
Python Library Reference
Release 1.5.2

Guido van Rossum

March 22, 2000

Corporation for National Research Initiatives
1895 Preston White Drive, Reston, VA 20191, USA

E-mail: guido@python.org

Copyright c© 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in supporting documentation, and that the
names of Stichting Mathematisch Centrum or CWI or Corporation for National Research Initiatives or
CNRI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

While CWI is the initial source for this software, a modified version is made available by the Corporation
for National Research Initiatives (CNRI) at the Internet address ftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH RE-
GARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAM-
AGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range
of applications, from simple text processing scripts to interactive WWW browsers.

While the Python Reference Manual describes the exact syntax and semantics of the language, it does
not describe the standard library that is distributed with the language, and which greatly enhances its
immediate usability. This library contains built-in modules (written in C) that provide access to system
functionality such as file I/O that would otherwise be inaccessible to Python programmers, as well as
modules written in Python that provide standardized solutions for many problems that occur in everyday
programming. Some of these modules are explicitly designed to encourage and enhance the portability
of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library
modules (which may or may not be available, depending on whether the underlying platform supports
them and on the configuration choices made at compile time). It also documents the standard types of the
language and its built-in functions and exceptions, many of which are not or incompletely documented
in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to
Python, see the Python Tutorial; the Python Reference Manual remains the highest authority on syntactic
and semantic questions. Finally, the manual entitled Extending and Embedding the Python Interpreter
describes how to add new extensions to Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-in Types, Exceptions and Functions 3
2.1 Built-in Types . 3
2.2 Built-in Exceptions . 12
2.3 Built-in Functions . 15

3 Python Services 23
3.1 sys — System-specific parameters and functions . 23
3.2 types — Names for all built-in types . 27
3.3 UserDict — Class wrapper for dictionary objects . 28
3.4 UserList — Class wrapper for list objects . 28
3.5 operator — Standard operators as functions. 29
3.6 traceback — Print or retrieve a stack traceback . 31
3.7 linecache — Random access to text lines . 32
3.8 pickle — Python object serialization . 33
3.9 cPickle — Alternate implementation of pickle . 37
3.10 copy reg — Register pickle support functions . 38
3.11 shelve — Python object persistency . 38
3.12 copy — Shallow and deep copy operations . 39
3.13 marshal — Alternate Python object serialization . 40
3.14 imp — Access the import internals . 41
3.15 parser — Access Python parse trees . 44
3.16 symbol — Constants used with Python parse trees . 53
3.17 token — Constants used with Python parse trees . 53
3.18 keyword — Testing for Python keywords . 54
3.19 tokenize — Tokenizer for Python source . 54
3.20 pyclbr — Python class browser support . 54
3.21 code — Interpreter base classes . 55
3.22 codeop — Compile Python code . 57
3.23 pprint — Data pretty printer. 57
3.24 repr — Alternate repr() implementation. 59
3.25 py compile — Compile Python source files . 61
3.26 compileall — Byte-compile Python libraries . 61
3.27 dis — Disassembler. 61
3.28 new — Runtime implementation object creation . 67
3.29 site — Site-specific configuration hook . 67
3.30 user — User-specific configuration hook . 68
3.31 builtin — Built-in functions . 69
3.32 main — Top-level script environment. 69

4 String Services 71
4.1 string — Common string operations . 71

i

4.2 re — Perl-style regular expression operations. 74
4.3 regex — Regular expression search and match operations. 81
4.4 regsub — String operations using regular expressions . 85
4.5 struct — Interpret strings as packed binary data. 85
4.6 fpformat — Floating point conversions . 88
4.7 StringIO — Read and write strings as files . 88
4.8 cStringIO — Faster version of StringIO . 88

5 Miscellaneous Services 91
5.1 math — Mathematical functions . 91
5.2 cmath — Mathematical functions for complex numbers 93
5.3 random — Generate pseudo-random numbers . 94
5.4 whrandom — Pseudo-random number generator . 95
5.5 bisect — Array bisection algorithm . 95
5.6 array — Efficient arrays of numeric values . 96
5.7 ConfigParser — Configuration file parser . 98
5.8 fileinput — Iterate over lines from multiple input streams 100
5.9 calendar — General calendar-related functions . 101
5.10 cmd — Build line-oriented command interpreters. 101
5.11 shlex — Simple lexical analysis . 103

6 Generic Operating System Services 105
6.1 os — Miscellaneous OS interfaces . 105
6.2 os.path — Common pathname manipulations . 113
6.3 dircache — Cached directory listings . 115
6.4 stat — Interpreting stat() results . 116
6.5 statcache — An optimization of os.stat() . 117
6.6 statvfs — Constants used with os.statvfs() . 118
6.7 cmp — File comparisons . 119
6.8 cmpcache — Efficient file comparisons . 119
6.9 time — Time access and conversions . 119
6.10 sched — Event scheduler . 123
6.11 getpass — Portable password input . 124
6.12 curses — Terminal independant console handling . 124
6.13 getopt — Parser for command line options. 128
6.14 tempfile — Generate temporary file names . 129
6.15 errno — Standard errno system symbols. 130
6.16 glob — Unix style pathname pattern expansion . 135
6.17 fnmatch — Unix filename pattern matching . 136
6.18 shutil — High-level file operations . 136
6.19 locale — Internationalization services . 138
6.20 mutex — Mutual exclusion support . 141

7 Optional Operating System Services 143
7.1 signal — Set handlers for asynchronous events. 143
7.2 socket — Low-level networking interface . 145
7.3 select — Waiting for I/O completion . 149
7.4 thread — Multiple threads of control . 150
7.5 threading — Higher-level threading interface . 151
7.6 Queue — A synchronized queue class. 157
7.7 anydbm — Generic access to DBM-style databases . 158
7.8 dumbdbm — Portable DBM implementation . 159
7.9 dbhash — DBM-style interface to the BSD database library 159
7.10 whichdb — Guess which DBM module created a database 160
7.11 bsddb — Interface to Berkeley DB library . 160
7.12 zlib — Compression compatible with gzip . 162
7.13 gzip — Support for gzip files . 164
7.14 rlcompleter — Completion function for readline . 164

ii

8 Unix Specific Services 167
8.1 posix — The most common POSIX system calls . 167
8.2 pwd — The password database . 168
8.3 grp — The group database . 169
8.4 crypt — Function to check Unix passwords . 169
8.5 dl — Call C functions in shared objects . 170
8.6 dbm — Simple “database” interface . 171
8.7 gdbm — GNU’s reinterpretation of dbm . 172
8.8 termios — POSIX style tty control . 173
8.9 TERMIOS — Constants used with the termios module . 174
8.10 tty — Terminal control functions . 174
8.11 pty — Pseudo-terminal utilities . 174
8.12 fcntl — The fcntl() and ioctl() system calls . 175
8.13 pipes — Interface to shell pipelines . 176
8.14 posixfile — File-like objects with locking support . 177
8.15 resource — Resource usage information . 178
8.16 nis — Interface to Sun’s NIS (Yellow Pages) . 181
8.17 syslog — Unix syslog library routines . 181
8.18 popen2 — Subprocesses with accessible I/O streams . 182
8.19 commands — Utilities for running commands . 183

9 The Python Debugger 185
9.1 Debugger Commands . 186
9.2 How It Works . 188

10 The Python Profiler 191
10.1 Introduction to the profiler . 191
10.2 How Is This Profiler Different From The Old Profiler? . 191
10.3 Instant Users Manual . 192
10.4 What Is Deterministic Profiling? . 193
10.5 Reference Manual . 194
10.6 Limitations . 197
10.7 Calibration . 197
10.8 Extensions — Deriving Better Profilers . 198

11 Internet Protocols and Support 203
11.1 cgi — Common Gateway Interface support. 203
11.2 urllib — Open an arbitrary resource by URL . 209
11.3 httplib — HTTP protocol client . 213
11.4 ftplib — FTP protocol client . 214
11.5 gopherlib — Gopher protocol client . 217
11.6 poplib — POP3 protocol client . 217
11.7 imaplib — IMAP4 protocol client . 219
11.8 nntplib — NNTP protocol client . 221
11.9 smtplib — SMTP protocol client . 224
11.10 telnetlib — Telnet client . 227
11.11 urlparse — Parse URLs into components. 229
11.12 SocketServer — A framework for network servers. 230
11.13 BaseHTTPServer — Basic HTTP server. 232
11.14 SimpleHTTPServer — A Do-Something Request Handler 234
11.15 CGIHTTPServer — A Do-Something Request Handler . 235
11.16 asyncore — Asynchronous socket handler . 235

12 Internet Data Handling 239
12.1 sgmllib — Simple SGML parser . 239
12.2 htmllib — A parser for HTML documents . 241
12.3 htmlentitydefs — Definitions of HTML general entities 243
12.4 xmllib — A parser for XML documents . 243
12.5 formatter — Generic output formatting . 245

iii

12.6 rfc822 — Parse RFC 822 mail headers . 249
12.7 mimetools — Tools for parsing MIME messages . 252
12.8 MimeWriter — Generic MIME file writer . 253
12.9 multifile — Support for files containing distinct parts 253
12.10 binhex — Encode and decode binhex4 files . 255
12.11 uu — Encode and decode uuencode files . 256
12.12 binascii — Convert between binary and ascii . 256
12.13 xdrlib — Encode and decode XDR data. 257
12.14 mailcap — Mailcap file handling. 260
12.15 mimetypes — Map filenames to MIME types . 261
12.16 base64 — Encode and decode MIME base64 data . 262
12.17 quopri — Encode and decode MIME quoted-printable data 262
12.18 mailbox — Read various mailbox formats . 263
12.19 mhlib — Access to MH mailboxes . 263
12.20 mimify — MIME processing of mail messages . 265
12.21 netrc — netrc file processing . 266

13 Restricted Execution 267
13.1 rexec — Restricted execution framework . 268
13.2 Bastion — Restricting access to objects . 270

14 Multimedia Services 271
14.1 audioop — Manipulate raw audio data . 271
14.2 imageop — Manipulate raw image data . 274
14.3 aifc — Read and write AIFF and AIFC files . 275
14.4 sunau — Read and write Sun AU files . 277
14.5 wave — Read and write WAV files . 279
14.6 chunk — Read IFF chunked data . 280
14.7 colorsys — Conversions between color systems . 281
14.8 rgbimg — Read and write “SGI RGB” files . 282
14.9 imghdr — Determine the type of an image. 283
14.10 sndhdr — Determine type of sound file. 283

15 Cryptographic Services 285
15.1 md5 — MD5 message digest algorithm . 285
15.2 sha — SHA message digest algorithm . 286
15.3 mpz — GNU arbitrary magnitude integers . 286
15.4 rotor — Enigma-like encryption and decryption. 287

16 SGI IRIX Specific Services 289
16.1 al — Audio functions on the SGI . 289
16.2 AL — Constants used with the al module . 291
16.3 cd — CD-ROM access on SGI systems . 291
16.4 fl — FORMS library interface for GUI applications . 294
16.5 FL — Constants used with the fl module . 299
16.6 flp — Functions for loading stored FORMS designs . 299
16.7 fm — Font Manager interface . 299
16.8 gl — Graphics Library interface . 300
16.9 DEVICE — Constants used with the gl module . 302
16.10 GL — Constants used with the gl module . 302
16.11 imgfile — Support for SGI imglib files . 302
16.12 jpeg — Read and write JPEG files . 303

17 SunOS Specific Services 305
17.1 sunaudiodev — Access to Sun audio hardware . 305
17.2 SUNAUDIODEV — Constants used with sunaudiodev . 306

18 MS Windows Specific Services 307
18.1 msvcrt – Useful routines from the MS VC++ runtime . 307

iv

18.2 winsound — Sound-playing interface for Windows . 308

19 Undocumented Modules 309
19.1 Frameworks . 309
19.2 Miscellaneous useful utilities . 309
19.3 Platform specific modules . 309
19.4 Multimedia . 310
19.5 Obsolete . 310
19.6 Extension modules . 311

Module Index 313

Index 315

v

vi

CHAPTER

ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as
numbers and lists. For these types, the Python language core defines the form of literals and places some
constraints on their semantics, but does not fully define the semantics. (On the other hand, the language
core does define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python
code without the need of an import statement. Some of these are defined by the core language, but
many are not essential for the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect
this collection. Some modules are written in C and built in to the Python interpreter; others are written
in Python and imported in source form. Some modules provide interfaces that are highly specific to
Python, like printing a stack trace; some provide interfaces that are specific to particular operating
systems, such as access to specific hardware; others provide interfaces that are specific to a particular
application domain, like the World-Wide Web. Some modules are avaiable in all versions and ports of
Python; others are only available when the underlying system supports or requires them; yet others are
available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in
functions and exceptions, and finally the modules, grouped in chapters of related modules. The ordering
of the chapters as well as the ordering of the modules within each chapter is roughly from most relevant
to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when
you get bored, you will get a reasonable overview of the available modules and application areas that
are supported by the Python library. Of course, you don’t have to read it like a novel — you can also
browse the table of contents (in front of the manual), or look for a specific function, module or term in
the index (in the back). And finally, if you enjoy learning about random subjects, you choose a random
page number (see module random) and read a section or two. Regardless of the order in which you read
the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions and Functions,”
as the remainder of the manual assumes familiarity with this material.

Let the show begin!

1

2

CHAPTER

TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched
last when the interpreter looks up the meaning of a name, so local and global user-defined names can
override built-in names. Built-in types are described together here for easy reference.1

The tables in this chapter document the priorities of operators by listing them in order of ascending
priority (within a table) and grouping operators that have the same priority in the same box. Binary
operators of the same priority group from left to right. (Unary operators group from right to left, but
there you have no real choice.) See chapter 5 of the Python Reference Manual for the complete picture
on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the
numeric types, sequence types, and several others, including types themselves. There is no explicit
Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested
for truth value, and converted to a string (with the ‘. . . ‘ notation). The latter conversion is implicitly
used when an object is written by the print statement.

2.1.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

• None

• zero of any numeric type, for example, 0, 0L, 0.0, 0j.

• any empty sequence, for example, ’’, (), [].

• any empty mapping, for example, {}.

• instances of user-defined classes, if the class defines a nonzero () or len () method,
when that method returns zero.2

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 for false and 1 for true,
unless otherwise stated. (Important exception: the Boolean operations ‘or’ and ‘and’ always return one
of their operands.)

1Most descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version
of this manual.

2Additional information on these special methods may be found in the Python Reference Manual.

3

2.1.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation Result Notes
x or y if x is false, then y , else x (1)

x and y if x is false, then x , else y (1)
not x if x is false, then 1, else 0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not’ has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a ==
b), and a == not b is a syntax error.

2.1.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher
than that of the Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <=
z is equivalent to x < y and y <= z , except that y is evaluated only once (but in both cases z is not
evaluated at all when x < y is found to be false).

This table summarizes the comparison operations:

Operation Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
<> not equal (1)
!= not equal (1)
is object identity

is not negated object identity

Notes:

(1) <> and != are alternate spellings for the same operator. (I couldn’t choose between abc and C! :-)
!= is the preferred spelling; <> is obsolescent.

Objects of different types, except different numeric types, never compare equal; such objects are ordered
consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Further-
more, some types (for example, file objects) support only a degenerate notion of comparison where any
two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently.

Instances of a class normally compare as non-equal unless the class defines the cmp () method. Refer
to the Python Reference Manual for information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names;
objects of the same types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, ‘in’ and ‘not in’, are supported only by sequence
types (below).

2.1.4 Numeric Types

There are four numeric types: plain integers, long integers, floating point numbers, and complex numbers.
Plain integers (also just called integers) are implemented using long in C, which gives them at least 32

4 Chapter 2. Built-in Types, Exceptions and Functions

bits of precision. Long integers have unlimited precision. Floating point numbers are implemented using
double in C. All bets on their precision are off unless you happen to know the machine you are working
with.

Complex numbers have a real and imaginary part, which are both implemented using double in C. To
extract these parts from a complex number z , use z.real and z.imag.

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned
integer literals (including hex and octal numbers) yield plain integers. Integer literals with an ‘L’ or
‘l’ suffix yield long integers (‘L’ is preferred because ‘1l’ looks too much like eleven!). Numeric literals
containing a decimal point or an exponent sign yield floating point numbers. Appending ‘j’ or ‘J’ to a
numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different
numeric types, the operand with the “smaller” type is converted to that of the other, where plain integer
is smaller than long integer is smaller than floating point is smaller than complex. Comparisons between
numbers of mixed type use the same rule.3 The functions int(), long(), float(), and complex() can
be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same
box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
x + y sum of x and y
x - y difference of x and y
x * y product of x and y
x / y quotient of x and y (1)
x % y remainder of x / y
-x x negated
+x x unchanged

abs(x) absolute value or magnitude of x
int(x) x converted to integer (2)
long(x) x converted to long integer (2)
float(x) x converted to floating point

complex(re,im) a complex number with real part re, imaginary part im. im defaults to zero.
c.conjugate() conjugate of the complex number c
divmod(x, y) the pair (x / y, x % y) (3)
pow(x, y) x to the power y

x ** y x to the power y

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards
minus infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long
integer if either operand is a long integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functions
floor() and ceil() in module math for well-defined conversions.

(3) See section 2.3, “Built-in Functions,” for a full description.

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative
numbers are treated as their 2’s complement value (for long integers, this assumes a sufficiently large
number of bits that no overflow occurs during the operation).

3As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similar for tuples.

2.1. Built-in Types 5

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than
the comparisons; the unary operation ‘~’ has the same priority as the other unary numeric operations
(‘+’ and ‘-’).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have
the same priority):

Operation Result Notes
x | y bitwise or of x and y
x ^ y bitwise exclusive or of x and y
x & y bitwise and of x and y

x << n x shifted left by n bits (1), (2)
x >> n x shifted right by n bits (1), (3)

~x the bits of x inverted

Notes:

(1) Negative shift counts are illegal and cause a ValueError to be raised.

(2) A left shift by n bits is equivalent to multiplication by pow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division by pow(2, n) without overflow check.

2.1.5 Sequence Types

There are three sequence types: strings, lists and tuples.

Strings literals are written in single or double quotes: ’xyzzy’, "frobozz". See chapter 2 of the Python
Reference Manual for more about string literals. Lists are constructed with square brackets, separating
items with commas: [a, b, c]. Tuples are constructed by the comma operator (not within square
brackets), with or without enclosing parentheses, but an empty tuple must have the enclosing parentheses,
e.g., a, b, c or (). A single item tuple must have a trailing comma: (d,).

Sequence types support the following operations. The ‘in’ and ‘not in’ operations have the same priori-
ties as the comparison operations. The ‘+’ and ‘*’ operations have the same priority as the corresponding
numeric operations.4

This table lists the sequence operations sorted in ascending priority (operations in the same box have
the same priority). In the table, s and t are sequences of the same type; n, i and j are integers:

Operation Result Notes
x in s 1 if an item of s is equal to x , else 0

x not in s 0 if an item of s is equal to x , else 1
s + t the concatenation of s and t

s * n, n * s n copies of s concatenated (1)
s[i] i ’th item of s, origin 0 (2)

s[i:j] slice of s from i to j (2), (3)
len(s) length of s
min(s) smallest item of s
max(s) largest item of s

Notes:

(1) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s).

(2) If i or j is negative, the index is relative to the end of the string, i.e., len(s) + i or len(s) + j is
substituted. But note that -0 is still 0.

(3) The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j . If
i or j is greater than len(s), use len(s). If i is omitted, use 0. If j is omitted, use len(s). If i
is greater than or equal to j , the slice is empty.

4They must have since the parser can’t tell the type of the operands.

6 Chapter 2. Built-in Types, Exceptions and Functions

More String Operations

String objects have one unique built-in operation: the % operator (modulo) with a string left argument
interprets this string as a C sprintf() format string to be applied to the right argument, and returns
the string resulting from this formatting operation.

The right argument should be a tuple with one item for each argument required by the format string; if
the string requires a single argument, the right argument may also be a single non-tuple object.5 The
following format characters are understood: %, c, s, i, d, u, o, x, X, e, E, f, g, G. Width and precision may
be a * to specify that an integer argument specifies the actual width or precision. The flag characters
-, +, blank, # and 0 are understood. The size specifiers h, l or L may be present but are ignored. The
%s conversion takes any Python object and converts it to a string using str() before formatting it. The
ANSI features %p and %n are not supported. Since Python strings have an explicit length, %s conversions
don’t assume that ’\0’ is the end of the string.

For safety reasons, floating point precisions are clipped to 50; %f conversions for numbers whose absolute
value is over 1e25 are replaced by %g conversions.6 All other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have
a parenthesized key into that dictionary inserted immediately after the ‘%’ character, and each format
formats the corresponding entry from the mapping. For example:

>>> count = 2

>>> language = ’Python’

>>> print ’%(language)s has %(count)03d quote types.’ % vars()

Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

Additional string operations are defined in standard module string and in built-in module re.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations
would be supported by other mutable sequence types (when added to the language) as well. Strings and
tuples are immutable sequence types and such objects cannot be modified once created. The following
operations are defined on mutable sequence types (where x is an arbitrary object):

Operation Result Notes
s[i] = x item i of s is replaced by x

s[i:j] = t slice of s from i to j is replaced by t
del s[i:j] same as s[i:j] = []

s.append(x) same as s[len(s):len(s)] = [x] (1)
s.extend(x) same as s[len(s):len(s)] = x (2)
s.count(x) return number of i ’s for which s[i] == x
s.index(x) return smallest i such that s[i] == x (3)

s.insert(i, x) same as s[i:i] = [x] if i >= 0

s.pop([i]) same as x = s[i]; del s[i]; return x (4)
s.remove(x) same as del s[s.index(x)] (3)
s.reverse() reverses the items of s in place (5)

s.sort([cmpfunc]) sort the items of s in place (5), (6)

Notes:

(1) The C implementation of Python has historically accepted multiple parameters and implicitly joined
5A tuple object in this case should be a singleton.
6These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without

hampering correct use and without having to know the exact precision of floating point values on a particular machine.

2.1. Built-in Types 7

them into a tuple; this will no longer work in Python 1.6. Use of this misfeature has been deprecated
since Python 1.4.

(2) Raises an exception when x is not a list object. The extend() method is experimental and not
supported by mutable sequence types other than lists.

(3) Raises ValueError when x is not found in s.

(4) The pop() method is experimental and not supported by other mutable sequence types than lists.
The optional argument i defaults to -1, so that by default the last item is removed and returned.

(5) The sort() and reverse() methods modify the list in place for economy of space when sorting or
reversing a large list. They don’t return the sorted or reversed list to remind you of this side effect.

(6) The sort() method takes an optional argument specifying a comparison function of two arguments
(list items) which should return -1, 0 or 1 depending on whether the first argument is considered
smaller than, equal to, or larger than the second argument. Note that this slows the sorting process
down considerably; e.g. to sort a list in reverse order it is much faster to use calls to the methods
sort() and reverse() than to use the built-in function sort() with a comparison function that
reverses the ordering of the elements.

2.1.6 Mapping Types

A mapping object maps values of one type (the key type) to arbitrary objects. Mappings are mutable
objects. There is currently only one standard mapping type, the dictionary. A dictionary’s keys are
almost arbitrary values. The only types of values not acceptable as keys are values containing lists or
dictionaries or other mutable types that are compared by value rather than by object identity. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (e.g.
1 and 1.0) then they can be used interchangeably to index the same dictionary entry.

Dictionaries are created by placing a comma-separated list of key: value pairs within braces, for ex-
ample: {’jack’: 4098, ’sjoerd’: 4127} or {4098: ’jack’, 4127: ’sjoerd’}.

The following operations are defined on mappings (where a and b are mappings, k is a key, and v and x
are arbitrary objects):

Operation Result Notes
len(a) the number of items in a
a[k] the item of a with key k (1)

a[k] = x set a[k] to x
del a[k] remove a[k] from a (1)
a.clear() remove all items from a
a.copy() a (shallow) copy of a

a.has key(k) 1 if a has a key k , else 0
a.items() a copy of a’s list of (key , value) pairs (2)
a.keys() a copy of a’s list of keys (2)

a.update(b) for k, v in b.items(): a[k] = v (3)
a.values() a copy of a’s list of values (2)

a.get(k[, x]) a[k] if a.has key(k), else x (4)

Notes:

(1) Raises a KeyError exception if k is not in the map.

(2) Keys and values are listed in random order. If keys() and values() are called with no intervening
modifications to the dictionary, the two lists will directly correspond. This allows the creation of
(value, key) pairs using map(): ‘pairs = map(None, a.values(), a.keys())’.

(3) b must be of the same type as a.

(4) Never raises an exception if k is not in the map, instead it returns x . x is optional; when x is not
provided and k is not in the map, None is returned.

8 Chapter 2. Built-in Types, Exceptions and Functions

2.1.7 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute access: m.name, where m is a module and name
accesses a name defined in m’s symbol table. Module attributes can be assigned to. (Note that the
import statement is not, strictly speaking, an operation on a module object; import foo does not
require a module object named foo to exist, rather it requires an (external) definition for a module
named foo somewhere.)

A special member of every module is dict . This is the dictionary containing the module’s symbol
table. Modifying this dictionary will actually change the module’s symbol table, but direct assignment
to the dict attribute is not possible (i.e., you can write m. dict [’a’] = 1, which defines
m.a to be 1, but you can’t write m. dict = {}.

Modules built into the interpreter are written like this: <module ’sys’ (built-in)>. If loaded from a
file, they are written as <module ’os’ from ’/usr/local/lib/python1.5/os.pyc’>.

Classes and Class Instances

See chapters 3 and 7 of the Python Reference Manual for these.

Functions

Function objects are created by function definitions. The only operation on a function object is to call
it: func(argument-list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both
support the same operation (to call the function), but the implementation is different, hence the different
object types.

The implementation adds two special read-only attributes: f .func code is a function’s code object (see
below) and f .func globals is the dictionary used as the function’s global name space (this is the same
as m. dict where m is the module in which the function f was defined).

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in
methods (such as append() on lists) and class instance methods. Built-in methods are described with
the types that support them.

The implementation adds two special read-only attributes to class instance methods: m.im self is the
object on which the method operates, and m.im func is the function implementing the method. Call-
ing m(arg-1, arg-2, . . . , arg-n) is completely equivalent to calling m.im func(m.im self, arg-1,
arg-2, . . . , arg-n).

See the Python Reference Manual for more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code
such as a function body. They differ from function objects because they don’t contain a reference to
their global execution environment. Code objects are returned by the built-in compile() function and
can be extracted from function objects through their func code attribute.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec statement
or the built-in eval() function.

2.1. Built-in Types 9

See the Python Reference Manual for more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function
type(). There are no special operations on types. The standard module types defines names for all
standard built-in types.

Types are written like this: <type ’int’>.

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations.
There is exactly one null object, named None (a built-in name).

It is written as None.

The Ellipsis Object

This object is used by extended slice notation (see the Python Reference Manual). It supports no special
operations. There is exactly one ellipsis object, named Ellipsis (a built-in name).

It is written as Ellipsis.

File Objects

File objects are implemented using C’s stdio package and can be created with the built-in function
open() described in section 2.3, “Built-in Functions.” They are also returned by some other built-in
functions and methods, e.g., posix.popen() and posix.fdopen() and the makefile() method of socket
objects.

When a file operation fails for an I/O-related reason, the exception IOError is raised. This includes
situations where the operation is not defined for some reason, like seek() on a tty device or writing a
file opened for reading.

Files have the following methods:

close()
Close the file. A closed file cannot be read or written anymore.

flush()
Flush the internal buffer, like stdio’s fflush().

isatty()
Return 1 if the file is connected to a tty(-like) device, else 0.

fileno()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O
operations from the operating system. This can be useful for other, lower level interfaces that use
file descriptors, e.g. module fcntl or os.read() and friends.

read([size])
Read at most size bytes from the file (less if the read hits eof before obtaining size bytes). If the
size argument is negative or omitted, read all data until eof is reached. The bytes are returned as
a string object. An empty string is returned when eof is encountered immediately. (For certain
files, like ttys, it makes sense to continue reading after an eof is hit.) Note that this method may
call the underlying C function fread() more than once in an effort to acquire as close to size bytes
as possible.

readline([size])

10 Chapter 2. Built-in Types, Exceptions and Functions

Read one entire line from the file. A trailing newline character is kept in the string7 (but may
be absent when a file ends with an incomplete line). If the size argument is present and non-
negative, it is a maximum byte count (including the trailing newline) and an incomplete line may
be returned. An empty string is returned when eof is hit immediately. Note: Unlike stdio’s
fgets(), the returned string contains null characters (’\0’) if they occurred in the input.

readlines([sizehint])
Read until eof using readline() and return a list containing the lines thus read. If the optional
sizehint argument is present, instead of reading up to eof, whole lines totalling approximately
sizehint bytes (possibly after rounding up to an internal buffer size) are read.

seek(offset[, whence])
Set the file’s current position, like stdio’s fseek(). The whence argument is optional and defaults
to 0 (absolute file positioning); other values are 1 (seek relative to the current position) and 2 (seek
relative to the file’s end). There is no return value.

tell()
Return the file’s current position, like stdio’s ftell().

truncate([size])
Truncate the file’s size. If the optional size argument present, the file is truncated to (at most)
that size. The size defaults to the current position. Availability of this function depends on the
operating system version (for example, not all Unix versions support this operation).

write(str)
Write a string to the file. There is no return value. Note: Due to buffering, the string may not
actually show up in the file until the flush() or close() method is called.

writelines(list)
Write a list of strings to the file. There is no return value. (The name is intended to match
readlines(); writelines() does not add line separators.)

File objects also offer the following attributes:

closed
Boolean indicating the current state of the file object. This is a read-only attribute; the close()
method changes the value.

mode
The I/O mode for the file. If the file was created using the open() built-in function, this will be
the value of the mode parameter. This is a read-only attribute.

name
If the file object was created using open(), the name of the file. Otherwise, some string that
indicates the source of the file object, of the form ‘<...>’. This is a read-only attribute.

softspace
Boolean that indicates whether a space character needs to be printed before another value when
using the print statement. Classes that are trying to simulate a file object should also have
a writable softspace attribute, which should be initialized to zero. This will be automatic for
classes implemented in Python; types implemented in C will have to provide a writable softspace
attribute.

Internal Objects

See the Python Reference Manual for this information. It describes code objects, stack frame objects,
traceback objects, and slice objects.

7The advantage of leaving the newline on is that an empty string can be returned to mean eof without being ambiguous.
Another advantage is that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning
its lines) you can tell whether the last line of a file ended in a newline or not (yes this happens!).

2.1. Built-in Types 11

2.1.8 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are
relevant:

dict
A dictionary of some sort used to store an object’s (writable) attributes.

methods
List of the methods of many built-in object types, e.g., []. methods yields [’append’,
’count’, ’index’, ’insert’, ’pop’, ’remove’, ’reverse’, ’sort’].

members
Similar to methods , but lists data attributes.

class
The class to which a class instance belongs.

bases
The tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. While traditionally, most exceptions have been string
objects, in Python 1.5, all standard exceptions have been converted to class objects, and users are
encouraged to do the same. The source code for those exceptions is present in the standard library
module exceptions; this module never needs to be imported explicitly.

For backward compatibility, when Python is invoked with the -X option, most of the standard exceptions
are strings.8 This option may be used to run code that breaks because of the different semantics of class
based exceptions.

Deprecation warning: The -X option will be removed in Python 1.6, so the recommended solution is
to adjust all code to work with class-based exceptions.

Two distinct string objects with the same value are considered different exceptions. This is done to force
programmers to use exception names rather than their string value when specifying exception handlers.
The string value of all built-in exceptions is their name, but this is not a requirement for user-defined
exceptions or exceptions defined by library modules.

For class exceptions, in a try statement with an except clause that mentions a particular class, that
clause also handles any exception classes derived from that class (but not exception classes from which
it is derived). Two exception classes that are not related via subclassing are never equivalent, even if
they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except
where mentioned, they have an “associated value” indicating the detailed cause of the error. This may
be a string or a tuple containing several items of information (e.g., an error code and a string explaining
the code). The associated value is the second argument to the raise statement. For string exceptions,
the associated value itself will be stored in the variable named as the second argument of the except
clause (if any). For class exceptions, that variable receives the exception instance. If the exception
class is derived from the standard root class Exception, the associated value is present as the exception
instance’s args attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an
error condition “just like” the situation in which the interpreter raises the same exception; but beware
that there is nothing to prevent user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions. When string-based standard
exceptions are used, they are tuples containing the directly derived classes. Note: These will always be
classes in Python 1.6.

8For forward-compatibility the new exceptions Exception, LookupError, ArithmeticError, EnvironmentError, and
StandardError are tuples.

12 Chapter 2. Built-in Types, Exceptions and Functions

Exception
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined
exceptions should also be derived from this class, but this is not (yet) enforced. The str() function,
when applied to an instance of this class (or most derived classes) returns the string value of the
argument or arguments, or an empty string if no arguments were given to the constructor. When
used as a sequence, this accesses the arguments given to the constructor (handy for backward
compatibility with old code). The arguments are also available on the instance’s args attribute,
as a tuple.

StandardError
The base class for all built-in exceptions except SystemExit. StandardError itself is derived from
the root class Exception.

ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors:
OverflowError, ZeroDivisionError, FloatingPointError.

LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence
is invalid: IndexError, KeyError.

EnvironmentError
The base class for exceptions that can occur outside the Python system: IOError, OSError. When
exceptions of this type are created with a 2-tuple, the first item is available on the instance’s errno
attribute (it is assumed to be an error number), and the second item is available on the strerror
attribute (it is usually the associated error message). The tuple itself is also available on the args
attribute. New in version 1.5.2.

When an EnvironmentError exception is instantiated with a 3-tuple, the first two items are avail-
able as above, while the third item is available on the filename attribute. However, for backwards
compatibility, the args attribute contains only a 2-tuple of the first two constructor arguments.

The filename attribute is None when this exception is created with other than 3 arguments. The
errno and strerror attributes are also None when the instance was created with other than 2 or
3 arguments. In this last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised. They are class objects, except when
the -X option is used to revert back to string-based standard exceptions.

AssertionError
Raised when an assert statement fails.

AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute
references or attribute assignments at all, TypeError is raised.)

EOFError
Raised when one of the built-in functions (input() or raw input()) hits an end-of-file condition
(eof) without reading any data. (N.B.: the read() and readline() methods of file objects return
an empty string when they hit eof.)

FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be
raised when Python is configured with the --with-fpectl option, or the WANT SIGFPE HANDLER
symbol is defined in the ‘config.h’ file.

IOError
Raised when an I/O operation (such as a print statement, the built-in open() function or a
method of a file object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on
exception instance attributes.

ImportError
Raised when an import statement fails to find the module definition or when a from . . . import
fails to find a name that is to be imported.

2.2. Built-in Exceptions 13

IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the
allowed range; if an index is not a plain integer, TypeError is raised.)

KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or DEL). During execution, a
check for interrupts is made regularly. Interrupts typed when a built-in function input() or
raw input()) is waiting for input also raise this exception.

MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting
some objects). The associated value is a string indicating what kind of (internal) operation ran out
of memory. Note that because of the underlying memory management architecture (C’s malloc()
function), the interpreter may not always be able to completely recover from this situation; it
nevertheless raises an exception so that a stack traceback can be printed, in case a run-away
program was the cause.

NameError
Raised when a local or global name is not found. This applies only to unqualified names. The
associated value is the name that could not be found.

NotImplementedError
This exception is derived from RuntimeError. In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method. New in version
1.5.2.

OSError
This class is derived from EnvironmentError and is used primarily as the os module’s os.error
exception. See EnvironmentError above for a description of the possible associated values. New
in version 1.5.2.

OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot
occur for long integers (which would rather raise MemoryError than give up). Because of the lack
of standardization of floating point exception handling in C, most floating point operations also
aren’t checked. For plain integers, all operations that can overflow are checked except left shift,
where typical applications prefer to drop bits than raise an exception.

RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated
value is a string indicating what precisely went wrong. (This exception is mostly a relic from a
previous version of the interpreter; it is not used very much any more.)

SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in an
exec statement, in a call to the built-in function eval() or input(), or when reading the initial
script or standard input (also interactively).

When class exceptions are used, instances of this class have atttributes filename, lineno, offset
and text for easier access to the details; for string exceptions, the associated value is usually a
tuple of the form (message, (filename, lineno, offset, text)). For class exceptions, str()
returns only the message.

SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to
cause it to abandon all hope. The associated value is a string indicating what went wrong (in
low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the
version string of the Python interpreter (sys.version; it is also printed at the start of an interactive
Python session), the exact error message (the exception’s associated value) and if possible the source
of the program that triggered the error.

14 Chapter 2. Built-in Types, Exceptions and Functions

SystemExit
This exception is raised by the sys.exit() function. When it is not handled, the Python interpreter
exits; no stack traceback is printed. If the associated value is a plain integer, it specifies the system
exit status (passed to C’s exit() function); if it is None, the exit status is zero; if it has another
type (such as a string), the object’s value is printed and the exit status is one.

When class exceptions are used, the instance has an attribute code which is set to the proposed exit
status or error message (defaulting to None). Also, this exception derives directly from Exception
and not StandardError, since it is not technically an error.

A call to sys.exit() is translated into an exception so that clean-up handlers (finally clauses of
try statements) can be executed, and so that a debugger can execute a script without running the
risk of losing control. The os. exit() function can be used if it is absolutely positively necessary
to exit immediately (e.g., after a fork() in the child process).

TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The
associated value is a string giving details about the type mismatch.

ValueError
Raised when a built-in operation or function receives an argument that has the right type but
an inappropriate value, and the situation is not described by a more precise exception such as
IndexError.

ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value
is a string indicating the type of the operands and the operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed
here in alphabetical order.

import (name[, globals[, locals[, fromlist]]])
This function is invoked by the import statement. It mainly exists so that you can replace it with
another function that has a compatible interface, in order to change the semantics of the import
statement. For examples of why and how you would do this, see the standard library modules
ihooks and rexec. See also the built-in module imp, which defines some useful operations out of
which you can build your own import () function.

For example, the statement ‘import spam’ results in the following call: import (’spam’,
globals(), locals(), []); the statement from spam.ham import eggs results in

import (’spam.ham’, globals(), locals(), [’eggs’]). Note that even though locals()
and [’eggs’] are passed in as arguments, the import () function does not set the local vari-
able named eggs; this is done by subsequent code that is generated for the import statement. (In
fact, the standard implementation does not use its locals argument at all, and uses its globals only
to determine the package context of the import statement.)

When the name variable is of the form package.module, normally, the top-level package (the
name up till the first dot) is returned, not the module named by name. However, when a non-
empty fromlist argument is given, the module named by name is returned. This is done for
compatibility with the bytecode generated for the different kinds of import statement; when using
‘import spam.ham.eggs’, the top-level package spam must be placed in the importing namespace,
but when using ‘from spam.ham import eggs’, the spam.ham subpackage must be used to find the
eggs variable. As a workaround for this behavior, use getattr() to extract the desired components.
For example, you could define the following helper:

2.3. Built-in Functions 15

import string

def my_import(name):

mod = __import__(name)

components = string.split(name, ’.’)

for comp in components[1:]:

mod = getattr(mod, comp)

return mod

abs(x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating
point number. If the argument is a complex number, its magnitude is returned.

apply(function, args[, keywords])
The function argument must be a callable object (a user-defined or built-in function or method,
or a class object) and the args argument must be a sequence (if it is not a tuple, the sequence is
first converted to a tuple). The function is called with args as the argument list; the number of
arguments is the the length of the tuple. (This is different from just calling func(args), since in
that case there is always exactly one argument.) If the optional keywords argument is present, it
must be a dictionary whose keys are strings. It specifies keyword arguments to be added to the
end of the the argument list.

buffer(object[, offset[, size]])
The object argument must be an object that supports the buffer call interface (such as strings,
arrays, and buffers). A new buffer object will be created which references the object argument.
The buffer object will be a slice from the beginning of object (or from the specified offset). The
slice will extend to the end of object (or will have a length given by the size argument).

callable(object)
Return true if the object argument appears callable, false if not. If this returns true, it is still
possible that a call fails, but if it is false, calling object will never succeed. Note that classes
are callable (calling a class returns a new instance); class instances are callable if they have a

call () method.

chr(i)
Return a string of one character whose ascii code is the integer i , e.g., chr(97) returns the string
’a’. This is the inverse of ord(). The argument must be in the range [0..255], inclusive.

cmp(x, y)
Compare the two objects x and y and return an integer according to the outcome. The return
value is negative if x < y , zero if x == y and strictly positive if x > y .

coerce(x, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the
same rules as used by arithmetic operations.

compile(string, filename, kind)
Compile the string into a code object. Code objects can be executed by an exec statement or
evaluated by a call to eval(). The filename argument should give the file from which the code was
read; pass e.g. ’<string>’ if it wasn’t read from a file. The kind argument specifies what kind of
code must be compiled; it can be ’exec’ if string consists of a sequence of statements, ’eval’ if
it consists of a single expression, or ’single’ if it consists of a single interactive statement (in the
latter case, expression statements that evaluate to something else than None will printed).

complex(real[, imag])
Create a complex number with the value real + imag*j or convert a string or number to a complex
number. Each argument may be any numeric type (including complex). If imag is omitted, it
defaults to zero and the function serves as a numeric conversion function like int(), long() and
float(); in this case it also accepts a string argument which should be a valid complex number.

delattr(object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be

16 Chapter 2. Built-in Types, Exceptions and Functions

the name of one of the object’s attributes. The function deletes the named attribute, provided the
object allows it. For example, delattr(x, ’foobar’) is equivalent to del x.foobar .

dir([object])
Without arguments, return the list of names in the current local symbol table. With an argument,
attempts to return a list of valid attribute for that object. This information is gleaned from
the object’s dict , methods and members attributes, if defined. The list is not
necessarily complete; e.g., for classes, attributes defined in base classes are not included, and for
class instances, methods are not included. The resulting list is sorted alphabetically. For example:

>>> import sys

>>> dir()

[’sys’]

>>> dir(sys)

[’argv’, ’exit’, ’modules’, ’path’, ’stderr’, ’stdin’, ’stdout’]

>>>

divmod(a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic
operators apply. For plain and long integers, the result is the same as (a / b, a % b). For
floating point numbers the result is (q, a % b), where q is usually math.floor(a / b) but may
be 1 less than that. In any case q * b + a % b is very close to a, if a % b is non-zero it has the
same sign as b, and 0 <= abs(a % b) < abs(b).

eval(expression[, globals[, locals]])
The arguments are a string and two optional dictionaries. The expression argument is parsed and
evaluated as a Python expression (technically speaking, a condition list) using the globals and locals
dictionaries as global and local name space. If the locals dictionary is omitted it defaults to the
globals dictionary. If both dictionaries are omitted, the expression is executed in the environment
where eval is called. The return value is the result of the evaluated expression. Syntax errors are
reported as exceptions. Example:

>>> x = 1

>>> print eval(’x+1’)

2

This function can also be used to execute arbitrary code objects (e.g. created by compile()). In
this case pass a code object instead of a string. The code object must have been compiled passing
’eval’ to the kind argument.

Hints: dynamic execution of statements is supported by the exec statement. Execution of state-
ments from a file is supported by the execfile() function. The globals() and locals() functions
returns the current global and local dictionary, respectively, which may be useful to pass around
for use by eval() or execfile().

execfile(file[, globals[, locals]])
This function is similar to the exec statement, but parses a file instead of a string. It is different
from the import statement in that it does not use the module administration — it reads the file
unconditionally and does not create a new module.9

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a
sequence of Python statements (similarly to a module) using the globals and locals dictionaries as
global and local name space. If the locals dictionary is omitted it defaults to the globals dictionary.
If both dictionaries are omitted, the expression is executed in the environment where execfile()
is called. The return value is None.

filter(function, list)
Construct a list from those elements of list for which function returns true. If list is a string or a

9It is used relatively rarely so does not warrant being made into a statement.

2.3. Built-in Functions 17

tuple, the result also has that type; otherwise it is always a list. If function is None, the identity
function is assumed, i.e. all elements of list that are false (zero or empty) are removed.

float(x)
Convert a string or a number to floating point. If the argument is a string, it must contain a
possibly signed decimal or floating point number, possibly embedded in whitespace; this behaves
identical to string.atof(x). Otherwise, the argument may be a plain or long integer or a floating
point number, and a floating point number with the same value (within Python’s floating point
precision) is returned.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the
underlying C library. The specific set of strings accepted which cause these values to be returned
depends entirely on the C library and is known to vary.

getattr(object, name[, default])
Return the value of the named attributed of object . name must be a string. If the string is the
name of one of the object’s attributes, the result is the value of that attribute. For example,
getattr(x, ’foobar’) is equivalent to x.foobar. If the named attribute does not exist, default
is returned if provided, otherwise AttributeError is raised.

globals()
Return a dictionary representing the current global symbol table. This is always the dictionary of
the current module (inside a function or method, this is the module where it is defined, not the
module from which it is called).

hasattr(object, name)
The arguments are an object and a string. The result is 1 if the string is the name of one of the
object’s attributes, 0 if not. (This is implemented by calling getattr(object, name) and seeing
whether it raises an exception or not.)

hash(object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to
quickly compare dictionary keys during a dictionary lookup. Numeric values that compare equal
have the same hash value (even if they are of different types, e.g. 1 and 1.0).

hex(x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python
expression. Note: this always yields an unsigned literal, e.g. on a 32-bit machine, hex(-1) yields
’0xffffffff’. When evaluated on a machine with the same word size, this literal is evaluated as
-1; at a different word size, it may turn up as a large positive number or raise an OverflowError
exception.

id(object)
Return the ‘identity’ of an object. This is an integer which is guaranteed to be unique and constant
for this object during its lifetime. (Two objects whose lifetimes are disjunct may have the same
id() value.) (Implementation note: this is the address of the object.)

input([prompt])
Equivalent to eval(raw input(prompt)).

intern(string)
Enter string in the table of “interned” strings and return the interned string – which is string itself
or a copy. Interning strings is useful to gain a little performance on dictionary lookup – if the keys
in a dictionary are interned, and the lookup key is interned, the key comparisons (after hashing)
can be done by a pointer compare instead of a string compare. Normally, the names used in Python
programs are automatically interned, and the dictionaries used to hold module, class or instance
attributes have interned keys. Interned strings are immortal (i.e. never get garbage collected).

int(x)
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly
signed decimal number representable as a Python integer, possibly embedded in whitespace; this
behaves identical to string.atoi(x). Otherwise, the argument may be a plain or long integer
or a floating point number. Conversion of floating point numbers to integers is defined by the C

18 Chapter 2. Built-in Types, Exceptions and Functions

semantics; normally the conversion truncates towards zero.10

isinstance(object, class)
Return true if the object argument is an instance of the class argument, or of a (direct or indirect)
subclass thereof. Also return true if class is a type object and object is an object of that type. If
object is not a class instance or a object of the given type, the function always returns false. If
class is neither a class object nor a type object, a TypeError exception is raised.

issubclass(class1, class2)
Return true if class1 is a subclass (direct or indirect) of class2 . A class is considered a subclass of
itself. If either argument is not a class object, a TypeError exception is raised.

len(s)
Return the length (the number of items) of an object. The argument may be a sequence (string,
tuple or list) or a mapping (dictionary).

list(sequence)
Return a list whose items are the same and in the same order as sequence’s items. If sequence is
already a list, a copy is made and returned, similar to sequence[:]. For instance, list(’abc’)
returns returns [’a’, ’b’, ’c’] and list((1, 2, 3)) returns [1, 2, 3].

locals()
Return a dictionary representing the current local symbol table. Warning: the contents of this
dictionary should not be modified; changes may not affect the values of local variables used by the
interpreter.

long(x)
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly
signed decimal number of arbitrary size, possibly embedded in whitespace; this behaves identical
to string.atol(x). Otherwise, the argument may be a plain or long integer or a floating point
number, and a long integer with the same value is returned. Conversion of floating point numbers
to integers is defined by the C semantics; see the description of int().

map(function, list, ...)
Apply function to every item of list and return a list of the results. If additional list arguments are
passed, function must take that many arguments and is applied to the items of all lists in parallel;
if a list is shorter than another it is assumed to be extended with None items. If function is None,
the identity function is assumed; if there are multiple list arguments, map() returns a list consisting
of tuples containing the corresponding items from all lists (i.e. a kind of transpose operation). The
list arguments may be any kind of sequence; the result is always a list.

max(s[, args...])
With a single argument s, return the largest item of a non-empty sequence (e.g., a string, tuple or
list). With more than one argument, return the largest of the arguments.

min(s[, args...])
With a single argument s, return the smallest item of a non-empty sequence (e.g., a string, tuple
or list). With more than one argument, return the smallest of the arguments.

oct(x)
Convert an integer number (of any size) to an octal string. The result is a valid Python ex-
pression. Note: this always yields an unsigned literal, e.g. on a 32-bit machine, oct(-1) yields
’037777777777’. When evaluated on a machine with the same word size, this literal is evaluated
as -1; at a different word size, it may turn up as a large positive number or raise an OverflowError
exception.

open(filename[, mode[, bufsize]])
Return a new file object (described earlier under Built-in Types). The first two arguments are the
same as for stdio’s fopen(): filename is the file name to be opened, mode indicates how the file
is to be opened: ’r’ for reading, ’w’ for writing (truncating an existing file), and ’a’ opens it
for appending (which on some Unix systems means that all writes append to the end of the file,
regardless of the current seek position).

10This is ugly — the language definition should require truncation towards zero.

2.3. Built-in Functions 19

Modes ’r+’, ’w+’ and ’a+’ open the file for updating (note that ’w+’ truncates the file). Append
’b’ to the mode to open the file in binary mode, on systems that differentiate between binary and
text files (else it is ignored). If the file cannot be opened, IOError is raised.

If mode is omitted, it defaults to ’r’. When opening a binary file, you should append ’b’ to the
mode value for improved portability. (It’s useful even on systems which don’t treat binary and text
files differently, where it serves as documentation.) The optional bufsize argument specifies the
file’s desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive value means
use a buffer of (approximately) that size. A negative bufsize means to use the system default,
which is usually line buffered for for tty devices and fully buffered for other files. If omitted, the
system default is used.11

ord(c)
Return the ascii value of a string of one character. E.g., ord(’a’) returns the integer 97. This is
the inverse of chr().

pow(x, y[, z])
Return x to the power y ; if z is present, return x to the power y , modulo z (computed more
efficiently than pow(x, y) % z). The arguments must have numeric types. With mixed operand
types, the rules for binary arithmetic operators apply. The effective operand type is also the type
of the result; if the result is not expressible in this type, the function raises an exception; e.g.,
pow(2, -1) or pow(2, 35000) is not allowed.

range([start,] stop[, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often used
in for loops. The arguments must be plain integers. If the step argument is omitted, it defaults
to 1. If the start argument is omitted, it defaults to 0. The full form returns a list of plain integers
[start, start + step, start + 2 * step, ...]. If step is positive, the last element is the largest
start + i * step less than stop; if step is negative, the last element is the largest start + i * step
greater than stop. step must not be zero (or else ValueError is raised). Example:

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(1, 11)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

>>> range(0)

[]

>>> range(1, 0)

[]

>>>

raw input([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The
function then reads a line from input, converts it to a string (stripping a trailing newline), and
returns that. When eof is read, EOFError is raised. Example:

>>> s = raw_input(’--> ’)

--> Monty Python’s Flying Circus

>>> s

"Monty Python’s Flying Circus"

>>>

11Specifying a buffer size currently has no effect on systems that don’t have setvbuf(). The interface to specify the
buffer size is not done using a method that calls setvbuf(), because that may dump core when called after any I/O has
been performed, and there’s no reliable way to determine whether this is the case.

20 Chapter 2. Built-in Types, Exceptions and Functions

If the readline module was loaded, then raw input() will use it to provide elaborate line editing
and history features.

reduce(function, sequence[, initializer])
Apply function of two arguments cumulatively to the items of sequence, from left to right, so as
to reduce the sequence to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3,
4, 5]) calculates ((((1+2)+3)+4)+5). If the optional initializer is present, it is placed before the
items of the sequence in the calculation, and serves as a default when the sequence is empty.

reload(module)
Re-parse and re-initialize an already imported module. The argument must be a module object,
so it must have been successfully imported before. This is useful if you have edited the module
source file using an external editor and want to try out the new version without leaving the Python
interpreter. The return value is the module object (i.e. the same as the module argument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the first import statement for it does
not bind its name locally, but does store a (partially initialized) module object in sys.modules. To
reload the module you must first import it again (this will bind the name to the partially initialized
module object) before you can reload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained.
Redefinitions of names will override the old definitions, so this is generally not a problem. If the new
version of a module does not define a name that was defined by the old version, the old definition
remains. This feature can be used to the module’s advantage if it maintains a global table or cache
of objects — with a try statement it can test for the table’s presence and skip its initialization if
desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules,
except for sys, main and builtin . In certain cases, however, extension modules are
not designed to be initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from . . . import . . . , calling reload()
for the other module does not redefine the objects imported from it — one way around this is
to re-execute the from statement, another is to use import and qualified names (module.name)
instead.

If a module instantiates instances of a class, reloading the module that defines the class does not
affect the method definitions of the instances — they continue to use the old class definition. The
same is true for derived classes.

repr(object)
Return a string containing a printable representation of an object. This is the same value yielded
by conversions (reverse quotes). It is sometimes useful to be able to access this operation as an
ordinary function. For many types, this function makes an attempt to return a string that would
yield an object with the same value when passed to eval().

round(x [, n])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it
defaults to zero. The result is a floating point number. Values are rounded to the closest multiple
of 10 to the power minus n; if two multiples are equally close, rounding is done away from 0 (so
e.g. round(0.5) is 1.0 and round(-0.5) is -1.0).

setattr(object, name, value)
This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary
value. The string may name an existing attribute or a new attribute. The function assigns the
value to the attribute, provided the object allows it. For example, setattr(x, ’foobar’, 123) is
equivalent to x.foobar = 123.

slice([start,] stop[, step])
Return a slice object representing the set of indices specified by range(start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop
and step which merely return the argument values (or their default). They have no other explicit
functionality; however they are used by Numerical Python and other third party extensions. Slice

2.3. Built-in Functions 21

objects are also generated when extended indexing syntax is used, e.g. for ‘a[start:stop:step]’
or ‘a[start:stop, i]’.

str(object)
Return a string containing a nicely printable representation of an object. For strings, this returns
the string itself. The difference with repr(object) is that str(object) does not always attempt to
return a string that is acceptable to eval(); its goal is to return a printable string.

tuple(sequence)
Return a tuple whose items are the same and in the same order as sequence’s items. If sequence
is already a tuple, it is returned unchanged. For instance, tuple(’abc’) returns returns (’a’,
’b’, ’c’) and tuple([1, 2, 3]) returns (1, 2, 3).

type(object)
Return the type of an object . The return value is a type object. The standard module types
defines names for all built-in types. For instance:

>>> import types

>>> if type(x) == types.StringType: print "It’s a string"

vars([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a
module, class or class instance object as argument (or anything else that has a dict attribute),
returns a dictionary corresponding to the object’s symbol table. The returned dictionary should
not be modified: the effects on the corresponding symbol table are undefined.12

xrange([start,] stop[, step])
This function is very similar to range(), but returns an “xrange object” instead of a list. This is
an opaque sequence type which yields the same values as the corresponding list, without actually
storing them all simultaneously. The advantage of xrange() over range() is minimal (since
xrange() still has to create the values when asked for them) except when a very large range
is used on a memory-starved machine (e.g. MS-DOS) or when all of the range’s elements are never
used (e.g. when the loop is usually terminated with break).

12In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved
from other scopes (e.g. modules) can be. This may change.

22 Chapter 2. Built-in Types, Exceptions and Functions

CHAPTER

THREE

Python Services

The modules described in this chapter provide a wide range of services related to the Python interpreter
and its interaction with its environment. Here’s an overview:
sys Access system-specific parameters and functions.
types Names for all built-in types.
UserDict Class wrapper for dictionary objects.
UserList Class wrapper for list objects.
operator All Python’s standard operators as built-in functions.
traceback Print or retrieve a stack traceback.
linecache This module provides random access to individual lines from text files.
pickle Convert Python objects to streams of bytes and back.
cPickle Faster version of pickle, but not subclassable.
copy reg Register pickle support functions.
shelve Python object persistency.
copy Shallow and deep copy operations.
marshal Convert Python objects to streams of bytes and back (with different constraints).
imp Access the implementation of the import statement.
parser Access parse trees for Python source code.
symbol Constants representing internal nodes of the parse tree.
token Constants representing terminal nodes of the parse tree.
keyword Test whether a string is a keyword in Python.
tokenize Lexical scanner for Python source code.
pyclbr Supports information extraction for a Python class browser.
code Base classes for interactive Python interpreters.
codeop Compile (possibly incomplete) Python code.
pprint Data pretty printer.
repr Alternate repr() implementation with size limits.
py compile Compile Python source files to byte-code files.
compileall Tools for byte-compiling all Python source files in a directory tree.
dis Disassembler.
new Interface to the creation of runtime implementation objects.
site A standard way to reference site-specific modules.
user A standard way to reference user-specific modules.

builtin The set of built-in functions.
main The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions
that interact strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python script. argv[0] is the script name (it is
operating system dependent whether this is a full pathname or not). If the command was executed

23

using the ‘-c’ command line option to the interpreter, argv[0] is set to the string ’-c’. If no
script name was passed to the Python interpreter, argv has zero length.

builtin module names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter.
(This information is not available in any other way — modules.keys() only lists the imported
modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.

dllhandle
Integer specifying the handle of the Python DLL. Availability: Windows.

exc info()
This function returns a tuple of three values that give information about the exception that is
currently being handled. The information returned is specific both to the current thread and to
the current stack frame. If the current stack frame is not handling an exception, the information
is taken from the calling stack frame, or its caller, and so on until a stack frame is found that is
handling an exception. Here, “handling an exception” is defined as “executing or having executed
an except clause.” For any stack frame, only information about the most recently handled exception
is accessible.

If no exception is being handled anywhere on the stack, a tuple containing three None values is
returned. Otherwise, the values returned are (type, value, traceback). Their meaning is: type
gets the exception type of the exception being handled (a string or class object); value gets the
exception parameter (its associated value or the second argument to raise, which is always a class
instance if the exception type is a class object); traceback gets a traceback object (see the Reference
Manual) which encapsulates the call stack at the point where the exception originally occurred.

Warning: assigning the traceback return value to a local variable in a function that is handling an
exception will cause a circular reference. This will prevent anything referenced by a local variable
in the same function or by the traceback from being garbage collected. Since most functions
don’t need access to the traceback, the best solution is to use something like type, value =
sys.exc info()[:2] to extract only the exception type and value. If you do need the traceback,
make sure to delete it after use (best done with a try ... finally statement) or to call exc info()
in a function that does not itself handle an exception.

exc type
exc value
exc traceback

Deprecated since release 1.5. Use exc info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe
in a multi-threaded program. When no exception is being handled, exc type is set to None and
the other two are undefined.

exec prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are in-
stalled; by default, this is also ’/usr/local’. This can be set at build time with the --exec-prefix
argument to the configure script. Specifically, all configuration files (e.g. the ‘config.h’ header file)
are installed in the directory exec prefix + ’/lib/pythonversion/config’, and shared library
modules are installed in exec prefix + ’/lib/pythonversion/lib-dynload’, where version is
equal to version[:3].

executable
A string giving the name of the executable binary for the Python interpreter, on systems where
this makes sense.

exit([arg])
Exit from Python. This is implemented by raising the SystemExit exception, so cleanup actions
specified by finally clauses of try statements are honored, and it is possible to intercept the exit
attempt at an outer level. The optional argument arg can be an integer giving the exit status
(defaulting to zero), or another type of object. If it is an integer, zero is considered “successful

24 Chapter 3. Python Services

termination” and any nonzero value is considered “abnormal termination” by shells and the like.
Most systems require it to be in the range 0-127, and produce undefined results otherwise. Some
systems have a convention for assigning specific meanings to specific exit codes, but these are
generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1
for all other kind of errors. If another type of object is passed, None is equivalent to passing zero,
and any other object is printed to sys.stderr and results in an exit code of 1. In particular,
sys.exit("some error message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to
specify a clean-up action at program exit. When set, it should be a parameterless function. This
function will be called when the interpreter exits. Note: the exit function is not called when the
program is killed by a signal, when a Python fatal internal error is detected, or when os. exit()
is called.

getrefcount(object)
Return the reference count of the object . The count returned is generally one higher than you
might expect, because it includes the (temporary) reference as an argument to getrefcount().

last type
last value
last traceback

These three variables are not always defined; they are set when an exception is not handled and
the interpreter prints an error message and a stack traceback. Their intended use is to allow an
interactive user to import a debugger module and engage in post-mortem debugging without having
to re-execute the command that caused the error. (Typical use is ‘import pdb; pdb.pm()’ to enter
the post-mortem debugger; see the chapter “The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return values from exc info() above.
(Since there is only one interactive thread, thread-safety is not a concern for these variables, unlike
for exc type etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1.
The largest negative integer is -maxint-1 – the asymmetry results from the use of 2’s complement
binary arithmetic.

modules
This is a dictionary that maps module names to modules which have already been loaded. This
can be manipulated to force reloading of modules and other tricks. Note that removing a module
from this dictionary is not the same as calling reload() on the corresponding module object.

path
A list of strings that specifies the search path for modules. Initialized from the environment variable
$PYTHONPATH, or an installation-dependent default.

The first item of this list, path[0], is the directory containing the script that was used to invoke
the Python interpreter. If the script directory is not available (e.g. if the interpreter is invoked
interactively or if the script is read from standard input), path[0] is the empty string, which
directs Python to search modules in the current directory first. Notice that the script directory is
inserted before the entries inserted as a result of $PYTHONPATH.

platform
This string contains a platform identifier, e.g. ’sunos5’ or ’linux1’. This can be used to append
platform-specific components to path, for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are
installed; by default, this is the string ’/usr/local’. This can be set at build time with the
--prefix argument to the configure script. The main collection of Python library modules is
installed in the directory prefix + ’/lib/pythonversion’ while the platform independent header
files (all except ‘config.h’) are stored in prefix + ’/include/pythonversion’, where version is
equal to version[:3].

3.1. sys — System-specific parameters and functions 25

ps1
ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if
the interpreter is in interactive mode. Their initial values in this case are ’>>> ’ and ’... ’. If
a non-string object is assigned to either variable, its str() is re-evaluated each time the interpreter
prepares to read a new interactive command; this can be used to implement a dynamic prompt.

setcheckinterval(interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter
checks for periodic things such as thread switches and signal handlers. The default is 10, meaning
the check is performed every 10 Python virtual instructions. Setting it to a larger value may
increase performance for programs using threads. Setting it to a value <= 0 checks every virtual
instruction, maximizing responsiveness as well as overhead.

setprofile(profilefunc)
Set the system’s profile function, which allows you to implement a Python source code profiler in
Python. See the chapter on the Python Profiler. The system’s profile function is called similarly
to the system’s trace function (see settrace()), but it isn’t called for each executed line of code
(only on call and return and when an exception occurs). Also, its return value is not used, so it
can just return None.

settrace(tracefunc)
Set the system’s trace function, which allows you to implement a Python source code debugger in
Python. See section “How It Works” in the chapter on the Python Debugger.

stdin
stdout
stderr

File objects corresponding to the interpreter’s standard input, output and error streams. stdin is
used for all interpreter input except for scripts but including calls to input() and raw input().
stdout is used for the output of print and expression statements and for the prompts of input()
and raw input(). The interpreter’s own prompts and (almost all of) its error messages go to
stderr. stdout and stderr needn’t be built-in file objects: any object is acceptable as long as it
has a write() method that takes a string argument. (Changing these objects doesn’t affect the
standard I/O streams of processes executed by os.popen(), os.system() or the exec*() family
of functions in the os module.)

stdin
stdout
stderr

These objects contain the original values of stdin, stderr and stdout at the start of the program.
They are used during finalization, and could be useful to restore the actual files to known working
file objects in case they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of
traceback information printed when an unhandled exception occurs. The default is 1000. When
set to 0 or less, all traceback information is suppressed and only the exception type and value are
printed.

version
A string containing the version number of the Python interpreter plus additional information
on the build number and compiler used. It has a value of the form ’version (#build number,
build date, build time) [compiler]’. The first three characters are used to identify the version
in the installation directories (where appropriate on each platform). An example:

>>> import sys

>>> sys.version

’1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]’

winver
The version number used to form registry keys on Windows platforms. This is stored as string

26 Chapter 3. Python Services

resource 1000 in the Python DLL. The value is normally the first three characters of version. It
is provided in the sys module for informational purposes; modifying this value has no effect on the
registry keys used by Python. Availability: Windows.

3.2 types — Names for all built-in types

This module defines names for all object types that are used by the standard Python interpreter, but
not for the types defined by various extension modules. It is safe to use ‘from types import *’ — the
module does not export any names besides the ones listed here. New names exported by future versions
of this module will all end in ‘Type’.

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *

def delete(list, item):

if type(item) is IntType:

del list[item]

else:

list.remove(item)

The module defines the following names:

NoneType
The type of None.

TypeType
The type of type objects (such as returned by type()).

IntType
The type of integers (e.g. 1).

LongType
The type of long integers (e.g. 1L).

FloatType
The type of floating point numbers (e.g. 1.0).

ComplexType
The type of complex numbers (e.g. 1.0j).

StringType
The type of character strings (e.g. ’Spam’).

TupleType
The type of tuples (e.g. (1, 2, 3, ’Spam’)).

ListType
The type of lists (e.g. [0, 1, 2, 3]).

DictType
The type of dictionaries (e.g. {’Bacon’: 1, ’Ham’: 0}).

DictionaryType
An alternate name for DictType.

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name for FunctionType.

CodeType
The type for code objects such as returned by compile().

3.2. types — Names for all built-in types 27

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name for MethodType.

BuiltinFunctionType
The type of built-in functions like len() or sys.exit().

BuiltinMethodType
An alternate name for BuiltinFunction.

ModuleType
The type of modules.

FileType
The type of open file objects such as sys.stdout.

XRangeType
The type of range objects returned by xrange().

SliceType
The type of objects returned by slice().

EllipsisType
The type of Ellipsis.

TracebackType
The type of traceback objects such as found in sys.exc traceback.

FrameType
The type of frame objects such as found in tb.tb frame if tb is a traceback object.

BufferType
The type of buffer objects created by the buffer() function.

3.3 UserDict — Class wrapper for dictionary objects

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class
for your own dictionary-like classes, which can inherit from them and override existing methods or add
new ones. In this way one can add new behaviours to dictionaries.

The UserDict module defines the UserDict class:

UserDict([intialdata])
Return a class instance that simulates a dictionary. The instance’s contents are kept in a regular
dictionary, which is accessible via the data attribute of UserDict instances. If initialdata is
provided, data is initialized with its contents; note that a reference to initialdata will not be kept,
allowing it be used used for other purposes.

In addition to supporting the methods and operations of mappings (see section 2.1.6), UserDict instances
provide the following attribute:

data
A real dictionary used to store the contents of the UserDict class.

3.4 UserList — Class wrapper for list objects

28 Chapter 3. Python Services

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your
own list-like classes, which can inherit from them and override existing methods or add new ones. In
this way one can add new behaviours to lists.

The UserList module defines the UserList class:

UserList([list])
Return a class instance that simulates a list. The instance’s contents are kept in a regular list, which
is accessible via the data attribute of UserList instances. The instance’s contents are initially set
to a copy of list , defaulting to the empty list []. list can be either a regular Python list, or an
instance of UserList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see section 2.1.5), UserList
instances provide the following attribute:

data
A real Python list object used to store the contents of the UserList class.

3.5 operator — Standard operators as functions.

The operator module exports a set of functions implemented in C corresponding to the intrinsic oper-
ators of Python. For example, operator.add(x, y) is equivalent to the expression x+y. The function
names are those used for special class methods; variants without leading and trailing ‘ ’ are also
provided for convenience.

The operator module defines the following functions:

add(a, b)
add (a, b)

Return a + b, for a and b numbers.

sub(a, b)
sub (a, b)

Return a - b.

mul(a, b)
mul (a, b)

Return a * b, for a and b numbers.

div(a, b)
div (a, b)

Return a / b.

mod(a, b)
mod (a, b)

Return a % b.

neg(o)
neg (o)

Return o negated.

pos(o)
pos (o)

Return o positive.

abs(o)
abs (o)

Return the absolute value of o.

inv(o)
inv (o)

Return the inverse of o.

lshift(a, b)

3.5. operator — Standard operators as functions. 29

lshift (a, b)
Return a shifted left by b.

rshift(a, b)
rshift (a, b)

Return a shifted right by b.

and (a, b)
and (a, b)

Return the bitwise and of a and b.

or (a, b)
or (a, b)

Return the bitwise or of a and b.

xor(a, b)
xor (a, b)

Return the bitwise exclusive or of a and b.

not (o)
not (o)

Return the outcome of not o. (Note that there is no not () discipline for object instances;
only the interpreter core defines this operation.)

truth(o)
Return 1 if o is true, and 0 otherwise.

concat(a, b)
concat (a, b)

Return a + b for a and b sequences.

repeat(a, b)
repeat (a, b)

Return a * b where a is a sequence and b is an integer.

contains(a, b)
sequenceIncludes(a, b)

Return the outcome of the test b in a. Note the reversed operands.

countOf(a, b)
Return the number of occurrences of b in a.

indexOf(a, b)
Return the index of the first of occurrence of b in a.

getitem(a, b)
getitem (a, b)

Return the value of a at index b.

setitem(a, b, c)
setitem (a, b, c)

Set the value of a at index b to c.

delitem(a, b)
delitem (a, b)

Remove the value of a at index b.

getslice(a, b, c)
getslice (a, b, c)

Return the slice of a from index b to index c-1.

setslice(a, b, c, v)
setslice (a, b, c, v)

Set the slice of a from index b to index c-1 to the sequence v .

delslice(a, b, c)
delslice (a, b, c)

30 Chapter 3. Python Services

Delete the slice of a from index b to index c-1.

Example: Build a dictionary that maps the ordinals from 0 to 256 to their character equivalents.

>>> import operator

>>> d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.6 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs.
It exactly mimics the behavior of the Python interpreter when it prints a stack trace. This is useful
when you want to print stack traces under program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the variables
sys.exc traceback and sys.last traceback and returned as the third item from sys.exc info().

The module defines the following functions:

print tb(traceback[, limit[, file]])
Print up to limit stack trace entries from traceback . If limit is omitted or None, all entries are
printed. If file is omitted or None, the output goes to sys.stderr; otherwise it should be an open
file or file-like object to receive the output.

print exception(type, value, traceback[, limit[, file]])
Print exception information and up to limit stack trace entries from traceback to file. This differs
from print tb() in the following ways: (1) if traceback is not None, it prints a header ‘Traceback
(innermost last):’; (2) it prints the exception type and value after the stack trace; (3) if type
is SyntaxError and value has the appropriate format, it prints the line where the syntax error
occurred with a caret indicating the approximate position of the error.

print exc([limit[, file]])
This is a shorthand for ‘print exception(sys.exc type, sys.exc value,
sys.exc traceback, limit, file)’. (In fact, it uses sys.exc info() to retrieve the same
information in a thread-safe way.)

print last([limit[, file]])
This is a shorthand for ‘print exception(sys.last type, sys.last value,
sys.last traceback, limit, file)’.

print stack([f [, limit[, file]]])
This function prints a stack trace from its invocation point. The optional f argument can be used
to specify an alternate stack frame to start. The optional limit and file arguments have the same
meaning as for print exception().

extract tb(traceback[, limit])
Return a list of up to limit “pre-processed” stack trace entries extracted from the traceback object
traceback . It is useful for alternate formatting of stack traces. If limit is omitted or None, all entries
are extracted. A “pre-processed” stack trace entry is a quadruple (filename, line number , function
name, text) representing the information that is usually printed for a stack trace. The text is a
string with leading and trailing whitespace stripped; if the source is not available it is None.

extract stack([f [, limit]])
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract tb(). The optional f and limit arguments have the same meaning as for print stack().

format list(list)

3.6. traceback — Print or retrieve a stack traceback 31

Given a list of tuples as returned by extract tb() or extract stack(), return a list of strings
ready for printing. Each string in the resulting list corresponds to the item with the same index
in the argument list. Each string ends in a newline; the strings may contain internal newlines as
well, for those items whose source text line is not None.

format exception only(type, value)
Format the exception part of a traceback. The arguments are the exception type and value such as
given by sys.last type and sys.last value. The return value is a list of strings, each ending
in a newline. Normally, the list contains a single string; however, for SyntaxError exceptions,
it contains several lines that (when printed) display detailed information about where the syntax
error occurred. The message indicating which exception occurred is the always last string in the
list.

format exception(type, value, tb[, limit])
Format a stack trace and the exception information. The arguments have the same meaning as
the corresponding arguments to print exception(). The return value is a list of strings, each
ending in a newline and some containing internal newlines. When these lines are contatenated and
printed, exactly the same text is printed as does print exception().

format tb(tb[, limit])
A shorthand for format list(extract tb(tb, limit)).

format stack([f [, limit]])
A shorthand for format list(extract stack(f , limit)).

tb lineno(tb)
This function returns the current line number set in the traceback object. This is normally the
same as the tb.tb lineno field of the object, but when optimization is used (the -O flag) this field
is not updated correctly; this function calculates the correct value.

3.6.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard
Python interactive interpreter loop. For a more complete implementation of the interpreter loop, refer
to the code module.

import sys, traceback

def run_user_code(envdir):

source = raw_input(">>> ")

try:

exec source in envdir

except:

print "Exception in user code:"

print ’-’*60

traceback.print_exc(file=sys.stdout)

print ’-’*60

envdir = {}

while 1:

run_user_code(envdir)

3.7 linecache — Random access to text lines

The linecache module allows one to get any line from any file, while attempting to optimize internally,
using a cache, the common case where many lines are read from a single file. This is used by the
traceback module to retrieve source lines for inclusion in the formatted traceback.

32 Chapter 3. Python Services

The linecache module defines the following functions:

getline(filename, lineno)
Get line lineno from file named filename. This function will never throw an exception — it will
return ’’ on errors (the terminating newline character will be included for lines that are found).

If a file named filename is not found, the function will look for it in the module search path,
sys.path.

clearcache()
Clear the cache. Use this function if you no longer need lines from files previously read using
getline().

checkcache()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and
you require the updated version.

Example:

>>> import linecache

>>> linecache.getline(’/etc/passwd’, 4)

’sys:x:3:3:sys:/dev:/bin/sh\012’

3.8 pickle — Python object serialization

The pickle module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, mar-
shalling or flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream
of bytes (and back: “unpickling”). This is a more primitive notion than persistency — although pickle
reads and writes file objects, it does not handle the issue of naming persistent objects, nor the (even
more complicated) area of concurrent access to persistent objects. The pickle module can transform a
complex object into a byte stream and it can transform the byte stream into an object with the same
internal structure. The most obvious thing to do with these byte streams is to write them onto a file, but
it is also conceivable to send them across a network or store them in a database. The module shelve
provides a simple interface to pickle and unpickle objects on DBM-style database files.

Note: The pickle module is rather slow. A reimplementation of the same algorithm in C, which is
up to 1000 times faster, is available as the cPickle module. This has the same interface except that
Pickler and Unpickler are factory functions, not classes (so they cannot be used as base classes for
inheritance).

Although the pickle module can use the built-in module marshal internally, it differs from marshal in
the way it handles certain kinds of data:

• Recursive objects (objects containing references to themselves): pickle keeps track of the objects
it has already serialized, so later references to the same object won’t be serialized again. (The
marshal module breaks for this.)

• Object sharing (references to the same object in different places): This is similar to self-referencing
objects; pickle stores the object once, and ensures that all other references point to the master
copy. Shared objects remain shared, which can be very important for mutable objects.

• User-defined classes and their instances: marshal does not support these at all, but pickle can
save and restore class instances transparently. The class definition must be importable and live in
the same module as when the object was stored.

The data format used by pickle is Python-specific. This has the advantage that there are no restrictions
imposed by external standards such as XDR (which can’t represent pointer sharing); however it means
that non-Python programs may not be able to reconstruct pickled Python objects.

3.8. pickle — Python object serialization 33

By default, the pickle data format uses a printable ascii representation. This is slightly more volu-
minous than a binary representation. The big advantage of using printable ascii (and of some other
characteristics of pickle’s representation) is that for debugging or recovery purposes it is possible for a
human to read the pickled file with a standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a nonzero (true) value for
the bin argument to the Pickler constructor or the dump() and dumps() functions. The binary format
is not the default because of backwards compatibility with the Python 1.4 pickle module. In a future
version, the default may change to binary.

The pickle module doesn’t handle code objects, which the marshal module does. I suppose pickle
could, and maybe it should, but there’s probably no great need for it right now (as long as marshal
continues to be used for reading and writing code objects), and at least this avoids the possibility of
smuggling Trojan horses into a program.

For the benefit of persistency modules written using pickle, it supports the notion of a reference to an
object outside the pickled data stream. Such objects are referenced by a name, which is an arbitrary
string of printable ascii characters. The resolution of such names is not defined by the pickle module —
the persistent object module will have to implement a method persistent load(). To write references
to persistent objects, the persistent module must define a method persistent id() which returns either
None or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module. Furthermore, all its instance variables
must be picklable.

When a pickled class instance is unpickled, its init () method is normally not invoked. Note: This
is a deviation from previous versions of this module; the change was introduced in Python 1.5b2. The
reason for the change is that in many cases it is desirable to have a constructor that requires arguments;
it is a (minor) nuisance to have to provide a getinitargs () method.

If it is desirable that the init () method be called on unpickling, a class can define a method
getinitargs (), which should return a tuple containing the arguments to be passed to the class

constructor (init ()). This method is called at pickle time; the tuple it returns is incorporated in
the pickle for the instance.

Classes can further influence how their instances are pickled — if the class defines the method
getstate (), it is called and the return state is pickled as the contents for the instance, and if

the class defines the method setstate (), it is called with the unpickled state. (Note that these
methods can also be used to implement copying class instances.) If there is no getstate () method,
the instance’s dict is pickled. If there is no setstate () method, the pickled object must
be a dictionary and its items are assigned to the new instance’s dictionary. (If a class defines both

getstate () and setstate (), the state object needn’t be a dictionary — these methods can
do what they want.) This protocol is also used by the shallow and deep copying operations defined in
the copy module.

Note that when class instances are pickled, their class’s code and data are not pickled along with them.
Only the instance data are pickled. This is done on purpose, so you can fix bugs in a class or add
methods and still load objects that were created with an earlier version of the class. If you plan to have
long-lived objects that will see many versions of a class, it may be worthwhile to put a version number
in the objects so that suitable conversions can be made by the class’s setstate () method.

When a class itself is pickled, only its name is pickled — the class definition is not pickled, but re-
imported by the unpickling process. Therefore, the restriction that the class must be defined at the top
level in a module applies to pickled classes as well.

The interface can be summarized as follows.

To pickle an object x onto a file f, open for writing:

p = pickle.Pickler(f)

p.dump(x)

34 Chapter 3. Python Services

A shorthand for this is:

pickle.dump(x, f)

To unpickle an object x from a file f, open for reading:

u = pickle.Unpickler(f)

x = u.load()

A shorthand is:

x = pickle.load(f)

The Pickler class only calls the method f.write() with a string argument. The Unpickler calls the
methods f.read() (with an integer argument) and f.readline() (without argument), both returning
a string. It is explicitly allowed to pass non-file objects here, as long as they have the right methods.

The constructor for the Pickler class has an optional second argument, bin. If this is present and true,
the binary pickle format is used; if it is absent or false, the (less efficient, but backwards compatible) text
pickle format is used. The Unpickler class does not have an argument to distinguish between binary
and text pickle formats; it accepts either format.

The following types can be pickled:

• None

• integers, long integers, floating point numbers

• strings

• tuples, lists and dictionaries containing only picklable objects

• functions defined at the top level of a module (by name reference, not storage of the implementation)

• built-in functions

• classes that are defined at the top level in a module

• instances of such classes whose dict or setstate () is picklable

Attempts to pickle unpicklable objects will raise the PicklingError exception; when this happens, an
unspecified number of bytes may have been written to the file.

It is possible to make multiple calls to the dump() method of the same Pickler instance. These must
then be matched to the same number of calls to the load() method of the corresponding Unpickler
instance. If the same object is pickled by multiple dump() calls, the load() will all yield references to the
same object. Warning: this is intended for pickling multiple objects without intervening modifications
to the objects or their parts. If you modify an object and then pickle it again using the same Pickler
instance, the object is not pickled again — a reference to it is pickled and the Unpickler will return the
old value, not the modified one. (There are two problems here: (a) detecting changes, and (b) marshalling
a minimal set of changes. I have no answers. Garbage Collection may also become a problem here.)

Apart from the Pickler and Unpickler classes, the module defines the following functions, and an
exception:

dump(object, file[, bin])
Write a pickled representation of obect to the open file object file. This is equivalent to
‘Pickler(file, bin).dump(object)’. If the optional bin argument is present and nonzero, the bi-
nary pickle format is used; if it is zero or absent, the (less efficient) text pickle format is used.

3.8. pickle — Python object serialization 35

load(file)
Read a pickled object from the open file object file. This is equivalent to ‘Unpickler(file).load()’.

dumps(object[, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the
optional bin argument is present and nonzero, the binary pickle format is used; if it is zero or
absent, the (less efficient) text pickle format is used.

loads(string)
Read a pickled object from a string instead of a file. Characters in the string past the pickled
object’s representation are ignored.

PicklingError
This exception is raised when an unpicklable object is passed to Pickler.dump().

See Also:

Module copy reg (section 3.10):
pickle interface constructor registration

Module shelve (section 3.11):
indexed databases of objects; uses pickle

Module copy (section 3.12):
shallow and deep object copying

Module marshal (section 3.13):
high-performance serialization of built-in types

3.8.1 Example

Here’s a simple example of how to modify pickling behavior for a class. The TextReader class opens a
text file, and returns the line number and line contents each time its readline() method is called. If a
TextReader instance is pickled, all attributes except the file object member are saved. When the instance
is unpickled, the file is reopened, and reading resumes from the last location. The setstate () and

getstate () methods are used to implement this behavior.

36 Chapter 3. Python Services

illustrate __setstate__ and __getstate__ methods

used in pickling.

class TextReader:

"Print and number lines in a text file."

def __init__(self,file):

self.file = file

self.fh = open(file,’r’)

self.lineno = 0

def readline(self):

self.lineno = self.lineno + 1

line = self.fh.readline()

if not line:

return None

return "%d: %s" % (self.lineno,line[:-1])

return data representation for pickled object

def __getstate__(self):

odict = self.__dict__ # get attribute dictionary

del odict[’fh’] # remove filehandle entry

return odict

restore object state from data representation generated

by __getstate__

def __setstate__(self,dict):

fh = open(dict[’file’]) # reopen file

count = dict[’lineno’] # read from file...

while count: # until line count is restored

fh.readline()

count = count - 1

dict[’fh’] = fh # create filehandle entry

self.__dict__ = dict # make dict our attribute dictionary

A sample usage might be something like this:

>>> import TextReader

>>> obj = TextReader.TextReader("TextReader.py")

>>> obj.readline()

’1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)

... obj.readline()

’7: class TextReader:’

>>> import pickle

>>> pickle.dump(obj,open(’save.p’,’w’))

(start another Python session)

>>> import pickle

>>> reader = pickle.load(open(’save.p’))

>>> reader.readline()

’8: "Print and number lines in a text file."’

3.9 cPickle — Alternate implementation of pickle

The cPickle module provides a similar interface and identical functionality as the pickle module, but
can be up to 1000 times faster since it is implemented in C. The only other important difference to note

3.9. cPickle — Alternate implementation of pickle 37

is that Pickler() and Unpickler() are functions and not classes, and so cannot be subclassed. This
should not be an issue in most cases.

The format of the pickle data is identical to that produced using the pickle module, so it is possible to
use pickle and cPickle interchangably with existing pickles.

(Since the pickle data format is actually a tiny stack-oriented programming language, and there are some
freedoms in the encodings of certain objects, it’s possible that the two modules produce different pickled
data for the same input objects; however they will always be able to read each others pickles back in.)

3.10 copy reg — Register pickle support functions

The copy reg module provides support for the pickle and cPickle modules. The copy module is likely
to use this in the future as well. It provides configuration information about object constructors which
are not classes. Such constructors may be factory functions or class instances.

constructor(object)
Declares object to be a valid constructor.

pickle(type, function[, constructor])
Declares that function should be used as a “reduction” function for objects of type or class type.
function should return either a string or a tuple. The optional constructor parameter, if provided,
is a callable object which can be used to reconstruct the object when called with the tuple of
arguments returned by function at pickling time.

3.11 shelve — Python object persistency

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values
(not the keys!) in a shelf can be essentially arbitrary Python objects — anything that the pickle module
can handle. This includes most class instances, recursive data types, and objects containing lots of shared
sub-objects. The keys are ordinary strings.

To summarize the interface (key is a string, data is an arbitrary object):

import shelve

d = shelve.open(filename) # open, with (g)dbm filename -- no suffix

d[key] = data # store data at key (overwrites old data if

using an existing key)

data = d[key] # retrieve data at key (raise KeyError if no

such key)

del d[key] # delete data stored at key (raises KeyError

if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

d.close() # close it

Restrictions:

• The choice of which database package will be used (e.g. dbm or gdbm) depends on which interface
is available. Therefore it is not safe to open the database directly using dbm. The database is
also (unfortunately) subject to the limitations of dbm, if it is used — this means that (the pickled
representation of) the objects stored in the database should be fairly small, and in rare cases key
collisions may cause the database to refuse updates.

38 Chapter 3. Python Services

• Dependent on the implementation, closing a persistent dictionary may or may not be necessary to
flush changes to disk.

• The shelve module does not support concurrent read/write access to shelved objects. (Multiple
simultaneous read accesses are safe.) When a program has a shelf open for writing, no other
program should have it open for reading or writing. Unix file locking can be used to solve this,
but this differs across Unix versions and requires knowledge about the database implementation
used.

See Also:

Module anydbm (section 7.7):
Generic interface to dbm-style databases.

Module dbhash (section 7.9):
BSD db database interface.

Module dbm (section 8.6):
Standard Unix database interface.

Module dumbdbm (section 7.8):
Portable implementation of the dbm interface.

Module gdbm (section 8.7):
GNU database interface, based on the dbm interface.

Module pickle (section 3.8):
Object serialization used by shelve.

Module cPickle (section 3.9):
High-performance version of pickle.

3.12 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

x = copy.copy(y) # make a shallow copy of y

x = copy.deepcopy(y) # make a deep copy of y

For module specific errors, copy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that
contain other objects, like lists or class instances):

• A shallow copy constructs a new compound object and then (to the extent possible) inserts refer-
ences into it to the objects found in the original.

• A deep copy constructs a new compound object and then, recursively, inserts copies into it of the
objects found in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

• Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves)
may cause a recursive loop.

• Because deep copy copies everything it may copy too much, e.g., administrative data structures
that should be shared even between copies.

3.12. copy — Shallow and deep copy operations 39

The deepcopy() function avoids these problems by:

• keeping a “memo” dictionary of objects already copied during the current copying pass; and

• letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file,
socket, window, array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define
methods called getinitargs (), getstate () and setstate (). See the description
of module pickle for information on these methods. The copy module does not use the copy reg
registration module.

In order for a class to define its own copy implementation, it can define special methods copy ()
and deepcopy (). The former is called to implement the shallow copy operation; no additional
arguments are passed. The latter is called to implement the deep copy operation; it is passed one
argument, the memo dictionary. If the deepcopy () implementation needs to make a deep copy
of a component, it should call the deepcopy() function with the component as first argument and the
memo dictionary as second argument.

See Also:

Module pickle (section 3.8):
Discussion of the special disciplines used to support object state retrieval and restoration.

3.13 marshal — Alternate Python object serialization

This module contains functions that can read and write Python values in a binary format. The format
is specific to Python, but independent of machine architecture issues (e.g., you can write a Python
value to a file on a PC, transport the file to a Sun, and read it back there). Details of the format are
undocumented on purpose; it may change between Python versions (although it rarely does).1

This is not a general “persistency” module. For general persistency and transfer of Python objects
through RPC calls, see the modules pickle and shelve. The marshal module exists mainly to support
reading and writing the “pseudo-compiled” code for Python modules of ‘.pyc’ files.

Not all Python object types are supported; in general, only objects whose value is independent from
a particular invocation of Python can be written and read by this module. The following types are
supported: None, integers, long integers, floating point numbers, strings, tuples, lists, dictionaries, and
code objects, where it should be understood that tuples, lists and dictionaries are only supported as long
as the values contained therein are themselves supported; and recursive lists and dictionaries should not
be written (they will cause infinite loops).

Caveat: On machines where C’s long int type has more than 32 bits (such as the DEC Alpha), it is
possible to create plain Python integers that are longer than 32 bits. Since the current marshal module
uses 32 bits to transfer plain Python integers, such values are silently truncated. This particularly affects
the use of very long integer literals in Python modules — these will be accepted by the parser on such
machines, but will be silently be truncated when the module is read from the ‘.pyc’ instead.2

There are functions that read/write files as well as functions operating on strings.

The module defines these functions:

dump(value, file)
Write the value on the open file. The value must be a supported type. The file must be an open

1The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who
use the term “marshalling” for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means
to convert some data from internal to external form (in an RPC buffer for instance) and “unmarshalling” for the reverse
process.

2A solution would be to refuse such literals in the parser, since they are inherently non-portable. Another solution
would be to let the marshal module raise an exception when an integer value would be truncated. At least one of these
solutions will be implemented in a future version.

40 Chapter 3. Python Services

file object such as sys.stdout or returned by open() or posix.popen(). It must be opened in
binary mode (’wb’ or ’w+b’).

If the value has (or contains an object that has) an unsupported type, a ValueError exception is
raised — but garbage data will also be written to the file. The object will not be properly read
back by load().

load(file)
Read one value from the open file and return it. If no valid value is read, raise EOFError,
ValueError or TypeError. The file must be an open file object opened in binary mode (’rb’
or ’r+b’).

Warning: If an object containing an unsupported type was marshalled with dump(), load() will
substitute None for the unmarshallable type.

dumps(value)
Return the string that would be written to a file by dump(value, file). The value must be a
supported type. Raise a ValueError exception if value has (or contains an object that has) an
unsupported type.

loads(string)
Convert the string to a value. If no valid value is found, raise EOFError, ValueError or TypeError.
Extra characters in the string are ignored.

3.14 imp — Access the import internals

This module provides an interface to the mechanisms used to implement the import statement. It defines
the following constants and functions:

get magic()
Return the magic string value used to recognize byte-compiled code files (‘.pyc’ files). (This value
may be different for each Python version.)

get suffixes()
Return a list of triples, each describing a particular type of module. Each triple has the form
(suffix, mode, type), where suffix is a string to be appended to the module name to form the
filename to search for, mode is the mode string to pass to the built-in open() function to open the
file (this can be ’r’ for text files or ’rb’ for binary files), and type is the file type, which has one
of the values PY SOURCE, PY COMPILED, or C EXTENSION, described below.

find module(name[, path])
Try to find the module name on the search path path. If path is a list of directory names, each
directory is searched for files with any of the suffixes returned by get suffixes() above. Invalid
names in the list are silently ignored (but all list items must be strings). If path is omitted or
None, the list of directory names given by sys.path is searched, but first it searches a few special
places: it tries to find a built-in module with the given name (C BUILTIN), then a frozen module
(PY FROZEN), and on some systems some other places are looked in as well (on the Mac, it looks
for a resource (PY RESOURCE); on Windows, it looks in the registry which may point to a specific
file).

If search is successful, the return value is a triple (file, pathname, description) where file is an
open file object positioned at the beginning, pathname is the pathname of the file found, and
description is a triple as contained in the list returned by get suffixes() describing the kind of
module found. If the module does not live in a file, the returned file is None, filename is the empty
string, and the description tuple contains empty strings for its suffix and mode; the module type
is as indicate in parentheses dabove. If the search is unsuccessful, ImportError is raised. Other
exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (names containing dots). In order to find
P .M , i.e., submodule M of package P , use find module() and load module() to find and load
package P , and then use find module() with the path argument set to P. path . When P
itself has a dotted name, apply this recipe recursively.

3.14. imp — Access the import internals 41

load module(name, file, filename, description)
Load a module that was previously found by find module() (or by an otherwise conducted search
yielding compatible results). This function does more than importing the module: if the module
was already imported, it is equivalent to a reload()! The name argument indicates the full module
name (including the package name, if this is a submodule of a package). The file argument is an
open file, and filename is the corresponding file name; these can be None and ’’, respectively, when
the module is not being loaded from a file. The description argument is a tuple as returned by
find module() describing what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (usually
ImportError) is raised.

Important: the caller is responsible for closing the file argument, if it was not None, even when
an exception is raised. This is best done using a try ... finally statement.

new module(name)
Return a new empty module object called name. This object is not inserted in sys.modules.

The following constants with integer values, defined in this module, are used to indicate the search result
of find module().

PY SOURCE
The module was found as a source file.

PY COMPILED
The module was found as a compiled code object file.

C EXTENSION
The module was found as dynamically loadable shared library.

PY RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG DIRECTORY
The module was found as a package directory.

C BUILTIN
The module was found as a built-in module.

PY FROZEN
The module was found as a frozen module (see init frozen()).

The following constant and functions are obsolete; their functionality is available through find module()
or load module(). They are kept around for backward compatibility:

SEARCH ERROR
Unused.

init builtin(name)
Initialize the built-in module called name and return its module object. If the module was already
initialized, it will be initialized again. A few modules cannot be initialized twice — attempting
to initialize these again will raise an ImportError exception. If there is no built-in module called
name, None is returned.

init frozen(name)
Initialize the frozen module called name and return its module object. If the module was already
initialized, it will be initialized again. If there is no frozen module called name, None is returned.
(Frozen modules are modules written in Python whose compiled byte-code object is incorporated
into a custom-built Python interpreter by Python’s freeze utility. See ‘Tools/freeze/’ for now.)

is builtin(name)
Return 1 if there is a built-in module called name which can be initialized again. Return -1 if
there is a built-in module called name which cannot be initialized again (see init builtin()).
Return 0 if there is no built-in module called name.

is frozen(name)
Return 1 if there is a frozen module (see init frozen()) called name, or 0 if there is no such

42 Chapter 3. Python Services

module.

load compiled(name, pathname, file)
Load and initialize a module implemented as a byte-compiled code file and return its module
object. If the module was already initialized, it will be initialized again. The name argument is
used to create or access a module object. The pathname argument points to the byte-compiled
code file. The file argument is the byte-compiled code file, open for reading in binary mode, from
the beginning. It must currently be a real file object, not a user-defined class emulating a file.

load dynamic(name, pathname[, file])
Load and initialize a module implemented as a dynamically loadable shared library and return its
module object. If the module was already initialized, it will be initialized again. Some modules
don’t like that and may raise an exception. The pathname argument must point to the shared
library. The name argument is used to construct the name of the initialization function: an
external C function called ‘initname()’ in the shared library is called. The optional file argment
is ignored. (Note: using shared libraries is highly system dependent, and not all systems support
it.)

load source(name, pathname, file)
Load and initialize a module implemented as a Python source file and return its module object. If
the module was already initialized, it will be initialized again. The name argument is used to create
or access a module object. The pathname argument points to the source file. The file argument is
the source file, open for reading as text, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file. Note that if a properly matching byte-compiled file (with
suffix ‘.pyc’ or ‘.pyo’) exists, it will be used instead of parsing the given source file.

3.14.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (i.e., no
hierarchical module names). (This implementation wouldn’t work in that version, since find module()
has been extended and load module() has been added in 1.4.)

import imp import sys

def __import__(name, globals=None, locals=None, fromlist=None):

Fast path: see if the module has already been imported.

try:

return sys.modules[name]

except KeyError:

pass

If any of the following calls raises an exception,

there’s a problem we can’t handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:

return imp.load_module(name, fp, pathname, description)

finally:

Since we may exit via an exception, close fp explicitly.

if fp:

fp.close()

A more complete example that implements hierarchical module names and includes a reload() function
can be found in the standard module knee (which is intended as an example only — don’t rely on any
part of it being a standard interface).

3.14. imp — Access the import internals 43

3.15 parser — Access Python parse trees

The parser module provides an interface to Python’s internal parser and byte-code compiler. The
primary purpose for this interface is to allow Python code to edit the parse tree of a Python expression
and create executable code from this. This is better than trying to parse and modify an arbitrary Python
code fragment as a string because parsing is performed in a manner identical to the code forming the
application. It is also faster.

There are a few things to note about this module which are important to making use of the data structures
created. This is not a tutorial on editing the parse trees for Python code, but some examples of using
the parser module are presented.

Most importantly, a good understanding of the Python grammar processed by the internal parser is
required. For full information on the language syntax, refer to the Python Language Reference. The
parser itself is created from a grammar specification defined in the file ‘Grammar/Grammar’ in the standard
Python distribution. The parse trees stored in the AST objects created by this module are the actual
output from the internal parser when created by the expr() or suite() functions, described below. The
AST objects created by sequence2ast() faithfully simulate those structures. Be aware that the values
of the sequences which are considered “correct” will vary from one version of Python to another as the
formal grammar for the language is revised. However, transporting code from one Python version to
another as source text will always allow correct parse trees to be created in the target version, with the
only restriction being that migrating to an older version of the interpreter will not support more recent
language constructs. The parse trees are not typically compatible from one version to another, whereas
source code has always been forward-compatible.

Each element of the sequences returned by ast2list() or ast2tuple() has a simple form. Sequences
representing non-terminal elements in the grammar always have a length greater than one. The first
element is an integer which identifies a production in the grammar. These integers are given symbolic
names in the C header file ‘Include/graminit.h’ and the Python module symbol. Each additional element
of the sequence represents a component of the production as recognized in the input string: these are
always sequences which have the same form as the parent. An important aspect of this structure which
should be noted is that keywords used to identify the parent node type, such as the keyword if in an
if stmt, are included in the node tree without any special treatment. For example, the if keyword
is represented by the tuple (1, ’if’), where 1 is the numeric value associated with all NAME tokens,
including variable and function names defined by the user. In an alternate form returned when line
number information is requested, the same token might be represented as (1, ’if’, 12), where the 12
represents the line number at which the terminal symbol was found.

Terminal elements are represented in much the same way, but without any child elements and the addition
of the source text which was identified. The example of the if keyword above is representative. The
various types of terminal symbols are defined in the C header file ‘Include/token.h’ and the Python module
token.

The AST objects are not required to support the functionality of this module, but are provided for three
purposes: to allow an application to amortize the cost of processing complex parse trees, to provide
a parse tree representation which conserves memory space when compared to the Python list or tuple
representation, and to ease the creation of additional modules in C which manipulate parse trees. A
simple “wrapper” class may be created in Python to hide the use of AST objects.

The parser module defines functions for a few distinct purposes. The most important purposes are to
create AST objects and to convert AST objects to other representations such as parse trees and compiled
code objects, but there are also functions which serve to query the type of parse tree represented by an
AST object.

See Also:

Module symbol (section 3.16):
Useful constants representing internal nodes of the parse tree.

Module token (section 3.17):
Useful constants representing leaf nodes of the parse tree and functions for testing node values.

44 Chapter 3. Python Services

3.15.1 Creating AST Objects

AST objects may be created from source code or from a parse tree. When creating an AST object from
source, different functions are used to create the ’eval’ and ’exec’ forms.

expr(string)
The expr() function parses the parameter string as if it were an input to ‘compile(string,
’eval’)’. If the parse succeeds, an AST object is created to hold the internal parse tree rep-
resentation, otherwise an appropriate exception is thrown.

suite(string)
The suite() function parses the parameter string as if it were an input to ‘compile(string,
’exec’)’. If the parse succeeds, an AST object is created to hold the internal parse tree represen-
tation, otherwise an appropriate exception is thrown.

sequence2ast(sequence)
This function accepts a parse tree represented as a sequence and builds an internal representation
if possible. If it can validate that the tree conforms to the Python grammar and all nodes are valid
node types in the host version of Python, an AST object is created from the internal representation
and returned to the called. If there is a problem creating the internal representation, or if the tree
cannot be validated, a ParserError exception is thrown. An AST object created this way should
not be assumed to compile correctly; normal exceptions thrown by compilation may still be initiated
when the AST object is passed to compileast(). This may indicate problems not related to syntax
(such as a MemoryError exception), but may also be due to constructs such as the result of parsing
del f(0), which escapes the Python parser but is checked by the bytecode compiler.

Sequences representing terminal tokens may be represented as either two-element lists of the form
(1, ’name’) or as three-element lists of the form (1, ’name’, 56). If the third element is present,
it is assumed to be a valid line number. The line number may be specified for any subset of the
terminal symbols in the input tree.

tuple2ast(sequence)
This is the same function as sequence2ast(). This entry point is maintained for backward com-
patibility.

3.15.2 Converting AST Objects

AST objects, regardless of the input used to create them, may be converted to parse trees represented
as list- or tuple- trees, or may be compiled into executable code objects. Parse trees may be extracted
with or without line numbering information.

ast2list(ast[, line info])
This function accepts an AST object from the caller in ast and returns a Python list representing
the equivalent parse tree. The resulting list representation can be used for inspection or the creation
of a new parse tree in list form. This function does not fail so long as memory is available to build
the list representation. If the parse tree will only be used for inspection, ast2tuple() should be
used instead to reduce memory consumption and fragmentation. When the list representation is
required, this function is significantly faster than retrieving a tuple representation and converting
that to nested lists.

If line info is true, line number information will be included for all terminal tokens as a third
element of the list representing the token. Note that the line number provided specifies the line on
which the token ends. This information is omitted if the flag is false or omitted.

ast2tuple(ast[, line info])
This function accepts an AST object from the caller in ast and returns a Python tuple representing
the equivalent parse tree. Other than returning a tuple instead of a list, this function is identical
to ast2list().

If line info is true, line number information will be included for all terminal tokens as a third
element of the list representing the token. This information is omitted if the flag is false or omitted.

compileast(ast[, filename = ’<ast>’])

3.15. parser — Access Python parse trees 45

The Python byte compiler can be invoked on an AST object to produce code objects which can be
used as part of an exec statement or a call to the built-in eval() function. This function provides
the interface to the compiler, passing the internal parse tree from ast to the parser, using the source
file name specified by the filename parameter. The default value supplied for filename indicates
that the source was an AST object.

Compiling an AST object may result in exceptions related to compilation; an example would be
a SyntaxError caused by the parse tree for del f(0): this statement is considered legal within
the formal grammar for Python but is not a legal language construct. The SyntaxError raised for
this condition is actually generated by the Python byte-compiler normally, which is why it can be
raised at this point by the parser module. Most causes of compilation failure can be diagnosed
programmatically by inspection of the parse tree.

3.15.3 Queries on AST Objects

Two functions are provided which allow an application to determine if an AST was created as an expres-
sion or a suite. Neither of these functions can be used to determine if an AST was created from source
code via expr() or suite() or from a parse tree via sequence2ast().

isexpr(ast)
When ast represents an ’eval’ form, this function returns true, otherwise it returns false. This
is useful, since code objects normally cannot be queried for this information using existing built-in
functions. Note that the code objects created by compileast() cannot be queried like this either,
and are identical to those created by the built-in compile() function.

issuite(ast)
This function mirrors isexpr() in that it reports whether an AST object represents an ’exec’
form, commonly known as a “suite.” It is not safe to assume that this function is equivalent to
‘not isexpr(ast)’, as additional syntactic fragments may be supported in the future.

3.15.4 Exceptions and Error Handling

The parser module defines a single exception, but may also pass other built-in exceptions from other
portions of the Python runtime environment. See each function for information about the exceptions it
can raise.

ParserError
Exception raised when a failure occurs within the parser module. This is generally produced
for validation failures rather than the built in SyntaxError thrown during normal parsing. The
exception argument is either a string describing the reason of the failure or a tuple containing
a sequence causing the failure from a parse tree passed to sequence2ast() and an explanatory
string. Calls to sequence2ast() need to be able to handle either type of exception, while calls to
other functions in the module will only need to be aware of the simple string values.

Note that the functions compileast(), expr(), and suite() may throw exceptions which are normally
thrown by the parsing and compilation process. These include the built in exceptions MemoryError,
OverflowError, SyntaxError, and SystemError. In these cases, these exceptions carry all the meaning
normally associated with them. Refer to the descriptions of each function for detailed information.

3.15.5 AST Objects

Ordered and equality comparisons are supported between AST objects. Pickling of AST objects (using
the pickle module) is also supported.

ASTType
The type of the objects returned by expr(), suite() and sequence2ast().

AST objects have the following methods:

46 Chapter 3. Python Services

compile([filename])
Same as compileast(ast, filename).

isexpr()
Same as isexpr(ast).

issuite()
Same as issuite(ast).

tolist([line info])
Same as ast2list(ast, line info).

totuple([line info])
Same as ast2tuple(ast, line info).

3.15.6 Examples

The parser modules allows operations to be performed on the parse tree of Python source code before the
bytecode is generated, and provides for inspection of the parse tree for information gathering purposes.
Two examples are presented. The simple example demonstrates emulation of the compile() built-in
function and the complex example shows the use of a parse tree for information discovery.

Emulation of compile()

While many useful operations may take place between parsing and bytecode generation, the simplest
operation is to do nothing. For this purpose, using the parser module to produce an intermediate data
structure is equivalent to the code

>>> code = compile(’a + 5’, ’eval’)

>>> a = 5

>>> eval(code)

10

The equivalent operation using the parser module is somewhat longer, and allows the intermediate
internal parse tree to be retained as an AST object:

>>> import parser

>>> ast = parser.expr(’a + 5’)

>>> code = ast.compile()

>>> a = 5

>>> eval(code)

10

An application which needs both AST and code objects can package this code into readily available
functions:

import parser

def load_suite(source_string):

ast = parser.suite(source_string)

return ast, ast.compile()

def load_expression(source_string):

ast = parser.expr(source_string)

return ast, ast.compile()

3.15. parser — Access Python parse trees 47

Information Discovery

Some applications benefit from direct access to the parse tree. The remainder of this section demonstrates
how the parse tree provides access to module documentation defined in docstrings without requiring that
the code being examined be loaded into a running interpreter via import. This can be very useful for
performing analyses of untrusted code.

Generally, the example will demonstrate how the parse tree may be traversed to distill interesting infor-
mation. Two functions and a set of classes are developed which provide programmatic access to high
level function and class definitions provided by a module. The classes extract information from the parse
tree and provide access to the information at a useful semantic level, one function provides a simple
low-level pattern matching capability, and the other function defines a high-level interface to the classes
by handling file operations on behalf of the caller. All source files mentioned here which are not part of
the Python installation are located in the ‘Demo/parser/’ directory of the distribution.

The dynamic nature of Python allows the programmer a great deal of flexibility, but most modules need
only a limited measure of this when defining classes, functions, and methods. In this example, the only
definitions that will be considered are those which are defined in the top level of their context, e.g., a
function defined by a def statement at column zero of a module, but not a function defined within a
branch of an if ... else construct, though there are some good reasons for doing so in some situations.
Nesting of definitions will be handled by the code developed in the example.

To construct the upper-level extraction methods, we need to know what the parse tree structure looks
like and how much of it we actually need to be concerned about. Python uses a moderately deep parse
tree so there are a large number of intermediate nodes. It is important to read and understand the
formal grammar used by Python. This is specified in the file ‘Grammar/Grammar’ in the distribution.
Consider the simplest case of interest when searching for docstrings: a module consisting of a docstring
and nothing else. (See file ‘docstring.py’.)

"""Some documentation.

"""

Using the interpreter to take a look at the parse tree, we find a bewildering mass of numbers and
parentheses, with the documentation buried deep in nested tuples.

48 Chapter 3. Python Services

>>> import parser

>>> import pprint

>>> ast = parser.suite(open(’docstring.py’).read())

>>> tup = ast.totuple()

>>> pprint.pprint(tup)

(257,

(264,

(265,

(266,

(267,

(307,

(287,

(288,

(289,

(290,

(292,

(293,

(294,

(295,

(296,

(297,

(298,

(299,

(300, (3, ’"""Some documentation.\012"""’))))))))))))))))),

(4, ’’))),

(4, ’’),

(0, ’’))

The numbers at the first element of each node in the tree are the node types; they map directly to
terminal and non-terminal symbols in the grammar. Unfortunately, they are represented as integers
in the internal representation, and the Python structures generated do not change that. However, the
symbol and token modules provide symbolic names for the node types and dictionaries which map from
the integers to the symbolic names for the node types.

In the output presented above, the outermost tuple contains four elements: the integer 257 and three
additional tuples. Node type 257 has the symbolic name file input. Each of these inner tuples contains
an integer as the first element; these integers, 264, 4, and 0, represent the node types stmt, NEWLINE,
and ENDMARKER, respectively. Note that these values may change depending on the version of Python
you are using; consult ‘symbol.py’ and ‘token.py’ for details of the mapping. It should be fairly clear that
the outermost node is related primarily to the input source rather than the contents of the file, and may
be disregarded for the moment. The stmt node is much more interesting. In particular, all docstrings
are found in subtrees which are formed exactly as this node is formed, with the only difference being
the string itself. The association between the docstring in a similar tree and the defined entity (class,
function, or module) which it describes is given by the position of the docstring subtree within the tree
defining the described structure.

By replacing the actual docstring with something to signify a variable component of the tree, we allow a
simple pattern matching approach to check any given subtree for equivalence to the general pattern for
docstrings. Since the example demonstrates information extraction, we can safely require that the tree be
in tuple form rather than list form, allowing a simple variable representation to be [’variable name’].
A simple recursive function can implement the pattern matching, returning a boolean and a dictionary
of variable name to value mappings. (See file ‘example.py’.)

3.15. parser — Access Python parse trees 49

from types import ListType, TupleType

def match(pattern, data, vars=None):

if vars is None:

vars = {}

if type(pattern) is ListType:

vars[pattern[0]] = data

return 1, vars

if type(pattern) is not TupleType:

return (pattern == data), vars

if len(data) != len(pattern):

return 0, vars

for pattern, data in map(None, pattern, data):

same, vars = match(pattern, data, vars)

if not same:

break

return same, vars

Using this simple representation for syntactic variables and the symbolic node types, the pattern for the
candidate docstring subtrees becomes fairly readable. (See file ‘example.py’.)

import symbol

import token

DOCSTRING_STMT_PATTERN = (

symbol.stmt,

(symbol.simple_stmt,

(symbol.small_stmt,

(symbol.expr_stmt,

(symbol.testlist,

(symbol.test,

(symbol.and_test,

(symbol.not_test,

(symbol.comparison,

(symbol.expr,

(symbol.xor_expr,

(symbol.and_expr,

(symbol.shift_expr,

(symbol.arith_expr,

(symbol.term,

(symbol.factor,

(symbol.power,

(symbol.atom,

(token.STRING, [’docstring’])

)))))))))))))))),

(token.NEWLINE, ’’)

))

Using the match() function with this pattern, extracting the module docstring from the parse tree
created previously is easy:

>>> found, vars = match(DOCSTRING_STMT_PATTERN, tup[1])

>>> found

1

>>> vars

{’docstring’: ’"""Some documentation.\012"""’}

50 Chapter 3. Python Services

Once specific data can be extracted from a location where it is expected, the question of where information
can be expected needs to be answered. When dealing with docstrings, the answer is fairly simple: the
docstring is the first stmt node in a code block (file input or suite node types). A module consists
of a single file input node, and class and function definitions each contain exactly one suite node.
Classes and functions are readily identified as subtrees of code block nodes which start with (stmt,
(compound stmt, (classdef, ... or (stmt, (compound stmt, (funcdef, Note that these
subtrees cannot be matched by match() since it does not support multiple sibling nodes to match without
regard to number. A more elaborate matching function could be used to overcome this limitation, but
this is sufficient for the example.

Given the ability to determine whether a statement might be a docstring and extract the actual string
from the statement, some work needs to be performed to walk the parse tree for an entire module and
extract information about the names defined in each context of the module and associate any docstrings
with the names. The code to perform this work is not complicated, but bears some explanation.

The public interface to the classes is straightforward and should probably be somewhat more flexible.
Each “major” block of the module is described by an object providing several methods for inquiry and
a constructor which accepts at least the subtree of the complete parse tree which it represents. The
ModuleInfo constructor accepts an optional name parameter since it cannot otherwise determine the
name of the module.

The public classes include ClassInfo, FunctionInfo, and ModuleInfo. All objects provide the meth-
ods get name(), get docstring(), get class names(), and get class info(). The ClassInfo
objects support get method names() and get method info() while the other classes provide
get function names() and get function info().

Within each of the forms of code block that the public classes represent, most of the required information
is in the same form and is accessed in the same way, with classes having the distinction that functions
defined at the top level are referred to as “methods.” Since the difference in nomenclature reflects a real
semantic distinction from functions defined outside of a class, the implementation needs to maintain the
distinction. Hence, most of the functionality of the public classes can be implemented in a common base
class, SuiteInfoBase, with the accessors for function and method information provided elsewhere. Note
that there is only one class which represents function and method information; this parallels the use of
the def statement to define both types of elements.

Most of the accessor functions are declared in SuiteInfoBase and do not need to be overriden by
subclasses. More importantly, the extraction of most information from a parse tree is handled through
a method called by the SuiteInfoBase constructor. The example code for most of the classes is clear
when read alongside the formal grammar, but the method which recursively creates new information
objects requires further examination. Here is the relevant part of the SuiteInfoBase definition from
‘example.py’:

3.15. parser — Access Python parse trees 51

class SuiteInfoBase:

_docstring = ’’

_name = ’’

def __init__(self, tree = None):

self._class_info = {}

self._function_info = {}

if tree:

self._extract_info(tree)

def _extract_info(self, tree):

extract docstring

if len(tree) == 2:

found, vars = match(DOCSTRING_STMT_PATTERN[1], tree[1])

else:

found, vars = match(DOCSTRING_STMT_PATTERN, tree[3])

if found:

self._docstring = eval(vars[’docstring’])

discover inner definitions

for node in tree[1:]:

found, vars = match(COMPOUND_STMT_PATTERN, node)

if found:

cstmt = vars[’compound’]

if cstmt[0] == symbol.funcdef:

name = cstmt[2][1]

self._function_info[name] = FunctionInfo(cstmt)

elif cstmt[0] == symbol.classdef:

name = cstmt[2][1]

self._class_info[name] = ClassInfo(cstmt)

After initializing some internal state, the constructor calls the extract info() method. This method
performs the bulk of the information extraction which takes place in the entire example. The extraction
has two distinct phases: the location of the docstring for the parse tree passed in, and the discovery of
additional definitions within the code block represented by the parse tree.

The initial if test determines whether the nested suite is of the “short form” or the “long form.” The
short form is used when the code block is on the same line as the definition of the code block, as in

def square(x): "Square an argument."; return x ** 2

while the long form uses an indented block and allows nested definitions:

def make_power(exp):

"Make a function that raises an argument to the exponent ‘exp’."

def raiser(x, y=exp):

return x ** y

return raiser

When the short form is used, the code block may contain a docstring as the first, and possibly only,
small stmt element. The extraction of such a docstring is slightly different and requires only a portion
of the complete pattern used in the more common case. As implemented, the docstring will only be found
if there is only one small stmt node in the simple stmt node. Since most functions and methods which
use the short form do not provide a docstring, this may be considered sufficient. The extraction of the
docstring proceeds using the match() function as described above, and the value of the docstring is
stored as an attribute of the SuiteInfoBase object.

After docstring extraction, a simple definition discovery algorithm operates on the stmt nodes of the

52 Chapter 3. Python Services

suite node. The special case of the short form is not tested; since there are no stmt nodes in the short
form, the algorithm will silently skip the single simple stmt node and correctly not discover any nested
definitions.

Each statement in the code block is categorized as a class definition, function or method definition,
or something else. For the definition statements, the name of the element defined is extracted and a
representation object appropriate to the definition is created with the defining subtree passed as an
argument to the constructor. The repesentation objects are stored in instance variables and may be
retrieved by name using the appropriate accessor methods.

The public classes provide any accessors required which are more specific than those provided by the
SuiteInfoBase class, but the real extraction algorithm remains common to all forms of code blocks. A
high-level function can be used to extract the complete set of information from a source file. (See file
‘example.py’.)

def get_docs(fileName):

import os

import parser

source = open(fileName).read()

basename = os.path.basename(os.path.splitext(fileName)[0])

ast = parser.suite(source)

return ModuleInfo(ast.totuple(), basename)

This provides an easy-to-use interface to the documentation of a module. If information is required
which is not extracted by the code of this example, the code may be extended at clearly defined points
to provide additional capabilities.

3.16 symbol — Constants used with Python parse trees

This module provides constants which represent the numeric values of internal nodes of the parse tree.
Unlike most Python constants, these use lower-case names. Refer to the file ‘Grammar/Grammar’ in the
Python distribution for the defintions of the names in the context of the language grammar. The specific
numeric values which the names map to may change between Python versions.

This module also provides one additional data object:

sym name
Dictionary mapping the numeric values of the constants defined in this module back to name
strings, allowing more human-readable representation of parse trees to be generated.

See Also:

Module parser (section 3.15):
second example uses this module

3.17 token — Constants used with Python parse trees

This module provides constants which represent the numeric values of leaf nodes of the parse tree
(terminal tokens). Refer to the file ‘Grammar/Grammar’ in the Python distribution for the defintions of
the names in the context of the language grammar. The specific numeric values which the names map
to may change between Python versions.

This module also provides one data object and some functions. The functions mirror definitions in the
Python C header files.

tok name
Dictionary mapping the numeric values of the constants defined in this module back to name
strings, allowing more human-readable representation of parse trees to be generated.

3.16. symbol — Constants used with Python parse trees 53

ISTERMINAL(x)
Return true for terminal token values.

ISNONTERMINAL(x)
Return true for non-terminal token values.

ISEOF(x)
Return true if x is the marker indicating the end of input.

See Also:

Module parser (section 3.15):
second example uses this module

3.18 keyword — Testing for Python keywords

This module allows a Python program to determine if a string is a keyword. A single function is provided:

iskeyword(s)
Return true if s is a Python keyword.

3.19 tokenize — Tokenizer for Python source

The tokenize module provides a lexical scanner for Python source code, implemented in Python. The
scanner in this module returns comments as tokens as well, making it useful for implementing “pretty-
printers,” including colorizers for on-screen displays.

The scanner is exposed by a single function:

tokenize(readline[, tokeneater])
The tokenize() function accepts two parameters: one representing the input stream, and one
providing an output mechanism for tokenize().

The first parameter, readline, must be a callable object which provides the same interface as the
readline() method of built-in file objects (see section 2.1.7). Each call to the function should
return one line of input as a string.

The second parameter, tokeneater , must also be a callable object. It is called with five parameters:
the token type, the token string, a tuple (srow, scol) specifying the row and column where the
token begins in the source, a tuple (erow, ecol) giving the ending position of the token, and
the line on which the token was found. The line passed is the logical line; continuation lines are
included.

All constants from the token module are also exported from tokenize, as is one additional token type
value that might be passed to the tokeneater function by tokenize():

COMMENT
Token value used to indicate a comment.

3.20 pyclbr — Python class browser support

The pyclbr can be used to determine some limited information about the classes and methods defined
in a module. The information provided is sufficient to implement a traditional three-pane class browser.
The information is extracted from the source code rather than from an imported module, so this module
is safe to use with untrusted source code. This restriction makes it impossible to use this module with
modules not implemented in Python, including many standard and optional extension modules.

readmodule(module[, path])
Read a module and return a dictionary mapping class names to class descriptor objects. The
parameter module should be the name of a module as a string; it may be the name of a module

54 Chapter 3. Python Services

within a package. The path parameter should be a sequence, and is used to augment the value of
sys.path, which is used to locate module source code.

3.20.1 Class Descriptor Objects

The class descriptor objects used as values in the dictionary returned by readmodule() provide the
following data members:

module
The name of the module defining the class described by the class descriptor.

name
The name of the class.

super
A list of class descriptors which describe the immediate base classes of the class being described.
Classes which are named as superclasses but which are not discoverable by readmodule() are listed
as a string with the class name instead of class descriptors.

methods
A dictionary mapping method names to line numbers.

file
Name of the file containing the class statement defining the class.

lineno
The line number of the class statement within the file named by file.

3.21 code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in Python. Two classes and
convenience functions are included which can be used to build applications which provide an interactive
interpreter prompt.

InteractiveInterpreter([locals])
This class deals with parsing and interpreter state (the user’s namespace); it does not deal with
input buffering or prompting or input file naming (the filename is always passed in explicitly). The
optional locals argument specifies the dictionary in which code will be executed; it defaults to a
newly created dictionary with key ’ name ’ set to ’ console ’ and key ’ doc ’ set
to None.

InteractiveConsole([locals[, filename]])
Closely emulate the behavior of the interactive Python interpreter. This class builds on
InteractiveInterpreter and adds prompting using the familiar sys.ps1 and sys.ps2, and input
buffering.

interact([banner[, readfunc[, local]]])
Convenience function to run a read-eval-print loop. This creates a new instance of
InteractiveConsole and sets readfunc to be used as the raw input() method, if provided. If
local is provided, it is passed to the InteractiveConsole constructor for use as the default names-
pace for the interpreter loop. The interact() method of the instance is then run with banner
passed as the banner to use, if provided. The console object is discarded after use.

compile command(source[, filename[, symbol]])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a.
the read-eval-print loop). The tricky part is to determine when the user has entered an incomplete
command that can be completed by entering more text (as opposed to a complete command or a
syntax error). This function almost always makes the same decision as the real interpreter main
loop.

source is the source string; filename is the optional filename from which source was read, defaulting

3.21. code — Interpreter base classes 55

to ’<input>’; and symbol is the optional grammar start symbol, which should be either ’single’
(the default) or ’eval’.

Returns a code object (the same as compile(source, filename, symbol)) if the command is com-
plete and valid; None if the command is incomplete; raises SyntaxError if the command is complete
and contains a syntax error, or raises OverflowError if the command includes a numeric constant
which exceeds the range of the appropriate numeric type.

3.21.1 Interactive Interpreter Objects

runsource(source[, filename[, symbol]])
Compile and run some source in the interpreter. Arguments are the same as for
compile command(); the default for filename is ’<input>’, and for symbol is ’single’. One
several things can happen:

•The input is incorrect; compile command() raised an exception (SyntaxError or
OverflowError). A syntax traceback will be printed by calling the showsyntaxerror()
method. runsource() returns 0.

•The input is incomplete, and more input is required; compile command() returned None.
runsource() returns 1.

•The input is complete; compile command() returned a code object. The code is executed
by calling the runcode() (which also handles run-time exceptions, except for SystemExit).
runsource() returns 0.

The return value can be used to decide whether to use sys.ps1 or sys.ps2 to prompt the next
line.

runcode(code)
Execute a code object. When an exception occurs, showtraceback() is called to display a trace-
back. All exceptions are caught except SystemExit, which is allowed to propogate.

A note about KeyboardInterrupt: this exception may occur elsewhere in this code, and may not
always be caught. The caller should be prepared to deal with it.

showsyntaxerror([filename])
Display the syntax error that just occurred. This does not display a stack trace because there isn’t
one for syntax errors. If filename is given, it is stuffed into the exception instead of the default
filename provided by Python’s parser, because it always uses ’<string>’ when reading from a
string. The output is written by the write() method.

showtraceback()
Display the exception that just occurred. We remove the first stack item because it is within the
interpreter object implementation. The output is written by the write() method.

write(data)
Write a string to standard output. Derived classes should override this to provide the appropriate
output handling as needed.

3.21.2 Interactive Console Objects

The InteractiveConsole class is a subclass of InteractiveInterpreter, and so offers all the methods
of the interpreter objects as well as the following additions.

interact([banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner
to print before the first interaction; by default it prints a banner similar to the one printed by the
standard Python interpreter, followed by the class name of the console object in parentheses (so
as not to confuse this with the real interpreter – since it’s so close!).

56 Chapter 3. Python Services

push(line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may
have internal newlines. The line is appended to a buffer and the interpreter’s runsource() method
is called with the concatenated contents of the buffer as source. If this indicates that the command
was executed or invalid, the buffer is reset; otherwise, the command is incomplete, and the buffer
is left as it was after the line was appended. The return value is 1 if more input is required, 0 if
the line was dealt with in some way (this is the same as runsource()).

resetbuffer()
Remove any unhandled source text from the input buffer.

raw input([prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the
user enters the eof key sequence, EOFError is raised. The base implementation uses the built-in
function raw input(); a subclass may replace this with a different implementation.

3.22 codeop — Compile Python code

The codeop module provides a function to compile Python code with hints on whether it is certainly
complete, possibly complete or definitely incomplete. This is used by the code module and should not
normally be used directly.

The codeop module defines the following function:

compile command(source[, filename[, symbol]])
Tries to compile source, which should be a string of Python code and return a code object if source
is valid Python code. In that case, the filename attribute of the code object will be filename, which
defaults to ’<input>’. Returns None if source is not valid Python code, but is a prefix of valid
Python code.

If there is a problem with source, an exception will be raised. SyntaxError is raised if there is
invalid Python syntax, and OverflowError if there is an invalid numeric constant.

The symbol argument determines whether source is compiled as a statement (’single’, the default)
or as an expression (’eval’). Any other value will cause ValueError to be raised.

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome
before reaching the end of the source; in this case, trailing symbols may be ignored instead of
causing an error. For example, a backslash followed by two newlines may be followed by arbitrary
garbage. This will be fixed once the API for the parser is better.

3.23 pprint — Data pretty printer.

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form
which can be used as input to the interpreter. If the formatted structures include objects which are not
fundamental Python types, the representation may not be loadable. This may be the case if objects such
as files, sockets, classes, or instances are included, as well as many other builtin objects which are not
representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines
if they don’t fit within the allowed width. Construct PrettyPrinter objects explicitly if you need to
adjust the width constraint.

The pprint module defines one class:

PrettyPrinter(...)
Construct a PrettyPrinter instance. This constructor understands several keyword parameters.
An output stream may be set using the stream keyword; the only method used on the stream object
is the file protocol’s write() method. If not specified, the PrettyPrinter adopts sys.stdout.
Three additional parameters may be used to control the formatted representation. The keywords
are indent , depth, and width. The amount of indentation added for each recursive level is specified

3.22. codeop — Compile Python code 57

by indent ; the default is one. Other values can cause output to look a little odd, but can make
nesting easier to spot. The number of levels which may be printed is controlled by depth; if the
data structure being printed is too deep, the next contained level is replaced by ‘...’. By default,
there is no constraint on the depth of the objects being formatted. The desired output width is
constrained using the width parameter; the default is eighty characters. If a structure cannot be
formatted within the constrained width, a best effort will be made.

>>> import pprint, sys

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff[:])

>>> pp = pprint.PrettyPrinter(indent=4)

>>> pp.pprint(stuff)

[[’’,

’/usr/local/lib/python1.5’,

’/usr/local/lib/python1.5/test’,

’/usr/local/lib/python1.5/sunos5’,

’/usr/local/lib/python1.5/sharedmodules’,

’/usr/local/lib/python1.5/tkinter’],

’’,

’/usr/local/lib/python1.5’,

’/usr/local/lib/python1.5/test’,

’/usr/local/lib/python1.5/sunos5’,

’/usr/local/lib/python1.5/sharedmodules’,

’/usr/local/lib/python1.5/tkinter’]

>>>

>>> import parser

>>> tup = parser.ast2tuple(

... parser.suite(open(’pprint.py’).read()))[1][1][1]

>>> pp = pprint.PrettyPrinter(depth=6)

>>> pp.pprint(tup)

(266, (267, (307, (287, (288, (...))))))

The PrettyPrinter class supports several derivative functions:

pformat(object)
Return the formatted representation of object as a string. The default parameters for formatting
are used.

pprint(object[, stream])
Prints the formatted representation of object on stream, followed by a newline. If stream is omitted,
sys.stdout is used. This may be used in the interactive interpreter instead of a print statement
for inspecting values. The default parameters for formatting are used.

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,

’’,

’/usr/local/lib/python1.5’,

’/usr/local/lib/python1.5/test’,

’/usr/local/lib/python1.5/sunos5’,

’/usr/local/lib/python1.5/sharedmodules’,

’/usr/local/lib/python1.5/tkinter’]

isreadable(object)
Determine if the formatted representation of object is “readable,” or can be used to reconstruct
the value using eval(). This always returns false for recursive objects.

>>> pprint.isreadable(stuff)

0

58 Chapter 3. Python Services

isrecursive(object)
Determine if object requires a recursive representation.

One more support function is also defined:

saferepr(object)
Return a string representation of object , protected against recursive data structures. If the represen-
tation of object exposes a recursive entry, the recursive reference will be represented as ‘<Recursion
on typename with id=number>’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ’’, ’/usr/local/lib/python1.5’, ’/usr/loca

l/lib/python1.5/test’, ’/usr/local/lib/python1.5/sunos5’, ’/usr/local/lib/python

1.5/sharedmodules’, ’/usr/local/lib/python1.5/tkinter’]"

3.23.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat(object)
Return the formatted representation of object . This takes into Account the options passed to the
PrettyPrinter constructor.

pprint(object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names.
Using these methods on an instance is slightly more efficient since new PrettyPrinter objects don’t
need to be created.

isreadable(object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct
the value using eval(). Note that this returns false for recursive objects. If the depth parameter
of the PrettyPrinter is set and the object is deeper than allowed, this returns false.

isrecursive(object)
Determine if the object requires a recursive representation.

3.24 repr — Alternate repr() implementation.

The repr module provides a means for producing object representations with limits on the size of the
resulting strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

Repr()
Class which provides formatting services useful in implementing functions similar to the built-in
repr(); size limits for different object types are added to avoid the generation of representations
which are excessively long.

aRepr
This is an instance of Repr which is used to provide the repr() function described below. Changing
the attributes of this object will affect the size limits used by repr() and the Python debugger.

repr(obj)
This is the repr() method of aRepr. It returns a string similar to that returned by the built-in
function of the same name, but with limits on most sizes.

3.24. repr — Alternate repr() implementation. 59

3.24.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations
of different object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The default is 6.

maxdict
maxlist
maxtuple

Limits on the number of entries represented for the named object type. The default for maxdict
is 4, for the others, 6.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from
the middle. The default is 40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal”
representation of the string is used as the character source: if escape sequences are needed in the
representation, these may be mangled when the representation is shortened. The default is 30.

maxother
This limit is used to control the size of object types for which no specific formatting method is
available on the Repr object. It is applied in a similar manner as maxstring. The default is 20.

repr(obj)
The equivalent to the built-in repr() that uses the formatting imposed by the instance.

repr1(obj, level)
Recursive implementation used by repr(). This uses the type of obj to determine which formatting
method to call, passing it obj and level . The type-specific methods should call repr1() to perform
recursive formatting, with level - 1 for the value of level in the recursive call.

repr type(obj, level)
Formatting methods for specific types are implemented as methods with a
name based on the type name. In the method name, type is replaced by
string.join(string.split(type(obj). name , ’ ’). Dispatch to these methods is
handled by repr1(). Type-specific methods which need to recursively format a value should call
‘self.repr1(subobj, level - 1)’.

3.24.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr.repr1() allows subclasses of Repr to add support for additional
built-in object types or to modify the handling of types already supported. This example shows how
special support for file objects could be added:

import repr

import sys

class MyRepr(repr.Repr):

def repr_file(self, obj, level):

if obj.name in [’<stdin>’, ’<stdout>’, ’<stderr>’]:

return obj.name

else:

return ‘obj‘

aRepr = MyRepr()

print aRepr.repr(sys.stdin) # prints ’<stdin>’

60 Chapter 3. Python Services

3.25 py compile — Compile Python source files

The py compile module provides a single function to generate a byte-code file from a source file.

Though not often needed, this function can be useful when installing modules for shared use, especially if
some of the users may not have permission to write the byte-code cache files in the directory containing
the source code.

compile(file[, cfile[, dfile]])
Compile a source file to byte-code and write out the byte-code cache file. The source code is loaded
from the file name file. The byte-code is written to cfile, which defaults to file + ’c’ (’o’ if
optimization is enabled in the current interpreter). If dfile is specified, it is used as the name of
the source file in error messages instead of file.

See Also:

Module compileall (section 3.26):
Utilities to compile all Python source files in a directory tree.

3.26 compileall — Byte-compile Python libraries

This module provides some utility functions to support installing Python libraries. These functions
compile Python source files in a directory tree, allowing users without permission to write to the libraries
to take advantage of cached byte-code files.

The source file for this module may also be used as a script to compile Python sources in directories
named on the command line or in sys.path.

compile dir(dir[, maxlevels[, ddir[, force]]])
Recursively descend the directory tree named by dir , compiling all ‘.py’ files along the way. The
maxlevels parameter is used to limit the depth of the recursion; it defaults to 10. If ddir is given,
it is used as the base path from which the filenames used in error messages will be generated. If
force is true, modules are re-compiled even if the timestamps are up to date.

compile path([skip curdir[, maxlevels[, force]]])
Byte-compile all the ‘.py’ files found along sys.path. If skip curdir is true (the default), the
current directory is not included in the search. The maxlevels and force parameters default to 0
and are passed to the compile dir() function.

See Also:

Module py compile (section 3.25):
Byte-compile a single source file.

3.27 dis — Disassembler.

The dis module supports the analysis of Python byte code by disassembling it. Since there is no Python
assembler, this module defines the Python assembly language. The Python byte code which this module
takes as an input is defined in the file ‘Include/opcode.h’ and used by the compiler and the interpreter.

Example: Given the function myfunc:

def myfunc(alist):

return len(alist)

the following command can be used to get the disassembly of myfunc():

3.25. py compile — Compile Python source files 61

>>> dis.dis(myfunc)

0 SET_LINENO 1

3 SET_LINENO 2

6 LOAD_GLOBAL 0 (len)

9 LOAD_FAST 0 (alist)

12 CALL_FUNCTION 1

15 RETURN_VALUE

16 LOAD_CONST 0 (None)

19 RETURN_VALUE

The dis module defines the following functions:

dis([bytesource])
Disassemble the bytesource object. bytesource can denote either a class, a method, a function, or
a code object. For a class, it disassembles all methods. For a single code sequence, it prints one
line per byte code instruction. If no object is provided, it disassembles the last traceback.

distb([tb])
Disassembles the top-of-stack function of a traceback, using the last traceback if none was passed.
The instruction causing the exception is indicated.

disassemble(code[, lasti])
Disassembles a code object, indicating the last instruction if lasti was provided. The output is
divided in the following columns:

1.the current instruction, indicated as ‘-->’,

2.a labelled instruction, indicated with ‘>>’,

3.the address of the instruction,

4.the operation code name,

5.operation parameters, and

6.interpretation of the parameters in parentheses.

The parameter interpretation recognizes local and global variable names, constant values, branch
targets, and compare operators.

disco(code[, lasti])
A synonym for disassemble. It is more convenient to type, and kept for compatibility with earlier
Python releases.

opname
Sequence of a operation names, indexable using the byte code.

cmp op
Sequence of all compare operation names.

hasconst
Sequence of byte codes that have a constant parameter.

hasname
Sequence of byte codes that access a attribute by name.

hasjrel
Sequence of byte codes that have a relative jump target.

hasjabs
Sequence of byte codes that have an absolute jump target.

haslocal
Sequence of byte codes that access a a local variable.

62 Chapter 3. Python Services

hascompare
Sequence of byte codes of boolean operations.

3.27.1 Python Byte Code Instructions

The Python compiler currently generates the following byte code instructions.

STOP CODE
Indicates end-of-code to the compiler, not used by the interpreter.

POP TOP
Removes the top-of-stack (TOS) item.

ROT TWO
Swaps the two top-most stack items.

ROT THREE
Lifts second and third stack item one position up, moves top down to position three.

DUP TOP
Duplicates the reference on top of the stack.

Unary Operations take the top of the stack, apply the operation, and push the result back on the stack.

UNARY POSITIVE
Implements TOS = +TOS.

UNARY NEG
Implements TOS = -TOS.

UNARY NOT
Implements TOS = not TOS.

UNARY CONVERT
Implements TOS = ‘TOS‘.

UNARY INVERT
Implements TOS = ~TOS.

Binary operations remove the top of the stack (TOS) and the second top-most stack item (TOS1) from
the stack. They perform the operation, and put the result back on the stack.

BINARY POWER
Implements TOS = TOS1 ** TOS.

BINARY MULTIPLY
Implements TOS = TOS1 * TOS.

BINARY DIVIDE
Implements TOS = TOS1 / TOS.

BINARY MODULO
Implements TOS = TOS1 %TOS.

BINARY ADD
Implements TOS = TOS1 + TOS.

BINARY SUBTRACT
Implements TOS = TOS1 - TOS.

BINARY SUBSCR
Implements TOS = TOS1[TOS].

BINARY LSHIFT
Implements TOS = TOS1 << TOS.

BINARY RSHIFT
Implements TOS = TOS1 >> TOS.

3.27. dis — Disassembler. 63

BINARY AND
Implements TOS = TOS1 and TOS.

BINARY XOR
Implements TOS = TOS1 ^ TOS.

BINARY OR
Implements TOS = TOS1 or TOS.

The slice opcodes take up to three parameters.

SLICE+0
Implements TOS = TOS[:].

SLICE+1
Implements TOS = TOS1[TOS:].

SLICE+2
Implements TOS = TOS1[:TOS1].

SLICE+3
Implements TOS = TOS2[TOS1:TOS].

Slice assignment needs even an additional parameter. As any statement, they put nothing on the stack.

STORE SLICE+0
Implements TOS[:] = TOS1.

STORE SLICE+1
Implements TOS1[TOS:] = TOS2.

STORE SLICE+2
Implements TOS1[:TOS] = TOS2.

STORE SLICE+3
Implements TOS2[TOS1:TOS] = TOS3.

DELETE SLICE+0
Implements del TOS[:].

DELETE SLICE+1
Implements del TOS1[TOS:].

DELETE SLICE+2
Implements del TOS1[:TOS].

DELETE SLICE+3
Implements del TOS2[TOS1:TOS].

STORE SUBSCR
Implements TOS1[TOS] = TOS2.

DELETE SUBSCR
Implements del TOS1[TOS].

PRINT EXPR
Implements the expression statement for the interactive mode. TOS is removed from the stack and
printed. In non-interactive mode, an expression statement is terminated with POP STACK.

PRINT ITEM
Prints TOS. There is one such instruction for each item in the print statement.

PRINT NEWLINE
Prints a new line on sys.stdout. This is generated as the last operation of a print statement,
unless the statement ends with a comma.

BREAK LOOP
Terminates a loop due to a break statement.

LOAD LOCALS

64 Chapter 3. Python Services

Pushes a reference to the locals of the current scope on the stack. This is used in the code for a
class definition: After the class body is evaluated, the locals are passed to the class definition.

RETURN VALUE
Returns with TOS to the caller of the function.

EXEC STMT
Implements exec TOS2,TOS1,TOS. The compiler fills missing optional parameters with None.

POP BLOCK
Removes one block from the block stack. Per frame, there is a stack of blocks, denoting nested
loops, try statements, and such.

END FINALLY
Terminates a finally-block. The interpreter recalls whether the exception has to be re-raised, or
whether the function returns, and continues with the outer-next block.

BUILD CLASS
Creates a new class object. TOS is the methods dictionary, TOS1 the tuple of the names of the
base classes, and TOS2 the class name.

All of the following opcodes expect arguments. An argument is two bytes, with the more significant byte
last.

STORE NAME namei
Implements name = TOS. namei is the index of name in the attribute co names of the code object.
The compiler tries to use STORE LOCAL or STORE GLOBAL if possible.

DELETE NAME namei
Implements del name, where namei is the index into co names attribute of the code object.

UNPACK TUPLE count
Unpacks TOS into count individual values, which are put onto the stack right-to-left.

UNPACK LIST count
Unpacks TOS into count individual values.

STORE ATTR namei
Implements TOS.name = TOS1, where namei is the index of name in co names.

DELETE ATTR namei
Implements del TOS.name, using namei as index into co names.

STORE GLOBAL namei
Works as STORE NAME, but stores the name as a global.

DELETE GLOBAL namei
Works as DELETE NAME, but deletes a global name.

LOAD CONST consti
Pushes ‘co consts[consti]’ onto the stack.

LOAD NAME namei
Pushes the value associated with ‘co names[namei]’ onto the stack.

BUILD TUPLE count
Creates a tuple consuming count items from the stack, and pushes the resulting tuple onto the
stack.

BUILD LIST count
Works as BUILD TUPLE, but creates a list.

BUILD MAP zero
Pushes an empty dictionary object onto the stack. The argument is ignored and set to zero by the
compiler.

LOAD ATTR namei
Replaces TOS with getattr(TOS,co names[namei].

3.27. dis — Disassembler. 65

COMPARE OP opname
Performs a boolean operation. The operation name can be found in cmp op[opname].

IMPORT NAME namei
Imports the module co names[namei]. The module object is pushed onto the stack. The current
name space is not affected: for a proper import statement, a subsequent STORE FAST instruction
modifies the name space.

IMPORT FROM namei
Imports the attribute co names[namei]. The module to import from is found in TOS and left
there.

JUMP FORWARD delta
Increments byte code counter by delta.

JUMP IF TRUE delta
If TOS is true, increment the byte code counter by delta. TOS is left on the stack.

JUMP IF FALSE delta
If TOS is false, increment the byte code counter by delta. TOS is not changed.

JUMP ABSOLUTE target
Set byte code counter to target .

FOR LOOP delta
Iterate over a sequence. TOS is the current index, TOS1 the sequence. First, the next element is
computed. If the sequence is exhausted, increment byte code counter by delta. Otherwise, push
the sequence, the incremented counter, and the current item onto the stack.

LOAD GLOBAL namei
Loads the global named co names[namei] onto the stack.

SETUP LOOP delta
Pushes a block for a loop onto the block stack. The block spans from the current instruction with
a size of delta bytes.

SETUP EXCEPT delta
Pushes a try block from a try-except clause onto the block stack. delta points to the first except
block.

SETUP FINALLY delta
Pushes a try block from a try-except clause onto the block stack. delta points to the finally block.

LOAD FAST var num
Pushes a reference to the local co varnames[var num] onto the stack.

STORE FAST var num
Stores TOS into the local co varnames[var num].

DELETE FAST var num
Deletes local co varnames[var num].

SET LINENO lineno
Sets the current line number to lineno.

RAISE VARARGS argc
Raises an exception. argc indicates the number of parameters to the raise statement, ranging from
1 to 3. The handler will find the traceback as TOS2, the parameter as TOS1, and the exception
as TOS.

CALL FUNCTION argc
Calls a function. The low byte of argc indicates the number of positional parameters, the high
byte the number of keyword parameters. On the stack, the opcode finds the keyword parameters
first. For each keyword argument, the value is on top of the key. Below the keyword parameters,
the positional parameters are on the stack, with the right-most parameter on top. Below the
parameters, the function object to call is on the stack.

MAKE FUNCTION argc

66 Chapter 3. Python Services

Pushes a new function object on the stack. TOS is the code associated with the function. The
function object is defined to have argc default parameters, which are found below TOS.

BUILD SLICE argc
Pushes a slice object on the stack. argc must be 2 or 3. If it is 2, slice(TOS1, TOS) is pushed; if
it is 3, slice(TOS2, TOS1, TOS) is pushed. See the slice() built-in function.

3.28 new — Runtime implementation object creation

The new module allows an interface to the interpreter object creation functions. This is for use primarily
in marshal-type functions, when a new object needs to be created “magically” and not by using the
regular creation functions. This module provides a low-level interface to the interpreter, so care must be
exercised when using this module.

The new module defines the following functions:

instance(class, dict)
This function creates an instance of class with dictionary dict without calling the init ()
constructor. Note that there are no guarantees that the object will be in a consistent state.

instancemethod(function, instance, class)
This function will return a method object, bound to instance, or unbound if instance is None.
function must be callable, and instance must be an instance object or None.

function(code, globals[, name[argdefs]])
Returns a (Python) function with the given code and globals. If name is given, it must be a string
or None. If it is a string, the function will have the given name, otherwise the function name will be
taken from code.co name. If argdefs is given, it must be a tuple and will be used to the determine
the default values of parameters.

code(argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, lnotab)
This function is an interface to the PyCode New() C function.

module(name)
This function returns a new module object with name name. name must be a string.

classobj(name, baseclasses, dict)
This function returns a new class object, with name name, derived from baseclasses (which should
be a tuple of classes) and with namespace dict .

3.29 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-
specific modules would place ‘import site’ somewhere near the top of their code. This is no longer
necessary.

This will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head part, it uses
sys.prefix and sys.exec prefix; empty heads are skipped. For the tail part, it uses the empty string
(on Macintosh or Windows) or it uses first ‘lib/pythonversion/site-packages’ and then ‘lib/site-python’ (on
Unix). For each of the distinct head-tail combinations, it sees if it refers to an existing directory, and if
so, adds to sys.path, and also inspected for path configuration files.

A path configuration file is a file whose name has the form ‘package.pth’; its contents are additional items
(one per line) to be added to sys.path. Non-existing items are never added to sys.path, but no check
is made that the item refers to a directory (rather than a file). No item is added to sys.path more than
once. Blank lines and lines beginning with # are skipped.

For example, suppose sys.prefix and sys.exec prefix are set to ‘/usr/local’. The Python 1.5.2 library

3.28. new — Runtime implementation object creation 67

is then installed in ‘/usr/local/lib/python1.5’ (note that only the first three characters of sys.version are
used to form the path name). Suppose this has a subdirectory ‘/usr/local/lib/python1.5/site-packages’ with
three subsubdirectories, ‘foo’, ‘bar’ and ‘spam’, and two path configuration files, ‘foo.pth’ and ‘bar.pth’.
Assume ‘foo.pth’ contains the following:

foo package configuration

foo

bar

bletch

and ‘bar.pth’ contains:

bar package configuration

bar

Then the following directories are added to sys.path, in this order:

/usr/local/lib/python1.5/site-packages/bar

/usr/local/lib/python1.5/site-packages/foo

Note that ‘bletch’ is omitted because it doesn’t exist; the ‘bar’ directory precedes the ‘foo’ directory
because ‘bar.pth’ comes alphabetically before ‘foo.pth’; and ‘spam’ is omitted because it is not mentioned
in either path configuration file.

After these path manipulations, an attempt is made to import a module named sitecustomize, which
can perform arbitrary site-specific customizations. If this import fails with an ImportError exception,
it is silently ignored.

Note that for some non-Unix systems, sys.prefix and sys.exec prefix are empty, and the path
manipulations are skipped; however the import of sitecustomize is still attempted.

3.30 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive
sessions execute the script specified in the $PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization
file, which gets run when a program requests it. This module implements such a mechanism. A program
that wishes to use the mechanism must execute the statement

import user

The user module looks for a file ‘.pythonrc.py’ in the user’s home directory and if it can be opened,
exececutes it (using execfile()) in its own (i.e. the module user’s) global namespace. Errors during
this phase are not caught; that’s up to the program that imports the user module, if it wishes. The
home directory is assumed to be named by the $HOME environment variable; if this is not set, the
current directory is used.

The user’s ‘.pythonrc.py’ could conceivably test for sys.version if it wishes to do different things de-
pending on the Python version.

A warning to users: be very conservative in what you place in your ‘.pythonrc.py’ file. Since you don’t
know which programs will use it, changing the behavior of standard modules or functions is generally

68 Chapter 3. Python Services

not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options
for your package is to have them define variables in their ‘.pythonrc.py’ file that you test in your module.
For example, a module spam that has a verbosity level can look for a variable user.spam verbose, as
follows:

import user

try:

verbose = user.spam_verbose # user’s verbosity preference

except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization
file.

Programs with security or privacy concerns should not import this module; a user can easily break into
a program by placing arbitrary code in the ‘.pythonrc.py’ file.

Modules for general use should not import this module; it may interfere with the operation of the
importing program.

See Also:

Module site (section 3.29):
site-wide customization mechanism

3.31 builtin — Built-in functions

This module provides direct access to all ‘built-in’ identifiers of Python; e.g. builtin .open is the
full name for the built-in function open(). See section 2.3, “Built-in Functions.”

3.32 main — Top-level script environment.

This module represents the (otherwise anonymous) scope in which the interpreter’s main program exe-
cutes — commands read either from standard input or from a script file.

3.31. builtin — Built-in functions 69

70

CHAPTER

FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s
an overview:
string Common string operations.
re Perl-style regular expression search and match operations.
regex Regular expression search and match operations.
regsub Substitution and splitting operations that use regular expressions.
struct Interpret strings as packed binary data.
fpformat General floating point formatting functions.
StringIO Read and write strings as if they were files.
cStringIO Faster version of StringIO, but not subclassable.

4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions.
See the module re for string functions based on regular expressions.

The constants defined in this module are are:

digits
The string ’0123456789’.

hexdigits
The string ’0123456789abcdefABCDEF’.

letters
The concatenation of the strings lowercase() and uppercase() described below.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this
is the string ’abcdefghijklmnopqrstuvwxyz’. Do not change its definition — the effect on the
routines upper() and swapcase() is undefined.

octdigits
The string ’01234567’.

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this
is the string ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’. Do not change its definition — the effect on the
routines lower() and swapcase() is undefined.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes
the characters space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition
— the effect on the routines strip() and split() is undefined.

The functions defined in this module are:

atof(s)

71

Convert a string to a floating point number. The string must have the standard syntax for a
floating point literal in Python, optionally preceded by a sign (‘+’ or ‘-’). Note that this behaves
identical to the built-in function float() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the
underlying C library. The specific set of strings accepted which cause these values to be returned
depends entirely on the C library and is known to vary.

atoi(s[, base])
Convert string s to an integer in the given base. The string must consist of one or more digits,
optionally preceded by a sign (‘+’ or ‘-’). The base defaults to 10. If it is 0, a default base is chosen
depending on the leading characters of the string (after stripping the sign): ‘0x’ or ‘0X’ means
16, ‘0’ means 8, anything else means 10. If base is 16, a leading ‘0x’ or ‘0X’ is always accepted.
Note that when invoked without base or with base set to 10, this behaves identical to the built-in
function int() when passed a string. (Also note: for a more flexible interpretation of numeric
literals, use the built-in function eval().)

atol(s[, base])
Convert string s to a long integer in the given base. The string must consist of one or more digits,
optionally preceded by a sign (‘+’ or ‘-’). The base argument has the same meaning as for atoi().
A trailing ‘l’ or ‘L’ is not allowed, except if the base is 0. Note that when invoked without base or
with base set to 10, this behaves identical to the built-in function long() when passed a string.

capitalize(word)
Capitalize the first character of the argument.

capwords(s)
Split the argument into words using split(), capitalize each word using capitalize(), and join
the capitalized words using join(). Note that this replaces runs of whitespace characters by a
single space, and removes leading and trailing whitespace.

expandtabs(s, [tabsize])
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column
and the given tab size. The column number is reset to zero after each newline occurring in the
string. This doesn’t understand other non-printing characters or escape sequences. The tab size
defaults to 8.

find(s, sub[, start[,end]])
Return the lowest index in s where the substring sub is found such that sub is wholly contained
in s[start:end]. Return -1 on failure. Defaults for start and end and interpretation of negative
values is the same as for slices.

rfind(s, sub[, start[, end]])
Like find() but find the highest index.

index(s, sub[, start[, end]])
Like find() but raise ValueError when the substring is not found.

rindex(s, sub[, start[, end]])
Like rfind() but raise ValueError when the substring is not found.

count(s, sub[, start[, end]])
Return the number of (non-overlapping) occurrences of substring sub in string s[start:end]. De-
faults for start and end and interpretation of negative values is the same as for slices.

lower(s)
Return a copy of s, but with upper case letters converted to lower case.

maketrans(from, to)
Return a translation table suitable for passing to translate() or regex.compile(), that will map
each character in from into the character at the same position in to; from and to must have the
same length.

Warning: don’t use strings derived from lowercase and uppercase as arguments; in some locales,
these don’t have the same length. For case conversions, always use lower() and upper().

72 Chapter 4. String Services

split(s[, sep[, maxsplit]])
Return a list of the words of the string s. If the optional second argument sep is absent or None,
the words are separated by arbitrary strings of whitespace characters (space, tab, newline, return,
formfeed). If the second argument sep is present and not None, it specifies a string to be used as the
word separator. The returned list will then have one more item than the number of non-overlapping
occurrences of the separator in the string. The optional third argument maxsplit defaults to 0. If
it is nonzero, at most maxsplit number of splits occur, and the remainder of the string is returned
as the final element of the list (thus, the list will have at most maxsplit+1 elements).

splitfields(s[, sep[, maxsplit]])
This function behaves identically to split(). (In the past, split() was only used with one
argument, while splitfields() was only used with two arguments.)

join(words[, sep])
Concatenate a list or tuple of words with intervening occurrences of sep. The default value for sep
is a single space character. It is always true that ‘string.join(string.split(s, sep), sep)’
equals s.

joinfields(words[, sep])
This function behaves identical to join(). (In the past, join() was only used with one argument,
while joinfields() was only used with two arguments.)

lstrip(s)
Return a copy of s but without leading whitespace characters.

rstrip(s)
Return a copy of s but without trailing whitespace characters.

strip(s)
Return a copy of s without leading or trailing whitespace.

swapcase(s)
Return a copy of s, but with lower case letters converted to upper case and vice versa.

translate(s, table[, deletechars])
Delete all characters from s that are in deletechars (if present), and then translate the characters
using table, which must be a 256-character string giving the translation for each character value,
indexed by its ordinal.

upper(s)
Return a copy of s, but with lower case letters converted to upper case.

ljust(s, width)
rjust(s, width)
center(s, width)

These functions respectively left-justify, right-justify and center a string in a field of given width.
They return a string that is at least width characters wide, created by padding the string s with
spaces until the given width on the right, left or both sides. The string is never truncated.

zfill(s, width)
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting
with a sign are handled correctly.

replace(str, old, new[, maxsplit])
Return a copy of string str with all occurrences of substring old replaced by new . If the optional
argument maxsplit is given, the first maxsplit occurrences are replaced.

This module is implemented in Python. Much of its functionality has been reimplemented in the built-in
module strop. However, you should never import the latter module directly. When string discovers
that strop exists, it transparently replaces parts of itself with the implementation from strop. After
initialization, there is no overhead in using string instead of strop.

4.1. string — Common string operations 73

4.2 re — Perl-style regular expression operations.

This module provides regular expression matching operations similar to those found in Perl. It’s 8-bit
clean: the strings being processed may contain both null bytes and characters whose high bit is set.
Regular expression pattern strings may not contain null bytes, but can specify the null byte using the
\number notation. Characters with the high bit set may be included. The re module is always available.

Regular expressions use the backslash character (‘\’) to indicate special forms or to allow special char-
acters to be used without invoking their special meaning. This collides with Python’s usage of the same
character for the same purpose in string literals; for example, to match a literal backslash, one might have
to write ’\\\\’ as the pattern string, because the regular expression must be ‘\\’, and each backslash
must be expressed as ‘\\’ inside a regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are
not handled in any special way in a string literal prefixed with ‘r’. So r"\n" is a two-character string
containing ‘\’ and ‘n’, while "\n" is a one-character string containing a newline. Usually patterns will
be expressed in Python code using this raw string notation.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you
check if a particular string matches a given regular expression (or if a given regular expression matches
a particular string, which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular
expressions, then AB is also an regular expression. If a string p matches A and another string q matches
B, the string pq will match AB. Thus, complex expressions can easily be constructed from simpler
primitive expressions like the ones described here. For details of the theory and implementation of
regular expressions, consult the Friedl book referenced below, or almost any textbook about compiler
construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler
presentation, consult the Regular Expression HOWTO, accessible from http://www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like
‘A’, ‘a’, or ‘0’, are the simplest regular expressions; they simply match themselves. You can concatenate
ordinary characters, so dlastcmatches the string ’last’. (In the rest of this section, we’ll write RE’s in
dthis special stylec, usually without quotes, and strings to be matched ’in single quotes’.)

Some characters, like ‘|’ or ‘(’, are special. Special characters either stand for classes of ordinary
characters, or affect how the regular expressions around them are interpreted.

The special characters are:

‘.’ (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag
has been specified, this matches any character including a newline.

‘^’ (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately
after each newline.

‘$’ Matches the end of the string, and in MULTILINE mode also matches before a newline. dfooc
matches both ’foo’ and ’foobar’, while the regular expression dfoo$cmatches only ’foo’.

‘*’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many
repetitions as are possible. dab*cwill match ’a’, ’ab’, or ’a’ followed by any number of ’b’s.

‘+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE. dab+cwill match
’a’ followed by any non-zero number of ’b’s; it will not match just ’a’.

‘?’ Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. dab?c will match
either ’a’ or ’ab’.

74 Chapter 4. String Services

?, +?, ?? The ‘’, ‘+’, and ‘?’ qualifiers are all greedy; they match as much text as possible. Sometimes
this behaviour isn’t desired; if the RE d<.*>c is matched against ’<H1>title</H1>’, it will
match the entire string, and not just ’<H1>’. Adding ‘?’ after the qualifier makes it perform
the match in non-greedy or minimal fashion; as few characters as possible will be matched.
Using d.*?c in the previous expression will match only ’<H1>’.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting
to match as many repetitions as possible. For example, da{3,5}c will match from 3 to 5 ‘a’
characters. Omitting n specifies an infinite upper bound; you can’t omit m.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to
match as few repetitions as possible. This is the non-greedy version of the previous qualifier.
For example, on the 6-character string ’aaaaaa’, da{3,5}cwill match 5 ‘a’ characters, while
da{3,5}?cwill only match 3 characters.

‘\’ Either escapes special characters (permitting you to match characters like ‘*’, ‘?’, and so
forth), or signals a special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the
backslash as an escape sequence in string literals; if the escape sequence isn’t recognized by
Python’s parser, the backslash and subsequent character are included in the resulting string.
However, if Python would recognize the resulting sequence, the backslash should be repeated
twice. This is complicated and hard to understand, so it’s highly recommended that you use
raw strings for all but the simplest expressions.

[] Used to indicate a set of characters. Characters can be listed individually, or a range of
characters can be indicated by giving two characters and separating them by a ‘-’. Special
characters are not active inside sets. For example, d[akm$]c will match any of the characters
‘a’, ‘k’, ‘m’, or ‘$’; d[a-z]c will match any lowercase letter, and [a-zA-Z0-9] matches any
letter or digit. Character classes such as \w or \S (defined below) are also acceptable inside a
range. If you want to include a ‘]’ or a ‘-’ inside a set, precede it with a backslash, or place
it as the first character. The pattern d[]]cwill match ’]’, for example.

You can match the characters not within a range by complementing the set. This is indicated
by including a ‘^’ as the first character of the set; ‘^’ elsewhere will simply match the ‘^’
character. For example, d[^5]cwill match any character except ‘5’.

‘|’ A|B, where A and B can be arbitrary REs, creates a regular expression that will match either
A or B. This can be used inside groups (see below) as well. To match a literal ‘|’, use d\|c,
or enclose it inside a character class, as in d[|]c.

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and
end of a group; the contents of a group can be retrieved after a match has been performed,
and can be matched later in the string with the d\numberc special sequence, described below.
To match the literals ‘(’ or ‘’)’, use d\(c or d\)c, or enclose them inside a character class: d[(]
[)]c.

(?...) This is an extension notation (a ‘?’ following a ‘(’ is not meaningful otherwise). The first
character after the ‘?’ determines what the meaning and further syntax of the construct is.
Extensions usually do not create a new group; d(?P<name>...)c is the only exception to this
rule. Following are the currently supported extensions.

(?iLmsx) (One or more letters from the set ‘i’, ‘L’, ‘m’, ‘s’, ‘x’.) The group matches the empty string;
the letters set the corresponding flags (re.I, re.L, re.M, re.S, re.X) for the entire regular
expression. This is useful if you wish to include the flags as part of the regular expression,
instead of passing a flag argument to the compile() function.

(?:...) A non-grouping version of regular parentheses. Matches whatever regular expression is inside
the parentheses, but the substring matched by the group cannot be retrieved after performing
a match or referenced later in the pattern.

(?P<name>...) Similar to regular parentheses, but the substring matched by the group is accessible via
the symbolic group name name. Group names must be valid Python identifiers. A symbolic

4.2. re — Perl-style regular expression operations. 75

group is also a numbered group, just as if the group were not named. So the group named
’id’ in the example above can also be referenced as the numbered group 1.

For example, if the pattern is d(?P<id>[a-zA-Z]\w*)c, the group can be referenced by its
name in arguments to methods of match objects, such as m.group(’id’) or m.end(’id’),
and also by name in pattern text (e.g. d(?P=id)c) and replacement text (e.g. \g<id>).

(?P=name) Matches whatever text was matched by the earlier group named name.

(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matches if d...cmatches next, but doesn’t consume any of the string. This is called a looka-
head assertion. For example, dIsaac (?=Asimov)c will match ’Isaac ’ only if it’s followed
by ’Asimov’.

(?!...) Matches if d...c doesn’t match next. This is a negative lookahead assertion. For example,
dIsaac (?!Asimov)cwill match ’Isaac ’ only if it’s not followed by ’Asimov’.

The special sequences consist of ‘\’ and a character from the list below. If the ordinary character is
not on the list, then the resulting RE will match the second character. For example, d\$c matches the
character ‘$’.

\number Matches the contents of the group of the same number. Groups are numbered starting from 1.
For example, d(.+) \1cmatches ’the the’ or ’55 55’, but not ’the end’ (note the space
after the group). This special sequence can only be used to match one of the first 99 groups.
If the first digit of number is 0, or number is 3 octal digits long, it will not be interpreted
as a group match, but as the character with octal value number . Inside the ‘[’ and ‘]’ of a
character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined
as a sequence of alphanumeric characters, so the end of a word is indicated by whitespace
or a non-alphanumeric character. Inside a character range, d\bc represents the backspace
character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word.

\d Matches any decimal digit; this is equivalent to the set d[0-9]c.

\D Matches any non-digit character; this is equivalent to the set d[^0-9]c.

\s Matches any whitespace character; this is equivalent to the set d[\t\n\r\f\v]c.

\S Matches any non-whitespace character; this is equivalent to the set d[^ \t\n\r\f\v]c.

\w When the LOCALE flag is not specified, matches any alphanumeric character; this is equiva-
lent to the set d[a-zA-Z0-9]c. With LOCALE, it will match the set d[0-9]c plus whatever
characters are defined as letters for the current locale.

\W When the LOCALE flag is not specified, matches any non-alphanumeric character; this is
equivalent to the set d[^a-zA-Z0-9]c. With LOCALE, it will match any character not in the
set d[0-9]c, and not defined as a letter for the current locale.

\Z Matches only at the end of the string.

\\ Matches a literal backslash.

76 Chapter 4. String Services

4.2.2 Matching vs. Searching

Python offers two different primitive operations based on regular expressions: match and search. If you
are accustomed to Perl’s semantics, the search operation is what you’re looking for. See the search()
function and corresponding method of compiled regular expression objects.

Note that match may differ from search using a regular expression beginning with ‘^’: ‘^’ matches only
at the start of the string, or in MULTILINE mode also immediately following a newline. The “match”
operation succeeds only if the pattern matches at the start of the string regardless of mode, or at the
starting position given by the optional pos argument regardless of whether a newline precedes it.

re.compile("a").match("ba", 1) # succeeds

re.compile("^a").search("ba", 1) # fails; ’a’ not at start

re.compile("^a").search("\na", 1) # fails; ’a’ not at start

re.compile("^a", re.M).search("\na", 1) # succeeds

re.compile("^a", re.M).search("ba", 1) # fails; no preceding \n

4.2.3 Module Contents

The module defines the following functions and constants, and an exception:

compile(pattern[, flags])
Compile a regular expression pattern into a regular expression object, which can be used for
matching using its match() and search() methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the
following variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile(pat)

result = prog.match(str)

is equivalent to

result = re.match(pat, str)

but the version using compile() is more efficient when the expression will be used several times
in a single program.

I
IGNORECASE

Perform case-insensitive matching; expressions like d[A-Z]c will match lowercase letters, too. This
is not affected by the current locale.

L
LOCALE

Make d\wc, d\Wc, d\bc, d\Bc, dependent on the current locale.

M
MULTILINE

When specified, the pattern character ‘^’ matches at the beginning of the string and at the beginning
of each line (immediately following each newline); and the pattern character ‘$’ matches at the
end of the string and at the end of each line (immediately preceding each newline). By default, ‘^’
matches only at the beginning of the string, and ‘$’ only at the end of the string and immediately
before the newline (if any) at the end of the string.

S
DOTALL

Make the ‘.’ special character match any character at all, including a newline; without this flag,

4.2. re — Perl-style regular expression operations. 77

‘.’ will match anything except a newline.

X
VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is
ignored, except when in a character class or preceded by an unescaped backslash, and, when a line
contains a ‘#’ neither in a character class or preceded by an unescaped backslash, all characters
from the leftmost such ‘#’ through the end of the line are ignored.

search(pattern, string[, flags])
Scan through string looking for a location where the regular expression pattern produces a match,
and return a corresponding MatchObject instance. Return None if no position in the string matches
the pattern; note that this is different from finding a zero-length match at some point in the string.

match(pattern, string[, flags])
If zero or more characters at the beginning of string match the regular expression pattern, return a
corresponding MatchObject instance. Return None if the string does not match the pattern; note
that this is different from a zero-length match.

Note: If you want to locate a match anywhere in string , use search() instead.

split(pattern, string, [, maxsplit = 0])
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the
text of all groups in the pattern are also returned as part of the resulting list. If maxsplit is nonzero,
at most maxsplit splits occur, and the remainder of the string is returned as the final element of
the list. (Incompatibility note: in the original Python 1.5 release, maxsplit was ignored. This has
been fixed in later releases.)

>>> re.split(’\W+’, ’Words, words, words.’)

[’Words’, ’words’, ’words’, ’’]

>>> re.split(’(\W+)’, ’Words, words, words.’)

[’Words’, ’, ’, ’words’, ’, ’, ’words’, ’.’, ’’]

>>> re.split(’\W+’, ’Words, words, words.’, 1)

[’Words’, ’words, words.’]

This function combines and extends the functionality of the old regsub.split() and
regsub.splitx().

findall(pattern, string)
Return a list of all non-overlapping matches of pattern in string . If one or more groups are present
in the pattern, return a list of groups; this will be a list of tuples if the pattern has more than one
group. Empty matches are included in the result. New in version 1.5.2.

sub(pattern, repl, string[, count = 0])
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in
string by the replacement repl . If the pattern isn’t found, string is returned unchanged. repl
can be a string or a function; if a function, it is called for every non-overlapping occurrence of
pattern. The function takes a single match object argument, and returns the replacement string.
For example:

>>> def dashrepl(matchobj):

.... if matchobj.group(0) == ’-’: return ’ ’

.... else: return ’-’

>>> re.sub(’-{1,2}’, dashrepl, ’pro----gram-files’)

’pro--gram files’

The pattern may be a string or a regex object; if you need to specify regular expression flags, you
must use a regex object, or use embedded modifiers in a pattern; e.g. ‘sub("(?i)b+", "x", "bbbb
BBBB")’ returns ’x x’.

The optional argument count is the maximum number of pattern occurrences to be replaced; count
must be a non-negative integer, and the default value of 0 means to replace all occurrences.

78 Chapter 4. String Services

Empty matches for the pattern are replaced only when not adjacent to a previous match, so
‘sub(’x*’, ’-’, ’abc’)’ returns ’-a-b-c-’.

If repl is a string, any backslash escapes in it are processed. That is, ‘\n’ is converted to a single
newline character, ‘\r’ is converted to a linefeed, and so forth. Unknown escapes such as ‘\j’ are
left alone. Backreferences, such as ‘\6’, are replaced with the substring matched by group 6 in the
pattern.

In addition to character escapes and backreferences as described above, ‘\g<name>’ will use the sub-
string matched by the group named ‘name’, as defined by the d(?P<name>...)csyntax. ‘\g<number>’
uses the corresponding group number; ‘\g<2>’ is therefore equivalent to ‘\2’, but isn’t ambiguous
in a replacement such as ‘\g<2>0’. ‘\20’ would be interpreted as a reference to group 20, not a
reference to group 2 followed by the literal character ‘0’.

subn(pattern, repl, string[, count = 0])
Perform the same operation as sub(), but return a tuple (new string, number of subs made).

escape(string)
Return string with all non-alphanumerics backslashed; this is useful if you want to match an
arbitrary literal string that may have regular expression metacharacters in it.

error
Exception raised when a string passed to one of the functions here is not a valid regular expression
(e.g., unmatched parentheses) or when some other error occurs during compilation or matching. It
is never an error if a string contains no match for a pattern.

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

search(string[, pos][, endpos])
Scan through string looking for a location where this regular expression produces a match, and
return a corresponding MatchObject instance. Return None if no position in the string matches
the pattern; note that this is different from finding a zero-length match at some point in the string.

The optional pos and endpos parameters have the same meaning as for the match() method.

match(string[, pos][, endpos])
If zero or more characters at the beginning of string match this regular expression, return a
corresponding MatchObject instance. Return None if the string does not match the pattern; note
that this is different from a zero-length match.

Note: If you want to locate a match anywhere in string , use search() instead.

The optional second parameter pos gives an index in the string where the search is to start; it
defaults to 0. This is not completely equivalent to slicing the string; the ’^’ pattern character
matches at the real beginning of the string and at positions just after a newline, but not necessarily
at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string
is endpos characters long, so only the characters from pos to endpos will be searched for a match.

split(string, [, maxsplit = 0])
Identical to the split() function, using the compiled pattern.

findall(string)
Identical to the findall() function, using the compiled pattern.

sub(repl, string[, count = 0])
Identical to the sub() function, using the compiled pattern.

subn(repl, string[, count = 0])
Identical to the subn() function, using the compiled pattern.

flags
The flags argument used when the regex object was compiled, or 0 if no flags were provided.

4.2. re — Perl-style regular expression operations. 79

groupindex
A dictionary mapping any symbolic group names defined by d(?P<id>)c to group numbers. The
dictionary is empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the regex object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

group([group1, group2, ...])
Returns one or more subgroups of the match. If there is a single argument, the result is a single
string; if there are multiple arguments, the result is a tuple with one item per argument. Without
arguments, group1 defaults to zero (i.e. the whole match is returned). If a groupN argument is
zero, the corresponding return value is the entire matching string; if it is in the inclusive range
[1..99], it is the string matching the the corresponding parenthesized group. If a group number
is negative or larger than the number of groups defined in the pattern, an IndexError exception
is raised. If a group is contained in a part of the pattern that did not match, the corresponding
result is None. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

If the regular expression uses the d(?P<name>...)c syntax, the groupN arguments may also be
strings identifying groups by their group name. If a string argument is not used as a group name
in the pattern, an IndexError exception is raised.

A moderately complicated example:

m = re.match(r"(?P<int>\d+)\.(\d*)", ’3.14’)

After performing this match, m.group(1) is ’3’, as is m.group(’int’), and m.group(2) is ’14’.

groups([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are
in the pattern. The default argument is used for groups that did not participate in the match; it
defaults to None. (Incompatibility note: in the original Python 1.5 release, if the tuple was one
element long, a string would be returned instead. In later versions (from 1.5.1 on), a singleton
tuple is returned in such cases.)

groupdict([default])
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name.
The default argument is used for groups that did not participate in the match; it defaults to None.

start([group])
end([group])

Return the indices of the start and end of the substring matched by group; group defaults to zero
(meaning the whole matched substring). Return None if group exists but did not contribute to
the match. For a match object m, and a group g that did contribute to the match, the substring
matched by group g (equivalent to m.group(g)) is

m.string[m.start(g):m.end(g)]

Note that m.start(group) will equal m.end(group) if group matched a null string. For example,
after m = re.search(’b(c?)’, ’cba’), m.start(0) is 1, m.end(0) is 2, m.start(1) and
m.end(1) are both 2, and m.start(2) raises an IndexError exception.

span([group])
For MatchObject m, return the 2-tuple (m.start(group), m.end(group)). Note that if group
did not contribute to the match, this is (None, None). Again, group defaults to zero.

80 Chapter 4. String Services

pos
The value of pos which was passed to the search() or match() function. This is the index into
the string at which the regex engine started looking for a match.

endpos
The value of endpos which was passed to the search() or match() function. This is the index into
the string beyond which the regex engine will not go.

re
The regular expression object whose match() or search() method produced this MatchObject
instance.

string
The string passed to match() or search().

See Also:

Jeffrey Friedl, Mastering Regular Expressions, O’Reilly. The Python material in this book dates from
before the re module, but it covers writing good regular expression patterns in great detail.

4.3 regex — Regular expression search and match operations.

This module provides regular expression matching operations similar to those found in Emacs.

Obsolescence note: This module is obsolete as of Python version 1.5; it is still being maintained
because much existing code still uses it. All new code in need of regular expressions should use the
new re module, which supports the more powerful and regular Perl-style regular expressions. Existing
code should be converted. The standard library module reconvert helps in converting regex style
regular expressions to re style regular expressions. (For more conversion help, see Andrew Kuchling’s
“regex-to-re HOWTO” at http://www.python.org/doc/howto/regex-to-re/.)

By default the patterns are Emacs-style regular expressions (with one exception). There is a way to
change the syntax to match that of several well-known Unix utilities. The exception is that Emacs’ ‘\s’
pattern is not supported, since the original implementation references the Emacs syntax tables.

This module is 8-bit clean: both patterns and strings may contain null bytes and characters whose high
bit is set.

Please note: There is a little-known fact about Python string literals which means that you don’t usually
have to worry about doubling backslashes, even though they are used to escape special characters in string
literals as well as in regular expressions. This is because Python doesn’t remove backslashes from string
literals if they are followed by an unrecognized escape character. However, if you want to include a literal
backslash in a regular expression represented as a string literal, you have to quadruple it or enclose it in
a singleton character class. E.g. to extract LATEX ‘\section{. . . }’ headers from a document, you can
use this pattern: ’[\]section{\(.*\)}’. Another exception: the escape sequece ‘\b’ is significant in
string literals (where it means the ASCII bell character) as well as in Emacs regular expressions (where
it stands for a word boundary), so in order to search for a word boundary, you should use the pattern
’\\b’. Similarly, a backslash followed by a digit 0-7 should be doubled to avoid interpretation as an
octal escape.

4.3.1 Regular Expressions

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you
check if a particular string matches a given regular expression (or if a given regular expression matches
a particular string, which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular
expressions, then AB is also an regular expression. If a string p matches A and another string q matches
B, the string pq will match AB. Thus, complex expressions can easily be constructed from simpler ones
like the primitives described here. For details of the theory and implementation of regular expressions,
consult almost any textbook about compiler construction.

4.3. regex — Regular expression search and match operations. 81

A brief explanation of the format of regular expressions follows.

Regular expressions can contain both special and ordinary characters. Ordinary characters, like ’A’, ’a’,
or ’0’, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary
characters, so ’last’ matches the characters ’last’. (In the rest of this section, we’ll write RE’s in this
special font, usually without quotes, and strings to be matched ’in single quotes’.)

Special characters either stand for classes of ordinary characters, or affect how the regular expressions
around them are interpreted.

The special characters are:

. (Dot.) Matches any character except a newline.

^ (Caret.) Matches the start of the string.

$ Matches the end of the string. foo matches both ’foo’ and ’foobar’, while the regular expression
’foo$’ matches only ’foo’.

* Causes the resulting RE to match 0 or more repetitions of the preceding RE. ab* will match ’a’,
’ab’, or ’a’ followed by any number of ’b’s.

+ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ’a’
followed by any non-zero number of ’b’s; it will not match just ’a’.

? Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. ab? will match either ’a’
or ’ab’.

\ Either escapes special characters (permitting you to match characters like ’*?+&$’), or signals
a special sequence; special sequences are discussed below. Remember that Python also uses the
backslash as an escape sequence in string literals; if the escape sequence isn’t recognized by Python’s
parser, the backslash and subsequent character are included in the resulting string. However, if
Python would recognize the resulting sequence, the backslash should be repeated twice.

[] Used to indicate a set of characters. Characters can be listed individually, or a range is indicated
by giving two characters and separating them by a ’-’. Special characters are not active inside sets.
For example, [akm$] will match any of the characters ’a’, ’k’, ’m’, or ’$’; [a-z] will match any
lowercase letter.

If you want to include a] inside a set, it must be the first character of the set; to include a -, place
it as the first or last character.

Characters not within a range can be matched by including a ^ as the first character of the set; ^
elsewhere will simply match the ’^’ character.

The special sequences consist of ’\’ and a character from the list below. If the ordinary character is
not on the list, then the resulting RE will match the second character. For example, \$ matches the
character ’$’. Ones where the backslash should be doubled in string literals are indicated.

\| A\|B, where A and B can be arbitrary REs, creates a regular expression that will match either A
or B. This can be used inside groups (see below) as well.

\(\) Indicates the start and end of a group; the contents of a group can be matched later in the string
with the \[1-9] special sequence, described next.

\\1, ... \\7, \8, \9
Matches the contents of the group of the same number. For example, \(.+\) \\1 matches ’the
the’ or ’55 55’, but not ’the end’ (note the space after the group). This special sequence can only
be used to match one of the first 9 groups; groups with higher numbers can be matched using the
\v sequence. (\8 and \9 don’t need a double backslash because they are not octal digits.)

\\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a
sequence of alphanumeric characters, so the end of a word is indicated by whitespace or a non-
alphanumeric character.

82 Chapter 4. String Services

\B Matches the empty string, but when it is not at the beginning or end of a word.

\v Must be followed by a two digit decimal number, and matches the contents of the group of the
same number. The group number must be between 1 and 99, inclusive.

\w Matches any alphanumeric character; this is equivalent to the set [a-zA-Z0-9].

\W Matches any non-alphanumeric character; this is equivalent to the set [^a-zA-Z0-9].

\< Matches the empty string, but only at the beginning of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by whitespace or a non-alphanumeric
character.

\> Matches the empty string, but only at the end of a word.

\\\\ Matches a literal backslash.

\‘ Like ^, this only matches at the start of the string.

\\’ Like $, this only matches at the end of the string.

4.3.2 Module Contents

The module defines these functions, and an exception:

match(pattern, string)
Return how many characters at the beginning of string match the regular expression pattern.
Return -1 if the string does not match the pattern (this is different from a zero-length match!).

search(pattern, string)
Return the first position in string that matches the regular expression pattern. Return -1 if no
position in the string matches the pattern (this is different from a zero-length match anywhere!).

compile(pattern[, translate])
Compile a regular expression pattern into a regular expression object, which can be used for
matching using its match() and search() methods, described below. The optional argument
translate, if present, must be a 256-character string indicating how characters (both of the pattern
and of the strings to be matched) are translated before comparing them; the i -th element of the
string gives the translation for the character with ascii code i . This can be used to implement
case-insensitive matching; see the casefold data item below.

The sequence

prog = regex.compile(pat)

result = prog.match(str)

is equivalent to

result = regex.match(pat, str)

but the version using compile() is more efficient when multiple regular expressions are used con-
currently in a single program. (The compiled version of the last pattern passed to regex.match()
or regex.search() is cached, so programs that use only a single regular expression at a time
needn’t worry about compiling regular expressions.)

set syntax(flags)
Set the syntax to be used by future calls to compile(), match() and search(). (Already compiled
expression objects are not affected.) The argument is an integer which is the OR of several flag
bits. The return value is the previous value of the syntax flags. Names for the flags are defined in
the standard module regex syntax; read the file ‘regex syntax.py’ for more information.

get syntax()
Returns the current value of the syntax flags as an integer.

4.3. regex — Regular expression search and match operations. 83

symcomp(pattern[, translate])
This is like compile(), but supports symbolic group names: if a parenthesis-enclosed group be-
gins with a group name in angular brackets, e.g. ’\(<id>[a-z][a-z0-9]*\)’, the group can be
referenced by its name in arguments to the group() method of the resulting compiled regular
expression object, like this: p.group(’id’). Group names may contain alphanumeric characters
and ’ ’ only.

error
Exception raised when a string passed to one of the functions here is not a valid regular expression
(e.g., unmatched parentheses) or when some other error occurs during compilation or matching.
(It is never an error if a string contains no match for a pattern.)

casefold
A string suitable to pass as the translate argument to compile() to map all upper case characters
to their lowercase equivalents.

Compiled regular expression objects support these methods:

match(string[, pos])
Return how many characters at the beginning of string match the compiled regular expression.
Return -1 if the string does not match the pattern (this is different from a zero-length match!).

The optional second parameter, pos, gives an index in the string where the search is to start; it
defaults to 0. This is not completely equivalent to slicing the string; the ’^’ pattern character
matches at the real beginning of the string and at positions just after a newline, not necessarily at
the index where the search is to start.

search(string[, pos])
Return the first position in string that matches the regular expression pattern. Return -1 if no
position in the string matches the pattern (this is different from a zero-length match anywhere!).

The optional second parameter has the same meaning as for the match() method.

group(index, index, ...)
This method is only valid when the last call to the match() or search() method found a match. It
returns one or more groups of the match. If there is a single index argument, the result is a single
string; if there are multiple arguments, the result is a tuple with one item per argument. If the
index is zero, the corresponding return value is the entire matching string; if it is in the inclusive
range [1..99], it is the string matching the the corresponding parenthesized group (using the default
syntax, groups are parenthesized using \(and \)). If no such group exists, the corresponding result
is None.

If the regular expression was compiled by symcomp() instead of compile(), the index arguments
may also be strings identifying groups by their group name.

Compiled regular expressions support these data attributes:

regs
When the last call to the match() or search() method found a match, this is a tuple of pairs of
indexes corresponding to the beginning and end of all parenthesized groups in the pattern. Indices
are relative to the string argument passed to match() or search(). The 0-th tuple gives the
beginning and end or the whole pattern. When the last match or search failed, this is None.

last
When the last call to the match() or search() method found a match, this is the string argument
passed to that method. When the last match or search failed, this is None.

translate
This is the value of the translate argument to regex.compile() that created this regular expression
object. If the translate argument was omitted in the regex.compile() call, this is None.

givenpat
The regular expression pattern as passed to compile() or symcomp().

realpat
The regular expression after stripping the group names for regular expressions compiled with

84 Chapter 4. String Services

symcomp(). Same as givenpat otherwise.

groupindex
A dictionary giving the mapping from symbolic group names to numerical group indexes for regular
expressions compiled with symcomp(). None otherwise.

4.4 regsub — String operations using regular expressions

This module defines a number of functions useful for working with regular expressions (see built-in
module regex).

Warning: these functions are not thread-safe.

Obsolescence note: This module is obsolete as of Python version 1.5; it is still being maintained
because much existing code still uses it. All new code in need of regular expressions should use the
new re module, which supports the more powerful and regular Perl-style regular expressions. Existing
code should be converted. The standard library module reconvert helps in converting regex style
regular expressions to re style regular expressions. (For more conversion help, see Andrew Kuchling’s
“regex-to-re HOWTO” at http://www.python.org/doc/howto/regex-to-re/.)

sub(pat, repl, str)
Replace the first occurrence of pattern pat in string str by replacement repl . If the pattern isn’t
found, the string is returned unchanged. The pattern may be a string or an already compiled
pattern. The replacement may contain references ‘\digit ’ to subpatterns and escaped backslashes.

gsub(pat, repl, str)
Replace all (non-overlapping) occurrences of pattern pat in string str by replacement repl . The
same rules as for sub() apply. Empty matches for the pattern are replaced only when not adjacent
to a previous match, so e.g. gsub(’’, ’-’, ’abc’) returns ’-a-b-c-’.

split(str, pat[, maxsplit])
Split the string str in fields separated by delimiters matching the pattern pat , and return a list
containing the fields. Only non-empty matches for the pattern are considered, so e.g. split(’a:b’,
’:*’) returns [’a’, ’b’] and split(’abc’, ’’) returns [’abc’]. The maxsplit defaults to 0.
If it is nonzero, only maxsplit number of splits occur, and the remainder of the string is returned
as the final element of the list.

splitx(str, pat[, maxsplit])
Split the string str in fields separated by delimiters matching the pattern pat , and return a list
containing the fields as well as the separators. For example, splitx(’a:::b’, ’:*’) returns
[’a’, ’:::’, ’b’]. Otherwise, this function behaves the same as split.

capwords(s[, pat])
Capitalize words separated by optional pattern pat . The default pattern uses any characters
except letters, digits and underscores as word delimiters. Capitalization is done by changing the
first character of each word to upper case.

clear cache()
The regsub module maintains a cache of compiled regular expressions, keyed on the regular ex-
pression string and the syntax of the regex module at the time the expression was compiled. This
function clears that cache.

4.5 struct — Interpret strings as packed binary data.

This module performs conversions between Python values and C structs represented as Python strings.
It uses format strings (explained below) as compact descriptions of the lay-out of the C structs and the
intended conversion to/from Python values.

The module defines the following exception and functions:

error

4.4. regsub — String operations using regular expressions 85

Exception raised on various occasions; argument is a string describing what is wrong.

pack(fmt, v1, v2, . . .)
Return a string containing the values v1, v2, . . . packed according to the given format. The
arguments must match the values required by the format exactly.

unpack(fmt, string)
Unpack the string (presumably packed by pack(fmt, . . .)) according to the given format. The
result is a tuple even if it contains exactly one item. The string must contain exactly the amount
of data required by the format (i.e. len(string) must equal calcsize(fmt)).

calcsize(fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be
obvious given their types:

Format C Type Python Notes
‘x’ pad byte no value
‘c’ char string of length 1
‘b’ signed char integer
‘B’ unsigned char integer
‘h’ short integer
‘H’ unsigned short integer
‘i’ int integer
‘I’ unsigned int long (1)
‘l’ long integer
‘L’ unsigned long long
‘f’ float float
‘d’ double float
‘s’ char[] string
‘p’ char[] string
‘P’ void * integer

Notes:

(1) The ‘I’ conversion code will convert to a Python long if the C int is the same size as a C long,
which is typical on most modern systems. If a C int is smaller than a C long, an Python integer
will be created instead.

A format character may be preceded by an integral repeat count; e.g. the format string ’4h’ means
exactly the same as ’hhhh’.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace
though.

For the ‘s’ format character, the count is interpreted as the size of the string, not a repeat count like for
the other format characters; e.g. ’10s’ means a single 10-byte string, while ’10c’ means 10 characters.
For packing, the string is truncated or padded with null bytes as appropriate to make it fit. For unpacking,
the resulting string always has exactly the specified number of bytes. As a special case, ’0s’ means a
single, empty string (while ’0c’ means 0 characters).

The ‘p’ format character can be used to encode a Pascal string. The first byte is the length of the stored
string, with the bytes of the string following. If count is given, it is used as the total number of bytes
used, including the length byte. If the string passed in to pack() is too long, the stored representation
is truncated. If the string is too short, padding is used to ensure that exactly enough bytes are used to
satisfy the count.

For the ‘I’ and ‘L’ format characters, the return value is a Python long integer.

For the ‘P’ format character, the return value is a Python integer or long integer, depending on the size
needed to hold a pointer when it has been cast to an integer type. A NULL pointer will always be returned

86 Chapter 4. String Services

as the Python integer 0. When packing pointer-sized values, Python integer or long integer objects may
be used. For example, the Alpha and Merced processors use 64-bit pointer values, meaning a Python
long integer will be used to hold the pointer; other platforms use 32-bit pointers and will use a Python
integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly
aligned by skipping pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and
alignment of the packed data, according to the following table:

Character Byte order Size and alignment
‘@’ native native
‘=’ native standard
‘<’ little-endian standard
‘>’ big-endian standard
‘!’ network (= big-endian) standard

If the first character is not one of these, ‘@’ is assumed.

Native byte order is big-endian or little-endian, depending on the host system (e.g. Motorola and Sun
are big-endian; Intel and DEC are little-endian).

Native size and alignment are determined using the C compiler’s sizeof expression. This is always
combined with native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use
pad bytes); short is 2 bytes; int and long are 4 bytes. float and double are 32-bit and 64-bit IEEE
floating point numbers, respectively.

Note the difference between ‘@’ and ‘=’: both use native byte order, but the size and alignment of the
latter is standardized.

The form ‘!’ is available for those poor souls who claim they can’t remember whether network byte
order is big-endian or little-endian.

There is no way to indicate non-native byte order (i.e. force byte-swapping); use the appropriate choice
of ‘<’ or ‘>’.

The ‘P’ format character is only available for the native byte ordering (selected as the default or with the
‘@’ byte order character). The byte order character ‘=’ chooses to use little- or big-endian ordering based
on the host system. The struct module does not interpret this as native ordering, so the ‘P’ format is
not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(’hhl’, 1, 2, 3)

’\000\001\000\002\000\000\000\003’

>>> unpack(’hhl’, ’\000\001\000\002\000\000\000\003’)

(1, 2, 3)

>>> calcsize(’hhl’)

8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format
with the code for that type with a repeat count of zero, e.g. the format ’llh0l’ specifies two pad bytes
at the end, assuming longs are aligned on 4-byte boundaries. This only works when native size and
alignment are in effect; standard size and alignment does not enforce any alignment.

See Also:

Module array (section 5.6):
packed binary storage of homogeneous data

4.5. struct — Interpret strings as packed binary data. 87

Module xdrlib (section 12.13):
packing and unpacking of XDR data

4.6 fpformat — Floating point conversions

The fpformat module defines functions for dealing with floating point numbers representations in 100%
pure Python. Note: This module is unneeded: everything here could be done via the % string interpo-
lation operator.

The fpformat module defines the following functions and an exception:

fix(x, digs)
Format x as [-]ddd.ddd with digs digits after the point and at least one digit before. If digs <=
0, the decimal point is suppressed.

x can be either a number or a string that looks like one. digs is an integer.

Return value is a string.

sci(x, digs)
Format x as [-]d.dddE[+-]ddd with digs digits after the point and exactly one digit before. If
digs <= 0, one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like one. digs is an integer.

Return value is a string.

NotANumber
Exception raised when a string does not look like a number when the documentation says it should.

Example:

>>> import fpformat

>>> fpformat.fix(1.23, 1)

’1.2’

4.7 StringIO — Read and write strings as files

This module implements a file-like class, StringIO, that reads and writes a string buffer (also known as
memory files). See the description on file objects for operations (section 2.1.7).

StringIO([buffer])
When a StringIO object is created, it can be initialized to an existing string by passing the string
to the constructor. If no string is given, the StringIO will start empty.

The following methods of StringIO objects require special mention:

getvalue()
Retrieve the entire contents of the “file” at any time before the StringIO object’s close() method
is called.

close()
Free the memory buffer.

4.8 cStringIO — Faster version of StringIO

The module cStringIO provides an interface similar to that of the StringIO module. Heavy use of
StringIO.StringIO objects can be made more efficient by using the function StringIO() from this
module instead.

88 Chapter 4. String Services

Since this module provides a factory function which returns objects of built-in types, there’s no way to
build your own version using subclassing. Use the original StringIO module in that case.

The following data objects are provided as well:

InputType
The type object of the objects created by calling StringIO with a string parameter.

OutputType
The type object of the objects returned by calling StringIO with no parameters.

There is a C API to the module as well; refer to the module source for more information.

4.8. cStringIO — Faster version of StringIO 89

90

CHAPTER

FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python
versions. Here’s an overview:
math Mathematical functions (sin() etc.).
cmath Mathematical functions for complex numbers.
random Generate pseudo-random numbers with various common distributions.
whrandom Floating point pseudo-random number generator.
bisect Array bisection algorithms for binary searching.
array Efficient arrays of uniformly typed numeric values.
ConfigParser Configuration file parser.
fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
calendar General functions for working with the calendar, including some emulation of the Unix cal program.
cmd Build line-oriented command interpreters; this is used by module pdb.
shlex Simple lexical analysis for Unix shell-like languages.

5.1 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C
standard.

These functions cannot be used with complex numbers; use the functions of the same name from the
cmath module if you require support for complex numbers. The distinction between functions which
support complex numbers and those which don’t is made since most users do not want to learn quite
as much mathematics as required to understand complex numbers. Receiving an exception instead of a
complex result allows earlier detection of the unexpected complex number used as a parameter, so that
the programmer can determine how and why it was generated in the first place.

The following functions provided by this module:

acos(x)
Return the arc cosine of x .

asin(x)
Return the arc sine of x .

atan(x)
Return the arc tangent of x .

atan2(y, x)
Return atan(y / x).

ceil(x)
Return the ceiling of x as a real.

cos(x)
Return the cosine of x .

cosh(x)

91

Return the hyperbolic cosine of x .

exp(x)
Return e**x .

fabs(x)
Return the absolute value of the real x .

floor(x)
Return the floor of x as a real.

fmod(x, y)
Return x % y .

frexp(x)
Return the matissa and exponent for x . The mantissa is positive.

hypot(x, y)
Return the Euclidean distance, sqrt(x*x + y*y).

ldexp(x, i)
Return x * (2**i).

log(x)
Return the natural logarithm of x .

log10(x)
Return the base-10 logarithm of x .

modf(x)
Return the fractional and integer parts of x . Both results carry the sign of x . The integer part is
returned as a real.

pow(x, y)
Return x**y .

sin(x)
Return the sine of x .

sinh(x)
Return the hyperbolic sine of x .

sqrt(x)
Return the square root of x .

tan(x)
Return the tangent of x .

tanh(x)
Return the hyperbolic tangent of x .

Note that frexp() and modf() have a different call/return pattern than their C equivalents: they take
a single argument and return a pair of values, rather than returning their second return value through
an ‘output parameter’ (there is no such thing in Python).

The module also defines two mathematical constants:

pi
The mathematical constant pi.

e
The mathematical constant e.

See Also:

Module cmath (section 5.2):
Complex number versions of many of these functions.

92 Chapter 5. Miscellaneous Services

5.2 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The
functions are:

acos(x)
Return the arc cosine of x .

acosh(x)
Return the hyperbolic arc cosine of x .

asin(x)
Return the arc sine of x .

asinh(x)
Return the hyperbolic arc sine of x .

atan(x)
Return the arc tangent of x .

atanh(x)
Return the hyperbolic arc tangent of x .

cos(x)
Return the cosine of x .

cosh(x)
Return the hyperbolic cosine of x .

exp(x)
Return the exponential value e**x .

log(x)
Return the natural logarithm of x .

log10(x)
Return the base-10 logarithm of x .

sin(x)
Return the sine of x .

sinh(x)
Return the hyperbolic sine of x .

sqrt(x)
Return the square root of x .

tan(x)
Return the tangent of x .

tanh(x)
Return the hyperbolic tangent of x .

The module also defines two mathematical constants:

pi
The mathematical constant pi, as a real.

e
The mathematical constant e, as a real.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for
having two modules is that some users aren’t interested in complex numbers, and perhaps don’t even
know what they are. They would rather have math.sqrt(-1) raise an exception than return a complex
number. Also note that the functions defined in cmath always return a complex number, even if the
answer can be expressed as a real number (in which case the complex number has an imaginary part of
zero).

5.2. cmath — Mathematical functions for complex numbers 93

5.3 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions: on the real line,
there are functions to compute normal or Gaussian, lognormal, negative exponential, gamma, and beta
distributions. For generating distribution of angles, the circular uniform and von Mises distributions are
available.

The random module supports the Random Number Generator interface, described in section 5.3.1. This
interface of the module, as well as the distribution-specific functions described below, all use the pseudo-
random generator provided by the whrandom module.

The following functions are defined to support specific distributions, and all return real values. Function
parameters are named after the corresponding variables in the distribution’s equation, as used in common
mathematical practice; most of these equations can be found in any statistics text. These are expected
to become part of the Random Number Generator interface in a future release.

betavariate(alpha, beta)
Beta distribution. Conditions on the parameters are alpha > -1 and beta > -1. Returned values
range between 0 and 1.

cunifvariate(mean, arc)
Circular uniform distribution. mean is the mean angle, and arc is the range of the distribution,
centered around the mean angle. Both values must be expressed in radians, and can range between
0 and pi. Returned values will range between mean - arc/2 and mean + arc/2.

expovariate(lambd)
Exponential distribution. lambd is 1.0 divided by the desired mean. (The parameter would be
called “lambda”, but that is a reserved word in Python.) Returned values will range from 0 to
positive infinity.

gamma(alpha, beta)
Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > -1
and beta > 0.

gauss(mu, sigma)
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster
than the normalvariate() function defined below.

lognormvariate(mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal
distribution with mean mu and standard deviation sigma. mu can have any value, and sigma must
be greater than zero.

normalvariate(mu, sigma)
Normal distribution. mu is the mean, and sigma is the standard deviation.

vonmisesvariate(mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration
parameter, which must be greater than or equal to zero. If kappa is equal to zero, this distribution
reduces to a uniform random angle over the range 0 to 2*pi.

paretovariate(alpha)
Pareto distribution. alpha is the shape parameter.

weibullvariate(alpha, beta)
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

See Also:

Module whrandom (section 5.4):
The standard Python random number generator.

94 Chapter 5. Miscellaneous Services

5.3.1 The Random Number Generator Interface

The Random Number Generator interface describes the methods which are available for all random
number generators. This will be enhanced in future releases of Python.

In this release of Python, the modules random, whrandom, and instances of the whrandom.whrandom class
all conform to this interface.

choice(seq)
Chooses a random element from the non-empty sequence seq and returns it.

randint(a, b)
Returns a random integer N such that a <= N <= b.

random()
Returns the next random floating point number in the range [0.0 ... 1.0).

uniform(a, b)
Returns a random real number N such that a <= N < b.

5.4 whrandom — Pseudo-random number generator

This module implements a Wichmann-Hill pseudo-random number generator class that is also named
whrandom. Instances of the whrandom class conform to the Random Number Generator interface described
in section 5.3.1. They also offer the following method, specific to the Wichmann-Hill algorithm:

seed([x, y, z])
Initializes the random number generator from the integers x , y and z . When the module is first
imported, the random number is initialized using values derived from the current time. If x , y ,
and z are either omitted or 0, the seed will be computed from the current system time. If one or
two of the parameters are 0, but not all three, the zero values are replaced by ones. This causes
some apparently different seeds to be equal, with the corresponding result on the pseudo-random
series produced by the generator.

When imported, the whrandom module also creates an instance of the whrandom class, and makes
the methods of that instance available at the module level. Therefore one can write either N =
whrandom.random() or:

generator = whrandom.whrandom()

N = generator.random()

Note that using separate instances of the generator leads to independent sequences of pseudo-random
numbers.

See Also:

Module random (section 5.3):
Generators for various random distributions and documentation for the Random Number Generator
interface.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number
generator”, Applied Statistics 31 (1982) 188-190.

5.5 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after
each insertion. For long lists of items with expensive comparison operations, this can be an improvement
over the more common approach. The module is called bisect because it uses a basic bisection algorithm
to do its work. The source code may be most useful as a working example of the algorithm (i.e., the

5.4. whrandom — Pseudo-random number generator 95

boundary conditions are already right!).

The following functions are provided:

bisect(list, item[, lo[, hi]])
Locate the proper insertion point for item in list to maintain sorted order. The parameters lo and
hi may be used to specify a subset of the list which should be considered. The return value is
suitable for use as the first parameter to list.insert().

insort(list, item[, lo[, hi]])
Insert item in list in sorted order. This is equivalent to list.insert(bisect.bisect(list, item,
lo, hi), item).

5.5.1 Example

The bisect() function is generally useful for categorizing numeric data. This example uses bisect()
to look up a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and
up is an ‘A’, 75..84 is a ‘B’, etc.

>>> grades = "FEDCBA"

>>> breakpoints = [30, 44, 66, 75, 85]

>>> from bisect import bisect

>>> def grade(total):

... return grades[bisect(breakpoints, total)]

...

>>> grade(66)

’C’

>>> map(grade, [33, 99, 77, 44, 12, 88])

[’E’, ’A’, ’B’, ’D’, ’F’, ’A’]

5.6 array — Efficient arrays of numeric values

This module defines a new object type which can efficiently represent an array of basic values: characters,
integers, floating point numbers. Arrays are sequence types and behave very much like lists, except that
the type of objects stored in them is constrained. The type is specified at object creation time by using
a type code, which is a single character. The following type codes are defined:

Type code C Type Minimum size in bytes
’c’ character 1
’b’ signed int 1
’B’ unsigned int 1
’h’ signed int 2
’H’ unsigned int 2
’i’ signed int 2
’I’ unsigned int 2
’l’ signed int 4
’L’ unsigned int 4
’f’ float 4
’d’ double 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the
C implementation). The actual size can be accessed through the itemsize attribute. The values stored
for ’L’ and ’I’ items will be represented as Python long integers when retrieved, because Python’s plain
integer type cannot represent the full range of C’s unsigned (long) integers.

The module defines the following function and type object:

96 Chapter 5. Miscellaneous Services

array(typecode[, initializer])
Return a new array whose items are restricted by typecode, and initialized from the optional
initializer value, which must be a list or a string. The list or string is passed to the new array’s
fromlist() or fromstring() method (see below) to add initial items to the array.

ArrayType
Type object corresponding to the objects returned by array().

Array objects support the following data items and methods:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append(x)
Append a new item with value x to the end of the array.

buffer info()
Return a tuple (address, length) giving the current memory address and the length in bytes of
the buffer used to hold array’s contents. This is occasionally useful when working with low-level
(and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioctl()
operations. The returned numbers are valid as long as the array exists and no length-changing
operations are applied to it.

byteswap()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes
in size; for other types of values, RuntimeError is raised. It is useful when reading data from a file
written on a machine with a different byte order.

fromfile(f, n)
Read n items (as machine values) from the file object f and append them to the end of the array.
If less than n items are available, EOFError is raised, but the items that were available are still
inserted into the array. f must be a real built-in file object; something else with a read() method
won’t do.

fromlist(list)
Append items from the list. This is equivalent to ‘for x in list: a.append(x)’ except that if
there is a type error, the array is unchanged.

fromstring(s)
Appends items from the string, interpreting the string as an array of machine values (i.e. as if it
had been read from a file using the fromfile() method).

insert(i, x)
Insert a new item with value x in the array before position i .

read(f, n)
Deprecated since release 1.5.1. Use the fromfile() method.

Read n items (as machine values) from the file object f and append them to the end of the array.
If less than n items are available, EOFError is raised, but the items that were available are still
inserted into the array. f must be a real built-in file object; something else with a read() method
won’t do.

reverse()
Reverse the order of the items in the array.

tofile(f)
Write all items (as machine values) to the file object f .

tolist()
Convert the array to an ordinary list with the same items.

tostring()
Convert the array to an array of machine values and return the string representation (the same

5.6. array — Efficient arrays of numeric values 97

sequence of bytes that would be written to a file by the tofile() method.)

write(f)
Deprecated since release 1.5.1. Use the tofile() method.

Write all items (as machine values) to the file object f .

When an array object is printed or converted to a string, it is represented as array(typecode, initializer).
The initializer is omitted if the array is empty, otherwise it is a string if the typecode is ’c’, otherwise
it is a list of numbers. The string is guaranteed to be able to be converted back to an array with the
same type and value using reverse quotes (‘‘), so long as the array() function has been imported using
‘from array import array’. Examples:

array(’l’)

array(’c’, ’hello world’)

array(’l’, [1, 2, 3, 4, 5])

array(’d’, [1.0, 2.0, 3.14])

See Also:

Module struct (section 4.5):
packing and unpacking of heterogeneous binary data

Module xdrlib (section 12.13):
packing and unpacking of XDR data

The Numeric Python extension (NumPy) defines another array type; see The Numerical Python Manual
for additional information (available online at ftp://ftp-icf.llnl.gov/pub/python/numericalpython.pdf). Further
information about NumPy is available at http://www.python.org/topics/scicomp/numpy.html.

5.7 ConfigParser — Configuration file parser

This module defines the class ConfigParser. The ConfigParser class implements a basic configuration
file parser language which provides a structure similar to what you would find on Microsoft Windows
INI files. You can use this to write Python programs which can be customized by end users easily.

The configuration file consists of sections, lead by a ‘[section]’ header and followed by ‘name: value’
entries, with continuations in the style of RFC 822; ‘name=value’ is also accepted. Note that leading
whitespace is removed from values. The optional values can contain format strings which refer to other
values in the same section, or values in a special DEFAULT section. Additional defaults can be provided
upon initialization and retrieval. Lines beginning with ‘#’ or ‘;’ are ignored and may be used to provide
comments.

For example:

foodir: %(dir)s/whatever

dir=frob

would resolve the ‘%(dir)s’ to the value of ‘dir’ (‘frob’ in this case). All reference expansions are done
on demand.

Default values can be specified by passing them into the ConfigParser constructor as a dictionary.
Additional defaults may be passed into the get() method which will override all others.

ConfigParser([defaults])
Return a new instance of the ConfigParser class. When defaults is given, it is initialized into the
dictionairy of intrinsic defaults. They keys must be strings, and the values must be appropriate
for the ‘%()s’ string interpolation. Note that name is always an intrinsic default; its value is
the section name.

98 Chapter 5. Miscellaneous Services

NoSectionError
Exception raised when a specified section is not found.

DuplicateSectionError
Exception raised when mutliple sections with the same name are found, or if add section() is
called with the name of a section that is already present.

NoOptionError
Exception raised when a specified option is not found in the specified section.

InterpolationError
Exception raised when problems occur performing string interpolation.

MissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

ParsingError
Exception raised when errors occur attempting to parse a file.

See Also:

Module shlex (section 5.11):
Support for a creating Unix shell-like minilanguages which can be used as an alternate format for
application configuration files.

5.7.1 ConfigParser Objects

ConfigParser instances have the following methods:

defaults()
Return a dictionairy containing the instance-wide defaults.

sections()
Return a list of the sections available; DEFAULT is not included in the list.

add section(section)
Add a section named section to the instance. If a section by the given name already exists,
DuplicateSectionError is raised.

has section(section)
Indicates whether the named section is present in the configuration. The DEFAULT section is not
acknowledged.

options(section)
Returns a list of options available in the specified section.

read(filenames)
Read and parse a list of filenames.

get(section, option[, raw[, vars]])
Get an option value for the provided section. All the ‘%’ interpolations are expanded in the return
values, based on the defaults passed into the constructor, as well as the options vars provided,
unless the raw argument is true.

getint(section, option)
A convenience method which coerces the option in the specified section to an integer.

getfloat(section, option)
A convenience method which coerces the option in the specified section to a floating point number.

getboolean(section, option)
A convenience method which coerces the option in the specified section to a boolean value. Note
that the only accepted values for the option are ‘0’ and ‘1’, any others will raise ValueError.

5.7. ConfigParser — Configuration file parser 99

5.8 fileinput — Iterate over lines from multiple input streams

This module implements a helper class and functions to quickly write a loop over standard input or a
list of files.

The typical use is:

import fileinput

for line in fileinput.input():

process(line)

This iterates over the lines of all files listed in sys.argv[1:], defaulting to sys.stdin if the list is empty.
If a filename is ’-’, it is also replaced by sys.stdin. To specify an alternative list of filenames, pass it
as the first argument to input(). A single file name is also allowed.

All files are opened in text mode. If an I/O error occurs during opening or reading a file, IOError is
raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for
interactive use, or if it has been explicitly reset (e.g. using sys.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is
noticeable at all is when the last file opened is empty.

It is possible that the last line of a file does not end in a newline character; lines are returned including
the trailing newline when it is present.

The following function is the primary interface of this module:

input([files[, inplace[, backup]]])
Create an instance of the FileInput class. The instance will be used as global state for the
functions of this module, and is also returned to use during iteration.

The following functions use the global state created by input(); if there is no active state, RuntimeError
is raised.

filename()
Return the name of the file currently being read. Before the first line has been read, returns None.

lineno()
Return the cumulative line number of the line that has just been read. Before the first line has
been read, returns 0. After the last line of the last file has been read, returns the line number of
that line.

filelineno()
Return the line number in the current file. Before the first line has been read, returns 0. After the
last line of the last file has been read, returns the line number of that line within the file.

isfirstline()
Returns true the line just read is the first line of its file, otherwise returns false.

isstdin()
Returns true if the last line was read from sys.stdin, otherwise returns false.

nextfile()
Close the current file so that the next iteration will read the first line from the next file (if any);
lines not read from the file will not count towards the cumulative line count. The filename is not
changed until after the first line of the next file has been read. Before the first line has been read,
this function has no effect; it cannot be used to skip the first file. After the last line of the last file
has been read, this function has no effect.

close()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing

100 Chapter 5. Miscellaneous Services

as well:

FileInput([files[, inplace[, backup]]])
Class FileInput is the implementation; its methods filename(), lineno(), fileline(),
isfirstline(), isstdin(), nextfile() and close() correspond to the functions of the same
name in the module. In addition it has a readline() method which returns the next input line,
and a getitem () method which implements the sequence behavior. The sequence must be
accessed in strictly sequential order; random access and readline() cannot be mixed.

Optional in-place filtering: if the keyword argument inplace=1 is passed to input() or to the
FileInput constructor, the file is moved to a backup file and standard output is directed to the in-
put file. This makes it possible to write a filter that rewrites its input file in place. If the keyword
argument backup=’.<some extension>’ is also given, it specifies the extension for the backup file, and
the backup file remains around; by default, the extension is ’.bak’ and it is deleted when the output
file is closed. In-place filtering is disabled when standard input is read.

Caveat: The current implementation does not work for MS-DOS 8+3 filesystems.

5.9 calendar — General calendar-related functions

This module allows you to output calendars like the Unix cal program, and provides additional useful
functions related to the calendar.

isleap(year)
Returns true if year is a leap year.

leapdays(year1, year2)
Return the number of leap years in the range [year1 . . . year2].

weekday(year, month, day)
Returns the day of the week (0 is Monday) for year (1970–. . .), month (1–12), day (1–31).

monthrange(year, month)
Returns weekday of first day of the month and number of days in month, for the specified year
and month.

monthcalendar(year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of
the month a represented by zeros.

prmonth(year, month[, width[, length]])
Prints a month’s calendar. If width is provided, it specifies the width of the columns that the
numbers are centered in. If length is given, it specifies the number of lines that each week will use.

prcal(year)
Prints the calendar for the year year .

timegm(tuple)
An unrelated but handy function that takes a time tuple such as returned by the gmtime() function
in the time module, and returns the corresponding Unix timestamp value, assuming an epoch of
1970, and the POSIX encoding. In fact, time.gmtime() and timegm() are each others’ inverse.

See Also:

Module time (section 6.9):
Low-level time related functions.

5.10 cmd — Build line-oriented command interpreters.

The Cmd class provides a simple framework for writing line-oriented command interpreters. These are
often useful for test harnesses, administrative tools, and prototypes that will later be wrapped in a more
sophisticated interface.

5.9. calendar — General calendar-related functions 101

Cmd()
A Cmd instance or subclass instance is a line-oriented interpreter framework. There is no good
reason to instantiate Cmd itself; rather, it’s useful as a superclass of an interpreter class you define
yourself in order to inherit Cmd’s methods and encapsulate action methods.

5.10.1 Cmd Objects

A Cmd instance has the following methods:

cmdloop([intro])
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch
to action methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this overrides
the intro class member).

If the readline module is loaded, input will automatically inherit bash-like history-list editing
(e.g. Ctrl-P scrolls back to the last command, Ctrl-N forward to the next one, Ctrl-F moves the
cursor to the right non-destructively, Ctrl-B moves the cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the string ’EOF’.

An interpreter instance will recognize a command name ‘foo’ if and only if it has a method
do foo(). As a special case, a line containing only the character ‘?’ is dispatched to the method
do help(). As another special case, a line containing only the character ‘!’ is dispatched to the
method do shell (if such a method is defined).

All subclasses of Cmd inherit a predefined do help. This method, called with an argument bar,
invokes the corresponding method help bar(). With no argument, do help() lists all available
help topics (that is, all commands with corresponding help *() methods), and also lists any
undocumented commands.

onecmd(str)
Interpret the argument as though it had been typed in in response to the prompt.

emptyline()
Method called when an empty line is entered in response to the prompt. If this method is not
overridden, it repeats the last nonempty command entered.

default(line)
Method called on an input line when the command prefix is not recognized. If this method is not
overridden, it prints an error message and returns.

precmd()
Hook method executed just before the input prompt is issued. This method is a stub in Cmd; it
exists to be overridden by subclasses.

postcmd()
Hook method executed just after a command dispatch is finished. This method is a stub in Cmd; it
exists to be overridden by subclasses.

preloop()
Hook method executed once when cmdloop() is called. This method is a stub in Cmd; it exists to
be overridden by subclasses.

postloop()
Hook method executed once when cmdloop() is about to return. This method is a stub in Cmd; it
exists to be overridden by subclasses.

Instances of Cmd subclasses have some public instance variables:

prompt
The prompt issued to solicit input.

identchars
The string of characters accepted for the command prefix.

102 Chapter 5. Miscellaneous Services

lastcmd
The last nonempty command prefix seen.

intro
A string to issue as an intro or banner. May be overridden by giving the cmdloop() method an
argument.

doc header
The header to issue if the help output has a section for documented commands.

misc header
The header to issue if the help output has a section for miscellaneous help topics (that is, there are
help *() methods without corresponding do *() methods).

undoc header
The header to issue if the help output has a section for undocumented commands (that is, there
are do *() methods without corresponding help *() methods).

ruler
The character used to draw separator lines under the help-message headers. If empty, no ruler line
is drawn. It defaults to ‘=’.

5.11 shlex — Simple lexical analysis

New in version 1.5.2.

The shlex class makes it easy to write lexical analyzers for simple syntaxes resembling that of the Unix

shell. This will often be useful for writing minilanguages, e.g. in run control files for Python applications.

shlex([stream])
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument,
if present, specifies where to read characters from. It must be a file- or stream-like object with
read() and readline() methods. If no argument is given, input will be taken from sys.stdin.

See Also:

Module ConfigParser (section 5.7):
Parser for configuration files similar to the Windows ‘.ini’ files.

5.11.1 shlex Objects

A shlex instance has the following methods:

get token()
Return a token. If tokens have been stacked using push token(), pop a token off the stack.
Otherwise, read one from the input stream. If reading encounters an immediate end-of-file, an
empty string is returned.

push token(str)
Push the argument onto the token stack.

Instances of shlex subclasses have some public instance variables which either control lexical analysis
or can be used for debugging:

commenters
The string of characters that are recognized as comment beginners. All characters from the com-
ment beginner to end of line are ignored. Includes just ‘#’ by default.

wordchars
The string of characters that will accumulate into multi-character tokens. By default, includes all
ascii alphanumerics and underscore.

whitespace
Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default,

5.11. shlex — Simple lexical analysis 103

includes space, tab, linefeed and carriage-return.

quotes
Characters that will be considered string quotes. The token accumulates until the same quote
is encountered again (thus, different quote types protect each other as in the shell.) By default,
includes ascii single and double quotes.

Note that any character not declared to be a word character, whitespace, or a quote will be returned as
a single-character token.

Quote and comment characters are not recognized within words. Thus, the bare words ‘ain’t’ and
‘ain#t’ would be returned as single tokens by the default parser.

lineno
Source line number (count of newlines seen so far plus one).

token
The token buffer. It may be useful to examine this when catching exceptions.

104 Chapter 5. Miscellaneous Services

CHAPTER

SIX

Generic Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available
on (almost) all operating systems, such as files and a clock. The interfaces are generally modelled after
the Unix or C interfaces, but they are available on most other systems as well. Here’s an overview:

os Miscellaneous OS interfaces.
os.path Common pathname manipulations.
dircache Return directory listing, with cache mechanism.
stat Utilities for interpreting the results of os.stat(), os.lstat() and os.fstat().
statcache Stat files, and remember results.
statvfs Constants for interpreting the result of os.statvfs().
cmp Compare files very efficiently.
cmpcache Compare files very efficiently.
time Time access and conversions.
sched General purpose event scheduler.
getpass Portable reading of passwords and retrieval of the userid.
curses An interface to the curses library.
getopt Parser for command line options.
tempfile Generate temporary file names.
errno Standard errno system symbols.
glob Unix shell style pathname pattern expansion.
fnmatch Unix shell style filename pattern matching.
shutil High-level file operations, including copying.
locale Internationalization services.
mutex Lock and queue for mutual exclusion.

6.1 os — Miscellaneous OS interfaces

This module provides a more portable way of using operating system (OS) dependent functionality than
importing an OS dependent built-in module like posix or nt.

This module searches for an OS dependent built-in module like mac or posix and exports the same
functions and data as found there. The design of all Python’s built-in OS dependent modules is such that
as long as the same functionality is available, it uses the same interface; e.g., the function os.stat(path)
returns stat information about path in the same format (which happens to have originated with the
POSIX interface).

Extensions peculiar to a particular OS are also available through the os module, but using them is of
course a threat to portability!

Note that after the first time os is imported, there is no performance penalty in using functions from os
instead of directly from the OS dependent built-in module, so there should be no reason not to use os!

error
This exception is raised when a function returns a system-related error (e.g., not for illegal argument
types). This is also known as the built-in exception OSError. The accompanying value is a pair
containing the numeric error code from errno and the corresponding string, as would be printed

105

by the C function perror(). See the module errno, which contains names for the error codes
defined by the underlying operating system.

When exceptions are classes, this exception carries two attributes, errno and strerror. The first
holds the value of the C errno variable, and the latter holds the corresponding error message
from strerror(). For exceptions that involve a file system path (e.g. chdir() or unlink()), the
exception instance will contain a third attribute, filename, which is the file name passed to the
function.

When exceptions are strings, the string for the exception is ’OSError’.

name
The name of the OS dependent module imported. The following names have currently been regis-
tered: ’posix’, ’nt’, ’dos’, ’mac’, ’os2’, ’ce’.

path
The corresponding OS dependent standard module for pathname operations, e.g., posixpath or
macpath. Thus, given the proper imports, os.path.split(file) is equivalent to but more portable
than posixpath.split(file). Note that this is also a valid module: it may be imported directly
as os.path.

6.1.1 Process Parameters

These functions and data items provide information and operate on the current process and user.

environ
A mapping object representing the string environment. For example, environ[’HOME’] is the
pathname of your home directory (on some platforms), and is equivalent to getenv("HOME") in C.

If the platform supports the putenv() function, this mapping may be used to modify the environ-
ment as well as query the environment. putenv() will be called automatically when the mapping
is modified.

If putenv() is not provided, this mapping may be passed to the appropriate process-creation
functions to cause child processes to use a modified environment.

chdir(path)
getcwd()

These functions are described in “Files and Directories” (section 6.1.4).

getegid()
Return the current process’ effective group id. Availability: Unix.

geteuid()
Return the current process’ effective user id. Availability: Unix.

getgid()
Return the current process’ group id. Availability: Unix.

getpgrp()
Return the current process group id. Availability: Unix.

getpid()
Return the current process id. Availability: Unix, Windows.

getppid()
Return the parent’s process id. Availability: Unix.

getuid()
Return the current process’ user id. Availability: Unix.

putenv(varname, value)
Set the environment variable named varname to the string value. Such changes to the environment
affect subprocesses started with os.system(), popen() or fork() and execv(). Availability: most
flavors of Unix, Windows.

When putenv() is supported, assignments to items in os.environ are automatically translated

106 Chapter 6. Generic Operating System Services

into corresponding calls to putenv(); however, calls to putenv() don’t update os.environ, so it
is actually preferable to assign to items of os.environ.

setgid(gid)
Set the current process’ group id. Availability: Unix.

setpgrp()
Calls the system call setpgrp() or setpgrp(0, 0) depending on which version is implemented (if
any). See the Unix manual for the semantics. Availability: Unix.

setpgid(pid, pgrp)
Calls the system call setpgid(). See the Unix manual for the semantics. Availability: Unix.

setsid()
Calls the system call setsid(). See the Unix manual for the semantics. Availability: Unix.

setuid(uid)
Set the current process’ user id. Availability: Unix.

strerror(code)
Return the error message corresponding to the error code in code. Availability: Unix, Windows.

umask(mask)
Set the current numeric umask and returns the previous umask. Availability: Unix, Windows.

uname()
Return a 5-tuple containing information identifying the current operating system. The tuple con-
tains 5 strings: (sysname, nodename, release, version, machine). Some systems truncate the
nodename to 8 characters or to the leading component; a better way to get the hostname is
socket.gethostname() or even socket.gethostbyaddr(socket.gethostname()). Availabil-
ity: recent flavors of Unix.

6.1.2 File Object Creation

These functions create new file objects.

fdopen(fd[, mode[, bufsize]])
Return an open file object connected to the file descriptor fd . The mode and bufsize arguments have
the same meaning as the corresponding arguments to the built-in open() function. Availability:
Macintosh, Unix, Windows.

popen(command[, mode[, bufsize]])
Open a pipe to or from command . The return value is an open file object connected to the pipe,
which can be read or written depending on whether mode is ’r’ (default) or ’w’. The bufsize
argument has the same meaning as the corresponding argument to the built-in open() function.
The exit status of the command (encoded in the format specified for wait()) is available as the
return value of the close() method of the file object, except that when the exit status is zero
(termination without errors), None is returned. Note: This function behaves unreliably under
Windows due to the native implementation of popen(). Availability: Unix, Windows.

6.1.3 File Descriptor Operations

These functions operate on I/O streams referred to using file descriptors.

close(fd)
Close file descriptor fd . Availability: Macintosh, Unix, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned
by open() or pipe(). To close a “file object” returned by the built-in function open() or by
popen() or fdopen(), use its close() method.

dup(fd)
Return a duplicate of file descriptor fd . Availability: Macintosh, Unix, Windows.

6.1. os — Miscellaneous OS interfaces 107

dup2(fd, fd2)
Duplicate file descriptor fd to fd2 , closing the latter first if necessary. Availability: Unix, Windows.

fstat(fd)
Return status for file descriptor fd , like stat(). Availability: Unix, Windows.

fstatvfs(fd)
Return information about the filesystem containing the file associated with file descriptor fd , like
statvfs(). Availability: Unix.

ftruncate(fd, length)
Truncate the file corresponding to file descriptor fd , so that it is at most length bytes in size.
Availability: Unix.

lseek(fd, pos, how)
Set the current position of file descriptor fd to position pos, modified by how : 0 to set the position
relative to the beginning of the file; 1 to set it relative to the current position; 2 to set it relative
to the end of the file. Availability: Macintosh, Unix, Windows.

open(file, flags[, mode])
Open the file file and set various flags according to flags and possibly its mode according to mode.
The default mode is 0777 (octal), and the current umask value is first masked out. Return the file
descriptor for the newly opened file. Availability: Macintosh, Unix, Windows.

For a description of the flag and mode values, see the C run-time documentation; flag constants
(like O RDONLY and O WRONLY) are defined in this module too (see below).

Note: this function is intended for low-level I/O. For normal usage, use the built-in function open(),
which returns a “file object” with read() and write() methods (and many more).

pipe()
Create a pipe. Return a pair of file descriptors (r, w) usable for reading and writing, respectively.
Availability: Unix, Windows.

read(fd, n)
Read at most n bytes from file descriptor fd . Return a string containing the bytes read. Availability:
Macintosh, Unix, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned
by open() or pipe(). To read a “file object” returned by the built-in function open() or by popen()
or fdopen(), or sys.stdin, use its read() or readline() methods.

tcgetpgrp(fd)
Return the process group associated with the terminal given by fd (an open file descriptor as
returned by open()). Availability: Unix.

tcsetpgrp(fd, pg)
Set the process group associated with the terminal given by fd (an open file descriptor as returned
by open()) to pg . Availability: Unix.

ttyname(fd)
Return a string which specifies the terminal device associated with file-descriptor fd . If fd is not
associated with a terminal device, an exception is raised. Availability: Unix.

write(fd, str)
Write the string str to file descriptor fd . Return the number of bytes actually written. Availability:
Macintosh, Unix, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned
by open() or pipe(). To write a “file object” returned by the built-in function open() or by
popen() or fdopen(), or sys.stdout or sys.stderr, use its write() method.

The following data items are available for use in constructing the flags parameter to the open() function.

O RDONLY
O WRONLY
O RDWR
O NDELAY

108 Chapter 6. Generic Operating System Services

O NONBLOCK
O APPEND
O DSYNC
O RSYNC
O SYNC
O NOCTTY
O CREAT
O EXCL
O TRUNC

Options for the flag argument to the open() function. These can be bit-wise OR’d together.
Availability: Macintosh, Unix, Windows.

6.1.4 Files and Directories

access(path, mode)
Check read/write/execute permissions for this process or existence of file path. mode should be
F OK to test the existence of path, or it can be the inclusive OR of one or more of R OK, W OK, and
X OK to test permissions. Return 1 if access is allowed, 0 if not. See the Unix man page access(2)
for more information. Availability: Unix.

F OK
Value to pass as the mode parameter of access() to test the existence of path.

R OK
Value to include in the mode parameter of access() to test the readability of path.

W OK
Value to include in the mode parameter of access() to test the writability of path.

X OK
Value to include in the mode parameter of access() to determine if path can be executed.

chdir(path)
Change the current working directory to path. Availability: Macintosh, Unix, Windows.

getcwd()
Return a string representing the current working directory. Availability: Macintosh, Unix, Win-
dows.

chmod(path, mode)
Change the mode of path to the numeric mode. Availability: Unix, Windows.

chown(path, uid, gid)
Change the owner and group id of path to the numeric uid and gid . Availability: Unix.

link(src, dst)
Create a hard link pointing to src named dst . Availability: Unix.

listdir(path)
Return a list containing the names of the entries in the directory. The list is in arbitrary order.
It does not include the special entries ’.’ and ’..’ even if they are present in the directory.
Availability: Macintosh, Unix, Windows.

lstat(path)
Like stat(), but do not follow symbolic links. Availability: Unix.

mkfifo(path[, mode])
Create a FIFO (a named pipe) named path with numeric mode mode. The default mode is 0666
(octal). The current umask value is first masked out from the mode. Availability: Unix.

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for ex-
ample with os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server”
type processes: the server opens the FIFO for reading, and the client opens it for writing. Note
that mkfifo() doesn’t open the FIFO — it just creates the rendezvous point.

6.1. os — Miscellaneous OS interfaces 109

mkdir(path[, mode])
Create a directory named path with numeric mode mode. The default mode is 0777 (octal). On
some systems, mode is ignored. Where it is used, the current umask value is first masked out.
Availability: Macintosh, Unix, Windows.

makedirs(path[, mode])
Recursive directory creation function. Like mkdir(), but makes all intermediate-level directories
needed to contain the leaf directory. Throws an error exception if the leaf directory already exists
or cannot be created. The default mode is 0777 (octal). New in version 1.5.2.

readlink(path)
Return a string representing the path to which the symbolic link points. Availability: Unix.

remove(path)
Remove the file path. See rmdir() below to remove a directory. This is identical to the unlink()
function documented below. Availability: Macintosh, Unix, Windows.

removedirs(path)
Recursive directory removal function. Works like rmdir() except that, if the leaf directory is
successfully removed, directories corresponding to rightmost path segments will be pruned way
until either the whole path is consumed or an error is raised (which is ignored, because it generally
means that a parent directory is not empty). Throws an error exception if the leaf directory could
not be successfully removed. New in version 1.5.2.

rename(src, dst)
Rename the file or directory src to dst . Availability: Macintosh, Unix, Windows.

renames(old, new)
Recursive directory or file renaming function. Works like rename(), except creation of any inter-
mediate directories needed to make the new pathname good is attempted first. After the rename,
directories corresponding to rightmost path segments of the old name will be pruned away using
removedirs().

Note: this function can fail with the new directory structure made if you lack permissions needed
to remove the leaf directory or file. New in version 1.5.2.

rmdir(path)
Remove the directory path. Availability: Macintosh, Unix, Windows.

stat(path)
Perform a stat() system call on the given path. The return value is a tuple of at least 10 integers
giving the most important (and portable) members of the stat structure, in the order st mode,
st ino, st dev, st nlink, st uid, st gid, st size, st atime, st mtime, st ctime. More
items may be added at the end by some implementations. (On MS Windows, some items are filled
with dummy values.) Availability: Macintosh, Unix, Windows.

Note: The standard module stat defines functions and constants that are useful for extracting
information from a stat structure.

statvfs(path)
Perform a statvfs() system call on the given path. The return value is a tuple of 10 integers
giving the most common members of the statvfs structure, in the order f bsize, f frsize,
f blocks, f bfree, f bavail, f files, f ffree, f favail, f flag, f namemax. Availability:
Unix.

Note: The standard module statvfs defines constants that are useful for extracting information
from a statvfs structure.

symlink(src, dst)
Create a symbolic link pointing to src named dst . Availability: Unix.

unlink(path)
Remove the file path. This is the same function as remove(); the unlink() name is its traditional
Unix name. Availability: Macintosh, Unix, Windows.

utime(path, (atime, mtime))

110 Chapter 6. Generic Operating System Services

Set the access and modified time of the file to the given values. (The second argument is a tuple
of two items.) Availability: Macintosh, Unix, Windows.

6.1.5 Process Management

These functions may be used to create and manage additional processes.

execl(path, arg0, arg1, ...)
This is equivalent to ‘execv(path, (arg0, arg1, ...))’. Availability: Unix, Windows.

execle(path, arg0, arg1, ..., env)
This is equivalent to ‘execve(path, (arg0, arg1, ...), env)’. Availability: Unix, Windows.

execlp(path, arg0, arg1, ...)
This is equivalent to ‘execvp(path, (arg0, arg1, ...))’. Availability: Unix, Windows.

execv(path, args)
Execute the executable path with argument list args, replacing the current process (i.e., the Python
interpreter). The argument list may be a tuple or list of strings. Availability: Unix, Windows.

execve(path, args, env)
Execute the executable path with argument list args, and environment env , replacing the current
process (i.e., the Python interpreter). The argument list may be a tuple or list of strings. The
environment must be a dictionary mapping strings to strings. Availability: Unix, Windows.

execvp(path, args)
This is like ‘execv(path, args)’ but duplicates the shell’s actions in searching for an executable file
in a list of directories. The directory list is obtained from environ[’PATH’]. Availability: Unix,
Windows.

execvpe(path, args, env)
This is a cross between execve() and execvp(). The directory list is obtained from env[’PATH’].
Availability: Unix, Windows.

exit(n)
Exit to the system with status n, without calling cleanup handlers, flushing stdio buffers, etc.
Availability: Unix, Windows.

Note: the standard way to exit is sys.exit(n). exit() should normally only be used in the
child process after a fork().

fork()
Fork a child process. Return 0 in the child, the child’s process id in the parent. Availability: Unix.

kill(pid, sig)
Kill the process pid with signal sig . Availability: Unix.

nice(increment)
Add increment to the process’s “niceness”. Return the new niceness. Availability: Unix.

plock(op)
Lock program segments into memory. The value of op (defined in <sys/lock.h>) determines which
segments are locked. Availability: Unix.

spawnv(mode, path, args)
Execute the program path in a new process, passing the arguments specified in args as command-
line parameters. args may be a list or a tuple. mode is a magic operational constant. See the
Visual C++ Runtime Library documentation for further information; the constants are exposed
to the Python programmer as listed below. Availability: Windows. New in version 1.5.2.

spawnve(mode, path, args, env)
Execute the program path in a new process, passing the arguments specified in args as command-
line parameters and the contents of the mapping env as the environment. args may be a list or a
tuple. mode is a magic operational constant. See the Visual C++ Runtime Library documentation
for further information; the constants are exposed to the Python programmer as listed below.

6.1. os — Miscellaneous OS interfaces 111

Availability: Windows. New in version 1.5.2.

P WAIT
P NOWAIT
P NOWAITO
P OVERLAY
P DETACH

Possible values for the mode parameter to spawnv() and spawnve(). Availability: Windows. New
in version 1.5.2.

system(command)
Execute the command (a string) in a subshell. This is implemented by calling the Standard C
function system(), and has the same limitations. Changes to posix.environ, sys.stdin, etc. are
not reflected in the environment of the executed command. The return value is the exit status of
the process encoded in the format specified for wait(), except on Windows 95 and 98, where it is
always 0. Note that POSIX does not specify the meaning of the return value of the C system()
function, so the return value of the Python function is system-dependent. Availability: Unix,
Windows.

times()
Return a 5-tuple of floating point numbers indicating accumulated (CPU or other) times, in seconds.
The items are: user time, system time, children’s user time, children’s system time, and elapsed
real time since a fixed point in the past, in that order. See the Unix manual page times(2) or the
corresponding Windows Platform API documentation. Availability: Unix, Windows.

wait()
Wait for completion of a child process, and return a tuple containing its pid and exit status
indication: a 16-bit number, whose low byte is the signal number that killed the process, and
whose high byte is the exit status (if the signal number is zero); the high bit of the low byte is set
if a core file was produced. Availability: Unix.

waitpid(pid, options)
Wait for completion of a child process given by process id pid , and return a tuple containing its
process id and exit status indication (encoded as for wait()). The semantics of the call are affected
by the value of the integer options , which should be 0 for normal operation. Availability: Unix.

If pid is greater than 0, waitpid() requests status information for that specific process. If pid is
0, the request is for the status of any child in the process group of the current process. If pid is -1,
the request pertains to any child of the current process. If pid is less than -1, status is requested
for any process in the process group -pid (the absolute value of pid).

WNOHANG
The option for waitpid() to avoid hanging if no child process status is available immediately.
Availability: Unix.

The following functions take a process status code as returned by system(), wait(), or waitpid() as a
parameter. They may be used to determine the disposition of a process.

WIFSTOPPED(status)
Return true if the process has been stopped. Availability: Unix.

WIFSIGNALED(status)
Return true if the process exited due to a signal. Availability: Unix.

WIFEXITED(status)
Return true if the process exited using the exit(2) system call. Availability: Unix.

WEXITSTATUS(status)
If WIFEXITED(status) is true, return the integer parameter to the exit(2) system call. Otherwise,
the return value is meaningless. Availability: Unix.

WSTOPSIG(status)
Return the signal which caused the process to stop. Availability: Unix.

WTERMSIG(status)
Return the signal which caused the process to exit. Availability: Unix.

112 Chapter 6. Generic Operating System Services

6.1.6 Miscellanenous System Data

The follow data values are used to support path manipulation operations. These are defined for all
platforms.

Higher-level operations on pathnames are defined in the os.path module.

curdir
The constant string used by the OS to refer to the current directory, e.g. ’.’ for POSIX or ’:’
for the Macintosh.

pardir
The constant string used by the OS to refer to the parent directory, e.g. ’..’ for POSIX or ’::’
for the Macintosh.

sep
The character used by the OS to separate pathname components, e.g. ‘/’ for POSIX or ‘:’ for the
Macintosh. Note that knowing this is not sufficient to be able to parse or concatenate pathnames
— use os.path.split() and os.path.join() — but it is occasionally useful.

altsep
An alternative character used by the OS to separate pathname components, or None if only one
separator character exists. This is set to ‘/’ on DOS and Windows systems where sep is a backslash.

pathsep
The character conventionally used by the OS to separate search patch components (as in $PATH),
e.g. ‘:’ for POSIX or ‘;’ for DOS and Windows.

defpath
The default search path used by exec*p*() if the environment doesn’t have a ’PATH’ key.

linesep
The string used to separate (or, rather, terminate) lines on the current platform. This may be a
single character, e.g. ’\n’ for POSIX or ’\r’ for MacOS, or multiple characters, e.g. ’\r\n’ for
MS-DOS and MS Windows.

6.2 os.path — Common pathname manipulations

This module implements some useful functions on pathnames.

abspath(path)
Return a normalized absolutized version of the pathname path. On most platforms, this is equiv-
alent to normpath(join(os.getcwd(), path)). New in version 1.5.2.

basename(path)
Return the base name of pathname path. This is the second half of the pair returned by
split(path).

commonprefix(list)
Return the longest string that is a prefix of all strings in list . If list is empty, return the empty
string (’’).

dirname(path)
Return the directory name of pathname path. This is the first half of the pair returned by
split(path).

exists(path)
Return true if path refers to an existing path.

expanduser(path)
Return the argument with an initial component of ‘~’ or ‘~user ’ replaced by that user ’s home
directory. An initial ‘~’ is replaced by the environment variable $HOME; an initial ‘~user ’ is
looked up in the password directory through the built-in module pwd. If the expansion fails, or
if the path does not begin with a tilde, the path is returned unchanged. On the Macintosh, this

6.2. os.path — Common pathname manipulations 113

always returns path unchanged.

expandvars(path)
Return the argument with environment variables expanded. Substrings of the form ‘$name’ or
‘${name}’ are replaced by the value of environment variable name. Malformed variable names and
references to non-existing variables are left unchanged. On the Macintosh, this always returns path
unchanged.

getatime(path)
Return the time of last access of filename. The return value is integer giving the number of seconds
since the epoch (see the time module). Raise os.error if the file does not exist or is inaccessible.
New in version 1.5.2.

getmtime(path)
Return the time of last modification of filename. The return value is integer giving the number
of seconds since the epoch (see the time module). Raise os.error if the file does not exist or is
inaccessible. New in version 1.5.2.

getsize(path)
Return the size, in bytes, of filename. Raise os.error if the file does not exist or is inaccessible.
New in version 1.5.2.

isabs(path)
Return true if path is an absolute pathname (begins with a slash).

isfile(path)
Return true if path is an existing regular file. This follows symbolic links, so both islink() and
isfile() can be true for the same path.

isdir(path)
Return true if path is an existing directory. This follows symbolic links, so both islink() and
isdir() can be true for the same path.

islink(path)
Return true if path refers to a directory entry that is a symbolic link. Always false if symbolic links
are not supported.

ismount(path)
Return true if pathname path is a mount point: a point in a file system where a different file system
has been mounted. The function checks whether path’s parent, ‘path/..’, is on a different device
than path, or whether ‘path/..’ and path point to the same i-node on the same device — this should
detect mount points for all Unix and POSIX variants.

join(path1 [, path2 [, ...]])
Joins one or more path components intelligently. If any component is an absolute path, all previous
components are thrown away, and joining continues. The return value is the concatenation of path1 ,
and optionally path2 , etc., with exactly one slash (’/’) inserted between components, unless path
is empty.

normcase(path)
Normalize the case of a pathname. On Unix, this returns the path unchanged; on case-insensitive
filesystems, it converts the path to lowercase. On Windows, it also converts forward slashes to
backward slashes.

normpath(path)
Normalize a pathname. This collapses redundant separators and up-level references, e.g. A//B,
A/./B and A/foo/../B all become A/B. It does not normalize the case (use normcase() for that).
On Windows, it converts forward slashes to backward slashes.

samefile(path1, path2)
Return true if both pathname arguments refer to the same file or directory (as indicated by device
number and i-node number). Raise an exception if a os.stat() call on either pathname fails.
Availability: Macintosh, Unix.

sameopenfile(fp1, fp2)

114 Chapter 6. Generic Operating System Services

Return true if the file objects fp1 and fp2 refer to the same file. The two file objects may represent
different file descriptors. Availability: Macintosh, Unix.

samestat(stat1, stat2)
Return true if the stat tuples stat1 and stat2 refer to the same file. These structures may have been
returned by fstat(), lstat(), or stat(). This function implements the underlying comparison
used by samefile() and sameopenfile(). Availability: Macintosh, Unix.

split(path)
Split the pathname path into a pair, (head, tail) where tail is the last pathname component and
head is everything leading up to that. The tail part will never contain a slash; if path ends in a
slash, tail will be empty. If there is no slash in path, head will be empty. If path is empty, both
head and tail are empty. Trailing slashes are stripped from head unless it is the root (one or more
slashes only). In nearly all cases, join(head, tail) equals path (the only exception being when
there were multiple slashes separating head from tail).

splitdrive(path)
Split the pathname path into a pair (drive, tail) where drive is either a drive specification or the
empty string. On systems which do not use drive specifications, drive will always be the empty
string. In all cases, drive + tail will be the same as path.

splitext(path)
Split the pathname path into a pair (root, ext) such that root + ext == path, and ext is empty
or begins with a period and contains at most one period.

walk(path, visit, arg)
Calls the function visit with arguments (arg, dirname, names) for each directory in the di-
rectory tree rooted at path (including path itself, if it is a directory). The argument dirname
specifies the visited directory, the argument names lists the files in the directory (gotten from
os.listdir(dirname)). The visit function may modify names to influence the set of directories
visited below dirname, e.g., to avoid visiting certain parts of the tree. (The object referred to by
names must be modified in place, using del or slice assignment.)

6.3 dircache — Cached directory listings

The dircache module defines a function for reading directory listing using a cache, and cache invalidation
using the mtime of the directory. Additionally, it defines a function to annotate directories by appending
a slash.

The dircache module defines the following functions:

listdir(path)
Return a directory listing of path, as gotten from os.listdir(). Note that unless path changes,
further call to listdir() will not re-read the directory structure.

Note that the list returned should be regarded as read-only. (Perhaps a future version should
change it to return a tuple?)

opendir(path)
Same as listdir(). Defined for backwards compatability.

annotate(head, list)
Assume list is a list of pathes relative to head , and append, in place, a ‘/’ to each path which
points to a directory.

6.3. dircache — Cached directory listings 115

>>> import dircache

>>> a=dircache.listdir(’/’)

>>> a=a[:] # Copy the return value so we can change ’a’

>>> a

[’bin’, ’boot’, ’cdrom’, ’dev’, ’etc’, ’floppy’, ’home’, ’initrd’, ’lib’, ’lost+

found’, ’mnt’, ’proc’, ’root’, ’sbin’, ’tmp’, ’usr’, ’var’, ’vmlinuz’]

>>> dircache.annotate(’/’, a)

>>> a

[’bin/’, ’boot/’, ’cdrom/’, ’dev/’, ’etc/’, ’floppy/’, ’home/’, ’initrd/’, ’lib/

’, ’lost+found/’, ’mnt/’, ’proc/’, ’root/’, ’sbin/’, ’tmp/’, ’usr/’, ’var/’, ’vm

linuz’]

6.4 stat — Interpreting stat() results

The stat module defines constants and functions for interpreting the results of os.stat(), os.fstat()
and os.lstat() (if they exist). For complete details about the stat(), fstat() and lstat() calls,
consult the documentation for your system.

The stat module defines the following functions to test for specific file types:

S ISDIR(mode)
Return non-zero if the mode is from a directory.

S ISCHR(mode)
Return non-zero if the mode is from a character special device file.

S ISBLK(mode)
Return non-zero if the mode is from a block special device file.

S ISREG(mode)
Return non-zero if the mode is from a regular file.

S ISFIFO(mode)
Return non-zero if the mode is from a FIFO (named pipe).

S ISLNK(mode)
Return non-zero if the mode is from a symbolic link.

S ISSOCK(mode)
Return non-zero if the mode is from a socket.

Two additional functions are defined for more general manipulation of the file’s mode:

S IMODE(mode)
Return the portion of the file’s mode that can be set by os.chmod()—that is, the file’s permission
bits, plus the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

S IFMT(mode)
Return the portion of the file’s mode that describes the file type (used by the S IS*() functions
above).

Normally, you would use the os.path.is*() functions for testing the type of a file; the functions here
are useful when you are doing multiple tests of the same file and wish to avoid the overhead of the
stat() system call for each test. These are also useful when checking for information about a file that
isn’t handled by os.path, like the tests for block and character devices.

All the variables below are simply symbolic indexes into the 10-tuple returned by os.stat(), os.fstat()
or os.lstat().

ST MODE
Inode protection mode.

ST INO

116 Chapter 6. Generic Operating System Services

Inode number.

ST DEV
Device inode resides on.

ST NLINK
Number of links to the inode.

ST UID
User id of the owner.

ST GID
Group id of the owner.

ST SIZE
File size in bytes.

ST ATIME
Time of last access.

ST MTIME
Time of last modification.

ST CTIME
Time of last status change (see manual pages for details).

Example:

import os, sys

from stat import *

def walktree(dir, callback):

’’’recursively descend the directory rooted at dir,

calling the callback function for each regular file’’’

for f in os.listdir(dir):

pathname = ’%s/%s’ % (dir, f)

mode = os.stat(pathname)[ST_MODE]

if S_ISDIR(mode):

It’s a directory, recurse into it

walktree(pathname, callback)

elif S_ISREG(mode):

It’s a file, call the callback function

callback(pathname)

else:

Unknown file type, print a message

print ’Skipping %s’ % pathname

def visitfile(file):

print ’visiting’, file

if __name__ == ’__main__’:

walktree(sys.argv[1], visitfile)

6.5 statcache — An optimization of os.stat()

The statcache module provides a simple optimization to os.stat(): remembering the values of previous
invocations.

The statcache module defines the following functions:

stat(path)
This is the main module entry-point. Identical for os.stat(), except for remembering the result

6.5. statcache — An optimization of os.stat() 117

for future invocations of the function.

The rest of the functions are used to clear the cache, or parts of it.

reset()
Clear the cache: forget all results of previous stat() calls.

forget(path)
Forget the result of stat(path), if any.

forget prefix(prefix)
Forget all results of stat(path) for path starting with prefix .

forget dir(prefix)
Forget all results of stat(path) for path a file in the directory prefix , including stat(prefix).

forget except prefix(prefix)
Similar to forget prefix(), but for all path values not starting with prefix .

Example:

>>> import os, statcache

>>> statcache.stat(’.’)

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)

>>> os.stat(’.’)

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)

6.6 statvfs — Constants used with os.statvfs()

The statvfs module defines constants so interpreting the result if os.statvfs(), which returns a tuple,
can be made without remembering “magic numbers.” Each of the constants defined in this module is
the index of the entry in the tuple returned by os.statvfs() that contains the specified information.

F BSIZE
Preferred file system block size.

F FRSIZE
Fundamental file system block size.

F BLOCKS
Total number of blocks in the filesystem.

F BFREE
Total number of free blocks.

F BAVAIL
Free blocks available to non-super user.

F FILES
Total number of file nodes.

F FFREE
Total number of free file nodes.

F FAVAIL
Free nodes available to non-super user.

F FLAG
Flags. System dependant: see statvfs() man page.

F NAMEMAX
Maximum file name length.

118 Chapter 6. Generic Operating System Services

6.7 cmp — File comparisons

The cmp module defines a function to compare files, taking all sort of short-cuts to make it a highly
efficient operation.

The cmp module defines the following function:

cmp(f1, f2)
Compare two files given as names. The following tricks are used to optimize the comparisons:

•Files with identical type, size and mtime are assumed equal.

•Files with different type or size are never equal.

•The module only compares files it already compared if their signature (type, size and mtime)
changed.

•No external programs are called.

Example:

>>> import cmp

>>> cmp.cmp(’libundoc.tex’, ’libundoc.tex’)

1

>>> cmp.cmp(’libundoc.tex’, ’lib.tex’)

0

6.8 cmpcache — Efficient file comparisons

The cmpcache module provides an identical interface and similar functionality as the cmp module, but
can be a bit more efficient as it uses statcache.stat() instead of os.stat() (see the statcache module
for information on the difference).

Note: Using the statcache module to provide stat() information results in trashing the cache invali-
dation mechanism: results are not as reliable. To ensure “current” results, use cmp.cmp() instead of the
version defined in this module, or use statcache.forget() to invalidate the appropriate entries.

6.9 time — Time access and conversions

This module provides various time-related functions. It is always available, but not all functions are
available on all platforms.

An explanation of some terminology and conventions is in order.

• The epoch is the point where the time starts. On January 1st of that year, at 0 hours, the “time
since the epoch” is zero. For Unix, the epoch is 1970. To find out what the epoch is, look at
gmtime(0).

• The functions in this module do not handle dates and times before the epoch or far in the future.
The cut-off point in the future is determined by the C library; for Unix, it is typically in 2038.

• Year 2000 (Y2K) issues: Python depends on the platform’s C library, which generally doesn’t
have year 2000 issues, since all dates and times are represented internally as seconds since the
epoch. Functions accepting a time tuple (see below) generally require a 4-digit year. For backward
compatibility, 2-digit years are supported if the module variable accept2dyear is a non-zero integer;
this variable is initialized to 1 unless the environment variable $PYTHONY2K is set to a non-empty
string, in which case it is initialized to 0. Thus, you can set $PYTHONY2K to a non-empty string

6.7. cmp — File comparisons 119

in the environment to require 4-digit years for all year input. When 2-digit years are accepted,
they are converted according to the POSIX or X/Open standard: values 69-99 are mapped to
1969-1999, and values 0–68 are mapped to 2000–2068. Values 100–1899 are always illegal. Note
that this is new as of Python 1.5.2(a2); earlier versions, up to Python 1.5.1 and 1.5.2a1, would add
1900 to year values below 1900.

• UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or GMT). The
acronym UTC is not a mistake but a compromise between English and French.

• DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of
the year. DST rules are magic (determined by local law) and can change from year to year. The
C library has a table containing the local rules (often it is read from a system file for flexibility)
and is the only source of True Wisdom in this respect.

• The precision of the various real-time functions may be less than suggested by the units in which
their value or argument is expressed. E.g. on most Unix systems, the clock “ticks” only 50 or 100
times a second, and on the Mac, times are only accurate to whole seconds.

• On the other hand, the precision of time() and sleep() is better than their Unix equivalents:
times are expressed as floating point numbers, time() returns the most accurate time available
(using Unix gettimeofday() where available), and sleep() will accept a time with a nonzero
fraction (Unix select() is used to implement this, where available).

• The time tuple as returned by gmtime(), localtime(), and strptime(), and accepted by
asctime(), mktime() and strftime(), is a tuple of 9 integers:

Index Field Values
0 year (e.g. 1993)
1 month range [1,12]
2 day range [1,31]
3 hour range [0,23]
4 minute range [0,59]
5 second range [0,61]; see (1) in strftime() description
6 weekday range [0,6], monday is 0
7 Julian day range [1,366]
8 daylight savings flag 0, 1 or -1; see below

Note that unlike the C structure, the month value is a range of 1-12, not 0-11. A year value will be
handled as described under “Year 2000 (Y2K) issues” above. A -1 argument as daylight savings
flag, passed to mktime() will usually result in the correct daylight savings state to be filled in.

The module defines the following functions and data items:

accept2dyear
Boolean value indicating whether two-digit year values will be accepted. This is true by default,
but will be set to false if the environment variable $PYTHONY2K has been set to a non-empty
string. It may also be modified at run time.

altzone
The offset of the local DST timezone, in seconds west of the 0th meridian, if one is defined. Negative
if the local DST timezone is east of the 0th meridian (as in Western Europe, including the UK).
Only use this if daylight is nonzero.

asctime(tuple)
Convert a tuple representing a time as returned by gmtime() or localtime() to a 24-character
string of the following form: ’Sun Jun 20 23:21:05 1993’. Note: unlike the C function of the
same name, there is no trailing newline.

clock()
Return the current CPU time as a floating point number expressed in seconds. The precision, and
in fact the very definiton of the meaning of “CPU time”, depends on that of the C function of
the same name, but in any case, this is the function to use for benchmarking Python or timing
algorithms.

120 Chapter 6. Generic Operating System Services

ctime(secs)
Convert a time expressed in seconds since the epoch to a string representing local time. ctime(secs)
is equivalent to asctime(localtime(secs)).

daylight
Nonzero if a DST timezone is defined.

gmtime(secs)
Convert a time expressed in seconds since the epoch to a time tuple in UTC in which the dst flag
is always zero. Fractions of a second are ignored. See above for a description of the tuple lay-out.

localtime(secs)
Like gmtime() but converts to local time. The dst flag is set to 1 when DST applies to the given
time.

mktime(tuple)
This is the inverse function of localtime(). Its argument is the full 9-tuple (since the dst flag
is needed — pass -1 as the dst flag if it is unknown) which expresses the time in local time, not
UTC. It returns a floating point number, for compatibility with time(). If the input value cannot
be represented as a valid time, OverflowError is raised.

sleep(secs)
Suspend execution for the given number of seconds. The argument may be a floating point number
to indicate a more precise sleep time. The actual suspension time may be less than that requested
because any caught signal will terminate the sleep() following execution of that signal’s catching
routine. Also, the suspension time may be longer than requested by an arbitrary amount because
of the scheduling of other activity in the system.

strftime(format, tuple)
Convert a tuple representing a time as returned by gmtime() or localtime() to a string as specified
by the format argument. format must be a string.

The following directives can be embedded in the format string. They are shown without the
optional field width and precision specification, and are replaced by the indicated characters in the
strftime() result:

6.9. time — Time access and conversions 121

Directive Meaning Notes
%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM.
%S Second as a decimal number [00,61]. (1)
%U Week number of the year (Sunday as the first day of the

week) as a decimal number [00,53]. All days in a new
year preceding the first Sunday are considered to be in
week 0.

%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of

the week) as a decimal number [00,53]. All days in a
new year preceding the first Sunday are considered to
be in week 0.

%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.
%Z Time zone name (or by no characters if no time zone

exists).
%% A literal ‘%’ character.

Notes:

(1)The range really is 0 to 61; this accounts for leap seconds and the (very rare) double leap
seconds.

Additional directives may be supported on certain platforms, but only the ones listed here have a
meaning standardized by ANSI C.

On some platforms, an optional field width and precision specification can immediately follow the
initial ‘%’ of a directive in the following order; this is also not portable. The field width is normally
2 except for %j where it is 3.

strptime(string[, format])
Parse a string representing a time according to a format. The return value is a tuple as returned
by gmtime() or localtime(). The format parameter uses the same directives as those used by
strftime(); it defaults to "%a %b %d %H:%M:%S %Y" which matches the formatting returned by
ctime(). The same platform caveats apply; see the local Unix documentation for restrictions or
additional supported directives. If string cannot be parsed according to format , ValueError is
raised.

Availability: Most modern Unix systems.

time()
Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note
that even though the time is always returned as a floating point number, not all systems provide
time with a better precision than 1 second.

timezone
The offset of the local (non-DST) timezone, in seconds west of the 0th meridian (i.e. negative in
most of Western Europe, positive in the US, zero in the UK).

122 Chapter 6. Generic Operating System Services

tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name
of the local DST timezone. If no DST timezone is defined, the second string should not be used.

See Also:

Module locale (section 6.19):
Internationalization services. The locale settings can affect the return values for some of the
functions in the time module.

6.10 sched — Event scheduler

The sched module defines a class which implements a general purpose event scheduler:

scheduler(timefunc, delayfunc)
The scheduler class defines a generic interface to scheduling events. It needs two functions to
actually deal with the “outside world” — timefunc should be callable without arguments, and
return a number (the “time”, in any units whatsoever). The delayfunc function should be callable
with one argument, compatible with the output of timefunc, and should delay that many time
units. delayfunc will also be called with the argument 0 after each event is run to allow other
threads an opportunity to run in multi-threaded applications.

Example:

>>> import sched, time

>>> s=sched.scheduler(time.time, time.sleep)

>>> def print_time(): print "From print_time", time.time()

...

>>> def print_some_times():

... print time.time()

... s.enter(5, 1, print_time, ())

... s.enter(10, 1, print_time, ())

... s.run()

... print time.time()

...

>>> print_some_times()

930343690.257

From print_time 930343695.274

From print_time 930343700.273

930343700.276

6.10.1 Scheduler Objects

scheduler instances have the following methods:

enterabs(time, priority, action, argument)
Schedule a new event. The time argument should be a numeric type compatible with the return
value of the timefunc function passed to the constructor. Events scheduled for the same time will
be executed in the order of their priority .

Executing the event means executing apply(action, argument). argument must be a tuple holding
the parameters for action.

Return value is an event which may be used for later cancellation of the event (see cancel()).

enter(delay, priority, action, argument)
Schedule an event for delay more time units. Other then the relative time, the other arguments,
the effect and the return value are the same as those for enterabs().

cancel(event)

6.10. sched — Event scheduler 123

Remove the event from the queue. If event is not an event currently in the queue, this method will
raise a RuntimeError.

empty()
Return true if the event queue is empty.

run()
Run all scheduled events. This function will wait (using the delayfunc function passed to the
constructor) for the next event, then execute it and so on until there are no more scheduled events.

Either action or delayfunc can raise an exception. In either case, the scheduler will maintain a
consistent state and propagate the exception. If an exception is raised by action, the event will
not be attempted in future calls to run().

If a sequence of events takes longer to run than the time available before the next event, the
scheduler will simply fall behind. No events will be dropped; the calling code is responsible for
cancelling events which are no longer pertinent.

6.11 getpass — Portable password input

The getpass module provides two functions:

getpass([prompt])
Prompt the user for a password without echoing. The user is prompted using the string prompt ,
which defaults to ’Password: ’. Availability: Macintosh, Unix, Windows.

getuser()
Return the “login name” of the user. Availability: Unix, Windows.

This function checks the environment variables $LOGNAME, $USER, $LNAME and $USER-
NAME, in order, and returns the value of the first one which is set to a non-empty string. If none
are set, the login name from the password database is returned on systems which support the pwd
module, otherwise, an exception is raised.

6.12 curses — Terminal independant console handling

The curses module provides an interface to the curses Unix library, the de-facto standard for portable
advanced terminal handling.

While curses is most widely used in the Unix environment, versions are available for DOS, OS/2, and
possibly other systems as well. The extension module has not been tested with all available versions of
curses.

See Also:

Tutorial material on using curses with Python is available on the Python Web site as Andrew Kuchling’s
Curses Programming with Python, at http://www.python.org/doc/howto/curses/curses.html.

6.12.1 Constants and Functions

The curses module defines the following data members:

version
A string representing the current version of the module.

A NORMAL
Normal attribute.

A STANDOUT
Standout mode.

124 Chapter 6. Generic Operating System Services

A UNDERLINE
Underline mode.

A BLINK
Blink mode.

A DIM
Dim mode.

A BOLD
Bold mode.

A ALTCHARSET
Alternate character set mode.

KEY *
Names for various keys. The exact names available are system dependant.

ACS *
Names for various characters: ACS ULCORNER, ACS LLCORNER, ACS URCORNER, ACS LRCORNER,
ACS RTEE, ACS LTEE, ACS BTEE, ACS TTEE, ACS HLINE, ACS VLINE, ACS PLUS, ACS S1, ACS S9,
ACS DIAMOND, ACS CKBOARD, ACS DEGREE, ACS PLMINUS, ACS BULLET, ACS LARROW, ACS RARROW,
ACS DARROW.

Note: These are available only after initscr() has been called.

The module curses defines the following exception:
error

Curses function returned an error status.
Note: Whenever x or y arguments to a function or a method are optional, they default to the current
cursor location. Whenever attr is optional, it defaults to A NORMAL.

The module curses defines the following functions:

initscr()
Initialize the library. Returns a WindowObject which represents the whole screen.

endwin()
De-initialize the library, and return terminal to normal status.

isendwin()
Returns true if endwin() has been called.

doupdate()
Update the screen.

newwin([nlines, ncols,] begin y, begin x)
Return a new window, whose left-upper corner is at (begin y, begin x), and whose height/width
is nlines/ncols.

By default, the window will extend from the specified position to the lower right corner of the
screen.

beep()
Emit a short sound.

flash()
Flash the screen.

ungetch(ch)
Push ch so the next getch() will return it; ch is an integer specifying the character to be pushed.
Note: only one ch can be pushed before getch() is called.

flushinp()
Flush all input buffers.

cbreak()
Enter cbreak mode.

6.12. curses — Terminal independant console handling 125

nocbreak()
Leave cbreak mode.

echo()
Enter echo mode.

noecho()
Leave echo mode.

nl()
Enter nl mode.

nonl()
Leave nl mode.

raw()
Enter raw mode.

noraw()
Leave raw mode.

meta(yes)
If yes is 1, allow 8-bit characters. If yes is 0, allow only 7-bit chars.

keyname(k)
Return the name of the key numbered k .

6.12.2 Window Objects

Window objects, as returned by initscr() and newwin() above, have the following methods:

refresh()
Update the display immediately (sync actual screen with previous drawing/deleting methods).

nooutrefresh()
Mark for refresh but wait.

mvwin(new y, new x)
Move the window so its upper-left corner is at (new y, new x).

move(new y, new x)
Move cursor to (new y, new x).

subwin([nlines, ncols,] begin y, begin y)
Return a sub-window, whose upper-left corner is at (begin y, begin x), and whose width/height
is ncols/nlines.

By default, the sub-window will extend from the specified position to the lower right corner of the
window.

addch([y, x,] ch[, attr])
Note: A character means a C character (i.e., an ascii code), rather then a Python character (a
string of length 1). (This note is true whenever the documentation mentions a character.)

Paint character ch at (y, x) with attributes attr , overwriting any character previously painter
at that location. By default, the character position and attributes are the current settings for the
window object.

insch([y, x,] ch[, attr])
Paint character ch at (y, x) with attributes attr , moving the line from position x right by one
character.

delch([x, y])
Delete any character at (y, x).

echochar(ch[, attr])
Add character ch with attribute attr , and immediately call refresh.

126 Chapter 6. Generic Operating System Services

addstr([y, x,] str[, attr])
Paint string str at (y, x) with attributes attr , overwriting anything previously on the display.

attron(attr)
Turn on attribute attr .

attroff(attr)
Turn off attribute attr .

setattr(attr)
Set the current attributes to attr .

standend()
Turn off all attributes.

standout()
Turn on attribute A STANDOUT .

border([ls[, rs[, ts[, bs[, tl[, tr[, bl[, br]]]]]]]])
Draw a border around the edges of the window. Each parameter specifies the character to use for
a specific part of the border; see the table below for more details. The characters must be specified
as integers; using one-character strings will cause TypeError to be raised.

Note: A 0 value for any parameter will cause the default character to be used for that parameter.
Keyword parameters can not be used. The defaults are listed in this table:

Parameter Description Default value
ls Left side ACS VLINE
rs Right side ACS VLINE
ts Top ACS HLINE
bs Bottom ACS HLINE
tl Upper-left corner ACS ULCORNER
tr Upper-right corner ACS URCORNER
bl Bottom-left corner ACS BLCORNER
br Bottom-right corner ACS BRCORNER

box([vertch, horch])
Similar to border(), but both ls and rs are vertch and both ts and bs are horch. The default
corner characters are always used by this function.

hline([y, x,] ch, n)
Display a horizontal line starting at (y, x) with length n consisting of the character ch.

vline([y, x,] ch, n)
Display a vertical line starting at (y, x) with length n consisting of the character ch.

erase()
Clear the screen.

deletln()
Delete the line under the cursor. All following lines are moved up by 1 line.

insertln()
Insert a blank line under the cursor. All following lines are moved down by 1 line.

getyx()
Return a tuple (y, x) of current cursor position.

getbegyx()
Return a tuple (y, x) of co-ordinates of upper-left corner.

getmaxyx()
Return a tuple (y, x) of the height and width of the window.

clear()
Like erase(), but also causes the whole screen to be repainted upon next call to refresh().

clrtobot()

6.12. curses — Terminal independant console handling 127

Erase from cursor to the end of the screen: all lines below the cursor are deleted, and then the
equivalent of clrtoeol() is performed.

clrtoeol()
Erase from cursor to the end of the line.

scroll([lines = 1])
Scroll the screen upward by lines lines.

touchwin()
Pretend the whole window has been changed, for purposes of drawing optimizations.

touchline(start, count)
Pretend count lines have been changed, starting with line start .

getch([x, y])
Get a character. Note that the integer returned does not have to be in ascii range: function keys,
keypad keys and so on return numbers higher then 256. In no-delay mode, an exception is raised
if there is no input.

getstr([x, y])
Read a string from the user, with primitive line editing capacity.

inch([x, y])
Return the character at the given position in the window. The bottom 8 bits are the character
proper, and upper bits are the attributes.

clearok(yes)
If yes is 1, the next call to refresh() will clear the screen completely.

idlok(yes)
If called with yes equal to 1, curses will try and use hardware line editing facilities. Otherwise,
line insertion/deletion are disabled.

leaveok(yes)
If yes is 1, cursor is left where it is, instead of being at “cursor position.” This reduces cursor
movement where possible. If possible it will be made invisible.

If yes is 0, cursor will always be at “cursor position” after an update.

setscrreg(top, bottom)
Set the scrolling region from line top to line bottom. All scrolling actions will take place in this
region.

keypad(yes)
If yes is 1, escape sequences generated by some keys (keypad, function keys) will be interpreted by
curses.

If yes is 0, escape sequences will be left as is in the input stream.

nodelay(yes)
If yes is 1, getch() will be non-blocking.

notimeout(yes)
If yes is 1, escape sequences will not be timed out.

If yes is 0, after a few milliseconds, an escape sequence will not be interpreted, and will be left in
the input stream as is.

6.13 getopt — Parser for command line options.

This module helps scripts to parse the command line arguments in sys.argv. It supports the same
conventions as the Unix getopt() function (including the special meanings of arguments of the form ‘-’
and ‘--’). Long options similar to those supported by GNU software may be used as well via an optional
third argument. This module provides a single function and an exception:

128 Chapter 6. Generic Operating System Services

getopt(args, options[, long options])
Parses command line options and parameter list. args is the argument list to be parsed, without
the leading reference to the running program. Typically, this means ‘sys.argv[1:]’. options is the
string of option letters that the script wants to recognize, with options that require an argument
followed by a colon (i.e., the same format that Unix getopt() uses). If specified, long options is
a list of strings with the names of the long options which should be supported. The leading ’--’
characters should not be included in the option name. Options which require an argument should
be followed by an equal sign (’=’).

The return value consists of two elements: the first is a list of (option, value) pairs; the second is
the list of program arguments left after the option list was stripped (this is a trailing slice of the first
argument). Each option-and-value pair returned has the option as its first element, prefixed with
a hyphen for short options (e.g., ’-x’) or two hyphens for long options (e.g., ’--long-option’),
and the option argument as its second element, or an empty string if the option has no argument.
The options occur in the list in the same order in which they were found, thus allowing multiple
occurrences. Long and short options may be mixed.

error
This is raised when an unrecognized option is found in the argument list or when an option requiring
an argument is given none. The argument to the exception is a string indicating the cause of the
error. For long options, an argument given to an option which does not require one will also cause
this exception to be raised.

An example using only Unix style options:

>>> import getopt, string

>>> args = string.split(’-a -b -cfoo -d bar a1 a2’)

>>> args

[’-a’, ’-b’, ’-cfoo’, ’-d’, ’bar’, ’a1’, ’a2’]

>>> optlist, args = getopt.getopt(args, ’abc:d:’)

>>> optlist

[(’-a’, ’’), (’-b’, ’’), (’-c’, ’foo’), (’-d’, ’bar’)]

>>> args

[’a1’, ’a2’]

>>>

Using long option names is equally easy:

>>> s = ’--condition=foo --testing --output-file abc.def -x a1 a2’

>>> args = string.split(s)

>>> args

[’--condition=foo’, ’--testing’, ’--output-file’, ’abc.def’, ’-x’, ’a1’, ’a2’]

>>> optlist, args = getopt.getopt(args, ’x’, [

... ’condition=’, ’output-file=’, ’testing’])

>>> optlist

[(’--condition’, ’foo’), (’--testing’, ’’), (’--output-file’, ’abc.def’), (’-x’,

’’)]

>>> args

[’a1’, ’a2’]

>>>

6.14 tempfile — Generate temporary file names

This module generates temporary file names. It is not Unix specific, but it may require some help on
non-Unix systems.

Note: the modules does not create temporary files, nor does it automatically remove them when the

6.14. tempfile — Generate temporary file names 129

current process exits or dies.

The module defines a single user-callable function:

mktemp()
Return a unique temporary filename. This is an absolute pathname of a file that does not exist at
the time the call is made. No two calls will return the same filename.

The module uses two global variables that tell it how to construct a temporary name. The caller may
assign values to them; by default they are initialized at the first call to mktemp().

tempdir
When set to a value other than None, this variable defines the directory in which filenames returned
by mktemp() reside. The default is taken from the environment variable $TMPDIR; if this is not
set, either ‘/usr/tmp’ is used (on Unix), or the current working directory (all other systems). No
check is made to see whether its value is valid.

template
When set to a value other than None, this variable defines the prefix of the final component of the
filenames returned by mktemp(). A string of decimal digits is added to generate unique filenames.
The default is either ‘@pid .’ where pid is the current process ID (on Unix), or ‘tmp’ (all other
systems).

Warning: if a Unix process uses mktemp(), then calls fork() and both parent and child continue to
use mktemp(), the processes will generate conflicting temporary names. To resolve this, the child process
should assign None to template, to force recomputing the default on the next call to mktemp().

6.15 errno — Standard errno system symbols.

This module makes available standard errno system symbols. The value of each symbol is the correspond-
ing integer value. The names and descriptions are borrowed from ‘linux/include/errno.h’, which should be
pretty all-inclusive.

errorcode
Dictionary providing a mapping from the errno value to the string name in the underlying system.
For instance, errno.errorcode[errno.EPERM] maps to ’EPERM’.

To translate a numeric error code to an error message, use os.strerror().

Of the following list, symbols that are not used on the current platform are not defined by the module.
Symbols available can include:

EPERM
Operation not permitted

ENOENT
No such file or directory

ESRCH
No such process

EINTR
Interrupted system call

EIO
I/O error

ENXIO
No such device or address

E2BIG
Arg list too long

ENOEXEC
Exec format error

130 Chapter 6. Generic Operating System Services

EBADF
Bad file number

ECHILD
No child processes

EAGAIN
Try again

ENOMEM
Out of memory

EACCES
Permission denied

EFAULT
Bad address

ENOTBLK
Block device required

EBUSY
Device or resource busy

EEXIST
File exists

EXDEV
Cross-device link

ENODEV
No such device

ENOTDIR
Not a directory

EISDIR
Is a directory

EINVAL
Invalid argument

ENFILE
File table overflow

EMFILE
Too many open files

ENOTTY
Not a typewriter

ETXTBSY
Text file busy

EFBIG
File too large

ENOSPC
No space left on device

ESPIPE
Illegal seek

EROFS
Read-only file system

EMLINK
Too many links

EPIPE

6.15. errno — Standard errno system symbols. 131

Broken pipe

EDOM
Math argument out of domain of func

ERANGE
Math result not representable

EDEADLK
Resource deadlock would occur

ENAMETOOLONG
File name too long

ENOLCK
No record locks available

ENOSYS
Function not implemented

ENOTEMPTY
Directory not empty

ELOOP
Too many symbolic links encountered

EWOULDBLOCK
Operation would block

ENOMSG
No message of desired type

EIDRM
Identifier removed

ECHRNG
Channel number out of range

EL2NSYNC
Level 2 not synchronized

EL3HLT
Level 3 halted

EL3RST
Level 3 reset

ELNRNG
Link number out of range

EUNATCH
Protocol driver not attached

ENOCSI
No CSI structure available

EL2HLT
Level 2 halted

EBADE
Invalid exchange

EBADR
Invalid request descriptor

EXFULL
Exchange full

ENOANO
No anode

132 Chapter 6. Generic Operating System Services

EBADRQC
Invalid request code

EBADSLT
Invalid slot

EDEADLOCK
File locking deadlock error

EBFONT
Bad font file format

ENOSTR
Device not a stream

ENODATA
No data available

ETIME
Timer expired

ENOSR
Out of streams resources

ENONET
Machine is not on the network

ENOPKG
Package not installed

EREMOTE
Object is remote

ENOLINK
Link has been severed

EADV
Advertise error

ESRMNT
Srmount error

ECOMM
Communication error on send

EPROTO
Protocol error

EMULTIHOP
Multihop attempted

EDOTDOT
RFS specific error

EBADMSG
Not a data message

EOVERFLOW
Value too large for defined data type

ENOTUNIQ
Name not unique on network

EBADFD
File descriptor in bad state

EREMCHG
Remote address changed

ELIBACC

6.15. errno — Standard errno system symbols. 133

Can not access a needed shared library

ELIBBAD
Accessing a corrupted shared library

ELIBSCN
.lib section in a.out corrupted

ELIBMAX
Attempting to link in too many shared libraries

ELIBEXEC
Cannot exec a shared library directly

EILSEQ
Illegal byte sequence

ERESTART
Interrupted system call should be restarted

ESTRPIPE
Streams pipe error

EUSERS
Too many users

ENOTSOCK
Socket operation on non-socket

EDESTADDRREQ
Destination address required

EMSGSIZE
Message too long

EPROTOTYPE
Protocol wrong type for socket

ENOPROTOOPT
Protocol not available

EPROTONOSUPPORT
Protocol not supported

ESOCKTNOSUPPORT
Socket type not supported

EOPNOTSUPP
Operation not supported on transport endpoint

EPFNOSUPPORT
Protocol family not supported

EAFNOSUPPORT
Address family not supported by protocol

EADDRINUSE
Address already in use

EADDRNOTAVAIL
Cannot assign requested address

ENETDOWN
Network is down

ENETUNREACH
Network is unreachable

ENETRESET
Network dropped connection because of reset

134 Chapter 6. Generic Operating System Services

ECONNABORTED
Software caused connection abort

ECONNRESET
Connection reset by peer

ENOBUFS
No buffer space available

EISCONN
Transport endpoint is already connected

ENOTCONN
Transport endpoint is not connected

ESHUTDOWN
Cannot send after transport endpoint shutdown

ETOOMANYREFS
Too many references: cannot splice

ETIMEDOUT
Connection timed out

ECONNREFUSED
Connection refused

EHOSTDOWN
Host is down

EHOSTUNREACH
No route to host

EALREADY
Operation already in progress

EINPROGRESS
Operation now in progress

ESTALE
Stale NFS file handle

EUCLEAN
Structure needs cleaning

ENOTNAM
Not a XENIX named type file

ENAVAIL
No XENIX semaphores available

EISNAM
Is a named type file

EREMOTEIO
Remote I/O error

EDQUOT
Quota exceeded

6.16 glob — Unix style pathname pattern expansion

The glob module finds all the pathnames matching a specified pattern according to the rules used by the
Unix shell. No tilde expansion is done, but *, ?, and character ranges expressed with [] will be correctly
matched. This is done by using the os.listdir() and fnmatch.fnmatch() functions in concert, and
not by actually invoking a subshell. (For tilde and shell variable expansion, use os.path.expanduser()
and os.path.expandvars().)

6.16. glob — Unix style pathname pattern expansion 135

glob(pathname)
Returns a possibly-empty list of path names that match pathname, which must be a string con-
taining a path specification. pathname can be either absolute (like ‘/usr/src/Python-1.5/Makefile’) or
relative (like ‘../../Tools/*/*.gif’), and can contain shell-style wildcards.

For example, consider a directory containing only the following files: ‘1.gif’, ‘2.txt’, and ‘card.gif’. glob()
will produce the following results. Notice how any leading components of the path are preserved.

>>> import glob

>>> glob.glob(’./[0-9].*’)

[’./1.gif’, ’./2.txt’]

>>> glob.glob(’*.gif’)

[’1.gif’, ’card.gif’]

>>> glob.glob(’?.gif’)

[’1.gif’]

See Also:

Module fnmatch (section 6.17):
Shell-style filename (not path) expansion

6.17 fnmatch — Unix filename pattern matching

This module provides support for Unix shell-style wildcards, which are not the same as regular expres-
sions (which are documented in the re module). The special characters used in shell-style wildcards
are:

Pattern Meaning
* matches everything
? matches any single character

[seq] matches any character in seq
[!seq] matches any character not in seq

Note that the filename separator (’/’ on Unix) is not special to this module. See module glob for
pathname expansion (glob uses fnmatch() to match pathname segments). Similarly, filenames starting
with a period are not special for this module, and are matched by the * and ? patterns.

fnmatch(filename, pattern)
Test whether the filename string matches the pattern string, returning true or false. If the operating
system is case-insensitive, then both parameters will be normalized to all lower- or upper-case before
the comparison is performed. If you require a case-sensitive comparison regardless of whether that’s
standard for your operating system, use fnmatchcase() instead.

fnmatchcase(filename, pattern)
Test whether filename matches pattern, returning true or false; the comparison is case-sensitive.

See Also:

Module glob (section 6.16):
Unix shell-style path expansion.

6.18 shutil — High-level file operations

The shutil module offers a number of high-level operations on files and collections of files. In particular,
functions are provided which support file copying and removal.

Caveat: On MacOS, the resource fork and other metadata are not used. For file copies, this means that
resources will be lost and file type and creator codes will not be correct.

136 Chapter 6. Generic Operating System Services

copyfile(src, dst)
Copy the contents of src to dst . If dst exists, it will be replaced, otherwise it will be created.

copymode(src, dst)
Copy the permission bits from src to dst . The file contents, owner, and group are unaffected.

copystat(src, dst)
Copy the permission bits, last access time, and last modification time from src to dst . The file
contents, owner, and group are unaffected.

copy(src, dst)
Copy the file src to the file or directory dst . If dst is a directory, a file with the same basename as
src is created (or overwritten) in the directory specified. Permission bits are copied.

copy2(src, dst)
Similar to copy(), but last access time and last modification time are copied as well. This is similar
to the Unix command cp -p.

copytree(src, dst[, symlinks])
Recursively copy an entire directory tree rooted at src. The destination directory, named by dst ,
must not already exist; it will be created. Individual files are copied using copy2(). If symlinks is
true, symbolic links in the source tree are represented as symbolic links in the new tree; if false or
omitted, the contents of the linked files are copied to the new tree. Errors are reported to standard
output.

The source code for this should be considered an example rather than a tool.

rmtree(path[, ignore errors[, onerror]])
Delete an entire directory tree. If ignore errors is true, errors will be ignored; if false or omitted,
errors are handled by calling a handler specified by onerror or raise an exception.

If onerror is provided, it must be a callable that accepts three parameters: function, path, and
excinfo. The first parameter, function, is the function which raised the exception; it will be
os.remove() or os.rmdir(). The second parameter, path, will be the path name passed to func-
tion. The third parameter, excinfo, will be the exception information return by sys.exc info().
Exceptions raised by onerror will not be caught.

6.18.1 Example

This example is the implementation of the copytree() function, described above, with the docstring
omitted. It demonstrates many of the other functions provided by this module.

def copytree(src, dst, symlinks=0):

names = os.listdir(src)

os.mkdir(dst)

for name in names:

srcname = os.path.join(src, name)

dstname = os.path.join(dst, name)

try:

if symlinks and os.path.islink(srcname):

linkto = os.readlink(srcname)

os.symlink(linkto, dstname)

elif os.path.isdir(srcname):

copytree(srcname, dstname)

else:

copy2(srcname, dstname)

XXX What about devices, sockets etc.?

except (IOError, os.error), why:

print "Can’t copy %s to %s: %s" % (‘srcname‘, ‘dstname‘, str(why))

6.18. shutil — High-level file operations 137

6.19 locale — Internationalization services

The locale module opens access to the POSIX locale database and functionality. The POSIX locale
mechanism allows programmers to deal with certain cultural issues in an application, without requiring
the programmer to know all the specifics of each country where the software is executed.

The locale module is implemented on top of the locale module, which in turn uses an ANSI C locale
implementation if available.

The locale module defines the following exception and functions:

setlocale(category[, value])
If value is specified, modifies the locale setting for the category . The available categories are listed
in the data description below. The value is the name of a locale. An empty string specifies the
user’s default settings. If the modification of the locale fails, the exception Error is raised. If
successful, the new locale setting is returned.

If no value is specified, the current setting for the category is returned.

setlocale() is not thread safe on most systems. Applications typically start with a call of

import locale

locale.setlocale(locale.LC_ALL,"")

This sets the locale for all categories to the user’s default setting (typically specified in the $LANG
environment variable). If the locale is not changed thereafter, using multithreading should not
cause problems.

Error
Exception raised when setlocale() fails.

localeconv()
Returns the database of of the local conventions as a dictionary. This dictionary has the following
strings as keys:

•decimal point specifies the decimal point used in floating point number representations for
the LC NUMERIC category.

•grouping is a sequence of numbers specifying at which relative positions the thousands sep
is expected. If the sequence is terminated with CHAR MAX, no further grouping is performed.
If the sequence terminates with a 0, the last group size is repeatedly used.

•thousands sep is the character used between groups.

•int curr symbol specifies the international currency symbol from the LC MONETARY cate-
gory.

•currency symbol is the local currency symbol.

•mon decimal point is the decimal point used in monetary values.

•mon thousands sep is the separator for grouping of monetary values.

•mon grouping has the same format as the grouping key; it is used for monetary values.

•positive sign and negative sign gives the sign used for positive and negative monetary
quantities.

•int frac digits and frac digits specify the number of fractional digits used in the in-
ternational and local formatting of monetary values.

•p cs precedes and n cs precedes specifies whether the currency symbol precedes the value
for positive or negative values.

•p sep by space and n sep by space specifies whether there is a space between the positive
or negative value and the currency symbol.

•p sign posn and n sign posn indicate how the sign should be placed for positive and
negative monetary values.

The possible values for p sign posn and n sign posn are given below.

138 Chapter 6. Generic Operating System Services

Value Explanation
0 Currency and value are surrounded by parentheses.
1 The sign should precede the value and currency symbol.
2 The sign should follow the value and currency symbol.
3 The sign should immediately precede the value.
4 The sign should immediately follow the value.

LC MAX Nothing is specified in this locale.

strcoll(string1,string2)
Compares two strings according to the current LC COLLATE setting. As any other compare function,
returns a negative, or a positive value, or 0, depending on whether string1 collates before or after
string2 or is equal to it.

strxfrm(string)
Transforms a string to one that can be used for the built-in function cmp(), and still returns locale-
aware results. This function can be used when the same string is compared repeatedly, e.g. when
collating a sequence of strings.

format(format, val, [grouping = 0])
Formats a number val according to the current LC NUMERIC setting. The format follows the
conventions of the % operator. For floating point values, the decimal point is modified if appropriate.
If grouping is true, also takes the grouping into account.

str(float)
Formats a floating point number using the same format as the built-in function str(float), but
takes the decimal point into account.

atof(string)
Converts a string to a floating point number, following the LC NUMERIC settings.

atoi(string)
Converts a string to an integer, following the LC NUMERIC conventions.

LC CTYPE
Locale category for the character type functions. Depending on the settings of this category, the
functions of module string dealing with case change their behaviour.

LC COLLATE
Locale category for sorting strings. The functions strcoll() and strxfrm() of the locale module
are affected.

LC TIME
Locale category for the formatting of time. The function time.strftime() follows these conven-
tions.

LC MONETARY
Locale category for formatting of monetary values. The available options are available from the
localeconv() function.

LC MESSAGES
Locale category for message display. Python currently does not support application specific
locale-aware messages. Messages displayed by the operating system, like those returned by
os.strerror() might be affected by this category.

LC NUMERIC
Locale category for formatting numbers. The functions format(), atoi(), atof() and str() of
the locale module are affected by that category. All other numeric formatting operations are not
affected.

LC ALL
Combination of all locale settings. If this flag is used when the locale is changed, setting the locale
for all categories is attempted. If that fails for any category, no category is changed at all. When
the locale is retrieved using this flag, a string indicating the setting for all categories is returned.
This string can be later used to restore the settings.

6.19. locale — Internationalization services 139

CHAR MAX
This is a symbolic constant used for different values returned by localeconv().

Example:

>>> import locale

>>> loc = locale.setlocale(locale.LC_ALL) # get current locale

>>> locale.setlocale(locale.LC_ALL, "de") # use German locale

>>> locale.strcoll("f\344n", "foo") # compare a string containing an umlaut

>>> locale.setlocale(locale.LC_ALL, "") # use user’s preferred locale

>>> locale.setlocale(locale.LC_ALL, "C") # use default (C) locale

>>> locale.setlocale(locale.LC_ALL, loc) # restore saved locale

6.19.1 Background, details, hints, tips and caveats

The C standard defines the locale as a program-wide property that may be relatively expensive to change.
On top of that, some implementation are broken in such a way that frequent locale changes may cause
core dumps. This makes the locale somewhat painful to use correctly.

Initially, when a program is started, the locale is the ‘C’ locale, no matter what the user’s preferred
locale is. The program must explicitly say that it wants the user’s preferred locale settings by calling
setlocale(LC ALL, "").

It is generally a bad idea to call setlocale() in some library routine, since as a side effect it affects the
entire program. Saving and restoring it is almost as bad: it is expensive and affects other threads that
happen to run before the settings have been restored.

If, when coding a module for general use, you need a locale independent version of an operation that
is affected by the locale (e.g. string.lower(), or certain formats used with time.strftime())), you
will have to find a way to do it without using the standard library routine. Even better is convincing
yourself that using locale settings is okay. Only as a last resort should you document that your module
is not compatible with non-‘C’ locale settings.

The case conversion functions in the string and strop modules are affected by the locale settings. When
a call to the setlocale() function changes the LC CTYPE settings, the variables string.lowercase,
string.uppercase and string.letters (and their counterparts in strop) are recalculated. Note that
this code that uses these variable through ‘from ... import ...’, e.g. from string import letters, is
not affected by subsequent setlocale() calls.

The only way to perform numeric operations according to the locale is to use the special functions defined
by this module: atof(), atoi(), format(), str().

6.19.2 For extension writers and programs that embed Python

Extension modules should never call setlocale(), except to find out what the current locale is. But
since the return value can only be used portably to restore it, that is not very useful (except perhaps to
find out whether or not the locale is ‘C’).

When Python is embedded in an application, if the application sets the locale to something specific
before initializing Python, that is generally okay, and Python will use whatever locale is set, except that
the LC NUMERIC locale should always be ‘C’.

The setlocale() function in the locale module gives the Python progammer the impression that you
can manipulate the LC NUMERIC locale setting, but this not the case at the C level: C code will always
find that the LC NUMERIC locale setting is ‘C’. This is because too much would break when the decimal
point character is set to something else than a period (e.g. the Python parser would break). Caveat:
threads that run without holding Python’s global interpreter lock may occasionally find that the numeric
locale setting differs; this is because the only portable way to implement this feature is to set the numeric
locale settings to what the user requests, extract the relevant characteristics, and then restore the ‘C’
numeric locale.

140 Chapter 6. Generic Operating System Services

When Python code uses the locale module to change the locale, this also affects the embedding applica-
tion. If the embedding application doesn’t want this to happen, it should remove the locale extension
module (which does all the work) from the table of built-in modules in the ‘config.c’ file, and make sure
that the locale module is not accessible as a shared library.

6.20 mutex — Mutual exclusion support

The mutex defines a class that allows mutual-exclusion via aquiring and releasing locks. It does not
require (or imply) threading or multi-tasking, though it could be useful for those purposes.

The mutex module defines the following class:

mutex()
Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex is not locked, the
queue is empty. Otherwise, the queue contains 0 or more (function, argument) pairs representing
functions (or methods) waiting to acquire the lock. When the mutex is unlocked while the queue
is not empty, the first queue entry is removed and its function(argument) pair called, implying it
now has the lock.

Of course, no multi-threading is implied – hence the funny interface for lock, where a function is
called once the lock is aquired.

6.20.1 Mutex Objects

mutex objects have following methods:

test()
Check whether the mutex is locked.

testandset()
“Atomic” test-and-set, grab the lock if it is not set, and return true, otherwise, return false.

lock(function, argument)
Execute function(argument), unless the mutex is locked. In the case it is locked, place the function
and argument on the queue. See unlock for explanation of when function(argument) is executed
in that case.

unlock()
Unlock the mutex if queue is empty, otherwise execute the first element in the queue.

6.20. mutex — Mutual exclusion support 141

142

CHAPTER

SEVEN

Optional Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available
on selected operating systems only. The interfaces are generally modelled after the Unix or C interfaces
but they are available on some other systems as well (e.g. Windows or NT). Here’s an overview:

signal Set handlers for asynchronous events.
socket Low-level networking interface.
select Wait for I/O completion on multiple streams.
thread Create multiple threads of control within one interpreter.
threading Higher-level threading interface.
Queue A synchronized queue class.
anydbm Generic interface to DBM-style database modules.
dumbdbm Portable implementation of the simple DBM interface.
dbhash DBM-style interface to the BSD database library.
whichdb Guess which DBM-style module created a given database.
bsddb Interface to Berkeley DB database library
zlib Low-level interface to compression and decompression routines compatible with gzip.
gzip Interfaces for gzip compression and decompression using file objects.
rlcompleter Python identifier completion in the readline library.

7.1 signal — Set handlers for asynchronous events.

This module provides mechanisms to use signal handlers in Python. Some general rules for working with
signals and their handlers:

• A handler for a particular signal, once set, remains installed until it is explicitly reset (i.e. Python
emulates the BSD style interface regardless of the underlying implementation), with the exception
of the handler for SIGCHLD, which follows the underlying implementation.

• There is no way to “block” signals temporarily from critical sections (since this is not supported
by all Unix flavors).

• Although Python signal handlers are called asynchronously as far as the Python user is concerned,
they can only occur between the “atomic” instructions of the Python interpreter. This means that
signals arriving during long calculations implemented purely in C (e.g. regular expression matches
on large bodies of text) may be delayed for an arbitrary amount of time.

• When a signal arrives during an I/O operation, it is possible that the I/O operation raises an
exception after the signal handler returns. This is dependent on the underlying Unix system’s
semantics regarding interrupted system calls.

• Because the C signal handler always returns, it makes little sense to catch synchronous errors like
SIGFPE or SIGSEGV.

• Python installs a small number of signal handlers by default: SIGPIPE is ignored (so write errors
on pipes and sockets can be reported as ordinary Python exceptions) and SIGINT is translated into
a KeyboardInterrupt exception. All of these can be overridden.

143

• Some care must be taken if both signals and threads are used in the same program. The funda-
mental thing to remember in using signals and threads simultaneously is: always perform signal()
operations in the main thread of execution. Any thread can perform an alarm(), getsignal(),
or pause(); only the main thread can set a new signal handler, and the main thread will be the
only one to receive signals (this is enforced by the Python signal module, even if the underlying
thread implementation supports sending signals to individual threads). This means that signals
can’t be used as a means of interthread communication. Use locks instead.

The variables defined in the signal module are:

SIG DFL
This is one of two standard signal handling options; it will simply perform the default function for
the signal. For example, on most systems the default action for SIGQUIT is to dump core and exit,
while the default action for SIGCLD is to simply ignore it.

SIG IGN
This is another standard signal handler, which will simply ignore the given signal.

SIG*
All the signal numbers are defined symbolically. For example, the hangup signal is defined as
signal.SIGHUP; the variable names are identical to the names used in C programs, as found in
<signal.h>. The Unix man page for ‘signal()’ lists the existing signals (on some systems this is
signal(2), on others the list is in signal(7)). Note that not all systems define the same set of signal
names; only those names defined by the system are defined by this module.

NSIG
One more than the number of the highest signal number.

The signal module defines the following functions:

alarm(time)
If time is non-zero, this function requests that a SIGALRM signal be sent to the process in time
seconds. Any previously scheduled alarm is canceled (i.e. only one alarm can be scheduled at any
time). The returned value is then the number of seconds before any previously set alarm was to
have been delivered. If time is zero, no alarm id scheduled, and any scheduled alarm is canceled.
The return value is the number of seconds remaining before a previously scheduled alarm. If the
return value is zero, no alarm is currently scheduled. (See the Unix man page alarm(2).)

getsignal(signalnum)
Return the current signal handler for the signal signalnum. The returned value may be a callable
Python object, or one of the special values signal.SIG IGN, signal.SIG DFL or None. Here,
signal.SIG IGN means that the signal was previously ignored, signal.SIG DFL means that the
default way of handling the signal was previously in use, and None means that the previous signal
handler was not installed from Python.

pause()
Cause the process to sleep until a signal is received; the appropriate handler will then be called.
Returns nothing. (See the Unix man page signal(2).)

signal(signalnum, handler)
Set the handler for signal signalnum to the function handler . handler can be a callable Python
object taking two arguments (see below), or one of the special values signal.SIG IGN or
signal.SIG DFL. The previous signal handler will be returned (see the description of getsignal()
above). (See the Unix man page signal(2).)

When threads are enabled, this function can only be called from the main thread; attempting to
call it from other threads will cause a ValueError exception to be raised.

The handler is called with two arguments: the signal number and the current stack frame (None
or a frame object; see the reference manual for a description of frame objects).

7.1.1 Example

144 Chapter 7. Optional Operating System Services

Here is a minimal example program. It uses the alarm() function to limit the time spent waiting to
open a file; this is useful if the file is for a serial device that may not be turned on, which would normally
cause the os.open() to hang indefinitely. The solution is to set a 5-second alarm before opening the file;
if the operation takes too long, the alarm signal will be sent, and the handler raises an exception.

import signal, os, FCNTL

def handler(signum, frame):

print ’Signal handler called with signal’, signum

raise IOError, "Couldn’t open device!"

Set the signal handler and a 5-second alarm

signal.signal(signal.SIGALRM, handler)

signal.alarm(5)

This open() may hang indefinitely

fd = os.open(’/dev/ttyS0’, FCNTL.O_RDWR)

signal.alarm(0) # Disable the alarm

7.2 socket — Low-level networking interface

This module provides access to the BSD socket interface. It is available on all modern Unix systems,
Windows, MacOS, BeOS, OS/2, and probably additional platforms.

For an introduction to socket programming (in C), see the following papers: An Introductory 4.3BSD
Interprocess Communication Tutorial, by Stuart Sechrest and An Advanced 4.3BSD Interprocess Com-
munication Tutorial, by Samuel J. Leffler et al, both in the Unix Programmer’s Manual, Supplementary
Documents 1 (sections PS1:7 and PS1:8). The platform-specific reference material for the various socket-
related system calls are also a valuable source of information on the details of socket semantics. For Unix,
refer to the manual pages; for Windows, see the WinSock (or Winsock 2) specification.

The Python interface is a straightforward transliteration of the Unix system call and library interface for
sockets to Python’s object-oriented style: the socket() function returns a socket object whose methods
implement the various socket system calls. Parameter types are somewhat higher-level than in the C
interface: as with read() and write() operations on Python files, buffer allocation on receive operations
is automatic, and buffer length is implicit on send operations.

Socket addresses are represented as a single string for the AF UNIX address family and as a pair (host,
port) for the AF INET address family, where host is a string representing either a hostname in Internet
domain notation like ’daring.cwi.nl’ or an IP address like ’100.50.200.5’, and port is an integral
port number. Other address families are currently not supported. The address format required by a
particular socket object is automatically selected based on the address family specified when the socket
object was created.

For IP addresses, two special forms are accepted instead of a host address: the empty string represents
INADDR ANY, and the string ’<broadcast>’ represents INADDR BROADCAST.

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory con-
ditions can be raised; errors related to socket or address semantics raise the error socket.error.

Non-blocking mode is supported through the setblocking() method.

The module socket exports the following constants and functions:

error
This exception is raised for socket- or address-related errors. The accompanying value is either
a string telling what went wrong or a pair (errno, string) representing an error returned by a
system call, similar to the value accompanying os.error. See the module errno, which contains
names for the error codes defined by the underlying operating system.

7.2. socket — Low-level networking interface 145

AF UNIX
AF INET

These constants represent the address (and protocol) families, used for the first argument to
socket(). If the AF UNIX constant is not defined then this protocol is unsupported.

SOCK STREAM
SOCK DGRAM
SOCK RAW
SOCK RDM
SOCK SEQPACKET

These constants represent the socket types, used for the second argument to socket(). (Only
SOCK STREAM and SOCK DGRAM appear to be generally useful.)

SO *
SOMAXCONN
MSG *
SOL *
IPPROTO *
IPPORT *
INADDR *
IP *

Many constants of these forms, documented in the Unix documentation on sockets and/or the
IP protocol, are also defined in the socket module. They are generally used in arguments to the
setsockopt() and getsockopt() methods of socket objects. In most cases, only those symbols
that are defined in the Unix header files are defined; for a few symbols, default values are provided.

gethostbyname(hostname)
Translate a host name to IP address format. The IP address is returned as a string, e.g.,
’100.50.200.5’. If the host name is an IP address itself it is returned unchanged. See
gethostbyname ex() for a more complete interface.

gethostbyname ex(hostname)
Translate a host name to IP address format, extended interface. Return a triple (hostname,
aliaslist, ipaddrlist) where hostname is the primary host name responding to the given
ip address, aliaslist is a (possibly empty) list of alternative host names for the same address,
and ipaddrlist is a list of IP addresses for the same interface on the same host (often but not
always a single address).

gethostname()
Return a string containing the hostname of the machine where the Python interpreter
is currently executing. If you want to know the current machine’s IP address, use
gethostbyname(gethostname()). Note: gethostname() doesn’t always return the fully quali-
fied domain name; use gethostbyaddr(gethostname()) (see below).

gethostbyaddr(ip address)
Return a triple (hostname, aliaslist, ipaddrlist) where hostname is the primary host name re-
sponding to the given ip address, aliaslist is a (possibly empty) list of alternative host names for
the same address, and ipaddrlist is a list of IP addresses for the same interface on the same host
(most likely containing only a single address). To find the fully qualified domain name, check
hostname and the items of aliaslist for an entry containing at least one period.

getprotobyname(protocolname)
Translate an Internet protocol name (e.g. ’icmp’) to a constant suitable for passing as the (op-
tional) third argument to the socket() function. This is usually only needed for sockets opened in
“raw” mode (SOCK RAW); for the normal socket modes, the correct protocol is chosen automatically
if the protocol is omitted or zero.

getservbyname(servicename, protocolname)
Translate an Internet service name and protocol name to a port number for that service. The
protocol name should be ’tcp’ or ’udp’.

socket(family, type[, proto])
Create a new socket using the given address family, socket type and protocol number. The address

146 Chapter 7. Optional Operating System Services

family should be AF INET or AF UNIX. The socket type should be SOCK STREAM, SOCK DGRAM or
perhaps one of the other ‘SOCK ’ constants. The protocol number is usually zero and may be
omitted in that case.

fromfd(fd, family, type[, proto])
Build a socket object from an existing file descriptor (an integer as returned by a file object’s
fileno() method). Address family, socket type and protocol number are as for the socket()
function above. The file descriptor should refer to a socket, but this is not checked — subsequent
operations on the object may fail if the file descriptor is invalid. This function is rarely needed,
but can be used to get or set socket options on a socket passed to a program as standard input or
output (e.g. a server started by the Unix inet daemon).

ntohl(x)
Convert 32-bit integers from network to host byte order. On machines where the host byte order
is the same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

ntohs(x)
Convert 16-bit integers from network to host byte order. On machines where the host byte order
is the same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

htonl(x)
Convert 32-bit integers from host to network byte order. On machines where the host byte order
is the same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

htons(x)
Convert 16-bit integers from host to network byte order. On machines where the host byte order
is the same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

SocketType
This is a Python type object that represents the socket object type. It is the same as
type(socket(...)).

7.2.1 Socket Objects

Socket objects have the following methods. Except for makefile() these correspond to Unix system
calls applicable to sockets.

accept()
Accept a connection. The socket must be bound to an address and listening for connections. The
return value is a pair (conn, address) where conn is a new socket object usable to send and receive
data on the connection, and address is the address bound to the socket on the other end of the
connection.

bind(address)
Bind the socket to address. The socket must not already be bound. (The format of address depends
on the address family — see above.)

close()
Close the socket. All future operations on the socket object will fail. The remote end will receive
no more data (after queued data is flushed). Sockets are automatically closed when they are
garbage-collected.

connect(address)
Connect to a remote socket at address. (The format of address depends on the address family —
see above.)

connect ex(address)
Like connect(address), but return an error indicator instead of raising an exception for errors
returned by the C-level connect() call (other problems, such as “host not found,” can still raise
exceptions). The error indicator is 0 if the operation succeeded, otherwise the value of the errno
variable. This is useful, e.g., for asynchronous connects.

fileno()
Return the socket’s file descriptor (a small integer). This is useful with select.select().

7.2. socket — Low-level networking interface 147

getpeername()
Return the remote address to which the socket is connected. This is useful to find out the port
number of a remote IP socket, for instance. (The format of the address returned depends on the
address family — see above.) On some systems this function is not supported.

getsockname()
Return the socket’s own address. This is useful to find out the port number of an IP socket, for
instance. (The format of the address returned depends on the address family — see above.)

getsockopt(level, optname[, buflen])
Return the value of the given socket option (see the Unix man page getsockopt(2)). The needed
symbolic constants (SO * etc.) are defined in this module. If buflen is absent, an integer option
is assumed and its integer value is returned by the function. If buflen is present, it specifies the
maximum length of the buffer used to receive the option in, and this buffer is returned as a string.
It is up to the caller to decode the contents of the buffer (see the optional built-in module struct
for a way to decode C structures encoded as strings).

listen(backlog)
Listen for connections made to the socket. The backlog argument specifies the maximum number
of queued connections and should be at least 1; the maximum value is system-dependent (usually
5).

makefile([mode[, bufsize]])
Return a file object associated with the socket. (File objects are described in 2.1.7, “File Objects.”)
The file object references a dup()ped version of the socket file descriptor, so the file object and
socket object may be closed or garbage-collected independently. The optional mode and bufsize
arguments are interpreted the same way as by the built-in open() function.

recv(bufsize[, flags])
Receive data from the socket. The return value is a string representing the data received. The
maximum amount of data to be received at once is specified by bufsize. See the Unix manual page
recv(2) for the meaning of the optional argument flags; it defaults to zero.

recvfrom(bufsize[, flags])
Receive data from the socket. The return value is a pair (string, address) where string is a
string representing the data received and address is the address of the socket sending the data.
The optional flags argument has the same meaning as for recv() above. (The format of address
depends on the address family — see above.)

send(string[, flags])
Send data to the socket. The socket must be connected to a remote socket. The optional flags
argument has the same meaning as for recv() above. Returns the number of bytes sent.

sendto(string[, flags], address)
Send data to the socket. The socket should not be connected to a remote socket, since the des-
tination socket is specified by address. The optional flags argument has the same meaning as for
recv() above. Return the number of bytes sent. (The format of address depends on the address
family — see above.)

setblocking(flag)
Set blocking or non-blocking mode of the socket: if flag is 0, the socket is set to non-blocking, else
to blocking mode. Initially all sockets are in blocking mode. In non-blocking mode, if a recv() call
doesn’t find any data, or if a send() call can’t immediately dispose of the data, a error exception
is raised; in blocking mode, the calls block until they can proceed.

setsockopt(level, optname, value)
Set the value of the given socket option (see the Unix man page setsockopt(2)). The needed
symbolic constants are defined in the socket module (SO * etc.). The value can be an integer
or a string representing a buffer. In the latter case it is up to the caller to ensure that the string
contains the proper bits (see the optional built-in module struct for a way to encode C structures
as strings).

shutdown(how)

148 Chapter 7. Optional Operating System Services

Shut down one or both halves of the connection. If how is 0, further receives are disallowed. If
how is 1, further sends are disallowed. If how is 2, further sends and receives are disallowed.

Note that there are no methods read() or write(); use recv() and send() without flags argument
instead.

7.2.2 Example

Here are two minimal example programs using the TCP/IP protocol: a server that echoes all data that
it receives back (servicing only one client), and a client using it. Note that a server must perform the
sequence socket(), bind(), listen(), accept() (possibly repeating the accept() to service more than
one client), while a client only needs the sequence socket(), connect(). Also note that the server does
not send()/recv() on the socket it is listening on but on the new socket returned by accept().

Echo server program

from socket import *

HOST = ’’ # Symbolic name meaning the local host

PORT = 50007 # Arbitrary non-privileged server

s = socket(AF_INET, SOCK_STREAM)

s.bind(HOST, PORT)

s.listen(1)

conn, addr = s.accept()

print ’Connected by’, addr

while 1:

data = conn.recv(1024)

if not data: break

conn.send(data)

conn.close()

Echo client program

from socket import *

HOST = ’daring.cwi.nl’ # The remote host

PORT = 50007 # The same port as used by the server

s = socket(AF_INET, SOCK_STREAM)

s.connect(HOST, PORT)

s.send(’Hello, world’)

data = s.recv(1024)

s.close()

print ’Received’, ‘data‘

See Also:

Module SocketServer (section 11.12):
classes that simplify writing network servers

7.3 select — Waiting for I/O completion

This module provides access to the function select() available in most operating systems. Note that
on Windows, it only works for sockets; on other operating systems, it also works for other file types (in
particular, on Unix, it works on pipes). It cannot be used on regular files to determine whether a file
has grown since it was last read.

The module defines the following:

error
The exception raised when an error occurs. The accompanying value is a pair containing the
numeric error code from errno and the corresponding string, as would be printed by the C function
perror().

7.3. select — Waiting for I/O completion 149

select(iwtd, owtd, ewtd[, timeout])
This is a straightforward interface to the Unix select() system call. The first three arguments
are lists of ‘waitable objects’: either integers representing Unix file descriptors or objects with
a parameterless method named fileno() returning such an integer. The three lists of waitable
objects are for input, output and ‘exceptional conditions’, respectively. Empty lists are allowed.
The optional timeout argument specifies a time-out as a floating point number in seconds. When
the timeout argument is omitted the function blocks until at least one file descriptor is ready. A
time-out value of zero specifies a poll and never blocks.

The return value is a triple of lists of objects that are ready: subsets of the first three arguments.
When the time-out is reached without a file descriptor becoming ready, three empty lists are
returned.

Amongst the acceptable object types in the lists are Python file objects (e.g. sys.stdin, or objects
returned by open() or os.popen()), socket objects returned by socket.socket(), and the module
stdwin which happens to define a function fileno() for just this purpose. You may also define
a wrapper class yourself, as long as it has an appropriate fileno() method (that really returns a
Unix file descriptor, not just a random integer).

7.4 thread — Multiple threads of control

This module provides low-level primitives for working with multiple threads (a.k.a. light-weight processes
or tasks) — multiple threads of control sharing their global data space. For synchronization, simple locks
(a.k.a. mutexes or binary semaphores) are provided.

The module is optional. It is supported on Windows NT and ’95, SGI IRIX, Solaris 2.x, as well as on
systems that have a POSIX thread (a.k.a. “pthread”) implementation.

It defines the following constant and functions:

error
Raised on thread-specific errors.

LockType
This is the type of lock objects.

start new thread(function, args[, kwargs])
Start a new thread. The thread executes the function function with the argument list args (which
must be a tuple). The optional kwargs argument specifies a dictionary of keyword arguments. When
the function returns, the thread silently exits. When the function terminates with an unhandled
exception, a stack trace is printed and then the thread exits (but other threads continue to run).

exit()
Raise the SystemExit exception. When not caught, this will cause the thread to exit silently.

exit thread()
Deprecated since release 1.5.2. Use exit().

This is an obsolete synonym for exit().

allocate lock()
Return a new lock object. Methods of locks are described below. The lock is initially unlocked.

get ident()
Return the ‘thread identifier’ of the current thread. This is a nonzero integer. Its value has no direct
meaning; it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific
data. Thread identifiers may be recycled when a thread exits and another thread is created.

Lock objects have the following methods:

acquire([waitflag])
Without the optional argument, this method acquires the lock unconditionally, if necessary waiting
until it is released by another thread (only one thread at a time can acquire a lock — that’s their
reason for existence), and returns None. If the integer waitflag argument is present, the action

150 Chapter 7. Optional Operating System Services

depends on its value: if it is zero, the lock is only acquired if it can be acquired immediately without
waiting, while if it is nonzero, the lock is acquired unconditionally as before. If an argument is
present, the return value is 1 if the lock is acquired successfully, 0 if not.

release()
Releases the lock. The lock must have been acquired earlier, but not necessarily by the same
thread.

locked()
Return the status of the lock: 1 if it has been acquired by some thread, 0 if not.

Caveats:

• Threads interact strangely with interrupts: the KeyboardInterrupt exception will be received by
an arbitrary thread. (When the signal module is available, interrupts always go to the main
thread.)

• Calling sys.exit() or raising the SystemExit exception is equivalent to calling exit thread().

• Not all built-in functions that may block waiting for I/O allow other threads to run. (The most
popular ones (time.sleep(), file.read(), select.select()) work as expected.)

• It is not possible to interrupt the acquire() method on a lock — the KeyboardInterrupt exception
will happen after the lock has been acquired.

• When the main thread exits, it is system defined whether the other threads survive. On SGI IRIX
using the native thread implementation, they survive. On most other systems, they are killed
without executing try ... finally clauses or executing object destructors.

• When the main thread exits, it does not do any of its usual cleanup (except that try ... finally
clauses are honored), and the standard I/O files are not flushed.

7.5 threading — Higher-level threading interface

This module constructs higher-level threading interfaces on top of the lower level thread module.

This module is safe for use with ‘from threading import *’. It defines the following functions and
objects:

activeCount()
Return the number of currently active Thread objects. The returned count is equal to the length of
the list returned by enumerate(). A function that returns the number of currently active threads.

Condition()
A factory function that returns a new condition variable object. A condition variable allows one
or more threads to wait until they are notified by another thread.

currentThread()
Return the current Thread object, corresponding to the caller’s thread of control. If the caller’s
thread of control was not created through the threading module, a dummy thread object with
limited functionality is returned.

enumerate()
Return a list of all currently active Thread objects. The list includes daemonic threads, dummy
thread objects created by currentThread(), and the main thread. It excludes terminated threads
and threads that have not yet been started.

Event()
A factory function that returns a new event object. An event manages a flag that can be set to
true with the set() method and reset to false with the clear() method. The wait() method
blocks until the flag is true.

7.5. threading — Higher-level threading interface 151

Lock()
A factory function that returns a new primitive lock object. Once a thread has acquired it,
subsequent attempts to acquire it block, until it is released; any thread may release it.

RLock()
A factory function that returns a new reentrant lock object. A reentrant lock must be released by
the thread that acquired it. Once a thread has acquired a reentrant lock, the same thread may
acquire it again without blocking; the thread must release it once for each time it has acquired it.

Semaphore()
A factory function that returns a new semaphore object. A semaphore manages a counter repre-
senting the number of release() calls minus the number of acquire() calls, plus an initial value.
The acquire() method blocks if necessary until it can return without making the counter negative.

Thread()
A class that represents a thread of control. This class can be safely subclassed in a limited fashion.

Detailed interfaces for the objects are documented below.

The design of this module is loosely based on Java’s threading model. However, where Java makes locks
and condition variables basic behavior of every object, they are separate objects in Python. Python’s
Thread class supports a subset of the behavior of Java’s Thread class; currently, there are no priorities,
no thread groups, and threads cannot be destroyed, stopped, suspended, resumed, or interrupted. The
static methods of Java’s Thread class, when implemented, are mapped to module-level functions.

All of the methods described below are executed atomically.

7.5.1 Lock Objects

A primitive lock is a synchronization primitive that is not owned by a particular thread when locked. In
Python, it is currently the lowest level synchronization primitive available, implemented directly by the
thread extension module.

A primitive lock is in one of two states, “locked” or “unlocked”. It is created in the unlocked state.
It has two basic methods, acquire() and release(). When the state is unlocked, acquire() changes
the state to locked and returns immediately. When the state is locked, acquire() blocks until a call
to release() in another thread changes it to unlocked, then the acquire() call resets it to locked
and returns. The release() method should only be called in the locked state; it changes the state to
unlocked and returns immediately. When more than one thread is blocked in acquire() waiting for the
state to turn to unlocked, only one thread proceeds when a release() call resets the state to unlocked;
which one of the waiting threads proceeds is not defined, and may vary across implementations.

All methods are executed atomically.

acquire([blocking = 1])
Acquire a lock, blocking or non-blocking.

When invoked without arguments, block until the lock is unlocked, then set it to locked, and return.
There is no return value in this case.

When invoked with the blocking argument set to true, do the same thing as when called without
arguments, and return true.

When invoked with the blocking argument set to false, do not block. If a call without an argu-
ment would block, return false immediately; otherwise, do the same thing as when called without
arguments, and return true.

release()
Release a lock.

When the lock is locked, reset it to unlocked, and return. If any other threads are blocked waiting
for the lock to become unlocked, allow exactly one of them to proceed.

Do not call this method when the lock is unlocked.

There is no return value.

152 Chapter 7. Optional Operating System Services

7.5.2 RLock Objects

A reentrant lock is a synchronization primitive that may be acquired multiple times by the same
thread. Internally, it uses the concepts of “owning thread” and “recursion level” in addition to the
locked/unlocked state used by primitive locks. In the locked state, some thread owns the lock; in the
unlocked state, no thread owns it.

To lock the lock, a thread calls its acquire() method; this returns once the thread owns the lock. To
unlock the lock, a thread calls its release() method. acquire()/release() call pairs may be nested;
only the final release() (i.e. the release() of the outermost pair) resets the lock to unlocked and
allows another thread blocked in acquire() to proceed.

acquire([blocking = 1])
Acquire a lock, blocking or non-blocking.

When invoked without arguments: if this thread already owns the lock, increment the recursion
level by one, and return immediately. Otherwise, if another thread owns the lock, block until the
lock is unlocked. Once the lock is unlocked (not owned by any thread), then grab ownership, set
the recursion level to one, and return. If more than one thread is blocked waiting until the lock is
unlocked, only one at a time will be able to grab ownership of the lock. There is no return value
in this case.

When invoked with the blocking argument set to true, do the same thing as when called without
arguments, and return true.

When invoked with the blocking argument set to false, do not block. If a call without an argu-
ment would block, return false immediately; otherwise, do the same thing as when called without
arguments, and return true.

release()
Release a lock, decrementing the recursion level. If after the decrement it is zero, reset the lock to
unlocked (not owned by any thread), and if any other threads are blocked waiting for the lock to
become unlocked, allow exactly one of them to proceed. If after the decrement the recursion level
is still nonzero, the lock remains locked and owned by the calling thread.

Only call this method when the calling thread owns the lock. Do not call this method when the
lock is unlocked.

There is no return value.

7.5.3 Condition Objects

A condition variable is always associated with some kind of lock; this can be passed in or one will be
created by default. (Passing one in is useful when several condition variables must share the same lock.)

A condition variable has acquire() and release() methods that call the corresponding methods of the
associated lock. It also has a wait() method, and notify() and notifyAll() methods. These three
must only be called when the calling thread has acquired the lock.

The wait() method releases the lock, and then blocks until it is awakened by a notify() or notifyAll()
call for the same condition variable in another thread. Once awakened, it re-acquires the lock and returns.
It is also possible to specify a timeout.

The notify() method wakes up one of the threads waiting for the condition variable, if any are waiting.
The notifyAll() method wakes up all threads waiting for the condition variable.

Note: the notify() and notifyAll() methods don’t release the lock; this means that the thread or
threads awakened will not return from their wait() call immediately, but only when the thread that
called notify() or notifyAll() finally relinquishes ownership of the lock.

Tip: the typical programming style using condition variables uses the lock to synchronize access to some
shared state; threads that are interested in a particular change of state call wait() repeatedly until
they see the desired state, while threads that modify the state call notify() or notifyAll() when they
change the state in such a way that it could possibly be a desired state for one of the waiters. For
example, the following code is a generic producer-consumer situation with unlimited buffer capacity:

7.5. threading — Higher-level threading interface 153

Consume one item

cv.acquire()

while not an_item_is_available():

cv.wait()

get_an_available_item()

cv.release()

Produce one item

cv.acquire()

make_an_item_available()

cv.notify()

cv.release()

To choose between notify() and notifyAll(), consider whether one state change can be interesting
for only one or several waiting threads. E.g. in a typical producer-consumer situation, adding one item
to the buffer only needs to wake up one consumer thread.

Condition([lock])
If the lock argument is given and not None, it must be a Lock or RLock object, and it is used as
the underlying lock. Otherwise, a new RLock object is created and used as the underlying lock.

acquire(*args)
Acquire the underlying lock. This method calls the corresponding method on the underlying lock;
the return value is whatever that method returns.

release()
Release the underlying lock. This method calls the corresponding method on the underlying lock;
there is no return value.

wait([timeout])
Wait until notified or until a timeout occurs. This must only be called when the calling thread has
acquired the lock.

This method releases the underlying lock, and then blocks until it is awakened by a notify() or
notifyAll() call for the same condition variable in another thread, or until the optional timeout
occurs. Once awakened or timed out, it re-acquires the lock and returns.

When the timeout argument is present and not None, it should be a floating point number specifying
a timeout for the operation in seconds (or fractions thereof).

When the underlying lock is an RLock, it is not released using its release() method, since this may
not actually unlock the lock when it was acquired multiple times recursively. Instead, an internal
interface of the RLock class is used, which really unlocks it even when it has been recursively
acquired several times. Another internal interface is then used to restore the recursion level when
the lock is reacquired.

notify()
Wake up a thread waiting on this condition, if any. This must only be called when the calling
thread has acquired the lock.

This method wakes up one of the threads waiting for the condition variable, if any are waiting; it
is a no-op if no threads are waiting.

The current implementation wakes up exactly one thread, if any are waiting. However, it’s not
safe to rely on this behavior. A future, optimized implementation may occasionally wake up more
than one thread.

Note: the awakened thread does not actually return from its wait() call until it can reacquire the
lock. Since notify() does not release the lock, its caller should.

notifyAll()
Wake up all threads waiting on this condition. This method acts like notify(), but wakes up all
waiting threads instead of one.

154 Chapter 7. Optional Operating System Services

7.5.4 Semaphore Objects

This is one of the oldest synchronization primitives in the history of computer science, invented by the
early Dutch computer scientist Edsger W. Dijkstra (he used P() and V() instead of acquire() and
release()).

A semaphore manages an internal counter which is decremented by each acquire() call and incremented
by each release() call. The counter can never go below zero; when acquire() finds that it is zero, it
blocks, waiting until some other thread calls release().

Semaphore([value])
The optional argument gives the initial value for the internal counter; it defaults to 1.

acquire([blocking])
Acquire a semaphore.

When invoked without arguments: if the internal counter is larger than zero on entry, decrement
it by one and return immediately. If it is zero on entry, block, waiting until some other thread
has called release() to make it larger than zero. This is done with proper interlocking so that
if multiple acquire() calls are blocked, release() will wake exactly one of them up. The imple-
mentation may pick one at random, so the order in which blocked threads are awakened should
not be relied on. There is no return value in this case.

When invoked with blocking set to true, do the same thing as when called without arguments, and
return true.

When invoked with blocking set to false, do not block. If a call without an argument would block,
return false immediately; otherwise, do the same thing as when called without arguments, and
return true.

release()
Release a semaphore, incrementing the internal counter by one. When it was zero on entry and
another thread is waiting for it to become larger than zero again, wake up that thread.

7.5.5 Event Objects

This is one of the simplest mechanisms for communication between threads: one thread signals an event
and one or more other threads are waiting for it.

An event object manages an internal flag that can be set to true with the set() method and reset to
false with the clear() method. The wait() method blocks until the flag is true.

Event()
The internal flag is initially false.

isSet()
Return true if and only if the internal flag is true.

set()
Set the internal flag to true. All threads waiting for it to become true are awakened. Threads that
call wait() once the flag is true will not block at all.

clear()
Reset the internal flag to false. Subsequently, threads calling wait() will block until set() is called
to set the internal flag to true again.

wait([timeout])
Block until the internal flag is true. If the internal flag is true on entry, return immediately.
Otherwise, block until another thread calls set() to set the flag to true, or until the optional
timeout occurs.

When the timeout argument is present and not None, it should be a floating point number specifying
a timeout for the operation in seconds (or fractions thereof).

7.5. threading — Higher-level threading interface 155

7.5.6 Thread Objects

This class represents an activity that is run in a separate thread of control. There are two ways to specify
the activity: by passing a callable object to the constructor, or by overriding the run() method in a
subclass. No other methods (except for the constructor) should be overridden in a subclass. In other
words, only override the init () and run() methods of this class.

Once a thread object is created, its activity must be started by calling the thread’s start() method.
This invokes the run() method in a separate thread of control.

Once the thread’s activity is started, the thread is considered ’alive’ and ’active’ (these concepts are
almost, but not quite exactly, the same; their definition is intentionally somewhat vague). It stops
being alive and active when its run() method terminates – either normally, or by raising an unhandled
exception. The isAlive() method tests whether the thread is alive.

Other threads can call a thread’s join() method. This blocks the calling thread until the thread whose
join() method is called is terminated.

A thread has a name. The name can be passed to the constructor, set with the setName() method, and
retrieved with the getName() method.

A thread can be flagged as a “daemon thread”. The significance of this flag is that the entire Python
program exits when only daemon threads are left. The initial value is inherited from the creating thread.
The flag can be set with the setDaemon() method and retrieved with the getDaemon() method.

There is a “main thread” object; this corresponds to the initial thread of control in the Python program.
It is not a daemon thread.

There is the possibility that “dummy thread objects” are created. These are thread objects corresponding
to “alien threads”. These are threads of control started outside the threading module, e.g. directly from
C code. Dummy thread objects have limited functionality; they are always considered alive, active,
and daemonic, and cannot be join()ed. They are never deleted, since it is impossible to detect the
termination of alien threads.

Thread(group=None, target=None, name=None, args=(), kwargs=–˝)
This constructor should always be called with keyword arguments. Arguments are:

group Should be None; reserved for future extension when a ThreadGroup class is implemented.

target Callable object to be invoked by the run() method. Defaults to None, meaning nothing is
called.

name The thread name. By default, a unique name is constructed of the form “Thread-N ” where
N is a small decimal number.

args Argument tuple for the target invocation. Defaults to ().

kwargs Keyword argument dictionary for the target invocation. Defaults to {}.

If the subclass overrides the constructor, it must make sure to invoke the base class constructor
(Thread. init ()) before doing anything else to the thread.

start()
Start the thread’s activity.

This must be called at most once per thread object. It arranges for the object’s run() method to
be invoked in a separate thread of control.

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable
object passed to the object’s constructor as the target argument, if any, with sequential and keyword
arguments taken from the args and kwargs arguments, respectively.

join([timeout])
Wait until the thread terminates. This blocks the calling thread until the thread whose join()
method is called terminates – either normally or through an unhandled exception – or until the
optional timeout occurs.

156 Chapter 7. Optional Operating System Services

When the timeout argument is present and not None, it should be a floating point number specifying
a timeout for the operation in seconds (or fractions thereof).

A thread can be join()ed many times.

A thread cannot join itself because this would cause a deadlock.

It is an error to attempt to join() a thread before it has been started.

getName()
Return the thread’s name.

setName(name)
Set the thread’s name.

The name is a string used for identification purposes only. It has no semantics. Multiple threads
may be given the same name. The initial name is set by the constructor.

isAlive()
Return whether the thread is alive.

Roughly, a thread is alive from the moment the start() method returns until its run() method
terminates.

isDaemon()
Return the thread’s daemon flag.

setDaemon(daemonic)
Set the thread’s daemon flag to the Boolean value daemonic. This must be called before start()
is called.

The initial value is inherited from the creating thread.

The entire Python program exits when no active non-daemon threads are left.

7.6 Queue — A synchronized queue class.

The Queue module implements a multi-producer, multi-consumer FIFO queue. It is especially useful in
threads programming when information must be exchanged safely between multiple threads. The Queue
class in this module implements all the required locking semantics. It depends on the availability of
thread support in Python.

The Queue module defines the following class and exception:

Queue(maxsize)
Constructor for the class. maxsize is an integer that sets the upperbound limit on the number of
items that can be placed in the queue. Insertion will block once this size has been reached, until
queue items are consumed. If maxsize is less than or equal to zero, the queue size is infinite.

Empty
Exception raised when non-blocking get() (or get nowait()) is called on a Queue object which
is empty or locked.

Full
Exception raised when non-blocking put() (or put nowait()) is called on a Queue object which
is full or locked.

7.6.1 Queue Objects

Class Queue implements queue objects and has the methods described below. This class can be derived
from in order to implement other queue organizations (e.g. stack) but the inheritable interface is not
described here. See the source code for details. The public methods are:

qsize()
Return the approximate size of the queue. Because of multithreading semantics, this number is
not reliable.

7.6. Queue — A synchronized queue class. 157

empty()
Return 1 if the queue is empty, 0 otherwise. Because of multithreading semantics, this is not
reliable.

full()
Return 1 if the queue is full, 0 otherwise. Because of multithreading semantics, this is not reliable.

put(item[, block])
Put item into the queue. If optional argument block is 1 (the default), block if necessary until a
free slot is available. Otherwise (block is 0), put item on the queue if a free slot is immediately
available, else raise the Full exception.

put nowait(item)
Equivalent to put(item, 0).

get([block])
Remove and return an item from the queue. If optional argument block is 1 (the default), block if
necessary until an item is available. Otherwise (block is 0), return an item if one is immediately
available, else raise the Empty exception.

get nowait()
Equivalent to get(0).

7.7 anydbm — Generic access to DBM-style databases

anydbm is a generic interface to variants of the DBM database — dbhash (requires bsddb), gdbm, or
dbm. If none of these modules is installed, the slow-but-simple implementation in module dumbdbm will
be used.

open(filename[, flag[, mode]])
Open the database file filename and return a corresponding object.

If the database file already exists, the whichdb module is used to determine its type and the
appropriate module is used; if it does not exist, the first module listed above that can be imported
is used.

The optional flag argument can be ’r’ to open an existing database for reading only, ’w’ to open
an existing database for reading and writing, ’c’ to create the database if it doesn’t exist, or ’n’,
which will always create a new empty database. If not specified, the default value is ’r’.

The optional mode argument is the Unix mode of the file, used only when the database has to be
created. It defaults to octal 0666 (and will be modified by the prevailing umask).

error
A tuple containing the exceptions that can be raised by each of the supported modules, with a
unique exception anydbm.error as the first item — the latter is used when anydbm.error is raised.

The object returned by open() supports most of the same functionality as dictionaries; keys and their
corresponding values can be stored, retrieved, and deleted, and the has key() and keys() methods are
available. Keys and values must always be strings.

See Also:

Module anydbm (section 7.7):
Generic interface to dbm-style databases.

Module dbhash (section 7.9):
BSD db database interface.

Module dbm (section 8.6):
Standard Unix database interface.

Module dumbdbm (section 7.8):
Portable implementation of the dbm interface.

158 Chapter 7. Optional Operating System Services

Module gdbm (section 8.7):
GNU database interface, based on the dbm interface.

Module shelve (section 3.11):
General object persistence built on top of the Python dbm interface.

Module whichdb (section 7.10):
Utility module used to determine the type of an existing database.

7.8 dumbdbm — Portable DBM implementation

A simple and slow database implemented entirely in Python. This should only be used when no other
DBM-style database is available.

open(filename[, flag[, mode]])
Open the database file filename and return a corresponding object. The optional flag argument
can be ’r’ to open an existing database for reading only, ’w’ to open an existing database for
reading and writing, ’c’ to create the database if it doesn’t exist, or ’n’, which will always create
a new empty database. If not specified, the default value is ’r’.

The optional mode argument is the Unix mode of the file, used only when the database has to be
created. It defaults to octal 0666 (and will be modified by the prevailing umask).

error
Raised for errors not reported as KeyError errors.

See Also:

Module anydbm (section 7.7):
Generic interface to dbm-style databases.

Module whichdb (section 7.10):
Utility module used to determine the type of an existing database.

7.9 dbhash — DBM-style interface to the BSD database library

The dbhash module provides a function to open databases using the BSD db library. This module mirrors
the interface of the other Python database modules that provide access to DBM-style databases. The
bsddb module is required to use dbhash.

This module provides an exception and a function:

error
Exception raised on database errors other than KeyError. It is a synonym for bsddb.error.

open(path, flag[, mode])
Open a db database and return the database object. The path argument is the name of the database
file.

The flag argument can be ’r’ (the default), ’w’, ’c’ (which creates the database if it doesn’t
exist), or ’n’ (which always creates a new empty database). For platforms on which the BSD db
library supports locking, an ‘l’ can be appended to indicate that locking should be used.

The optional mode parameter is used to indicate the Unix permission bits that should be set if a
new database must be created; this will be masked by the current umask value for the process.

See Also:

Module anydbm (section 7.7):
Generic interface to dbm-style databases.

Module bsddb (section 7.11):
Lower-level interface to the BSD db library.

7.8. dumbdbm — Portable DBM implementation 159

Module whichdb (section 7.10):
Utility module used to determine the type of an existing database.

7.9.1 Database Objects

The database objects returned by open() provide the methods common to all the DBM-style databases.
The following methods are available in addition to the standard methods.

first()
It’s possible to loop over every key in the database using this method and the next() method. The
traversal is ordered by the databases internal hash values, and won’t be sorted by the key values.
This method returns the starting key.

last()
Return the last key in a database traversal. This may be used to begin a reverse-order traversal;
see previous().

next(key)
Returns the key that follows key in the traversal. The following code prints every key in the
database db, without having to create a list in memory that contains them all:

k = db.first()

while k != None:

print k

k = db.next(k)

previous(key)
Return the key that comes before key in a forward-traversal of the database. In conjunction with
last(), this may be used to implement a reverse-order traversal.

sync()
This method forces any unwritten data to be written to the disk.

7.10 whichdb — Guess which DBM module created a database

The single function in this module attempts to guess which of the several simple database modules
available–dbm, gdbm, or dbhash–should be used to open a given file.

whichdb(filename)
Returns one of the following values: None if the file can’t be opened because it’s unreadable or
doesn’t exist; the empty string (’’) if the file’s format can’t be guessed; or a string containing the
required module name, such as ’dbm’ or ’gdbm’.

7.11 bsddb — Interface to Berkeley DB library

The bsddb module provides an interface to the Berkeley DB library. Users can create hash, btree or record
based library files using the appropriate open call. Bsddb objects behave generally like dictionaries. Keys
and values must be strings, however, so to use other objects as keys or to store other kinds of objects
the user must serialize them somehow, typically using marshal.dumps or pickle.dumps.

The bsddb module is only available on Unix systems, so it is not built by default in the standard
Python distribution. Also, there are two incompatible versions of the underlying library. Version 1.85 is
widely available, but has some known bugs. Version 2 is not quite as widely used, but does offer some
improvements. The bsddb module uses the 1.85 interface. Users wishing to use version 2 of the Berkeley
DB library will have to modify the source for the module to include ‘db 185.h’ instead of ‘db.h’ (‘db 185.h’
contains the version 1.85 compatibility interface).

The bsddb module defines the following functions that create objects that access the appropriate type

160 Chapter 7. Optional Operating System Services

of Berkeley DB file. The first two arguments of each function are the same. For ease of portability, only
the first two arguments should be used in most instances.

hashopen(filename[, flag[, mode[, bsize[, ffactor[, nelem[, cachesize[, hash[, lorder]]]]]]]])
Open the hash format file named filename. The optional flag identifies the mode used to open
the file. It may be ‘r’ (read only), ‘w’ (read-write), ‘c’ (read-write - create if necessary) or ‘n’
(read-write - truncate to zero length). The other arguments are rarely used and are just passed
to the low-level dbopen() function. Consult the Berkeley DB documentation for their use and
interpretation.

btopen(filename[, flag[, mode[, btflags[, cachesize[, maxkeypage[, minkeypage[, psize[, lorder]]]]]]]])
Open the btree format file named filename. The optional flag identifies the mode used to open the
file. It may be ‘r’ (read only), ‘w’ (read-write), ‘c’ (read-write - create if necessary) or ‘n’ (read-write
- truncate to zero length). The other arguments are rarely used and are just passed to the low-level
dbopen function. Consult the Berkeley DB documentation for their use and interpretation.

rnopen(filename[, flag[, mode[, rnflags[, cachesize[, psize[, lorder[, reclen[, bval[, bfname]]]]]]]]])
Open a DB record format file named filename. The optional flag identifies the mode used to
open the file. It may be ‘r’ (read only), ‘w’ (read-write), ‘c’ (read-write - create if necessary)
or ‘n’ (read-write - truncate to zero length). The other arguments are rarely used and are just
passed to the low-level dbopen function. Consult the Berkeley DB documentation for their use and
interpretation.

See Also:

Module dbhash (section 7.9):
DBM-style interface to the bsddb

7.11.1 Hash, BTree and Record Objects

Once instantiated, hash, btree and record objects support the following methods:

close()
Close the underlying file. The object can no longer be accessed. Since there is no open open
method for these objects, to open the file again a new bsddb module open function must be called.

keys()
Return the list of keys contained in the DB file. The order of the list is unspecified and should not
be relied on. In particular, the order of the list returned is different for different file formats.

has key(key)
Return 1 if the DB file contains the argument as a key.

set location(key)
Set the cursor to the item indicated by the key and return it.

first()
Set the cursor to the first item in the DB file and return it. The order of keys in the file is
unspecified, except in the case of B-Tree databases.

next()
Set the cursor to the next item in the DB file and return it. The order of keys in the file is
unspecified, except in the case of B-Tree databases.

previous()
Set the cursor to the first item in the DB file and return it. The order of keys in the file is
unspecified, except in the case of B-Tree databases. This is not supported on hashtable databases
(those opened with hashopen()).

last()
Set the cursor to the last item in the DB file and return it. The order of keys in the file is
unspecified. This is not supported on hashtable databases (those opened with hashopen()).

sync()

7.11. bsddb — Interface to Berkeley DB library 161

Synchronize the database on disk.

Example:

>>> import bsddb

>>> db = bsddb.btopen(’/tmp/spam.db’, ’c’)

>>> for i in range(10): db[’%d’%i] = ’%d’% (i*i)

...

>>> db[’3’]

’9’

>>> db.keys()

[’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’]

>>> db.first()

(’0’, ’0’)

>>> db.next()

(’1’, ’1’)

>>> db.last()

(’9’, ’81’)

>>> db.set_location(’2’)

(’2’, ’4’)

>>> db.previous()

(’1’, ’1’)

>>> db.sync()

0

7.12 zlib — Compression compatible with gzip

For applications that require data compression, the functions in this module allow compres-
sion and decompression, using the zlib library. The zlib library has its own home page at
http://www.cdrom.com/pub/infozip/zlib/. Version 1.1.3 is the most recent version as of April 1999; use
a later version if one is available. There are known incompatibilities between the Python module and
earlier versions of the zlib library.

The available exception and functions in this module are:

error
Exception raised on compression and decompression errors.

adler32(string[, value])
Computes a Adler-32 checksum of string . (An Adler-32 checksum is almost as reliable as a CRC32
but can be computed much more quickly.) If value is present, it is used as the starting value of
the checksum; otherwise, a fixed default value is used. This allows computing a running checksum
over the concatenation of several input strings. The algorithm is not cryptographically strong, and
should not be used for authentication or digital signatures.

compress(string[, level])
Compresses the data in string , returning a string contained compressed data. level is an integer
from 1 to 9 controlling the level of compression; 1 is fastest and produces the least compression, 9
is slowest and produces the most. The default value is 6. Raises the error exception if any error
occurs.

compressobj([level])
Returns a compression object, to be used for compressing data streams that won’t fit into memory
at once. level is an integer from 1 to 9 controlling the level of compression; 1 is fastest and produces
the least compression, 9 is slowest and produces the most. The default value is 6.

crc32(string[, value])
Computes a CRC (Cyclic Redundancy Check) checksum of string . If value is present, it is used
as the starting value of the checksum; otherwise, a fixed default value is used. This allows com-

162 Chapter 7. Optional Operating System Services

puting a running checksum over the concatenation of several input strings. The algorithm is not
cryptographically strong, and should not be used for authentication or digital signatures.

decompress(string[, wbits[, bufsize]])
Decompresses the data in string , returning a string containing the uncompressed data. The wbits
parameter controls the size of the window buffer. If bufsize is given, it is used as the initial size of
the output buffer. Raises the error exception if any error occurs.

The absolute value of wbits is the base two logarithm of the size of the history buffer (the “window
size”) used when compressing data. Its absolute value should be between 8 and 15 for the most
recent versions of the zlib library, larger values resulting in better compression at the expense of
greater memory usage. The default value is 15. When wbits is negative, the standard gzip header is
suppressed; this is an undocumented feature of the zlib library, used for compatibility with unzip’s
compression file format.

bufsize is the initial size of the buffer used to hold decompressed data. If more space is required,
the buffer size will be increased as needed, so you don’t have to get this value exactly right; tuning
it will only save a few calls to malloc(). The default size is 16384.

decompressobj([wbits])
Returns a compression object, to be used for decompressing data streams that won’t fit into memory
at once. The wbits parameter controls the size of the window buffer.

Compression objects support the following methods:

compress(string)
Compress string , returning a string containing compressed data for at least part of the data in
string . This data should be concatenated to the output produced by any preceding calls to the
compress() method. Some input may be kept in internal buffers for later processing.

flush([mode])
All pending input is processed, and a string containing the remaining compressed output is re-
turned. mode can be selected from the constants Z SYNC FLUSH, Z FULL FLUSH, or Z FINISH,
defaulting to Z FINISH. Z SYNC FLUSH and Z FULL FLUSH allow compressing further strings of
data and are used to allow partial error recovery on decompression, while Z FINISH finishes the
compressed stream and prevents compressing any more data. After calling flush() with mode set
to Z FINISH, the compress() method cannot be called again; the only realistic action is to delete
the object.

Decompression objects support the following methods, and a single attribute:

unused data
A string which contains any unused data from the last string fed to this decompression object. If
the whole string turned out to contain compressed data, this is "", the empty string.

The only way to determine where a string of compressed data ends is by actually decompressing
it. This means that when compressed data is contained part of a larger file, you can only find the
end of it by reading data and feeding it into a decompression object’s decompress method until
the unused data attribute is no longer the empty string.

decompress(string)
Decompress string , returning a string containing the uncompressed data corresponding to at least
part of the data in string . This data should be concatenated to the output produced by any
preceding calls to the decompress() method. Some of the input data may be preserved in internal
buffers for later processing.

flush()
All pending input is processed, and a string containing the remaining uncompressed output is
returned. After calling flush(), the decompress() method cannot be called again; the only
realistic action is to delete the object.

See Also:

Module gzip (section 7.13):
reading and writing gzip-format files

7.12. zlib — Compression compatible with gzip 163

The zlib library home page is located at http://www.cdrom.com/pub/infozip/zlib/.

7.13 gzip — Support for gzip files

The data compression provided by the zlib module is compatible with that used by the GNU compression
program gzip. Accordingly, the gzip module provides the GzipFile class to read and write gzip-format
files, automatically compressing or decompressing the data so it looks like an ordinary file object. Note
that additional file formats which can be decompressed by the gzip and gunzip programs, such as those
produced by compress and pack, are not supported by this module.

The module defines the following items:

GzipFile([filename[, mode[, compresslevel[, fileobj]]]])
Constructor for the GzipFile class, which simulates most of the methods of a file object, with the
exception of the seek() and tell() methods. At least one of fileobj and filename must be given
a non-trivial value.

The new class instance is based on fileobj , which can be a regular file, a StringIO object, or any
other object which simulates a file. It defaults to None, in which case filename is opened to provide
a file object.

When fileobj is not None, the filename argument is only used to be included in the gzip file header,
which may includes the original filename of the uncompressed file. It defaults to the filename
of fileobj , if discernible; otherwise, it defaults to the empty string, and in this case the original
filename is not included in the header.

The mode argument can be any of ’r’, ’rb’, ’a’, ’ab’, ’w’, or ’wb’, depending on whether the
file will be read or written. The default is the mode of fileobj if discernible; otherwise, the default
is ’rb’. Be aware that only the ’rb’, ’ab’, and ’wb’ values should be used for cross-platform
portability.

The compresslevel argument is an integer from 1 to 9 controlling the level of compression; 1 is
fastest and produces the least compression, and 9 is slowest and produces the most compression.
The default is 9.

Calling a GzipFile object’s close() method does not close fileobj , since you might wish to append
more material after the compressed data. This also allows you to pass a StringIO object opened for
writing as fileobj , and retrieve the resulting memory buffer using the StringIO object’s getvalue()
method.

open(filename[, mode[, compresslevel]])
This is a shorthand for GzipFile(filename, mode, compresslevel). The filename argument is
required; mode defaults to ’rb’ and compresslevel defaults to 9.

See Also:

Module zlib (section 7.12):
the basic data compression module

7.14 rlcompleter — Completion function for readline

The rlcompleter module defines a completion function for the readline module by completing valid
Python identifiers and keyword.

The rlcompleter module defines the Completer class.

Example:

164 Chapter 7. Optional Operating System Services

>>> import rlcompleter

>>> import readline

>>> readline.parse_and_bind("tab: complete")

>>> readline. <TAB PRESSED>

readline.__doc__ readline.get_line_buffer readline.read_init_file

readline.__file__ readline.insert_text readline.set_completer

readline.__name__ readline.parse_and_bind

>>> readline.

The rlcompleter module is designed for use with Python’s interactive mode. A user can add the follow-
ing lines to his or her initialization file (identified by the $PYTHONSTARTUP environment variable) to
get automatic Tab completion:

try:

import readline

except ImportError:

print "Module readline not available."

else:

import rlcompleter

readline.parse_and_bind("tab: complete")

7.14.1 Completer Objects

Completer objects have the following method:

complete(text, state)
Return the stateth completion for text .

If called for text that doesn’t includea period character (‘.’), it will complete from names currently
defined in main , builtin and keywords (as defined by the keyword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (i.e.,
functions will not be evaluated, but it can generate calls to getattr ()) upto the last part,
and find matches for the rest via the dir() function.

7.14. rlcompleter — Completion function for readline 165

166

CHAPTER

EIGHT

Unix Specific Services

The modules described in this chapter provide interfaces to features that are unique to the Unix operating
system, or in some cases to some or many variants of it. Here’s an overview:

posix The most common POSIX system calls (normally used via module os).
pwd The password database (getpwnam() and friends).
grp The group database (getgrnam() and friends).
crypt The crypt() function used to check Unix passwords.
dl Call C functions in shared objects.
dbm The standard “database” interface, based on ndbm.
gdbm GNU’s reinterpretation of dbm.
termios POSIX style tty control.
TERMIOS Symbolic constants required to use the termios module.
tty Utility functions that perform common terminal control operations.
pty Pseudo-Terminal Handling for SGI and Linux.
fcntl The fcntl() and ioctl() system calls.
pipes A Python interface to Unix shell pipelines.
posixfile A file-like object with support for locking.
resource An interface to provide resource usage information on the current process.
nis Interface to Sun’s NIS (a.k.a. Yellow Pages) library.
syslog An interface to the Unix syslog library routines.
popen2 Subprocesses with accessible standard I/O streams.
commands Utility functions for running external commands.

8.1 posix — The most common POSIX system calls

This module provides access to operating system functionality that is standardized by the C Standard
and the POSIX standard (a thinly disguised Unix interface).

Do not import this module directly. Instead, import the module os, which provides a portable
version of this interface. On Unix, the os module provides a superset of the posix interface. On non-
Unix operating systems the posix module is not available, but a subset is always available through
the os interface. Once os is imported, there is no performance penalty in using it instead of posix.
In addition, os provides some additional functionality, such as automatically calling putenv() when an
entry in os.environ is changed.

The descriptions below are very terse; refer to the corresponding Unix manual (or POSIX documentation)
entry for more information. Arguments called path refer to a pathname given as a string.

Errors are reported as exceptions; the usual exceptions are given for type errors, while errors reported
by the system calls raise error (a synonym for the standard exception OSError), described below.

167

8.1.1 Large File Support

Several operating systems (including AIX, HPUX, Irix and Solaris) provide support for files that are
larger than 2 Gb from a C programming model where int and long are 32-bit values. This is typically
accomplished by defining the relevant size and offset types as 64-bit values. Such files are sometimes
referred to as large files.

Large file support is enabled in Python when the size of an off t is larger than a long and the long
long type is available and is at least as large as an off t. Python longs are then used to represent
file sizes, offsets and other values that can exceed the range of a Python int. It may be necessary to
configure and compile Python with certain compiler flags to enable this mode. For example, it is enabled
by default with recent versions of Irix, but with Solaris 2.6 and 2.7 you need to do something like:

CFLAGS="‘getconf LFS_CFLAGS‘" OPT="-g -O2 $CFLAGS" \

configure

8.1.2 Module Contents

Module posix defines the following data item:

environ
A dictionary representing the string environment at the time the interpreter was started. For
example, environ[’HOME’] is the pathname of your home directory, equivalent to getenv("HOME")
in C.

Modifying this dictionary does not affect the string environment passed on by execv(), popen()
or system(); if you need to change the environment, pass environ to execve() or add variable
assignments and export statements to the command string for system() or popen().

Note: The os module provides an alternate implementation of environ which updates the envi-
ronment on modification. Note also that updating os.environ will render this dictionary obsolete.
Use of the os for this is recommended over direct access to the posix module.

Additional contents of this module should only be accessed via the os module; refer to the documentation
for that module for further information.

8.2 pwd — The password database

This module provides access to the Unix user account and password database. It is available on all Unix

versions.

Password database entries are reported as 7-tuples containing the following items from the password
database (see <pwd.h>), in order:

Index Field Meaning
0 pw name Login name
1 pw passwd Optional encrypted password
2 pw uid Numerical user ID
3 pw gid Numerical group ID
4 pw gecos User name or comment field
5 pw dir User home directory
6 pw shell User command interpreter

The uid and gid items are integers, all others are strings. KeyError is raised if the entry asked for cannot
be found.

Note: In traditional Unix the field pw passwd usually contains a password encrypted with a DES
derived algorithm (see module crypt). However most modern unices use a so-called shadow password

168 Chapter 8. Unix Specific Services

system. On those unices the field pw passwd only contains a asterisk (’*’) or the letter ‘x’ where the
encrypted password is stored in a file ‘/etc/shadow’ which is not world readable.

It defines the following items:

getpwuid(uid)
Return the password database entry for the given numeric user ID.

getpwnam(name)
Return the password database entry for the given user name.

getpwall()
Return a list of all available password database entries, in arbitrary order.

See Also:

Module grp (section 8.3):
An interface to the group database, similar to this.

8.3 grp — The group database

This module provides access to the Unix group database. It is available on all Unix versions.

Group database entries are reported as 4-tuples containing the following items from the group database
(see <grp.h>), in order:

Index Field Meaning
0 gr name the name of the group
1 gr passwd the (encrypted) group password; often empty
2 gr gid the numerical group ID
3 gr mem all the group member’s user names

The gid is an integer, name and password are strings, and the member list is a list of strings. (Note
that most users are not explicitly listed as members of the group they are in according to the password
database.) KeyError is raised if the entry asked for cannot be found.

It defines the following items:

getgrgid(gid)
Return the group database entry for the given numeric group ID.

getgrnam(name)
Return the group database entry for the given group name.

getgrall()
Return a list of all available group entries, in arbitrary order.

See Also:

Module pwd (section 8.2):
An interface to the user database, similar to this.

8.4 crypt — Function to check Unix passwords

This module implements an interface to the crypt(3) routine, which is a one-way hash function based
upon a modified DES algorithm; see the Unix man page for further details. Possible uses include allowing
Python scripts to accept typed passwords from the user, or attempting to crack Unix passwords with a
dictionary.

crypt(word, salt)
word will usually be a user’s password as typed at a prompt or in a graphical interface. salt is
usually a random two-character string which will be used to perturb the DES algorithm in one

8.3. grp — The group database 169

of 4096 ways. The characters in salt must be in the set d[./a-zA-Z0-9]c. Returns the hashed
password as a string, which will be composed of characters from the same alphabet as the salt (the
first two characters represent the salt itself).

A simple example illustrating typical use:

import crypt, getpass, pwd

def login():

username = raw_input(’Python login:’)

cryptedpasswd = pwd.getpwnam(username)[1]

if cryptedpasswd:

if cryptedpasswd == ’x’ or cryptedpasswd == ’*’:

raise "Sorry, currently no support for shadow passwords"

cleartext = getpass.getpass()

return crypt.crypt(cleartext, cryptedpasswd[:2]) == cryptedpasswd

else:

return 1

8.5 dl — Call C functions in shared objects

The dl module defines an interface to the dlopen() function, which is the most common interface on
Unix platforms for handling dynamically linked libraries. It allows the program to call arbitary functions
in such a library.

Note: This module will not work unless

sizeof(int) == sizeof(long) == sizeof(char *)

If this is not the case, SystemError will be raised on import.

The dl module defines the following function:

open(name[, mode = RTLD LAZY])
Open a shared object file, and return a handle. Mode signifies late binding (RTLD LAZY) or imme-
diate binding (RTLD NOW). Default is RTLD LAZY. Note that some sytems do not support RTLD NOW.

Return value is a dlobject.

The dl module defines the following constants:

RTLD LAZY
Useful as an argument to open().

RTLD NOW
Useful as an argument to open(). Note that on systems which do not support immediate binding,
this constant will not appear in the module. For maximum portability, use hasattr() to determine
if the system supports immediate binding.

The dl module defines the following exception:

error
Exception raised when an error has occured inside the dynamic loading and linking routines.

Example:

170 Chapter 8. Unix Specific Services

>>> import dl, time

>>> a=dl.open(’/lib/libc.so.6’)

>>> a.call(’time’), time.time()

(929723914, 929723914.498)

This example was tried on a Debian GNU/Linux system, and is a good example of the fact that using
this module is usually a bad alternative.

8.5.1 Dl Objects

Dl objects, as returned by open() above, have the following methods:

close()
Free all resources, except the memory.

sym(name)
Return the pointer for the function named name, as a number, if it exists in the referenced shared
object, otherwise None. This is useful in code like:

>>> if a.sym(’time’):

... a.call(’time’)

... else:

... time.time()

(Note that this function will return a non-zero number, as zero is the NULL pointer)

call(name[, arg1 [, arg2. . .]])
Call the function named name in the referenced shared object. The arguments must be either
Python integers, which will be passed as is, Python strings, to which a pointer will be passed, or
None, which will be passed as NULL. Note that strings should only be passed to functions as const
char*, as Python will not like its string mutated.

There must be at most 10 arguments, and arguments not given will be treated as None. The
function’s return value must be a C long, which is a Python integer.

8.6 dbm — Simple “database” interface

The dbm module provides an interface to the Unix (n)dbm library. Dbm objects behave like mappings
(dictionaries), except that keys and values are always strings. Printing a dbm object doesn’t print the
keys and values, and the items() and values() methods are not supported.

See also the gdbm module, which provides a similar interface using the GNU GDBM library.

The module defines the following constant and functions:

error
Raised on dbm-specific errors, such as I/O errors. KeyError is raised for general mapping errors
like specifying an incorrect key.

open(filename, [flag, [mode]])
Open a dbm database and return a dbm object. The filename argument is the name of the database
file (without the ‘.dir’ or ‘.pag’ extensions).

The optional flag argument can be ’r’ (to open an existing database for reading only — default),
’w’ (to open an existing database for reading and writing), ’c’ (which creates the database if it
doesn’t exist), or ’n’ (which always creates a new empty database).

The optional mode argument is the Unix mode of the file, used only when the database has to be
created. It defaults to octal 0666.

8.6. dbm — Simple “database” interface 171

See Also:

Module anydbm (section 7.7):
Generic interface to dbm-style databases.

Module whichdb (section 7.10):
Utility module used to determine the type of an existing database.

8.7 gdbm — GNU’s reinterpretation of dbm

This module is quite similar to the dbm module, but uses gdbm instead to provide some additional
functionality. Please note that the file formats created by gdbm and dbm are incompatible.

The gdbm module provides an interface to the GNU DBM library. gdbm objects behave like mappings
(dictionaries), except that keys and values are always strings. Printing a gdbm object doesn’t print the
keys and values, and the items() and values() methods are not supported.

The module defines the following constant and functions:

error
Raised on gdbm-specific errors, such as I/O errors. KeyError is raised for general mapping errors
like specifying an incorrect key.

open(filename, [flag, [mode]])
Open a gdbm database and return a gdbm object. The filename argument is the name of the
database file.

The optional flag argument can be ’r’ (to open an existing database for reading only — default),
’w’ (to open an existing database for reading and writing), ’c’ (which creates the database if it
doesn’t exist), or ’n’ (which always creates a new empty database).

Appending ‘f’ to the flag opens the database in fast mode; altered data will not automatically be
written to the disk after every change. This results in faster writes to the database, but may result
in an inconsistent database if the program crashes while the database is still open. Use the sync()
method to force any unwritten data to be written to the disk.

The optional mode argument is the Unix mode of the file, used only when the database has to be
created. It defaults to octal 0666.

In addition to the dictionary-like methods, gdbm objects have the following methods:

firstkey()
It’s possible to loop over every key in the database using this method and the nextkey() method.
The traversal is ordered by gdbm’s internal hash values, and won’t be sorted by the key values.
This method returns the starting key.

nextkey(key)
Returns the key that follows key in the traversal. The following code prints every key in the
database db, without having to create a list in memory that contains them all:

k = db.firstkey()

while k != None:

print k

k = db.nextkey(k)

reorganize()
If you have carried out a lot of deletions and would like to shrink the space used by the gdbm file,
this routine will reorganize the database. gdbm will not shorten the length of a database file except
by using this reorganization; otherwise, deleted file space will be kept and reused as new (key,
value) pairs are added.

sync()
When the database has been opened in fast mode, this method forces any unwritten data to be
written to the disk.

172 Chapter 8. Unix Specific Services

See Also:

Module anydbm (section 7.7):
Generic interface to dbm-style databases.

Module whichdb (section 7.10):
Utility module used to determine the type of an existing database.

8.8 termios — POSIX style tty control

This module provides an interface to the POSIX calls for tty I/O control. For a complete description
of these calls, see the POSIX or Unix manual pages. It is only available for those Unix versions that
support POSIX termios style tty I/O control (and then only if configured at installation time).

All functions in this module take a file descriptor fd as their first argument. This must be an integer file
descriptor, such as returned by sys.stdin.fileno().

This module should be used in conjunction with the TERMIOS module, which defines the relevant symbolic
constants (see the next section).

The module defines the following functions:

tcgetattr(fd)
Return a list containing the tty attributes for file descriptor fd , as follows: [iflag , oflag , cflag ,
lflag , ispeed , ospeed , cc] where cc is a list of the tty special characters (each a string of length 1,
except the items with indices TERMIOS.VMIN and TERMIOS.VTIME, which are integers when these
fields are defined). The interpretation of the flags and the speeds as well as the indexing in the cc
array must be done using the symbolic constants defined in the TERMIOS module.

tcsetattr(fd, when, attributes)
Set the tty attributes for file descriptor fd from the attributes, which is a list like the one returned by
tcgetattr(). The when argument determines when the attributes are changed: TERMIOS.TCSANOW
to change immediately, TERMIOS.TCSADRAIN to change after transmitting all queued output, or
TERMIOS.TCSAFLUSH to change after transmitting all queued output and discarding all queued
input.

tcsendbreak(fd, duration)
Send a break on file descriptor fd . A zero duration sends a break for 0.25–0.5 seconds; a nonzero
duration has a system dependent meaning.

tcdrain(fd)
Wait until all output written to file descriptor fd has been transmitted.

tcflush(fd, queue)
Discard queued data on file descriptor fd . The queue selector specifies which queue:
TERMIOS.TCIFLUSH for the input queue, TERMIOS.TCOFLUSH for the output queue, or
TERMIOS.TCIOFLUSH for both queues.

tcflow(fd, action)
Suspend or resume input or output on file descriptor fd . The action argument can be
TERMIOS.TCOOFF to suspend output, TERMIOS.TCOON to restart output, TERMIOS.TCIOFF to sus-
pend input, or TERMIOS.TCION to restart input.

See Also:

Module TERMIOS (section 8.9):
Constants for use with termios.

Module tty (section 8.10):
Convenience functions for common terminal control operations.

8.8.1 Example

8.8. termios — POSIX style tty control 173

Here’s a function that prompts for a password with echoing turned off. Note the technique using a
separate tcgetattr() call and a try ... finally statement to ensure that the old tty attributes are
restored exactly no matter what happens:

def getpass(prompt = "Password: "):

import termios, TERMIOS, sys

fd = sys.stdin.fileno()

old = termios.tcgetattr(fd)

new = termios.tcgetattr(fd)

new[3] = new[3] & ~TERMIOS.ECHO # lflags

try:

termios.tcsetattr(fd, TERMIOS.TCSADRAIN, new)

passwd = raw_input(prompt)

finally:

termios.tcsetattr(fd, TERMIOS.TCSADRAIN, old)

return passwd

8.9 TERMIOS — Constants used with the termios module

This module defines the symbolic constants required to use the termios module (see the previous section).
See the POSIX or Unix manual pages (or the source) for a list of those constants.

Note: this module resides in a system-dependent subdirectory of the Python library directory. You may
have to generate it for your particular system using the script ‘Tools/scripts/h2py.py’.

8.10 tty — Terminal control functions

The tty module defines functions for putting the tty into cbreak and raw modes.

Because it requires the termios module, it will work only on Unix.

The tty module defines the following functions:

setraw(fd[, when])
Change the mode of the file descriptor fd to raw. If when is omitted, it defaults to
TERMIOS.TCAFLUSH, and is passed to termios.tcsetattr().

setcbreak(fd[, when])
Change the mode of file descriptor fd to cbreak. If when is omitted, it defaults to
TERMIOS.TCAFLUSH, and is passed to termios.tcsetattr().

See Also:

Module termios (section 8.8):
Low-level terminal control interface.

Module TERMIOS (section 8.9):
Constants useful for terminal control operations.

8.11 pty — Pseudo-terminal utilities

The pty module defines operations for handling the pseudo-terminal concept: starting another process
and being able to write to and read from its controlling terminal programmatically.

Because pseudo-terminal handling is highly platform dependant, there is code to do it only for SGI and
Linux. (The Linux code is supposed to work on other platforms, but hasn’t been tested yet.)

The pty module defines the following functions:

174 Chapter 8. Unix Specific Services

fork()
Fork. Connect the child’s controlling terminal to a pseudo-terminal. Return value is (pid, fd).
Note that the child gets pid 0, and the fd is invalid. The parent’s return value is the pid of the
child, and fd is a file descriptor connected to the child’s controlling terminal (and also to the child’s
standard input and output.

spawn(argv[, master read[, stdin read]])
Spawn a process, and connect its controlling terminal with the current process’s standard io. This
is often used to baffle programs which insist on reading from the controlling terminal.

The functions master read and stdin read should be functions which read from a file-descriptor.
The defaults try to read 1024 bytes each time they are called.

8.12 fcntl — The fcntl() and ioctl() system calls

This module performs file control and I/O control on file descriptors. It is an interface to the fcntl()
and ioctl() Unix routines. File descriptors can be obtained with the fileno() method of a file or
socket object.

The module defines the following functions:

fcntl(fd, op[, arg])
Perform the requested operation on file descriptor fd . The operation is defined by op and is
operating system dependent. Typically these codes can be retrieved from the library module
FCNTL. The argument arg is optional, and defaults to the integer value 0. When present, it can
either be an integer value, or a string. With the argument missing or an integer value, the return
value of this function is the integer return value of the C fcntl() call. When the argument is a
string it represents a binary structure, e.g. created by struct.pack(). The binary data is copied
to a buffer whose address is passed to the C fcntl() call. The return value after a successful call
is the contents of the buffer, converted to a string object. In case the fcntl() fails, an IOError is
raised.

ioctl(fd, op, arg)
This function is identical to the fcntl() function, except that the operations are typically defined
in the library module IOCTL.

flock(fd, op)
Perform the lock operation op on file descriptor fd . See the Unix manual flock(3) for details. (On
some systems, this function is emulated using fcntl().)

lockf(fd, code, [len, [start, [whence]]])
This is a wrapper around the FCNTL.F SETLK and FCNTL.F SETLKW fcntl() calls. See the Unix

manual for details.

If the library modules FCNTL or IOCTL are missing, you can find the opcodes in the C include files
<sys/fcntl.h> and <sys/ioctl.h>. You can create the modules yourself with the h2py script, found
in the ‘Tools/scripts/’ directory.

Examples (all on a SVR4 compliant system):

import struct, fcntl, FCNTL

file = open(...)

rv = fcntl(file.fileno(), FCNTL.O_NDELAY, 1)

lockdata = struct.pack(’hhllhh’, FCNTL.F_WRLCK, 0, 0, 0, 0, 0)

rv = fcntl.fcntl(file.fileno(), FCNTL.F_SETLKW, lockdata)

Note that in the first example the return value variable rv will hold an integer value; in the second
example it will hold a string value. The structure lay-out for the lockdata variable is system dependent

8.12. fcntl — The fcntl() and ioctl() system calls 175

— therefore using the flock() call may be better.

8.13 pipes — Interface to shell pipelines

The pipes module defines a class to abstract the concept of a pipeline — a sequence of convertors from
one file to another.

Because the module uses /bin/sh command lines, a POSIX or compatible shell for os.system() and
os.popen() is required.

The pipes module defines the following class:

Template()
An abstraction of a pipeline.

Example:

>>> import pipes

>>> t=pipes.Template()

>>> t.append(’tr a-z A-Z’, ’--’)

>>> f=t.open(’/tmp/1’, ’w’)

>>> f.write(’hello world’)

>>> f.close()

>>> open(’/tmp/1’).read()

’HELLO WORLD’

8.13.1 Template Objects

Template objects following methods:

reset()
Restore a pipeline template to its initial state.

clone()
Return a new, equivalent, pipeline template.

debug(flag)
If flag is true, turn debugging on. Otherwise, turn debugging off. When debugging is on, commands
to be executed are printed, and the shell is given set -x command to be more verbose.

append(cmd, kind)
Append a new action at the end. The cmd variable must be a valid bourne shell command. The
kind variable consists of two letters.

The first letter can be either of ’-’ (which means the command reads its standard input), ’f’
(which means the commands reads a given file on the command line) or ’.’ (which means the
commands reads no input, and hence must be first.)

Similarily, the second letter can be either of ’-’ (which means the command writes to standard
output), ’f’ (which means the command writes a file on the command line) or ’.’ (which means
the command does not write anything, and hence must be last.)

prepend(cmd, kind)
Add a new action at the beginning. See append() for explanations of the arguments.

open(file, mode)
Return a file-like object, open to file, but read from or written to by the pipeline. Note that only
one of ’r’, ’w’ may be given.

copy(infile, outfile)
Copy infile to outfile through the pipe.

176 Chapter 8. Unix Specific Services

8.14 posixfile — File-like objects with locking support

Note: This module will become obsolete in a future release. The locking operation that it provides is
done better and more portably by the fcntl.lockf() call.

This module implements some additional functionality over the built-in file objects. In particular, it
implements file locking, control over the file flags, and an easy interface to duplicate the file object. The
module defines a new file object, the posixfile object. It has all the standard file object methods and
adds the methods described below. This module only works for certain flavors of Unix, since it uses
fcntl.fcntl() for file locking.

To instantiate a posixfile object, use the open() function in the posixfile module. The resulting object
looks and feels roughly the same as a standard file object.

The posixfile module defines the following constants:

SEEK SET
Offset is calculated from the start of the file.

SEEK CUR
Offset is calculated from the current position in the file.

SEEK END
Offset is calculated from the end of the file.

The posixfile module defines the following functions:

open(filename[, mode[, bufsize]])
Create a new posixfile object with the given filename and mode. The filename, mode and bufsize
arguments are interpreted the same way as by the built-in open() function.

fileopen(fileobject)
Create a new posixfile object with the given standard file object. The resulting object has the same
filename and mode as the original file object.

The posixfile object defines the following additional methods:

lock(fmt, [len[, start[, whence]]])
Lock the specified section of the file that the file object is referring to. The format is explained
below in a table. The len argument specifies the length of the section that should be locked.
The default is 0. start specifies the starting offset of the section, where the default is 0. The
whence argument specifies where the offset is relative to. It accepts one of the constants SEEK SET,
SEEK CUR or SEEK END. The default is SEEK SET. For more information about the arguments refer
to the fcntl(2) manual page on your system.

flags([flags])
Set the specified flags for the file that the file object is referring to. The new flags are ORed with
the old flags, unless specified otherwise. The format is explained below in a table. Without the
flags argument a string indicating the current flags is returned (this is the same as the ‘?’ modifier).
For more information about the flags refer to the fcntl(2) manual page on your system.

dup()
Duplicate the file object and the underlying file pointer and file descriptor. The resulting object
behaves as if it were newly opened.

dup2(fd)
Duplicate the file object and the underlying file pointer and file descriptor. The new object will
have the given file descriptor. Otherwise the resulting object behaves as if it were newly opened.

file()
Return the standard file object that the posixfile object is based on. This is sometimes necessary
for functions that insist on a standard file object.

All methods raise IOError when the request fails.

Format characters for the lock() method have the following meaning:

8.14. posixfile — File-like objects with locking support 177

Format Meaning
‘u’ unlock the specified region
‘r’ request a read lock for the specified section
‘w’ request a write lock for the specified section

In addition the following modifiers can be added to the format:

Modifier Meaning Notes
‘|’ wait until the lock has been granted
‘?’ return the first lock conflicting with the requested lock, or None if there is no conflict. (1)

Note:

(1) The lock returned is in the format (mode, len, start, whence, pid) where mode is a character
representing the type of lock (’r’ or ’w’). This modifier prevents a request from being granted; it
is for query purposes only.

Format characters for the flags() method have the following meanings:

Format Meaning
‘a’ append only flag
‘c’ close on exec flag
‘n’ no delay flag (also called non-blocking flag)
‘s’ synchronization flag

In addition the following modifiers can be added to the format:

Modifier Meaning Notes
‘!’ turn the specified flags ’off’, instead of the default ’on’ (1)
‘=’ replace the flags, instead of the default ’OR’ operation (1)
‘?’ return a string in which the characters represent the flags that are set. (2)

Notes:

(1) The ‘!’ and ‘=’ modifiers are mutually exclusive.

(2) This string represents the flags after they may have been altered by the same call.

Examples:

import posixfile

file = posixfile.open(’/tmp/test’, ’w’)

file.lock(’w|’)

...

file.lock(’u’)

file.close()

8.15 resource — Resource usage information

This module provides basic mechanisms for measuring and controlling system resources utilized by a
program.

178 Chapter 8. Unix Specific Services

Symbolic constants are used to specify particular system resources and to request usage information
about either the current process or its children.

A single exception is defined for errors:

error
The functions described below may raise this error if the underlying system call failures unexpect-
edly.

8.15.1 Resource Limits

Resources usage can be limited using the setrlimit() function described below. Each resource is
controlled by a pair of limits: a soft limit and a hard limit. The soft limit is the current limit, and may
be lowered or raised by a process over time. The soft limit can never exceed the hard limit. The hard
limit can be lowered to any value greater than the soft limit, but not raised. (Only processes with the
effective UID of the super-user can raise a hard limit.)

The specific resources that can be limited are system dependent. They are described in the getrlimit(2)
man page. The resources listed below are supported when the underlying operating system supports
them; resources which cannot be checked or controlled by the operating system are not defined in this
module for those platforms.

getrlimit(resource)
Returns a tuple (soft, hard) with the current soft and hard limits of resource. Raises ValueError
if an invalid resource is specified, or error if the underyling system call fails unexpectedly.

setrlimit(resource, limits)
Sets new limits of consumption of resource. The limits argument must be a tuple (soft, hard) of
two integers describing the new limits. A value of -1 can be used to specify the maximum possible
upper limit.

Raises ValueError if an invalid resource is specified, if the new soft limit exceeds the hard limit,
or if a process tries to raise its hard limit (unless the process has an effective UID of super-user).
Can also raise error if the underyling system call fails.

These symbols define resources whose consumption can be controlled using the setrlimit() and
getrlimit() functions described below. The values of these symbols are exactly the constants used
by C programs.

The Unix man page for getrlimit(2) lists the available resources. Note that not all systems use the same
symbol or same value to denote the same resource.

RLIMIT CORE
The maximum size (in bytes) of a core file that the current process can create. This may result in
the creation of a partial core file if a larger core would be required to contain the entire process
image.

RLIMIT CPU
The maximum amount of CPU time (in seconds) that a process can use. If this limit is exceeded,
a SIGXCPU signal is sent to the process. (See the signal module documentation for information
about how to catch this signal and do something useful, e.g. flush open files to disk.)

RLIMIT FSIZE
The maximum size of a file which the process may create. This only affects the stack of the main
thread in a multi-threaded process.

RLIMIT DATA
The maximum size (in bytes) of the process’s heap.

RLIMIT STACK
The maximum size (in bytes) of the call stack for the current process.

RLIMIT RSS
The maximum resident set size that should be made available to the process.

8.15. resource — Resource usage information 179

RLIMIT NPROC
The maximum number of processes the current process may create.

RLIMIT NOFILE
The maximum number of open file descriptors for the current process.

RLIMIT OFILE
The BSD name for RLIMIT NOFILE.

RLIMIT MEMLOC
The maximm address space which may be locked in memory.

RLIMIT VMEM
The largest area of mapped memory which the process may occupy.

RLIMIT AS
The maximum area (in bytes) of address space which may be taken by the process.

8.15.2 Resource Usage

These functiona are used to retrieve resource usage information:

getrusage(who)
This function returns a large tuple that describes the resources consumed by either the current
process or its children, as specified by the who parameter. The who parameter should be specified
using one of the RUSAGE * constants described below.

The elements of the return value each describe how a particular system resource has been used,
e.g. amount of time spent running is user mode or number of times the process was swapped out
of main memory. Some values are dependent on the clock tick internal, e.g. the amount of memory
the process is using.

The first two elements of the return value are floating point values representing the amount of
time spent executing in user mode and the amount of time spent executing in system mode,
respectively. The remaining values are integers. Consult the getrusage(2) man page for detailed
information about these values. A brief summary is presented here:

Offset Resource
0 time in user mode (float)
1 time in system mode (float)
2 maximum resident set size
3 shared memory size
4 unshared memory size
5 unshared stack size
6 page faults not requiring I/O
7 page faults requiring I/O
8 number of swap outs
9 block input operations

10 block output operations
11 messages sent
12 messages received
13 signals received
14 voluntary context switches
15 involuntary context switches

This function will raise a ValueError if an invalid who parameter is specified. It may also raise
error exception in unusual circumstances.

getpagesize()
Returns the number of bytes in a system page. (This need not be the same as the hardware page
size.) This function is useful for determining the number of bytes of memory a process is using. The
third element of the tuple returned by getrusage() describes memory usage in pages; multiplying
by page size produces number of bytes.

180 Chapter 8. Unix Specific Services

The following RUSAGE * symbols are passed to the getrusage() function to specify which processes
information should be provided for.

RUSAGE SELF
RUSAGE SELF should be used to request information pertaining only to the process itself.

RUSAGE CHILDREN
Pass to getrusage() to request resource information for child processes of the calling process.

RUSAGE BOTH
Pass to getrusage() to request resources consumed by both the current process and child processes.
May not be available on all systems.

8.16 nis — Interface to Sun’s NIS (Yellow Pages)

The nis module gives a thin wrapper around the NIS library, useful for central administration of several
hosts.

Because NIS exists only on Unix systems, this module is only available for Unix.

The nis module defines the following functions:

match(key, mapname)
Return the match for key in map mapname, or raise an error (nis.error) if there is none. Both
should be strings, key is 8-bit clean. Return value is an arbitary array of bytes (i.e., may contain
NULL and other joys).

Note that mapname is first checked if it is an alias to another name.

cat(mapname)
Return a dictionary mapping key to value such that match(key, mapname)==value. Note that
both keys and values of the dictionary are arbitary arrays of bytes.

Note that mapname is first checked if it is an alias to another name.

maps()
Return a list of all valid maps.

The nis module defines the following exception:

error
An error raised when a NIS function returns an error code.

8.17 syslog — Unix syslog library routines

This module provides an interface to the Unix syslog library routines. Refer to the Unix manual pages
for a detailed description of the syslog facility.

The module defines the following functions:

syslog([priority,] message)
Send the string message to the system logger. A trailing newline is added if necessary. Each message
is tagged with a priority composed of a facility and a level . The optional priority argument, which
defaults to LOG INFO, determines the message priority. If the facility is not encoded in priority
using logical-or (LOG INFO | LOG USER), the value given in the openlog() call is used.

openlog(ident[, logopt[, facility]])
Logging options other than the defaults can be set by explicitly opening the log file with openlog()
prior to calling syslog(). The defaults are (usually) ident = ’syslog’, logopt = 0, facility =
LOG USER. The ident argument is a string which is prepended to every message. The optional
logopt argument is a bit field - see below for possible values to combine. The optional facility
argument sets the default facility for messages which do not have a facility explicitly encoded.

8.16. nis — Interface to Sun’s NIS (Yellow Pages) 181

closelog()
Close the log file.

setlogmask(maskpri)
Set the priority mask to maskpri and return the previous mask value. Calls to syslog() with
a priority level not set in maskpri are ignored. The default is to log all priorities. The function
LOG MASK(pri) calculates the mask for the individual priority pri . The function LOG UPTO(pri)
calculates the mask for all priorities up to and including pri .

The module defines the following constants:

Priority levels (high to low): LOG EMERG, LOG ALERT, LOG CRIT, LOG ERR, LOG WARNING,
LOG NOTICE, LOG INFO, LOG DEBUG.

Facilities: LOG KERN, LOG USER, LOG MAIL, LOG DAEMON, LOG AUTH, LOG LPR, LOG NEWS, LOG UUCP,
LOG CRON and LOG LOCAL0 to LOG LOCAL7.

Log options: LOG PID, LOG CONS, LOG NDELAY, LOG NOWAIT and LOG PERROR if defined in
<syslog.h>.

8.18 popen2 — Subprocesses with accessible I/O streams

This module allows you to spawn processes and connect their input/output/error pipes and obtain
their return codes under Unix. Similar functionality exists for Windows platforms using the win32pipe
module provided as part of Mark Hammond’s Windows extensions.

The primary interface offered by this module is a pair of factory functions:

popen2(cmd[, bufsize])
Executes cmd as a sub-process. If bufsize is specified, it specifies the buffer size for the I/O pipes.
Returns the file objects (child stdout, child stdin).

popen3(cmd[, bufsize])
Executes cmd as a sub-process. If bufsize is specified, it specifies the buffer size for the I/O pipes.
Returns the file objects (child stdout, child stdin, child stderr).

The class defining the objects returned by the factory functions is also available:

Popen3(cmd[, capturestderr[, bufsize]])
This class represents a child process. Normally, Popen3 instances are created using the factory
functions described above.

If not using one off the helper functions to create Popen3 objects, the parameter cmd is the shell
command to execute in a sub-process. The capturestderr flag, if true, specifies that the object
should capture standard error output of the child process. The default is false. If the bufsize
parameter is specified, it specifies the size of the I/O buffers to/from the child process.

8.18.1 Popen3 Objects

Instances of the Popen3 class have the following methods:

poll()
Returns -1 if child process hasn’t completed yet, or its return code otherwise.

wait()
Waits for and returns the return code of the child process.

The following attributes of Popen3 objects are also available:

fromchild
A file object that provides output from the child process.

182 Chapter 8. Unix Specific Services

tochild
A file object that provides input to the child process.

childerr
Where the standard error from the child process goes is capturestderr was true for the constructor,
or None.

pid
The process ID of the child process.

8.19 commands — Utilities for running commands

The commands module contains wrapper functions for os.popen() which take a system command as a
string and return any output generated by the command and, optionally, the exit status.

The commands module defines the following functions:

getstatusoutput(cmd)
Execute the string cmd in a shell with os.popen() and return a 2-tuple (status, output). cmd is
actually run as {cmd ; }2>&1, so that the returned output will contain output or error messages.
A trailing newline is stripped from the output. The exit status for the command can be interpreted
according to the rules for the C function wait().

getoutput(cmd)
Like getstatusoutput(), except the exit status is ignored and the return value is a string con-
taining the command’s output.

getstatus(file)
Return the output of ‘ls -ld file’ as a string. This function uses the getoutput() function, and
properly escapes backslashes and dollar signs in the argument.

Example:

>>> import commands

>>> commands.getstatusoutput(’ls /bin/ls’)

(0, ’/bin/ls’)

>>> commands.getstatusoutput(’cat /bin/junk’)

(256, ’cat: /bin/junk: No such file or directory’)

>>> commands.getstatusoutput(’/bin/junk’)

(256, ’sh: /bin/junk: not found’)

>>> commands.getoutput(’ls /bin/ls’)

’/bin/ls’

>>> commands.getstatus(’/bin/ls’)

’-rwxr-xr-x 1 root 13352 Oct 14 1994 /bin/ls’

8.19. commands — Utilities for running commands 183

184

CHAPTER

NINE

The Python Debugger

The module pdb defines an interactive source code debugger for Python programs. It supports setting
(conditional) breakpoints and single stepping at the source line level, inspection of stack frames, source
code listing, and evaluation of arbitrary Python code in the context of any stack frame. It also supports
post-mortem debugging and can be called under program control.

The debugger is extensible — it is actually defined as the class Pdb. This is currently undocumented but
easily understood by reading the source. The extension interface uses the modules bdb (undocumented)
and cmd.

A primitive windowing version of the debugger also exists — this is module wdb, which requires stdwin.

The debugger’s prompt is ‘(Pdb) ’. Typical usage to run a program under control of the debugger is:

>>> import pdb

>>> import mymodule

>>> pdb.run(’mymodule.test()’)

> <string>(0)?()

(Pdb) continue

> <string>(1)?()

(Pdb) continue

NameError: ’spam’

> <string>(1)?()

(Pdb)

‘pdb.py’ can also be invoked as a script to debug other scripts. For example:

python /usr/local/lib/python1.5/pdb.py myscript.py

Typical usage to inspect a crashed program is:

185

>>> import pdb

>>> import mymodule

>>> mymodule.test()

Traceback (innermost last):

File "<stdin>", line 1, in ?

File "./mymodule.py", line 4, in test

test2()

File "./mymodule.py", line 3, in test2

print spam

NameError: spam

>>> pdb.pm()

> ./mymodule.py(3)test2()

-> print spam

(Pdb)

The module defines the following functions; each enters the debugger in a slightly different way:

run(statement[, globals[, locals]])
Execute the statement (given as a string) under debugger control. The debugger prompt appears
before any code is executed; you can set breakpoints and type ‘continue’, or you can step through
the statement using ‘step’ or ‘next’ (all these commands are explained below). The optional
globals and locals arguments specify the environment in which the code is executed; by default the
dictionary of the module main is used. (See the explanation of the exec statement or the
eval() built-in function.)

runeval(expression[, globals[, locals]])
Evaluate the expression (given as a a string) under debugger control. When runeval() returns, it
returns the value of the expression. Otherwise this function is similar to run().

runcall(function[, argument, ...])
Call the function (a function or method object, not a string) with the given arguments. When
runcall() returns, it returns whatever the function call returned. The debugger prompt appears
as soon as the function is entered.

set trace()
Enter the debugger at the calling stack frame. This is useful to hard-code a breakpoint at a given
point in a program, even if the code is not otherwise being debugged (e.g. when an assertion fails).

post mortem(traceback)
Enter post-mortem debugging of the given traceback object.

pm()
Enter post-mortem debugging of the traceback found in sys.last traceback.

9.1 Debugger Commands

The debugger recognizes the following commands. Most commands can be abbreviated to one or two
letters; e.g. ‘h(elp)’ means that either ‘h’ or ‘help’ can be used to enter the help command (but not ‘he’
or ‘hel’, nor ‘H’ or ‘Help’ or ‘HELP’). Arguments to commands must be separated by whitespace (spaces
or tabs). Optional arguments are enclosed in square brackets (‘[]’) in the command syntax; the square
brackets must not be typed. Alternatives in the command syntax are separated by a vertical bar (‘|’).

Entering a blank line repeats the last command entered. Exception: if the last command was a ‘list’
command, the next 11 lines are listed.

Commands that the debugger doesn’t recognize are assumed to be Python statements and are executed in
the context of the program being debugged. Python statements can also be prefixed with an exclamation
point (‘!’). This is a powerful way to inspect the program being debugged; it is even possible to change a
variable or call a function. When an exception occurs in such a statement, the exception name is printed
but the debugger’s state is not changed.

186 Chapter 9. The Python Debugger

Multiple commands may be entered on a single line, separated by ‘;;’. (A single ‘;’ is not used as it is
the separator for multiple commands in a line that is passed to the Python parser.) No intelligence is
applied to separating the commands; the input is split at the first ‘;;’ pair, even if it is in the middle of
a quoted string.

The debugger supports aliases. Aliases can have parameters which allows one a certain level of adapt-
ability to the context under examination.

If a file ‘.pdbrc’ exists in the user’s home directory or in the current directory, it is read in and executed
as if it had been typed at the debugger prompt. This is particularly useful for aliases. If both files exist,
the one in the home directory is read first and aliases defined there can be overriden by the local file.

h(elp) [command] Without argument, print the list of available commands. With a command as
argument, print help about that command. ‘help pdb’ displays the full documentation file; if the
environment variable $PAGER is defined, the file is piped through that command instead. Since
the command argument must be an identifier, ‘help exec’ must be entered to get help on the ‘!’
command.

w(here) Print a stack trace, with the most recent frame at the bottom. An arrow indicates the current
frame, which determines the context of most commands.

d(own) Move the current frame one level down in the stack trace (to an older frame).

u(p) Move the current frame one level up in the stack trace (to a newer frame).

b(reak) [[filename:]lineno|function[, condition]] With a lineno argument, set a break there in
the current file. With a function argument, set a break at the first executable statement within that
function. The line number may be prefixed with a filename and a colon, to specify a breakpoint in
another file (probably one that hasn’t been loaded yet). The file is searched on sys.path. Note
that each breakpoint is assigned a number to which all the other breakpoint commands refer.

If a second argument is present, it is an expression which must evaluate to true before the breakpoint
is honored.

Without argument, list all breaks, including for each breakpoint, the number of times that break-
point has been hit, the current ignore count, and the associated condition if any.

tbreak [[filename:]lineno|function[, condition]] Temporary breakpoint, which is removed au-
tomatically when it is first hit. The arguments are the same as break.

cl(ear) [bpnumber [bpnumber ...]] With a space separated list of breakpoint numbers, clear those
breakpoints. Without argument, clear all breaks (but first ask confirmation).

disable [bpnumber [bpnumber ...]] Disables the breakpoints given as a space separated list of break-
point numbers. Disabling a breakpoint means it cannot cause the program to stop execution, but
unlike clearing a breakpoint, it remains in the list of breakpoints and can be (re-)enabled.

enable [bpnumber [bpnumber ...]] Enables the breakpoints specified.

ignore bpnumber [count] Sets the ignore count for the given breakpoint number. If count is omitted,
the ignore count is set to 0. A breakpoint becomes active when the ignore count is zero. When
non-zero, the count is decremented each time the breakpoint is reached and the breakpoint is not
disabled and any associated condition evaluates to true.

condition bpnumber [condition] Condition is an expression which must evaluate to true before the
breakpoint is honored. If condition is absent, any existing condition is removed; i.e., the breakpoint
is made unconditional.

s(tep) Execute the current line, stop at the first possible occasion (either in a function that is called or
on the next line in the current function).

9.1. Debugger Commands 187

n(ext) Continue execution until the next line in the current function is reached or it returns. (The
difference between ‘next’ and ‘step’ is that ‘step’ stops inside a called function, while ‘next’
executes called functions at (nearly) full speed, only stopping at the next line in the current
function.)

r(eturn) Continue execution until the current function returns.

c(ont(inue)) Continue execution, only stop when a breakpoint is encountered.

l(ist) [first[, last]] List source code for the current file. Without arguments, list 11 lines around
the current line or continue the previous listing. With one argument, list 11 lines around at that
line. With two arguments, list the given range; if the second argument is less than the first, it is
interpreted as a count.

a(rgs) Print the argument list of the current function.

p expression Evaluate the expression in the current context and print its value. (Note: ‘print’ can
also be used, but is not a debugger command — this executes the Python print statement.)

alias [name [command]] Creates an alias called name that executes command . The command must
not be enclosed in quotes. Replaceable parameters can be indicated by ‘%1’, ‘%2’, and so on, while
‘%*’ is replaced by all the parameters. If no command is given, the current alias for name is shown.
If no arguments are given, all aliases are listed.

Aliases may be nested and can contain anything that can be legally typed at the pdb prompt. Note
that internal pdb commands can be overridden by aliases. Such a command is then hidden until
the alias is removed. Aliasing is recursively applied to the first word of the command line; all other
words in the line are left alone.

As an example, here are two useful aliases (especially when placed in the ‘.pdbrc’ file):

#Print instance variables (usage "pi classInst")

alias pi for k in %1.__dict__.keys(): print "%1.",k,"=",%1.__dict__[k]

#Print instance variables in self

alias ps pi self

unalias name Deletes the specified alias.

[!]statement Execute the (one-line) statement in the context of the current stack frame. The exclama-
tion point can be omitted unless the first word of the statement resembles a debugger command.
To set a global variable, you can prefix the assignment command with a ‘global’ command on the
same line, e.g.:

(Pdb) global list_options; list_options = [’-l’]

(Pdb)

q(uit) Quit from the debugger. The program being executed is aborted.

9.2 How It Works

Some changes were made to the interpreter:

• sys.settrace(func) sets the global trace function

• there can also a local trace function (see later)

188 Chapter 9. The Python Debugger

Trace functions have three arguments: frame, event , and arg . frame is the current stack frame. event is
a string: ’call’, ’line’, ’return’ or ’exception’. arg depends on the event type.

The global trace function is invoked (with event set to ’call’) whenever a new local scope is entered; it
should return a reference to the local trace function to be used that scope, or None if the scope shouldn’t
be traced.

The local trace function should return a reference to itself (or to another function for further tracing in
that scope), or None to turn off tracing in that scope.

Instance methods are accepted (and very useful!) as trace functions.

The events have the following meaning:

’call’ A function is called (or some other code block entered). The global trace function is called; arg
is the argument list to the function; the return value specifies the local trace function.

’line’ The interpreter is about to execute a new line of code (sometimes multiple line events on one
line exist). The local trace function is called; arg in None; the return value specifies the new local
trace function.

’return’ A function (or other code block) is about to return. The local trace function is called; arg is
the value that will be returned. The trace function’s return value is ignored.

’exception’ An exception has occurred. The local trace function is called; arg is a triple (exception,
value, traceback); the return value specifies the new local trace function

Note that as an exception is propagated down the chain of callers, an ’exception’ event is generated
at each level.

For more information on code and frame objects, refer to the Python Reference Manual.

9.2. How It Works 189

190

CHAPTER

TEN

The Python Profiler

Copyright c© 1994, by InfoSeek Corporation, all rights reserved.

Written by James Roskind.1

Permission to use, copy, modify, and distribute this Python software and its associated documentation
for any purpose (subject to the restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of InfoSeek not be
used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. This permission is explicitly restricted to the copying and modification of the software to
remain in Python, compiled Python, or other languages (such as C) wherein the modified or derived
code is exclusively imported into a Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN
NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

The profiler was written after only programming in Python for 3 weeks. As a result, it is probably
clumsy code, but I don’t know for sure yet ’cause I’m a beginner :-). I did work hard to make the code
run fast, so that profiling would be a reasonable thing to do. I tried not to repeat code fragments, but
I’m sure I did some stuff in really awkward ways at times. Please send suggestions for improvements to:
jar@netscape.com. I won’t promise any support. ...but I’d appreciate the feedback.

10.1 Introduction to the profiler

A profiler is a program that describes the run time performance of a program, providing a variety of
statistics. This documentation describes the profiler functionality provided in the modules profile and
pstats. This profiler provides deterministic profiling of any Python programs. It also provides a series
of report generation tools to allow users to rapidly examine the results of a profile operation.

10.2 How Is This Profiler Different From The Old Profiler?

(This section is of historical importance only; the old profiler discussed here was last seen in Python 1.1.)

The big changes from old profiling module are that you get more information, and you pay less CPU
time. It’s not a trade-off, it’s a trade-up.

To be specific:
1Updated and converted to LATEX by Guido van Rossum. The references to the old profiler are left in the text, although

it no longer exists.

191

Bugs removed: Local stack frame is no longer molested, execution time is now charged to correct
functions.

Accuracy increased: Profiler execution time is no longer charged to user’s code, calibration for plat-
form is supported, file reads are not done by profiler during profiling (and charged to user’s code!).

Speed increased: Overhead CPU cost was reduced by more than a factor of two (perhaps a factor
of five), lightweight profiler module is all that must be loaded, and the report generating module
(pstats) is not needed during profiling.

Recursive functions support: Cumulative times in recursive functions are correctly calculated; re-
cursive entries are counted.

Large growth in report generating UI: Distinct profiles runs can be added together forming a com-
prehensive report; functions that import statistics take arbitrary lists of files; sorting criteria is now
based on keywords (instead of 4 integer options); reports shows what functions were profiled as
well as what profile file was referenced; output format has been improved.

10.3 Instant Users Manual

This section is provided for users that “don’t want to read the manual.” It provides a very brief overview,
and allows a user to rapidly perform profiling on an existing application.

To profile an application with a main entry point of ‘foo()’, you would add the following to your module:

import profile

profile.run(’foo()’)

The above action would cause ‘foo()’ to be run, and a series of informative lines (the profile) to be
printed. The above approach is most useful when working with the interpreter. If you would like to
save the results of a profile into a file for later examination, you can supply a file name as the second
argument to the run() function:

import profile

profile.run(’foo()’, ’fooprof’)

The file ‘profile.py’ can also be invoked as a script to profile another script. For example:

python /usr/local/lib/python1.5/profile.py myscript.py

When you wish to review the profile, you should use the methods in the pstats module. Typically you
would load the statistics data as follows:

import pstats

p = pstats.Stats(’fooprof’)

The class Stats (the above code just created an instance of this class) has a variety of methods for
manipulating and printing the data that was just read into ‘p’. When you ran profile.run() above,
what was printed was the result of three method calls:

p.strip_dirs().sort_stats(-1).print_stats()

The first method removed the extraneous path from all the module names. The second method sorted
all the entries according to the standard module/line/name string that is printed (this is to comply with

192 Chapter 10. The Python Profiler

the semantics of the old profiler). The third method printed out all the statistics. You might try the
following sort calls:

p.sort_stats(’name’)

p.print_stats()

The first call will actually sort the list by function name, and the second call will print out the statistics.
The following are some interesting calls to experiment with:

p.sort_stats(’cumulative’).print_stats(10)

This sorts the profile by cumulative time in a function, and then only prints the ten most significant
lines. If you want to understand what algorithms are taking time, the above line is what you would use.

If you were looking to see what functions were looping a lot, and taking a lot of time, you would do:

p.sort_stats(’time’).print_stats(10)

to sort according to time spent within each function, and then print the statistics for the top ten functions.

You might also try:

p.sort_stats(’file’).print_stats(’__init__’)

This will sort all the statistics by file name, and then print out statistics for only the class init methods
(’cause they are spelled with ‘ init ’ in them). As one final example, you could try:

p.sort_stats(’time’, ’cum’).print_stats(.5, ’init’)

This line sorts statistics with a primary key of time, and a secondary key of cumulative time, and then
prints out some of the statistics. To be specific, the list is first culled down to 50% (re: ‘.5’) of its
original size, then only lines containing init are maintained, and that sub-sub-list is printed.

If you wondered what functions called the above functions, you could now (‘p’ is still sorted according
to the last criteria) do:

p.print_callers(.5, ’init’)

and you would get a list of callers for each of the listed functions.

If you want more functionality, you’re going to have to read the manual, or guess what the following
functions do:

p.print_callees()

p.add(’fooprof’)

10.4 What Is Deterministic Profiling?

Deterministic profiling is meant to reflect the fact that all function call, function return, and exception
events are monitored, and precise timings are made for the intervals between these events (during which

10.4. What Is Deterministic Profiling? 193

time the user’s code is executing). In contrast, statistical profiling (which is not done by this module)
randomly samples the effective instruction pointer, and deduces where time is being spent. The latter
technique traditionally involves less overhead (as the code does not need to be instrumented), but provides
only relative indications of where time is being spent.

In Python, since there is an interpreter active during execution, the presence of instrumented code is not
required to do deterministic profiling. Python automatically provides a hook (optional callback) for each
event. In addition, the interpreted nature of Python tends to add so much overhead to execution, that
deterministic profiling tends to only add small processing overhead in typical applications. The result
is that deterministic profiling is not that expensive, yet provides extensive run time statistics about the
execution of a Python program.

Call count statistics can be used to identify bugs in code (surprising counts), and to identify possible
inline-expansion points (high call counts). Internal time statistics can be used to identify “hot loops”
that should be carefully optimized. Cumulative time statistics should be used to identify high level
errors in the selection of algorithms. Note that the unusual handling of cumulative times in this pro-
filer allows statistics for recursive implementations of algorithms to be directly compared to iterative
implementations.

10.5 Reference Manual

The primary entry point for the profiler is the global function profile.run(). It is typically used
to create any profile information. The reports are formatted and printed using methods of the class
pstats.Stats. The following is a description of all of these standard entry points and functions. For a
more in-depth view of some of the code, consider reading the later section on Profiler Extensions, which
includes discussion of how to derive “better” profilers from the classes presented, or reading the source
code for these modules.

run(string[, filename[, ...]])
This function takes a single argument that has can be passed to the exec statement, and an
optional file name. In all cases this routine attempts to exec its first argument, and gather
profiling statistics from the execution. If no file name is present, then this function automatically
prints a simple profiling report, sorted by the standard name string (file/line/function-name) that
is presented in each line. The following is a typical output from such a call:

main()

2706 function calls (2004 primitive calls) in 4.504 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

2 0.006 0.003 0.953 0.477 pobject.py:75(save_objects)

43/3 0.533 0.012 0.749 0.250 pobject.py:99(evaluate)

...

The first line indicates that this profile was generated by the call:
profile.run(’main()’), and hence the exec’ed string is ’main()’. The second line indicates that
2706 calls were monitored. Of those calls, 2004 were primitive. We define primitive to mean that
the call was not induced via recursion. The next line: Ordered by: standard name, indicates
that the text string in the far right column was used to sort the output. The column headings
include:

ncalls for the number of calls,

tottime for the total time spent in the given function (and excluding time made in calls to sub-
functions),

percall is the quotient of tottime divided by ncalls

cumtime is the total time spent in this and all subfunctions (i.e., from invocation till exit). This
figure is accurate even for recursive functions.

194 Chapter 10. The Python Profiler

percall is the quotient of cumtime divided by primitive calls

filename:lineno(function) provides the respective data of each function

When there are two numbers in the first column (e.g.: ‘43/3’), then the latter is the number of
primitive calls, and the former is the actual number of calls. Note that when the function does not
recurse, these two values are the same, and only the single figure is printed.

Analysis of the profiler data is done using this class from the pstats module:

Stats(filename[, ...])
This class constructor creates an instance of a “statistics object” from a filename (or set of file-
names). Stats objects are manipulated by methods, in order to print useful reports.

The file selected by the above constructor must have been created by the corresponding version
of profile. To be specific, there is no file compatibility guaranteed with future versions of this
profiler, and there is no compatibility with files produced by other profilers (e.g., the old system
profiler).

If several files are provided, all the statistics for identical functions will be coalesced, so that an
overall view of several processes can be considered in a single report. If additional files need to be
combined with data in an existing Stats object, the add() method can be used.

10.5.1 The Stats Class

Stats objects have the following methods:

strip dirs()
This method for the Stats class removes all leading path information from file names. It is very
useful in reducing the size of the printout to fit within (close to) 80 columns. This method modifies
the object, and the stripped information is lost. After performing a strip operation, the object is
considered to have its entries in a “random” order, as it was just after object initialization and
loading. If strip dirs() causes two function names to be indistinguishable (i.e., they are on the
same line of the same filename, and have the same function name), then the statistics for these two
entries are accumulated into a single entry.

add(filename[, ...])
This method of the Stats class accumulates additional profiling information into the current pro-
filing object. Its arguments should refer to filenames created by the corresponding version of
profile.run(). Statistics for identically named (re: file, line, name) functions are automatically
accumulated into single function statistics.

sort stats(key[, ...])
This method modifies the Stats object by sorting it according to the supplied criteria. The
argument is typically a string identifying the basis of a sort (example: ’time’ or ’name’).

When more than one key is provided, then additional keys are used as secondary criteria when the
there is equality in all keys selected before them. For example, ‘sort stats(’name’, ’file’)’
will sort all the entries according to their function name, and resolve all ties (identical function
names) by sorting by file name.

Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The
following are the keys currently defined:

10.5. Reference Manual 195

Valid Arg Meaning
’calls’ call count
’cumulative’ cumulative time
’file’ file name
’module’ file name
’pcalls’ primitive call count
’line’ line number
’name’ function name
’nfl’ name/file/line
’stdname’ standard name
’time’ internal time

Note that all sorts on statistics are in descending order (placing most time consuming items first),
where as name, file, and line number searches are in ascending order (i.e., alphabetical). The
subtle distinction between ’nfl’ and ’stdname’ is that the standard name is a sort of the name as
printed, which means that the embedded line numbers get compared in an odd way. For example,
lines 3, 20, and 40 would (if the file names were the same) appear in the string order 20, 3 and 40.
In contrast, ’nfl’ does a numeric compare of the line numbers. In fact, sort stats(’nfl’) is
the same as sort stats(’name’, ’file’, ’line’).

For compatibility with the old profiler, the numeric arguments -1, 0, 1, and 2 are permitted.
They are interpreted as ’stdname’, ’calls’, ’time’, and ’cumulative’ respectively. If this old
style format (numeric) is used, only one sort key (the numeric key) will be used, and additional
arguments will be silently ignored.

reverse order()
This method for the Stats class reverses the ordering of the basic list within the object. This
method is provided primarily for compatibility with the old profiler. Its utility is questionable now
that ascending vs descending order is properly selected based on the sort key of choice.

print stats(restriction[, ...])
This method for the Stats class prints out a report as described in the profile.run() definition.

The order of the printing is based on the last sort stats() operation done on the object (subject
to caveats in add() and strip dirs().

The arguments provided (if any) can be used to limit the list down to the significant entries.
Initially, the list is taken to be the complete set of profiled functions. Each restriction is either an
integer (to select a count of lines), or a decimal fraction between 0.0 and 1.0 inclusive (to select a
percentage of lines), or a regular expression (to pattern match the standard name that is printed;
as of Python 1.5b1, this uses the Perl-style regular expression syntax defined by the re module).
If several restrictions are provided, then they are applied sequentially. For example:

print_stats(.1, ’foo:’)

would first limit the printing to first 10% of list, and then only print functions that were part of
filename ‘.*foo:’. In contrast, the command:

print_stats(’foo:’, .1)

would limit the list to all functions having file names ‘.*foo:’, and then proceed to only print the
first 10% of them.

print callers(restrictions[, ...])
This method for the Stats class prints a list of all functions that called each function in the profiled
database. The ordering is identical to that provided by print stats(), and the definition of the
restricting argument is also identical. For convenience, a number is shown in parentheses after each
caller to show how many times this specific call was made. A second non-parenthesized number is
the cumulative time spent in the function at the right.

print callees(restrictions[, ...])
This method for the Stats class prints a list of all function that were called by the indicated

196 Chapter 10. The Python Profiler

function. Aside from this reversal of direction of calls (re: called vs was called by), the arguments
and ordering are identical to the print callers() method.

ignore()
Deprecated since release 1.5.1. This is not needed in modern versions of Python.2

10.6 Limitations

There are two fundamental limitations on this profiler. The first is that it relies on the Python interpreter
to dispatch call, return, and exception events. Compiled C code does not get interpreted, and hence is
“invisible” to the profiler. All time spent in C code (including built-in functions) will be charged to the
Python function that invoked the C code. If the C code calls out to some native Python code, then those
calls will be profiled properly.

The second limitation has to do with accuracy of timing information. There is a fundamental problem
with deterministic profilers involving accuracy. The most obvious restriction is that the underlying
“clock” is only ticking at a rate (typically) of about .001 seconds. Hence no measurements will be more
accurate that that underlying clock. If enough measurements are taken, then the “error” will tend to
average out. Unfortunately, removing this first error induces a second source of error...

The second problem is that it “takes a while” from when an event is dispatched until the profiler’s call
to get the time actually gets the state of the clock. Similarly, there is a certain lag when exiting the
profiler event handler from the time that the clock’s value was obtained (and then squirreled away), until
the user’s code is once again executing. As a result, functions that are called many times, or call many
functions, will typically accumulate this error. The error that accumulates in this fashion is typically
less than the accuracy of the clock (i.e., less than one clock tick), but it can accumulate and become
very significant. This profiler provides a means of calibrating itself for a given platform so that this error
can be probabilistically (i.e., on the average) removed. After the profiler is calibrated, it will be more
accurate (in a least square sense), but it will sometimes produce negative numbers (when call counts are
exceptionally low, and the gods of probability work against you :-).) Do not be alarmed by negative
numbers in the profile. They should only appear if you have calibrated your profiler, and the results are
actually better than without calibration.

10.7 Calibration

The profiler class has a hard coded constant that is added to each event handling time to compensate
for the overhead of calling the time function, and socking away the results. The following procedure can
be used to obtain this constant for a given platform (see discussion in section Limitations above).

import profile

pr = profile.Profile()

print pr.calibrate(100)

print pr.calibrate(100)

print pr.calibrate(100)

The argument to calibrate() is the number of times to try to do the sample calls to get the CPU
times. If your computer is very fast, you might have to do:

pr.calibrate(1000)

or even:
2This was once necessary, when Python would print any unused expression result that was not None. The method is

still defined for backward compatibility.

10.6. Limitations 197

pr.calibrate(10000)

The object of this exercise is to get a fairly consistent result. When you have a consistent answer, you
are ready to use that number in the source code. For a Sun Sparcstation 1000 running Solaris 2.3, the
magical number is about .00053. If you have a choice, you are better off with a smaller constant, and
your results will “less often” show up as negative in profile statistics.

The following shows how the trace dispatch() method in the Profile class should be modified to install
the calibration constant on a Sun Sparcstation 1000:

def trace_dispatch(self, frame, event, arg):

t = self.timer()

t = t[0] + t[1] - self.t - .00053 # Calibration constant

if self.dispatch[event](frame,t):

t = self.timer()

self.t = t[0] + t[1]

else:

r = self.timer()

self.t = r[0] + r[1] - t # put back unrecorded delta

return

Note that if there is no calibration constant, then the line containing the callibration constant should
simply say:

t = t[0] + t[1] - self.t # no calibration constant

You can also achieve the same results using a derived class (and the profiler will actually run equally
fast!!), but the above method is the simplest to use. I could have made the profiler “self calibrating”,
but it would have made the initialization of the profiler class slower, and would have required some very
fancy coding, or else the use of a variable where the constant ‘.00053’ was placed in the code shown.
This is a VERY critical performance section, and there is no reason to use a variable lookup at this
point, when a constant can be used.

10.8 Extensions — Deriving Better Profilers

The Profile class of module profile was written so that derived classes could be developed to extend
the profiler. Rather than describing all the details of such an effort, I’ll just present the following two
examples of derived classes that can be used to do profiling. If the reader is an avid Python programmer,
then it should be possible to use these as a model and create similar (and perchance better) profile
classes.

If all you want to do is change how the timer is called, or which timer function is used, then the basic
class has an option for that in the constructor for the class. Consider passing the name of a function to
call into the constructor:

pr = profile.Profile(your_time_func)

The resulting profiler will call your time func() instead of os.times(). The function should return
either a single number or a list of numbers (like what os.times() returns). If the function returns a
single time number, or the list of returned numbers has length 2, then you will get an especially fast
version of the dispatch routine.

198 Chapter 10. The Python Profiler

Be warned that you should calibrate the profiler class for the timer function that you choose. For most
machines, a timer that returns a lone integer value will provide the best results in terms of low overhead
during profiling. (os.times() is pretty bad, ’cause it returns a tuple of floating point values, so all
arithmetic is floating point in the profiler!). If you want to substitute a better timer in the cleanest
fashion, you should derive a class, and simply put in the replacement dispatch method that better
handles your timer call, along with the appropriate calibration constant :-).

10.8.1 OldProfile Class

The following derived profiler simulates the old style profiler, providing errant results on recursive func-
tions. The reason for the usefulness of this profiler is that it runs faster (i.e., less overhead) than the old
profiler. It still creates all the caller stats, and is quite useful when there is no recursion in the user’s
code. It is also a lot more accurate than the old profiler, as it does not charge all its overhead time to
the user’s code.

10.8. Extensions — Deriving Better Profilers 199

class OldProfile(Profile):

def trace_dispatch_exception(self, frame, t):

rt, rtt, rct, rfn, rframe, rcur = self.cur

if rcur and not rframe is frame:

return self.trace_dispatch_return(rframe, t)

return 0

def trace_dispatch_call(self, frame, t):

fn = ‘frame.f_code‘

self.cur = (t, 0, 0, fn, frame, self.cur)

if self.timings.has_key(fn):

tt, ct, callers = self.timings[fn]

self.timings[fn] = tt, ct, callers

else:

self.timings[fn] = 0, 0, {}

return 1

def trace_dispatch_return(self, frame, t):

rt, rtt, rct, rfn, frame, rcur = self.cur

rtt = rtt + t

sft = rtt + rct

pt, ptt, pct, pfn, pframe, pcur = rcur

self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur

tt, ct, callers = self.timings[rfn]

if callers.has_key(pfn):

callers[pfn] = callers[pfn] + 1

else:

callers[pfn] = 1

self.timings[rfn] = tt+rtt, ct + sft, callers

return 1

def snapshot_stats(self):

self.stats = {}

for func in self.timings.keys():

tt, ct, callers = self.timings[func]

nor_func = self.func_normalize(func)

nor_callers = {}

nc = 0

for func_caller in callers.keys():

nor_callers[self.func_normalize(func_caller)] = \

callers[func_caller]

nc = nc + callers[func_caller]

self.stats[nor_func] = nc, nc, tt, ct, nor_callers

10.8.2 HotProfile Class

This profiler is the fastest derived profile example. It does not calculate caller-callee relationships, and
does not calculate cumulative time under a function. It only calculates time spent in a function, so it
runs very quickly (re: very low overhead). In truth, the basic profiler is so fast, that is probably not
worth the savings to give up the data, but this class still provides a nice example.

200 Chapter 10. The Python Profiler

class HotProfile(Profile):

def trace_dispatch_exception(self, frame, t):

rt, rtt, rfn, rframe, rcur = self.cur

if rcur and not rframe is frame:

return self.trace_dispatch_return(rframe, t)

return 0

def trace_dispatch_call(self, frame, t):

self.cur = (t, 0, frame, self.cur)

return 1

def trace_dispatch_return(self, frame, t):

rt, rtt, frame, rcur = self.cur

rfn = ‘frame.f_code‘

pt, ptt, pframe, pcur = rcur

self.cur = pt, ptt+rt, pframe, pcur

if self.timings.has_key(rfn):

nc, tt = self.timings[rfn]

self.timings[rfn] = nc + 1, rt + rtt + tt

else:

self.timings[rfn] = 1, rt + rtt

return 1

def snapshot_stats(self):

self.stats = {}

for func in self.timings.keys():

nc, tt = self.timings[func]

nor_func = self.func_normalize(func)

self.stats[nor_func] = nc, nc, tt, 0, {}

10.8. Extensions — Deriving Better Profilers 201

202

CHAPTER

ELEVEN

Internet Protocols and Support

The modules described in this chapter implement Internet protocols and support for related technology.
They are all implemented in Python. Most of these modules require the presence of the system-dependent
module socket, which is currently supported on most popular platforms. Here is an overview:

cgi Common Gateway Interface support, used to interpret forms in server-side scripts.
urllib Open an arbitrary network resource by URL (requires sockets).
httplib HTTP protocol client (requires sockets).
ftplib FTP protocol client (requires sockets).
gopherlib Gopher protocol client (requires sockets).
poplib POP3 protocol client (requires sockets).
imaplib IMAP4 protocol client (requires sockets).
nntplib NNTP protocol client (requires sockets).
smtplib SMTP protocol client (requires sockets).
telnetlib Telnet client class.
urlparse Parse URLs into components.
SocketServer A framework for network servers.
BaseHTTPServer Basic HTTP server (base class for SimpleHTTPServer and CGIHTTPServer).
SimpleHTTPServer This module provides a request handler for HTTP servers.
CGIHTTPServer This module provides a request handler for HTTP servers which can run CGI scripts.
asyncore A base class for developing asynchronous socket handling services.

11.1 cgi — Common Gateway Interface support.

Support module for CGI (Common Gateway Interface) scripts.

This module defines a number of utilities for use by CGI scripts written in Python.

11.1.1 Introduction

A CGI script is invoked by an HTTP server, usually to process user input submitted through an HTML
<FORM> or <ISINDEX> element.

Most often, CGI scripts live in the server’s special ‘cgi-bin’ directory. The HTTP server places all sorts
of information about the request (such as the client’s hostname, the requested URL, the query string,
and lots of other goodies) in the script’s shell environment, executes the script, and sends the script’s
output back to the client.

The script’s input is connected to the client too, and sometimes the form data is read this way; at other
times the form data is passed via the “query string” part of the URL. This module is intended to take
care of the different cases and provide a simpler interface to the Python script. It also provides a number
of utilities that help in debugging scripts, and the latest addition is support for file uploads from a form
(if your browser supports it — Grail 0.3 and Netscape 2.0 do).

The output of a CGI script should consist of two sections, separated by a blank line. The first section

203

contains a number of headers, telling the client what kind of data is following. Python code to generate
a minimal header section looks like this:

print "Content-type: text/html" # HTML is following

print # blank line, end of headers

The second section is usually HTML, which allows the client software to display nicely formatted text
with header, in-line images, etc. Here’s Python code that prints a simple piece of HTML:

print "<TITLE>CGI script output</TITLE>"

print "<H1>This is my first CGI script</H1>"

print "Hello, world!"

(It may not be fully legal HTML according to the letter of the standard, but any browser will understand
it.)

11.1.2 Using the cgi module

Begin by writing ‘import cgi’. Do not use ‘from cgi import *’ — the module defines all sorts of
names for its own use or for backward compatibility that you don’t want in your namespace.

It’s best to use the FieldStorage class. The other classes defined in this module are provided mostly for
backward compatibility. Instantiate it exactly once, without arguments. This reads the form contents
from standard input or the environment (depending on the value of various environment variables set
according to the CGI standard). Since it may consume standard input, it should be instantiated only
once.

The FieldStorage instance can be accessed as if it were a Python dictionary. For instance, the following
code (which assumes that the content-type header and blank line have already been printed) checks
that the fields name and addr are both set to a non-empty string:

form = cgi.FieldStorage()

form_ok = 0

if form.has_key("name") and form.has_key("addr"):

if form["name"].value != "" and form["addr"].value != "":

form_ok = 1

if not form_ok:

print "<H1>Error</H1>"

print "Please fill in the name and addr fields."

return

...further form processing here...

Here the fields, accessed through ‘form[key]’, are themselves instances of FieldStorage (or
MiniFieldStorage, depending on the form encoding).

If the submitted form data contains more than one field with the same name, the object retrieved by
‘form[key]’ is not a FieldStorage or MiniFieldStorage instance but a list of such instances. If you
expect this possibility (i.e., when your HTML form comtains multiple fields with the same name), use
the type() function to determine whether you have a single instance or a list of instances. For example,
here’s code that concatenates any number of username fields, separated by commas:

204 Chapter 11. Internet Protocols and Support

username = form["username"]

if type(username) is type([]):

Multiple username fields specified

usernames = ""

for item in username:

if usernames:

Next item -- insert comma

usernames = usernames + "," + item.value

else:

First item -- don’t insert comma

usernames = item.value

else:

Single username field specified

usernames = username.value

If a field represents an uploaded file, the value attribute reads the entire file in memory as a string. This
may not be what you want. You can test for an uploaded file by testing either the filename attribute or
the file attribute. You can then read the data at leasure from the file attribute:

fileitem = form["userfile"]

if fileitem.file:

It’s an uploaded file; count lines

linecount = 0

while 1:

line = fileitem.file.readline()

if not line: break

linecount = linecount + 1

The file upload draft standard entertains the possibility of uploading multiple files from one field (using a
recursive multipart/* encoding). When this occurs, the item will be a dictionary-like FieldStorage item.
This can be determined by testing its type attribute, which should be multipart/form-data (or perhaps
another MIME type matching multipart/*). In this case, it can be iterated over recursively just like the
top-level form object.

When a form is submitted in the “old” format (as the query string or as a single data part of type
application/x-www-form-urlencoded), the items will actually be instances of the class MiniFieldStorage. In
this case, the list, file and filename attributes are always None.

11.1.3 Old classes

These classes, present in earlier versions of the cgi module, are still supported for backward compatibility.
New applications should use the FieldStorage class.

SvFormContentDict stores single value form content as dictionary; it assumes each field name occurs in
the form only once.

FormContentDict stores multiple value form content as a dictionary (the form items are lists of values).
Useful if your form contains multiple fields with the same name.

Other classes (FormContent, InterpFormContentDict) are present for backwards compatibility with
really old applications only. If you still use these and would be inconvenienced when they disappeared
from a next version of this module, drop me a note.

11.1.4 Functions

These are useful if you want more control, or if you want to employ some of the algorithms implemented
in this module in other circumstances.

11.1. cgi — Common Gateway Interface support. 205

parse(fp)
Parse a query in the environment or from a file (default sys.stdin).

parse qs(qs[, keep blank values, strict parsing])
Parse a query string given as a string argument (data of type application/x-www-form-urlencoded).
Data are returned as a dictionary. The dictionary keys are the unique query variable names and
the values are lists of values for each name.

The optional argument keep blank values is a flag indicating whether blank values in URL encoded
queries should be treated as blank strings. A true value indicates that blanks should be retained
as blank strings. The default false value indicates that blank values are to be ignored and treated
as if they were not included.

The optional argument strict parsing is a flag indicating what to do with parsing errors. If false
(the default), errors are silently ignored. If true, errors raise a ValueError exception.

parse qsl(qs[, keep blank values, strict parsing])
Parse a query string given as a string argument (data of type application/x-www-form-urlencoded).
Data are returned as a list of name, value pairs.

The optional argument keep blank values is a flag indicating whether blank values in URL encoded
queries should be treated as blank strings. A true value indicates that blanks should be retained
as blank strings. The default false value indicates that blank values are to be ignored and treated
as if they were not included.

The optional argument strict parsing is a flag indicating what to do with parsing errors. If false
(the default), errors are silently ignored. If true, errors raise a ValueError exception.

parse multipart(fp, pdict)
Parse input of type multipart/form-data (for file uploads). Arguments are fp for the input file and
pdict for the dictionary containing other parameters of content-type header

Returns a dictionary just like parse qs() keys are the field names, each value is a list of values for
that field. This is easy to use but not much good if you are expecting megabytes to be uploaded
— in that case, use the FieldStorage class instead which is much more flexible. Note that
content-type is the raw, unparsed contents of the content-type header.

Note that this does not parse nested multipart parts — use FieldStorage for that.

parse header(string)
Parse a header like content-type into a main content-type and a dictionary of parameters.

test()
Robust test CGI script, usable as main program. Writes minimal HTTP headers and formats all
information provided to the script in HTML form.

print environ()
Format the shell environment in HTML.

print form(form)
Format a form in HTML.

print directory()
Format the current directory in HTML.

print environ usage()
Print a list of useful (used by CGI) environment variables in HTML.

escape(s[, quote])
Convert the characters ‘&’, ‘<’ and ‘>’ in string s to HTML-safe sequences. Use this if you need
to display text that might contain such characters in HTML. If the optional flag quote is true, the
double quote character (‘"’) is also translated; this helps for inclusion in an HTML attribute value,
e.g. in .

206 Chapter 11. Internet Protocols and Support

11.1.5 Caring about security

There’s one important rule: if you invoke an external program (e.g. via the os.system() or os.popen()
functions), make very sure you don’t pass arbitrary strings received from the client to the shell. This is
a well-known security hole whereby clever hackers anywhere on the web can exploit a gullible CGI script
to invoke arbitrary shell commands. Even parts of the URL or field names cannot be trusted, since the
request doesn’t have to come from your form!

To be on the safe side, if you must pass a string gotten from a form to a shell command, you should
make sure the string contains only alphanumeric characters, dashes, underscores, and periods.

11.1.6 Installing your CGI script on a Unix system

Read the documentation for your HTTP server and check with your local system administrator to find
the directory where CGI scripts should be installed; usually this is in a directory ‘cgi-bin’ in the server
tree.

Make sure that your script is readable and executable by “others”; the Unix file mode should be 0755
octal (use ‘chmod 0755 filename’). Make sure that the first line of the script contains #! starting in
column 1 followed by the pathname of the Python interpreter, for instance:

#!/usr/local/bin/python

Make sure the Python interpreter exists and is executable by “others”.

Make sure that any files your script needs to read or write are readable or writable, respectively, by
“others” — their mode should be 0644 for readable and 0666 for writable. This is because, for security
reasons, the HTTP server executes your script as user “nobody”, without any special privileges. It
can only read (write, execute) files that everybody can read (write, execute). The current directory at
execution time is also different (it is usually the server’s cgi-bin directory) and the set of environment
variables is also different from what you get at login. In particular, don’t count on the shell’s search path
for executables ($PATH) or the Python module search path ($PYTHONPATH) to be set to anything
interesting.

If you need to load modules from a directory which is not on Python’s default module search path, you
can change the path in your script, before importing other modules, e.g.:

import sys

sys.path.insert(0, "/usr/home/joe/lib/python")

sys.path.insert(0, "/usr/local/lib/python")

(This way, the directory inserted last will be searched first!)

Instructions for non-Unix systems will vary; check your HTTP server’s documentation (it will usually
have a section on CGI scripts).

11.1.7 Testing your CGI script

Unfortunately, a CGI script will generally not run when you try it from the command line, and a script
that works perfectly from the command line may fail mysteriously when run from the server. There’s
one reason why you should still test your script from the command line: if it contains a syntax error, the
Python interpreter won’t execute it at all, and the HTTP server will most likely send a cryptic error to
the client.

Assuming your script has no syntax errors, yet it does not work, you have no choice but to read the next
section.

11.1. cgi — Common Gateway Interface support. 207

11.1.8 Debugging CGI scripts

First of all, check for trivial installation errors — reading the section above on installing your CGI
script carefully can save you a lot of time. If you wonder whether you have understood the installation
procedure correctly, try installing a copy of this module file (‘cgi.py’) as a CGI script. When invoked as a
script, the file will dump its environment and the contents of the form in HTML form. Give it the right
mode etc, and send it a request. If it’s installed in the standard ‘cgi-bin’ directory, it should be possible
to send it a request by entering a URL into your browser of the form:

http://yourhostname/cgi-bin/cgi.py?name=Joe+Blow&addr=At+Home

If this gives an error of type 404, the server cannot find the script – perhaps you need to install it in a
different directory. If it gives another error (e.g. 500), there’s an installation problem that you should
fix before trying to go any further. If you get a nicely formatted listing of the environment and form
content (in this example, the fields should be listed as “addr” with value “At Home” and “name” with
value “Joe Blow”), the ‘cgi.py’ script has been installed correctly. If you follow the same procedure for
your own script, you should now be able to debug it.

The next step could be to call the cgi module’s test() function from your script: replace its main code
with the single statement

cgi.test()

This should produce the same results as those gotten from installing the ‘cgi.py’ file itself.

When an ordinary Python script raises an unhandled exception (e.g. because of a typo in a module name,
a file that can’t be opened, etc.), the Python interpreter prints a nice traceback and exits. While the
Python interpreter will still do this when your CGI script raises an exception, most likely the traceback
will end up in one of the HTTP server’s log file, or be discarded altogether.

Fortunately, once you have managed to get your script to execute some code, it is easy to catch exceptions
and cause a traceback to be printed. The test() function below in this module is an example. Here are
the rules:

1. Import the traceback module before entering the try ... except statement

2. Assign sys.stderr to be sys.stdout

3. Make sure you finish printing the headers and the blank line early

4. Wrap all remaining code in a try ... except statement

5. In the except clause, call traceback.print exc()

For example:

import sys

import traceback

print "Content-type: text/html"

print

sys.stderr = sys.stdout

try:

...your code here...

except:

print "\n\n<PRE>"

traceback.print_exc()

208 Chapter 11. Internet Protocols and Support

Notes: The assignment to sys.stderr is needed because the traceback prints to sys.stderr. The print
"\n\n<PRE>" statement is necessary to disable the word wrapping in HTML.

If you suspect that there may be a problem in importing the traceback module, you can use an even
more robust approach (which only uses built-in modules):

import sys

sys.stderr = sys.stdout

print "Content-type: text/plain"

print

...your code here...

This relies on the Python interpreter to print the traceback. The content type of the output is set to
plain text, which disables all HTML processing. If your script works, the raw HTML will be displayed by
your client. If it raises an exception, most likely after the first two lines have been printed, a traceback
will be displayed. Because no HTML interpretation is going on, the traceback will readable.

11.1.9 Common problems and solutions

• Most HTTP servers buffer the output from CGI scripts until the script is completed. This means
that it is not possible to display a progress report on the client’s display while the script is running.

• Check the installation instructions above.

• Check the HTTP server’s log files. (‘tail -f logfile’ in a separate window may be useful!)

• Always check a script for syntax errors first, by doing something like ‘python script.py’.

• When using any of the debugging techniques, don’t forget to add ‘import sys’ to the top of the
script.

• When invoking external programs, make sure they can be found. Usually, this means using absolute
path names — $PATH is usually not set to a very useful value in a CGI script.

• When reading or writing external files, make sure they can be read or written by every user on the
system.

• Don’t try to give a CGI script a set-uid mode. This doesn’t work on most systems, and is a security
liability as well.

11.2 urllib — Open an arbitrary resource by URL

This module provides a high-level interface for fetching data across the World-Wide Web. In particular,
the urlopen() function is similar to the built-in function open(), but accepts Universal Resource Loca-
tors (URLs) instead of filenames. Some restrictions apply — it can only open URLs for reading, and no
seek operations are available.

It defines the following public functions:

urlopen(url[, data])
Open a network object denoted by a URL for reading. If the URL does not have a scheme identifier,
or if it has ‘file:’ as its scheme identifier, this opens a local file; otherwise it opens a socket to a
server somewhere on the network. If the connection cannot be made, or if the server returns an
error code, the IOError exception is raised. If all went well, a file-like object is returned. This
supports the following methods: read(), readline(), readlines(), fileno(), close(), info()
and geturl().

Except for the info() and geturl() methods, these methods have the same interface as for file
objects — see section 2.1.7 in this manual. (It is not a built-in file object, however, so it can’t be
used at those few places where a true built-in file object is required.)

11.2. urllib — Open an arbitrary resource by URL 209

The info() method returns an instance of the class mimetools.Message containing meta-
information associated with the URL. When the method is HTTP, these headers are those returned
by the server at the head of the retrieved HTML page (including Content-Length and Content-
Type). When the method is FTP, a Content-Length header will be present if (as is now usual)
the server passed back a file length in response to the FTP retrieval request. When the method is
local-file, returned headers will include a Date representing the file’s last-modified time, a Content-
Length giving file size, and a Content-Type containing a guess at the file’s type. See also the
description of the mimetools module.

The geturl() method returns the real URL of the page. In some cases, the HTTP server redirects
a client to another URL. The urlopen() function handles this transparently, but in some cases the
caller needs to know which URL the client was redirected to. The geturl() method can be used
to get at this redirected URL.

If the url uses the ‘http:’ scheme identifier, the optional data argument may be given to specify a
POST request (normally the request type is GET). The data argument must in standard ‘application/x-

www-form-urlencoded’ format; see the urlencode() function below.

The urlopen() function works transparently with proxies. In a Unix or Windows environment,
set the $http proxy, $ftp proxy or $gopher proxy environment variables to a URL that identifies
the proxy server before starting the Python interpreter. For example (the ‘%’ is the command
prompt):

% http_proxy="http://www.someproxy.com:3128"

% export http_proxy

% python

...

In a Macintosh environment, urlopen() will retrieve proxy information from Internet Config.

The urlopen() function works transparently with proxies. In a Unix or Windows environment,
set the $http proxy, $ftp proxy or $gopher proxy environment variables to a URL that identifies
the proxy server before starting the Python interpreter, e.g.:

% http_proxy="http://www.someproxy.com:3128"

% export http_proxy

% python

...

In a Macintosh environment, urlopen() will retrieve proxy information from Internet Config.

urlretrieve(url[, filename[, hook]])
Copy a network object denoted by a URL to a local file, if necessary. If the URL points to a local
file, or a valid cached copy of the object exists, the object is not copied. Return a tuple (filename,
headers) where filename is the local file name under which the object can be found, and headers is
either None (for a local object) or whatever the info() method of the object returned by urlopen()
returned (for a remote object, possibly cached). Exceptions are the same as for urlopen().

The second argument, if present, specifies the file location to copy to (if absent, the location will be
a tempfile with a generated name). The third argument, if present, is a hook function that will be
called once on establishment of the network connection and once after each block read thereafter.
The hook will be passed three arguments; a count of blocks transferred so far, a block size in bytes,
and the total size of the file. The third argument may be -1 on older FTP servers which do not
return a file size in response to a retrieval request.

urlcleanup()
Clear the cache that may have been built up by previous calls to urlretrieve().

quote(string[, safe])
Replace special characters in string using the ‘%xx’ escape. Letters, digits, and the characters
‘ ,.-’ are never quoted. The optional safe parameter specifies additional characters that should
not be quoted — its default value is ’/’.

Example: quote(’/~connolly/’) yields ’/%7econnolly/’.

210 Chapter 11. Internet Protocols and Support

quote plus(string[, safe])
Like quote(), but also replaces spaces by plus signs, as required for quoting HTML form values.
Plus signs in the original string are escaped unless they are included in safe.

unquote(string)
Replace ‘%xx’ escapes by their single-character equivalent.

Example: unquote(’/%7Econnolly/’) yields ’/~connolly/’.

unquote plus(string)
Like unquote(), but also replaces plus signs by spaces, as required for unquoting HTML form
values.

urlencode(dict)
Convert a dictionary to a “url-encoded” string, suitable to pass to urlopen() above as the optional
data argument. This is useful to pass a dictionary of form fields to a POST request. The resulting
string is a series of key=value pairs separated by ‘&’ characters, where both key and value are
quoted using quote plus() above.

The public functions urlopen() and urlretrieve() create an instance of the FancyURLopener class
and use it to perform their requested actions. To override this functionality, programmers can create a
subclass of URLopener or FancyURLopener, then assign that class to the urllib. urlopener variable before
calling the desired function. For example, applications may want to specify a different user-agent header
than URLopener defines. This can be accomplished with the following code:

class AppURLopener(urllib.FancyURLopener):

def __init__(self, *args):

apply(urllib.FancyURLopener.__init__, (self,) + args)

self.version = "App/1.7"

urllib._urlopener = AppURLopener

URLopener([proxies[, **x509]])
Base class for opening and reading URLs. Unless you need to support opening objects using
schemes other than ‘http:’, ‘ftp:’, ‘gopher:’ or ‘file:’, you probably want to use FancyURLopener.

By default, the URLopener class sends a user-agent header of ‘urllib/VVV ’, where VVV is
the urllib version number. Applications can define their own user-agent header by subclassing
URLopener or FancyURLopener and setting the instance attribute version to an appropriate string
value before the open() method is called.

Additional keyword parameters, collected in x509 , are used for authentication with the ‘https:’
scheme. The keywords key file and cert file are supported; both are needed to actually retrieve a
resource at an ‘https:’ URL.

FancyURLopener(...)
FancyURLopener subclasses URLopener providing default handling for the following HTTP response
codes: 301, 302 or 401. For 301 and 302 response codes, the location header is used to fetch
the actual URL. For 401 response codes (authentication required), basic HTTP authentication is
performed.

The parameters to the constructor are the same as those for URLopener.

Restrictions:

• Currently, only the following protocols are supported: HTTP, (versions 0.9 and 1.0), Gopher (but
not Gopher-+), FTP, and local files.

• The caching feature of urlretrieve() has been disabled until I find the time to hack proper
processing of Expiration time headers.

• There should be a function to query whether a particular URL is in the cache.

11.2. urllib — Open an arbitrary resource by URL 211

• For backward compatibility, if a URL appears to point to a local file but the file can’t be opened, the
URL is re-interpreted using the FTP protocol. This can sometimes cause confusing error messages.

• The urlopen() and urlretrieve() functions can cause arbitrarily long delays while waiting for a
network connection to be set up. This means that it is difficult to build an interactive web client
using these functions without using threads.

• The data returned by urlopen() or urlretrieve() is the raw data returned by the server. This
may be binary data (e.g. an image), plain text or (for example) HTML. The HTTP protocol pro-
vides type information in the reply header, which can be inspected by looking at the content-type
header. For the Gopher protocol, type information is encoded in the URL; there is currently no
easy way to extract it. If the returned data is HTML, you can use the module htmllib to parse it.

• Although the urllib module contains (undocumented) routines to parse and unparse URL strings,
the recommended interface for URL manipulation is in module urlparse.

11.2.1 URLopener Objects

URLopener and FancyURLopener objects have the following methodsL

open(fullurl[, data])
Open fullurl using the appropriate protocol. This method sets up cache and proxy information,
then calls the appropriate open method with its input arguments. If the scheme is not recognized,
open unknown() is called. The data argument has the same meaning as the data argument of
urlopen().

open unknown(fullurl[, data])
Overridable interface to open unknown URL types.

retrieve(url[, filename[, reporthook]])
Retrieves the contents of url and places it in filename. The return value is a tuple consisting of a
local filename and either a mimetools.Message object containing the response headers (for remote
URLs) or None (for local URLs). The caller must then open and read the contents of filename. If
filename is not given and the URL refers to a local file, the input filename is returned. If the URL
is non-local and filename is not given, the filename is the output of tempfile.mktemp() with a
suffix that matches the suffix of the last path component of the input URL. If reporthook is given,
it must be a function accepting three numeric parameters. It will be called after each chunk of
data is read from the network. reporthook is ignored for local URLs.

11.2.2 Examples

Here is an example session that uses the ‘GET’ method to retrieve a URL containing parameters:

>>> import urllib

>>> params = urllib.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})

>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query?%s" % params)

>>> print f.read()

The following example uses the ‘POST’ method instead:

>>> import urllib

>>> params = urllib.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})

>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query", params)

>>> print f.read()

212 Chapter 11. Internet Protocols and Support

11.3 httplib — HTTP protocol client

This module defines a class which implements the client side of the HTTP protocol. It is normally not
used directly — the module urllib uses it to handle URLs that use HTTP.

The module defines one class, HTTP:

HTTP([host[, port]])
An HTTP instance represents one transaction with an HTTP server. It should be instantiated
passing it a host and optional port number. If no port number is passed, the port is extracted
from the host string if it has the form host:port , else the default HTTP port (80) is used. If no
host is passed, no connection is made, and the connect() method should be used to connect to a
server. For example, the following calls all create instances that connect to the server at the same
host and port:

>>> h1 = httplib.HTTP(’www.cwi.nl’)

>>> h2 = httplib.HTTP(’www.cwi.nl:80’)

>>> h3 = httplib.HTTP(’www.cwi.nl’, 80)

Once an HTTP instance has been connected to an HTTP server, it should be used as follows:

1.Make exactly one call to the putrequest() method.

2.Make zero or more calls to the putheader() method.

3.Call the endheaders() method (this can be omitted if step 4 makes no calls).

4.Optional calls to the send() method.

5.Call the getreply() method.

6.Call the getfile() method and read the data off the file object that it returns.

11.3.1 HTTP Objects

HTTP instances have the following methods:

set debuglevel(level)
Set the debugging level (the amount of debugging output printed). The default debug level is 0,
meaning no debugging output is printed.

connect(host[, port])
Connect to the server given by host and port . See the intro for the default port. This should be
called directly only if the instance was instantiated without passing a host.

send(data)
Send data to the server. This should be used directly only after the endheaders() method has
been called and before getreply() has been called.

putrequest(request, selector)
This should be the first call after the connection to the server has been made. It sends a line to
the server consisting of the request string, the selector string, and the HTTP version (HTTP/1.0).

putheader(header, argument[, ...])
Send an RFC 822 style header to the server. It sends a line to the server consisting of the header,
a colon and a space, and the first argument. If more arguments are given, continuation lines are
sent, each consisting of a tab and an argument.

endheaders()
Send a blank line to the server, signalling the end of the headers.

getreply()
Complete the request by shutting down the sending end of the socket, read the reply from the
server, and return a triple (replycode, message, headers). Here, replycode is the integer reply
code from the request (e.g., 200 if the request was handled properly); message is the message

11.3. httplib — HTTP protocol client 213

string corresponding to the reply code; and headers is an instance of the class mimetools.Message
containing the headers received from the server. See the description of the mimetools module.

getfile()
Return a file object from which the data returned by the server can be read, using the read(),
readline() or readlines() methods.

11.3.2 Example

Here is an example session:

>>> import httplib

>>> h = httplib.HTTP(’www.cwi.nl’)

>>> h.putrequest(’GET’, ’/index.html’)

>>> h.putheader(’Accept’, ’text/html’)

>>> h.putheader(’Accept’, ’text/plain’)

>>> h.endheaders()

>>> errcode, errmsg, headers = h.getreply()

>>> print errcode # Should be 200

>>> f = h.getfile()

>>> data = f.read() # Get the raw HTML

>>> f.close()

11.4 ftplib — FTP protocol client

This module defines the class FTP and a few related items. The FTP class implements the client side of
the FTP protocol. You can use this to write Python programs that perform a variety of automated FTP
jobs, such as mirroring other ftp servers. It is also used by the module urllib to handle URLs that use
FTP. For more information on FTP (File Transfer Protocol), see Internet RFC 959.

Here’s a sample session using the ftplib module:

>>> from ftplib import FTP

>>> ftp = FTP(’ftp.cwi.nl’) # connect to host, default port

>>> ftp.login() # user anonymous, passwd user@hostname

>>> ftp.retrlines(’LIST’) # list directory contents

total 24418

drwxrwsr-x 5 ftp-usr pdmaint 1536 Mar 20 09:48 .

dr-xr-srwt 105 ftp-usr pdmaint 1536 Mar 21 14:32 ..

-rw-r--r-- 1 ftp-usr pdmaint 5305 Mar 20 09:48 INDEX

.

.

.

>>> ftp.retrbinary(’RETR README’, open(’README’, ’wb’).write)

’226 Transfer complete.’

>>> ftp.quit()

The module defines the following items:

FTP([host[, user[, passwd[, acct]]]])
Return a new instance of the FTP class. When host is given, the method call connect(host) is
made. When user is given, additionally the method call login(user, passwd, acct) is made
(where passwd and acct default to the empty string when not given).

all errors
The set of all exceptions (as a tuple) that methods of FTP instances may raise as a result of problems

214 Chapter 11. Internet Protocols and Support

with the FTP connection (as opposed to programming errors made by the caller). This set includes
the four exceptions listed below as well as socket.error and IOError.

error reply
Exception raised when an unexpected reply is received from the server.

error temp
Exception raised when an error code in the range 400–499 is received.

error perm
Exception raised when an error code in the range 500–599 is received.

error proto
Exception raised when a reply is received from the server that does not begin with a digit in the
range 1–5.

See Also:

Module netrc (section 12.21):
Parser for the ‘.netrc’ file format. The file ‘.netrc’ is typically used by FTP clients to load user
authentication information before prompting the user.

The file ‘Tools/scripts/ftpmirror.py’ in the Python source distribution is a script that can mirror FTP sites,
or portions thereof, using the ftplib module. It can be used as an extended example that applies this
module.

11.4.1 FTP Objects

Several methods are available in two flavors: one for handling text files and another for binary files.
These are named for the command which is used followed by ‘lines’ for the text version or ‘binary’ for
the binary version.

FTP instances have the following methods:

set debuglevel(level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The
default, 0, produces no debugging output. A value of 1 produces a moderate amount of debugging
output, generally a single line per request. A value of 2 or higher produces the maximum amount
of debugging output, logging each line sent and received on the control connection.

connect(host[, port])
Connect to the given host and port. The default port number is 21, as specified by the FTP
protocol specification. It is rarely needed to specify a different port number. This function should
be called only once for each instance; it should not be called at all if a host was given when the
instance was created. All other methods can only be used after a connection has been made.

getwelcome()
Return the welcome message sent by the server in reply to the initial connection. (This message
sometimes contains disclaimers or help information that may be relevant to the user.)

login([user[, passwd[, acct]]])
Log in as the given user . The passwd and acct parameters are optional and default to the empty
string. If no user is specified, it defaults to ’anonymous’. If user is ’anonymous’, the default
passwd is ‘realuser@host ’ where realuser is the real user name (glanced from the $LOGNAME or
$USER environment variable) and host is the hostname as returned by socket.gethostname().
This function should be called only once for each instance, after a connection has been established;
it should not be called at all if a host and user were given when the instance was created. Most
FTP commands are only allowed after the client has logged in.

abort()
Abort a file transfer that is in progress. Using this does not always work, but it’s worth a try.

sendcmd(command)
Send a simple command string to the server and return the response string.

11.4. ftplib — FTP protocol client 215

voidcmd(command)
Send a simple command string to the server and handle the response. Return nothing if a response
code in the range 200–299 is received. Raise an exception otherwise.

retrbinary(command, callback[, maxblocksize])
Retrieve a file in binary transfer mode. command should be an appropriate ‘RETR’ command,
i.e. ’RETR filename’. The callback function is called for each block of data received, with a single
string argument giving the data block. The optional maxblocksize argument specifies the maximum
chunk size to read on the low-level socket object created to do the actual transfer (which will also
be the largest size of the data blocks passed to callback). A reasonable default is chosen.

retrlines(command[, callback])
Retrieve a file or directory listing in ascii transfer mode. command should be an appropriate
‘RETR’ command (see retrbinary() or a ‘LIST’ command (usually just the string ’LIST’). The
callback function is called for each line, with the trailing CRLF stripped. The default callback
prints the line to sys.stdout.

set pasv(boolean)
Enable “passive” mode if boolean is true, other disable passive mode.

storbinary(command, file, blocksize)
Store a file in binary transfer mode. command should be an appropriate ‘STOR’ command, i.e.
"STOR filename". file is an open file object which is read until eof using its read() method in
blocks of size blocksize to provide the data to be stored.

storlines(command, file)
Store a file in ascii transfer mode. command should be an appropriate ‘STOR’ command (see
storbinary()). Lines are read until eof from the open file object file using its readline()
method to provide the data to be stored.

transfercmd(cmd)
Initiate a transfer over the data connection. If the transfer is active, send a ‘PORT’ command and
the transfer command specified by cmd , and accept the connection. If the server is passive, send a
‘PASV’ command, connect to it, and start the transfer command. Either way, return the socket for
the connection.

ntransfercmd(cmd)
Like transfercmd(), but returns a tuple of the data connection and the expected size of the data.
If the expected size could not be computed, None will be returned as the expected size.

nlst(argument[, . . .])
Return a list of files as returned by the ‘NLST’ command. The optional argument is a directory to
list (default is the current server directory). Multiple arguments can be used to pass non-standard
options to the ‘NLST’ command.

dir(argument[, . . .])
Produce a directory listing as returned by the ‘LIST’ command, printing it to standard output.
The optional argument is a directory to list (default is the current server directory). Multiple
arguments can be used to pass non-standard options to the ‘LIST’ command. If the last argument
is a function, it is used as a callback function as for retrlines(); the default prints to sys.stdout.
This method returns None.

rename(fromname, toname)
Rename file fromname on the server to toname.

delete(filename)
Remove the file named filename from the server. If successful, returns the text of the response,
otherwise raises error perm on permission errors or error reply on other errors.

cwd(pathname)
Set the current directory on the server.

mkd(pathname)
Create a new directory on the server.

216 Chapter 11. Internet Protocols and Support

pwd()
Return the pathname of the current directory on the server.

rmd(dirname)
Remove the directory named dirname on the server.

size(filename)
Request the size of the file named filename on the server. On success, the size of the file is returned
as an integer, otherwise None is returned. Note that the ‘SIZE’ command is not standardized, but
is supported by many common server implementations.

quit()
Send a ‘QUIT’ command to the server and close the connection. This is the “polite” way to close
a connection, but it may raise an exception of the server reponds with an error to the ‘QUIT’
command. This implies a call to the close() method which renders the FTP instance useless for
subsequent calls (see below).

close()
Close the connection unilaterally. This should not be applied to an already closed connection (e.g.
after a successful call to quit(). After this call the FTP instance should not be used any more (i.e.,
after a call to close() or quit() you cannot reopen the connection by issueing another login()
method).

11.5 gopherlib — Gopher protocol client

This module provides a minimal implementation of client side of the the Gopher protocol. It is used by
the module urllib to handle URLs that use the Gopher protocol.

The module defines the following functions:

send selector(selector, host[, port])
Send a selector string to the gopher server at host and port (default 70). Returns an open file
object from which the returned document can be read.

send query(selector, query, host[, port])
Send a selector string and a query string to a gopher server at host and port (default 70). Returns
an open file object from which the returned document can be read.

Note that the data returned by the Gopher server can be of any type, depending on the first character
of the selector string. If the data is text (first character of the selector is ‘0’), lines are terminated by
CRLF, and the data is terminated by a line consisting of a single ‘.’, and a leading ‘.’ should be stripped
from lines that begin with ‘..’. Directory listings (first character of the selector is ‘1’) are transferred
using the same protocol.

11.6 poplib — POP3 protocol client

This module defines a class, POP3, which encapsulates a connection to an POP3 server and implements
protocol as defined in RFC 1725. The POP3 class supports both the minmal and optional command sets.

A single class is provided by the poplib module:

POP3(host[, port])
This class implements the actual POP3 protocol. The connection is created when the instance is
initialized. If port is omitted, the standard POP3 port (110) is used.

One exception is defined as an attribute of the poplib module:

error proto
Exception raised on any errors. The reason for the exception is passed to the constructor as a
string.

11.5. gopherlib — Gopher protocol client 217

11.6.1 POP3 Objects

All POP3 commands are represented by methods of the same name, in lower-case; most return the
response text sent by the server.

An POP3 instance has the following methods:

getwelcome()
Returns the greeting string sent by the POP3 server.

user(username)
Send user commad, response should indicate that a password is required.

pass (password)
Send password, response includes message count and mailbox size. Note: the mailbox on the server
is locked until quit() is called.

apop(user, secret)
Use the more secure APOP authentication to log into the POP3 server.

rpop(user)
Use RPOP authentication (similar to UNIX r-commands) to log into POP3 server.

stat()
Get mailbox status. The result is a tuple of 2 integers: (message count, mailbox size).

list([which])
Request message list, result is in the form (response, [’mesg num octets’, ...]). If which is
set, it is the message to list.

retr(which)
Retrieve whole message number which. Result is in form (response, [’line’, ...], octets).

dele(which)
Delete message number which.

rset()
Remove any deletion marks for the mailbox.

noop()
Do nothing. Might be used as a keep-alive.

quit()
Signoff: commit changes, unlock mailbox, drop connection.

top(which, howmuch)
Retrieves the message header plus howmuch lines of the message after the header of message number
which. Result is in form (response, [’line’, ...], octets).

uidl([which])
Return message digest (unique id) list. If which is specified, result contains the unique id for
that message in the form ’response mesgnum uid , otherwise result is list (response, [’mesgnum
uid’, ...], octets).

11.6.2 POP3 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all
messages:

218 Chapter 11. Internet Protocols and Support

import getpass, poplib

M = poplib.POP3(’localhost’)

M.user(getpass.getuser())

M.pass_(getpass.getpass())

numMessages = len(M.list()[1])

for i in range(numMessages):

for j in M.retr(i+1)[1]:

print j

At the end of the module, there is a test section that contains a more extensive example of usage.

11.7 imaplib — IMAP4 protocol client

This module defines a class, IMAP4, which encapsulates a connection to an IMAP4 server and implements
the IMAP4rev1 client protocol as defined in RFC 2060. It is backward compatible with IMAP4 (RFC
1730) servers, but note that the ‘STATUS’ command is not supported in IMAP4.

A single class is provided by the imaplib module:

IMAP4([host[, port]])
This class implements the actual IMAP4 protocol. The connection is created and protocol version
(IMAP4 or IMAP4rev1) is determined when the instance is initialized. If host is not specified, ’’
(the local host) is used. If port is omitted, the standard IMAP4 port (143) is used.

Two exceptions are defined as attributes of the IMAP4 class:

IMAP4.error
Exception raised on any errors. The reason for the exception is passed to the constructor as a
string.

IMAP4.abort
IMAP4 server errors cause this exception to be raised. This is a sub-class of IMAP4.error. Note
that closing the instance and instantiating a new one will usually allow recovery from this exception.

The following utility functions are defined:

Internaldate2tuple(datestr)
Converts an IMAP4 INTERNALDATE string to Coordinated Universal Time. Returns a time
module tuple.

Int2AP(num)
Converts an integer into a string representation using characters from the set [A .. P].

ParseFlags(flagstr)
Converts an IMAP4 ‘FLAGS’ response to a tuple of individual flags.

Time2Internaldate(date time)
Converts a time module tuple to an IMAP4 ‘INTERNALDATE’ representation. Returns a string in
the form: "DD-Mmm-YYYY HH:MM:SS +HHMM" (including double-quotes).

Note that IMAP4 message numbers change as the mailbox changes, so it is highly advisable to use UIDs
instead, with the UID command.

At the end of the module, there is a test section that contains a more extensive example of usage.

See Also:

Documents describing the protocol, and sources and binaries for servers implementing it, can all be found
at the University of Washington’s IMAP Information Center (http://www.cac.washington.edu/imap/).

11.7. imaplib — IMAP4 protocol client 219

11.7.1 IMAP4 Objects

All IMAP4rev1 commands are represented by methods of the same name, either upper-case or lower-case.

Each command returns a tuple: (type, [data, ...]) where type is usually ’OK’ or ’NO’, and data is
either the text from the command response, or mandated results from the command.

An IMAP4 instance has the following methods:

append(mailbox, flags, date time, message)
Append message to named mailbox.

authenticate(func)
Authenticate command — requires response processing. This is currently unimplemented, and
raises an exception.

check()
Checkpoint mailbox on server.

close()
Close currently selected mailbox. Deleted messages are removed from writable mailbox. This is
the recommended command before ‘LOGOUT’.

copy(message set, new mailbox)
Copy message set messages onto end of new mailbox .

create(mailbox)
Create new mailbox named mailbox .

delete(mailbox)
Delete old mailbox named mailbox .

expunge()
Permanently remove deleted items from selected mailbox. Generates an ‘EXPUNGE’ response for each
deleted message. Returned data contains a list of ‘EXPUNGE’ message numbers in order received.

fetch(message set, message parts)
Fetch (parts of) messages. Returned data are tuples of message part envelope and data.

list([directory[, pattern]])
List mailbox names in directory matching pattern. directory defaults to the top-level mail folder,
and pattern defaults to match anything. Returned data contains a list of ‘LIST’ responses.

login(user, password)
Identify the client using a plaintext password.

logout()
Shutdown connection to server. Returns server ‘BYE’ response.

lsub([directory[, pattern]])
List subscribed mailbox names in directory matching pattern. directory defaults to the top level
directory and pattern defaults to match any mailbox. Returned data are tuples of message part
envelope and data.

recent()
Prompt server for an update. Returned data is None if no new messages, else value of ‘RECENT’
response.

rename(oldmailbox, newmailbox)
Rename mailbox named oldmailbox to newmailbox .

response(code)
Return data for response code if received, or None. Returns the given code, instead of the usual
type.

search(charset, criteria)
Search mailbox for matching messages. Returned data contains a space separated list of matching
message numbers.

220 Chapter 11. Internet Protocols and Support

select([mailbox [, readonly]])
Select a mailbox. Returned data is the count of messages in mailbox (‘EXISTS’ response). The
default mailbox is ’INBOX’. If the readonly flag is set, modifications to the mailbox are not allowed.

status(mailbox, names)
Request named status conditions for mailbox .

store(message set, command, flag list)
Alters flag dispositions for messages in mailbox.

subscribe(mailbox)
Subscribe to new mailbox.

uid(command, args)
Execute command args with messages identified by UID, rather than message number. Returns
response appropriate to command.

unsubscribe(mailbox)
Unsubscribe from old mailbox.

xatom(name[, arg1 [, arg2]])
Allow simple extension commands notified by server in ‘CAPABILITY’ response.

The following attributes are defined on instances of IMAP4:

PROTOCOL VERSION
The most recent supported protocol in the ‘CAPABILITY’ response from the server.

debug
Integer value to control debugging output. The initialize value is taken from the module variable
Debug. Values greater than three trace each command.

11.7.2 IMAP4 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all
messages:

import getpass, imaplib, string

M = imaplib.IMAP4()

M.login(getpass.getuser(), getpass.getpass())

M.select()

typ, data = M.search(None, ’ALL’)

for num in string.split(data[0]):

typ, data = M.fetch(num, ’(RFC822)’)

print ’Message %s\n%s\n’ % (num, data[0][1])

M.logout()

11.8 nntplib — NNTP protocol client

This module defines the class NNTP which implements the client side of the NNTP protocol. It can be
used to implement a news reader or poster, or automated news processors. For more information on
NNTP (Network News Transfer Protocol), see Internet RFC 977.

Here are two small examples of how it can be used. To list some statistics about a newsgroup and print
the subjects of the last 10 articles:

11.8. nntplib — NNTP protocol client 221

>>> s = NNTP(’news.cwi.nl’)

>>> resp, count, first, last, name = s.group(’comp.lang.python’)

>>> print ’Group’, name, ’has’, count, ’articles, range’, first, ’to’, last

Group comp.lang.python has 59 articles, range 3742 to 3803

>>> resp, subs = s.xhdr(’subject’, first + ’-’ + last)

>>> for id, sub in subs[-10:]: print id, sub

...

3792 Re: Removing elements from a list while iterating...

3793 Re: Who likes Info files?

3794 Emacs and doc strings

3795 a few questions about the Mac implementation

3796 Re: executable python scripts

3797 Re: executable python scripts

3798 Re: a few questions about the Mac implementation

3799 Re: PROPOSAL: A Generic Python Object Interface for Python C Modules

3802 Re: executable python scripts

3803 Re: \POSIX{} wait and SIGCHLD

>>> s.quit()

’205 news.cwi.nl closing connection. Goodbye.’

To post an article from a file (this assumes that the article has valid headers):

>>> s = NNTP(’news.cwi.nl’)

>>> f = open(’/tmp/article’)

>>> s.post(f)

’240 Article posted successfully.’

>>> s.quit()

’205 news.cwi.nl closing connection. Goodbye.’

The module itself defines the following items:

NNTP(host[, port [, user[, password]]])
Return a new instance of the NNTP class, representing a connection to the NNTP server running on
host host , listening at port port . The default port is 119. If the optional user and password are pro-
vided, the ‘AUTHINFO USER’ and ‘AUTHINFO PASS’ commands are used to identify and authenticate
the user to the server.

error reply
Exception raised when an unexpected reply is received from the server.

error temp
Exception raised when an error code in the range 400–499 is received.

error perm
Exception raised when an error code in the range 500–599 is received.

error proto
Exception raised when a reply is received from the server that does not begin with a digit in the
range 1–5.

11.8.1 NNTP Objects

NNTP instances have the following methods. The response that is returned as the first item in the return
tuple of almost all methods is the server’s response: a string beginning with a three-digit code. If the
server’s response indicates an error, the method raises one of the above exceptions.

getwelcome()
Return the welcome message sent by the server in reply to the initial connection. (This message
sometimes contains disclaimers or help information that may be relevant to the user.)

222 Chapter 11. Internet Protocols and Support

set debuglevel(level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The
default, 0, produces no debugging output. A value of 1 produces a moderate amount of debugging
output, generally a single line per request or response. A value of 2 or higher produces the
maximum amount of debugging output, logging each line sent and received on the connection
(including message text).

newgroups(date, time)
Send a ‘NEWGROUPS’ command. The date argument should be a string of the form ’yymmdd’
indicating the date, and time should be a string of the form ’hhmmss’ indicating the time. Return
a pair (response, groups) where groups is a list of group names that are new since the given date
and time.

newnews(group, date, time)
Send a ‘NEWNEWS’ command. Here, group is a group name or ’*’, and date and time have the same
meaning as for newgroups(). Return a pair (response, articles) where articles is a list of article
ids.

list()
Send a ‘LIST’ command. Return a pair (response, list) where list is a list of tuples. Each tuple
has the form (group, last, first, flag), where group is a group name, last and first are the last
and first article numbers (as strings), and flag is ’y’ if posting is allowed, ’n’ if not, and ’m’ if
the newsgroup is moderated. (Note the ordering: last , first .)

group(name)
Send a ‘GROUP’ command, where name is the group name. Return a tuple (response, count,
first, last, name) where count is the (estimated) number of articles in the group, first is the first
article number in the group, last is the last article number in the group, and name is the group
name. The numbers are returned as strings.

help()
Send a ‘HELP’ command. Return a pair (response, list) where list is a list of help strings.

stat(id)
Send a ‘STAT’ command, where id is the message id (enclosed in ‘<’ and ‘>’) or an article number
(as a string). Return a triple (response, number, id) where number is the article number (as a
string) and id is the article id (enclosed in ‘<’ and ‘>’).

next()
Send a ‘NEXT’ command. Return as for stat().

last()
Send a ‘LAST’ command. Return as for stat().

head(id)
Send a ‘HEAD’ command, where id has the same meaning as for stat(). Return a tuple (response,
number, id, list) where the first three are the same as for stat(), and list is a list of the article’s
headers (an uninterpreted list of lines, without trailing newlines).

body(id)
Send a ‘BODY’ command, where id has the same meaning as for stat(). Return as for head().

article(id)
Send a ‘ARTICLE’ command, where id has the same meaning as for stat(). Return as for head().

slave()
Send a ‘SLAVE’ command. Return the server’s response.

xhdr(header, string)
Send an ‘XHDR’ command. This command is not defined in the RFC but is a common extension.
The header argument is a header keyword, e.g. ’subject’. The string argument should have the
form ’first-last’ where first and last are the first and last article numbers to search. Return a
pair (response, list), where list is a list of pairs (id, text), where id is an article id (as a string)
and text is the text of the requested header for that article.

11.8. nntplib — NNTP protocol client 223

post(file)
Post an article using the ‘POST’ command. The file argument is an open file object which is read
until EOF using its readline() method. It should be a well-formed news article, including the
required headers. The post() method automatically escapes lines beginning with ‘.’.

ihave(id, file)
Send an ‘IHAVE’ command. If the response is not an error, treat file exactly as for the post()
method.

date()
Return a triple (response, date, time), containing the current date and time in a form suitable
for the newnews() and newgroups() methods. This is an optional NNTP extension, and may not
be supported by all servers.

xgtitle(name)
Process an ‘XGTITLE’ command, returning a pair (response, list), where list is a list of tuples
containing (name, title). This is an optional NNTP extension, and may not be supported by all
servers.

xover(start, end)
Return a pair (resp, list). list is a list of tuples, one for each article in the range delimited by the
start and end article numbers. Each tuple is of the form (article number, subject, poster, date,
id, references, size, lines). This is an optional NNTP extension, and may not be supported by
all servers.

xpath(id)
Return a pair (resp, path), where path is the directory path to the article with message ID id .
This is an optional NNTP extension, and may not be supported by all servers.

quit()
Send a ‘QUIT’ command and close the connection. Once this method has been called, no other
methods of the NNTP object should be called.

11.9 smtplib — SMTP protocol client

The smtplib module defines an SMTP client session object that can be used to send mail to any Internet
machine with an SMTP or ESMTP listener daemon. For details of SMTP and ESMTP operation, consult
RFC 821 (Simple Mail Transfer Protocol) and RFC 1869 (SMTP Service Extensions).

SMTP([host[, port]])
A SMTP instance encapsulates an SMTP connection. It has methods that support a full repertoire
of SMTP and ESMTP operations. If the optional host and port parameters are given, the SMTP
connect() method is called with those parameters during initialization. An SMTPConnectError is
raised if the specified host doesn’t respond correctly.

For normal use, you should only require the initialization/connect, sendmail(), and quit() meth-
ods. An example is included below.

A nice selection of exceptions is defined as well:

SMTPException
Base exception class for all exceptions raised by this module.

SMTPServerDisconnected
This exception is raised when the server unexpectedly disconnects, or when an attempt is made to
use the SMTP instance before connecting it to a server.

SMTPResponseException
Base class for all exceptions that include an SMTP error code. These exceptions are generated
in some instances when the SMTP server returns an error code. The error code is stored in the
smtp code attribute of the error, and the smtp error attribute is set to the error message.

SMTPSenderRefused

224 Chapter 11. Internet Protocols and Support

Sender address refused. In addition to the attributes set by on all SMTPResponseException excep-
tions, this sets ‘sender’ to the string that the SMTP server refused.

SMTPRecipientsRefused
All recipient addresses refused. The errors for each recipient are accessable through the attribute
recipients, which is a dictionary of exactly the same sort as SMTP.sendmail() returns.

SMTPDataError
The SMTP server refused to accept the message data.

SMTPConnectError
Error occurred during establishment of a connection with the server.

SMTPHeloError
The server refused our ‘HELO’ message.

See Also:

Internet RFC 821, Simple Mail Transfer Protocol. Available online at
http://info.internet.isi.edu/in-notes/rfc/files/rfc821.txt.

Internet RFC 1869, SMTP Service Extensions. Available online at
http://info.internet.isi.edu/in-notes/rfc/files/rfc1869.txt.

11.9.1 SMTP Objects

An SMTP instance has the following methods:

set debuglevel(level)
Set the debug output level. A true value for level results in debug messages for connection and for
all messages sent to and received from the server.

connect([host[, port]])
Connect to a host on a given port. The defaults are to connect to the local host at the standard
SMTP port (25).
If the hostname ends with a colon (‘:’) followed by a number, that suffix will be stripped off and
the number interpreted as the port number to use.
Note: This method is automatically invoked by the constructor if a host is specified during instan-
tiation.

docmd(cmd, [, argstring])
Send a command cmd to the server. The optional argument argstring is simply concatenated to
the command, separated by a space.
This returns a 2-tuple composed of a numeric response code and the actual response line (multiline
responses are joined into one long line.)
In normal operation it should not be necessary to call this method explicitly. It is used to implement
other methods and may be useful for testing private extensions.
If the connection to the server is lost while waiting for the reply, SMTPServerDisconnected will
be raised.

helo([hostname])
Identify yourself to the SMTP server using ‘HELO’. The hostname argument defaults to the fully
qualified domain name of the local host.
In normal operation it should not be necessary to call this method explicitly. It will be implicitly
called by the sendmail() when necessary.

ehlo([hostname])
Identify yourself to an ESMTP server using ‘EHLO’. The hostname argument defaults to the fully
qualified domain name of the local host. Examine the response for ESMTP option and store them
for use by has option().
Unless you wish to use has option() before sending mail, it should not be necessary to call this
method explicitly. It will be implicitly called by sendmail() when necessary.

11.9. smtplib — SMTP protocol client 225

has extn(name)
Return 1 if name is in the set of SMTP service extensions returned by the server, 0 otherwise.
Case is ignored.

verify(address)
Check the validity of an address on this server using SMTP ‘VRFY’. Returns a tuple consisting of
code 250 and a full RFC 822 address (including human name) if the user address is valid. Otherwise
returns an SMTP error code of 400 or greater and an error string.

Note: many sites disable SMTP ‘VRFY’ in order to foil spammers.

sendmail(from addr, to addrs, msg[, mail options, rcpt options])
Send mail. The required arguments are an RFC 822 from-address string, a list of RFC 822 to-
address strings, and a message string. The caller may pass a list of ESMTP options (such as
‘8bitmime’) to be used in ‘MAIL FROM’ commands as mail options . ESMTP options (such as ‘DSN’
commands) that should be used with all ‘RCPT’ commands can be passed as rcpt options . (If you
need to use different ESMTP options to different recipients you have to use the low-level methods
such as mail, rcpt and data to send the message.)

Note: The from addr and to addrs parameters are used to construct the message envelope used
by the transport agents. The SMTP does not modify the message headers in any way.

If there has been no previous ‘EHLO’ or ‘HELO’ command this session, this method tries ESMTP
‘EHLO’ first. If the server does ESMTP, message size and each of the specified options will be passed
to it (if the option is in the feature set the server advertises). If ‘EHLO’ fails, ‘HELO’ will be tried
and ESMTP options suppressed.

This method will return normally if the mail is accepted for at least one recipient. Otherwise it
will throw an exception. That is, if this method does not throw an exception, then someone should
get your mail. If this method does not throw an exception, it returns a dictionary, with one entry
for each recipient that was refused. Each entry contains a tuple of the SMTP error code and the
accompanying error message sent by the server.

This method may raise the following exceptions:

SMTPRecipientsRefusedAll recipients were refused. Nobody got the mail. The recipients at-
tribute of the exception object is a dictionary with information about the refused recipients
(like the one returned when at least one recipient was accepted).

SMTPHeloErrorThe server didn’t reply properly to the ‘HELO’ greeting.

SMTPSenderRefusedThe server didn’t accept the from addr .

SMTPDataErrorThe server replied with an unexpected error code (other than a refusal of a recipi-
ent).

Unless otherwise noted, the connection will be open even after an exception is raised.

quit()
Terminate the SMTP session and close the connection.

Low-level methods corresponding to the standard SMTP/ESMTP commands ‘HELP’, ‘RSET’, ‘NOOP’,
‘MAIL’, ‘RCPT’, and ‘DATA’ are also supported. Normally these do not need to be called directly, so they
are not documented here. For details, consult the module code.

11.9.2 SMTP Example

This example prompts the user for addresses needed in the message envelope (‘To’ and ‘From’ addresses),
and the message to be delivered. Note that the headers to be included with the message must be included
in the message as entered; this example doesn’t do any processing of the RFC 822 headers. In particular,
the ‘To’ and ‘From’ addresses must be included in the message headers explicitly.

226 Chapter 11. Internet Protocols and Support

import smtplib

import string

def prompt(prompt):

return string.strip(raw_input(prompt))

fromaddr = prompt("From: ")

toaddrs = string.split(prompt("To: "))

print "Enter message, end with ^D:"

Add the From: and To: headers at the start!

msg = ("From: %s\r\nTo: %s\r\n\r\n"

% (fromaddr, string.join(toaddrs, ", ")))

while 1:

line = raw_input()

if not line:

break

msg = msg + line

print "Message length is " + ‘len(msg)‘

server = smtplib.SMTP(’localhost’)

server.set_debuglevel(1)

server.connect()

server.sendmail(fromaddr, toaddrs, msg)

server.quit()

11.10 telnetlib — Telnet client

The telnetlib module provides a Telnet class that implements the Telnet protocol. See RFC 854 for
details about the protocol.

Telnet([host[, port]])
Telnet represents a connection to a telnet server. The instance is initially not connected; the
open() method must be used to establish a connection. Alternatively, the host name and optional
port number can be passed to the constructor, too.

Do not reopen an already connected instance.

This class has many read *() methods. Note that some of them raise EOFError when the end
of the connection is read, because they can return an empty string for other reasons. See the
individual descriptions below.

11.10.1 Telnet Objects

Telnet instances have the following methods:

read until(expected[, timeout])
Read until a given string is encountered or until timeout.

When no match is found, return whatever is available instead, possibly the empty string. Raise
EOFError if the connection is closed and no cooked data is available.

read all()
Read all data until eof; block until connection closed.

read some()
Read at least one byte of cooked data unless eof is hit. Return ’’ if eof is hit. Block if no data
is immediately available.

11.10. telnetlib — Telnet client 227

read very eager()
Read everything that can be without blocking in I/O (eager).

Raise EOFError if connection closed and no cooked data available. Return ’’ if no cooked data
available otherwise. Do not block unless in the midst of an IAC sequence.

read eager()
Read readily available data.

Raise EOFError if connection closed and no cooked data available. Return ’’ if no cooked data
available otherwise. Do not block unless in the midst of an IAC sequence.

read lazy()
Process and return data already in the queues (lazy).

Raise EOFError if connection closed and no data available. Return ’’ if no cooked data available
otherwise. Do not block unless in the midst of an IAC sequence.

read very lazy()
Return any data available in the cooked queue (very lazy).

Raise EOFError if connection closed and no data available. Return ’’ if no cooked data available
otherwise. This method never blocks.

open(host[, port])
Connect to a host. The optional second argument is the port number, which defaults to the
standard telnet port (23).

Do not try to reopen an already connected instance.

msg(msg[, *args])
Print a debug message when the debug level is > 0. If extra arguments are present, they are
substituted in the message using the standard string formatting operator.

set debuglevel(debuglevel)
Set the debug level. The higher the value of debuglevel , the more debug output you get (on
sys.stdout).

close()
Close the connection.

get socket()
Return the socket object used internally.

fileno()
Return the file descriptor of the socket object used internally.

write(buffer)
Write a string to the socket, doubling any IAC characters. This can block if the connection is
blocked. May raise socket.error if the connection is closed.

interact()
Interaction function, emulates a very dumb telnet client.

mt interact()
Multithreaded version of interact().

expect(list[, timeout])
Read until one from a list of a regular expressions matches.

The first argument is a list of regular expressions, either compiled (re.RegexObject instances) or
uncompiled (strings). The optional second argument is a timeout, in seconds; the default is to
block indefinately.

Return a tuple of three items: the index in the list of the first regular expression that matches; the
match object returned; and the text read up till and including the match.

If end of file is found and no text was read, raise EOFError. Otherwise, when nothing matches,
return (-1, None, text) where text is the text received so far (may be the empty string if a
timeout happened).

228 Chapter 11. Internet Protocols and Support

If a regular expression ends with a greedy match (e.g. d.*c) or if more than one expression can
match the same input, the results are undeterministic, and may depend on the I/O timing.

11.10.2 Telnet Example

A simple example illustrating typical use:

import getpass

import sys

import telnetlib

HOST = "localhost"

user = raw_input("Enter your remote account: ")

password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

tn.read_until("login: ")

tn.write(user + "\n")

if password:

tn.read_until("Password: ")

tn.write(password + "\n")

tn.write("ls\n")

tn.write("exit\n")

print tn.read_all()

11.11 urlparse — Parse URLs into components.

This module defines a standard interface to break URL strings up in components (addessing scheme,
network location, path etc.), to combine the components back into a URL string, and to convert a
“relative URL” to an absolute URL given a “base URL.”

The module has been designed to match the Internet RFC on Relative Uniform Resource Locators (and
discovered a bug in an earlier draft!). Refer to RFC 1808 for details on relative URLs and RFC 1738 for
information on basic URL syntax.

It defines the following functions:

urlparse(urlstring[, default scheme[, allow fragments]])
Parse a URL into 6 components, returning a 6-tuple: (addressing scheme, network location, path,
parameters, query, fragment identifier). This corresponds to the general structure of a URL:
scheme://netloc/path;parameters?query#fragment . Each tuple item is a string, possibly empty.
The components are not broken up in smaller parts (e.g. the network location is a single string),
and % escapes are not expanded. The delimiters as shown above are not part of the tuple items,
except for a leading slash in the path component, which is retained if present.

Example:

urlparse(’http://www.cwi.nl:80/%7Eguido/Python.html’)

yields the tuple

(’http’, ’www.cwi.nl:80’, ’/%7Eguido/Python.html’, ’’, ’’, ’’)

If the default scheme argument is specified, it gives the default addressing scheme, to be used only
if the URL string does not specify one. The default value for this argument is the empty string.

11.11. urlparse — Parse URLs into components. 229

If the allow fragments argument is zero, fragment identifiers are not allowed, even if the URL’s
addressing scheme normally does support them. The default value for this argument is 1.

urlunparse(tuple)
Construct a URL string from a tuple as returned by urlparse(). This may result in a slightly
different, but equivalent URL, if the URL that was parsed originally had redundant delimiters, e.g.
a ? with an empty query (the draft states that these are equivalent).

urljoin(base, url[, allow fragments])
Construct a full (“absolute”) URL by combining a “base URL” (base) with a “relative URL” (url).
Informally, this uses components of the base URL, in particular the addressing scheme, the network
location and (part of) the path, to provide missing components in the relative URL.

Example:

urljoin(’http://www.cwi.nl/%7Eguido/Python.html’, ’FAQ.html’)

yields the string

’http://www.cwi.nl/%7Eguido/FAQ.html’

The allow fragments argument has the same meaning as for urlparse().

11.12 SocketServer — A framework for network servers.

The SocketServer module simplifies the task of writing network servers.

There are four basic server classes: TCPServer uses the Internet TCP protocol, which provides for
continuous streams of data between the client and server. UDPServer uses datagrams, which are discrete
packets of information that may arrive out of order or be lost while in transit. The more infrequently used
UnixStreamServer and UnixDatagramServer classes are similar, but use Unix domain sockets; they’re
not available on non-Unix platforms. For more details on network programming, consult a book such
as W. Richard Steven’s UNIX Network Programming or Ralph Davis’s Win32 Network Programming.

These four classes process requests synchronously; each request must be completed before the next request
can be started. This isn’t suitable if each request takes a long time to complete, because it requires a lot
of computation, or because it returns a lot of data which the client is slow to process. The solution is
to create a separate process or thread to handle each request; the ForkingMixIn and ThreadingMixIn
mix-in classes can be used to support asynchronous behaviour.

Creating a server requires several steps. First, you must create a request handler class by subclassing
the BaseRequestHandler class and overriding its handle() method; this method will process incoming
requests. Second, you must instantiate one of the server classes, passing it the server’s address and the
request handler class. Finally, call the handle request() or serve forever() method of the server
object to process one or many requests.

Server classes have the same external methods and attributes, no matter what network protocol they
use:

fileno()
Return an integer file descriptor for the socket on which the server is listening. This function
is most commonly passed to select.select(), to allow monitoring multiple servers in the same
process.

handle request()
Process a single request. This function calls the following methods in order: get request(),
verify request(), and process request(). If the user-provided handle() method of the han-
dler class raises an exception, the server’s handle error() method will be called.

serve forever()
Handle an infinite number of requests. This simply calls handle request() inside an infinite loop.

address family

230 Chapter 11. Internet Protocols and Support

The family of protocols to which the server’s socket belongs. socket.AF INET and
socket.AF UNIX are two possible values.

RequestHandlerClass
The user-provided request handler class; an instance of this class is created for each request.

server address
The address on which the server is listening. The format of addresses varies depending on the
protocol family; see the documentation for the socket module for details. For Internet protocols,
this is a tuple containing a string giving the address, and an integer port number: (’127.0.0.1’,
80), for example.

socket
The socket object on which the server will listen for incoming requests.

The server classes support the following class variables:

request queue size
The size of the request queue. If it takes a long time to process a single request, any requests that
arrive while the server is busy are placed into a queue, up to request queue size requests. Once
the queue is full, further requests from clients will get a “Connection denied” error. The default
value is usually 5, but this can be overridden by subclasses.

socket type
The type of socket used by the server; socket.SOCK STREAM and socket.SOCK DGRAM are two
possible values.

There are various server methods that can be overridden by subclasses of base server classes like
TCPServer; these methods aren’t useful to external users of the server object.

finish request()
Actually processes the request by instantiating RequestHandlerClass and calling its handle()
method.

get request()
Must accept a request from the socket, and return a 2-tuple containing the new socket object to
be used to communicate with the client, and the client’s address.

handle error(request, client address)
This function is called if the RequestHandlerClass’s handle() method raises an exception. The
default action is to print the traceback to standard output and continue handling further requests.

process request(request, client address)
Calls finish request() to create an instance of the RequestHandlerClass. If desired, this
function can create a new process or thread to handle the request; the ForkingMixIn and
ThreadingMixIn classes do this.

server activate()
Called by the server’s constructor to activate the server. May be overridden.

server bind()
Called by the server’s constructor to bind the socket to the desired address. May be overridden.

verify request(request, client address)
Must return a Boolean value; if the value is true, the request will be processed, and if it’s false, the
request will be denied. This function can be overridden to implement access controls for a server.
The default implementation always return true.

The request handler class must define a new handle() method, and can override any of the following
methods. A new instance is created for each request.

finish()
Called after the handle() method to perform any clean-up actions required. The default imple-
mentation does nothing. If setup() or handle() raise an exception, this function will not be
called.

handle()

11.12. SocketServer — A framework for network servers. 231

This function must do all the work required to service a request. Several instance at-
tributes are available to it; the request is available as self.request; the client address as
self.client address; and the server instance as self.server, in case it needs access to per-
server information.

The type of self.request is different for datagram or stream services. For stream services,
self.request is a socket object; for datagram services, self.request is a string. How-
ever, this can be hidden by using the mix-in request handler classes StreamRequestHandler or
DatagramRequestHandler, which override the setup() and finish() methods, and provides
self.rfile and self.wfile attributes. self.rfile and self.wfile can be read or written,
respectively, to get the request data or return data to the client.

setup()
Called before the handle() method to perform any initialization actions required. The default
implementation does nothing.

11.13 BaseHTTPServer — Basic HTTP server.

This module defines two classes for implementing HTTP servers (web servers). Usually, this module isn’t
used directly, but is used as a basis for building functioning web servers. See the SimpleHTTPServer and
CGIHTTPServer modules.

The first class, HTTPServer, is a SocketServer.TCPServer subclass. It creates and listens at the web
socket, dispatching the requests to a handler. Code to create and run the server looks like this:

def run(server_class=BaseHTTPServer.HTTPServer,

handler_class=BaseHTTPServer.BaseHTTPRequestHandler):

server_address = (’’, 8000)

httpd = server_class(server_address, handler_class)

httpd.serve_forever()

HTTPServer(server address, RequestHandlerClass)
This class builds on the TCPServer class by storing the server address as instance variables named
server name and server port. The server is accessible by the handler, typically through the
handler’s server instance variable.

BaseHTTPRequestHandler(request, client address, server)
This class is used to handle the HTTP requests that arrive at the server. By itself, it cannot
respond to any actual HTTP requests; it must be subclassed to handle each request method (e.g.
GET or POST). BaseHTTPRequestHandler provides a number of class and instance variables, and
methods for use by subclasses.

The handler will parse the request and the headers, then call a method specific to the request
type. The method name is constructed from the request. For example, for the request method
‘SPAM’, the do SPAM() method will be called with no arguments. All of the relevant information is
stored in instance variables of the handler. Subclasses should not need to override or extend the

init () method.

BaseHTTPRequestHandler has the following instance variables:

client address
Contains a tuple of the form (host, port) referring to the client’s address.

command
Contains the command (request type). For example, ’GET’.

path
Contains the request path.

request version
Contains the version string from the request. For example, ’HTTP/1.0’.

232 Chapter 11. Internet Protocols and Support

headers
Holds an instance of the class specified by the MessageClass class variable. This instance parses
and manages the headers in the HTTP request.

rfile
Contains an input stream, positioned at the start of the optional input data.

wfile
Contains the output stream for writing a response back to the client. Proper adherance to the
HTTP protocol must be used when writing to this stream.

BaseHTTPRequestHandler has the following class variables:

server version
Specifies the server software version. You may want to override this. The format is multi-
ple whitespace-separated strings, where each string is of the form name[/version]. For example,
’BaseHTTP/0.2’.

sys version
Contains the Python system version, in a form usable by the version string method and the
server version class variable. For example, ’Python/1.4’.

error message format
Specifies a format string for building an error response to the client. It uses parenthesized, keyed
format specifiers, so the format operand must be a dictionary. The code key should be an integer,
specifing the numeric HTTP error code value. message should be a string containing a (detailed)
error message of what occurred, and explain should be an explanation of the error code number.
Default message and explain values can found in the responses class variable.

protocol version
This specifies the HTTP protocol version used in responses. Typically, this should not be overrid-
den. Defaults to ’HTTP/1.0’.

MessageClass
Specifies a rfc822.Message-like class to parse HTTP headers. Typically, this is not overridden,
and it defaults to mimetools.Message.

responses
This variable contains a mapping of error code integers to two-element tuples containing a short
and long message. For example, {code: (shortmessage, longmessage)}. The shortmessage is
usually used as the message key in an error response, and longmessage as the explain key (see the
error message format class variable).

A BaseHTTPRequestHandler instance has the following methods:

handle()
Overrides the superclass’ handle() method to provide the specific handler behavior. This method
will parse and dispatch the request to the appropriate do *() method.

send error(code[, message])
Sends and logs a complete error reply to the client. The numeric code specifies the HTTP error
code, with message as optional, more specific text. A complete set of headers is sent, followed by
text composed using the error message format class variable.

send response(code[, message])
Sends a response header and logs the accepted request. The HTTP response line is sent, fol-
lowed by Server and Date headers. The values for these two headers are picked up from the
version string() and date time string() methods, respectively.

send header(keyword, value)
Writes a specific MIME header to the output stream. keyword should specify the header keyword,
with value specifying its value.

end headers()
Sends a blank line, indicating the end of the MIME headers in the response.

11.13. BaseHTTPServer — Basic HTTP server. 233

log request([code[, size]])
Logs an accepted (successful) request. code should specify the numeric HTTP code associated with
the response. If a size of the response is available, then it should be passed as the size parameter.

log error(...)
Logs an error when a request cannot be fulfilled. By default, it passes the message to
log message(), so it takes the same arguments (format and additional values).

log message(format, ...)
Logs an arbitrary message to sys.stderr. This is typically overridden to create custom error
logging mechanisms. The format argument is a standard printf-style format string, where the
additional arguments to log message() are applied as inputs to the formatting. The client address
and current date and time are prefixed to every message logged.

version string()
Returns the server software’s version string. This is a combination of the server version and
sys version class variables.

date time string()
Returns the current date and time, formatted for a message header.

log data time string()
Returns the current date and time, formatted for logging.

address string()
Returns the client address, formatted for logging. A name lookup is performed on the client’s IP
address.

See Also:

Module CGIHTTPServer (section 11.15):
Extended request handler that supports CGI scripts.

Module SimpleHTTPServer (section 11.14):
Basic request handler that limits response to files actually under the document root.

11.14 SimpleHTTPServer — A Do-Something Request Handler

The SimpleHTTPServer module defines a request-handler class, interface compatible with
BaseHTTPServer.BaseHTTPRequestHandler which serves files only from a base directory.

The SimpleHTTPServer module defines the following class:

SimpleHTTPRequestHandler(request, client address, server)
This class is used, to serve files from current directory and below, directly mapping the directory
structure to HTTP requests.

A lot of the work is done by the base class BaseHTTPServer.BaseHTTPRequestHandler, such as
parsing the request. This class implements the do GET() and do HEAD() functions.

The SimpleHTTPRequestHandler defines the following member variables:

server version
This will be "SimpleHTTP/" + version , where version is defined in the module.

extensions map
A dictionary mapping suffixes into MIME types. Default is signified by an empty string, and is
considered to be text/plain. The mapping is used case-insensitively, and so should contain only
lower-cased keys.

The SimpleHTTPRequestHandler defines the following methods:

do HEAD()
This method serves the ’HEAD’ request type: it sends the headers it would send for the equivalent
GET request. See the do GET() method for more complete explanation of the possible headers.

234 Chapter 11. Internet Protocols and Support

do GET()
The request is mapped to a local file by interpreting the request as a path relative to the current
working directory.

If the request was mapped to a directory, a 403 respond is output, followed by the explanation
’Directory listing not supported’. Any IOError exception in opening the requested file, is
mapped to a 404, ’File not found’ error. Otherwise, the content type is guessed using the
extensions map variable.

A ’Content-type:’ with the guessed content type is output, and then a blank line, signifying end
of headers, and then the contents of the file. The file is always opened in binary mode.

For example usage, see the implementation of the test() function.

See Also:

Module BaseHTTPServer (section 11.13):
Base class implementation for Web server and request handler.

11.15 CGIHTTPServer — A Do-Something Request Handler

The CGIHTTPServer module defines a request-handler class, interface compati-
ble with BaseHTTPServer.BaseHTTPRequestHandler and inherits behaviour from
SimpleHTTPServer.SimpleHTTPRequestHandler but can also run CGI scripts.

Note: This module is Unix dependent since it creates the CGI process using os.fork() and os.exec().

The CGIHTTPServer module defines the following class:

CGIHTTPRequestHandler(request, client address, server)
This class is used to serve either files or output of CGI scripts from the current directory and
below. Note that mapping HTTP hierarchic structure to local directory structure is exactly as in
SimpleHTTPServer.SimpleHTTPRequestHandler.

The class will however, run the CGI script, instead of serving it as a file, if it guesses it to be a
CGI script. Only directory-based CGI are used — the other common server configuration is to
treat special extensions as denoting CGI scripts.

The do GET() and do HEAD() functions are modified to run CGI scripts and serve the output,
instead of serving files, if the request leads to somewhere below the cgi directories path.

The CGIHTTPRequestHandler defines the following data member:

cgi directories
This defaults to [’/cgi-bin’, ’/htbin’] and describes directories to treat as containing CGI
scripts.

The CGIHTTPRequestHandler defines the following methods:

do POST()
This method serves the ’POST’ request type, only allowed for CGI scripts. Error 501, ”Can only
POST to CGI scripts”, is output when trying to POST to a non-CGI url.

Note that CGI scripts will be run with UID of user nobody, for security reasons. Problems with the CGI
script will be translated to error 403.

For example usage, see the implementation of the test() function.

See Also:

Module BaseHTTPServer (section 11.13):
Base class implementation for Web server and request handler.

11.16 asyncore — Asynchronous socket handler

11.15. CGIHTTPServer — A Do-Something Request Handler 235

This module provides the basic infrastructure for writing asynchronous socket service clients and servers.

There are only two ways to have a program on a single processor do “more than one thing at a time.”
Multi-threaded programming is the simplest and most popular way to do it, but there is another very
different technique, that lets you have nearly all the advantages of multi-threading, without actually
using multiple threads. It’s really only practical if your program is largely I/O bound. If your program
is CPU bound, then pre-emptive scheduled threads are probably what you really need. Network servers
are rarely CPU-bound, however.

If your operating system supports the select() system call in its I/O library (and nearly all do), then
you can use it to juggle multiple communication channels at once; doing other work while your I/O is
taking place in the “background.” Although this strategy can seem strange and complex, especially at
first, it is in many ways easier to understand and control than multi-threaded programming. The module
documented here solves many of the difficult problems for you, making the task of building sophisticated
high-performance network servers and clients a snap.

dispatcher()
The first class we will introduce is the dispatcher class. This is a thin wrapper around a low-level
socket object. To make it more useful, it has a few methods for event-handling on it. Otherwise,
it can be treated as a normal non-blocking socket object.

The direct interface between the select loop and the socket object are the handle read event()
and handle write event() methods. These are called whenever an object ‘fires’ that event.

The firing of these low-level events can tell us whether certain higher-level events have taken place,
depending on the timing and the state of the connection. For example, if we have asked for a socket
to connect to another host, we know that the connection has been made when the socket fires a
write event (at this point you know that you may write to it with the expectation of success). The
implied higher-level events are:

Event Description
handle connect() Implied by a write event
handle close() Implied by a read event with no data available
handle accept() Implied by a read event on a listening socket

This set of user-level events is larger than the basics. The full set of methods that can be overridden in
your subclass are:

handle read()
Called when there is new data to be read from a socket.

handle write()
Called when there is an attempt to write data to the object. Often this method will implement
the necessary buffering for performance. For example:

def handle_write(self):

sent = self.send(self.buffer)

self.buffer = self.buffer[sent:]

handle expt()
Called when there is out of band (OOB) data for a socket connection. This will almost never
happen, as OOB is tenuously supported and rarely used.

handle connect()
Called when the socket actually makes a connection. This might be used to send a “welcome”
banner, or something similar.

handle close()
Called when the socket is closed.

handle accept()
Called on listening sockets when they actually accept a new connection.

readable()
Each time through the select() loop, the set of sockets is scanned, and this method is called to

236 Chapter 11. Internet Protocols and Support

see if there is any interest in reading. The default method simply returns 1, indicating that by
default, all channels will be interested.

writeable()
Each time through the select() loop, the set of sockets is scanned, and this method is called to
see if there is any interest in writing. The default method simply returns 1, indiciating that by
default, all channels will be interested.

In addition, there are the basic methods needed to construct and manipulate “channels,” which are what
we will call the socket connections in this context. Note that most of these are nearly identical to their
socket partners.

create socket(family, type)
This is identical to the creation of a normal socket, and will use the same options for creation.
Refer to the socket documentation for information on creating sockets.

connect(address)
As with the normal socket object, address is a tuple with the first element the host to connect to,
and the second the port.

send(data)
Send data out the socket.

recv(buffer size)
Read at most buffer size bytes from the socket.

listen([backlog])
Listen for connections made to the socket. The backlog argument specifies the maximum number
of queued connections and should be at least 1; the maximum value is system-dependent (usually
5).

bind(address)
Bind the socket to address. The socket must not already be bound. (The format of address depends
on the address family — see above.)

accept()
Accept a connection. The socket must be bound to an address and listening for connections. The
return value is a pair (conn, address) where conn is a new socket object usable to send and receive
data on the connection, and address is the address bound to the socket on the other end of the
connection.

close()
Close the socket. All future operations on the socket object will fail. The remote end will receive
no more data (after queued data is flushed). Sockets are automatically closed when they are
garbage-collected.

11.16.1 Example basic HTTP client

As a basic example, below is a very basic HTTP client that uses the dispatcher class to implement its
socket handling:

11.16. asyncore — Asynchronous socket handler 237

class http_client(asyncore.dispatcher):

def __init__(self, host,path):

asyncore.dispatcher.__init__(self)

self.path = path

self.create_socket(socket.AF_INET, socket.SOCK_STREAM)

self.connect((host, 80))

self.buffer = ’GET %s HTTP/1.0\r\b\r\n’ % self.path

def handle_connect(self):

pass

def handle_read(self):

data = self.recv(8192)

print data

def writeable(self):

return (len(self.buffer) > 0)

def handle_write(self):

sent = self.send(self.buffer)

self.buffer = self.buffer[sent:]

238 Chapter 11. Internet Protocols and Support

CHAPTER

TWELVE

Internet Data Handling

This chapter describes modules which support handling data formats commonly used on the internet.
Some, like SGML and XML, may be useful for other applications as well.

sgmllib Only as much of an SGML parser as needed to parse HTML.
htmllib A parser for HTML documents.
htmlentitydefs Definitions of HTML general entities.
xmllib A parser for XML documents.
formatter Generic output formatter and device interface.
rfc822 Parse RFC 822 style mail headers.
mimetools Tools for parsing MIME-style message bodies.
MimeWriter Generic MIME file writer.
multifile Support for reading files which contain distinct parts, such as some MIME data.
binhex Encode and decode files in binhex4 format.
uu Encode and decode files in uuencode format.
binascii Tools for converting between binary and various ascii-encoded binary representations.
xdrlib Encoders and decoders for the External Data Representation (XDR).
mailcap Mailcap file handling.
mimetypes Mapping of filename extensions to MIME types.
base64 Encode and decode files using the MIME base64 data.
quopri Encode and decode files using the MIME quoted-printable encoding.
mailbox Read various mailbox formats.
mhlib Manipulate MH mailboxes from Python.
mimify Mimification and unmimification of mail messages.
netrc Loading of ‘.netrc’ files.

12.1 sgmllib — Simple SGML parser

This module defines a class SGMLParser which serves as the basis for parsing text files formatted in
SGML (Standard Generalized Mark-up Language). In fact, it does not provide a full SGML parser — it
only parses SGML insofar as it is used by HTML, and the module only exists as a base for the htmllib
module.

SGMLParser()
The SGMLParser class is instantiated without arguments. The parser is hardcoded to recognize the
following constructs:

•Opening and closing tags of the form ‘<tag attr="value" ...>’ and ‘</tag>’, respectively.

•Numeric character references of the form ‘&#name;’.

•Entity references of the form ‘&name;’.

•SGML comments of the form ‘<!--text-->’. Note that spaces, tabs, and newlines are allowed
between the trailing ‘>’ and the immediately preceeding ‘--’.

SGMLParser instances have the following interface methods:

239

reset()
Reset the instance. Loses all unprocessed data. This is called implicitly at instantiation time.

setnomoretags()
Stop processing tags. Treat all following input as literal input (CDATA). (This is only provided so
the HTML tag <PLAINTEXT> can be implemented.)

setliteral()
Enter literal mode (CDATA mode).

feed(data)
Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete
data is buffered until more data is fed or close() is called.

close()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method
may be redefined by a derived class to define additional processing at the end of the input, but the
redefined version should always call close().

handle starttag(tag, method, attributes)
This method is called to handle start tags for which either a start tag() or do tag() method has
been defined. The tag argument is the name of the tag converted to lower case, and the method argu-
ment is the bound method which should be used to support semantic interpretation of the start tag.
The attributes argument is a list of (name, value) pairs containing the attributes found inside the
tag’s <> brackets. The name has been translated to lower case and double quotes and backslashes in
the value have been interpreted. For instance, for the tag , this
method would be called as ‘unknown starttag(’a’, [(’href’, ’http://www.cwi.nl/’)])’.
The base implementation simply calls method with attributes as the only argument.

handle endtag(tag, method)
This method is called to handle endtags for which an end tag() method has been defined. The tag
argument is the name of the tag converted to lower case, and the method argument is the bound
method which should be used to support semantic interpretation of the end tag. If no end tag()
method is defined for the closing element, this handler is not called. The base implementation
simply calls method .

handle data(data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class;
the base class implementation does nothing.

handle charref(ref)
This method is called to process a character reference of the form ‘&#ref ;’. In the base implemen-
tation, ref must be a decimal number in the range 0-255. It translates the character to ascii and
calls the method handle data() with the character as argument. If ref is invalid or out of range,
the method unknown charref(ref) is called to handle the error. A subclass must override this
method to provide support for named character entities.

handle entityref(ref)
This method is called to process a general entity reference of the form ‘&ref ;’ where ref is
an general entity reference. It looks for ref in the instance (or class) variable entitydefs
which should be a mapping from entity names to corresponding translations. If a translation
is found, it calls the method handle data() with the translation; otherwise, it calls the method
unknown entityref(ref). The default entitydefs defines translations for &, &apos, >,
<, and ".

handle comment(comment)
This method is called when a comment is encountered. The comment argument is a string contain-
ing the text between the ‘<!--’ and ‘-->’ delimiters, but not the delimiters themselves. For example,
the comment ‘<!--text-->’ will cause this method to be called with the argument ’text’. The
default method does nothing.

report unbalanced(tag)
This method is called when an end tag is found which does not correspond to any open element.

240 Chapter 12. Internet Data Handling

unknown starttag(tag, attributes)
This method is called to process an unknown start tag. It is intended to be overridden by a derived
class; the base class implementation does nothing.

unknown endtag(tag)
This method is called to process an unknown end tag. It is intended to be overridden by a derived
class; the base class implementation does nothing.

unknown charref(ref)
This method is called to process unresolvable numeric character references. Refer to
handle charref() to determine what is handled by default. It is intended to be overridden
by a derived class; the base class implementation does nothing.

unknown entityref(ref)
This method is called to process an unknown entity reference. It is intended to be overridden by
a derived class; the base class implementation does nothing.

Apart from overriding or extending the methods listed above, derived classes may also define methods
of the following form to define processing of specific tags. Tag names in the input stream are case
independent; the tag occurring in method names must be in lower case:

start tag(attributes)
This method is called to process an opening tag tag . It has preference over do tag(). The attributes
argument has the same meaning as described for handle starttag() above.

do tag(attributes)
This method is called to process an opening tag tag that does not come with a matching closing
tag. The attributes argument has the same meaning as described for handle starttag() above.

end tag()
This method is called to process a closing tag tag .

Note that the parser maintains a stack of open elements for which no end tag has been found yet. Only
tags processed by start tag() are pushed on this stack. Definition of an end tag() method is optional
for these tags. For tags processed by do tag() or by unknown tag(), no end tag() method must be
defined; if defined, it will not be used. If both start tag() and do tag() methods exist for a tag, the
start tag() method takes precedence.

12.2 htmllib — A parser for HTML documents

This module defines a class which can serve as a base for parsing text files formatted in the HyperText
Mark-up Language (HTML). The class is not directly concerned with I/O — it must be provided with
input in string form via a method, and makes calls to methods of a “formatter” object in order to produce
output. The HTMLParser class is designed to be used as a base class for other classes in order to add
functionality, and allows most of its methods to be extended or overridden. In turn, this class is derived
from and extends the SGMLParser class defined in module sgmllib. The HTMLParser implementation
supports the HTML 2.0 language as described in RFC 1866. Two implementations of formatter objects
are provided in the formatter module; refer to the documentation for that module for information on
the formatter interface.

The following is a summary of the interface defined by sgmllib.SGMLParser:

• The interface to feed data to an instance is through the feed() method, which takes a string
argument. This can be called with as little or as much text at a time as desired; ‘p.feed(a);
p.feed(b)’ has the same effect as ‘p.feed(a+b)’. When the data contains complete HTML tags,
these are processed immediately; incomplete elements are saved in a buffer. To force processing of
all unprocessed data, call the close() method.

For example, to parse the entire contents of a file, use:

12.2. htmllib — A parser for HTML documents 241

parser.feed(open(’myfile.html’).read())

parser.close()

• The interface to define semantics for HTML tags is very simple: derive a class and define methods
called start tag(), end tag(), or do tag(). The parser will call these at appropriate moments:
start tag or do tag() is called when an opening tag of the form <tag ...> is encountered;
end tag() is called when a closing tag of the form <tag> is encountered. If an opening tag requires
a corresponding closing tag, like <H1> ... </H1>, the class should define the start tag() method;
if a tag requires no closing tag, like <P>, the class should define the do tag() method.

The module defines a single class:

HTMLParser(formatter)
This is the basic HTML parser class. It supports all entity names required by the HTML 2.0
specification (RFC 1866). It also defines handlers for all HTML 2.0 and many HTML 3.0 and 3.2
elements.

See Also:

Module htmlentitydefs (section 12.3):
Definition of replacement text for HTML 2.0 entities.

Module sgmllib (section 12.1):
Base class for HTMLParser.

12.2.1 HTMLParser Objects

In addition to tag methods, the HTMLParser class provides some additional methods and instance vari-
ables for use within tag methods.

formatter
This is the formatter instance associated with the parser.

nofill
Boolean flag which should be true when whitespace should not be collapsed, or false when it should
be. In general, this should only be true when character data is to be treated as “preformatted” text,
as within a <PRE> element. The default value is false. This affects the operation of handle data()
and save end().

anchor bgn(href, name, type)
This method is called at the start of an anchor region. The arguments correspond to the attributes
of the <A> tag with the same names. The default implementation maintains a list of hyperlinks
(defined by the HREF attribute for <A> tags) within the document. The list of hyperlinks is available
as the data attribute anchorlist.

anchor end()
This method is called at the end of an anchor region. The default implementation adds a textual
footnote marker using an index into the list of hyperlinks created by anchor bgn().

handle image(source, alt[, ismap[, align[, width[, height]]]])
This method is called to handle images. The default implementation simply passes the alt value
to the handle data() method.

save bgn()
Begins saving character data in a buffer instead of sending it to the formatter object. Retrieve the
stored data via save end(). Use of the save bgn() / save end() pair may not be nested.

save end()
Ends buffering character data and returns all data saved since the preceeding call to save bgn().
If the nofill flag is false, whitespace is collapsed to single spaces. A call to this method without
a preceeding call to save bgn() will raise a TypeError exception.

242 Chapter 12. Internet Data Handling

12.3 htmlentitydefs — Definitions of HTML general entities

This module defines a single dictionary, entitydefs, which is used by the htmllib module to provide
the entitydefs member of the HTMLParser class. The definition provided here contains all the entities
defined by HTML 2.0 that can be handled using simple textual substitution in the Latin-1 character set
(ISO-8859-1).

entitydefs
A dictionary mapping HTML 2.0 entity definitions to their replacement text in ISO Latin-1.

12.4 xmllib — A parser for XML documents

Changed in version 1.5.2.

This module defines a class XMLParser which serves as the basis for parsing text files formatted in XML
(Extensible Markup Language).

XMLParser()
The XMLParser class must be instantiated without arguments.

This class provides the following interface methods and instance variables:

attributes
A mapping of element names to mappings. The latter mapping maps attribute names that are
valid for the element to the default value of the attribute, or if there is no default to None. The
default value is the empty dictionary. This variable is meant to be overridden, not extended since
the default is shared by all instances of XMLParser.

elements
A mapping of element names to tuples. The tuples contain a function for handling the start and end
tag respectively of the element, or None if the method unknown starttag() or unknown endtag()
is to be called. The default value is the empty dictionary. This variable is meant to be overridden,
not extended since the default is shared by all instances of XMLParser.

entitydefs
A mapping of entitynames to their values. The default value contains definitions for ’lt’, ’gt’,
’amp’, ’quot’, and ’apos’.

reset()
Reset the instance. Loses all unprocessed data. This is called implicitly at the instantiation time.

setnomoretags()
Stop processing tags. Treat all following input as literal input (CDATA).

setliteral()
Enter literal mode (CDATA mode). This mode is automatically exited when the close tag matching
the last unclosed open tag is encountered.

feed(data)
Feed some text to the parser. It is processed insofar as it consists of complete tags; incomplete
data is buffered until more data is fed or close() is called.

close()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method
may be redefined by a derived class to define additional processing at the end of the input, but the
redefined version should always call close().

translate references(data)
Translate all entity and character references in data and return the translated string.

handle xml(encoding, standalone)
This method is called when the ‘<?xml ...?>’ tag is processed. The arguments are the values of
the encoding and standalone attributes in the tag. Both encoding and standalone are optional.
The values passed to handle xml() default to None and the string ’no’ respectively.

12.3. htmlentitydefs — Definitions of HTML general entities 243

handle doctype(tag, pubid, syslit, data)
This method is called when the ‘<!DOCTYPE...>’ tag is processed. The arguments are the name of
the root element, the Formal Public Identifier (or None if not specified), the system identifier, and
the uninterpreted contents of the internal DTD subset as a string (or None if not present).

handle starttag(tag, method, attributes)
This method is called to handle start tags for which a start tag handler is defined in the instance
variable elements. The tag argument is the name of the tag, and the method argument is the
function (method) which should be used to support semantic interpretation of the start tag. The
attributes argument is a dictionary of attributes, the key being the name and the value being the
value of the attribute found inside the tag’s <> brackets. Character and entity references in the
value have been interpreted. For instance, for the start tag ,
this method would be called as handle starttag(’A’, self.elements[’A’][0], {’HREF’:
’http://www.cwi.nl/’}). The base implementation simply calls method with attributes as the
only argument.

handle endtag(tag, method)
This method is called to handle endtags for which an end tag handler is defined in the instance vari-
able elements. The tag argument is the name of the tag, and the method argument is the function
(method) which should be used to support semantic interpretation of the end tag. For instance, for
the endtag , this method would be called as handle endtag(’A’, self.elements[’A’][1]).
The base implementation simply calls method .

handle data(data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class;
the base class implementation does nothing.

handle charref(ref)
This method is called to process a character reference of the form ‘&#ref ;’. ref can either be a
decimal number, or a hexadecimal number when preceded by an ‘x’. In the base implementation,
ref must be a number in the range 0-255. It translates the character to ascii and calls the method
handle data() with the character as argument. If ref is invalid or out of range, the method
unknown charref(ref) is called to handle the error. A subclass must override this method to
provide support for character references outside of the ascii range.

handle entityref(ref)
This method is called to process a general entity reference of the form ‘&ref ;’ where ref is
an general entity reference. It looks for ref in the instance (or class) variable entitydefs
which should be a mapping from entity names to corresponding translations. If a translation
is found, it calls the method handle data() with the translation; otherwise, it calls the method
unknown entityref(ref). The default entitydefs defines translations for &, &apos, >,
<, and ".

handle comment(comment)
This method is called when a comment is encountered. The comment argument is a string contain-
ing the text between the ‘<!--’ and ‘-->’ delimiters, but not the delimiters themselves. For example,
the comment ‘<!--text-->’ will cause this method to be called with the argument ’text’. The
default method does nothing.

handle cdata(data)
This method is called when a CDATA element is encountered. The data argument is a string
containing the text between the ‘<![CDATA[’ and ‘]]>’ delimiters, but not the delimiters themselves.
For example, the entity ‘<![CDATA[text]]>’ will cause this method to be called with the argument
’text’. The default method does nothing, and is intended to be overridden.

handle proc(name, data)
This method is called when a processing instruction (PI) is encountered. The name is the PI
target, and the data argument is a string containing the text between the PI target and the closing
delimiter, but not the delimiter itself. For example, the instruction ‘<?XML text?>’ will cause this
method to be called with the arguments ’XML’ and ’text’. The default method does nothing.
Note that if a document starts with ‘<?xml ..?>’, handle xml() is called to handle it.

handle special(data)

244 Chapter 12. Internet Data Handling

This method is called when a declaration is encountered. The data argument is a string containing
the text between the ‘<!’ and ‘>’ delimiters, but not the delimiters themselves. For example, the
entity ‘<!ENTITY text>’ will cause this method to be called with the argument ’ENTITY text’.
The default method does nothing. Note that ‘<!DOCTYPE ...>’ is handled separately if it is located
at the start of the document.

syntax error(message)
This method is called when a syntax error is encountered. The message is a description of what
was wrong. The default method raises a RuntimeError exception. If this method is overridden, it
is permissable for it to return. This method is only called when the error can be recovered from.
Unrecoverable errors raise a RuntimeError without first calling syntax error().

unknown starttag(tag, attributes)
This method is called to process an unknown start tag. It is intended to be overridden by a derived
class; the base class implementation does nothing.

unknown endtag(tag)
This method is called to process an unknown end tag. It is intended to be overridden by a derived
class; the base class implementation does nothing.

unknown charref(ref)
This method is called to process unresolvable numeric character references. It is intended to be
overridden by a derived class; the base class implementation does nothing.

unknown entityref(ref)
This method is called to process an unknown entity reference. It is intended to be overridden by
a derived class; the base class implementation does nothing.

See Also:

The XML specification, published by the World Wide Web Consortium (W3C), is available on-
line at http://www.w3.org/TR/REC-xml. References to additional material on XML are available at
http://www.w3.org/XML/.

The Python XML Topic Guide provides a great deal of information on using XML from Python and links
to other sources of information on XML. It’s located on the Web at http://www.python.org/topics/xml/.

The Python XML Special Interest Group is developing substantial support for processing XML from
Python. See http://www.python.org/sigs/xml-sig/ for more information.

12.4.1 XML Namespaces

This module has support for XML namespaces as defined in the XML Namespaces proposed recommen-
dation.

Tag and attribute names that are defined in an XML namespace are handled as if the
name of the tag or element consisted of the namespace (i.e. the URL that defines the
namespace) followed by a space and the name of the tag or attribute. For instance, the
tag <html xmlns=’http://www.w3.org/TR/REC-html40’> is treated as if the tag name was
’http://www.w3.org/TR/REC-html40 html’, and the tag <html:a href=’http://frob.com’> inside
the above mentioned element is treated as if the tag name were ’http://www.w3.org/TR/REC-html40
a’ and the attribute name as if it were ’http://www.w3.org/TR/REC-html40 src’.

An older draft of the XML Namespaces proposal is also recognized, but triggers a warning.

12.5 formatter — Generic output formatting

This module supports two interface definitions, each with mulitple implementations. The formatter
interface is used by the HTMLParser class of the htmllib module, and the writer interface is required by
the formatter interface.

Formatter objects transform an abstract flow of formatting events into specific output events on writer

12.5. formatter — Generic output formatting 245

objects. Formatters manage several stack structures to allow various properties of a writer object to be
changed and restored; writers need not be able to handle relative changes nor any sort of “change back”
operation. Specific writer properties which may be controlled via formatter objects are horizontal align-
ment, font, and left margin indentations. A mechanism is provided which supports providing arbitrary,
non-exclusive style settings to a writer as well. Additional interfaces facilitate formatting events which
are not reversible, such as paragraph separation.

Writer objects encapsulate device interfaces. Abstract devices, such as file formats, are supported as well
as physical devices. The provided implementations all work with abstract devices. The interface makes
available mechanisms for setting the properties which formatter objects manage and inserting data into
the output.

12.5.1 The Formatter Interface

Interfaces to create formatters are dependent on the specific formatter class being instantiated. The
interfaces described below are the required interfaces which all formatters must support once initialized.

One data element is defined at the module level:

AS IS
Value which can be used in the font specification passed to the push font() method described
below, or as the new value to any other push property() method. Pushing the AS IS value
allows the corresponding pop property() method to be called without having to track whether the
property was changed.

The following attributes are defined for formatter instance objects:

writer
The writer instance with which the formatter interacts.

end paragraph(blanklines)
Close any open paragraphs and insert at least blanklines before the next paragraph.

add line break()
Add a hard line break if one does not already exist. This does not break the logical paragraph.

add hor rule(*args, **kw)
Insert a horizontal rule in the output. A hard break is inserted if there is data in the current
paragraph, but the logical paragraph is not broken. The arguments and keywords are passed on
to the writer’s send line break() method.

add flowing data(data)
Provide data which should be formatted with collapsed whitespaces. Whitespace from preceeding
and successive calls to add flowing data() is considered as well when the whitespace collapse
is performed. The data which is passed to this method is expected to be word-wrapped by the
output device. Note that any word-wrapping still must be performed by the writer object due to
the need to rely on device and font information.

add literal data(data)
Provide data which should be passed to the writer unchanged. Whitespace, including newline and
tab characters, are considered legal in the value of data.

add label data(format, counter)
Insert a label which should be placed to the left of the current left margin. This should be used
for constructing bulleted or numbered lists. If the format value is a string, it is interpreted as a
format specification for counter , which should be an integer. The result of this formatting becomes
the value of the label; if format is not a string it is used as the label value directly. The label
value is passed as the only argument to the writer’s send label data() method. Interpretation
of non-string label values is dependent on the associated writer.

Format specifications are strings which, in combination with a counter value, are used to compute
label values. Each character in the format string is copied to the label value, with some characters
recognized to indicate a transform on the counter value. Specifically, the character ‘1’ represents
the counter value formatter as an arabic number, the characters ‘A’ and ‘a’ represent alphabetic

246 Chapter 12. Internet Data Handling

representations of the counter value in upper and lower case, respectively, and ‘I’ and ‘i’ represent
the counter value in Roman numerals, in upper and lower case. Note that the alphabetic and
roman transforms require that the counter value be greater than zero.

flush softspace()
Send any pending whitespace buffered from a previous call to add flowing data() to the associ-
ated writer object. This should be called before any direct manipulation of the writer object.

push alignment(align)
Push a new alignment setting onto the alignment stack. This may be AS IS if no change is desired.
If the alignment value is changed from the previous setting, the writer’s new alignment() method
is called with the align value.

pop alignment()
Restore the previous alignment.

push font((size, italic, bold, teletype))
Change some or all font properties of the writer object. Properties which are not set to AS IS
are set to the values passed in while others are maintained at their current settings. The writer’s
new font() method is called with the fully resolved font specification.

pop font()
Restore the previous font.

push margin(margin)
Increase the number of left margin indentations by one, associating the logical tag margin with
the new indentation. The initial margin level is 0. Changed values of the logical tag must be true
values; false values other than AS IS are not sufficient to change the margin.

pop margin()
Restore the previous margin.

push style(*styles)
Push any number of arbitrary style specifications. All styles are pushed onto the styles stack in
order. A tuple representing the entire stack, including AS IS values, is passed to the writer’s
new styles() method.

pop style([n = 1])
Pop the last n style specifications passed to push style(). A tuple representing the revised stack,
including AS IS values, is passed to the writer’s new styles() method.

set spacing(spacing)
Set the spacing style for the writer.

assert line data([flag = 1])
Inform the formatter that data has been added to the current paragraph out-of-band. This should
be used when the writer has been manipulated directly. The optional flag argument can be set to
false if the writer manipulations produced a hard line break at the end of the output.

12.5.2 Formatter Implementations

Two implementations of formatter objects are provided by this module. Most applications may use one
of these classes without modification or subclassing.

NullFormatter([writer])
A formatter which does nothing. If writer is omitted, a NullWriter instance is created. No
methods of the writer are called by NullFormatter instances. Implementations should inherit
from this class if implementing a writer interface but don’t need to inherit any implementation.

AbstractFormatter(writer)
The standard formatter. This implementation has demonstrated wide applicability to many writers,
and may be used directly in most circumstances. It has been used to implement a full-featured
world-wide web browser.

12.5. formatter — Generic output formatting 247

12.5.3 The Writer Interface

Interfaces to create writers are dependent on the specific writer class being instantiated. The interfaces
described below are the required interfaces which all writers must support once initialized. Note that
while most applications can use the AbstractFormatter class as a formatter, the writer must typically
be provided by the application.

flush()
Flush any buffered output or device control events.

new alignment(align)
Set the alignment style. The align value can be any object, but by convention is a string or None,
where None indicates that the writer’s “preferred” alignment should be used. Conventional align
values are ’left’, ’center’, ’right’, and ’justify’.

new font(font)
Set the font style. The value of font will be None, indicating that the device’s default font should
be used, or a tuple of the form (size, italic, bold , teletype). Size will be a string indicating the
size of font that should be used; specific strings and their interpretation must be defined by the
application. The italic, bold , and teletype values are boolean indicators specifying which of those
font attributes should be used.

new margin(margin, level)
Set the margin level to the integer level and the logical tag to margin. Interpretation of the logical
tag is at the writer’s discretion; the only restriction on the value of the logical tag is that it not be
a false value for non-zero values of level .

new spacing(spacing)
Set the spacing style to spacing .

new styles(styles)
Set additional styles. The styles value is a tuple of arbitrary values; the value AS IS should
be ignored. The styles tuple may be interpreted either as a set or as a stack depending on the
requirements of the application and writer implementation.

send line break()
Break the current line.

send paragraph(blankline)
Produce a paragraph separation of at least blankline blank lines, or the equivelent. The blankline
value will be an integer. Note that the implementation will receive a call to send line break()
before this call if a line break is needed; this method should not include ending the last line of the
paragraph. It is only responsible for vertical spacing between paragraphs.

send hor rule(*args, **kw)
Display a horizontal rule on the output device. The arguments to this method are entirely
application- and writer-specific, and should be interpreted with care. The method implementa-
tion may assume that a line break has already been issued via send line break().

send flowing data(data)
Output character data which may be word-wrapped and re-flowed as needed. Within any sequence
of calls to this method, the writer may assume that spans of multiple whitespace characters have
been collapsed to single space characters.

send literal data(data)
Output character data which has already been formatted for display. Generally, this should be
interpreted to mean that line breaks indicated by newline characters should be preserved and no
new line breaks should be introduced. The data may contain embedded newline and tab characters,
unlike data provided to the send formatted data() interface.

send label data(data)
Set data to the left of the current left margin, if possible. The value of data is not restricted;
treatment of non-string values is entirely application- and writer-dependent. This method will
only be called at the beginning of a line.

248 Chapter 12. Internet Data Handling

12.5.4 Writer Implementations

Three implementations of the writer object interface are provided as examples by this module. Most
applications will need to derive new writer classes from the NullWriter class.

NullWriter()
A writer which only provides the interface definition; no actions are taken on any methods. This
should be the base class for all writers which do not need to inherit any implementation methods.

AbstractWriter()
A writer which can be used in debugging formatters, but not much else. Each method simply
announces itself by printing its name and arguments on standard output.

DumbWriter([file[, maxcol = 72]])
Simple writer class which writes output on the file object passed in as file or, if file is omitted,
on standard output. The output is simply word-wrapped to the number of columns specified by
maxcol . This class is suitable for reflowing a sequence of paragraphs.

12.6 rfc822 — Parse RFC 822 mail headers

This module defines a class, Message, which represents a collection of “email headers” as defined by the
Internet standard RFC 822. It is used in various contexts, usually to read such headers from a file. This
module also defines a helper class AddressList for parsing RFC 822 addresses. Please refer to the RFC
for information on the specific syntax of RFC 822 headers.

The mailbox module provides classes to read mailboxes produced by various end-user mail programs.

Message(file[, seekable])
A Message instance is instantiated with an input object as parameter. Message relies only on the
input object having a readline() method; in particular, ordinary file objects qualify. Instantiation
reads headers from the input object up to a delimiter line (normally a blank line) and stores them
in the instance.

This class can work with any input object that supports a readline() method. If the input object
has seek and tell capability, the rewindbody() method will work; also, illegal lines will be pushed
back onto the input stream. If the input object lacks seek but has an unread() method that can
push back a line of input, Message will use that to push back illegal lines. Thus this class can be
used to parse messages coming from a buffered stream.

The optional seekable argument is provided as a workaround for certain stdio libraries in which
tell() discards buffered data before discovering that the lseek() system call doesn’t work. For
maximum portability, you should set the seekable argument to zero to prevent that initial tell()
when passing in an unseekable object such as a a file object created from a socket object.

Input lines as read from the file may either be terminated by CR-LF or by a single linefeed; a
terminating CR-LF is replaced by a single linefeed before the line is stored.

All header matching is done independent of upper or lower case; e.g. m[’From’], m[’from’] and
m[’FROM’] all yield the same result.

AddressList(field)
You may instantiate the AddressList helper class using a single string parameter, a comma-
separated list of RFC 822 addresses to be parsed. (The parameter None yields an empty list.)

parsedate(date)
Attempts to parse a date according to the rules in RFC 822. however, some mailers don’t follow
that format as specified, so parsedate() tries to guess correctly in such cases. date is a string
containing an RFC 822 date, such as ’Mon, 20 Nov 1995 19:12:08 -0500’. If it succeeds in
parsing the date, parsedate() returns a 9-tuple that can be passed directly to time.mktime();
otherwise None will be returned. Note that fields 6, 7, and 8 of the result tuple are not usable.

parsedate tz(date)
Performs the same function as parsedate(), but returns either None or a 10-tuple; the first 9

12.6. rfc822 — Parse RFC 822 mail headers 249

elements make up a tuple that can be passed directly to time.mktime(), and the tenth is the offset
of the date’s timezone from UTC (which is the official term for Greenwich Mean Time). (Note
that the sign of the timezone offset is the opposite of the sign of the time.timezone variable for
the same timezone; the latter variable follows the POSIX standard while this module follows RFC
822.) If the input string has no timezone, the last element of the tuple returned is None. Note that
fields 6, 7, and 8 of the result tuple are not usable.

mktime tz(tuple)
Turn a 10-tuple as returned by parsedate tz() into a UTC timestamp. It the timezone item in
the tuple is None, assume local time. Minor deficiency: this first interprets the first 8 elements as
a local time and then compensates for the timezone difference; this may yield a slight error around
daylight savings time switch dates. Not enough to worry about for common use.

See Also:

Module mailbox (section 12.18):
Classes to read various mailbox formats produced by end-user mail programs.

12.6.1 Message Objects

A Message instance has the following methods:

rewindbody()
Seek to the start of the message body. This only works if the file object is seekable.

isheader(line)
Returns a line’s canonicalized fieldname (the dictionary key that will be used to index it) if the
line is a legal RFC 822 header; otherwise returns None (implying that parsing should stop here
and the line be pushed back on the input stream). It is sometimes useful to override this method
in a subclass.

islast(line)
Return true if the given line is a delimiter on which Message should stop. The delimiter line
is consumed, and the file object’s read location positioned immediately after it. By default this
method just checks that the line is blank, but you can override it in a subclass.

iscomment(line)
Return true if the given line should be ignored entirely, just skipped. By default this is a stub that
always returns false, but you can override it in a subclass.

getallmatchingheaders(name)
Return a list of lines consisting of all headers matching name, if any. Each physical line, whether
it is a continuation line or not, is a separate list item. Return the empty list if no header matches
name.

getfirstmatchingheader(name)
Return a list of lines comprising the first header matching name, and its continuation line(s), if
any. Return None if there is no header matching name.

getrawheader(name)
Return a single string consisting of the text after the colon in the first header matching name. This
includes leading whitespace, the trailing linefeed, and internal linefeeds and whitespace if there any
continuation line(s) were present. Return None if there is no header matching name.

getheader(name[, default])
Like getrawheader(name), but strip leading and trailing whitespace. Internal whitespace is not
stripped. The optional default argument can be used to specify a different default to be returned
when there is no header matching name.

get(name[, default])
An alias for getheader(), to make the interface more compatible with regular dictionaries.

getaddr(name)
Return a pair (full name, email address) parsed from the string returned by getheader(name).

250 Chapter 12. Internet Data Handling

If no header matching name exists, return (None, None); otherwise both the full name and the
address are (possibly empty) strings.

Example: If m’s first From header contains the string ’jack@cwi.nl (Jack Jansen)’, then
m.getaddr(’From’) will yield the pair (’Jack Jansen’, ’jack@cwi.nl’). If the header con-
tained ’Jack Jansen <jack@cwi.nl>’ instead, it would yield the exact same result.

getaddrlist(name)
This is similar to getaddr(list), but parses a header containing a list of email addresses (e.g. a To
header) and returns a list of (full name, email address) pairs (even if there was only one address
in the header). If there is no header matching name, return an empty list.

If multiple headers exist that match the named header (e.g. if there are several Cc headers), all are
parsed for addresses. Any continuation lines the named headers contain are also parsed.

getdate(name)
Retrieve a header using getheader() and parse it into a 9-tuple compatible with time.mktime();
note that fields 6, 7, and 8 are not usable. If there is no header matching name, or it is unparsable,
return None.

Date parsing appears to be a black art, and not all mailers adhere to the standard. While it has
been tested and found correct on a large collection of email from many sources, it is still possible
that this function may occasionally yield an incorrect result.

getdate tz(name)
Retrieve a header using getheader() and parse it into a 10-tuple; the first 9 elements will make
a tuple compatible with time.mktime(), and the 10th is a number giving the offset of the date’s
timezone from UTC. Note that fields 6, 7, and 8 are not usable. Similarly to getdate(), if there
is no header matching name, or it is unparsable, return None.

Message instances also support a read-only mapping interface. In particular: m[name] is
like m.getheader(name) but raises KeyError if there is no matching header; and len(m),
m.has key(name), m.keys(), m.values() and m.items() act as expected (and consistently).

Finally, Message instances have two public instance variables:

headers
A list containing the entire set of header lines, in the order in which they were read (except
that setitem calls may disturb this order). Each line contains a trailing newline. The blank line
terminating the headers is not contained in the list.

fp
The file or file-like object passed at instantiation time. This can be used to read the message
content.

12.6.2 AddressList Objects

An AddressList instance has the following methods:

len (name)
Return the number of addresses in the address list.

str (name)
Return a canonicalized string representation of the address list. Addresses are rendered in ”name”
¡host@domain¿ form, comma-separated.

add (name)
Return an AddressList instance that contains all addresses in both AddressList operands, with
duplicates removed (set union).

sub (name)
Return an AddressList instance that contains every address in the left-hand AddressList operand
that is not present in the right-hand address operand (set difference).

Finally, AddressList instances have one public instance variable:

12.6. rfc822 — Parse RFC 822 mail headers 251

addresslist
A list of tuple string pairs, one per address. In each member, the first is the canonicalized name
part of the address, the second is the route-address (@-separated host-domain pair).

12.7 mimetools — Tools for parsing MIME messages

This module defines a subclass of the rfc822.Message class and a number of utility functions that are
useful for the manipulation for MIME multipart or encoded message.

It defines the following items:

Message(fp[, seekable])
Return a new instance of the Message class. This is a subclass of the rfc822.Message class,
with some additional methods (see below). The seekable argument has the same meaning as for
rfc822.Message.

choose boundary()
Return a unique string that has a high likelihood of being usable as a part boundary. The string
has the form ’hostipaddr.uid.pid.timestamp.random’.

decode(input, output, encoding)
Read data encoded using the allowed MIME encoding from open file object input and write
the decoded data to open file object output . Valid values for encoding include ’base64’,
’quoted-printable’ and ’uuencode’.

encode(input, output, encoding)
Read data from open file object input and write it encoded using the allowed MIME encoding to
open file object output . Valid values for encoding are the same as for decode().

copyliteral(input, output)
Read lines from open file input until eof and write them to open file output .

copybinary(input, output)
Read blocks until eof from open file input and write them to open file output . The block size is
currently fixed at 8192.

See Also:

Module rfc822 (section 12.6):
Provides the base class for mimetools.Message.

12.7.1 Additional Methods of Message objects

The Message class defines the following methods in addition to the rfc822.Message methods:

getplist()
Return the parameter list of the content-type header. This is a list if strings. For parameters of
the form ‘key=value’, key is converted to lower case but value is not. For example, if the message
contains the header ‘Content-type: text/html; spam=1; Spam=2; Spam’ then getplist() will
return the Python list [’spam=1’, ’spam=2’, ’Spam’].

getparam(name)
Return the value of the first parameter (as returned by getplist() of the form ‘name=value’ for
the given name. If value is surrounded by quotes of the form ‘<...>’ or ‘"..."’, these are removed.

getencoding()
Return the encoding specified in the content-transfer-encoding message header. If no such
header exists, return ’7bit’. The encoding is converted to lower case.

gettype()
Return the message type (of the form ‘type/subtype’) as specified in the content-type header. If
no such header exists, return ’text/plain’. The type is converted to lower case.

252 Chapter 12. Internet Data Handling

getmaintype()
Return the main type as specified in the content-type header. If no such header exists, return
’text’. The main type is converted to lower case.

getsubtype()
Return the subtype as specified in the content-type header. If no such header exists, return
’plain’. The subtype is converted to lower case.

12.8 MimeWriter — Generic MIME file writer

This module defines the class MimeWriter. The MimeWriter class implements a basic formatter for
creating MIME multi-part files. It doesn’t seek around the output file nor does it use large amounts
of buffer space. You must write the parts out in the order that they should occur in the final file.
MimeWriter does buffer the headers you add, allowing you to rearrange their order.

MimeWriter(fp)
Return a new instance of the MimeWriter class. The only argument passed, fp, is a file object to
be used for writing. Note that a StringIO object could also be used.

12.8.1 MimeWriter Objects

MimeWriter instances have the following methods:

addheader(key, value[, prefix])
Add a header line to the MIME message. The key is the name of the header, where the value
obviously provides the value of the header. The optional argument prefix determines where the
header is inserted; ‘0’ means append at the end, ‘1’ is insert at the start. The default is to append.

flushheaders()
Causes all headers accumulated so far to be written out (and forgotten). This is useful if you don’t
need a body part at all, e.g. for a subpart of type message/rfc822 that’s (mis)used to store some
header-like information.

startbody(ctype[, plist[, prefix]])
Returns a file-like object which can be used to write to the body of the message. The content-type
is set to the provided ctype, and the optional parameter plist provides additional parameters for the
content-type declaration. prefix functions as in addheader() except that the default is to insert
at the start.

startmultipartbody(subtype[, boundary[, plist[, prefix]]])
Returns a file-like object which can be used to write to the body of the message. Additionally, this
method initializes the multi-part code, where subtype provides the multipart subtype, boundary
may provide a user-defined boundary specification, and plist provides optional parameters for the
subtype. prefix functions as in startbody(). Subparts should be created using nextpart().

nextpart()
Returns a new instance of MimeWriter which represents an individual part in a multipart message.
This may be used to write the part as well as used for creating recursively complex multipart mes-
sages. The message must first be initialized with startmultipartbody() before using nextpart().

lastpart()
This is used to designate the last part of a multipart message, and should always be used when
writing multipart messages.

12.9 multifile — Support for files containing distinct parts

The MultiFile object enables you to treat sections of a text file as file-like input objects, with ’’ being
returned by readline() when a given delimiter pattern is encountered. The defaults of this class are

12.8. MimeWriter — Generic MIME file writer 253

designed to make it useful for parsing MIME multipart messages, but by subclassing it and overriding
methods it can be easily adapted for more general use.

MultiFile(fp[, seekable])
Create a multi-file. You must instantiate this class with an input object argument for the MultiFile
instance to get lines from, such as as a file object returned by open().

MultiFile only ever looks at the input object’s readline(), seek() and tell() methods, and
the latter two are only needed if you want random access to the individual MIME parts. To use
MultiFile on a non-seekable stream object, set the optional seekable argument to false; this will
prevent using the input object’s seek() and tell() methods.

It will be useful to know that in MultiFile’s view of the world, text is composed of three kinds of lines:
data, section-dividers, and end-markers. MultiFile is designed to support parsing of messages that may
have multiple nested message parts, each with its own pattern for section-divider and end-marker lines.

12.9.1 MultiFile Objects

A MultiFile instance has the following methods:

push(str)
Push a boundary string. When an appropriately decorated version of this boundary is found as
an input line, it will be interpreted as a section-divider or end-marker. All subsequent reads will
return the empty string to indicate end-of-file, until a call to pop() removes the boundary a or
next() call reenables it.

It is possible to push more than one boundary. Encountering the most-recently-pushed boundary
will return EOF; encountering any other boundary will raise an error.

readline(str)
Read a line. If the line is data (not a section-divider or end-marker or real EOF) return it. If the
line matches the most-recently-stacked boundary, return ’’ and set self.last to 1 or 0 according
as the match is or is not an end-marker. If the line matches any other stacked boundary, raise an
error. On encountering end-of-file on the underlying stream object, the method raises Error unless
all boundaries have been popped.

readlines(str)
Return all lines remaining in this part as a list of strings.

read()
Read all lines, up to the next section. Return them as a single (multiline) string. Note that this
doesn’t take a size argument!

next()
Skip lines to the next section (that is, read lines until a section-divider or end-marker has been
consumed). Return true if there is such a section, false if an end-marker is seen. Re-enable the
most-recently-pushed boundary.

pop()
Pop a section boundary. This boundary will no longer be interpreted as EOF.

seek(pos[, whence])
Seek. Seek indices are relative to the start of the current section. The pos and whence arguments
are interpreted as for a file seek.

tell()
Return the file position relative to the start of the current section.

is data(str)
Return true if str is data and false if it might be a section boundary. As written, it tests for a
prefix other than ’--’ at start of line (which all MIME boundaries have) but it is declared so it
can be overridden in derived classes.

Note that this test is used intended as a fast guard for the real boundary tests; if it always returns
false it will merely slow processing, not cause it to fail.

254 Chapter 12. Internet Data Handling

section divider(str)
Turn a boundary into a section-divider line. By default, this method prepends ’--’ (which MIME
section boundaries have) but it is declared so it can be overridden in derived classes. This method
need not append LF or CR-LF, as comparison with the result ignores trailing whitespace.

end marker(str)
Turn a boundary string into an end-marker line. By default, this method prepends ’--’ and
appends ’--’ (like a MIME-multipart end-of-message marker) but it is declared so it can be be
overridden in derived classes. This method need not append LF or CR-LF, as comparison with the
result ignores trailing whitespace.

Finally, MultiFile instances have two public instance variables:

level
Nesting depth of the current part.

last
True if the last end-of-file was for an end-of-message marker.

12.9.2 MultiFile Example

fp = MultiFile(sys.stdin, 0)

fp.push(outer_boundary)

message1 = fp.readlines()

We should now be either at real EOF or stopped on a message

boundary. Re-enable the outer boundary.

fp.next()

Read another message with the same delimiter

message2 = fp.readlines()

Re-enable that delimiter again

fp.next()

Now look for a message subpart with a different boundary

fp.push(inner_boundary)

sub_header = fp.readlines()

If no exception has been thrown, we’re looking at the start of

the message subpart. Reset and grab the subpart

fp.next()

sub_body = fp.readlines()

Got it. Now pop the inner boundary to re-enable the outer one.

fp.pop()

Read to next outer boundary

message3 = fp.readlines()

12.10 binhex — Encode and decode binhex4 files

This module encodes and decodes files in binhex4 format, a format allowing representation of Macintosh
files in ascii. On the Macintosh, both forks of a file and the finder information are encoded (or decoded),
on other platforms only the data fork is handled.

The binhex module defines the following functions:

binhex(input, output)
Convert a binary file with filename input to binhex file output . The output parameter can either
be a filename or a file-like object (any object supporting a write() and close() method).

hexbin(input[, output])
Decode a binhex file input . input may be a filename or a file-like object supporting read() and
close() methods. The resulting file is written to a file named output , unless the argument is
omitted in which case the output filename is read from the binhex file.

12.10. binhex — Encode and decode binhex4 files 255

See Also:

Module binascii (section 12.12):
support module containing ascii-to-binary and binary-to-ascii conversions

12.10.1 Notes

There is an alternative, more powerful interface to the coder and decoder, see the source for details.

If you code or decode textfiles on non-Macintosh platforms they will still use the Macintosh newline
convention (carriage-return as end of line).

As of this writing, hexbin() appears to not work in all cases.

12.11 uu — Encode and decode uuencode files

This module encodes and decodes files in uuencode format, allowing arbitrary binary data to be trans-
ferred over ascii-only connections. Wherever a file argument is expected, the methods accept a file-like
object. For backwards compatibility, a string containing a pathname is also accepted, and the cor-
responding file will be opened for reading and writing; the pathname ’-’ is understood to mean the
standard input or output. However, this interface is deprecated; it’s better for the caller to open the file
itself, and be sure that, when required, the mode is ’rb’ or ’wb’ on Windows or DOS.

This code was contributed by Lance Ellinghouse, and modified by Jack Jansen.

The uu module defines the following functions:

encode(in file, out file[, name[, mode]])
Uuencode file in file into file out file. The uuencoded file will have the header specifying name
and mode as the defaults for the results of decoding the file. The default defaults are taken from
in file, or ’-’ and 0666 respectively.

decode(in file[, out file[, mode]])
This call decodes uuencoded file in file placing the result on file out file. If out file is a pathname,
mode is used to set the permission bits if the file must be created. Defaults for out file and mode
are taken from the uuencode header.

See Also:

Module binascii (section 12.12):
support module containing ascii-to-binary and binary-to-ascii conversions

12.12 binascii — Convert between binary and ascii

The binascii module contains a number of methods to convert between binary and various ascii-
encoded binary representations. Normally, you will not use these functions directly but use wrapper
modules like uu or binhex instead, this module solely exists because bit-manipuation of large amounts
of data is slow in Python.

The binascii module defines the following functions:

a2b uu(string)
Convert a single line of uuencoded data back to binary and return the binary data. Lines normally
contain 45 (binary) bytes, except for the last line. Line data may be followed by whitespace.

b2a uu(data)
Convert binary data to a line of ascii characters, the return value is the converted line, including
a newline char. The length of data should be at most 45.

a2b base64(string)
Convert a block of base64 data back to binary and return the binary data. More than one line

256 Chapter 12. Internet Data Handling

may be passed at a time.

b2a base64(data)
Convert binary data to a line of ascii characters in base64 coding. The return value is the converted
line, including a newline char. The length of data should be at most 57 to adhere to the base64
standard.

a2b hqx(string)
Convert binhex4 formatted ascii data to binary, without doing RLE-decompression. The string
should contain a complete number of binary bytes, or (in case of the last portion of the binhex4
data) have the remaining bits zero.

rledecode hqx(data)
Perform RLE-decompression on the data, as per the binhex4 standard. The algorithm uses 0x90
after a byte as a repeat indicator, followed by a count. A count of 0 specifies a byte value of 0x90.
The routine returns the decompressed data, unless data input data ends in an orphaned repeat
indicator, in which case the Incomplete exception is raised.

rlecode hqx(data)
Perform binhex4 style RLE-compression on data and return the result.

b2a hqx(data)
Perform hexbin4 binary-to-ascii translation and return the resulting string. The argument should
already be RLE-coded, and have a length divisible by 3 (except possibly the last fragment).

crc hqx(data, crc)
Compute the binhex4 crc value of data, starting with an initial crc and returning the result.

Error
Exception raised on errors. These are usually programming errors.

Incomplete
Exception raised on incomplete data. These are usually not programming errors, but may be
handled by reading a little more data and trying again.

See Also:

Module base64 (section 12.16):
support for base64 encoding used in MIME email messages

Module binhex (section 12.10):
support for the binhex format used on the Macintosh

Module uu (section 12.11):
support for UU encoding used on Unix

12.13 xdrlib — Encode and decode XDR data.

The xdrlib module supports the External Data Representation Standard as described in RFC 1014,
written by Sun Microsystems, Inc. June 1987. It supports most of the data types described in the RFC.

The xdrlib module defines two classes, one for packing variables into XDR representation, and another
for unpacking from XDR representation. There are also two exception classes.

Packer()
Packer is the class for packing data into XDR representation. The Packer class is instantiated
with no arguments.

Unpacker(data)
Unpacker is the complementary class which unpacks XDR data values from a string buffer. The
input buffer is given as data.

12.13. xdrlib — Encode and decode XDR data. 257

12.13.1 Packer Objects

Packer instances have the following methods:

get buffer()
Returns the current pack buffer as a string.

reset()
Resets the pack buffer to the empty string.

In general, you can pack any of the most common XDR data types by calling the appropriate pack type()
method. Each method takes a single argument, the value to pack. The following simple data type packing
methods are supported: pack uint(), pack int(), pack enum(), pack bool(), pack uhyper(), and
pack hyper().

pack float(value)
Packs the single-precision floating point number value.

pack double(value)
Packs the double-precision floating point number value.

The following methods support packing strings, bytes, and opaque data:

pack fstring(n, s)
Packs a fixed length string, s. n is the length of the string but it is not packed into the data buffer.
The string is padded with null bytes if necessary to guaranteed 4 byte alignment.

pack fopaque(n, data)
Packs a fixed length opaque data stream, similarly to pack fstring().

pack string(s)
Packs a variable length string, s. The length of the string is first packed as an unsigned integer,
then the string data is packed with pack fstring().

pack opaque(data)
Packs a variable length opaque data string, similarly to pack string().

pack bytes(bytes)
Packs a variable length byte stream, similarly to pack string().

The following methods support packing arrays and lists:

pack list(list, pack item)
Packs a list of homogeneous items. This method is useful for lists with an indeterminate size; i.e.
the size is not available until the entire list has been walked. For each item in the list, an unsigned
integer 1 is packed first, followed by the data value from the list. pack item is the function that is
called to pack the individual item. At the end of the list, an unsigned integer 0 is packed.

For example, to pack a list of integers, the code might appear like this:

import xdrlib

p = xdrlib.Packer()

p.pack_list([1, 2, 3], p.pack_int)

pack farray(n, array, pack item)
Packs a fixed length list (array) of homogeneous items. n is the length of the list; it is not packed
into the buffer, but a ValueError exception is raised if len(array) is not equal to n. As above,
pack item is the function used to pack each element.

pack array(list, pack item)
Packs a variable length list of homogeneous items. First, the length of the list is packed as an
unsigned integer, then each element is packed as in pack farray() above.

258 Chapter 12. Internet Data Handling

12.13.2 Unpacker Objects

The Unpacker class offers the following methods:

reset(data)
Resets the string buffer with the given data.

get position()
Returns the current unpack position in the data buffer.

set position(position)
Sets the data buffer unpack position to position. You should be careful about using
get position() and set position().

get buffer()
Returns the current unpack data buffer as a string.

done()
Indicates unpack completion. Raises an Error exception if all of the data has not been unpacked.

In addition, every data type that can be packed with a Packer, can be unpacked with an Unpacker.
Unpacking methods are of the form unpack type(), and take no arguments. They return the unpacked
object.

unpack float()
Unpacks a single-precision floating point number.

unpack double()
Unpacks a double-precision floating point number, similarly to unpack float().

In addition, the following methods unpack strings, bytes, and opaque data:

unpack fstring(n)
Unpacks and returns a fixed length string. n is the number of characters expected. Padding with
null bytes to guaranteed 4 byte alignment is assumed.

unpack fopaque(n)
Unpacks and returns a fixed length opaque data stream, similarly to unpack fstring().

unpack string()
Unpacks and returns a variable length string. The length of the string is first unpacked as an
unsigned integer, then the string data is unpacked with unpack fstring().

unpack opaque()
Unpacks and returns a variable length opaque data string, similarly to unpack string().

unpack bytes()
Unpacks and returns a variable length byte stream, similarly to unpack string().

The following methods support unpacking arrays and lists:

unpack list(unpack item)
Unpacks and returns a list of homogeneous items. The list is unpacked one element at a time by
first unpacking an unsigned integer flag. If the flag is 1, then the item is unpacked and appended
to the list. A flag of 0 indicates the end of the list. unpack item is the function that is called to
unpack the items.

unpack farray(n, unpack item)
Unpacks and returns (as a list) a fixed length array of homogeneous items. n is number of list
elements to expect in the buffer. As above, unpack item is the function used to unpack each
element.

unpack array(unpack item)
Unpacks and returns a variable length list of homogeneous items. First, the length of the list is
unpacked as an unsigned integer, then each element is unpacked as in unpack farray() above.

12.13. xdrlib — Encode and decode XDR data. 259

12.13.3 Exceptions

Exceptions in this module are coded as class instances:

Error
The base exception class. Error has a single public data member msg containing the description
of the error.

ConversionError
Class derived from Error. Contains no additional instance variables.

Here is an example of how you would catch one of these exceptions:

import xdrlib

p = xdrlib.Packer()

try:

p.pack_double(8.01)

except xdrlib.ConversionError, instance:

print ’packing the double failed:’, instance.msg

12.14 mailcap — Mailcap file handling.

Mailcap files are used to configure how MIME-aware applications such as mail readers and Web browsers
react to files with different MIME types. (The name “mailcap” is derived from the phrase “mail capabil-
ity”.) For example, a mailcap file might contain a line like ‘video/mpeg; xmpeg %s’. Then, if the user
encounters an email message or Web document with the MIME type video/mpeg, ‘%s’ will be replaced
by a filename (usually one belonging to a temporary file) and the xmpeg program can be automatically
started to view the file.

The mailcap format is documented in RFC 1524, “A User Agent Configuration Mechanism For Multi-
media Mail Format Information,” but is not an Internet standard. However, mailcap files are supported
on most Unix systems.

findmatch(caps, MIMEtype[, key[, filename[, plist]]])
Return a 2-tuple; the first element is a string containing the command line to be executed (which
can be passed to os.system()), and the second element is the mailcap entry for a given MIME
type. If no matching MIME type can be found, (None, None) is returned.

key is the name of the field desired, which represents the type of activity to be performed; the
default value is ’view’, since in the most common case you simply want to view the body of the
MIME-typed data. Other possible values might be ’compose’ and ’edit’, if you wanted to create a
new body of the given MIME type or alter the existing body data. See RFC 1524 for a complete
list of these fields.

filename is the filename to be substituted for ‘%s’ in the command line; the default value is
’/dev/null’ which is almost certainly not what you want, so usually you’ll override it by specifying
a filename.

plist can be a list containing named parameters; the default value is simply an empty list. Each
entry in the list must be a string containing the parameter name, an equals sign (=), and the
parameter’s value. Mailcap entries can contain named parameters like %{foo}, which will be
replaced by the value of the parameter named ’foo’. For example, if the command line ‘showpartial
%{id} %{number} %{total}’ was in a mailcap file, and plist was set to [’id=1’, ’number=2’,
’total=3’], the resulting command line would be "showpartial 1 2 3".

In a mailcap file, the ”test” field can optionally be specified to test some external condition (e.g.,
the machine architecture, or the window system in use) to determine whether or not the mailcap
line applies. findmatch() will automatically check such conditions and skip the entry if the check
fails.

getcaps()
Returns a dictionary mapping MIME types to a list of mailcap file entries. This dictionary must

260 Chapter 12. Internet Data Handling

be passed to the findmatch() function. An entry is stored as a list of dictionaries, but it shouldn’t
be necessary to know the details of this representation.

The information is derived from all of the mailcap files found on the system. Settings in the
user’s mailcap file ‘$HOME/.mailcap’ will override settings in the system mailcap files ‘/etc/mailcap’,
‘/usr/etc/mailcap’, and ‘/usr/local/etc/mailcap’.

An example usage:

>>> import mailcap

>>> d=mailcap.getcaps()

>>> mailcap.findmatch(d, ’video/mpeg’, filename=’/tmp/tmp1223’)

(’xmpeg /tmp/tmp1223’, {’view’: ’xmpeg %s’})

12.15 mimetypes — Map filenames to MIME types

The mimetypes converts between a filename or URL and the MIME type associated with the filename
extension. Conversions are provided from filename to MIME type and from MIME type to filename
extension; encodings are not supported for the later conversion.

The functions described below provide the primary interface for this module. If the module has not been
initialized, they will call init().

guess type(filename)
Guess the type of a file based on its filename or URL, given by filename. The return value is a
tuple (type, encoding) where type is None if the type can’t be guessed (no or unknown suffix) or
a string of the form ’type/subtype’, usable for a MIME content-type header; and encoding is
None for no encoding or the name of the program used to encode (e.g. compress or gzip). The
encoding is suitable for use as a content-encoding header, not as a content-transfer-encoding
header. The mappings are table driven. Encoding suffixes are case sensitive; type suffixes are first
tried case sensitive, then case insensitive.

guess extension(type)
Guess the extension for a file based on its MIME type, given by type. The return value is a string
giving a filename extension, including the leading dot (‘.’). The extension is not guaranteed to
have been associated with any particular data stream, but would be mapped to the MIME type
type by guess type(). If no extension can be guessed for type, None is returned.

Some additional functions and data items are available for controlling the behavior of the module.

init([files])
Initialize the internal data structures. If given, files must be a sequence of file names which
should be used to augment the default type map. If omitted, the file names to use are taken from
knownfiles. Each file named in files or knownfiles takes precedence over those named before it.
Calling init() repeatedly is allowed.

read mime types(filename)
Load the type map given in the file filename, if it exists. The type map is returned as a dictionary
mapping filename extensions, including the leading dot (‘.’), to strings of the form ’type/subtype’.
If the file filename does not exist or cannot be read, None is returned.

inited
Flag indicating whether or not the global data structures have been initialized. This is set to true
by init().

knownfiles
List of type map file names commonly installed. These files are typically named ‘mime.types’ and
are installed in different locations by different packages.

suffix map
Dictionary mapping suffixes to suffixes. This is used to allow recognition of encoded files for which

12.15. mimetypes — Map filenames to MIME types 261

the encoding and the type are indicated by the same extension. For example, the ‘.tgz’ extension
is mapped to ‘.tar.gz’ to allow the encoding and type to be recognized separately.

encodings map
Dictionary mapping filename extensions to encoding types.

types map
Dictionary mapping filename extensions to MIME types.

12.16 base64 — Encode and decode MIME base64 data

This module performs base64 encoding and decoding of arbitrary binary strings into text strings that can
be safely emailed or posted. The encoding scheme is defined in RFC 1521 (MIME (Multipurpose Internet
Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message
Bodies, section 5.2, “Base64 Content-Transfer-Encoding”) and is used for MIME email and various other
Internet-related applications; it is not the same as the output produced by the uuencode program. For
example, the string ’www.python.org’ is encoded as the string ’d3d3LnB5dGhvbi5vcmc=\n’.

decode(input, output)
Decode the contents of the input file and write the resulting binary data to the output file. input
and output must either be file objects or objects that mimic the file object interface. input will be
read until input.read() returns an empty string.

decodestring(s)
Decode the string s, which must contain one or more lines of base64 encoded data, and return a
string containing the resulting binary data.

encode(input, output)
Encode the contents of the input file and write the resulting base64 encoded data to the output
file. input and output must either be file objects or objects that mimic the file object interface.
input will be read until input.read() returns an empty string.

encodestring(s)
Encode the string s, which can contain arbitrary binary data, and return a string containing one
or more lines of base64 encoded data.

See Also:

Module binascii (section 12.12):
support module containing ascii-to-binary and binary-to-ascii conversions

Internet RFC 1521, MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Spec-
ifying and Describing the Format of Internet Message Bodies, section 5.2, “Base64 Content-Transfer-
Encoding,” provides the definition of the base64 encoding.

12.17 quopri — Encode and decode MIME quoted-printable data

This module performs quoted-printable transport encoding and decoding, as defined in RFC 1521:
“MIME (Multipurpose Internet Mail Extensions) Part One”. The quoted-printable encoding is designed
for data where there are relatively few nonprintable characters; the base64 encoding scheme available
via the base64 module is more compact if there are many such characters, as when sending a graphics
file.

decode(input, output)
Decode the contents of the input file and write the resulting decoded binary data to the output file.
input and output must either be file objects or objects that mimic the file object interface. input
will be read until input.read() returns an empty string.

encode(input, output, quotetabs)
Encode the contents of the input file and write the resulting quoted-printable data to the output
file. input and output must either be file objects or objects that mimic the file object interface.

262 Chapter 12. Internet Data Handling

input will be read until input.read() returns an empty string.

12.18 mailbox — Read various mailbox formats

This module defines a number of classes that allow easy and uniform access to mail messages in a (Unix)
mailbox.

UnixMailbox(fp)
Access a classic Unix-style mailbox, where all messages are contained in a single file and separated
by “From name time” lines. The file object fp points to the mailbox file.

MmdfMailbox(fp)
Access an MMDF-style mailbox, where all messages are contained in a single file and separated by
lines consisting of 4 control-A characters. The file object fp points to the mailbox file.

MHMailbox(dirname)
Access an MH mailbox, a directory with each message in a separate file with a numeric name. The
name of the mailbox directory is passed in dirname.

Maildir(dirname)
Access a Qmail mail directory. All new and current mail for the mailbox specified by dirname is
made available.

BabylMailbox(fp)
Access a Babyl mailbox, which is similar to an MMDF mailbox. Mail messages start with a line
containing only ’*** EOOH ***’ and end with a line containing only ’\037\014’.

12.18.1 Mailbox Objects

All implementations of Mailbox objects have one externally visible method:

next()
Return the next message in the mailbox, as a rfc822.Message object (see the rfc822 module).
Depending on the mailbox implementation the fp attribute of this object may be a true file object
or a class instance simulating a file object, taking care of things like message boundaries if multiple
mail messages are contained in a single file, etc.

12.19 mhlib — Access to MH mailboxes

The mhlib module provides a Python interface to MH folders and their contents.

The module contains three basic classes, MH, which represents a particular collection of folders, Folder,
which represents a single folder, and Message, which represents a single message.

MH([path[, profile]])
MH represents a collection of MH folders.

Folder(mh, name)
The Folder class represents a single folder and its messages.

Message(folder, number[, name])
Message objects represent individual messages in a folder. The Message class is derived from
mimetools.Message.

12.19.1 MH Objects

MH instances have the following methods:

12.18. mailbox — Read various mailbox formats 263

error(format[, ...])
Print an error message – can be overridden.

getprofile(key)
Return a profile entry (None if not set).

getpath()
Return the mailbox pathname.

getcontext()
Return the current folder name.

setcontext(name)
Set the current folder name.

listfolders()
Return a list of top-level folders.

listallfolders()
Return a list of all folders.

listsubfolders(name)
Return a list of direct subfolders of the given folder.

listallsubfolders(name)
Return a list of all subfolders of the given folder.

makefolder(name)
Create a new folder.

deletefolder(name)
Delete a folder – must have no subfolders.

openfolder(name)
Return a new open folder object.

12.19.2 Folder Objects

Folder instances represent open folders and have the following methods:

error(format[, ...])
Print an error message – can be overridden.

getfullname()
Return the folder’s full pathname.

getsequencesfilename()
Return the full pathname of the folder’s sequences file.

getmessagefilename(n)
Return the full pathname of message n of the folder.

listmessages()
Return a list of messages in the folder (as numbers).

getcurrent()
Return the current message number.

setcurrent(n)
Set the current message number to n.

parsesequence(seq)
Parse msgs syntax into list of messages.

getlast()
Get last message, or 0 if no messages are in the folder.

setlast(n)

264 Chapter 12. Internet Data Handling

Set last message (internal use only).

getsequences()
Return dictionary of sequences in folder. The sequence names are used as keys, and the values are
the lists of message numbers in the sequences.

putsequences(dict)
Return dictionary of sequences in folder name: list.

removemessages(list)
Remove messages in list from folder.

refilemessages(list, tofolder)
Move messages in list to other folder.

movemessage(n, tofolder, ton)
Move one message to a given destination in another folder.

copymessage(n, tofolder, ton)
Copy one message to a given destination in another folder.

12.19.3 Message Objects

The Message class adds one method to those of mimetools.Message:

openmessage(n)
Return a new open message object (costs a file descriptor).

12.20 mimify — MIME processing of mail messages

The mimify module defines two functions to convert mail messages to and from MIME format. The mail
message can be either a simple message or a so-called multipart message. Each part is treated separately.
Mimifying (a part of) a message entails encoding the message as quoted-printable if it contains any
characters that cannot be represented using 7-bit ascii. Unmimifying (a part of) a message entails
undoing the quoted-printable encoding. Mimify and unmimify are especially useful when a message has
to be edited before being sent. Typical use would be:

unmimify message

edit message

mimify message

send message

The modules defines the following user-callable functions and user-settable variables:

mimify(infile, outfile)
Copy the message in infile to outfile, converting parts to quoted-printable and adding MIME mail
headers when necessary. infile and outfile can be file objects (actually, any object that has a
readline() method (for infile) or a write() method (for outfile)) or strings naming the files. If
infile and outfile are both strings, they may have the same value.

unmimify(infile, outfile[, decode base64])
Copy the message in infile to outfile, decoding all quoted-printable parts. infile and outfile can be
file objects (actually, any object that has a readline() method (for infile) or a write() method
(for outfile)) or strings naming the files. If infile and outfile are both strings, they may have the
same value. If the decode base64 argument is provided and tests true, any parts that are coded in
the base64 encoding are decoded as well.

mime decode header(line)
Return a decoded version of the encoded header line in line.

12.20. mimify — MIME processing of mail messages 265

mime encode header(line)
Return a MIME-encoded version of the header line in line.

MAXLEN
By default, a part will be encoded as quoted-printable when it contains any non-ascii characters
(i.e., characters with the 8th bit set), or if there are any lines longer than MAXLEN characters (default
value 200).

CHARSET
When not specified in the mail headers, a character set must be filled in. The string used is stored
in CHARSET, and the default value is ISO-8859-1 (also known as Latin1 (latin-one)).

This module can also be used from the command line. Usage is as follows:

mimify.py -e [-l length] [infile [outfile]]

mimify.py -d [-b] [infile [outfile]]

to encode (mimify) and decode (unmimify) respectively. infile defaults to standard input, outfile defaults
to standard output. The same file can be specified for input and output.

If the -l option is given when encoding, if there are any lines longer than the specified length, the
containing part will be encoded.

If the -b option is given when decoding, any base64 parts will be decoded as well.

12.21 netrc — netrc file processing

New in version 1.5.2.

The netrc class parses and encapsulates the netrc file format used by the Unix ftp program and other
FTP clients.

netrc([file])
A netrc instance or subclass instance enapsulates data from a netrc file. The initialization argu-
ment, if present, specifies the file to parse. If no argument is given, the file ‘.netrc’ in the user’s home
directory will be read. Parse errors will raise SyntaxError with diagnostic information including
the file name, line number, and terminating token.

12.21.1 netrc Objects

A netrc instance has the following methods:

authenticators(host)
Return a 3-tuple (login, account, password) of authenticators for host . If the netrc file did not
contain an entry for the given host, return the tuple associated with the ‘default’ entry. If neither
matching host nor default entry is available, return None.

repr ()
Dump the class data as a string in the format of a netrc file. (This discards comments and may
reorder the entries.)

Instances of netrc have public instance variables:

hosts
Dictionary mapping host names to (login, account, password) tuples. The ‘default’ entry, if any,
is represented as a pseudo-host by that name.

macros
Dictionary mapping macro names to string lists.

266 Chapter 12. Internet Data Handling

CHAPTER

THIRTEEN

Restricted Execution

In general, Python programs have complete access to the underlying operating system throug the various
functions and classes, For example, a Python program can open any file for reading and writing by using
the open() built-in function (provided the underlying OS gives you permission!). This is exactly what
you want for most applications.

There exists a class of applications for which this “openness” is inappropriate. Take Grail: a web browser
that accepts “applets,” snippets of Python code, from anywhere on the Internet for execution on the
local system. This can be used to improve the user interface of forms, for instance. Since the originator of
the code is unknown, it is obvious that it cannot be trusted with the full resources of the local machine.

Restricted execution is the basic framework in Python that allows for the segregation of trusted and un-
trusted code. It is based on the notion that trusted Python code (a supervisor) can create a “padded cell’
(or environment) with limited permissions, and run the untrusted code within this cell. The untrusted
code cannot break out of its cell, and can only interact with sensitive system resources through interfaces
defined and managed by the trusted code. The term “restricted execution” is favored over “safe-Python”
since true safety is hard to define, and is determined by the way the restricted environment is created.
Note that the restricted environments can be nested, with inner cells creating subcells of lesser, but never
greater, privilege.

An interesting aspect of Python’s restricted execution model is that the interfaces presented to untrusted
code usually have the same names as those presented to trusted code. Therefore no special interfaces need
to be learned to write code designed to run in a restricted environment. And because the exact nature of
the padded cell is determined by the supervisor, different restrictions can be imposed, depending on the
application. For example, it might be deemed “safe” for untrusted code to read any file within a specified
directory, but never to write a file. In this case, the supervisor may redefine the built-in open() function
so that it raises an exception whenever the mode parameter is ’w’. It might also perform a chroot()-like
operation on the filename parameter, such that root is always relative to some safe “sandbox” area of the
filesystem. In this case, the untrusted code would still see an built-in open() function in its environment,
with the same calling interface. The semantics would be identical too, with IOErrors being raised when
the supervisor determined that an unallowable parameter is being used.

The Python run-time determines whether a particular code block is executing in restricted execution
mode based on the identity of the builtins object in its global variables: if this is (the dictionary
of) the standard builtin module, the code is deemed to be unrestricted, else it is deemed to be
restricted.

Python code executing in restricted mode faces a number of limitations that are designed to prevent it
from escaping from the padded cell. For instance, the function object attribute func globals and the
class and instance object attribute dict are unavailable.

Two modules provide the framework for setting up restricted execution environments:

rexec Basic restricted execution framework.
Bastion Providing restricted access to objects.

See Also:

Andrew Kuchling, “Restricted Execution HOWTO.” Available online at
http://www.python.org/doc/howto/rexec/.

267

Grail, an Internet browser written in Python, is available at http://grail.cnri.reston.va.us/grail/. More
information on the use of Python’s restricted execution mode in Grail is available on the Web site.

13.1 rexec — Restricted execution framework

This module contains the RExec class, which supports r eval(), r execfile(), r exec(), and
r import() methods, which are restricted versions of the standard Python functions eval(),
execfile() and the exec and import statements. Code executed in this restricted environment will
only have access to modules and functions that are deemed safe; you can subclass RExec to add or remove
capabilities as desired.

Note: The RExec class can prevent code from performing unsafe operations like reading or writing disk
files, or using TCP/IP sockets. However, it does not protect against code using extremely large amounts
of memory or CPU time.

RExec([hooks[, verbose]])
Returns an instance of the RExec class.

hooks is an instance of the RHooks class or a subclass of it. If it is omitted or None, the default
RHooks class is instantiated. Whenever the rexec module searches for a module (even a built-in
one) or reads a module’s code, it doesn’t actually go out to the file system itself. Rather, it calls
methods of an RHooks instance that was passed to or created by its constructor. (Actually, the
RExec object doesn’t make these calls — they are made by a module loader object that’s part of
the RExec object. This allows another level of flexibility, e.g. using packages.)

By providing an alternate RHooks object, we can control the file system accesses made to import
a module, without changing the actual algorithm that controls the order in which those accesses
are made. For instance, we could substitute an RHooks object that passes all filesystem requests
to a file server elsewhere, via some RPC mechanism such as ILU. Grail’s applet loader uses this to
support importing applets from a URL for a directory.

If verbose is true, additional debugging output may be sent to standard output.

The RExec class has the following class attributes, which are used by the init () method. Changing
them on an existing instance won’t have any effect; instead, create a subclass of RExec and assign them
new values in the class definition. Instances of the new class will then use those new values. All these
attributes are tuples of strings.

nok builtin names
Contains the names of built-in functions which will not be available to programs running in the
restricted environment. The value for RExec is (’open’, ’reload’, ’ import ’). (This gives
the exceptions, because by far the majority of built-in functions are harmless. A subclass that wants
to override this variable should probably start with the value from the base class and concatenate
additional forbidden functions — when new dangerous built-in functions are added to Python, they
will also be added to this module.)

ok builtin modules
Contains the names of built-in modules which can be safely imported. The value for RExec
is (’audioop’, ’array’, ’binascii’, ’cmath’, ’errno’, ’imageop’, ’marshal’, ’math’,
’md5’, ’operator’, ’parser’, ’regex’, ’rotor’, ’select’, ’strop’, ’struct’, ’time’).
A similar remark about overriding this variable applies — use the value from the base class as a
starting point.

ok path
Contains the directories which will be searched when an import is performed in the restricted
environment. The value for RExec is the same as sys.path (at the time the module is loaded) for
unrestricted code.

ok posix names
Contains the names of the functions in the os module which will be available to programs running
in the restricted environment. The value for RExec is (’error’, ’fstat’, ’listdir’, ’lstat’,
’readlink’, ’stat’, ’times’, ’uname’, ’getpid’, ’getppid’, ’getcwd’, ’getuid’,

268 Chapter 13. Restricted Execution

’getgid’, ’geteuid’, ’getegid’).

ok sys names
Contains the names of the functions and variables in the sys module which will be available to pro-
grams running in the restricted environment. The value for RExec is (’ps1’, ’ps2’, ’copyright’,
’version’, ’platform’, ’exit’, ’maxint’).

RExec instances support the following methods:

r eval(code)
code must either be a string containing a Python expression, or a compiled code object, which will
be evaluated in the restricted environment’s main module. The value of the expression or
code object will be returned.

r exec(code)
code must either be a string containing one or more lines of Python code, or a compiled code object,
which will be executed in the restricted environment’s main module.

r execfile(filename)
Execute the Python code contained in the file filename in the restricted environment’s main
module.

Methods whose names begin with ‘s ’ are similar to the functions beginning with ‘r ’, but the code
will be granted access to restricted versions of the standard I/O streams sys.stdin, sys.stderr, and
sys.stdout.

s eval(code)
code must be a string containing a Python expression, which will be evaluated in the restricted
environment.

s exec(code)
code must be a string containing one or more lines of Python code, which will be executed in the
restricted environment.

s execfile(code)
Execute the Python code contained in the file filename in the restricted environment.

RExec objects must also support various methods which will be implicitly called by code executing in the
restricted environment. Overriding these methods in a subclass is used to change the policies enforced
by a restricted environment.

r import(modulename[, globals[, locals[, fromlist]]])
Import the module modulename, raising an ImportError exception if the module is considered
unsafe.

r open(filename[, mode[, bufsize]])
Method called when open() is called in the restricted environment. The arguments are identical
to those of open(), and a file object (or a class instance compatible with file objects) should
be returned. RExec’s default behaviour is allow opening any file for reading, but forbidding any
attempt to write a file. See the example below for an implementation of a less restrictive r open().

r reload(module)
Reload the module object module, re-parsing and re-initializing it.

r unload(module)
Unload the module object module (i.e., remove it from the restricted environment’s sys.modules
dictionary).

And their equivalents with access to restricted standard I/O streams:

s import(modulename[, globals[, locals[, fromlist]]])
Import the module modulename, raising an ImportError exception if the module is considered
unsafe.

s reload(module)
Reload the module object module, re-parsing and re-initializing it.

13.1. rexec — Restricted execution framework 269

s unload(module)
Unload the module object module.

13.1.1 An example

Let us say that we want a slightly more relaxed policy than the standard RExec class. For example, if
we’re willing to allow files in ‘/tmp’ to be written, we can subclass the RExec class:

class TmpWriterRExec(rexec.RExec):

def r_open(self, file, mode=’r’, buf=-1):

if mode in (’r’, ’rb’):

pass

elif mode in (’w’, ’wb’, ’a’, ’ab’):

check filename : must begin with /tmp/

if file[:5]!=’/tmp/’:

raise IOError, "can’t write outside /tmp"

elif (string.find(file, ’/../’) >= 0 or

file[:3] == ’../’ or file[-3:] == ’/..’):

raise IOError, "’..’ in filename forbidden"

else: raise IOError, "Illegal open() mode"

return open(file, mode, buf)

Notice that the above code will occasionally forbid a perfectly valid filename; for example, code in the
restricted environment won’t be able to open a file called ‘/tmp/foo/../bar’. To fix this, the r open()
method would have to simplify the filename to ‘/tmp/bar’, which would require splitting apart the filename
and performing various operations on it. In cases where security is at stake, it may be preferable to write
simple code which is sometimes overly restrictive, instead of more general code that is also more complex
and may harbor a subtle security hole.

13.2 Bastion — Restricting access to objects

According to the dictionary, a bastion is “a fortified area or position”, or “something that is considered
a stronghold.” It’s a suitable name for this module, which provides a way to forbid access to certain
attributes of an object. It must always be used with the rexec module, in order to allow restricted-mode
programs access to certain safe attributes of an object, while denying access to other, unsafe attributes.

Bastion(object[, filter[, name[, class]]])
Protect the object object , returning a bastion for the object. Any attempt to access one of the
object’s attributes will have to be approved by the filter function; if the access is denied an
AttributeError exception will be raised.

If present, filter must be a function that accepts a string containing an attribute name, and returns
true if access to that attribute will be permitted; if filter returns false, the access is denied. The
default filter denies access to any function beginning with an underscore (‘ ’). The bastion’s
string representation will be ‘<Bastion for name>’ if a value for name is provided; otherwise,
‘repr(object)’ will be used.

class, if present, should be a subclass of BastionClass; see the code in ‘bastion.py’ for the details.
Overriding the default BastionClass will rarely be required.

BastionClass(getfunc, name)
Class which actually implements bastion objects. This is the default class used by Bastion(). The
getfunc parameter is a function which returns the value of an attribute which should be exposed
to the restricted execution environment when called with the name of the attribute as the only
parameter. name is used to construct the repr() of the BastionClass instance.

270 Chapter 13. Restricted Execution

CHAPTER

FOURTEEN

Multimedia Services

The modules described in this chapter implement various algorithms or interfaces that are mainly useful
for multimedia applications. They are available at the discretion of the installation. Here’s an overview:

audioop Manipulate raw audio data.
imageop Manipulate raw image data.
aifc Read and write audio files in AIFF or AIFC format.
sunau Provide an interface to the Sun AU sound format.
wave Provide an interface to the WAV sound format.
chunk Module to read IFF chunks.
colorsys Conversion functions between RGB and other color systems.
rgbimg Read and write image files in “SGI RGB” format (the module is not SGI specific though!).
imghdr Determine the type of image contained in a file or byte stream.
sndhdr Determine type of a sound file.

14.1 audioop — Manipulate raw audio data

The audioop module contains some useful operations on sound fragments. It operates on sound fragments
consisting of signed integer samples 8, 16 or 32 bits wide, stored in Python strings. This is the same
format as used by the al and sunaudiodev modules. All scalar items are integers, unless specified
otherwise.

This module provides support for u-LAW and Intel/DVI ADPCM encodings.

A few of the more complicated operations only take 16-bit samples, otherwise the sample size (in bytes)
is always a parameter of the operation.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unknown number of bytes per sample, etc.

add(fragment1, fragment2, width)
Return a fragment which is the addition of the two samples passed as parameters. width is the
sample width in bytes, either 1, 2 or 4. Both fragments should have the same length.

adpcm2lin(adpcmfragment, width, state)
Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See the description of
lin2adpcm() for details on ADPCM coding. Return a tuple (sample, newstate) where the sample
has the width specified in width.

adpcm32lin(adpcmfragment, width, state)
Decode an alternative 3-bit ADPCM code. See lin2adpcm3() for details.

avg(fragment, width)
Return the average over all samples in the fragment.

avgpp(fragment, width)
Return the average peak-peak value over all samples in the fragment. No filtering is done, so the

271

usefulness of this routine is questionable.

bias(fragment, width, bias)
Return a fragment that is the original fragment with a bias added to each sample.

cross(fragment, width)
Return the number of zero crossings in the fragment passed as an argument.

findfactor(fragment, reference)
Return a factor F such that rms(add(fragment, mul(reference, -F))) is minimal, i.e., return the
factor with which you should multiply reference to make it match as well as possible to fragment .
The fragments should both contain 2-byte samples.

The time taken by this routine is proportional to len(fragment).

findfit(fragment, reference)
Try to match reference as well as possible to a portion of fragment (which should be the longer
fragment). This is (conceptually) done by taking slices out of fragment , using findfactor() to
compute the best match, and minimizing the result. The fragments should both contain 2-byte
samples. Return a tuple (offset, factor) where offset is the (integer) offset into fragment where
the optimal match started and factor is the (floating-point) factor as per findfactor().

findmax(fragment, length)
Search fragment for a slice of length length samples (not bytes!) with maximum energy, i.e., return
i for which rms(fragment[i*2:(i+length)*2]) is maximal. The fragments should both contain
2-byte samples.

The routine takes time proportional to len(fragment).

getsample(fragment, width, index)
Return the value of sample index from the fragment.

lin2lin(fragment, width, newwidth)
Convert samples between 1-, 2- and 4-byte formats.

lin2adpcm(fragment, width, state)
Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an adaptive coding
scheme, whereby each 4 bit number is the difference between one sample and the next, divided by
a (varying) step. The Intel/DVI ADPCM algorithm has been selected for use by the IMA, so it
may well become a standard.

state is a tuple containing the state of the coder. The coder returns a tuple (adpcmfrag, newstate),
and the newstate should be passed to the next call of lin2adpcm(). In the initial call, None can
be passed as the state. adpcmfrag is the ADPCM coded fragment packed 2 4-bit values per byte.

lin2adpcm3(fragment, width, state)
This is an alternative ADPCM coder that uses only 3 bits per sample. It is not compatible with the
Intel/DVI ADPCM coder and its output is not packed (due to laziness on the side of the author).
Its use is discouraged.

lin2ulaw(fragment, width)
Convert samples in the audio fragment to u-LAW encoding and return this as a Python string.
u-LAW is an audio encoding format whereby you get a dynamic range of about 14 bits using only
8 bit samples. It is used by the Sun audio hardware, among others.

minmax(fragment, width)
Return a tuple consisting of the minimum and maximum values of all samples in the sound fragment.

max(fragment, width)
Return the maximum of the absolute value of all samples in a fragment.

maxpp(fragment, width)
Return the maximum peak-peak value in the sound fragment.

mul(fragment, width, factor)
Return a fragment that has all samples in the original framgent multiplied by the floating-point
value factor . Overflow is silently ignored.

272 Chapter 14. Multimedia Services

ratecv(fragment, width, nchannels, inrate, outrate, state[, weightA[, weightB]])
Convert the frame rate of the input fragment.

state is a tuple containing the state of the converter. The converter returns a tupl (newfragment,
newstate), and newstate should be passed to the next call of ratecv().

The weightA and weightB arguments are parameters for a simple digital filter and default to 1 and
0 respectively.

reverse(fragment, width)
Reverse the samples in a fragment and returns the modified fragment.

rms(fragment, width)
Return the root-mean-square of the fragment, i.e.√∑

Si
2

n

This is a measure of the power in an audio signal.

tomono(fragment, width, lfactor, rfactor)
Convert a stereo fragment to a mono fragment. The left channel is multiplied by lfactor and the
right channel by rfactor before adding the two channels to give a mono signal.

tostereo(fragment, width, lfactor, rfactor)
Generate a stereo fragment from a mono fragment. Each pair of samples in the stereo fragment
are computed from the mono sample, whereby left channel samples are multiplied by lfactor and
right channel samples by rfactor .

ulaw2lin(fragment, width)
Convert sound fragments in u-LAW encoding to linearly encoded sound fragments. u-LAW encod-
ing always uses 8 bits samples, so width refers only to the sample width of the output fragment
here.

Note that operations such as mul() or max() make no distinction between mono and stereo fragments,
i.e. all samples are treated equal. If this is a problem the stereo fragment should be split into two mono
fragments first and recombined later. Here is an example of how to do that:

def mul_stereo(sample, width, lfactor, rfactor):

lsample = audioop.tomono(sample, width, 1, 0)

rsample = audioop.tomono(sample, width, 0, 1)

lsample = audioop.mul(sample, width, lfactor)

rsample = audioop.mul(sample, width, rfactor)

lsample = audioop.tostereo(lsample, width, 1, 0)

rsample = audioop.tostereo(rsample, width, 0, 1)

return audioop.add(lsample, rsample, width)

If you use the ADPCM coder to build network packets and you want your protocol to be stateless (i.e.
to be able to tolerate packet loss) you should not only transmit the data but also the state. Note that
you should send the initial state (the one you passed to lin2adpcm()) along to the decoder, not the
final state (as returned by the coder). If you want to use struct.struct() to store the state in binary
you can code the first element (the predicted value) in 16 bits and the second (the delta index) in 8.

The ADPCM coders have never been tried against other ADPCM coders, only against themselves. It
could well be that I misinterpreted the standards in which case they will not be interoperable with the
respective standards.

The find*() routines might look a bit funny at first sight. They are primarily meant to do echo
cancellation. A reasonably fast way to do this is to pick the most energetic piece of the output sample,
locate that in the input sample and subtract the whole output sample from the input sample:

14.1. audioop — Manipulate raw audio data 273

def echocancel(outputdata, inputdata):

pos = audioop.findmax(outputdata, 800) # one tenth second

out_test = outputdata[pos*2:]

in_test = inputdata[pos*2:]

ipos, factor = audioop.findfit(in_test, out_test)

Optional (for better cancellation):

factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],

out_test)

prefill = ’\0’*(pos+ipos)*2

postfill = ’\0’*(len(inputdata)-len(prefill)-len(outputdata))

outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill

return audioop.add(inputdata, outputdata, 2)

14.2 imageop — Manipulate raw image data

The imageop module contains some useful operations on images. It operates on images consisting of 8
or 32 bit pixels stored in Python strings. This is the same format as used by gl.lrectwrite() and the
imgfile module.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unknown number of bits per pixel, etc.

crop(image, psize, width, height, x0, y0, x1, y1)
Return the selected part of image, which should by width by height in size and consist of pixels
of psize bytes. x0 , y0 , x1 and y1 are like the gl.lrectread() parameters, i.e. the boundary is
included in the new image. The new boundaries need not be inside the picture. Pixels that fall
outside the old image will have their value set to zero. If x0 is bigger than x1 the new image is
mirrored. The same holds for the y coordinates.

scale(image, psize, width, height, newwidth, newheight)
Return image scaled to size newwidth by newheight . No interpolation is done, scaling is done by
simple-minded pixel duplication or removal. Therefore, computer-generated images or dithered
images will not look nice after scaling.

tovideo(image, psize, width, height)
Run a vertical low-pass filter over an image. It does so by computing each destination pixel as the
average of two vertically-aligned source pixels. The main use of this routine is to forestall excessive
flicker if the image is displayed on a video device that uses interlacing, hence the name.

grey2mono(image, width, height, threshold)
Convert a 8-bit deep greyscale image to a 1-bit deep image by tresholding all the pixels. The
resulting image is tightly packed and is probably only useful as an argument to mono2grey().

dither2mono(image, width, height)
Convert an 8-bit greyscale image to a 1-bit monochrome image using a (simple-minded) dithering
algorithm.

mono2grey(image, width, height, p0, p1)
Convert a 1-bit monochrome image to an 8 bit greyscale or color image. All pixels that are zero-
valued on input get value p0 on output and all one-value input pixels get value p1 on output. To
convert a monochrome black-and-white image to greyscale pass the values 0 and 255 respectively.

grey2grey4(image, width, height)
Convert an 8-bit greyscale image to a 4-bit greyscale image without dithering.

grey2grey2(image, width, height)
Convert an 8-bit greyscale image to a 2-bit greyscale image without dithering.

dither2grey2(image, width, height)

274 Chapter 14. Multimedia Services

Convert an 8-bit greyscale image to a 2-bit greyscale image with dithering. As for dither2mono(),
the dithering algorithm is currently very simple.

grey42grey(image, width, height)
Convert a 4-bit greyscale image to an 8-bit greyscale image.

grey22grey(image, width, height)
Convert a 2-bit greyscale image to an 8-bit greyscale image.

14.3 aifc — Read and write AIFF and AIFC files

This module provides support for reading and writing AIFF and AIFF-C files. AIFF is Audio Interchange
File Format, a format for storing digital audio samples in a file. AIFF-C is a newer version of the format
that includes the ability to compress the audio data.

Caveat: Some operations may only work under IRIX; these will raise ImportError when attempting
to import the cl module, which is only available on IRIX.

Audio files have a number of parameters that describe the audio data. The sampling rate or frame rate
is the number of times per second the sound is sampled. The number of channels indicate if the audio
is mono, stereo, or quadro. Each frame consists of one sample per channel. The sample size is the size
in bytes of each sample. Thus a frame consists of nchannels*samplesize bytes, and a second’s worth of
audio consists of nchannels*samplesize*framerate bytes.

For example, CD quality audio has a sample size of two bytes (16 bits), uses two channels (stereo) and
has a frame rate of 44,100 frames/second. This gives a frame size of 4 bytes (2*2), and a second’s worth
occupies 2*2*44100 bytes, i.e. 176,400 bytes.

Module aifc defines the following function:

open(file, mode)
Open an AIFF or AIFF-C file and return an object instance with methods that are described
below. The argument file is either a string naming a file or a file object. The mode is either the
string ’r’ when the file must be opened for reading, or ’w’ when the file must be opened for
writing. When used for writing, the file object should be seekable, unless you know ahead of time
how many samples you are going to write in total and use writeframesraw() and setnframes().

Objects returned by open() when a file is opened for reading have the following methods:

getnchannels()
Return the number of audio channels (1 for mono, 2 for stereo).

getsampwidth()
Return the size in bytes of individual samples.

getframerate()
Return the sampling rate (number of audio frames per second).

getnframes()
Return the number of audio frames in the file.

getcomptype()
Return a four-character string describing the type of compression used in the audio file. For AIFF
files, the returned value is ’NONE’.

getcompname()
Return a human-readable description of the type of compression used in the audio file. For AIFF
files, the returned value is ’not compressed’.

getparams()
Return a tuple consisting of all of the above values in the above order.

getmarkers()
Return a list of markers in the audio file. A marker consists of a tuple of three elements. The first
is the mark ID (an integer), the second is the mark position in frames from the beginning of the

14.3. aifc — Read and write AIFF and AIFC files 275

data (an integer), the third is the name of the mark (a string).

getmark(id)
Return the tuple as described in getmarkers() for the mark with the given id .

readframes(nframes)
Read and return the next nframes frames from the audio file. The returned data is a string
containing for each frame the uncompressed samples of all channels.

rewind()
Rewind the read pointer. The next readframes() will start from the beginning.

setpos(pos)
Seek to the specified frame number.

tell()
Return the current frame number.

close()
Close the AIFF file. After calling this method, the object can no longer be used.

Objects returned by open() when a file is opened for writing have all the above methods, except for
readframes() and setpos(). In addition the following methods exist. The get*() methods can only
be called after the corresponding set*() methods have been called. Before the first writeframes() or
writeframesraw(), all parameters except for the number of frames must be filled in.

aiff()
Create an AIFF file. The default is that an AIFF-C file is created, unless the name of the file ends
in ’.aiff’ in which case the default is an AIFF file.

aifc()
Create an AIFF-C file. The default is that an AIFF-C file is created, unless the name of the file
ends in ’.aiff’ in which case the default is an AIFF file.

setnchannels(nchannels)
Specify the number of channels in the audio file.

setsampwidth(width)
Specify the size in bytes of audio samples.

setframerate(rate)
Specify the sampling frequency in frames per second.

setnframes(nframes)
Specify the number of frames that are to be written to the audio file. If this parameter is not set,
or not set correctly, the file needs to support seeking.

setcomptype(type, name)
Specify the compression type. If not specified, the audio data will not be compressed. In AIFF files,
compression is not possible. The name parameter should be a human-readable description of the
compression type, the type parameter should be a four-character string. Currently the following
compression types are supported: NONE, ULAW, ALAW, G722.

setparams(nchannels, sampwidth, framerate, comptype, compname)
Set all the above parameters at once. The argument is a tuple consisting of the various parameters.
This means that it is possible to use the result of a getparams() call as argument to setparams().

setmark(id, pos, name)
Add a mark with the given id (larger than 0), and the given name at the given position. This
method can be called at any time before close().

tell()
Return the current write position in the output file. Useful in combination with setmark().

writeframes(data)
Write data to the output file. This method can only be called after the audio file parameters have
been set.

276 Chapter 14. Multimedia Services

writeframesraw(data)
Like writeframes(), except that the header of the audio file is not updated.

close()
Close the AIFF file. The header of the file is updated to reflect the actual size of the audio data.
After calling this method, the object can no longer be used.

14.4 sunau — Read and write Sun AU files

The sunau module provides a convenient interface to the Sun AU sound format. Note that this module
is interface-compatible with the modules aifc and wave.

The sunau module defines the following functions:

open(file, mode)
If file is a string, open the file by that name, otherwise treat it as a seekable file-like object. mode
can be any of

’r’Read only mode.

’w’Write only mode.

Note that it does not allow read/write files.

A mode of ’r’ returns a AU read object, while a mode of ’w’ or ’wb’ returns a AU write object.

openfp(file, mode)
A synonym for open, maintained for backwards compatibility.

The sunau module defines the following exception:

Error
An error raised when something is impossible because of Sun AU specs or implementation deficiency.

The sunau module defines the following data item:

AUDIO FILE MAGIC
An integer every valid Sun AU file begins with a big-endian encoding of.

14.4.1 AU read Objects

AU read objects, as returned by open() above, have the following methods:

close()
Close the stream, and make the instance unusable. (This is called automatically on deletion.)

getnchannels()
Returns number of audio channels (1 for mone, 2 for stereo).

getsampwidth()
Returns sample width in bytes.

getframerate()
Returns sampling frequency.

getnframes()
Returns number of audio frames.

getcomptype()
Returns compression type. Supported compression types are ’ULAW’, ’ALAW’ and ’NONE’.

getcompname()
Human-readable version of getcomptype(). The supported types have the respective names
’CCITT G.711 u-law’, ’CCITT G.711 A-law’ and ’not compressed’.

14.4. sunau — Read and write Sun AU files 277

getparams()
Returns a tuple (nchannels, sampwidth, framerate, nframes, comptype, compname), equiva-
lent to output of the get*() methods.

readframes(n)
Reads and returns at most n frames of audio, as a string of bytes.

rewind()
Rewind the file pointer to the beginning of the audio stream.

The following two methods define a term “position” which is compatible between them, and is otherwise
implementation dependant.

setpos(pos)
Set the file pointer to the specified position.

tell()
Return current file pointer position.

The following two functions are defined for compatibility with the aifc, and don’t do anything interesting.

getmarkers()
Returns None.

getmark(id)
Raise an error.

14.4.2 AU write Objects

AU write objects, as returned by open() above, have the following methods:

setnchannels(n)
Set the number of channels.

setsampwidth(n)
Set the sample width (in bytes.)

setframerate(n)
Set the frame rate.

setnframes(n)
Set the number of frames. This can be later changed, when and if more frames are written.

setcomptype(type, name)
Set the compression type and description. Only ’NONE’ and ’ULAW’ are supported on output.

setparams(tuple)
The tuple should be (nchannels, sampwidth, framerate, nframes, comptype, compname),
with values valid for the set*() methods. Set all parameters.

tell()
Return current position in the file, with the same disclaimer for the AU read.tell() and
AU read.setpos() methods.

writeframesraw(data)
Write audio frames, without correcting nframes.

writeframes(data)
Write audio frames and make sure nframes is correct.

close()
Make sure nframes is correct, and close the file.

This method is called upon deletion.

Note that it is invalid to set any parameters after calling writeframes() or writeframesraw().

278 Chapter 14. Multimedia Services

14.5 wave — Read and write WAV files

The wave module provides a convenient interface to the WAV sound format. It does not support com-
pression/decompression, but it does support mono/stereo.

The wave module defines the following function and exception:

open(file, mode)
If file is a string, open the file by that name, other treat it as a seekable file-like object. mode can
be any of

’r’, ’rb’Read only mode.

’w’, ’wb’Write only mode.

Note that it does not allow read/write WAV files.

A mode of ’r’ or ’rb’ returns a Wave read object, while a mode of ’w’ or ’wb’ returns a
Wave write object.

openfp(file, mode)
A synonym for open(), maintained for backwards compatibility.

Error
An error raised when something is impossible because it violates the WAV specification or hits an
implementation deficiency.

14.5.1 Wave read Objects

Wave read objects, as returned by open(), have the following methods:

close()
Close the stream, and make the instance unusable. This is called automatically on object collection.

getnchannels()
Returns number of audio channels (1 for mono, 2 for stereo).

getsampwidth()
Returns sample width in bytes.

getframerate()
Returns sampling frequency.

getnframes()
Returns number of audio frames.

getcomptype()
Returns compression type (’NONE’ is the only supported type).

getcompname()
Human-readable version of getcomptype(). Usually ’not compressed’ parallels ’NONE’.

getparams()
Returns a tuple (nchannels, sampwidth, framerate, nframes, comptype, compname), equiva-
lent to output of the get*() methods.

readframes(n)
Reads and returns at most n frames of audio, as a string of bytes.

rewind()
Rewind the file pointer to the beginning of the audio stream.

The following two methods are defined for compatibility with the aifc module, and don’t do anything
interesting.

getmarkers()
Returns None.

14.5. wave — Read and write WAV files 279

getmark(id)
Raise an error.

The following two methods define a term “position” which is compatible between them, and is otherwise
implementation dependant.

setpos(pos)
Set the file pointer to the specified position.

tell()
Return current file pointer position.

14.5.2 Wave write Objects

Wave write objects, as returned by open(), have the following methods:

close()
Make sure nframes is correct, and close the file. This method is called upon deletion.

setnchannels(n)
Set the number of channels.

setsampwidth(n)
Set the sample width to n bytes.

setframerate(n)
Set the frame rate to n.

setnframes(n)
Set the number of frames to n. This will be changed later if more frames are written.

setcomptype(type, name)
Set the compression type and description.

setparams(tuple)
The tuple should be (nchannels, sampwidth, framerate, nframes, comptype, compname),
with values valid for the set*() methods. Sets all parameters.

tell()
Return current position in the file, with the same disclaimer for the Wave read.tell() and
Wave read.setpos() methods.

writeframesraw(data)
Write audio frames, without correcting nframes.

writeframes(data)
Write audio frames and make sure nframes is correct.

Note that it is invalid to set any parameters after calling writeframes() or writeframesraw(), and
any attempt to do so will raise wave.Error.

14.6 chunk — Read IFF chunked data

This module provides an interface for reading files that use EA IFF 85 chunks.1 This format is used in
at least the Audio Interchange File Format (AIFF/AIFF-C), the Real Media File Format (RMFF), and
the Tagged Image File Format (TIFF).

A chunk has the following structure:
1“EA IFF 85” Standard for Interchange Format Files, Jerry Morrison, Electronic Arts, January 1985.

280 Chapter 14. Multimedia Services

Offset Length Contents
0 4 Chunk ID
4 4 Size of chunk in big-endian byte order, including the header
8 n Data bytes, where n is the size given in the preceeding field

8 + n 0 or 1 Pad byte needed if n is odd and chunk alignment is used

The ID is a 4-byte string which identifies the type of chunk.

The size field (a 32-bit value, encoded using big-endian byte order) gives the size of the whole chunk,
including the 8-byte header.

Usually an IFF-type file consists of one or more chunks. The proposed usage of the Chunk class defined
here is to instantiate an instance at the start of each chunk and read from the instance until it reaches
the end, after which a new instance can be instantiated. At the end of the file, creating a new instance
will fail with a EOFError exception.

Chunk(file[, align])
Class which represents a chunk. The file argument is expected to be a file-like object. An instance
of this class is specifically allowed. The only method that is needed is read(). If the methods
seek() and tell() are present and don’t raise an exception, they are also used. If these methods
are present and raise an exception, they are expected to not have altered the object. If the optional
argument align is true, chunks are assumed to be aligned on 2-byte boundaries. If align is false,
no alignment is assumed. The default value is true.

A Chunk object supports the following methods:

getname()
Returns the name (ID) of the chunk. This is the first 4 bytes of the chunk.

close()
Close and skip to the end of the chunk. This does not close the underlying file.

The remaining methods will raise IOError if called after the close() method has been called.

isatty()
Returns 0.

seek(pos[, whence])
Set the chunk’s current position. The whence argument is optional and defaults to 0 (absolute file
positioning); other values are 1 (seek relative to the current position) and 2 (seek relative to the
file’s end). There is no return value. If the underlying file does not allow seek, only forward seeks
are allowed.

tell()
Return the current position into the chunk.

read([size])
Read at most size bytes from the chunk (less if the read hits the end of the chunk before obtaining
size bytes). If the size argument is negative or omitted, read all data until the end of the chunk.
The bytes are returned as a string object. An empty string is returned when the end of the chunk
is encountered immediately.

skip()
Skip to the end of the chunk. All further calls to read() for the chunk will return ’’. If you are
not interested in the contents of the chunk, this method should be called so that the file points to
the start of the next chunk.

14.7 colorsys — Conversions between color systems

The colorsys module defines bidirectional conversions of color values between colors expressed in the
RGB (Red Green Blue) color space used in computer monitors and three other coordinate systems:
YIQ, HLS (Hue Lightness Saturation) and HSV (Hue Saturation Value). Coordinates in all of these
color spaces are floating point values. In the YIQ space, the Y coordinate is between 0 and 1, but the

14.7. colorsys — Conversions between color systems 281

I and Q coordinates can be positive or negative. In all other spaces, the coordinates are all between 0
and 1.

More information about color spaces can be found at http://www.inforamp.net/%7epoynton/ColorFAQ.html.

The colorsys module defines the following functions:

rgb to yiq(r, g, b)
Convert the color from RGB coordinates to YIQ coordinates.

yiq to rgb(y, i, q)
Convert the color from YIQ coordinates to RGB coordinates.

rgb to hls(r, g, b)
Convert the color from RGB coordinates to HLS coordinates.

hls to rgb(h, l, s)
Convert the color from HLS coordinates to RGB coordinates.

rgb to hsv(r, g, b)
Convert the color from RGB coordinates to HSV coordinates.

hsv to rgb(h, s, v)
Convert the color from HSV coordinates to RGB coordinates.

Example:

>>> import colorsys

>>> colorsys.rgb_to_hsv(.3, .4, .2)

(0.25, 0.5, 0.4)

>>> colorsys.hsv_to_rgb(0.25, 0.5, 0.4)

(0.3, 0.4, 0.2)

14.8 rgbimg — Read and write “SGI RGB” files

The rgbimg module allows Python programs to access SGI imglib image files (also known as ‘.rgb’ files).
The module is far from complete, but is provided anyway since the functionality that there is enough in
some cases. Currently, colormap files are not supported.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unsupported file type, etc.

sizeofimage(file)
This function returns a tuple (x, y) where x and y are the size of the image in pixels. Only 4
byte RGBA pixels, 3 byte RGB pixels, and 1 byte greyscale pixels are currently supported.

longimagedata(file)
This function reads and decodes the image on the specified file, and returns it as a Python string.
The string has 4 byte RGBA pixels. The bottom left pixel is the first in the string. This format is
suitable to pass to gl.lrectwrite(), for instance.

longstoimage(data, x, y, z, file)
This function writes the RGBA data in data to image file file. x and y give the size of the image.
z is 1 if the saved image should be 1 byte greyscale, 3 if the saved image should be 3 byte RGB
data, or 4 if the saved images should be 4 byte RGBA data. The input data always contains 4
bytes per pixel. These are the formats returned by gl.lrectread().

ttob(flag)
This function sets a global flag which defines whether the scan lines of the image are read or
written from bottom to top (flag is zero, compatible with SGI GL) or from top to bottom(flag is
one, compatible with X). The default is zero.

282 Chapter 14. Multimedia Services

14.9 imghdr — Determine the type of an image.

The imghdr module determines the type of image contained in a file or byte stream.

The imghdr module defines the following function:

what(filename[, h])
Tests the image data contained in the file named by filename, and returns a string describing the
image type. If optional h is provided, the filename is ignored and h is assumed to contain the byte
stream to test.

The following image types are recognized, as listed below with the return value from what():

Value Image format
’rgb’ SGI ImgLib Files
’gif’ GIF 87a and 89a Files
’pbm’ Portable Bitmap Files
’pgm’ Portable Graymap Files
’ppm’ Portable Pixmap Files
’tiff’ TIFF Files
’rast’ Sun Raster Files
’xbm’ X Bitmap Files
’jpeg’ JPEG data in JFIF format
’bmp’ BMP files
’png’ Portable Network Graphics

You can extend the list of file types imghdr can recognize by appending to this variable:

tests
A list of functions performing the individual tests. Each function takes two arguments: the byte-
stream and an open file-like object. When what() is called with a byte-stream, the file-like object
will be None.

The test function should return a string describing the image type if the test succeeded, or None if
it failed.

Example:

>>> import imghdr

>>> imghdr.what(’/tmp/bass.gif’)

’gif’

14.10 sndhdr — Determine type of sound file.

The sndhdr provides utility functions which attempt to determine the type of sound data which is in a
file. When these functions are able to determine what type of sound data is stored in a file, they return
a tuple (type, sampling rate, channels, frames, bits per sample). The value for type indicates the
data type and will be one of the strings ’aifc’, ’aiff’, ’au’, ’hcom’, ’sndr’, ’sndt’, ’voc’, ’wav’,
’8svx’, ’sb’, ’ub’, or ’ul’. The sampling rate will be either the actual value or 0 if unknown or difficult
to decode. Similarly, channels will be either the number of channels or 0 if it cannot be determined or
if the value is difficult to decode. The value for frames will be either the number of frames or -1. The
last item in the tuple, bits per sample, will either be the sample size in bits or ’A’ for A-LAW or ’U’
for u-LAW.

what(filename)
Determines the type of sound data stored in the file filename using whathdr(). If it succeeds,
returns a tuple as described above, otherwise None is returned.

14.9. imghdr — Determine the type of an image. 283

whathdr(filename)
Determines the type of sound data stored in a file based on the file header. The name of the file is
given by filename. This function returns a tuple as described above on success, or None.

284 Chapter 14. Multimedia Services

CHAPTER

FIFTEEN

Cryptographic Services

The modules described in this chapter implement various algorithms of a cryptographic nature. They
are available at the discretion of the installation. Here’s an overview:
md5 RSA’s MD5 message digest algorithm.
sha NIST’s secure hash algorithm, SHA.
mpz Interface to the GNU MP library for arbitrary precision arithmetic.
rotor Enigma-like encryption and decryption.

Hardcore cypherpunks will probably find the cryptographic modules written by Andrew Kuchling of
further interest; the package adds built-in modules for DES and IDEA encryption, provides a Python
module for reading and decrypting PGP files, and then some. These modules are not distributed with
Python but available separately. See the URL http://starship.python.net/crew/amk/python/crypto.html or
send email to akuchlin@acm.org for more information.

15.1 md5 — MD5 message digest algorithm

This module implements the interface to RSA’s MD5 message digest algorithm (see also Internet RFC
1321). Its use is quite straightforward: use the new() to create an md5 object. You can now feed this
object with arbitrary strings using the update() method, and at any point you can ask it for the digest
(a strong kind of 128-bit checksum, a.k.a. “fingerprint”) of the contatenation of the strings fed to it so
far using the digest() method.

For example, to obtain the digest of the string ’Nobody inspects the spammish repetition’:

>>> import md5

>>> m = md5.new()

>>> m.update("Nobody inspects")

>>> m.update(" the spammish repetition")

>>> m.digest()

’\273d\234\203\335\036\245\311\331\336\311\241\215\360\377\351’

More condensed:

>>> md5.new("Nobody inspects the spammish repetition").digest()

’\273d\234\203\335\036\245\311\331\336\311\241\215\360\377\351’

new([arg])
Return a new md5 object. If arg is present, the method call update(arg) is made.

md5([arg])
For backward compatibility reasons, this is an alternative name for the new() function.

An md5 object has the following methods:

285

update(arg)
Update the md5 object with the string arg . Repeated calls are equivalent to a single call
with the concatenation of all the arguments, i.e. m.update(a); m.update(b) is equivalent to
m.update(a+b).

digest()
Return the digest of the strings passed to the update() method so far. This is an 16-byte string
which may contain non-ascii characters, including null bytes.

copy()
Return a copy (“clone”) of the md5 object. This can be used to efficiently compute the digests of
strings that share a common initial substring.

15.2 sha — SHA message digest algorithm

This module implements the interface to NIST’s secure hash algorithm, known as SHA. It is used in the
same way as the md5 module: use the new() to create an sha object, then feed this object with arbitrary
strings using the update() method, and at any point you can ask it for the digest of the contatenation
of the strings fed to it so far. SHA digests are 160 bits instead of 128 bits.

new([string])
Return a new sha object. If string is present, the method call update(string) is made.

The following values are provided as constants in the module and as attributes of the sha objects returned
by new():

blocksize
Size of the blocks fed into the hash function; this is always 1. This size is used to allow an arbitrary
string to be hashed.

digestsize
The size of the resulting digest in bytes. This is always 20.

A sha object has all the methods the md5 objects have, plus one:

hexdigest()
Return the digest value as a string of hexadecimal digits. This may be used to exchange the value
safely in email or other non-binary environments.

See Also:

The Secure Hash Algorithm is defined by NIST document FIPS PUB 180-1: Secure Hash Standard,
published in April of 1995. It is available online as plain text at http://csrc.nist.gov/fips/fip180-1.txt (at
least one diagram was omitted) and as PostScript at http://csrc.nist.gov/fips/fip180-1.ps.

15.3 mpz — GNU arbitrary magnitude integers

This is an optional module. It is only available when Python is configured to include it, which requires
that the GNU MP software is installed.

This module implements the interface to part of the GNU MP library, which defines arbitrary precision
integer and rational number arithmetic routines. Only the interfaces to the integer (mpz *()) routines
are provided. If not stated otherwise, the description in the GNU MP documentation can be applied.

Support for rational numbers can be implemented in Python. For an example, see the Rat module,
provided as ‘Demos/classes/Rat.py’ in the Python source distribution.

In general, mpz-numbers can be used just like other standard Python numbers, e.g., you can use the built-
in operators like +, *, etc., as well as the standard built-in functions like abs(), int(), . . . , divmod(),
pow(). Please note: the bitwise-xor operation has been implemented as a bunch of ands, inverts and
ors, because the library lacks an mpz xor() function, and I didn’t need one.

286 Chapter 15. Cryptographic Services

You create an mpz-number by calling the function mpz() (see below for an exact description). An
mpz-number is printed like this: mpz(value).

mpz(value)
Create a new mpz-number. value can be an integer, a long, another mpz-number, or even a string.
If it is a string, it is interpreted as an array of radix-256 digits, least significant digit first, resulting
in a positive number. See also the binary() method, described below.

MPZType
The type of the objects returned by mpz() and most other functions in this module.

A number of extra functions are defined in this module. Non mpz-arguments are converted to mpz-values
first, and the functions return mpz-numbers.

powm(base, exponent, modulus)
Return pow(base, exponent) % modulus. If exponent == 0, return mpz(1). In contrast to the C
library function, this version can handle negative exponents.

gcd(op1, op2)
Return the greatest common divisor of op1 and op2 .

gcdext(a, b)
Return a tuple (g, s, t), such that a*s + b*t == g == gcd(a, b).

sqrt(op)
Return the square root of op. The result is rounded towards zero.

sqrtrem(op)
Return a tuple (root, remainder), such that root*root + remainder == op.

divm(numerator, denominator, modulus)
Returns a number q such that q * denominator % modulus == numerator . One could also im-
plement this function in Python, using gcdext().

An mpz-number has one method:

binary()
Convert this mpz-number to a binary string, where the number has been stored as an array of
radix-256 digits, least significant digit first.

The mpz-number must have a value greater than or equal to zero, otherwise ValueError will be
raised.

15.4 rotor — Enigma-like encryption and decryption.

This module implements a rotor-based encryption algorithm, contributed by Lance Ellinghouse. The
design is derived from the Enigma device, a machine used during World War II to encipher messages. A
rotor is simply a permutation. For example, if the character ‘A’ is the origin of the rotor, then a given
rotor might map ‘A’ to ‘L’, ‘B’ to ‘Z’, ‘C’ to ‘G’, and so on. To encrypt, we choose several different
rotors, and set the origins of the rotors to known positions; their initial position is the ciphering key. To
encipher a character, we permute the original character by the first rotor, and then apply the second
rotor’s permutation to the result. We continue until we’ve applied all the rotors; the resulting character
is our ciphertext. We then change the origin of the final rotor by one position, from ‘A’ to ‘B’; if the
final rotor has made a complete revolution, then we rotate the next-to-last rotor by one position, and
apply the same procedure recursively. In other words, after enciphering one character, we advance the
rotors in the same fashion as a car’s odometer. Decoding works in the same way, except we reverse the
permutations and apply them in the opposite order.

The available functions in this module are:

newrotor(key[, numrotors])
Return a rotor object. key is a string containing the encryption key for the object; it can contain
arbitrary binary data. The key will be used to randomly generate the rotor permutations and their
initial positions. numrotors is the number of rotor permutations in the returned object; if it is

15.4. rotor — Enigma-like encryption and decryption. 287

omitted, a default value of 6 will be used.

Rotor objects have the following methods:

setkey(key)
Sets the rotor’s key to key .

encrypt(plaintext)
Reset the rotor object to its initial state and encrypt plaintext , returning a string containing the
ciphertext. The ciphertext is always the same length as the original plaintext.

encryptmore(plaintext)
Encrypt plaintext without resetting the rotor object, and return a string containing the ciphertext.

decrypt(ciphertext)
Reset the rotor object to its initial state and decrypt ciphertext , returning a string containing the
ciphertext. The plaintext string will always be the same length as the ciphertext.

decryptmore(ciphertext)
Decrypt ciphertext without resetting the rotor object, and return a string containing the ciphertext.

An example usage:

>>> import rotor

>>> rt = rotor.newrotor(’key’, 12)

>>> rt.encrypt(’bar’)

’\2534\363’

>>> rt.encryptmore(’bar’)

’\357\375$’

>>> rt.encrypt(’bar’)

’\2534\363’

>>> rt.decrypt(’\2534\363’)

’bar’

>>> rt.decryptmore(’\357\375$’)

’bar’

>>> rt.decrypt(’\357\375$’)

’l(\315’

>>> del rt

The module’s code is not an exact simulation of the original Enigma device; it implements the rotor
encryption scheme differently from the original. The most important difference is that in the original
Enigma, there were only 5 or 6 different rotors in existence, and they were applied twice to each character;
the cipher key was the order in which they were placed in the machine. The Python rotor module uses the
supplied key to initialize a random number generator; the rotor permutations and their initial positions
are then randomly generated. The original device only enciphered the letters of the alphabet, while this
module can handle any 8-bit binary data; it also produces binary output. This module can also operate
with an arbitrary number of rotors.

The original Enigma cipher was broken in 1944. The version implemented here is probably a good deal
more difficult to crack (especially if you use many rotors), but it won’t be impossible for a truly skilful
and determined attacker to break the cipher. So if you want to keep the NSA out of your files, this rotor
cipher may well be unsafe, but for discouraging casual snooping through your files, it will probably be
just fine, and may be somewhat safer than using the Unix crypt command.

288 Chapter 15. Cryptographic Services

CHAPTER

SIXTEEN

SGI IRIX Specific Services

The modules described in this chapter provide interfaces to features that are unique to SGI’s IRIX
operating system (versions 4 and 5).

al Audio functions on the SGI.
AL Constants used with the al module.
cd Interface to the CD-ROM on Silicon Graphics systems.
fl FORMS library interface for GUI applications.
FL Constants used with the fl module.
flp Functions for loading stored FORMS designs.
fm Font Manager interface for SGI workstations.
gl Functions from the Silicon Graphics Graphics Library.
DEVICE Constants used with the gl module.
GL Constants used with the gl module.
imgfile Support for SGI imglib files.
jpeg Read and write image files in compressed JPEG format.

16.1 al — Audio functions on the SGI

This module provides access to the audio facilities of the SGI Indy and Indigo workstations. See section
3A of the IRIX man pages for details. You’ll need to read those man pages to understand what these
functions do! Some of the functions are not available in IRIX releases before 4.0.5. Again, see the manual
to check whether a specific function is available on your platform.

All functions and methods defined in this module are equivalent to the C functions with ‘AL’ prefixed to
their name.

Symbolic constants from the C header file <audio.h> are defined in the standard module AL, see below.

Warning: the current version of the audio library may dump core when bad argument values are passed
rather than returning an error status. Unfortunately, since the precise circumstances under which this
may happen are undocumented and hard to check, the Python interface can provide no protection against
this kind of problems. (One example is specifying an excessive queue size — there is no documented
upper limit.)

The module defines the following functions:

openport(name, direction[, config])
The name and direction arguments are strings. The optional config argument is a configuration
object as returned by newconfig(). The return value is an audio port object; methods of audio
port objects are described below.

newconfig()
The return value is a new audio configuration object; methods of audio configuration objects are
described below.

queryparams(device)
The device argument is an integer. The return value is a list of integers containing the data returned

289

by ALqueryparams().

getparams(device, list)
The device argument is an integer. The list argument is a list such as returned by queryparams();
it is modified in place (!).

setparams(device, list)
The device argument is an integer. The list argument is a list such as returned by queryparams().

16.1.1 Configuration Objects

Configuration objects (returned by newconfig() have the following methods:

getqueuesize()
Return the queue size.

setqueuesize(size)
Set the queue size.

getwidth()
Get the sample width.

setwidth(width)
Set the sample width.

getchannels()
Get the channel count.

setchannels(nchannels)
Set the channel count.

getsampfmt()
Get the sample format.

setsampfmt(sampfmt)
Set the sample format.

getfloatmax()
Get the maximum value for floating sample formats.

setfloatmax(floatmax)
Set the maximum value for floating sample formats.

16.1.2 Port Objects

Port objects, as returned by openport(), have the following methods:

closeport()
Close the port.

getfd()
Return the file descriptor as an int.

getfilled()
Return the number of filled samples.

getfillable()
Return the number of fillable samples.

readsamps(nsamples)
Read a number of samples from the queue, blocking if necessary. Return the data as a string
containing the raw data, (e.g., 2 bytes per sample in big-endian byte order (high byte, low byte) if
you have set the sample width to 2 bytes).

writesamps(samples)
Write samples into the queue, blocking if necessary. The samples are encoded as described for the

290 Chapter 16. SGI IRIX Specific Services

readsamps() return value.

getfillpoint()
Return the ‘fill point’.

setfillpoint(fillpoint)
Set the ‘fill point’.

getconfig()
Return a configuration object containing the current configuration of the port.

setconfig(config)
Set the configuration from the argument, a configuration object.

getstatus(list)
Get status information on last error.

16.2 AL — Constants used with the al module

This module defines symbolic constants needed to use the built-in module al (see above); they are
equivalent to those defined in the C header file <audio.h> except that the name prefix ‘AL ’ is omitted.
Read the module source for a complete list of the defined names. Suggested use:

import al

from AL import *

16.3 cd — CD-ROM access on SGI systems

This module provides an interface to the Silicon Graphics CD library. It is available only on Silicon
Graphics systems.

The way the library works is as follows. A program opens the CD-ROM device with open() and creates
a parser to parse the data from the CD with createparser(). The object returned by open() can be
used to read data from the CD, but also to get status information for the CD-ROM device, and to get
information about the CD, such as the table of contents. Data from the CD is passed to the parser,
which parses the frames, and calls any callback functions that have previously been added.

An audio CD is divided into tracks or programs (the terms are used interchangeably). Tracks can be
subdivided into indices. An audio CD contains a table of contents which gives the starts of the tracks
on the CD. Index 0 is usually the pause before the start of a track. The start of the track as given by
the table of contents is normally the start of index 1.

Positions on a CD can be represented in two ways. Either a frame number or a tuple of three values,
minutes, seconds and frames. Most functions use the latter representation. Positions can be both relative
to the beginning of the CD, and to the beginning of the track.

Module cd defines the following functions and constants:

createparser()
Create and return an opaque parser object. The methods of the parser object are described below.

msftoframe(minutes, seconds, frames)
Converts a (minutes, seconds, frames) triple representing time in absolute time code into the
corresponding CD frame number.

open([device[, mode]])
Open the CD-ROM device. The return value is an opaque player object; methods of the player ob-
ject are described below. The device is the name of the SCSI device file, e.g. ’/dev/scsi/sc0d4l0’,
or None. If omitted or None, the hardware inventory is consulted to locate a CD-ROM drive. The

16.2. AL — Constants used with the al module 291

mode, if not omited, should be the string ’r’.

The module defines the following variables:

error
Exception raised on various errors.

DATASIZE
The size of one frame’s worth of audio data. This is the size of the audio data as passed to the
callback of type audio.

BLOCKSIZE
The size of one uninterpreted frame of audio data.

The following variables are states as returned by getstatus():

READY
The drive is ready for operation loaded with an audio CD.

NODISC
The drive does not have a CD loaded.

CDROM
The drive is loaded with a CD-ROM. Subsequent play or read operations will return I/O errors.

ERROR
An error aoocurred while trying to read the disc or its table of contents.

PLAYING
The drive is in CD player mode playing an audio CD through its audio jacks.

PAUSED
The drive is in CD layer mode with play paused.

STILL
The equivalent of PAUSED on older (non 3301) model Toshiba CD-ROM drives. Such drives have
never been shipped by SGI.

audio
pnum
index
ptime
atime
catalog
ident
control

Integer constants describing the various types of parser callbacks that can be set by the
addcallback() method of CD parser objects (see below).

16.3.1 Player Objects

Player objects (returned by open()) have the following methods:

allowremoval()
Unlocks the eject button on the CD-ROM drive permitting the user to eject the caddy if desired.

bestreadsize()
Returns the best value to use for the num frames parameter of the readda() method. Best is
defined as the value that permits a continuous flow of data from the CD-ROM drive.

close()
Frees the resources associated with the player object. After calling close(), the methods of the
object should no longer be used.

eject()
Ejects the caddy from the CD-ROM drive.

292 Chapter 16. SGI IRIX Specific Services

getstatus()
Returns information pertaining to the current state of the CD-ROM drive. The returned informa-
tion is a tuple with the following values: state, track , rtime, atime, ttime, first , last , scsi audio,
cur block . rtime is the time relative to the start of the current track; atime is the time relative to
the beginning of the disc; ttime is the total time on the disc. For more information on the meaning
of the values, see the man page CDgetstatus(3dm). The value of state is one of the following:
ERROR, NODISC, READY, PLAYING, PAUSED, STILL, or CDROM.

gettrackinfo(track)
Returns information about the specified track. The returned information is a tuple consisting of
two elements, the start time of the track and the duration of the track.

msftoblock(min, sec, frame)
Converts a minutes, seconds, frames triple representing a time in absolute time code into the
corresponding logical block number for the given CD-ROM drive. You should use msftoframe()
rather than msftoblock() for comparing times. The logical block number differs from the frame
number by an offset required by certain CD-ROM drives.

play(start, play)
Starts playback of an audio CD in the CD-ROM drive at the specified track. The audio output
appears on the CD-ROM drive’s headphone and audio jacks (if fitted). Play stops at the end of
the disc. start is the number of the track at which to start playing the CD; if play is 0, the CD
will be set to an initial paused state. The method togglepause() can then be used to commence
play.

playabs(minutes, seconds, frames, play)
Like play(), except that the start is given in minutes, seconds, and frames instead of a track
number.

playtrack(start, play)
Like play(), except that playing stops at the end of the track.

playtrackabs(track, minutes, seconds, frames, play)
Like play(), except that playing begins at the spcified absolute time and ends at the end of the
specified track.

preventremoval()
Locks the eject button on the CD-ROM drive thus preventing the user from arbitrarily ejecting
the caddy.

readda(num frames)
Reads the specified number of frames from an audio CD mounted in the CD-ROM drive. The
return value is a string representing the audio frames. This string can be passed unaltered to the
parseframe() method of the parser object.

seek(minutes, seconds, frames)
Sets the pointer that indicates the starting point of the next read of digital audio data from a
CD-ROM. The pointer is set to an absolute time code location specified in minutes, seconds, and
frames. The return value is the logical block number to which the pointer has been set.

seekblock(block)
Sets the pointer that indicates the starting point of the next read of digital audio data from a
CD-ROM. The pointer is set to the specified logical block number. The return value is the logical
block number to which the pointer has been set.

seektrack(track)
Sets the pointer that indicates the starting point of the next read of digital audio data from a
CD-ROM. The pointer is set to the specified track. The return value is the logical block number
to which the pointer has been set.

stop()
Stops the current playing operation.

togglepause()
Pauses the CD if it is playing, and makes it play if it is paused.

16.3. cd — CD-ROM access on SGI systems 293

16.3.2 Parser Objects

Parser objects (returned by createparser()) have the following methods:

addcallback(type, func, arg)
Adds a callback for the parser. The parser has callbacks for eight different types of data in the
digital audio data stream. Constants for these types are defined at the cd module level (see above).
The callback is called as follows: func(arg, type, data), where arg is the user supplied argument,
type is the particular type of callback, and data is the data returned for this type of callback. The
type of the data depends on the type of callback as follows:

Type Value
audio String which can be passed unmodified to al.writesamps().
pnum Integer giving the program (track) number.
index Integer giving the index number.
ptime Tuple consisting of the program time in minutes, seconds, and

frames.
atime Tuple consisting of the absolute time in minutes, seconds, and

frames.
catalog String of 13 characters, giving the catalog number of the CD.
ident String of 12 characters, giving the ISRC identification number of

the recording. The string consists of two characters country code,
three characters owner code, two characters giving the year, and
five characters giving a serial number.

control Integer giving the control bits from the CD subcode data

deleteparser()
Deletes the parser and frees the memory it was using. The object should not be used after this
call. This call is done automatically when the last reference to the object is removed.

parseframe(frame)
Parses one or more frames of digital audio data from a CD such as returned by readda(). It
determines which subcodes are present in the data. If these subcodes have changed since the last
frame, then parseframe() executes a callback of the appropriate type passing to it the subcode
data found in the frame. Unlike the C function, more than one frame of digital audio data can be
passed to this method.

removecallback(type)
Removes the callback for the given type.

resetparser()
Resets the fields of the parser used for tracking subcodes to an initial state. resetparser() should
be called after the disc has been changed.

16.4 fl — FORMS library interface for GUI applications

This module provides an interface to the FORMS Library by Mark Overmars. The source for the library
can be retrieved by anonymous ftp from host ‘ftp.cs.ruu.nl’, directory ‘SGI/FORMS’. It was last tested
with version 2.0b.

Most functions are literal translations of their C equivalents, dropping the initial ‘fl ’ from their name.
Constants used by the library are defined in module FL described below.

The creation of objects is a little different in Python than in C: instead of the ‘current form’ maintained
by the library to which new FORMS objects are added, all functions that add a FORMS object to a form
are methods of the Python object representing the form. Consequently, there are no Python equivalents
for the C functions fl addto form() and fl end form(), and the equivalent of fl bgn form() is
called fl.make form().

Watch out for the somewhat confusing terminology: FORMS uses the word object for the buttons, sliders
etc. that you can place in a form. In Python, ‘object’ means any value. The Python interface to FORMS
introduces two new Python object types: form objects (representing an entire form) and FORMS objects

294 Chapter 16. SGI IRIX Specific Services

(representing one button, slider etc.). Hopefully this isn’t too confusing.

There are no ‘free objects’ in the Python interface to FORMS, nor is there an easy way to add object
classes written in Python. The FORMS interface to GL event handling is available, though, so you can
mix FORMS with pure GL windows.

Please note: importing fl implies a call to the GL function foreground() and to the FORMS routine
fl init().

16.4.1 Functions Defined in Module fl

Module fl defines the following functions. For more information about what they do, see the description
of the equivalent C function in the FORMS documentation:

make form(type, width, height)
Create a form with given type, width and height. This returns a form object, whose methods are
described below.

do forms()
The standard FORMS main loop. Returns a Python object representing the FORMS object needing
interaction, or the special value FL.EVENT.

check forms()
Check for FORMS events. Returns what do forms() above returns, or None if there is no event
that immediately needs interaction.

set event call back(function)
Set the event callback function.

set graphics mode(rgbmode, doublebuffering)
Set the graphics modes.

get rgbmode()
Return the current rgb mode. This is the value of the C global variable fl rgbmode.

show message(str1, str2, str3)
Show a dialog box with a three-line message and an OK button.

show question(str1, str2, str3)
Show a dialog box with a three-line message and YES and NO buttons. It returns 1 if the user
pressed YES, 0 if NO.

show choice(str1, str2, str3, but1 [, but2 [, but3]])
Show a dialog box with a three-line message and up to three buttons. It returns the number of the
button clicked by the user (1, 2 or 3).

show input(prompt, default)
Show a dialog box with a one-line prompt message and text field in which the user can enter a
string. The second argument is the default input string. It returns the string value as edited by
the user.

show file selector(message, directory, pattern, default)
Show a dialog box in which the user can select a file. It returns the absolute filename selected by
the user, or None if the user presses Cancel.

get directory()
get pattern()
get filename()

These functions return the directory, pattern and filename (the tail part only) selected by the user
in the last show file selector() call.

qdevice(dev)
unqdevice(dev)
isqueued(dev)
qtest()

16.4. fl — FORMS library interface for GUI applications 295

qread()
qreset()
qenter(dev, val)
get mouse()
tie(button, valuator1, valuator2)

These functions are the FORMS interfaces to the corresponding GL functions. Use these if you
want to handle some GL events yourself when using fl.do events(). When a GL event is detected
that FORMS cannot handle, fl.do forms() returns the special value FL.EVENT and you should
call fl.qread() to read the event from the queue. Don’t use the equivalent GL functions!

color()
mapcolor()
getmcolor()

See the description in the FORMS documentation of fl color(), fl mapcolor() and
fl getmcolor().

16.4.2 Form Objects

Form objects (returned by make form() above) have the following methods. Each method corresponds
to a C function whose name is prefixed with ‘fl ’; and whose first argument is a form pointer; please
refer to the official FORMS documentation for descriptions.

All the add *() methods return a Python object representing the FORMS object. Methods of FORMS
objects are described below. Most kinds of FORMS object also have some methods specific to that kind;
these methods are listed here.

show form(placement, bordertype, name)
Show the form.

hide form()
Hide the form.

redraw form()
Redraw the form.

set form position(x, y)
Set the form’s position.

freeze form()
Freeze the form.

unfreeze form()
Unfreeze the form.

activate form()
Activate the form.

deactivate form()
Deactivate the form.

bgn group()
Begin a new group of objects; return a group object.

end group()
End the current group of objects.

find first()
Find the first object in the form.

find last()
Find the last object in the form.

add box(type, x, y, w, h, name)
Add a box object to the form. No extra methods.

296 Chapter 16. SGI IRIX Specific Services

add text(type, x, y, w, h, name)
Add a text object to the form. No extra methods.

add clock(type, x, y, w, h, name)
Add a clock object to the form.
Method: get clock().

add button(type, x, y, w, h, name)
Add a button object to the form.
Methods: get button(), set button().

add lightbutton(type, x, y, w, h, name)
Add a lightbutton object to the form.
Methods: get button(), set button().

add roundbutton(type, x, y, w, h, name)
Add a roundbutton object to the form.
Methods: get button(), set button().

add slider(type, x, y, w, h, name)
Add a slider object to the form.
Methods: set slider value(), get slider value(), set slider bounds(),
get slider bounds(), set slider return(), set slider size(),
set slider precision(), set slider step().

add valslider(type, x, y, w, h, name)
Add a valslider object to the form.
Methods: set slider value(), get slider value(), set slider bounds(),
get slider bounds(), set slider return(), set slider size(),
set slider precision(), set slider step().

add dial(type, x, y, w, h, name)
Add a dial object to the form.
Methods: set dial value(), get dial value(), set dial bounds(), get dial bounds().

add positioner(type, x, y, w, h, name)
Add a positioner object to the form.
Methods: set positioner xvalue(), set positioner yvalue(),
set positioner xbounds(), set positioner ybounds(), get positioner xvalue(),
get positioner yvalue(), get positioner xbounds(), get positioner ybounds().

add counter(type, x, y, w, h, name)
Add a counter object to the form.
Methods: set counter value(), get counter value(), set counter bounds(),
set counter step(), set counter precision(), set counter return().

add input(type, x, y, w, h, name)
Add a input object to the form.
Methods: set input(), get input(), set input color(), set input return().

add menu(type, x, y, w, h, name)
Add a menu object to the form.
Methods: set menu(), get menu(), addto menu().

add choice(type, x, y, w, h, name)
Add a choice object to the form.
Methods: set choice(), get choice(), clear choice(), addto choice(),
replace choice(), delete choice(), get choice text(), set choice fontsize(),
set choice fontstyle().

add browser(type, x, y, w, h, name)
Add a browser object to the form.
Methods: set browser topline(), clear browser(), add browser line(),
addto browser(), insert browser line(), delete browser line(),
replace browser line(), get browser line(), load browser(), get browser maxline(),

16.4. fl — FORMS library interface for GUI applications 297

select browser line(), deselect browser line(), deselect browser(),
isselected browser line(), get browser(), set browser fontsize(),
set browser fontstyle(), set browser specialkey().

add timer(type, x, y, w, h, name)
Add a timer object to the form.
Methods: set timer(), get timer().

Form objects have the following data attributes; see the FORMS documentation:

Name C Type Meaning
window int (read-only) GL window id
w float form width
h float form height
x float form x origin
y float form y origin
deactivated int nonzero if form is deactivated
visible int nonzero if form is visible
frozen int nonzero if form is frozen
doublebuf int nonzero if double buffering on

16.4.3 FORMS Objects

Besides methods specific to particular kinds of FORMS objects, all FORMS objects also have the fol-
lowing methods:

set call back(function, argument)
Set the object’s callback function and argument. When the object needs interaction, the callback
function will be called with two arguments: the object, and the callback argument. (FORMS
objects without a callback function are returned by fl.do forms() or fl.check forms() when
they need interaction.) Call this method without arguments to remove the callback function.

delete object()
Delete the object.

show object()
Show the object.

hide object()
Hide the object.

redraw object()
Redraw the object.

freeze object()
Freeze the object.

unfreeze object()
Unfreeze the object.

FORMS objects have these data attributes; see the FORMS documentation:

298 Chapter 16. SGI IRIX Specific Services

Name C Type Meaning
objclass int (read-only) object class
type int (read-only) object type
boxtype int box type
x float x origin
y float y origin
w float width
h float height
col1 int primary color
col2 int secondary color
align int alignment
lcol int label color
lsize float label font size
label string label string
lstyle int label style
pushed int (read-only) (see FORMS docs)
focus int (read-only) (see FORMS docs)
belowmouse int (read-only) (see FORMS docs)
frozen int (read-only) (see FORMS docs)
active int (read-only) (see FORMS docs)
input int (read-only) (see FORMS docs)
visible int (read-only) (see FORMS docs)
radio int (read-only) (see FORMS docs)
automatic int (read-only) (see FORMS docs)

16.5 FL — Constants used with the fl module

This module defines symbolic constants needed to use the built-in module fl (see above); they are
equivalent to those defined in the C header file <forms.h> except that the name prefix ‘FL ’ is omitted.
Read the module source for a complete list of the defined names. Suggested use:

import fl

from FL import *

16.6 flp — Functions for loading stored FORMS designs

This module defines functions that can read form definitions created by the ‘form designer’ (fdesign)
program that comes with the FORMS library (see module fl above).

For now, see the file ‘flp.doc’ in the Python library source directory for a description.

XXX A complete description should be inserted here!

16.7 fm — Font Manager interface

This module provides access to the IRIS Font Manager library. It is available only on Silicon Graphics
machines. See also: 4Sight User’s Guide, section 1, chapter 5: “Using the IRIS Font Manager.”

This is not yet a full interface to the IRIS Font Manager. Among the unsupported features are: matrix
operations; cache operations; character operations (use string operations instead); some details of font
info; individual glyph metrics; and printer matching.

It supports the following operations:

16.5. FL — Constants used with the fl module 299

init()
Initialization function. Calls fminit(). It is normally not necessary to call this function, since it
is called automatically the first time the fm module is imported.

findfont(fontname)
Return a font handle object. Calls fmfindfont(fontname).

enumerate()
Returns a list of available font names. This is an interface to fmenumerate().

prstr(string)
Render a string using the current font (see the setfont() font handle method below). Calls
fmprstr(string).

setpath(string)
Sets the font search path. Calls fmsetpath(string). (XXX Does not work!?!)

fontpath()
Returns the current font search path.

Font handle objects support the following operations:

scalefont(factor)
Returns a handle for a scaled version of this font. Calls fmscalefont(fh, factor).

setfont()
Makes this font the current font. Note: the effect is undone silently when the font handle object is
deleted. Calls fmsetfont(fh).

getfontname()
Returns this font’s name. Calls fmgetfontname(fh).

getcomment()
Returns the comment string associated with this font. Raises an exception if there is none. Calls
fmgetcomment(fh).

getfontinfo()
Returns a tuple giving some pertinent data about this font. This is an interface to
fmgetfontinfo(). The returned tuple contains the following numbers: (printermatched ,
fixed width, xorig , yorig , xsize, ysize, height , nglyphs).

getstrwidth(string)
Returns the width, in pixels, of string when drawn in this font. Calls fmgetstrwidth(fh, string).

16.8 gl — Graphics Library interface

This module provides access to the Silicon Graphics Graphics Library. It is available only on Silicon
Graphics machines.

Warning: Some illegal calls to the GL library cause the Python interpreter to dump core. In particular,
the use of most GL calls is unsafe before the first window is opened.

The module is too large to document here in its entirety, but the following should help you to get started.
The parameter conventions for the C functions are translated to Python as follows:

• All (short, long, unsigned) int values are represented by Python integers.

• All float and double values are represented by Python floating point numbers. In most cases,
Python integers are also allowed.

• All arrays are represented by one-dimensional Python lists. In most cases, tuples are also allowed.

• All string and character arguments are represented by Python strings, for instance, winopen(’Hi
There!’) and rotate(900, ’z’).

300 Chapter 16. SGI IRIX Specific Services

• All (short, long, unsigned) integer arguments or return values that are only used to specify the
length of an array argument are omitted. For example, the C call

lmdef(deftype, index, np, props)

is translated to Python as

lmdef(deftype, index, props)

• Output arguments are omitted from the argument list; they are transmitted as function return
values instead. If more than one value must be returned, the return value is a tuple. If the C
function has both a regular return value (that is not omitted because of the previous rule) and an
output argument, the return value comes first in the tuple. Examples: the C call

getmcolor(i, &red, &green, &blue)

is translated to Python as

red, green, blue = getmcolor(i)

The following functions are non-standard or have special argument conventions:

varray(argument)
Equivalent to but faster than a number of v3d() calls. The argument is a list (or tuple) of points.
Each point must be a tuple of coordinates (x, y, z) or (x, y). The points may be 2- or 3-
dimensional but must all have the same dimension. Float and int values may be mixed however.
The points are always converted to 3D double precision points by assuming z = 0.0 if necessary
(as indicated in the man page), and for each point v3d() is called.

nvarray()
Equivalent to but faster than a number of n3f and v3f calls. The argument is an array (list or
tuple) of pairs of normals and points. Each pair is a tuple of a point and a normal for that point.
Each point or normal must be a tuple of coordinates (x, y, z). Three coordinates must be given.
Float and int values may be mixed. For each pair, n3f() is called for the normal, and then v3f()
is called for the point.

vnarray()
Similar to nvarray() but the pairs have the point first and the normal second.

nurbssurface(s k, t k, ctl, s ord, t ord, type)
Defines a nurbs surface. The dimensions of ctl[][] are computed as follows: [len(s k) - s ord],
[len(t k) - t ord].

nurbscurve(knots, ctlpoints, order, type)
Defines a nurbs curve. The length of ctlpoints is len(knots) - order .

pwlcurve(points, type)
Defines a piecewise-linear curve. points is a list of points. type must be N ST.

pick(n)
select(n)

The only argument to these functions specifies the desired size of the pick or select buffer.

endpick()
endselect()

These functions have no arguments. They return a list of integers representing the used part of
the pick/select buffer. No method is provided to detect buffer overrun.

16.8. gl — Graphics Library interface 301

Here is a tiny but complete example GL program in Python:

import gl, GL, time

def main():

gl.foreground()

gl.prefposition(500, 900, 500, 900)

w = gl.winopen(’CrissCross’)

gl.ortho2(0.0, 400.0, 0.0, 400.0)

gl.color(GL.WHITE)

gl.clear()

gl.color(GL.RED)

gl.bgnline()

gl.v2f(0.0, 0.0)

gl.v2f(400.0, 400.0)

gl.endline()

gl.bgnline()

gl.v2f(400.0, 0.0)

gl.v2f(0.0, 400.0)

gl.endline()

time.sleep(5)

main()

See Also:

An interface to OpenGL is also available; see information about David Ascher’s PyOpenGL online at
http://starship.python.net/crew/da/PyOpenGL/. This may be a better option if support for SGI hardware
from before about 1996 is not required.

16.9 DEVICE — Constants used with the gl module

This modules defines the constants used by the Silicon Graphics Graphics Library that C programmers
find in the header file <gl/device.h>. Read the module source file for details.

16.10 GL — Constants used with the gl module

This module contains constants used by the Silicon Graphics Graphics Library from the C header file
<gl/gl.h>. Read the module source file for details.

16.11 imgfile — Support for SGI imglib files

The imgfile module allows Python programs to access SGI imglib image files (also known as ‘.rgb’ files).
The module is far from complete, but is provided anyway since the functionality that there is is enough
in some cases. Currently, colormap files are not supported.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unsupported file type, etc.

getsizes(file)
This function returns a tuple (x, y, z) where x and y are the size of the image in pixels and z
is the number of bytes per pixel. Only 3 byte RGB pixels and 1 byte greyscale pixels are currently
supported.

302 Chapter 16. SGI IRIX Specific Services

read(file)
This function reads and decodes the image on the specified file, and returns it as a Python string.
The string has either 1 byte greyscale pixels or 4 byte RGBA pixels. The bottom left pixel is the
first in the string. This format is suitable to pass to gl.lrectwrite(), for instance.

readscaled(file, x, y, filter[, blur])
This function is identical to read but it returns an image that is scaled to the given x and y sizes.
If the filter and blur parameters are omitted scaling is done by simply dropping or duplicating
pixels, so the result will be less than perfect, especially for computer-generated images.

Alternatively, you can specify a filter to use to smoothen the image after scaling. The filter forms
supported are ’impulse’, ’box’, ’triangle’, ’quadratic’ and ’gaussian’. If a filter is specified
blur is an optional parameter specifying the blurriness of the filter. It defaults to 1.0.

readscaled() makes no attempt to keep the aspect ratio correct, so that is the users’ responsibility.

ttob(flag)
This function sets a global flag which defines whether the scan lines of the image are read or
written from bottom to top (flag is zero, compatible with SGI GL) or from top to bottom(flag is
one, compatible with X). The default is zero.

write(file, data, x, y, z)
This function writes the RGB or greyscale data in data to image file file. x and y give the size of
the image, z is 1 for 1 byte greyscale images or 3 for RGB images (which are stored as 4 byte values
of which only the lower three bytes are used). These are the formats returned by gl.lrectread().

16.12 jpeg — Read and write JPEG files

The module jpeg provides access to the jpeg compressor and decompressor written by the Independent
JPEG Group (IJG). JPEG is a standard for compressing pictures; it is defined in ISO 10918. For details
on JPEG or the Independent JPEG Group software refer to the JPEG standard or the documentation
provided with the software.

A portable interface to JPEG image files is available with the Python Imaging Library (PIL) by Fredrik
Lundh. Information on PIL is available at http://www.pythonware.com/products/pil/.

The jpeg module defines an exception and some functions.

error
Exception raised by compress() and decompress() in case of errors.

compress(data, w, h, b)
Treat data as a pixmap of width w and height h, with b bytes per pixel. The data is in SGI GL
order, so the first pixel is in the lower-left corner. This means that gl.lrectread() return data
can immediately be passed to compress(). Currently only 1 byte and 4 byte pixels are allowed,
the former being treated as greyscale and the latter as RGB color. compress() returns a string
that contains the compressed picture, in JFIF format.

decompress(data)
Data is a string containing a picture in JFIF format. It returns a tuple (data, width, height,
bytesperpixel). Again, the data is suitable to pass to gl.lrectwrite().

setoption(name, value)
Set various options. Subsequent compress() and decompress() calls will use these options. The
following options are available:

16.12. jpeg — Read and write JPEG files 303

Option Effect
’forcegray’ Force output to be grayscale, even if input is RGB.
’quality’ Set the quality of the compressed image to a value

between 0 and 100 (default is 75). This only af-
fects compression.

’optimize’ Perform Huffman table optimization. Takes
longer, but results in smaller compressed image.
This only affects compression.

’smooth’ Perform inter-block smoothing on uncompressed
image. Only useful for low-quality images. This
only affects decompression.

See Also:

JPEG Still Image Data Compression Standard, by Pennebaker and Mitchell, is the canonical reference
for the JPEG image format.

The ISO standard for JPEG is also published as ITU T.81. This is available in PDF form at
http://www.w3.org/Graphics/JPEG/itu-t81.pdf.

304 Chapter 16. SGI IRIX Specific Services

CHAPTER

SEVENTEEN

SunOS Specific Services

The modules described in this chapter provide interfaces to features that are unique to the SunOS
operating system (versions 4 and 5; the latter is also known as Solaris version 2).

17.1 sunaudiodev — Access to Sun audio hardware

This module allows you to access the Sun audio interface. The Sun audio hardware is capable of recording
and playing back audio data in u-LAW format with a sample rate of 8K per second. A full description
can be found in the audio(7I) manual page.

The module SUNAUDIODEV defines constants which may be used with this module.

This module defines the following variables and functions:

error
This exception is raised on all errors. The argument is a string describing what went wrong.

open(mode)
This function opens the audio device and returns a Sun audio device object. This object can then
be used to do I/O on. The mode parameter is one of ’r’ for record-only access, ’w’ for play-only
access, ’rw’ for both and ’control’ for access to the control device. Since only one process is
allowed to have the recorder or player open at the same time it is a good idea to open the device
only for the activity needed. See audio(7I) for details.

As per the manpage, this module first looks in the environment variable AUDIODEV for the base
audio device filename. If not found, it falls back to ‘/dev/audio’. The control device is calculated
by appending “ctl” to the base audio device.

17.1.1 Audio Device Objects

The audio device objects are returned by open() define the following methods (except control objects
which only provide getinfo(), setinfo(), fileno(), and drain()):

close()
This method explicitly closes the device. It is useful in situations where deleting the object does
not immediately close it since there are other references to it. A closed device should not be used
again.

fileno()
Returns the file descriptor associated with the device. This can be used to set up SIGPOLL notifi-
cation, as described below.

drain()
This method waits until all pending output is processed and then returns. Calling this method is
often not necessary: destroying the object will automatically close the audio device and this will
do an implicit drain.

flush()

305

This method discards all pending output. It can be used avoid the slow response to a user’s stop
request (due to buffering of up to one second of sound).

getinfo()
This method retrieves status information like input and output volume, etc. and returns it in
the form of an audio status object. This object has no methods but it contains a number of
attributes describing the current device status. The names and meanings of the attributes are
described in <sun/audioio.h> and in the audio(7I) manual page. Member names are slightly
different from their C counterparts: a status object is only a single structure. Members of the play
substructure have ‘o ’ prepended to their name and members of the record structure have ‘i ’.
So, the C member play.sample rate is accessed as o sample rate, record.gain as i gain and
monitor gain plainly as monitor gain.

ibufcount()
This method returns the number of samples that are buffered on the recording side, i.e. the program
will not block on a read() call of so many samples.

obufcount()
This method returns the number of samples buffered on the playback side. Unfortunately, this
number cannot be used to determine a number of samples that can be written without blocking
since the kernel output queue length seems to be variable.

read(size)
This method reads size samples from the audio input and returns them as a Python string. The
function blocks until enough data is available.

setinfo(status)
This method sets the audio device status parameters. The status parameter is an device status
object as returned by getinfo() and possibly modified by the program.

write(samples)
Write is passed a Python string containing audio samples to be played. If there is enough buffer
space free it will immediately return, otherwise it will block.

The audio device supports asynchronous notification of various events, through the SIGPOLL signal.
Here’s an example of how you might enable this in Python:

def handle_sigpoll(signum, frame):

print ’I got a SIGPOLL update’

import fcntl, signal, STROPTS

signal.signal(signal.SIGPOLL, handle_sigpoll)

fcntl.ioctl(audio_obj.fileno(), STROPTS.I_SETSIG, STROPTS.S_MSG)

17.2 SUNAUDIODEV — Constants used with sunaudiodev

This is a companion module to sunaudiodev which defines useful symbolic constants like MIN GAIN,
MAX GAIN, SPEAKER, etc. The names of the constants are the same names as used in the C include file
<sun/audioio.h>, with the leading string ‘AUDIO ’ stripped.

306 Chapter 17. SunOS Specific Services

CHAPTER

EIGHTEEN

MS Windows Specific Services

This chapter describes modules that are only available on MS Windows platforms.

msvcrt Miscellaneous useful routines from the MS VC++ runtime.
winsound Access to the sound-playing machinery for Windows.

18.1 msvcrt – Useful routines from the MS VC++ runtime

These functions provide access to some useful capabilities on Windows platforms. Some higher-level
modules use these functions to build the Windows implementations of their services. For example, the
getpass module uses this in the implementation of the getpass() function.

Further documentation on these functions can be found in the Platform API documentation.

18.1.1 File Operations

locking(fd, mode, nbytes)
Lock part of a file based on a file descriptor from the C runtime. Raises IOError on failure.

setmode(fd, flags)
Set the line-end translation mode for the file descriptor fd . To set it to text mode, flags should be
os.O TEXT; for binary, it should be os.O BINARY.

open osfhandle(handle, flags)
Create a C runtime file descriptor from the file handle handle. The flags parameter should be a
bit-wise OR of os.O APPEND, os.O RDONLY, and os.O TEXT. The returned file descriptor may be
used as a parameter to os.fdopen() to create a file object.

get osfhandle(fd)
Return the file handle for the file descriptor fd . Raises IOError if fd is not recognized.

18.1.2 Console I/O

kbhit()
Return true if a keypress is waiting to be read.

getch()
Read a keypress and return the resulting character. Nothing is echoed to the console. This call
will block if a keypress is not already available, but will not wait for Enter to be pressed. If the
pressed key was a special function key, this will return ’\000’ or ’\xe0’; the next call will return
the keycode. The Control-C keypress cannot be read with this function.

getche()
Similar to getch(), but the keypress will be echoed if it represents a printable character.

putch(char)
Print the character char to the console without buffering.

307

ungetch(char)
Cause the character char to be “pushed back” into the console buffer; it will be the next character
read by getch() or getche().

18.1.3 Other Functions

heapmin()
Force the malloc() heap to clean itself up and return unused blocks to the operating system. This
only works on Windows NT. On failure, this raises IOError.

18.2 winsound — Sound-playing interface for Windows

New in version 1.5.2.

The winsound module provides access to the basic sound-playing machinery provided by Windows plat-
forms. It includes a single function and several constants.

PlaySound(sound, flags)
Call the underlying PlaySound() function from the Platform API. The sound parameter may be
a filename, audio data as a string, or None. Its interpretation depends on the value of flags, which
can be a bit-wise ORed combination of the constants described below. If the system indicates an
error, RuntimeError is raised.

SND FILENAME
The sound parameter is the name of a WAV file.

SND ALIAS
The sound parameter should be interpreted as a control panel sound association name.

SND LOOP
Play the sound repeatedly. The SND ASYNC flag must also be used to avoid blocking.

SND MEMORY
The sound parameter to PlaySound() is a memory image of a WAV file.

Note: This module does not support playing from a memory image asynchonously, so a combina-
tion of this flag and SND ASYNC will raise a RuntimeError.

SND PURGE
Stop playing all instances of the specified sound.

SND ASYNC
Return immediately, allowing sounds to play asynchronously.

SND NODEFAULT
If the specified sound cannot be found, do not play a default beep.

SND NOSTOP
Do not interrupt sounds currently playing.

SND NOWAIT
Return immediately if the sound driver is busy.

308 Chapter 18. MS Windows Specific Services

CHAPTER

NINETEEN

Undocumented Modules

Here’s a quick listing of modules that are currently undocumented, but that should be documented. Feel
free to contribute documentation for them! (The idea and original contents for this chapter were taken
from a posting by Fredrik Lundh; I have revised some modules’ status.)

19.1 Frameworks

Frameworks tend to be harder to document, but are well worth the effort spent.

Tkinter — Interface to Tcl/Tk for graphical user interfaces; Fredrik Lundh is working on this one! See
An Introduction to Tkinter at http://www.pythonware.com/library.htm for on-line reference material.

Tkdnd — Drag-and-drop support for Tkinter.

turtle — Turtle graphics in a Tk window.

test — Regression testing framework. This is used for the Python regression test, but is useful for other
Python libraries as well. This is a package rather than a module.

19.2 Miscellaneous useful utilities

Some of these are very old and/or not very robust; marked with “hmm.”

dircmp — Class to build directory diff tools on (may become a demo or tool). Deprecated since
release 1.6. The filecmp module will replace dircmp.

bdb — A generic Python debugger base class (used by pdb)

ihooks — Import hook support (for rexec; may become obsolete)

tzparse — Parse a timezone specification (unfinished; may disappear in the future)

19.3 Platform specific modules

These modules are used to implement the os.path module, and are not documented beyond this mention.
There’s little need to document these.

dospath — implementation of os.path on MS-DOS

ntpath — implementation on os.path on 32-bit Windows

posixpath — implementation on os.path on POSIX

309

19.4 Multimedia

audiodev — Platform-independent API for playing audio data

sunaudio — Interpret Sun audio headers (may become obsolete or a tool/demo)

toaiff — Convert ”arbitrary” sound files to AIFF files; should probably become a tool or demo. Re-
quires the external program sox.

19.5 Obsolete

These modules are not normally available for import; additional work must be done to make them
available.

Those which are written in Python will be installed into the directory ‘lib-old/’ installed as part of the
standard library. To use these, the directory must be added to sys.path, possibly using $PYTHON-
PATH.

Obsolete extension modules written in C are not built by default. Under Unix, these must be enabled by
uncommenting the appropriate lines in ‘Modules/Setup’ in the build tree and either rebuilding Python if
the modules are statically linked, or building and installing the shared object if using dynamically-loaded
extensions.

newdir — New dir() function (the standard dir() is now just as good)

addpack — alternate approach to packages

codehack — Extract function name or line number from a function code object (these are now accessible
as attributes: co.co name, func.func name, co.co firstlineno).

dump — Print python code that reconstructs a variable

fmt — text formatting abstractions (too slow)

Para — helper for fmt.py

lockfile — wrapper around FCNTL file locking (use fcntl.lockf()/flock() intead; see fcntl)

poly — Polynomials

tb — Print tracebacks, with a dump of local variables (use pdb.pm() or traceback instead)

timing — Measure time intervals to high resolution (use time.clock() instead). (This is an extension
module.)

util — Useful functions that don’t fit elsewhere.

wdb — A primitive windowing debugger based on STDWIN.

whatsound — Recognize sound files; use sndhdr instead.

zmod — Compute properties of mathematical ”fields”

The following modules are obsolete, but are likely re-surface as tools or scripts.

find — find files matching pattern in directory tree

grep — grep

packmail — create a self-unpacking Unix shell archive

The following modules were documented in previous versions of this manual, but are now considered
obsolete. The source for the documentation is still available as part of the documentation source archive.

310 Chapter 19. Undocumented Modules

ni — Import modules in “packages.” Basic package support is now built in.

rand — Old interface to the random number generator.

soundex — Algorithm for collapsing names which sound similar to a shared key. (This is an extension
module.)

19.6 Extension modules

stdwin — Interface to STDWIN (an old, unsupported platform-independent GUI package). Obsolete;
use Tkinter for a platform-independent GUI instead.

The following are SGI specific, and may be out of touch with the current version of reality.

cl — Interface to the SGI compression library.

sv — Interface to the “simple video” board on SGI Indigo (obsolete hardware).

19.6. Extension modules 311

312

MODULE INDEX

Symbols
builtin , 69
main , 69

A
aifc, 275
AL, 291
al, 289
anydbm, 158
array, 96
asyncore, 235
audioop, 271

B
base64, 262
BaseHTTPServer, 232
Bastion, 270
binascii, 256
binhex, 255
bisect, 95
bsddb, 160

C
calendar, 101
cd, 291
cgi, 203
CGIHTTPServer, 235
chunk, 280
cmath, 93
cmd, 101
cmp, 119
cmpcache, 119
code, 55
codeop, 57
colorsys, 281
commands, 183
compileall, 61
ConfigParser, 98
copy, 39
copy reg, 38
cPickle, 37
crypt, 169
cStringIO, 88
curses, 124

D
dbhash, 159
dbm, 171
DEVICE, 302
dircache, 115
dis, 61
dl, 170
dumbdbm, 159

E
errno, 130
exceptions, 12

F
fcntl, 175
fileinput, 100
FL, 299
fl, 294
flp, 299
fm, 299
fnmatch, 136
formatter, 245
fpformat, 88
ftplib, 214

G
gdbm, 172
getopt, 128
getpass, 124
GL, 302
gl, 300
glob, 135
gopherlib, 217
grp, 169
gzip, 164

H
htmlentitydefs, 243
htmllib, 241
httplib, 213

I
imageop, 274
imaplib, 219
imgfile, 302

313

imghdr, 283
imp, 41

J
jpeg, 303

K
keyword, 54

L
linecache, 32
locale, 138

M
mailbox, 263
mailcap, 260
marshal, 40
math, 91
md5, 285
mhlib, 263
mimetools, 252
mimetypes, 261
MimeWriter, 253
mimify, 265
mpz, 286
msvcrt, 307
multifile, 253
mutex, 141

N
netrc, 266
new, 67
nis, 181
nntplib, 221

O
operator, 29
os, 105
os.path, 113

P
parser, 44
pdb, 185
pickle, 33
pipes, 176
popen2, 182
poplib, 217
posix, 167
posixfile, 177
pprint, 57
profile, 194
pstats, 195
pty, 174
pwd, 168
py compile, 61
pyclbr, 54

Q
Queue, 157
quopri, 262

R
random, 94
re, 74
regex, 81
regsub, 85
repr, 59
resource, 178
rexec, 268
rfc822, 249
rgbimg, 282
rlcompleter, 164
rotor, 287

S
sched, 123
select, 149
sgmllib, 239
sha, 286
shelve, 38
shlex, 103
shutil, 136
signal, 143
SimpleHTTPServer, 234
site, 67
smtplib, 224
sndhdr, 283
socket, 145
SocketServer, 230
stat, 116
statcache, 117
statvfs, 118
string, 71
StringIO, 88
struct, 85
sunau, 277
SUNAUDIODEV, 306
sunaudiodev, 305
symbol, 53
sys, 23
syslog, 181

T
telnetlib, 227
tempfile, 129
TERMIOS, 174
termios, 173
thread, 150
threading, 151
time, 119
token, 53
tokenize, 54
traceback, 31
tty, 174
types, 27

314 Module Index

U
urllib, 209
urlparse, 229
user, 68
UserDict, 28
UserList, 28
uu, 256

W
wave, 279
whichdb, 160
whrandom, 95
winsound, 308

X
xdrlib, 257
xmllib, 243

Z
zlib, 162

Module Index 315

316

INDEX

Symbols
.ini

file, 98
.pdbrc

file, 187
.pythonrc.py

file, 68
==

operator, 4
abs () (in module operator), 29
add () (in module operator), 29
add () (in module rfc822), 251
and () (in module operator), 30
builtin (built-in module), 69
cmp (), 4
concat () (in module operator), 30
copy () (in module copy), 40
deepcopy () (in module copy), 40
delitem () (in module operator), 30
delslice () (in module operator), 30
dict (pickle protocol), 34
div () (in module operator), 29
getinitargs () (in module copy), 40
getinitargs () (pickle protocol), 34
getitem () (in module operator), 30
getslice () (in module operator), 30
getstate () (in module copy), 40
getstate () (pickle protocol), 34
import () (built-in function), 15
init () (pickle protocol), 34
inv () (in module operator), 29
len () (in module rfc822), 251
lshift () (in module operator), 30
main (built-in module), 69
mod () (in module operator), 29
mul () (in module operator), 29
neg () (in module operator), 29
not () (in module operator), 30
or () (in module operator), 30
pos () (in module operator), 29
repeat () (in module operator), 30
repr () (in module netrc), 266
rshift () (in module operator), 30
setitem () (in module operator), 30
setslice () (in module operator), 30
setstate () (in module copy), 40

setstate () (pickle protocol), 34
stderr (in module sys), 26
stdin (in module sys), 26
stdout (in module sys), 26
str () (in module rfc822), 251
sub () (in module operator), 29
sub () (in module rfc822), 251
xor () (in module operator), 30

exit() (in module os), 111
locale (built-in module), 138

A
A-LAW, 276, 283
a2b base64() (in module binascii), 256
a2b hqx() (in module binascii), 257
a2b uu() (in module binascii), 256
A ALTCHARSET (in module curses), 125
A BLINK (in module curses), 125
A BOLD (in module curses), 125
A DIM (in module curses), 125
A NORMAL (in module curses), 124
A STANDOUT (in module curses), 124
A UNDERLINE (in module curses), 125
abc language, 4
abort() (in module ftplib), 215
abs()

built-in function, 16
in module operator, 29

abspath() (in module os.path), 113
AbstractFormatter (in module formatter), 247
AbstractWriter (in module formatter), 249
accept()

in module asyncore, 237
in module socket, 147

accept2dyear (in module time), 120
access() (in module os), 109
acos()

in module cmath, 93
in module math, 91

acosh() (in module cmath), 93
acquire()

in module thread, 150
in module threading, 152

ACS * (in module curses), 125
activate form() (in module fl), 296
activeCount() (in module threading), 151

317

add()
in module audioop, 271
in module operator, 29
in module pstats, 195

add box() (in module fl), 296
add browser() (in module fl), 297
add button() (in module fl), 297
add choice() (in module fl), 297
add clock() (in module fl), 297
add counter() (in module fl), 297
add dial() (in module fl), 297
add flowing data() (in module formatter),

246
add hor rule() (in module formatter), 246
add input() (in module fl), 297
add label data() (in module formatter), 246
add lightbutton() (in module fl), 297
add line break() (in module formatter), 246
add literal data() (in module formatter),

246
add menu() (in module fl), 297
add positioner() (in module fl), 297
add roundbutton() (in module fl), 297
add section() (in module ConfigParser), 99
add slider() (in module fl), 297
add text() (in module fl), 297
add timer() (in module fl), 298
add valslider() (in module fl), 297
addcallback() (in module cd), 294
addch() (in module curses), 126
addheader() (in module MimeWriter), 253
address family (SocketServer protocol), 230
address string() (in module Base-

HTTPServer), 234
AddressList (in module rfc822), 249
addresslist (in module rfc822), 252
addstr() (in module curses), 127
adler32() (in module zlib), 162
ADPCM, Intel/DVI, 271
adpcm2lin() (in module audioop), 271
adpcm32lin() (in module audioop), 271
AF INET (in module socket), 146
AF UNIX (in module socket), 146
aifc (standard module), 275
aifc() (in module aifc), 276
AIFF, 275, 280
aiff() (in module aifc), 276
AIFF-C, 275, 280
AL (standard module), 289, 291
al (built-in module), 289
alarm() (in module signal), 144
all errors (in module ftplib), 214
allocate lock() (in module thread), 150
allowremoval() (in module cd), 292
altsep (in module os), 113
altzone (in module time), 120
anchor bgn() (in module htmllib), 242
anchor end() (in module htmllib), 242

and
operator, 3, 4

and () (in module operator), 30
annotate() (in module dircache), 115
anydbm (standard module), 158
apop() (in module poplib), 218
append(), 7
append()

in module array, 97
in module imaplib, 220
in module pipes, 176

apply() (built-in function), 16
arbitrary precision integers, 286
aRepr (in module repr), 59
argv (in module sys), 23
arithmetic, 5
ArithmeticError (built-in exception base

class), 13
array (built-in module), 96
array() (in module array), 97
arrays, 96
ArrayType (in module array), 97
article() (in module nntplib), 223
AS IS (in module formatter), 246
Ascher, David, 302
asctime() (in module time), 120
asin()

in module cmath, 93
in module math, 91

asinh() (in module cmath), 93
assert

statement, 13
assert line data() (in module formatter),

247
AssertionError (built-in exception), 13
assignment

slice, 7
subscript, 7

ast2list() (in module parser), 45
ast2tuple() (in module parser), 45
ASTType (in module parser), 46
asyncore (built-in module), 235
atan()

in module cmath, 93
in module math, 91

atan2() (in module math), 91
atanh() (in module cmath), 93
atime (in module cd), 292
atof()

in module locale, 139
in module string, 71

atoi()
in module locale, 139
in module string, 72

atol() (in module string), 72
AttributeError (built-in exception), 13
attributes (in module xmllib), 243
attroff() (in module curses), 127

318 Index

attron() (in module curses), 127
audio (in module cd), 292
Audio Interchange File Format, 275, 280
AUDIO FILE MAGIC (in module sunau), 277
audioop (built-in module), 271
authenticate() (in module imaplib), 220
authenticators() (in module netrc), 266
avg() (in module audioop), 271
avgpp() (in module audioop), 271

B
b2a base64() (in module binascii), 257
b2a hqx() (in module binascii), 257
b2a uu() (in module binascii), 256
BabylMailbox (in module mailbox), 263
base64

encoding, 262
base64 (standard module), 262
BaseHTTPRequestHandler (in module Base-

HTTPServer), 232
BaseHTTPServer (standard module), 232
basename() (in module os.path), 113
Bastion (standard module), 270
Bastion() (in module Bastion), 270
BastionClass (in module Bastion), 270
bdb (standard module), 185
beep() (in module curses), 125
benchmarking, 120
bestreadsize() (in module cd), 292
betavariate() (in module random), 94
bgn group() (in module fl), 296
bias() (in module audioop), 272
binary semaphores, 150
binary() (in module mpz), 287
binascii (built-in module), 256
bind()

in module asyncore, 237
in module socket, 147

binhex (standard module), 255, 256
binhex() (in module binhex), 255
bisect (standard module), 95
bisect() (in module bisect), 96
bit-string

operations, 6
BLOCKSIZE (in module cd), 292
blocksize (in module sha), 286
body() (in module nntplib), 223
Boolean

operations, 3, 4
type, 3

border() (in module curses), 127
box() (in module curses), 127
bsddb

built-in module, 158, 159
extension module, 160

btopen() (in module bsddb), 161
buffer size, I/O, 20
buffer()

built-in function, 16
in module types, 28

buffer info() (in module array), 97
BufferType (in module types), 28
built-in

exceptions, 3
functions, 3
types, 3

builtin module names (in module sys), 24
BuiltinFunctionType (in module types), 28
BuiltinMethodType (in module types), 28
byte-code

file, 41, 43, 61
byteswap() (in module array), 97

C
C

language, 5
C

language, 4, 5
structures, 85

C BUILTIN (in module imp), 42
C EXTENSION (in module imp), 42
calcsize() (in module struct), 86
calendar (standard module), 101
call() (in module dl), 171
callable() (built-in function), 16
cancel() (in module sched), 123
capitalize() (in module string), 72
capwords()

in module regsub, 85
in module string, 72

casefold (in module regex), 84
cat() (in module nis), 181
catalog (in module cd), 292
cbreak() (in module curses), 125
cd (built-in module), 291
CDROM (in module cd), 292
ceil(), 5
ceil() (in module math), 91
center() (in module string), 73
CGI

protocol, 203
cgi (standard module), 203
cgi directories (in module CGI-

HTTPServer), 235
CGIHTTPRequestHandler (in module CGI-

HTTPServer), 235
CGIHTTPServer (standard module), 232, 235
chaining

comparisons, 4
CHAR MAX (in module locale), 139
CHARSET (in module mimify), 266
chdir() (in module os), 109
check() (in module imaplib), 220
check forms() (in module fl), 295
checkcache() (in module linecache), 33
checksum

Index 319

Cyclic Redundancy Check, 162
MD5, 285
SHA, 286

childerr (in module popen2), 183
chmod() (in module os), 109
choice() (in module random), 95
choose boundary() (in module mimetools),

252
chown() (in module os), 109
chr() (built-in function), 16
Chunk (in module chunk), 281
chunk (standard module), 280
cipher

DES, 169, 285
Enigma, 287
IDEA, 285

classobj() (in module new), 67
ClassType (in module types), 28
clear(), 8
clear()

in module curses, 127
in module threading, 155

clear cache() (in module regsub), 85
clearcache() (in module linecache), 33
clearok() (in module curses), 128
client address (in module BaseHTTPServer),

232
clock() (in module time), 120
clone() (in module pipes), 176
close(), 10
close()

in module aifc, 276, 277
in module asyncore, 237
in module bsddb, 161
in module cd, 292
in module chunk, 281
in module dl, 171
in module fileinput, 100
in module ftplib, 217
in module imaplib, 220
in module os, 107
in module sgmllib, 240
in module socket, 147
in module StringIO, 88
in module sunau, 277, 278
in module sunaudiodev, 305
in module telnetlib, 228
in module wave, 279, 280
in module xmllib, 243

closed, 11
closelog() (in module syslog), 182
closeport() (in module al), 290
clrtobot() (in module curses), 127
clrtoeol() (in module curses), 128
cmath (built-in module), 93
Cmd (in module cmd), 102
cmd (standard module), 101, 185
cmdloop() (in module cmd), 102

cmp (standard module), 119
cmp()

built-in function, 16
in module cmp, 119
in module locale, 139

cmp op (in module dis), 62
cmpcache (standard module), 119
code

object, 9, 40
code (standard module), 55
code() (in module new), 67
codeop (standard module), 57
CodeType (in module types), 27
coerce() (built-in function), 16
color() (in module fl), 296
colorsys (standard module), 281
command (in module BaseHTTPServer), 232
commands (standard module), 183
COMMENT (in module tokenize), 54
commenters (in module shlex), 103
Common Gateway Interface, 203
commonprefix() (in module os.path), 113
comparing

objects, 4
comparison

operator, 4
comparisons

chaining, 4
compile(), 9
compile()

built-in function, 16
in module parser, 46, 47
in module py compile, 61
in module re, 77
in module regex, 83
in module types, 27

compile command()
in module code, 55
in module codeop, 57

compile dir() (in module compileall), 61
compile path() (in module compileall), 61
compileall (standard module), 61
compileast() (in module parser), 45
complete() (in module rlcompleter), 165
complex number

literals, 5
type, 5

complex(), 5
complex() (built-in function), 16
ComplexType (in module types), 27
compress()

in module jpeg, 303
in module zlib, 162, 163

compressobj() (in module zlib), 162
concat() (in module operator), 30
concatenation

operation, 6
Condition (in module threading), 154

320 Index

Condition() (in module threading), 151
ConfigParser

in module ConfigParser, 98
standard module, 98

configuration
file, 98
file, debugger, 187
file, path, 67
file, user, 68

conjugate(), 5
connect()

in module asyncore, 237
in module ftplib, 215
in module httplib, 213
in module smtplib, 225
in module socket, 147

connect ex() (in module socket), 147
constructor() (in module copy reg), 38
contains() (in module operator), 30
content type

MIME, 261
control (in module cd), 292
ConversionError (in module xdrlib), 260
conversions

numeric, 5
Coordinated Universal Time, 120
copy (standard module), 34, 38, 39
copy(), 8
copy()

in module copy, 39
in module imaplib, 220
in module md5, 286
in module pipes, 176
in module shutil, 137

copy2() (in module shutil), 137
copy reg (standard module), 38
copybinary() (in module mimetools), 252
copyfile() (in module shutil), 137
copying files, 136
copyliteral() (in module mimetools), 252
copymessage() (in module mhlib), 265
copymode() (in module shutil), 137
copyright (in module sys), 24
copystat() (in module shutil), 137
copytree() (in module shutil), 137
cos()

in module cmath, 93
in module math, 91

cosh()
in module cmath, 93
in module math, 91

count(), 7
count() (in module string), 72
countOf() (in module operator), 30
cPickle (built-in module), 33, 37, 38
CPU time, 120
crc32() (in module zlib), 162
crc hqx() (in module binascii), 257

create() (in module imaplib), 220
create socket() (in module asyncore), 237
createparser() (in module cd), 291
crop() (in module imageop), 274
cross() (in module audioop), 272
crypt (built-in module), 168, 169
crypt() (in module crypt), 169
crypt(3), 169
cryptography, 285
cStringIO (built-in module), 88
ctime() (in module time), 121
cunifvariate() (in module random), 94
curdir (in module os), 113
currentThread() (in module threading), 151
curses (extension module), 124
cwd() (in module ftplib), 216
Cyclic Redundancy Check, 162

D
data

in module UserDict, 28
in module UserList, 29

DATASIZE (in module cd), 292
date() (in module nntplib), 224
date time string() (in module Base-

HTTPServer), 234
daylight (in module time), 121
Daylight Saving Time, 120
dbhash (standard module), 158, 159
dbm (built-in module), 38, 158, 171, 172
deactivate form() (in module fl), 296
debug (in module imaplib), 221
debug() (in module pipes), 176
debugger, 26

configuration file, 187
debugging, 185
decode()

in module base64, 262
in module mimetools, 252
in module quopri, 262
in module uu, 256

decodestring() (in module base64), 262
decompress()

in module jpeg, 303
in module zlib, 163

decompressobj() (in module zlib), 163
decrypt() (in module rotor), 288
decryptmore() (in module rotor), 288
deepcopy() (in module copy), 39
default() (in module cmd), 102
defaults() (in module ConfigParser), 99
defpath (in module os), 113
del

statement, 7, 8
delattr() (built-in function), 16
delch() (in module curses), 126
dele() (in module poplib), 218
delete()

Index 321

in module ftplib, 216
in module imaplib, 220

delete object() (in module fl), 298
deletefolder() (in module mhlib), 264
deleteparser() (in module cd), 294
deletln() (in module curses), 127
delitem() (in module operator), 30
delslice() (in module operator), 30
DES

cipher, 169, 285
deterministic profiling, 191
DEVICE (standard module), 302
device

Enigma, 287
dictionary

type, 8
type, operations on, 8

DictionaryType (in module types), 27
DictType (in module types), 27
digest() (in module md5), 286
digestsize (in module sha), 286
digits (in module string), 71
dir()

built-in function, 17
in module ftplib, 216

dircache (standard module), 115
directory

changing, 109
creating, 110
deleting, 110, 137
site-packages, 67
site-python, 67

dirname() (in module os.path), 113
dis (standard module), 61
dis() (in module dis), 62
disassemble() (in module dis), 62
disco() (in module dis), 62
dispatcher (in module asyncore), 236
distb() (in module dis), 62
dither2grey2() (in module imageop), 274
dither2mono() (in module imageop), 274
div() (in module operator), 29
division

integer, 5
long integer, 5

divm() (in module mpz), 287
divmod() (built-in function), 17
dl (extension module), 170
dllhandle (in module sys), 24
do forms() (in module fl), 295
do GET() (in module SimpleHTTPServer), 235
do HEAD() (in module SimpleHTTPServer), 234
do POST() (in module CGIHTTPServer), 235
doc header (in module cmd), 103
docmd() (in module smtplib), 225
docstrings, 48
done() (in module xdrlib), 259
DOTALL (in module re), 77

doupdate() (in module curses), 125
drain() (in module sunaudiodev), 305
dumbdbm (standard module), 158, 159
DumbWriter (in module formatter), 249
dump()

in module marshal, 40
in module pickle, 35

dumps()
in module marshal, 41
in module pickle, 36

dup()
in module os, 107
posixfile method, 177

dup2()
in module os, 108
posixfile method, 177

DuplicateSectionError (in module Config-
Parser), 99

E
e

in module cmath, 93
in module math, 92

E2BIG (in module errno), 130
EACCES (in module errno), 131
EADDRINUSE (in module errno), 134
EADDRNOTAVAIL (in module errno), 134
EADV (in module errno), 133
EAFNOSUPPORT (in module errno), 134
EAGAIN (in module errno), 131
EALREADY (in module errno), 135
EBADE (in module errno), 132
EBADF (in module errno), 131
EBADFD (in module errno), 133
EBADMSG (in module errno), 133
EBADR (in module errno), 132
EBADRQC (in module errno), 132
EBADSLT (in module errno), 133
EBFONT (in module errno), 133
EBUSY (in module errno), 131
ECHILD (in module errno), 131
echo() (in module curses), 126
echochar() (in module curses), 126
ECHRNG (in module errno), 132
ECOMM (in module errno), 133
ECONNABORTED (in module errno), 134
ECONNREFUSED (in module errno), 135
ECONNRESET (in module errno), 135
EDEADLK (in module errno), 132
EDEADLOCK (in module errno), 133
EDESTADDRREQ (in module errno), 134
EDOM (in module errno), 132
EDOTDOT (in module errno), 133
EDQUOT (in module errno), 135
EEXIST (in module errno), 131
EFAULT (in module errno), 131
EFBIG (in module errno), 131
ehlo() (in module smtplib), 225

322 Index

EHOSTDOWN (in module errno), 135
EHOSTUNREACH (in module errno), 135
EIDRM (in module errno), 132
EILSEQ (in module errno), 134
EINPROGRESS (in module errno), 135
EINTR (in module errno), 130
EINVAL (in module errno), 131
EIO (in module errno), 130
EISCONN (in module errno), 135
EISDIR (in module errno), 131
EISNAM (in module errno), 135
eject() (in module cd), 292
EL2HLT (in module errno), 132
EL2NSYNC (in module errno), 132
EL3HLT (in module errno), 132
EL3RST (in module errno), 132
elements (in module xmllib), 243
ELIBACC (in module errno), 133
ELIBBAD (in module errno), 134
ELIBEXEC (in module errno), 134
ELIBMAX (in module errno), 134
ELIBSCN (in module errno), 134
Ellinghouse, Lance, 256, 287
EllipsisType (in module types), 28
ELNRNG (in module errno), 132
ELOOP (in module errno), 132
EMFILE (in module errno), 131
EMLINK (in module errno), 131
Empty (in module Queue), 157
empty()

in module Queue, 158
in module sched, 124

emptyline() (in module cmd), 102
EMSGSIZE (in module errno), 134
EMULTIHOP (in module errno), 133
ENAMETOOLONG (in module errno), 132
ENAVAIL (in module errno), 135
encode()

in module base64, 262
in module mimetools, 252
in module quopri, 262
in module uu, 256

encodestring() (in module base64), 262
encoding

base64, 262
quoted-printable, 262

encodings map (in module mimetypes), 262
encrypt() (in module rotor), 288
encryptmore() (in module rotor), 288
end() (in module re), 80
end group() (in module fl), 296
end headers() (in module BaseHTTPServer),

233
end marker() (in module multifile), 255
end paragraph() (in module formatter), 246
endheaders() (in module httplib), 213
endpick() (in module gl), 301
endpos (in module re), 81

endselect() (in module gl), 301
endwin() (in module curses), 125
ENETDOWN (in module errno), 134
ENETRESET (in module errno), 134
ENETUNREACH (in module errno), 134
ENFILE (in module errno), 131
Enigma

cipher, 287
device, 287

ENOANO (in module errno), 132
ENOBUFS (in module errno), 135
ENOCSI (in module errno), 132
ENODATA (in module errno), 133
ENODEV (in module errno), 131
ENOENT (in module errno), 130
ENOEXEC (in module errno), 130
ENOLCK (in module errno), 132
ENOLINK (in module errno), 133
ENOMEM (in module errno), 131
ENOMSG (in module errno), 132
ENONET (in module errno), 133
ENOPKG (in module errno), 133
ENOPROTOOPT (in module errno), 134
ENOSPC (in module errno), 131
ENOSR (in module errno), 133
ENOSTR (in module errno), 133
ENOSYS (in module errno), 132
ENOTBLK (in module errno), 131
ENOTCONN (in module errno), 135
ENOTDIR (in module errno), 131
ENOTEMPTY (in module errno), 132
ENOTNAM (in module errno), 135
ENOTSOCK (in module errno), 134
ENOTTY (in module errno), 131
ENOTUNIQ (in module errno), 133
enter() (in module sched), 123
enterabs() (in module sched), 123
entitydefs

in module htmlentitydefs, 243
in module xmllib, 243

enumerate()
in module fm, 300
in module threading, 151

environ
in module os, 106
in module posix, 168

environment variables
$HOME, 68, 113
$LANG, 138
$LNAME, 124
$LOGNAME, 124, 215
$PAGER, 187
$PATH, 113, 207, 209
$PYTHONPATH, 25, 207, 310
$PYTHONSTARTUP, 68, 165
$PYTHONY2K, 119, 120
$TMPDIR, 130
$USERNAME, 124

Index 323

$USER, 124, 215
$ftp proxy, 210
$gopher proxy, 210
$http proxy, 210
setting, 106

EnvironmentError (built-in exception base
class), 13

ENXIO (in module errno), 130
EOFError (built-in exception), 13
EOPNOTSUPP (in module errno), 134
EOVERFLOW (in module errno), 133
EPERM (in module errno), 130
EPFNOSUPPORT (in module errno), 134
EPIPE (in module errno), 131
epoch, 119
EPROTO (in module errno), 133
EPROTONOSUPPORT (in module errno), 134
EPROTOTYPE (in module errno), 134
ERANGE (in module errno), 132
erase() (in module curses), 127
EREMCHG (in module errno), 133
EREMOTE (in module errno), 133
EREMOTEIO (in module errno), 135
ERESTART (in module errno), 134
EROFS (in module errno), 131
errno

built-in module, 106, 145
standard module, 130

ERROR (in module cd), 292
Error

in module binascii, 257
in module locale, 138
in module sunau, 277
in module wave, 279
in module xdrlib, 260

error
in module anydbm, 158
in module audioop, 271
in module cd, 292
in module curses, 125
in module dbhash, 159
in module dbm, 171
in module dl, 170
in module dumbdbm, 159
in module gdbm, 172
in module getopt, 129
in module imageop, 274
in module imgfile, 302
in module jpeg, 303
in module nis, 181
in module os, 105
in module re, 79
in module regex, 84
in module resource, 179
in module rgbimg, 282
in module select, 149
in module socket, 145
in module struct, 85

in module sunaudiodev, 305
in module thread, 150
in module zlib, 162

error() (in module mhlib), 264
error message format (in module Base-

HTTPServer), 233
error perm

in module ftplib, 215
in module nntplib, 222

error proto
in module ftplib, 215
in module nntplib, 222
in module poplib, 217

error reply
in module ftplib, 215
in module nntplib, 222

error temp
in module ftplib, 215
in module nntplib, 222

errorcode (in module errno), 130
escape()

in module cgi, 206
in module re, 79

ESHUTDOWN (in module errno), 135
ESOCKTNOSUPPORT (in module errno), 134
ESPIPE (in module errno), 131
ESRCH (in module errno), 130
ESRMNT (in module errno), 133
ESTALE (in module errno), 135
ESTRPIPE (in module errno), 134
ETIME (in module errno), 133
ETIMEDOUT (in module errno), 135
ETOOMANYREFS (in module errno), 135
ETXTBSY (in module errno), 131
EUCLEAN (in module errno), 135
EUNATCH (in module errno), 132
EUSERS (in module errno), 134
eval(), 9
eval()

built-in function, 17
in module parser, 46
in module pprint, 58, 59
in module string, 72

Event (in module threading), 155
event scheduling, 123
Event() (in module threading), 151
EWOULDBLOCK (in module errno), 132
exc info() (in module sys), 24
exc traceback (in module sys), 24
exc type (in module sys), 24
exc value (in module sys), 24
except

statement, 12
Exception (built-in exception base class), 13
exceptions

built-in, 3
exceptions (standard module), 12
EXDEV (in module errno), 131

324 Index

exec
statement, 9

exec prefix (in module sys), 24
execfile()

built-in function, 17
in module user, 68

execl() (in module os), 111
execle() (in module os), 111
execlp() (in module os), 111
executable (in module sys), 24
execv() (in module os), 111
execve() (in module os), 111
execvp() (in module os), 111
execvpe() (in module os), 111
EXFULL (in module errno), 132
exists() (in module os.path), 113
exit()

in module sys, 24
in module thread, 150

exit thread() (in module thread), 150
exitfunc (in module sys), 25
exp()

in module cmath, 93
in module math, 92

expandtabs() (in module string), 72
expanduser() (in module os.path), 113
expandvars() (in module os.path), 114
expect() (in module telnetlib), 228
expovariate() (in module random), 94
expr() (in module parser), 45
expunge() (in module imaplib), 220
extend(), 7
Extensible Markup Language, 243
extensions map (in module Simple-

HTTPServer), 234
External Data Representation, 33, 257
extract stack() (in module traceback), 31
extract tb() (in module traceback), 31

F
F BAVAIL (in module statvfs), 118
F BFREE (in module statvfs), 118
F BLOCKS (in module statvfs), 118
F BSIZE (in module statvfs), 118
F FAVAIL (in module statvfs), 118
F FFREE (in module statvfs), 118
F FILES (in module statvfs), 118
F FLAG (in module statvfs), 118
F FRSIZE (in module statvfs), 118
F NAMEMAX (in module statvfs), 118
F OK (in module os), 109
fabs() (in module math), 92
false, 3
FancyURLopener (in module urllib), 211
FCNTL (standard module), 175
fcntl (built-in module), 10, 175
fcntl()

in module fcntl, 175

in module posixfile, 177
fdopen() (in module os), 107
feed()

in module sgmllib, 240
in module xmllib, 243

fetch() (in module imaplib), 220
file

.ini, 98

.pdbrc, 187

.pythonrc.py, 68
byte-code, 41, 43, 61
configuration, 98
copying, 136
debugger configuration, 187
large files, 168
mime.types, 261
object, 10
path configuration, 67
temporary, 129
user configuration, 68

file (in module pyclbr), 55
file control

Unix, 175
file name

temporary, 129
file object

POSIX, 177
file() (posixfile method), 177
FileInput (in module fileinput), 101
fileinput (standard module), 100
filelineno() (in module fileinput), 100
filename() (in module fileinput), 100
filenames

pathname expansion, 135
wildcard expansion, 136

fileno(), 10
fileno()

in module select, 150
in module socket, 147
in module sunaudiodev, 305
in module telnetlib, 228
SocketServer protocol, 230

fileopen() (in module posixfile), 177
FileType (in module types), 28
filter() (built-in function), 17
find() (in module string), 72
find first() (in module fl), 296
find last() (in module fl), 296
find module() (in module imp), 41
findall() (in module re), 78, 79
findfactor() (in module audioop), 272
findfit() (in module audioop), 272
findfont() (in module fm), 300
findmatch() (in module mailcap), 260
findmax() (in module audioop), 272
finish() (SocketServer protocol), 231
finish request() (SocketServer protocol),

231

Index 325

first()
in module bsddb, 161
in module dbhash, 160

firstkey() (in module gdbm), 172
fix() (in module fpformat), 88
FL (standard module), 299
fl (built-in module), 294
flags (in module re), 79
flags() (posixfile method), 177
flash() (in module curses), 125
flattening

objects, 33
float(), 5
float()

built-in function, 18
in module string, 72

floating point
literals, 5
type, 5

FloatingPointError (built-in exception), 13
FloatType (in module types), 27
flock() (in module fcntl), 175
floor(), 5
floor() (in module math), 92
flp (standard module), 299
flush(), 10
flush()

in module formatter, 248
in module sunaudiodev, 305
in module zlib, 163

flush softspace() (in module formatter), 247
flushheaders() (in module MimeWriter), 253
flushinp() (in module curses), 125
fm (built-in module), 299
fmod() (in module math), 92
fnmatch (standard module), 136
fnmatch() (in module fnmatch), 136
fnmatchcase() (in module fnmatch), 136
Folder (in module mhlib), 263
Font Manager, IRIS, 299
fontpath() (in module fm), 300
forget() (in module statcache), 118
forget dir() (in module statcache), 118
forget except prefix() (in module stat-

cache), 118
forget prefix() (in module statcache), 118
fork()

in module os, 111
in module pty, 175

format() (in module locale), 139
format exception() (in module traceback), 32
format exception only() (in module trace-

back), 32
format list() (in module traceback), 31
format stack() (in module traceback), 32
format tb() (in module traceback), 32
formatter

in module htmllib, 242

standard module, 241, 245
FORMS Library, 294
fp (in module rfc822), 251
fpformat (standard module), 88
frame

object, 144
FrameType (in module types), 28
freeze form() (in module fl), 296
freeze object() (in module fl), 298
frexp() (in module math), 92
fromchild (in module popen2), 182
fromfd() (in module socket), 147
fromfile() (in module array), 97
fromlist() (in module array), 97
fromstring() (in module array), 97
fstat() (in module os), 108
fstatvfs() (in module os), 108
FTP

protocol, 211, 214
FTP (in module ftplib), 214
$ftp proxy, 210
ftplib (standard module), 214
ftpmirror.py, 215
ftruncate() (in module os), 108
Full (in module Queue), 157
full() (in module Queue), 158
func code, 9
function() (in module new), 67
functions

built-in, 3
FunctionType (in module types), 27

G
G.722, 276
gamma() (in module random), 94
gauss() (in module random), 94
gcd() (in module mpz), 287
gcdext() (in module mpz), 287
gdbm (built-in module), 38, 158, 171, 172
get(), 8
get()

in module ConfigParser, 99
in module Queue, 158
in module rfc822, 250

get buffer() (in module xdrlib), 258, 259
get directory() (in module fl), 295
get filename() (in module fl), 295
get ident() (in module thread), 150
get magic() (in module imp), 41
get mouse() (in module fl), 296
get nowait() (in module Queue), 158
get osfhandle() (in module msvcrt), 307
get pattern() (in module fl), 295
get position() (in module xdrlib), 259
get request() (SocketServer protocol), 231
get rgbmode() (in module fl), 295
get socket() (in module telnetlib), 228
get suffixes() (in module imp), 41

326 Index

get syntax() (in module regex), 83
get token() (in module shlex), 103
getaddr() (in module rfc822), 250
getaddrlist() (in module rfc822), 251
getallmatchingheaders() (in module rfc822),

250
getatime() (in module os.path), 114
getattr() (built-in function), 18
getbegyx() (in module curses), 127
getboolean() (in module ConfigParser), 99
getcaps() (in module mailcap), 260
getch()

in module curses, 128
in module msvcrt, 307

getchannels() (in module al), 290
getche() (in module msvcrt), 307
getcomment() (font handle method), 300
getcompname()

in module aifc, 275
in module sunau, 277
in module wave, 279

getcomptype()
in module aifc, 275
in module sunau, 277
in module wave, 279

getconfig() (in module al), 291
getcontext() (in module mhlib), 264
getcurrent() (in module mhlib), 264
getcwd() (in module os), 109
getdate() (in module rfc822), 251
getdate tz() (in module rfc822), 251
getegid() (in module os), 106
getencoding() (in module mimetools), 252
geteuid() (in module os), 106
getfd() (in module al), 290
getfile() (in module httplib), 214
getfillable() (in module al), 290
getfilled() (in module al), 290
getfillpoint() (in module al), 291
getfirstmatchingheader() (in module

rfc822), 250
getfloat() (in module ConfigParser), 99
getfloatmax() (in module al), 290
getfontinfo() (font handle method), 300
getfontname() (font handle method), 300
getframerate()

in module aifc, 275
in module sunau, 277
in module wave, 279

getfullname() (in module mhlib), 264
getgid() (in module os), 106
getgrall() (in module grp), 169
getgrgid() (in module grp), 169
getgrnam() (in module grp), 169
getheader() (in module rfc822), 250
gethostbyaddr()

in module os, 107
in module socket, 146

gethostbyname() (in module socket), 146
gethostbyname ex() (in module socket), 146
gethostname()

in module os, 107
in module socket, 146

getinfo() (in module sunaudiodev), 306
getint() (in module ConfigParser), 99
getitem() (in module operator), 30
getlast() (in module mhlib), 264
getline() (in module linecache), 33
getmaintype() (in module mimetools), 253
getmark()

in module aifc, 276
in module sunau, 278
in module wave, 280

getmarkers()
in module aifc, 275
in module sunau, 278
in module wave, 279

getmaxyx() (in module curses), 127
getmcolor() (in module fl), 296
getmessagefilename() (in module mhlib), 264
getmtime() (in module os.path), 114
getName() (in module threading), 157
getname() (in module chunk), 281
getnchannels()

in module aifc, 275
in module sunau, 277
in module wave, 279

getnframes()
in module aifc, 275
in module sunau, 277
in module wave, 279

getopt (standard module), 128
getopt() (in module getopt), 129
getoutput() (in module commands), 183
getpagesize() (in module resource), 180
getparam() (in module mimetools), 252
getparams()

in module aifc, 275
in module al, 290
in module sunau, 278
in module wave, 279

getpass (standard module), 124
getpass() (in module getpass), 124
getpath() (in module mhlib), 264
getpeername() (in module socket), 148
getpgrp() (in module os), 106
getpid() (in module os), 106
getplist() (in module mimetools), 252
getppid() (in module os), 106
getprofile() (in module mhlib), 264
getprotobyname() (in module socket), 146
getpwall() (in module pwd), 169
getpwnam() (in module pwd), 169
getpwuid() (in module pwd), 169
getqueuesize() (in module al), 290
getrawheader() (in module rfc822), 250

Index 327

getrefcount() (in module sys), 25
getreply() (in module httplib), 213
getrlimit() (in module resource), 179
getrusage() (in module resource), 180
getsampfmt() (in module al), 290
getsample() (in module audioop), 272
getsampwidth()

in module aifc, 275
in module sunau, 277
in module wave, 279

getsequences() (in module mhlib), 265
getsequencesfilename() (in module mhlib),

264
getservbyname() (in module socket), 146
getsignal() (in module signal), 144
getsize() (in module os.path), 114
getsizes() (in module imgfile), 302
getslice() (in module operator), 30
getsockname() (in module socket), 148
getsockopt() (in module socket), 148
getstatus()

in module al, 291
in module cd, 293
in module commands, 183

getstatusoutput() (in module commands),
183

getstr() (in module curses), 128
getstrwidth() (font handle method), 300
getsubtype() (in module mimetools), 253
gettrackinfo() (in module cd), 293
gettype() (in module mimetools), 252
getuid() (in module os), 106
getuser() (in module getpass), 124
getvalue() (in module StringIO), 88
getwelcome()

in module ftplib, 215
in module nntplib, 222
in module poplib, 218

getwidth() (in module al), 290
getyx() (in module curses), 127
givenpat (regex attribute), 84
GL (standard module), 302
gl (built-in module), 300
glob (standard module), 135, 136
glob() (in module glob), 136
globals() (built-in function), 18
gmtime() (in module time), 121
Gopher

protocol, 211, 212, 217
$gopher proxy, 210
gopherlib (standard module), 217
Greenwich Mean Time, 120
grey22grey() (in module imageop), 275
grey2grey2() (in module imageop), 274
grey2grey4() (in module imageop), 274
grey2mono() (in module imageop), 274
grey42grey() (in module imageop), 275
group()

in module nntplib, 223
in module re, 80
regex method, 84

groupdict() (in module re), 80
groupindex

in module re, 80
regex attribute, 85

groups() (in module re), 80
grp (built-in module), 169
gsub() (in module regsub), 85
guess extension() (in module mimetypes),

261
guess type() (in module mimetypes), 261
gzip (standard module), 164
GzipFile (in module gzip), 164

H
handle()

in module BaseHTTPServer, 233
SocketServer protocol, 231

handle accept() (in module asyncore), 236
handle cdata() (in module xmllib), 244
handle charref()

in module sgmllib, 240
in module xmllib, 244

handle close() (in module asyncore), 236
handle comment()

in module sgmllib, 240
in module xmllib, 244

handle connect() (in module asyncore), 236
handle data()

in module sgmllib, 240
in module xmllib, 244

handle doctype() (in module xmllib), 244
handle endtag()

in module sgmllib, 240
in module xmllib, 244

handle entityref()
in module sgmllib, 240
in module xmllib, 244

handle error() (SocketServer protocol), 231
handle expt() (in module asyncore), 236
handle image() (in module htmllib), 242
handle proc() (in module xmllib), 244
handle read() (in module asyncore), 236
handle request() (SocketServer protocol),

230
handle special() (in module xmllib), 244
handle starttag()

in module sgmllib, 240
in module xmllib, 244

handle write() (in module asyncore), 236
handle xml() (in module xmllib), 243
has extn() (in module smtplib), 226
has key(), 8
has key() (in module bsddb), 161
has section() (in module ConfigParser), 99
hasattr() (built-in function), 18

328 Index

hascompare (in module dis), 63
hasconst (in module dis), 62
hash() (built-in function), 18
hashopen() (in module bsddb), 161
hasjabs (in module dis), 62
hasjrel (in module dis), 62
haslocal (in module dis), 62
hasname (in module dis), 62
head() (in module nntplib), 223
headers

MIME, 203, 261
headers

in module BaseHTTPServer, 233
in module rfc822, 251

heapmin() (in module msvcrt), 308
helo() (in module smtplib), 225
help() (in module nntplib), 223
hex() (built-in function), 18
hexadecimal

literals, 5
hexbin() (in module binhex), 255
hexdigest() (in module sha), 286
hexdigits (in module string), 71
hide form() (in module fl), 296
hide object() (in module fl), 298
hline() (in module curses), 127
hls to rgb() (in module colorsys), 282
$HOME, 68, 113
hosts (in module netrc), 266
hsv to rgb() (in module colorsys), 282
HTML, 212, 241
htmlentitydefs (standard module), 243
htmllib (standard module), 212, 239, 241
HTMLParser

in module formatter, 245
in module htmllib, 242

htonl() (in module socket), 147
htons() (in module socket), 147
HTTP

protocol, 203, 211–213, 232
HTTP (in module httplib), 213
$http proxy, 210
httpd, 232
httplib (standard module), 213
HTTPServer (in module BaseHTTPServer), 232
hypertext, 241
hypot() (in module math), 92

I
I (in module re), 77
I/O control

buffering, 20, 107, 148
POSIX, 173, 174
tty, 173, 174
Unix, 175

ibufcount() (in module sunaudiodev), 306
id() (built-in function), 18
IDEA

cipher, 285
ident (in module cd), 292
identchars (in module cmd), 102
idlok() (in module curses), 128
if

statement, 3
ignore() (in module pstats), 197
IGNORECASE (in module re), 77
ihave() (in module nntplib), 224
ihooks (standard module), 15
imageop (built-in module), 274
IMAP4

protocol, 219
IMAP4 (in module imaplib), 219
IMAP4.abort (in module imaplib), 219
IMAP4.error (in module imaplib), 219
imaplib (standard module), 219
imgfile (built-in module), 302
imghdr (standard module), 283
imp (built-in module), 15, 41
import

statement, 15, 41
ImportError (built-in exception), 13
in

operator, 4, 6
INADDR * (in module socket), 146
inch() (in module curses), 128
Incomplete (in module binascii), 257
Independent JPEG Group, 303
index (in module cd), 292
index(), 7
index() (in module string), 72
IndexError (built-in exception), 14
indexOf() (in module operator), 30
Infinity, 18, 72
InfoSeek Corporation, 191
ini file, 98
init()

in module fm, 300
in module mimetypes, 261

init builtin() (in module imp), 42
init frozen() (in module imp), 42
inited (in module mimetypes), 261
initscr() (in module curses), 125
input()

built-in function, 18
in module fileinput, 100
in module sys, 26

InputType (in module cStringIO), 89
insch() (in module curses), 126
insert(), 7
insert() (in module array), 97
insertln() (in module curses), 127
insort() (in module bisect), 96
instance() (in module new), 67
instancemethod() (in module new), 67
InstanceType (in module types), 28
int(), 5

Index 329

int() (built-in function), 18
Int2AP() (in module imaplib), 219
integer

arbitrary precision, 286
division, 5
division, long, 5
literals, 5
literals, long, 5
type, 5
type, long, 5
types, 5
types, operations on, 6

Intel/DVI ADPCM, 271
interact()

in module code, 55, 56
in module telnetlib, 228

InteractiveConsole (in module code), 55
InteractiveInterpreter (in module code), 55
intern() (built-in function), 18
Internaldate2tuple() (in module imaplib),

219
Internet, 203
Internet Config, 210
InterpolationError (in module ConfigParser),

99
interpreter prompts, 26
intro (in module cmd), 103
IntType (in module types), 27
inv() (in module operator), 29
IOCTL (standard module), 175
ioctl() (in module fcntl), 175
IOError (built-in exception), 13
IP * (in module socket), 146
IPPORT * (in module socket), 146
IPPROTO * (in module socket), 146
IRIS Font Manager, 299
IRIX

threads, 151
is

operator, 4
is not

operator, 4
is builtin() (in module imp), 42
is data() (in module multifile), 254
is frozen() (in module imp), 42
isabs() (in module os.path), 114
isAlive() (in module threading), 157
isatty(), 10
isatty() (in module chunk), 281
iscomment() (in module rfc822), 250
isDaemon() (in module threading), 157
isdir() (in module os.path), 114
isendwin() (in module curses), 125
ISEOF() (in module token), 54
isexpr() (in module parser), 46, 47
isfile() (in module os.path), 114
isfirstline() (in module fileinput), 100
isheader() (in module rfc822), 250

isinstance() (built-in function), 19
iskeyword() (in module keyword), 54
islast() (in module rfc822), 250
isleap() (in module calendar), 101
islink() (in module os.path), 114
ismount() (in module os.path), 114
ISNONTERMINAL() (in module token), 54
isqueued() (in module fl), 295
isreadable() (in module pprint), 58, 59
isrecursive() (in module pprint), 59
isSet() (in module threading), 155
isstdin() (in module fileinput), 100
issubclass() (built-in function), 19
issuite() (in module parser), 46, 47
ISTERMINAL() (in module token), 54
items(), 8
itemsize (in module array), 97

J
Jansen, Jack, 256
JFIF, 303
join()

in module os.path, 114
in module string, 73
in module threading, 156

joinfields() (in module string), 73
jpeg (built-in module), 303

K
kbhit() (in module msvcrt), 307
KEY * (in module curses), 125
KeyboardInterrupt (built-in exception), 14
KeyError (built-in exception), 14
keyname() (in module curses), 126
keypad() (in module curses), 128
keys(), 8
keys() (in module bsddb), 161
keyword (standard module), 54
kill() (in module os), 111
knee (standard module), 43
knownfiles (in module mimetypes), 261
Kuchling, Andrew, 81, 85, 285

L
L (in module re), 77
LambdaType (in module types), 27
$LANG, 138
language

abc, 4
C, 5
C, 4, 5

large files, 168
last

in module multifile, 255
regex attribute, 84

last()
in module bsddb, 161
in module dbhash, 160

330 Index

in module nntplib, 223
last traceback (in module sys), 25
last type (in module sys), 25
last value (in module sys), 25
lastcmd (in module cmd), 103
lastpart() (in module MimeWriter), 253
LC ALL (in module locale), 139
LC COLLATE (in module locale), 139
LC CTYPE (in module locale), 139
LC MESSAGES (in module locale), 139
LC MONETARY (in module locale), 139
LC NUMERIC (in module locale), 139
LC TIME (in module locale), 139
ldexp() (in module math), 92
leapdays() (in module calendar), 101
leaveok() (in module curses), 128
len(), 6, 8
len() (built-in function), 19
letters (in module string), 71
level (in module multifile), 255
light-weight processes, 150
lin2adpcm() (in module audioop), 272
lin2adpcm3() (in module audioop), 272
lin2lin() (in module audioop), 272
lin2ulaw() (in module audioop), 272
line-buffered I/O, 20
linecache (standard module), 32
lineno

in module pyclbr, 55
in module shlex, 104

lineno() (in module fileinput), 100
linesep (in module os), 113
link() (in module os), 109
list

type, 6, 7
type, operations on, 7

list()
built-in function, 19
in module imaplib, 220
in module nntplib, 223
in module poplib, 218

listallfolders() (in module mhlib), 264
listallsubfolders() (in module mhlib), 264
listdir()

in module dircache, 115
in module os, 109

listen()
in module asyncore, 237
in module socket, 148

listfolders() (in module mhlib), 264
listmessages() (in module mhlib), 264
listsubfolders() (in module mhlib), 264
ListType (in module types), 27
literals

complex number, 5
floating point, 5
hexadecimal, 5
integer, 5

long integer, 5
numeric, 5
octal, 5

ljust() (in module string), 73
$LNAME, 124
load()

in module marshal, 41
in module pickle, 36

load compiled() (in module imp), 43
load dynamic() (in module imp), 43
load module() (in module imp), 42
load source() (in module imp), 43
loads()

in module marshal, 41
in module pickle, 36

LOCALE (in module re), 77
locale (standard module), 138
localeconv() (in module locale), 138
locals() (built-in function), 19
localtime() (in module time), 121
Lock() (in module threading), 152
lock()

in module mutex, 141
posixfile method, 177

locked() (in module thread), 151
lockf()

in module fcntl, 175
in module posixfile, 177

locking() (in module msvcrt), 307
LockType (in module thread), 150
log()

in module cmath, 93
in module math, 92

log10()
in module cmath, 93
in module math, 92

log data time string() (in module Base-
HTTPServer), 234

log error() (in module BaseHTTPServer),
234

log message() (in module BaseHTTPServer),
234

log request() (in module BaseHTTPServer),
233

login()
in module ftplib, 215
in module imaplib, 220

$LOGNAME, 124, 215
lognormvariate() (in module random), 94
logout() (in module imaplib), 220
long

integer division, 5
integer literals, 5
integer type, 5

long(), 5
long()

built-in function, 19
in module string, 72

Index 331

longimagedata() (in module rgbimg), 282
longstoimage() (in module rgbimg), 282
LongType (in module types), 27
LookupError (built-in exception base class), 13
lower() (in module string), 72
lowercase (in module string), 71
lseek() (in module os), 108
lshift() (in module operator), 29
lstat() (in module os), 109
lstrip() (in module string), 73
lsub() (in module imaplib), 220
Lundh, Fredrik, 303

M
M (in module re), 77
macros (in module netrc), 266
mailbox (standard module), 249, 263
mailcap (standard module), 260
Maildir (in module mailbox), 263
make form() (in module fl), 295
makedirs() (in module os), 110
makefile() (in module socket), 148
makefolder() (in module mhlib), 264
maketrans() (in module string), 72
map() (built-in function), 19
mapcolor() (in module fl), 296
mapping

types, 8
types, operations on, 8

maps() (in module nis), 181
marshal (built-in module), 33, 34, 40
marshalling

objects, 33
masking

operations, 6
match()

in module nis, 181
in module re, 78, 79
in module regex, 83
regex method, 84

math (built-in module), 5, 91, 93
max(), 6
max()

built-in function, 19
in module audioop, 272

maxdict (in module repr), 60
maxint (in module sys), 25
MAXLEN (in module mimify), 266
maxlevel (in module repr), 60
maxlist (in module repr), 60
maxlong (in module repr), 60
maxother (in module repr), 60
maxpp() (in module audioop), 272
maxstring (in module repr), 60
maxtuple (in module repr), 60
md5 (built-in module), 285
md5() (in module md5), 285
MemoryError (built-in exception), 14

Message
in module BaseHTTPServer, 233
in module mhlib, 263
in module mimetools, 252
in module rfc822, 249

message digest, MD5, 285
MessageClass (in module BaseHTTPServer),

233
meta() (in module curses), 126
method

object, 9
methods (in module pyclbr), 55
MethodType (in module types), 28
MH (in module mhlib), 263
mhlib (standard module), 263
MHMailbox (in module mailbox), 263
MIME

base64 encoding, 262
content type, 261
headers, 203, 261
quoted-printable encoding, 262

mime decode header() (in module mimify),
265

mime encode header() (in module mimify),
266

mimetools (standard module), 210, 214, 252
mimetypes (standard module), 261
MimeWriter

in module MimeWriter, 253
standard module, 253

mimify (standard module), 265
mimify() (in module mimify), 265
min(), 6
min() (built-in function), 19
minmax() (in module audioop), 272
misc header (in module cmd), 103
MissingSectionHeaderError (in module Con-

figParser), 99
mkd() (in module ftplib), 216
mkdir() (in module os), 110
mkfifo() (in module os), 109
mktemp() (in module tempfile), 130
mktime() (in module time), 121
mktime tz() (in module rfc822), 250
MmdfMailbox (in module mailbox), 263
mod() (in module operator), 29
mode, 11
modf() (in module math), 92
module

search path, 25, 33, 67
module (in module pyclbr), 55
module() (in module new), 67
modules (in module sys), 25
ModuleType (in module types), 28
mono2grey() (in module imageop), 274
monthcalendar() (in module calendar), 101
monthrange() (in module calendar), 101
move() (in module curses), 126

332 Index

movemessage() (in module mhlib), 265
MP, GNU library, 286
mpz (built-in module), 286
mpz() (in module mpz), 287
MPZType (in module mpz), 287
msftoblock() (in module cd), 293
msftoframe() (in module cd), 291
msg() (in module telnetlib), 228
MSG * (in module socket), 146
msvcrt (built-in module), 307
mt interact() (in module telnetlib), 228
mul()

in module audioop, 272
in module operator, 29

MultiFile (in module multifile), 254
multifile (standard module), 253
MULTILINE (in module re), 77
mutable

sequence types, 7
sequence types, operations on, 7

mutex
in module mutex, 141
standard module, 141

mvwin() (in module curses), 126

N
name, 11
name

in module os, 106
in module pyclbr, 55

NameError (built-in exception), 14
namespaces

XML, 245
NaN, 18, 72
National Security Agency, 288
neg() (in module operator), 29
netrc

in module netrc, 266
standard module, 266

Network News Transfer Protocol, 221
new (built-in module), 67
new()

in module md5, 285
in module sha, 286

new alignment() (in module formatter), 248
new font() (in module formatter), 248
new margin() (in module formatter), 248
new module() (in module imp), 42
new spacing() (in module formatter), 248
new styles() (in module formatter), 248
newconfig() (in module al), 289
newgroups() (in module nntplib), 223
newnews() (in module nntplib), 223
newrotor() (in module rotor), 287
newwin() (in module curses), 125
next()

in module bsddb, 161
in module dbhash, 160

in module mailbox, 263
in module multifile, 254
in module nntplib, 223

nextfile() (in module fileinput), 100
nextkey() (in module gdbm), 172
nextpart() (in module MimeWriter), 253
nice() (in module os), 111
nis (extension module), 181
NIST, 286
nl() (in module curses), 126
nlst() (in module ftplib), 216
NNTP

protocol, 221
NNTP (in module nntplib), 222
nntplib (standard module), 221
nocbreak() (in module curses), 126
nodelay() (in module curses), 128
NODISC (in module cd), 292
noecho() (in module curses), 126
nofill (in module htmllib), 242
nok builtin names (in module rexec), 268
None, 3
NoneType (in module types), 27
nonl() (in module curses), 126
noop() (in module poplib), 218
NoOptionError (in module ConfigParser), 99
nooutrefresh() (in module curses), 126
noraw() (in module curses), 126
normalvariate() (in module random), 94
normcase() (in module os.path), 114
normpath() (in module os.path), 114
NoSectionError (in module ConfigParser), 99
not

operator, 4
not in

operator, 4, 6
not () (in module operator), 30
NotANumber (in module fpformat), 88
notify() (in module threading), 154
notifyAll() (in module threading), 154
notimeout() (in module curses), 128
NotImplementedError (built-in exception), 14
NSA, 288
NSIG (in module signal), 144
ntohl() (in module socket), 147
ntohs() (in module socket), 147
ntransfercmd() (in module ftplib), 216
NullFormatter (in module formatter), 247
NullWriter (in module formatter), 249
numeric

conversions, 5
literals, 5
object, 4
types, 5
types, operations on, 5

Numerical Python, 21
nurbscurve() (in module gl), 301
nurbssurface() (in module gl), 301

Index 333

nvarray() (in module gl), 301

O
O APPEND (in module os), 109
O CREAT (in module os), 109
O DSYNC (in module os), 109
O EXCL (in module os), 109
O NDELAY (in module os), 108
O NOCTTY (in module os), 109
O NONBLOCK (in module os), 109
O RDONLY (in module os), 108
O RDWR (in module os), 108
O RSYNC (in module os), 109
O SYNC (in module os), 109
O TRUNC (in module os), 109
O WRONLY (in module os), 108
object

code, 9, 40
file, 10
frame, 144
method, 9
numeric, 4
socket, 145
traceback, 24, 31
type, 22

objects
comparing, 4
flattening, 33
marshalling, 33
persistent, 33
pickling, 33
serializing, 33

obufcount() (in module sunaudiodev), 306
oct() (built-in function), 19
octal

literals, 5
octdigits (in module string), 71
ok builtin modules (in module rexec), 268
ok path (in module rexec), 268
ok posix names (in module rexec), 268
ok sys names (in module rexec), 269
onecmd() (in module cmd), 102
open(), 10
open()

built-in function, 19
in module aifc, 275
in module anydbm, 158
in module cd, 291
in module dbhash, 159
in module dbm, 171
in module dl, 170
in module dumbdbm, 159
in module gdbm, 172
in module gzip, 164
in module os, 108
in module pipes, 176
in module posixfile, 177
in module sunau, 277

in module sunaudiodev, 305
in module telnetlib, 228
in module urllib, 212
in module wave, 279

open osfhandle() (in module msvcrt), 307
open unknown() (in module urllib), 212
opendir() (in module dircache), 115
openfolder() (in module mhlib), 264
openfp()

in module sunau, 277
in module wave, 279

OpenGL, 302
openlog() (in module syslog), 181
openmessage() (in module mhlib), 265
openport() (in module al), 289
operation

concatenation, 6
repetition, 6
slice, 6
subscript, 6

operations
bit-string, 6
Boolean, 3, 4
masking, 6
shifting, 6

operations on
dictionary type, 8
integer types, 6
list type, 7
mapping types, 8
mutable sequence types, 7
numeric types, 5
sequence types, 6, 7

operator
==, 4
and, 3, 4
comparison, 4
in, 4, 6
is, 4
is not, 4
not, 4
not in, 4, 6
or, 3, 4

operator (built-in module), 29
opname (in module dis), 62
options() (in module ConfigParser), 99
or

operator, 3, 4
or () (in module operator), 30
ord() (built-in function), 20
os (standard module), 26, 105, 167
os.path (standard module), 113
OSError (built-in exception), 14
OutputType (in module cStringIO), 89
OverflowError (built-in exception), 14
Overmars, Mark, 294

334 Index

P
P DETACH (in module os), 112
P NOWAIT (in module os), 112
P NOWAITO (in module os), 112
P OVERLAY (in module os), 112
P WAIT (in module os), 112
pack() (in module struct), 86
pack array() (in module xdrlib), 258
pack bytes() (in module xdrlib), 258
pack double() (in module xdrlib), 258
pack farray() (in module xdrlib), 258
pack float() (in module xdrlib), 258
pack fopaque() (in module xdrlib), 258
pack fstring() (in module xdrlib), 258
pack list() (in module xdrlib), 258
pack opaque() (in module xdrlib), 258
pack string() (in module xdrlib), 258
package, 67
Packer (in module xdrlib), 257
$PAGER, 187
pardir (in module os), 113
paretovariate() (in module random), 94
parse() (in module cgi), 206
parse header() (in module cgi), 206
parse multipart() (in module cgi), 206
parse qs() (in module cgi), 206
parse qsl() (in module cgi), 206
parsedate() (in module rfc822), 249
parsedate tz() (in module rfc822), 249
ParseFlags() (in module imaplib), 219
parseframe() (in module cd), 294
parser (built-in module), 44
ParserError (in module parser), 46
parsesequence() (in module mhlib), 264
parsing

Python source code, 44
URL, 229

ParsingError (in module ConfigParser), 99
pass () (in module poplib), 218
$PATH, 113, 207, 209
path

configuration file, 67
module search, 25, 33, 67
operations, 113

path
in module BaseHTTPServer, 232
in module os, 106
in module sys, 25

pathsep (in module os), 113
pattern (in module re), 80
pause() (in module signal), 144
PAUSED (in module cd), 292
Pdb (in module pdb), 185
pdb (standard module), 25, 185
persistency, 33
persistent

objects, 33
pformat() (in module pprint), 58, 59

PGP, 285
pi

in module cmath, 93
in module math, 92

pick() (in module gl), 301
pickle (standard module), 33, 37, 38, 40
pickle() (in module copy reg), 38
Pickler (in module pickle), 35
pickling

objects, 33
PicklingError (in module pickle), 36
pid (in module popen2), 183
PIL (the Python Imaging Library), 303
pipe() (in module os), 108
pipes (standard module), 176
PKG DIRECTORY (in module imp), 42
platform (in module sys), 25
play() (in module cd), 293
playabs() (in module cd), 293
PLAYING (in module cd), 292
PlaySound() (in module winsound), 308
playtrack() (in module cd), 293
playtrackabs() (in module cd), 293
plock() (in module os), 111
pm() (in module pdb), 186
pnum (in module cd), 292
poll() (in module popen2), 182
pop(), 7
pop() (in module multifile), 254
POP3

protocol, 217
POP3 (in module poplib), 217
pop alignment() (in module formatter), 247
pop font() (in module formatter), 247
pop margin() (in module formatter), 247
pop style() (in module formatter), 247
popen()

in module os, 107
in module select, 150

popen2 (standard module), 182
popen2() (in module popen2), 182
Popen3 (in module popen2), 182
popen3() (in module popen2), 182
poplib (standard module), 217
pos (in module re), 81
pos() (in module operator), 29
posix (built-in module), 10, 167
posixfile (built-in module), 177
POSIX

file object, 177
I/O control, 173, 174
threads, 150

post() (in module nntplib), 223
post mortem() (in module pdb), 186
postcmd() (in module cmd), 102
postloop() (in module cmd), 102
pow()

built-in function, 20

Index 335

in module math, 92
powm() (in module mpz), 287
pprint (standard module), 57
pprint() (in module pprint), 58, 59
prcal() (in module calendar), 101
precmd() (in module cmd), 102
prefix (in module sys), 25
preloop() (in module cmd), 102
prepend() (in module pipes), 176
Pretty Good Privacy, 285
PrettyPrinter (in module pprint), 57
preventremoval() (in module cd), 293
previous()

in module bsddb, 161
in module dbhash, 160

print
statement, 3

print callees() (in module pstats), 196
print callers() (in module pstats), 196
print directory() (in module cgi), 206
print environ() (in module cgi), 206
print environ usage() (in module cgi), 206
print exc() (in module traceback), 31
print exception() (in module traceback), 31
print form() (in module cgi), 206
print last() (in module traceback), 31
print stack() (in module traceback), 31
print stats() (in module pstats), 196
print tb() (in module traceback), 31
prmonth() (in module calendar), 101
process

group, 106
id, 106
id of parent, 106
killing, 111
signalling, 111

process request() (SocketServer protocol),
231

processes, light-weight, 150
profile (standard module), 194
profile function, 26
profiler, 26
profiling, deterministic, 191
prompt (in module cmd), 102
prompts, interpreter, 26
protocol

CGI, 203
FTP, 211, 214
Gopher, 211, 212, 217
HTTP, 203, 211–213, 232
IMAP4, 219
NNTP, 221
POP3, 217
SMTP, 224

PROTOCOL VERSION (in module imaplib), 221
protocol version (in module Base-

HTTPServer), 233
prstr() (in module fm), 300

ps1 (in module sys), 26
ps2 (in module sys), 26
pstats (standard module), 195
pthreads, 150
ptime (in module cd), 292
pty (standard module), 174
push()

in module code, 57
in module multifile, 254

push alignment() (in module formatter), 247
push font() (in module formatter), 247
push margin() (in module formatter), 247
push style() (in module formatter), 247
push token() (in module shlex), 103
put() (in module Queue), 158
put nowait() (in module Queue), 158
putch() (in module msvcrt), 307
putenv() (in module os), 106
putheader() (in module httplib), 213
putrequest() (in module httplib), 213
putsequences() (in module mhlib), 265
pwd (built-in module), 113, 168
pwd() (in module ftplib), 216
pwlcurve() (in module gl), 301
py compile (standard module), 61
PY COMPILED (in module imp), 42
PY FROZEN (in module imp), 42
PY RESOURCE (in module imp), 42
PY SOURCE (in module imp), 42
pyclbr (standard module), 54
PyOpenGL, 302
Python Imaging Library, 303
$PYTHONPATH, 25, 207, 310
$PYTHONSTARTUP, 68, 165
$PYTHONY2K, 119, 120

Q
qdevice() (in module fl), 295
qenter() (in module fl), 296
qread() (in module fl), 296
qreset() (in module fl), 296
qsize() (in module Queue), 157
qtest() (in module fl), 295
queryparams() (in module al), 289
Queue

in module Queue, 157
standard module, 157

quit()
in module ftplib, 217
in module nntplib, 224
in module poplib, 218
in module smtplib, 226

quopri (standard module), 262
quote() (in module urllib), 210
quote plus() (in module urllib), 211
quoted-printable

encoding, 262
quotes (in module shlex), 104

336 Index

R
r eval() (in module rexec), 269
r exec() (in module rexec), 269
r execfile() (in module rexec), 269
r import() (in module rexec), 269
R OK (in module os), 109
r open() (in module rexec), 269
r reload() (in module rexec), 269
r unload() (in module rexec), 269
raise

statement, 12
randint() (in module random), 95
random (standard module), 94
random() (in module random), 95
range() (built-in function), 20
Rat (in module mpz), 286
ratecv() (in module audioop), 273
rational numbers, 286
raw() (in module curses), 126
raw input()

built-in function, 20
in module code, 57
in module sys, 26

re
in module re, 81
standard module, 7, 71, 74, 81, 136

read(), 10
read()

in module array, 97
in module chunk, 281
in module ConfigParser, 99
in module imgfile, 303
in module multifile, 254
in module os, 108
in module sunaudiodev, 306

read all() (in module telnetlib), 227
read eager() (in module telnetlib), 228
read lazy() (in module telnetlib), 228
read mime types() (in module mimetypes),

261
read some() (in module telnetlib), 227
read until() (in module telnetlib), 227
read very eager() (in module telnetlib), 228
read very lazy() (in module telnetlib), 228
readable() (in module asyncore), 236
readda() (in module cd), 293
readframes()

in module aifc, 276
in module sunau, 278
in module wave, 279

readline(), 10
readline() (in module multifile), 254
readlines(), 11
readlines() (in module multifile), 254
readlink() (in module os), 110
readmodule() (in module pyclbr), 54
readsamps() (in module al), 290
readscaled() (in module imgfile), 303

READY (in module cd), 292
Real Media File Format, 280
realpat (regex attribute), 84
recent() (in module imaplib), 220
reconvert (standard module), 81
recv()

in module asyncore, 237
in module socket, 148

recvfrom() (in module socket), 148
redraw form() (in module fl), 296
redraw object() (in module fl), 298
reduce() (built-in function), 21
refilemessages() (in module mhlib), 265
refresh() (in module curses), 126
regex (built-in module), 81
regex syntax (standard module), 83
regs (regex attribute), 84
regsub (standard module), 85
relative

URL, 229
release()

in module thread, 151
in module threading, 152

reload()
built-in function, 21
in module imp, 42, 43
in module sys, 25

remove(), 7
remove() (in module os), 110
removecallback() (in module cd), 294
removedirs() (in module os), 110
removemessages() (in module mhlib), 265
rename()

in module ftplib, 216
in module imaplib, 220
in module os, 110

renames() (in module os), 110
reorganize() (in module gdbm), 172
repeat() (in module operator), 30
repetition

operation, 6
replace() (in module string), 73
report unbalanced() (in module sgmllib), 240
Repr (in module repr), 59
repr (standard module), 59
repr()

built-in function, 21
in module repr, 59, 60

repr1() (in module repr), 60
request queue size (SocketServer protocol),

231
request version (in module Base-

HTTPServer), 232
RequestHandlerClass (SocketServer protocol),

231
reset()

in module pipes, 176
in module sgmllib, 240

Index 337

in module statcache, 118
in module xdrlib, 258, 259
in module xmllib, 243

resetbuffer() (in module code), 57
resetparser() (in module cd), 294
resource (built-in module), 178
response() (in module imaplib), 220
responses (in module BaseHTTPServer), 233
retr() (in module poplib), 218
retrbinary() (in module ftplib), 216
retrieve() (in module urllib), 212
retrlines() (in module ftplib), 216
reverse(), 7
reverse()

in module array, 97
in module audioop, 273

reverse order() (in module pstats), 196
rewind()

in module aifc, 276
in module sunau, 278
in module wave, 279

rewindbody() (in module rfc822), 250
RExec (in module rexec), 268
rexec (standard module), 15, 268
RFC

RFC 1014, 257
RFC 1321, 285
RFC 1521, 262
RFC 1524, 260
RFC 1725, 217
RFC 1730, 219
RFC 1738, 229
RFC 1808, 229
RFC 1866, 241, 242
RFC 1869, 224, 225
RFC 2060, 219
RFC 821, 224, 225
RFC 822, 98, 213, 226, 249, 250
RFC 854, 227
RFC 959, 214
RFC 977, 221

rfc822 (standard module), 249
rfile (in module BaseHTTPServer), 233
rfind() (in module string), 72
rgb to hls() (in module colorsys), 282
rgb to hsv() (in module colorsys), 282
rgb to yiq() (in module colorsys), 282
rgbimg (built-in module), 282
rindex() (in module string), 72
rjust() (in module string), 73
rlcompleter (standard module), 164
rlecode hqx() (in module binascii), 257
rledecode hqx() (in module binascii), 257
RLIMIT AS (in module resource), 180
RLIMIT CORE (in module resource), 179
RLIMIT CPU (in module resource), 179
RLIMIT DATA (in module resource), 179
RLIMIT FSIZE (in module resource), 179

RLIMIT MEMLOC (in module resource), 180
RLIMIT NOFILE (in module resource), 180
RLIMIT NPROC (in module resource), 180
RLIMIT OFILE (in module resource), 180
RLIMIT RSS (in module resource), 179
RLIMIT STACK (in module resource), 179
RLIMIT VMEM (in module resource), 180
RLock() (in module threading), 152
rmd() (in module ftplib), 217
rmdir() (in module os), 110
RMFF, 280
rms() (in module audioop), 273
rmtree() (in module shutil), 137
rnopen() (in module bsddb), 161
rotor (built-in module), 287
round() (built-in function), 21
rpop() (in module poplib), 218
rset() (in module poplib), 218
rshift() (in module operator), 30
rstrip() (in module string), 73
RTLD LAZY (in module dl), 170
RTLD NOW (in module dl), 170
ruler (in module cmd), 103
run()

in module pdb, 186
in module profile, 194
in module sched, 124
in module threading, 156

runcall() (in module pdb), 186
runcode() (in module code), 56
runeval() (in module pdb), 186
runsource() (in module code), 56
RuntimeError (built-in exception), 14
RUSAGE BOTH (in module resource), 181
RUSAGE CHILDREN (in module resource), 181
RUSAGE SELF (in module resource), 181

S
S (in module re), 77
s eval() (in module rexec), 269
s exec() (in module rexec), 269
s execfile() (in module rexec), 269
S IFMT() (in module stat), 116
S IMODE() (in module stat), 116
s import() (in module rexec), 269
S ISBLK() (in module stat), 116
S ISCHR() (in module stat), 116
S ISDIR() (in module stat), 116
S ISFIFO() (in module stat), 116
S ISLNK() (in module stat), 116
S ISREG() (in module stat), 116
S ISSOCK() (in module stat), 116
s reload() (in module rexec), 269
s unload() (in module rexec), 269
saferepr() (in module pprint), 59
samefile() (in module os.path), 114
sameopenfile() (in module os.path), 114
samestat() (in module os.path), 115

338 Index

save bgn() (in module htmllib), 242
save end() (in module htmllib), 242
scale() (in module imageop), 274
scalefont() (font handle method), 300
sched (standard module), 123
scheduler (in module sched), 123
sci() (in module fpformat), 88
scroll() (in module curses), 128
search

path, module, 25, 33, 67
search()

in module imaplib, 220
in module re, 78, 79
in module regex, 83
regex method, 84

SEARCH ERROR (in module imp), 42
section divider() (in module multifile), 255
sections() (in module ConfigParser), 99
Secure Hash Algorithm, 286
seed() (in module whrandom), 95
seek(), 11
seek()

in module cd, 293
in module chunk, 281
in module multifile, 254

SEEK CUR (in module posixfile), 177
SEEK END (in module posixfile), 177
SEEK SET (in module posixfile), 177
seekblock() (in module cd), 293
seektrack() (in module cd), 293
select (built-in module), 149
select()

in module gl, 301
in module imaplib, 221
in module select, 150

Semaphore (in module threading), 155
Semaphore() (in module threading), 152
semaphores, binary, 150
send()

in module asyncore, 237
in module httplib, 213
in module socket, 148

send error() (in module BaseHTTPServer),
233

send flowing data() (in module formatter),
248

send header() (in module BaseHTTPServer),
233

send hor rule() (in module formatter), 248
send label data() (in module formatter), 248
send line break() (in module formatter), 248
send literal data() (in module formatter),

248
send paragraph() (in module formatter), 248
send query() (in module gopherlib), 217
send response() (in module Base-

HTTPServer), 233
send selector() (in module gopherlib), 217

sendcmd() (in module ftplib), 215
sendmail() (in module smtplib), 226
sendto() (in module socket), 148
sep (in module os), 113
sequence

types, 6
types, mutable, 7
types, operations on, 6, 7
types, operations on mutable, 7

sequence2ast() (in module parser), 45
sequenceIncludes() (in module operator), 30
serializing

objects, 33
serve forever() (SocketServer protocol), 230
server

WWW, 203, 232
server activate() (SocketServer protocol),

231
server address (SocketServer protocol), 231
server bind() (SocketServer protocol), 231
server version

in module BaseHTTPServer, 233
in module SimpleHTTPServer, 234

set() (in module threading), 155
set call back() (in module fl), 298
set debuglevel()

in module ftplib, 215
in module httplib, 213
in module nntplib, 223
in module smtplib, 225
in module telnetlib, 228

set event call back() (in module fl), 295
set form position() (in module fl), 296
set graphics mode() (in module fl), 295
set location() (in module bsddb), 161
set pasv() (in module ftplib), 216
set position() (in module xdrlib), 259
set spacing() (in module formatter), 247
set syntax() (in module regex), 83
set trace() (in module pdb), 186
setattr()

built-in function, 21
in module curses, 127

setblocking() (in module socket), 148
setcbreak() (in module tty), 174
setchannels() (in module al), 290
setcheckinterval() (in module sys), 26
setcomptype()

in module aifc, 276
in module sunau, 278
in module wave, 280

setconfig() (in module al), 291
setcontext() (in module mhlib), 264
setcurrent() (in module mhlib), 264
setDaemon() (in module threading), 157
setfillpoint() (in module al), 291
setfloatmax() (in module al), 290
setfont() (font handle method), 300

Index 339

setframerate()
in module aifc, 276
in module sunau, 278
in module wave, 280

setgid() (in module os), 107
setinfo() (in module sunaudiodev), 306
setitem() (in module operator), 30
setkey() (in module rotor), 288
setlast() (in module mhlib), 264
setliteral()

in module sgmllib, 240
in module xmllib, 243

setlocale() (in module locale), 138
setlogmask() (in module syslog), 182
setmark() (in module aifc), 276
setmode() (in module msvcrt), 307
setName() (in module threading), 157
setnchannels()

in module aifc, 276
in module sunau, 278
in module wave, 280

setnframes()
in module aifc, 276
in module sunau, 278
in module wave, 280

setnomoretags()
in module sgmllib, 240
in module xmllib, 243

setoption() (in module jpeg), 303
setparams()

in module aifc, 276
in module al, 290
in module sunau, 278
in module wave, 280

setpath() (in module fm), 300
setpgid() (in module os), 107
setpgrp() (in module os), 107
setpos()

in module aifc, 276
in module sunau, 278
in module wave, 280

setprofile() (in module sys), 26
setqueuesize() (in module al), 290
setraw() (in module tty), 174
setrlimit() (in module resource), 179
setsampfmt() (in module al), 290
setsampwidth()

in module aifc, 276
in module sunau, 278
in module wave, 280

setscrreg() (in module curses), 128
setsid() (in module os), 107
setslice() (in module operator), 30
setsockopt() (in module socket), 148
settrace() (in module sys), 26
setuid() (in module os), 107
setup() (SocketServer protocol), 232
setwidth() (in module al), 290

SGML, 239
sgmllib (standard module), 239, 241
SGMLParser

in module htmllib, 241
in module sgmllib, 239

sha (built-in module), 286
shelve (standard module), 33, 38, 40
shifting

operations, 6
shlex

in module shlex, 103
standard module, 103

show choice() (in module fl), 295
show file selector() (in module fl), 295
show form() (in module fl), 296
show input() (in module fl), 295
show message() (in module fl), 295
show object() (in module fl), 298
show question() (in module fl), 295
showsyntaxerror() (in module code), 56
showtraceback() (in module code), 56
shutdown() (in module socket), 148
shutil (standard module), 136
SIG* (in module signal), 144
SIG DFL (in module signal), 144
SIG IGN (in module signal), 144
signal (built-in module), 143, 151
signal() (in module signal), 144
Simple Mail Transfer Protocol, 224
SimpleHTTPRequestHandler (in module Sim-

pleHTTPServer), 234
SimpleHTTPServer (standard module), 232,

234
sin()

in module cmath, 93
in module math, 92

sinh()
in module cmath, 93
in module math, 92

site (standard module), 67, 69
site-packages

directory, 67
site-python

directory, 67
sitecustomize (module), 68
size() (in module ftplib), 217
sizeofimage() (in module rgbimg), 282
skip() (in module chunk), 281
slave() (in module nntplib), 223
sleep() (in module time), 121
slice

assignment, 7
operation, 6

slice()
built-in function, 21
byte code insns, 67
in module types, 28

SliceType (in module types), 28

340 Index

SMTP
protocol, 224

SMTP (in module smtplib), 224
SMTPConnectError (in module smtplib), 225
SMTPDataError (in module smtplib), 225
SMTPException (in module smtplib), 224
SMTPHeloError (in module smtplib), 225
smtplib (standard module), 224
SMTPRecipientsRefused (in module smtplib),

225
SMTPResponseException (in module smtplib),

224
SMTPSenderRefused (in module smtplib), 224
SMTPServerDisconnected (in module smtplib),

224
SND ALIAS (in module winsound), 308
SND ASYNC (in module winsound), 308
SND FILENAME (in module winsound), 308
SND LOOP (in module winsound), 308
SND MEMORY (in module winsound), 308
SND NODEFAULT (in module winsound), 308
SND NOSTOP (in module winsound), 308
SND NOWAIT (in module winsound), 308
SND PURGE (in module winsound), 308
sndhdr (standard module), 283
SO * (in module socket), 146
SOCK DGRAM (in module socket), 146
SOCK RAW (in module socket), 146
SOCK RDM (in module socket), 146
SOCK SEQPACKET (in module socket), 146
SOCK STREAM (in module socket), 146
socket

object, 145
socket

built-in module, 10, 145, 203
SocketServer protocol, 231

socket()
in module select, 150
in module socket, 146

socket type (SocketServer protocol), 231
SocketServer (standard module), 230
SocketType (in module socket), 147
softspace, 11
SOL * (in module socket), 146
SOMAXCONN (in module socket), 146
sort(), 7
sort stats() (in module pstats), 195
span() (in module re), 80
spawn() (in module pty), 175
spawnv() (in module os), 111
spawnve() (in module os), 111
split()

in module os.path, 115
in module re, 78, 79
in module regsub, 85
in module string, 73

splitdrive() (in module os.path), 115
splitext() (in module os.path), 115

splitfields() (in module string), 73
splitx() (in module regsub), 85
sqrt()

in module cmath, 93
in module math, 92
in module mpz, 287

sqrtrem() (in module mpz), 287
ST ATIME (in module stat), 117
ST CTIME (in module stat), 117
ST DEV (in module stat), 117
ST GID (in module stat), 117
ST INO (in module stat), 116
ST MODE (in module stat), 116
ST MTIME (in module stat), 117
ST NLINK (in module stat), 117
ST SIZE (in module stat), 117
ST UID (in module stat), 117
StandardError (built-in exception base class),

13
standend() (in module curses), 127
standout() (in module curses), 127
start()

in module re, 80
in module threading, 156

start new thread() (in module thread), 150
startbody() (in module MimeWriter), 253
startmultipartbody() (in module

MimeWriter), 253
stat (standard module), 110, 116
stat()

in module nntplib, 223
in module os, 110
in module poplib, 218
in module statcache, 117

statcache (standard module), 117
statement

assert, 13
del, 7, 8
except, 12
exec, 9
if, 3
import, 15, 41
print, 3
raise, 12
try, 12
while, 3

Stats (in module pstats), 195
status() (in module imaplib), 221
statvfs (standard module), 110, 118
statvfs() (in module os), 110
stderr (in module sys), 26
stdin (in module sys), 26
stdout (in module sys), 26
stdwin (built-in module), 150, 185
STILL (in module cd), 292
stop() (in module cd), 293
storbinary() (in module ftplib), 216
store() (in module imaplib), 221

Index 341

storlines() (in module ftplib), 216
str()

built-in function, 22
in module locale, 139

strcoll() (in module locale), 139
strerror() (in module os), 107
strftime() (in module time), 121
string

documentation, 48
type, 6

string
in module re, 81
standard module, 7, 71, 139, 140

StringIO
in module StringIO, 88
standard module, 88

StringType (in module types), 27
strip() (in module string), 73
strip dirs() (in module pstats), 195
strop (built-in module), 73, 140
strptime() (in module time), 122
struct (built-in module), 85, 148
structures

C, 85
strxfrm() (in module locale), 139
sub()

in module operator, 29
in module re, 78, 79
in module regsub, 85

subn() (in module re), 79
subscribe() (in module imaplib), 221
subscript

assignment, 7
operation, 6

subwin() (in module curses), 126
suffix map (in module mimetypes), 261
suite() (in module parser), 45
sunau (standard module), 277
SUNAUDIODEV (standard module), 305, 306
sunaudiodev (built-in module), 305, 306
super (in module pyclbr), 55
swapcase() (in module string), 73
sym() (in module dl), 171
sym name (in module symbol), 53
symbol (standard module), 53
symbol table, 3
symcomp() (in module regex), 84
symlink() (in module os), 110
sync()

in module bsddb, 161
in module dbhash, 160
in module gdbm, 172

syntax error() (in module xmllib), 245
SyntaxError (built-in exception), 14
sys (built-in module), 23
sys version (in module BaseHTTPServer),

233
syslog (built-in module), 181

syslog() (in module syslog), 181
system() (in module os), 112
SystemError (built-in exception), 14
SystemExit (built-in exception), 15

T
Tagged Image File Format, 280
tan()

in module cmath, 93
in module math, 92

tanh()
in module cmath, 93
in module math, 92

tb lineno() (in module traceback), 32
tcdrain() (in module termios), 173
tcflow() (in module termios), 173
tcflush() (in module termios), 173
tcgetattr() (in module termios), 173
tcgetpgrp() (in module os), 108
tcsendbreak() (in module termios), 173
tcsetattr() (in module termios), 173
tcsetpgrp() (in module os), 108
tell(), 11
tell()

in module aifc, 276
in module chunk, 281
in module multifile, 254
in module sunau, 278
in module wave, 280

Telnet (in module telnetlib), 227
telnetlib (standard module), 227
tempdir (in module tempfile), 130
tempfile (standard module), 129
Template (in module pipes), 176
template (in module tempfile), 130
temporary

file, 129
file name, 129

TERMIOS (standard module), 173, 174
termios (built-in module), 173, 174
test()

in module cgi, 206
in module mutex, 141

testandset() (in module mutex), 141
tests (in module imghdr), 283
Thread (in module threading), 152, 156
thread (built-in module), 150
threading (standard module), 151
threads

IRIX, 151
POSIX, 150

tie() (in module fl), 296
TIFF, 280
time (built-in module), 119
time() (in module time), 122
Time2Internaldate() (in module imaplib), 219
timegm() (in module calendar), 101
times() (in module os), 112

342 Index

timezone (in module time), 122
$TMPDIR, 130
tochild (in module popen2), 183
tofile() (in module array), 97
togglepause() (in module cd), 293
tok name (in module token), 53
token

in module shlex, 104
standard module, 53

tokenize (standard module), 54
tokenize() (in module tokenize), 54
tolist()

in module array, 97
in module parser, 47

tomono() (in module audioop), 273
top() (in module poplib), 218
tostereo() (in module audioop), 273
tostring() (in module array), 97
totuple() (in module parser), 47
touchline() (in module curses), 128
touchwin() (in module curses), 128
tovideo() (in module imageop), 274
trace function, 26
traceback

object, 24, 31
traceback (standard module), 31
tracebacklimit (in module sys), 26
TracebackType (in module types), 28
transfercmd() (in module ftplib), 216
translate (regex attribute), 84
translate() (in module string), 73
translate references() (in module xmllib),

243
true, 3
truncate(), 11
truth

value, 3
truth() (in module operator), 30
try

statement, 12
ttob()

in module imgfile, 303
in module rgbimg, 282

tty
I/O control, 173, 174

tty (standard module), 174
ttyname() (in module os), 108
tuple

type, 6
tuple() (built-in function), 22
tuple2ast() (in module parser), 45
TupleType (in module types), 27
type

Boolean, 3
complex number, 5
dictionary, 8
floating point, 5
integer, 5

list, 6, 7
long integer, 5
object, 22
operations on dictionary, 8
operations on list, 7
string, 6
tuple, 6

type(), 10
type()

built-in function, 22
in module types, 27

typecode (in module array), 97
TypeError (built-in exception), 15
types

built-in, 3
integer, 5
mapping, 8
mutable sequence, 7
numeric, 5
operations on integer, 6
operations on mapping, 8
operations on mutable sequence, 7
operations on numeric, 5
operations on sequence, 6, 7
sequence, 6

types (standard module), 10, 22, 27
types map (in module mimetypes), 262
TypeType (in module types), 27
tzname (in module time), 123

U
u-LAW, 271, 276, 283, 305
uid() (in module imaplib), 221
uidl() (in module poplib), 218
ulaw2lin() (in module audioop), 273
umask() (in module os), 107
uname() (in module os), 107
UnboundMethodType (in module types), 28
unbuffered I/O, 20
undoc header (in module cmd), 103
unfreeze form() (in module fl), 296
unfreeze object() (in module fl), 298
ungetch()

in module curses, 125
in module msvcrt, 308

uniform() (in module random), 95
Unix

file control, 175
I/O control, 175

UnixMailbox (in module mailbox), 263
unknown charref()

in module sgmllib, 241
in module xmllib, 245

unknown endtag()
in module sgmllib, 241
in module xmllib, 245

unknown entityref()
in module sgmllib, 241

Index 343

in module xmllib, 245
unknown starttag()

in module sgmllib, 240
in module xmllib, 245

unlink() (in module os), 110
unlock() (in module mutex), 141
unmimify() (in module mimify), 265
unpack() (in module struct), 86
unpack array() (in module xdrlib), 259
unpack bytes() (in module xdrlib), 259
unpack double() (in module xdrlib), 259
unpack farray() (in module xdrlib), 259
unpack float() (in module xdrlib), 259
unpack fopaque() (in module xdrlib), 259
unpack fstring() (in module xdrlib), 259
unpack list() (in module xdrlib), 259
unpack opaque() (in module xdrlib), 259
unpack string() (in module xdrlib), 259
Unpacker (in module xdrlib), 257
Unpickler (in module pickle), 35
unqdevice() (in module fl), 295
unquote() (in module urllib), 211
unquote plus() (in module urllib), 211
unsubscribe() (in module imaplib), 221
unused data (in module zlib), 163
update(), 8
update() (in module md5), 285
upper() (in module string), 73
uppercase (in module string), 71
URL, 203, 209, 229, 232

parsing, 229
relative, 229

urlcleanup() (in module urllib), 210
urlencode() (in module urllib), 211
urljoin() (in module urlparse), 230
urllib (standard module), 209, 213
urlopen() (in module urllib), 209
URLopener (in module urllib), 211
urlparse (standard module), 212, 229
urlparse() (in module urlparse), 229
urlretrieve() (in module urllib), 210
urlunparse() (in module urlparse), 230
$USER, 124, 215
user

configuration file, 68
effective id, 106
id, 106
id, setting, 107

user (standard module), 68
user() (in module poplib), 218
UserDict

in module UserDict, 28
standard module, 28

UserList
in module UserList, 29
standard module, 28

$USERNAME, 124
UTC, 120

utime() (in module os), 110
uu (standard module), 256, 256

V
value

truth, 3
ValueError (built-in exception), 15
values(), 8
varray() (in module gl), 301
vars() (built-in function), 22
VERBOSE (in module re), 78
verify() (in module smtplib), 226
verify request() (SocketServer protocol),

231
version

in module curses, 124
in module sys, 26

version string() (in module Base-
HTTPServer), 234

vline() (in module curses), 127
vnarray() (in module gl), 301
voidcmd() (in module ftplib), 216
vonmisesvariate() (in module random), 94

W
W OK (in module os), 109
wait()

in module os, 112
in module popen2, 182
in module threading, 154, 155

waitpid() (in module os), 112
walk() (in module os.path), 115
wave (standard module), 279
wdb (standard module), 185
weekday() (in module calendar), 101
weibullvariate() (in module random), 94
WEXITSTATUS() (in module os), 112
wfile (in module BaseHTTPServer), 233
what()

in module imghdr, 283
in module sndhdr, 283

whathdr() (in module sndhdr), 284
whichdb (standard module), 160
whichdb() (in module whichdb), 160
while

statement, 3
whitespace

in module shlex, 103
in module string, 71

whrandom (standard module), 95
WIFEXITED() (in module os), 112
WIFSIGNALED() (in module os), 112
WIFSTOPPED() (in module os), 112
Windows ini file, 98
winsound (built-in module), 308
winver (in module sys), 26
WNOHANG (in module os), 112
wordchars (in module shlex), 103

344 Index

World-Wide Web, 203, 209, 229
write(), 11
write()

in module array, 98
in module code, 56
in module imgfile, 303
in module os, 108
in module sunaudiodev, 306
in module telnetlib, 228

writeable() (in module asyncore), 237
writeframes()

in module aifc, 276
in module sunau, 278
in module wave, 280

writeframesraw()
in module aifc, 276
in module sunau, 278
in module wave, 280

writelines(), 11
writer (in module formatter), 246
writesamps() (in module al), 290
WSTOPSIG() (in module os), 112
WTERMSIG() (in module os), 112
WWW, 203, 209, 229

server, 203, 232

X
X (in module re), 78
X OK (in module os), 109
xatom() (in module imaplib), 221
XDR, 33, 257
xdrlib (standard module), 257
xgtitle() (in module nntplib), 224
xhdr() (in module nntplib), 223
XML, 243

namespaces, 245
xmllib (standard module), 243
XMLParser (in module xmllib), 243
xor() (in module operator), 30
xover() (in module nntplib), 224
xpath() (in module nntplib), 224
xrange()

built-in function, 22
in module types, 28

XRangeType (in module types), 28

Y
Y2K, 119
Year 2000, 119
Year 2038, 119
yiq to rgb() (in module colorsys), 282

Z
ZeroDivisionError (built-in exception), 15
zfill() (in module string), 73
zlib (built-in module), 162

Index 345

	1 Introduction
	2 Built-in Types, Exceptions and Functions
	2.1 Built-in Types
	2.1.1 Truth Value Testing
	2.1.2 Boolean Operations
	2.1.3 Comparisons
	2.1.4 Numeric Types
	Bit-string Operations on Integer Types

	2.1.5 Sequence Types
	More String Operations
	Mutable Sequence Types

	2.1.6 Mapping Types
	2.1.7 Other Built-in Types
	Modules
	Classes and Class Instances
	Functions
	Methods
	Code Objects
	Type Objects
	The Null Object
	The Ellipsis Object
	File Objects
	Internal Objects

	2.1.8 Special Attributes

	2.2 Built-in Exceptions
	2.3 Built-in Functions

	3 Python Services
	3.1 sys --- System-specific parameters and functions
	3.2 types --- Names for all built-in types
	3.3 UserDict --- Class wrapper for dictionary objects
	3.4 UserList --- Class wrapper for list objects
	3.5 operator --- Standard operators as functions.
	3.6 traceback --- Print or retrieve a stack traceback
	3.6.1 Traceback Example

	3.7 linecache --- Random access to text lines
	3.8 pickle --- Python object serialization
	3.8.1 Example

	3.9 cPickle --- Alternate implementation of pickle
	3.10 copyprotect unhbox voidb@x kern .06emvbox {hrule width.55em}reg --- Register pickle support functions
	3.11 shelve --- Python object persistency
	3.12 copy --- Shallow and deep copy operations
	3.13 marshal --- Alternate Python object serialization
	3.14 imp --- Access the import internals
	3.14.1 Examples

	3.15 parser --- Access Python parse trees
	3.15.1 Creating AST Objects
	3.15.2 Converting AST Objects
	3.15.3 Queries on AST Objects
	3.15.4 Exceptions and Error Handling
	3.15.5 AST Objects
	3.15.6 Examples
	Emulation of compile()
	Information Discovery

	3.16 symbol --- Constants used with Python parse trees
	3.17 token --- Constants used with Python parse trees
	3.18 keyword --- Testing for Python keywords
	3.19 tokenize --- Tokenizer for Python source
	3.20 pyclbr --- Python class browser support
	3.20.1 Class Descriptor Objects

	3.21 code --- Interpreter base classes
	3.21.1 Interactive Interpreter Objects
	3.21.2 Interactive Console Objects

	3.22 codeop --- Compile Python code
	3.23 pprint --- Data pretty printer.
	3.23.1 PrettyPrinter Objects

	3.24 repr --- Alternate repr() implementation.
	3.24.1 Repr Objects
	3.24.2 Subclassing Repr Objects

	3.25 pyprotect unhbox voidb@x kern .06emvbox {hrule width.55em}compile --- Compile Python source files
	3.26 compileall --- Byte-compile Python libraries
	3.27 dis --- Disassembler.
	3.27.1 Python Byte Code Instructions

	3.28 new --- Runtime implementation object creation
	3.29 site --- Site-specific configuration hook
	3.30 user --- User-specific configuration hook
	3.31 protect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em}builtinprotect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em} --- Built-in functions
	3.32 protect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em}mainprotect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em} --- Top-level script environment.

	4 String Services
	4.1 string --- Common string operations
	4.2 re --- Perl-style regular expression operations.
	4.2.1 Regular Expression Syntax
	4.2.2 Matching vs. Searching
	4.2.3 Module Contents
	4.2.4 Regular Expression Objects
	4.2.5 Match Objects

	4.3 regex --- Regular expression search and match operations.
	4.3.1 Regular Expressions
	4.3.2 Module Contents

	4.4 regsub --- String operations using regular expressions
	4.5 struct --- Interpret strings as packed binary data.
	4.6 fpformat --- Floating point conversions
	4.7 StringIO --- Read and write strings as files
	4.8 cStringIO --- Faster version of StringIO

	5 Miscellaneous Services
	5.1 math --- Mathematical functions
	5.2 cmath --- Mathematical functions for complex numbers
	5.3 random --- Generate pseudo-random numbers
	5.3.1 The Random Number Generator Interface

	5.4 whrandom --- Pseudo-random number generator
	5.5 bisect --- Array bisection algorithm
	5.5.1 Example

	5.6 array --- Efficient arrays of numeric values
	5.7 ConfigParser --- Configuration file parser
	5.7.1 ConfigParser Objects

	5.8 fileinput --- Iterate over lines from multiple input streams
	5.9 calendar --- General calendar-related functions
	5.10 cmd --- Build line-oriented command interpreters.
	5.10.1 Cmd Objects

	5.11 shlex --- Simple lexical analysis
	5.11.1 shlex Objects

	6 Generic Operating System Services
	6.1 os --- Miscellaneous OS interfaces
	6.1.1 Process Parameters
	6.1.2 File Object Creation
	6.1.3 File Descriptor Operations
	6.1.4 Files and Directories
	6.1.5 Process Management
	6.1.6 Miscellanenous System Data

	6.2 os.path --- Common pathname manipulations
	6.3 dircache --- Cached directory listings
	6.4 stat --- Interpreting stat() results
	6.5 statcache --- An optimization of os.stat()
	6.6 statvfs --- Constants used with os.statvfs()
	6.7 cmp --- File comparisons
	6.8 cmpcache --- Efficient file comparisons
	6.9 time --- Time access and conversions
	6.10 sched --- Event scheduler
	6.10.1 Scheduler Objects

	6.11 getpass --- Portable password input
	6.12 curses --- Terminal independant console handling
	6.12.1 Constants and Functions
	6.12.2 Window Objects

	6.13 getopt --- Parser for command line options.
	6.14 tempfile --- Generate temporary file names
	6.15 errno --- Standard errno system symbols.
	6.16 glob --- Unix style pathname pattern expansion
	6.17 fnmatch --- Unix filename pattern matching
	6.18 shutil --- High-level file operations
	6.18.1 Example

	6.19 locale --- Internationalization services
	6.19.1 Background, details, hints, tips and caveats
	6.19.2 For extension writers and programs that embed Python

	6.20 mutex --- Mutual exclusion support
	6.20.1 Mutex Objects

	7 Optional Operating System Services
	7.1 signal --- Set handlers for asynchronous events.
	7.1.1 Example

	7.2 socket --- Low-level networking interface
	7.2.1 Socket Objects
	7.2.2 Example

	7.3 select --- Waiting for I/O completion
	7.4 thread --- Multiple threads of control
	7.5 threading --- Higher-level threading interface
	7.5.1 Lock Objects
	7.5.2 RLock Objects
	7.5.3 Condition Objects
	7.5.4 Semaphore Objects
	7.5.5 Event Objects
	7.5.6 Thread Objects

	7.6 Queue --- A synchronized queue class.
	7.6.1 Queue Objects

	7.7 anydbm --- Generic access to DBM-style databases
	7.8 dumbdbm --- Portable DBM implementation
	7.9 dbhash --- DBM-style interface to the BSD database library
	7.9.1 Database Objects

	7.10 whichdb --- Guess which DBM module created a database
	7.11 bsddb --- Interface to Berkeley DB library
	7.11.1 Hash, BTree and Record Objects

	7.12 zlib --- Compression compatible with gzip
	7.13 gzip --- Support for gzip files
	7.14 rlcompleter --- Completion function for readline
	7.14.1 Completer Objects

	8 Unix Specific Services
	8.1 posix --- The most common POSIX system calls
	8.1.1 Large File Support
	8.1.2 Module Contents

	8.2 pwd --- The password database
	8.3 grp --- The group database
	8.4 crypt --- Function to check Unix passwords
	8.5 dl --- Call C functions in shared objects
	8.5.1 Dl Objects

	8.6 dbm --- Simple ``database'' interface
	8.7 gdbm --- GNU's reinterpretation of dbm
	8.8 termios --- POSIX style tty control
	8.8.1 Example

	8.9 TERMIOS --- Constants used with the termios module
	8.10 tty --- Terminal control functions
	8.11 pty --- Pseudo-terminal utilities
	8.12 fcntl --- The fcntl() and ioctl() system calls
	8.13 pipes --- Interface to shell pipelines
	8.13.1 Template Objects

	8.14 posixfile --- File-like objects with locking support
	8.15 resource --- Resource usage information
	8.15.1 Resource Limits
	8.15.2 Resource Usage

	8.16 nis --- Interface to Sun's NIS (Yellow Pages)
	8.17 syslog --- Unix syslog library routines
	8.18 popen2 --- Subprocesses with accessible I/O streams
	8.18.1 Popen3 Objects

	8.19 commands --- Utilities for running commands

	9 The Python Debugger
	9.1 Debugger Commands
	9.2 How It Works

	10 The Python Profiler
	10.1 Introduction to the profiler
	10.2 How Is This Profiler Different From The Old Profiler?
	10.3 Instant Users Manual
	10.4 What Is Deterministic Profiling?
	10.5 Reference Manual
	10.5.1 The Stats Class

	10.6 Limitations
	10.7 Calibration
	10.8 Extensions --- Deriving Better Profilers
	10.8.1 OldProfile Class
	10.8.2 HotProfile Class

	11 Internet Protocols and Support
	11.1 cgi --- Common Gateway Interface support.
	11.1.1 Introduction
	11.1.2 Using the cgi module
	11.1.3 Old classes
	11.1.4 Functions
	11.1.5 Caring about security
	11.1.6 Installing your CGI script on a Unix system
	11.1.7 Testing your CGI script
	11.1.8 Debugging CGI scripts
	11.1.9 Common problems and solutions

	11.2 urllib --- Open an arbitrary resource by URL
	11.2.1 URLopener Objects
	11.2.2 Examples

	11.3 httplib --- HTTP protocol client
	11.3.1 HTTP Objects
	11.3.2 Example

	11.4 ftplib --- FTP protocol client
	11.4.1 FTP Objects

	11.5 gopherlib --- Gopher protocol client
	11.6 poplib --- POP3 protocol client
	11.6.1 POP3 Objects
	11.6.2 POP3 Example

	11.7 imaplib --- IMAP4 protocol client
	11.7.1 IMAP4 Objects
	11.7.2 IMAP4 Example

	11.8 nntplib --- NNTP protocol client
	11.8.1 NNTP Objects

	11.9 smtplib --- SMTP protocol client
	11.9.1 SMTP Objects
	11.9.2 SMTP Example

	11.10 telnetlib --- Telnet client
	11.10.1 Telnet Objects
	11.10.2 Telnet Example

	11.11 urlparse --- Parse URLs into components.
	11.12 SocketServer --- A framework for network servers.
	11.13 BaseHTTPServer --- Basic HTTP server.
	11.14 SimpleHTTPServer --- A Do-Something Request Handler
	11.15 CGIHTTPServer --- A Do-Something Request Handler
	11.16 asyncore --- Asynchronous socket handler
	11.16.1 Example basic HTTP client

	12 Internet Data Handling
	12.1 sgmllib --- Simple SGML parser
	12.2 htmllib --- A parser for HTML documents
	12.2.1 HTMLParser Objects

	12.3 htmlentitydefs --- Definitions of HTML general entities
	12.4 xmllib --- A parser for XML documents
	12.4.1 XML Namespaces

	12.5 formatter --- Generic output formatting
	12.5.1 The Formatter Interface
	12.5.2 Formatter Implementations
	12.5.3 The Writer Interface
	12.5.4 Writer Implementations

	12.6 rfc822 --- Parse RFC 822 mail headers
	12.6.1 Message Objects
	12.6.2 AddressList Objects

	12.7 mimetools --- Tools for parsing MIME messages
	12.7.1 Additional Methods of Message objects

	12.8 MimeWriter --- Generic MIME file writer
	12.8.1 MimeWriter Objects

	12.9 multifile --- Support for files containing distinct parts
	12.9.1 MultiFile Objects
	12.9.2 MultiFile Example

	12.10 binhex --- Encode and decode binhex4 files
	12.10.1 Notes

	12.11 uu --- Encode and decode uuencode files
	12.12 binascii --- Convert between binary and ascii
	12.13 xdrlib --- Encode and decode XDR data.
	12.13.1 Packer Objects
	12.13.2 Unpacker Objects
	12.13.3 Exceptions

	12.14 mailcap --- Mailcap file handling.
	12.15 mimetypes --- Map filenames to MIME types
	12.16 base64 --- Encode and decode MIME base64 data
	12.17 quopri --- Encode and decode MIME quoted-printable data
	12.18 mailbox --- Read various mailbox formats
	12.18.1 Mailbox Objects

	12.19 mhlib --- Access to MH mailboxes
	12.19.1 MH Objects
	12.19.2 Folder Objects
	12.19.3 Message Objects

	12.20 mimify --- MIME processing of mail messages
	12.21 netrc --- netrc file processing
	12.21.1 netrc Objects

	13 Restricted Execution
	13.1 rexec --- Restricted execution framework
	13.1.1 An example

	13.2 Bastion --- Restricting access to objects

	14 Multimedia Services
	14.1 audioop --- Manipulate raw audio data
	14.2 imageop --- Manipulate raw image data
	14.3 aifc --- Read and write AIFF and AIFC files
	14.4 sunau --- Read and write Sun AU files
	14.4.1 AUprotect unhbox voidb@x kern .06emvbox {hrule width.55em}read Objects
	14.4.2 AUprotect unhbox voidb@x kern .06emvbox {hrule width.55em}write Objects

	14.5 wave --- Read and write WAV files
	14.5.1 Waveprotect unhbox voidb@x kern .06emvbox {hrule width.55em}read Objects
	14.5.2 Waveprotect unhbox voidb@x kern .06emvbox {hrule width.55em}write Objects

	14.6 chunk --- Read IFF chunked data
	14.7 colorsys --- Conversions between color systems
	14.8 rgbimg --- Read and write ``SGI RGB'' files
	14.9 imghdr --- Determine the type of an image.
	14.10 sndhdr --- Determine type of sound file.

	15 Cryptographic Services
	15.1 md5 --- MD5 message digest algorithm
	15.2 sha --- SHA message digest algorithm
	15.3 mpz --- GNU arbitrary magnitude integers
	15.4 rotor --- Enigma-like encryption and decryption.

	16 SGI IRIX Specific Services
	16.1 al --- Audio functions on the SGI
	16.1.1 Configuration Objects
	16.1.2 Port Objects

	16.2 AL --- Constants used with the al module
	16.3 cd --- CD-ROM access on SGI systems
	16.3.1 Player Objects
	16.3.2 Parser Objects

	16.4 fl --- FORMS library interface for GUI applications
	16.4.1 Functions Defined in Module fl
	16.4.2 Form Objects
	16.4.3 FORMS Objects

	16.5 FL --- Constants used with the fl module
	16.6 flp --- Functions for loading stored FORMS designs
	16.7 fm --- Font Manager interface
	16.8 gl --- Graphics Library interface
	16.9 DEVICE --- Constants used with the gl module
	16.10 GL --- Constants used with the gl module
	16.11 imgfile --- Support for SGI imglib files
	16.12 jpeg --- Read and write JPEG files

	17 SunOS Specific Services
	17.1 sunaudiodev --- Access to Sun audio hardware
	17.1.1 Audio Device Objects

	17.2 SUNAUDIODEV --- Constants used with sunaudiodev

	18 MS Windows Specific Services
	18.1 msvcrt -- Useful routines from the MS VC++ runtime
	18.1.1 File Operations
	18.1.2 Console I/O
	18.1.3 Other Functions

	18.2 winsound --- Sound-playing interface for Windows

	19 Undocumented Modules
	19.1 Frameworks
	19.2 Miscellaneous useful utilities
	19.3 Platform specific modules
	19.4 Multimedia
	19.5 Obsolete
	19.6 Extension modules

	Module Index
	Index

