
HEVEA User Documentation

Version 1.05

Luc Maranget∗

May 5, 2000

Abstract

HEVEA is a LATEX to HTML translator. The input language is a fairly complete subset of LATEX 2ε (old
LATEX style is also accepted) and the output language is HTML that is (hopefully) correct with respect to
version 4.0 transitional.

Exotic symbols are translated into symbols pertaining to the symbol font of the HTML browser, using
the now standard FACE attribute of the FONT tag. This allows the translation to HTML of quite a lot of
the symbols used in LATEX.

HEVEA understands LATEX macro de�nitions. Simple user style �les are understood with little or no
modi�cations. Furthermore, HEVEA customization is done by writing LATEX code.

HEVEA is written in Objective Caml, as many lexers. It is quite fast and exible. Using HEVEA it
is possible to translate large documents such as manuals, books, etc. very quickly. All documents are
translated as one single HTML �le. Then, the output �le can be cut into smaller �les, using the companion
program HACHA.

HEVEA can also be instructed to output plain text or info �les.
Information on HEVEA is available at http://pauillac.inria.fr/~maranget/hevea/.

∗Inria Rocquencourt – BP 105, 78153 Le Chesnay Cedex. Luc.Maranget@inria.fr

1

Contents

A Tutorial 6

1 How to get started 6

2 Style files 6
2.1 Standard base styles . 6
2.2 Other base styles . 6
2.3 Other style files . 7

3 A note on style 7
3.1 Spacing, Paragraphs . 7
3.2 Math mode . 8
3.3 Warnings . 11
3.4 Commands . 11
3.5 Style choices . 11

4 How to detect and correct errors 12
4.1 HEVEA does not know a macro . 12
4.2 HEVEA incorrectly interprets a macro . 13
4.3 HEVEA crashes . 14

5 Making HEVEA and LATEX both happy 15
5.1 File loading . 16
5.2 The hevea package . 16
5.3 Comments . 18

6 With a little help from LATEX 18
6.1 The image file . 19
6.2 A toy example . 19
6.3 Including Postscript images . 20
6.4 Using filters . 21

7 Cutting your document into pieces with HACHA 22
7.1 Simple usage . 22
7.2 Advanced usage . 23
7.3 Controlling output file names . 25
7.4 Cutting a document anywhere . 25

8 Generating HTML constructs 26
8.1 High-Level Commands . 26
8.2 More on included images . 27
8.3 The rawhtml environment . 28
8.4 Internal macros . 28
8.5 Examples . 29

9 Customizing HEVEA 30
9.1 Simple changes . 30
9.2 Changing defaults for type-styles . 30
9.3 Changing the interface of a command . 31
9.4 Checking the optional argument within a command . 31
9.5 Changing the Format of Images . 31

2

10 Other output formats 31
10.1 Text . 31
10.2 Info . 32

B Reference manual 32

B.1 Commands and Environments 32
B.1.1 Command Names and Arguments . 32
B.1.2 Environments . 33
B.1.3 Fragile Commands . 33
B.1.4 Declarations . 33
B.1.5 Invisible Commands . 33
B.1.6 The \\ Command . 34

B.2 The Structure of the Document 34

B.3 Sentences and Paragraphs 34
B.3.1 Spacing . 34
B.3.2 Paragraphs . 34
B.3.3 Footnotes . 35
B.3.4 Accents and special symbols . 35

B.4 Sectioning 35
B.4.1 Sectioning commands . 35
B.4.2 The Appendix . 35
B.4.3 Table of Contents . 35

B.5 Classes, Packages and Page Styles 36
B.5.1 Document Class . 36
B.5.2 Packages and Page Styles . 36
B.5.3 The Title Page and Abstract . 36

B.6 Displayed Paragraphs 36
B.6.1 Quotation and Verse . 37
B.6.2 List-Making environments . 37
B.6.3 The list and trivlist environments . 37
B.6.4 Verbatim . 37

B.7 Mathematical Formulas 38
B.7.1 Math Mode Environment . 38
B.7.2 Common Structures . 38
B.7.3 Mathematical symbols . 38
B.7.4 Putting one thing above the other . 38
B.7.5 Spacing . 39
B.7.6 Changing Style . 39

B.8 Definitions, Numbering 39
B.8.1 Defining Commands . 39
B.8.2 Defining Environments . 40
B.8.3 Theorem-like Environments . 40
B.8.4 Numbering . 40
B.8.5 The ifthen Package . 40

B.9 Figures and Other Floating Bodies 41

3

B.10 Lining It Up in Columns 41
B.10.1 The tabbing Environment . 41
B.10.2 The array and tabular environments . 41

B.11 Moving Information Around 42
B.11.1 Files . 42
B.11.2 Cross-References . 42
B.11.3 Bibliography and Citations . 43
B.11.4 Splitting the Input . 43
B.11.5 Index and Glossary . 43
B.11.6 Terminal Input and Output . 43

B.12 Line and Page Breaking 44
B.12.1 Line Breaking . 44
B.12.2 Page Breaking . 44

B.13 Lengths, Spaces and Boxes 44
B.13.1 Length . 44
B.13.2 Space . 44
B.13.3 Boxes . 44

B.14 Pictures and Colors 45
B.14.1 The picture environment and the graphics Package . 45
B.14.2 The color Package . 46

B.15 Font Selection 47
B.15.1 Changing the Type Style . 47
B.15.2 Changing the Type Size . 47
B.15.3 Special Symbols . 47

B.16 Extra Features 48
B.16.1 Accents in maths . 48
B.16.2 TEX macros . 48
B.16.3 Command Definition inside Command Definition . 49
B.16.4 Date and time . 50
B.16.5 Fancy sectioning commands . 50
B.16.6 HEVEA as a Back-End for VideoC . 51

B.17 Implemented Packages 51
B.17.1 AMS compatibility . 51
B.17.2 The array and tabularx Packages . 52
B.17.3 The calc Package . 53
B.17.4 The comment Package . 53
B.17.5 Multiple Indexes with the index and multind package . 53
B.17.6 The url package . 54
B.17.7 Verbatim Text : the moreverb and verbatim Packages . 54

C Practical information 54

C.1 Usage 55
C.1.1 HEVEA usage . 55
C.1.2 HACHA usage . 57
C.1.3 imagen usage . 57
C.1.4 Using make . 58

4

C.2 Browser configuration 58

C.3 Availability 59
C.3.1 Internet stuff . 59
C.3.2 Law . 59

C.4 Installation 59
C.4.1 Requirements . 59
C.4.2 Principles . 60

C.5 Other LATEX to HTML translators 60

C.6 Acknowledgements 60

5

Part A

Tutorial

1 How to get started

Assume that you have a file, “a.tex”, written in LATEX, using the article, book or report style. Then,
translation is achieved by issuing the command:

hevea a.tex

Probably, you will get some warnings. If HEVEA does not crash, just ignore them for the moment (Section 4
explains how to correct errors).

If everything goes fine, this will produce a new file, “a.html”, which you can visualize through a HTML

browser. If a.tex contains math symbols you need to instruct your browser to use symbol fonts (see
section C.2).

If you wish to experiment HEVEA on small LATEX source fragments, then launch HEVEA without arguments.
HEVEA will read its standard input and print the translation on its standard output. For instance:

hevea
$x \in {\cal E}$
^D
<I>x</I> Î <I>E</I>

You can find some more elaborate examples1 in the on-line documentation.

2 Style files

LATEX style files are files that are not intended to produce output, but define document layout parameters,
commands, environments, etc.

2.1 Standard base styles

The base style of a LATEX document is the argument to the \documentclass command (\documentstyle
in old style). Normally, the base style of a document defines the structure and appearance of the whole
document.
HEVEA really knows about two LATEX base styles, article and book. Additionally, the report base style is
recognized and considered equivalent to book and the seminar base style for making slides is recognized and
implemented by small additions on the article style.

Base style style is implemented by an HEVEA specific style file style.hva. More precisely, HEVEA interprets
\documentclass{style} by attempting to load the file style.hva (see section C.1.1.1 on where HEVEA searches
for files). Thus, at the moment, HEVEA distribution includes the files, article.hva, book.hva, etc.

2.2 Other base styles

Documents whose base style is not recognized by HEVEA can be processed when the unknown base style is a
derivation of a recognized base style.

Let us assume that mydoc.tex uses an exotic base style such as acmconf. Then, typing hevea mydoc.tex
will yield an error, since HEVEA cannot find the acmconf.hva file:

hevea.opt mydoc.tex
mydoc.tex:1: Warning: Cannot find file: acmconf.hva
mydoc.tex:1: Error while reading LaTeX: No base style
Adios

1http://pauillac.inria.fr/~maranget/hevea//examples/examples

6

This situation is avoided by invoking HEVEA with the known base style file article.hva as an extra
argument:

hevea article.hva mydoc.tex

The extra argument instructs HEVEA to load its article.hva style file before processing mydoc.tex. It will
then ignore the document base style specified by \documentclass (or \documentstyle).

Observe that the fix above works because the acmconf and article base styles look the same to the
document (i.e., they define the same macros). More generally, most base styles that are neither article nor
book are in fact variations on either two of them. However, such styles usually provides extra macros. If
users documents use these macros, then users should also instruct HEVEA about them (see section 4.1).

Finally, it is important to notice that renaming a base style file style.cls into style.hva will not work in
general. As a matter of fact, base style files are TEX and not LATEX source and HEVEA will almost surely fail
on TEX-ish input.

2.3 Other style files

A LATEX document usually loads additional style files (using \input or \usepackage, or by giving optional
arguments to \documentstyle). HEVEA treats \usepackage and optional arguments to \documentstyle in
its own way, but it attempts to load a file given as argument to \input. As a consequence, HEVEA may choke
on personnal style files, which are read by using \input.

A simple situation is when HEVEA is not happy with just a few macros in a style file. As it is often
the case, assume that the document mydoc.tex has a \input{macros.tex} instruction in its preamble,
where macros.tex gathers custom definitions. Hopefully, only a few macros give rise to trouble: macros
that performs fine typesetting or TEXish macros. Such macros need to be rewritten, using basic LATEX
constructs (section 4 gives examples of macro-rewriting). The new definitions are best collected in a style
file, macros.hva for instance. Then, mydoc.tex is to be translated by issuing the command:

hevea macros.hva mydoc.tex

The file macros.hva is processed before mydoc.tex (and thus before macros.tex). As a consequence of
HEVEA behavior with respect to definition and redefinition (see section B.8.1), the macro definitions in
mymacros.tex override the ones in macros.tex.

Another situation is when HEVEA fails to process a whole style file. Usually, this means that HEVEA crashes
on that style file. Then, you should also instruct HEVEA not to load the faulty file, by issuing the command:

hevea macros.hva -e macros.tex mydoc.tex

Of course, macros.hva must now contain replacements for all the useful macros of macro.tex.

3 A note on style

3.1 Spacing, Paragraphs

Spacing in the HTML document reflects the original source spacing. More precisely, any sequence of spaces
is outputed as one space, whereas a single newline is replicated in the output. However one blank line (i.e.,
two newlines in a row) or more introduce a paragraph break. Paragraphs are rendered by a blank line and
there is no paragraph indentation. HEVEA is a bit simplistic in breaking paragraphs and extra paragraph
breaks may be present in the final HTML documents. This can usually be corrected by modifying the source,
without altering LATEX output. For instance, some blank line before or after a comment or macro definition
can be deleted.

Space after macros with no argument is skipped (as in LATEX) — however this is not true in math mode,
as explained in section 3.2.1 below. Consider the following example:

7

\newcommand{\open}{(}
\newcommand{\close}{)}
\open text opened by ‘‘\verb+\open+’’
and closed by ‘‘\verb+\close+’’\close.

We get:

(text opened by “\open” and closed by “\close”).

In the output above, the space after \open does not find its way to the output.
More generally, HEVEA tries to emulate LATEX behavior in all situations, but discrepancies probably exist.

Thus, users are invited to make explicit what they want. This is good practice anyway, because LATEX
is mysterious here. Consider the following example, where the \tryspace macro is first applied and then
expansed by hand:

\newcommand{\bfsymbol}{\textbf{symbol}}
\newcommand{\tryspace}[1]{#1 XXX}

Some space: \tryspace{\bfsymbol}\\
No space: \bfsymbol XXX

Spacing is a bit chaotic here, the space after symbol remains when #1 is substituted for it by LATEX (or
HEVEA).

Some space : symbol XXX
No space : symbolXXX

Note that, if a space before “XXX” is wanted, then one should probably write:

\newcommand{\tryspace}[1]{#1{} XXX}

3.2 Math mode

HEVEA math mode is not very far from normal text mode, except that all letters are shown in italics and
that space after macros is echoed.

However, typesetting math formulas in HTML rises two difficulties. First, formulas contain symbols, such
as Greek letters; second, even simple formulas do not follow the simple basic typesetting model of HTML.

3.2.1 Spacing in math mode

By contrast with LATEX, spaces from the input are significant in math mode, this feature allows users to
instruct HEVEA on how to put space in their formulas. For instance, \alpha\rightarrow\beta is typeset
without spaces between symbols, whereas \alpha \rightarrow \beta produces these spaces. Note that
LATEX ignores spaces in math mode, so that users can freely adjust HEVEA output without changing anything
to LATEX output.

3.2.2 Symbols

Outputting symbols is performed using an HTML extension: the now standard FACE attribute to the FONT
element instruct the browser to switch to a symbol font. HEVEA assumes this choice for the symbol font to
be as shown by figure 1.

A browser correctly displays HEVEA symbols when figure 1 resembles the HTML page located at symbol.html2

in HEVEA on-line documentation directory. Some browsers do not know about symbol fonts by default and
need to be configured (see section C.2).

2http://pauillac.inria.fr/~maranget/hevea//doc/symbol.html

8

Figure 1: Symbol font in X

9

For authors that do not want to generate symbols that cannot be shown by any browser, HEVEA offers a
degraded mode that outputs text in place of symbols. HEVEA operates in this mode when given the -nosymb
flag. Replacement text is in English, unless HEVEA is also given the -francais flag. In that case replacement
text is in French. For instance. the “∈” symbol is replace by “in” (or by “appartient à” if French mode is
selected). This is far from being satisfactory, but degraded mode may be appropriate for documents than
contain few symbols.

3.2.3 Displays

Apart from containing symbols, formulas specify strong typesetting constraints: sub-elements must be com-
bined together following patterns that departs from normal text typesetting. For instance, fractions numera-
tors and denominators must be placed one above the other. HEVEA handles such constraints in display mode
only.

The main two operating modes of HEVEA are text mode and display mode. Text mode is the mode for
typesetting normal text, when in this mode, text items are echoed one following the other and paragraph
breaks are just blank lines, both in input and output. The so called displayed-paragraph environments of
LATEX (such as center or quote) are rendered by HTML block-level elements (such as DIV or BLOCKQUOTE).
Rendering is correct becauses both LATEX displayed environments and HTML block-level elements start a
new line. Conversly, since opening a HTML block-level elements means starting a new line, any text that
sould appear inside a paragraph must be translated using only HTML text-level elements. HEVEA chooses to
translate in-text formulas that way.

HEVEA display mode allows more control on text placement, since entering display mode means opening
a HTML TABLE element and that tables allow to control the relative position of their sub-elements. Displays
come in two flavor, horizontal displays and vertical displays. An horizontal display is a one-row table, while a
vertical display is a one-column table. These tables holds display sub-elements, displays sub-elements being
centered vertically in horizontal display mode and horizontally in vertical display mode.

Display mode is first opened by opening a displaymath environment (e.g. by $$ or \[). Then, sub-
displays are opened by LATEX constructs which require them. For instance, a displayed fraction (\frac)
opens a vertical display.

The distinction between text and display modes clearly appears while typesetting math formulas. An in-

text formula such as $\int_1^2 xdx = \frac{3}{2}$ appears as: , while the same formula
has a better aspect in display mode:

As a consequence, HEVEA is more powerful in display mode and formulas should be displayed as soon as they
get a bit complicated. This rule is also true in LATEX but it is more strict in HEVEA, since HTML capabilities
to typeset formulas inside text are quite poor. In particular, it is not possible to get in-text “real” fractions
or in-text limit-like subscripts.

Users should remember that HEVEA is not TEX or LATEX and that HEVEA author neither is D. E. Knuth
nor L. Lamport. Thus, some formulas may be rendered poorly. For instance, two fractions with different
denominator and numerator height look strange.

10

The reason is that vertical displays in an horizontal display are HTML tables that always get centered in the
vertical direction. Such a crude model cannot faithfully emulate any TEX box placement.

Users can get an idea on how HEVEA combines elements in display mode by giving the -v option comand
line option twice, which instructs HEVEA to add a border to the TABLE elements introduced by displays.

3.2.4 Arrays and display mode

By contrast with formulas, which HEVEA attempts to render with text-level elements only when they appear
inside paragraphs, LATEX arrays always translate to the block-level element TABLE, thereby introducing non-
desired line breaks before and after in-text arrays. As a consequence, in-text arrays yield an acceptable
output, only while alone in a paragraph.

However, since in some sense, all HTML tables are displayed, the array and tabular environments
implicitly open display mode, thus allowing a satisfactory typesetting of formulas in arrays. More precisely,
array elements whose column format specification is l, c or r are typeset in display mode (see section B.10.2).

3.3 Warnings

When HEVEA thinks it cannot translate a symbol or construct properly, it issues a warning. This draws user
attention onto a potential problem. However, rendering may be correct.

Note that all warnings can be suppressed with the -s (silent) option. When a warning reveals a real
problem, it can often be cured by writing a specific macro. The next two sections introduce HEVEA macros,
then section 4 describes how to proceed with greater detail.

3.4 Commands

Just like LATEX, HEVEA can be seen as a macro language, macros are rewritten until no more expansion is
possible. Then, either some characters (such as letters, integers. . .) are outputed or some internal operation
(such as changing font attributes, or arranging text items in a certain manner) are performed.

This scheme favors easy extension of program capabilities by users. However, predicting program behavior
and correcting errors may prove difficult, since final output or errors may occur after several levels of macro
expansion. As a consequence, users can tailor HEVEA to their needs, but it remains a subtle task. Nevertheless,
happy LATEX users should enjoy customizing HEVEA, since this is done by writing LATEX code.

3.5 Style choices

LATEX and HTML differ in many aspects. For instance, LATEX allows fine control over text placement, whereas
HTML does not. More symbols and font attributes are available in LATEX than in HTML. Conversely, HTML

has font attributes, such as color, which standard LATEX has not.
Therefore, there are many situations where HEVEA just cannot render the visual effect of LATEX construc-

tions. Here some choices have to be made. For instance, the calligraphic letters (\mathcal) are rendered in
red (), and the small caps (\scshape) are rendered in bold font ().

If you are not satisfied with HEVEA rendering of text style declarations, then you can choose your own,
by redefining the \cal and \sc macros, using \renewcommand, the macro redefinition operator of LATEX.
The key point is that you need not worry about HEVEA internals: just redefine the old-LATEX style text-style
declarations (i.e. \it, \sc, etc.) and everything should get fine:

\renewcommand{\sc}{\Huge}
\renewcommand{\cal}{\em}

(See sections 4 and 5 on how to make such changes while leaving your file processable by LATEX, and section 9.2
for a more thourough descriton of customizing type styles).

Note that many of LATEX commands and environments are defined in the hevea.hva file that HEVEA loads
before processing any input. These constructs are written using LATEX source code, in the end they invoke
HEVEA internal commands.

11

Other LATEX constructs, such as LATEX key constructs or HEVEA internal commands (see section 8.4), that
require special processing are defined in HEVEA source code. However, the vast majority of these definitions
can be overridden by a redefinition. This may prove useless, since there is little point in redefining core
constructs such as \newcommand for instance.

4 How to detect and correct errors

Most of the problems that occur during the translation of a given LATEX file (say trouble.tex) can be
detected and solved at the macro-level. That is, most problems induce a macro-related warning and can be
solved by writing a few macros. The best place for these macros is an user style file (say trouble.hva) given
as argument to HEVEA.

hevea trouble.hva trouble.tex

By doing so, the macros written specially for HEVEA are not seen by LATEX. Even better, trouble.tex is
not changed at all.

Of course, this will be easier if the LATEX source is written in a generic style, using macros. Note that
this style is recommended anyway, since it eases the changing and tuning of documents.

4.1 HEVEA does not know a macro

Consider the following LATEX source excerpt:

You can \raisebox{.6ex}{\em raise} text.

LATEX typesets this as follows:

You can raise text.

Since HEVEA does not know about \raisebox, it incorrectly processes this input. More precisely, it first
prints a warning message:

trouble.tex:34: Unknown macro: \raisebox

Then, it goes on by translating the arguments of \raisebox as if they were normal text. As a consequence
some .6ex is finally found in the HTML output:

You can .6exraise text.

To correct this, you should provide a macro that has more or less the effect of \raisebox. It is impossible
to write a generic \raisebox macro for HEVEA, because of HTML limitations. However, in this case, the effect
of \raisebox is to raise the box a little. Thus, the first, numerical, argument to \raisebox can be ignored
in a private \raisebox macro defined in trouble.hva:

\newcommand{\raisebox}[2]{$^{\mbox{#2}}$}

Now, translating the document yields:

You can raise text a little.

Of course, this will work only when all \raisebox commands in the document raise text a little. Consider,
the following example, where text is both raised a lowered a little:

You can \raisebox{.6ex}{\em raise}
or \raisebox{-.6ex}{\em lower} text.

12

Which LATEX renders as follows:

You can raise or lower text.

Whereas, with the above definition of \raisebox, HEVEA produces:

You can raise or lower text.

A solution is to add a new macro definition in the trouble.hva file:

\newcommand{\lowerbox}[2]{$_{\mbox{#2}}$}

Then, trouble.tex itself has to be modified a little.

You can \raisebox{.6ex}{\em raise}
or \lowerbox{-.6ex}{\em lower} text.

HEVEA now produces a satisfying output:

You can raise or lower text.

Note that, for the document to remain LATEX-processable, it should also contain the following definition
for \lowerbox:

\newcommand{\lowerbox}[2]{\raisebox{#1}{#2}}

This definition can safely be placed anywhere in trouble.tex, since by HEVEA semantics for \newcommand
(see section B.8.1) the new definition will not overwrite the old one.

4.2 HEVEA incorrectly interprets a macro

Sometimes HEVEA knows about a macro, but the produced HTML does not look good when seen through a
browser. This kind of errors is detected while visually checking the output. However, HEVEA does its best to
issue warnings when such situations are likely to occur.

Consider, for instance, this definition of \blob as a small black square.

\newcommand{\blob}{\rule[.2ex]{1ex}{1ex}}
\blob\ Blob \blob

Which LATEX typesets as follows:

Blob

HEVEA always translates \rule as <HR>, ignoring size arguments. Hence, it produces the following, wrong,
output:

There is not small square in the symbol font used by HEVEA. However there are other small symbols that
would perfectly do the job of \blob, such as a bullet (\bullet). Thus, you may choose to give \blob a
definition in trouble.hva:

13

\newcommand{\blob}{\bullet}

This new definition yields the following, more satisfying output:

Now, if you insist on having a square “blob”, you can. It suffices to have LATEX typeset some subparts of
the document and then to include them as images, section 6 explain how to proceed.

4.3 HEVEA crashes

HEVEA failure may have many causes, including a bug. However, it may also stem from a wrong LATEX input.
Thus, this section is to be read before reporting a bug. . .

4.3.1 Simple cases: LATEX also crashes

In the following source, environments are not properly balanced:

\begin{flushright}
\begin{quote}
This is right-flushed quoted text.
\end{flushright}
\end{quote}

Such a source will make both LATEX and HEVEA choke. HEVEA issues the following error message that shows
the LATEX environment that is not closed properly:

trouble.tex:7: hml: DIV closes BLOCKQUOTE
trouble.tex:5: Latex environment ‘‘quote’’ is pending
Adios

Thus, when HEVEA crashes, it is a good idea to check that the input is correct by running LATEX on it.

4.3.2 Complicated cases

Unfortunately, HEVEA may crash on input that does not affect LATEX. Such errors usually relate to environ-
ment or group nesting.

Consider for instance the following “optimized” version of a quoteright environment:

\newenvironment{quoteright}{\quote\flushright}{\endquote}

\begin{quoteright}
This a right-flushed quotation
\end{quoteright}

The \quote and \flushright constructs are intended to replace \begin{quote} and \begin{flushright},
while \endquote stands for \end{quote}. Note that the closing \endflushright is omitted, since it does
nothing. LATEX accepts such an input and produces a right-flushed quotation.

However, HEVEA usually translates LATEX environments to HTML block-level elements and it requires
those elements to be nested properly. Here, \quote translates to <BLOCKQUOTE>, \flushright translates to
<DIV ALIGN=right> and \endquote translates to </BLOCKQUOTE>. At that point, HEVEA refuses to generate
obviously non-correct HTML and it crashes:

trouble.tex:9: hml: BLOCKQUOTE closes DIV
trouble.tex:7: Latex environment ‘‘quoteright’’ is pending
Adios

14

In this case, the solution is easy: environments must be opened and closed consistently. LATEX style being
recommended, one should write:

\newenvironment{quoteright}
{\begin{quote}\begin{flushright}}
{\end{flushright}\end{quote}}

And we get:

Unclosed LATEX groups ({. . .) are another source of nuisance to HEVEA. Consider the following horreur.tex
file:

\documentclass{article}

\begin{document}
In this sentence, a group is opened now {\em and never closed.
\end{document}

LATEX accepts this file, although it produces a warning:

latex horreur.tex
This is TeX, Version 3.14159 (Web2C 7.2)

...
(\end occurred inside a group at level 1)
Output written on horreur.dvi (1 page, 280 bytes).

By contrast, running HEVEA on horreur.tex yields a fatal error:

hevea horreur.tex
horreur.tex:5: Latex env error: ‘‘document’’ closes ‘‘’’
horreur.tex:4: Latex environment ‘‘’’ is pending
Adios

Thus, users should close opening braces where it belongs. Note that HEVEA error message “Latex environment
‘‘env’’ is pending” helps a lot in locating the brace that hurts.

4.3.3 Desperate cases

If HEVEA crashes on LATEX source (not on TEX source), then you may have discovered a bug, or this manual
is not as complete as it should. In any case, please report to Luc.Maranget@inria.fr.

To be useful, your bug report should include LATEX code that triggers the bug (the shorter, the better)
and mention HEVEA version number.

5 Making HEVEA and LATEX both happy

A satisfactory translation from LATEX to HTML often requires giving instructions to HEVEA. Typically, these
instructions are macro definitions and these instructions should not be seen by LATEX. Conversely, some
source that LATEX needs should not be processed by HEVEA. Basically, there are three ways to make input
vary according to the processor, file loading, the hevea package and comments.

15

5.1 File loading

HEVEA and LATEX treat files differently. Here is a summary of the main differences:

• LATEX and HEVEA both load files given as arguments to \input, however when given the option -e file-
name, HEVEA does not load filename.

• HEVEA loads all files given as command line arguments.

• Both LATEX and HEVEA load style files given as optional arguments to \documentstyle and as arguments
to \usepackage, but the files are searched by following different methods and considering different file
extensions.

As a consequence, for having a file latexonly loaded by LATEX only, it suffices o use \input{latexonly} in
the source and to invoke HEVEA as follows:

hevea -e latexonly. . .

Having heveaonly loaded by HEVEA only is more simple: it suffices to invoke HEVEA as follows:

hevea heveaonly. . .

Using an HEVEA-specific style file given as a command line argument is the method of choice for supplying
command definitions to HEVEA only. Users can then be sure that these definitions are not seen by LATEX and
will not get echoed to the image file (see section 6).

Finally, if one has an HEVEA equivalent style.hva for a LATEX style file style.sty, then one should load
the file as follows:

\usepackage{style}

This will result in, LATEX loading style.sty, while HEVEA loads style.hva. As HEVEA will not fail in case
style.hva does not exist, this is another method for having a style file loaded by LATEX only.

5.2 The hevea package

The hevea.sty style file is intended to be loaded by LATEX and not by HEVEA. It provides LATEX with means
to ignore or process some parts of the document. Note that HEVEA copes with the constructs defined in the
hevea.sty file by default. It is important to notice that the hevea.sty style file from the distribution is a
package in LATEX 2ε terms and that it is not compatible with old LATEX. Moreover, the hevea package loads
the comment package which must be present.

5.2.1 Environments for selecting a translator

HEVEA and LATEX perform the following actions on source inside the latexonly, verblatex, htmlonly,
rawhtml, toimage and verbimage environments:

environment HEVEA LATEX
latexonly ignore, \end{env} constructs are processed (see sec-

tion 5.2.2)
process

verblatex ignore process
htmlonly process ignore
rawhtml echo verbatim (see section 8.3) ignore
toimage send to the image file, \end{env} constructs and

macro characters are processed (see section 6)
process

verbimage send to the image file (see section 6) process

As an example, this is how some text can be typeset in purple by HEVEA and left alone by LATEX:

16

We get:
\begin{htmlonly}%
\purple purple rain, purple rain%
\end{htmlonly}
\begin{latexonly}%
purple rain, purple rain%
\end{latexonly}%
\ldots

We get: purple rain, purple rain. . .
It is impossible to avoid the spurious space in HEVEA output for the source above. This extra spaces

comes from the newline character that follows \end{htmlonly}. Namely this construct must appear in a
line of its own for LATEX to recognize it. Anyway, better control over spaces can be achieved by using the
hevea boolean register or comments, see sections 5.2.3 and 5.3. Also note that environments define a scope
and that style changes (and non-global definitions) are local to them. For instance, in the example above,
“. . . ” appears in black in HTML output.

5.2.2 Why are there two environments for ignoring input?

Some scanning and analysis of source is performed by HEVEA inside the latexonly environment, in order to
allow latexonly to dynamically occur inside other environments.

More specifically, \end{env} macros are recognized and their env argument is tested against the name
of the environment whose opening macro \env opened the latexonly environment. In that case, macro
expansion of \endenv is performed and any further occurrence of \end{env’} is tested and may get expanded
if it matches a pending \begin{env’} construct.

This enables playing tricks such as:

\newenvironment{latexhuge}
{\begin{latexonly}\huge}
{\end{latexonly}}

\begin{latexhuge}
This will appear in huge font in \LaTeX{} output only.
\end{latexhuge}

LATEX output will be:

This will appear in huge font in LATEX
output only.

While there is no HEVEA output.
Since HEVEA somehow analyses input that is enclosed in the latexonly environment, it may choke.

However, this environment is intended to select processing by LATEX only and might contain arbitrary source
code. Fortunately, it remains possible to have input processed by LATEX only, regardless of what it is,
by enclosing it in the verblatex environment. Inside this environment, HEVEA performs no other action
than looking for \end{verblatex}. As a consequence, the \begin{verblatex} and \end{verblatex}
constructs may only appear in the main flow of text or inside the same macro body, a bit like LATEX
verbatim environment.

Relations between toimage and verbimage are similar. Additionally, formal parameters #i are replaced
by actual arguments inside the toimage environment (see end of section 6.3 for an example of this feature).

17

5.2.3 The hevea boolean register

Boolean registers are provided by the ifthen package (see [LATEX, Section C.8.5] and section B.8.5 in this
document). Both the hevea.sty style file and HEVEA define the boolean register hevea. However, this
register initial value is false for LATEX and true for HEVEA.

Thus, provided, both the hevea.sty style file and the ifthen packages are loaded, the “purple rain”
example can be rephrased as follows:

We get:
{\ifthenelse{\boolean{hevea}}{\purple}{}purple rain, purple rain}\ldots

We get: purple rain, purple rain. . .

Another choice is using the TEX-style conditional macro \ifhevea (see Section B.16.2.4):

We get:
{\ifhevea\purple\fi purple rain, purple rain}\ldots

We get: purple rain, purple rain. . .

5.3 Comments

HEVEA processes all lines that start with %HEVEA, while LATEX treats these lines as comments. Thus, this is
a last variation on the “purple rain” example:

We get
%HEVEA{\purple
purple rain, purple rain%
%HEVEA}%
\ldots

(Note how comments are placed at the end of some lines to avoid spurious spaces in the final output.)
We get: purple rain, purple rain. . .
Comments thus provide an alternative to loading the hevea package. For user convenience, comment

equivalents to the latexonly and toimage environment are also provided:

environment comment equivalent

\begin{latexonly}. . . \end{latexonly}
%BEGIN LATEX
. . .
%END LATEX

\begin{toimage}. . . \end{toimage}
%BEGIN IMAGE
. . .
%END IMAGE

Note that LATEX, by ignoring comments, naturally performs the action of processing text between %BEGIN...
and %END... comments. However, no environment is opened and closed and no scope is created while using
comment equivalents.

6 With a little help from LATEX

Sometimes, HEVEA just cannot process its input, but it remains acceptable to have LATEX process it, to
produce a .gif image from LATEX output and to include a link to this image into HEVEA output. HEVEA
provides a limited support for doing this.

18

6.1 The image file

While outputting mydoc.html, HEVEA echoes some of its input to the image file, mydoc.image.tex.
Part of this process is done at the user’s request. More precisely, the following two constructs send text

to the image file:

\begin{toimage}
text
\end{toimage}

%BEGIN IMAGE
text
%END IMAGE

Additionally, \usepackage commands, top-level and global definitions are automatically echoed to the image
file. This enables using document-specific commands in text above.

Output to the image file builds up a current page, which is flushed by the \imageflush command. This
command has the following effect: it outputs a strict page break in the image file, increments the image
counter and output a tag in HEVEA output file, where pagename is build from
the image counter and HEVEA output file name.

Then the imagen script has to be run by:

imagen mydoc

This will process the mydoc.image.tex file through LATEX, dvips, ghostscript and a few others tools,
which must all be present (see section C.4.1), finally producing one pagename.gif file per page in the image
file.

The usage of imagen is described at section C.1.3. Note that imagen is a simple shell script.

6.2 A toy example

Consider the “blob” example from section 4.2. Here is the active part of a blob.tex file:

\newcommand{\blob}{\rule[.2ex]{1ex}{1ex}}
\blob\ Blob \blob

This time, we would like \blob to produce a small black square, which \rule[.2ex]{1ex}{1ex} indeed does
in LATEX. Thus we can write:

\newcommand{\blob}{%
\begin{toimage}\rule[.2ex]{1ex}{1ex}%
\end{toimage}%
\imageflush}
\blob\ Blob \blob

Now we issue the following two commands:

hevea blob.tex
imagen blob

And we get:

Observe that the trick can be used to replace missing symbols by small .gif images. However, the cost
may be prohibitive, text rendering is generally bad, fine placement is ignored and font style changes are
problematic. Cost can be lowered using \savebox, but the other problems remain.

19

6.3 Including Postscript images

In this section, a technique to transform included Postscript images into included GIF images is described.
Note that this technique is used by HEVEA implementation of the the graphics package (see section B.14.1),
which provides a more standard manner to include Postcript images in LATEX documents.

Included images are easy to manage: it suffices to let LATEX do the job. Let round.ps be a Postscript
file, which is included as an image in the source file round.tex (which must load the epsf package):

\begin{center}
\epsfbox{round.ps}
\end{center}

Then, HEVEA can have this image translated into a inlined (and centered) .gif image by modifying source
as follows:

\begin{center}
%BEGIN IMAGE
\epsfbox{round.ps}
%END IMAGE
%HEVEA\imageflush
\end{center}

(Note that the round.tex file still can be processed by LATEX, since comment equivalents of the toimage
environment are used and that the \imageflush command is inside a %HEVEA comment — see section 5.3.)

Then, processing round.tex through HEVEA and imagen yields:

It is important to notice that things go smoothly because the \usepackage{epsf} command gets echoed
to the image file. In more complicated cases, LATEX may fail on the image file because it does not load the
right packages or define the right macros.

However, the above solution implies modifying the original LATEX source code. A better solution is to
define the \epsfbox command, so that HEVEA echoes \epsfbox and its argument to the image file and
performs \imageflush:

\newcommand{\epsfbox}[1]{%
\begin{toimage}
\epsfbox{#1}
\end{toimage}
\imageflush}

20

Such a definition must be seen by HEVEA only. So, it is best put in a separate file whose name is given as
an extra argument on HEVEA command line (see section 5.1). Putting it in the document source protected
inside an %HEVEA comment is a bad idea, because it might then get echoed to the image file and generate
trouble when LATEX is later run by imagen.

Observe that the above definition of \epsfbox is a definition and not a redefinition (i.e., \newcommand is
used and not \renewcommand), because HEVEA does not know about \epsfbox by default. Also observe that
this not a recursive definition, since commands do not get expanded inside the toimage environment.

Finally, if the Postscript image is produced from a bitmap, it is a pity to translate it back into a bitmap.
A better idea is first to generate a GIF file from the bitmap source independantly and then to include a link
to that GIF file in HTML output, see section 8.2 for a description of this more adequate technique.

6.4 Using filters

Some programs extend LATEX capabilities using a filter principle. In such a scheme, the document contains
source fragments for the program. A first run of the program on LATEX source changes these fragments into
constructs that LATEX (or a subsequent stage in the paper document production chain, such as dvips) can
handle. Here again, the rule of the game is keeping HEVEA away from the normal process: first applying the
filter, then making HEVEA send the filter output to the image file, and then having imagen do the job.

Consider the gpic filter, for making drawings. Source for gpic is enclosed in .PS. . . .PE, then the result
is available to subsequent LATEX source as a TEX box \box\graph. For instance the following source, from
a smile.tex file, draws a “Smile!” logo as a centered paragraph:

.PS
ellipse "{\Large\bf Smile!}"
.PE
\begin{center}
~\box\graph~
\end{center}

Both the image description (.PS. . . .PE) and usage (\box\graph) are for the image file, and they should be
enclosed by %BEGIN IMAGE. . . %END IMAGE comments. Additionally, the image link is put where it belongs
by an \imageflush command:

%BEGIN IMAGE
.PS
ellipse "{\Large\bf Smile!}"
.PE
%END IMAGE
\begin{center}
%BEGIN IMAGE
~\box\graph~
%END IMAGE
%HEVEA\imageflush
\end{center}

The gpic filter is applied first, then come hevea and imagen:

gpic -t < smile.tex > tmp.tex
hevea tmp.tex -o smile.html
imagen smile

And we get:

21

Observe how the -o argument to HEVEA is used and that imagen argument is HEVEA output basename (see
section C.1.1.2 for the full definition of HEVEA output basename).

In the gpic example, modifying user source cannot be totally avoided. However, writing in a generic
style saves typing. For instance, users may define the following environment for centered gpic pictures in
LATEX:

\newenvironment{centergpic}{}{\begin{center}~\box\graph~\end{center}}

Source code will now be as follows:

\begin{centergpic}
.PS
ellipse "{\Large\bf Smile!}"
.PE
\end{centergpic}

HEVEA will process this source correctly, provided it is given its own definition for the centergpic environment
beforehand:

\newenvironment{centergpic}
{\begin{toimage}}
{\box\graph\end{toimage}\begin{center}\imageflush\end{center}}

Assuming that the definition above is in a smile.hva file, the command sequence for translating smile.tex
now is:

gpic -t < smile.tex > tmp.tex
hevea smile.hva tmp.tex -o smile.html
tmp.tex:5: Warning: ignoring definition of \centergpic
tmp.tex:5: Warning: not defining environment centergpic
imagen smile

The warnings above are normal: they are issued when HEVEA runs across the LATEX-intended definition of
the centergpic environment and refuses to override its own definition for that environment.

7 Cutting your document into pieces with HACHA

HEVEA outputs a single .html file. This file can be cut into pieces at various sectional units by HACHA

7.1 Simple usage

First generate your HTML document by applying HEVEA:

hevea mydoc.tex

Then cut mydoc.html into pieces by the command:

hacha mydoc.html

This will generate a simple root file index.html. This root file holds document title, abstract and a simple
table of contents. Every item in the table of contents contains a link to or into a file that holds a “cutting”
sectional unit. By default, the cutting sectional unit is section in the article style and chapter in the book
style.

Additionally, one level of sectioning below the cutting unit (i.e., subsections in the article style and
sections in the book style) is shown as an entry in the table of contents. Sectional units above the cutting
section (i.e., parts in both article and book styles) close the current table of contents and open a new one.
Cross-references are properly handled, that is, the local links generated by HEVEA are changed into remote
links.

The name of the root file can be changed using the -o option:

22

hacha -o root.html mydoc.html

Some of HEVEA output get replicated in all the files generated by HACHA. Users can supply a header and
a footer, which will appear at the begining and end of every page generated by HACHA. It suffices to include
the following commands in the document preamble:

\htmlhead{header}
\htmlfoot{footer}

HACHAalso makes every page it generates a clone of its input as regards attributes to the <BODY ...> opening
tag and meta-information from the <HEAD>. . . <\HEAD> block. See section B.2 for examples of this replication
feature.

7.2 Advanced usage

HACHA behavior can be altered from the document source, by using a counter and a few macros.
A document that explicitly includes cutting macros still can be typeset by LATEX, provided it loads the

hevea.sty style file from the HEVEA distribution. (See section 5 for details on this style file). An alternative
to loading the hevea package is to put all cutting instructions in comments starting with %HEVEA.

7.2.1 Principle

HACHA recognizes all sectional units, ordered as follows, from top to bottom: part, chapter, section, subsection,
subsubection, paragraph and subparagraph.

At any point between \begin{document} and \end{document}, there exist a current cutting sectional
unit (cutting unit for short), a current cutting depth, a root file and an output file. Table of contents output
goes to the root file, normal output goes to the output file. Cutting units start a new output file, whereas
units comprised between the cutting unit and the cutting units plus the cutting depth add new entries in
the table of contents.

At document start, the root file and the output file are HACHA output file (i.e., index.html). The cutting
unit and the cutting depth are set to default values that depend on the document style.

7.2.2 Cutting macros

The following cutting instructions are for use in the document preamble. They command the cutting scheme
of the whole document:

\cuttingunit This is a macro that holds the document cutting unit. You can change the default (which is
section in the article style and chapter in the book style) by doing:

\renewcommand{\cuttingunit}{secname}.

cuttingdepth This is a counter that holds the document cutting depth. You can change the default value of
1 by doing \setcounter{cuttingdepth}{numvalue}. A cutting depth of zero means no other entries
than the cutting units in the table of contents.

Other cutting instructions are to be used after \begin{document}. They all generate HTML comments
in HEVEA output. These comments then act as instructions to HACHA.

\cuthere{secname}{itemtitle} Attempt a cut.

• If secname is the current cutting unit or the keyword “now”, then a new output file is started and
an entry in the current table of contents is generated, with title itemtitle. This entry holds a link
to the new output file.

• If secname is above the cutting unit, then the current table of contents is closed. The output file
is set to the current root file.

23

• If secname is below the cutting unit and less than the cutting depth away from it, then an entry
is added in the table of contents. This entry contains itemtitle and a link to the point where
\cuthere appears.

• Otherwise, no action is performed.

\cutdef[depth]{secname} Open a new table of contents, with cutting depth depth and cutting unit secname.
If the optional depth is absent, the cutting depth does not change. The output file becomes the root
file. Result is unspecified if whatever secname expands to is a sectional unit name above the current
cutting unit, is not a valid sectional unit name or if depth does not expand to a small positive number.

\cutend End the current table of contents. This closes the scope of the previous \cutdef. The cutting unit
and cutting depth are restored. Note that \cutdef and \cutend must be properly balanced.

Default settings work as follows: \begin{document} performs

\cutdef[\value{cuttingdepth}]{\cuttingunit}

and \end{document} performs \cutend. All sectioning commands perform \cuthere, with the sectional
unit name as first argument and the (optional, if present) sectioning command argument (i.e., the section
title) as second argument. Note that started versions of the sectioning commands also perform cutting
instructions.

7.2.3 Examples

Consider, for instance, a book document with a long chapter that you want to cut at the section level, showing
subsections:

\chapter{A long chapter}
.....

\chapter{The next chapter}

Then, you should insert a \cutdef at chapter start and a \cutend at chapter end:

\chapter{A long chapter}
%HEVEA\cutdef[1]{section}
.....
%HEVEA\cutend
\chapter{The next chapter}

Then, the file that would otherwise contain the long chapter now contains the chapter title and a ta-
ble of sections. No other change is needed, since the macro section already performs the appropriate
\cuthere{section}{...} commands, which were ignored by default. (Also note that cutting macros are
placed inside %HEVEA comments, for LATEX not to be disturbed).

The \cuthere macro can be used to put some document parts into their own file. This may prove
appropriate for long cover pages or abstracts that would otherwise go into the root file. Consider the
following document:

\documentclass{article}

\begin{document}

\begin{abstract} A big abstract \end{abstract}
...

Then, you make the abstract go to its own file as it was a cutting unit by typing:

24

\documentclass{article}
\usepackage{hevea}

\begin{document}
\cuthere{\cuttingunit}{Abstract}
\begin{abstract} A big abstract \end{abstract}
...

(Note that, this time, cutting macros appear unprotected in the source. However, LATEX still can process
the document, since the hevea package is loaded).

7.3 Controlling output file names

When invoked as hacha doc.html, HACHA produces a index.html table of links file that points into
doc001.html, doc002.html, etc. content files. This is not very convenient when one wishes to point in-
side the document from outside. However, the \cutname{name} command sets the name of the current
output file name as name.

Consider a document cut at the section level, which contains the following important section :

\section{Important section}\label{important}
...

To make the important section goes into file important.html, one writes :

\section{Important section}\label{important}\cutname{important.html}
...

Then, section “Important section” can be referenced from an HEVEA unaware HTML page by :

In this document, there is a very
important section.

7.4 Cutting a document anywhere

Part of a document goes to a separate file whem enclosed in a cutflow environment :

\begin{cutflow}{title}. . . \end{cutflow}

The content “. . . ” will go into a file of its own, while the argument title is used as the title of the introduced
HTML page.

The HTML page introduced here does not belong to the normal flow of text. Consequently, one needs an
explicit reference from the normal flow of text into the content of the cutflow environment. This will occur
naturally when the content of the cutflow environment. contains a \label construct. This look natural in
the following quiz example:

\subsubsection{A small quiz}
\begin{enumerate}
\item What is black?
\item What is white?
\item What is Dylan?
\end{enumerate}
Answers in section~\ref{answers}.
\begin{cutflow}{Answers}
\subsubsection{Quiz answers}\label{answers}
\begin{enumerate}
\item Black is black.
\item White is white.

25

\item Dylan is Dylan.
\end{enumerate}
\end{cutflow}

However,introducing HTML hyperlink targets and references with the \aname and \ahrefloc commands
(see section 8.1.1) will be more practical most of the time.

8 Generating HTML constructs

HEVEA output language being HTML, it is normal for users to insert hypertext constructs their documents,
or to control their colors.

8.1 High-Level Commands

HEVEA provides high-level commands for doing this. Users are advised to use these macros in the first place,
because it is easy to write incorrect HTML and that writting HTML directly may interfeer in nasty ways with
HEVEA internals.

8.1.1 Commands for Hyperlinks

A few commands for hyperlink management and included images are provided, all these commands have
approriate equivalents defined by the hevea package (see section 5.2). Hence, a document that relies on
these high-level commands still can be typeset by LATEX, provided it loads the hevea package.

Macro HEVEA LATEX
\ahref{url}{text} make text an hyperlink to url echo text
\footahref{url}{text} make text an hyperlink to url make url a footnote to text, url

is shown in typewriter font
\ahrefurl{url} make url an hyperlink to url. typeset url in typewriter font
\ahrefloc{label}{text} make text an hyperlink to label

inside the document
echo text

\aname{label}{text} make text an hyperlink target
with label label

echo text

\mailto{address} make address a “mailto” link to
address

typeset address in typewriter
font

\imgsrc[attr]{url} insert url as an image, attr are
attributes in the HTML sense

do nothing

\home{text} produce a home-dir url both for output and links, output aspect
is: “˜text”

It

is important to notice that all arguments are processed. For instance, to insert a link to my home page,
(http://pauillac.inria.fr/~maranget/index.html), you should do something like this :

\ahref{http://pauillac.inria.fr/\home{maranget}/index.html}{his home page}

Given the frequency of ~, # etc. in urls, this is annoying. Moreover, the immediate solution \ahref{\verb" ... /~maranget/..."}{his home page}
does not work, since LATEX forbids verbatim formatting inside command arguments.

Fortunately, the url package provides a very convenient \url command that acts like \verb and can
appear in other command arguments (unfortunately, this is not the full story, see section B.17.6). Hence,
provided the url package is loaded, a more convenient reformulation of the example above is :

\ahref{\url{http://pauillac.inria.fr/~maranget/index.html}}{his home page}

Or even better :

\urldef{\lucpage}{\url}{http://pauillac.inria.fr/~maranget/index.html}
\ahref{\lucpage}{his home page}

26

It may seem complicated, but this is a safe way to have a document processed both by LATEX and HEVEA.
Drawing a line between url typesetting and hyperlinks is correct, because users may sometime want urls
to be processed and some other times not. Moreover, HEVEA (optionnaly) depends on only one third party
package: url, which as correct as it can be and well-written.

In case the \url command is undefined at the time \begin{document} is processed, the commands \url,
\oneurl and \footurl are defined as synonymous for \ahref, \ahrefurl and \footahref, thereby ensuring
some compatibility with older versions of HEVEA. Note that this usage of \url is deprecated.

8.1.2 HTML style colors

Specifying colors both for LATEX and HEVEA should be done using the color package (see section B.14.2).
However,one can also specify text color using special type style declarations. The hevea.sty style file define
no equivalent for these declarations, which therefore are for HEVEA consumption only.

Those declarations follow HTML conventions for colors. There are sixteen predefined colors:

\black, \silver, \gray, \white, \maroon, \red, \fuchsia, \purple,
\green, \lime, \olive, \yellow, \navy, \blue, \teal, \aqua

Additionally, the current text color can be changed by the declaration \htmlcolor{number}, where number is
a six digit hexadecimal number specifying a color in the RGB space. For instance, the following declarations
change font color to dark gray:

\htmlcolor{404040}

8.2 More on included images

The \imgsrc command becomes handy when one has images both in Postscript and GIF format. As
explained in section 6.3, Postscript images can be included in LATEX documents by using the \epsfbox
command from the epsf package. For instance, if screenshot.ps is an encapsulated Postscript file, then a
doc.tex document can include it by:

\epsfbox{screenshot.ps}

We may very well also have a GIF version of the screenshot image (or be able to produce one easily using
image converting tools), let us store it in a screenshot.ps.gif file. Then, for HEVEA to include a link to
the GIF image in its output, it suffices to define the \epsfbox command in the macro.hva file as follows:

\newcommand{\epsfbox}[1]{\imgsrc{#1.gif}}

Then HEVEA has to be run as:

hevea macros.hva doc.tex

Since it has its own definition of \epsfbox, HEVEA will silently include a link the GIF image and not to the
Postscript image.

If another naming scheme for image files is prefered, there are alternatives. For instance, assume that
Postscript files are of the kind name.ps, while GIF files are of the kind name.gif. Then, images can be
included using \includeimage{name}, where \includeimage is a specific user-defined command:

\newcommand{\includeimage}[1]{\ifhevea\imgsrc{#1.gif}\else\epsfbox{#1.ps}\fi}

Note that this method uses the hevea boolean register (see section 5.2.3). If one does not wish to load the
hevea.sty file, one can adopt the slightly more verbose definition:

\newcommand{\includeimage}[1]{%
%HEVEA\imgsrc{#1.gif}%
%BEGIN LATEX
\epsfbox{#1.ps}
%END LATEX
}

27

When the Postscript file has been produced by translating a bitmap file, this simple method of making a
GIF image and using the \imgsrc command is the most adequate. It should be prefered over using the
more automated image file mechanism (see section 6), which will translate the image back from Postscript
to bitmap format and thus degrade it.

8.3 The rawhtml environment

Any text enclosed between \begin{rawhtml} and \end{rawhtml} is echoed verbatim into the HTML out-
put file. No processing of any kind is performed on this text. For avoiding to break HTML element nesting,
the rawhtml environment should be used only at toplevel (i.e. not within another environment), and it should
contain only HTML text that makes sense alone (e.g. \begin{rawhtml}<TABLE><ALIGN=right>\end{rawhtml}. . .
\begin{rawhtml}</TABLE>\end{rawhtml} is dangerous, use the internal macros \@open and \@close of the
following section instead).

For the document to remain processable by LATEX, it must load the hevea.sty style file (see section 5.2).

8.4 Internal macros

In this section a few of HEVEA internal macros are described. Internal macros occur at the final expansion
stage of HEVEA and invoke Objective Caml code.

Normally, user source code should not use them, since their behavior may change from one version of
HEVEA to another and because using them incorrectly easily crashes HEVEA. However:

• Internal macros are almost mandatory for writing supplementary base style files.

• Casual usage is a convenient (but dangerous) way to finely control output (cf. the examples in the
next section).

• Knowing a little about internal macros helps in understanding how HEVEA works.

The general principle of HEVEA is that LATEX environments \begin{env}. . . \end{env} get translated
into HTML block-level elements <block attributes>. . . </block>. More specifically, such block level elements
are opened by the internal macro \@open and closed by the internal macro \@close. As a special case, LATEX
groups {. . . } get translated into HTML groups, which are shadow block-level elements with neither opening
tag nor closing tag.

It is important to notice that primitive arguments are processed (except for the \@print primitive).
Thus, some characters cannot be given directly (e.g. # and % must be given as \# and \%).

\@print{text} Echo text verbatim.

\@getprint{text} Process text using a special output mode that strips off HTML tags. This macro is the
one to use for processed attributes of HTML tags.

\@hr[attr]{width}{height} Ouput an HTML horizontal rule, attr is attributes given directly (e.g. SIZE=3 HOSHADE),
while width and height are length arguments given in the LATEX style (e.g. 2pt or .5\linewidth).

\@open{BLOCK}{attributes} Open HTML block-level elements BLOCK with attributes attributes. The
block name BLOCK must be uppercase. As a special case BLOCK may be the empty string, then a
HTML group is opened.

\@close{BLOCK} Close HTML block-level element BLOCK. Note that \@open and \@close must be prop-
erly balanced.

Text-level elements are managed differently. They are not seen as blocks that must be closed explicitely
and they are replaced by the internal text-level declarations \@style, \@fontsize and \@fontcolor. Block-
level elements (and HTML groups) delimit the effect of such declarations.

28

\@style{SHAPE} Declare the the text shape SHAPE (which must be uppercase) as active. Text shapes
are known as font style elements (I, TT, etc.) or phrase elements (EM, etc.) in the HTML terminology,
they are part of the more general class of text-level elements.

The text-level element SHAPE will get opened as soon as necessary and closed automatically, when the
enclosing block-level elements get closed. Enclosed block-level elements are treated properly by closing
SHAPE before them, and re-opening SHAPE inside them. The next text-level constructs exhibit
similar behavior with respect to block-level elements.

\@fontsize{int} Declare the text-level element FONT with attribute SIZE=int as active. Note that int must
be a small integer in the range 1,2, . . . , 7.

\@fontcolor{color} Declare the text-level element FONT with attribute COLOR=color as active. Note that
color must be a color attribute value in the HTML style. That is either one of the sixteen conventional
colors black, silver etc, or a RGB hexadecimal color specification of the form "#XXXXXX". Note
that the argument color is processed, as a consequence numerical color arguments should be given as
"\#XXXXXX".

\@nostyle Close active text-level declarations and ignore further text-level declarations (such as \@style,
etc). The effect stops when the enclosing block-level element is closed.

8.5 Examples

As a first example of using internal macros, consider the following excerpt from the hevea.hva file that
defines the LATEX center environment:

\newenvironment{center}{\@open{DIV}{ALIGN=center}}{\@close{DIV}}

Another example is the definition of the \purple color declaration (see section 8.1.2):

\newcommand{\purple}{\@fontcolor{purple}}

HEVEA does not feature all text-level elements by default. However one can easily use them with the
internal macro \@style. For instance this is how you can make all emphasized text blink:

\renewcommand{\em}{\@style{EM}\@style{BLINK}}

Then, here is the definition of a simplified \imgsrc command (see section 8.1.1), without optional argu-
ment:

\newcommand{\imgsrc}[1]
{{\@nostyle\@print{}}}

This macro body is typeset inside a group {. . . }, which starts by a \@nostyle declaration, so as to
avoid nesting the block-level IMG inside text-level elements. Then \@print and \@getprint are used
to output HTML text, depending upon wether this text requires processing or not. Finally, note that
\@open{IMG}{SRC="#1"} is not correct, because the block-level element IMG consists in a single tag.

Finally, here is an example of direct block opening. The bgcolor environment from the color package
locally changes background color (see section B.14.2.1). This environment is defined as follows:

\newenvironment{bgcolor}[2][CELLPADDING=10]
{\@open{TABLE}{#1}\@open{TR}{}\@open{TD}{BGCOLOR=\@getcolor{#2}}}
{\@close{TD}\@close{TR}\@close{TABLE}}

The bgcolor environment operates by opening a HTML table (TABLE) with only one row (TR) and cell (TD)
in its opening command, and closing all these elements in its closing command. In my opinion, such a style
of opening block-level elements in environment opening commands and closing them in environment closing
commands is good style.

29

The one cell background color is forced with a BGCOLOR attribute. Note that the mandatory argument
to \begin{bgcolor} is the background color expressed as a high-level color, which therefore needs to be
translated into a low-level color by using the \@getcolor internal macro from the color package. Addition-
ally, \begin{bgcolor} takes HTML attributes as an optional argument. These attributes are the ones of the
TABLE element.

9 Customizing HEVEA

HEVEA can be controlled by writing LATEX code. In this section, we examine how users can change HEVEA
default behavior or add functionalities. In all this section we assume that a document mydoc.tex is processed,
using a private command file macros.hva. That is, HEVEA is invoked as:

hevea macros.hva mydoc.tex

The general idea is as follows: one redefines LATEX constructs in macros.hva, using internal commands. This
requires a good working knowledge of both LATEX and HTML. Usually, one can avoid internal commands, but
then, all command redefinitions interact, sometimes in very nasty ways.

9.1 Simple changes

Users can easily change the rendering of some constructs. For instance, assume that all quotations in a text
should be emphasized. Then, it suffices to put the following redeclaration in macros.hva:

\renewenvironment{quote}
{\@open{BLOCKQUOTE}{}\@style{EM}}
{\@close{BLOCKQUOTE}}

The same effect can be achieved without using any of the internal commands:

\let\oldquote\quote
\let\oldendquote\endquote
\renewenvironment{quote}{\oldquote\em}{\oldendquote}

In some sense, this second solution is easier, when one already knows how to customize LATEX. However,
this is less safe, since the definition of \em can be changed elsewhere.

9.2 Changing defaults for type-styles

HEVEA default rendering of type style changes is described in section B.15.1. For instance, the following
example shows the default rendering for the font shapes:

\itshape italic shape \slshape slanted shape
\scshape small caps shape \upshape upright shape

By default, \itshape is italics, \slshape is maroon italics, \scshape is navy blue color and \upshape is no
style at all. All shapes are mutually exclusive, this means that each shape declaration cancels the effect of
other active shape declarations. For instance, in the example, small caps shapes is navy blue and not navy
blue italics.

If one wishes to change the rendering of some of the shapes (say small caps), then one should redefine
the old-style \sc declaration. For instance, to render small caps as bold fonts, one should redefine \sc by
\renewcommand{\sc}{\@style{B}} in macros.hva.

Hence, redefining old-style declarations using internal commands should yield satisfactory output. How-
ever, since cancelation is done at the HTML level, a declaration belonging to one component may sometimes
cancel the effect of another that belongs to another component. Anyway, you might have not noticed it if I
had not told you.

30

9.3 Changing the interface of a command

Assume for instance that the base style of mydoc.tex is jsc (the Journal of Symbolic Computation style for
articles). For running HEVEA, the jsc style can be replaced by article style, but for a few commands whose
calling interface is changed. In particular, the \title command takes an extra optional argument (which
HEVEA should ignore anyway). However, HEVEA can process the document as it stands. One solution to
insert the following lines into macros.hva:

\input{article.hva}% Force document class ‘‘article’’
\let\oldtitle=\title
\renewcommand{\title}[2][]{\oldtitle{#2}}

The effect is to replace \title by a new command which calls HEVEA \title with the appropriate argument.

9.4 Checking the optional argument within a command

HEVEA fully implements LATEX 2ε \newcommand. That is, users can define commands with an optional ar-
gument. Such a feature permits to write a \epsfbox command that has the same interface as the LATEX
command and echoes itself as it is invoked to the image file. To do this, the HEVEA \epsfbox command has
to check whether it is invoked with an optional argument or not. This can be achieved as follows :

\newcommand{\epsfbox}[2][!*!]{%
\ifthenelse{\equal{#1}{!*!}}
{\begin{toimage}\epsfbox{#2}\end{toimage}}%No optional argument
{\begin{toimage}\epsfbox[#1]{#2}\end{toimage}}}%With optional argument
\imageflush}

9.5 Changing the Format of Images

Semi-automatic generation of included images is described in section 6.
Links to included images are generated by the \imageflush command, which calls the \imgsrc com-

mand :

\newcommand{\imageflush}[1][]
{\@imageflush\stepcounter{image}\imgsrc[#1]{\jobname\theimage\heveaimageext}}

That is, you may supply a HTML-style attribute to the includes image, as an optional argument to the
\imageflush command.

By default, images are GIF images, stored in “.gif” files. Provided you have modified the imagen
script to generate images in an alternative format, for instance PNG, you can use the more appropriate file
extension “.png”. It suffices to redefine the command \heveaimageext :

\renewcommand{\heveaimageext}{.png}

10 Other output formats

It is possible to translate LATEX file into other formats than HTML. There are two such formats: plain text
and info files. This enables producing postscript, HTML, plain text and info manuals from one (LATEX) input
file.

10.1 Text

The LATEX file is processed and converted into a plain text formatted file. It allows some pretty-printing in
plain text.

To translate into text, invoke HEVEA as follow:

hevea -text [-w <width>] myfile.tex

31

Then, HEVEA produces myfiles.txt a plain text translation of myfile.tex.
Additionally, the optional argument -w <number> sets the width of the output for text formatting. By

default, The text will be 72 characters wide.
Nearly every environments have been translated, included lists and tables. The support is nearly the

same as in HTML, excepted in some cases described hereafter.
Most style changes are ignored, because it is hardly possible to render them in plain text. Thus, there

are no italics, bold fonts, underlinings, nor size change or colors. . . The only exception is for the verbatim
environment that puts the text inside quotes, to distinguish it more easily.

Tables with borders are rendered in the same spirit as in LATEX. Thus for instance, it is possible to get
vertical lines between some columns only. Table rendering can be poor in case of line overflow. The only
way to correct this (apart from changing the tables themselves) is to adjust the formatting width, using the
the -w command line option.

For now, maths are not supported at all in text mode. You can get very weird results with in-text
mathematical formulas. Of course, simple expressions such as subscripts remains readable. For instance, x2

will be rendered as x^2, but
∫ 1

0
f(x)dx will yield something like : int01f(x)dx.

10.2 Info

The file format info is also supported. Info files are text files with limited hypertext links, they can be read
by using emacs info mode or the info program. Please note that HEVEA translates plain LATEX to info, and
not TeXinfo.

You can translate your LATEX files into info file(s) as follows:

hevea -info [-w <width>] myfile.tex

Then, HEVEA produces the file myfile.info, an info translation of myfile.tex. However, if the resulting
file is too large, it is cut into pieces automatically, and myinfo.info now contains references for all the nodes
in the others files, which are named myfile.info-1, myfile.info-2,. . .

The optional argument -w has the same meaning as for text output.
The text will be organized in nodes that follow the pattern of LATEX sectioning commands. Menus are

created to navigate through the sections easily
A table of content is produced automatically. References, indexes and footnotes are supported, as they

are in HTML mode. However, the info format only allows pointers to info nodes, i.e., in HEVEA case, to
sectional units. As a consequence all cross references lead to sectional unit headers.

Part B

Reference manual
This part follows the pattern of the LATEX reference manual [LATEX, Appendix C].

B.1 Commands and Environments

B.1.1 Command Names and Arguments

LATEX comments that start with “%” and end at end of line are ignored and produce no output. Usually, HEVEA
ignore such comments. However, HEVEA processes text that follows “%HEVEA” and some other comments have
a specific meaning to it (see section 5.3).

Command names follow strict LATEX syntax. That is, apart from #, $, ~, _ and ^, they either are “\”
followed by a single non-letter character or “\” followed by a sequence of letters. Additionally, the letter
sequence may be preceded by “@” (and this is the case of many of HEVEA internal commands), or terminated
by “*” (starred variants are implemented as plain commands).

32

Users are strongly advised to follow strict LATEX syntax for arguments. That is, mandatory arguments are
enclosed in curly braces {. . . } and braces inside arguments must be properly balanced. Optional arguments
are enclosed in square brackets [. . .]. However, HEVEA does its best to read arguments even when they
are not enclosed in curly braces. Such arguments are a single, different from “\”, “{” and “ ”, character
or a command name. Thus, constructs such as “\’ecole”, “a_1” or “a_Γ” are recognized and
processed as “école” “a1” and “aΓ”. By contrast, “a^\mbox{...}” is not recognized and must be written
“a^{\mbox{...}}”.

Also note that, by contrast with LATEX, comments are parsed during argument scanning, as an important
consequence brace nesting is also checked inside comments.

With respect to previous versions, HEVEA has been improved as regards emulation of complicated argu-
ment passing. That is, commands and their arguments can now appear in different static text bodies. As a
consequence, HEVEA correctly processes the following source:

\newcommand{\boite}{\textbf}
\boite{In bold}

The definition of \boite makes it reduces as \textbf and HEVEA succeeds in fetching the argument “{In bold}”.
We get

In bold

The above example arguably is no “legal” LATEX, but HEVEA handles it. Of course, there remains numerous
“clever” LATEX tricks that exploits TEX internal behavior, which HEVEA does not handle. For instance consider
the following source:

\newcommand{\boite}[1]{\textbf#1}
\boite{{In bold}, Not in Bold.}

LATEX typesets the text “In bold” using bold font, leaving the rest of the text alone. While HEVEA typesets
everything using bold font. Here is LATEX output:

In bold, Not in Bold.

Note that, in most similar situations, HEVEA will likely crash.
As a conclusion of this important section, Users are strongly advised to use ordinary command names

and curly braces and not to think too much the TEX way.

B.1.2 Environments

Environment opening and closing is performed like in LATEX, with \begin{env} and \end{env}. The *-form
of an environment is a plain environment.

It is not advised to use \env and \endenv in place of \begin{env} and \end{env}.

B.1.3 Fragile Commands

Fragile commands are not relevant to HEVEA and \protect is defined as a null command.

B.1.4 Declarations

Scope rules are the same as in LATEX.

B.1.5 Invisible Commands

I am a bit lost here. However spaces in the output should correspond to users expectations. Note that, to
HEVEA being invisible commands is a static property attached to command name.

33

B.1.6 The \\ Command

The \\ and * commands are the same, they perform a line break, except inside arrays where they end the
current row. Optional arguments to \\ and * are ignored.

B.2 The Structure of the Document

Document structure is a bit simplified with respect to LATEX, since documents consist of only two parts. The
preamble starts as soon as HEVEA starts to operate and ends with the \begin{document} construct. Then,
any input occurring before \end{document} is translated to HTML. However, the preamble is processed
and the preamble comprises the content of the files given as command line arguments to HEVEA, see sec-
tion C.1.1.1). As a consequence, command and environment definitions that occur before \begin{document}
are performed. and they remain valid during all the processing.

In particular one can define a header and a footer, by using the \htmlhead and \htmlfoot commands
in the preamble. Those commands register their argument as the header and the footer of the final HTML

document. The header appears first while the footer appears last in (visible) HTML output. This is mostly
useful when HEVEA output is later cut into pieces by HACHA, since both header and footer are replicated at
the start and end of any file generated by HACHA. For instance, to append a copyright notice at the end of
all the HTML pages, it suffices to invoke the \htmlfoot command as follows in the document preamble:

\htmlfoot{\copyright to me}

The \htmlhead command cannot be used for changing anything outside of the HTML document body,
there are specific commands for doing this. One can change HEVEA default (empty) atribute for the opening
<BODY ...> tag by redefining \@bodyargs. For instance, you get black text on a white background, when
the following declaration occurs before \begin{document}:

\renewcommand{\@bodyargs}{TEXT=black BGCOLOR=white}

Similarly, some elements can be inserted into the output file HEAD element by redefining the \@meta
command (Such elements typically are META, LINK, etc.). As such text is pure HTML, it should be included
in a rawhtml environment. For instance, you can specify author information as follows:

\let\oldmeta=\@meta
\renewcommand{\@meta}{%
\oldmeta
\begin{rawhtml}
<META name="Author" content="Luc Maranget">
\end{rawhtml}}

Note how \@meta is first bound to \oldmeta before being redefined and how \oldmeta is invoked in the new
definition of \@meta. Namely, simply overriding the old definition of \@meta would imply not outputting
default meta-information.

B.3 Sentences and Paragraphs

B.3.1 Spacing

Generally speaking, spaces (and single newline characters) in the source are echoed in the output. Browser
then manage with spaces and line-breaks. Following LATEX behavior, spaces after commands are not echoed.
Spaces after invisible commands with arguments are not echoed either.

However this is no longer true in math mode, see section B.7.5 on spaces in math mode.

B.3.2 Paragraphs

New paragraphs are introduced by one blank line or more. Paragraphs are not indented. Thus the macros
\indent and \noindent perform no action.

34

B.3.3 Footnotes

The commands \footnote, \footnotetext and \footnotemark (with or without optional arguments) are
supported. The footnote counter exists and (re)setting it or redefining \thefootnote should work properly.
When footnotes are issued by a combination of \footnotemark and \footnotetext, a \footnotemark
command must be issued first, otherwise some footnotes may get numbered incorrectly or disappear.

Footnotes appear at document end in the article style and at every chapter end in the book style. If the
document is then cut into smaller files by HACHA (see section 7) footnotes may go to a separate file.

Footnotes are bad. If you want to suppress them, redefine \footnote as follows:

\renewcommand{\footnote}[2][]{}

If you want to put then in the text flow, redefine \footnote as follows:

\renewcommand{\footnote}[2][]{~(#2)}

B.3.4 Accents and special symbols

When there exists an equivalent to a given LATEX symbol, using the iso-latin1 and symbol character sets, then
HEVEA outputs such an equivalent. HTML pages that show these character sets can be found in the directory
http://pauillac.inria.fr/~maranget/hevea//doc/ at iso.html and symbol.html. Otherwise, HEVEA
usually issues a warning to draw user attention. Users can then choose their own equivalent for the symbol.

Commands for making accents used in non-English languages, such as \’, work when then produce letters
from the iso-latin1 character set. Otherwise, the argument to the command is not modified (no warning
here). However, it is more simple to write the document using iso-latin1. LATEX can process such documents
by loading the package isolatin1.

B.4 Sectioning

B.4.1 Sectioning commands

Sectioning commands from \part down to \subparagraph are defined in base style files. They accept an
optional argument and have starred versions.

The non-starred sectioning commands from \part down to \subsubsection show section numbers in
sectional unit headings, provided their level is greater than or equal to the current value of the secnumdepth
counter. Sectional unit levels and the default value of the secnumdepth counter are the same as in LATEX.
Furthermore, given a sectional unit secname, the counter secname exists and the appearance of sectional
units numbers can be changed by redefining \thesecname. For instance, the following redefinition turn the
numbering of chapters into alphabetic (uppercase) style:

\renewcommand{\thechapter}{\Alph{chapter}}

It is not advised to put anything else than a section title inside a sectioning command argument (no
\label, no \index. . .).

B.4.2 The Appendix

The \appendix command exists and should work as in LATEX.

B.4.3 Table of Contents

HEVEA does not generate a table of contents. As a consequence, all table of contents related commands such
as \tableofcontents or \addcontentsline do nothing.

However, a later run of HACHA on HEVEA output file splits it in smaller files organized in a tree whose
nodes are tables of links. By contrast with LATEX, starred sectioning commands generate entries in these

35

tables of contents. Table of content entries hold the optional argument to sectioning commands or their
argument when there is no optional argument. Section 7 explains how to control HACHA.

There is no list of figures nor list of tables.

B.5 Classes, Packages and Page Styles

B.5.1 Document Class

Both LATEX 2ε \documentclass and old LATEX \documentstyle are accepted. Their argument style is inter-
preted by attempting to load a style.hva file (see C.1.1.1 to see where HEVEA searches for files). Presently, only
the style files article.hva, seminar.hva, book.hva and report.hva exist, the latter two being equivalent.

If one of the reckognized styles has already been loaded at the time when \documentclass or \documentstyle
is executed, then no attempt to load a style file is made. This allows to override the document style file by
giving one of the four recognized style files of HEVEA as command line arguments (see section 2.2).

Conversely, if HEVEA attempt to load style.hva fails, then a fatal error is flagged, since it can be sure that
the document cannot be processed.

B.5.2 Packages and Page Styles

HEVEA reacts to \usepackage[options]{pkg} in the following way:

1. The whole \usepackage command with its arguments gets echoed to the image file (see 6).

2. HEVEA attempt to load file pkg.hva, (see section C.1.1.1 on where HEVEA searches for files).

Note that HEVEA will not fail if it cannot load pkg.hva and that no warning is issued in that case.
The HEVEA distribution contains implementations of some packages, such as verbatim, colors, graphics,

etc.
In some situations it may not hurt at all if HEVEA does not implement a package, for instance HEVEA does

not provide an implementation for the packages isolatin1 or fullpage. . .
Users needing an implementation of a package that is widely used and available are encouraged to contact

the author. Experienced users may find it fun to attempt to write package implementations by themselves.

B.5.3 The Title Page and Abstract

All title related commands exist, with the following peculiarities:

• The \title command must appear in the preamble for the title to appear in HTML document header.

• When not present the date is left empty. The \today command generates will work properly only
if hevea is invoked with the -exec xxdate.exe option. Otherwise \today generates nothing and a
warning is issued.

The abstract environment is present is all base styles, including the book style. The titlepage envi-
ronment does nothing.

B.6 Displayed Paragraphs

Displayed-paragraph environments translate to block-level elements.
In addition to the environments described in this section, HEVEA implements the center, flushleft

and flushright environments. HEVEA also implements the corespondant TEX style declaration \centering
\raggedright and \raggedleft, but these declarations may not work as expected, when they do not appear
directly inside a displayed-paragraph environment or inside an array element.

36

B.6.1 Quotation and Verse

The quote and quotation environments are the same thing: they translate to BLOCKQUOTE elements. The
verse environment is not supported.

B.6.2 List-Making environments

The itemize, enumerate and description environments translate to the UL, OL, and DL elements and this
is the whole story.

As a consequence, no control is allowed on the appearances of these environments. More precisely optional
arguments to \item do not function properly inside itemize and enumerate. Moreover, item labels inside
itemize or numbering style inside enumerate are browser dependent.

However, customized lists can be produced by using the the list environment (see next section).

B.6.3 The list and trivlist environments

The list environment translates to the DL element. Arguments to \begin{list} are handled as follows:

\begin{list}{default label}{decls}

The first argument default label is the label generated by an \item command with no argument. The
second argument, decls is a sequence of declarations. In practice, the following declarations are relevant:

\usecounter{counter} The counter counter is incremented by \refstepcounter by every \item command
with no argument, before it does anything else.

\renewcommand{\makelabel}[1]{. . . } The command \item executes \makelabel{label}, where label is the
item label, to print its label. Thus, users can change label formatting by redefining \makelabel. The
default definition of \makelabel simply echoes label.

As an example, a list with an user-defined counter can be defined as follows:

\newcounter{coucou}
\begin{list}{\thecoucou}{%
\usecounter{coucou}%
\renewcommand{\makelabel}[1]{\textbf{#1}.}}
...
\end{list}

This yields:

1. First item.

2. Second item.

The trivlist environment is also supported. It is equivalent to the description environment.

B.6.4 Verbatim

The verbatim and verbatim* environments translate to the PRE element. There is no difference between
verbatim and verbatim*.

Similarly, \verb and \verb* are the same and they translate to the CODE text element.
The alltt environment is supported.

37

B.7 Mathematical Formulas

B.7.1 Math Mode Environment

The three ways to use math mode ($. . . $, \(. . . \) and \begin{math}. . . \end{math}) are supported. The
three ways to use display math mode ($$. . . $$, \[. . . \] and \begin{displaymath}. . . \end{displaymath})
are also supported. Furthermore, \ensuremath behaves as expected.

The equation, eqnarray, eqnarray* environments are supported. Equation labeling and numbering
is performed in the first two environments, using the equation counter. Additionally, numbering can be
suppressed in one row of an eqnarray, using the \nonumber command.

Math mode is not as powerful in HEVEA as in LATEX. The limitations of math mode can often be surpassed
by using math display mode. As a matter of fact, math mode is for in-text formulas. From the HTML point
of view, this means that math mode does not close the current flow of text and that formulas in math mode
must be rendered using text-level elements only. By contrast, displayed formulas can be rendered using
block-level elements. This means that HEVEA have much more possibilities in display context than inside
normal flow of text. In particular, stacking text elements one above the over is possible only in display
context.

B.7.2 Common Structures

HEVEA admits, subscript (_), superscripts (^) and fractions (\frac{numer}{denom}). The best effect is
obtained in display mode, where HTML TABLE element is extensively used. By contrast, when not in display
mode, HEVEA uses only SUB and SUP text-level elements to render superscrits and subscript, and the result
may not be very satisfying.

However, simple subscripts and superscripts, such as x_i or x^2, are always rendered using the SUB and
SUP text-level elements and their appearance should be correct even in in-text formulas.

When occurring outside math mode, characters _ and ^ act as ordinary characters and get echoed to the
output. However, a warning is issued.

The nth root command \sqrt is not supported. The “root” symbol is not necessary, thanks to fractional
exponents. For instance, the \sqrt command can be defined as follows:

\newcommand{\sqrt}[2][2]{\left(#2\right)^{1/#1}}

An attempt is made to render all ellipsis constructs (\ldots, \cdots, \vdots and \ddots). The effect
may be strange for the latter two.

B.7.3 Mathematical symbols

Symbols that can be printed using browser iso-latin1 or symbol fonts are translated. Other symbols are
undefined most of the time. Attempting to translate them will thus generate “Unknown macro” warnings.
Then, users can choose their own replacement for these symbols. These personal definitions are best placed
in an ad-hoc style file, given as a command line argument to HEVEA. A suggested replacement is a mix of
colors and available symbols.

When given the -nosymb option, HEVEA silently replaces symbols that cannot be rendered by iso-latin1
only by text equivalents. These equivalents are English words by default, or French words when the
-francais option is set.

Log-like functions and variable sized-symbols are recognized and their subscripts and superscripts are put
where they should in display mode. Subscript and superscript placement can be changed using the \limits
and \nolimits commands. Big delimiters are also handled.

B.7.4 Putting one thing above the other

The commands \stackrel, \underline and \overline are recognized. They produce sensible output in
display mode. In text mode, these macros call the \textstackrel, \textunderline and \textoverline
macros. These macros perform the following default actions, which can be changed by redefining them:

38

\textstackrel Performs ordinary superscripting.

\textunderline Underlines its argument, using the U text-level element.

\textoverline Sends a warning message to the console and echoes its argument in the output.

Math accents (\hat, \tilde, etc.) are not handled by default. However, the distribution includes a
mathaccents.hva file that provides definitions for almost all math accents commands, except \check and
\breve. Rendering is far from perfect and changes from display to text mode. More precisely, the accent is
put (too far) above the symbol in display mode, and as an ordinary superscript in text mode.

If such a rendering is considered too ugly, one should not load the mathaccents.hva file and write
alternative definitions. For instance, the following custom definitions issue color changes:

\newcommand{\tilde}[1]{{\blue#1}}
\newcommand{\vec}[1]{{\red#1}}

Of course, such a trick probably requires looking closely at HTML output to check whether the document is
still understandable or not. It may be better to stay with a poorly formatted document that remains closer
to universally understood notations for mathematics.

B.7.5 Spacing

By contrast with LATEX, space in the input matters in math mode. One or more spaces are translated to one
space. Furthermore, spaces after commands (such as \alpha) are echoed except for invisible commands (such
as \tt). This allows users to control space in their formulas, output being near to what can be expected.

Explicit spacing commands (\,, \!, \: and \;) are recognized, the first two commands do nothing, while
the others two output one space.

B.7.6 Changing Style

Letters are italicized inside math mode and this cannot be changed. The appearance of other symbols
can be changed using LATEX 2ε style changing commands (\mathbf, etc.). The commands \boldmath and
\unboldmath are not recognized. Whether symbols belonging to the symbol font are affected by style changes
or not is browser dependent.

The \cal declaration and the \mathcal commands (that yield calligraphic letters in LATEX) exist. They
yield red letters by default.

Observe that this does not corresponds directly to how LATEX manage style in math mode and that, in
fact, style cannot really change in math mode.

Math style changing declarations \displaystyle and \textstyle do nothing when HEVEA is already
in the requested mode, otherwise they issue a warning. This is so because HEVEA implements displayed
maths as tables, which require to be both opened and closed and introduce line breaks in the output. As a
consequence, warning on \displaystyle are to be taken seriously.

The commands \scriptstyle and \scriptscriptstyle perform type size changes.

B.8 Definitions, Numbering

B.8.1 Defining Commands

HEVEA understands command definitions given in LATEX style. Such definitions are made using \newcommand,
\renewcommand and \providecommand. These three constructs accept the same arguments and have the same
meaning as in LATEX, in particular it is possible to define an user command with one optional argument. How-
ever, HEVEA is more tolerant: if command name already exists, then a subsequent \newcommand{name}. . . is
ignored. If macro name does not exists, then \renewcommand{name}. . . performs a definition of name. In
both cases, LATEX would crash, HEVEA just issues warnings.

39

The behavior of \newcommand allows to shadow document definition, provided the new definitions are
processed before the document definitions. This is easily done by grouping the shadowing definition in a
specific style file given as an argument to HEVEA (see section 5.1). Conversely, changes of base macros (i.e.,
the ones that HEVEA defines before loading any user-specified file) must be performed using \renewcommand.

Scoping rules apply to macros, as they do in LATEX. Environments and groups define a scope and
command definition are local to the scope they occur.

It is worth noticing that HEVEA also partly implements TEX definitions (using \def) and bindings (using
\let), see section B.16.2 for details.

B.8.2 Defining Environments

HEVEA accepts environment definitions and redefinitions by \newenvironment and \renewenvironment. The
support is complete and should conform to [LATEX, Sections C.8.2].

Environments define a scope both for commands and environment definitions.

B.8.3 Theorem-like Environments

New theorem-like environments can also be introduced and redefined, using \newtheorem and \renewtheorem.
Note that, by contrast with plain environments definitions, theorem-like environment definitions are

global definitions.

B.8.4 Numbering

LATEX counters are (fully ?) supported. In particular, defining a counter cmd with \newcounter{cmd}
creates a macro \thecmd that outputs the counter value. Then the \thecmd command can be redefined.
For instance, section numbering can be turned into alphabetic style by:

\renewcommand{\thesection}{\alph{section}}

Note that TEX style for counters is not supported at all and that using this style will clobber the output.
However, HEVEA implements the calc package that makes using TEX style for counters useless in most
situations (see section B.17.3).

B.8.5 The ifthen Package

The ifthen package is partially supported. The one unsupported construct is the \lengthtest test expres-
sion, which is undefined.

As a consequence, HEVEA accepts the following example from the LATEX manual:

\newcounter{ca}\newcounter{cb}%
\newcommand{\printgcd}[2]{%

\setcounter{ca}{#1}\setcounter{cb}{#2}%
Gcd(#1,#2) =
\whiledo{\not\(\value{ca}= \value{cb}\)}%

{\ifthenelse{\value{ca}>\value{cb}}%
{\addtocounter{ca}{-\value{cb}}}%
{\addtocounter{cb}{-\value{ca}}}%

gcd(\arabic{ca}, \arabic{cb}) = }%
\arabic{ca}.}%

For example: \printgcd{54}{30}

For example: Gcd(54,30) = gcd(24, 30) = gcd(24, 6) = gcd(18, 6) = gcd(12, 6) = gcd(6, 6) = 6.
Additionally, a few boolean registers are defined by HEVEA. Some of them are of interest to users.

hevea Initial value is true. The hevea.sty style file also defines this register with initial value false.

40

mmode This register value reflects HEVEA operating mode, it is true in math-mode and false otherwise.

display This register value reflects HEVEA operating mode, it is true in display-mode and false otherwise.

french This register value reflects the -french command line option internally (see Section C.1.1.4).

footer Initial value is true. When set false, HEVEA does not insert its footer “This document has been
translated by HEVEA”.

Finally, note that HEVEA also recognized à la TEX conditional macros (see section B.16.2.4). Such macros
are fully compatible with the boolean registers of the ifthen package, as it is the case in LATEX.

B.9 Figures and Other Floating Bodies

Figures and tables are put where they appear in source, regardless of their placement arguments. They are
outputed inside a BLOCKQUOTE element and they are separated from enclosing text by two horizontal rules.

Captions and cross referencing are handled. However captions are not moved at end of figures: instead,
they appear where the \caption commands occur in source code. The \suppressfloats command does
nothing and the figure related counters (such as topnumber) exist but are useless.

Marginal notes are not handled and the \marginpar command does not exist. If their document holds
\marginpar command, users should probably define it as a null command:

\newcommand{\marginpar}[1]{}

B.10 Lining It Up in Columns

B.10.1 The tabbing Environment

Limited support is offered. The tabbing environment translate to a flexible tabular-like environment.
Inside this environment, the command \kill ends a row, while commands \= and \> start a new column.
All other tabbing commands do not even exist.

B.10.2 The array and tabular environments

These environments are supported, using HTML TABLE element, rendering is satisfactory in most (not too
complicated) cases. By contrast with LATEX, some of the array items always are typeset in display mode.
Whether an array item is typeset in display mode or not depends upon its column specification, the l, c
and r specifications open display mode while the remaining p and @ do not. The l, c,r and @ specifications
disable word wrap, while the p specification enables it.

Entries in a column whose specification is l (resp. c or r) get left-aligned (resp. centered or right-
aligned) in the horizontal direction. They will get top-aligned in the vertical direction if there are other
column specifications in the same array that specify vertical alignement constraints (such as “p{wd}”, see
below). Otherwise, vertical alignement is unspecified.

Entries in a column whose specification is p{wd} get left-aligned in the horizontal direction and top-
aligned in the vertical direction and a paragraph break reduces to one line break inside them. This is the
only occasion where HEVEA makes a distinction between LR-mode and paragraph mode. Also observe that
the length argument wd to the p specification is ignored.

Some LATEX array features are not supported at all:

• Optional arguments to \begin{array} and \begin{tabular} are ignored.

• The command \vline does not exists.

Some others are partly rendered:

• Spacing between columns is different.

41

• @ formatting specifications in \multicolumn argument are ignored.

• If a | appears somewhere in the column formatting specification, then the array is shown with borders.

• The command \hline does nothing if the array has borders (see above). Otherwise, an horizontal rule
is outputed.

• The command \cline ignores its argument and is equivalent to \hline.

• Similarly the command \extracolsep issues a warning and ignores its argument.

Additionally, the tabular* environment is recognized and gets renderered as an HTML table with an advisory
width attribute.

By default, HEVEA implements the array package (see [LATEX-bis, Section 5.3] and section B.17.2 in this
document), which significantly extends the array and tabular environments.

B.11 Moving Information Around

B.11.1 Files

In some situations, HEVEA uses some of the ancillary files generated by LATEX. More precisely, while processing
file mydoc.tex, the following files may be read:

.aux The file mydoc.aux contains cross-referencing information, such as figure or section numbers. If this
file is present, HEVEA reads it and put such numbers (or labels) inside the links generated by the \ref
command. If the .aux file is not present, HEVEA will instead use .haux files (see below).

.haux Such files are HEVEA equivalents of .aux files. Indeed, they are simplified .aux files. As a consequence,
two runs of HEVEA might be needed to get cross references right.

.bbl The file mydoc.bbl is generated by BibTEX. It is read by the \bibliography command.

.hidx and .hind HEVEA computes its own indexes, using .hidx files for storing index references and, using
.hind files for storing formatted indexes. Index formatting significantly departs from the one of LATEX.
Again, several runs of HEVEA might be needed to get indexes right.

HEVEA does not fail when it cannot find an auxiliary file. When another run of HEVEA is needed, a warning
is issued, and it is user’s responsability to rerun HEVEA. However, using the convenient -fix command line
option is provided makes HEVEA rerun itself.

B.11.2 Cross-References

The LATEX \label and \ref are changed by HEVEA into HTML anchors and local links. Spaces in the
arguments to these commands are better avoided.

Additionally, numerical references to sectional units, figures, tables, etc. are shown, as they would appear
in the .dvi file. Numerical references to pages (such as generated by \pageref) are not shown; only an link
is generated.

While processing a document mydoc.tex, cross-referencing information can be computed in two different,
mutually exclusive, ways, depending on whether LATEX has been previously run or not:

• If there exists a file mydoc.aux, then cross-referencing information is extracted from that file. Of
course, the mydoc.aux file has to be up-to-date, that is, it should be generated by running LATEX as
many times as necessary. (For HEVEA needs, one run is probably sufficient).

• If no mydoc.aux file exists, then HEVEA expect to find cross-referencing information in the file my-
doc.haux.

42

When using its own mydoc.haux file, HEVEA will output a new mydoc.haux file at the end of its processing.
This new mydoc.haux file contains actualized cross referencing information. Hence, in that case, HEVEA may
need to run twice to get cross-references right. Note that, just like LATEX, HEVEA issues a warning then the
cross-referencing information it generates differs from what it has read at start-up, and that it does not fail
if mydoc.haux does not exist.

Observe that if a non-correct mydoc.aux file is present, then cross-references will apparently be wrong.
However the links are correct.

B.11.3 Bibliography and Citations

The \cite macro is supported. Its optional argument is correctly handled. Citation labels are extracted
from the .aux file if present, from the .haux file otherwise. Note that these labels are put there by LATEX in
the first case, and by HEVEA in the second case, when they process the \bibitem command.

The \bibliography command is recognized, it loads the .bbl file which should thus have been generated
before, using the appropriate combination of LATEX and BibTEX runs.

The thebibliography environment is recognized.
The \nocite and \bibliographystyle macros exist and do nothing.

B.11.4 Splitting the Input

The \input and \include commands exist and they perform exactly the same operation of searching (and
then processing) a file, whose name is given as an argument. See section C.1.1.1 on how HEVEA searches
files. However, in the case of the \include command, the file is searched only when previously given as an
argument to the \includeonly command.

Note the following features:

• TEX syntax for \input is not supported. That is, one should write \input{filename}.

• If filename is excluded with the -e command line option (see section C.1.1.4), then HEVEA does not
attempt to load filename. Instead, it echoes \input{filename} and \include{filename} commands
into the image file. This sounds complicated, but this is what you want!

• HEVEA does not fails when it cannot find a file, it just issues a warning.

The \listfiles command is a null command.

B.11.5 Index and Glossary

Glossaries are not handled (who uses them ?) and the theindex environment does not exist. Instead, indexes
are formatted using special indexenv environments. By default indexes are formated in two columns, one
may change the number of columns by setting the value of the indexcols counter.

While processing a document mydoc.tex, index entries go into the file mydoc.hidx, while the formatted
index gets written into the file mydoc.hind. As with LATEX, two runs of HEVEA are normally needed to
format the index. However, if all index producing commands (normally \index) occur before the index
formatting command (normally \printindex), then only one run is needed.

Note that two packages for multiple indexes are implemented (see section B.17.5).

B.11.6 Terminal Input and Output

The \typeout command echos its argument on the terminal, macro parameter #i are replaced by their
values. The \typein command is not supported.

43

B.12 Line and Page Breaking

B.12.1 Line Breaking

The advisory line breaking command \linebreak will produce a line break if it has no argument or if its
optional argument is 4. The \nolinebreak command is a null command.

The \\ and * commands output a
 tag, except inside arrays where the close the current row.
Their optional argument is ignored. The \newline command outputs a
 tag.

All other line breaking commands, declarations or environments are silently ignored.

B.12.2 Page Breaking

They are no pages in the physical sense in HTML. Thus, all these commands are ignored.

B.13 Lengths, Spaces and Boxes

B.13.1 Length

All length commands are ignored, things go smoothly when LATEX syntax is used (using the \newlength,
\setlength, etc. commands, which are null macros). Of course, if lengths are really important to the
document, rendering will be poor.

Note that TEX length syntax is not at all recognized. As a consequence, writing things like \textwidth=10cm
will clobber the output. Users can correct such misbehavior by adopting LATEX syntax, here they should
write \setlength{\textwidth}{10cm}.

B.13.2 Space

The \hspace, \vspace and \addvspace spacing commands and their starred versions recognize positive
explicit length arguments. Such arguments get converted to a number of non-breaking spaces or line breaks.
Basically, the value of 1em or 1ex is one space or one line-break. For other length units, a simple conversion
based upon a 10pt font is used.

HEVEA cannot interpret more complicated length arguments or perform negative spacing. In these situa-
tions, a warning is issued and no output is done.

Spacing commands without arguments are recognized. The \enspace, \quad and \qquad commands
output one, two and four non-breaking spaces, while the \smallskip, \medskip and \bigskip output one,
one, and two line breaks.

Stretchable lengths do not exist, thus the \hfill and \vfill macros are undefined.

B.13.3 Boxes

Box contents is typeset in text mode (i.e., non-math and non-display mode). Both LATEX boxing commands
\mbox and \makebox commands exist. However \makebox generates a specific warning, since HEVEA ignore
the length and positioning instructions given as optional argument.

Similarly, the boxing with frame \fbox and \framebox commands are recognized and \framebox issues
a warning. When in display mode, \fbox frames its argument by enclosing it in a table with borders.
Otherwise, \fbox calls the \textfbox command, which issues a warning and typesets its argument inside a
\mbox (and thus no frame is drawn). Users can alter the behavior of \fbox in non-display mode by redefining
\textfbox.

Boxes can be saved for latter usage by storing them in bins. New bins are defined by \newsavebox{cmd}.
Then some text can be saved into cmd by \sbox{text}{cmd} or \begin{lrbox}{cmd} text \end{lrbox}.

The text is translated to HTML, as if it was inside a \mbox and the resulting output is stored. It is retrieved
(and outputed) by the command \usebox{cmd}. The \savebox command reduces to \sbox, ignoring its
optional arguments.

The \rule commands translate to a HTML horizontal rule (<HR>) regardless of its arguments.

44

All other box-related commands do not exist.

B.14 Pictures and Colors

B.14.1 The picture environment and the graphics Package

It is possible to have pictures and graphics processed by imagen (see section 6.1). In the case of the picture
environment it remains users responsability to explicitly choose source chunks that will get rendered as GIF
images. In the case of the commands from the graphics package, this choice is made by HEVEA. In both
cases, the imagen script has to be run by hand. (However, note that HEVEA runs imagen when given the
-fix command-line option.)

For instance consider the following picture:

\newcounter{cms}
\setlength{\unitlength}{1mm}
\begin{picture}(50,10)
\put(0,7){\makebox(0,0)[b]{cm}}
\multiput(10,7)(10,0){5}{\addtocounter{cms}{1}\makebox(0,0)[b]{\arabic{cms}}}
\multiput(1,0)(1,0){49}{\line(0,1){2.5}}
\multiput(5,0)(10,0){5}{\line(0,1){5}}
\thicklines
\put(0,0){\line(1,0){50}}
\multiput(0,0)(10,0){6}{\line(0,1){5}}
\end{picture}

Users should enclose all picture elements in a toimage environment (or inside %BEGIN IMAGE. . . %END IMAGE
comments) and insert an \imageflush command, where they want the image to appear in HTML output:

%BEGIN IMAGE
\newcounter{cms}
\setlength{\unitlength}{1mm}
\begin{picture}(50,10)

...
\end{picture}
%END IMAGE
%HEVEA\imageflush

This will result in normal processing by LATEX and image inclusion by HEVEA:
cm 1 2 3 4 5

All commands from the graphics package are implemented using the automatic image inclusion feature.
More precisely, the outermost invocations of the \includegraphics, \scalebox, etc. commands are sent to
the image image file and there will be one GIF image per outermost invocation of these commands.

For instance, consider a document doc.tex that loads the graphics package and that includes some
(scaled) images by:

\begin{center}
\scalebox{.5}{\includegraphics{round.ps}}
\scalebox{.75}{\includegraphics{round.ps}}
\includegraphics{round.ps}
\end{center}

Then, issuing the following two commands:

hevea doc.tex
imagen doc

yields HTML that basically consists in three image links, the images being generated by imagen.

45

B.14.2 The color Package

HEVEA partly implements the color package. Implemented commands are \definecolor, \color and
\textcolor. Other commands from the color package do not exist. At startup, colors black, white,
red, green, blue, cyan, yellow and magenta are pre-defined.

Colors are defined by \definecolor{name}{model}{spec}, where name is the color name, model is
the color model used, and spec is the color specification according to the given model. Defined colors
are used by the declaration \color{name} and by the command \textcolor{name}{text}, which change
text color. Please note that, the \color declaration accepts color specifications directly when invoked as
\color[model]{spec}. The \textcolor command has a similar feature.

As regards color models, HEVEA implements the rgb, cmyk, hsv and hls color models. In those models,
color specifications are floating point numbers less than one. For instance, here is the definition for the red
color:

\definecolor{red}{rgb}{1, 0, 0}

The named color model is also supported, in this model color specification are just names. . . Named
colors are the ones of dvips.

GreenYellow, Yellow, Goldenrod, Dandelion, Apricot, Peach, Melon, YellowOrange, Orange, BurntOrange,
Bittersweet, RedOrange, Mahogany, Maroon, BrickRed, Red, OrangeRed, RubineRed, WildStrawberry,
Salmon, CarnationPink, Magenta, VioletRed, Rhodamine, Mulberry, RedViolet, Fuchsia, Lavender,
Thistle, Orchid, DarkOrchid, Purple, Plum, Violet, RoyalPurple, BlueViolet, Periwinkle, CadetBlue,
CornflowerBlue, MidnightBlue, NavyBlue, RoyalBlue, Blue, Cerulean, Cyan, ProcessBlue, SkyBlue,
Turquoise, TealBlue, Aquamarine, BlueGreen, Emerald, JungleGreen, SeaGreen, Green, ForestGreen,
PineGreen, LimeGreen, YellowGreen, SpringGreen, OliveGreen, RawSienna, Sepia, Brown, Tan, Gray,
Black, White.

There are at least three ways to use colors from the named model.

1. Define a color name for them.

2. Specify the named color model as an optional argument to \color and \textcolor.

3. Use the names directly (HEVEA implements the color package with the usenames option given).

That is:

1. \definecolor{rouge-brique}{named}{BrickRed}\textcolor{rouge-brique}{Text as a brick}.

2. \textcolor[named]{BrickRed}{Text as another brick}.

3. \textcolor{BrickRed}{Text as another brick}.

Colors should be used carefully. Too many colors hinders clarity and some of the colors may not be
readable on the document background color.

B.14.2.1 The bgcolor environment

Due to limitations in HTML 3.2 (and 4.0 transitional viewed as 3.2!), it is not possible to implement the
\colorbox command for changing the background color inside a paragraph.

However, HEVEA features a bgcolor environment, for changing the backgroud color of some subparts of the
document. The bgcolor environment is a displayed environment and it normally starts a new line. Simple
usage is \begin{bgcolor}{color}. . . \end{bgcolor}, where color is a color defined with \definecolor.
Hence the following source yield a paragraph with a red background:

\begin{bgcolor}{red}
\color{yellow}Yellow letters on a red backgroud
\end{bgcolor}

46

The bgcolor environment is implemented by a TABLE element, it takes an optional argument that is used
as an attribute for this TABLE element (default value is CELLPADDING=10). For instance, the following source:

\begin{bgcolor}[CELLPADDING=0]{yellow}
\color{red}Red letters on a yellow backgroud
\end{bgcolor}

will be typeset on a yellow background and without padding:

B.14.2.2 From High-Level Colors to Low-Level Colors

High-level colors are color names defined with \definecolor. Low-level colors are HTML-style colors. That
is, they are either one of the sixteen conventional colors black, silver etc., or a RGB hexadecimal color
specification of the form "#XXXXXX".

One changes the high-level high-color into a low-level color by \@getcolor{high-color}. Low-level colors
are appropriate inside HTML attributes and as arguments to the \@fontcolor internal macro. An example
of \@getcolor usage can be found at the end of section 8.5.

B.15 Font Selection

B.15.1 Changing the Type Style

All LATEX 2ε declarations and environments for changing type style are recognized. Aspect is rather like
LATEX 2ε output, but there is no guarantee.

As HTML does not provide the same variety of type styles as LATEX, some type style get rendered by using
colors. For instance, the slanted shape yields maroon italics and small caps yields navy blue. Here is how
HEVEA implements text-style declarations by default:

\itshape italics
\slshape maroon italics
\scshape navy blue
\upshape no style

\ttfamily typewriter font
\sffamily purple
\rmfamily no style

\bfseries bold
\mdseries no style

Text-style commands also exists, they are defined as \mbox{\decl . . . }. For instance, \texttt is defined
as a command with one argument whose body is \mbox{\ttfamily#1}. Finally, the \emph command for
emphasized text also exists.

As in LATEX, type styles consists in three components: shape, series and family. However this distinction
does not exist in HTML: one specifies a type style and that’s all. HEVEA implements the three components
by making one declaration to cancel the effect of other declarations of the same kind.

Old style declarations are also recognized, they translate to text-level elements. However, no elements
are canceled when using old style declaration. Thus, the source “{\sl\sc slanted and small caps}”
yields navy blue italics. Users need probably not worry about this. However this has an important practical
consequence: to change the default rendering of type styles, one should redefine old style declaration in order
to benefit from the cancelation mechanism. See section 9.2 for a more thorough description.

B.15.2 Changing the Type Size

All declarations, from \tiny to \Huge are recognized. Output is not satisfactory inside headers elements
generated by sectioning commands.

B.15.3 Special Symbols

The \symbol{num} outputs character number num from the iso-latin1 character set. This departs from
LATEX, which output symbol number num in the current font.

47

B.16 Extra Features

This section describes HEVEA functionalities that extends on plain LATEX, as defined in [LATEX]. Most of the
features described here are performed by default.

B.16.1 Accents in maths

Loading the mathaccents.hva style files enables default typesetting of the math accents commands (\hat,
\tilde,. . .), see Section B.7.4.

B.16.2 TEX macros

Normally, HEVEA does not recognize constructs that are specific to TEX. However, some of the internal
commands of HEVEA are homonymous to TEX macros, in order to enhance compatibility. Note that full
compatibility with TEX is not guaranteed.

B.16.2.1 À la TEX macros definitions

The \def construct for defining commands is supported, with the same behavior as \newcommand with
respect to command redefinition (see section B.8.1). It is important to notice that HEVEA semantics for \def
here departs significantly from TEX semantics. That is, defining a command that already exists with \def
fails in HEVEA, whereas it succeeds in TEX. Users are thus invited to use LATEX \renewcommand when they
purposely redefine commands.

However, HEVEA also provides the construct \texdef, which is equivalent to \def, except that TEX
semantics of silently rebinding macros is followed. Files that contain \texdef (or \texlet, see next section)
still can be processed by LATEX, provided they load the hevea.sty style file.

Delimiting characters in command definition are supported. Consider the following example from the
TEX Book:

\def\Look{\textsc{Look}}
\def\x{\textsc{x}}
\def\cs AB#1#2C$#3\$ {#3{ab#1}#1 c\x #2}
\cs AB {\Look}{}C${And \$}{look}\$ 5.

It yields: And $lookabLookLook cx5.
Please note that delimiting characters are supported as far as I could, problems are likely with delimiting

characters which include spaces or command names, in particular the command name \{. One can include
\{ in a command argument by using the grouping characters {. . . }:

\def\frenchquote(#1){<<~\emph{#1}~>> (in French)}
He said \frenchquote(Alors cette accolade ouvrante {‘‘\{’’}~?).

Yields:

He said << Alors cette accolade ouvrante “{” ? >> (in French).

Another source of incompatibilty with TEX is that substitution of macros parameters is not performed
at the same moment by HEVEA and TEX. However, things should go smoothly at the first level of macro
expansion, that is when the delimiters appear in source code at the same level as the macro that is to parse
them. For instance, the following source will give different results in LATEX and in HEVEA:

\def\cs#1A{‘‘#1’’}
\def\othercs#1{\cs#1A}
\othercs{coucouA}

LATEX output is “coucou”A, while HEVEA output is “coucouA”. Here is LATEX output: “coucou”A Please
note that in most situations this discrepancy will make HEVEA crash.

48

B.16.2.2 The \let construct

HEVEA also processes a limited version of \let:

\let macro-name1 = macro-name2

The effect is to bind macro-name1 to whatever macro-name2 is bound to at the time \let is processed.
This construct may prove very useful in situations where one whishes to slightly modify basic commands.
See sections 9.3 and B.2 for examples of using \let in such a situation.

Since \let is a binding operator it fails to rebind macro-name1 when it is already bound. However, there
exist a \texlet construct which follow TEX semantics of silent rebinding.

B.16.2.3 The \global construct

It is possible to escape scope and to make global definitions and bindings by using the TEX construct \global.
The \global construct is significant before \def, \let, \texdef and \texlet. Surprises are likely when
using local and global definitions with identical names.

Also note that \gdef is equivalent to \global\def.

B.16.2.4 TEX Conditional Macros

The \newif\ifname, where name is made of letters only, creates three macros: \ifname, \nametrue and
\namefalse. The latter two set the name condition to true and false, respectively. The \ifname command
tests the condition name:

\ifname
text1
\else
text2
\fi

Text text1 is processed when name is true, otherwise text2 is processed. If text2 is empty, then the \else
keyword can be omitted.

Note that HEVEA also implements LATEX ifthen package and that TEX simple conditional macros are
fully compatible with LATEX boolean registers. More precisely, we have the following correspondences:

TEX LATEX

\newifname \newboolean{name}

\nametrue \setboolean{name}{true}

\namefalse \setboolean{name}{false}

\ifname text1\else text2\fi \ifthenelse{\boolean{name}}{text1}{text2}

B.16.2.5 Other TEX Macros

HEVEA implements the macros \unskip and \endinput. It also supports the \csname. . . \endcsname
construct.

B.16.3 Command Definition inside Command Definition

If one strictly follows the LATEX manual, only commands with no arguments can be defined inside other
commands. Parameters (i.e., #n) occurring inside command bodies refer to the outer definition, even when
they appear in nested command definitions. That is, the following source:

\newcommand{\outercom}[1]{\newcommand{\insidecom}{#1}\insidecom}
\outercom{outer}

49

yields this output:

outer

Nevertheless, nested commands with arguments are allowed. Standard parameters #n still refer to the
outer definition, while nested parameters ##n refer to the inner definition. That is, the source:

\newcommand{\outercom}[1]{\newcommand{\insidecom}[1]{##1}\insidecom{inner}}
\outercom{outer}

yields this output:

inner

B.16.4 Date and time

Date and time support is not enabled by default, for portability and simplicity reasons.
However, HEVEA source distribution includes a simple (sh) shell script xxdate.exe that activates date

and time support. The hevea command, should be invoked as :

hevea -exec xxdate.exe ...

This will execute the script xxdate.exe, whose output is then read by HEVEA. As a consequence, standard
TEX counters \year, \month, \day and \time are defined and LATEX command \today works properly.
Additionnally the following counters and commands are defined :

Counter weekday day of week, 0. . . 6
Counter Hour hour, 00. . . 11
Counter hour hour, 00. . . 23
Counter minute minute, 00. . . 59
Counter second second, 00. . . 613

Command \ampm AM or PM
Command \timezone Time zone
Command \heveadate Output of the “date” Unix command

Note that I choosed to add an extra option (and not an extra “\@exec” primitive) for security reasons.
You certainly do not want to enable HEVEA to execute silently an arbitrary program without being conscious
of that fact. Moreover, the hevea program does not execute xxdate.exe by default since it is difficult to
write such a script in a portable manner.

Windows users, once they have installed the xxdate.exe4 programm in HEVEA directory, should enjoy
the same features.

B.16.5 Fancy sectioning commands

Loading the fancysection.hva file will radically change the style of sectionnal units headers: they appear
over a green backgroud, the backgrould color saturation decreases as the sectioning commands themselves
do. Additionnaly, the document background color is white.

The fancysection.hva file is intended to be loaded after the document base style. Thus, to use fancy
section style in doc.tex whose base style is article you should issue the command:

hevea article.hva fancysection.hva doc.tex

You can also make a doc.hva file that contains the two lines:

\input{article.hva}
\input{fancysection.hva}

4http://www.arch.ohio-state.edu/crp/faculty/pviton/support/htoday.html

50

And then launch hevea as:

hevea doc.hva doc.tex

Sectioning command background colors can be changed by redefining the corresponding colors (part,
chapter, section,. . .). For instance, you get various mixes of red and orange by:

\input{article.hva}
\input{fancysection.hva}
\definecolor{part}{named}{BrickRed}
\definecolor{section}{named}{RedOrange}
\definecolor{subsection}{named}{BurntOrange}

(See section B.14.2 for details on the named color model that is used above.)
Another choice is to define \@color to be a certain hue value to be interpreted in the HSV model. This

must be done before loading fancysection.hva:

\input{article.hva}
\newcommand{\@color}{20}
\input{fancysection.hva}

This will yield sectionnal headers on a red-orange background.

B.16.6 HEVEA as a Back-End for VideoC

HEVEA is one of the back-ends of the VideoC system for producing educational CDROM to teach programming
languages. VideoC author is Christian Queinnec and the documentation is available at:

http://www-spi.lip6.fr/~queinnec/VideoC/VideoC.html.

VideoC translates LATEX source into a variety of formats, including HTML. VideoC source may contain
some special constructs for typesetting source code or to annotate text in sophisticated ways. HEVEA inter-
nal engine implements some of the core constructs needed by VideoC. The rest of VideoC constructs are
implemented by the .hva files from VideoC distribution.

B.17 Implemented Packages

HEVEA distribution includes “.hva” packages that are implementations of LATEX packages. I provide no full
documentation for these packages, users should refer to the first pages of the package documentation, which
can usually be found in the book [LATEX-bis], in your local LATEX installation or in a TeX CTAN-archive.

Those packages generally are loaded explicitly from user source code, by using the \usepackage command.
A few packages are loaded by defaut (array, calc, ifthen), however reloading them explicitely by \usepackage
is harmless. Package options are not supported.

B.17.1 AMS compatibility

HEVEA amsmath package defines some of the constructs of the amsmath package. At the moment, supported
constructs are the cases environment and matrix environments [LATEX-bis, Section 8.4], the environments
for multi-line displayed equations (gather, split,. . .) [LATEX-bis, Section 8.5] and the \numberwithin com-
mand [LATEX-bis, Section 8.6.2].

51

Table 1: Column specifications from the array package

m{width} Equivalent to the p column specification (the width
argument is ignored, entries are typeset in paragraph
mode with paragraph breaks being reduced to a sin-
gle line break), except that the entries are centered
vertically.

b{width} Equivalent to the p column specification, except that
the entries are bottom-aligned vertically.

>{decl} Can be used before l, c, r, p{. . . }, m{. . . } or b{. . . }. It
inserts decl in front of the entries in the corresponding
column.

<{decl} Can be used after l, c, r, p{. . . }, m{. . . } or b{. . . }. It
inserts decl after entries in the corresponding column.

!{decl} Equivalent to @{decl}

B.17.2 The array and tabularx Packages

The array5 package is described in [LATEX-bis, Section 5.3] and in the local documentation of modern
LATEX installations. It is a compatible extension of LATEX arrays (see B.10.2). Basically, it provides new
column specifications and a \newcolumntype construct for user-defined column specifications. Table 1 gives
a summary of the new column specifications and of how HEVEA implements them.

Note that centered, top-aligned or bottom-aligned in the vertical direction, do not have exactly the same
meaning in LATEX and in HTML. However, the aspect is the same when all columns agree w.r.t. vertical
alignment. Ordinary column types (c, l and r) do not specify vertical alignment, which therefore becomes
browser dependent.

The >{decl} and <{decl} constructs permit the encoding of TEX \cases macro as follows:

\def\cases#1{\left\{\begin{array}{l>{$}l<{$}}#1\end{array}\right.}

(This is an excerpt of the latexcommon.hva file.)
New column specifications are defined by the \newcolumntype construct:

\newcolumntype{col}[narg]{body}

Where col is one letter, the optional narg is a number (defaults to 0), and body is built up with valid column
specifications and macro-argument references (#int). Examples are:

\newcolumntype{C}{>{\bf}c}
\newcolumntype{E}[1]{*{#1}{c}}
\begin{tabular}{CE{3}}\hline
one & two & three & four \\
five & six & seven & eight \\ \hline
\end{tabular}

The column specification C means that entries will be typeset centered and using bold font, while the column
specifications E{num} stands for num centered columns. We get:

one two three four
five six seven eight

HEVEA implements column specifications with commands defined in the \newcommand style. Thus, they
have the same behavior as regards double definition, which is not performed and induces a warning mes-
sage. Thus, a column specification that is first defined in a macro.hva specific file, overrides the document
definition.

5ftp://ftp.tex.ac.uk/tex-archive/macros/latex/required/tools/array.dtx

52

The tabularx6 package [LATEX-bis, Section 5.3.5] provides a new tabular environment tabularx and a
new column type X. HEVEA makes the former equivalent to tabular and the latter equivalent to p{ignored}.
By contrast with the subtle array formatting that the tabularx package performs, this may seem a crude
implementation. However, rendering is usually correct, although different.

More generally and from the HTML point of view such sophisticated formatting is browser job in the
first place. However, the HTML definition allows suggested widths or heights for table entries and table
themselves. From HEVEA point of view, drawing the border line between what can be specified and what
can be left to the browser is not obvious at all. At the moment HEVEA choice is not to specify too much (in
particular, all length arguments, either to column specifications or to the arrays themselves, are ignored). As
a consequence, the final, browser viewed, aspect of arrays will usually be different from their printed aspect.

B.17.3 The calc Package

LATEX source7 and documentation.
This package enables using traditional, infix, notation for arithmetic operations inside the num ar-

gument to the \setcounter{name}{num} and \addtocounter{name}{num} constructs (see [LATEX-bis,
Section A.4])

The calc package provides a similar extension of the syntax of the len argument to the \setlength and
\addtolength constructs. HEVEA does not implement this extension, since it does not implement length
registers in the first place.

B.17.4 The comment Package

LATEX source8.
The implementation for this package provides two commands, \excludecomment and \includecomment,

for (re-)defining new environments that ignore their content or that do nothing. The comment environment
is also defined as an environment of the first kind.

B.17.5 Multiple Indexes with the index and multind package

HEVEA supports several simultaneous indexes, following the scheme of the index9 package, which is present
in modern LATEX distributions. This scheme is backward compatible with the standard indexing scheme of
LATEX.

Support is not complete, but the most useful commands are available. More precisely, HEVEA knows the
following commands:

\newindex{tag}{ext}{ignored}{indexname} Declare an index. The first argument tag is a tag to select this
index in other commands; ext is the extension of the index information file generated by LATEX (e.g.,
idx); ignored is ignored by HEVEA; and indexname is the title of the index. If given the idx option.
HEVEA attempts to read file mydoc.ext. There also exists a \renewindex commands that takes the
same arguments and that can be used to redefine previously declared indexes.

\makeindex Perform \newindex{default}{idx}{ind}{Index}.

\index[tag]{arg} Act as the LATEX \index command except that the information extracted from arg goes
to the tag index. The tag argument defaults to default, thereby yielding standard LATEX behavior for
the \index command without an optional argument. There also exists a stared-variant \index* that
Additionally typesets arg.

\printindex[tag] Compute, format and output index whose tag is tag. The tag argument defaults to
default. At the moment, there is an important difference between LATEX and HEVEA: for \printindex

6ftp://ftp.tex.ac.uk/tex-archive/macros/latex/required/tools/tabularx.dtx
7ftp://ftp.tex.ac.uk/tex-archive/macros/latex/required/tools/calc.dtx
8ftp://ftp.tex.ac.uk/tex-archive/macros/latex/contrib/other/comment/
9ftp://theory.lcs.mit.edu/pub/tex/index/

53

to work, if must occur after the last occurrence of the \index command. This is little problem in
practise, since indexes usually reside at the end of books.

The multind10 package provides another scheme for multiple indexes. Note that the “multind” style
for indexes is not backward compatible with LATEX default indexing scheme. I would recommend using the
“index” package.

B.17.6 The url package

LATEX source11.
This package in fact provides a enhanced \verb command that can appear inside other command argu-

ments. This command is named “\url”, but it can be used for any verbatim text, including DOS-like path
names. Hence, one can insert urls in one’s document without worrying about LATEX active characters :

This is a complicated url: \url{http://foo.com/~user#label%coucou}.

which gets typeset as: “This is a complicated url: http://foo.com/~user#label%coucou.”
Main use for the \url command is to specify urls as arguments to HEVEA commands for hyperlinks (see

section 8.1.1) :

\hevea{} home page is
\ahrefurl{\url{http://pauillac.inria.fr/~maranget/hevea/}}

It yields : “HEVEA home page is http://pauillac.inria.fr/~maranget/hevea/”.
However the \url command is fragile, as a consequence it cannot be used inside \footahref first argu-

ment (This is a LATEX problem, not an HEVEA one). The url package solves this problem by providing the
\urldef command for defining commands whose body is typeset by using \url:

\urldef{\heveahome}{\url}{http://pauillac.inria.fr/~maranget/hevea/}

Such a source defines the robust command \heveahome as the intended url. Hence the following source
works as expected :

Have a look at \footurl{\heveahome}{\hevea{} home page}

It yields: “Have a look at HEVEA home page12”.
Using \url inside command definitions with a #i argument is a bad idea, since it gives “verbatim” a

rather random meaning. Unfortunately, in some situations (e.g, no %, no #), it may work in LATEX. By
contrast, it does not work in HEVEA. In such situations, \urldef should be used.

HEVEA implementation is somehow compatible at the “programming level”. Thus, users can define new
commands whose argument is understood verbatim. The urlhref.hva style file from the distribution takes
advantage of this to define the \url command, so that it both typesets an url and inserts a link to it.
The urlhref.hva style file (which is an HEVEA style file and not a LATEX style file) can be adequate for
bibliographic references, which often use \url for its typesetting power. Of course, loading urlhref.hva
only makes sense when all arguments to \url are urls. . .

B.17.7 Verbatim Text : the moreverb and verbatim Packages

These two packages provide new commands and environments for processing verbatim text.
I recommend using moreverb13 rather than verbatim14, since the LATEX implementation of the former

is much more compatible with HEVEA than the implementation of the latter.

10ftp://ftp.tex.ac.uk/tex-archive/macros/latex209/contrib/misc/multind.sty
11ftp://ftp.tex.ac.uk/tex-archive/macros/latex/contrib/other/misc/url.sty
12http://pauillac.inria.fr/~maranget/hevea/
13ftp://ftp.tex.ac.uk/tex-archive/macros/latex/contrib/supported/moreverb/
14ftp://ftp.tex.ac.uk/tex-archive/macros/latex/required/tools/verbatim.dtx

54

Part C

Practical information

C.1 Usage

C.1.1 HEVEA usage

The hevea command has two operating modes, normal mode and filter mode. Operating mode is determined
by the nature of the last command line argument.

C.1.1.1 Command line arguments

The hevea command interprets its arguments as the names of files and attempts to process them. Given an
argument filename there are two cases:

• If filename is base.tex or base.hva, then a single attempt to open filename is made.

• In other cases, a first attempt to open filename.tex is made. In case of failure, a second attempt to
open filename is made.

In all attempts, implicit filenames are searched along hevea search path, which consist in:

1. the current directory “.”,

2. user-specified directories (with the -I command line option),

3. hevea library directory.

4. one of the sub-directories html, text or info from hevea library directory, depending upon hevea
output format,

The hevea library directory is fixed at compile-time (this is where hevea library files are installed) and
typically is /usr/local/lib/hevea. However, this compile-time value can be overridden by setting the
HEVEADIR shell environment variable.

C.1.1.2 Normal mode

If the last argument has an extension that is different from .hva or has no extension, then it is interpreted as
the name of the main input file. The main input file is the document to be translated and normally contains
the \documentclass command. In that case two basenames are defined:

• The input basename, basein, is defined as the main input file name, with extension removed when
present.

• The output basename, baseout, is basein with leading directories omitted. However the output base-
name can be changed, using the -o option (see the section on options below).

HEVEA will attempt to load the main input file. Ancillary files from a previous run of LATEX (i.e., .aux,
.bll and .idx files) will be searched as basein.ext. The output base name governs all files produced
by HEVEA. That is, HTML output of HEVEA normally goes to the file baseout.html, while cross-referencing
information goes into baseout.haux. Furthemore, if an image file is generated (cf. section 6), its name will
be baseout.image.tex.

Thus, in the simple case where the hevea command is invoked as:

hevea file.tex

The input basename is file and the output basename also is file. The main input file is searched once
along hevea search path as file.tex. HTML output goes into file file.html, in the current directory.

In the more complicated case where the hevea command is invoked as:

55

hevea ./dir/file

The input base name is ./dir/file and the output basename is file. The main input file is loaded by first
attempting to open file ./dir/file.tex, then file ./dir/file. HTML output goes into file file.html, in
the current directory.

The article.hva, seminar.hva, book.hva and report.hva base style files from HEVEA library are
special. Only the first base style file is loaded and the \documentclass command has no effect when a
base style file is already loaded. This feature allows to override the document base style. Thus, a document
file.tex can be translated using the article base style as follows:

hevea article.hva file.tex

C.1.1.3 Filter mode

If there is no command line argument, or if the last command line argument has the extension .hva, then
there is neither input base name nor output base name, the standard input is read and output normally
goes to the standard output. Output starts immediately, whithout waiting for \begin{document}. In other
words hevea acts as a filter.

Please note that this operating mode is just for translating isolated LATEX constructs. The normal way
to translate a full document file.tex being “hevea file.tex” and not “hevea < file.tex > file.html”.

C.1.1.4 Options

The hevea command recognizes the following options:

-v Verbose flag, can be repeated to increase verbosity. However, this is mostly for debug.

-s Suppress warnings.

-e filename Prevent hevea from loading any file whose name is filename. Note that this option applies to
all files, including hevea.hva and base style files.

-fix Iterate HEVEA until a fixpoint is found. Additionnaly, images get generated automatically.

-francais Set French mode. This has three consequences:

• Some words inserted by LATEX (such as “Chapter”, “Bibliography”, . . .) are replaced by French
word.

• Text replacement for symbols are in French (see the -nosymb option below).

• hevea sets the boolean register french to true.

-nosymb Avoid symbol font. In this mode, symbols are replaced by text-only equivalents. By default, these
equivalent are in English.

-noiso Do not output (iso-latin1) characters whose code is above 127 (i.e. output ascii only). These
characters are replaced by HTML entities. This option is mostly useful for generating HTML that will
be displayed properly by Netscape Communicator on a Macintosh.

-pedantic Be strict in interpreting HTMLdefinition. In particular, this option disable size and color changes
inside <PRE>. . . </PRE>, which are otherwise performed.

-I dirname Add dirname to the search path.

-o name Make name the output basename. However, if name is base.html, then the output basename is
base.

-help Print version number and a short help message.

The following options select and control alternative output formats (see section 10):

56

-text Output plain text. Output file extension is .txt.

-info Output info format. Output file extension is .info.

-w width Set the line width for text or info output, defaults to 72.

Part A of this document is a tutorial introduction to HEVEA, while HEVEA reference manual is part B.

C.1.2 HACHA usage

The hacha command interprets its argument as the name of a HTML source file to cut into pieces.
It also recognizes the following options:

-v Be a little verbose.

-o filename Make HACHA output go into file filename (defaults to index.html).

-tocbis Add a small table of contents at every file start.

-help Print version number and a short help message.

Section 7 of the user manual explains how to alter HACHA default behavior.

C.1.3 imagen usage

imagen is a simple shell script that translates a LATEX document into many .gif images.
It is a companion program of HEVEA, which must have been previously run as:

hevea. . . base.tex
or
hevea. . . -o base.html. . .

(In both cases, base is HEVEA output basename.) When told to do so (see section 6) HEVEA echoes part of
its input into the base.image.tex file.

The imagen script should then be run as:

imagen base

The imagen script produces one basennn.gif image file per page in the base.image.tex file.
This is done by first calling latex on base.image.tex, yielding one dvi file. Then, dvips translates this

file into one single Postscript file that contains all the images, or into one Postscript file per image, depending
upon your version of dvips. Postscript files are interpreted by ghostscript (gs) that outputs ppm images,
which are then fed into a series of transformations that change them into .gif files.

The imagen script recognizes the following options:

-mag nnnn Change the enlarging ratio that is applied while translating DVI into Postscript. More precisely,
dvips is run with -xnnnn option. Default value for this ration is 1414, this means that, by default,
imagen magnifies LATEX output by a factor of 1.414.

-extra command Insert command as an additional stage in imagen ppm to gif production chain. command
is an Unix filter that expects a ppm image in its standard input and outputs a ppm image on its
standard output. A sensible choice for command is one command from the netpbm package or several
such commands piped together.

These options enable users to correct some misbehaviors. For instance, when the document base style
is seminar, image orientation may be wrong and the images are too small. This can be cured by invoking
imagen as:

imagen -extra "pnmflip -ccw" -mag 2000 base

More information on producing images can be found in section 6.

57

C.1.4 Using make

Here is a typical Makefile for translating a doc.tex source file into HTML. The file is first translated into
doc.html by hevea, which also reads the specific style file macros.hva. Then, hacha cuts doc.html into
several, doc001.html, doc002.html, etc. also producing the table of links file index.html.

HEVEA=hevea
HEVEAOPTS=-fix
HACHA=hacha
#document base name
DOC=doc
index.html: $(DOC).html

$(HACHA) -o index.html $(DOC).html

$(DOC).html: macros.hva $(DOC).tex
$(HEVEA) $(HEVEAOPTS) macros.hva $(DOC).tex

clean:
rm -f $(DOC).html index.html $(DOC)[0-9][0-9][0-9].html $(DOC).haux

Note that the clean rule removes all the doc001.html, doc002.html, etc. files produced by hacha. Also
note that make clean also removes the doc.haux file. Thanks to the -fix options, hevea will run the
appropriate number of times.

When the image file feature is used, one can use the following, extended, Makefile:

HEVEA=hevea
HEVEAOPTS=-fix
HACHA=hacha
IMAGEN=imagen
#document base name
DOC=doc
index.html: $(DOC).html

$(HACHA) -o index.html $(DOC).html

$(DOC).html: macros.hva $(DOC).tex
$(HEVEA) $(HEVEAOPTS) macros.hva $(DOC).tex

clean:
rm -f $(DOC).html index.html $(DOC)[0-9][0-9][0-9].html $(DOC).haux
rm -f $(DOC).image.*
rm -f $(DOC)[0-9][0-9][0-9].gif

Observe that the clean rule now also gets rid of doc.image.tex and of the various files produced by imagen.
Note the following, useful feature : when given the -fix option, hevea will itself run imagen, if needed.

C.2 Browser configuration

By default, HEVEA insert now standard font changes in its output, using the FACE=symbol attribute to the
 tag. The symbol font is the one available on the Linux Red Hat distribution and seems to be
present on many Unix installations. A good way to know whether your browser can show HEVEA symbols or
not is comparing figure 1 and the web page located at symbol.html15.

Microsoft Explorer displays the symbol font by default.
By default, Netscape Communicator does not display symbol fonts as intended by HEVEA. On an Unix

system, the following procedure instructs Netscape Communicator to do so:
15http://pauillac.inria.fr/~maranget/hevea//doc/symbol.html

58

• Add the following line to your .Xdefaults file:

Netscape*documentFonts.charset*adobe-fontspecific: iso-8859-1

• Issue a xrdb .Xdefaults command.

• Restart Netscape.

On a Macintosh, choose Western (Mac Roman) in the item Document Encoding from the Pref-
erences menu. This will work only if the document does not contain iso-latin1 characters above 127. That
is, this will work only with documents that are generated by HEVEA with the -noiso option enabled (see
section C.1.1.4).

More details on browser configuration can be found at http://www.tex2html.com/unix/. More details
on symbol fonts can be found in section 3.2.2 of this manual. In particular, note that symbol fonts may be
completely avoided with the -nosymb option.

C.3 Availability

C.3.1 Internet stuff

HEVEA home page is http://pauillac.inria.fr/~maranget/hevea. It contains links to the on-line man-
ual16 and to the distribution17.

The author can be contacted at Luc.Maranget@inria.fr.

C.3.2 Law

HEVEA can be freely used and redistributed without modifications. Modifying and redistributing HEVEA
implies a few constraints. More precisely, HEVEA is distributed under the terms of the Q Public License,
but HEVEA binaries include the Objective Caml runtime system, which is distributed under the Gnu Library
General Public License (LGPL). See the LICENSE18 file for details.

C.4 Installation

C.4.1 Requirements

The programs hevea and hacha are written in Objective Caml19. Thus, you really need Objective Caml
(version 2.00 or further) to compile them. However, a Red Hat 5.2 binary distribution20 is also available, it
does not require an Objective Caml installation and can be installed on most Red Hat Linux PC’s.

HEVEA users may instruct the program not to process a part of the input (see section 6). Instead, this
part is processed into a .gif file and HEVEA outputs a link to the image file. LATEX source is changed into
.gif images by the the imagen script, which basically calls, LATEX, dvips, ghostscript21 and a few tools
from the image processing package netpbm22.

To benefit from the full functionality of HEVEA, you need all this software. However, HEVEA runs without
them, but then you will to manage to produce images by yourself.

16http://pauillac.inria.fr/~maranget/hevea/doc/
17ftp://ftp.inria.fr/INRIA/Projects/para/hevea
18ftp://ftp.inria.fr/INRIA/Projects/para/hevea/LICENSE
19http://caml.inria.fr/ocaml/
20ftp://ftp.inria.fr/INRIA/Projects/para/hevea/hevea-1.05-1.i386.rpm
21http://www.cs.wisc.edu/~ghost/index.html
22ftp://wuarchive.wustl.edu/graphics/graphics/packages/NetPBM

59

C.4.2 Principles

The details are given in the README file from the distribution. Basically, HEVEA should be given a library
directory. The installation procedure stores the hevea.hva and base style files in this directory. There are
two compilation modes, the opt mode selects the native code Ocaml compiler ocamlopt, while the byte
mode selects the bytecode Ocaml compiler ocamlc. In HEVEA case, ocamlopt produces code that is up to
three times as fast as the one produced by ocamlc. Thus, default compilation mode is opt, however it may
be the case on some systems that only ocamlc is available.

Note that the hevea.sty file is simply copied to HEVEA library directory. It remains users responsibility
to make it accessible to LATEX.

C.5 Other LATEX to HTML translators

This short section gives pointers to a few other translators. I performed not extensive testing and make no
thorough comparison.

LaTeX2html LaTeX2html is a full system. It is written in perl and calls LATEX when in trouble. As
a consequence, LaTeX2html is powerful but it may fail on large documents, for speed and memory
reasons. More information on LaTeX2html can be found at

http://www-dsed.llnl.gov/files/programs/unix/latex2html/

TTH The principle behind TTH is the same as the one of HEVEA: write a fast translator as a lexer, use
symbol fonts and tables. However, there are differences, TTH accepts both TEX and LATEX source,
TTH is written in C and the full source is not available (only lex output is available). Additionally,
TTH insist on not using any kind of LATEX generated information and will show proper cross-reference
labels, even when no .aux file is present. TTH output is a single document, whereas HACHA can cut
the output of HEVEA into several files. (however there exists a commercial version of TTH that provides
this extra functionality). TTH can be found at

http://hutchinson.belmont.ma.us/tth/.

htmlgen The htmlgen translator is specialized for producing the Caml manuals. This is HEVEA direct
ancestor and I owe much to its author, X. Leroy. See [htmlgen] for a description of htmlgen and a (bit
outdated) discussion on LATEX to HTML translation.

A fairly complete list of LATEX to HTML translators can be found at:

http://www.loria.fr/services/tex/english/outils.html

C.6 Acknowledgements

The following people contributed to HEVEA development:

• Philip A.Viton, maintains a window (win32) port of HEVEA.

• Christian Queinnec wrote an extra lexer to translate code snippets produced by its tool VideoC for
writing pedagogical documents on programming. The very principle he introduced for interfacing the
videoc lexer with HEVEA main lexer is now used extensively throughout HEVEA source code.

• Pierre Boulet, by using HEVEA as a stage in his tool MlDoc for documenting Objective Caml source
code, forced me into debugging HEVEA implementation of the alltt environment.

• Nicolas Tessaud implemented the -text and -info output modes (see section 10).

60

References

[LATEX-bis] M. Gooseens, F. Mittelbach, A. Samarin. The LATEX Companion Addison-Websley, 1994.

[LATEX] L. Lamport. A Document Preparation System System, LATEX, User’s Guide and Reference
Manual. Addison-Websley, 1994.

[htmlgen] X. Leroy. Lessons learned from the translation of documentation from LATEX to HTML.
ERCIM/W4G Int. Workshop on WWW Authoring and Integration Tools, 1995. Available
on the web at http://cristal.inria.fr/~xleroy/w4g.html

[HTML-3.2] D. Ragget. HTML 3.2 Reference Specification. Available on the web at http://www.w3.org/
TR/REC-html32, 1997.

[HTML-4.0] D. Ragget, A. Le Hors and I. Jacobs. HTML 4.0 Reference Specification. Available on the web
at http://www.w3.org/TR/REC-html40, 1997.

61

Index

##n, 49
\@bodyargs, 34
\@close, 28, 29
\@fontcolor, 28
\@fontsize, 28
\@getcolor, 29, 47
\@getprint, 28, 29
\@hr, 28
\@meta, 34
\@nostyle, 28, 29
\@open, 28, 29
\@print, 28, 29
\@style, 28

“ ” (space), 34
after macro, 7

in math, 8, 39

\ahref, 26
\ahrefloc, 26
\ahrefurl, 26
\aname, 26
argument

of commands, 33
of \input, 43

bgcolor environment, 29, 46
browser configuration, 58

color, 46
of background, see \@bodyargs
of section headings, 50

command
and arguments, 33
definition, 39, 48, 49
syntax, 32

comment
%BEGIN IMAGE, 18
%BEGIN LATEX, 18
%END IMAGE, 18
%END LATEX, 18
%HEVEA, 18

\cutdef, 23, 24
\cutend, 23, 24
cutflow environment, 25
\cuthere, 23, 24
\cutname, 25
cuttingdepth counter, 23
\cuttingunit, 23, 24

\def, 48

\else, 49

\fi, 49
\footahref, 26
\footurl, 27
french boolean register, 41

\gdef, 49
\global, 49

hevea boolean register, 18
\heveadate, 50
\home, 26
\htmlcolor, 27
\htmlfoot, 34
\htmlhead, 34
htmlonly environment, 16
hyperlinks, 26, 54

\if, 49
image inclusion

in GIF, 27
in Postcript, 20, 31, 45

\imageflush, 19, 31
imagen output format, 31
\imgsrc, 26, 27, 29, 31
indexcols counter, 43
indexenv environment, 43
\input, 43

latexonly environment, 16, 17
\let, 34, 49

\mailto, 26
math accents, 39, 48

\newcommand, 39
\newif, 49

\oneurl, 27

PNG, 31
\purple, 29

rawhtml environment, 16, 28, 34
\renewcommand, 39

spacing, see “ ”
\sqrt, 38

\texdef, 48
\texlet, 49
\textoverline, 38

62

\textstackrel, 38
\textunderline, 38
\today, 36, 50
toimage environment, 16, 17, 19

\url, 26, 54
url package, 54
\urldef, 54

verbimage environment, 16, 17
verblatex environment, 16, 17

xxdate.exe script, 50

63

	A. Tutorial
	1. How to get started
	2. Style files
	3. A note on style
	4. How to detect and correct errors
	5. Making HeVeA and LaTeX both happy
	6. With a little help from LaTeX
	7. Cutting your document into pieces with HaChA
	8. Generating HTML constructs
	9. Customizing HeVeA
	10. Other output formats

	B. Reference manual
	B.1. Commands and Environments
	B.2. The Structure of the Document
	B.3. Sentences and Paragraphs
	B.4. Sectioning
	B.5. Classes, Packages and Page Styles
	B.6. Displayed Paragraphs
	B.7. Mathematical Formulas
	B.8. Definitions, Numbering
	B.9. Figures and Other Floating Bodies
	B.10. Lining It Up in Columns
	B.11. Moving Information Around
	B.12. Line and Page Breaking
	B.13. Lengths, Spaces and Boxes
	B.14. Pictures and Colors
	B.15. Font Selection
	B.16. Extra Features
	B.17. Implemented Packages

	C. Practical information
	C.1. Usage
	C.2. Browser configuration
	C.3. Availability
	C.4. Installation
	C.5. Other translators
	C.6. Acknowledgements

