XOTcl - Tutorial

1.5.5

Gustaf Neumann and Uwe Zdun

XOTecl - Tutorial

XOTecl - Tutorial — Index

XOTecl - Tutorial

Version: 1.5.5

e Introduction

¢ Language Overview
¢ Introductory Overview Example: Soccer Club

® Object and Class System
e Basic Functionalities

¢ Objects
¢ Data on Objects

¢ Methods for Objects

¢ Information about Objects
¢ Classes

¢ Creating Classes and Deriving Instances
O Methods Defined in Classes

¢ Information about Classes
¢ Inheritance
¢ Destruction of Classes

¢ Method Chaining
¢ Dynamic Class and Superclass Relationships
¢ Meta—Classes
¢ Create. Destroy. and Recreate Methods
¢ Methods with Non—Positional Arguments

® Message Interception Techniques

¢ Filter

¢ Mixin Classes

¢ Precedence Order

+ Guards for Filters and Mixins

¢ Querying. Setting. Altering Filter and Mixin Lists
¢ Querying Call—stack Information

¢ System Slots
¢ Attribute Slots

¢ Setter and Getter Methods for Slots

¢ Backward—compatible Short—Hand Notation for Attribute Slots
¢ Experimental Slot Features

¢ Value Checking
¢ Init Commands and Value Commands for Slot Values

® Nested Classes and Dynamic Object Aggregations

¢ Nested Classes

¢ Dynamic Object Aggregations

¢ Relationship between Class Nesting and Object Aggregation
¢ Simplified Syntax for Creating Nested Object Structures

¢ Copy/Move

e Method Forwarding

XOTecl - Tutorial

e Assertions
e Additional Functionalities

¢ Abstract Classes
¢ Automatic Name Creation
¢ Meta—Data

e Integrating XOTcl Programs with C Extensions (such as Tk)

e References

XOTecl - Tutorial

Introduction

Language Overview

XOTecl [Neumann and Zdun 2000a] is an extension to the object—oriented scripting language OTcl [Wetherall
and Lindblad 1995] which itself extends Tcl [Ousterhout 1990] (Tool Command Language) with
object—orientation. XOTcl is a value—added replacement for OTcl and does not require OTcl to compile.

XOTecl runs in the tc1sh and provides a few extension commands. These are offered in a Tcl namespace
: :xotcl, and can be imported into the current namespace to reduce typing and improve readability. All Tcl
commands remain available (and are also applicable on the extension constructs).

A central property of Tcl is, that it uses strings solely for the representation of data. Internally it uses an
dynamic type system with automatic conversion (which enables efficient type handling). For that reason all
components (e.g. written in C) once integrated in Tcl automatically fit together and the components can be
reused in unpredicted situations without change. The evolving component frameworks provide a high degree
of code reuse, rapid application development, and ease of use. The application developer may concentrate on
the application task solely, rather than investing efforts in fitting components together. Therefore, in certain
applications scripting languages like Tcl are very useful for a fast and high—quality development of software

(see [Qusterhout 1998] for more details).

Tcl is equipped with appropriate functionalities for the easy gluing of components, like dynamic typing,
dynamic extensibility, and read/write introspection. OTcl is an object—oriented extension to Tcl, which
encourages a Tcl-like programming style and is composed of language constructs with properties similar to
Tcl. It offers an object—orientation with encapsulation of data and operation without protection mechanisms
and single and multiple inheritance. Furthermore it enables to change the relationships dynamically, offers
read/write introspection, has a three level class system based on meta—classes and offers method chaining.
These abilities are integrated in XOTcl with only slight changes to OTcl visible to the programmer.

The XOTecl extension aims at complexity and adaptability issues that may occur in context of large
(object—oriented) software structures and in the context of component glueing. In particular we added the
following support:

e Filters as a means of abstractions over method invocations to implement large program structures,
like design patterns.

® Mixin Classes, as a means to give an object or a classes' instances access to several different
supplemental classes, which may be changed dynamically.

® Dynamic Object Aggregations, to provide dynamic aggregations through nested namespaces.

® Nested Classes, to reduce the interference of independently developed program structures.

e Assertions, to reduce the interface and the reliability problems caused by dynamic typing and,
therefore, to ease the combination of components.

® Forwarders, to delegate calls efficiently to other objects or classes.

e Slots, to manage values of instance variables with a common interface.

® Meta—data and Automatic Documentation, to enhance self—-documentation of objects and classes.

Language Overview 4

XOTecl - Tutorial

Figure 1: Language Extensions of XOTcl

Tel
namespaces
introspection
extensibility
. ™
XOTe!
New Functionalities: Adopled from OTCl: Othar
dyrnamic aggregations object-orientation: Extansions
nested classes encapsulation
assertions inheritance
meta-data o _
per-object rmixins multiple inhentance
filter method chaining
meta-classes
readwrite introspection
dynamic extensibility
. A

Introductory Overview Example: Soccer Club

To give you an impression of the language before we go into the details of the language construct, we present
in this section a simple, introductory example. It shall demonstrate the basic language constructs on the
example of a soccer club (the full code can be found in the xotcl/src/scripts/soccerClub.xotcl
file. All the characters in this example are fictitious, and any resemblance to actual persons, living or
deceased, is coincidental.

In XOTcl we do not have to provide a file description as a comment, but we can use the @ object, which is
used generally to provide any kind of information, meta—data, and documentation on a running program.
Here, we just give a file description. Then the makeDoc . xotc1 tool can automatically document the
program file for us.

@ @File {
description {
This is a simple introductory example for the language XOTcl.
It demonstrates the basic language constructs on the example of
a soccer club.

Introductory Overview Example: Soccer Club 5

XOTecl - Tutorial

All things and entities in XOTcl are objects, a special kind of objects are classes. These define common
properties for other objects. For a soccer club, we firstly require a common class for all kinds of members.

Common to all members is that they have a name. Common properties defined across all instances of a class
are called 'parameter' in XOTcl. In this example the instance variable name will be initialized by default with
an empty string.

Class ClubMember -parameter {{name ""}}

A special club member is a P1layer. Derived classes can be build with inheritance (specified through
superclass). Players may have a playerRole (defaults to NONE).

Class Player -superclass ClubMember -parameter {{playerRole NONE}}

Other club member types are trainers, player—trainers, and presidents:

Class Trainer -superclass ClubMember
Class President -superclass ClubMember

The PlayerTrainer uses multiple inheritances by being both a player and a trainer:

Class PlayerTrainer -superclass {Player Trainer}
Now we define the SoccerTeam class:

Class SoccerTeam -parameter {name location type}

We may add a player. This is done by a method. Instance methods are in XOTcl defined with instproc. All
club members are aggregated in the team (denoted by :: namespace syntax).

SoccerTeam instproc newPlayer args {
we create a new player who is part of the soccer team
"eval" is needed to pass the provided arguments to the call of new
eval Player new -childof [self] $args

A player can be transfered to another team. The player object does not change internally (e.g. the playerRole
stays the same). Therefore we move it to the destination team.

SoccerTeam instproc transferPlayer {playername destinationTeam} {
We use the aggregation introspection option children in order
to get all club members
foreach player [my info children] {
But we only remove matching playernames of type "Player". We do
not want to remove another club member type who has the same
name.
if {[Splayer istype Player] && [$player name] == S$playername} {
We simply 'move' the player object to the destination team.
Again we use a unique autoname in the new scope
Splayer move [set destinationTeam]::[SdestinationTeam autoname player$02d]

Finally we define two convenience to print the members/players to the stdout with puts.

Introductory Overview Example: Soccer Club 6

XOTecl - Tutorial

SoccerTeam instproc printMembers {} {

puts "Members of [my name]:"

foreach m [my info children] {puts " [$m name]"}
}
SoccerTeam instproc printPlayers {} {

puts "Players of [my name]:"

foreach m [my info children] {

if {[$Sm istype Player]} {puts " [$m name]"}

Now let us build to example soccer team objects.

SoccerTeam chelsea —-name "Chelsea FC" -location "Chelsea"
SoccerTeam bayernMunich —-name "F.C. Bayern Minchen" -location "Munich"

With addPlayer we can create new aggregated player objects

Let us start some years in the past, when "Franz Beckenbauer" was still a player.

set fb [bayernMunich newPlayer —-name "Franz Beckenbauer" \
-playerRole PLAYER]

playerRole may not take any value. It may either be NONE, PLAYER, or GOALY ... such rules may be
given as assertions (here: an instinvar gives an invariant covering all instances of a class). In XOTcl the rules
are syntactically identical to if statements:

Player instinvar {
{[my playerRole] == "NONE" ||
[my playerRole] == "PLAYER" |
[my playerRole] == "GOALY"}

If we break the invariant and turn assertions checking on, we should get an error message:

Sfb check all
if {[catch {$fb set playerRole SINGER} errMsgl} {
puts "CAUGHT EXCEPTION: playerRole has either to be NONE, PLAYER, or TRAINER"
turn assertion checking off again and reset to PLAYER
Sfb check {}
$fb set playerRole PLAYER

But soccer players may play quite different, orthogonal roles. E.g. Franz Beckenbauer was also a singer (a
remarkably bad one). However, we can not simply add such orthogonal, extrinsic extensions with multiple
inheritance or delegation. Otherwise we would have either to build a lot of unnecessary helper classes, like
PlayerSinger, PlayerTrainerSinger, etc., or we would have to build such helper objects. This either leads to an
unwanted combinatorial explosion of class or object number

Here we can use a per—object mixin, which is a language construct that expresses that a class is used as a role
or as an extrinsic extension to an object.

First we just define the Singer class.

Class Singer
Singer instproc sing text {

Introductory Overview Example: Soccer Club 7

XOTecl - Tutorial

puts "[my name] sings: S$text, lala."

Now we register this class as a per—object mixin on the player object:
$Sfb mixin Singer

And now Franz Beckenbauer is able to sing:
$fb sing "lali"

But Franz Beckenbauer has already retired. When a player retires, we have an intrinsic change of the
classification. He *is* not a player anymore. But still he has the same name, is club member, and is a singer
(brrrrrr).

Before we perform the class change, we extend the Player class to support it. I.e. the playerRole is not valid
after class change anymore (we unset the instance variable).

Player instproc class args {
my unset playerRole
next

Now we can re—class the player object to its new class (now Franz Beckenbauer is President of Bayern
Munich.

$fb class President
Check that the playerRole isn't there anymore.
if {[catch {$fb set playerRole} errMsg]} {
puts "CAUGHT EXCEPTION: The player role doesn't exist anymore \
(as it should be after the class change)"

But still Franz Beckenbauer can entertain us with what he believes is singing:
$fb sing "lali"
Now we define some new players for Bayern Munich:

bayernMunich newPlayer —-name "Oliver Kahn" -playerRole GOALY
bayernMunich newPlayer —-name "Giovanne Elber" -playerRole PLAYER

If we enlist the players of Munich Franz Beckenbauer is not enlisted anymore:
bayernMunich printPlayers
But as a president he still appears in the list of members:
bayernMunich printMembers
Now consider an orthonogal extension of a transfer list. Every transfer in the system should be notified. But
since the transfer list is orthogonal to SoccerTeams we do not want to interfere with the existing

implementation at all. Moreover, the targeted kind of extension has also to work on all subclasses of
SoccerTeam. Firstly, we just create the extension as an ordinary class:

Introductory Overview Example: Soccer Club

XOTecl - Tutorial

Class TransferObserver

TransferObserver instproc transferPlayer {pname destinationTeam} {
puts "Player 'Spname' 1is transfered to Team '[$destinationTeam name]'"
next

Now we can apply the class as a per—class mixin, which functions exactly like a per—object mixin, but on all
instances of a class and its subclasses. The next primitive ensures that the original method on SoccerTeam
is called after notifying the transfer (with puts to stdout):

SoccerTeam instmixin TransferObserver

If we perform a transfer of one of the players, he is moved to the new club and the transfer is reported to the
stdout:

bayernMunich transferPlayer "Giovanne Elber" chelsea

Finally we verify the transfer by printing the players:

chelsea printPlayers
bayernMunich printPlayers

Object and Class System Do

F i W a s Ml
-

In XOTcl every object is associated with a class over the class relationship. Classes are special objects with
the purpose of managing other objects. *~Managing" means that a class controls the creation and destruction of
its instances and that it contains a repository of methods (" instprocs") accessible for the instances.
Object—specific methods are called ““procs", instance methods are called ““instprocs".

The instance methods common to all objects are defined in the root class Ob ject (predefined or
user—defined). Since a class is a special (managing) kind of object it is managed itself by a special class called
““meta—class" (which manages itself). Meta—Classes are used to define classes and to provides methods for
these. Most classes are defined by the predefined meta—class C1lass. One interesting aspect of meta—classes
is that by providing a constructor pre—configured classes can be derived. Meta—classes can be used to
instantiate large program structures, like some design patterns (see [Neumann and Zdun 1999a] for more
details), where the meta—class may holds the generic parts of the structures. Since a meta—class is an entity of
the program, it is possible to collect these entities in pattern libraries for later reuse easily (more details about
meta—classes are given in a later section).

XOTecl supports single and multiple inheritance. Classes are ordered by the relationship superclassina
directed acyclic graph. The root of the class hierarchy is the class Object. A single object can be instantiated
directly from this class. An inherent problem of multiple inheritance is the problem of name resolution, when
for example two super—classes contain an instance method with the same name. XOTcl provides an intuitive
and unambiguous approach for name resolution by defining the precedence order along a linear " next—path"
incorporating the class and mixin hierarchies, which is modeled after CLOS. A method can invoke explicitly
the shadowed methods by the predefined command next. When this command is executed a shadowed
method is ““mixed into" the execution of the current method. Method chaining without explicit naming of the
targeted method is very important for languages supporting a dynamic class system, because one cannot
always predict which classes are currently participating in the inheritance hierarchy at design time (often

Introductory Overview Example: Soccer Club 9

XOTecl - Tutorial

necessary in inheritance models, like C++).

An important feature of all XOTcl objects is the read/write introspection. The reading introspection abilities of
XOTecl are packed compactly into the info instance method which is available for objects and classes. All
obtained information can be changed at run—time dynamically with immediate effect. Unlike languages with a
static class concept, XOTcl supports dynamic class/superclass relationships. At any time the class graph may
be changed entirely using the superclass method, or an object may change its class through the class
method. This feature can be used for an implementation of a life—cycle or other intrinsic changes of object
properties (in contrast to extrinsic properties e.g. modeled through roles and implemented through per—object
and per—class mixins [Neumann and Zdun 1999¢]) . These changes can be achieved without loosing the
object's identity, its inner state, and its per—object behavior (procs and per—object mixins).

Figure 2: Object and Class System

clo-meta-chjecis clr=-objects

Basic Functionalities

Objects

Initially XOTcl offers two new commands: Ob ject and Class. They represent hooks to the features of the
language. This section discusses both of them in detail and shows how they function in the context of XOTcl.
Note, that even if most of this is compatible to OTcl, a few changes occur. For this reason, this section is no
introduction to plain OTcl. The Ob ject command provides access to the Ob ject class, which holds the
common features of all objects, and allows us to define new objects. Objects are always instances of classes,
therefore, objects defined with the Ob ject command are (initially) instances of the Ob ject class. But since
they have no user—defined type, they may be referred to as singular objects. As all other objects they may be
specialized by object—operations and —data.

The object command has the following syntax:
Object objName ?args?
A command of this form is a short—cut for a message to the create instance method (forwarded

automatically by the unknown mechanism, which is invoked every time the message dispatch system
discovers an unknown message):

Object create objName ?args?

Objects 10

XOTecl - Tutorial

It creates a new object of type Ob ject with the name ob jName (in fact it invokes a create call on the
Object class). objName becomes a new command, which allows us to access the created object. Similar to
the Ob ject command it may be used like a normal Tcl-command (using sub—commands to access the
object's methods). Therefore, this form of access is called object—command approach. A simple example is an
object which holds the information of a kitchen. It is created by:

Object kitchen

An object creation calls the constructor init of the object's class. The destruction of an object is handled by
the destroy instance method. The general syntax of destroy is:

objName destroy

E.g. the kitchen object is destroyed by:

kitchen destroy

To invoke a user—defined destruction process, it is possible to overload this instance method in every class
derived from object.

Note that the destruction of an object is performed by the method dest roy of Object (since every object is
an instance of Ob ject, every object can call destroy). When an application class overloads destroy,
this method should contain a next in order to reach the base class and to actually destroy the object.

Data on Objects

The Ob ject class provides a range of operations to manage objects, including those to manipulate
data—structures on the objects. They are similar to the same—named Tcl-commands:

objName set varname ?value?
objName unset vl ?v2 ... vn?

The set instance method with given value option allows us to manipulate an object—variable's value or to
create a new one, if the variable varname does not exist on the object so far. Without value option the set
operation queries the variable and returns it's value, if the variable exists, otherwise it produces an error
message. The unset operation deletes one or optionally a set of variables from an object. For example the
kitchen object can store information on the color of the wall-paper by:

kitchen set wallPaperColor white

Similar to Tcl—-variables the object variables are dynamical; they may be set at run—time when they are needed
and unset when they become obsolete. E.g. the persons in the kitchen may be stored in an array. If there are no
persons in the kitchen the array is deleted:

Peter enters the kitchen to cook
kitchen set persons(cook) Peter

Marion enters the kitchen to take one of the seats
kitchen set persons(seatl) Marion

Both Peter and Marion leave the kitchen

the array is deleted by unset
kitchen unset persons

Data on Objects 11

XOTecl - Tutorial

Since XOTcl variables are internally realized through Tcl—-variables they may be treated like all
Tcl—variables. For that reason they have all Tcl-variable abilities, including the possibility to handle them as
lists or arrays (as seen in the last example). The array command of Tcl is mapped to an XOTcl-command
directly. An object—oriented call to an object of the form

objName array option arrayName args

forwards its arguments to an array Tcl-command for the object’s instance variable arrayName. It could
be used like the same—named Tcl-command, e.g. the command

kitchen array names persons
returns all indexes currently stored in the persons array.

Similarly Tcl’s incr command is mapped to the object system. A call with the syntax:
objName incr varName ?value?

increments varName with the given value (or without given value with 1).

Methods for Objects

Methods in XOTcl resemble Tcl-procedures. On objects one can define object—specific methods, called
procs. Instance methods which are defined on classes are called instprocs. A new proc is defined using the
proc instance method of the class Object:

objName proc name args body

The arguments of the proc instance method specify the name, the arguments as a Tcl-list, and the body of
the new proc. All of them must be given, only one of args and body may be empty. An example proc would
be a method to let persons enter the kitchen:

kitchen proc enter {name} {
[self] set persons ($name) [clock seconds]

}

Here the predefined self command is used in one of three possible ways, which allow us to access useful
information when working with XOTcl-methods, these are in particular:

® self: returns the name of the object, which is currently in execution. This command is similar to
this in C++. It is automatically generated on each object. If it is called from outside of an XOTcl
method, it produces the error message "Can't find self".

® self class: the self command with the argument c1ass returns the name of the class, which
holds the currently executing instproc. Note, that this may be different to the class of the current
object. If it is called from a proc it returns an empty string.

® self proc: the self command with the argument proc returns the name of the currently executing
method (proc or instproc).

The method enter can be written in XOTecl as well with less syntactic overhead by using the predefined
primitive my instead of [self]:

kitchen proc enter {name} {

Methods for Objects 12

XOTecl - Tutorial

my set persons ($Sname) [clock seconds]

}

Note, that there is a difference to the realization of these object informations to OTcl. XOTcl uses commands
in order to make XOTcl-methods compatible to Tcl-procedures and accessible via namespace—paths. OTcl
uses the three variables self, class and proc, which are filled automatically with proper values by the
interpreter each time a method is called. To gain backwards compatibility XOTcl can be compiled with
-DAUTOVARS to provide these variables additionally. By default this option is turned off.

Each XOTcl-method has its own scope for definition of local variables for the executing method. In most
cases when a method uses object—variables, it is likely that the programmer wants to make one or more of
these variables part of the method's scope. Then the Tcl-command for variable handling, like set, 1index,
array, ... work also on these variables. The instvar instance method links a variable to the scope of an
executing method. It has the syntax:

objName instvar vl ?v2 ... vn?

It makes the variables v1 ... wvn, which must be variables of the object, part of the current method's scope.
A special syntax is:

objName instvar {varName aliasName}

for one of the variables. This gives the variable with the name varName the alias aliasName. This way the
variables can be linked to the methods scope, even if a variable with that name already exists in the scope.
Now the enter method can be adapted slightly and a 1eave method can be added, which uses Tcl's info
command to check whether the named person is in the object's persons array. To demonstrate the
alias—syntax this is done with the persons array and the alias p.

kitchen proc enter {name} {
my instvar persons
set persons ($name) [clock seconds]

}

kitchen proc leave {name} {
my instvar {persons p}
if {[info exists p(Sname)]} {

puts "$name leaves after [expr {[clock seconds]-$p($Sname)}] seconds"
unset p ($name)
} else {

puts "$name is not in the room"

}

A method defined via proc can be deleted by proc using an empty argument list and an empty body. The
following example deletes the method enterx:

Room proc enter {} {}
Information about Objects
XOTcl offers reading and writing introspection. The reading introspection abilities are packed compactly into
the info instance method which is available for objects and classes (there are special info options for object

aggregations, nested classes, mixins, filters, meta—data and assertions, which are explained separately in the
following sections). The info instance method's options, from the view of an object, are summarized in the

Information about Objects 13

XOTecl - Tutorial

following table. They are identically to the OTcl info options on objects.

Options for the info method on objects

Returns the arguments of the specified proc (object specific

objName info args methodName method).

objName info body methodName |[Returns the body of the specified proc.

Returns the name of the class of the current object, if className
was not specified. Otherwise it returns 1 if className matches
the object's class and 0 if not.

objName info class
?className?

Returns all commands defined on the object if pattern was not

objName info commands o .
J * specified. Otherwise it returns all commands that match the

’pattern?

pattern.
objName info default Returns 1 if the argument arg of the specified proc has a default
methodName arg var value, otherwise 0. If the default value exists it is stored in var.

Returns all classes in the precedence order from which the
specified object inherits methods. The returned list of classes

objName info precedence contains the mixin and instmixin classes as well as the classes of

?pattern? the superclass chain in linearized order (i.e., duplicate classes are
removed). If the pattern is specified, only matching classes are
returned.

Returns all variables defined on the object if pattern was not

objName info vars ?pattern?
J P specified, otherwise it returns all variables that match the pattern.

For example on the kit chen object

kitchen info procs

returns enter and leave as a Tcl-list since these are the procs defined on the object.

Classes

Creating Classes and deriving Instances

There are different ways to create a class in XOTcl. They have in common that they derive the new class from
a meta—class. Initially the C1ass command provides access to the meta—class Class, which holds the
features common to all classes. It also allows one to derive new meta—classes. The common way to create a
new class is:

Class className ?args?

Similar to the object short form, this is a short form of a call to the create instance method of the
meta—class Class, which is also executed by the standard unknown mechanism. This mechanism is always
triggered when XOTcl does not know a method called on an object. Supposed that there is no method with the
name className, defined on the class—object of Class, XOTcl looks up the method unknown (which is
found on the Class Ob ject) and executes it. The standard unknown—mechanism of XOTcl calls create
with all arguments stepping one step to the right; in the general case:

Classes 14

XOTecl - Tutorial

Class create className ?args?

This may also be called directly. Besides the indirection when using unknown, in most cases there is no
difference in the action performed: Firstly the memory is allocated, using the alloc instance method; as the
next step the constructor init is called on the creating object, which is in this case the class—object of the
meta—class Class. In seldom cases the programmer may want to suppress the init call. To do so the
alloc instance method may also be called directly:

Class alloc className ?args?

As seen in the preceding section objects are created in the same way. The difference was, that the command
Ob ject, which accesses a class, instead of the command Class, which accesses a meta—class, was used.
The user—defined classes may also be used in the same way to create new objects:

className objName ?args?

Resembling the creation of classes this creates an object ob jName of type className using the unknown
mechanism. That means the create instance method of the class is called. If there is no other instance
method defined on the class—path so far (which would mean, an user defined creation process is invoked), the
create instance method of the class Ob ject is invoked. This method is similar to the create method of
the meta—class Class. It firstly calls the alloc instance method on its (of the C1lass class) which allocates
memory for the object, and makes it an instance of it's class. Afterwards a call to the constructor init is
invoked.

Now we can specify the object for the kitchen by the class to which it belongs. In this case a kitchen is an
instance of a room.

Class Room
Room kitchen

A set call on a class creates an instance variable on the class—object. This variable is unique for all instances,
therefore, it may be referred to as a class variable.

Methods Defined in Classes

Methods which are defined in classes and which are provided to the instances of these classes are called
"instprocs". The syntax for defining an instproc is:

className instproc procname args body

It is similar to the definition of procs on objects, but uses the keyword instproc to distinguish between the
methods defined on the class—object and those defined on the class. Since all rooms (in the modeled world)
have ceilings, we may want to define a simple convenience instproc, which is able to set the color:

Room instproc setCeilingColor color {
my set ceilingColor S$color

}

A special instproc, the constructor init, was mentioned already. Now we are able to define such an instproc.
Defined on a class it is responsible for all initialization tasks, which needed to be performed, when
constructing a new instance object of the class. The constructor of the Room can initialize a variable for the
color, in which the ceiling is painted, to white as default, since this is the color of ceilings without painting.

Creating Classes and deriving Instances 15

XOTecl - Tutorial

Room instproc init args {
my setCeilingColor white
next

After this definition, all instances derived from the Room class have an instance variable ceilingColor
with the value white. The args argument used here is a special argument in Tcl which allows us to use a
list of arguments which may change its length from call to call.

An instproc can be deleted by the method instproc as well. If instproc is called with an empty
argument list and an empty body, the specified method is deleted, as the following example shows:

Room instproc setCeilingColor {} {}

Information about Classes

Resembling to objects, information on classes may be gained through the info instance method of the
meta—class Class. Note that this instance method does not only support the class info options, but also the
object info options, since the accessing command refers to the class—object, which itself is an object and,
therefore, offers its informations. The following table summarizes the additional info options available on
classes.

Options for the info method on classes

Returns a list of all cla