{ encompasses everything performed by bracket indexing in other languages. The ranks are 0 _ , that is, x{y can be considered individually for each scalar in x and for y in toto, with the overall result constructed from the individual results in the same way as for all other functions. For scalar x then:
>x is a scalar or a list, and r=:>j{,>x are the indices for axis j. r may be integers in the range i.&.(+&n)n=:j{$y, which selects cells n|r, or r may be boxed integers in that range, in which case the selected cells are all except those in n|r. Thus:
z=: 0{y=: 3 3 3$'ABCDEFGHIJKLMNOPQRSTUVWXYZ]' ibbb=: <ibb=: <ib=: <i=: 1 _1 jbbb=: <jbb=: <jb=: <j=: 2 1 ijbbb=: <ijbb=: <ijb=: <ij=: 2 2$i,j (] ; i&{ ; ib&{ ; ibb&{ ; ibbb&{) z +-----------------+ ¦ABC¦DEF¦F¦DEF¦ABC¦ ¦DEF¦GHI¦ ¦GHI¦ ¦ ¦GHI¦ ¦ ¦ ¦ ¦ +-----------------+ ijb{y ¦rank error ¦ ijb {y (] ; i&{ ; ijbb&{ ; ijbbb&{) z +---------------+ ¦ABC¦DEF¦DEF¦ABC¦ ¦DEF¦GHI¦GHI¦ ¦ ¦GHI¦ ¦ ¦ ¦ ¦ ¦ ¦GHI¦ ¦ ¦ ¦ ¦DEF¦ ¦ +---------------+
The amend adverb } applied to an index produces a function that replaces the selected part of the right argument by the left argument. For example:
'*' ib} z ABC DE* GHI ('def',:'ghi') i} z ABC def ghi (] ; i&{ ; ib&{ ; ibb&{ ; ibbb&{)"2 y +-----------------+ ¦ABC¦DEF¦F¦DEF¦ABC¦ ¦DEF¦GHI¦ ¦GHI¦ ¦ ¦GHI¦ ¦ ¦ ¦ ¦ +---+---+-+---+---¦ ¦JKL¦MNO¦O¦MNO¦JKL¦ ¦MNO¦PQR¦ ¦PQR¦ ¦ ¦PQR¦ ¦ ¦ ¦ ¦ +---+---+-+---+---¦ ¦STU¦VWX¦X¦VWX¦STU¦ ¦VWX¦YZ]¦ ¦YZ]¦ ¦ ¦YZ]¦ ¦ ¦ ¦ ¦ +-----------------+ $(<<'') { z 0 3 $(<a:) { z 0 3
Indexing on higher-rank arrays may be illustrated by the argument y:
]k=: <1 2;a:;0 2 +------------+ ¦+----------+¦ ¦¦1 2¦++¦0 2¦¦ ¦¦ ¦¦¦¦ ¦¦ ¦¦ ¦++¦ ¦¦ ¦+----------+¦ +------------+ y ; k{y +------+ ¦ABC¦JL¦ ¦DEF¦MO¦ ¦GHI¦PR¦ ¦ ¦ ¦ ¦JKL¦SU¦ ¦MNO¦VX¦ ¦PQR¦Y]¦ ¦ ¦ ¦ ¦STU¦ ¦ ¦VWX¦ ¦ ¦YZ]¦ ¦ +------+
The following examples further illustrate the use of the indexing function. For each example, it may be instructive to plug the values into the expression r=:>j{,>x and work out the result.
n0=: y=: i.4 5 6 7 | Array used in examples |
n1=: (<,<3){y | Item 3 of y |
n2=: (<,3){y | Item 3 of y |
n3=: (<3){y | Item 3 of y |
n4=: 3{y | Item 3 of y |
n5=: (<,<_1){y | The last item of y (item _1 of y) |
n6=: (<,_1){y | The last item of y (shape 5 6 7) |
n7=: (<_1){y | The last item of y |
n8=: _1{y | The last item of y |
n9=: (_1+#y){y | The last item of y |
n10=: 0{y | The first item of y |
n11=: (-#y){y | The first item of y |
n12=: 3 0 _2 0{y | Items 3 0 _2 0 of y |
n13=: i=: ?2 3$0{$y | Indices used in examples |
n14=: j=: ? 1{$y | Indices used in examples |
n15=: k=: ?7 $2{$y | Indices used in examples |
n16=: (<i;j;k){y | y[i;j;k;]in APL notation |
n17=: (<1;2;3){y | y[1;2;3;] |
n18=: (<1,2,3){y | y[1;2;3;] |
n19=: (<1 2 3){y | y[1;2;3;] |
n20=: (<<i){y | y[i;;;;] |
n21=: (<<,i){y | y[,i;;...;] |
n22=: (,i){y | y[,i;;...;] |
n23=: (<<1 3 2){y | Items 1 3 2 |
n24=: (<<<1 3 2){y | All but items 1 3 2 |
n25=: (<<<1 3){y | All but items 1 3 |
n26=: (<<<1){y | All but items 1 |
n27=: (<<<$0){y | All but items ... none; i.e. all items |
n28=: (<<a:){y | All items |
n29=: (<1 3 2;3){y | y[1 3 2;3;;...;]in APL (0-origin) |
n30=: (<(<1 3 2);3){y | y[(i.#y)-.1 3 2;3;;...;] |
n31=: (<(<1 3);3){y | y[(i.#y)-.1 3;3;;...;] |
n32=: (<(<1);3){y | y[(i.#y)-.1;3;;...;] |
n33=: (<(<$0);3){y | y[(i.#y)-.$0;3;;...;] |
n34=: (<(<$0);3){y | y[;3;;...;] |
n35=: (<a:;3){y | y[;3;;...;] |
n36=: 4{"_1 y | y[;4;;...;] |
n37=: (<a:;a:;5){y | y[;;5;...;] |
n38=: 5{"_2 y | y[;;5;...;] |
n39=: (<1 2){y | Abbreviated (fewer indices than axes) |
n40=: _2{y | Negative |
n41=: (<<<3){y | Complementary |
n42=: (1 2;3 2;0 _2){y | Scattered (non-scalar left argument) |