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1 Basic Ideas

Yorick is an interpreted programming language. With Yorick you can read input (usually
lists of numbers) from virtually any text or binary file, process it, and write the results back
to another file. You can also plot results on your screen.

Yorick expression and flow control syntax is similar to the C programming language, but
the Yorick language lacks declaration statements. Also, Yorick array index syntax more
closely resembles Fortran than C.

1.1 Simple Statements

An interpreter immediately executes each line you type. Most Yorick input lines define
a variable, invoke a procedure, or print the value of an expression.

1.1.1 Defining a variable

The following five Yorick statements define the five variables c, m, E, theta, and file:
c = 3.00e10; m = 9.11e-28
E = m*c^2
theta = span(0, 6*pi, 200)
file = create("damped.txt")

Variable names are case sensitive, so E is not the same variable as e. A variable name
must begin with a letter of the alphabet (either upper or lower case) or with an underscore
(_); subsequent characters may additionally include digits.

A semicolon terminates a Yorick statement, so the first line contains two statements.
To make Yorick statements easier to type, you don’t need to put a semicolon at the end of
most lines. However, if you are composing a Yorick program in a text file (as opposed to
typing directly to Yorick itself, a semicolon at the end of every line reduces the chances of
a misinterpretation, and makes your program easier to read.

Conversely, a new line need not represent the end of a statement. If the line is incomplete,
the statement automatically continues on the following line. Hence, the second and third
lines above could have been typed as:

E=
m *
c^2

theta= span(0, 6*pi,
200)

In the second line, * and ^ represent multiplication and raising to a power. The other
common arithmetic operators are +, -, / (division), and % (remainder or modulo). The
rules for forming arithmetic expressions with these operators and parentheses are the same
in Yorick as in Fortran or C (but note that ^ does not mean raise to a power in C, and
Fortran uses the symbol ** for that operation).



2 Yorick

The span function returns 200 equally spaced values beginning with 0 and ending with
6*pi. The variable pi is predefined as 3.14159...

The create function returns an object representing the new file. The variable file

specifies where output functions should write their data. Besides numbers like c, m, and E,
or arrays of numbers like theta, or files like file, Yorick variables may represent several
other sorts of objects, taken up in later chapters.

The = operator is itself a binary operator, which has the side effect of redefining its left
operand. It associates from right to left, that is, the rightmost = operation is performed first
(all other binary operators except ^ associate from left to right). Hence, several variables
may be set to a single value with a single statement:

psi = phi = theta = span(0, 6*pi, 200)

When you define a variable, Yorick forgets any previous value and data type:
phi = create("junk.txt")

1.1.2 Invoking a procedure

A Yorick function which has side effects may sensibly be invoked as a procedure, dis-
carding the value returned by the function, if any:

plg, sin(theta)*exp(-theta/6), theta
write, file, theta, sin(theta)*exp(-theta/6)
close, file

The plg function plots a graph on your screen — in this case, three cycles of a damped
sine wave. The graph is made by connecting 200 closely spaced points by straight lines.

The write function writes a two column, 200 line table of values of the same damped
sine wave to the file ‘damped.txt’. Then close closes the file, making it unavailable for
any further write operations.

A line which ends with a comma will be continued, to allow procedures with long argu-
ment lists. For example, the write statement could have been written:

write, file, theta,
sin(theta)*exp(-theta/6)

A procedure may be invoked with zero arguments; several graphics functions are often
used in this way:

hcp
fma

The hcp function writes the current graphics window contents to a “hardcopy file” for
later retrieval or printing. The fma function stands for “frame advance” — subsequent
plotting commands will draw on a fresh page. Normally, plotting commands such as plg

draw on top of whatever has been drawn since the previous fma.

1.1.3 Printing an expression

An unadorned expression is also a legal Yorick statement; Yorick prints its value. In the
preceding examples, only the characters you would type have been shown; to exhibit the
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print function and its output, I need to show you what your screen would look like — not
only what you type, but what Yorick prints. To begin with, Yorick prompts you for input
with a > followed by a space (see Section 1.3.5 [Prompts], page 18). In the examples in this
section, therefore, the lines which begin with > are what you typed; the other line(s) are
Yorick’s responses.

> E
8.199e-07
> print, E
8.199e-07
> m;c;m*c^2
9.11e-28
3.e+10
8.199e-07
> span(0,2,5)
[0,0.5,1,1.5,2]
> max(sin(theta)*exp(-theta/6))
0.780288

In the span example, notice that an array is printed as a comma delimited list enclosed
in square brackets. This is also a legal syntax for an array in a Yorick statement. For
numeric data, the print function always displays its output in a format which would be
legal in a Yorick statement; you must use the write function if you want “prettier” output.
Beware of typing an expression or variable name which is a large array; it is easy to generate
lots of output (you can interrupt Yorick by typing control-c if you do this accidentally, see
Section 1.3.1 [Starting], page 13).

Most non-numeric objects print some useful descriptive information; for example, before
it was closed, the file variable above would have printed:

> file
write-only text stream at:
LINE: 201 FILE: /home/icf/munro/damped.txt

As you may have noticed, printing a variable and invoking a procedure with no arguments
are syntactically indistinguishable. Yorick decides which operation is appropriate at run
time. Thus, if file had been a function, the previous input line would have invoked the
file function; as it was not a function, Yorick printed the file variable. Only an explicit
use of the print function will print a function:

> print, fma
builtin fma()

1.2 Flow Control Statements

Almost everything you type at Yorick during an interactive session will be one of the
simple Yorick statements described in the previous section – defining variables, invoking
procedures, and printing expressions. However, in order to actually use Yorick you need
to write your own functions and procedures. You can do this by typing Yorick statements
at the keyboard, but you should usually put function definitions in a text file. Suggestions
for how to organize such “include” files will be the topic of the next section. This section
introduces the Yorick statements which define functions, conditionals, and loops.
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1.2.1 Defining a function

Consider a damped sine wave. It describes the time evolution of an oscillator, such as
a weight on a spring, which bobs up and down for a while after you whack it. The basic
shape of the wave is determined by the Q of the oscillator; a high Q means there is little
friction, and the weight will continue bobbing for many cycles, while a low Q means a lot
of friction and few cycles. The amplitude of the oscillation is therefore a function of two
parameters – the phase (time in units of the natural period of the oscillator), and the Q:

func damped_wave(phase, Q)
{
nu = 0.5/Q;
omega = sqrt(1.-nu*nu);
return sin(omega*phase)*exp(-nu*phase);

}

Within a function body, I terminate every Yorick statement with a semicolon (see Sec-
tion 1.1.1 [Define variable], page 1).

The variables phase and Q are called the parameters of the function. They and the
variables nu and omega defined in the first two lines of the function body are local to the
function. That is, calling damped_wave will not change the values of any variables named
phase, Q, nu, or omega in the calling environment.

In fact, the only effect of calling damped_wave is to return its result, which is accom-
plished by the return statement in the third line of the body. That is, calling damped_wave

has no side effects. You can use damped_wave in expressions like this:

> damped_wave(1.5, 3)
0.775523
> damped_wave([.5,1,1.5,2,2.5], 3)
[0.435436,0.705823,0.775523,0.659625,0.41276]
> q5 = damped_wave(theta,5)
> fma; plg, damped_wave(theta,3), theta
> plg, damped_wave(theta,1), theta

The last two lines graphically compare Q=3 oscillations to Q=1 oscillations.

Notice that the arguments to damped_wave may be arrays. In this case the result will
be the array of results for each element of input; hence q5 will be an array of 200 numbers.
Nor is Yorick confused by the fact that the phase argument (theta) is an array, while the Q

argument (5) is a scalar. The precise rules for “conformability” between two arrays will be
described later (see Section 2.6 [Broadcasting], page 36); usually you get what you expected.

In this case, as Yorick evaluates damped_wave, nu and omega will both be scalars, since
Q is a scalar. On the other hand, omega*phase and nu*phase become arrays, since phase

is an array. Whenever an operand is an array, an arithmetic operation produces an array
as its result.

1.2.2 Defining Procedures
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Any Yorick function may be invoked as a procedure; the return value is simply discarded.
Calling damped_wave as a procedure would be pointless, since it has no side effects. The
converse case is a function to be called only for its side effects. Such a function need not
have an explicit return statement:

func q_out(Q, file_name)
{

file = create(file_name);
write, file, "Q = "+pr1(Q);
write, file, " theta amplitude";
write, file, theta, damped_wave(theta,Q);

}

The pr1 function (for “print one value”) returns a string representation of its numeric
argument, and the + operator between two strings concatenates them.

You would invoke q_out with the line:
q_out, 3, "q.out"

Besides lacking an explicit return statement, the q_out function has two other pecu-
liarities worth mentioning:

First, the variable theta is never defined. But neither are the functions create and
write. Any symbol not defined within a function is external to the function. As already
noted, parameters and variables defined within the function are local to the function. Here,
theta is the 200 element array of phase angles defined before q out was called. You can
change theta (both its dimensions and its values) before the next call to q_out; that is, an
external reference may change between calls to a function that uses it.

Second, file is never explicitly closed. When a function returns, its local variables (such
as file) disappear; when a file object disappears, the associated file automatically closes.

1.2.3 Conditional Execution

The design of the q_out function can be improved. As written, each output file will
contain only a single wave. You might want the option of writing several waves into a single
file. Consider this alternative:

func q_out(Q, file)
{

if (structof(file)==string) file = create(file);
write, file, "Q = "+pr1(Q);
write, file, " theta amplitude";
write, file, theta, damped_wave(theta,Q);
return file;

}

The if statement executes its body (the redefinition of file) if and only if its condition
(structof(file)==string) is true. Any scalar number may serve as a condition – a non-
zero value is “true”, and the value zero is “false”.

The structof() function returns the data type object when its argument is an array,
and nil ([]) otherwise. In particular, if file is a text string (like "q.out"), structof
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returns string, which is the data type of strings. The binary operator == (as distinguished
from assignment =) tests for equality, returning “true” or “false”. Note that the test works
even for non-numeric objects, like the data type string.

Hence, if the file argument is a string, the new q_out presumes it is the name of a file,
which it creates, redefining file as the associated file object. Thus, after the first line of
the function body, file will be a file object, even if a file name was passed into the function.
Furthermore, since the parameter file is local to q_out, none of this hocus pocus will have
any effect outside q_out.

The second trick in the new q_out is the reappearance of a return statement. The
original calling sequence:

q_out, 3, "q.out"

has the same result as before – the if condition is true, so the file is created, then the wave
data is written. This time the file object is returned, only to be discarded because q_out

was invoked as a procedure. When the file object disappears, the file closes. But if q_out
were invoked as a function, the file object can be saved, which keeps the file open:

f = q_out(3,"q.out")
q_out,2,f
q_out,1,f
close,f

Now the file ‘q.out’ contains the Q=3 wave, followed by the Q=2 and Q=1 waves. In
the second and third calls to q_out, the file parameter is already a file object, so the if

condition is false, and create is not called. Notice that the file does not close when the
return value from the second (or third) call is discarded; the variable f refers to the same
file object as the discarded return value. Without an explicit call to close, a file only closes
when the final reference to it disappears.

1.2.3.1 General if and else constructs

The most general form of the if statement is:

if (condition) statement_if_true;
else statement_if_false;

When you need to choose among several alternatives, make the else clause itself an if

statement:

if (condition_1) statement_if_1;
else if (condition_2) statement_if_2;
else if (condition_3) statement_if_3;
...
else statement_if_none;

The final else is always optional – if it is not present, nothing at all happens if none of
the conditions is satisfied.

Often you need to execute more than one statement conditionally. Quite generally in
Yorick, you may group several statements into a single compound statement by means of
curly braces:
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{ statement_1; statement_2; statement_3; statement_4; }

Ordinarily, both curly braces and each of the statements should be written on a separate
line, with the statements indented to make their membership in the compound more obvious.
Further, in an if-else construction, when one branch requires more than one statement, you
should write every branch as a compound statement with curly braces. Therefore, for a
four branch if in which the second if requires two statements, and the else three, write
this:

if (condition_1) {
statement_if_1;

} else if (condition_2) {
statement_if_2_A;
statement_if_2_B;

} else if (condition_3) {
statement_if_3;

} else {
statement_if_none_A;
statement_if_none_B;
statement_if_none_C;

}

The else statement has a very unusual syntax: It is the only statement in Yorick which
depends on the form of the previous statement; an else must follow an if. Because Yorick
statements outside functions (and compound statements) are executed immediately, you
must be very careful using else in such a situation. If the if has already been executed
(as it would be in the examples without curly braces), the following else leads to a syntax
error!

The best way to avoid this puzzling problem is to always use the curly brace syntax of
the latest example when you use else outside a function. (You don’t often need it in such
a context anyway.)

1.2.3.2 Combining conditions with && and ||

The logical operators && (“and”) and || (“or”) combine conditional expressions; the !

(“not”) operator negates them. The ! has the highest precedence, then &&, then ||; you
will need parentheses to force a different order.

(Beware of the bitwise “and” and “or” operators & and | – these should never be used
to combine conditions; they are for set-and-mask bit fiddling.)

The operators for comparing numeric values are == (equal), != (not equal), > (greater),
< (less), >= (greater or equal), and <= (less or equal). These all have higher precedence than
&&, but lower than ! or any arithmetic operators.

if ((a<b && x>a && x<b) || (a>b && x<a && x>b))
write, "x is between a and b"

Here, the expression for the right operand to && will execute only if its left operand is
actually true. Similarly, the right operand to || executes only if its left proves false. There-
fore, it is important to order the operands of && and || to put the most computationally
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expensive expression on the right — even though the logical “and” and “or” functions are
commutative, the order of the operands to && and || can be critical.

In the example, if a>b, the x>a and x<b subexpressions will not actually execute since
a<b proved false. Since the left operand to || was false, its right operand will be evaluated.

Despite the cleverness of the && and || operators in not executing the expression for their
right operands unless absolutely necessary, the example has obvious inefficiencies: First, if
a>=b, then both a<b and a>b are checked. Second, if a<b, but x is not between a and b, the
right operand to || is evaluated anyway. Yorick has a ternary operator to avoid this type
of inefficiency:

expr_A_or_B= (condition? expr_A_if_true : expr_B_if_false);

The ?: operator evaluates the middle expression if the condition is true, the right ex-
pression otherwise. Is that so? Yes : No. The efficient betweeness test reads:

if (a<b? (x>a && x<b) : (x<a && x>b))
write, "x is between a and b";

1.2.4 Loops

Most loops in Yorick programs are implicit; remember that operations between array
arguments produce array results. Whenever you write a Yorick program, you should be
suspicious of all explicit loops. Always ask yourself whether a clever use of array syntax
could have avoided the loop.

To illustrate an appropriate Yorick loop, let’s revise q_out to write several values of Q in
a single call. Incidentally, this sort of incremental revision of a function is very common in
Yorick program development. As you use a function, you notice that the surrounding code
is often the same, suggesting a savings if it were incorporated into the function. Again, a
careful job leaves all of the previous behavior of q_out intact:

func q_out(Q, file)
{
if (structof(file)==string) file = create(file);
n = numberof(Q);
for (i=1 ; i<=n ; ++i) {

write, file, "Q = "+pr1(Q(i));
write, file, " theta amplitude";
write, file, theta, damped_wave(theta,Q(i));

}
return file;

}

Two new features here are the numberof function, which returns the length of the array
Q, and the array indexing syntax Q(i), which extracts the i-th element of the array Q. If Q
is scalar (as it had to be before this latest revision), numberof returns 1, and Q(1) is the
same as Q, so scalar Q works as before.

But the most important new feature is the for loop. It says to initialize i to 1, then, as
long as i remains less than or equal to n, to execute the loop body, which is a compound of
three write statements. Finally, after each pass, the increment expression ++i is executed
before the i<=n condition is evaluated. ++i is equivalent to i=i+1; --i means i=i-1.
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A loop body may also be a single statement, in which case the curly braces are unecessary.
For example, the following lines will write the Q=3, Q=2, and Q=1 curves to the file ‘q.out’,
then plot them:

q_list = [3,2,1]
q_out, q_list, "q.out"
fma; for(i=1;i<=3;++i) plg, damped_wave(theta,q_list(i)), theta

A for loop with a plg body is the easiest way to overlay a series of curves. After the
three simple statement types, for statements see the most frequent direct use from the
keyboard.

1.2.4.1 The while and do while statements

The while loop is simpler than the for loop:
while (condition) body_statement

The body_statement — very oten a compound statement enclosed in curly braces —
executes over and over until the condition becomes false. If the condition is false to begin
with, body_statement never executes.

Occasionally, you want the body_statement to execute and set the condition before it
is tested for the first time. In this case, use the do while statement:

do {
body_statement_A;
body_statement_B;
...etc...

} while (condition);

1.2.4.2 The for statement

The for statement is a “packaged” form of a while loop. The meaning of this generic
for statement is the same as the following while:

for (start_statements ; condition ; step_statements) body_statements

start_statments
while (condition) {
body_statements
step_statements

}

There only two reasons to prefer for over while: Most importantly, for can show “up
front” how a loop index is initialized and incremented, rather than relegating the increment
operation (step_statements) to the end of the loop. Secondly, the continue statement
(see Section 1.2.4.3 [goto], page 10) branches just past the body of the loop, which would
include the step_statements in a while loop, but not in a for loop.

In order to make Yorick loop syntax agree with C, Yorick’s for statement has a syntactic
irregularity: If the start_statements and step_statements consist of more than one
statement, then commas (not semicolons) separate the statements. (The C comma operator
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is not available in any other context in Yorick.) The two semicolons separate the start,
condition, and step clauses and must always be present, but any or all of the three clauses
themselves may be blank. For example, in order to increment two variables i and j, a loop
might look like this:

for (i=1000, j=1 ; i>j ; i+=1000, j*=2);

This example also illustrates that the body_statements may be omitted; the point of
this loop is merely to compute the first i and j for which the condition is not satisfied. The
trailing semicolon is necessary in this case, since otherwise the line would be continued (on
the assumption that the loop body was to follow).

The += and *= are special forms of the = operator; i=i+1000 and j=j*2 mean the same
thing. Any binary operator may be used in this short-hand form in order to increment a
variable. Like ++i and --i, these are particularly useful in loop increment expressions.

1.2.4.3 Using break, continue, and goto

The break statement jumps out of the loop containing it. The continue statement
jumps to the end of the loop body, “continuing” with the next pass through the loop (if
any). In deeply nested loops — which are extremely rare in Yorick programs — you can
jump to more general places using the goto statement. For example, here is how to break
out or continue from one or both levels of a doubly nested loop:

for (i=1 ; i<=n ; ++i) {
for (j=1 ; j<=m ; ++j) {
if (skip_to_next_j_now) continue;
if (skip_to_next_i_now) goto skip_i;
if (break_out_of_inner_loop_now) break;
if (break_out_of_both_loops_now) goto done;
more_statements_A;

}
more_statements_B;
skip_i:

}
done:
more_statements_C;

The continue jumps just after more_statements_A, the break just before more_statements_B.
Break and continue statements may be used to escape from while or do while loops as

well.
If while tests the condition before the loop body, and do while checks after the loop

body, you may have wondered what to do when you need to check the condition in the
middle of the loop body. The answer is the “do forever” construction, plus the break

statement (note the inversion of the sense of the condition):
for (;;) {

body_before_test;
if (!condition) break;
body_after_test;

}
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1.2.5 Variable scope

By default, dummy parameters and variables which are defined in a function body before
any other use are local variables. Variables (or functions) used before their definition are
external variables (see Section 1.2.2 [Define procedure], page 5, see Section 1.2.1 [Define
function], page 4). A variable (or function) defined outside of all functions is just that —
external to all functions and local to none.

Whenever a function is called, Yorick remembers the external values of all its local
variables, then replaces them by their local values. Thus, all of its local variables are
potentially “visible” as external variables to any function it calls. When it returns, the
function replaces all its local variables by the values it remembered. Neither that function,
nor any function it calls can affect these remembered values; Yorick provides no means of
“unmasking” a local variable.

The default rule for determining whether a variable should have local or external scope
fails in two cases: First, you may want to redefine an external variable without looking at
its value. Second, a few procedures set the values of their parameters when they return; it
may appear to Yorick’s parser that such a variable has been used without being defined,
even though you intend it to be local to the function. The extern and local statements
solve these two problems, respectively.

1.2.5.1 extern statements

Suppose you want to write a function which sets the value of the theta array used by
all the variants of the q_out function:

func q_out_domain(start, stop, n)
{
extern theta;
theta = span(start, stop, n);

}

Without the extern statement, theta will be a local variable, whose external value
is restored when q_out_domain returns (thus, the function would be a no-op). With the
extern statement, q_out_domain has the intended side effect of setting the value of theta.
The new theta would be used by subsequent calls to q_out.

Any number of variables may appear in a single extern statement:
extern var1, var2, var3, var4;

1.2.5.2 local statements

The save and restore functions store and retrieve Yorick variables in self-descriptive
binary files (called PDB files). To create a binary file ‘demo.pdb’, save the variables theta,
E, m, and c in it, then close the file:

f = createb("demo.pdb")
save, f, theta, E, m, c
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close, f

To open this file and read back the theta variable:

restore, openb("demo.pdb"), theta, c

For symmetry with save, the restore function has the unusual property that it redefines
its parameters (except the first). Thus, theta is redefined by this restore statement, just
as it would have been by a theta= statement. The Yorick parser does not understand this,
which means that you must be careful when you place such a function call inside a function:

func q_out_file(infile, Q, outfile)
{

if (!is_stream(infile)) infile = openb(infile);
local theta;
restore, infile, theta;
return q_out(Q, outfile);

}

This variant of q_out uses the theta variable read from infile, instead of an external
value of theta. Without the local declaration, restore would clobber the external value
of theta. This way, when q_out_file calls q_out, it has remembered the external value
of theta, but q_out “sees” the value of theta restored from infile. When q_out_file

finally returns, it replaces the original value of theta intact.

Any number of variables may appear in a single local statement:

local var1, var2, var3, var4;

1.3 The Interpreted Environment

The Yorick program accepts only complete input lines typed at your keyboard. Typing
a command to Yorick presumes a “command line interface” or a “terminal emulator” which
is not a part of Yorick. I designed Yorick on the assumption that you have a good terminal
emulator program. In particular, Yorick is much easier to use if you can recall and edit
previous input lines; as in music, repitition with variations is at the heart of programming.
My personal recommendation is shell-mode in GNU Emacs.

Therefore, Yorick inherits most of its “look and feel” from your terminal emulator.
Yorick’s distinctive prompts and error messages are described later in this section.

Any significant Yorick program will be stored in a text file, called an include file, after
the command which reads it. Use your favorite text editor to create and modify your include
files. Again, GNU Emacs is my favorite — use its c-mode to edit Yorick include files as well
as C programs. Just as C source file names should end in ‘.c’ or ‘.h’, and Fortran source
file names should end in ‘.f’, so Yorick include file names should end in ‘.i’.

This section begins with additional stylistic suggestions concerning include files. In
particular, Yorick’s help command can find documentation comments in your include files
if you format them properly. All of the built-in Yorick functions, such as sin, write, or
plg, come equipped with such comments.
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1.3.1 Starting, stopping, and interrupting Yorick

Start Yorick by typing its name to your terminal emulator. When you are done, use the
quit function to exit gracefully:

% yorick
Yorick ready. For help type ’help’.
> quit
%

You can interrupt Yorick at any time by typing Control-C; this causes an immediate
runtime error (see Section 1.3.7 [Errors], page 19). (Your terminal emulator and operating
system must be able to send Yorick a SIGINT signal in order for this to work. On UNIX
systems, you can set this character using the intr option of the stty command; Control-C
is the usual setting.)

1.3.2 Include files

When you run Yorick in a window or Emacs environment, keep a window containing the
include file you are writing, in addition to the window where Yorick is running. When you
want to test the latest changes to your include file — let’s call it ‘damped.i’ — save the
file, then move to your Yorick window and type:

#include "damped.i"

The special character # reminds you that the include directive is not a Yorick statement,
like all other inputs to Yorick. Instead, #include directs Yorick to switch its input stream
from the keyboard to the quoted file. Yorick then treats each line of the file exactly as if it
were a line you had typed at the keyboard (including, of course, additional #include lines).
When there are no more lines in the file, the input stream switches back to the keyboard.

While you are debugging an include file, you will ordinarily include it over and over
again, until you get it right. This does no harm, since any functions or variables defined in
the file will be replaced by their new definitions the next time you include the file, just as
they would if you typed new definitions.

Ideally, your include files should consist of a series of function definitions and variable
initializations. If you follow this discipline, you can regard each include file as a library
of functions. You type #include once in order to load this library, making the functions
defined there available, just like Yorick’s built in functions. Many such libraries come with
Yorick — Bessel functions, cubic spline interpolators, and other goodies.

1.3.2.1 A sample include file

Here is ‘damped.i’, which defines the damped sine wave functions we’ve been designing
in this chapter:

/* damped.i */

local damped;
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/* DOCUMENT damped.i --- compute and output damped sine waves
SEE ALSO: damped_wave, q_out

*/

func damped_wave(phase, Q)
/* DOCUMENT damped_wave(phase, Q)

returns a damped sine wave evaluated at PHASE, for quality factor Q.
(High Q means little damping.) The PHASE is 2*pi after one period of
the natural frequency of the oscillator. PHASE and Q must be
conformable arrays.

SEE ALSO: q_out
*/
{
nu = 0.5/Q;
omega = sqrt(1.-nu*nu);
return sin(omega*phase)*exp(-nu*phase); /* always zero at phase==0 */

}

func q_out(Q, file)
/* DOCUMENT q_out, Q, file

or q_out(Q, file)
Write the damped sine wave of quality factor Q to the FILE.
FILE may be either a filename, to create the file, or a file
object returned by an earlier create or q_out operation. If
q_out is invoked as a function, it returns the file object.

The external variable
theta

determines the phase points at which the damped sine wave is
evaluated; q_out will write two header lines, followed by
two columns, with one line for each element of the theta
array. The first column is theta; the second is
damped_wave(theta, Q).

If Q is an array, the two header lines and two columns will
be repeated for each element of Q.

SEE ALSO: damped_wave
*/
{
if (structof(file)==string) file = create(file);
n = numberof(Q);
for (i=1 ; i<=n ; ++i) { /* loop on elements of Q */

write, file, "Q = "+pr1(Q(i));
write, file, " theta amplitude";
write, file, theta, damped_wave(theta,Q(i));

}
return file;
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}

You would type
#include "damped.i"

to read the Yorick statements in the file. The first thing you notice is that there are
comments — the text enclosed by /* */. If you take the trouble to save a program in an
include file, you will be wise to make notes about what it’s for and annotations of obscure
statements which might confuse you later. Writing good comments is arguably the most
difficult skill in programming. Practice it diligently.

1.3.2.2 Comments

There are two ways to insert comments into a Yorick program. These are the C style /*

... */ and the C++ style //:
// C++ style comments begin with // (anywhere on a line)
// and end at the end of that line.

E = m*c^2; /* C style comments begin with slash-star, and
do not end until start-slash, even if that
is several lines later. */

/* C style comments need not annotate a single line.
* You should pick a comment style which makes your
* code attractive and easy to read. */

F = m*a; // Here is another C++ style comment...
divE = 4*pi*rho; /* ... and a final C style comment. */

I strongly recommend C++ style comments when you “comment out” a sequence of Yorick
statements. C style comments do not nest properly, so you can’t comment out a series of
lines which contain comments:

/*
E = m*c^2; /* ERROR -- this ends the outer comment --> */
F = m*a
*/ <-- then this causes a syntax error

The C++ style not only works correctly; it also makes it more obvious that the lines in
question are comments:

// E = m*c^2; /* Any kind of comment could go here. */
// F = m*a;

Yorick recognizes one special comment: If the first line of an include file begins with
#!, Yorick ignores that line. This allows Yorick include scripts to be executable on UNIX
systems supporting the “pound bang” convention:

#!/usr/local/bin/yorick -batch
/* If this file has execute permission, UNIX will use Yorick to
* execute it. The Yorick function get_argv can be used to accept
* command line arguments (see help, get_argv). You might want
* to use -i instead of -batch on the first line. Read the help
* on process_argv and batch for more information. */
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write, "The square root of pi is", sqrt(pi);
quit;

1.3.2.3 DOCUMENT comments

Immediately after (within a few lines of) a func, extern, or local statement (see Sec-
tion 1.2.5 [Scoping], page 11), you may put a comment which begins with the eleven char-
acters /* DOCUMENT. Although Yorick itself doesn’t pay any more attention to a DOCUMENT

comment than to any other comment, there is a function called help which does. What
Yorick does do when it sees a func, extern, or local (outside of any function body), is to
record the include file name and line number where that function or variable(s) are defined.

Later, when you ask for help on some topic, the help function asks Yorick whether it
knows the file and line number where that topic (a function or variable) was defined. If
so, it opens the file, goes to the line number, and scans forward a few lines looking for a
DOCUMENT comment. If it finds one, it prints the entire comment.

The file damped.i has three DOCUMENT comments: one for a fictitious variable called
damped, so that someone who saw the file but didn’t know the names of the functions inside
could find out, and one each for the damped_wave and q_out functions.

Near the end of most DOCUMENT comments, you will find a SEE ALSO: field which feeds the
reader the names of related functions or variables which also have DOCUMENT comments. If
you use these wisely, you can lead someone (often an older self) to all of the documentation
she needs to be able to use your package.

This low-tech form of online documentation is surprisingly effective: easy to create,
maintain, and use. As an automated step toward a more formal document, the mkdoc

function (in the Yorick library include file ‘mkdoc.i’) collects all of the DOCUMENT comments
in one or more include files, alphabetizes them, adds a table of contents, and writes them
into a file suitable for printing.

1.3.2.4 Where Yorick looks for include files

You can specify a complete path name (including directories) for the file in an #include

directive. More usually, you will use a relative path name. In that case, Yorick tries to find
the file relative to these four directories, in this order:
1. Your current working directory.
2. ‘~/Yorick’, that is, the ‘Yorick’ subdirectory of your home directory.
3. ‘Y_SITE/include’, where ‘Y_SITE’ is the directory where Yorick was installed at your

site (help will tell you where this is).
4. ‘Y_SITE/contrib’

You can use the set_path command in your ‘custom.i’ file in order to change this path,
but you should be very cautious if you do this.

The ‘~/Yorick’ directory is where you put all of the Yorick include files you frequently
use, which have not been placed in the include or contrib directories at your site. You can
also override an include file in one of these places by placing a file of the same name in your
‘~/Yorick’ directory.
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1.3.2.5 The ‘custom.i’ file

When Yorick starts, the last thing it does before prompting you is to include the file
‘custom.i’. The default ‘custom.i’ is in the ‘Y_SITE/include/custom.i’. (Yorick’s help

command will tell you the actual name of the ‘Y_SITE’ directory at your site.)
If you create the directory ‘~/Yorick’, you can place your own version of custom.i there

to override the default. Always begin by copying the default file to your directory. Then
add your customizations to the bottom of the default file. Generally, these customizations
consist of #include directives for function libraries you use heavily, plus commands like
pldefault to set up your plotting style preferences.

1.3.3 The help function

Use the help function to get online help. Yorick will parrot the associated DOCUMENT

comment to your terminal:
> #include "damped.i"
> help, damped

DOCUMENT damped.i --- compute and output damped sine waves
SEE ALSO: damped_wave, q_out

defined at: LINE: 3 FILE: /home/icf/munro/damped.i
>

Every Yorick function (including help!) has a DOCUMENT comment which describes what
it does. Most have SEE ALSO: references to related help topics, so you can navigate your
way through a series of related topics.

Whenever you want more details about a Yorick function, the first thing to do is to
see what help says about it. Note that, in addition to the DOCUMENT comment, help also
reports the full file name and line number where the function is defined. That way, if the
comment doesn’t tell you what you need to know, you can go to the file and read the
complete definition of the function.

The help for help itself, which is the default topic, is of particular interest, even to a
Yorick expert: it tells you the directory where you can find the include files for all of Yorick’s
library functions. Just type help, like it says when Yorick starts. One of the things you
will find in Yorick’s directory tree is a ‘doc’ directory, which contains not only the source
for this manual, but also alphabetized listings of all DOCUMENT comments. Read the README

file in the ‘doc’ directory.

1.3.4 The info function

If you want to know the data type and dimensions of a variable, use the info function.
Unlike help, which is intended to tell you what a thing means, info simply tells what a
thing is.

> info, theta
array(double,200)
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> info, E
array(double)

Here, double means “double precision floating point number”, which is the default data
type for any real number. The default integer data type is called long. (Both these names
come from the C language, which gives them a precise meaning.)

Notice that the scalar value E is, somewhat confusingly, called an “array”. In fact, a
scalar is a special case of an array with zero dimensions. The info function is designed to
print a Yorick expression which will create a variable of the same data type and shape as
its argument. Thus, array(double,200) in an expression would evaluate to an array of
200 real numbers, while array(double) is a real scalar (the values are always zero).

Using info on a non-numeric quantity (a file object, a function, etc.) results in the
same output as the print function. If an array of numbers might be large, try info before
print.

1.3.5 Prompts

Yorick occasionally prompts you with something other than >. The usual > prompt tells
you that Yorick is waiting for a new input line. The other prompts alert you to unusual
situations:

cont> The previous input line was not complete; Yorick is waiting for its continuation
before it does anything. Type several close brackets or control-C if you don’t
want to complete the line.

dbug> When an error occurs during the execution of a Yorick program, Yorick offers
you the choice of entering “debug mode”. In this mode, you are “inside” the
function where the error occurred. You can type any Yorick statement you
wish, but until you explicitly exit from debug mode by means of the dbexit

function, Yorick will prompt you with dbug> instead of its usual prompt. (see
Section 1.3.7.2 [Simple debugging], page 21)

quot> It is possible to continue a long string constant across multiple lines. If you
do, this will be your prompt until you type the closing ". Don’t ever do this
intentionally; use the string concatenation operator + instead, and break long
strings into pieces that will fit on a single line.

comm> For some reason, you began a comment on the previous line, and Yorick is
waiting for the */ to finish the comment. I can’t imagine why you would put
comments in what you were typing at the terminal.

1.3.6 Shell commands, removing and renaming files

Yorick has a system function which you can use to invoke operating system utilities. For
example, typing ls *.txt to a UNIX shell will list all files in your current working directory
ending with ‘.txt’. Similarly, pwd prints the name of your working directory:
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> system, "pwd"
/home/icf/munro
> system, "ls *.txt"

damped.txt junk.txt

This is so useful that there is a special escape syntax which automatically generates the
system call, so you don’t need to type the name system or all of the punctuation. The rule
is, that if the first character of a Yorick statement is $ (dollar), the remainder of that line
becomes a quoted string which is passed to the system function. Hence, you really would
have typed:

> $pwd
/home/icf/munro
> $ls *.txt

damped.txt junk.txt

Note that you cannot use ; to stack $ escaped lines — the semicolon will be passed to
system. Obviously, this syntax breaks all of the ordinary rules of Yorick’s grammar.

On UNIX systems, the system function (which calls the ANSI C standard library func-
tion of the same name) usually executes your command in a Bourne shell. If you are used
to a different shell, you might be surprised at some of the results. If you have some com-
plicated shell commands for which you need, say, the C-shell csh, just start a copy of that
shell before you issue your commands:

> $csh
% ls *.txt

damped.txt junk.txt
% exit
>

As this example shows, you can start up an interactive program with the system function.
When you exit that program, you return to Yorick.

One system command which you cannot use is cd (or pushd or popd) to change directo-
ries. The working directory of the shell you start under Yorick will change, but the change
has no effect on Yorick’s own working directory. Instead, use Yorick’s own cd function:

> cd, "new/working/directory"
>

Also, if you write a Yorick program which manipulates temporary files, you should
not use the UNIX commands mv or rm to rename or remove the files; any time you use
the system command you are restricting your program to a particular class of operating
systems. Instead, use Yorick’s rename and remove functions, which will work under any
operating system.

1.3.7 Error Messages

When Yorick cannot decipher the meaning of a statement, you have made a syntax
error. Syntax errors are mostly simple typos, but a mechanical language like Yorick can be
exasperatingly picky:

> th= span(0,2*pi,200)
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> for (i=1 ; i<=5 ; ++i) { r=cos(i*th); plg,r*sin(th),r*cos(th) }
SYNTAX: parse error near }
>

The only mistake here is that Yorick wants a semicolon (or newline) before the close curly
brace completing a compound statement. If you think “fixing” this type of behavior would
be simple, I suggest you study parsers. Every programming language has its quirks.

When Yorick detects a syntax error, the error message always begins with SYNTAX:.
The entire block containing the error will be discarded; no statements will be executed
which might lead to the execution of the statement containing the error. If the error is in a
function body, the function will not be defined. However, if the sytax error occurs reading
an include file, Yorick continues to parse the file looking for additional syntax errors. After
about a dozen syntax errors in a single file, Yorick gives up and waits for keyboard input.
Therefore, you may be able to repair several syntax errors before you re-include the file.

All other errors are runtime errors.

1.3.7.1 Runtime errors

Runtime errors in Yorick are often simple typos, like syntax errors:
> theta = span(0,2*pi,200)
> wave = sin(thta)*exp(-0.5*theta)
ERROR (*main*) expecting numeric argument
WARNING source code unavailable (try dbdis function)
now at pc= 1 (of 23), failed at pc= 5
To enter debug mode, type <RETURN> now (then dbexit to get out)
>

Many errors of this sort would be detected as syntax errors if you had to declare Yorick
variables. Yorick’s free-and-easy attitude toward declaration of variables is particularly
annoying when the offending statement is in a conditional branch which is very rarely exe-
cuted. When a bug like that ambushes you, be philosophical: Minutely declared languages
will just ambush you in more subtle ways.

Other runtime errors are more interesting; often such a bug will teach you about the
algorithm or even about the physical problem:

> #include "damped.i"
> theta = span(0, 6*pi, 300)
> amplitude = damped_wave(theta, 0.25)
ERROR (damped_wave) math library exception handler called

LINE: 19 FILE: /home/icf/munro/damped.i
To enter debug mode, type <RETURN> now (then dbexit to get out)
>

What is an oscillator with a Q of less than one half? Maybe you don’t care about the
so-called overdamped case — you really wanted Q to be 2.5, not 0.25. On the other hand,
maybe you need to modify the damped_wave function to handle the overdamped case.

1.3.7.2 How to respond to a runtime error
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When Yorick stops with a runtime error, you have a choice: You can either type the
next statment you want to execute, or you can type a carriage return (that is, a blank line)
to enter debug mode. The two possibilities would look like this:

ERROR (damped_wave) math library exception handler called
LINE: 19 FILE: /home/icf/munro/damped.i
To enter debug mode, type <RETURN> now (then dbexit to get out)
> amplitude = damped_wave(theta, 2.5)
>

ERROR (damped_wave) math library exception handler called
LINE: 19 FILE: /home/icf/munro/damped.i
To enter debug mode, type <RETURN> now (then dbexit to get out)
>
dbug>

In the second case, you have entered debug mode, and the dbug> prompt appears. In
debug mode, Yorick leaves the function which was executing and its entire calling chain
intact. You can type any Yorick statement; usually you will print some values or plot some
arrays to try to determine what went wrong. When you reference or modify a variable
which is local to the function, you will “see” its local value:

dbug> nu; 1-nu*nu
2
-3
dbug>

As soon as possible, you should escape from debug mode using the dbexit function:
dbug> dbexit
>

You may also be able to repair the function’s local variables and resume execution. To
modify the value of a variable, simply redefine it with an ordinary Yorick statement. The
dbcont function continues execution, beginning by re-executing the statement which failed
to complete. Use the help function (see Section 1.3.3 [Help], page 17) to learn about the
other debugging functions; the help for the dbexit function describes them all.
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2 Using Array Syntax

Most Yorick statements look like algebraic formulas. A variable name is a string like
Var_1 — upper or lower case characters (case matters), digits, or underscores in any com-
bination except that the first character may not be a digit. Expressions consist of the usual
arithmetic operations + - * /, with parentheses to indicate the order of operations (when
that order is different than or unclear from the ordinary rules of precedence in algebra).
Elementary mathematical functions such as exp(x), cos(x), or atan(x) look just like that.

Usually, a Yorick variable is a parametric representation of a mathematical function. The
variable is an array of numbers which are values of the function at a number of points; few
points to represent the function coarsely, more for an accurate rendition. The parameters
of the function are the indices into the array, which rarely make an explicit appearance in
Yorick programs. Thus,

theta = span(0.0, 2*pi, 100)

defines a variable theta consisting of 100 evenly spaced values starting with 0.0 and ending
with 2*pi.

Now that theta has been defined as a list of 100 numbers, any function of theta has
a concrete representation as a list of 100 numbers — namely the values of the function at
the 100 particular values of theta. Hence, variables x and y representing coordinates of the
unit circle are defined with:

x = cos(theta); y = sin(theta)

Here, cos and sin are built-in Yorick functions. Like most Yorick functions, they operate
on an entire array of numbers, returning an array of like shape. Hence both x and y are
now lists of 100 numbers – the cosines and sines of the 100 numbers theta.

The semicolon marks the end of a Yorick statement, allowing several statements to share
a single line. The end of a line (i.e.- a newline) can also mark the end of a Yorick statement.
However, if any parentheses are open, or if a binary operator or a comma is the last token on
the line, then the newline is treated like a space or a tab character and does not terminate
the Yorick statement.

If a line ends with backslash, the following newline will never terminate the Yorick
statement. (That is, backslash is the continuation character in Yorick.) I recommend that
you never use a backslash – end the line to be continued with a binary operator, or leave
the comma separating subroutine arguments at the end of the line, or split a parenthetic
expression across the line, and it will be continued automatically.

2.1 Creating Arrays

Including the span function introduced in the previous section, there are five common
ways to originate arrays — that is, to make an array out of scalar values:

[val1, val2, val3, ...]

The most primitive way to build an array is to enumerate the successive ele-
ments of the array in square brackets. The length of the array is the number
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of values in the list. An exceptional case is [], which is called “nil”. A Yorick
variable has the value nil before it has been defined, and [] is a way to write
this special value.

array(value, dimlist)

Use array to “broadcast” (see Section 2.6 [Broadcasting], page 36) a value into
an array, increasing its number of dimensions. A dimlist is a standard list of
arguments used by several Yorick functions (see Section 2.7 [Dimension Lists],
page 37). Often, the pseudo-index range function (see Section 2.3.5 [Pseudo-
Index], page 28) is a clearer alternative to the array function.

span(start, stop, number)

Use span to generate a list of equally spaced values.

indgen(n)

indgen(lower:upper)

indgen(start:stop:step)

Use indgen (“index generator”) instead of span to generate equally spaced
integer values. By default, the list starts with 1.

spanl(start, stop, number)

Use spanl (“span logarithmically”) to generate a list of numbers which increase
or decrease by a constant ratio.

2.2 Interpolating

As I have said, a Yorick array often represents the values of a continuous function at a
number of discrete points. In order to find the values of the function at other points, you
need to know how it varies between (or beyond) the given points. In general, to interpolate
(or extrapolate), you need a detailed understanding of how the function was discretized in
the first place. However, when the list of values accurately represents the function, linear
interpolation between the known points will suffice. A function which is linear between
successive points is called “piecewise linear”.

The interp function is a mechanism for converting a list of function values at discrete
points into a piecewise linear function which can be evaluated at any point.

theta = span(0, pi, 100);
x_circle = cos(theta);
y_circle = sin(theta);
x = span(-2, 2, 64);
y = interp(y_circle, x_circle, x);

This code fragment produces a y array with the same number of points as x (64), with
the values of the piecewise linear function defined by the points (x_circle, y_circle).
Outside the range covered by x_circle, the piecewise linear function remains constant –
the simplest possible extrapolation rule.

Regarded as a function of its third argument, interp behaves just like the sin or cos

function – its first two arguments are really parameters specifying which piecewise linear
function interp will evaluate.
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The integ function works just like interp, except that it returns the integral of the
piecewise linear function. The integration constant is chosen so that integ returns zero
at the first point of the piecewise linear function. (This point will actually have the max-
imum value of x if the x array is decreasing.) Thus, the integral of the piecewise linear
approximation to the semicircle and the exact integral of the semicircle can be computed
by:

yi = integ(y_circle, x_circle, x);
yi_exact = 0.5*(acos(max(min(x,1),-1)) - x*sqrt(1-min(x^2,1)));

Again, the piecewise linear function is assumed to remain constant beyond the first and
last points specified. Hence, integ is a linear function when extrapolating, and piecewise
parabolic when interpolating.

Use integ only when you need the indefinite integral of a piecewise linear function.
Yorick has more efficient ways to compute definite integrals. Again, think of integ, like
interp, as a continuous function of its third argument; the first two arguments are param-
eters specifying which function.

Neither interp nor integ makes sense unless its second argument is either increasing
or decreasing. There is no way to decide which branch of a multi-valued function should be
returned.

Internally, both interp and integ need a lookup function – that is, a function which
finds the index of the point in x circle just beyond each of the x values. This lookup function
can also be called directly; its name is digitize.

2.3 Indexing

Yorick has a bewildering variety of different ways to refer to individual array elements or
subsets of array elements. In order to master the language, you must learn to use them all.
Nearly all of the examples later in this manual use one or more of these indexing techniques,
so trust me to show you how to use them later:
• A scalar integer index refers to a specific array element. In a multi-dimensional array,

this “element” is itself an array – the specified row, column, or hyperplane.
• An index which is nil or omitted refers to the entire range of the corresponding array

dimension.
• An index range of the form start:stop or start:stop:step refers to an evenly spaced

subset of the corresponding array dimension.
• An array of integers refers to an arbitrary subset, possibly including repeated values,

of the corresponding array dimension.
• The special symbol -, or -:start:stop, is the pseudo-index. It inserts an index in

the result which was not present in the array being indexed. Although this sounds
recondite, the pseudo-index is often necessary in order to make two arrays conformable
for a binary operation.

• The special symbol .. or * is a rubber-index. A rubber-index stands for zero or more
dimensions of the array being indexed. This syntax allows you to specify a value for
the final index of an array, even when you don’t know how many dimensions the array
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has. The .. version leaves the original dimension count intact; the * version collapses
all dimensions into a single long dimension in the result.

• The special symbol + marks an index for matrix multiplication.
• Many statistical functions, such as sum, avg, and max can be applied along a specific

dimension of an array. These reduce the rank of the resulting array, just like a scalar
integer index value.

• Several finite difference functions, such as zcen (zone center) and cum (cumulative
sums) can be applied along a specific array dimension. You can use these to construct
numerical analogues to the operations of differential and integral calculus.

2.3.1 Scalar indices and array order

An array of objects is stored in consecutive locations in memory (where each location is
big enough to hold one of the objects). An array x of three numbers is stored in the order
[x(1), x(2), x(3)] in three consecutive slots in memory. A three-by-two array y means
nothing more than an array of two arrays of three numbers each. Thus, the six numbers
are stored in two contiguous blocks of three numbers each: [[x(1,1), x(2,1), x(3,1)],

[x(1,2), x(2,2), x(3,2)]].
A multi-dimensional array may be referenced using fewer indices than its number of

dimensions. Hence, in the previous example, x(5) is the same as x(2,2), since the latter
element is stored fifth.

Although most of Yorick’s syntax follows the C language, array indexing is designed
to resemble FORTRAN array indexing. In Yorick, as in FORTRAN, the first (leftmost)
dimension of an array is always the index which varies fastest in memory. Furthermore,
the first element along any dimension is at index 1, so that a dimension of length three can
be referenced by index 1 (the first element), index 2 (the second element), or index 3 (the
third element).

If this inconsistency bothers you, here is why Yorick indexing is like FORTRAN index-
ing: In C, an array of three numbers, for example, is a data type on the same footing as
the data type of each of its three members; by this trick C sidesteps the issue of multi-
dimensional arrays — they are singly arrays of objects of an array data type. While this
picture accurately reflects the way the multi-dimensional array is stored in memory, it does
not reflect the way a multi-dimensional array is used in a scientific computer program.

In such a program, the fact that the array is stored with one or the other index varying
fastest is irrelevent — you are equally likely to want to consider as a “data type” a slice at
a constant value of the first dimension as of the second. Furthermore, the length of every
dimension varies as you vary the resolution of the calculation in the corresponding physical
direction.

2.3.2 Selecting a range of indices

You can refer to several consecutive array elements by an index range: x(3:6) means
the four element subarray [x(3), x(4), x(5), x(6)].
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Occasionally, you also want to refer to a sparse subset of an array; you can add an
increment to an index range by means of a second colon: x(3:7:2) means the three element
subarray [x(3), x(5), x(7)].

A negative increment reverses the order of the elements: x(7:3:-2) represents the
same three elements, but in the opposite order [x(7), x(5), x(3)]. The second element
mentioned in the index range may not actually be present in the resulting subset, for
example, x(7:2:-2) is the same as x(7:3:-2), and x(3:6:2) represents the two element
subarray [x(3), x(5)].

Just as the increment defaults to 1 if it is omitted, the start and stop elements of an
index range also have default values, namely the first and last possible index values. Hence,
if x is a one-dimensional array with 10 elements, x(8:) is the same as x(8:10). With a
negative increment, the defaults are reversed, so that x(:8:-1) is the same as x(10:8:-1).

A useful special case of the index range default rules is x(::-1), which represents the
array x in reverse order.

Beware of a minor subtlety: x(3:3) is not the same thing as x(3). An index range
always represents an array of values, while a scalar index represents a single value. Hence,
x(3:3) is an array with a single element, [x(3)].

2.3.3 Nil index refers to an entire dimension

When you index a multi-dimensional array, very often you want to let one or more
dimensions be “spectators”. In Yorick, you accomplish this by leaving the corresponding
index blank:

x(3,)
x(,5:7)
y(,::-1,)
x(,)

In these examples, x is a 2-D array, and y is a 3-D array. The first example, x(3,),
represents the 1-D array of all the elements of x with first index 3. The second represents
a 2-D array of all of the elements of x whose second indices are 5, 6, or 7. In the third
example, y(,::-1,) is the y array with the elements in reverse order along its middle index.
The fourth expression, x(,), means the entire 2-D array x, unchanged.

2.3.4 Selecting an arbitrary list of indices

An index list is an array of index values. Use an index list to specify an arbitrary subset
of an array: x([5,1,2,1]) means the four element array [x(5), x(1), x(2), x(1)]. The
where function returns an index list:

list= where(x > 3.5)
y= x(list)

These lines define the array y to be the subset of the x array, consisting of the elements
greater than 3.5.

Like the result of an index range, the result of an index list is itself an array. However,
the index list follows a more general rule: The dimensionality of the result is the same as the
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dimensionality of the index list. Hence, x([[5, 1], [2, 1]]) refers to the two dimensional
array [[x(5), x(1)], [x(2), x(1)]]. The general rule for index lists is:

Dimensions from the dimensions of the index list; values from the array
being indexed.

Note that the scalar index value is a special case of an index list according to this rule.

The rule applies to multi-dimensional arrays as well: If x is a five-by-nine array, then
x(, [[5, 1], [2, 1]]) is a five-by-two-by-two array. And x([[5, 1], [2, 1]], 3:6) is a
two-by-two-by-four array.

2.3.5 Creating a pseudo-index

A binary operation applied between two arrays of numbers yields an array of results in
Yorick – the operation is performed once for each corresponding pair of elements of the
operands. Hence, if rho and vol are each four-by-three arrays, the expression rho*vol will
be a four-by-three array of products, starting with rho(1,1)*vol(1,1).

This extension of binary operations to array operands is not always appropriate. Instead
of operating on the corresponding elements of arrays of the same shape, you may want to
perform the operation between all pairs of elements. The most common example is the
outer product of two vectors x and y:

outer= x*y(-,);

Here, if x were a four element vector, and y were a three element vector, outer would be the
four-by-three array [[x(1)*y(1), x(2)*y(1), x(3)*y(1), x(4)*y(1)], [x(1)*y(2),

x(2)*y(2), x(3)*y(2), x(4)*y(2)], [x(1)*y(3), x(2)*y(3), x(3)*y(3), x(4)*y(3)]].

In Yorick, this type of multiplication is still commutative. That is, x*y(-,) is the same
as y(-,)*x. To produce the three-by-four transpose of the array outer, you would write
x(-,)*y.

I call the - sign, when used as an index, a pseudo-index because it actually inserts an
additional dimension into the result array which was not present in the array being indexed.
By itself, the expression y(-,) is a one-by-three array (with the same three values as the
three element vector y). You may insert as many pseudo-indices into a list of subscripts
as you like, at any location you like relative to the actual dimensions of the array you are
indexing. Hence, outer(-,-,,-,) would be a one-by-one-by-four-by-one-by-three array.

By default, a pseudo-index produces a result dimension of length one. However, by
appending an index range to the - sign, separated by a colon, you can produce a new
dimension of any convenient length:

x = span(-10, 10, 100)(,-:1:50);
y = span(-5, 5, 50)(-:1:100,);
gauss2d = exp(-0.5*(x^2+y^2))/(2.0*pi);

computes a normalized 2-D Gaussian function on a 100-by-50 rectangular grid of points
in the xy-plane. The pseudo-index -:1:50 has 50 elements, and -:1:100 has 100. For a
pseudo-index of non-unit length, the values along the actual dimensions are simply copied,
so that span(-10, 10, 100)(,-:1:50) is a 100-by-50 array consisting of 50 copies of span(-
10, 10, 100).
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If only the result gauss2d were required, a single default pseudo-index would have suf-
ficed:

gauss2d = exp(-0.5*( span(-10,10,100)^2 +
span(-5,5,50)(-,)^2 )) / (2.0*pi);

However, the rectangular grid of points (x,y) is often required – as input to plotting
routines for example.

2.3.6 Numbering a dimension from its last element

Array index values are subtly asymmetric: An index of 1 represents the first element, 2
represents the second element, 3 the third, and so on. In order to refer to the last, or next
to last, or any element relative to the final element, you apparently need to find out the
length of the dimension.

In order to remedy this asymmetry, Yorick interprets numbers less than 1 relative to
the final element of an array. Hence, x(1) and x(2) are the first and second elements of x,
while x(0) and x(-1) are the last and next to last elements, and so on.

With this convention for negative indices, many Yorick programs can be written without
the need to determine the length of a dimension:

deriv = (f(3:0)-f(1:-2)) / (x(3:0)-x(1:-2));

computes a point-centered estimate of the derivative of a function f with values known
at points x. (A better way to compute this derivative is to use the pcen and dif range
functions described below. See Section 2.3.10 [Rank preserving (finite difference) range
functions], page 32.)

In this example, the extra effort required to compute the array length would be slight:
n = numberof(f);
deriv = (f(3:n)-f(1:n-2)) / (x(3:n)-x(1:n-2));

However, using the negative index convention produces faster code, and generalizes to multi-
dimensional cases in an obvious way.

The negative index convention works for scalar index values and for the start or stop
field of an index range (as in the example). Dealing with negative indices in an index list
would slow the code down too much, so the values in an index list may not be zero or
negative.

2.3.7 Using a rubber index

Many Yorick functions must work on arrays with an unknown number of dimensions.
Consider a filter response function, which takes as input a spectrum (brightness as a function
of photon energy), and returns the response of a detector. Such a function could be passed
a spectrum and return a scalar value. Or, it might be passed a two dimensional array
of spectra for each of a list of rays, and be expected to return the corresponding list of
responses. Or a three dimensional array of spectra at each pixel of a two dimensional
image, returning a two dimensional array of response values.
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In order to write such a function, you need a way to say, “and all other indices this array
might have”. Yorick’s rubber-index, .., stands for zero or more actual indices of the array
being indexed. Any indices preceding a rubber-index are “left justified”, and any following
it are “right justified”. Using this syntax, you can easily index an array, as long as you
know that the dimension (or dimensions) you are interested in will always be first, or last
– even if you don’t know how many spectator dimensions might be present in addition to
the one your routine processes.

Thus, as long as the spectral dimension is always the final dimension of the input
brightness array,

brightness(..,i)

will always place the i index in the spectral dimension, whether brightness itself is a 1-D,
2-D, or 3-D array.

Similarly, x(i,..) selects a value of the first index of x, leaving intact all following
dimensions, if any. Constructions such as x(i,j,..,k,l) are also legal, albeit rarely nec-
essary.

A second form of rubber-index collapses zero or more dimensions into a single index. The
length of the collapsed dimension will be the product of the lengths of all of the dimensions
it replaces (or 1, if it replaces zero dimensions). The symbol for this type of rubber index is
an asterisk *. For example, if x were a five-by-three-by-four-by-two array, then x(*) would
be a 1-D array of 120 elements, while x(,*,) would be a five-by-twelve-by-two array.

If the last actual index in a subscripted array is nil, and if this index does not correspond
to the final actual dimension of the array, Yorick will append a .. rubber-index to the end
of the subscript list. Hence, in the previous example, x() is equivalent to x(,..), which is
equivalent to x(..), which is equivalent to simply x. This rule is the only rogue in Yorick’s
array subscripting stable, and I am mightily tempted to remove it on grounds of linguistic
purity. When you mean, “and any other dimensions which might be present,” use the ..

rubber-index, not a nil index. Use a trailing nil index only when you mean, “and the single
remaining dimension (which I know is present).”

2.3.8 Marking an index for matrix multiplication

Yorick has a special syntax for matrix multiplication, or, more generally, inner product:

A(,+)*B(+,)
B(+,)*A(,+)
x(+)*y(+)
P(,+,,)*Q(,,+)

In the first example, A would be an L-by-M array, B would be an M-by-N array, and the
result would be the L-by-N matrix product. In the second example, the result would be
the N-by-L transpose of the first result. The general rule is that all of the “spectator”
dimensions of the left operand precede the spectator dimensions of the right operand in the
result.

The third example shows how to form the inner product of two vectors x and y of equal
length. The fourth example shows how to contract the second dimension of a 4-D array
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P with the third dimension of the 3-D array Q. If P were 2-by-3-by-4-by-5 and Q were
6-by-7-by-3, the result array would be 2-by-4-by-5-by-6-by-7.

Unlike all of the other special subscript symbols (nil, -, .., and * so far), the + sign
marking an index for use in an inner product is actually treated specially by the Yorick
parser. The + subscript is a parse error unless the array (or expression) being subscripted is
the left or right operand of a binary * operator, which is then parsed as matrix multiplication
instead of Yorick’s usual element-by-element multiplication. A parse error will also result if
only one of the operands has a dimension marked by +. Both operands must have exactly
one marked dimension, and the marked dimensions must turn out to be of equal length at
run time.

2.3.9 Rank reducing (statistical) range functions

The beauty of Yorick’s matrix multiplication syntax is that you “point” to the dimension
which is to be contracted by placing the + marker in the corresponding subscript. In this
section and the following section, I introduce Yorick’s range functions, which share the “this
dimension right here” syntax with matrix multiplication. The topic in this section is the
statistical range functions. These functions reduce the rank of an array, as if they were
a simple scalar index, but instead of selecting a particular element along the dimension,
a statistical range function selects a value based on an examination of all of the elements
along the selected dimension. The statistical function is repeated separately for each value
of any spectator dimensions. The available functions are:

min

max returns the minimum (or maximum) value. These are also available as ordinary
functions.

sum returns the sum of all the values. This is also available as an ordinary function.

avg returns the arithmetic mean of all the values. The result will be a real number,
even if the input is an integer array. This is also available as an ordinary
function.

ptp returns the peak-to-peak difference (difference between the maximum and the
minimum) among all the values. The result will be positive if the maximum
occurs at a larger index than the minimum, otherwise the result will be negative.

rms returns the root mean square deviation from the arithmetic mean of the values.
The result will be a real number, even if the input is an integer array.

mnx

mxx returns the index of the element with the smallest (or largest) value. The result
is always an integer index value, independent of the data type of the array being
subscripted. If more than one element reaches the extreme value, the result will
be the smallest index.

The min, max, sum, and avg functions may also be applied using ordinary function syntax,
which is preferred if you want the function to be applied across all the dimensions of an
array to yield a single scalar result.
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Given the brightness array representing the spectrum incident on a detector or set of
detectors, the mxx function can be used to find the photon energy at which the incident
light is brightest. Assume that the final dimension of brightness is always the spectral
dimension, and that the 1-D array gav of photon energies (with the same length as the final
dimension of brightness) is also given:

max_index_list = brightness(.., mxx);
gav_at_max = gav(max_index_list);

Note that gav_at_max would be a scalar if brightness were a 1-D spectrum for a single
detector, a 2-D array if brightness were a 3-D array of spectra for each point of an image,
and so on.

An arbitrary index range (start:stop or start:stop:step) may be specified for any
range function, by separating the function name from the range by another colon. For
example, to select only a relative maximum of brightness for photon energies above 1.0,
ignoring possible larger values at smaller energies, you could use:

i = min(where(gav > 1.0));
max_index_list = brightness(.., mxx:i:0);
gav_at_max = gav(max_index_list);

Note the use of min invoked as an ordinary function in the first line of this example. (Recall
that where returns a list of indices where some conditional expression is true.) In the
second line, mxx:i:0 is equivalent to mxx:i:. Because of the details of Yorick’s current
implementation, the former executes slightly faster.

More than one range function may appear in a single subscript list. If so, they are
computed from left to right. In order to execute them in another order, you must explicitly
subscript the expression resulting from the first application:

x = [[1, 3, 2], [8, 0, 9]];
max_min = x(max, min);
min_max = x(, min)(max);

The value of max_min is 3; the value of min_max is 2.

2.3.10 Rank preserving (finite difference) range functions

Because Yorick arrays almost invariably represent function values, Yorick provides nu-
mercal equivalents to the common operations of differential and integral calculus. In order
to handle functions of several variables in a straightforward manner, these operators are
implemented as range functions. Unlike the statistical range functions, which return a
scalar result, the finite difference range functions do not reduce the rank of the subscripted
array. Instead, they preserve rank, in the same way that a simple index range start:stop

preserves rank. The available finite difference functions are:

cum returns the cumulative sums (sum of all values at smaller index, the first index
of the result having a value of 0). The result dimension has a length one greater
than the dimension in the subscripted array.

psum returns the partial sum (sum of all values at equal or smaller index) up to each
element. The result dimension has the same length as the dimension in the
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subscripted array. This is the same as cum, except that the leading 0 value in
the result is omitted.

dif returns the pairwise difference between successive elements, positive when the
function values increase along the dimension, negative when they decrease. The
result dimension has a length one less than the dimension of the subscripted
array. The dif function is the inverse of the cum function.

zcen returns the pairwise average between successive elements. The result dimension
has a length one less than the dimension of the subscripted array. The name is
short for “zone center”.

pcen returns the pairwise average between successive elements. However, the two
endpoints are copied unchanged, so that the result dimension has a length one
greater than the dimension of the subscripted array. The name is short for
“point center”.

uncp returns the inverse of the pcen operation. (Gibberish will be the result of
applying this function to an array dimension which was not produced by the
pcen operation.) The result dimension has a length one less than the dimension
of the subscripted array. The name is short for “uncenter point centered”.

The derivative dy/dx of a function y(x), where y and x are represented by 1-D arrays y
and x of equal length is:

deriv = y(dif)/x(dif);

Note that deriv has one fewer element than either y or x. The derivative is computed as
if y(x) were the piecewise linear function passing through the given points (x,y); there is
one fewer line segment (slope) than point.

The values x and y can be called “point-centered”, while the values deriv can be called
“zone-centered”. The zcen and pcen functions provide a simple mechanism for moving
back and forth between point-centered and zone-centered quantities. Usually, there will be
several reasonable ways to point-center zone centered data and vice-versa. For example:

deriv_pc1 = deriv(pcen);
deriv_pc2 = y(dif)(pcen)/x(dif)(pcen);
deriv_pc3 = y(pcen)(dif)/x(pcen)(dif);

For a well-resolved function, the differences among these three arrays will be negligible.
That is, the differences are second order in x(dif), which is often the order of the errors
in the calculation that produced x and y in the first place. If x and y represent y(x) more
accurately that this, then you must know a better model of the shape of y(x) than the simple
piecewise linear model, and you should use that model to select deriv_pc1, deriv_pc2, and
deriv_pc3, or some other expression.

An indefinite integral may be estimated using the trapezoidal rule:
indef_integ = (y(zcen)*x(dif))(psum);

Once again, indef_integ has one fewer point than x or y, because there is one fewer
trapezoid than point. This time, however, indef_integ is not zone centered. Instead,
indef_integ represents values at the upper (or lower) boundaries x(2:) (or x(:-1)). Of-
ten, you want to think of the integral of y(x) as a point centered array of definite integrals
from x(1) up to each of the x(i). In this case (which actually arises more frequently), use
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the cum function instead of psum in order to produce a result def_integs with the same
number of points as the x and y arrays:

def_integs = (y(zcen)*x(dif))(cum);

For single definite integrals, the matrix multiply syntax can be used in conjunction with
the dif range function. For example, suppose you know the transmission fraction of the
filter, ff, at several photon energies ef. That is, ff and ef are 1-D arrays of equal length,
specifying a filter transmission function as the piecewise linear function connecting the given
points. The final dimension of an array brightness represents an incident spectrum (any
other dimensions represent different rays, say one ray per pixel of an imaging detector).
The 1-D array gb represents the group boundary energies – that is, the photon energies
at the boundaries of the spectral groups represented in brightness. The following Yorick
statements compute the detector response:

filter = integ(ff, ef, gb)(dif);
response = brightness(..,+)*filter(+);

For this application, the correct interpolation routine is integ. The integrated trans-
mission function is evaluated at the boundaries gb of the groups; the effective transmission
fraction for each group is the difference between the integral at the upper bin boundary
and the lower bin boundary. The dif range function computes these pairwise differences.
Since the gb array naturally has one more element than the final dimension of brightness
(there is one more group boundary energy than group), and since dif reduces the length
of a dimension by one, the filter array has the same length as the final dimension of
brightness.

Note that the cum function cannot be used to integrate ff(ef), because the points gb

at which the integral must be evaluated are not the same as the points ef at which the
integrand is known. Whenever the points at which the integral is required are the same (or a
subset of) the points at which the integrand is known, you should perform the integral using
the zcen, dif, and cum index functions, instead of the more general integ interpolator.

2.4 Sorting

The function sort returns an index list:
list = sort(x);

The list has the same length as the input vector x, and list(1) is the index of the smallest
element of x, list(2) the index of the next smallest, and so on. Thus, x(list) will be x

sorted into ascending order.

By returning an index list instead of the sorted array, sort simplifies the co-sorting of
other arrays. For example, consider a series of elaborate experiments. On each experiment,
thermonuclear yield and laser input energy are measured, as well as fuel mass. These might
reasonably be stored in three vectors yield, input, and mass, each of which is a 1D array
with as many elements as experiments performed. The order of the elements in the arrays
maight naturally be the order in which the experiments were performed, so that yield(3),
input(3), and mass(3) represent the third experiment. The experiments can be sorted
into order of increasing gain (yield per unit input energy) as follows:
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list = sort(yield/input);
yield = yield(list);
input = input(list);
mass = mass(list);

The inverse list, which will return them to their orginal order, is:
invlist = list; /* faster than array(0, dimsof(list)) */
invlist(list) = indgen(numberof(list));

The sort function actually sorts along only one index of a multi-dimensional array.
The dimensions of the returned list are the same as the dimensions of the input array; the
values are indices relative to the beginning of the entire array, not indices for the dimension
being sorted. Thus, x(sort(x)) is the array x sorted so that the elements along its first
dimension are in ascending order. In order to sort along another dimension, pass sort a
second argument – x(sort(x,2)) will be x sorted into increasing order along its second
dimension, x(sort(x,3)) along its third dimension, and so on.

A related function is median. It takes one or two arguments, just like sort, but its result
– which is, of course, the median values along the dimension being sorted – has one fewer
dimension than its input.

2.5 Transposing

In a carefully designed Yorick program, array dimensions usually wind up where you
need them. However, you may occasionally wind up with a five-by-seven array, instead of
the seven-by-five array you wanted. Yorick has a very general transpose function:

x623451 = transpose(x123456);
x561234 = transpose(x123456, 3);
x345612 = transpose(x123456, 5);
x153426 = transpose(x123456, [2,5]);
x145326 = transpose(x123456, [2,5,3,4]);
x653124 = transpose(x123456, [2,5], [1,4,6]);

Here, x123456 represents a six-dimensional array (hopefully these will be rare). The
same array with its first and last dimensions transposed is called x623451; this is the
default result of transpose. The transpose function can take any number of additional
arguments to describe an arbitrary permutation of the indices of its first argument – the
array to be transposed.

A scalar integer value, as in the second and third lines, represents a cyclic permutaion
of all the dimensions; the first dimension of the input becomes the Nth dimension of the
result, for an argument value of N.

An array of integer values represents a cyclic permutation of the specified dimensions.
Hence, in the fifth example, [2,5,3,4] means that the second dimension becomes the fifth,
the fifth becomes the third, the third becomes the fourth, and the fourth becomes the
second. An arbitrary permutation may be built up of a number of cyclic permutations, as
shown in the sixth example.

One additional problem can arise in Yorick – you may not know how many dimensions the
array to be transposed has. In order to deal with this possibility, either a scalar argument
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or any of the numbers in a cyclic permutation list may be zero or negative to count from
the last dimension. That is, 0 represents the last dimension, -1 the next to last, -2 the one
before that, and so on.

Typical transposing tasks are: (1) Move the first dimension to be last, and all the
others back one cyclically. (2) Move the last dimension first, and all the others forward one
cyclically. (3) Transpose the first two dimensions, leaving all others fixed. (4) Transpose
the final two dimensions, leaving all others fixed. These would be accomplished, in order,
by the following four lines:

x234561 = transpose(x123456, 0);
x612345 = transpose(x123456, 2);
x213456 = transpose(x123456, [1,2]);
x123465 = transpose(x123456, [0,-1]);

2.6 Broadcasting and conformability

Two arrays need not have identical shape in order for a binary operation between them
to make perfect sense:

y = a*x^3 + b*x^2 + c*x + d;

The obvious intent of this assignment statement is that y should have the same shape
as x, each value of y being the value of the polynomial at the corresponding y.

Alternatively, array valued coefficients a, b, ..., represent an array of several polynomials
– perhaps Legendre polynomials. Then, if x is a scalar value, the meaning is again obvious;
y should have the same shape as the coefficient arrays, each y being the value of the
corresponding polynomial.

A binary operation is performed once for each element, so that a+b, say, means
a(i,j,k,l) + b(i,j,k,l)

for every i, j, k, l (taking a and b to be four dimensional). The lengths of corre-
sponding indices must match in order for this procedure to make sense; Yorick signals a
“conformability error” when the shapes of binary operands do not match.

However, if a had only three dimensions, a+b still makes sense as:
a(i,j,k) + b(i,j,k,l)

This sense extends to two dimensional, one dimensional, and finally to scalar a:
a + b(i,j,k,l)

which is how Yorick interpreted the monomial x^3 in the first example of this section.
The shapes of a and b are conformable as long as the dimensions which they have in common
all have the same lengths; the shorter operand simply repeats its values for every index of
a dimension it doesn’t have. This repitition is called “broadcasting”.

Broadcasting is the key to Yorick’s array syntax. In practical situations, it is just as
likely for the a array to be missing the second (j) dimension of the b array as its last (l)
dimension. To handle this case, Yorick will broadcast any unit-length dimension in addition
to a missing final dimension. Hence, if the a array has a second dimension of length one,
a+b means:
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a(i,1,k,l) + b(i,j,k,l)

for every i, j, k, l. The pseudo-index can be used to generate such unit length indices
when necessary (see Section 2.3.5 [Pseudo-Index], page 28).

2.7 Dimension Lists

You should strive to write Yorick programs in such a way that you never need to refer
to the lengths of array dimensions. Array dimensions are usually of no direct significance
in a calculation; your programs will tend to be clearer if only the arrays themselves appear.

In practice, unfortunately, you can’t always get by without mentioning dimension
lengths. Two functions are important:

numberof(x)

returns the total number of items in the array x.

dimsof(x)

returns a list consisting of the number of dimensions of the array x, followed
by the length of each of those dimensions. Thus, if x were a nine-by-two-by-
six array, dimsof(x) would return [3,9,2,6], while if x were a scalar value,
dimsof(x) would return [0].

dimsof(x, y, z, ...)

With multiple arguments, the dimsof function returns the dimension list of the
array x+y+z+..., or [] if the input arrays are not conformable.

The array function (see Section 2.1 [Creating Arrays], page 23), and the more arcane
functions add_variable, add_member, and reshape all have parameter lists ending with
one or more “dimension list” parameters. Each parameter in a dimension list can be either
a scalar integer value, representing the length of a single dimension, or a list of integers in
the format returned by dimsof to represent zero or more dimensions. Several arguments
can be used to build up a complicated dimension list:

x1 = array(0.0, 9, 2, 6); /* 9-by-2-by-6 array of 0.0 */
x2 = array(0.0, [3,9,2,6]); /* another 9-by-2-by-6 array */
x3 = array(0.0, 9, [0], [2,2,6]); /* ...and yet another */

flux= array(0.0, 3, dimsof(z), numberof(groups));

In the final example, the flux might represent the three components of a flux vector, at
each of a number of positions z, and for each of a number of photon energies groups. The
first dimension of flux has length three, corresponding to the three components of each
flux vector. The last dimension has the same length as the groups array. In between are
zero or more dimensions – whatever the dimensions of the array of positions z.

By using the rubber index syntax (see Section 2.3.7 [Rubber-Index], page 29), you can
extract meaningful slices of the flux array without ever needing to know how many dimen-
sions z had, let alone their lengths.
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3 Graphics

Yorick’s graphics functions produce most of the generic kinds of pictures you see in
scientific publications. However, providing the perfect graphics interface for every user is
not a realistic design goal. Instead, my aim has been to provide the simplest possible
graphics model and the most basic plotting functions. If you want more, I expect you to
build your own “perfect” interface from the parts I supply.

My dream is to eventually supply several interfaces as interpreted code in the Yorick
distribution. Currently, the best example of this strategy is the ‘pl3d.i’ interface, which I
describe at the end of this chapter. Not every new graphics interface needs to be a major
production like ‘pl3d.i’, however. Modest little functions are arguably more useful; the
plh function discussed below is an example.

As you will see, the simplest possible graphics model is still very complicated. Unfor-
tunately, I don’t see any easy remedies, but I can promise that careful study pays off. I
recommend the books “The Visual Display of Quantitative Information” and “Envisioning
Information” by Edward Tufte for learning the fundamentals of scientific graphics.

3.1 Primitive plotting functions

Yorick features nine primitive plotting commands: plg plots polylines or polymarkers,
pldj plots disjoint line segments, plm, plc, and plf plot mesh lines, contours, and filled
(colored) meshes, respectively, for quadrilateral meshes, pli plots images, plfp plots filled
polygons, plv plots vector darts, and plt plots text strings. You can write additional plotting
functions by combining these primitives.

3.1.1 plg

Yorick’s plg command plots a one dimensional array of y values as a function of a
corresponding array of x values. To be more precise,

plg, y, x

plots a sequence of line segments from (x(1),y(1)) to (x(2),y(2)) to (x(3),y(3)), and
so on until (x(N),y(N)), when x and y are N element arrays.

The “backwards” order of the arguments to plg (y,x instead of x,y) allows for a default
value of x. Namely,

plg, y

plots y against 1, 2, 3, ..., N, or indgen(numberof(y)) in Yorick parlance. You often want
a plot of an array y with the horizontal axis (y is plotted vertically) merely indicating the
sequence of values in the array.

Optional keyword arguments adjust line type (solid, dashed, etc.), line color, markers
placed along the line, whether to connect the last point to the first to make a closed polygon,
whether to draw direction arrows, and other variations on the basic connect-the-dots theme.
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Specifying line type 0 or "none" by means of the type= keyword causes plg to plot
markers at the points themselves, rather than a polyline connecting the points. Here is how
you make a “scatter plot”:

plg, type=0, y, x

For a polymarker plot, x and y may be scalars or unit length arrays. If you need to
specify your own marker shapes (perhaps to plot experimental data points), you may want
to use the plmk function – use the help function to find out how.

3.1.2 pldj

The pldj command also connects points, but as disjoint line segments:
pldj, x0, y0, x1, y1

connects (x0(1),y0(1)) to (x1(1),y1(1)), then (x0(2),y0(2)) to (x1(2),y1(2)), and
so on. Unlike plg, where y and x are one dimensional arrays, the four arguments to pldj
may have any dimensionality, as long as all four are the same shape.

3.1.3 plm

The plm command plots a quadrilateral mesh. Two dimensional arrays x and y specify
the mesh. The x array holds the x coordinates of the nodes of the mesh, the y array the y
coordinates. If x and y are M by N arrays, the mesh will consist of (M-1)*(N-1) quadrilat-
eral zones. The four nodes (x(1,1),y(1,1)), (x(2,1),y(2,1)), (x(1,2),y(1,2)), and
(x(2,2),y(2,2)) bound the first zone – nodes (1,1), (2,1), (1,2), and (2,2) for short.
This corner zone has two edge-sharing neighbors – one with nodes (2,1), (3,1), (2,2),
and (3,2), and the other with nodes (1,2), (2,2), (1,3), and (2,3). Most zones share
edges four neighbors, one sharing each edge of the quadrilateral. The plm command:

plm, y, x

draws all (M-1)*N+M*(N-1) edges of the quadrilateral mesh. Optional keywords allow for
separate color and linetype adjustments for both families of lines (those with constant first
or second index).

An optional third argument is an existence map – not all (M-1)*(N-1) zones need
actually be drawn. Logically, the existence map is an (M-1) by (N-1) array of truth values,
telling whether a zone exists or not. For historical reasons, plm instead requires an M by N
array called ireg, where ireg(1,) and ireg(,1) (the first row and column) are all 0, the
value for zones which do not exist. Furthermore, for zones which do exist, ireg can take any
positive value; the value of ireg(i,j) is the “region number” (non-existent zones belong
to region zero) of the zone bounded by mesh nodes (i-1,j-1), (i,j-1), (i-1,j), and
(i,j). The boundary= keyword causes plm to draw only the edges which are boundaries
of a single region (the region= keyword value).

As a simple example, here is how you can draw a four by four zone mesh missing its
central two by two zones:

x = span(-2, 2, 5)(,-:1:5);
y = transpose(x);
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ireg = array(0, dimsof(x));
ireg(2:5,2:5) = 1;
ireg(3:4,3:4) = 0;
plm, y, x, ireg;

The plc and plf commands plot functions on a quadrilateral mesh.

3.1.4 plc

The plc command plots contours of a function z(x,y). If z is a two dimensional array
of the same shape as the x and y mesh coordinate arrays, then

plc, z, y, x

plots contours of z. The levs= keyword specifies particular contour levels, that is, the values
of z at which contours are drawn; by default you get eight equally spaced contours spanning
the full range of z. Each contour is actually a set of polylines. Here is the algorithm Yorick
uses to find contour polylines:

Each edge of the mesh has a z value specified at either end. For those edges with one
end above and the other below the desired contour level, linearly interpolate z along the
edge to find the (x,y) point on the edge where z has the level value.

Start at any such point, choose one of the two zones containing that edge, and move
to the point on another edge of that zone, stepping across the new edge to the zone on its
opposite side. Continue until you reach the boundary of the mesh or the point at which
you started. If any points remain, repeat the process to get another disjoint contour. If you
start at boundary points as long as any remain, you will first walk all open contours – those
which run from one point on the mesh boundary to another – then all closed contours. Note
that each contour level may consist of several polylines.

One additional complication can arise: Some zones might have two diagonal corners
above the contour value and the two other corners below, so all four edges have points on
the contour. In a sense, your mesh does not resolve this contour – it could represent a true
X-point where contour lines cross, in which case you want to move directly across the zone
to the point on the opposite edge. Unfortunately, if you connect the opposite edges, you
will make very ugly contour plots. (Even if you disagree on my taste in other places, trust
me on this one.)

So the question is, which adjacent edge do you pick? If you don’t make the same choice
for every contour level you plot, contours at different levels cross (and so will your eyes
when you try to interpret the picture). By default, plc will use a sort of minimum curvature
algorithm: it turns the opposite direction that it turned crossing the previous zone. The
triangulate= keyword to plc can be used both to force a particular triangulation of any
or all zones in the mesh, and to return automatic triangulation decisions made during the
course of the plc command. Again, if triangulation decisions become important to you, your
mesh is probably not fine enough to resolve the contour you are trying to draw.

Making a good contour plot is an art, not an algorithm. Contours work best if used
sparingly; more than a half dozen levels is likely to result in an unintelligible picture. I
suggest you try drawing a very few levels on top of a filled mesh plot (draw with plf). You
will need to select a contrasting color, and you may want to call plc once per level to get a
different line type for each level.
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If you need lots of levels, you should try the plfc function, which fills the regions be-
tween successive contour levels with different colors. Beyond about six levels, contour lines
drawn with plc will be unintelligible, but with plfc you can get perhaps as many as twenty
distinguishable levels.

3.1.5 plf

The plf command plots a filled mesh, that is, it gives a solid color to each quadrilateral
zone in a two dimensional mesh. The color is taken from a continuous list of colors called
a palette. Different colors represent different function values. A palette could be a scale of
gray values from black to white, or a spectrum of colors from red to violet.

Unlike plc, for which the z array had the same shape as x and y, the z array in a plf
command must be an M-1 by N-1 array if x and y are M by N. That is, there is one z value
or color for each zone of the mesh instead of one z value per node:

plf, z, y, x

A separate palette command determines the sequence of colors which will represent z
values. Keywords to plf determine how z will be scaled onto the palette (by default, the
minimum z value will get the first color in the palette, and the maximum z the last color),
and whether the edges of the zones are drawn in addition to coloring the interior. When
the x and y coordinates are projections of a two dimensional surface in three dimensions,
the projected mesh may overlap itself, in which case the order plf draws the zones becomes
important – at a given (x,y), you will only see the color of the last-drawn zone containing
that point. The drawing order is the same as the storage order of the z array, namely (1,1),
(2,1), (3,1), ..., (1,2), (2,2), (3,2), ..., (1,3), (2,3), (3,3), ...

One or two contours plotted in a contrasting color on top of a filled mesh is one of the
least puzzling ways to present a function of two variables. The fill colors give a better feel
for the smooth variation of the function than many contour lines, but the correspondence
between color and function value is completely arbitrary. One or two contour lines solves
this visual puzzle nicely, especially if drawn at one or two particularly important levels that
satisfy a viewer’s natural curiosity.

As of yorick 1.5, z may also be a 3 by M-1 by N-1 array of type char in order to make a
true color filled mesh. The first index of z is (red, green, blue), with 0 minimum intensity
and 255 maximum.

3.1.6 pli

Digitized images are usually specified as a two dimensional array of values, assuming
that these values represent colors of an array of square or rectangular pixels. By making
appropriate x and y mesh arrays, you could plot such images using the plf function, but the
pli command is dramatically faster and more efficient:

pli, z, x0, y0, x1, y1

plots the image with (x0,y0) as the corner nearest z(1,1) and (x1,y1) the corner nearest
z(M,N), assuming z is an M by N array of image pixel values. The optional x0, y0, x1, y1
arguments default to 0, 0, M, N.
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As of yorick 1.5, z may also be a 3 by M by N array of type char in order to make a true
color filled mesh. The first index of z is (red, green, blue), with 0 minimum intensity and
255 maximum.

3.1.7 plfp

A third variant of the plf command is plfp, which plots an arbitrary list of filled polygons;
it is not limited to quadrilaterals. While pli is a special case of plf, plfp is a generalization
of plf:

plfp, z, y, x, n

Here z is the list of colors, and x and y the coordinates of the corners of the polygons.
The fourth argument n is a list of the number of corners (or sides) for each successive
polygon in the list. All four arguments are now one dimensional arrays; the length of z and
n is the number of polygons, while the length of x and y is the total number of corners,
which is sum(n). Again, plfp draws the polygons in the order of the z (or n) array.

As a special case, if all of the lengths n after the first are 1, the first polygon coordi-
nates are taken to be in NDC units, and the remaining single points are used as offsets to
plot numberof(n)-1 copies of this polygon. This arcane feature is necessary for the plmk
function.

As of yorick 1.5, z may also be a 3 by sum(n) array of type char in order to make a true
color filled mesh. The first index of z is (red, green, blue), with 0 minimum intensity and
255 maximum.

3.1.8 plv

While plc, plf, pli, and plfp plot representations of a single valued function of two vari-
ables, the plv command plots a 2D vector at each of a number of (x,y) points. The vector
actually looks more like a dart – it is an isoceles triangle with a much narrower base than
height, with its altitude equal to the vector (u,v), in both magnitude and direction, and its
centroid at the point (x,y):

plv, v, u, y, x

Making a good vector plot is very tricky. Not only must you find a nice looking length
scale for your (u,v) vectors – the longest should be something like the spacing between
your (x,y) points – but also you must sprinkle the (x,y) points themselves rather uniformly
throughout the region of your plot. The time you spend overcoming these artistic difficulties
usually isn’t worth the effort.

3.1.9 plt

The final plotting command, plt, plots text rather than geometrical figures:
plt, text, x, y
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Optional keywords determine the font, size, color, and orientation of the characters, and
the precise meaning of the coordinates x and y – what coordinate system they are given in,
and how the text is justified relative to the given point.

Unlike the other plotting primitives, by default the (x,y) coordinates in the plt command
do not refer to the same (x,y) scales as your data. Instead, they are so-called normalized
device coordinates, which are keyed to the sheet of paper, should you print a hardcopy of
your picture. To make (x,y) refer to the so-called world coordinates of your data (what
planet is your data from?), you must use the tosys=1 keyword. If you do locate text in
your world coordinate system, only its position will follow your data as you zoom and pan
through it; don’t expect text size to grow as you zoom in, or your characters to become
hideously distorted when you switch to log axis scaling.

Text may be rotated by multiples of 90 degrees by means of the orient= keyword.
Arbitrary rotation angles are not supported, and the speed that rotated text is rendered on
your screen may be dramatically slower than ordinary unrotated text.

You can get superscripts, subscripts, and symbol characters by means of escape sequences
in the text. Yorick is not a typesetting program, and these features will not be the highest
possible quality. Neither will what you see on the screen be absolutely identical to your
printed hardcopy (that is never true, actually, but superscripts and subscripts are noticeably
different). With those caveats, the escape feature is still quite useful.

To get a symbol character (assuming you are a font other than symbol), precede that
character by an exclamation point – for example, "!p" will be plotted as the Greek letter
pi. There are four exceptions: "!!", "!^", and "!_" escape to the non-symbol characters
exclamation point, caret, and underscore, respectively. And "!]" escapes to caret in the
symbol font, which is the symbol for perpendicular. The exclamation point, underscore,
and right bracket characters are themselves in the symbol font, and shouldn’t be necessary
as escaped symbols. If the last character in the text is an exclamation point, it has no
special meaning; you do not need to escape a trailing exclamation point.

Caret "^" introduces superscripts and underscore "_" introduces subscripts. There are
no multiple levels of superscripting; every character in the text string is either ordinary,
a superscript, or a subscript. A caret switches from ordinary or subscript characters to
superscript, or from superscript to ordinary. An underscore switches from ordinary or
superscript characters to subscript, or from subscript back to ordinary.

If the text has multiple lines (separated by newline "\n" characters), plt will plot it in
multiple lines, with each line justified according to the justify= keyword, and with the
vertical justification applied to the whole block. You should always use the appropriate text
justification, since the size of the text varies from one output device to another – the size
of the text you see on your screen is only approximately the size in hardcopy. In multiline
text, the superscript and subscript state is reset to ordinary at the beginning of each line.

Here is an example of escape sequences:
text = "The area of a circle is !pr^2\n"+

"Einstein’s field equations are G_!s!n_=8!pT_!s!n";
plt, text, .4,.7,justify="CH";

3.2 Plot limits and relatives
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A sequence of plotting primitives only partly determines your picture. You will often
want to specify the plot limits – the range x and y values you want to see. You may also
want log-log or semi-log scales instead of linear scales, or grid lines that extend all the way
across your graph instead of just tick marks around the edges. Finally, you need to be able
to specify the color palette used for pseudocoloring any plf, pli, or plfp primitives.

The limits, logxy, gridxy, and palette functions are the interface routines you need. If
you are really fussy, you can also control the appearance of your picture in much more detail
– for example, the thickness of the tick marks, the font of the labels, or the size and shape
of the plotting region. The section on graphics styles explains how to take complete control
over the appearance of your graphics. This section sticks with the functions you are likely
to use frequently and interactively.

3.2.1 limits

There are several ways to change the plot limits: The limits command, the range com-
mand, and mouse clicks or drags. Also, the unzoom command undoes all mouse zooming
operations.

The syntax of the limits command is:
limits, xmin, xmax, ymin, ymax

Each of the specified limits can be a number, the string "e" to signal the corresponding
extreme value of the data, or nil to leave the limit unchanged. For example, to set the
plot limits to run from 0.0 to the maximum x in the data plotted, and from the current
minimum y value to the maximum y in the data, you would use:

limits, 0.0, "e", , "e"

If both xmin and xmax (or ymin and ymax) are numbers, you can put xmin greater
than xmax (or ymin greater than ymax) to get a scale that increases to the right (or down)
instead of the more conventional default scale increasing to the left (or up).

As a special case, limits with no arguments is the same as setting all four limits to their
extreme values (rather than the no-op of leaving all four limits unchanged). Hence, if you
can’t see what you just plotted, a very simple way to guarantee that you’ll be able to see
everything in the current picture is to type:

limits

If you just want to change the x axis limits, type:
limits, xmin, xmax

As a convenience, if you just want to change the y axis limits, you can use the range
function (instead of typing three consecutive commas after the limits command):

range, ymin, ymax

3.2.1.1 Zooming with the mouse

To zoom with using the mouse, put the mouse on the point you want to zoom around.
Click the left button to zoom in on this point, or the right button to zoom out. If you drag
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the mouse between pressing and releasing the button, the point under the mouse when you
pressed the button will scroll to the point where you release the button. The middle mouse
button does not zoom, but it will scroll if you drag while pressing it. Hence, the left button
zooms in, the middle button pans, and the right button zooms out.

If you click just outside the edges of the plot, near the tick marks around the edges of
the plot, the zoom and pan operations will involve only the axis you click on. In this way
you can zoom in on a region of x (or y) without changing the magnification in y (or x). Or
with the middle button, pan along one direction without having to worry about accidentally
changing the limits in the other direction slightly.

An alternative way to scroll using the mouse is to hold the shift key and press the left
mouse button at one corner of the region you want to expand to fill the screen. Holding
the button down, drag the mouse to the opposite corner of your rectangle, then release
the button to perform the zoom. This zoom operation is more difficult to control, but it
provides single step zooming with unequal x and y zoom factors. (The inverse operation
– mapping the current full screen to fill the rectangle you drag out with the mouse – is
available with shifted right button. This turns out to be unusably non-intuitive.)

After any mouse zoom function, all four limits are set to fixed values, even if they were
extreme values before the zoom. You can restore the pre-zoom limits, including any extreme
value settings, by typing:

unzoom

3.2.1.2 Saving plot limits

You can also invoke the limits command as a function, in which case it returns the
current value of [xmin,xmax,ymin,ymax,flags]. The flags are bits that determine which of
the limits (if any) were computed as extreme values of the data, and a few other optional
features (to be mentioned momentarily). The value returned by limits as the argument to
a later limits command restores the limits to a prior condition, including the settings of
extreme value flags. Thus,

// mouse zooms here locate an interesting feature
detail1 = limits()
unzoom // remove effects of mouse zooms

// mouse zooms here locate second interesting feature
detail2 = limits()
limits, detail1 // look at first feature again
limits, detail2 // look at second feature again
limits // return to extreme values

3.2.1.3 Forcing square limits

The square keyword chooses any extreme limit to force the x and y scales to have identical
units – so that a circle will always look round, not elliptical, for instance. Of course, if you
set all four limits explicitly, the square keyword will have no effect. For example,
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limits, square=1, 0., "e", 0., "e"

forces the lower limits of both x and y to zero, while the upper limits are chosen to
both show all of the data in the first quadrant, and to keep the units of x and y the same
(normally, this means xmax and ymax are equal, but if the viewport were not square, xmax
and ymax would be in the same ratio as the sides of the viewport). The square keyword
remains in effect even if the units are changed, hence, for example,

limits

will reset all limits to extreme values, but now one axis may extend beyond the limits of the
data in that direction to keep the x and y units equal. To return to the default behavior,
you must explicitly call the limits command with the square keyword again, for example,

limits, square=0

3.2.2 logxy

You may want to choose among log, semi-log, or ordinary linear scale axes. Use the
logxy command:

logxy, 1, 1 // log-log plot
logxy, 1, 0 // semi-log plot, x logarithmic
logxy, 0, 1 // semi-log plot, y logarithmic
logxy, 0, 0 // linear axis scales

You can also omit the x or y flag to leave the scaling of that axis unchanged:

logxy, , 1

changes the y axis to a log scale, leaving the x axis scaling unchanged.

The flags returned by the limits function include the current logxy settings, if you need
them in a program.

Zero or negative values in your data have no catastrophic effects with log axis scaling;
Yorick takes the absolute value of your data and adds a very small offset before applying
the logarithm function. As a side effect, you lose any indication of the sign of your data in
a log plot. If you insist you need a way to get log axis scaling for oscillating data, write a
function to treat negative points specially. For example, to draw positive-y portions solid
and negative-y portions dashed, you might use a function like this:

func logplg(y, x)
{

s = sum(y>=0.); /* number of positive-y points */
n = numberof(y);
if (s) plg, max(y,0.), x, type="solid";
if (s<n) plg, min(y,0.), x, type="dash";

}

You always have the option of plotting the logarithm of a function, instead of using log
axes:

logxy,0,1; plg,y,x

plots the same curve as
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logxy,0,0; plg,log(y),x

The log axis scaling merely changes the position of the ticks and their labels; the y axis
ticks will look like a slide rule scale in the first case, but like an ordinary ruler in the second.

3.2.3 gridxy

The gridxy command changes the appearance of your plot in a more subjective way than
logxy or limits. Ordinarily, Yorick draws tick marks resembling ruler scales around the edges
of your plot. With gridxy, you can cause the major ticks to extend all the way across the
middle of your plot like the lines on a sheet of graph paper. Like logxy, with gridxy you get
separate control over horizontal and vertical grid lines. However, with gridxy, if you supply
only one argument, both axes are affected (usually you want grid lines for neither axis, or
grid lines for both axes). For example,

gridxy, 1 // full grid, like graph paper
gridxy, 0, 1 // only y=const grid lines
gridxy, , 0 // turn off y=const lines, x unchanged
gridxy, 1, // turn on x=const lines, y unchanged
gridxy, 0 // ticks only, no grid lines

If the flag value is 2 instead of 1, then instead of a full grid, only a single grid line is
drawn at the “roundest number” in the range (zero if it is present). If you need a reference
line at y = 0, but you don’t want your graph cluttered by a complete set of grid lines, try
this:

gridxy, 0, 2

The appearance of the ticks and labels is actually part of the graphics style. You will
want to change other details of your graphics style far less frequently than you want to turn
grid lines on or off, which explains the separate gridxy function controlling this one aspect
of graphics style.

The gridxy command also accepts keyword arguments which change the default algo-
rithm for computing tick locations, so that ticks can appear at multiples of 30. This makes
axes representing degrees look better sometimes. By default, ticks can appear only at “dec-
imal” locations, whose last non-zero digit is 1, 2, or 5. See the online help for gridxy for a
more complete description of these options.

3.2.4 palette

The plf, pli, and plfp commands require a color scale or palette, which is a continuum
of colors to represent the continuous values of a variable. Actually, a palette consists of a
finite number of (red, green, blue) triples, which represent a color for each of a finite list of
values. A Yorick palette can never have more than 256 colors, so that a type char variable
(one byte per item) can hold any index into a palette. Because many screens can display
only 256 colors simultaneously, however, you shouldn’t have more than about 200 colors in
a palette; that is the size of all of Yorick’s predefined palettes.
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The palette command allows you to change palettes. The Yorick distribution comes with
predefined palettes called ‘earth.gp’ (the default palette), ‘gray.gp’, ‘yarg.gp’, ‘heat.gp’,
‘stern.gp’, and ‘rainbow.gp’. To load the gray palette, you would type:

palette, "gray.gp"

These palettes tend to start with dark colors and progress toward lighter colors. The ex-
ceptions are ‘yarg.gp’, which is a reversed version of ‘gray.gp’ (your picture looks like the
photographic negative of the way it looks with the ‘gray.gp’ palette), and ‘rainbow.gp’,
which runs through the colors in spectral order at nearly constant intensity. Besides
‘gray.gp’ (or ‘yarg.gp’) and ‘rainbow.gp’, it’s tough to find color sequences that peo-
ple have been trained to think have an order. The ‘heat.gp’ palette is a red-orange scale
resembling the colors of an iron bar as it grows hotter. The default ‘earth.gp’ is loosely
based on mapmaker’s colors from dark blue deep ocean to green lowlands to brown highlands
to white mountains.

Instead of a file name, you may pass palette three arrays of numbers ranging from 0 to
255, which are relative intensities of red, green, and blue. For example,

scale = bytscl(indgen(200),top=255);
palette, scale,scale,scale;

produces the same palette as ‘gray.gp’, but by direct specification of RGB values, rather
than by reading a palette file.

Yorick internally uses the bytscl function to map the z values in a plf, pli, or plfp
command into a (0-origin) index into the palette. Occasionally, as here, you will also want
to call bytscl explicitly.

The predefined palette files are in the directory Y_SITE+"gist"; you should be able to
figure out their format easily if you want to produce your own. If you create a directory
‘~/Gist’ and put your custom palette files there, Yorick will find them no matter what its
current working directory. The library include file ‘color.i’ includes functions to help you
construct palettes, and a dump palette function which writes a palette in Yorick’s standard
format.

You can use the query= keyword to retrieve the RGB values for the currently installed
palette:

local r,g,b;
palette,query=1, r,g,b;

There is also a private= keyword to palette, which you should investigate if you are
interested in color table animation, or if other programs steal all your colors.

3.2.5 Color model

The line drawing primitives plg, pldj, plm, plc, and plv accept a color= keyword. You
can use an index into the current palette, in which case the color of the line becomes
dependent on the palette. However, you can also choose one of ten colors which are always
defined, and which do not change when the palette changes. For example,

plg, sin(theta),cos(theta), color="red"
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draws a red circle (assuming theta runs from zero to two pi). The colors you can specify in
this way are: "black", "white", "red", "green", "blue", "cyan", "magenta", "yellow",
"fg", and "bg".

Black and white, and the primary and secondary colors need no further explanation.
But "fg" stands for foreground and "bg" for background. The default color of all curves is
"fg"; the color of the blank page or screen is "bg". These colors are intentionally indefinite;
unlike the others, they may differ on your screen and in print. By default, "fg" is black and
"bg" is white. If you use the X window system, you can change these defaults by setting X
resources. For example, set

Gist*foreground: white
Gist*background: black

to make Yorick draw in reversed polarity on your screen (white lines on a black background).
(The X utility xrdb is the easiest way to set X resources for your screen.)

As of yorick 1.5, the color may also be an array of three values (red, green, blue), with 0
minimum intensity and 255 maximum. If you specify a true color on a display which only
supports pseudocolor, that window will switch irreversibly to a 5x9x5 color cube, which
causes a significant degradation in rendering quality with smooth palettes.

3.3 Managing a display list

Most graphics are overlays produced by several calls to the primitive plotting functions.
For example, to compare of three calculations of, say, temperature as a function of time,
type this:

plg, temp1, time1
plg, temp2, time2
plg, temp3, time3

All three curves will appear on a single plot; as you type each plg command, you see
that curve appear.

The basic paradigm of Yorick’s interactive graphics package is that as you type the
command to add each curve to the plot, you see that curve appear. You may need to open
a file or perform a calculation in order to generate the next curve. Often, an interesting
comparison will occur to you only after you have seen the first few curves.

Even if you are not changing the data in a plot, you often will want to change plot limits,
or see how your data looks with log or semi-log axes. You can call limits, logxy, or gridxy
any time you want; the changes you request take place immediately.

Yorick maintains a display list – a list of the primitive plotting commands you have
issued to display your data – to enable you to make these kinds of changes to your picture.
The primitive functions just add items to the display list; you don’t need access to the actual
rendering routines. You can change secondary features like plot limits or log axis scaling
changing the plotted data. In order to actually produce a picture, Yorick must “walk” its
display list, sending appropriate plotting commands to some sort of graphics output device.

If the picture changes, Yorick automatically walks its display list just before pausing to
wait for your next input line. Thus, while you are thinking about what to do next, you are
always looking at the current state of the display list.
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A command like limits does not actually force an immediate replot; it just raises a flag
that tells Yorick it needs to walk its display list. Therefore, feel free to call limits or logxy
several times if a Yorick program is clearer that way – the effects will be cumulative, but you
will not have to wait for Yorick to redraw your screen each time – the replot only happens
when Yorick pauses to walk the display list.

Usually, the display list paradigm does just what you expect. However, the indirection
can produce some subtle and surprising effects, especially when you write a Yorick program
that produces graphical output (rather than just typing plotting commands directly).

3.3.1 fma and redraw

The fma command (mnemonic for frame advance) performs two functions: First, if the
current display list has changed, Yorick re-walks it, ensuring that your screen is up to date.
Afterwards, fma clears the display list.

In normal interactive use, you think of the first function – making sure what you see on
your screen matches the display list – as a side effect. Your aim is to clear the display list
so you can begin a fresh picture. However, in a Yorick program that is making a movie,
the point is to draw the current frame of the movie, and clearing the display list is the side
effect which prepares for the next movie frame.

Another side effect of fma is more subtle: Since Yorick no longer remembers the sequence
of commands required to draw the screen, attempts to change plot limits (zoom or pan),
rescale axes, or any other operation requiring a redraw will not change your screen after an
fma, even though you may still see the picture on your screen.

Once set, limits are persistent across frame advances. That is, after an fma, the next
plot will inherit the limits of the previous plot. I concede that this is not always desirable,
but forgetting the previous limits can also be very annoying. Another possibility would be
to provide a means for setting the initial limits for new plots; I judged this confusing. You
get used to typing

fma; limits

when you know the old limits are incorrect for the new plot. The axis scaling set by logxy,
and grid lines set by gridxy are also persistent across frame advances.

On rare occasions, Yorick may not update your screen properly. The redraw command
erases your screen and walks the entire display list. You can also use this in Yorick programs
to force the current picture to appear on your screen immediately, without the side effect of
clearing the display list with fma. (Perhaps you want to start looking at a rapidly completed
part of a picture while a more lengthy calculation of the rest of the picture is in progress.)

Note that redraw unconditionally walks the entire display list, while fma only walks the
part that hasn’t been previously walked or damaged by operations (like limits changes) that
have occurred since the last walk.

3.3.2 Multiple graphics windows

You can have up to eight graphics windows simultaneously. Each window has its own
display list, so you can build a picture in one window, switch to a second window for another
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plot, then return to the first window. The windows are numbered 0 through 7. The window
command switches windows:

window, 1 // switch to window number 1
window, 0 // switch back to default window

If you switch to a window you have never used before, a new graphics window will appear
on your screen. (If you do not issue an explicit window command before your first graphics
command, Yorick automatically creates window number 0 for you.)

The window command takes several keywords. The wait=1 keyword pauses Yorick until
the new window actually appears on your screen (if the window command creates a new
window). This is important under the X window system, which cannot draw anything until
a newly created window actually appears. If you write a program (such as Yorick’s demo
programs) which will produce graphical output, but you are not sure whether there have
been any previous graphics commands, you should start with the statement:

window, wait=1;

The style= keyword to window specifies a particular graphics style for the window. I’ll
return to graphics styles later.

The dpi=100 keyword specifies a 100 dot per inch window, rather than the default 75
dot per inch window. The window you see on your screen is a replica of a portion of an
8.5 by 11 inch sheet of paper, and the dpi (either 75 or 100) refers to the number of screen
pixels which will correspond to one inch on that sheet of paper if you were to tell Yorick to
print the picture (see hcp). Owing to the fonts available with X11R4, Yorick permits only
the two scale factors.

Initially, a Yorick window is a six inch by six inch window on the 8.5 by 11 sheet, centered
at the center of the upper 8.5 by 8.5 inch square for portrait orientation, or at the center
of the rectangular sheet for landscape orientation. (Portrait or landscape orientation is a
function of the graphics style you choose. Six inches is 450 pixels at 75 dpi or 600 pixels at
100 dpi, so dpi=75 makes a small window, while dpi=100 makes a large window.) You can
resize the window (with your window manager), but Yorick will always use either the 75 or
100 dot per inch scaling, so resizing a Yorick window is not very useful unless you want to
use more than the six by six inch square that is initially visible.

The display= keyword specifies a display other than your default display. For example,
if you have two screens you might use

window, 0
window, 1, display="zaphod:0.1"

(if zaphod is the name of the machine running your X server) in order to create window
number 0 on your default screen and window number 1 on your second screen.

You will rarely need the other keywords to the window command, which allow for a
private colormap (for color table animation), turn the legends off in hardcopy output, and
create a private hardcopy file for the sole use of that one window. With the latter capability,
you can write commands like eps that print the current picture, without affecting the main
hardcopy file.

3.4 Getting hardcopy
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Type:
hcp

to add the picture you see on your screen to the current hardcopy file. Yorick walks the
current display list, rendering to the hardcopy file instead of to your screen. To close the
hardcopy file and send it to the printer, use:

hcp_out

Normally, hcp out destroys the file after it has been printed; you can save the file in
addition to printing it with:

hcp_out, keep=1

If you want to close the hardcopy file without printing it, you can call hcp finish instead
of hcp out; if you invoke hcp finish as a function (with a nil argument), it returns the name
of the file it just closed.

After you call hcp out or hcp finish, the next call to hcp creates a new hardcopy file.
You can call hcp file to set the name of the next hardcopy file. For example,

hcp_file, "myfile.ps"

means that the next time Yorick creates hardcopy file, its name will be ‘myfile.ps’. The
name of the file also implicitly determines the file type; names of the form ‘*.ps’ will be
PostScript files, while any other name will be a binary CGM. If you do not specify a file
name, Yorick chooses a name will not clobber any existing file; if you specify a name and
that file already exists, Yorick will silently overwrite the existing file.

3.4.1 Color hardcopy

When you produce a color picture (with plf or pli, for example) on your screen, you need
to save not only the picture, but also the palette you used to draw that picture. Since the
palette might change for each frame in a hardcopy file, the file must contain a complete
palette as a sort of preamble to each frame. However, you usually want less expensive,
higher quality black and white output, so the palette information is usually unnecessary.
Yorick optionally converts colors to a standard gray scale before output to a hardcopy file,
saving a little space in the output file.

If you are going to use a black and white printer, you can turn off palette dumping by
means of the dump= keyword:

hcp_file, dump=0

(you could also specify the name for the next hardcopy file). Unlike the name of the
hardcopy file, the palette dumping flag persists across any number of hardcopy files. To
turn on dumping again, you need to call hcp file with dump=1.

All Yorick PostScript files will print on any PostScript printer, black and white or color.
However, if you set dump=0, the palette was not dumped to the file, and it will print gray
even on a color printer. If you print a dump=1 file on a black and white printer, the result
will be very similar to dump=0; your colors will be translated to grays. You can put the call
to hcp file setting dump=0 in your ‘custom.i’ file if you rarely want to dump the palette.
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3.4.2 Binary CGM caveats

A Yorick binary CGM conforms to all the recommendations of the ANSI Computer
Graphics Metafile standard. Unfortunately, this standard is very outdated. Unlike
PostScript, the CGM standard does not specify where the ink has to go on the page,
so that every program which interprets a CGM draws a somewhat different picture. Fonts
and line types vary a great deal, as does the absolute scale of the picture. The Yorick
distribution includes a binary CGM browser, gist (Gist is the name of Yorick’s graphics
package). The gist browser can convert a binary CGM generated by Yorick into exactly
the same PostScript file that Yorick would have produced. No other CGM reader can do
the same.

Yorick includes CGM support for historical reasons. Unless you like using the gist
browser program, you should write PostScript files directly. If you want to archive lots of
pictures, you may be concerned that the PostScript file is much larger than the equivalent
CGM. However, standard compression software (such as gzip from project GNU) works
much better on the text of a PostScript file than on the binary CGM data, which erases
most of the size discrepancy.

If you are serious about archiving pictures, you should strongly consider archiving the
raw data plus the Yorick program you used to create the pictures, rather than any graphics
hardcopy files. Often this is even more compact than the graphics file, and it has the huge
advantage that you can later recover the actual data you plotted, making it easy to plot it
differently or overlay data from other sources.

3.4.3 Encapsulated PostScript

If your system includes the ghostscript program from project GNU, you can use it to
make Encapsulated PostScript (EPS) files from Yorick PostScript output. Yorick’s eps
command will do this, although it forks Yorick in order to start ghostscript, which is a
bad idea if Yorick has grown to a large size. (The gist browser which is part of the Yorick
distribution can make an inferior EPS file; you can change eps to use gist if you need to.)
When you see the picture you want on your screen, type:

eps, "yowza"

to create an EPS file called ‘yowza.epsi’ containing that picture. If you don’t want to
fork Yorick, you can also use the hcps command, which creates a PostScript file containing
just the current picture; you can then run ps2epsi by hand to convert this to an EPS file.

Page layout programs such as FrameMaker or xfig can import EPS files generated by
Yorick. You can then use the page layout program to resize the Yorick graphic, place other
text or graphics around it (as for a viewgraph), and even add arrows to call out features
of your plot. This is the easiest way to make finished, publication quality graphics from
Yorick output. You may be able to produce satisfactory results using Yorick alone, but the
page layout programs will always have fancier graphical user interfaces – they are and will
remain better for page layout than Yorick.

My recommendation to set up for high quality output is this:
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func hqg(onoff)
/* DOCUMENT hqg

hqg, 0
turn on and off high quality graphics output. You should
refrain from using plot or axis titles; add them with your
page layout program. You will also need to distinguish
curves by means of line type as hq turns off alphabetic
curve markers.

SEE ALSO: eps
*/
{
if (is_void(onoff) || onoff) {

window, style="vg.gs", legends=0;
pldefault, marks=0, width=4;

} else {
window, style="work.gs", legends=0;
pldefault, marks=1, width=0;

}
}

3.5 Graphics style

Yorick formats each page of graphics output according to a model regulated by several
dozen numeric parameters. Most of these change seldom – you tend to find a graphics style
that suits you, then stick with it for many plots. Yorick demotes the stylistic parameters
to a lower rank; they are intentionally harder to access and change than more urgent items
like plot limits or log scaling. (The gridxy function is an exception – it changes the stylistic
parameters that determine how Yorick draws ticks, but has a relatively simple interface.)

Designing a new graphics style requires patience, hard work, and multiple iterations. Use
the ‘*.gs’ files which come with the Yorick distribution (installed in Y_SITE+"gist") as
examples and starting points for your own designs. The following sections should help you
to understand the meaning of the various style parameters, but I am not going to attempt
to lead you through an actual design. Yorick’s predefined graphics styles usually suffice.

3.5.1 Style keyword

Graphics styles are ordinarily read from files, which you load by means of the style=
keyword to the window command. The Yorick distribution comes with several style files:

The ‘work.gs’ file is the default style and my own preference. Many people prefer
the ‘boxed.gs’ style, which looks more like other graphics packages (baaa baaa). The
‘vg.gs’ file stands for “viewgraph graphics style”, which I recommend as the starting point
for high quality graphics. There is a ‘vgbox.gs’ style as well. The ‘axes.gs’ style has
coordinate axes with ticks running through the middle of the viewport, similar to the style
of many elementary math textbooks. The ‘nobox.gs’ style has no tick marks, labels, or
other distractions; use it for drawing geometrical figures or imitating photographs. The
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‘work2.gs’ and ‘boxed2.gs’ styles are variants which allow you to put a second set of tick
marks and labels on the right hand side of the plot, independent of the ones on the left side.
(This is a little cumbersome in Yorick, but if you really need it, that’s how you’re supposed
get it.) Finally, ‘l_nobox.gs’ is a variant of the nobox style in landscape orientation; all
the other styles give portrait orientation.

For example,
window, style="nobox.gs"

switches to the nobox style. This clears the current display list; the new style will take
effect with your next plot. If you have several different windows, they may have different
styles; each window has its own style, just as it has its own display list.

The style files are in the Y_SITE+"gist" directory; the file ‘work.gs’ in that directory
contains enough comments for you to see how to write your own variants of the distribution
style files. You can put variants into either that public directory, or into a private directory
called ‘~/Gist’, or in Yorick’s current working directory to enable the style= keyword to
find them.

3.5.2 ‘style.i’ functions

If you need to control details of the graphics style from a Yorick program, you can include
the library file ‘style.i’:

#include "style.i"

This defines functions get style and set style which enable you to determine and change
every detail of Yorick’s graphics style model. Functions read style and write style read from
or write to a text file in the format used by the style= keyword.

3.5.3 Coordinate systems

Most Yorick graphics styles define only a single coordinate system. In other words, there
is a single transformation between the world coordinates of your data, and the normalized
device coordinates (NDC) on the sheet of paper or the screen.

The world-to-NDC transformation maps the x-y limits of your data to a rectangle in
NDC space, called the viewport. Normally, Yorick will not draw any part of your data lying
outside the viewport. However, you can tell Yorick to use raw NDC coordinates without
any transformation by means of the plsys command:

plsys, 0

tells Yorick not to transform data from subsequent plotting primitives. When you are
plotting to “system 0”, your data will not be clipped to the viewport. In NDC coordinates,
the bottom left corner of the 8.5 by 11 sheet of paper is always (0,0), and 0.0013 NDC unit
is exactly one printer’s point, or 1/72.27 inch.

You can switch back to the default “system 1” plotting with:
plsys, 1

The fma command also switches you back to “system 1” as a side effect. Switching
windows with the window command puts you in the coordinate system where you most
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recently plotted. Note that plsys returns the old system number if you call it as a function;
together with the current window function you can write new functions which do something
elsewhere, then return to wherever you were before.

Remember that there is a special relation between the window on your screen and an
8.5 by 11 inch sheet of paper; the bottom left corner of the visible screen window is not
usually at (0,0) in NDC. Instead, the NDC point (0.3993,0.6342) in portrait mode – or
(0.5167,0.3993) in landscape mode – remains at the center of your screen window no matter
how you resize it. (The points make more sense in inches: (4.25,6.75) – centered horizontally
and an equal distance down from the top of the page for portrait orientation, and (5.50,4.25)
– centered on the page for landscape orientation.) Furthermore, the screen scale is always
75 dpi or 100 dpi, that is, either 798.29 pixels per NDC unit or 1064.38 pixels per NDC
unit.

(I apologize to European users for not making explicit provision for A4 paper. If you use
Yorick’s eps command for serious, high quality output, the page positioning is not an issue.
For rough draft or working plots, I hope the fact that Yorick produces off-center pictures
on A4 paper will not hurt you too much. An inch, incidentally, is 2.54 cm.)

You can also create a graphics style with multiple world coordinate systems. For example,
you could define a style with four viewports in a single window, in a two by two array. If
your style has more than one coordinate system, you use

plsys, i

to switch among them, where i can be 0, 1, 2, up to the number of coordinate systems in your
style. Each coordinate system has its own limits, logxy, and gridxy parameters. However,
all systems in a window must share a single palette (many screens don’t have more colors
than what you need for one picture anyway). The limits, logxy, and gridxy commands are
meaningless in “system 0”, since there is no coordinate transformation there. If invoked as a
function, plsys will return the current coordinate system, which allows you to do something
in another system, then reset to the original system.

For interactive use, I find multiple coordinate systems too confusing. Instead, I pop up
multiple windows when I need to see several pictures simultaneously. For non-interactive
use, you should consider making separate Yorick pictures, saving them with the eps com-
mand, then importing the separate pieces into a page layout program to combine them.

3.5.4 Ticks and labels

The style parameters regulating the location of the viewport, appearance of the tick
marks, and so on are fairly straightforward: You can specify which of the four sides of the
viewport will have tick marks, or you can select “axis” style, where coordinate axes and
ticks run through the middle of the viewport. Tick marks can extend into or out of the
viewport, or both (beware that tick marks which project into the viewport often overlay a
portion of your data, making it harder to interpret). You can draw a frame line around the
edge of the viewport, or just let the tick marks frame your picture. You can specify which,
if any, of the four sides of the viewport will have numeric labels for the ticks, the distance
from the ticks to the labels, the font and size of the labels, and so forth.

An elaborate artificial intelligence (or stupidity) algorithm determines tick and label
positions. Four parameters control this algorithm: nMajor, nMinor, logAdjMajor, and
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logAdjMinor. Tick marks have a hierarchy of lengths. The longest I call major ticks; these
are the tick marks which get a numeric label (if you turn on labels). Like the scale on a
ruler, there is a hierarchy of progressively shorter ticks. Each level in the hierarchy divides
the intervals between the next higher level into two or five subdivisions – two if the interval
above had a width whose least significant decimal digit of 1 or 2, five if that digit was 5.

Only two questions remain: What interval should I use for the major ticks, and how
many levels should I proceed down the hierarchy? The nMajor and nMinor parameters
answer these questions. They specify the upper limit of the density of the largest and
smallest ticks in the hierarchy, respectively, as follows: The tick interval is the smallest
interval such that the ratio of the full interval plotted to that interval is less than nMajor
(or nMinor). Only major tick intervals whose widths have least significant decimal digit 1,
2, or 5 are considered (otherwise, the rest of the hierarchy algorithm fails).

Log scaling adds two twists: First, if there are any decades, I make decade ticks longer
than any others, even if the first level of subdecade ticks are far enough apart to get numeric
labels. If there will be ticks within each decade, I divide the decade into three subintervals
– from 1 to 2, 2 to 5, and 5 to 10 – then use the linear scale algorithm for selecting tick
intervals at the specified density within each of the three subintervals. Since the tick density
changes by at most a factor of 2.5 within each subinterval, the linear algorithm works pretty
well. You expect closer ticks on a log scale than you see on a linear scale, so I multiply the
nMajor and nMinor densities by logAdjMajor and logAdjMinor before using them for the
subintervals.

A final caveat: On the horizontal axis, long numeric labels can overlap each other if the
tick density gets too high. This depends on the font size and the maximum number of digits
you allow for those labels, both of which are style parameters. Designing a graphics style
which avoids this evil is not easy.

3.6 Queries, edits, and legends

Yorick allows you to query the current display list, and to edit parameters such as line
types, widths, and the like. I usually choose to simply make a new picture with corrected
values; the existing low level editing command is more suited to be the basis for a higher
level menu driven editing system.

3.6.1 Legends

Every plotting primitive function accepts a legend= keyword to allow you to set a legend
string describing that object. If you do not supply a legend= keyword, Yorick supplies a
default by repeating a portion of the command line. For example,

plg, cos(x), x

will have the default legend "A: plg, cos(x), x", assuming that the curve marker for
this curve is "A". You can specify a more descriptive legend with the legend= keyword:

plg, cos(x), x, legend="oscillating driving force"
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If you want the legend to have the curve marker prepended, so it is "A: oscillating

driving force" if the curve marker is "A", but "F: oscillating driving force" if the
curve marker is "F", you can begin the legend string with the special character "\1":

plg, cos(x), x, legend="\1: oscillating driving force"

Like legends, you can specify a curve marker letter with the marker= keyword, but if
you don’t, Yorick picks a value based on how many curves have been plotted. By default,
Yorick draws the marker letter on top of the curve every once in a while – so A’s mark
curve A, B’s mark curve B, and so on. This is only relevant for the plg and plc commands.
This default style is ugly; use it for working plots, not polished graphics. You should turn
the markers off by means of the marks=0 keyword for high quality plots, and distinguish
your curves by line type. For example,

plg, cos(x), x, marks=0, type="dash",
legend="oscillating driving force (dash)"

In order to conserve screen space, legends never appear on your screen; they only appear
in hardcopy files. Furthermore, depending on the graphics style, legends may not appear in
hardcopy either. In particular, the ‘vg.gs’ and ‘nobox.gs’ styles have no legends. This is
because legends are ugly. Legends take the place of a proper figure caption in working plots.
For high quality output, I expect you to take the trouble to add a proper caption. You can
use the legends=0 keyword to the window command in order to eliminate the legends even
from those graphics styles where they normally appear.

3.6.2 plq and pledit

Any time you want to see your legends, you can type:
plq

For any plotting primitive you have issued, you can find all its keyword values by speci-
fying its index in the plq list (the basic plq command prints this index):

plq, 3

For the plc command, each contour level is a polyline; you can find out about each
individual level by adding a second index argument to plq.

You can also invoke plq as a function in order to return representations of the current
display list elements for use by a Yorick program.

Just as plq allows you query the current display list, pledit allows you to edit it. You
specify an index as in the plq command (or two indices for a specific contour level), then
one or more keywords that you want to change. This is occasionally useful for changing a
line type or width. One could build a more user friendly interface combining plq and pledit
with some sort of menu or dialogue.

3.7 Defaults for keywords

With the pldefault command, you can set default values for many of the keywords in
the window command and the primitive plotting commands. These keywords control the
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line type, width, and color for the plg, plc, plm, and pldj commands, the style and dpi of
newly created windows, and other properties of graphics windows and objects.

You can use pldefault interactively to set new, but temporary, default values before
embarking on a series of plots. Or place a pldefault command in your ‘~/Yorick/custom.i’
file if your personal preferences differ from Yorick’s defaults.

You must use the hcp file command to set values for the dump= or ps= keywords (which
determine whether to dump the palette to hardcopy files and whether automatically created
hardcopy files are PostScript or binary CGM), and these settings remain in effect until you
explicitly change them.

For example, if you want to use the ‘vg.gs’ style, with unmarked wide lines, and you
want PostScript hardcopy files (by default) including the palette for each frame, you can
put the following two lines in your ‘custom.i’ file:

pldefault, style="vg.gs", marks=0, width=4;
hcp_file, dump=1, ps=1;

The values you set using pldefault are true default values – you can override them on
each separate call to window or a plotting primitive, but the default value remains in effect
unless you reset it with a second call to pldefault. Conversely, you can’t temporarily override
a dump= or ps= value you set with hcp file – you just have to set them to a new value.

3.8 Writing new plotting functions

You may want to plot something not directly supported by one of the plotting primitive
functions. Usually, you can write your own plotting function to perform such a task. As
an example, suppose you want to plot a histogram – that is, instead of a smooth curve
connecting a series of (x,y) points, you want to draw a line consisting of a horizontal segment
at each value of y, joined by vertical segments (this is sometimes called a Manhattan plot
for its resemblance to the New York City skyline).

You quickly realize that to draw a histogram, you really need the x values at the vertical
segments. This function works:

func plh(y,x)
{

yy = xx = array(0.0, 2*numberof(y));
yy(1:-1:2) = yy(2:0:2) = y;
xx(2:-2:2) = xx(3:-1:2) = x(2:-1);
xx(1) = x(1);
xx(0) = x(0);
plg, yy, xx;

}

Notice that the x array must have one more element that the y array; otherwise the
assignment operations to xx will fail for lack of conformability.

A more sophistocated version would include the possibility for the caller to pass plh the
keywords accepted by the plg function. Also, you might want to allow y to have one more
element than x instead of x one more than y, in order to start and end the plot with a
vertical segment instead of a horizontal segment. Here is a more complete version of plh:
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func plh(y,x,marks=,color=,type=,width=)
/* DOCUMENT plh, y, x

plot a histogram (Manhattan plot) of Y versus X. That is,
the result of a plh is a set of horizontal segments at the Y
values connected by vertical segments at the X values. If X
has one more element than Y, the plot will begin and end with
a horizontal segment; if Y has one more element than X, the
plot will begin and end with a vertical segment. The keywords
are a subset of those for plg.

KEYWORDS: marks, color, type, width
SEE ALSO: plg

*/
{
swap = numberof(x)<numberof(y);
if (swap) { yy = y; y = x; x = yy; }
yy = xx = array(0.0, 2*min(numberof(y),numberof(x)));
yy(1:-1:2) = yy(2:0:2) = y;
xx(2:-2:2) = xx(3:-1:2) = x(2:-1);
xx(1) = x(1);
xx(0) = x(0);
if (swap) { y = yy; yy = xx; xx = y }
plg, yy, xx, marks=marks, color=color, type=type, width=width;

}

The point of an interpreted language is to allow you to easily alter the user interface to
suit your own needs. Designing an interface for a wide variety of users is much harder than
designing one for your own use. (The first version of plh might be adequate for your own use;
I wouldn’t release less than the second version to a larger public.) Linking your routines to
the Yorick help command via a document comment is useful even if never anticipate anyone
other than yourself will use them. Public interface routines should always have a document
comment.

3.9 Animation

Yorick’s ordinary drawing commands make poor movies. In order to make a good movie
on your screen, you need to use more resources – the idea is to draw the picture into offscreen
memory first, then use a fast copy operation to make the entire frame appear instantly.

The animate command creates an offscreen pixmap, and redirects the rendering routines
there, and modifies the fma command to perform the copy from offscreen to onscreen. A
second animate command returns to the ordinary mode of operation.

You can’t use animate mode for ordinary interactive work, because you don’t get to see
your picture until the fma. Typically, you need to write a Yorick function which enters
animate mode, loops producing frames of the movie, then exits animate mode. Use the
high level movie interface by including

#include "movie.i"

After this include, you can use the movie function, and let it manage the low level animate
function for you. You only need to write a function (passed as an argument to movie) that



62 Yorick

draws the n-th frame of your movie and returns a flag saying whether there are any more
frames. You can easily build and test this function a frame at a time in ordinary non-
animation mode. Study the ‘demo2.i’, ‘demo3.i’, and ‘demo5.i’ demonstration programs
that come with the Yorick distribution to learn more about making movies.

3.10 3D graphics interfaces

You can combine Yorick’s graphical primitives to create your own graphics interfaces.
The Yorick distribution includes a simple 3D graphics interface built in just this way. Study
the ‘pl3d.i’ library file if you need an example of how to do this.

Before you can access the 3D functions, you need to include either ‘plwf.i’ or ‘slice3.i’,
which provide the highest level 3D interfaces. The ‘plwf.i’ interface lets you plot scalar
functions of two variables (like plc or plf). The ‘slice3.i’ interface allows you to plot
isosurfaces and slices of scalar functions of three variables. The ‘demo5.i’ demonstration
program in the Yorick distribution has examples of both; study it to see how they work in
detail.

3.10.1 Coordinate mapping

Since the picture you are viewing is always two dimensional, you need to project three
dimensional objects onto your screen. I designed the 3D interface to allow you to change
this projective mapping without re-issuing plotting commands, by analogy with the 2D
limits command.

Instead of limits, however, you need to specify a projection. Imagine that your screen
is the image plane of a camera. This camera carries a coordinate system in which +x
is rightward, +y is upward, and +z is out of the screen toward your face. Your world
coordinate system – the coordinates of your data – has some orientation relative to these
camera coordinates. You can rotate your world coordinates – and see the object you have
plotted rotate – using either the rot3 or orient3 commands.

The three arguments to rot3 are the angles (in radians) to rotate your object about the
camera x, y, and z axes. These three rotations are applied in order, first the x angle, then
the y angle, then the z angle. Omitted or nil arguments are the same as zero arguments.
Note that 3D rotation is not a commutative operation, so if you want the z rotation to come
first, followed by an x rotation, you need to issue two rot3 commands (like limits or logxy
changes, rot3 changes accumulate so Yorick will only redraw your screen once):

rot3,,,zangle; rot3,xangle

The orient3 operation is less general than rot3, and therefore easier to use. With orient3,
the z axis of your world coordinates always projects parallel to the camera y axis, so z is
plotted upward on your screen. The first argument to orient3 is the angle about the world
z axis that the world x axis should be rotated relative to the camera x axis. The optional
second argument to orient3 is the angle from the camera y to the world z – the angle at
which you are looking down at the scene. Once set, that downlook angle persists until you
reset it. With no arguments, orient3 returns to a sane standard orientation. Hence, you
can just type:
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orient3

to return to a standard view of your scene.

Unlike rot3, the results of an orient3 are not cumulative. With each orient3 call, you
completely specify the orientation of your object. Thus, if you set the orientation of your
object by orient3:

orient3, -.75*pi

and you want to twist it just a little, you would issue a slightly different orient3 command:
orient3, -.70*pi

While if your rot3 command
rot3,, -.75*pi

were not quite right, you’d twist it a little more by specifying a small angle:
rot3,, .05*pi

Unfortunately, the projection operation is more complicated than merely the three angles
of an arbitrary rotation matrix. The distance from your camera (or eye) to the object also
enters. By default, you are infinitely far away, looking through an infinite magnification
lens. This is called isometric projection, because equal length parallel segments in your
world coordinates have equal length on your screen, no matter how close or far from the
camera. If you want a perspective picture, you can use the setz3 command to set the z
value in the camera coordinate system where your camera (or eye) is located.

Don’t bother attempting to put the camera inside your data; it’s not edifying. Extreme
fisheye perspectives won’t make your scientific data more intelligible. Keep the camera well
outside your object.

Your camera always looks toward -z. Initially, the aim point is the origin of the camera
coordinate system, but you can change it to any other point by means of the aim3 function.
If you want to specify an aim point in your world coordinate system instead, use the mov3
function, which is analogous to rot3.

In general, you should use the nobox.gs graphics style, since the 2D axes are not useful.
For an isometric view, the 2D (x,y) axes are simple projections of your (x,y,z) world coor-
dinates. For a perspective view (after you have called setz3), the 2D (x,y) coordinates are
the tangents of ray angles between the camera z axis and points on your object. The 2D
limits command is useful for cropping or adjusting your view, but you should not turn off
the square=1 keyword.

The functions save3 and restore3 save and later restore the entire 3D coordinate mapping,
including the effects of rot3 or orient3, mov3, aim3, and setz3. You can also undo the effects
of any number of these commands by means of the undo3 function.

3.10.2 Lighting

Yorick’s pseudocolor model cannot describe a shaded color object. (You need to be able
to specify arbitrary colors for that.) Therefore, if you want shading to suggest a 3D shape,
you must settle for black and white (or any single color – the ‘heat.gp’ palette works about
as well as ‘gray.gp’ for shading).
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You also need to worry about more variables – namely the position and relative brightness
of any lights illuminating your object. You call the light3 function to set up light sources.

The 3D surfaces comprising your object (plotted by either plf or plfp for the ‘plwf.i’
or ‘slice3.i’ interfaces) consist of a number of polygonal facets. Yorick assigns a 3D
normal vector to each facet (for non-planar polygons, the direction is somewhat arbitrary).
The lighting model, which you set up by light3 calls, maps normal directions to surface
brightness. If the facet is oriented so that it reflects one of your light sources directly
toward your camera, that facet will appear very bright.

The functional form of this specular reflection model is (1+cos(alpha))^n, where alpha
is the angle between your camera and the light source, as seen from the center of the facet.
You can adjust the power n. Large n gives a polished metallic look; small n gives a matte
look. You can specify as many light sources as you want. However, the light sources are all
infinitely far away. Also, although you can specify a different n for each light source, you
cannot get dfferent values of n for different surfaces or parts of surfaces.

Instead of or in addition to these specular light sources, you can also get diffuse lighting.
In this model, the brightness of a surface is simply proportional to the cosine of its angle
relative to your viewing direction. Thus, a surface you view face on is brightest, while one
viewed edge on is dimmest (the effect is called limb darkening).

All of these effects are controlled by keywords to the light3 function: specular (brightness
of specular light sources), sdir (directions to specular light sources), spower (the powers n
for the specular light sources), diffuse (brightness of diffuse light source), and ambient (an
overall additive brightness). The light3 function also returns a value, which you can pass
back to it in a later call in order to restore a previous lighting specification.

These lighting models – which are actually the standard models you find in most 3D
graphics packages – bear little relationship to the appearance of real world scenes. There
are no shadows, and surfaces have no intrinsic texture. Your goal is excitement, not realism.

3.10.3 gnomon

Use the gnomon function to turn the gnomon on or off. The gnomon is a projection
of three orthgonal segments parallel to the world x, y, and z axes. The letters x, y, and
z appear near the ends of the segments – a black on white letter means the segment is
pointing out of the screen; white on black means into the screen.

A related function is cage3, which turns 3D axes on or off. The cage is a rectangular
box surrounding your object, with tick marks on its edges to make your plot a 3D analogue
of a typical 2D plot. (Of course, unlike the 2D plot, there is no way you can actually use
the ticks around the cage to figure out the coordinates of a point in your picture.) The
faces of the cage are at planes set by the limit3 function. The plwf function automatically
calls limit3 with reasonable extreme values, but for the pl3tree function you will need to
call limit3 yourself. Unlike the 2D limits function, limit3 allows you to set the aspect ratio
of the cage; by default cage3 scales your x, y, and z world coordinates to make the edges of
the cage appear as equal lengths.

3.10.4 plwf interface
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A plwf plot contains the same information as a plf or plc plot; a plwf is like looking at
terrain from a mountain peak, while plf or plc is like looking at a map. (Have you ever
stood at a vista point, and used a map to identify and understand the “real” scene you are
seeing? Would you rather have a photograph of the vista or a map to guide you through
unfamiliar terrain?)

Like plc, plwf needs point centered z values on a quadrilateral mesh. A scale factor
relating the units of z to the units of x or y may be specified via keyword; if not, plwf
chooses a scale factor to make the range of z values half of the larger of the ranges of x and
y. Other keywords allow you to choose whether or not the mesh lines will be drawn, and
whether the surface itself will be shaded according to the scene lighting, or simply left the
background color. (The latter choice results in a wire frame plot, which is the wf in plwf.)

3.10.5 slice3 interface

The slice3 function, in contrast, makes planar slices or isosurface contours of functions of
three variables. You can pseudocolor the planar slices, or show projections of the isosurfaces,
or combine slices with isosurfaces. The plfp function makes the actual plots, but you call a
higher level function, pl3tree.

Unlike plwf, you must invoke at least two functions in order to plot anything. First,
you call to slice3 returns either a planar slice through your 3D data, or an isosurface of
some scalar function on your 3D mesh. Next, you call pl3tree in order to add the slice or
isosurface to your 3D display list.

Again, Yorick’s pseudocolor model does not permit partially transparent surfaces. Often,
you need to slice open closed isosurfaces like a melon in order to view the interior. Use the
slice2 and slice2x functions to make slices like this. Unfortunately, when you remove slices
to make interior surfaces visible, you will only be able to see through your slice from a
restricted range of viewing directions. That is, the best slicing planes will depend on your
viewing direction. Study the ‘demo5.i’ for an example of how to make this type of picture.

A trick allows you to both color your slices (like a 2D plf or pli), and shade your iso-
surfaces, despite the limitations of the pseudocolor model. The idea is to split your palette
into a gray scale you can use to shade isosurfaces, followed by a color palette you can use
to pseudocolor slices. The split palette routine in ‘slice3.i’ generates such a split palette.
Again, read ‘demo5.i’ for details.
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4 Embedding Compiled Routines Inside Yorick

You can create a custom version of Yorick containing your own C or Fortran compiled
code. If you are careful, your custom version will be easily portable to any site where Yorick
has been installed. You will considerably ease portability problems (read “future hassles
for yourself”) by writing in ANSI C, which is a portable language, as opposed to Fortran,
which is not.

My experience with C++ is that its portability is intermediate between ANSI C and
Fortran. You should be able to write C++ packages for Yorick by using the extern "C"
statement for the interface routines called by the interpreter. I don’t encourage this, how-
ever, since the interpreted language removes many of the motives for programming in C++
in the first place. I won’t say any more about C++ packages for Yorick; the idea is to use the
‘Make-cxx’ template instead of the standard ‘Maketmpl’ to build versions of Yorick which
include C++ packages.

If you do choose Fortran, stick to a strict subset of ANSI Fortran 77. Do not attempt to
pass character variables into or out of interface routines, nor put them in common blocks.
Also, try not to use common blocks to pass inputs to or receive outputs from your interface
routines. (This is possible; if you enjoy Fortran programming, presumably you’ll enjoy
figuring out a portable way to do this.)

Whether you write in Fortran or C, do not attempt to do I/O of any sort in your compiled
code. The whole idea of embedding routines inside Yorick is to let Yorick handle all I/O –
text and graphics.

In the following discussion, I refer to three directories: ‘Y_SITE’ is the directory where
the architecture independent parts of Yorick reside; everything Yorick needs at runtime is
here. ‘Y_HOME’ is the directory where the libraries and executables you need to build custom
versions are stored. ‘Y_LAUNCH’ is the directory containing the executable for your version
of Yorick. When you run Yorick, the names of all three directories are available as variables;
for example, start yorick and type Y_HOME to print the name of that directory. Also, I will
only discuss the UNIX program development environment; at the present time, Yorick is
not easy to extend on any other platform.

The first step is to create a directory in which to build your custom version of Yorick,
and put your C and/or Fortran source and header files there.

Next, you need to write a Yorick include file ‘my_start.i’ which will be loaded whenever
your custom Yorick starts. This file is read not only by Yorick as a startup file, but also by
the Codger automatic code generator when you make the custom version. Codger generates
a table of all of the compiled objects (functions, global variables, or Fortran common blocks)
which can be referenced from the interpreter. It will also generate wrapper code to call your
compiled functions, if you decide not to do this yourself. In this include file:

extern my_func;
/* DOCUMENT my_func(input)

returns the frobnostication of the array INPUT.
*/

connects my_func to a compiled function Y_my_func of type BuiltIn, which you are
responsible for writing. See ‘Y_HOME/ydata.h’ for the definition of the BuiltIn function
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type. This function must pop its arguments off of Yorick’s interpreter stack using routines
declared in ‘Y_HOME/ydata.h’, and push its result back onto the stack. The functions YGet*
grab things off the stack; sp is the stack pointer. The Globalize function gives you access
to variables by the names visible to the interpreter; they are in globTab. You can use Push*
functions to push values onto the stack; use CheckStack to be sure there is enough stack
space to do so.

Usually, you want to avoid all these details; codger can generate ‘Y_my_func’ for you
automatically. To do this, put PROTOTYPE comments in your startup include file:

func my_func(input)
/* DOCUMENT my_func(input)

returns the frobnostication of the array INPUT.
*/
{
return my_func_raw(input, numberof(input));

}
extern my_func_raw;
/* PROTOTYPE

double my_func_C_name(double array input, long length)
*/

This generates a wrapper for a C function which takes a single array as input and returns
a scalar result. If the function had been Fortran, it would have looked like this (Fortran
passes all arguments by reference – that is, as if they were arrays):

func my_func(input)
/* DOCUMENT my_func(input)

returns the frobnostication of the array INPUT.
*/
{

return my_func_raw(input, numberof(input));
}
extern my_func_raw;
/* PROTOTYPE FORTRAN

double my_func_Fortran_name(double array input, long array length)
*/

Legal data types for the function return result in the PROTOTYPE comment are: void (i.e.-
a subroutine), char, short, int, long, float, or double.

Legal data types for the function parameters in the PROTOTYPE comment are: void
(only if there are no other parameters), char, short, int, long, float, double, string (char *,
guaranteed 0-terminated), or pointer (void *). These may be followed by the word "array",
which becomes "*" in the C source code, to indicate an array of that type. The parameter
name is optional.

The DOCUMENT comment should start with /* DOCUMENT. They will be returned by the
interpreted command help, my_func, and be included in the poor- man’s document pro-
duced by Yorick’s "mkdoc" command (see ‘Y_HOME/include/mkdoc.i’).

extern my_global;
reshape, my_global, datatype;
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attaches the interpreted variable my_global to a C-compiled global of the same name,
which has the data type datatype (this must have been declared in a previous struct or be
one of the primitive types). If you want my_global to be attached to a global variable of a
different name, use:

extern my_global;
/* EXTERNAL my_global_C_name */
reshape, my_global, datatype;

To attach to a Fortran common block, say
double var1, var2, var3
common /my_common/ var1, var2, var3
save /my_common/

(note that this doesn’t make sense unless the common block is saved outside the scope
of the functions in which it is used) use:

struct my_common_type { double var1, var2, var3; }
extern my_common;
/* EXTERNAL FORTRAN my_common */
reshape, my_common, my_common_type;

If you mix double, integer, and real data in a single common block, you can ensure
that you won’t have any alignment difficulties by putting all the doubles first, followed by
integers and reals. If you don’t do this, you’re relying on the existence of a Fortran compiler
switch which forces proper data alignment – some machine someday won’t have this.

Near the beginning of your startup include file (or files – you can have several if you
like), you should place a MAKE-INSTRUCTIONS comment:

/* MAKE-INSTRUCTIONS
SRCS = src1.c src2.c src3.c \

src4.c src5.f src6.c src7.f
LIB = frob
#DEPLIBS =
#NO-WRAPPERS
*/

In this comment, the four keywords SRCS, LIB, DEPLIBS, and NO-WRAPPERS are recog-
nized. You can use \ at the end of a line to continue it on the next line. Only the SRCS

keyword is mandatory; you can either omit the others, or precede them by a # to comment
them out, as with NO-WRAPPERS in the example.

The SRCS is a space delimited list of the source files required to build the compiled
functions (and any functions they may call) declared in this startup include file. This list
is used in two ways: first, it determines the names of the corresponding object files, and
second, any .f or .F suffixes alert Yorick to load with any special libraries necessary for
Fortran.

The LIB is the name of the library to be built for your package. In the example, the
library will be libfrob.a. If you do not supply a library name, no library will be built. This
doesn’t affect your custom Yorick, but if you later want to add more compiled functions,
you won’t have an easy way to tell Yorick to pick up the functions in this package.

The DEPLIBS is a space delimited list of system libraries that your package needs. You
should not list m (the libm math library), X11, or any other library which Yorick routinely
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loads with on your platform. Hopefully your package will not need any dependent libraries,
because if it does, it will be much less portable. Not only will those libraries be unavailable
on some platforms, but they will almost certainly be in different locations. For now, you
will need to edit the Makefile by hand to insert the proper -L options to allow the compiler
to find these libraries, and you will need to do that separately on every platform where you
build your package. I would like to automate this to some extent – the obvious thing is to
put a list of library locations in Y HOME/lib which can be maintained by a guru at each
site – but for now, you’re on your own.

The NO-WRAPPERS keyword must be present if this startup include file contains no PRO-
TOTYPE comments (yes, I could check for this automatically, but it slows things down
needlessly).

To summarize, in addition to the DOCUMENT comments, your startup include file
should contain PROTOTYPE comments for each compiled function for which you want
codger to automatically generate a wrapper, and a single MAKE-INSTRUCTIONS com-
ment.

Yorick can build a Makefile automatically. If you don’t know what a Makefile is, you
can read the UNIX make manpage, but there is a good chance you won’t need to know –
read on. To do this, remove any old Makefiles from your directory and type (to the shell):

yorick -batch make.i my_prog my_start.i

If your package requires several startup include files, list the others after ‘my_start.i’.
The name my_prog is what your custom version of Yorick will be called.

You can load packages you created previously into your new Yorick by giving their names
after a + on this command line:

yorick -batch make.i my_prog my_start.i + old_pkg1.i old_pkg2.i

These additional startup include files must be in either ‘Y_SITE/startup’ or ‘Y_SITE/contrib’.
(Or you can make softlinks to them from the current directory.) The LIB libraries men-
tioned in those startup include files must be in ‘Y_HOME/lib’ or ‘Y_HOME/lib/contrib’ (or
again have softlinks from your current directory). By default, the packages ‘matrix.i’ and
‘fft.i’ will be included. To omit them, place ‘-matrix’ or ‘-fft’

The ‘make.i’ script produces a Makefile which you can use to build your custom Yorick.
You should regard the automatically produced file as a first cut; feel free to edit it by hand to
get it right. To do that, you will need to read and understand Yorick’s Makefile template,
‘Y_HOME/Maketmpl’. (You can switch to another Makefile template if you need to; the
‘Make-cxx’ and ‘Make-mpy’ templates are lurking in other parts of the Yorick distribution.)
After you’ve got Makefile the way you want it, type:

make

To compile and load your new version of Yorick. After you build it, you can move
your startup include files into ‘Y_SITE/contrib’ or ‘Y_SITE/startup’ and your library into
‘Y_HOME/lib’ or ‘Y_HOME/lib/contrib’ to make them “visible” for other package builders.
You don’t have to move your startup include files, but if you don’t, you will need to keep
your new executable in the same directory as they reside – Yorick looks in ‘Y_LAUNCH’ for
them as well as in the standard places.

When you move your package to a different platform, take the Makefile you created
along as a part of it. In your source directory on the new platform, type:
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yorick -batch make.i
make

This will change the path to the Makefile template to the appropriate location on the
new platform. Then make builds your custom version on the new platform. (Yorick versions
older than 1.3 used a different system of Makefile templates; this command should convert
your old Makefile to the new form. The original will be renamed ‘Makefile.old’.

The goal of this system is portability. The basic idea is that all the platform specific
problems can be solved once in the Makefile template (or in the several templates), so that
you can easily move your packages from one platform to another.
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