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Abstract. The Mnesia DBMS runs in the same adress space as the

application owning the data, yet the application cannot destroy the con-

tents of the data base. This provides for both fast accesses and e�cient

fault tolerance, normally conicting requirements. The implementation is

based on features in the Erlang programming language, in which Mnesia

is embedded.

1 Introduction

The management of data in telecommunications system has many aspects whereof

some, but not all, are addressed by traditional commercial DBMSs (Data Base

Management Systems). In particular the very high level of fault tolerance which

is required in many nonstop systems, combined with requirements on the DBMS

to run in the same address space as the application, have led us to implement a

brand new DBMS. This paper describes the motivation for, as well as the design

of this new DBMS, called Mnesia. Mnesia is implemented in, and very tightly

connected to, the programming language Erlang and it provides the functional-

ity that is necessary for the implementation of fault tolerant telecommunications

systems. Mnesia is a multiuser Distributed DBMS specially made for industrial

telecommunications applications written in the symbolic programminglanguage

Erlang [1] which is also the intended target language. Mnesia tries to address

all of the data management issues required for typical telecommunications sys-

tems and it has a number of features that are not normally found in traditional

databases.

In telecommunications applications there are needs di�erent from the features

provided by traditional DBMSs. The applications we now see implemented in

the Erlang language need a mixture of a broad range of features which generally

are not satis�ed by traditional DBMSs. Mnesia is designed with requirements

like the following in mind:

1. Fast realtime key/value lookup.
2. Complicated non realtime queries mainly for operation and maintenance.
3. Distributed data due to distributed applications.
4. High fault tolerance.



5. Dynamic re con�guration.

6. Complex objects.

What sets Mnesia apart from most other DBMSs is that it is designed with

the typical data management problems of telecommunications applications in

mind. Hence Mnesia combines many concepts found in traditional databases

such as transactions and queries with concepts found in data management sys-

tems for telecommunications applications such as very fast realtime operations,

con�gurable degree of fault tolerance (by means of replication) and the ability

to recon�gure the system without stopping or suspending it. Mnesia is also in-

teresting due to its tight coupling to the programming language Erlang, thus

almost turning Erlang into a database programming language. This has many

bene�ts, the foremost being that the impedance mismatch [5] between data for-

mat used by the DBMS and data format used by the programming language

which is being used to manipulate the data, completely disappears.

Mnesia is currently used in almost all Erlang based projects within Ericsson

ranging from small scale prototype projects to major switching product projects.

The remainder of this paper is organized as follows. Section 2 is a brief

overview of the DBMS. Section 3 is organized as a listing of typical DBMS

functionalities, a discussion of some telecommunications aspect on the function-

ality and how the functionality is provided by Mnesia. Section 4 contains some

performance measurements and �nally section 5 provides some conclusions.

2 A brief overview of Mnesia

We briey overview the features of Mnesia DBMS. Mnesia is both an exten-

sion of the programming language Erlang as well as an Erlang application. The

DBMS components such as lock manager, transaction manager, replication man-

ager, logger, primary and secondary memory storage, backup system, etc are all

implemented as regular Erlang programs. The query language, however, is im-

plemented as a part of the actual Erlang syntax, whereas the optimizing query

compiler and evaluator are regular Erlang programs. The data model of Mnesia

is of a hybrid type: data is organized as tables of records similar to relations, but

the attributes of the records (including the key) can hold arbitrarily complex

compound data structures such as trees, functions, closures, code etc. As such,

Mnesia could be characterized as a so called object-relational DBMS. Let us

assume, a de�nition for a person record.

-record(person, {name, %% atomic, unique key

data, %% compound unspecified structure

married_to, %% name of partner or undefined

children}). %% list of children

Given this record de�nition, it is possible to create instances of the person

record with the following Erlang syntax where



X = #person{name = klacke,

data = {male, 36, 971191},

married_to = eva,

children = [marten, maja, klara]}.

binds the variable X to a new person record. The data �eld is bound to a

tuple {male, 36, 971191} with three parts. This is an example of a complex

object, and Mnesia puts no constraints on the complexity which is allowed on

attributes. We can even have function objects with variable closures as attribute

values. The variable X is merely an Erlang term, and in order to insert it into

the database, it must be written:

mnesia:write(X)

Series of Mnesia operations can be performed together as an atomic trans-

action. In order to have Mnesia execute a transaction, the programmer must

construct a functional object and then present the Mnesia system with that

functional object similar to [7]. We explain this by an example, assume we wish

to write an Erlang function divorce(Name) which takes the name of a person,

�nds the person from the database, and sets the married_to �eld for the person

and its partner back to the unde�ned value.

divorce(Name) ->

F = fun() >

case mnesia:read(Name) of

[] >

mnesia:abort(no_such_person);

Pers >

Partner = mnesia:read(Pers#person.married_to),

mnesia:write(Pers#person{married_to = undefined}),

mnesia:write(Partner#person{married_to = undefined})

end

end,

mnesia:transaction(F).

The divorce/1 function consists of two statements, the �rst F = .... state-

ment creates a function object, it does not execute anything, it merely constructs

an anonymous function. The second statement gives this function away to the

Mnesia system which executes the function in the context of a transaction, ad-

hering to traditional transaction semantics [2].

The actual function F �rst executes a read operation to �nd the person with

the name Name, it then executes a second read to �nd the partner of the �rst per-

son, and �nally it writes two new records into the database with the married_to

�eld set to unde�ned. These two write operations will e�ectively overwrite the

old values. The function divorce/1 returns the value of the transaction, which

is either {aborted, Reason} or {atomic, Value} depending on whether the

transaction was aborted or not.



Queries in Mnesia are expressed with a list comprehension syntax [15]. A

query to �nd the names of all persons with more than X children is formulated

as:

query [P.name || P < table(person),

length(P.children) > X]

end

This should be read as: construct the list of P.name's such that P is taken

from the table of persons, and length of the children list is greater than X. It is

indeed both possible and natural to mix a query with user de�ned predicates.

Assume a function:

maturep({Sex, Age, Phone}) when Age > 30 >

true;

maturep({Sex, Age, Phone}) >

false.

Then the query:

query [P.name || P <- table(person),

maturep(P.data),

length(P.children) > X]

end

extracts all persons with more than X children and where the second element

of the data �eld is larger than 30. It is also possible to de�ne rules with an

embedded logic language similar to Datalog [16]. If we de�ne the rule:

oldies(Name) :-

P <- table(person),

maturep(P.data),

Name = P.name.

This de�nes a rule, which then acts as a virtual table and application pro-

grams can access the virtual table oldies. The virtual oldies table contains a

subset of the real person table. This is similar to, but more powerful than,

the concept of views found in relational databases. Queries are compiled by an

optimizing query compiler which has been integrated with the normal Erlang

compiler.

Tables can be replicated to several sites (or nodes). The network of nodes

can be a heterogeneous network. Replication is the mechanism whereby we can

construct fault tolerant systems. Access to a table is location transparent, that

is, programs do not have to have explicit knowledge of the location of data. A

table has a unique name and certain properties, we have the following list of

properties attached to each table.



{ type controls whether the table has set or bag semantics. A set has unique

keys, whereas a bag can have several objects with the same key.

{ ram copies a list of Mnesia nodes where replicas of the table are held in ram

only.

{ disc copies a list of Mnesia nodes where replicas of the table are held entirely

in ram, but all update operations on the table are logged to disc.

{ disc only copies a list of Mnesia nodes where replicas of the table are held

on disc only. These replicas are of course considerably slower than replicas

held in ram.

{ index a list specifying on which attributes of the record index information

shall be maintained. All records are always automatically indexed on the

primary key.

{ snmp controls whether the table shall be possible to manipulate through the

Simple Network Management Protocol protocol [4].

Descriptions of all tables are kept in a database schema and Mnesia has

a multitude of functions to manipulate the schema dynamically. Tables can be

created, moved, replicated, changed, destroyed etc. Furthermore all these system

activities are performed in the background and thus allows the application to

utilize the system as usual although the system itself is being changed.

Backups can be constructed of the entire distributed system, these backups

can be installed as fallbacks. This means that if the system should crash, the

database will automatically be recreated from the fallback.

3 DBMS feature discussion

Di�erent DBMSs have di�erent features and characteristics. This section is or-

ganized as a listing of di�erent DBMS characteristics and a short discussion of

the importance and necessity in our intended application domain.

3.1 Complex values

The ability to handle complex values, such as lists, sets, trees, etc e�ciently

and naturally in the DBMS is probably the single most important feature for

a telecommunications DBMS. Telecommunications applications which handle

tra�c are usually driven by external stimuli which arrives at the system. When

such a stimuli arrives in the form of a PDU (Protocol Data Unit) to the system,

the PDU is decoded and some appropriate action must be taken. When the PDU

has been decoded, the system usually has to retrieve some data object, possibly

a subscriber record which is used to decide what action should be taken in

response to the received PDU. In many telecommunications systems the single

most important feature of the data management system is that this lookup

operation is very e�cient. It is also important that the DBMS allows the data

to be structured and stored in such a way so that relevant data can be accessed in

a single lookup operation. This fact makes it hard to model telecommunications



system with traditional relational databases. Organizing the telecommunications

data in third (or even �rst) normal form is usually not possible.

This is one of the reasons why the telecommunications industry have payed so

much attention to object-oriented database systems which allows the data to be

organized in a more exible way than relational database systems. Thus Mnesia

allows the user to use arbitrarily complex objects both as attribute values but

also as key values in the database.

3.2 Data format and address space

Many databases use an internal, language independent format to store data. This

is most unfortunate in telecommunications systems due to the previously men-

tioned fast lookup requirement. Many object oriented DBMSs are tightly coupled

to a programming language like C++ or Smalltalk. The ability to manipulate

regular programming language objects in the database, makes the impedance

mismatch disappear. This not only eases the manipulation of the DBMS but it

also provides an opportunity to implement very e�cient lookup operations since

a lookup can immediately return a pointer to the object by means of the pro-

gramming language being used. If we for example want to implement a routing

table as a database table, it is not realistic to transform the routing data back

and forth from an an external DBMS format for each packet we need to route.

Furthermore it is not realistic to perform any context switches and search the

relevant data for each packet in a process executing in another address space.

This e�ectively rules out all DBMSs that cannot be directly linked into the ad-

dress space of the application, as well as all DBMSs that are linked into the

application but use a language independent format to store data.

The major disadvantage of letting the application run in the same address

space as the DBMS is that if the application should crash due to a program-

ming error, the DBMS may not be given the opportunity to store vital data to

secondary storage before terminating. This means that the entire DBMS must

be recovered before starting up again. This is usually a time consuming process

and in telecommunications system, the downtime must be short. We avoid this

problem since the applications as well as the DBMS are implemented in the Er-

lang language. An Erlang application cannot crash in such away that it e�ects

the DBMS. The application run in the same address space as the DBMS, but

Erlang itself makes it impossible for the crash of one application to e�ect an

other application. Erlang processes have the e�ciency advantage of running in

the same address space but they do not have the possibility to explicitly read or

write each others memory.

3.3 Fault tolerance

Many telecommunications applications are nonstop systems. The system must

be able to continue to provide its services even if a number of hardware or soft-

ware errors occur. This adds requirements not only to the DBMS, but also to the



telecommunication application itself. It inuences the design of the entire appli-

cation and the DBMS must provide the application designers with mechanisms

whereby a su�ciently fault tolerant system can be designed. The mechanism

provided by Mnesia is the ability to replicate a table to several nodes. All repli-

cas of a Mnesia table are equal and there is thus no concept of primary and

standby copies at the DBMS level. If a table is replicated all write operations

are applied to all replicas for each transaction. If some replicas are not available

the write operations will succeed anyway and the missing replicas will be later

updated when they are recovered. This mechanism makes it possible to design

systems where several geographically distinct systems cooperate to provide a

continuously running nonstop system. Many other highly fault tolerant systems

like ClustRa [11] also provide fault tolerance through means of replication. How-

ever, they do not have the ability to execute in the same address space as the

application.

Mnesia can also recover partially from complete disasters. All objects that

are written to disc, are coded in such away that it is possible to safely distinguish

data from garbage. This makes it possible to scan a damaged or crashed disc or

�lesystem and retrieve data from the crashed disc.

3.4 Distribution and location transparency

Mnesia is a truly distributed DBMS where data can be replicated or simply reside

remotely. In such an environment it is important that the DBMS programmer

can access data without explicit knowledge about the location of data. That is,

location transparency of data is important. On the other hand, since it is most

certainly more expensive to access data remotely, it must also be possible for

the application programmer to explicitly �nd this location information in order

to execute the program where the data is. Hence, we want to provide location

transparency as well as the ability to explicitly locate data. Di�erent applications

have di�erent requirements.

Mnesia applications which access tables by using the name of the table only,

work regardless of the location of the table. The system keeps track of where

data is replicated. However, it is also possible for the Mnesia programmer to

query the system for the location of a table, and then execute the code remotely

instead. This can be done by sending the code to the remote site or by ensuring

that the code is preloaded there.

3.5 Transactions and ACID

DBMSs have ACID properties, Atomicity, Consistency, Isolation and Durability.

These properties are implemented by means of transactions, writeahead logging

and recovery in Mnesia. Most Mnesia transactions consists of series of operations

on ram only (possibly replicated) tables. These transactions do not interact with

the disc storage system at all, hence the Durability property is not ful�lled

for these transactions. An example where transaction semantics are required

in telecommunication systems is when we add a new subscriber to the system.



When we do this, several resources are allocated in the system, and several data

objects are written into the memory of the system. It is vital that all of these

operations are performed as one single atomic action. Otherwise the system could

end up in an inconsistent state with possibly unreleased resources.

3.6 The ability to bypass the transaction manager

The overhead for a transaction is quite high and for certain parts of tra�c

handling applications, it is simply not feasible to use a transaction system to

access the data. Consequently, a DBMS that is suitable for telecommunications

must be able to support both atomic transactions consisting of series of database

operations as well as very light weight locking on the same data. The tra�c

system consists of a number of tables. Many of these tables are seldom written

but very often read. For example it is more common to process a single call than

it is to add a subscriber and it is more common to route a PDU packet than it

is to change the routing tables.

When we execute performace critical code, we do not want to impose the

overhead of an entire transaction in order to read data. On the contrary, if for

example packet routing code reads routing information from a routing table

while the routing table is being updated, it is acceptable that some packets get

lost due to this access conict. What is needed here, is very lightweight locking

protection so that application processes can access the data tables and be certain

that each data object that is read, is not garbled due to concurrent writers. This

is supported by Mnesia through a so called dirty interface. It is possible to

read, write and search Mnesia tables without protecting the operation inside a

transaction. These dirty operations are true realtime DBMS operations: they

take the same predictable amount of time regardless of the size of the database.

3.7 Queries

Apart from tra�c processing, telecommunications systems contain substantial

amounts of operational maintenance (O & M) code. For example, when we delete

a subscriber from a switching system, we need to search several tables for data

which is associated with this subscriber, hence the need for a query language.

Operational and maintenance code is characterized by the following properties:

1. It has none or very low realtime requirements.

2. It reads, searches and manipulates large parts of the tra�c data.

3. It constitutes a large part of the code volume of the system.

4. It is seldom (if ever) executed, thus subject to software rot and consequently

inherently buggy.

Thus, a powerful query language which executes on the target system and has

complete access to all tra�c tables, can remedy (3) by making the O & M code

smaller and (4) by being declarative and by being able to automatically adapt

to changes in table layout or network topology. Since an optimizing compiler is



used to decide the execution order of the query, O & M code can also become

more e�cient.

The Mnesia query language is based on list comprehensions. This idea has

been exploited in several other functional DBMSs such as [15]. The syntax of

list comprehensions blend perfectly with the Erlang programming language.

3.8 Schema alteration

The Erlang programming language has extensive support to change the code of

executing processes without stopping the process. It is possible to change the

layout or organization of Erlang data without stopping the system. Thus, it

is also possible to change the Mnesia schema at runtime without stopping the

system. Since Mnesia is intended for nonstop applications, all system activities

such as performing a backup, changing the schema, dumping tables to secondary

storage and copying replicas have to be performed in the background while still

allowing the applications to access and modify tables as usual. We believe that

this is a requirement which is satis�ed by few, if any, of the commercial DBMSs.

4 Some implementation aspects

Mnesia is entirely implemented in Erlang. The Erlang programming environment

has turned out to be the ideal vehicle for the implementation of a distributed

DBMS and the entire implementation of Mnesia including all aspects of the

system from low level storage management to the optimizing query compiler is

small and consists of not more than approximately 20000 lines of Erlang code.

Persistent storage is implemented on top of the underlying operating system

�le system. The disadvantage of this is performance of disc operations and the

major advantage is portability. Since Mnesia is primarily intended to work as

primary memory DBMS, we feel that the portability aspect is the more impor-

tant. Tables and indexes in primary memory are implemented as linear hash

lists [13] and secondary storage tables are implemented as named �les. Each

�le is organized as a linear hash list with a medium chain length of the hash

bucket set to a small value. The linear hash list is very e�cient for lookup op-

erations and reasonably e�cient for insert operations. Files and tables can grow

and shrink dynamically. Space management on each �le is performed through a

buddy algorithm.

The Mnesia lock manager uses a multitude of traditional techniques. Lock-

ing is dynamic, and each lock is acquired by a transaction when needed. Regular

twophase locking [6] is used and deadlock prevention is traditional waitdie [14].

The time stamps for the waitdie algorithm are acquired by Lamport clocks [12]

maintained by the transaction manager on each node. When a transaction is

restarted, its Lamport clock is maintained, thus making Mnesia live lock free as

well. The lock manager also implements multi granularity locking [10]. Tradi-

tional twophase commit [9] is used by the transaction manager when a transac-

tion is commits.



Simple queries are evaluated by the relational DBMS technique operators

[8], whereas recursive queries are evaluated by SLG [3] resolution. Since Mnesia

is running on top of distributed Erlang the implementation is greatly simpli-

�ed. In a distributed application there are separate Erlang nodes running on

(usually) di�erent machines. Erlang takes care of the communication between

processes possibly on separate nodes transparently. Distributed Erlang works

also transparently across di�erent computers with di�erent endianism, thus a

Mnesia system can consist of a set of heterogenous computer systems. Processes

and nodes can easily be started, supervised and stopped by processes on other

nodes. This makes much of communication implementation di�culties disappear

for Mnesia as well as for applications.

5 Performance discussion

In this section we provide some measurements on the Mnesia system. The �gures

clearly indicate that:

{ The cost of using the transaction system, as opposed to using the dirty

interface, is substantial. We believe that the correct interpretation of this is

that the dirty interface is fast and not that the transaction system is slow.

{ The cost of replication is fairly high. This is expected since the computers

used in the test are interconnected by an ordinary shared media 10 Mbit/sec

Ethernet.

The computers in the test are three Sun UltraSparcs running Solaris 2.5. All

transactions are initated from the one UltraSparc at 167 Mhz and the other two

machines run at 143 Mhz.

number of replicas 1 2 3

divorce/1 1877 5009 13372

divorce/1 using wread 1225 4703 12185

dirty divorce/1 181 592 1121

Table 1. Wallclock microseconds to execute divorce/1 with di�erent con�gura tions

In the �rst row, we run the function divorce/1 from section 2. In the second

row we run a version of divorce using a Mnesia function wread/1 instead of

read/1. This function reads the object but sets a write lock instead of a read

lock. This is more e�cient if we know that we are going to subsequently write

the same object. This way the lock need not be upgraded from a read lock to

a write lock. Finally in the last row we use the dirty functions to read and

write the replicated tables, thus bypassing the transaction system and using the

lightweight locks.



6 Conclusions

There exists today a very large number of DBMSs, a large number of commer-

cially available systems as well as an uncountable number of research systems.

It could appear as if it would be a better solution to use a commerical DBMS

but if all the aspects from section 3 are taken in account, no suitable commercial

DBMSs exists. We feel that our main contributions are the following.

{ We have implemented an entire distributed DBMS by combining a large

number of well known techniques. Many research groups chose to study some

aspects of DBMSs only, we have implemented a full distributed DBMS. Few

such implementations exist.

{ We have showed that Erlang is very well suited for not only telecommunica-

tions system but also for the implementation of DBMS systems like Mnesia.

To our knowledge this is the �rst time a distributed DBMS is implemented

in a symbolic programming language.

{ We have provided a DBMS solution that address all, or at least many, aspects

of data management in telecommunications systems.

The Mnesia system is currently being used to build real products in Ericsson

today, thus it is no longer a mere prototype system, it has matured enough to

be labeled a product. The system is available at http://www.ericsson.se/erlang
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