no_more. If optional is false, delivery to this address is deferred.

port Type: integer Default: 0

This option must be supplied. It specifies the port number for the TCP or UDP call.

protocol Type: string Default: "udp"

This option can be set to ‘udp’ or ‘tcp’ to specify which of the two protocols is to be used.

query Type: string†
Default: "${local_part}@${domain} ${local_part}@${domain}"

This defines the content of the query that is sent to the remote hosts. The repetition serves as a way
of checking that a response is to the correct query in the default case (see response_pattern

 below).

reroute Type: string† Default: unset

If this option is not set, the rerouted address is precisely the byte string returned by the remote host,
up to the first white space, if any. If set, the string is expanded to form the rerouted address. It can
include parts matched in the response by response_pattern by means of numeric variables such as

 $1, $2, etc. The variable $0 refers to the entire input string, whether or not a pattern is in use. In all
cases, the rerouted address must end up in the form <local_part>@<domain>.

Exim 3.30 [178] iplookup router (30)

response_pattern Type: string Default: unset

This option can be set to a regular expression that is applied to the string returned from the remote
host. If the pattern does not match the response, the router declines. If response_pattern is not set,
no checking of the response is done, unless the query was defaulted, in which case there is a check
that the text returned after the first white space is the original address. This checks that the answer
that has been received is in response to the correct question. For example, if the response is just a
new domain, the following could be used:

response_pattern = ^([^@]+)$
reroute = $local_part@$1

service Type: integer Default: 0

This is an alternative name for the port option.

timeout Type: time Default: 5s

This specifies the amount of time to wait for a response from the remote machine. The same
timeout is used for the connect() function for a TCP call. It does not apply to UDP.

Exim 3.30 [179] iplookup router (30)

31. The lookuphost router

The lookuphost router looks up the hosts that handle mail for the given domain either via the
gethostbyname() function, or by using the DNS directly. A transport must always be set for this router,
unless verify_only is set.

When the DNS is used, MX records are looked up first, followed by address records if no MX records
are found, unless the domain matches mx_domains. MX records of equal priority are sorted by Exim
into a random order. Unless they have the highest priority (lowest MX value), MX records that point
to the local host, or to any host name that matches hosts_treat_as_local, are discarded, together with
any other MX records of equal or lower priority.

If the host pointed to by the highest priority MX record or the host looked up by gethostbyname() is
the local host, or matches hosts_treat_as_local, then what happens is controlled by the generic self
option.

check_secondary_mx Type: boolean Default: false

If this option is set, the router declines unless the local host is found in (and removed from) the list
of hosts obtained by MX lookup. This can be used to process domains for which the local host is a
secondary mail exchanger differently to other domains.

gethostbyname Type: boolean Default: false

If this is true, the gethostbyname() function is used and the options relating to the DNS are ignored.
Otherwise, the name is looked up directly in the DNS. Of course, gethostbyname() may do its own
DNS lookup for an A record (no MX processing is involved), but it may also access other sources
of information such as /etc/hosts.

When Exim is compiled with IPv6 support, if a host that is looked up in the DNS has both A and
AAAA or A6 records, all the addresses are used.

mx_domains Type: domain list Default: unset

This option applies to domains that are looked up directly in the DNS (gethostbyname is not set).
A domain which matches mx_domains is required to have an MX record in order to be recognised.
For example, if all the mail hosts in fict.book are known to have MX records, except for those in

 discworld.fict.book, options of the form

mx_domains = ! *.discworld.fict.book : *.fict.book

could be used. This would cause messages addressed to a machine that matched the option but had
only an A record to be bounced immediately instead of sitting on the queue until the delivery
timed out.

qualify_single Type: boolean Default: true

If domains are being looked up in the DNS (gethostbyname is false), the resolver option that
causes it to qualify single-component names with the default domain (RES_DEFNAMES) is set. For
example, on a machine called dictionary.ref.book, looking up the domain thesaurus would cause
the name thesaurus.ref.book to be looked up internally in the resolver. Exim itself still looks up
the single name.

rewrite_headers Type: boolean Default: true

An abbreviated name may be expanded to its full form by both gethostbyname() or by DNS lookup,
or as a result of the widen_domains option. For example, if an address is specified as

 dormouse@teaparty, the domain might get expanded to teaparty.wonderland.fict.book. If this
option is true, all occurrences of the abbreviated name in the headers of the message are rewritten
with the full name. This option should be turned off only when it is known that no message is ever
going to be sent outside an environment where the abbreviation makes sense.

Exim 3.30 [180] lookuphost router (31)

When an MX record is looked up in the DNS and matches a wildcard record, nameservers normally
return a record containing the name that has been looked up, making it impossible to detect whether
a wildcard was present or not. However, some nameservers have recently been seen to return the
wildcard entry. If the name returned by a DNS lookup begins with an asterisk, it is not used for
header rewriting.

search_parents Type: boolean Default: false

If domains are being looked up in the DNS (gethostbyname is false), the resolver option that
causes it to search parent domains (RES_DNSRCH) is set if this option is true. This is different from
the qualify_single option in that it applies to domains containing dots. For example, on a machine
in the fict.book domain, when looking up teaparty.wonderland initially fails, the resolver auto-
matically tries teaparty.wonderland.fict.book if this option is set. The default setting of this option
used to be true, but this causes problems in domains that have a wildcard MX record, because any
domain that does not have its own MX record then matches the local wildcard. The default was
changed to false in Exim 1.80.

widen_domains Type: string list Default: unset

If a lookup fails and this option is set, each of its strings in turn is added onto the end of the
domain, and the lookup is tried again. For example, if

widen_domains = fict.book:ref.book

is set and a lookup of klingon.dictionary fails, klingon.dictionary.fict.book is looked up, and if
this fails, klingon.dictionary.ref.book is tried. This option applies to lookups using
gethostbyname() as well as to DNS lookups. Note that when the DNS is being used for lookups, the
qualify_single and search_parents options cause some widening to be undertaken inside the DNS

 resolver.

Exim 3.30 [181] lookuphost router (31)

32. The queryprogram router

The queryprogram router routes a domain by running an external command and acting on its output.
This is an expensive way to route, and is intended mainly for use in lightly-loaded systems, or for
performing experiments. However, if it is possible to use the domains, local_parts or condition
generic options to skip this router for most addresses, it could sensibly be used in special cases. There
are the following private options:

command Type: string† Default: unset

This option must be set, and must start with a slash character. It specifies the command that is to be
run. It is expanded before use. Failure to expand causes delivery to be deferred and the message to
be frozen.

command_group Type: string Default: unset

This option specifies a gid to be set when running the command. If it begins with a digit it is
interpreted as the numerical value of the gid. Otherwise it is looked up using getgrnam().

command_user Type: string Default: unset

This option specifies the uid which is set when running the command. If it begins with a digit it is
interpreted as the numerical value of the uid. Otherwise, it is looked up using getpwnam() to obtain
a value for the uid and, if command_group is not set, a value for the gid also.

current_directory Type: string Default: unset

This option specifies an absolute path which is made the current directory before running the
command. If it is not set, ‘/’ is used.

timeout Type: time Default: 1h

If the command does not complete within the timeout period, its process group is killed and the
message gets frozen. A value of zero time specifies no timeout.

If command_user is not specified, the command is run as ‘nobody’. If the main configuration has not
defined a user and group for ‘nobody’, it is looked up using getpwnam(). If this fails, delivery is
deferred and the message is frozen.

In previous versions of Exim the command_group and command_user options were called group
and user. Their names were changed when group and user became generic router options.

The standard output of the command is connected to a pipe, which is read when the command
terminates. It should consist of a single line of output, containing up to five fields, separated by white
space. The first field is one of the following words:

• OK: routing succeeded; the remaining fields specify what to do.

• DECLINE: the router declines; pass the address to the next router, unless no_more is set.
 (Formerly, FAIL was used for this; it remains for a while as a synonym.)

• FORCEFAIL: routing failed; do not pass the address to any more routers.

• DEFER: routing could not be completed at this time; try again later.

• ERROR: some disastrous error occurred; freeze the message.

When the first word is not OK, the remainder of the line is an error message explaining what went
wrong. For example:

FAIL queryprogram cannot route to unseen.discworld.fict.book

Otherwise, the line must be formatted as follows:

OK <transport name> <new domain> <option> <arbitrary text>

Exim 3.30 [182] queryprogram router (32)

The second field is the name of a transport instance, or a plus character, which means that the
transport specified for the router using the generic transport option is to be used, if set.

If the third field is not empty or a single plus character, it is a new domain name to replace the current
one. If a transport is specified and the fourth field is not empty or a plus character, it specifies the
method of looking up the new name. This can be one of the words ‘byname’, ‘bydns’, ‘bydns_a’, or
‘bydns_mx’. For example,

OK smtp gate.star.fict.book bydns_a

causes the message to be sent using the smtp transport to the host gate.star.fict.book, whose address
is looked up as a DNS address record. If the host turns out to be the local host, what happens is
controlled by the generic self option.

The fifth field, if present, is made available to the transport via the expansion variable $route_option.
For example, a line such as

OK special + + /computed/filename

sends the message to the special transport, which can use $route_option in its configuration to access
the text ‘/computed/filename’.

The fourth and fifth fields are ignored and the new domain name (if any) is passed to the next router if
no transport is specified in the response line (that is, a plus character is given) and the generic
transport option is also unset. This counts as an explicitly configured ‘pass’, and overrides no_more.

Exim 3.30 [183] queryprogram router (32)

33. Retry configuration

The fifth part of the configuration file contains a list of retry rules which control how often Exim tries
to deliver messages that cannot be delivered at the first attempt. If there are no retry rules, Exim gives
up after the first failure. The -brt command line option can be used to test which retry rule will be
used for a given address or domain.

The most common cause of retries is temporary failure to deliver to a remote host. Exim’s retry
processing in this case is applied on a per-host (strictly, per IP address) basis, not on a per-message
basis. Thus, if one message has recently been delayed, a new message to the same host does not
immediately get tried, but waits for the host’s retry time to arrive. If the value of log_level is greater
than 4, the message ‘retry time not reached’ is written to the main log whenever a delivery is skipped
for this reason. Section 48.2 contains more details of the handling of errors during remote deliveries.

Retry processing applies to directing and routing as well as to delivering, except as covered in the next
paragraph. The retry rules do not distinguish between these three actions, so it is not possible, for
example, to specify different behaviour for failures to route the domain snark.fict.book and failures to
deliver to the host snark.fict.book. I didn’t think anyone would ever need this added complication, so
did not implement it. However, although they share the same retry rule, the actual retry times for
routing, directing, and transporting a given domain are maintained independently.

When a delivery is not part of a queue run (typically an immediate delivery on receipt of a message),
the directors are always run for local addresses, and local deliveries are always attempted, even if retry
times are set for them. This makes for better behaviour if one particular message is causing problems
(for example, causing quota overflow, or provoking an error in a filter file). If such a delivery suffers a
temporary failure, the retry data gets updated as normal, and subsequent delivery attempts from queue
runs occur only when the retry time for the local address is reached.

33.1 Retry rules
Each retry rule occupies one line and consists of three parts, separated by white space: a pattern, an
error name, and a list of retry parameters. The rules are searched in order until one is found whose
pattern matches the failing host or address.

The pattern may be a complete address (local_part@domain), a plain domain, a wildcarded domain
(that is, starting with an asterisk), a domain lookup (as in a domain list), or a regular expression. The
first form must be used with local domains only; in this case the local part may begin with an asterisk.

After a directing or local delivery failure, regular expressions and patterns containing local parts are
normally matched against the complete address (local_part@domain). However, if there is no local
part in a pattern that is not a regular expression, the local part of the address isn’t used in the
matching. Thus an entry such as

lookingglass.fict.book * F,24h,30m;

matches any address whose domain is lookingglass.fict.book, whether this is a local or a remote
domain, whereas

alice@lookingglass.fict.book * F,24h,30m;

can be used only if lookingglass.fict.book is a local domain. It applies to temporary failures involving
the local part alice, but not to any other local parts.

If a local delivery is being used to collect messages for onward transmission by some other means (for
example, as batched SMTP), a temporary failure may not be dependent on the local part at all. Both
the appendfile and pipe transports have an option called retry_use_local_part which can be set false
in order to suppress the inclusion of local parts when matching retry patterns for those transport
instances. When this option is set, patterns containing local parts are skipped, and regular expressions
are matched against the domain only.

Exim 3.30 [184] retry configuration (33)

For remote domains, when looking for a retry rule after a routing attempt has failed (for example, after
a DNS timeout), each line in the retry configuration is tested only against the domain in the address.
However, when looking for a retry rule after a remote delivery attempt has failed (for example, a
connection timeout), each line in the retry configuration is first tested against the remote host name,
and then against the domain name in the address. For example, if the MX records for a.b.c.d are

a.b.c.d MX 5 x.y.z
MX 6 p.q.r
MX 7 m.n.o

and the retry rules are

p.q.r * F,24h,30m;
a.b.c.d * F,4d,45m;

then failures to deliver to host p.q.r use the first rule to determine retry times, but for all the other
hosts for the domain a.b.c.d, the second rule is used, and that rule would also be used if routing to
a.b.c.d suffers a temporary failure.

The second field in a retry rule is the name of a particular error, or an asterisk, which matches any
error. The errors that can be tested for are:

refused_MX: connection refused from a host obtained from an MX record

refused_A: connection refused from a host not obtained from an MX record

refused: any connection refusal

timeout_connect: connection timed out

timeout_DNS: DNS lookup timed out

timeout: any timeout

quota: quota exceeded in local delivery

quota_<time>: quota exceeded in local delivery, and the mailbox has not been read for <time>.

The quota errors apply both to system-enforced quotas and to Exim’s own quota mechanism in the
appendfile transport. It also applies when a local delivery is deferred because a partition is full (the
ENOSPC error).

The third field in a retry rule is a sequence of retry parameter sets, separated by semicolons. Each set
consists of

<letter>,<cutoff time>,<arguments>

The letter identifies the algorithm for computing a new retry time; the cutoff time is the time beyond
which this algorithm no longer applies, and the arguments vary the algorithm’s action. The cutoff time
is measured from the time that the first failure for the domain (combined with the local part if
relevant) was detected, not from the time the message was received. The available algorithms are:

• F: retry at fixed intervals. There is a single time parameter specifying the interval.

• G: retry at geometrically increasing intervals. The first argument specifies a starting value for the
interval, and the second a multiplier.

When computing the next retry time, the algorithm definitions are scanned in order until one whose
cutoff time has not yet passed is reached. This is then used to compute a new retry time that is later
than the current time. In the case of fixed interval retries, this simply means adding the interval to the
current time. For geometrically increasing intervals, retry intervals are computed from the rule’s
parameters until one that is greater than the previous interval is found. The main configuration variable
retry_interval_max limits the maximum interval between retries.

A single remote domain may have a number of hosts associated with it, and each host may have more
than one IP address. Retry algorithms are selected on the basis of the domain name, but are applied to
each IP address independently. If, for example, a host has two IP addresses and one is broken, Exim

Exim 3.30 [185] retry configuration (33)

will generate retry times for it and will not try to use it until its next retry time comes. Thus the good
IP address is likely to be tried first most of the time.

Retry times are hints rather than promises. Exim does not make any attempt to run deliveries exactly
at the computed times. Instead, a queue-running process starts delivery processes for delayed messages
periodically, and these attempt new deliveries only for those addresses that have passed their next retry
time. If a new message arrives for a deferred address, an immediate delivery attempt occurs only if the
address has passed its retry time. In the absence of new messages, the minimum time between retries
is the interval between queue-running processes. There is not much point in setting retry times of five
minutes if your queue-runners happen only once an hour, unless there are a significant number of
incoming messages (which might be the case on a system that is sending everything to a smart host,
for example).

The data in the retry hints database can be inspected by using the exim_dumpdb or exim_fixdb utility
programs (see chapter 53). The latter utility can also be used to change the data. The exinext utility
script can be used to find out what the next retry times are for the hosts associated with a particular
mail domain, and also for local deliveries that have been deferred.

33.2 Retry rule examples
Here are some example retry rules suitable for use when wonderland.fict.book is a local domain:

alice@wonderland.fict.book quota_5d F,7d,3h
wonderland.fict.book quota_5d
wonderland.fict.book * F,1h,15m; G,2d,1h,2;
lookingglass.fict.book * F,24h,30m;
* refused_A F,2h,20m;
* * F,2h,15m; G,16h,1h,1.5; F,5d,8h

The first rule sets up special handling for mail to alice@wonderland.fict.book when there is an over-
quota error and the mailbox hasn’t been read for at least 5 days. Retries continue every three hours for
7 days. The second rule handles over-quota errors for all other local parts at wonderland.fict.book;
the absence of a local part has the same effect as supplying ‘*@’. As no retry algorithms are supplied,
messages that fail are bounced immediately if the mailbox hasn’t been read for at least 5 days.

The third rule handles all other errors at wonderland.fict.book; retries happen every 15 minutes for an
hour, then with geometrically increasing intervals until two days have passed since a delivery first
failed. The fourth rule controls retries for the domain lookingglass.fict.book, whether it is local or
remote, and the remaining two rules handle all other domains, with special action for connection
refusal from hosts that were not obtained from an MX record.

The final rule in a retry configuration should always have asterisks in the first two fields so as to
provide a general catch-all for any addresses that do not have their own special handling. This
example tries every 15 minutes for 2 hours, then with intervals starting at one hour and increasing by a
factor of 1.5 up to 16 hours, then every 8 hours up to 5 days.

33.3 Timeout of retry data
Exim timestamps the data that it writes to its retry hints database. When it consults the data during a
delivery it ignores any that is older than the value set in retry_data_expire (default 7 days). If, for
example, a host hasn’t been tried for 7 days, Exim will try to deliver to it immediately a message
arrives, and if that fails, it will calculate a retry time as if it were failing for the first time.

This improves the behaviour for messages routed to rarely-used hosts such as MX backups. If such a
host was down at one time, and happens to be down again when Exim tries a month later, using the
old retry data would imply that it had been down all the time, which is not a justified assumption.

If a host really is permanently dead, this behaviour causes a burst of retries every now and again, but
only if messages routed to it are rare. It there is a message at least once every 7 days the retry data
never expires.

Exim 3.30 [186] retry configuration (33)

33.4 Long-term failures
Special processing happens when an address has been failing for so long that the cutoff time for the
last algorithm has been reached. This is independent of how long any specific message has been
failing; it is the length of continuous failure for the address that counts. When this is the case for a
local delivery, or for all IP addresses associated with a remote delivery, a subsequent delivery failure
causes Exim to give up on the address, and a delivery error message is generated. In order to cater for
new messages that may use the failing address, a next retry time is still computed from the final
algorithm, and is used as follows:

If the delivery is a local one, one delivery attempt is always made for any subsequent messages. If it
fails, the address fails immediately. The post-cutoff retry time is not used.

If the delivery is remote, there are two possibilities, controlled by the delay_after_cutoff option of the
smtp transport. The option is true by default and in that case:

Until the post-cutoff retry time for one of the IP addresses is reached, any attempt to deliver to
the failing address is bounced immediately. After that time, one new delivery attempt is made to
those IP addresses that are past their retry times, and if that still fails, the address is bounced and
new retry times are computed.

In other words, Exim delays retrying an IP address after the final cutoff time until a new retry time is
reached, and can therefore bounce an email address without ever trying a delivery when machines
have been down for a long time. This ensures that few resources are wasted in repeatedly trying to
deliver to a broken destination, but if it does recover, Exim will eventually notice.

If delay_after_cutoff is set false, Exim behaves differently. If all IP addresses are past their final
cutoff time, Exim tries to deliver to those IP addresses that have not been tried since the message
arrived. If there are none, or if they all fail, the address is bounced. In other words, it does not delay
when a new message arrives, but tries the expired addresses immediately, unless they have been tried
since the message arrived. If there is a continuous stream of messages for the failing domains,
unsetting delay_after_cutoff means that there will be many more attempts to deliver to failing IP
addresses than when delay_after_cutoff is true.

33.5 Ultimate address timeout
An additional rule is needed to cope with cases where a host is intermittently available, or when a
message has some attribute that prevents its delivery when others to the same address get through. In
this situation, because some messages are successfully delivered, the ‘retry clock’ for the address
keeps getting restarted, and so a message could remain on the queue for ever. To prevent this, if a
message has been on the queue for longer than the cutoff time of any applicable retry rule for a given
address, a delivery is attempted for that address, even if it is not yet time, and if this delivery fails, the
address is timed out. A new retry time is not computed in this case, so that other messages for the
same address are considered immediately.

Exim 3.30 [187] retry configuration (33)

34. Address rewriting

There are some circumstances in which Exim automatically rewrites domains in addresses. The two
most common are when an address is given without a domain (for addresses in envelopes, this is
permitted only for locally submitted messages, or messages from hosts that match
sender_unqualified_hosts or receiver_unqualified_hosts) or when an address contains an abbreviated
domain that is expanded by DNS lookup.

One situation in which Exim does not rewrite a domain is when it is the name of a CNAME record in
the DNS. The older RFCs suggest that such a domain should be rewritten using the ‘canonical’ name,
and some MTAs do this. The new draft RFCs do not contain this suggestion.

This chapter is about address rewriting that is explicitly specified in the configuration. Some people
believe that configured rewriting is a Mortal Sin. Others believe that life is not possible without it.
Exim provides the facility; you do not have to use it.

In general, rewriting addresses from your own system or domain has some legitimacy. Rewriting other
addresses should be done only with great care and in special circumstances. The author of Exim
believes that rewriting should be used sparingly, and mainly for ‘regularizing’ addresses in your own
domains. Although it can be used as a routing tool, this is definitely not recommended.

There are two commonly encountered circumstances where rewriting is used, as illustrated by these
examples:

• The company whose domain is hitch.fict.book has a number of machines that exchange
mail with each other behind a firewall, but only a single gateway to the outer world. The gateway
rewrites *.hitch.fict.book as hitch.fict.book.

• A machine rewrites the local parts of its own users so that, for example, fp42@hitch.fict.book
becomes Ford.Prefect@hitch.fict.book.

Configured address rewriting can take place at several different stages of a message’s processing. The
main rewriting happens when a message is received, but it can also happen when a new address is
generated during directing or routing (for example, by aliasing), and when a message is transported.

The rewriting rules that appear in the rewriting section of the configuration file (the sixth section)
apply to addresses in incoming messages, and to addresses that are generated from the envelope
recipients by aliasing or forwarding, unless no_rewrite is set on the relevant directors. Basically, they
apply to each address the first time Exim sees it. These rules operate both on envelope addresses and
on addresses in header lines. Each rule specifies to which types of address it applies.

At transport time, rewriting addresses in header lines can be specified by setting the generic
headers_rewrite option on a transport. This option contains rules that are identical in form to those in
the rewrite section of the configuration file. In addition, the outgoing envelope sender can be rewritten
by means of the return_path transport option, but it is not possible to rewrite envelope recipients at
transport time.

Rewriting of addresses in header lines applies only to those headers that were received with the
message, or, in the case of transport rewriting, those that were added by a system filter. That is, it
applies only to those headers that are common to all copies of the message. Header lines that are
added by individual drivers (and which are therefore specific to individual recipient addresses) are not
rewritten.

Unqualified addresses (those without a domain) in header lines are qualified and then rewritten if they
are in locally submitted messages, or messages from hosts that are permitted to send unqualified
envelope addresses. Otherwise, unqualified addresses in header lines are neither qualified nor rewritten.

The remainder of this chapter describes the rewriting rules that are used in the rewriting section of the
configuration file, and also in the generic headers_rewrite option that can be set on any transport.

Exim 3.30 [188] address rewriting (34)

34.1 Testing the rewriting rules that apply on input
Exim’s input rewriting configuration appears as the sixth part of the run time configuration file. It can
be tested by the -brw command line option. This takes an address (which can be a full RFC 822
address) as its argument. The output is a list of how the address would be transformed by the rewriting
rules for each of the different places it might appear in an incoming message, that is, for each different
header and for the envelope sender and recipient fields. For example,

exim -brw ph10@exim.work.shop

might produce the output

sender: Philip.Hazel@exim.work.shop
from: Philip.Hazel@exim.work.shop
to: ph10@exim.work.shop
cc: ph10@exim.work.shop
bcc: ph10@exim.work.shop

reply-to: Philip.Hazel@exim.work.shop
env-from: Philip.Hazel@exim.work.shop
env-to: ph10@exim.work.shop

which shows that rewriting has been set up for that address when used in any of the source fields, but
not when it appears as a recipient address.

34.2 Rewriting rules
The rewriting section of the configuration file consists of lines of rewriting rules in the form

<source pattern> <replacement> <flags>

The flags are single characters which may appear in any order. Spaces and tabs between them are
ignored.

Rewriting rules that are specified for the headers_rewrite generic transport option are given as a
colon-separated list; each item in the list takes the same format as a line in the main rewriting
configuration.

The formats of source patterns and replacement strings are described below. Each is terminated by
white space. If a replacement string contains spaces, which can happen for certain forms of expansion
expression, it must be enclosed in double quotes, and the normal quoting conventions apply inside
them.

For each address that could potentially be rewritten, the rules are scanned in order, and replacements
from earlier rules can themselves be replaced as a result of later rules (but see the ‘q’ and ‘R’ flags).

The order in which header and envelope addresses are rewritten is undefined, may change between
releases, and must not be relied on, with one exception: when a message is received, the envelope
sender is always rewritten first, before any header lines are rewritten. For example, the replacement
string for a rewrite of an address in To: must not assume that the message’s address in From: has (or
has not) already been rewritten. However, a rewrite of From: may assume that the envelope sender
has already been rewritten.

$local_part and $domain can be used in the replacement string to refer the address that is being
rewritten. Note that complete lookup-driven rewriting can be done by a rule of the form

@ ${lookup ...

where the lookup key is derived from $1 and $2 or $local_part and $domain.

34.3 Rewriting patterns
The source pattern can be in one of the following forms. It is not enclosed in quotes, and there is no
special processing of any characters. It is not expanded. If it is a regular expression, backslash
characters should not be doubled.

Exim 3.30 [189] address rewriting (34)

• An address containing a local part and a domain, either of which may start with an asterisk,
implying independent wildcard matching, for example

*@orchestra-land.fict.book

If the domain is specified as a single @ character, it matches the primary host name. After
matching, the numerical variables refer to the character strings matched by asterisks, with $1
associated with the first asterisk, while $0 refers to the entire address. For example, if the pattern

queen@.fict.book

is matched against the address hearts-queen@wonderland.fict.book then

$0 = hearts-queen@wonderland.fict.book
$1 = hearts-
$2 = wonderland

Note that if the local part does not start with an asterisk, but the domain does, it is $1 that
contains the wild part of the domain.

• A local part, possibly starting with an asterisk, and a lookup item (as in a domain list), for
example

root@lsearch;/special/domains

If there is an asterisk in the local part, the value of the wild part is placed in the first numerical
variable. If the lookup is a partial one, the wild part of the domain is placed in the next numerical
variable, and the fixed part of the domain is placed in the succeeding variable. Supposed, for
example, that the address foo@bar.baz.com is processed by a rewriting rule of the form

*@partial-dbm;/some/dbm/file <replacement string>

and the key in the file that matches the domain is *.baz.com. Then

$1 = foo
$2 = bar
$3 = baz.com

If the address foo@baz.com is looked up, this matches the same wildcard file entry, and in this
case $2 is set to the empty string, but $3 is still set to baz.com. If a non-wild key is matched in a
partial lookup, $2 is again set to the empty string and $3 is set to the whole domain. For non-
partial lookups, no numerical variables are set.

• A local part, possibly starting with an asterisk, and a regular expression (as in a domain list), for
 example

*.queen@^(wonderland|lookingglass)\.fict\.book$

If there is an asterisk in the local part, the value of the wild part is placed in the first numerical
variable. Any substrings captured by the regular expression are placed in numerical variables
starting at $1 if there is no asterisk in the local part, or at $2 if there is.

• A lookup without a local part, for example

partial-dbm;/rewrite/database

This works as for an address list configuration item – the domain is first looked up, possibly
 partially, and if that fails, the whole address is then looked up (not partially). When a partial

lookup succeeds, the numerical variable $1 contains the wild part of the domain, and $2 contains
the fixed part. The ‘@@’ form of address list lookup can also be used.

• A single regular expression. This is matched against the entire subject address, with the domain
part lower-cased. After matching, the numerical variables refer to the bracketed ‘capturing’ sub-
expressions, with $0 referring to the entire address. For example, if the pattern

^(red|white)\.king@(wonderland|lookingglass)\.fict\.book$

Exim 3.30 [190] address rewriting (34)

is matched against the address red.king@lookingglass.fict.book then

$0 = red.king@lookingglass.fict.book
$1 = red
$2 = lookingglass

Note that because the pattern part of a rewriting rule is terminated by white space, no white
space may be present in the regular expression.

34.4 Rewriting replacements
If the replacement string for a rule is a single asterisk, addresses that match the pattern and flags are
not rewritten, and no subsequent rewriting rules are scanned. For example,

hatta@lookingglass.fict.book * f

specifies that hatta@lookingglass.fict.book is never to be rewritten in From: headers.

Otherwise, the replacement string is expanded and must yield a fully qualified address. Within the
expansion, the variables $local_part and $domain refer to the address that is being rewritten. Any
letters they contain retain their original case – they are not lower cased. The numerical variables are
set up according to the type of pattern that matched the address, as described above. If the expansion
is forced to fail by the presence of ‘fail’ in a conditional or lookup item, rewriting by the current rule
is abandoned. Any other expansion failure causes the entire rewriting operation to be abandoned, and
an entry written to the panic log.

34.5 Rewriting flags
There are four different kinds of flag that may appear on rewriting rules:

• Flags that specify which headers and envelope addresses to rewrite: E, F, T, b, c, f, h, r, s, t.

• A flag that specifies rewriting at SMTP time: S.

• Flags that control the rewriting process: Q, q, R, w.

• A special-purpose flag for additional relay checking: X.

For rules that are part of the headers_rewrite generic transport option, E, F, T, S, and X are not
permitted.

34.6 Flags specifying which headers and envelope addresses to rewrite
If none of the following flag letters, nor the ‘S’ flag (see section 34.7) are present, a main rewriting
rule applies to all headers and to both the sender and recipient fields of the envelope, whereas a
transport-time rewriting rule just applies to all headers. Otherwise, the rewriting rule is skipped unless
the relevant addresses are being processed.

E rewrite all envelope fields
F rewrite the envelope From field
T rewrite the envelope To field
b rewrite the Bcc: header
c rewrite the Cc: header
f rewrite the From: header
h rewrite all headers
r rewrite the Reply-To: header
s rewrite the Sender: header
t rewrite the To: header

You should be particularly careful about rewriting Sender: headers, and restrict this to special known
cases in your own domains.

Exim 3.30 [191] address rewriting (34)

34.7 The SMTP-time rewriting flag
The rewrite flag ‘S’ specifies a rewrite of incoming envelope addresses at SMTP time, as soon as an
address is received in a MAIL or RCPT command, and before any other processing; even before syntax
checking. The pattern is required to be a regular expression, and it is matched against the whole of the
data for the command, including any surrounding angle brackets. This form of rewrite rule allows for
the handling of addresses that are not compliant with RFCs 821 and 822 (for example, ‘bang paths’ in
batched SMTP input). Because the input is not required to be a syntactically valid address, the
variables $local_part and $domain are not available during the expansion of the replacement string.
The result of rewriting replaces the original address in the MAIL or RCPT command.

34.8 Flags controlling the rewriting process
There are four flags which control the way the rewriting process works. These take effect only when a
rule is invoked, that is, when the address is of the correct type (matches the flags) and matches the
pattern.

• If the ‘Q’ flag is set on a rule, the rewritten address is permitted to be an unqualified local part. It
is qualified with qualify_recipient. In the absence of ‘Q’ the rewritten address must always
include a domain.

• If the ‘q’ flag is set on a rule, no further rewriting rules are considered, even if no rewriting
actually takes place because of a ‘fail’ in the expansion. The ‘q’ flag is not effective if the
address is of the wrong type (does not match the flags) or does not match the pattern.

• The ‘R’ flag causes a successful rewriting rule to be re-applied to the new address, up to ten
times. It can be combined with the ‘q’ flag, to stop rewriting once it fails to match (after at least
one successful rewrite).

• When an address in a header is rewritten, the rewriting normally applies only to the working part
of the address, with any comments and RFC 822 ‘phrase’ left unchanged. For example, rewriting
might change

From: Ford Prefect <fp42@restaurant.hitch.fict.book>

into

From: Ford Prefect <prefectf@hitch.fict.book>

Sometimes there is a need to replace the whole address item, and this can be done by adding the
flag letter ‘w’ to a rule. If this is set on a rule that causes an address in a header to be rewritten,
the entire address is replaced, not just the working part. The replacement must be a complete
RFC 822 address, including the angle brackets if necessary. When the ‘w’ flag is set on a rule
that causes an envelope address to be rewritten, all but the working part of the replacement
address is discarded.

34.9 The additional relay checking flag
The ‘X’ flag is a slightly strange oddity that adds additional checking to sender_address_relay.
Whenever an address passes the sender_address_relay check, if there are any rewriting rules with the
‘X’ flag set, the address is rewritten and if this makes any change to the address, it must verify
successfully for the relaying to be permitted.

We use this in Cambridge as follows: users have a centrally registered address in the virtual domain
cam.ac.uk, but there are a number of different hosts where they actually have their accounts and from
which they can read mail using IMAP or POP. It is desirable to prevent them using hosts other than
those on which they have accounts as outgoing relays, and yet to permit the sending addresses to
contain the cam.ac.uk domain. Since the user names are the same on the relay hosts as in the
cam.ac.uk domain, a rewriting rule of the form

*@cam.ac.uk $1@${qualify_domain} X

Exim 3.30 [192] address rewriting (34)

means that any sender address of the form user@cam.ac.uk is acceptable only if user has an account
on the local host. This also has the virtue of detecting typos in the configurations of users’ MUAs.

34.10 Rewriting examples
Here is an example of the two common rewriting paradigms:

@.hitch.book.fict $1@hitch.book.fict
*@hitch.book.fict ${lookup{$1}dbm{/etc/realnames}\

{$value}fail}@hitch.book.fict bctfrF

Note the use of ‘fail’ in the lookup expansion. This causes the string expansion to fail, and in this
context it has the effect of leaving the original address unchanged, but Exim goes on to consider
subsequent rewriting rules, if any, since the ‘q’ flag is not present in that rule. An alternative to ‘fail’
would be to supply $1 explicitly, which would cause the rewritten address to be the same as before, at
the cost of a small bit of processing. Not supplying either of these is an error, since the rewritten
address would then contain no local part.

The first example above replaces the domain with a superior, more general domain. This may not be
desirable for certain local parts. If the rule

root@*.hitch.book.fict *

were inserted as the first rule, rewriting would be suppressed for the local part root at any domain
ending in hitch.book.fict.

Rewriting can be made conditional on a number of tests, by making use of ${if in the expansion item.
For example, to apply a rewriting rule only to messages that originate outside the local host:

@.hitch.book.fict "${if !eq {$sender_host_address}{}\
 {$1@hitch.book.fict}fail}"

The replacement string is quoted in this example because it contains white space.

Exim does not handle addresses in the form of ‘bang paths’. If it sees such an address it treats it as an
unqualified local part which it qualifies with the local qualification domain (if the source of the
message is local or if the remote host is permitted to send unqualified addresses). Rewriting can
sometimes be used to handle simple bang paths with a fixed number of components. For example,
the rule

^([^!]+)!(.*)@your\.domain$ $2@$1

rewrites a two-component bang path ‘host.name!user’ as the domain address ‘user@host.name’.
However, there is a security implication in doing this as a normal rewriting rule for envelope
addresses. It can provide a backdoor method for using your system as a relay, since the incoming
addresses appear to be local. If the bang path addresses are received via SMTP, it is safer to use the
‘S’ flag to rewrite them as they are received, so that relay checking can be done on the rewritten
addresses.

Exim 3.30 [193] address rewriting (34)

35. SMTP authentication

The seventh part of Exim’s run time configuration, following the rewriting configuration, is concerned
with SMTP authentication. This is an extension to the SMTP protocol, described in RFC 2554, which
allows a client SMTP host to authenticate itself to a server. By this means a server might, for example,
recognize clients that are permitted to use it as a relay. SMTP authentication is not of relevance to the
transfer of mail between servers that have no managerial connection with each other.

Very briefly, the way SMTP authentication works is as follows:

• The server advertises a number of authentication mechanisms.

• The client issues an AUTH command, naming a specific mechanism. The command may, option-
 ally, contain some authentication data.

• The server may issue one or more challenges, to which the client must send appropriate
responses. In the simple authentication mechanisms, the challenges are just prompts for user
names and passwords. The server does not have to issue any challenges – in some mechanisms
the relevant data may all be transmitted with the AUTH command.

• The server either accepts or denies authentication.

• If authentication succeeds, the client may optionally make use of the AUTH option on the MAIL

command to pass an authenticated sender in subsequent mail transactions. Authentication lasts for
the remainder of the SMTP connection.

• If authentication fails, the client may give up, or it may try a different authentication mechanism,
or it may try transfering mail over the unauthenticated connection.

If you are setting up a client, and want to know which authentication mechanisms the server supports,
you can use Telnet to connect to port 25 (the SMTP port) on the server, and issue an EHLO command.
The response to this includes the list of supported mechanisms.

When Exim is receiving SMTP mail, it is acting as a server; when it is sending out messages over
SMTP, it is acting as a client. Configuration options are provided for use in both these circumstances.
The different authentication mechanisms. These are configured by specifying authenticator drivers for
Exim. Like the directors, routers, and transports, which authenticators are included in the binary is
controlled by build-time definitions. Two are currently available, included by setting

AUTH_CRAM_MD5=yes
AUTH_PLAINTEXT=yes

in Local/Makefile, respectively. The first of these supports the CRAM-MD5 authentication mechanism
(RFC 2195), while the second can be configured to support the PLAIN authentication mechanism
(RFC 2595) or the LOGIN mechanism, which is not formally documented, but used by several MUAs.

Almost all the code for handling authentication is omitted from Exim unless at least one AUTH_xxx is
defined. This includes the code for implementing configuration options such as auth_hosts. Attempts
to use such options provoke ‘unknown option’ errors when no authentication code is included in the
binary.

The authenticators are configured using the same syntax as other drivers (see chapter 12). If none are
required, the entire seventh section of the configuration file may be omitted. If at least one
authenticator is included in the binary, the contents of the configuration can be obtained by running
one of

exim -bP authenticator_list
exim -bP authenticators
exim -bP authenticator <authenticator name>

Each authenticator can have both server and client functions. To make it clear which options apply to
which, the prefixes server_ and client_ are used on option names which are specific to either the

Exim 3.30 [194] SMTP authentication (35)

server or the client function, respectively. Server and client functions are disabled if none of their
options are set. If an authenticator is to be used for both server and client functions, a single definition,
using both sets of options, is required. For example:

cram:
driver = cram_md5
public_name = CRAM-MD5
server_secret = ${if eq{$1}{ph10}{secret1}fail}
client_name = ph10
client_secret = secret2

The server_ option is used when Exim is acting as a server, and the client_ options when it is acting
as a client.

Descriptions of the individual authenticators are given in subsequent chapters. The remainder of this
chapter covers the generic options for the authenticators, followed by general discussion of the way
authentication works.

35.1 Generic options for authenticators

driver Type: string Default: unset

This option must always be set. It specifies which of the available authenticators is to be used.

public_name Type: string Default: unset

This option specifies the name of the authentication mechanism which the driver implements, and
by which it is known to the outside world. These names should contain only upper case letters,
digits, underscores, and hyphens (RFC 2222), but Exim in fact matches them caselessly. If
public_name is not set, it defaults to the driver instance’s name.

The public names of authenticators that are configured as servers are advertised by Exim when it
receives an EHLO command, in the order in which they are defined. When an AUTH command is
received, the list of authenticators is scanned in definition order for one whose public name matches
the mechanism given in the AUTH command.

server_set_id Type: string† Default: unset

When an Exim server successfully authenticates a client, this string is expanded using data from the
authentication, and preserved for any incoming messages in the variable $authenticated_id. It is
also included in the log lines for incoming messages. For example, a user/password authenticator
configuration might preserve the user name which was used to authenticate, and refer to it
subsequently during delivery of the message.

server_mail_auth_condition Type: string† Default: unset

This option allows a server to discard authenticated sender addresses supplied in MAIL commands
according to configured conditions. If the option is unset, addresses supplied by the AUTH option of
MAIL commands are always accepted. Otherwise, when an authenticated client supplies an AUTH

value on a MAIL command, the value of this option is expanded. If it yields an empty string, ‘0’,
‘no’, or ‘false’, the AUTH address is ignored. If the expansion yields any other value, the AUTH

address is retained and passed on with the message. During the expansion, the address that was
supplied by the AUTH keyword is available in $authenticated_sender.

35.2 Authentication on an Exim server
When any server authentication mechanisms are configured, the SMTP AUTH command is accepted
from any connected client host. If, however, the client host matches an item in auth_hosts, it is
required to authenticate itself before any commands other than HELO, EHLO, HELP, AUTH, NOOP, RSET, or
QUIT are accepted.

You can insist that any client that uses the AUTH command for authentication must start a TLS
encrypted session first, by setting auth_over_tls_hosts. For example,

Exim 3.30 [195] SMTP authentication (35)

auth_over_tls_hosts = *

means that all authentication must take place over secure sessions. See chapter 38 for details of TLS
encryption.

A client that matches an item in host_auth_accept_relay is permitted to relay to any domain,
provided that it is authenticated, whether or not it matches auth_hosts. In other words, an
authenticated client is permitted to relay if it matches either host_accept_relay or host_auth_accept_
relay, whereas an unauthenticated client host may relay only if it matches host_accept_relay.

Normally, an Exim server advertises the authentication mechanisms it supports in response to any EHLO

command. However, if auth_always_advertise is set false, Exim advertises availability of the AUTH

command only if the calling host is in auth_hosts, or if it is in host_auth_accept_relay and not in
host_accept_relay. In other words, it advertises only when the host is required always to authenticate
or to authenticate in order to relay.

Otherwise, Exim does not advertise AUTH, though it is always prepared to accept it. Certain mail
clients (for example, Netscape) require the user to provide a name and password for authentication if
AUTH is advertised, even though it may not be needed (the host may be in host_accept_relay).
Unsetting auth_always_advertise makes these clients more friendly in these circumstances, while still
allowing you to use combinations such as

host_auth_accept_relay = *
host_accept_relay = 10.9.8.0/24

without needing to fill up host_auth_accept_relay with exceptions.

When a message is received from an authenticated host, the value of $received_protocol is set to
‘asmtp’ instead of ‘esmtp’, and $sender_host_authenticated contains the name (not the public name)
of the authenticator driver which successfully authenticated the client from which the message was
received. It is empty if there was no successful authentication.

35.3 Testing server authentication
Exim’s -bh option can be useful for testing server authentication configurations. The data for the AUTH

command has to be sent encoded in base 64. A quick way to produce such data for testing is the
following Perl script:

use MIME::Base64;
printf ("%s", encode_base64(eval "\"$ARGV[0]\""));

This interprets its argument as a Perl string, and then encodes it. The interpretation as a Perl string
allows binary zeros, which are required for some kinds of authentication, to be included in the data.
For example, a command line to run this script on such data might be

encode ’\0user\0password’

Note the use of single quotes to prevent the shell interpreting the backslashes, so that they can be
interpreted by Perl to specify characters whose code value is zero. If you have the mimencode
command installed, another way to do this is to run the command

echo -n ‘\0user\0password’ | mimencode

(but some versions of echo do not recognize the -n option).

Warning: If either of the strings starts with an octal digit, you must use three zeros instead of one
after the leading backslash. If you do not, the octal digit that starts your string will be incorrectly
interpreted as part of the code for the first character.

35.4 Authenticated senders
When a client host has authenticated itself, Exim pays attention to the AUTH parameter on incoming
SMTP MAIL commands. Otherwise, it accepts the syntax, but ignores the data. Unless the data is the
string ‘<>’, it is set as the authenticated sender of the message. The value is available during delivery

Exim 3.30 [196] SMTP authentication (35)

in the $authenticated_sender variable, and is passed on to other hosts to which Exim authenticates as
a client. Do not confuse this value with $authenticated_id, which is a string obtained from the
authentication process, and which is not usually a complete email address.

35.5 Authentication by an Exim client
The smtp transport has an option called authenticate_hosts if Exim is built with authentication
support. When the smtp transport connects to a server that announces support for authentication, and
also matches an entry in authenticate_hosts, Exim (as a client) tries to authenticate as follows:

• For each authenticator that is configured as a client, it searches the authentication mechanisms
announced by the server for one whose name matches the public name of the authenticator.

• When it finds one that matches, it runs the authenticator ’s client code. The variables $host and
 $host_address are available for any string expansions that the client might do. They are set to

the server ’s name and IP address. If any expansion is forced to fail, the authentication attempt is
abandoned. Otherwise an expansion failure causes delivery to be deferred.

• If the result is a temporary error or a timeout, Exim abandons trying to send the message to the
host for the moment. It will try again later. If there are any backup hosts available, they are tried
in the usual way.

• If the response to authentication is a permanent error (5xx code), Exim carries on searching the
list of authenticators. If all authentication attempts give permanent errors, or if there are no
attempts because no mechanisms match, it tries to deliver the message unauthenticated.

When Exim has authenticated itself to a remote server, it adds the AUTH parameter to the MAIL

commands it sends, if it has got an authenticated sender for the message. If a local process calls Exim
to send a message, the sender address that is built from the login name and qualify_domain is treated
as authenticated.

Exim 3.30 [197] SMTP authentication (35)

36. The plaintext authenticator

The plaintext authenticator can be configured to support the PLAIN and LOGIN authentication
mechanisms, both of which transfer authentication data as plain (unencrypted) text, though encoded in
base 64. The use of plain text is a security risk. If you use one of these mechanisms without also
making use of SMTP encryption (see chapter 38) you should not use the same passwords for SMTP
connections as you do for login accounts.

36.1 Using plaintext in a server
When running as a server, plaintext performs the authentication test by expanding a string. It has the
following options:

server_prompts Type: string† Default: unset

This option contains a colon-separated list of prompt strings.

server_condition Type: string† Default: unset

This option must be set in order to configure the driver as a server. Its use is described below.

The data sent with the AUTH command or in response to subsequent prompts is encoded in base 64,
and so may contain any byte values when decoded. If any data was supplied with the command, it is
treated as a list of NUL-separated strings which are placed in the expansion variables $1, $2, etc. If
there are more strings in server_prompts than the number of strings supplied with the AUTH com-
mand, the remaining prompts are used to obtain more data. Each response from the client may be a list
of NUL-separated strings.

Once a sufficient number of data strings has been received, server_condition is expanded. Failure of
the expansion (forced or otherwise) causes a temporary error code to be returned. If the result of a
successful expansion is an empty string, ‘0’, ‘no’, or ‘false’, authentication fails. If the result of the
expansion is ‘1’, ‘yes’, or ‘true’, authentication succeeds and the generic server_set_id option is
expanded and saved in $authenticated_id. For any other result, a temporary error code is returned,
with the expanded string as the error text.

The PLAIN authentication mechanism (RFC 2595) specifies that three strings be sent with the AUTH

command. The second and third of them are a user/password pair. Using a single fixed user and
password as an example, this could be configured as follows:

fixed_plain:
driver = plaintext
public_name = PLAIN
server_condition = \
${if and {{eq{$2}{ph10}}{eq{$3}{secret}}}{yes}{no}}

server_set_id = $2

This would be advertised in the response to EHLO as

250-AUTH PLAIN

and a client host could authenticate itself by sending the command

AUTH PLAIN AHBoMTAAc2VjcmV0

The argument string is encoded in base 64, as required by the RFC. This example, when decoded, is
‘<NUL>ph10<NUL>secret’, where <NUL> represents a zero byte. This is split up into three strings,
the first of which is empty. The condition checks that the second two are ‘ph10’ and ‘secret’
respectively. Because no prompt strings are set, if no data is given with the AUTH command,
authentication fails.

A more sophisticated instance of this authenticator could make use of the user name in $2 to look up a
password in a file or database, and maybe do an encrypted comparison (see crypteq in chapter 9).

Exim 3.30 [198] plaintext authenticator (36)

Note, however, that the authentication data has traversed the network in clear, albeit encoded as a base
64 string.

The LOGIN authentication mechanism is not documented in any RFC, but is in use in a number of
programs. No data is sent with the AUTH command. Instead, a user name and password are supplied
separately, in response to prompts. The plaintext authenticator can be configured to support this as in
this example:

fixed_login:
driver = plaintext
public_name = LOGIN
server_prompts = User Name : Password
server_condition = \
${if and {{eq{$1}{ph10}}{eq{$2}{secret}}}{yes}{no}}

server_set_id = $1

Some clients are very particular about the precise text of the prompts. For example, Outlook Express is
reported to recognize only ‘Username:’ and ‘Password:’.

This authenticator would accept data with the AUTH command (in contravention of the specification of
LOGIN), but if the client does not supply it (as is the case for LOGIN clients), the prompt strings are
used to obtain two data items.

36.2 Using plaintext in a client
The plaintext authenticator has just one client option:

client_send Type: string† Default: unset

The string is a colon-separated list of authentication data strings. Each string is independently
expanded before being sent to the server. The first string is sent with the AUTH command; any more
strings are sent in response to prompts from the server.

Because the PLAIN authentication mechanism requires NUL (zero) bytes in the data sent with the
AUTH command, further processing is applied to each string before it is sent. If there are any single
circumflex characters in the string, they are converted to NULs. Should an actual circumflex be
required as data, it must be doubled in the string.

This is an example of a client configuration that implements the PLAIN authentication mechanism
with a fixed name and password:

fixed_plain:
driver = plaintext
public_name = PLAIN
client_send = ^ph10^secret

The lack of colons means that the entire text is sent with the AUTH comand, with the circumflex
characters converted to NULs. A similar example that uses the LOGIN mechanism is:

fixed_login:
driver = plaintext
public_name = LOGIN
client_send = : ph10 : secret

The initial colon ensures that no data is sent with the AUTH command itself. The remaining strings are
sent in response to prompts.

Exim 3.30 [199] plaintext authenticator (36)

37. The cram_md5 authenticator

The CRAM-MD5 authentication mechanism is described in RFC 2195. The server sends a ‘challenge’
string to the client, and the response consists of a ‘user name’ and the CRAM-MD5 digest of the
challenge string combined with a secret string (password) which is known to both server and client.
Thus the secret does not get sent over the network as plain text, which makes this authenticator more
secure than plaintext.

37.1 Using cram_md5 as a server
This authenticator has one server option, which must be set to configure the authenticator as a server.

server_secret Type: string† Default: unset

When the server receives the client’s response, the ‘user name’ is placed in the expansion variable
 $1, and server_secret is expanded to obtain the password for that user. The server then computes

the CRAM-MD5 digest that the client should have sent, and checks that it received the correct
string. If the expansion of server_secret is forced to fail, authentication fails. If the expansion fails
for some other reason, a temporary error code is returned to the client.

For example, the following authenticator checks that the user name given by the client is ‘ph10’, and
if so, uses ‘secret’ as the password. For any other user name, authentication fails. A more sophisticated
version might look up the secret string in a file, using the user name as the key.

fixed_cram:
driver = cram_md5
public_name = CRAM-MD5
server_secret = ${if eq{$1}{ph10}{secret}fail}
server_set_id = $1

If authentication succeeds, the setting of server_set_id preserves the user name in $authenticated_id.

37.2 Using cram_md5 as a client
When used as a client, the cram_md5 authenticator has two options:

client_name Type: string† Default: the primary host name

This string is expanded, and the result used as the ‘user name’ data when computing the response to
the server ’s challenge.

client_secret Type: string† Default: unset

This option must be set for the authenticator to work as a client. Its value is expanded and the result
used as the secret string when computing the response.

Different user names and secrets can be used for different servers by referring to $host or
$host_address in the options.

Forced failure of either expansion string is treated as an indication that this authenticator is not
prepared to handle this case. Exim moves on to the next configured client authenticator. Any other
expansion failure causes Exim to give up trying to send the message to the current server.

A simple example configuration of a cram_md5 authenticator, using fixed strings, is:

fixed_cram:
driver = cram_md5
public_name = CRAM-MD5
client_name = ph10
client_secret = secret

Exim 3.30 [200] cram_md5 authenticator (37)

38. Encrypted SMTP connections using TLS/SSL

Support for TLS (Transport Layer Security), otherwise known as SSL (Secure Sockets Layer), is
implemented by making use of the OpenSSL library. There is no cryptographic code in the Exim
distribution itself. In order to use this feature you must install OpenSSL, and then build a version of
Exim that includes TLS support. You also need to understand the basic concepts of encryption at a
managerial level, and in particular, the way that public keys, private keys, and certificates are used.

RFC 2487 defines how SMTP connections can make use of encryption. Once a connection is
established, the client issues a STARTTLS command. If the server accepts this, they negotiate an
encryption mechanism. If the negotiation succeeds, the data that subsequently passes between them is
encrypted.

38.1 Configuring Exim to use TLS as a server
When Exim has been built with TLS support, it advertises the availability of the STARTTLS command to
client hosts that match tls_advertise_hosts, but not to any others. The default value of this option is
unset, which means that STARTTLS is not advertised at all. This default is chosen because it is sensible
for systems that want to use TLS only as a client. To make it work as a server, you must set
tls_advertise_hosts to match some hosts. You can, of course, set it to * to match all hosts. However,
this is not all you need to do. TLS sessions to a server won’t work without some further configuration
at the server end (see below).

If a client issues a STARTTLS command and there is some configuration problem in the server code, the
command is rejected with a 454 error. If the client persists in trying to issue SMTP commands, all
except QUIT are rejected with the error

554 Security failure

If a STARTTLS command is issued within an existing TLS session, it is rejected with a 554 error code.

It is rumoured that all existing clients that support TLS/SSL use RSA encryption. To make this work
you need to set, in the server,

tls_certificate = /some/file/name
tls_privatekey = /some/file/name

The first file contains the server ’s X509 certificate, and the second contains the private key that goes
with it. These files need to be readable by the Exim user. They can be the same file if both the
certificate and the key are contained within it. If you don’t understand about certificates and keys,
please try to find a source of this background information, which is not Exim-specific. (There are a
few comments below.)

With just these two options set, Exim will work as a server with clients such as Netscape. It does not
require the client to have a certificate (but see below for how to insist on this). There is one other
option that may be needed in other situations. If

tls_dhparam = /some/file/name

is set, the SSL library is initialized for the use of Diffie-Hellman ciphers with the parameters contained
in the file. This increases the set of ciphers that the server supports. (See the command

openssl dhparam

for a way of generating this data.)

The strings supplied for these options are expanded every time a client host connects. It is therefore
possible to use different certificates and keys for different hosts, if you so wish, by making use of the
client’s IP address in $sender_host_address to control the expansion. If a string expansion is forced to
fail, Exim behaves as if the option is not set.

Exim 3.30 [201] TLS encryption (38)

The variable $tls_cipher is set to the cipher that was negotiated for an incoming TLS connection. It is
included in the Received: header of an incoming message (by default – you can, of course, change
this), and it is also included in the log line that records a message’s arrival, keyed by ‘X=’, unless
tls_log_cipher is set false.

If you want to enforce conditions on incoming TLS connections, you must set tls_verify_hosts to
match the relevant clients. By default this host list is unset. You could, of course, use

tls_verify_hosts = *

to make it apply to all TLS connections. When a client host is in this list, two further options are
relevant:

• tls_verify_ciphers contains a colon-separated list of permitted ciphers. The list is passed to the
OpenSSL library, so it must always be colon-separated – Exim’s alternate separator feature does
not apply. For example:

tls_verify_ciphers = DES-CBC3-SHA:IDEA-CBC-MD5

With this option set, all TLS sessions must use one of the listed ciphers.

• tls_verify_certificates contains the name of a file or a directory that contains a collection of
expected certificates. A file can contain multiple certificates, concatenated end to end. If a
directory is used, each certificate must be in a separate file, with a name (or a symbolic link) of
the form <hash>.0, where <hash> is a hash value constructed from the certificate. You can
compute the relevant hash by running the command

openssl x509 -hash -noout -in /cert/file

where /cert/file contains a single certificate.

When tls_verify_certificates is set, Exim always requests a certificate from the client, and fails if
one is not provided. The value of the Distinguished Name of the certificate is made available in
the variable $tls_peerdn during subsequent processing of the message. Because it is often a long
text string, it is not included in the log line or Received: header by default. You can arrange for
it to be logged, keyed by ‘DN=’, by setting tls_log_peerdn, and you can use

 received_header_text to change the Received: header.

Both these options are expanded before use, so again you can make them do different things for
different hosts.

You can insist that certain client hosts use TLS, by setting tls_hosts to match them. When a host is in
tls_hosts, STARTTLS is always advertised to it, even if it is not in tls_advertise_hosts. If such a host
attempts to send a message without starting a TLS session, the MAIL command is rejected with the
error

503 Use of TLS required

You can permit client hosts to relay, provided they are in a TLS session, by setting
tls_host_accept_relay. Note that all the host relay checks are alternatives. Relaying is permitted if any
of the checks is passed, that is, if

• The host matches host_accept_relay, OR

• The host is authenticated and matches host_auth_accept_relay OR

• The host is using a TLS session and matches tls_host_accept_relay.

Using tls_host_accept_relay probably makes sense only if you are checking the client’s certificate.

You can insist that any client that uses the AUTH command for authentication must start a TLS session
first, by setting auth_over_tls_hosts. For example,

auth_over_tls_hosts = *

Exim 3.30 [202] TLS encryption (38)

means that all authentication must take place over secure sessions. This setting does not force the
matching hosts to use AUTH, but if they do, they must issue STARTTLS first. The availability of the AUTH

command is advertised to such hosts only after a TLS session has been started.

38.2 Configuring Exim to use TLS as a client
The tls_log_cipher and tls_log_peerdn options apply to outgoing SMTP deliveries as well as to
incoming, the latter one causing logging of the server certificate’s DN. The remaining client configur-
ation for TLS is all within the smtp transport.

It is not necessary to set any options to have TLS work in the smtp transport. If TLS is advertised by
a server, the smtp transport will attempt to start a TLS session. However, this can be prevented by
setting hosts_avoid_tls (an option of the transport) to a list of server hosts for which TLS should not
be used.

If an attempt to start a TLS session fails for a temporary reason (for example, a 4xx response to
STARTTLS), delivery to this host is not attempted. If there are alternative hosts, they are tried; otherwise
delivery is deferred. If, on the other hand, the STARTTLS command is rejected with a 5xx error code, the
smtp transport attempts to deliver the message in clear, unless the server matches hosts_require_tls,
in which case delivery is again deferred unless there are other hosts to try.

There are a number of options for the smtp transport which match the global TLS options for the
server, and have the same names. They are all expanded before use, with $host and $host_address
containing the name and address of the server to which the client is connected. Forced failure of an
expansion causes Exim to behave as if the relevant option were unset.

• tls_certificate and tls_privatekey provide the client with a certificate, which is passed to the
server if it requests it. (If the server is Exim, it will request it only if tls_verify_certificates is
set.)

• tls_verify_certificates and tls_verify_ciphers on the smtp transport act exactly like their
namesakes on the server: they do appropriate verification on the server ’s certificate and the
negotiated cipher, respectively.

38.3 Multiple messages on the same TCP/IP connection
Exim sends multiple messages down the same TCP/IP connection by starting up an entirely new
delivery process for each message, passing the socket from one process to the next. This implemen-
tation does not fit well with the use of TLS, because there is quite a lot of state associated with a TLS
connection, not just a socket identification. Passing all the state information to a new process is not
feasible. Consequently, Exim shuts down an existing TLS session before passing the socket to a new
process. The new process may then try to start a new TLS session, and if successful, may try to re-
authenticate if AUTH is in use, before sending the next message. If the server is Exim, this
reinitialization works. It is not known if other servers operate successfully in these circumstances. If
they do not, it may be necessary to set

batch_max = 1

on the smtp transport, to disable multiple messages down a single TCP/IP connection.

38.4 Certificates and all that
In order to understand fully how TLS works, you need to know about certificates, certificate signing,
and certificate authorities. This is not the place to give a tutorial, especially as I don’t know very much
about it myself. Some helpful introduction can be found in the FAQ for the SSL addition to Apache, at

http://www.modssl.org/docs/2.6/ssl_faq.html#ToC24

and other parts of the modssl documentation are also helpful, and have links to further files.

You can create a self-signed certificate using the req command provided with OpenSSL, like this:

Exim 3.30 [203] TLS encryption (38)

openssl req -x509 -newkey rsa:1024 -keyout file1 -out file2 \
-days 9999 -nodes

file1 and file2 can be the same file; the key and the certificate are delimited and so can be identified
independently. The -days option specifies a period for which the certificate is valid. The -nodes option
is important: if you do not set it, the key is encrypted with a passphrase that you are prompted for, and
any use that is made of the key causes more prompting for the passphrase. This is not helpful if you
are going to use this certificate and key in an MTA, where prompting is not possible.

A self-signed certificate made in this way is sufficient for testing, and may be adequate for all your
requirements if you are mainly interested in encrypting transfers, and not in secure identification.

Exim 3.30 [204] TLS encryption (38)

39. Customizing error and warning messages

When a message fails to get delivered, or remains on the queue for more than a configured amount of
time, Exim sends a message to the original sender, or to an alternative configured address. The text of
these messages is built into the code of Exim, but it is possible to change it, either by adding a single
string, or by replacing each of the paragraphs by text supplied in a file.

39.1 Customizing error messages
If errmsg_text is set, its contents are included in the default message immediately after ‘This message
was created automatically by mail delivery software.’ The string is not expanded. It is not used if
errmsg_file is set.

When errmsg_file is set, it must point to a template file for constructing error messages. The file
consists of a series of text items, separated by lines consisting of exactly four asterisks. If the file
cannot be opened, default text is used and a message is written to the main and panic logs. If any text
item in the file is empty, default text is used for that item.

Each item of text that is read from the file is expanded, and there are two expansion variables which
can be of use here: $errmsg_recipient is set to the recipient of an error message while it is being
created, and $return_size_limit contains the value of the return_size_limit option, rounded to a
whole number.

The items must appear in the file in the following order:

• The first item is included in the headers, and should include at least a Subject: header. Exim
does not check the syntax of these headers.

• The second item forms the start of the error message. After it, Exim lists the failing addresses
with their error messages.

• The third item is used to introduce any text from pipe transports that is to be returned to the
 sender. It is omitted if there is no such text.

• The fourth item is used to introduce the copy of the message that is returned as part of the error
 report.

• The fifth item is added after the fourth one if the returned message is truncated because it is
bigger than return_size_limit.

• The sixth item is added after the copy of the original message.

The default state (errmsg_file unset) is equivalent to the following file, in which the sixth item is
empty. The Subject: line has been split into two here in order to fit it on the page.

Subject: Mail delivery failed

${if eq{$sender_address}{$errmsg_recipient}{: returning message to sender}}

This message was created automatically by mail delivery software.

A message ${if eq{$sender_address}{$errmsg_recipient}{that you sent }{sent by

<$sender_address>

}}could not be delivered to all of its recipients.

The following address(es) failed:

The following text was generated during the delivery attempt(s):

------ This is a copy of the message, including all the headers. ------

------ The body of the message is $message_size characters long; only the first

Exim 3.30 [205] customizing messages (39)

------ $return_size_limit or so are included here.

39.2 Customizing warning messages
The option warnmsg_file can be pointed at a template file for use when warnings about message
delays are created. In this case there are only three text sections:

• The first item is included in the headers, and should include at least a Subject: header. Exim
does not check the syntax of these headers.

• The second item forms the start of the warning message. After it, Exim lists the delayed
 addresses.

• The third item then ends the message.

The default state is equivalent to the file

Subject: Warning: message $message_id delayed $warnmsg_delay

This message was created automatically by mail delivery software.

A message ${if eq{$sender_address}{$warnmsg_recipients}{that you sent }{sent by

<$sender_address>

}}has not been delivered to all of its recipients after

more than $warnmsg_delay on the queue on $primary_hostname.

The message identifier is: $message_id

The subject of the message is: $h_subject

The date of the message is: $h_date

The following address(es) have not yet been delivered:

No action is required on your part. Delivery attempts will continue for

some time, and this warning may be repeated at intervals if the message

remains undelivered. Eventually the mail delivery software will give up,

and when that happens, the message will be returned to you.

except that in the default state the subject and date lines are omitted if no appropriate headers exist.
During the expansion of this file, $warnmsg_delay is set to the delay time in one of the forms ‘<n>
minutes’ or ‘<n> hours’, and $warnmsg_recipients contains a list of recipients for the warning
message. There may be more than one if there are multiple addresses with different errors_to settings
on the routers/directors that handled them.

Exim 3.30 [206] customizing messages (39)

40. The default configuration file

The default configuration file supplied with Exim as src/configure.default is sufficient for a single
host with simple mail requirements. It contains comments about options you might want to set, but
which it lets default, together with the settings described here.

40.1 Main configuration settings
There are four explicit options in this section:

never_users = root

This prevents Exim from ever running as root when performing a local delivery. Instead, it runs as
‘nobody’.

host_lookup = *

This specifies the sending IP networks for which a DNS reverse lookup is done, in order to get the
host name from the IP address of an incoming message. The default setting matches all IP addresses.
The host name appears in the log and in messages’ Received: headers.

forbid_domain_literals

This locks out the use of ‘domain literal’ addresses such as

root@[192.168.35.43]

at the syntactic level. Although still specified in the RFCs, such addresses are not of great relevance in
today’s Internet, are not understood by many people, and have been abused by spammers seeking open
relays.

timeout_frozen_after = 7d

This option causes Exim to abandon frozen messages after they have been on its queue for a week.

As the primary_hostname, qualify_domain, and local_domains options are not specified, they all
take the name of the local host, as obtained by the uname() function, as their value.

No relaying is permitted through the host, because neither relay_domains nor host_accept_relay is
set. See chapter 46 for more details about relay control.

40.2 Transport configuration settings
Four local transports and one remote transport are defined. The first one is the remote transport:

remote_smtp:
driver = smtp

This transport is used to do external deliveries over SMTP, with default options. The first local
transport is

local_delivery:
driver = appendfile
file = /var/mail/$local_part
delivery_date_add
envelope_to_add
return_path_add

This is set up to deliver to local mailboxes in a traditional ‘sticky bit’ directory. Some installations
prefer not to set the ‘sticky bit’, but instead run the delivery under a specific group, with the directory
being writeable by the group. Adding the following options achieves this:

Exim 3.30 [207] default configuration (40)

group = mail
mode = 0660

To deliver into files in users’ home directories, a setting such as

file = /home/$local_part/inbox

or

file = $home/inbox

should be substituted for the default file option. The three options ending in _add cause Exim to add
three header lines to the message as it writes it to the mailbox. They can be removed if these headers
are not required. The second local transport is

address_pipe:
driver = pipe

 return_output

This transport is used by Exim when a local part that is expanded via an alias or forward file causes
delivery to a pipe. Any output from the pipe is returned to the sender of the message. The third local
transport is

address_file:
driver = appendfile

 delivery_date_add
 envelope_to_add
 return_path_add

This transport is used by Exim when a local part that is expanded via an alias or forward file causes
delivery to a specified file (by generating a path name not ending in ‘/’). The final local transport is

address_reply:
driver = autoreply

This transport is used by Exim when a local part that is expanded via a filter file causes an automatic
reply to a message to be generated.

40.3 Director configuration settings
Three directors are specified for the default configuration. Note that the order of director definitions
matters. The first director causes local parts to be checked against the system alias file, which is
searched linearly:

system_aliases:
driver = aliasfile
file = /etc/aliases
search_type = lsearch
file_transport = address_file
pipe_transport = address_pipe

If an alias generates a file or pipe delivery, the address_file or address_pipe transport is used, as
appropriate. The second director comes into play if a local part does not match a system alias:

userforward:
driver = forwardfile
file = .forward

 no_verify
 no_expn
 check_ancestor
filter
file_transport = address_file
pipe_transport = address_pipe
reply_transport = address_reply

Exim 3.30 [208] default configuration (40)

An attempt is made to look for a file called .forward in the home directory of a local user. However,
this director is skipped when verifying addresses or running an SMTP EXPN command. The
check_ancestor option prevents a .forward file from turning a login name back into a previously-
handled alias name. The filter option is commented out in the default configuration. Thus .forward
files are treated in the conventional manner, but filtering can be enabled by removing the # character.

If forwarding or filtering generates a file, pipe, or autoreply delivery, the address_file, address_pipe,
or address_reply transport is used, as appropriate. The final director is

localuser:
driver = localuser
transport = local_delivery

This checks that a local part is the login of a local user, and if so, directs the message to be delivered
using the local_delivery transport.

40.4 Router configuration settings
Only one router is defined in the default configuration:

lookuphost:
driver = lookuphost
transport = remote_smtp

Its default settings cause it to look up the domain in the DNS, in order to determine the host to which
a message should be sent, using the remote_smtp transport.

40.5 Default retry rule
A single retry rule is given in the default configuration:

* * F,2h,15m; G,16h,1h,1.5; F,4d,8h

This causes any temporarily failing address to be retried every 15 minutes for 2 hours, then at intervals
starting at one hour and increasing by a factor of 1.5 until 16 hours have passed, then every 8 hours up
to 4 days.

40.6 Rewriting configuration
There are no rewriting rules in the default configuration file.

40.7 Authenticators configuration
No authenticators are specified in the default configuration file. Note that in order to use SMTP
authentication, it is necessary to specify at least one authenticator in Local/Makefile.

Exim 3.30 [209] default configuration (40)

41. Multiple user mailboxes

The wildcard facility of the generic prefix and suffix options for directors allows you to configure
Exim to permit users to make use of arbitrary local part prefixes or suffixes in any way they wish. A
director such as

userforward:
driver = forwardfile
file = .forward
suffix = -*

 suffix_optional
 filter

runs a user ’s .forward file for all local parts of the form username-*. Within the filter file the user can
distinguish different cases by testing the variable $local_part_suffix. For example:

if $local_part_suffix contains -special then
save /home/$local_part/Mail/special

 endif

If the filter file does not exist, or does not deal with such addresses, they fall through to subsequent
directors, and, assuming no subsequent use of the suffix option is made, they presumably fail. Thus
users have control over which suffixes are valid.

Alternatively, a suffix can be used to trigger the use of a different .forward file – which is the way a
similar facility is implemented in another MTA:

userforward:
driver = forwardfile
file = .forward${local_part_suffix}
suffix = -*

 suffix_optional
 filter

If there is no suffix, .forward is used; if the suffix is -special, for example, .forward-special is used.
Once again, if the appropriate file does not exist, or does not deal with the address, it is passed on to
subsequent directors, which could, if required, look for an unqualified .forward file to use as a default.

Exim 3.30 [210] multiple mailboxes (41)

42. Using Exim to handle mailing lists

Exim can be used to run simple mailing lists, but for large and/or complicated requirements, the use of
additional specialized mailing list software is recommended.

The forwardfile director can be used to handle mailing lists where each list is maintained in a separate
file, which can therefore be managed by an independent manager. The domains director option can be
used to run these lists in a separate domain from normal mail. For example:

lists:
driver = forwardfile
domains = lists.ref.book

 no_more
file = /opt/lists/$local_part

 no_check_local_user
 forbid_pipe
 forbid_file

errors_to = $local_part-request@lists.ref.book

The domain lists.ref.book must appear as one of the domains in the local_domains configuration
option. This director is used only when an address refers to that domain. Because the no_more option
is set, if the local part of the address does not match a file in the /opt/lists directory, causing the
director to decline, no subsequent directors are tried, and the whole delivery fails.

The no_check_local_user option stops Exim insisting that the local part is the login id of a local user,
and because no user or group is specified, no check is made on the ownership of the file. The
forbid_pipe and forbid_file options prevent a local part from being expanded into a file name or a
pipe delivery.

The errors_to option specifies that any delivery errors caused by addresses taken from a mailing list
are to be sent to the given address rather than the original sender of the message. However, before
acting on this, Exim verifies the error address, and ignores it if verification fails.

For example, using the configuration above, mail sent to dicts@lists.ref.book is passed on to those
addresses contained in /opt/lists/dicts, with error reports directed to dicts-request@lists.ref.book,
provided that this address can be verified. There could be a file called /opt/lists/dicts-request contain-
ing the address(es) of this particular list’s manager(s), but other approaches, such as setting up an
earlier director (possibly using the prefix or suffix options) to handle addresses of the form owner-xxx
or xxx-request, are also possible.

42.1 Syntax errors in mailing lists

If an entry in a forward file contains a syntax error, Exim normally defers delivery of the entire
message. This may not be appropriate when the list is being maintained automatically from address
texts supplied by users. If the skip_syntax_errors option is set on the forwardfile director, it just
skips entries that fail to parse, noting the incident in the log. If in addition syntax_errors_to is set to a
verifyable address, messages about skipped addresses are sent to it.

42.2 NFS-mounted mailing lists

It is not advisable to have list files that are NFS mounted, since the absence of the mount cannot be
distinguished from a non-existent file. One way round this is to use an aliasfile director where the alias
file is local and contains a list of the lists, and each alias expansion is simply an ‘include’ item to get
the list from a separate, NFS mounted file. If no_freeze_missing_include is set for the aliasfile
director, an unavailable file then just causes delivery to be deferred.

Exim 3.30 [211] mailing lists (42)

42.3 Re-expansion of mailing lists
Exim remembers every individual address to which a message has been delivered, in order to avoid
duplication, but it normally stores only the original recipient addresses with a message. If all the
deliveries to a mailing list cannot be done at the first attempt, the mailing list is re-expanded when the
delivery is next tried. This means that alterations to the list are taken into account at each delivery
attempt, and addresses that have been added to the list since the message arrived will thus receive a
copy of the message, even though it pre-dates their subscription.

If this behaviour is felt to be undesirable, the one_time option can be set on the forwardfile director.
If this is done, any addresses generated by the director that fail to deliver at the first attempt are added
to the message as ‘top level’ addresses, and the parent address that generated them is marked
‘delivered’. Thus expansion of the mailing list does not happen again at the subsequent delivery
attempts. The disadvantage of this is that if any of the failing addresses are incorrect, correcting them
in the file has no effect on pre-existing messages.

The original top-level address is remembered with each of the generated addresses, and is output in
any log messages. However, any intermediate parent addresses are not recorded. This makes a
difference to the log only if log_all_parents is set, but for mailing lists there is normally only one
level of expansion anyway.

42.4 Closed mailing lists
The examples so far have assumed open mailing lists, to which anybody may send mail. It is also
possible to set up closed lists, where mail is accepted from specified senders only. This is done by
making use of the generic senders option. The following example uses the same file for each list, both
as a list of recipients and as a list of permitted senders. In this case, it is necessary to set up a separate
director to handle the ‘-request’ address.

Handle mail to xxx-request@lists.ref.book;
anybody can mail to this address.

lists_request:
driver = forwardfile
domains = lists.ref.book
suffix = -request
file = /opt/lists/${local_part}${local_part_suffix}
no_check_local_user

Handle mail to xxx@lists.ref.book;
only the subscribers to a list may mail to it.
Use one_time to prevent multiple expansions.

lists:
driver = forwardfile
domains = lists.ref.book
no_more
require_files = /opt/lists/$local_part
senders = lsearch;opt/lists/$local_part
file = /opt/lists/$local_part
no_check_local_user
forbid_pipe

 forbid_file
 one_time

skip_syntax_errors
errors_to = $local_part-request@lists.ref.book

The require_files option is needed to ensure that the file exists before trying to search it via the
senders option; an attempt to search a non-existent file causes Exim to panic. If the file does not exist
– that is, if the mailing list is unknown, the director declines, but because no_more is set, no further
directors are tried, and so Exim gives up.

Exim 3.30 [212] mailing lists (42)

43. Virtual domains

There are a number of ways in which virtual domains can be handled in Exim. As this seems to be
quite a common requirement, some ways of doing this are described here. These are not the only
possibilities.

43.1 All mail to a given host
Simply sending all mail for a domain to a given host isn’t really a virtual domain; it is just a routing
operation that can be handled by a domainlist router.

To send all mail for a domain to a particular local part at a given host, define the domain as local, then
process it with a smartuser director that sets the new delivery address and passes the message to an
smtp transport which specifies the host. Alternatively, use a forwardfile director pointing to a fixed
file name; the file can contain any number of addresses to which each message is forwarded.

43.2 Virtual domains not preserving envelopes
A virtual domain that does not preserve the envelope information when delivering can be handled by
an alias file defined for a local domain. If you are handling a large number of local domains, you can
define them as a file lookup. For example:

local_domains = your.normal.domain:\
dbm;/customer/domains

Where /customer/domains is a DBM file built from a source file that contains just a list of domains:

list of virtual domains for customers
 customer1.domain
 customer2.domain

This can be turned into a DBM file by exim_dbmbuild.

You can then set up a director (see below) to handle the customer domains, arranging a separate alias
file for each domain. A single director can handle all of them if the names follow a fixed pattern.
Permissions can be arranged so that appropriate people can edit the alias files. The domains option
ensures that this director is used only for the customer domains. The DBM file lookup is cached, so it
isn’t too inefficient to do this. The no_more setting ensures that if the lookup fails, Exim gives up on
the address without trying any subsequent directors.

virtual:
driver = aliasfile
domains = dbm;/customer/domains

 no_more
file = /etc/mail/$domain
search_type = lsearch

A successful aliasing operation results in a new envelope recipient address, which is then directed or
routed from scratch.

43.3 Virtual domains preserving envelopes
If you want to arrange for mail for known local parts at certain domains to be sent to specific hosts
without changing the envelope recipients of messages, then the following is one way of doing it.

Set up the domains as local, and create an aliasfile director for them, as above, but in addition, specify
a transport for the director:

Exim 3.30 [213] virtual domains (43)

 virtual:
driver = aliasfile
domains = dbm;/customer/domains
transport = virtual_smtp

 no_more
file = /etc/mail/$domain
search_type = lsearch

Each domain has its own alias file, but the provision of a transport means that this is used purely as a
check list of local parts. The data portion of each alias is not used.

The transport has to look up the appropriate host to which the message must be sent:

virtual_smtp:
driver = smtp
hosts = ${lookup{$domain}dbm{/virtual/routes}{$value}fail}

The file /virtual/routes contains lines of the form

customer1.domain: cust1.host
customer2.domain: cust2.host

and the messages get delivered with RCPT (the envelope) containing the original destination address
(for example, postmaster@customer1.domain). In fact, you could use the same file for
/virtual/routes and /customer/domains, since the lookup on the latter doesn’t make any use of the
data – it’s just checking that the file contains the key.

Exim 3.30 [214] virtual domains (43)

44. Intermittently connected hosts

It is becoming quite common (because it is cheaper) for hosts to connect to the Internet periodically
rather than remain connected all the time. The normal arrangement is that mail for such hosts
accumulates on a system that is permanently connected.

Exim was designed for use on permanently connected hosts, and so it is not particularly well-suited to
use in an intermittently connected environment. Nevertheless there are some features that can be used.

44.1 Exim on the upstream host
If the ‘holding system’ is running Exim, it should be configured with a long retry period for the
intermittent host. For example:

cheshire.wonderland.fict.book * F,5d,24h

This stops a lot of failed delivery attempts from occurring, but Exim remembers which messages it has
queued up for that host. Once the intermittent host comes online, forcing delivery of one message
(either by using the -M or -R options, or by using the ETRN SMTP command – see smtp_etrn_hosts
and section 48.6) causes all the queued up messages to be delivered, often down a single SMTP
connection. While the host remains connected, any new messages get delivered immediately.

If the connecting hosts do not have fixed IP addresses, that is, if a host is issued with a different IP
address each time it connects, Exim’s retry mechanisms on the holding host get confused, because the
IP address is normally used as part of the key string for holding retry information. This can be avoided
by unsetting retry_include_ip_address on the smtp transport. Since this has disadvantages for perma-
nently connected hosts, it is best to arrange a separate transport for the intermittently connected ones.

44.2 Exim on the intermittently connected host
The value of smtp_accept_queue_per_connection should probably be increased, or even set to zero
(that is, disabled) on the intermittently connected host, so that all incoming messages down a single
connection get delivered immediately.

Mail waiting to be sent from an intermittently connected host will probably not have been routed,
since without a connection DNS lookups are not possible. This means that if a normal queue run is
done at connection time, each message is likely to be sent in a separate SMTP session. This can be
avoided by starting the queue run with a command line option beginning with -qq instead of -q. In
this case, the queue is scanned twice. In the first pass, routing is done but no deliveries take place. The
second pass is a normal queue run; since all the messages have been previously routed, those destined
for the same host are likely to get sent as multiple deliveries in a single SMTP connection.

44.3 Handling many intermittently connected hosts
Leaving mail for intermittently connected hosts on the main queue of a holding system as suggested
above does not scale very well. Two different kinds of waiting message are being mixed up in the
same queue – those that cannot be delivered because of some temporary problem, and those that are
waiting for their destination host to connect. This makes it hard to manage the queue, as well as
wasting resources, because each queue runner scans the entire queue.

A better approach is to separate off those messages that are waiting for an intermittently connected
host. This can be done by using a separate version of Exim that stores only those messages, or by
delivering such messages into local files in batch SMTP, ‘mailstore’, or other envelope-preserving
format, from where they are transmitted by other software when their destination connects. This makes
it easy to collect all the mail for one host in a single directory, and to apply local timeout rules on a
per-message basis if required.

Exim 3.30 [215] intermittent connections (44)

45. Verification of incoming mail

Exim always checks the syntax of SMTP commands, and rejects any that are invalid. There are a
number of options that cause Exim to verify the semantic validity of the data in an incoming SMTP
message. Verification failures can cause the message to be rejected, or they can just be logged. Other
types of control over incoming mail are discussed in subsequent chapters. The -bh command line
option can be used to run fake SMTP sessions for the purpose of testing verification options.

45.1 Host verification
The name of the sending host is looked up using gethostbyaddr() if its IP address matches
host_lookup (which is unset in the Exim binary, but in the default configuration file is set to match all
hosts). In some environments this might involve an expensive DNS lookup, so some sites may wish to
disable it. However, an SMTP server for local desktop systems (which are frequently misconfigured)
can normally look up their host names cheaply. This improves the contents of Exim’s logs by
including the correct host names.

Even if its address doesn’t match host_lookup, a sending host’s real name is looked up from its IP
address if the argument it provides for the HELO or EHLO command is the local host’s own name, or the
name of one of its local domains, which seems to be a fairly common misconfiguration.

A host name that is obtained from looking up the sender ’s IP address is placed in the
$sender_host_name variable. If no lookup was done, or if the lookup failed, that variable is left
empty. Failure to look up the sending host’s name is not of itself an error, nor is it by default an error
for the name given in the HELO or EHLO command (which is placed in $sender_helo_name) to be
different.

The RFCs specifically state that mail should not be refused on the basis of the content of the HELO or
EHLO commands. However, there are installations that do want to be strict in this area, and to support
them, Exim has the helo_verify option. Even when this is not set, Exim checks the syntax of the
commands, and rejects them if there are syntax errors. It can be made less strict by unsetting
helo_strict_syntax (which allows underscores to get through) or by setting helo_accept_junk_hosts
(which permits certain hosts to send any old junk).

When helo_verify is set, a HELO or EHLO command must precede any MAIL commands in an incoming
SMTP connection. If there wasn’t one, all MAIL commands are rejected with a permanent error code. In
addition, the argument supplied by HELO or EHLO is verified. If it is in the form of a literal IP address
in square brackets, it must match the actual IP address of the sending host. If it is a domain name, the
sending host’s name is looked up from its IP address (whether or not it matches host_lookup) and
compared against it. If the comparison fails, the IP addresses associated with the HELO or EHLO name
are looked up using gethostbyname() and compared against the sending host’s IP address. If none of
them match, the HELO or EHLO command is rejected with a permanent error code, and an entry is
written in the main and reject logs.

45.2 Sender verification
When sender_verify is set, Exim checks the senders of incoming SMTP messages, that is, the
addresses given in the SMTP MAIL commands. This does not apply to batch SMTP input by default,
but sender_verify_batch can be set true if it is required. The check is performed by running the same
verification code as is used when Exim is called with the -bvs option, that is, by running the directors
and routers in verify mode.

A dilemma arises when a local address is expanded by aliasing or forwarding: should verification
continue with the generated addresses, or should the successful expansion of the original address be
enough to verify it? Exim (since release 3.20) takes the following pragmatic approach:

Exim 3.30 [216] verification of incoming mail (45)

• When an incoming address is aliased to just one child address, in an aliasfile or a smartuser
director (but not for forwardfile), verification continues with the child address, and if that fails to

 verify, the original verification also fails.

This seems the most reasonable behaviour for the common use of aliasing as a way of directing
different local parts to the same mailbox. It means, for example, that a pair of alias entries of the form

A.Wol: aw123
aw123: :fail: Gone away, no forwarding address

work as expected, with both local parts causing verification failure. On the other hand, when an alias
generates more than one address, the behaviour is more like a mailing list, where the existence of the
alias itself is sufficient for verification.

The sender verification check is performed when the MAIL command is received. If the address cannot
immediately be verified (typically because of DNS timeouts), a temporary failure error response (code
451) is given after the data for the message has been received. It is delayed until this time so that the
message’s headers can be logged. However, if sender_try_verify is set, the sender is accepted with a
warning message after a temporary verification failure.

Exim remembers temporary sender verification errors in a hints database. Subsequent temporary errors
for the same address from the same host within 24 hours cause a 451 error after MAIL instead of after
the data. This reduces the data on the reject log and also the amount repeatedly transferred over
the net.

If sender_verify_max_retry_rate is set greater than zero, and the rate of temporary rejection of a
specific incoming sender address from a specific host, in units of rejections per hour, exceeds it, the
temporary error is converted into a permanent verification error. This should help in stopping hosts
hammering too frequently with temporarily failing sender addresses. The default value of the option is
12, which means that a sender address that has a temporary verification error more than once every 5
minutes will soon get permanently rejected. Once permanent rejection has been triggered, subsequent
temporary failures will all cause permanent errors, until there has been an interval of at least 24 hours
since the last failure. After 24 hours, the hint expires.

What happens if verification fails with a permanent error depends on the setting of the sender_verify_
reject option. If it is set (the default) then the message is rejected. Otherwise a warning message is
logged, and processing continues.

Because remote postmasters always want to see the message headers when there is a problem, Exim
does not give an error response immediately a sender address fails, but instead it reads the data for the
message first. The headers of rejected messages are written to the reject log, for use in tracking down
the problem or tracing mail abusers. Up to three envelope recipients are also logged with the headers.

Unfortunately, there are a number of mailers in use that treat any SMTP error response given after the
data has been transmitted as a temporary failure. Exim sends code 550 when it rejects a message
because of a bad sender, and RFC 821 is quite clear in stating that all codes starting with 5 are always
‘permanent negative completion’ replies. However, it does not give any guidance as to what should be
done on receiving such replies, and some mailers persist in trying to send messages when they receive
such a code at the end of the data.

To get round this, Exim keeps a database in which it remembers the bad sender address and host name
when it rejects a message. If the same host sends the same bad sender address within 24 hours, Exim
rejects the message at the MAIL command, before it reads the data for the message. This should prevent
the sender from trying to send the message again, but there seem to be plenty of broken mailers out
there that do keep on trying, sometimes for days on end.

In an attempt to shut such MTAs up, if the same host sends the same bad sender for a third time
within 24 hours, MAIL is accepted, but all subsequent RCPT commands are rejected with a 550 error
code. This means ‘unknown user ’ and if a remote mailer doesn’t treat that as a hard error, it is very
seriously broken.

Exim 3.30 [217] verification of incoming mail (45)

The sender_verify_hosts option can be used to restrict hosts and RFC 1413 idents for which sender
verification is not applied. If a cluster of hosts all check incoming external messages, there is no need
to waste effort checking mail sent between them. For example:

sender_verify_hosts = ! *.ref.book : ! exim@mailer.fict.book

45.3 Sender verification with callback
When Exim verifies a remote sender address by running it through the routers, as described above, it
verifies the domain, but is unable to do any checking of the local part. There are situations where
some means of verifying the local part is desirable, and this can be setup by configuring Exim to use
an SMTP callback. If the domain in the remote address verifies successfully when calling back is
enabled, Exim makes an SMTP call to the hosts to which the sender ’s domain resolves, and tests the
address as if it were the recipient of a bounce message. Specifically, it sends

HELO <primary host name>
MAIL FROM:<>
RCPT TO:<the address to be tested>

 QUIT

If the response to the RCPT command is a 2xx code, the verification succeeds. If it is 5xx, the
verification fails. For anything else, and in cases when Exim cannot contact any of the relevant hosts,
verification fails with a temporary error code.

Callback verification occurs only if the sending host matches sender_verify_hosts_callback (in
addition to sender_verify_hosts), and the sender ’s domain matches sender_verify_callback_domains.
Both of these options default unset. There is also an option called sender_verify_callback_timeout
which sets a timeout for connecting and for each command. It defaults to 30 seconds. Callback
verification is expensive, and not recommended for general use, especially on busy hosts. Two cases
where it might be useful are:

• On a small host that handles only a few messages a day, to keep out junk with valid domains but
invalid local parts in the senders, something that is commonly encountered in spam messages.
For this you would set

sender_verify_hosts_callback = *
sender_verify_callback_domains = *

• On a corporate gateway, to check sender addresses in domain(s) that are ‘yours’ in some sense,
but not local (in the Exim sense). This could be restricted to messages received from your on-site

 hosts.

45.4 Fixing bad senders
It is unfortunately the case that lots of messages are sent out onto the Internet with invalid senders. In
some cases, the message itself contains a valid return address in one of its headers. If the
sender_verify_fixup option is set as well as sender_verify, Exim does not reject a message if the
sender is invalid, provided it can find a Sender:, Reply-To:, or From: header containing a valid
address. Instead, it replaces the sender with the valid address, and records the fact that it has done so
by adding a header of the form:

X-BadReturnPath: <invalid address> rewritten using <name> header

If there are several occurrences of any of the relevant headers, they are all checked. If any Resent-
headers exist, it is those headers that are checked rather than the original ones.

The fixup happens for both permanent and temporary errors. This covers the case when the bad
addresses refer to some DNS zone whose nameservers are unreachable. This approach is, of course,
fixing the symptom and not the disease. If sender_verify_fixup is set when sender_verify_reject is
false, Exim does not modify the message, but records in the log the fixup it would have made.

Exim 3.30 [218] verification of incoming mail (45)

45.5 Header verification
Exim’s sender verification options can be used to block messages with bad envelope senders. However,
if a message arrives with a null envelope sender, that is, if the SMTP command was

MAIL FROM:<>

then Exim has nothing to check, and is forced to accept the message (unless it fails another check, of
course). If headers_sender_verify_errmsg is set, then for messages that have null senders (purporting
to be mail delivery error messages), Exim does some checking of the RFC 822 headers. It looks for a
valid address in the Sender:, Reply-To:, and From: headers, and if one cannot be found, the message
is rejected, unless headers_checks_fail is false, in which case it just makes a warning entry in the
reject log.

If there are several occurrences of any of the relevant headers, they are all checked. If any Resent-
headers exist, it is those headers that are checked rather than the original ones.

Unfortunately, because it has to read the message before doing this check, the rejection happens after
the end of the data, and it is known that some mailers do not treat hard (5xx) errors correctly at this
point – they keep the message on their spools and try again later, but that is their problem, though it
does waste some resources.

The option headers_sender_verify is also available. It insists on there being a valid Sender:, Reply-
To:, or From: header on all incoming SMTP messages, not just those with null senders.

The sender_verify_hosts option applies to both of these header checking options as well as to checks
on envelope senders (sender_verify).

A common spamming ploy is to send syntactically invalid headers such as

To: @

The option headers_check_syntax causes Exim to check the syntax of all headers that can contain
lists of addresses (Sender:, From:, Reply-To:, To:, Cc:, and Bcc:) on all incoming messages (both
local and SMTP). This is a syntax check only. Like the headers_sender_verify options, the rejection
happens after the end of the data, and it is also controlled by headers_checks_fail; if that is false, a
bad message is accepted, with a warning in the reject log.

45.6 Receiver verification

By default, Exim just checks the syntax of addresses given in the SMTP RCPT command. This
minimizes the time required for an SMTP message transfer, and also makes it possible to provide
special processing for unknown local parts in local domains, by using a smartuser director to pass
messages with unknown local parts to a script or to another host.

Some installations prefer to check receiver addresses as they are received. If the receiver_verify
option is set, the same code that is used by the -bv option is used to check incoming addresses from
remote hosts that match receiver_verify_hosts, whose default setting is to match all hosts. Verification
consists of running the directors and routers in verify mode. As in the case of sender verification,
when an incoming address is aliased to just one child address, in an aliasfile or a smartuser director
(but not for forwardfile), verification continues with the child address, and if that fails to verify, the
original verification also fails.

When verification fails, a permanent negative response is given to the RCPT command. If there is a
temporary failure, a temporary error is given, unless receiver_try_verify is set, in which case the
address is accepted.

It is possible to restrict the addresses that are verified to certain domains by setting receiver_
verify_addresses, and receiver verification can also be made conditional on the sender address by
setting receiver_verify_senders. All of these options operate only when receiver_verify or
receiver_try_verify is set.

Exim 3.30 [219] verification of incoming mail (45)

46. Other policy controls on incoming mail

Exim provides a number of facilities for controlling incoming mail from remote hosts, in addition to
the verification options described in the previous chapter. These controls can be used to stop unwanted
messages getting into your machine. After a message has been accepted, the filtering mechanism
described in chapter 47 can be used to check it before going ahead with delivery.

An MTA is said to relay a message if it receives it from some host and delivers it directly to another
host as a result of a remote address contained within it. Expanding a local address via an alias or
forward file and then passing the message on to another host is not relaying, but a re-direction as a
result of the ‘percent hack’ is. There are special options for controlling which remote hosts may use
the local host as a relay.

The options described in this chapter control three stages of checking that are applied to an incoming
SMTP message:

(1) At the start of an SMTP connection, a check on the remote host is made, leading to one of the
following conclusions:

(i) No mail whatsoever is acceptable from the remote host.

(ii) The remote host is permitted to send messages to local recipients only, but is not permitted
to use the local host as a relay.

(iii) The remote host is permitted to send messages to local recipients, and can also use the local
host as a relay to certain specified domains only.

(iv) The remote host is permitted to send mail to any recipient.

If the host is completely unacceptable, the SMTP connection may be rejected immediately, or
(depending on the configuration) the message may be refused later on by a rejection at the end of
the message (so the headers can be logged) or by rejecting every recipient.

(2) The message’s sender, which is obtained from the MAIL command, is checked. Again there is a
choice of immediate rejection, or delayed rejection of all recipients.

(3) Unless there are no controls on relaying, the recipient address in each RCPT command is checked.

These checks are all in addition to any verification that may be enabled. The following sections give
details of the various checking options. The -bh command line option can be used to run fake SMTP
sessions for the purpose of testing them.

46.1 Host checking using RBL
The Realtime Blackhole List (RBL) is a black list of hosts that is maintained in the DNS. See
http://mail-abuse.org/rbl/ for the background to this. Since the RBL was created, a number of other
similar lists (DUL, ORBS, RRSS, IMRSS) have sprung up. These all operate in the same way . If the
rbl_domains option is set, Exim looks up inverted incoming IP addresses in each of the given
domains, provided the remote host matches rbl_hosts (whose default is to match all hosts). For
example, if the setting is

rbl_domains = blackholes.mail-abuse.org:dialups.mail-abuse.org

and an SMTP call is received from the host whose IP address is 192.168.8.1, then DNS lookups for
address records for

1.8.168.192.blackholes.mail-abuse.org
and
1.8.168.192.dialups.mail-abuse.org

are done. Each domain in rbl_domains can be followed by ‘/warn’ or ‘/reject’ to specify what is to be
done when a matching DNS record is found, for example:

Exim 3.30 [220] policy controls (46)

rbl_domains = blackholes.mail-abuse.org/warn : \
dialups.mail-abuse.org/reject

The action for domains without either of these is controlled by rbl_reject_recipients, which implies
‘/reject’ when set. If a lookup times out or otherwise fails to give a decisive answer, the address is not
blocked (by that entry in the list).

Two further options, in addition to ‘/warn’ and ‘/reject’, are available:

• ‘/accept’ allows RBL-type lookups to be used for ‘white lists’ as well as black lists. The message
is accepted from a host that matches an ‘/accept’ item, and no further RBL domains are
considered. Earlier ‘/warn’ entries may have already added warning headers.

• ‘/skiprelay’ causes that particular RBL domain to be skipped if the calling host matches
 host_accept_relay. In other words, if the host has been listed as one that is permitted to relay, no

RBL check is done for it.

The original RBL just used the address 127.0.0.1 on the right hand side of the addresses records, but
some other lists use a number of different values. The ORBS database, for example, uses different
addresses to denote different types of open relay, and you might want to block on some but not on
others. The current values are 127.0.0.2 for a confirmed open relay, 127.0.0.3 for a manual entry, and
127.0.0.4 for a ‘netblock’.

By adding an equals sign and an IP address after an RBL domain name, you can restrict its action to
DNS records with a matching right hand side. For example,

rbl_domains = relays.orbs.org=127.0.0.2/reject

rejects only those hosts that yield 127.0.0.2 from the ORBS database. More than one address may be
given, using a comma as a separator. These are alternatives – if any one of them matches, the RBL
entry operates. If there are no addresses, any address record is considered to be a match.

When a hosts matches an RBL item, warning consists of writing a message to the main and reject
logs, and, if rbl_warn_header is true (the default), adding an X-RBL-Warning: header to the
message. This can be detected later by system or user filter files. If a host appears in several RBL lists,
more than one such header may be added to a message.

Rejection is done by refusing all recipients, that is, by giving permanent error returns to all RCPT

commands, unless the message’s sender is listed in recipients_reject_except_senders, or the recipient
is listed in recipients_reject_except. It is fairly common to set

recipients_reject_except = postmaster@your.domain

to allow your host to accept mail to the postmaster from blacklisted hosts. X-RBL-Warning: headers
are added to messages that get accepted as a result of an exception list.

If a TXT record associated with the host is found in the RBL domain, its contents are returned as part
of the 550 rejection message, unless prohibition_message is set (see section 46.5), in which case a
locally-specified message is used. This can include any TXT data by referring to $rbl_text. It may
also refererence the RBL domain that caused the rejection by referring to $rbl_domain (and, of
course, the incoming host IP address is available in $sender_host_address).

46.2 Other host checking
Exim rejects incoming SMTP calls from any host that matches host_reject. For example:

host_reject = ! xxx.yy.zz : *.yy.zz : ! *.zz

rejects mail from any host outside the zz domain, and all hosts in the yy.zz domain, except for
xx.yy.zz. The use of wildcarded names implies a reverse DNS lookup of the incoming IP address. This
can be avoided by using IP addresses. See section 7.13 for details.

Calls are rejected as a result of these options by sending a 5xx error code as soon as the connection is
received. Since this does not relate to any particular message, the remote host is likely to keep on
trying to send mail (possibly to an alternative MX host) until it times out. This may be what is wanted

Exim 3.30 [221] policy controls (46)

in some circumstances (for example, you want temporarily to hold back all incoming mail from some
host), but when dealing with incoming spam, for example, one normally wants messages to be rejected
once and for all, and in this case, host_reject_recipients should be used instead of host_reject.

A call from a host which matches host_reject_recipients is not rejected at the start; instead, every
RCPT command is subsequently rejected, which should cause the remote MTA to cease trying to deliver
the message. This style of blocking also has the advantage of catering for exceptions for certain
recipients, via the recipients_reject_except option. This is commonly set to the local postmaster
address.

46.3 Sender checking
Incoming messages can be rejected on the basis of the sender address, as given in the MAIL command.
A list of senders to reject is set by the sender_reject configuration option; see its description in
chapter 11 for details.

Some MTAs continue to try to deliver a message even after receiving a 5xx error code for MAIL. The
alternative configuration option sender_reject_recipients is provided for use in such cases. It accepts
the MAIL command but rejects all subsequent RCPT commands.

46.4 Control of relaying
Two kinds of relaying exist, which are termed ‘incoming’ and ‘outgoing’. A host which is acting as a
gateway or an MX backup is concerned with incoming relaying from arbitrary hosts to a specific set of
domains. On the other hand, a host which is acting as a smart host for a number of clients is
concerned with outgoing relaying from those clients to the Internet at large. Often the same host is
fulfilling both functions, as illustrated in the diagram below, but in principle these two kinds of
relaying are entirely independent, and are therefore controlled by separate options. What is not wanted
is the transmission of mail from arbitrary remote hosts through your system to arbitrary domains.

Arbitrary
remote hosts

Arbitrary
domains

Local host

Specific
hosts

Specific
domains

Outgoing Incoming

Not wanted

Controlled relaying

Exim 3.30 [222] policy controls (46)

Incoming relaying is controlled by restricting the domains to which an arbitrary host may send via the
local host; this is done by setting relay_domains. For example, you use this option to list the domains
that your host is an MX backup for. Outgoing relaying is controlled by restricting the set of hosts
which may send via the local host to an arbitrary domain, by setting host_accept_relay. For example,
a delivery server uses this option to list its client hosts.

Checks for unwanted relaying are made on the domains of recipient addresses in messages received
from other hosts. This is done at the time of the RCPT command in the SMTP dialogue. The first check
is whether the address would cause relaying at all: if its domain matches something in local_domains
then it is destined to be handled on the local host as a local address, and relaying is not involved.

This includes the case of addresses such as "x@y"@z where z is a local domain, which are
sometimes used in an attempt to bypass relaying restrictions. Exim treats such addresses as having a
local part x@y – it does not strip off the local domain and treat x@y as an entirely new address.
Assuming that x@y is not a valid local part, this means that the address is rejected, either at SMTP
time if receiver_verify is set, or later when Exim tries to deliver to it. Addresses of the form
"x%y"@z are treated in the same way, unless the ‘percent hack’ has been enabled by setting
percent_hack_domains. In this case, the new address (constructed from the local part by changing the
% to an @) is treated as an incoming address, and its domain is re-tested to ensure that it complies
with any relaying restrictions.

When the relevant domain is not in local_domains, there is first a check for legitimate incoming
relaying, by seeing if it matches relay_domains, or, when relay_domains_include_local_mx is set, if
it is a domain with an MX record pointing to the local host. If it does match, this is an acceptable
incoming relay, and it is permitted to proceed. For example, if the FooBar company has a firewall
machine through which all mail from external hosts must pass, and this machine’s configuration
contains

local_domains = foobar.com
relay_domains = *.foobar.com

then mail from external hosts is rejected, unless it is for a domain ending in foobar.com.

Warning: Turning on the relay_domains_include_local_mx option opens your server to the possi-
bility of abuse in that anyone with access to a DNS zone can list your server in a secondary MX
record as a backup for their domain without your permission. This is not a huge exposure because
firstly, it requires the cooperation of a hostmaster to set up, and secondly, since their mail is passing
through your server, they run the risk of your noticing and (for example) throwing all their mail away.

If a recipient address is neither for a local domain nor an incoming relay, it must be an outgoing relay,
and it is accepted only if the sending host is permitted to relay to arbitrary domains, and if the sender
address is acceptable. The set of hosts that are permitted to relay is specified by host_accept_relay.
For example, if the FooBar company’s IP network is 172.16.213.0/24, and all hosts on that network
send their outgoing mail via the firewall machine, its configuration should contain

host_accept_relay = 172.16.213.0/24

in order to allow only the internal hosts to use it as a relay to arbitrary domains. Exim does not make
an automatic exception for the loopback IP address, so if you want to permit relaying from processes
on the local host using this method, you need to include 127.0.0.1 in the relay list. Some user agents,
notably MH and NMH, send mail by connecting to the loopback address on the local host.

The option host_auth_accept_relay is similar to host_accept_relay, except that any client host
matching one of its items is permitted to relay only if it has successfully authenticated. This is
independent of whether or not it matches auth_hosts. You can set host_auth_accept_relay only if
Exim has been compiled to support SMTP authentication. Chapter 35 contains more details.

In addition to the tests on the host, if sender_address_relay is set, the sender ’s address from the MAIL

command must match one of its patterns to allow outgoing relaying to an arbitrary domain. Also, if
there are any rewriting rules with the ‘X’ flag set, such an address is rewritten using those rules, and
the result (if different) must verify successfully. See section 34.9 for an example of how this can be
used.

Exim 3.30 [223] policy controls (46)

Normally, therefore, both the host and the sender must be acceptable before an outgoing relay is
allowed to proceed. However, if relay_match_host_or_sender is set, an address is accepted for
outgoing relaying if either the host or the sender is acceptable. Of course, sender addresses can easily
be forged, but the sender check does mean you can prevent some kinds of unwanted mail from going
through your host.

All three options, relay_domains, host_accept_relay, and host_auth_accept_relay, are unset by
default, which means that no relaying of any kind is enabled. This does not prevent a local user from
setting up forwarding to some external system, but it does prevent the ‘percent hack’ from relaying to
arbitrary domains even when percent_hack_domains is set.

As all the relay checking is done at RCPT time on incoming messages, the directors and routers are not
involved. Depending on the configuration of these drivers, an address that appears to be remote to the
relay checking code (that is, its domain does not match local_domains) may nevertheless end up being
delivered locally, and similarly an apparently local address may end up being delivered to some other
host.

None of the relay checking applies when mail is passed to Exim locally using the -bm, -bs or -bS
options, but it does apply when -bs is used from inetd.

Exim does not attempt to fully qualify domains at RCPT time. If an incoming message contains a
domain which is not fully qualified, it is treated as a non-local, non-relay domain (unless partial
domains are included in local_domains or relay_domains, but this is not recommended). The use of
domains that are not fully qualified is non-standard, but it is a commonly encountered usage when an
MTA is being used as a smart host by some remote UA. In this situation, it would be usual to permit
the UA host to relay to any domain, so in practice there is not normally a problem.

46.5 Customizing prohibition messages
It is possible to add a site-specific message to the error response that is sent when an incoming SMTP
command fails for policy reasons, for example if the sending host is in a host reject list. This is done
by setting the option prohibition_message, which causes one or more additional response lines with
the same error code and a multiline marker to be output before the standard response line. For
example, setting

prohibition_message = contact postmaster@my.site for details

causes the response to a RCPT command for a blocked recipient to be

550-contact postmaster@my.site for details
550 rejected: administrative prohibition

The string is expanded, and so it can do file lookups if necessary. If it ends up as an empty string, no
additional response is transmitted. To make it possible to distinguish between the several different
types of administrative rejection, the variable $prohibition_reason is set to a characteristic text string
in each case. The possibilities are as follows:

host_accept_relay the host is not in an accept_relay list
host_reject the host is in a reject list
host_reject_recipients the host is in a reject_recipients list
rbl_reject the host is rejected by an RBL domain
receiver_verify receiver verification failed
sender_relay the sender is not in a sender relay list
sender_reject the sender is in a reject list
sender_reject_recipients the sender is in a reject_recipients list
sender_verify sender verification failed

In addition, if relay_match_host_or_sender is set, there is

sender+host_accept_relay the sender is not in a sender relay list
and the host is not in an accept relay list

For example, if the configuration contains

Exim 3.30 [224] policy controls (46)

prohibition_message = ${lookup{$prohibition_reason}lsearch\
 {/etc/exim/reject.messages}{$value}}

and the file /etc/exim/reject.messages contains (inter alia)

host_accept_relay: host not in relay list

then a response to a relay attempt might be

550-host not in relay list
550 relaying to <santa@northpole.com> prohibited by administrator

Because some administrators may want to put in quite long messages, and it isn’t possible to get
newlines into the text returned from an lsearch lookup, Exim treats the vertical bar character as a line
separator in this text. If you want the looked up text to be re-expanded, you can use the expand
operator. For example, the setting

prohibition_message = ${lookup{$prohibition_reason}lsearch\
 {/etc/exim/reject.messages}{${expand:$value}}}

when used with a file entry of the form

host_accept_relay: Host $sender_fullhost is not permitted to
relay |through $primary_hostname.

might produce

550-Host that.host.name [111.222.3.4] is not permitted to relay
550-through this.host.name.
550 relaying to <penguins@southpole.com> prohibited by administrator

In the case of an RBL rejection, $rbl_domain contains the RBL domain that caused the rejection
during the expansion of prohibition_message, and $rbl_text contains the contents of any associated
TXT record. In all cases, $sender_host_address contains the IP address of the calling host.

Exim 3.30 [225] policy controls (46)

47. System-wide message filtering

The previous chapters describe checks that can be applied to messages before they are accepted by a
host. There are also mechanisms for checking messages once they have been received, but before they
are delivered. If a system message filter is defined, it is run each time a delivery process is started for a
message. It is also possible to run a centrally-defined filter file once for each local address, as part of
the directing for that address.

47.1 The system message filter
The system message filter operates in a similar manner to users’ filter files, but it is run just once per
message (however many recipients is has) at the start of a delivery attempt, before any routing or
directing is done. If a message fails to be completely delivered at the first attempt, the filter is run
again at the start of every retry.

There are two special conditions which, though available in users’ filter files, are designed for use in
system filters. The condition first_delivery is true only for the first attempt at delivering a message,
while manually_thawed is true only if the message has been frozen, and subsequently thawed by an
admin user. An explicit forced delivery counts as a manual thaw, but thawing as a result of the auto_
thaw setting does not.

If the filter sets up any deliveries of its own, an extra header line is added to them with the name X-
Envelope-to:. This contains up to 100 of the original message’s envelope recipients. If the filter
specifies any significant deliveries, the message’s own recipient list is ignored. Non-significant deliver-
ies, however, are added to the message’ s existing recipients.

Warning: If a system filter uses the first_delivery condition to specify an ‘unseen’ (non-significant)
delivery, and that delivery does not succeed, it will not be tried again.

The message_filter option names the filter file, while message_filter_user and message_filter_group
specify the uid and gid to be used while processing it. If they are not set, the Exim uid is used if
available and if seteuid() is available; otherwise root is used.

Important: If the system filter generates any deliveries directly to files or pipes (via the save or pipe
commands), transports to handle these deliveries must be specified by setting
message_filter_file_transport and message_filter_pipe_transport, respectively. Similarly,
message_filter_reply_transport must be set to handle any autoreplies.

The filter file can contain any of the normal filtering commands, as described in the separate document
Exim’s interface to mail filtering. However, remember that the system filter is run just once, at the start
of a delivery process, however many recipients the message may have. For this reason, the variables
$local_part and $domain are not available, nor does the ‘personal’ condition make any sense.

The filter variables $n0 – $n9 can be used in a system filter; when it finishes, their values are copied
into $sn0 – $sn9 and are thereby made available to users’ filter files. Thus a system filter can, for
example, set up a ‘score’ for a message to which users’ filter files can refer.

47.2 Additional commands for system filters
In a system filter, if a deliver command is followed by

errors_to <some address>

in order to change the envelope sender (and hence the error reporting) for that delivery, any address is
permitted. (In a user filter, only the current user ’s address can be set.) For example, if some mail is
being monitored, you might use

unseen deliver monitor@spying.example errors_to root@local.domain

Exim 3.30 [226] system filtering (47)

to take a copy which would not be sent back to the normal error reporting address if its delivery
failed.

There are also some extra commands which are available only in system filter files:

fail
 freeze
headers add <string>
headers remove <string>

As well as the additional commands, there is also an extra expansion variable, $recipients, containing
a list of all the recipients of the message, separated by commas and white space. The extra commands
and variable are not available in ordinary users’ filter files. They are faulted in normal use and in
testing via -bf, but not if -bF is used.

The freeze and fail commands can optionally be followed by the word text and a string containing an
error message, for example:

fail text "this message looks like spam to me"

The keyword text is optional if the next character is a double quote. The fail command causes all
recipients to be failed, while freeze suspends all delivery attempts. It is ignored if the message has
been manually unfrozen and not manually frozen since. This means that automatic freezing by a
system filter can be used as a way of checking out suspicious messages. If a message is found to be all
right, manually unfreezing it allows it to be delivered.

The interpretation of a system filter file ceases after a freeze or fail command is obeyed. However, any
deliveries that were set up earlier in the filter file are honoured, so you can use a sequence such as

mail ...
 freeze

to send a specified message when the system filter is freezing (or failing) something. The normal
deliveries for the message do not, of course, take place.

The argument for the headers add is a string which is expanded and then added to the end of the
message’s headers. It is the responsibility of the filter maintainer to make sure it conforms to RFC 822
syntax. Leading white space is ignored, and if the string is otherwise empty, or if the expansion is
forced to fail, the command has no effect. A newline is added at the end of the string if it lacks one.
More than one header may be added in one command by including ‘\n’ within the string.

The argument for headers remove is a colon-separated list of header names. This command applies
only to those headers that are stored with the message; ones such as Envelope-To: and Return-Path:
that are added at delivery time cannot be removed by this means.

Take great care with the fail command when basing the decision to fail on the contents of the
message, because this option causes a normal delivery error message to be generated, and it will of
course include the contents of the original message and will therefore trigger the fail command again
(causing a mail loop) unless steps are taken to prevent this. Testing the error_message condition is
one way to prevent this. You could use, for example

if $message_body contains "this is spam" and not error_message
then fail text "spam is not wanted here" endif

though of course that might still let through unwanted messages. The alternative is clever checking of
the body and/or headers to detect error messages caused by the filter.

47.3 Per-address filtering
In contrast to the system filter, which is run just once per message for each delivery attempt, it is also
possible to set up a system-wide filtering operation that runs once for each address, for local addresses
only. In this case, variables such as $local_part and $domain can be used, and indeed, the choice of
filter file could be made dependent on them. This is an example of a director which implements such a
filter:

Exim 3.30 [227] system filtering (47)

 central_filter:
driver = forwardfile
file = /central/filters/$local_part

 no_check_local_user
 no_verify
 filter
 allow_system_actions

The setting of allow_system_actions permits the use of freeze and fail in the filter file, but not the
headers command (described above) or the $recipients variable. As in the case of a system filter,
freeze and fail cause filter interpretation to cease, but any deliveries that were previously set up are
honoured.

Exim 3.30 [228] system filtering (47)

48. SMTP processing

Exim supports SMTP over TCP/IP, and also so-called ‘batched SMTP’. The latter is the name for a
process in which batches of messages are stored in or read from files, in a format in which SMTP
commands are used to contain the envelope information. Such batches are delivered to or received
from other systems using some transport mechanism other than Exim. For each of these kinds of
SMTP processing there are two aspects: outgoing and incoming. There is also support for a third kind
of SMTP when a message is passed from a local process to Exim by running the SMTP protocol over
the standard input and output. This is called ‘local SMTP’, and is an input process only.

48.1 Outgoing SMTP over TCP/IP
Outgoing SMTP over TCP/IP is implemented by the smtp transport. If, in response to its EHLO

command, it is told that the SIZE parameter is supported, it adds SIZE=<n> to each subsequent MAIL

command. The value of <n> is the message size plus the value of the size_addition option (default
1024) to allow for additions to the message such as per-transport header lines, or changes made in a
transport filter. If size_addition is set negative, the use of SIZE is suppressed.

If the remote server advertises support for PIPELINING, Exim uses the pipelining extension to SMTP
(RFC 2197) to reduce the number of TCP/IP packets required for the transaction.

If the remote server advertises support for the STARTTLS command, and Exim was built to support TLS
encryption, it tries to start a TLS session unless the server matches hosts_avoid_tls. See chapter 38 for
more details.

If the remote server advertises support for the AUTH command, and Exim was built to support SMTP
authentication, it scans the authenticators configuration for any suitable client settings, as described in
chapter 35.

Responses from the remote host are supposed to be terminated by CR followed by LF. However, there
are known to be hosts that do not send CR characters, so in order to be able to interwork with such
hosts, Exim treats LF on its own as a line terminator.

If a message contains a number of different addresses, all those with the same characteristics (for
example, the same envelope sender) that resolve to the same set of hosts, in the same order, are sent in
a single SMTP transaction, even if they are for different domains, unless there are more than the
setting of the max_rcpts option in the smtp transport allows, in which case they are split into groups
containing no more than max_rcpts addresses each. If remote_max_parallel is greater than one, such
groups may be sent in parallel sessions. The order of hosts with identical MX values is not significant
when checking whether addresses can be batched in this way.

When the smtp transport suffers a temporary failure that is not message-related, Exim updates its
transport-specific database, which contains records indexed by host name that remember which mess-
ages are waiting for each particular host. It also updates the retry database with new retry times.
Exim’s retry hints are based on host name plus IP address, so if one address of a multi-homed host is
broken, it will soon be skipped most of the time. See the next section for more detail about error
handling.

When a message is successfully delivered over a TCP/IP SMTP connection, Exim looks in the hints
database for the transport to see if there are any queued messages waiting for the host to which it is
connected. If it finds one, it creates a new Exim process using the -MC option (which can only be
used by a process running as root or the Exim user) and passes the TCP/IP socket to it. The new
process does only those deliveries that are routed to the connected host, and may in turn pass the
socket on to a third process, and so on.

If this is happening in a queue run, the queue-runner process must not proceed to the next message in
the queue until the whole sequence of deliveries is complete. However, making each process wait for
its successor is not a good idea, as there may be many of them. To avoid having to do this, a queue-
runner process creates a pipe which is passed to all the created processes, none of which actually write

Exim 3.30 [229] smtp processing (48)

to it. The queue-runner tries to read from the pipe. This causes it to block until all the created
processes have finished.

The batch_max option of the smtp transport can be used to limit the number of messages sent down a
single TCP/IP connection. The second and subsequent messages delivered down an existing connection
are identified in the main log by the addition of an asterisk after the closing square bracket of the IP
address.

48.2 Errors in outgoing SMTP
Three different kinds of error are recognized for outgoing SMTP: host errors, message errors, and
recipient errors.

(1) A host error is not associated with a particular message or with a particular recipient of a
message. The host errors are:

• Connection refused or timed out,

• Any error response code on connection,

• Any error response code to EHLO or HELO,

• Loss of connection at any time, except after ‘.’,

• I/O errors at any time,

• Timeouts during the session, other than in response to MAIL, RCPT or the ‘.’ at the end of the
data.

A permanent error response on connection, or in response to EHLO, causes all addresses routed to
the host to be failed. Any other host error causes all addresses to be deferred, and retry data to be
created for the host. It is not tried again, for any message, until its retry time arrives. If the
current set of addresses are not all delivered in this run (to some alternative host), the message is
added to the list of those waiting for this host, so if it is still undelivered when a subsequent
successful delivery is made to the host, it will be sent down the same SMTP connection.

(2) A message error is associated with a particular message when sent to a particular host, but not
with a particular recipient of the message. The message errors are:

• Any error response code to MAIL, DATA, or the ‘.’ that terminates the data,

• Timeout after MAIL,

• Timeout or loss of connection after the ‘.’ that terminates the data. A timeout after the DATA

command itself is treated as a host error, as is loss of connection at any other time.

A permanent error response (5xx) causes all addresses to be failed, and a delivery error report to
be returned to the sender. A temporary error response (4xx) or one of the timeouts causes all
addresses to be deferred. Retry data is not created for the host, but instead, a retry record for the
combination of host plus message id is created. The message is not added to the list of those
waiting for this host. This ensures that the failing message will not be sent to this host again until
the retry time arrives. However, other messages that are routed to the host are not affected, so if
it is some property of the message that is causing the error, it will not stop the delivery of other

 mail.

If the remote host specified support for the SIZE parameter in its response to EHLO, Exim adds
 SIZE=nnn to the MAIL command, so an over-large message will cause a message error because it

will arrive as a response to MAIL.

(3) A recipient error is associated with a particular recipient of a message. The recipient errors are:

• Any error response to RCPT,

• Timeout after RCPT.

Exim 3.30 [230] smtp processing (48)

A permanent error response (5xx) causes the recipient address to be failed, and a delivery error
report to be returned to the sender. A temporary error response (4xx) or a timeout causes the
failing address to be deferred, and routing retry data to be created for it. This is used to delay
processing of the address in subsequent queue runs, until its routing retry time arrives. This
applies to all messages, but because it operates only in queue runs, one attempt will be made to
deliver a new message to the failing address before the delay starts to operate. This ensures that,
if the failure is really related to the message rather than the recipient (‘message too big for this
recipient’ is a possible example), other messages have a chance of getting delivered. However, if
a delivery to the address does succeed, the retry information gets cleared, so all stuck messages
get tried again, and the retry clock is reset.

The message is not added to the list of those waiting for this host. Use of the host for other
messages is unaffected, and except in the case of a timeout, other recipients are processed

 independently, and may be successfully delivered in the current SMTP session. After a timeout it
is of course impossible to proceed with the session, so all addresses get deferred. However, those
other than the one that failed do not suffer any subsequent retry delays. Therefore, if one
recipient is causing trouble, the others have a chance of getting through when a subsequent
delivery attempt occurs before the failing recipient’s retry time.

In all cases, if there are other hosts (or IP addresses) available for the current set of addresses (for
example, from multiple MX records), they are tried in this run for any undelivered addresses, subject
of course to their own retry data. In other words, recipient error retry data does not take effect until the
next delivery attempt.

Some hosts have been observed to give temporary error responses to every MAIL command at certain
times (‘insufficient space’ has been seen). It would be nice if such circumstances could be recognized,
and defer data for the host itself created, but this is not possible within the current Exim design. What
actually happens is that retry data for every (host, message) combination is created.

The reason that timeouts after MAIL and RCPT are treated specially is that these can sometimes arise as
a result of the remote host’s verification procedures. Exim makes this assumption, and treats them as if
a temporary error response had been received. A timeout after ‘.’ is treated specially because it is
known that some broken implementations fail to recognize the end of the message if the last character
of the last line is a binary zero. Thus is it helpful to treat this case as a message error.

Timeouts at other times are treated as host errors, assuming a problem with the host, or the connection
to it. If a timeout after MAIL, RCPT, or ‘.’ is really a connection problem, the assumption is that at the
next try the timeout is likely to occur at some other point in the dialogue, causing it then to be treated
as a host error.

There is experimental evidence that some MTAs drop the connection after the terminating ‘.’ if they
don’t like the contents of the message for some reason, in contravention of the RFC, which indicates
that a 5xx response should be given. That is why Exim treats this case as a message rather than a host
error, in order not to delay other messages to the same host.

48.3 Variable Envelope Return Paths (VERP)
Variable Envelope Return Paths – see ftp://koobera.math.uic.edu/www/proto/verp.txt – can be
supported in Exim by using the return_path generic transport option to rewrite the return path at
transport time. For example, the following could be used on an smtp transport:

return_path = \
${if match {$return_path}{^(.+?)-request@your.domain\$}\
{$1-request=$local_part%$domain@your.domain}fail}

This has the effect of rewriting the return path (envelope sender) on all outgoing SMTP messages, if
the local part of the original return path ends in ‘-request’, and the domain is your.domain. The
rewriting inserts the local part and domain of the recipient into the return path. If, for example, a
message with return path somelist-request@your.domain is sent to subscriber@other.domain, the
return path is rewritten as

Exim 3.30 [231] smtp processing (48)

 somelist-request=subscriber%other.domain@your.domain

For this to work, you must arrange for outgoing messages that have ‘-request’ in their return paths to
have just a single recipient. This can be done by setting

max_rcpt = 1

in the smtp transport. Otherwise a single copy of a message might be addressed to several different
recipients in the same domain, in which case $local_part is not available (because it is not unique). Of
course, if you do start sending out messages with this kind of return path, you must also configure
Exim to accept the bounce messages that come back to those paths. Typically this would be done by
setting a suffix option in a suitable director.

The overhead incurred in using VERP depends very much on the size of the message, the number of
recipient addresses that resolve to the same remote host, and the speed of the connection over which
the message is being sent. If a lot of addresses resolve to the same host and the connection is slow,
sending a separate copy of the message for each address may take substantially longer than sending a
single copy with many recipients (for which VERP cannot be used).

48.4 Incoming SMTP messages over TCP/IP
Incoming SMTP messages can be accepted in one of two ways: by running a listening daemon, or by
using inetd. In the latter case, the entry in /etc/inetd.conf should be like this:

smtp stream tcp nowait exim /opt/exim/bin/exim in.exim -bs

Exim distinguishes between this case and the case of a user agent using the -bs option by checking
whether the standard input is a socket using the getpeername() function.

By default, Exim does not make a log entry when a remote hosts connects or disconnects (either via
the daemon or inetd), unless the disconnection is unexpected. It can be made to write such log entries
by setting the log_smtp_connections option.

Commands from the remote host are supposed to be terminated by CR followed by LF. However, there
are known to be hosts that do not send CR characters, so in order to be able to interwork with such
hosts, Exim treats LF on its own as a line terminator.

One area that sometimes gives rise to problems concerns the EHLO or HELO commands. Some clients
send syntactically invalid versions of these commands, which Exim rejects by default. (This is nothing
to do with verifying the data that is sent, so helo_verify is not relevant.) You can tell Exim not to
apply a syntax check by setting helo_accept_junk_hosts to match the broken hosts that send invalid
commands.

The amount of disc space available is checked whenever SIZE is received on a MAIL command,
independently of whether message_size_limit or check_spool_space is configured, unless smtp_
check_spool_space is set false. A temporary error is given if there isn’t enough. If check_spool_space
is set, the check is for that amount of space plus the value given with SIZE, that is, it checks that the
addition of the incoming message will not reduce the space below the threshold.

When a message is successfully received, Exim includes the local message id in its response to the
final ‘.’ that terminates the data. If the remote host logs this text it can help with tracing what has
happened to a message.

The Exim daemon can limit the number of simultaneous incoming connections it is prepared to handle
(see the smtp_accept_max option). It can also limit the number of simultaneous incoming connections
from a single remote host (see the smtp_accept_max_per_host option). Additional connection
attempts are rejected using the SMTP temporary error code 421.

On some operating systems the SIGCHLD signal that is used to detect when a subprocess has finished
can get lost at busy times. However, the daemon looks for completed subprocesses every time it wakes
up, so provided there are other things happening (new incoming calls, starts of queue runs), the
completion of processes created to handle incoming calls should get noticed eventually. If, however,

Exim 3.30 [232] smtp processing (48)

Exim appears not to be accepting as many incoming connections as expected, sending the daemon a
SIGCHLD signal will wake it up and cause it to check for any completed subprocesses.

When running as a daemon, Exim can reserve some SMTP slots for specific hosts, and can also be set
up to reject SMTP calls from non-reserved hosts at times of high system load – for details see the
smtp_accept_reserve, smtp_load_reserve, and smtp_reserve_hosts options. The load check applies
in both the daemon and inetd cases.

Exim normally starts a delivery process for each message received, though this can be varied by
means of the -odq command line option and the queue_only, queue_only_file, and queue_only_load
options. The number of simultaneously running delivery processes started in this way from SMTP
input can be limited by the smtp_accept_queue and smtp_accept_queue_per_connection options.
When either limit is reached, subsequently received messages are just put on the input queue.

The controls that involve counts of incoming SMTP calls (smtp_accept_max smtp_accept_queue,
smtp_accept_reserve) are not available when Exim is started up from the inetd daemon, since each
connection is handled by an entirely independent Exim process. Control by load average is, however,
available with inetd.

Exim can be configured to verify addresses in incoming SMTP commands as they are received. See
chapter 45 for details. It can also be configured to rewrite addresses at this time – before any syntax
checking is done. See section 34.7.

48.5 The VRFY, EXPN, and DEBUG commands
The SMTP command VRFY is accepted only when the configuration option smtp_verify is set, and if
so, it runs exactly the same code as when Exim is called with the -bv option. The SMTP command
EXPN is is permitted only if the calling host matches smtp_expn_hosts (add ‘localhost’ if you want
calls to 127.0.0.1 to be able to use it). A single-level expansion of the address is done. EXPN is treated
as an ‘address test’ (similar to the -bt option) rather than a verification (the -bv option). If an
unqualified local part is given as the argument to EXPN, it is qualified with qualify_domain. Rejections
of VRFY and EXPN commands are logged on the main and reject logs, and VRFY verification failures are
logged on the main log for consistency with RCPT failures.

The SMTP command DEBUG is not supported at all. Occurrences of this command are rejected, and the
incident is logged.

48.6 The ETRN command
RFC 1985 describes an SMTP command called ETRN that is designed to overcome the security
problems of the TURN command (which has fallen into disuse). Exim recognizes ETRN if the calling
host matches smtp_etrn_hosts. Attempts to use ETRN from other hosts are logged on the main and
reject logs; when ETRN is accepted, it is logged on the main log.

The ETRN command is concerned with ‘releasing’ messages that are awaiting delivery to certain hosts.
As Exim does not organize its message queue by host, the only form of ETRN that is supported by
default is the one where the text starts with the ‘#’ prefix, in which case the remainder of the text is
specific to the SMTP server. A valid ETRN command causes a run of Exim with the -R option to
happen, with the remainder of the ETRN text as its argument. For example,

ETRN #brigadoon

runs the command

exim -R brigadoon

which causes a delivery attempt on all messages with undelivered addresses containing the text
‘brigadoon’. Because a separate delivery process is run to do the delivery, there is no security risk with
ETRN.

When smtp_etrn_serialize is set (the default), it prevents the simultaneous execution of more than
one queue run for the same argument string as a result of an ETRN command. This prevents a mis-

Exim 3.30 [233] smtp processing (48)

behaving client from starting more than one queue-runner at once. Exim implements the serialization
by means of a hints database in which a record is written whenever a process is started by ETRN, and
deleted when a -R queue run completes.

Obviously there is scope for hints records to get left lying around if there is a system or program
crash. To guard against this, Exim ignores any records that are more than six hours old, but you should
normally arrange to delete any files in the spool/db directory whose names begin with serialize-
after a reboot.

For more control over what ETRN does, the smtp_etrn_command option can used. This specifies a
command that is run whenever ETRN is received, whatever the form of its argument. For example:

smtp_etrn_command = /etc/etrn_command $domain $sender_host_address

The string is split up into arguments which are independently expanded. The expansion variable
$domain is set to the argument of the ETRN command, and no syntax checking is done on the
contents of this argument. A new freestanding process is created to run the command. Exim does not
wait for it to complete, so its status code is not checked. As Exim is normally running under its own
uid and gid when receiving incoming SMTP, it is not possible for it to change them before running the
command.

If you use smtp_etrn_command to do something other than run Exim with the -R option, you must
disable smtp_etrn_serialize, because otherwise hints never get deleted, and further ETRN commands
are ignored until the hints time out.

48.7 Incoming local SMTP
Some user agents use SMTP to pass messages to their local MTA using the standard input and output,
as opposed to passing the envelope on the command line and writing the message to the standard
input. This is supported by the -bs option. This form of SMTP is handled in the same way as
incoming messages over TCP/IP, except that all host-specific processing is bypassed, and any envelope
sender given in a MAIL command is ignored unless the caller is trusted.

48.8 Outgoing batched SMTP
Both the appendfile and pipe transports can be used for handling batched SMTP. Each has an option
called bsmtp which, if set to anything other than ‘none’ causes the message to be output in SMTP
format. The message is written to the file or pipe preceded by the SMTP commands MAIL and RCPT,
and followed by a line containing a single dot. The SMTP command HELO is not normally used, but if
the transport’s bsmtp_helo option is set true, a HELO command line precedes each message. No SMTP
responses are possible for this form of delivery. All it is doing is using SMTP commands as a way of
transmitting the envelope along with the message.

Lines in the message that start with a dot have an extra dot added. If the prefix option is set, its
contents are included after the SMTP commands, and the contents of suffix appear at the end of the
message, before the terminating dot; normally these options are specified as empty, to override the
defaults.

The value of the bsmtp option determines how multiple addresses in a single message may be
batched, if other conditions permit. If the value of bsmtp is ‘one’, there is no batching, and a copy of
the message is output for each address. If the value is ‘domain’ then a single copy (with multiple RCPT

commands) is output for all addresses that have the same domain. If the value is ‘all’ then only a
single copy of the message is written. The batching is further constrained by other parameters:

• If any of the transport’s expandable strings contain a reference to $local_part, no batching takes
place.

• If any of the transport’s expandable strings contains a reference to $domain, only domain
batching is done.

• Addresses are not batched if they have different error addresses, associated hosts, header
additions or removals and so on.

Exim 3.30 [234] smtp processing (48)

• The uid and gid for delivery must be explicitly set. This is normally done in the transport, but if
they are specified by a router or director, batching occurs only for addresses that have the same
uid/gid set up.

When one or more messages are routed to a BSMTP transport by a router that sets up a host list, the
name of the first host on the list is available to the transport in the variable $host. Here is an example
of such a transport and router for batched SMTP:

transport
smtp_appendfile:
driver = appendfile
directory = /var/bsmtp/$host
bsmtp = all
prefix =
suffix =
user = exim

router
route_append:
driver = domainlist
transport = smtp_appendfile
route_list = some.domain batch.host

This causes messages addressed to some.domain to be written in batched SMTP format to
/var/bsmtp/batch.host, with only a single copy of each message. Note that prefix and suffix must be
explicitly changed from their defaults.

48.9 Incoming batched SMTP
The -bS command line option causes Exim to accept one or more messages by reading SMTP on the
standard input, but to generate no responses. If the caller is trusted, the senders in the MAIL commands
are believed; otherwise the sender is always the caller of Exim. Unqualified senders and receivers are
not rejected (there seems little point) but instead just get qualified. If sender_verify is set, sender
verification takes place only if sender_verify_batch is set (it defaults unset). Receiver verification and
administrative rejection is not done, even if configured. HELO and EHLO act as RSET; VRFY, EXPN, ETRN,
HELP, and DEBUG act as NOOP; QUIT quits.

If any error is detected while reading a message, including a missing ‘.’ at the end, Exim gives up
immediately. It writes details of the error to the standard output in a stylized way that the calling
program should be able to make some use of automatically, for example:

554 Unexpected end of file
Transaction started in line 10
Error detected in line 14

It writes a more verbose version, for human consumption, to the standard error file, for example:

An error was detected while processing a file of BSMTP input.
The error message was:

501 ’>’ missing at end of address

The SMTP transaction started in line 10.
The error was detected in line 12.
The SMTP command at fault was:

rcpt to:<malformed@in.com.plete

1 previous message was successfully processed.
The rest of the batch was abandoned.

The return code from Exim is zero only if there were no errors. It is 1 if some messages were accepted
before an error was detected, and 2 if no messages were accepted.

Exim 3.30 [235] smtp processing (48)

49. Message processing

Exim performs various transformations on the sender and recipient addresses of all messages that it
handles, and also on the messages’ header lines. Some of these are optional and configurable, while
others always take place. All of this processing, except rewriting as a result of routing, happens when
a message is received, before it is first written to the spool.

RFC 822 makes provision for headers starting with the string Resent-. It states that in general, the
Resent- fields should be treated as containing a set of information that is independent of the set of
original fields, and that information for one set should not automatically be taken from the other. If
Exim finds any Resent- headers in the message, it applies the header transformations described
below only to the Resent- header set, leaving the unqualified set alone.

49.1 Unqualified addresses
By default, Exim expects every address it receives from an external host to be fully qualified.
Unqualified addresses cause negative responses to SMTP commands. However, because SMTP is used
as a means of transporting messages from MUAs running on personal workstations, there is sometimes
a requirement to accept unqualified addresses from specific hosts or IP networks.

Exim has two options that separately control which hosts may send unqualified sender or receiver
addresses in SMTP commands, namely sender_unqualified_hosts and receiver_unqualified_hosts. In
both cases, if an unqualified address is accepted, it is qualified by adding the value of qualify_domain
or qualify_recipient, as appropriate.

Unqualified addresses are accepted only from local sources or from hosts that match one of the
receiver_unqualified or sender_unqualified options, as appropriate.

49.2 The UUCP From line
Messages that have come from UUCP (and some other applications) often begin with a line containing
the envelope sender and a timestamp, following the word ‘From’. Examples of two common for-
mats are:

From a.oakley@berlin.mus Fri Jan 5 12:35 GMT 1996
From f.butler@berlin.mus Fri, 7 Jan 97 14:00:00 GMT

This line precedes the RFC 822 header lines. For compatibility with Sendmail, Exim recognizes such
lines at the start of messages that are submitted to it via the command line (that is, on the standard
input). It does not recognize such lines in incoming SMTP messages, unless the sending host matches
ignore_fromline_hosts or the -bs option was used for a local message and ignore_fromline_local is
set. The recognition is controlled by a regular expression that is defined by the uucp_from_pattern
option, whose default value matches the two common cases shown above and puts the address that
follows ‘From’ into $1.

When the caller of Exim for a non-SMTP message is a trusted user, the message’s sender address is
constructed by expanding the contents of uucp_sender_address, whose default value is ‘$1’. This is
then parsed as an RFC 822 address. If there is no domain, the local part is qualified with
qualify_domain unless it is the empty string. However, if the command line -f option is used, it
overrides the ‘From’ line.

If the caller of Exim is not trusted, the ‘From’ line is recognized, but the sender address is not
changed. This is also the case for incoming SMTP messages that are permitted to contain ‘From’ lines.

Only one ‘From’ line is recognized. If there is more than one, the second is treated as a data line that
starts the body of the message, as it is not valid as a header line. This also happens if a ‘From’ line is
present in an incoming SMTP message from a source that is not permitted to send them.

Exim 3.30 [236] message processing (49)

49.3 The Bcc: header

If Exim is called with the -t option, to take recipient addresses from a message’s headers, it removes
any Bcc: header that may exist (after extracting its addresses), unless the message has no To: or Cc:
header, in which case a Bcc: header with no addresses is left in the message, in accordance with RFC
822. If -t is not present on the command line, any existing Bcc: header is not removed.

If Exim is called to receive a message with the recipient addresses given on the command line, and
there is no Bcc:, To:, or Cc: header in the message, it normally adds a To: header, listing the
recipients. Some mailing list software is known to submit messages in this way, and in this case the
creation of a To: header is not what is wanted. If the always_bcc option is set, Exim adds an empty
Bcc: header instead in this circumstance.

49.4 The Date: header

If a message has no Date: header, Exim adds one, giving the current date and time.

49.5 The Delivery-date: header

Delivery-date: headers are not part of the standard RFC 822 header set. Exim can be configured to
add them to the final delivery of messages. (See the generic delivery_date_add transport option.)
They should not be present in messages in transit. If the delivery_date_remove configuration option is
set (the default), Exim removes Delivery-date: headers from incoming messages.

49.6 The Envelope-to: header

Envelope-to: headers are not part of the standard RFC 822 header set. Exim can be configured to add
them to the final delivery of messages. (See the generic envelope_to_add transport option.) They
should not be present in messages in transit. If the envelope_to_remove configuration option is set
(the default), Exim removes Envelope-to: headers from incoming messages.

49.7 The From: header

If an incoming message does not contain a From: header, Exim adds one containing the sender ’s
address. This is obtained from the message’s envelope in the case of remote messages; for locally-
generated messages the calling user ’s login name and full name are used to construct an address, as
described in section 49.14. They are obtained from the password file entry by calling getpwuid() (but
see the unknown_login configuration option). The address is qualified with qualify_domain.

For compatibility with Sendmail, if an incoming, non-SMTP message has a From: header containing
just the unqualified login name of the calling user, this is replaced by an address containing the user ’s
login name and full name as described in section 49.14.

49.8 The Message-id: header

If an incoming message does not contain a Message-id: header, Exim constructs one and adds it to the
message. The id is constructed from Exim’s internal message id, preceded by the letter E to ensure it
starts with a letter, and followed by @ and the primary host name. Additional information can be
included in this header by setting the message_id_header_text option.

49.9 The Received: header

A Received: header is added at the start of every message. The contents of this header are defined by
the received_header_text configuration option, and Exim automatically adds a semicolon and a
timestamp to the configured string.

Exim 3.30 [237] message processing (49)

49.10 The Return-path: header
Return-path: headers are defined as something the MTA may insert when it does the final delivery of
messages. (See the generic return_path_add transport option.) Therefore, they should not be present
in messages in transit. If the return_path_remove configuration option is set (the default), Exim
removes Return-path: headers from incoming messages.

49.11 The Sender: header
For locally-originated messages, unless originated by a trusted user, any existing Sender: header is
removed. For non-trusted callers, unless local_from_check is set false, a check is made to see if the
address given in the From: header is the correct (local) sender of the message (prefixes and suffixes
for the local part can be permitted via local_from_prefix and local_from_suffix). If not, a Sender:
header giving the true sender address is added to the message. No processing of the Sender: header is
done for messages originating externally.

49.12 The To: header
If a message has no To:, Cc:, or Bcc: header, Exim adds an empty Bcc: header, in accordance with
RFC 822, except when the message is being received locally with the recipients supplied on the
command line. In this case, a To: header listing the recipients is normally added. Some mailing list
software is known to submit messages in this way, and in this case the creation of a To: header is not
what is wanted. If the always_bcc option is set, Exim adds an empty Bcc: header instead in this
circumstance. An Apparently-to: header is never added.

49.13 Adding and removing headers
The addition and removal of headers can be specified on any of the drivers, and also in system filter
files. Changes specified in the system filter affect all deliveries of a message.

Header changes specified on a director or router affect all addresses handled by that driver, and also
any new addresses it generates. If an address passes through several directors and/or routers, the
changes are cumulative. When a message is processed by a transport, the message’s original set of
headers is output, except for those named in any headers_remove options that the address has
encountered as it was processed, and any in the transport’s own headers_remove option. Then any
new headers from any headers_add options are output.

49.14 Constructed addresses
When Exim constructs a sender address for a locally-generated message, it uses the form

<user name> <<login>@<qualify_domain>>

For example:

Zaphod Beeblebrox <zaphod@end.univ>

The user name is obtained from the -F command line option if set, or otherwise by looking up the
calling user by getpwuid() and extracting the ‘gecos’ field from the password entry. If the ‘gecos’ field
contains an ampersand character, this is replaced by the login name with the first letter upper-cased, as
is conventional in a number of operating systems. See the gecos_name option for a way to tailor the
handling of the ‘gecos’ field. The unknown_username option can be used to specify user names in
cases when there is no password file entry.

In all cases, the user name is made to conform to RFC 822 by quoting all or parts of it if necessary. In
addition, if it contains any non-printing characters, it is encoded as described in RFC 2047, which
defines a way of including non-ASCII characters in header lines. The setting of print_topbitchars
controls whether characters with the top bit set (that is, with codes greater than 127) count as printing
characters or not.

Exim 3.30 [238] message processing (49)

49.15 Case of local parts
RFC 822 states that the case of letters in the local parts of addresses cannot be assumed not to be
significant. Exim preserves the case of local parts of remote addresses. However, when it is processing
an address in one of its local domains, the case of letters in the local part is significant only when
locally_caseless is unset. This option is set by default, and this causes Exim to lowercase local parts in
local domains before processing them.

If you must have mixed-case user names in your password file, the best way to proceed, assuming you
want case-independent handling of incoming email, is to unset locally_caseless and then set up an
initial smartuser director to convert incoming local parts to the correct case by a file lookup such as

new_address = ${lookup{${lc:$local_part}}cdb\
 {/etc/usercased.cdb}{$value}fail}\
 @$domain

49.16 Dots in local parts
RFC 822 forbids empty components in local parts. That is, an unquoted local part may not begin or
end with a dot, nor have two consecutive dots in the middle. However, it seems that many MTAs do
not enforce this, so Exim permits empty components for compatibility.

49.17 Rewriting addresses
Rewriting of sender and recipient addresses, and addresses in headers, can happen automatically, or as
the result of configuration options, as described in chapter 34. The headers that may be affected by this
are Bcc:, Cc:, From:, Reply-To:, Sender:, and To:.

Automatic rewriting includes qualification, as mentioned above. The other case in which it can happen
is when an incomplete non-local domain is given. The routing process may cause this to be expanded
into the full domain name. For example, a header such as

To: hare@teaparty

might get rewritten as

To: hare@teaparty.wonderland.fict.book

Rewriting as a result of routing is the one kind of message processing that does not happen at input
time, as it cannot be done until the address has been routed.

Strictly, one should not do any deliveries of a message until all its addresses have been routed, in case
any of the headers get changed as a result of routing. However, doing this in practice would hold up
many deliveries for unreasonable amounts of time, just because one address could not immediately be
routed. Exim therefore does not delay other deliveries when routing of one or more addresses is
deferred.

Exim 3.30 [239] message processing (49)

50. Automatic mail processing

This chapter describes some of the ways in which incoming mail can be processed automatically,
either on a system-wide basis, or as specified by individual users.

50.1 System-wide automatic processing
Simple re-addressing of messages can be handled by aliasfile or forwardfile directors. The particular
case of mailing lists is covered in chapter 42. Other kinds of automatic processing can be handled by
suitable configurations of directors and transports. As an example, here is an extract from the
configuration of a system which tries to send back helpful information when a message is received for
an unknown user. The last director in the configuration is:

unknownuser:
driver = smartuser
transport = unknownuser_pipe

 no_verify

This collects all the addresses whose local parts haven’t been matched by any other director, and
directs them to a special pipe transport, whose configuration is:

unknownuser_pipe:
driver = pipe
command = /opt/exim/util/baduser.sh

 ignore_status
return_output
user = nobody

The script is run as the user ‘nobody’, and it can apply heuristics such as soundex search to the local
part, in an attempt to produce a list of possible users for whom the message might have been intended.
This is then included in a message that is written to its standard output; Exim picks this up and returns
it to the sender as part of the delivery error message.

Chapter 47 describes how to arrange to run a system filter file once per message. Sometimes there is a
requirement to set up similar automatic processing, but on a per-address basis, that is, the filter is run
once for each address. This can be done by using a director such as the following:

filter_per_address:
driver = forwardfile
no_verify

 filter
file = /etc/per-address-filter
no_check_local_user
user = nobody

See the separate document entitled Exim’s interface to mail filtering which describes the available
filtering commands. Care should be taken to ensure that none of the commands in the filter file specify
a significant delivery if the message is to go on to be delivered to its intended recipient. The director
will not then claim to have dealt with the address, so it will be passed on to subsequent directors to be
delivered in the normal way. Note that a traditional (non-filter) .forward file does not have this
property, so cannot be used in this way, though you could use it to forward all mail for a particular
domain to a single recipient in a different domain.

50.2 Taking copies of mail
Some installations have policies that require archive copies of all messages to be made. A single copy
of each message can easily be taken by an appropriate command in a system filter, which could, for
example, use a different file for each day’s messages.

Exim 3.30 [240] automatic mail processing (50)

There is also a shadow transport mechanism that can be used to take copies of messages that are
successfully delivered by local transports, one copy per delivery. This could be used, inter alia, to
implement automatic notification of delivery by sites that insist on doing such things.

50.3 Automatic processing by users
Users can cause their mail to be processed automatically by creating .forward files, provided that
Exim’s configuration contains an appropriate forwardfile director. Traditionally, such files contain just
a list of forwarding addresses, local files, and pipe commands, but if the forwardfile director has the
filter option set, users can access Exim’s filtering facilities by beginning a .forward file with the text
‘# Exim filter ’. Details of the syntax and semantics of filter files are described in a separate document
entitled Exim’s interface to mail filtering; this is intended for use by end users.

The name .forward is purely conventional; a forwardfile director can be configured to use any
arbitrary name. As there are some finger daemons that display the contents of users’ .forward files,
some sites might like to use a different name when mail filtering is provided.

What users may do in their .forward files can be constrained by various options of the forwardfile
director:

• If the filter option is not set, only traditional .forward files are permitted.

• If the forbid_file option is set, neither a traditional .forward file, nor a filter file may direct that a
message be appended to a particular local file. An attempt to do so causes a delivery error.

• If the forbid_filter_log option is set, the use of the log command in a filter file is not permitted.

• If the forbid_pipe option is set, neither a traditional .forward file, nor a filter file may direct that
a message be piped to a user-specified command. An attempt to do so causes a delivery error.

• If the forbid_reply option is set, a filter file may not direct that a new mail message be created.
An attempt to do so causes a delivery error.

If piping is permitted, the pipe transport that is used (conventionally called address_pipe) can
constrain the command to be taken from a particular set of files. Pipe commands generated from
traditional .forward files are not string-expanded, but when a pipe command is generated in a filter
file, each argument is separately expanded.

If delivery to specified files is permitted, the appendfile transport that is used (conventionally called
address_file) can specify that the file must already exist, or can restrict the whereabouts of its creation
by means of the create_file option.

50.4 Simplified vacation processing
The traditional way of running the vacation program is for a user to set up a pipe command in a
.forward file. This is prone to error by inexperienced users. There are two features of Exim that can
be used to make this process simpler for users:

• A local part prefix such as ‘vacation-’ can be specified on a director which causes the message to
be delivered directly to the vacation program, or uses Exim’s autoreply transport. The contents
of a user ’s .forward file are then much simpler. For example:

spqr, vacation-spqr

• The require_files generic director option can be used to trigger a vacation delivery by checking
for the existence of a certain file in the user ’s home directory. The unseen generic option should
also be used, to ensure that the original delivery also proceeds. In this case, all the user has to do
is to create a file called, say, .vacation, containing a vacation message.

Another advantage of both these methods is that they both work even when the use of arbitrary pipes
by users is locked out.

Exim 3.30 [241] automatic mail processing (50)

51. Log files

Exim writes three different logs, referred to as the main log, the reject log, and the panic log.

• The main log records the arrival of each message and each delivery in a single logical line in
each case. The format is as compact as possible, in an attempt to keep down the size of log files.

 Two-character flag sequences make it easy to pick out these lines. A number of other events are
also recorded in the main log. Some of these entries can be suppressed by changing the value of
the log_level and log_queue_run_level configuration options. There are also a number of options
whose names start with log_ which can be used to request additional logging.

• The reject log records information from messages that are rejected as a result of a configuration
option (that is, for policy reasons). If the message’s header has been read, its contents are written
to this log, following a copy of the one-line message that is also written to the main log.

• The panic log is written when Exim suffers a disastrous error. Often (but not always) it bombs
out afterwards. The panic log should be checked regularly to pick up any problems. When Exim
cannot open its panic log, it tries as a last resort to write to the system log (syslog). This is
opened with LOG_PID+LOG_CONS and the facility code of LOG_MAIL. The message itself is
written at priority LOG_CRIT.

The logs may be written to local files, or to syslog, or both. However, it should be noted that many
syslog implementations use UDP as a transport, and are therefore unreliable in the sense that messages
are not guaranteed to arrive at the loghost, nor is the ordering of messages necessarily maintained. It
has also been reported that on large log files (tens of megabytes) you may need to tweak syslog to
prevent it syncing the file with each write – on Linux this has been seen to make syslog take 90% plus
of CPU time.

The destination for Exim’s logs is configured by setting LOG_FILE_PATH in Local/Makefile or by setting
log_file_path in the run time configuration. This latter string is expanded, so it can contain, for
example, references to the host name:

log_file_path = /var/log/$primary_hostname/exim_%slog

It is generally advisable, however, to set the string in Local/Makefile rather than at run time, because
then the setting is available right from the start of Exim’s execution. Otherwise, if there’s something it
wants to log before it has read the configuration file (for example, an error in the configuration file) it
will not use the path you want, and may not be able to log at all.

The value of LOG_FILE_PATH or log_file_path is a colon-separated list, currently limited to at most two
items. This is one option where the facility for changing a list separator may not be used. The list must
always be colon-separated. If an item in the list is ‘syslog’ then syslog is used; otherwise the item
must either be an absolute path, containing ‘%s’ at the point where ‘main’, ‘reject’, or ‘panic’ is to be
inserted, or be empty, implying the use of the default path, which is ‘log/%slog’ in the spool directory.
The default path is used if nothing is specified. Here are some examples of possible settings:

LOG_FILE_PATH=syslog syslog only
LOG_FILE_PATH=:syslog syslog and default path
LOG_FILE_PATH=syslog : /usr/log/exim_%s syslog and specified path
LOG_FILE_PATH=/usr/log/exim_%s specified path only

If there are more than two paths in the list, the first is used and a panic error is logged.

51.1 Logging to local files
A utility script called exicyclog which renames and compresses the main and reject logs each time it is
called is provided for use with logs written to local files. The maximum number of old logs to keep
can be set. It is suggested this is run as a daily cron job. A Perl script called eximstats which does
simple analysis of main log files is also provided. See chapter 53 for details of both these utilities.

Exim 3.30 [242] log files (51)

An Exim delivery process opens the main log when it first needs to write to it, and it keeps the file
open in case subsequent entries are required – for example, if a number of different deliveries are
being done for the same message. However, remote SMTP deliveries can take a long time, and this
means that the file may be kept open long after it is renamed if exicyclog or something similar is
being used to rename log files on a regular basis. To ensure that a switch of log files is noticed as soon
as possible, Exim calls stat() on the main log’s name before reusing an open file, and if the file does
not exist, or its inode has changed, the old file is closed and Exim tries to open the main log from
scratch. Thus, an old log file may remain open for quite some time, but no Exim processes should
write to it once it has been renamed.

51.2 Logging to syslog
The use of syslog does not change what Exim logs or the format of its messages. The same strings are
written to syslog as to log files. The syslog ‘facility’ is set to LOG_MAIL, and the program name to
‘exim’. On systems that permit it (all except ULTRIX) the LOG_PID flag is set so that the syslog() call
adds the pid as well as the time and host name to each line. The three log streams are mapped onto
syslog priorities as follows:

mainlog is mapped to LOG_INFO

rejectlog is mapped to LOG_NOTICE

paniclog is mapped to LOG_ALERT

Many log lines are written to both mainlog and rejectlog, so there will be duplicates if these are
routed by syslog to the same place.

Exim’s log lines can sometimes be very long, and some of its rejectlog entries contain multiple lines
when headers are included. To cope with both these cases, entries written to syslog are split into
separate syslog() calls at each internal newline, and also after a maximum of 1000 characters. To make
it easy to re-assemble them later, each component of a split entry starts with a string of the form
‘[<n>/<m>]’ or ‘[<n>\<m>]’ where <n> is the component number and <m> is the total number of
components in the entry. The / delimiter is used when the line was split because it was too long; if it
was split because of an internal newline, the \ delimiter is used. For example, supposing the length
limit to be 70 instead of 1000, the following would be the result of a typical rejection message to
mainlog (LOG_INFO), each line in addition being preceded by the time, host name, and pid as added
by syslog:

[1/3] 1999-09-16 16:09:43 11RdAL-0006pc-00 rejected from [127.0.0.1] (ph10):

[2/3] syntax error in ’From’ header when scanning for sender: missing or ma

[3/3] lformed local part in "<>" (envelope sender is <ph10@cam.ac.uk>)

The same error might cause the following lines to "rejectlog" (LOG_NOTICE):

[1/14] 1999-09-16 16:09:43 11RdAL-0006pc-00 rejected from [127.0.0.1] (ph10):

[2/14] syntax error in ’From’ header when scanning for sender: missing or ma

[3\14] lformed local part in "<>" (envelope sender is <ph10@cam.ac.uk>)

[4\14] Recipients: ph10@some.domain.cam.ac.uk

[5\14] P Received: from [127.0.0.1] (ident=ph10)

[6\14] by xxxxx.cam.ac.uk with smtp (Exim 3.10 #27)

[7\14] id 11RdAL-0006pc-00

[8\14] for ph10@cam.ac.uk; Thu, 16 Sep 1999 16:09:43 +0100

[9\14] F From: <>

[10\14] Subject: this is a test header

[11\14] X-something: this is another header

[12\14] I Message-Id: <E11RdAL-0006pc-00@xxxxx.cam.ac.uk>

[13\14] B Bcc:

[14/14] Date: Thu, 16 Sep 1999 16:09:43 +0100

Log lines that are neither too long nor contain newlines are written to syslog without modification, for
example:

Exim 3.30 [243] log files (51)

1999-09-16 16:09:47 SMTP connection from [127.0.0.1] closed by QUIT

The times added by syslog are normally the same as Exim’s time stamps (though in a different format,
and without the year) but can sometimes be different.

If only syslog is being used, the Exim monitor is unable to provide a log tail display, unless syslog is
routing mainlog to a file on the local host and the environment variable EXIMON_LOG_FILE_PATH is set to
tell the monitor where it is.

51.3 Logging message reception

The format of the single-line entry in the main log that is written for every message received is shown
in the example below, which is split over several lines in order to fit it on the page:

1995-10-31 08:57:53 0tACW1-0005MB-00 <= kryten@dwarf.fict.book
H=mailer.fict.book [123.123.123.123] U=exim
P=smtp S=5678 id=<incoming message id>

The H and U fields identify the remote host and record the RFC 1413 identity of the user that sent the
message, if one was received. The number given in square brackets is the IP address of the sending
host. If there is just a single host name in the H field, as above, it has been verified to correspond to
the IP address (see the host_lookup option). If the name is in parentheses, it was the name quoted by
the remote host in the SMTP HELO or EHLO command, and has not been verified. If verification yields a
different name to that given for HELO or EHLO, the verified name appears first, followed by the HELO or
EHLO name in parentheses.

Misconfigured hosts (and mail forgers) sometimes put an IP address, with or without brackets, in the
HELO or EHLO command, leading to entries in the log containing things like

H=(10.21.32.43) [123.99.8.34]
H=([10.21.32.43]) [123.99.8.34]

which can be confusing. Only the final address in square brackets can be relied on. For locally
generated messages, the H field is omitted, and the U field contains the login name of the caller of
Exim.

For all messages, the P field specifies the protocol used to receive the message. This is set to ‘asmtp’
for messages received from hosts which have authenticated themselves using the SMTP AUTH com-
mand. In this case there is an additional item A= followed by the name of the authenticator that was
used. If an authenticated identification was set up by the authenticator ’s server_set_id option, this is
logged too, separated by a colon from the authenticator name.

The id field records the existing message id, if present. The size of the received message is given by
the S field. When the message is delivered, headers may get removed or added, so that the size of
delivered copies of the message may not correspond with this value (and indeed may be different to
each other).

If the log_received_sender option is on, the unrewritten original sender of a message is added to the
end of the log line that records the message’s arrival, after the word ‘from’. If the log_received_
recipients option is on, a list of all the recipients of a message is added to the log line, preceded by
the word ‘for ’. This happens after any unqualified addresses are qualified, but before any rewriting is
done. If the log_subject option is on, the subject of the message is added to the log line, preceded by
‘T=’ (T for ‘topic’, since S is already used for ‘size’).

A delivery error message is shown with the sender address ‘<>’, and if it is a locally-generated error
message, this is normally followed by an item of the form

R=<message id>

which is a reference to the local identification of the message that caused the error message to be sent.

Exim 3.30 [244] log files (51)

51.4 Logging deliveries
The format of the single-line entry in the main log that is written for every delivery is shown in one of
the examples below, for local and remote deliveries, respectively. Each example has been split into two
lines in order to fit it on the page:

1995-10-31 08:59:13 0tACW1-0005MB-00 => marv <marv@hitch.fict.book>
D=localuser T=local_delivery

1995-10-31 09:00:10 0tACW1-0005MB-00 => monk@holistic.fict.book
R=lookuphost T=smtp H=holistic.fict.book [234.234.234.234]

For ordinary local deliveries, the original address is given in angle brackets after the final delivery
address, which might be a pipe or a file. If intermediate address(es) exist between the original and the
final address, the last of these is given in parentheses after the final address. However, log_all_parents
can be set to cause all intermediate addresses to be logged.

If a shadow transport was run after a successful local delivery, the log line for the successful delivery
has an item added on the end, of the form

ST=<shadow transport name>

If the shadow transport did not succeed, the error message is put in parentheses afterwards.

When a local delivery occurs as a result of routing rather than directing (for example, messages are
being batched up for transmission by some other means), the log entry looks more like that for a
remote delivery.

For normal remote deliveries, if the log_smtp_confirmation option is on, the response to the final ‘.’
in the SMTP transmission is added to the log line, preceded by ‘C=’. If the final delivery address is
not the same as the original address (owing to changes made by routers), the original is shown in
angle brackets.

The generation of a reply message by a filter file gets logged as a ‘delivery’ to the addressee, preceded
by ‘>’. The D and T items record the director and transport. For remote deliveries, the router,
transport, and host are recorded.

When more than one address is included in a single delivery (for example, two SMTP RCPT commands
in one transaction) then the second and subsequent addresses are flagged with ‘->’ instead of ‘=>’.
When two or more messages are delivered down a single SMTP connection, an asterisk follows the IP
address in the log lines for the second and subsequent messages.

When the -N debugging option is used to prevent delivery from actually occurring, log entries are
flagged with ‘*>’ instead of ‘=>’.

When a message is discarded as a result of the command ‘seen finish’ being obeyed in a filter file
which generates no deliveries, a log entry of the form

1998-12-10 00:50:49 0znuJc-0001UB-00 => discarded
<low.club@trick4.bridge> D=userforward

is written, to record why no deliveries are logged.

51.5 Deferred deliveries
When a delivery is deferred, a line of the following form is logged:

1995-12-19 16:20:23 0tRiQz-0002Q5-00 == marvin@endrest.book
T=smtp defer (146): Connection refused

In the case of remote deliveries, the error is the one that was given for the last IP address that was
tried. Details of individual SMTP failures are also written to the log, so the above line would be
preceded by something like

1995-12-19 16:20:23 0tRiQz-0002Q5-00 Failed to connect to endrest.book
[239.239.239.239]: Connection refused

Exim 3.30 [245] log files (51)

When a deferred address is skipped because its retry time has not been reached, a message is written
to the log, but this can be suppressed by changing the log_level option.

51.6 Delivery failures
If a delivery fails, a line of the following form is logged:

1995-12-19 16:20:23 0tRiQz-0002Q5-00 ** jim@trek99.film
<jimtrek99.film>: unknown mail domain

This is followed (eventually) by a line giving the address to which the delivery error has been sent.

51.7 Fake deliveries
If a delivery does not actually take place because the -N option has been used to suppress it, an
apparently normal delivery line is written to the log, except that ‘=>’ is replaced by ‘*>’.

51.8 Completion
A line of the form

1995-10-31 09:00:11 0tACW1-0005MB-00 Completed

is written to the main log when a message is about to be removed from the spool at the end of its
processing.

51.9 Other log entries
Various other types of log entry are written from time to time. Most should be self-explanatory.
Among the more common are:

• retry time not reached An address previously suffered a temporary error during directing or
routing or local delivery, and the time to retry it has not yet arrived.

• retry time not reached for any host An address previously suffered temporary errors during
remote delivery, and the retry time has not yet arrived for any of the hosts to which it is routed.

• spool file locked An attempt to deliver a message cannot proceed because some other Exim
process is already working on the message. This can be quite common if queue running processes
are started at frequent intervals. The exiwhat utility script can be used to find out what Exim
processes are doing.

51.10 Log level
The log_level configuration option controls the amount of data written to the main log. The higher the
number, the more is written. A value of 6 causes all possible messages to appear, though higher levels
may get defined in the future. Zero sets a minimal level of logging, with higher levels adding the
following, successively:

1 rejections because of policy
re-addressing by the system filter

2 rejections because of message size

3 verification failures

4 SMTP timeouts
SMTP connection refusals because too busy
SMTP unexpected connection loss
SMTP (dis)connections when log_smtp_connections is set
SMTP syntax errors when log_smtp_syntax_errors is set
non-immediate delivery of SMTP messages because of load level,

or number of connections etc.

Exim 3.30 [246] log files (51)

5 ‘retry time not reached [for any host]’
‘spool file locked’ (i.e. some other process is delivering the message)
‘message is frozen’ (when skipping it in a queue run)
‘error message sent to ...’

6 invalid HELO and EHLO arguments (see helo_verify)

The default log level is 5, which is on the verbose side. Rejection information is still written to the
reject log in all cases.

51.11 Message log
In addition to the four main log files, Exim writes a log file for each message that it handles. The
names of these per-message logs are the message ids, and they are kept in the msglog sub-directory of
the spool directory. A single line is written to the message log for each delivery attempt for each
address. It records either a successful delivery, or the reason (temporary or permanent) for failure. If
the log level is 5 or higher, ‘retry time not reached’ messages are also written to individual message
logs. If the log level is 4 or less, they are suppressed after the first delivery attempt.

When a local part is expanded by aliasing or a forwarding file, a line is written to the message log
when all its child deliveries are completed. SMTP connection failures for each remote host are also
logged here. The log is deleted when processing of the message is complete, unless preserve_
message_logs is set, but this should be used only with great care because they can fill up your disc
very quickly.

Exim 3.30 [247] log files (51)

52. Day-to-day management

This chapter describes some of the regular tasks that need to be done to keep Exim running smoothly.

52.1 The panic log
When certain disasters occur, Exim writes entries to its panic log. These are often copied to the main
log as well, but can get lost amid the mass of other entries. The panic log should be empty under
normal circumstances. It is therefore a good idea to check it (or to have a cron script check it)
regularly, in order to become aware of any problems.

52.2 The reject log
If checking of sender addresses on incoming mail is enabled, the headers of rejected messages are
written to the reject log. Other policy rejections also cause entries in this log, which should be
regularly inspected to ensure that the checking is working properly, and to pick up errors such as
missing DNS entries.

52.3 Log cycling
The exicyclog script (see chapter 53) cycles the names of log files, compresses all but the most recent,
and deletes the oldest. This should be run at intervals dependent on the amount of mail traffic. For a
system with a reasonable amount of mail, running it daily via cron is suggested.

52.4 Statistics
The eximstats script (see chapter 53) produces statistics about messages received and delivered, by
analysing log files.

52.5 What is Exim doing?
On systems that can restart a system call after receiving a signal, Exim responds to the SIGUSR1 signal
by writing a line describing what it is doing to the file exim-process.info in its spool directory. The
exiwhat script (see chapter 53) sends the signal to all Exim processes it can find, having first emptied
the file. It then waits for one second to allow the Exim processes to react before displaying the results.
In order to run exiwhat successfully you have to have sufficient privilege to send the signal to the
Exim processes, so it is normally run as root.

When the number of processes handling incoming SMTP calls is limited by setting the smtp_accept_
max option, the daemon uses the SIGCHLD signal to detect when any of its subprocesses finishes. On
some operating systems this signal sometimes gets lost when the system is very busy. However,
Exim’s daemon cleans up subprocesses every time it wakes up, so even if SIGCHLD doesn’t happen, the
completion of subprocesses should eventually get noticed.

52.6 Changing the configuration
A changed configuration file is picked up immediately by any Exim processes that are subsequently
started, and by any existing process that re-execs Exim, but it will not be noticed by any existing
processes. The daemon process can be caused to restart itself by sending it the SIGHUP signal, which
should also be sent when a new version of the Exim binary is installed. SIGHUP causes the daemon to
close down, and then re-exec Exim, thus causing it to re-read the configuration file.

The current process id is written to a file whose name depends on the type of daemon being run. By
default, the file is written in Exim’s spool directory, but a compile-time configuration of PID_FILE_PATH

can be used to cause it to be placed elsewhere. When the daemon is both listening for incoming SMTP
on the standard port and periodically starting queue runner processes, the file is called exim-
daemon.pid. If it is doing only one of these things, the option that started it (either -bd or -q<time>)

Exim 3.30 [248] day-to-day management (52)

is added to the file name. It is not necessary to use SIGHUP when changing the contents of any files
referred to in the configuration (for example, alias files) since each delivery process reads such files
independently.

52.7 Watching the queue
The queue of messages awaiting delivery can be examined by running the Exim monitor (see chapter
54), or by obeying exim -bp (or its variants) periodically. The exiqsumm utility script can be called to
obtain a summary of the waiting messages for each domain, sorted by domain, age, or message count.

If any messages are frozen, their header files and message log files should be examined to determine
the cause of the problem. Once the problem is believed to be fixed, the messages can be unfrozen by
the administrator, who can also kick off an immediate delivery attempt, and also change recipient and
sender addresses if necessary. There are a number of command line options whose names begin with
-M for doing these things, and they can also be done from the Exim monitor.

52.8 Holding domains
The option hold_domains allows mail for particular domains to be held on the queue manually. This
option is intended as a temporary operational measure for delaying the delivery of mail while some
problem is being sorted out, or some new configuration tested.

Exim 3.30 [249] day-to-day management (52)

53. Exim utilities

A number of utility scripts and programs are supplied with Exim. Most of them are built as part of the
normal building process, but the log file analyser is entirely free-standing.

53.1 Querying Exim processes
The shell script called exiwhat first of all empties the file exim-process.info in Exim’s spool directory.
It then uses the ps command to find all processes running exim, and sends each one the SIGUSR1 signal.
This causes each process to write a single line describing its current activity to the file. The script
waits for one second to allow the Exim processes to react, then copies the file to the standard output.

Unfortunately, the ps command varies between different versions of Unix. Not only are different
options used, but the format of the output is different. For this reason, there are some system
configuration options that configure exactly how exiwhat works. If it doesn’t seem to be working for
you, check the following compile-time options:

EXIWHAT_PS_CMD the command for running ps
EXIWHAT_PS_ARG the argument for ps
EXIWHAT_EGREP_ARG the argument for egrep to select from ps output
EXIWHAT_KILL_ARG the argument for the kill command

This facility is available only in operating systems where a signal handler can be set up such that an
interrupted system call is resumed when the signal handler has finished. An example of typical output
from exiwhat is

164 daemon: -q1h, listening on port 25
10483 running queue: waiting for 0tAycK-0002ij-00 (10492)
10492 delivering 0tAycK-0002ij-00 to mail.ref.book [42.42.42.42]
 (editor@ref.book)
10592 handling incoming call from [245.211.243.242]
10628 accepting a local non-SMTP message

The first number in the output line is the process number. The third line has been split here, in order to
fit it on the page. Because Exim processes run under a variety of uids, it is necessary to run exiwhat
as root in order to be able to send the signal to all Exim processes.

53.2 Summarising the queue
The exiqsumm utility is a Perl script, provided in the util directory, which reads the output of exim
-bp and produces a summary of the messages by outputting a line like the following for each domain:

3 2322 74m 66m msn.com

This contains the number of messages for that domain, their total volume, and the length of time the
oldest and the newest have been waiting. By default the output is sorted on the domain name, but
exiqsumm has the options -a and -c, which cause it to be sorted by oldest message and by count of
messages, respectively.

The output of exim -bp is based on the original addresses in the message, so no addresses generated by
aliasing or forwarding are included. Consequently this applies also to the output from exiqsumm.

53.3 Extracting log information
The exigrep utility is a Perl script, provided in the util directory, that extracts from one or more log
files all entries relevant to any message whose log entries contain at least one that matches a given
pattern. The pattern match is case-insensitive. Thus one can search for all mail for a given user or a
given host, for example. The usage is:

exigrep [-l] <pattern> [<log file>] ...

Exim 3.30 [250] utilities (53)

where the -l flag means ‘literal’, that is, treat all characters in the pattern as standing for themselves.
Otherwise the pattern must be a Perl regular expression. If no file names are given on the command
line, the standard input is read.

If the location of a zcat command is known from the definition of ZCAT_COMMAND in Local/Makefile,
exigrep automatically passes any file whose name ends in COMPRESS_SUFFIX through zcat as it
searches it.

53.4 Cycling log files
The exicyclog script can be used to cycle mainlog and rejectlog files that have been written to local
disc. This is not necessary if only syslog is being used. Some operating systems have their own
standard scripts for log cycling, and these can be used instead of exicyclog if preferred.

Each time exicyclog is run the files get ‘shuffled down’ by one. If the main log file name is mainlog
(the default) then when exicyclog is run mainlog becomes mainlog.01, the previous mainlog.01
becomes mainlog.02 and so on, up to a limit which is set in the script, and which defaults to 10.

In versions of Exim prior to 1.90, exicyclog used single-digits for numbers less than ten. This was
changed to make the files list in a more natural order. The script contains conversion code. If it finds a
file called mainlog.1 it attempts to rename all files in the old form to the new form.

If no mainlog file exists, the script does nothing. Reject logs are handled similarly. Files that ‘drop
off ’ the end are deleted. All files with numbers greater than 01 are compressed, using a compression
command which is configured by the COMPRESS_COMMAND setting in Local/Makefile.

It is usual to run exicyclog daily from a crontab entry of the form

1 0 * * * /opt/exim/bin/exicyclog

In this way, each day’s log is (mostly) in a separate file. There will be some overlap from processes
that have the log open at the time of renaming.

The exicyclog script can be run as the Exim user when one is defined, because the log files will be
owned by that user in that case. Otherwise it has to be run as root.

53.5 Making DBM files
The exim_dbmbuild program reads an input file in the format of an alias file (see chapter 23) and
writes a DBM database using the lower-cased alias names as keys and the remainder of the infor-
mation as data. The lower-casing can be prevented by calling the program with the -nolc option.

A terminating zero is included as part of the key string. This is expected by the dbm lookup type.
However, if the option -nozero is given, exim_dbmbuild creates files without terminating zeroes in
either the key strings or the data strings. The dbmnz lookup type can be used with such files.

The program requires two arguments: the name of the input file (which can be a single hyphen to
indicate the standard input), and the name of the output database. It creates the database under a
temporary name, and then renames the file(s) if all went well. If the native DB interface is in use
(USE_DB is set in a compile-time configuration file – this is common in free versions of Unix) the two
file names must be different, because in this mode the Berkeley DB functions create a single output
file using exactly the name given. For example:

exim_dbmbuild /etc/aliases /etc/aliases.db

reads the system alias file and creates a DBM version of it in /etc/aliases.db.

In systems that use the ndbm routines (mostly proprietary versions of Unix), DBM databases consist
of two files with suffixes .dir and .pag. In this environment, the suffixes are added to the second
argument of exim_dbmbuild, so it can be the same as the first. This is also the case when the
Berkeley functions are used in compatibility mode (though this is not recommended), because in that
case it adds a .db suffix to the file name.

Exim 3.30 [251] utilities (53)

The program outputs a warning if it encounters a duplicate key, and when it finishes, its return code is
1 rather than zero, unless the -noduperr option is used. By default, only the first of a set of duplicates
is used – this makes it compatible with lsearch lookups. There is an option -lastdup which causes it
to use the data for the last duplicate instead. There is also an option -nowarn, which stops it listing
duplicate keys to stderr. For other errors, where it doesn’t actually make a new file, the return code
is 2.

53.6 Individual retry times
A utility called exinext (mostly a Perl script) provides the ability to fish specific information out of the
retry database. Given a mail domain (or a complete address), it looks up the hosts for that domain, and
outputs any retry information. At present, the retry information is obtained by running exim_dumpdb
(see below) and post-processing the output. For example:

exinext piglet@milne.fict.book
kanga.milne.fict.book:100.100.8.1 error 146: Connection refused
first failed: 21-Feb-1996 14:57:34
last tried: 21-Feb-1996 14:57:34
next try at: 21-Feb-1996 15:02:34

roo.milne.fict.book:100.100.8.3 error 146: Connection refused
first failed: 20-Jan-1996 13:12:08
last tried: 21-Feb-1996 11:42:03
next try at: 21-Feb-1996 19:42:03
past final cutoff time

You can also give exinext a local local_part, without a domain, and it will give any retry information
for it. Also, a message id can be given to obtain retry information pertaining to a specific message.
This exists only when an attempt to deliver a message to a remote host suffers a message-specific error
(see section 48.2). Exinext is not particularly efficient, but then it isn’t expected to be run very often.

53.7 Database maintenance
Three utility programs are provided for maintaining the DBM files that Exim uses to contain its
delivery hint information. Each program requires two arguments. The first specifies the name of
Exim’s spool directory, and the second is the name of the database it is to operate on. These are as
follows:

• retry: the database of retry information

• reject: the database of information about rejected messages

• wait-<transport name>: databases of information about messages waiting for remote hosts

• serialize-<transport name>: databases of information about current connections to hosts which
are restricted to one connection at a time

• serialize-etrn-runs: database of information about current queue runs started by the ETRN com-
mand when smtp_etrn_serialize is set.

The entire contents of a database are written to the standard output by the exim_dumpdb program,
which has no options or arguments other than the spool and database names. For example, to dump the
retry database:

exim_dumpdb /var/spool/exim retry

Two lines of output are produced for each entry:

T:mail.ref.book:242.242.242.242 146 77 Connection refused
31-Oct-1995 12:00:12 02-Nov-1995 12:21:39 02-Nov-1995 20:21:39 *

The first item on the first line is the key of the record. It starts with one of the letters D, R, or T,
depending on whether it refers to a directing, routing, or transport retry. For a local delivery, the next
part is the local address; for a remote delivery it is the name of the remote host, followed by its failing

Exim 3.30 [252] utilities (53)

IP address. Then there follows an error code, an additional error code, and a textual description of the
error.

The three times on the second line are the time of first failure, the time of the last delivery attempt,
and the computed time for the next attempt. The line ends with an asterisk if the cutoff time for the
last retry rule has been exceeded.

Each output line from exim_dumpdb for the reject database consists of a date and time, followed by
the letter T or F and a fixed point number, followed by the address that was rejected, followed either
by the name of the host that sent the bad address, if this has been verified, or otherwise the IP address.
The letter is F if only one previous rejection of this address (from this host) has been done recently,
and T if a second has occurred, causing rejection of the MAIL command, and subsequently rejection of
the RCPT commands. The fixed point number is zero when the last rejection was a permanent one.
Otherwise it records the rate of temporary rejections for the same address from the same host, per
hour.

Each output line from exim_dumpdb for the wait-xxx databases consists of a host name followed by a
list of ids for messages that are or were waiting to be delivered to that host. If there are a very large
number for any one host, continuation records, with a sequence number added to the host name, may
be seen. The data in these records is often out of date, because a message may be routed to several
alternative hosts, and Exim makes no effort to keep cross-references.

Each output line from exim_dumpdb for the serialize-smtp database consists of a host name preceded
by the time that Exim made a connection to that host. Exim keeps track of connections only for those
hosts or networks that have been configured for serialization.

The exim_tidydb utility program is used to tidy up the contents of the hints databases. If run with no
options, it removes all records from a database that are more than 30 days old. The cutoff date can be
altered by means of the -t option, which must be followed by a time. For example, to remove all
records older than a week from the retry database:

exim_tidydb -t 7d /var/spool/exim retry

For the wait-xxx and retry databases, the -f option can also be used. Both these databases contain
items that involve message ids. In the former these appear as data in records keyed by host – they
were messages that were waiting for that host – and in the latter they are the keys for retry
information for messages that have suffered certain types of error. When -f is used, a check is made to
ensure that message ids in database records are those of messages that are still on the queue. Message
ids for messages that no longer exist are removed from wait-xxx records, and if this leaves any records
empty, they are deleted. For the retry database, -f causes the removal of records whose keys are non-
existent message ids. For other types of database, -f has no effect.

The exim_tidydb utility outputs comments on the standard output whenever it removes information
from the database. It is suggested that it be run periodically on all the hints databases, but at a quiet
time of day, since it requires a database to be locked (and therefore inaccessible to Exim) while it does
its work.

The exim_fixdb program is a utility for interactively modifying databases. Its main use is for testing
Exim, but it might also be occasionally useful for getting round problems in a live system. It has no
options, and its interface is somewhat crude. On entry, it prompts for input with a right angle-bracket.
A key of a database record can then be entered, and the data for that record is displayed.

If ‘d’ is typed at the next prompt, the entire record is deleted. For all except the retry database, that is
the only operation that can be carried out. For the retry database, each field is output preceded by a
number, and data for individual fields can be changed by typing the field number followed by new
data, for example:

> 4 951102:1000

resets the time of the next delivery attempt. Time values are given as a sequence of digit pairs for
year, month, day, hour, and minute. Colons can be used as optional separators.

Exim 3.30 [253] utilities (53)

53.8 Mail statistics

A Perl script called eximstats is supplied in the util directory. This has been hacked about quite a bit
over time. It now gives quite a lot of information by default, but there are options for suppressing
various parts of it. Following any options, the arguments to the script are a list of files, which should
be main log files.

Eximstats extracts information about the number and volume of messages received from or delivered
to various hosts. The information is sorted both by message count and by volume, and the top fifty
hosts in each category are listed on the standard output. For messages delivered and received locally,
similar statistics are produced per user.

The output also includes total counts and statistics about delivery errors, and histograms showing the
number of messages received and deliveries made in each hour of the day. A delivery with more than
one address in its ‘envelope’ (for example, an SMTP transaction with more than one RCPT command)
is counted as a single delivery by eximstats.

Though normally more deliveries than receipts are reported (as messages may have multiple recipi-
ents), it is possible for eximstats to report more messages received than delivered, even though the
spool is empty at the start and end of the period in question. If an incoming message contains no valid
recipients, no deliveries are recorded for it. An error report is handled as an entirely separate message.

Eximstats always outputs a grand total summary giving the volume and number of messages received
and deliveries made, and the number of hosts involved in each case. It also outputs the number of
messages that were delayed (that is, not completely delivered at the first attempt), and the number that
had at least one address that failed.

The remainder of the output is in sections that can be independently disabled or modified by various
options. It consists of a summary of deliveries by transport, histograms of messages received and
delivered per time interval (default per hour), information about the time messages spent on the queue,
a list of relayed messages, lists of the top fifty sending hosts, local senders, destination hosts, and
destination local users by count and by volume, and a list of delivery errors that occurred.

The relay information lists messages that were actually relayed, that is, they came from a remote host
and were directly delivered to some other remote host. A delivery that is considered as a relay by the
checking features described in section 46.4, because its domain is not in local_domains, might still
end up being delivered locally under some configurations, and if this happens it doesn’t show up as a
relay in the eximstats output.

The options for eximstats are as follows:

-nt Suppress the statistics about delivery by transport.

-h<n> This option controls the histograms of messages received and deliveries per time interval. By
default the time interval is one hour. If -h0 is given, the histograms are suppressed; otherwise
the value of <n> gives the number of divisions per hour, so -h2 sets an interval of 30
minutes, and the default is equivalent to -h1.

-q0 Suppress information about times messages spend on the queue.

-q<n1>...
This option sets an alternative list of time intervals for the queueing information. The values
are separated by commas and are in seconds, but can involve arithmetic multipliers, so for
example you can set 3*60 to specify 3 minutes. A setting such as

-q60,5*60,10*60

causes eximstats to give counts of messages that stayed on the queue for less than one
minute, less than five minutes, less than ten minutes, and over ten minutes.

-nr Suppress information about messages relayed through this host.

Exim 3.30 [254] utilities (53)

-nr/pattern/
Suppress information about relayed messages that match the pattern, which is matched against
a string of the following form (split over two lines here in order to fit it on the page):

H=<host> [<ip address>] A=<sender address> =>
H=<host> A=<recipient address>

for example

H=in.host [1.2.3.4] A=from@some.where =>
H=out.host A=to@else.where

The sending host name appears in parentheses if it has not been verified as matching the IP
address. The mail addresses are taken from the envelope, not the headers. This option allows
you to screen out hosts whom you are happy to have using your host as a relay.

-t<n> Sets the ‘top’ count to <n>. This controls the listings of the ‘top <n>’ hosts and users by
count and volume. The default is 50, and setting 0 suppresses the output altogether.

-tnl Omit local information from the ‘top’ listings.

-ne Suppress the list of delivery errors.

53.9 Mailbox maintenance
The exim_lock utility locks a mailbox file using the same algorithm as Exim. This can be used to
prevent any modification of a mailbox by Exim or a user agent while investigating a problem. The
utility requires the name of the file as its first argument. If the locking is successful, the second
argument is run as a command (using C’s system() function); if there is no second argument, the value
of the SHELL environment variable is used; if this is unset or empty, /bin/sh is run. When the
command finishes, the mailbox is unlocked and the utility ends. The following options are available:

-fcntl Use fcntl() locking on the open mailbox.

-interval
This must be followed by a number, which is a number of seconds; it sets the interval to sleep
between retries (default 3).

-lockfile Create a lock file before opening the mailbox.

-mbx Lock the mailbox using MBX rules.

-retries This must be followed by a number; it sets the number of times to try to get the lock
(default 10).

-timeout
This must be followed by a number, which is a number of seconds; it sets a timeout to be
used with a blocking fcntl() lock. If it is not set (the default), a non-blocking call is used.

-v Generate verbose output.

-q Suppress verification output.

If none of -fcntl, -lockfile or -mbx are given, the default is to create a lock file and also use fcntl()
locking on the mailbox, which is the same as Exim’s default. The use of -fcntl requires that the file be
writeable; the use of -lockfile requires that the directory containing the file be writeable. Locking by
lock file does not last for ever; Exim assumes that a lock file is expired if it is more than 30
minutes old.

The -mbx option is mutually exclusive with -fcntl. It causes a shared lock to be taken out on the open
mailbox, and an exclusive lock on the file /tmp/.n.m where n and m are the device number and inode
number of the mailbox file. When the locking is released, if an exclusive lock can be obtained for the
mailbox, the file in /tmp is deleted.

The default output contains verification of the locking that takes place. The -v option causes some
additional information to be given. The -q option suppresses all output except error messages.

Exim 3.30 [255] utilities (53)

A command such as

exim_lock /var/spool/mail/spqr

runs an interactive shell while the file is locked, whereas

exim_lock -q /var/spool/mail/spqr <<End
 <some commands>
 End

runs a specific non-interactive sequence of commands while the file is locked, suppressing all verifi-
cation output. A single command can be run by a command such as

exim_lock -q /var/spool/mail/spqr \
"cp /var/spool/mail/spqr /some/where"

Note that if a command is supplied, it must be entirely contained within the second argument – hence
the quotes.

Exim 3.30 [256] utilities (53)

54. The Exim monitor

The Exim monitor is an application which displays in an X window information about the state of
Exim’s queue and what Exim is doing. An admin user can perform certain operations on messages
from this GUI interface; however all such facilities are also available from the command line, and
indeed, the monitor itself makes use of it.

54.1 Running the monitor

The monitor is started by running the script called eximon. This is a shell script which sets up a
number of environment variables, and then runs the binary called eximon.bin. The appearance of the
monitor window can be changed by editing the Local/eximon.conf file created by editing
exim_monitor/EDITME. Comments in that file describe what the various parameters are for.

The parameters that get built into the eximon script can be overridden for a particular invocation by
setting up environment variables of the same names, preceded by ‘EXIMON_’. For example, a shell
command such as

EXIMON_LOG_DEPTH=400 eximon

(in a Bourne-compatible shell) runs eximon with an overriding setting of the LOG_DEPTH parameter. If
EXIMON_LOG_FILE_PATH is set in the environment, it overrides the Exim log file configuration. This
makes it possible to have eximon tailing log data that is written to syslog, provided that MAIL.INFO
syslog messages are routed to a file on the local host.

X resources can be used to change the appearance of the window in the normal way. For example, a
resource setting of the form

Eximon*background: gray94

changes the colour of the background to light grey rather than white. The stripcharts are drawn with
both the data lines and the reference lines in black. This means that the reference lines are not visible
when on top of the data. However, their colour can be changed by setting a resource called ‘highlight’
(an odd name, but that’s what the Athena stripchart widget uses). For example, if your X server is
running Unix, you could set up lighter reference lines in the stripcharts by obeying

xrdb -merge <<End
Eximon*highlight: gray
End

In order to see the contents of messages on the spool, and to operate on them, eximon must either be
run as root or by an admin user.

The monitor ’s window is divided into three parts. The first contains one or more stripcharts and two
action buttons, the second contains a ‘tail’ of the main log file, and the third is a display of the queue
of messages awaiting delivery, with two more action buttons. The following sections describe these
different displays.

54.2 The stripcharts
The first stripchart is always a count of messages on the queue. Its name can be configured by setting
QUEUE_STRIPCHART_NAME in the Local/eximon.conf file. The remaining stripcharts are defined in the
configuration script by regular expression matches on log file entries, making it possible to display, for
example, counts of messages delivered to certain hosts or using certain transports. The supplied
defaults display counts of received and delivered messages, and of local and SMTP deliveries. The
default period between stripchart updates is one minute; this can be adjusted by a parameter in the
Local/eximon.conf file.

Exim 3.30 [257] monitor (54)

The stripchart displays rescale themselves automatically as the value they are displaying changes.
There are always 10 horizontal lines in each chart; the title string indicates the value of each division
when it is greater than one. For example, ‘x2’ means that each division represents a value of 2.

It is also possible to have a stripchart which shows the percentage fullness of a particular disc
partition, which is useful when local deliveries are confined to a single partition. This relies on the
availability of the statvfs function or equivalent in the operating system. Most, but not all versions of
Unix that support Exim have this. For this particular stripchart, the top of the chart always represents
100%, and the scale is given as ‘x10%’. It is configured by setting SIZE_STRIPCHART and (optionally)
SIZE_STRIPCHART_NAME in the Local/eximon.conf file.

54.3 Main action buttons
Below the stripcharts there is an action button for quitting the monitor. Next to this is another button
marked ‘Size’. They are placed here so that shrinking the window to its default minimum size leaves
just the queue count stripchart and these two buttons visible. Pressing the ‘Size’ button causes the
window to expand to its maximum size, unless it is already at the maximum, in which case it is
reduced to its minimum.

When expanding to the maximum, if the window cannot be fully seen where it currently is, it is
moved back to where it was the last time it was at full size. When it is expanding from its minimum
size, the old position is remembered, and next time it is reduced to the minimum it is moved back
there.

The idea is that you can keep a reduced window just showing one or two stripcharts at a convenient
place on your screen, easily expand it to show the full window when required, and just as easily put it
back to what it was. The idea is copied from what the twm window manager does for its f.fullzoom
action. The minimum size of the window can be changed by setting the MIN_HEIGHT and MIN_WIDTH

values in Local/eximon.conf.

Normally, the monitor starts up with the window at its full size, but it can be built so that it starts up
with the window at its smallest size, by setting START_SMALL=yes in Local/eximon.conf.

54.4 The log display
The second section of the window is an area in which a display of the tail of the main log is
maintained. This is not available when the only destination for logging data is syslog, unless the syslog
lines are routed to a local file whose name is passed to eximon via the EXIMON_LOG_FILE_PATH

environment variable.

The log sub-window has a scroll bar at its lefthand side which can be used to move back to look at
earlier text, and the up and down arrow keys also have a scrolling effect. The amount of log that is
kept depends on the setting of LOG_BUFFER in Local/eximon.conf, which specifies the amount of
memory to use. When this is full, the earlier 50% of data is discarded – this is much more efficient
than throwing it away line by line. The sub-window also has a horizontal scroll bar for accessing the
ends of long log lines. This is the only means of horizontal scrolling; the right and left arrow keys are
not available. Text can be cut from this part of the window using the mouse in the normal way. The
size of this subwindow is controlled by parameters in the configuration file Local/eximon.conf.

Searches of the text in the log window can be carried out by means of the ^R and ^S keystrokes,
which default to a reverse and forwards search respectively. The search covers only the text that is
displayed in the window. It cannot go further back up the log.

The point from which the search starts is indicated by a caret marker. This is normally at the end of
the text in the window, but can be positioned explicitly by pointing and clicking with the left mouse
button, and is moved automatically by a successful search. If new text arrives in the window when it
is scrolled back, the caret remains where it is, but if the window is not scrolled back, the caret is
moved to the end of the new text.

Pressing ^R or ^S pops up a window into which the search text can be typed. There are buttons for
selecting forward or reverse searching, for carrying out the search, and for cancelling. If the ‘Search’

Exim 3.30 [258] monitor (54)

button is pressed, the search happens and the window remains so that further searches can be done. If
the ‘Return’ key is pressed, a single search is done and the window is closed. If ^C is pressed the
search is cancelled.

The searching facility is implemented using the facilities of the Athena text widget. By default this
pops up a window containing both ‘search’ and ‘replace’ options. In order to suppress the unwanted
‘replace’ portion for eximon, a modified version of the TextPop widget is distributed with Exim.
However, the linkers in BSDI and HP-UX seem unable to handle an externally provided version of
TextPop when the remaining parts of the text widget come from the standard libraries. The compile-
time option EXIMON_TEXTPOP can be unset to cut out the modified TextPop, making it possible to build
Eximon on these systems, at the expense of having unwanted items in the search popup window.

54.5 The queue display
The bottom section of the monitor window contains a list of all messages that are on the queue, which
includes those currently being received or delivered, as well as those awaiting delivery. The size of
this subwindow is controlled by parameters in the configuration file Local/eximon.conf, and the
frequency at which it is updated is controlled by another parameter in the same file – the default is 5
minutes, since queue scans can be quite expensive. However, there is an ‘Update’ action button just
above the display which can be used to force an update of the queue display at any time.

When a host is down for some time, a lot of pending mail can build up for it, and this can make it
hard to deal with other messages on the queue. To help with this situation there is a button next to
‘Update’ called ‘Hide’. If pressed, a dialogue box called ‘Hide addresses ending with’ is put up. If you
type anything in here and press ‘Return’, the text is added to a chain of such texts, and if every
undelivered address in a message matches at least one of the texts, the message is not displayed.

If there is an address that does not match any of the texts, all the addresses are displayed as normal.
The matching happens on the ends of addresses so, for example, cam.ac.uk specifies all addresses in
Cambridge, while xxx@foo.com specifies just one specific address. When any hiding has been set up,
a button called ‘Unhide’ is displayed. If pressed, it cancels all hiding. Also, to ensure that hidden
messages don’t get forgotten, a hide request is automatically cancelled after one hour.

While the dialogue box is displayed, you can’t press any buttons or do anything else to the monitor
window. For this reason, if you want to cut text from the queue display to use in the dialogue box, you
have to do the cutting before pressing the ‘Hide’ button.

The queue display contains, for each unhidden queued message, the length of time it has been on the
queue, the size of the message, the message id, the message sender, and the first undelivered recipient,
all on one line. If it is a delivery error message, the sender is shown as ‘<>’. If there is more than one
recipient to which the message has not yet been delivered, subsequent ones are listed on additional
lines, up to a maximum configured number, following which an ellipsis is displayed. Recipients that
have already received the message are not shown. If a message is frozen, an asterisk is displayed at the
left-hand side.

The queue display has a vertical scroll bar, and can also be scrolled by means of the arrow keys. Text
can be cut from it using the mouse in the normal way. The text searching facilities, as described above
for the log window, are also available, but the caret is always moved to the end of the text when the
queue display is updated.

54.6 The queue menu
If the shift key is held down and the left button is clicked when the mouse pointer is over the text for
any message, an action menu pops up, and the first line of the queue display for the message is
highlighted. This does not affect any selected text. If you want to use some other event for popping up
the menu, you can set the MENU_EVENT parameter in Local/eximon.conf to change the default, or set
EXIMON_MENU_EVENT in the environment before starting the monitor. The value set in this parameter is a
standard X event description. For example, to run eximon using ctrl rather than shift you could use

EXIMON_MENU_EVENT=’Ctrl<Btn1Down>’ eximon

Exim 3.30 [259] monitor (54)

The title of the menu is the message id, and it contains entries which act as follows:

• message log: The contents of the message log for the message are displayed in a new text
 window.

• headers: Information from the spool file that contains the envelope information and headers is
displayed in a new text window. See chapter 56 for a description of the format of spool files.

• body: The contents of the spool file containing the body of the message are displayed in a new
text window. There is a default limit of 20,000 bytes to the amount of data displayed. This can be
changed by setting the BODY_MAX option at compile time, or the EXIMON_BODY_MAX option at run
time.

• deliver message: A call to Exim is made using the -M option to request delivery of the message.
This causes an automatic thaw if the message is frozen. The -v option is also set, and the output
from Exim is displayed in a new text window. The delivery is run in a separate process, to avoid
holding up the monitor while the delivery proceeds.

• freeze message: A call to Exim is made using the -Mf option to request that the message be
frozen.

• thaw message: A call to Exim is made using the -Mt option to request that the message be
thawed.

• give up on msg: A call to Exim is made using the -Mg option to request that Exim gives up
trying to deliver the message. A delivery failure report is generated for any remaining
undelivered addresses.

• remove message: A call to Exim is made using the -Mrm option to request that the message be
deleted from the system without generating any failure reports.

• add recipient: A dialog box is displayed into which a recipient address can be typed. If the
address is not qualified and the QUALIFY_DOMAIN parameter is set in Local/eximon.conf, the
address is qualified with that domain. Otherwise it must be entered as a fully qualified address.
Pressing RETURN causes a call to Exim to be made using the -Mar option to request that an
additional recipient be added to the message, unless the entry box is empty, in which case no
action is taken.

• mark delivered: A dialog box is displayed into which a recipient address can be typed. If the
address is not qualified and the QUALIFY_DOMAIN parameter is set in Local/eximon.conf, the
address is qualified with that domain. Otherwise it must be entered as a fully qualified address.
Pressing RETURN causes a call to Exim to be made using the -Mmd option to mark the given
recipient address as already delivered, unless the entry box is empty, in which case no action is

 taken.

• mark all delivered: A call to Exim is made using the -Mmad option to mark all recipient
addresses as already delivered.

• edit sender: A dialog box is displayed initialized with the current sender ’s address. Pressing
RETURN causes a call to Exim to be made using the -Mes option to replace the sender address,
unless the entry box is empty, in which case no action is taken. If the address is not qualified and
the QUALIFY_DOMAIN parameter is set in Local/eximon.conf, the address is qualified with that
domain. Otherwise it must be a fully qualified address.

• edit body: A new xterm process is forked in which a call to Exim is made using the -Meb option
in order to allow the body of the message to be edited. Note that the first line of the body file is
the name of the file, and this should never be changed.

In cases when a call to Exim is made, the actual command used is reflected in a new text window by
default, but this can be turned off for all except the delivery action by setting ACTION_OUTPUT=no in
Local/eximon.conf. However, if the call results in any output from Exim (in particular, if the
command fails) a window containing the command and the output is displayed. Otherwise, the results
of the action are normally apparent from the log and queue displays. The latter is automatically

Exim 3.30 [260] monitor (54)

updated for actions such as freezing and thawing, unless ACTION_QUEUE_UPDATE=no has been set in
Local/eximon.conf. In this case the ‘Update’ button has to be used to force an update to the display
after freezing or thawing.

In any text window that is displayed as result of a menu action, the normal cut-and-paste facility is
available, and searching can be carried out using ^R and ^S, as described above for the log tail
window.

Exim 3.30 [261] monitor (54)

55. Security considerations

This chapter discusses a number of issues concerned with security, some of which are also covered in
other parts of this manual.

For reasons that this author does not understand, some people have promoted Exim as a ‘particularly
secure’ mailer. Perhaps it is because of the existence of this chapter in the documentation. However,
the intent of the chapter is simply to describe the way Exim works in relation to certain security
concerns, not to make any specific claims about the effectiveness of its security as compared with
other MTAs.

What follows is a description of the way Exim is supposed to be. Best efforts have been made to try to
ensure that the code agrees with the theory, but an absence of bugs can never be guaranteed. Any that
are reported will get fixed as soon as possible.

55.1 Root privilege
The Exim binary is normally setuid to root. In some special cases (for example, when the daemon is
not in use and there are no conventional local deliveries), it may be possible to run it setuid to some
user other than root. However, root privilege is usually required for two things:

• To set up a socket connected to the standard SMTP port (25) when initialising the listening
daemon. If Exim is run from inetd, this privileged action is not required.

• To be able to change uid and gid in order to read forward files and perform local deliveries as the
receiving user or as specified in the configuration.

It is not necessary to be root to do any of the other things Exim does, such as receiving messages and
delivering them externally over SMTP, and it is obviously more secure if Exim does not run as root
except when necessary.

If no user is specified for Exim in either the compile-time or run time configuration files, it runs as
root all the time, except when performing local deliveries. When an alternative user is specified (which
is recommended), it gives up root privilege when it can. Exactly how and when it does this depends
on whether the operating system supports the seteuid() or the setresuid() function.

To avoid unnecessary complication, the discussion below talks about users, and functions for setting
the uid. It should be understood that in all cases there is a corresponding group and gid, and that this
is also changed whenever the uid is changed. The description is written in terms of seteuid(), since this
is more common than setresuid(). However, it is possible to specify at compile time that an operating
system has setresuid() and not seteuid().

On systems without seteuid(), Exim uses setuid() to give up root privilege at certain times, at the
expense of having to re-invoke itself (using exec) in order to regain privilege when necessary. If
seteuid() is available, there is a configuration choice as to which method is used for temporarily giving
up the privilege. Using setuid() is more secure, and is the default, but uses more resources.

There are two instances in which Exim always uses setuid():

• Exim always uses setuid() to become a non-root user when running a local delivery process.
There are no exceptions. This applies whether or not an Exim user is defined.

• Exim always uses setuid() to change to the Exim user (if one is defined) before doing remote
deliveries. These are the last things a delivery process does, so it does not need to regain root
privilege again.

There are two instances in which Exim always uses seteuid() (provided it is available in the operating
system):

Exim 3.30 [262] security (55)

• When reading a user ’s .forward file, Exim uses seteuid() to become that user. This is necessary
when the file is not publicly readable and is on a remote NFS file system that is mounted without
root privilege. If this is the case on a system without seteuid(), the .forward file cannot be read.

• If any director or router has the require_files option set to check the existence of a file as a
specific user, seteuid() is used to become that user for the duration of the check.

For other operations, the security configuration option controls whether Exim uses setuid() or seteuid()
to change to its own uid. It can be set to one of three strings:

• seteuid: Exim uses seteuid() to give up root temporarily when it does not need it, and to regain
the privilege subsequently. This enables it to run with a non-root effective uid most of the time,
at very little cost, but offers less security.

• setuid: Exim uses setuid() to give up root when it is receiving a locally generated message, and
after it has set up a listening socket when running as a daemon. This means that, in order to
deliver a message that it has received, it has to re-invoke a fresh copy of itself to regain root
privilege. During delivery, it retains root except when actually transporting the message. In

 particular, it runs the directors and routers as root. Setuid() is generally reckoned to be more
secure than seteuid() but running this way uses more resources.

• setuid+seteuid: Exim uses setuid() as described immediately above, but in addition, it uses
seteuid() to give up root privilege temporarily when it needs to regain it subsequently without
losing a lot of state information, for example, while running the directors and routers.

On systems that do not support the seteuid() function, the only possible value for the security option is
‘setuid’, and this is the default on such systems if an Exim user is defined. Otherwise the default is
‘setuid+seteuid’ – the most secure setting.

55.2 Running Exim without privilege
Some installations require to run Exim in an unprivileged state almost all the time, for added security.
Support for this mode of operation is provided by the setting

security = unprivileged

When this is done, all deliveries take place under the Exim user/group (which must be defined), and
there are restrictions on the features that can be used in the configuration. There are two possibilities if
you want to run Exim in this way:

• Keep it setuid to root, as in standard configurations. In this configuration, except when starting
the daemon, Exim gives up the root privilege and becomes the Exim user/group as soon as it has
started, using setuid() and setgid(). This removes all privilege that might have been associated
with the calling user. In the case of the daemon, root privilege is retained until it has bound its
listening socket to the SMTP port, but then it gives it up in the same way. The daemon can
respond correctly to SIGHUP because the re-invocation regains root privilege.

• Make Exim setuid/setgid to the Exim user and group. This means it cannot start up the daemon
unless it is called by a root process, and consequently, the daemon cannot restart itself as a result
of SIGHUP because it is no longer a root process at that point. It is still useful to set

security = unprivileged

in this case, because this setting stops Exim from trying to re-invoke itself to do a delivery after a
message has been received. Such a re-invocation is a waste of time because it would have no

 effect.

When using the second style (setuid to the Exim user), unless called by root (in which case it behaves
as in the first style), Exim is running with the real uid and gid set to those of the calling process, and
the effective uid/gid set to Exim’s values. Ideally, any association with the calling process’ uid/gid
should be dropped, that is, the real uid/gid should be reset to the effective values so as to discard any
privileges that the caller may have. While some operating systems have a function that permits this
action for a non-root effective uid, quite a number of them do not. Because of this lack of

Exim 3.30 [263] security (55)

standardization, Exim does not address this problem at this time. For this reason, the first style is
perhaps the better approach to take.

Because Exim no longer needs to re-exec itself when starting a delivery process after receiving a
message, using

security = unprivileged

is more efficient than either of

security = setuid
security = setuid+seteuid

However, to achieve this extra efficiency you have to submit to the following restrictions:

You can deliver only as the Exim user/group. You should explicitly use the user and group options to
override directors or transports that normally deliver as the recipient. (This makes sure that configur-
ations that work in this mode function the same way in normal mode.) Any implicit or explicit
specification of another user causes an error.

Use of .forward files is severely restricted, such that it is usually not worthwhile to include a
forwardfile director in the configuration.

Users who wish to use .forward would have to make their home directory and the file itself accessable
to the Exim user. Pipe and append-to-file entries, and their equivalents in Exim filters, cannot be used.
While they could be enabled in the Exim user ’s name, that would be insecure and not very useful.

Unless the user mailboxes are all owned by the Exim user (possible in some POP3 or IMAP-only
environments):

• They must be owned by the Exim group and be writable by that group. This implies you must set
mode in the appendfile configuration, as well as the mode of the mailbox files themselves.

• You must set no_check_owner, since most or all of the files will not be owned by the Exim user.

• You must set file_must_exist, as Exim cannot set the owner correctly on a newly created
mailbox when unpriviledged. This also implies that new mailboxes need to be created manually.

There are no additional restrictions on message reception or external (SMTP) delivery.

55.3 Alternate configurations and macros
Exim can be run with an alternate configuration file by means of the -C option, and macros for use in
its configuration can be set on the command line using the -D option. If the -C option specifies a file
other than the one whose name is built into the binary, or if there is any use of the -D option, and the
caller is not root or the Exim user, Exim immediately gives up its privilege, and runs with the real and
effective uid and gid set to those of the caller.

55.4 Reading forward files
When forward files are read from users’ home directories and those home directories are NFS mounted
without root privilege, even a program running as root cannot read a forward file that does not have
world read access.

If the seteuid() function is being used as described in the previous section, so that Exim is not root
when running the directors, the forwardfile director automatically uses seteuid() to become the local
user when attempting to read a .forward file in a user ’s home directory. If seteuid() is not being used
generally, but is available in the operating system, the forwardfile director can be configured to make
use of it when reading files in home directories.

The forwardfile director does not necessarily have to read from users’ home directories as obtained
from getpwnam(). It can be given a directory explicitly, and a specific associated user and group. The
above remarks are applicable in this case also.

Exim 3.30 [264] security (55)

On systems that do not have seteuid(), the only way to support forward files on NFS file systems that
do not export root is to insist that the files be world readable.

Forward files are permitted to contain :include: items unless forbidden by setting forbid_include in the
director. If seteuid() is being used to read the forward file, any included files are read as the same user.
Otherwise Exim is running as root, and it insists that any included files are within the same directory
as the forward file, and that there are no symbolic links below the directory. If no directory is specified
(either explicitly or by looking up a local user ’s home directory) then included files are not permitted
when seteuid() is not in use.

When the filtering option is enabled for forward files, users can construct pipe commands that contain
data from the incoming message by quoting variables such as $sender_address. To prevent the
contents of inserted data from interfering with a command, the string expansion is done after the
command line is split up into separate arguments, and the command is run directly instead of passing
the command line to a shell.

55.5 Delivering to local files
Full details of the checks applied by appendfile before it writes to a file are given in chapter 15.

55.6 IPv4 source routing
Many operating systems suppress IP source-routed packets in the kernel, but some cannot be made to
do this. Exim is configured by default to log incoming IPv4 source-routed TCP calls, and then to drop
the call. These actions can be independently turned off. Alternatively, the IP options can be deleted
instead of dropping the call. Things are all different in IPv6. No special checking is currently done.

55.7 The VRFY, EXPN, and ETRN commands in SMTP
Support for these SMTP commands is disabled by default. The VRFY command can be enabled by
setting smtp_verify. The EXPN command can be enabled for specific hosts by setting smtp_expn_
hosts, and there is a similar option controlling ETRN.

55.8 Privileged users
Exim recognises two sets of users with special privileges. Trusted users are able to submit new
messages to Exim locally, but supply their own sender addresses and information about a sending host.
For other users submitting local messages, Exim sets up the sender address from the uid, and doesn’t
permit a remote host to be specified.

However, an untrusted user is permitted to use the -f command line option in the special form -f <> to
indicate that a delivery failure for the message should not cause an error report. This affects the
message’s envelope, but it does not affect the Sender: header.

Trusted users are used to run processes that receive mail messages from some other mail domain and
pass them on to Exim for delivery either locally, or over the Internet. Exim trusts a caller that is
running as root, as the Exim user (if defined), as any user listed in the trusted_users configuration
option, or under any group listed in the trusted_groups option.

Admin users are permitted to do things to the messages on Exim’s queue. They can freeze or thaw
messages, cause them to be returned to their senders, remove them entirely, or modify them in various
ways. In addition, admin users can run the Exim monitor and see all the information it is capable of
providing, which includes the contents of files on the spool.

By default, the use of the -M and -q options to cause Exim to attempt delivery of messages on its
queue is restricted to admin users. However, this restriction can be relaxed by setting the
no_prod_requires_admin option.

Exim recognises an admin user if the calling process is running as root or as the Exim user (if defined)
or if any of the groups associated with the calling process is the Exim group (if defined). It is not
necessary actually to be running under the Exim group. However, if admin users who are not root or

Exim 3.30 [265] security (55)

exim are to access the contents of files on the spool via the Exim monitor (which runs unprivileged),
Exim must be built to allow group read access to its spool files.

55.9 Spool files
If a uid and gid are defined for Exim, the spool directory and everything it contains will be owned by
exim and have its group set to exim. The mode for spool files is defined in the Local/Makefile
configuration file, and defaults to 0600. This should normally be changed to 0640 if a uid and gid are
defined for Exim, to allow access to spool files via the Exim monitor by other members of the exim
group.

55.10 Use of argv[0]
Exim examines the last component of argv[0], and if it matches one of a set of specific strings, Exim
assumes certain options. For example, calling Exim with the last component of argv[0] set to ‘rsmtp’
is exactly equivalent to calling it with the option -bS. There are no security implications in this.

55.11 Use of %f formatting
The only use made of ‘%f’ by Exim is in formatting load average values. These are actually stored in
integer variables as 1000 times the load average. Consequently, their range is limited and so therefore
is the length of the converted output.

55.12 Embedded Exim path
Exim uses its own path name, which is embedded in the code, only when it needs to re-exec in order
to regain root privilege. Therefore it is not root when it does so. If some bug allowed the path to get
overwritten, it would lead to an arbitrary program’s being run as exim, not as root. If there’s still
paranoia about this, two separate copies of the name could be kept, or a checksum could be applied to
the global data.

55.13 Use of sprintf()
A large number of occurrences of ‘sprintf ’ in the code are actually calls to string_sprintf(), a function
which returns the result in malloc’d store. The intermediate formatting is done into a large fixed buffer
by a function that runs through the format string itself, and checks the length of each conversion
before performing it, thus preventing buffer overruns.

The remaining uses of sprintf() happen in controlled circumstances where the output buffer is known
to be sufficiently long to contain the converted string.

55.14 Use of debug_printf() and log_write()
Arbitrary strings are passed to both these functions, but they do their formatting by calling the function
string_vformat(), which runs through the format string itself, and checks the length of each conversion.

55.15 Use of strcat() and strcpy()
These are used only in cases where the output buffer is known to be large enough to hold the result.

Exim 3.30 [266] security (55)

56. Format of spool files

A message on Exim’s spool consists of two files, whose names are the message id followed by -D and
-H, respectively. The data portion of the message is kept in the -D file on its own. The message’s
‘envelope’, status, and headers are all kept in the -H file, whose format is described in this chapter.
Each of these two files contains the final component of its own name as its first line. This is insurance
against disc crashes where the directory is lost but the files themselves are recoverable.

Files whose names end with -J may also be seen in the spool directory. These are journal files, used to
record addresses to which the message has been delivered during the course of a delivery run. At the
end of the run, the -H file is updated, and the -J file is deleted.

The second line of the header file contains the login id of the process that called Exim to create the
file, followed by the numerical uid and gid. For a locally generated message, this is normally the user
who sent the message. For an external message, the user is either root or exim.

The third line of the file contains the address of the message’s sender as transmitted in the ‘envelope’,
contained in angle brackets. In the case of incoming SMTP mail, this is the address given in the MAIL

command. For locally generated mail, the sender address is created by Exim from the login of the
current user and the configured qualify_domain, except when Exim is called by a trusted user that
supplied a sender address via the -f option, or a leading ‘From’ line. The sender address is null if the
message is a delivery failure report.

The fourth line contains two numbers. The first is the time that the message was received, in the form
supplied by the Unix time() function – a number of seconds since the start of the epoch. The second
number is a count of the number of messages warning of delayed delivery that have been sent to the
sender.

There follow a number of lines starting with a hyphen. These can appear in any order, and are omitted
when not relevant.

• -auth_id <text>: The id information for a message received on an authenticated SMTP connec-
tion – the value of the $authenticated_id variable.

• -auth_sender <address>: The address of an authenticated sender – the value of the
$authenticated_sender variable.

• -body_linecount <number>: This records the number of lines in the body of the message, and is
always present.

• -deliver_firsttime: This is written when a new message is first added to the spool. When the
spool file is updated after a deferral, it is omitted.

• -frozen <time>: The message is frozen, and the freezing happened at <time>. No deliveries will
be attempted while the message remains frozen, but the auto_thaw configuration option can
specify a time delay after which a delivery will be attempted.

• -helo_name <text>: This records the host name as specified by a remote host in a HELO or EHLO

command.

• -host_auth <text>: If the message was received on an authenticated SMTP connection, this
records the name of the authenticator – the value of the $sender_host_authenticated variable.

• -host_lookup_failed: This is present if an attempt to look up the sending host’s name from its IP
address failed. It corresponds to the $host_lookup_failed variable.

• -host_name <text>: This records the name of the remote host from which the message was
received, if the host name was looked up from the IP address. It is not present if no reverse
lookup was done.

Exim 3.30 [267] spool file format (56)

• -host_address <address>.<port>: This records the IP address of the remote host from which the
message was received and the remote port number that was used. It is omitted for locally
generated messages.

• -ident <text>: For locally submitted messages, this records the login of the originating user,
unless it was a trusted user and the -oMt option was used to specify an ident value. For messages
received over TCP/IP, this records the ident string supplied by the remote host.

• -interface_address <address>: This records the IP address of the local interface through which a
message was received from a remote host. It is omitted for locally generated messages.

• -local: The message is from a local sender.

• -localerror: The message is a locally-generated delivery error report.

• -manual_thaw: The message was frozen but has been thawed manually, that is, by an explicit
Exim command rather than via the auto-thaw process.

• -N: A testing delivery process was started using the -N option to suppress any actual deliveries,
but delivery was deferred. At the next delivery attempt, -N is assumed.

• -received_protocol: This records the value of the $received_protocol variable, which contains
the name of the protocol by which the message was received.

• -resent: The message contains Resent- headers, so the alternative set of header names is to be
used (see RFC 822).

• -sender_set_untrusted: The envelope sender of this message was set by an untrusted local caller
(used to ensure that the caller is displayed in queue listings).

• -tls_cipher <cipher name>: When the message was received over an encrypted channel, this
records the name of the cipher that was used.

• -tls_peerdn <peer DN>: When the message was received over an encrypted channel, and a
certificate was requested from the client, this records the Distinguished Name from that

 certificate.

• -user_null_sender: The message was received from an unprivileged user with the -f option
specifying ‘<>’ as the sender.

Following the options are those addresses to which the message is not to be delivered. This set of
addresses is initialized from the command line when the -t option is used and extract_addresses_
remove_arguments is set; otherwise it starts out empty. Whenever a successful delivery is made, the
address is added to this set. The addresses are kept internally as a balanced binary tree, and it is a
representation of that tree which is written to the spool file. If an address is expanded via an alias or
forward file, the original address is added to the tree when deliveries to all its child addresses are
completed.

If the tree is empty, there is a single line in the spool file containing just the text ‘XX’. Otherwise,
each line consists of two letters, which are either Y or N, followed by an address. The address is the
value for the node of the tree, and the letters indicate whether the node has a left branch and/or a right
branch attached to it, respectively. If branches exist, they immediately follow. Here is an example of a
three-node tree:

YY darcy@austen.fict.book
NN alice@wonderland.fict.book
NN editor@thesaurus.ref.book

After the non-recipients tree, there is a list of the message’s recipients. This is a simple list, preceded
by a count. It includes all the original recipients of the message, including those to whom the message
has already been delivered. In the simplest case, the list contains one address per line. For example:

Exim 3.30 [268] spool file format (56)

 4
 editor@thesaurus.ref.book
 darcy@austen.fict.book
 rdo@foundation
 alice@wonderland.fict.book

However, when a child address has been added to the top-level addresses as a result of the use of the
one_time option on an aliasfile or forwardfile director, each line is of the following form:

<top-level address> <flags number>,<parent number>,0

The flags at present contain only one bit, which is set for one_time addresses. It indicates that <parent
number> is the offset in the recipients list of the original parent of the address. The third number of
the trio is for future expansion and is currently always zero. A blank line separates the envelope and
status information from the headers which follow. A header may occupy several lines of the file, and
to save effort when reading it in, each header is preceded by a number and an identifying character.
The number is the number of characters in the header, including any embedded newlines and the
terminating newline. The character is one of the following:

<blank> header in which Exim has no special interest
B Bcc: header
C Cc: header
F From: header
I Message-id: header
P Received: header – P for ‘postmark’
R Reply-To: header
S Sender: header
T To: header
* replaced or deleted header

Deleted or replaced (rewritten) headers remain in the spool file for debugging purposes. They are not
transmitted when the message is delivered. When Resent- headers are present, it is those headers
that have the appropriate flags. Here is a typical set of headers:

111P Received: by hobbit.fict.book with local (Exim 3.30 #4)
id 14y9EI-00026G-00; Fri, 11 May 2001 10:28:59 +0100

049 Message-Id: <E14y9EI-00026G-00@hobbit.fict.book>
038* X-rewrote-sender: bb@hobbit.fict.book
042* From: Bilbo Baggins <bb@hobbit.fict.book>
049F From: Bilbo Baggins <B.Baggins@hobbit.fict.book>
099* To: alice@wonderland.fict.book, rdo@foundation,
darcy@austen.fict.book, editor@thesaurus.ref.book
109T To: alice@wonderland.fict.book, rdo@foundation.fict.book,
darcy@austen.fict.book, editor@thesaurus.ref.book
038 Date: Fri, 11 May 2001 10:28:59 +0100

The asterisked headers indicate that the envelope sender, From: header, and To: header have been
rewritten, the last one because routing expanded the unqualified domain foundation.

Exim 3.30 [269] spool file format (56)

57. Adding new drivers or lookup types

The following actions have to be taken in order to add a new director, router, transport, authenticator,
or lookup type to Exim:

(1) Choose a name for the driver or lookup type that does not conflict with any existing name; I will
use ‘newdriver’ in what follows.

(2) Add to src/EDITME the line

<type>_NEWDRIVER=yes

where <type> is DIRECTOR, ROUTER, TRANSPORT, AUTH, or LOOKUP. If the code is not to be included
in the binary by default, comment this line out. You should also add any relevant comments
about the driver or lookup type.

(3) Add to src/config.h.defaults the line

#define <type>_NEWDRIVER

(4) Edit src/drtables.c, adding conditional code to pull in the private header and create a table entry
as is done for all the other drivers and lookup types.

(5) Edit Makefile in the appropriate sub-directory (src/directors, src/routers, src/transports,
 src/auths, or src/lookups); add a line for the new driver or lookup type and add it to the

definition of OBJ.

(6) Create newdriver.h and newdriver.c in the appropriate sub-directory of src.

(7) Edit scripts/MakeLinks and add commands to link the .h and .c files as for other drivers and
 lookups.

Then all you need to do is write the code! A good way to start is to make a proforma by copying an
existing module of the same type, globally changing all occurrences of the name, and cutting out most
of the code. Note that any options you create must be listed in alphabetical order, because the tables
are searched using a binary chop procedure.

There is a README file in each of the sub-directories of src describing the interface that is expected.

Exim 3.30 [270] adding drivers (57)

 Index

*@ 38
/dev/null 154, 159
/etc/passwd 153

8-bit characters 22, 74, 90

8BITMIME 74

abandoning mail 29, 155
accept_8bitmime 74
accept_timeout 74
adding drivers 270
additional groups 125, 127, 132, 143
address:

constructed 238
duplicated 155
qualification 236
rewriting 188, 239
sender 27
source-routed 76, 89
testing 25, 148
verification 26, 216

address list case forcing 54
address list format 52
admin user 21, 28, 29, 74, 257, 265
admin_groups 74
alias errors 156
alias file: 150, 153

backslash in 154
building 21, 23
defaults 153
multi-domain 156
one-time expansion 151
ownership 151
per-domain default 38
repeated expansion 156

alias files:
broken 152

alias for host 51
aliasfile director 106, 107, 150, 153
allow_commands 130
allow_fifo 112
allow_localhost 137
allow_mx_to_ip 74
allow_symlink 112
allow_system_actions 161
+allow_unknown 51
alternate configuration file 26, 44
always_bcc 74
angle brackets, excess 101
appendfile transport 107, 112
appending to a file 120
architecture type 16

arguments, logging 85
asterisk after IP address 230
Athena 7
auth_always_advertise 74
auth_hosts 75
auth_over_tls_hosts 75
authenticate_hosts 137
authentication: 31, 137, 194

advertising 74
client 197
generic options 195
id 65
relaying 196
sender 31, 65, 196
server 195
testing 196

auto_thaw 9, 75
automatic mail processing 240
autoreply transport 88, 124

background delivery 30
backlog of connections 99
backslash in alias file 154
backslash in forward file 158
bad senders (fixing) 218
bang paths: 3

rewriting 193
banner for SMTP 99
batch delivery 127, 131
batch option 112, 127, 131
batch_max 113, 127, 131, 137
batched SMTP input 25, 216, 235
batched SMTP output 174, 234
Bcc: header 34, 74, 237
bcc option 124
bcopy 3
Berkeley DB 13
bi_command 75
BIN_DIRECTORY 18
bind IP address 84, 139
bitnet 174
black hole 155
body of message:

editing 28
expansion variable 67
line count 65
size 67
transporting 108
visible size 87

body_only 108
bounce see delivery failure
broken alias or forward files 152
bsmtp option 113, 131

 [271]

bsmtp_helo 113, 131
build directory 15
building DBM files 251
building Exim 13

C header files 17
caching lookup data 39
callback for verification 97, 218
carriage return 27, 119, 134, 229, 232
case forcing in address lists 54
case forcing in strings 60
case of local parts 54, 239
+caseful 54
Cc: header 34, 74
cc compiler 16
cc option 124
cdb 7, 16, 36
certificate: 203

verifying 202
character code 90
check_ancestor 150
check_group 113, 161
check_local_user 161
check_log_inodes 75
check_log_space 75
check_owner 113
check_secondary_mx 180
check_spool_inodes 75
check_spool_space 75
check_string 113, 131
checking disc space 75, 99
cipher:

logging 201, 203
verifying 202

client_name 200
client_secret 200
client_send 199
closed mailing lists 145
collapse_source_routes 76
command line options 21
command option 127, 131, 182
command_group 182
command_timeout 137
command_user 182
common option syntax 45
compiler name 16
condition option 142
configuration:

changes 248
default 207
main 74
pre-building 14
retry 184
run time 26, 44

configuration file:
alternate 44

common option syntax 45
editing 17
errors 44
format 44
macros 45
ownership 44

configuration options 24
CONFIGURE_FILE 18, 26, 44
connect_timeout 137
connection backlog 99
constructed address 238
control of incoming mail 220
control of relaying 222
copy of message (unseen option) 145
Courier 36
CR 27, 119, 134, 229, 232
cram_md5 authenticator 200
create_directory 114
create_file 114
creating directories 112
current directory 106, 160
current_directory 114, 132, 148, 160, 182
customizing:

Received: header 92
SMTP banner 99
SMTP error messages 224

cycling logs 251
Cyrus 133, 135

daemon 22, 84, 232, 248
daemon, process id 22, 24, 32, 33, 248
daemon_smtp_port 76
daemon_smtp_service 76
data option 161
data_timeout 137
database:

lookup 36
maintenance 252

Date: header 237
DBM 36
DBM building 251
DBM libraries 13
debug_level 76
debug_print 108, 142
debugging 27
debugging output 27
default 6
default configuration 207
defaults for aliases 153
defaults for lookups 38
deferred delivery, forcing 155
delay_after_cutoff 137, 187
delay_warning 76
delay_warning_condition 66, 76
deliver_load_max 76
deliver_queue_load_max 77

 [272]

deliveries, maximum number of 95
delivery:

by external agent 135
cancelling all 29
cancelling by address 29
deferral 11
failure 12, 150, 151, 163, 166, 246
failure, long-term 187
failure report 9, 12, 27, 78, 95, 267
failure report, discarding 82
fake 246
first 64
forcing 28
forcing deferral 155
forcing failure 155, 260
from given sender 34
problems with 19
procmail 135
sorting remote 95
to given domain 34

delivery to single file 121
delivery_date_add 108
delivery_date_remove 77, 237
Delivery-date: header 77, 108, 237
dialup see intermittently connected hosts
directing loop 11, 154
director: 9

skipping 146, 149
directories, multiple 100
directory creation 112, 113, 120, 122
directory option 114
directory_mode 114
directory_transport 150, 166
directory2_transport 150, 166
disc space, checking 75, 99
discarded messages 245
DNS 37
DNS reverse lookup 70, 81, 207, 267
dns_again_means_nonexist 77
dns_check_names 77
dns_check_names_pattern 77
dns_ipv4_lookup 77
dns_qualify_single 138
dns_retrans 77
dns_retry 78
dns_search_parents 138
dnsdb 43
domain:

definition 5
delivery to 34
extraction 60
in alias file 156
in alias or forward file, preserving 152
in smartuser, preserving 167
list format 48
virtual 213

domain literal 79, 83, 84, 177
domainless addresses 3
domainlist router 170
domains option 142
dot handling 31, 101
dots in local parts 239
driver option 108, 142, 195
driver specifications 104
drivers 9
duplicate addresses 155

EACCES 163
editing configuration files 17
editing message body 28
EDQUOT 17
EHLO 81, 138, 229, 244
EHLO verification 216
encrypted comparison 63
encrypted SMTP connections 101
encryption 14, 201
ENOSPC 17
ENOTDIR 163
envelope_to_add 108
envelope_to_remove 78, 237
Envelope-to: header 78, 108, 112, 127, 131,

157, 237
environment for local transports 106
environment for pipe transport 130, 132
environment option 132
errmsg_file 78
errmsg_text 78
ERRNO_QUOTA 17
error messages: 27

customizing 78, 205, 224
discarding 82

error reporting 30, 31
errors:

in configuration file 44
in outgoing SMTP 230
skipping bad syntax 152, 160

errors_address 78
errors_copy 78
errors_reply_to 79
errors_to 142, 211
escape_string 114, 132
ETRN 66, 99, 100, 233
ETRN:

command 99
serializing 100

exceptions:
alias defaults 155
RBL checking 92
rejected recipients 94, 221, 222

exec failure 132
exicyclog 251
exigrep 250

 [273]

exim monitor 257
exim_dbmbuild 251
exim_dumpdb 252
exim_fixdb 253
exim_group 79
EXIM_GROUP 44
exim_lock 255
exim_monitor/EDITME 14, 257
exim_path 79
exim_tidydb 253
exim_user 79
EXIM_USER 44
eximon 257
eximstats 254
eximstats options 254
exinext 252
exiqsumm 250
exiwhat 250
expand option 156
expansion of strings: 56

alias data 156
character translation 59
conditions 58, 62
file lookup 58
headers 56
numeric comparison 62
operators 57, 60
query lookup 58
string comparison 63
substitution 59
testing 56
variables 56, 65

EXPN 100, 233
expn option 148
external local delivery 135
external transports 3
extract_addresses_remove_arguments 79
EXTRALIBS 17

fail_verify 143
fail_verify_recipient 143
fail_verify_sender 143
failing delivery, forcing 155
failover see fallback
failure of exec 132
fallback 138, 143
fallback_hosts 138, 143
fallover see fallback
fifo (named pipe) 112
file:

appending 120
checking existing format 115
locking 116, 120, 121
lookup 36, 58, 171
MBX format 116
too many open 87

transport 87
file option 114, 124, 156, 162
file_directory 162
file_expand 125
file_format 115
file_must_exist 115
file_optional 125
file_transport 150, 166
filter:

system filter 87, 226
testing 22
transport filter 66, 68, 110, 129, 141, 229
user filter 160, 162

filter option 162
filtering all mail 226, 240
final_timeout 138
finduser_retries 79
first delivery 64
fixed point format 46
fixing bad senders 218
forbid_domain_literals 79
forbid_file 150, 166
forbid_filter_existstest 163
forbid_filter_logwrite 163
forbid_filter_lookup 163
forbid_filter_perl 163
forbid_filter_reply 163
forbid_include 150
forbid_pipe 151, 166
forbid_special 156
forcing delivery 28
foreground delivery 30
format:

address list 52
alias file 153
configuration file 44
domain list 48
fixed point 46
forward file 158
group name 47
host list 50
integer 46
list 47
message 23
octal integer 46
spool files 267
string 46
time interval 46
user name 47

forward file: 264
backslash in 158
ownership 151
testing 22

forward files:
broken 152
repeated expansion 160

 [274]

forwardfile:
one-time expansion 151

forwardfile director 106, 107, 150, 158
freeze_exec_fail 132
freeze_missing_include 151
freeze_tell_mailmaster 80
freezing messages 29, 227
‘From’ 23, 83, 103, 113, 236
From: header 21, 84, 237
from option 125
from_hack 115, 132
frozen messages: 24, 29, 226, 249

display 259
forcing delivery 28, 34
moving 88
spool data 267
thawing 9, 29, 33, 260
timing out 101

gateway 174
gcc 16
gecos_name 80
gecos_pattern 80
generic options: 104

director 142, 148
router 142, 168
transport 108

gethostbyname option 138, 180
gid:

caller 65
 Exim’s own 79, 266

forward file 158
in spool file 267
local delivery 106, 115, 125, 143, 235
of originating user 68

 queryprogram 182
system filter 87, 226

giving up on messages 29
group name format 47
group option 115, 125, 127, 132, 143
groups, additional 125, 127, 132, 143

hash function:
numeric 60
textual 60

header files 17
header syntax checking 80
header verification 80, 219
headers:

adding 108, 143, 238
listing 29
removing 109, 143, 238
transporting 109

headers option 125
headers_add 108, 143
headers_check_syntax 80

headers_checks_fail 80
headers_only 109
headers_remove 109, 143
headers_rewrite 109
headers_sender_verify 80
headers_sender_verify_errmsg 81
HELO 81, 138, 229, 244
HELO verification 216
helo_accept_junk_hosts 81
helo_data 139
helo_strict_syntax 81
helo_verify 81
hide_child_in_errmsg 151, 166
hold_domains 81
HOME 130
home directory 106, 158, 160, 163, 165
home_directory 132, 148, 160
HOST 130
host:

alias 51
error 230
heavily loaded 19
list format 50
locally unique number 84
lookup failures 51
maximum number to try 139
name 48, 82
name verification 216
randomized list 139, 170
serialising connections 140

host_accept_relay 81, 222
host_auth_accept_relay 82
host_find_failed 170
host_lookup 82
host_reject 82, 221
host_reject_recipients 82, 221
hosts option 139, 178
hosts_avoid_tls 139
hosts_max_try 139
hosts_override 139
hosts_randomize 139, 170
hosts_require_tls 139
hosts_treat_as_local 82, 168
HP-UX 80
hub 175

id of message 8
ident see RFC 1413
ignore_eacces 163
ignore_enotdir 163
ignore_errmsg_errors 82
ignore_errmsg_errors_after 82
ignore_fromline_hosts 83
ignore_fromline_local 83
ignore_status 132
ignore_target_hosts 168

 [275]

ignoring faulty addresses 152, 160
include_domain 156
included address list 154, 159, 265
incoming SMTP over TCP/IP 232
incorporated code 7
inetd 25, 27, 98, 232
initgroups option 125, 127, 132, 144
initgroups option 106
installing exim 18
integer format 46
interface address 31
interface option 139
interfaces, network 84
intermittently connected hosts 215
IP address: 84

binding 84, 139
discarding 168
masking 51, 61
translating 169

IP options 83
IP source routing 83, 265
ipliteral router 177
iplookup router 178
IPv6 15, 180
IPv6 addresses in lists 47
IPv6 DNS lookup 77

journal file 9

keep_malformed 83
keepalive option 140
$key 38, 49, 66, 142, 144
kill_ip_options 83

LDAP 16, 37, 40
ldap_default_servers 83
length of login name 87
LF 27, 119, 134, 229, 232
limitations 3
linear search 36
linefeed 27, 119, 134, 229, 232
link, symbolic 13, 15, 19, 21, 112, 120, 159, 265
list:

address list 52
construction 47
domain list 48
host list 50
negation 48

 separator, changing 47
listing:

message body 29
message headers 29
message log 29
the queue 24

lmtp:
batch delivery 127

LMTP over TCP/IP 140
lmtp transport 127
load, heavy 19
load average 76, 91, 100
local address delivery 33
local delivery 30, 135
local delivery, definition 5
local domain, definition 5
local host:

domains treated as 82
MX pointing to 168, 180

local message reception 23
local nameserver 19
local part:

case of 85, 239
definition 5
dots in 239
prefix 210
starting with ! 53, 54

 suffix 210
local SMTP input 25
local transports:

environment 106
uid and gid 106, 143, 146

local_domains 83, 222
local_domains_include_host 83
local_domains_include_host_literals 84
local_from_check 84
local_from_prefix 84
local_from_suffix 84
local_interfaces 84
local_parts 144
Local/eximon.conf 14, 17, 257
Local/Makefile 14, 16
localhost_number 8, 84
locally_caseless 85
localuser director 106, 107, 165
lock files 19, 114
lock_fcntl_timeout 115
lock_interval 116
lock_retries 116
lockfile_mode 116
lockfile_timeout 116
locking files 114, 115, 116, 120, 121
locking mailboxes 255
locking messages 9
log:

all expanded addresses 85
 arguments 85

cycling 248, 251
destination 242
distinguished name 202, 203
level 246
level for queue run 86
message 9, 247
process 248

 [276]

SMTP connections 86
SMTP syntax errors 87
tail 258
TLS cipher 201, 203
to file 242
to syslog 242
types 242
unknown SMTP commands 87

log extraction 250
log option 125
log_all_parents 85
log_arguments 85
log_defer_output 132
log_fail_output 133
log_file_path 85
log_incoming_port 85
log_ip_options 86
log_level 86
log_output 133
log_queue_run_level 86
log_received_recipients 86, 244
log_received_sender 86, 244
log_refused_recipients 86
log_rewrites 86
log_sender_on_delivery 86
log_smtp_confirmation 86
log_smtp_connections 86
log_smtp_syntax_errors 87
log_subject 87, 244
lookup: 36

* 38
*@ 38
caching 39
cdb 36
dbm 36
dbm, terminating zero 36
dbmnz 36
default values 38
DNS 37
dnsdb 43
inclusion in binary 16
LDAP 37, 40
lsearch 36
MySQL 37, 42
NIS 36
NIS+ 37, 40
partial matching 38
PostgreSQL 37
quoting 39
single key 36
temporary error 38
wildcard 38

lookup, in expanded string 58
lookup_open_max 87
lookuphost router 180
loop:

caused by fail 227
directing 11, 154
forward file 158
in lookups 54
local host 84, 137
prevention 93
while file testing 121

lower casing 60, 85, 153, 190, 251

macro setting 26
macros in configuration file 45
mail delivery 8
mail filter 160
mail hub 175
mail loop prevention 93
mail relaying 81
mailbox:

maintenance 255
MMDF format 113
multiple 148, 210
size warning 118
symbolic link 112, 120

maildir format 121
maildir_format 116
maildir_retries 116
maildir_tag 116
mailing lists: 211

closed 145, 212
one-time expansion 151
re-expansion 212

mailmaster 6
mailq 21
mailstore format 121
mailstore_format 116
mailstore_prefix 116
mailstore_suffix 116
main configuration 74
main log 242
maintaining Exim’s database 252
make 15
mask:

IP address 51, 61
match_directory 163, 165
max_output 133
max_rcpt 140
max_username_length 87
maximum incoming SMTP 98
maximum number of hosts 139
maximum recipients 94
maximum retry interval 185
mbx_format 116
MD5 hash 60, 63
memmove 3
memory allocation 27
message:

adding recipients 28

 [277]

age of 67
 body, visible size 87

body in expansion 67
body line count 65
body size 67
changing sender 29
discarded 245
editing body of 28
error 230
format 23
id 8, 84
listing body of 29
log 9, 247
log listing 29
processing 236
queueing 90, 91, 98
size 68
transporting body only 108
transporting headers only 109

message size 24, 141
message size limit 88, 95
message_body_visible 87
message_filter 87
message_filter_directory_transport 87
message_filter_directory2_transport 87
message_filter_file_transport 87
message_filter_group 87
message_filter_pipe_transport 88
message_filter_reply_transport 88
message_filter_user 88
message_id_header_text 88, 237
message_size_limit 88, 109
message_size_limit_count_recipients 88
Message-id: header 237
MMDF format mailbox 113
mode option 117, 125
mode_fail_narrower 117
modemask option 151, 171
monitor 7, 257
monitor window size 258
more option 144, 169, 170
move_frozen_messages 88
msglog directory 247
multi_domain 140
multiple mailboxes 148, 210
multiple SMTP deliveries 28, 30, 32, 33, 137, 215
multiple spool directories 100
MX pointing to IP address 74
MX pointing to local host 168, 180
mx_domains 140, 180
MySQL 37, 42
mysql_servers 89

name of sender 27
named pipe (fifo) 112
negation:

in address lists 52
in domain lists 48
in host lists 50

network interfaces 84
never_users 89
new drivers, adding 270
new_address 166
new_director 148
newaliases 21
NFS: 145, 151, 162

lock file 114, 119, 120
root access 164

NIS 16, 36
NIS+ 16, 37, 40
nobody_group 89
nobody_user 89
non-immediate delivery 30
notify_comsat 117
number of deliveries 95
numeric comparison 62

once option 125
once_file_size 126
once_repeat 126
one_time 151
one-time aliasing/forwarding expansion 151
open files, too many 87
OpenSSL 201
operating system type 16
optional option 157, 178
options:

aliasfile 150, 156
appendfile 112
command line 21
command line, terminating 22
configuration 24
director 24
domainlist 170
forwardfile 150, 161
generic 104
generic director 142, 148
generic router 142, 168
generic transport 108
iplookup 178
lookuphost 180
pipe 130
queryprogram 182
router 24
smartuser 166
smtp 137
transport 24

os.h 17
outgoing SMTP over TCP/IP 229
overriding build-time options 15
owners option 151, 171
ownership:

 [278]

alias file 151
configuration file 44
forward file 151

owngroups option 151, 171

packet radio 169
PAM 64
panic log 242
panic_expansion_fail 167
partial matching 38
pass_on_timeout 168
password file, doing without 153
path option 133
PCRE 7
‘percent hack’ 89, 220, 223, 224
percent_hack_domains 89
periodic queue running 33
Perl:

calling from Exim 72
embedded 16, 32, 72
use in expanded string 59

perl_at_start 72, 89
perl_startup 72, 89
pgsql_servers 89
pid, of daemon 22, 24, 32, 33, 248
pid_file_path 89
pipe:

batch delivery 131
control of commands 129, 130
duplicated 155
environment 130, 132
failure of exec 132
logging output 132
named (fifo) 112
path 129
returned data 129
temporary failure 134

pipe transport 88, 106, 107, 129
pipe_as_creator 133
pipe_transport 152, 167
plaintext authenticator 198
policy controls 220
port:

iplookup router 178
logging 85
receiving TCP/IP 32
sending TCP/IP 140

port option 140, 178
PostgreSQL 37, 42
postmaster 6, 78, 221, 222
pre-building configuration 14
prefix option 117, 133, 148
prefix_optional 149
preserve_message_logs 90, 247
preserving domain in aliasing or forwarding 152
preserving domain in smartuser 167

primary host name 48
primary_hostname 48, 90
print_topbitchars 90
printing characters 90
private options 104
privilege, running without 263
privileged user 265
process:

log 248
querying 250

procmail 135, 165
prod_requires_admin 90
prohibition messages 224
prohibition_message 90, 224
protocol 31
protocol option 140, 178
public_name 195

qualify_domain 90, 236
qualify_preserve_domain 152, 167
qualify_recipient 90, 236
qualify_single 171, 180
queries option 157
query option 157, 178
queryprogram router 182
queue:

definition 6
display 259
double scanning 33
forcing 33
listing 24
local address delivery 33
log level for run 86
routing 33
running 32, 33, 34
running, detecting 64
summary 250

queue_list_requires_admin 90
queue_only 90
queue_only_file 91
queue_only_load 91
queue_remote_domains 91
queue_run_in_order 91
queue_run_max 91
queue_smtp_domains 91
queue-runner 6, 11, 21, 22, 32, 33
queue-runners, maximum number of 91
queueing incoming messages 90, 91, 98
quota:

imposed by Exim 117
warning threshold 118

quota option 117
quota_filecount 118
quota_is_inclusive 118
quota_size_regex 118
quota_warn_message 118

 [279]

quota_warn_threshold 118
quoting:

in lookups 39
in pipe command 129
in string expansions 61
lookup-specific 61
regular expressions 62

randomized host list 139, 170
RBL 92, 220, 225
rbl_domains 92, 220
rbl_hosts 92, 220
rbl_log_headers 92
rbl_log_rcpt_count 92
rbl_reject_recipients 92, 221
rbl_warn_header 92, 221
realtime blocking list see RBL
Received: header 237
received_header_text 92
received_headers_max 93
receiver verification 219
receiver_try_verify 93
receiver_unqualified_hosts 93
receiver_verify 93
receiver_verify_addresses 93
receiver_verify_hosts 93
receiver_verify_senders 93
recipient error 230
recipients: 34

adding 28
maximum 94
removing 29

recipients_max 94
recipients_max_reject 94
recipients_reject_except 94, 221
recipients_reject_except_senders 94
refuse_ip_options 94
regular expressions:

in domain list 49
library 7, 55
quoting 62

reject log 242, 248
rejection by sender 222
rejection messages 224
relay_domains 94, 222
relay_domains_include_local_mx 94
relay_match_host_or_sender 94, 223
relaying:

control by sender 223
control of 81, 222
sender or host 223
testing configuration 23

remote delivery, definition 5
remote domain, definition 5
remote_max_parallel 94
remote_sort 95

removing messages 29
removing recipients 29
repeated alias expansion 156
repeated forwarding expansion 160
reply_to 126
reply_transport 163
require_files 144
require_lockfile 119
reroute option 178
response_pattern 179
restrict_to_path 133
retry:

algorithms 185
configuration 184
configuration testing 25
interval, maximum 185
rules 184
time not reached 184, 246
times 252

retry_data_expire 95, 186
retry_include_ip_address 140
retry_interval_max 95, 185
retry_use_local_part 119, 127, 133
return_fail_output 134
return_message 126
return_output 134
return_path 109
return_path_add 109
return_path_remove 95, 238
return_size_limit 95
Return-path: header 95, 109, 238
reverse DNS lookup 70, 81, 207, 267
rewrite option 152, 167
rewrite_headers 180
rewriting:

addresses 188, 239
at transport time 109
bang paths 193
flags 191
headers 180
patterns 189
replacements 191
rules 189
testing 25, 86, 189
whole addresses 192

RFC 1413 7, 52, 96, 221
rfc1413_hosts 96
rfc1413_query_timeout 96
rmail 21
root privilege 262
route_file 171
route_list 171
route_queries 171
route_query 171
router: 9

skipping 146

 [280]

routing timeout 168
routing whole queue 33
rsmtp 21
run time configuration 26, 44
runq 21

search_parents 138, 171, 181
search_type 157, 171
security 159, 262
security option 96
self option 144, 146, 168
sender:

address 27, 236
authenticated 65
changing 29
gid 68
host address 31
host name 31
ident string 32
name 27
rejection 222
source of 25
uid 68
verification 97, 216

Sender: header 21, 84, 238
sender_address_relay 96, 223
sender_address_relay_hosts 96
sender_reject 96, 222
sender_reject_recipients 97, 222
sender_try_verify 97
sender_unqualified_hosts 97
sender_verify 97
sender_verify_batch 97
sender_verify_callback_domains 97
sender_verify_callback_timeout 97
sender_verify_fixup 97
sender_verify_hosts 98
sender_verify_hosts_callback 98
sender_verify_max_retry_rate 98
sender_verify_reject 98
senders option 145
serialising connections 140
serialize_hosts 140
server_condition 198
server_mail_auth_condition 195
server_prompts 198
server_secret 200
server_set_id 195
service option 141, 179
seteuid 159, 262
seteuid option 164
setresuid 262
setuid 18, 262
shadow transport 110
shadow_condition 110
shadow_transport 110

SIGHUP 22, 248
SIGUSR1 248, 250
SIZE 229
size limit 88
size limit of bounce 95
size of mailbox 118
size of message 24, 68, 88, 95, 141, 244
size of monitor window 258
size_addition 141
skip_syntax_errors 152
skipping directors 146, 149
skipping faulty addresses 152, 160
skipping routers 146
smart host 176
smartuser director 106, 166
SMTP:

authentication: configuration 194
batched incoming 25, 216, 235
batched outgoing 174, 234
batching over TCP/IP 229
DEBUG 233
delaying delivery 30
EHLO 216
encrypted connection 101
encryption 201
errors in outgoing 230
ETRN 100, 233
EXPN 233
HELO 216
host checking 221
incoming call count 98, 99
incoming over TCP/IP 232
local incoming 234
local input 25
logging connections 86
logging syntax errors 87
multiple deliveries 28, 30, 32, 33, 137, 215
outgoing over TCP/IP 229
passed channel 32, 33, 137, 215
passed connection 229
passing channel 28, 30
rewriting malformed addresses 192
SIZE 110, 141

 STARTTLS command 101
syntax errors, logging 87
testing incoming 23
timeout 100, 137
unknown commands, logging 87
VRFY 233
welcome banner 99

smtp transport 137
smtp_accept_keepalive 98
smtp_accept_max 98, 248
smtp_accept_max_per_host 98
smtp_accept_queue 98
smtp_accept_queue_per_connection 98

 [281]

smtp_accept_reserve 99
smtp_banner 99
smtp_check_spool_space 99
smtp_connect_backlog 99
smtp_etrn_command 66, 99, 234
smtp_etrn_hosts 100
smtp_etrn_serialize 100
smtp_expn_hosts 100
smtp_load_reserve 100
smtp_receive_timeout 100
smtp_reserve_hosts 100
smtp_verify 100
sorting remote deliveries 95
source routing:

in email address 76, 89
in IP packets 83, 265

split spool directories 100
split_spool_directory 100
spool:

checking space 75, 99
directory 18
file locked 246
files 8, 266, 267
format of 267
multiple directories 100
splitting directory 100

spool_directory 101
sprintf 3, 266
src/EDITME 14
SSL see TLS
statistics 254
statvfs function 258
STDERR_FILE 17, 27
‘sticky’ bit 19, 114
strerror 3
string:

case forcing 60
comparison 63
expansions 56
format 46
hashing 60

strip_excess_angle_brackets 101
strip_trailing_dot 101
stripchart 257
subject option 126
substr 62
substring extraction 62
suffix option 119, 134, 149
suffix_optional 149
SunOS4 83
SUPPORT_TLS 14
switching on 19
symbolic link 13, 15, 19, 21, 112, 120, 159, 265
syntax checking headers 80
syntax of common options 45
syntax_errors_text 152

syntax_errors_to 152
syslog 242
syslog_timestamp 101
system filter 226, 240
system filter, testing 22
system log 242

tail of log 258
TCP/IP incoming port 32
TCP/IP outgoing port 140
tcpwrappers 15
tdb 14
temp_errors 134
testing: 18

addresses 25, 148
filter file 22
forward file 22
incoming SMTP 23
regular expressions 55
relay control 23
retry configuration 25
rewriting 25, 86, 189
string expansion 56
variables in drivers 108, 142

text option 126
thawing messages 29, 33, 75, 260
time interval format 46
time zone 101
timeout:

blocking 115
frozen messages 101
local message 74
non-blocking 115
non-SMTP input 32
of router 168
retry data 186
SMTP 100, 137

timeout option 128, 134, 179, 182
timeout_frozen_after 101
timestamps 101
timestamps_utc 101
timezone option 101
TLS: 14, 101, 141, 201

avoiding for certain hosts 139
requiring for certain servers 139

tls_advertise_hosts 101
tls_certificate 102, 141
tls_dhparam 102
tls_host_accept_relay 102
tls_hosts 102
tls_log_cipher 102
tls_log_peerdn 102
tls_privatekey 102, 141
tls_verify_certificates 102, 141
tls_verify_ciphers 102, 141
tls_verify_hosts 102

 [282]

tmail 133
To: header 34, 74, 238
to option 126
too many open files 87
top bit see 8-bit characters
trailing dot 101
trailing period 101
translate_ip_address 169
transport: 9

appendfile 112
autoreply 124
body only 108
external 3
filter 66, 68, 110, 129, 141, 229
header rewriting 109
headers only 109
lmtp 127
local 106, 143, 146
pipe 129
shadow 110
smtp 137

transport option 145
transport_filter 110
trusted user 21, 27, 31, 32, 103, 265
trusted_groups 102
trusted_users 102

uid:
caller 65

 Exim’s own 79, 266
forward file 158
in spool file 267
local delivery 106, 120, 126, 127, 128, 132, 133,

135, 146, 235
of originating user 68

 queryprogram 182
system filter 88, 226
unknown caller 102

umask option 134
unfreezing messages 29, 75, 260
unknown host name 51
unknown_login 103
unknown_username 103
unprivileged running 263
unqualified addresses 93, 97, 236
unseen option 145
untrusted_set_sender 103
upper casing 61
use_crlf 119, 134
USE_DB 14, 251
use_fcntl_lock 119
use_lockfile 119
use_mbx_lock 119
use_shell 134
USE_TCP_WRAPPERS 15
user name, maximum length 87

user name format 47
user option 120, 126, 128, 135, 146
users:

admin 21
trusted 21

UTC 101
utilities 250
UUCP 27, 174, 175, 236
UUCP, ‘From’ line 23, 83, 103, 236
uucp_from_pattern 103, 236
uucp_from_sender 103, 236

vacation processing 241
$value 58, 70, 172
Variable Envelope Return Paths 231
verify option 146
verify_only 146
verify_recipient 146
verify_sender 146
verifying:

addresses 26
headers 80, 219
host name 216
incoming mail 216
receivers 93, 219
sender callback 97, 218
senders 97, 98, 216

VERP 231
version number 26
virtual domains 213
VRFY 100, 233

+warn_unknown 51
warning messages, customizing 206
warning of delay 76
warning of delay, customizing 103
warnmsg_file 103
welcome banner for SMTP 99
widen_domains 181
wildcard lookups 38, 171
window size 258

X-Failed-Recipients: header 12
X-windows 7, 257
X11 libraries 17

 [283]

