
i

Abstract

This thesis deals with two important topics:

� The use of the best possible technology in the development of
telecommunications systems in a world of rapid change and in-
creasing competition. The word \best" implies a technology
that satis�es the requirements of the application and a tech-
nology that enables high design eÆciency in bringing projects
to rapid and successful results.

� The introduction and exploitation of functional programming
in industry. Functional programming is a long established dis-
cipline within academia where its advantages are well known.

The thesis is built around the actual case of the concurrent func-
tional programming language Erlang which was developed at the
Computer Science Laboratory at Ericsson and which is now avail-
able as open source. Erlang is now used in about 20 systems, notably
the ATM switching system AXD 301 where Ericsson in two years
moved from having no system to having a veritable
agship.

Starting as a purely technical project the progress of Erlang came
to touch upon many other topics such asManagement of Technology

and Open Source.

ii

Acknowledgements

Acknowledgements are due above all to the Erlang Design Team
(Joe Armstrong, Claes Wikstr�om, Mike Williams, and Robert Vird-

ing), members of Erlang Systems, the OTP Product Unit, the Erlang
application projects and all the enthusiastic Erlang users around the
world. I also thank professor Gerald Q. Maguire Jr. who got me
started writing and supported me all through the process.

The following people have read and commented on the thesis:
Joe Armstrong, Roy Bengtsson, Catrin Granbom, Torbj�orn Keisu,
Kenneth Lundin, Richard O'Keefe, Phil Wadler, Ulf Wiger, and
Mike Williams.

Acknowledgements are not least due to Ericsson for supporting
the Erlang development consistently for many years and enabling
Erlang to be used for very large and important projects.

Bjarne D�acker, Stockholm, October 2000

Contents

1 Introduction 1

1.1 Overview . 1
1.2 Background . 1
1.3 Summary of Papers . 3
1.4 Layout of this Thesis . 3

2 Management of Technology 5

3 The Problem 9

3.1 Telecommunications Programming and Chill 9
3.2 Programming Language Experiments 11

4 Development of Erlang 13

4.1 Prototype Developments . 13
4.2 Steps towards a Product . 15
4.3 Erlang Systems . 17
4.4 Further Technical Developments 18
4.5 Early Marketing E�orts . 20
4.6 Erlang Summary . 20

4.6.1 Sequential Erlang . 20
4.6.2 Concurrency . 20
4.6.3 Distribution . 21
4.6.4 Robustness . 21
4.6.5 Software Upgrading in Running Systems 21
4.6.6 External Interfaces . 21
4.6.7 Portability . 22
4.6.8 Program Development . 22

4.7 Match against Requirements . 22

5 Open Telecom Platform 25

6 Selected Industrial Applications 29

6.1 AXD 301 ATM Switch . 29
6.2 ANx Access Node . 30
6.3 GPRS . 31
6.4 A Comment on Software Engineering 31
6.5 Experiences from the Field . 32
6.6 User Testimonies . 32

iii

iv CONTENTS

6.7 External Users and Consultants 33
6.8 CeBit 1998 and Marketing E�orts 33
6.9 Re�ned Match against Requirements 34

7 Backlash 37

8 Open Source and Continued Research 39

8.1 Bluetail AB . 39
8.2 Erlang in the Research World . 41
8.3 Research Continues . 42

9 Discussion 45

9.1 Development of Programming Technology 45
9.2 On Applications of Functional Programming 46
9.3 Di�ussion of Innovations . 47
9.4 The Magic of Words . 47
9.5 Symbolic Programming strikes Back 48

10 Conclusions 49

1 Introduction

1.1 Overview

This thesis traces the progress of Erlang from applied research in an industrial
research laboratory through producti�cation, technology transfer to a product
unit and further dissemination through open source in parallel with widening use
in application systems for the market. My prime task in this process has been
as manager of the Computer Science Laboratory (CSLab) encouraging the work
and helping to establish contacts with external research and with prospective
users.

1.2 Background

\Lisp" is an abbreviation of \list programming", but often \symbolic program-
ming" is a more accurate term. The fact is that many programming problems
in industry are symbolic in nature and thus lend themselves naturally to pro-
gramming languages like Lisp [Wi81].

I learnt Lisp at a Summer school at Uppsala in 1974 and immediately saw
its possibilities. I was then working with hardware Computer Aided Design
(CAD) systems and had among other things spent one year once in designing a
database in Fortran to represent relay set circuit diagrams.

Soon a natural application presented itself. Ericsson then used two software
tools to aid in the design of circuit boards. One was a system for digital simu-
lation and test data generation. The other was a program to create the circuit
board layout. Thus one program dealt with logic entities like gates and
ip-

ops and the other dealt with mechanical entities like discrete components and
integrated circuits. The programs had very di�erent looking inputs and it was
very diÆcult to ascertain that those were, indeed, equivalent. Given the usual
technology at the time, Fortran [Ek79] and PL/I [Hu87], to create a program
to convert between the two programs was almost impossible or would have led
to a very large and complex project.

Lisp instead made it quite feasible to design a database that could represent
both the electronic and the mechanical aspects of a circuit board. The next
step was to create programs that could generate the database given the input
to either of the CAD programs. The step after that was to write programs that
instead could generate their respective inputs from the database.

The program needed some extra input when, for example, gates were de-
signed using discrete components, but it solved a tricky problem for the design-
ers.

1

2 CHAPTER 1. INTRODUCTION

CAD represents a typical area for symbolic computation and when numer-
ical computations came in, it turned out that Lisp could handle them just as
eÆciently.

In 1982 another possible application presented itself. Ericsson's AXE 10
[He76] system was being sold around the world and increasing demands were
made for higher capacity and throughput. This led to the design of the APZ 212
[Hj90] processor. Thus a compiler for the AXE programming language Plex
[He76] had to be developed at short notice. Even more important was an inter-
active interpreter since many programs had to be developed and tested before
the APZ 212 hardware would be available.

My suggestion was to use Lisp and I got the go-ahead. The �rst step was
to write a parser to create an internal representation of a Plex program for the
interpreter to work with. This could be stored using (write ...) and retrieved
using (read ...) and since it was only a large S-expression, it could easily be
inspected for mistakes.

The next step was to develop a full screen interactive interpreter using VT100
terminals attached to a VAX running UNIX [At84]. It turned out that the
designers liked the interpreter very much and also quickly got used to seeing
their programs pretty printed on the screen. The interpreter also contained an
editor using the parser one statement at a time.

There had been some concern that Lisp would lead to very long execution
times. However, nothing of this sort was noticed. Most execution times were
dominated by the time required to print output to the screen.

This interpreter was a prototype that handled only a central subset of Plex.
However, it was taken over by a programming team that completed and produc-
ti�ed it and ported it to the IBM 370 computers which were used for program
development for AXE 10.

By chance a much larger project had been running to develop a Plex in-
terpreter using an IBM version of Pascal. For some time the two projects ran
in parallel. The good thing was that this provided large volumes of data for
comparison. It turned out that the interpreter in Lisp was smaller by a factor
ranging from 7 to 10 for di�erent parts of the system [D�a83, Al84].

For an industry concerned with the software \crisis" [Gi94] this should have
been very interesting news. The experiences from this application were high
design eÆciency and adequate execution performance. Our hopes was that this
would have opened the way for wide use of Lisp in the development of software
development environments, but nothing happened. Everybody seemed to agree
that using Lisp for this type of application is more eÆcient than using languages
like C or Pascal, yet it did not catch on.

One of the key activities when starting a design project is the selection of the
appropriate technologies to be used. This means that there ought to be a list of
candidate technologies with descriptions of their respective properties. Then the
characteristics of the application have to be de�ned and the selection process
becomes a matter of matching. The characteristics must take into account
many aspects such as cost, capacity, performance, documentation, standards
compliance, design eÆciency, support, training, etc.

The Lisp experience described above indicated that there should be other
interesting technologies available for industrial exploitation. At that time Ar-
ti�cial Intelligence (AI) was a very hot topic and CSLab (see below) also built
an operator support system [Sk86] exploiting some AI technologies.

1.3. SUMMARY OF PAPERS 3

1.3 Summary of Papers

The key paper is [D�a91] which presents the ideas of dealing with software tech-
nology according to the same principles as older established engineering sciences,
especially with regard to applied research in the laboratory environment. The
Erlang history is one case demonstrating that those principles also work in prac-
tice.

The papers [D�a83, Al84] describe the work of building the Plex interpreter
using Lisp where I both took the initiative and built the �rst usable system. The
paper [D�a86] describes experiments with building prototype telecom systems
using di�erent programming technologies where my contribution was the rule-
based system.

The paper [D�a93a] summarises Erlang design work carried out at CSLab
and the papers [D�a93b, D�a94a, D�a94b, D�a95] describe early experiences from
the use of Erlang.

1.4 Layout of this Thesis

Chapter 2 provides a context for this thesis by describing the general princi-
ples behind applied research in the industrial environment. Chapter 3 de�nes
the requirements put on a software technology for telecommunications applica-
tions and also early experiments at CSLab with di�erent available programming
technologies.

Chapter 4 introduces Erlang and its development and matches it against the
above requirements. Chapter 5 describes the development of the Open Tele-
com Platform using Erlang and extending its usability and chapter 6 provides
an overview of some important Erlang applications which gives more detailed
material to validate Erlang against the telecommunications requirements.

Those chapters also describe the spread of Erlang within Ericsson and out-
side Ericsson primarily to academia and also attempts at marketing Erlang.
Chapter 7 describes an internal set-back and chapter 8 the work of spreading
Erlang through the new medium of open source.

Chapter 9 discusses the spread and use of functional programming and,
�nally, chapter 10 presents my conclusions on this matter based on the Erlang
experience.

4 CHAPTER 1. INTRODUCTION

2 Management of Technology

Management of Technology [Gr82] is an area of study within Industrial Man-
agement and Economy that focuses on the interaction between technical and
economic changes and on how this interaction can be in
uenced in desirable
directions. Management of Technology in large divisionalized companies like
ABB and Ericsson involves many complex aspects:

� The term Research and Development (R&D) is often very loosely used. In
industry development is by far the largest component and most research is
applied in the form of trying out new techniques on old (or emerging) ap-
plications. The term \research" is also often used to describe experiments
prior to product development.

� The purpose of basic research is to �nd new knowledge for mankind whereas
the purpose of applied research is to apply new knowledge to reality. Ap-
plied research can be technology driven or market driven. In the �rst case
some new technology has been created, then work is done to �nd uses for
it. In the latter case some need or opportunity has arisen which cannot
be adequately handled with current technologies, see Figure 2.1.

� To qualify as applied research as di�erent from regular product develop-
ment, the work needs to be of scienti�c quality, for example by being
presented at signi�cant conferences or journals in the respective �eld.

� The organisation of research has to be a compromise between centraliza-
tion and decentralization since there has to be close contacts both with

New Technology

Problems or
opportunities

Experiments Evaluation

Productification
and exploitation

Idea dropped

Figure 2.1: The process of Applied Research.

5

6 CHAPTER 2. MANAGEMENT OF TECHNOLOGY

Patents
Knowledge Papers at international conferences
standing References in internationally recognized journals

Publications in internationally recognized journals
Competitor Comparison with existing and potential
standing competitors to identify strong/weak points

Visits by customers
Knowledge Internal presentations/demonstrations
transfer Facts, based on prototyping etc., delivered

Ideas accepted by System & Technology development process
Guest researchers
Lectures given at universities

Interworking Working with recognized Centres of Excellence
Working with potential producers/users of the result
Participation in national/international research projects
Participation in national/international committees for research funding

Table 2.1: Evaluation criteria for Applied Research in Ericsson [Er95].

strategic planning and with product development in the product divisions.
If not handled well this can give rise to con
icts and misunderstandings.

� Research can be placed in some central unit (like Bell Laboratories) or
be spread out as decentralized laboratories organised within the various
divisions (or subsidiaries) through some matrix organisation. The present
situation within Ericsson is a combination of both. Further reasons for
locating research laboratories within subsidiaries in di�erent countries are
to facilitate interaction with university research in the di�erent countries
and access to quali�ed personnel. (The term laboratory is henceforth used
to denote an organisational unit working with research.)

� Financing of research is often a combination of central �nancing with
project assignments from design departments in some suitable ratio 50/50
(ABB Corporate Research) or 70/30 (Ericsson Research). That the design
departments are interested in having researchers participate in projects or
are placing projects in the laboratories is one test of the competence and
co-operative spirit of the laboratories.

� Evaluation of the performance of industrial research is a diÆcult matter.
University research is evaluated based on its publication record and prod-
uct development on the pro�tability of its products. Table 2.1 lists the
evaluation criteria that were de�ned in 1995 for applied research labora-
tories in Ericsson [Er95].

� For companies developing systems it is important to note that every sys-
tem is dependent on many di�erent technologies. This means that di�erent
laboratories typically are either focused on some technology (like �bre op-
tics) used in many di�erent systems or are focused on new applications
where they start from many di�erent technologies (sometimes originating
in other laboratories).

7

� A systems company might both use its own technology in its systems and
sell them as components, for example ABB both uses its own relays and
sells them and Ericsson's power division sells both inside and outside the
company. This implies an internal technology market. (In January 2000
Ericsson divested its energy business [Pr00a].)

� A laboratory can never take responsibility for a product either delivered to
customers as an application or delivered to design departments as a tech-
nology. This requires quite a di�erent organisation and a di�erent mode of
work, handling new releases, handling error reports and user complaints,
production of professional quality documentation, organisation of courses,
training, consulting, etc.

� This in turn requires transfer of the results to another type of unit or
perhaps transforming the laboratory into a product design unit (depart-
ment). In any case the researchers have to take part in this and perhaps
transfer out of the laboratory.

� There are di�erent ways of manning a laboratory. One case could be to
recruit senior designers interested in research, another to take in young
people from a university who can learn the latest technology in the labo-
ratory and then move with their system out into the design organisation.

� Technology research has to be seen as part of the technology provisioning
process. Most technology will be obtained from suppliers. Results from
the laboratories are the exception and there are primarily two reasons for
using them:

{ There are requirements which cannot be ful�lled by external technol-
ogy.

{ There are technologies which can provide competitive advantage. (In
this case patents are of the utmost importance.)

� Compliance with internationally accepted standards is essential to achieve
interoperability and to enable systems to be upgraded by renewing just
parts of them.

� Internally developed technology that gives advantages in the near term can
cause problems in the long term { especially if it is overtaken by external
developments.

The primary di�erence between a research project and a regular development
project is that research has a greater uncertainty, but also o�ers hopes of greater
gains if it is successful. This means that research projects have to be carried
out in moderately long steps with careful monitoring of progress.

The important realization is that all the principles of Management of Tech-
nology that are the results of many years of working with materials engineering,
chemical engineering, etc. actually can apply to software as well. This should
give a new and perhaps sounder interpretation of the term \software engineer-
ing" [D�a91].

8 CHAPTER 2. MANAGEMENT OF TECHNOLOGY

3 The Problem

3.1 Telecommunications Programming and Chill

Applied research needs to start by de�ning \the problem". Table 3.1 summarizes
the requirements on a programming technology for telecommunication switching
systems. These lead to both large systems and large projects. Thus a key
question is that of design productivity, i.e. how to be able to design such
systems with smaller design teams in a shorter time.

In the 1970's there was much talk of the \software crisis" [Gi94] as a term
to describe the problems of programming projects running late, using too much
manpower, and resulting in systems of unacceptably low quality. Most attempts
at dealing with this have been to introduce more formalized work methods.
This is often termed \software engineering" and the avowed aim has been that
software should be produced in an engineering fashion.

The telecommunications industry was early to use computers in their systems
and Ericsson installed its �rst stored program controlled (SPC) system AKE 12
[Ka68] in Tumba in the Autumn of 1966. Since telecommunications lead to
very large complex systems and projects a special conference series Software
Engineering for Telecommunications Switching Systems (SETSS) was set up by
the British Institution of Electrical Engineers (IEE).

The strange word is \crisis". Projects in other engineering �elds also ex-
perience problems. A case in point is the tunnel building project through
Hallands�asen, Sweden [Da96]. Such occurrences, however, are not classi�ed
as crises, only as faulty professionalism. The fact is that many programming
projects run well even without the formal \methods". The keys, as in other engi-

1 Handling of a very large number of concurrent activities
2 Actions to be performed at a certain point in time or within a certain time
3 Systems distributed over several computers
4 Interaction with hardware
5 Very large software systems
6 Complex functionality such as feature interaction
7 Continuous operation for many years
8 Software maintenance (recon�guration, etc.) without stopping the system
9 Stringent quality and reliability requirements
10 Fault tolerance both to hardware failures and software errors

Table 3.1: Requirements on a programming technology for telecommunication
switching systems [D�a93a].

9

10 CHAPTER 3. THE PROBLEM

neering areas, are competent people, appropriate architecture, good technology,
and clear goals.

Problems are one thing, \crises" another. The word implies a feeling of lack
of control, i.e., that software is inherently something strange and unpredictable.
Software is not strange to people working in the �eld, but probably was to an
industry getting increasingly dependent upon it a couple of decades ago.

There are di�erent ways of improving project performances. Methods rep-
resent the organisational approach, i.e., that the work is reasonably well struc-
tured and properly carried out. Another is quali�ed (and motivated) personnel.
Another often overlooked factor is technology. This thesis examines the intro-
duction of new software technology.

Software development is a matter of programming. Some systems aim to ac-
cept speci�cations and then generate code. Such systems approach the problem
top down. A complementary approach is to raise the level of programming by
using a language technology at a high abstraction level which provides built-in
support required by the application domain. This thesis deals with the latter
approach. (Edward Yourdon places \better programming languages" at the top
of his personal list of \silver bullets" [Yo92].)

Fortran [Ek79] was developed around 1957, Pascal [Je75] around 1970 and
C [Ke78] in the middle 1970's. It is remarkable that today most programs are
still developed in languages of these types while computer hardware has gone
from discrete components to VLSI.

Pascal was originally developed as a language to teach students program-
ming. Signi�cant additions in Modula [Wi76] weremodules and processes. Mod-
ules are necessary for building large systems and processes are necessary to de-
scribe concurrency. Each process instance functions like a sequential program
on its own computer through a timesharing scheme [Bu90]. Other programming
languages of this class are Chill [CC84b] and Ada [Ad83].

The C.C.I.T.T. standardised programming language Chill provided three
mechanisms for communication and synchronization between processes:

� Regions,

� Bu�ers (message mailboxes),

� Signals (messages).

Quote \there are several reasons why Chill provides three di�erent mecha-
nisms for process communication:

� The ideas about what is the best method of communication between pro-
cesses have not yet been stabilised in the world of programming language
design. It would be too early to supply only one method of communica-
tion.

� Experience with communication between processes in a distributed sys-
tem (without common memory between processors) is very limited. One
communication mechanism may not be able to function optimally in both
distributed and common memory architectures." [Sm83]

The e�ect of this was that each company that used it chose some suitable
subset.

3.2. PROGRAMMING LANGUAGE EXPERIMENTS 11

In late 1999 C.C.I.T.T. stopped maintaining the Chill standard.
In 1979 I was responsible for the creation of the in-house programming lan-

guage EriPascal [D�a79, B�a84] for a new processor APN 167 [Ma86]. EriPascal
was similar to a subset of Chill but with a Pascal like syntax. Like Modula it
contained modules and processes. In EriPascal only messages were used. There
were also plans to create an EriChill by using a di�erent compiler front-end
which accepted a Chill like syntax, but there were no user requests for it.

Still the basic sequential programming paradigm remained at the level of
Fortran and Pascal even though the whole idea of functional and logic program-
ming had been around almost as long as Fortran. For example, Lisp [Mc65] was
created already in 1958 [We81].

3.2 Programming Language Experiments

In 1984 the Computer Science Laboratory (CSLab) [Csw] at Ericsson was for-
mally established by myself and three colleagues, G�oran B�age, Seved Torsten-
dahl, and Mike Williams. Further colleagues joined. CSLab has had a low
personnel turnover and has averaged between 12 and 15 people.

The laboratory soon was equipped with a VAX 750 running one of the �rst
UNIX systems at Ericsson and an MD 110 private exchange. Per Hedeland
modi�ed the MD 110 so that it could be controlled from the VAX. At that
time telephony (or any real time) programming involved two computers, a host
computer where editing, compilation and linking took place and a target com-
puter embedded in the actual system. The VAX combined the functions of
both which reduced the turn around time considerably and created an excellent
environment for experimentation.

Based on this environment a series of experiments were carried out with
di�erent programming languages and paradigms which involved at least �ve
persons in the laboratory. The following techniques were tried [D�a84a, D�a86]:

� Imperative programming languages: Concurrent Euclid [Ho83b] and
Ada [Ad83].

� Declarative programming languages: PFL [Ho83a] and Prolog [Cl81].

� Rule based programming: OPS4 [Fo79].

� Object oriented languages: Frames [We83] and CLU [Li79].

My contribution was the experiment with rule based programming using
OPS4. This could express many requirements very neatly. One problem in
conventional telecommunications programming is that a subscriber may hang
up at any time during a call. This means that all equipment involved has to
be reset. In relay systems it suÆced to release the holding wire. With OPS4
this became equally simple. One resetting rule for each type of equipment was
all that needed to be de�ned. This rule triggered whenever it applied, even in
di�erent states of a call.

Rules will trigger whenever they apply regardless of their order in the source
code so that when sequencing is required this has to be speci�ed using some
state variable. One problem, of course, was how to handle really large systems
of many rules. The good feature of rule based programming is that it encourages

12 CHAPTER 3. THE PROBLEM

a very declarative style of programming. It also leads to highly parallel designs
as only when rules are sequenced do they have to be applied in order. Thoughtful
use of guards and pattern matching can achieve a programming style similar to
rule based programming.

One conclusion was that telephony systems obviously could be programmed
in any language and the di�erent implementations displayed rather similar struc-
ture. However, certain desirable properties of a programming technology for
telephony became apparent:

� Massive �ne grained concurrency: Complex real time systems usu-
ally have to handle several concurrent activities which, in turn, normally
are handled through some process (or thread) concept. However, typical
for telecommunications are the large amount of equipment and the great
number of simultaneous calls which means that the processes have to be
very light weight.

� Asynchronous message passing: This seemed to be a very typical and
normal requirement. Both Plex [He76] from Ericsson and SDL [CC84a]
from C.C.I.T.T. are based on message passing. Also message passing
naturally extends to distributed systems.

Unfortunately there was no Chill implementation available for the UNIX
VAX. However, the system programmed in Concurrent Euclid [Ho83b] was
structured along the same lines as would be a system written in Chill.

The report of these programming language experiments ended with the fol-
lowing conclusion:

� \It is becoming obvious that future telecommunication systems cannot
be programmed with one language using one methodology. Future sys-
tems will probably be built using many of the techniques used in these
experiments. For example expert system technology might be used for
the maintenance functions and the man machine interface, logic program-
ming might be suitable for programming the signal system interfaces and
parts of traÆc handling and the underlying operating system might be
programmed in an advanced imperative language." [D�a86]

4 Development of Erlang

The primary aim of this exercise, however, was not merely to see if it was possible
to program telephony systems in a variety of ways, but also to �nd which style
of programming lead to the shortest and most beautiful programs closest to
the level of formal speci�cations. These features have the greatest impact on
quality and programmer eÆciency since it has been shown that programmer
productivity in number of error free lines of code per day is largely independent
of the programming language

The language experiments had given many new insights [D�a86], but had not
reached a conclusion that one speci�c language was \the best". Of all the lan-
guages tried only Prolog could handle updating of software in running systems.
The Ericsson AXE 10 [He76] can handle update of running code through the
use of special hardware and switch over between the duplicated processors such
that one processor carries on the traÆc processing while the other loads the new
version of the code.

4.1 Prototype Developments

Joe Armstrong led the next round of experiments and started with Prolog, be-
cause of its terse and clear style, and added concurrency. However, the language
began to change in the direction of a functional style [Ar92b]. For example, one
of the key characteristics of Prolog is backtracking and this could not be used
because it is not possible to backtrack over hardware. (A tone signal once sent
out cannot be taken back [Ar86].)

The name given to this experimental language was Erlang after the Dan-
ish mathematician Agner Krarup Erlang, creator of the Erlang loss formula
[Erl]. This followed the tradition of naming programming languages after dead
mathematicians, other examples are Pascal, Euclid, and Occam [Jo88]. Erlang
is aptly described as a concurrent functional programming language combining
two main traditions, Figure 4.1:

� Concurrent programming languages: Modula, Chill, Ada, etc. from
which Erlang inherits modules, processes, and process communication.

� Functional and logic programming languages: Haskell [Haw], ML
[Wi87, Mlw], Miranda [Th95], Lisp [Wi81], etc. from which Erlang inherits
atoms, lists, guards, pattern matching, catch and throw, etc.

13

14 CHAPTER 4. DEVELOPMENT OF ERLANG

Concurrent systems programming
languages like Ada, Modula or Chill languages like ML or Miranda

Functional programming

Concurrent functional
programming language
 Erlang

Figure 4.1: The ancestry of Erlang.

Signi�cant design decisions behind the development of Erlang:

� It should be built on a virtual machine which handles concurrency, memory
management, etc., thus making the language independent of the operating
system and ensuring program portability.

� It should be a symbolic language with garbage collection, dynamic typing,
data types like atoms, lists, and tuples.

� It should support tail recursion [Ok90] so that all loops, even in�nite like
in drivers, can be handled by recursion.

� It should support asynchronous message passing and a selective message
receive statement.

� It should enable default handling of errors, for example through trap exits.
This also enables an aggressive style of programming.

Erlang is a simple language to learn in that it contains very few concepts.
Pattern matching enables a very declarative (and self documenting) style of
programming.

Programming languages form an intermediate level between the computer
hardware and the application. It is necessary that the language provides pow-
erful concepts that can facilitate the application; yet it is equally necessary that
those concepts can be eÆciently implemented. The �rst large Pascal program
developed was the Pascal compiler. This enabled Niklaus Wirth to �nd the
right compromise between concepts for a complex application and their imple-
mentability.

A signi�cant occurrence at the end of 1987 was that CSLab came to co-
operate with a telecommunications prototyping team lead by Kerstin �Odling
at Ericsson Business Communications AB (EBC). Team members were H�akan
Karlsson, H�akan Larsson and �Ake Rosberg. Based on a study of several dif-
ferent existing Private Branch Exchange (PABX) systems they had de�ned an
improved PABX architecture, Audial Communication System (ACS), and the
next natural step was to build a prototype. For this they needed a suitable
programming technology and for this they chose Erlang which itself was still a
prototype.

4.2. STEPS TOWARDS A PRODUCT 15

This lead to a highly constructive collaboration during 1988 and 1989. The
project, named ACS/Dunder, was reported in December 1989 [Pe89, D�a89,
�Od93]. By this time a prototype system with a functionality corresponding
to about 1/10 of the complete MD 110 [M�o82, Mdw] had been designed and
veri�ed. Based on the ACS architecture and the Erlang programming language
the prototype showed an improvement in design eÆciency by a factor of 20 over
current technology.

The ACS architecture structured the system into a Basic Operating System
(BOS), an Applications Operating System (AOS), and the applications. BOS
had some very sophisticated structures for supervising the system, which were
later used for the Open Telecom Platform (see below).

Erlang itself underwent many changes during this work { which the users
patiently endured. Most notable was a major syntax revision from a Prolog
style to a functional style.

Declarative programming and Erlang were mentioned in a presentation by
Lars Ramqvist on Strategies and Technologies for the 1990's [Ra88].

In May-June 1990, the XIII International Switching Symposium (ISS'90)
took place at �Alvsj�o Exhibition Centre in Stockholm with about 2000 partic-
ipants. ISS is the major event in telecommunications and this is where Joe
Armstrong and Robert Virding �rst oÆcially presented Erlang to the world
[Ar90]. Erlang was also demonstrated during a technical visit which was shown
to eight di�erent groups during a hectic day. I had written the demonstration
telephony application that was used.

The original purpose of this demonstrator was to experiment with ways to
structure a telephony system with features such as call back, short number,
conference call, etc. Ideally each feature should be represented as a separate
program module. However, since every feature comes in at many di�erent points
in the system a system usually becomes a complex weave when all of them are
combined. In the demonstrator the features were structured as increments that
were invoked from the outgoing call and incoming call state machines.

The presentation at ISS was noted by the Royal Swedish Academy of the
Engineering Sciences (IVA) in their yearly summary of technical progress in
Sweden [Iv90].

4.2 Steps towards a Product

ACS/Dunder was based on an Erlang interpreter written in Prolog. This was
acceptable for a prototype, but not for a real product. (For one thing a real
time system cannot be allowed to stop for a couple of seconds now and again for
garbage collection. A proper implementation would have to include an incre-
mental real time garbage collector.) The users at EBC also required a speed-up
by at least a factor 40.

The Erlang design team consisting of Joe Armstrong, Mike Williams and
Robert Virding started experimenting. One attempt was a cross compiler to
Strand [Fo89]. Finally an abstract machine, Joe's Abstract Machine (JAM), was
invented inspired by the Warren Abstract Machine [Ma88] with added primitives
for concurrency and exception handling [Ar92a]. Joe wrote the compiler, Mike
the emulator and Robert the support libraries. This turned out to be 70 times
faster than the original Prolog interpreter. Although the EBC group by now

16 CHAPTER 4. DEVELOPMENT OF ERLANG

Figure 4.2: My original Erlang logotype.

had escalated their demands the JAM implementation proved that concurrent
functional programming could be used for \soft real time" system products, i.e.
response times measured in milliseconds.

In telecommunication systems \hard real time" is usually handled by ded-
icated (device or regional) processors close to the hardware, and thus feature
response times of microseconds.

In 1990, Erlang was recommended for prototyping purposes within Ericsson
and several di�erent system were designed for very di�erent purposes. A group
at ERA (Ericsson Radio AB) built a demo system [Ah92] to control a cordless
exchange. G�oran B�age at CSLab built a control system for a photonic switch
which was shown at Telecom'91 in Geneva. Sebastian Strollo (also at CSLab)
built a demo system [Bu92] which was displayed at the European Conference
on Optic Communication (ECOC) in Paris in 1992. Both these systems were
set up for permanent display at the switching laboratories in Ericsson. Claes
Wikstr�om and Sebastian Strollo also built a demo system for TELI of their
planned Ermes pan-European paging system [Erm]. (TELI was a subsidiary of
Televerket later Telia, the Swedish national telecom operator.)

Erlang was used inResearch in Advanced Communication for Europe (RACE)
projects such as Biped [Mo93], but an interesting observation was that it was
only used in hardware oriented projects. In such projects it was necessary to
create a functioning prototype system to control some hardware in a short time
using only a few people. The software oriented RACE projects were much more
concerned with methodology than with technology.

In December 1989 the Erlang Design Team and myself were invited to Bell-
core to present Erlang and to give an Erlang course. This lead to John Unger
building a large subsystem of Cruiser, a system for multi-media communica-
tion, in Erlang. This was also the start of a regular course activity and the
design team worked out a four day course which was given at CSLab and I
found myself in the role of course organiser. In 1991 we gave three courses at
Ellemtel Utvecklings AB (EUA), Stockholm, plus one at Ericsson in Rome and
one at Ericsson in Melbourne. In 1992 there were further courses plus one at
Telef�onica in Madrid. The course was also held at the Royal Institute of Tech-
nology (KTH) in Stockholm and became part of their course on programming
of parallel systems. At Uppsala a student project, Distorsion [Di91], based on
a telephone exchange and Erlang, involving about 20 students, was carried out
in 1991 which led to seven students doing their Master's Theses at CSLab.

4.3. ERLANG SYSTEMS 17

Figure 4.3: Erlang Systems logotype.

In 1992 the decision was taken to develop Erlang into a product for use in
production projects. EBC also decided to build the Mobility Server based on the
ACS/Dunder prototype (see above). The Erlang Design Team got permission
to write a regular text book, which became Concurrent Programming in Erlang
[Ar93] printed by Prentice Hall Ltd.

In October 1992, the XIV International Switching Symposium took place in
Yokohama, Japan. Ericsson presented only four regular papers of which no less
than three dealt with prototype systems developed using Erlang [Ah92, Bu92,
Er92]. At the plenary summary at the end of the symposium the software
expert, Peter Cashin from Bell Northern Research, stated that:

� \We should take our hats o� to Ericsson for looking at software design in
a whole new way."

Although Ericsson had been rather inconspicuous during the symposium it
was the only company to be mentioned when the symposium was summed up.

4.3 Erlang Systems

In 1993 Erlang Systems AB was established as a subsidiary of Ericsson Infocom
AB. The business idea was to sell Erlang as a tool in the external market and
also to provide training and consulting. It turned out that the market was
more diÆcult than expected and Erlang Systems was subsequently made into
a regular department within Ericsson Software Technology AB. Roy Bengtsson
was then appointed manager of Erlang Systems.

The immediate e�ect of Erlang Systems was the development of documen-
tation and course material of professional quality. Also teaching and consulting
were carried out in a way that was beyond what a research laboratory could
handle. The customers were and still are primarily from various projects within
Ericsson.

During 1998 and 1999 there was almost one course every week, see Fig-
ure 4.4. Most courses were given at their premises in Kista, north of Stockholm.
However, often it has been more practical for the teacher to travel to the site of
the application project.

18 CHAPTER 4. DEVELOPMENT OF ERLANG

0

5

10

15

20

25

30

35

40

45

50

1988 1990 1992 1994 1996 1998 2000

Figure 4.4: Total number of courses given per year. There are 10-12 pupils at
each course.

The initial course o�ering consisted of the following course program:

� Basic Erlang, 4 days,

� Interoperability, 4 days,

� Tools and libraries, 4 days,

� Advanced Erlang, 4 days.

Table 10.2, page 51, details the course curriculae during 1998 and Table 10.3,
page 52, the number of students and courses during 1997-1999.

In 1993 Concurrent Programming with Erlang [Ar93] was published. Erlang
became known around the world primarily in academic circles and CSLab deliv-
ered systems around the world (by sending magnetic tapes through the regular
mail).

4.4 Further Technical Developments

In 1992 Claes Wikstr�om at CSLab developed an ASN.1 [St90] compiler [Wi92].
This was the �rst telecommunications oriented \tool" written in and for Erlang.
Claes also joined the design team when he developed Distributed Erlang [Wi94]
in 1993. Processes in di�erent Erlang systems (termed nodes) can communicate
through message passing as easily as between processes within one Erlang sys-
tem. Erlang nodes can reside in di�erent processors in a network. Claes also

4.4. FURTHER TECHNICAL DEVELOPMENTS 19

1

10

100

1000

10000

1988 1990 1992 1994 1996 1998

Figure 4.5: Total number of external deliveries of Erlang per year free of charge
for academic or evaluation purposes prior to the open source. External market-
ing was stopped during 1995.

extended the Erlang error handling mechanisms to deal with errors in the com-
munication or when nodes go down. This was yet a further break-through since
distributed programming is notoriously very diÆcult. Claes became coauthor
of the second edition of Concurrent Programming with Erlang which appeared
in 1996 [Ar96a].

In 1994 Magnus Fr�oberg, also at CSLab, developed a translator from the
Speci�cation and Description Language (SDL) [CC84a, Ro85] to Erlang [Fr93].
SDL is a system description language created by C.C.I.T.T. which is widely
used in telecommunications. For example, many communication protocols are
described using SDL. SDL exists both in a graphical
ow chart like form and in
a textual form looking much like a program. It turned out that the generated
Erlang code was about the same volume as the SDL textual form. Despite the
interest in SDL and that many have asked about this tool there have been no
users. Probably Erlang programmers do not see the need for SDL and vice versa.
(A later Master's Thesis [Wi95] developing an application �rst using Erlang and
then using SDL/SDT showed that the Erlang design took only half the time.
However, the programmer had a functional programming background.)

Having Erlang as a distributed concurrent functional language enabled CSLab
to attack further complex applications. In 1995 Hans Nilsson and Claes Wik-
str�om developed a distributed real time database with transactions and query
processing called Amnesia [Ni96a, Ni96b]. This was later producti�ed and re-
named Mnesia [Ma99].

In October 1993 Erlang V4.1, the �rst commercial release, was delivered.

20 CHAPTER 4. DEVELOPMENT OF ERLANG

In 1995 Erlang Systems took over the academic distribution of Erlang. After
some time this was made into a free distribution over Internet for research and
education, see Figure 4.5.

Erlang Systems also issues academic licences which gives free access to all
teaching material. Table 10.4, page 53, lists the academic licence holders in
1999.

On May 4-5, 1994, I organised the First International Erlang User Confer-
ence together with Erlang Systems. It was held at Ellemtel with about 100 par-
ticipants. This has now become a yearly event (see Appendix 2 and 3, page 71
and 72). The conference in 2000 gathered 145 participants which �lled the lec-
ture hall and a waiting list was in operation from four weeks before the event.

Over the years a large number of Master's Theses (see Appendix 1, page 68)
have been written on subjects related to Erlang, some of which have been quite
advanced such as an implementation of Erlang based on OS threads [He98].
Another dealt with the design of an SNMP [St99a] agent [Bj95] which was later
turned into a regular product as part of OTP (see below).

4.5 Early Marketing E�orts

Mike Williams, Roy Bengtsson and Per Erik Witasp, who was in charge of
external marketing (but with a very limited budget), made a couple of lecture
tours round Sweden and USA presenting Erlang but with little success. They
had discussions with Integrated Systems, Inc. [Isw] about possible cooperation
but this fell through when the key contact person left ISI.

4.6 Erlang Summary

The open source Erlang White Paper [Whp] provides an overview as well as
14 program examples.

4.6.1 Sequential Erlang

Erlang is a single assignment, functional programming language language with
dynamic typing not unlike Scheme. Its syntax, however, is more like ML.

Erlang has data types like atoms, numbers, lists, and tuples and uses pattern
matching to select between alternatives. The only loop construct is recursion.

An Erlang program is built up of modules and modules are separately com-
piled and loaded. Only explicitly exported functions can be called from another
module.

4.6.2 Concurrency

Functions can be spawned to create a concurrent process (or thread of control).
Concurrency is supported by the Erlang implementation without help from the
operating system. Processes have no shared memory and communicate by send-
ing and receiving messages asynchronously. Receiving processes select messages
through pattern matching.

4.6. ERLANG SUMMARY 21

Processes in Erlang processes are extremely lightweight and their memory
requirements can vary dynamically. Erlang implementations support applica-
tions with very large numbers of concurrent processes (typically in the region
of 20,000-30,000).

Erlang supports programming \soft" real time systems, which require re-
sponse times on the order of milliseconds. Long garbage collection delays in
such systems are unacceptable, so Erlang is able to reclaim memory in small
parts of the system every time the garbage collector is invoked.

4.6.3 Distribution

Erlang permits transparent distribution. An Erlang program running on a com-
puter is termed an Erlang node. A distributed Erlang system consists of several
Erlang nodes spread over many computers (perhaps running di�erent operating
systems) connected over a network.

One Erlang node can create concurrent processes running on other nodes and
Erlang processes in di�erent nodes can communicate through message passing
in the same way as processes within one node with automatic marshalling.

4.6.4 Robustness

An Erlang process can crash (because of type error, division by zero etc.) but
this will only bring down that process not the entire system (or node). Erlang
processes, however, can monitor each other so that an error can be received as
an error message. This enables the design of robust systems where supervisor
processes can take action, reclaim resources, log errors, restart a transaction
etc.

These mechanisms extend also over di�erent nodes in a distributed system.
For example, a distributed system can be con�gured to fail-over to other nodes
in case of failures and automatically migrate back to recovered nodes.

This enables the design of soft-fail systems where in a telecommunications
system an error in one call may bring down that call while the rest of the system
is not a�ected.

4.6.5 Software Upgrading in Running Systems

Erlang allows program code to be changed in a running system (\hot" code load-
ing). When a new version of a module is loaded, newly spawned processes will
run the new version while on-going processes continue and �nish undisturbed.
It is thus possible to install bug �xes and upgrades in a running system without
disturbing its (currently running) operation.

Users can control in detail how code is loaded. In embedded systems, all
code is usually loaded at boot time. In development systems, code is loaded
when it is needed, even when the system is running. If testing uncovers bugs,
only the buggy code need be replaced.

4.6.6 External Interfaces

Erlang processes communicate with the outside world using the same message
passing mechanism as is used between Erlang processes. This mechanism is

22 CHAPTER 4. DEVELOPMENT OF ERLANG

Processor
SPARC Pentium PowerPC

Sun Solaris 2 X - -
Sun Solaris x86 - X -

Operating VxWorks X - X

System Windows NT 4.0 - X -
Windows 95 - X -
Linux - X -

Table 4.1: Supported platforms, March 1999. Erlang can be ported to any
system running C. Open source Erlang has also been ported to FreeBSD by an
external user and included in their latest release.

used for communication with the host operating system and for interaction
with programs written in other languages. If required for reasons of eÆciency, a
special version of this concept allows C programs to be directly linked into the
Erlang runtime system.

4.6.7 Portability

Since Erlang is implemented in C it is essentially available on all systems that
run C. Erlang is at present supported for the following operating systems; So-
laris, Windows NT, VxWorks, and Linux, see Table 4.1.

4.6.8 Program Development

Erlang allows the same rapid prototyping and interactive development as, for
example, Lisp but extended into the world of concurrency and distribution.
The error handling mechanisms and hot code loading allow the design of high
availability, robust, non-stop systems.

4.7 Match against Requirements

Table 4.2 matches Erlang against the requirements de�ned in Section 3 and
Table 3.1 above.

Programming is both a top down activity from requirements and overall
structure of the system and a bottom up activity based on the abstractions pro-
vided by the programming language. Abstractions such as modules, processes,
higher order functions, etc. are to the programmer like transistors, capacitors,
resistors, etc. to the hardware designer. It is important that the abstractions
be few, simple to understand and yet powerful and provide the needed function-
ality. For example, if the application is inherently concurrent it would be very
diÆcult to program without some process concept. In that case the application
program itself would have to include some form of scheduler. Distribution, error
handling, and hot code loading are extremely complicated requirements and the
support for them provided by Erlang enables the programmer to concentrate on
the application rather than on the basic programming technology.

4.7. MATCH AGAINST REQUIREMENTS 23

1 Handling of a very large
number of concurrent ac-
tivities

Concurrency is provided through a light weight process con-
cept and a typical Erlang implementation can handle 20-
30,000 concurrent processes in one node.

2 Actions to be performed
at a certain point in time
or within a certain time

Erlang handles soft real time.

3 Systems distributed over
several computers

An Erlang system may contain nodes distributed over
many computers running di�erent operating systems over
a network.

4 Interaction with hard-
ware

Erlang can easily communicate with hardware drivers.

5 Very large software sys-
tems

Modularisation is supported by the module concept. W.r.t.
actual size, see Section 6.

6 Complex functionality
such as feature interac-
tion

Depends on the applications, see Section 6.

7 Continuous operation for
many years

Depends on the applications, see section 6.

8 Software maintenance
(recon�guration, etc.)
without stopping the
system

Erlang permits hot code loading.

9 Stringent quality and re-
liability requirements

Depends on the applications, see Section 6.

10 Fault tolerance both to
hardware failures and
software errors

Erlang contains mechanisms to catch and contain errors
and to design supervision structures.

Table 4.2: Matching Erlang against the requirements on a programming tech-
nology for telecommunication switching systems.

24 CHAPTER 4. DEVELOPMENT OF ERLANG

5 Open Telecom Platform

In late 1995, a remote access system was being developed at Ericsson Tele-
com AB (ETX) using Asymmetrical Digital Subscriber Line (ADSL) technology
which enables fast transmission over copper wires and a decision had to be
made regarding the selection of an appropriate programming technology. Three
di�erent proposals were prepared; one of which came from CSLab, termed the
Open System proposal.

Joe Armstrong, Mike Williams, and myself had long proposed an open sys-
tem approach where di�erent technologies, computers, languages, databases,
management systems, etc. could cooperate. Many such system components
would come from suppliers and some from Ericsson's own developments (where
either no existing component was available or Ericsson had technology that
provided a commercial advantage).

The proposal [An95] from CSLab was based upon:

� Commercial processors,

� Commercial operating systems,

� Erlang,

� The producti�ed Amnesia DBMS, renamed Mnesia,

� The producti�ed SNMP agent,

� The BOS from the Mobility Server, rewritten and better integrated with
Erlang, renamed System Architecture Support Libraries (SASL1),

� Producti�ed development tools (debugger, interpreter, etc.),

� Interworking with device processors (usually programmed in C),

� Interworking with other software (protocol stacks, routing software, etc.
usually written in C).

Careful estimates of execution times were also made. As it turned out the
Open System proposal was given the go ahead with a tight schedule to produce
a prototype system in six months, i.e., to deliver by the end of May 1996. I was
appointed project manager of the �rst phase of the project and Mike Williams
was appointed systems designer of the access node project.

1The name SASL usually means St Andrews Static Language which was a precursor to

Miranda.

25

26 CHAPTER 5. OPEN TELECOM PLATFORM

Immediately after the start of this project an even more important appli-
cation project started, the development of an ATM switch. The large AXE/N
project (where Erlang was not used) which had been running during 1987-95
had been closed down, which also caught the notice of the press [Ol95, Wa95a,
Wa95b] and it was a matter of great urgency to rapidly �ll this gap in the prod-
uct range. The new project involved about 200 people among them at least
60 Erlang programmers. Erlang Systems became deeply involved with teaching
and consulting.

At this point external marketing of Erlang for product development was
stopped since all e�orts were to be concentrated on the Open System project.
Erlang Systems had worked for a couple of years on external marketing which
turned out to be very diÆcult since few dared to use a programming language
from Ericsson which was not widely used by Ericsson itself. Now when that
situation had changed Erlang Systems could have made a large marketing push,
but instead had to close down the external marketing. However, it was still
permitted to deliver Erlang for research, education and prototyping, primarily
to universities.

For some time the access node and the ATM switch projects were the only
projects permitted to use the the emerging open system and for the same reason,
to focus the \resources". Other projects had to apply to the steering group for
permission.

The system was named Open Telecom Platform (OTP) and the project de-
livered the �rst prototype system on time at the end of May 1996. From the
beginning it was clear that management of OTP [To97] would have to be han-
dled by a speci�c product unit and this was being created in parallel. After the
�rst prototype phase Catrin Granbom took over as project manager and Seved
Torstendahl as product manager.

Two weeks later the ATM project had passed their �rst dead-line. After
that both OTP and the ATM project have stuck to their time schedules and
the ATM product was announced in March 1998.

OTP system components:

� Distributed application management,

� SASL - error logging, release handling,

� OS resource monitoring,

� EVA - protocol independent event/alarm handling,

� Mnesia - real time active data replication,

� SNMP - operations and maintenance interface,

� INETS - simple HTTP support.

A key subsystem in OTP is the System Architecture Support Libraries (SASL)
which give a framework for writing applications. SASL provides:

� Start-up scripts,

� An application concept,

� Behaviours (design patterns),

27

� Error handling,

� Debugging,

� High-level software upgrades in runtime without shutdown.

The behaviours provide the programmer with yet higher level abstractions
for eÆcient program design [Dpw]:

� Supervision,

� Servers,

� Event handling,

� Finite State Machines.

SASL raises the level of abstraction and gives the system designers a powerful
framework for systems design with built-in support for distribution, incremen-
tal code loading, error handling (and logging), etc. Mnesia and other OTP
components are handled as \applications" by SASL.

SASL consolidated ideas on programming patterns that came both from the
Erlang group at CSLab and the BOS developed by the prototyping team at
EBC.

A new unit was created for management, support, and further develop-
ment of OTP. Early 1997 the OTP product unit was formally established with
Torbj�orn Johnson as manager. Upon his retirement he was replaced by Mike
Williams and in 1998, when he in turn moved on within Ericsson, Kenneth
Lundin took over.

Technology transfer from CSLab to the OTP product unit was handled as
follows:

� Already in the �rst prototype phase, the product unit took over systems
integration and release management.

� From the second development phase, the product unit took over project
leadership and product management.

� Designers from the product unit joined the di�erent design teams (for
complier, SASL, etc.) and CSLab personnel were phased out over a longer
period.

� CSLab and the OTP product unit are still colocated.

By the end of 1998 the OTP unit numbered about 20 people and had taken
complete control over the system. With successive releases new functionality
has been added such as an implementation of the Common Object Request Bro-
ker Architecture (CORBA) [Omg, Si96]. This has been available since OTP
release R5B in February 1998.

Erlang Systems adjusted their courses and developed an OTP Programming
course.

28 CHAPTER 5. OPEN TELECOM PLATFORM

6 Selected Industrial Applications

6.1 AXD 301 ATM Switch

The AXD 301 [Axd, Bl98, Bl99] is a new generation high performance Asyn-
chronous Transfer Mode (ATM) switching system. It is extremely compact and
has linear scalability of switching and control capacity. The system is intended
for public network operators and Internet Service Providers (ISP's).

The AXD 301 is a key building block in Ericsson's multi-service network
solution. Applications include ATM connectivity networks, scalable Frame Re-
lay / ATM networks and Multiprotocol Label Switching (MPLS) for eÆcient
handling of IP traÆc as well as multi-service business networks and residential
broadband networks. AXD 301 can also be combined with Ericsson's AXE nar-
row band switching system to provide a full range of narrow band services over
ATM. All of these applications can run simultaneously on the same switch.

Main features:

� Scalability: From 10 Gbit/s in one subrack up to 160 Gbit/s,

� Carrier class: Non-stop operation,

� Modularity: Extendible with new functions,

� Functionality: All ATM Forum and ITU signalling and service cate-
gories,

� Manageability: Embedded web based element manager with a standard
interface to management systems (i.e., SNMP).

The internal computing resources of the 10 Gbit/s switching system consist
of:

� Two general-purpose control processors which handle network-signalling
termination, call control, and operation & maintenance,

� Simple device-control processors, one on each ATM termination board and
switch-core board for low-level control of the switch hardware.

For inter-processor communication and network signalling, every processor is
connected to the ATM switch core. The device processors on the ATM termina-
tion boards are connected through the local switch port, the control processors
and device processors on the switch core boards are connected (via the subrack
backplane) to the switch port of the nearest ATM termination board.

29

30 CHAPTER 6. SELECTED INDUSTRIAL APPLICATIONS

During normal operation, one control processor handles calls, while the other
processor handles operation and maintenance. In addition, each processor acts
as a standby for its counterpart. In the event that one of the processors should
fail or be taken out of operation, the system automatically switches over to
single-processor mode.

An internal, distributed, real time database management system (based on
Mnesia) copies data to each control processor, ensuring that con�guration data
and all data relating to operator ordered connection setup are protected from
processor failure.

AXD 301 was announced in March 1998. Quote \with Erlang/OTP as the
core technology, an open architecture was built, enabling the use of Erlang, C,
Java [Go96] and dynamically generated HTML/JavaScript in the areas appro-
priate for each language:

� C for drivers, low level protocols and integrating third party components
(280,000 lines).

� Java, JavaScript and HTML for the management interface. (2,500 lines
of Java and 110,000 lines of JavaScript and HTML (generated code).)

� Erlang for control and management functions (290,000 lines)." [Wi98a]

This gives a nice illustration of the assumption made above that telecommu-
nication systems would likely be designed using a combination of technologies.

The sourced software are from previous Ericsson projects but most impor-
tantly 80,000 lines of C from Trillium Software for handling Private Network-
Network Interface (PNNI) routing.

(These �gures have grown considerably since then, see Table 6.1, page 35,
row 5.)

Even more important was that the project has been able to work in successive
incremental prototypes. One drawback with the sequential \waterfall" [Yo92]
model is the diÆculty to go back when errors in design such as capacity problems
occur. Functional but limited AXD 301 systems were available at a very early
stage, thus enabling measurements and allowing the designers to evaluate their
design. Successive versions re�ned the system and added new functionality.

To date 250 AXD 301 systems have been delivered to 20 countries. The
AXD 301 system is also an integral part of Ericsson's ENGINE concept [Pr99c]
which has been ordered by operators such as British Telecom and Telef�onica.

6.2 ANx Access Node

ANx-DSL [Ni98] is Ericsson's access solution for delivery of high speed IP/ATM
based services to medium, small business and residential users over existing
copper networks.

The ANx-DSL system uses Asymmetric Digital Subscriber Line (ADSL)
technology to dramatically increase bandwidth in the existing copper access
network. This means that people working from home can download large data
�les faster than ever before. An additional advantage is that Ericsson's ANx
ADSL platform supports digital video services.

The ANx-DSL equipment is installed in the operator's central oÆce, where
a splitter and a multiplexer separate voice and data signals to and from the

6.3. GPRS 31

subscriber, and concentrate data channels for forwarding to the data network
backbone. Even at low take-up rates, this is a
exible and scaleable system,
easy to install and extremely cost-e�ective.

The control system is based on OTP and Erlang. The database and the
hard disk for secure storage of permanent data are also located at the control
processor. Each board in the system has a device processor or a board controller,
which is a low-end microprocessor. The device processor communicates with
the control processor through in-band ATM communication or via a separate
Ethernet LAN. The board controllers communicate via ATM with one of the
device processors, which acts as a shelf controller; in other words, the device
processor contains speci�c software for maintaining the board controllers. In
ANx-DSL, the ADSL boards and the network termination boards have board
controllers, whereas the exchange termination boards have device processors.

In October 1998 Ericsson signed an agreement with Telia to supply ANx
during a two year period [Pr98].

6.3 GPRS

General Packet Radio Service (GPRS) [Gprs, Gr99] is a standard from the Eu-
ropean Telecommunications Standards Institute (ETSI) on packet data in GSM
systems. By adding GPRS functionality to the public land mobile network,
operators can give their subscribers resource-eÆcient access to external IP net-
works and enable them to stay always connected.

GPRS o�ers air-interface transfer rates up to 115 kbit/s subject to mobile
terminal capabilities and carrier interference. Moreover, GPRS allows several
users to share the same air-interface resources and enables operators to base
charging on the amount of transferred data instead of on connection time.

The world's �rst demo of GPRS (which had been developed in Erlang) was
shown at CeBit 1998 and the two nodes, SGSN and GGSN, are developed based
on Erlang/OTP. By the beginning of year 2000 Ericsson holds more than 50%
of the world market in GPRS and in February, 2000, Ericsson presented the
�rst live GPRS phone in the �rst end-to-end live GPRS network demo [Pr00b].

6.4 A Comment on Software Engineering

Experiences from the use of Erlang in many sometimes very large projects indi-
cate clearly the two di�erent traditions within software engineering. The most
successful projects are run by enthusiastic teams, working hands-on and produc-
ing rapid results. The prime examples is the AXD 301 which developed a small
executable system very early and then continued by building successive incre-
ments, carefully adding new functionality and all the time monitoring system
performance.

Less successful has been the top-down methodological waterfall approach
where several teams (perhaps spread over several countries) specify and code
the whole system and then send their parts for integration test. With this
approach there is much poorer feed-back to the designers and the whole idea of
interactive programming (one of the strong points of functional programming)
is lost.

32 CHAPTER 6. SELECTED INDUSTRIAL APPLICATIONS

Design eÆciency is the key issue. All the telecoms requirements listed in
Section 3 above can be solved with various techniques, even assembler, but then
with a huge e�ort. Internal studies [Wi98b] show an increased productivity by
at least a factor four compared to conventional (C, C++, Java ...) technolo-
gies. This enabled the AXD 301 project to apply an incremental work method.
It should perhaps be added that most programmers like Erlang as, like other
interpretative languages (Lisp, Java, etc.), it adds to their work satisfaction to
see quick results [He00b].

6.5 Experiences from the Field

The Mobility Server has been delivered in about 450 systems on 15 markets and
the designers have considerable experience working with the system:

� \We have 250,000 lines of code today, distributed among 500 modules
in the Mobility Server 1 and only two or three fault reports from the
whole world come in each month. That gives very low sustaining costs.
Erlang has got a high level of abstraction, which allows the designers to
concentrate on what they do, not how. That contributes to there being
fewer
aws in the code." [Fe98]

Not only are there fewer faults but they are easier to �nd. Conventional
systems produce hexadecimal dumps which are very diÆcult to interpret but
Erlang produces symbolic information, lists, tuples, etc. This is the power of
functional programming. Erlang is sometimes described as an untyped pro-
gramming language, but the truth is that it is dynamically typed. All data
items carry type information with them.

6.6 User Testimonies

The following statements have been made by users and have been used in mar-
keting by Erlang Systems [En98]:

� \We believe from project start, and still believe, that if we had tried to
use any other technology, we would not even remotely have been able to,
within the desired time frame of roughly 1.5 years, reach the desired level
of functionality, system software maturity and stability." fAXD 301g

� \Also, the short time for writing and testing Erlang code has enabled a
truly incremental approach to software development." fAXD 301g

� \I would say that without Erlang/OTP we could never have accomplished
the required functionality in the short time frame ..." fGPRSg

� \It takes 2 years to make a Plex programmer productive, it took 2 months
in Erlang." fEricsson AS, Norwayg

6.7. EXTERNAL USERS AND CONSULTANTS 33

6.7 External Users and Consultants

In March 1999 the following external companies used Erlang on licence from
Erlang Systems:

� Beijing Telestar Telecom Technology Institute, China, Service Creation
Environment,

� Borsalino, France, Business Tools,

� Brainpool, Sweden, SMS services [St99b],

� Motivity, Canada, Protocol converter,

� one2one, UK, IN services [Hi00],

� Telia Promotor, Sweden, Telia Call Guide [Na99].

Since then Brainpool has dropped their Erlang based product. On the other
hand Sendmail Inc [Smw] has joined as Erlang user [Fr00].

The following external consultancy companies o�er Erlang consultancy ser-
vices and have been certi�ed by Erlang Systems:

� Certeam,

� Cesarini Consulting Ltd,

� Connecta Teknik AB,

� ENEA Data,

� Sj�oland & Thyselius,

� UPEC.

Erlang Systems and the OTP product unit operate a commercial Erlang web
site [Erw] which contains documentation, information about current courses etc.

6.8 CeBit 1998 and Marketing E�orts

In 1998 there were about 14 projects ongoing based on Erlang/OTP. In addition
there were many projects using just Erlang. At the CeBit international trade
fair in Hannover in April 1998 there were no less than nine Erlang based system
products on display in the Ericsson stand [Wa98a, Wa98b]:

� Auto generated Graphic User Interface (GUI) for Intelligent Network (IN)
services,

� ANx-DSL fast access system,

� AXD 301 ATM switch,

� Database Access Gateway,

� GPRS packet switch over GSM,

34 CHAPTER 6. SELECTED INDUSTRIAL APPLICATIONS

� Mobility Server,

� Network Intelligent Call Centre,

� Telia Internet Conference Set-Up,

� Professional Mobile Radio over GSM.

In April 1997 the ban on external marketing was lifted and Erlang Systems
employed Jane Walerud as Sales Manager in October. The marketing goals
were set high. Erlang/OTP was to have 10,000 users and be used in product
development in 5 companies other than Ericsson by the end of the year 2001.
The agreed marketing strategy was to �nd major partners to take over the
technology and to concentrate on one niche market at a time time while stepping
up the publicity e�orts.

During 1998, most possible major partners, including SUN and MicroSoft,
declined the Erlang/OTP technology. Erlang Systems then concentrated on two
niches:

� Embedded systems in a partnership with Wind River Systems [Wrw]
with an implementation of Erlang/OTP on the VxWorks operating system
[Wre].

� High availability telephony in a partnership with Natural Micro Sys-
tems [Nmw] who have a leadership in the compact PCI technology.

These partnerships would not get all the way to the goal of 10,000 users in
three years, so starting in June 1998, Jane Walerud instead concentrated on the
open source initiative (see below).

6.9 Re�ned Match against Requirements

Table 6.1 makes a further match of Erlang against the requirements de�ned in
Section 3 and Table 3.1 above.

6.9. REFINED MATCH AGAINST REQUIREMENTS 35

1 Handling of a very large
number of concurrent ac-
tivities

There are about 200-4000 concurrent processes active in
AXD 301.

GPRS release 1 has about 500 concurrent processes. The next
release is expected to have about 1000-2000 concurrent pro-
cesses.

Mobility Server has about 200 static processes and generates
six dynamic processes for each call.

2 Actions to be performed
at a certain point in time
or within a certain time

In AXD 301 performance measurements, equipment supervision
and output of charging (billing) information is carried out at
regular intervals. (The same applies to GPRS.)

Implementations of communication protocols contain many
timers supported in Erlang by the time-out mechanism in the
receive statement and built-in timers.

3 Systems distributed over
several computers

The 40 Gbit/s version of AXD 301 consists of 8 control proces-
sors and 64 device processors.

4 Interaction with hard-
ware

Interaction with switching hardware is often done through de-
vice processors which can handle the \hard" real time require-
ments at low level.

There are standard methods for interaction with C and for com-
munication with hardware drivers.

5 Very large software sys-
tems

AXD 301 release 3 consists of about 525 KLOC Erlang,
608 KLOC C and 8 KLOC Java (plus the OTP).

6 Complex functionality
such as feature interac-
tion

AXD 301 supports all ITU and ATM Forum protocols and in-
terworking between them.

GPRS consists of many cooperating protocols.

7 Continuous operation for
many years

The Mobility Server was released as a product in 1994 and there
are now more than 400 units in operation around the world.
Very few errors in the �eld are reported and most problems
now relate to hardware (like fan motors giving up).

8 Software maintenance
(recon�guration, etc.)
without stopping the
system

AXD 301 supports soft upgrades. The system itself �gures out
how it should be upgraded, processes suspended, code loaded
into the system, etc.

9 Stringent quality and re-
liability requirements

AXD 301 requirements specify service stops of no more than
6 minutes/year. At the present time the system has about
60 execution years in the laboratory. (20 test channels in oper-
ation for 3 years.)

GPRS is expected to have a system availability of 99.995 %.
This corresponds to a system downtime of about 26 min-
utes/year.

10 Fault tolerance both to
hardware failures and
software errors

In AXD 301 either central processor can take over the other.
The system is built using supervision hierarchies as supported
by OTP/SASL. The design rules specify that functions either
handle correct inputs or crash. In the latter case the supervisor
at a higher level will identify and handle the error.

GPRS is built around n processors and if one goes down during
operation it will only cause a slight degrading of capacity.

Table 6.1: Further match of Erlang against the requirements on a programming
technology for telecommunication switching systems. KLOC = 1,000 lines of
non-commented code. OTP itself contains about 240 KLOC Erlang.

36 CHAPTER 6. SELECTED INDUSTRIAL APPLICATIONS

7 Backlash

Once upon a time C++ [St91] was the contender vs. Erlang. However, after
some large project failures C++ fell into disrepute and instead Java [Go96]
appeared. Java is like a tidied up version of C++ without pointers and with
builtin garbage collection. Java also supports concurrency in the form of threads
(which, however, are implementation dependent). The question is whether Java
is a suitable programming language for large robust systems where Erlang is
currently used. Many systems (such as the AXD 301 noted above) use Erlang
for servers and the telecommunications application and Java for the graphics
oriented management system, i.e., clients. (Present Java implementations have
much longer context switching times than Erlang, but this might be changed in
the future such that Java could also be used for large embedded applications
like Erlang.)

In February 1998, Erlang was banned within Ericsson Radio AB (ERA) for
new product projects aimed for external customers because:

� \The selection of an implementation language implies a more long-term
commitment than selection of processors and OS, due to the longer life
cycle of implemented products. Use of a proprietary language, implies
a continued e�ort to maintain and further develop the support and the
development environment. It further implies that we cannot easily ben-
e�t from, and �nd synergy with, the evolution following the large scale
deployment of globally used languages." [Ri98]

Ongoing Erlang user projects were also required to make a plan for how to
remove the Erlang dependence. This policy was issued without prior notice to
the OTP Product Unit or to CSLab which were then part of Ericsson Telecom
AB (ETX).

This was part of a scheme to outsource software technology at Ericsson to Ra-
tional Inc. [Raw], a provider of Computer Aided Software Engineering (CASE)
tools. The Joint Development Initiative (JDI) agreement between Ericsson and
Rational was concluded in 1997. Rational acquired the Swedish software com-
pany SoftLab AB [Sow] which had a long history of working with Ericsson and,
indeed, was responsible for maintenance and further development of the Plex
compilers, a core technology for Ericsson. Rational, however, wanted to turn
SoftLab into a sales and consulting company which caused some turmoil [Pe98]
and in late 1998 part of SoftLab was taken over by Ericsson [Cs99].

Although the Erlang policy only applies to ERA, no major Erlang based
projects were started at Ericsson during 1998 or 1999. However, with the ongo-
ing projects using Erlang, the volume of training and consulting remains at the
same level as before.

37

38 CHAPTER 7. BACKLASH

8 Open Source and Continued

Research

Software has been available as freeware for many years, but this had not gained
respectability in industry. In 1997 a new term appeared, open source, to describe
the remarkable success of the Linux [Re97] development and also to provide
a legal framework for handling maintenance and user's improvements to the
system. Open source [Opd, Jo00b] also implies a way of spreading software
where users need not feel locked in by single vendors that might disappear. The
open source phenomenon was described by Eric S. Raymond in a paper [Ra99]
that in
uenced Netscape's decision to release the Communicator 5.0 source code.

During the Autumn of 1998 a discussion was raised about releasing Erlang as
open source in order to facilitate its spread externally and hopefully attract even
Ericsson competitors to use it. A small group visited Red Hat Inc. [Rew], the
company that distributes Linux, and preparations started at CSLab to create
an open source web site. On December 2 the OTP steering group gave its
permission and one week later open source Erlang [Opw] was released.

The earlier marketing e�orts had concentrated on making a business from
marketing Erlang as a programming language with an implementation. The
focus now changed to spreading the language and to eradicate the \proprietary"
image. In addition, the open source distribution is a considerably more ma-
ture product in that it contains the full OTP implementation (SASL, Mnesia,
libraries, etc.) as well.

During December 1998 there were 72,933 requests to the open source Erlang
site although no press release had been issued. This dropped the following month
and then kept a level of about 35,000 requests for several months. However, from
October 1999 this �gure has been rising steadily and there were 126,341 requests
in September 2000, see Figure 8.1. Four mirror sites [Miw] were established,
KTH, University of Uppsala, University of Vienna and Software Engineering
Research Centre (SERC) in Melbourne.

A second release of open source Erlang was made in early December 1999
and a couple of articles on Erlang were published in Computer Sweden in Febru-
ary 2000 [He00a, He00b]. Open source Erlang is now maintained by the OTP
product unit.

8.1 Bluetail AB

Eddie was an \innovation cell" using Erlang to \provide the tools which allow the
construction of mission critical internet sites" [Edw]. In the middle of December

39

40 CHAPTER 8. OPEN SOURCE AND CONTINUED RESEARCH

0

20000

40000

60000

80000

100000

120000

140000

160000

98-10 99-01 99-04 99-07 99-10 00-01 00-04 00-07 00-10

Figure 8.1: Total number of user requests per month to www.erlang.org.

1998 the Eddie team handed in their notices to leave Ericsson to set up their
own company, Bluetail AB [Blw], based on external venture capital. (A new
design team was found in Melbourne on my suggestion and have also set up a
commercial company, Lodbroker Pty [Low].)

Bluetail \develops and sells software products to Internet organisations and
thereby supplies reliability, scalability and managability to Internet services".
Soon after several more people at CSLab, SARC (se below), the OTP product
unit and Erlang Systems (in all about 15 people) left to join Bluetail. Among
them were Joe Armstrong, Claes Wikstr�om, and Robert Virding. Jane Walerud
became Managing Director. I was invited to the board of Bluetail and partici-
pated with Ericsson's permission.

Bluetail received a lot of attention in the press [Ka00a, Sm00a]. Their �rst
product was the Mail Robusti�er and early in year 2000 they brought out the
Web Prioritizer [Me00, T�a00]. Among Bluetail's customers were TeleNordia and
SPRAY. At the beginning of year 2000, Bluetail signed a partnering agreement
with Sendmail Inc [Smw].

In late August 2000 Alteon [Alw], a major US supplier of web switches,
announced that they were in the process of acquiring Bluetail at a price of
1,4 billion SEK [Ka00b, Ol00, Pr00d, Sm00b]. Earlier in 2000 ADC Telecom-
munications bought Altitun for 7,9 billion SEK and Cisco bought Qeyton for
7,3 billion SEK. Altitun and Qyeton were, like Bluetail, Swedish startup com-
panies founded largely by former Ericsson technicians [Au00].

By coincidence, Alteon is being bought by Nortel [Pr00c].

8.2. ERLANG IN THE RESEARCH WORLD 41

0

100

200

300

400

500

600

700

800

98-11 99-01 99-03 99-05 99-07 99-09 99-11 00-01

Figure 8.2: Total number of source code downloads per month from
www.erlang.org. 1st release December 1998. Bug �x release February 1999.
2nd release November 1999.

8.2 Erlang in the Research World

Over the years a number of papers [Ar92b, D�a93b, Ha93, Vi93, Wi94, Ar95,
Vi95, Wi96, Ar97a, Ar97b, Ar97c, Ar98, Da98, Ar99b, Ar99c, Ma99] have been
presented on the development and use of Erlang in prestigious conferences and
this has received much attention in the research world. As a consequence Joe
Armstrong was invited as keynote speaker to the ACM SIGPLAN International
Conference on Functional Programming on June 9-13, 1997, which took place
in Amsterdam [Ar97b].

CSLab has worked with many distinguished researchers on Erlang and Er-
lang related topics, notably professors Marc Feeley (Montr�eal), Bengt Jonsson
(Uppsala), Richard O'Keefe (Otago), and Philip Wadler (Glasgow, now at Lu-
cent).

It has been a drawback, though, that the Swedish Institute of Computer Sci-
ence (SICS) [Siw] has been so preoccupied with developing Oz [Moz]. However,
distribution and error handling in Oz have been in
uenced by Erlang [Ha99].

Erlang has also helped to inspire work on distributed Haskell [Hu00, Po00].

At the Twelfth International Workshop on Implementation of Functional
Languages [Mo00] in Aachen on September 4-7, 2000, there was a half-day
session on Erlang thanks to Thomas Arts' initiative.

42 CHAPTER 8. OPEN SOURCE AND CONTINUED RESEARCH

8.3 Research Continues

The wide exploitation of Erlang technology in the form of OTP did not mean
the end of Erlang related research. Instead Erlang opened many constructive
paths for continued research with a view to further industrial uses:

� Bogumil Hausman worked from 1992 on compiling Erlang to C with the
aim of gaining execution speed. The compiled code obviously is consider-
ably larger than the JAM byte code. Bogdan's Erlang Abstract Machine
(BEAM) [Ha93, Ha94] uses the same run time library as JAM. In 1999
BEAM replaced JAM which is no longer supported [Ka99].

� Robert Virding developed an alternative implementation called Virding's
Erlang Engine (VEE) using di�erent techniques, notably generational
garbage collection. In 1999 a new compiler was released which was based
on VEE [Ka99].

� A Scheme [Dy96] implementation of Erlang. This is an ongoing project
[Fe99] (partly funded by CSLab) at the University of Montr�eal lead by
Marc Feeley, creator of Gambit Scheme [Gaw]. The purpose is to create
an alternative Erlang implementation in the public domain.

� High Performance Erlang (HiPE) [Hiw, Jo99, Li99, Jo00a] is a project
at Computing Science Department (CSD) [Csd], Uppsala University, to
compile Erlang into Sun Microsystems Sparc native code using very ag-
gressive optimization techniques. HiPE starts from the JAM byte code
and concentrates on code generation. However, it is being redesigned to
work from BEAM instead.

� Geo� Wong at Software Engineering Research Centre (SERC) [Sew], Mel-
bourne, is performing research into continuous system monitoring [Wo98]
whereby a separate computer monitors non-functional aspects like relia-
bility, capacity, etc. during the actual operation.

� List comprehensions, records and higher order functions [Er44] have been
added to Erlang. Most of this work has been done by Robert Virding.

� A formal language speci�cation for Erlang is nearing completion. This
work was started by Jonas Barklund of CSD [Csd] and is being �nished
by Robert Virding. It is available together with the open source release.
The grammar used \is almost, but not quite, an LALR(1) grammar" [Ers].

� Core Erlang [Cew] is an intermediate representation of Erlang, intended
to lie at a level between source code and the intermediate code typically
found in compilers developed primarily by CSD [Csd].

� Richard O'Keefe from the University of Otago, New Zealand, has studied
Erlang with tools and libraries very carefully and has proposed certain
changes [Ok98] to the language and its libraries to widen the applicability
of Erlang for very large applications.

� Further work on real time garbage collection [Vi95, Bo97].

8.3. RESEARCH CONTINUES 43

1984-6 Language experiments

1987 Early Erlang

1988-9 ACS/Dunder application prototype

JAM emulator

1990 Erlang presented at ISS'90

Use for prototyping

1991 First fast implementation

ASN.1 compiler to Erlang

1992 User product projects (Mobility Server) started

1993 Distributed Erlang

1994 User products launched

SDL translator

Several user projects started

1995 SNMP Master's Thesis

Amnesia DBMS prototype

1996 OTP development started

Type system and program veri�cation

1997 General availability

1998 Open source distribution

Type system and program veri�cation

1999 BEAM replaces JAM

Table 8.1: Erlang Development.

� Simon Marlow and Phil Wadler of the University of Glasgow have devel-
oped a type system for Erlang [Ma97]. This was taken over by Thomas
Arts at CSLab who has reworked the system [Tyw] and is beginning to
�nd users for it. The vision is to be able to cover the entire spectrum from
untyped fast prototyping to well controlled typed systems for production.

� A program veri�cation system [Vew] for Erlang is being developed in co-
operation with Swedish Institute of Computer Science (SICS) [Siw] and
Thomas Arts of CSLab. This system is beginning to be used for �nding
bugs in protocol implementations [Ar98, Da98, Ar99a, Ar99b, Ar99c].

� Sven-Erik Nystr�om from CSD [Csd] has worked on static analysis of Erlang
programs.

� Dan Sahlin at CSLab and Lawrie Brown from University College of New
South Wales have worked on Safe Erlang [Br99], an extension of Erlang
with capabilities to be able to handle imported software in a secure man-
ner.

� A couple of prototype projects have implemented intelligent agents using
Distributed Erlang notably a large student project at Uppsala [Jo97].

� Department of Computer Systems (DoCS) [Dow] at Uppsala University has
investigated implementation of Erlang for very small operating systems
and have made a preliminary implementation of Erlang on ExoKernel
[Exw] which had been developed at M.I.T.

44 CHAPTER 8. OPEN SOURCE AND CONTINUED RESEARCH

� Claes Wikstr�om and Tony Rogvall proposed a further extension of Erlang
with a bit syntax [Ro99] which signi�cantly improves Erlang's capabilities
for programming communication protocol stacks. This was implemented
by Patrik Nyblom and available from the Erlang/OTP release in Septem-
ber 2000 [Ny00].

CSLab has close co-operation with several universities and from 1997 I was
appointed chairman of the board of Advanced Software Technology (ASTEC)
[Asw], a competence centre supported by NUTEK [Nuw] and primarily based
at Uppsala university. The HiPE and Erlang veri�cation projects are both run
under ASTEC.

In March 1998, the Software Architecture Laboratory (SARC) with H�akan
Millroth as manager was spawned o� from CSLab. H�akan came from CSD
[Csd] and was appointed adjunct professor at Uppsala. SARC works closely
with CSLab and there is some overlap, but SARC will focus on higher levels of
system architecture for example de�ning recommended standard solutions (de-
sign patterns) to typical subsystems recurring in telecommunications systems.
When H�akan left for Bluetail he was replaced by Torbj�orn Keisu.

9 Discussion

9.1 Development of Programming Technology

Once upon a time I imagined the development of programming language tech-
nology as a path towards successively higher levels of abstraction, see Figure 9.1.

� Machine code,

� Assembler programming,

� Higher Order Languages (Fortran, Pascal, etc.),

� Declarative (i.e. functional and logic) programming,

� Very high level, perhaps A.I. based ...

� ... and so on ...

Seen from a perspective of the 1970's (when the design of compilers and
operating systems had just started to be done in higher order languages) we
should now be well headed towards Very High Level Languages for yet the
next generation. This has not happened and perhaps there will not be any
development of this kind. Perhaps this view (inspired from developments in
hardware from discrete components to VLSI) is a misunderstanding.

In fact, declarative languages are just about the same age as higher order
languages since Lisp appeared only shortly after Fortran. This means that
the di�erent types of languages exist in parallel. Figure 9.2 is perhaps more
appropriate.

Returning to the conclusion in the paper [D�a86] describing the experiments
using di�erent programming languages and techniques (see above) that a com-
plete system likely would be built using a combination of techniques suitable

Machine level

Assembler level

High-level

Declarative

Figure 9.1: Successive programming language generations.

45

46 CHAPTER 9. DISCUSSION

Declarative

Object-oriented

Imperative

Concurrent

1960 1970 1980 1990

Lisp Prolog ML Erlang Mercury

Simula Smalltalk C++ Java

Fortran Cobol PL/I Pascal C

Simula Modula Chill Ada Erlang Java

Figure 9.2: Concurrent programming language generations.

for di�erent purposes, the question could be rephrased as why there is not a
greater use of functional and logic programming? After all, they should be part
of any programmer's \tool box".

9.2 On Applications of Functional Programming

Phil Wadler [Wa98d] presents the following list of possible reasons for the resis-
tance to functional programming languages:

� Compatibility,

� Libraries,

� Portability,

� Availability,

� Packagability,

� Tools,

� Training,

� Popularity.

Most of these are self-defeating: because of the lack of X, no X will be
created. All points except the last one are of a technical nature and can easily
be remedied. The key point is the last which is a bit like a Catch 22. Lisp
has been around a long time and proved itself many times without making the
real break-through. There are also other functional programming languages of
industrial quality, notably Clean [Clw], Mercury [Mew], and Oz [Moz].

It might well be that it is diÆcult to introduce functional programming into
an old and established company culture. This, on the other hand, leaves the
�eld wide open for exploitation by new companies free from tradition.

The 1st International Workshop on Practical Aspects of Declarative Lan-
guages took place on January 18-19, 1999, at San Antonio, Texas. However,
the only paper delivered by an industry representative was a paper on Mnesia
[Ma99].

9.3. DIFFUSSION OF INNOVATIONS 47

Cumulative % of
Stages Actors Actors Adopting

Pioneer Innovators 0-5 %
Early expansion Early adopters 5-15 %
Takeo� Popularizers 15-30 %
Bandwagon Followers 30-80 %
Late Conservatives 85-95 %
Terminal Resistors 95-100 %

Table 9.1: Acceptance of New Technology.

9.3 Di�ussion of Innovations

Everett Rogers in his book Di�ussion of Innovations [Ro82] describes a series
of \stages of adoption" for new technologies, see Table 9.1.

An important point in this model is that there is no smooth transition from
one stage to the next. This applies especially when moving from the takeo� to
the bandwagon since the �rst group are interested in the new technology and its
possible uses whereas the second group is primarily interested in functionality
which might, for example, be available to competitors.

With reference to Erlang's prototype projects, the early products and the
projects following OTP development could be seen as the early expansion. Er-
lang/OTP was on the verge of takeo� in the form of projects that had seen these
successes but were halted by the ERA policy.

9.4 The Magic of Words

This brings the question around to marketing where CSLab may have failed
miserably. Technical merits may impress the technicians but something else is
required to gain the acceptance of decision makers. It was mentioned above how
\freeware" was treated with suspicion but when \open source" appeared (with
an appropriate legal framework) it gained much higher respectability.

Recently we have seen another such case, \daily build". For many years
the standard method for program system development has been the \water
fall model" [Yo92] starting with speci�cations, ending with system integration.
Against this has often been proposed \rapid prototyping" as a means to get an
early check on implementability and performance. This essentially conservative
and realistic approach is now gaining respectability as \daily build":

� \Focus on customer requirements and code - Code is King,

� Shorter distance between customer and programmer, who gets better un-
derstanding of the �nal product,

� The customer is able to see real progress in the form of executable code,

� Avoid a large integration problem at the end of the project." [Ol99]

Thus this apparently undisciplined bottom-up way of working gets accepted
for its merits under a new term. The good point is that people who disliked fast

48 CHAPTER 9. DISCUSSION

prototyping can now embrace its advantages without having to concede that
they could have been wrong earlier.

Also technicians working with applied research need to understand this
magic of words. The term \functional programming" is old and worn and its
marketing might need some new term.

9.5 Symbolic Programming strikes Back

One of the nice aspects of Lisp (mentioned above) is the use of S-expressions as
an eÆcient way to save and read complex data structures, which also have the
advantage that they can be easily inspected. This compares with hard coded
binary structures and hexadecimal dumps.

The trend now is towards textual forms on a large scale, IETF protocols,
postscript, HTML, and XML [Xmw]. Quote Phil Wadler:

� \In fact, XML is little more than a notation for trees and for tree gram-
mars, a verbose variant of Lisp S-expressions coupled with a poor man's
BNF (Backus-Naur form). [- - -] There is much for the language designer
to contribute here. As all this is based on a sort of S-expression, is there
a role for a sort of Lisp?" [Wa99]

10 Conclusions

For Erlang to be used inside Ericsson it was required that it was used outside and
for Erlang to spread outside Ericsson there had to be wide use of it inside. The
only way to get around this was a steady spread of the language in both spheres.
In fact, in the dynamic world of telecommunications, the history of Erlang
has proceeded in a see-saw fashion with focus alternating between internal and
external use, see Table 10.1.

The development and use of Erlang shows that for a new programming lan-
guage to be reasonably successful there are, at least, the following prerequisits:

� There has to be a sizeable and stable support organisation. The OTP
product unit numbers 18-20 people �nanced by the in-house Ericsson
projects.

� There must be training and consultants available.

� There has to be some niche that is suÆciently interesting and important
for large sectors of industry. In Erlang's case high-availability, reliable,
distributed systems and rapid design through high abstraction level and
prototyping.

� The language must be reasonably simple to learn and to implement.

A most remarkable observation is that while hardware developments go
ahead at great speed (note Moore's law) basic programming still remains at
about the same level of technology as 30 years ago. Tremendous e�orts are
made on various methodolgies and the visions in industry seem to be in the di-
rection of \software factories" where the work can be reduced to mere \coding".

Today when large numbers of people are available with university degrees
in Computer Science there should be a greater emphasis on better technologies.
Functional programming has been around just as long and diÆcult problems
such as hot code loading and distributed programming can only reasonably be
handled through better technology such as Erlang provides.

Was it worth the e�ort? Did the Erlang development produce the desired
technical result and did it serve the needs for product development? The answer
must be \yes" on both accounts. Erlang has also shown that:

� Functional programming can be used for very large applications involving
large project teams.

� Functional programming can be used for industrial real time embedded
applications.

49

50 CHAPTER 10. CONCLUSIONS

Internal usage External usage Comments
1984-6 - - Technology evaluations
1987-9 - Experimental developments

Use in prototypes Presented at ISS'90
1990-2 Academic distribution Experimental developments

Noted at ISS'92
1993-5 Limited use in products External marketing Erlang Systems established
1996 External marketing OTP development

Use for strategic halted OTP product unit established
1997 product development External marketing

restarted
Nine products 3,323 evaluation OTP development

1998 displayed at CeBit systems delivered and deployment
Erlang stopped Open source

at ERA release
1999 AXD 301 and GPRS Growing use for Bluetail started
2000 win important orders product development Alteon buys Bluetail

Table 10.1: The history of Erlang summarized.

� Functional programming gives signi�cant commercial advantages in rais-
ing design productivity and enabling rapid developments through proto-
types and successive increments.

Erlang provides many examples of the diÆculty of technology introduction,
notably:

� Erlang and functional programming in general both enable and require
a new way of working with much more interactivity. The top-down wa-
terfall methodologies were designed to handle conventional programming
languages. Technology and methodology both have to be changed.

� Marketing a new programming language and a new way of working re-
quires a huge e�ort and investment. Twice Erlang Systems has tried
marketing Erlang with limited resources and with meager results. Sun
has probably spent a fortune on Java but that has paid back in the form
of increased demand for computer equipment. Ericsson is a telecommuni-
cations company and selling Erlang would not sell more switches.

� Open source combined with a good support organisation provided the real
break-through. Many more programmers can try Erlang and companies
know that support and education are available if needed.

When CSLab was established its aim was described thus

� \CSLab's responsibility in the long term is to create a basic software
technology for future telecom systems and support systems and in the
near term to contribute to the introduction of new software technology in
current systems." [D�a84b]

With Erlang/OTP CSLab achieved this aim and has in the process shown
that applied research in an industrial laboratory environment, indeed, works

51

1 Sequential Erlang

Basic Erlang 2 Concurrent Erlang

3 Error Handling

4 POTS and Advanced Topics

1 Repetition, More about data types, Erlang 4.4 extensions

Continued Erlang 2 ETS and TV, Code loading, Distributed Erlang

3 Ports, Funs, List comprehensions

4 Catch and throw, Robustness and eÆciency, Cover, Graphics

1 Overview, Behaviours, Behaviours: Servers

OTP Programming 2 Behaviours: Finite state machines, Supervisors

3 Behaviours: Events, Applications, Special processes

4 System con�guration, Introduction to Mnesia

1 Ports, The interface generator

Advanced Erlang 2 Linked-in drivers, Sockets

3 erl-interface, C nodes

4 Jive (interface to Java), Inets

Table 10.2: Course Curriculae (day by day), 1998.

as was the proposition in the key paper [D�a91]. While technical progress has
continued steadily { marketing, dissemination, and other interaction with the
external world have shown a much more uneven progress. However, it is hoped
that these experiences can be useful for other software developers and hence
they have formed the main theme of this thesis.

52 CHAPTER 10. CONCLUSIONS

No of No of No of
Year Course days courses students

Basic Erlang 4 18 191
Continued Erlang 4 7 91
OTP Programming 4 6 71

1997 Advanced Erlang 4 2 11
SNMP 2 1 5
User adapted 1-5 7 87
Total 41 456

Basic Erlang 4 21 230
Continued Erlang 4 6 51

1998 OTP Programming 4 13 153
Advanced Erlang 4 2 14
Total 42 448

Basic Erlang 4 22 229
Continued Erlang 4 5 48

1999 OTP Programming 4 9 80
Erlang Literacy 5 1 14
Seminars and Special Courses 1-5 6 72
Total 43 443

Table 10.3: Courses 1997-1999. The User Adapted courses combined material
from the other courses adapted for the needs of the particular project. The
Erlang Literacy course is adapted for test and installation personnel. Most
courses were given at Erlang Systems' premises in Kista north of Stockholm.
Courses have also been given at the users' locations like Athlone (Ireland),
Aachen and Hildersheim (Germany), Budapest (Hungary), Grimstad (Norway),
Montr�eal (Canada), and Raleigh and Dallas (USA).

53

Adelaide Univ. CTIN

Australia Australian Defence Force Academy

SERC, Melbourne

University of Adelaide

Centre de r�ech�erche informatique de Montr�eal

Canada Simon Fraser University, Vancover

Universit�e de Montr�eal

China Beijing University of Posts & Telecom

Shanghai JiaoTong University

Costa Rica Inst. Technologica de Costa Rica

Croatia University of Zagreb

Germany Rheinisch-Westfalische Technische Hochschule

Universit�at Kaiserslautern

Greece National Technical University of Athens, CS dept

National Technical University of Athens (NOC)

Hungary Technical University Budapest, Math dept

Bengal Eng. College, Howrah

India Indian Inst. of Tech., Dehli

Malaviya Regional Eng. College, Jaipur

Ireland Trinity College Dublin

Italy Coritel

Malaysia University Teknologi Malaysi

The Netherlands Katholike Universiteit Nijmegen

Russia Tomsk State University

Jaume I University

Spain LFCIA

Universidad Politecnica de Madrid

AMU-Gruppen Syd

Chalmers Tekniska H�ogskola

H�ogskolan Ronneby/Karlskrona

Ingenj�orssskolan/KTH Haninge

Ingenj�orsskolan/KTH Kista

Sweden Link�oping University

M�alardalens H�ogskola

Royal Institute of Technology/NADA

Royal Institute of Technology/Teleinformatics

Stockholm University

Swedish Institute of Computer Science

Uppsala University

Thailand Khon Kaen University

University of Glasgow

UK University of Hull

University of York

Central Michigan University

UCSD

USA University of California/LANL

University of Minnesota-Morris

University of Missouri

University of Pennsylvania

Table 10.4: Academic licences, use of teaching materials, March 1999.

54 CHAPTER 10. CONCLUSIONS

Bibliography

[Ad83] Reference Manual for the Ada Programming Language. ANSI/MIL-
STD 1815, 1983.

[Ah92] Ingemar Ahlberg, John-Olof Bauner and Anders Danne. Prototyping
Cordless using Declarative Programming. XIV International Switching
Symposium. Yokohama, October 25-30, 1992.

[Ah93] Ingemar Ahlberg, John-Olof Bauner and Anders Danne. Prototyping
Cordless using Declarative Programming. Ericsson Review, no 2, 1993.

[Al84] Magnus Alburg and Bjarne D�acker. Comparison between Lisp and Pascal
for Use in Developing Programming Support Environments. NT-P Sym-
posium on Languages and Methods for Telecommunications Applications.
�Abo, March 6-8, 1984.

[Alw] Alteon WebSystems. Web site http://www.alteonwebsystems.com

[An95] Matz Andersson, Joe Armstrong, Lars Borg, Bjarne D�acker (chairman),
Per Hedeland, Hans Heilborn, Tommy Johansson, Sebastian Strollo, Tony
Rogvall, Claes Wikstr�om and Mike Williams. ATM Control System, Pro-
posal from the Open Platform Group. EUA/SU 95 038. 1995-10-10. Internal
paper.

[Ar86] Joe Armstrong, Nabiel Elshiewy and Robert Virding. The Phoning
Philosophers' Problem or Logic Programming for Telecommunications Ap-
plications. Third IEEE Symposium on Logic Programming. Salt Lake City,
September 23-26, 1986.

[Ar90] Joe Armstrong and Robert Virding. Erlang - An Experimental Tele-
phony Programming Language. XIII International Switching Symposium.
Stockholm, May 27-June 1, 1990.

[Ar92a] Joe Armstrong, Bjarne D�acker, Robert Virding and Mike Williams. Im-
plementing a Functional Language for Highly Parallel Real Time Applica-
tions. Software Engineering for Telecommunication Systems and Services.
Florence, March 30-April 1, 1992.

[Ar92b] Joe Armstrong, Robert Virding and Mike Williams. Use of Prolog for
Developing a new Programming Language. The Practical Application of
Prolog. London, April 1-3, 1992.

[Ar93] Joe Armstrong, Robert Virding and Mike Williams. Concurrent Pro-
gramming in Erlang. Prentice-Hall, 1993, ISBN 0-13-285792-8, 1st edition.

55

56 BIBLIOGRAPHY

[Ar95] Joe Armstrong and Robert Virding. One Pass Real Time Generational
Mark-sweep Garbage Collection. International Workshop on Memory Man-
agement. Kinross, Scotland, September 27-29, 1995.

[Ar96a] Joe Armstrong, Robert Virding, Claes Wikstr�om and Mike Williams.
Concurrent Programming in Erlang. Prentice-Hall, 1996, ISBN 0-13-
285792-8, 2nd edition.

[Ar96b] Joe Armstrong. Erlang - A Survey of the Language and its Industrial
Applications. Ninth Exhibition and Symposium on Industrial Applications
of Prolog. Tokyo, October 16-18, 1996.

[Ar97a] Joe Armstrong. Design Patterns for Designing Switching Software.High
Level Concurrent Languages. Schloss Dagstuhl, January 20-22, 1997.

[Ar97b] Joe Armstrong. The Development of Erlang. ACM SIGPLAN Interna-
tional Conference on Functional Programming. Invited paper. Amsterdam,
June 9-13, 1997.

[Ar97c] Joe Armstrong and Thomas Arts. Erlang and its Applications. Work-
shop on Constraint Programming for Time Critical Applications. Invited
paper. Schloss Hagenberg, Austria, October 27-28, 1997.

[Ar98] Thomas Arts, Mads Dam, Lars-�Ake Fredlund and Dilian Gurov. System
Description: Veri�cation of Distributed Erlang Programs. Fifteenth Inter-
national Conference on Automated Deduction. Lindau, July 5-10, 1998.

[Ar99a] Thomas Arts and Izak van Langevelde. How muCRL supported a Smart
Redesign of a Real-life Protocol. International workshop on Formal Methods
in Industrial Critical Systems. Trento, July, 1999.

[Ar99b] Thomas Arts and J�urgen Giesl. Applying Rewriting Techniques to the
Veri�cation of Erlang Processes. Computer Science Logic. Madrid, Septem-
ber, 1999.

[Ar99c] Thomas Arts and Mads Dam. Verifying a Distributed Database Lookup
Manager written in Erlang.World Congress on Formal Methods. Toulouse,
September, 1999.

[Asw] Advanced Software Technology. Competence center at Uppsala univer-
sity. Web site http://www.docs.uu.se/astec/

[At84] The UNIX System. AT&T Bell Laboratories Technical Journal, vol 63,
no 8, part 2, October, 1984.

[Au00] Tomas Augustsson. Svenska Dagbladet, August 30, 2000.

[Axd] AXD 301 High-Performance IP & ATM Switch. Web site
http://www.ericsson.se/datacom/products/wan core/axd301

[Ba86] Victor R. Basili, Richard W. Selby and David H. Hutchens. Experimen-
tation in Software Engineering. IEEE Transactions on Software Engineer-
ing, no 7, July, 1986.

BIBLIOGRAPHY 57

[Bj95] Martin Bj�orklund and Klas Eriksson. A Framework for SNMPv2 in Er-
lang. KTH/NADA, Master's Thesis, 1995.

[Bl98] Sta�an Blau and Jan Rooth. AXD 301 - A new Generation ATM Switch-
ing System. Ericsson Review, no 1, 1998.

[Bl99] Sta�an Blau, Jan Rooth, J�orgen Axell, FiÆ Hellstrand, Magnus
Buhrgard, Tommy Westin and G�oran Wicklund. AXD 301: A new Genera-
tion ATM Switching System. Computer Networks, no 31, 1999, pp 559-582.

[Blw] Bluetail AB. Web site http://www.bluetail.com

[Bo97] Kent Boortz and Dan Sahlin. A Compacting Garbage Collector for Uni-
directional Heaps. Ninth International Workshop on Implementation of
Functional Languages. St Andrews, Scotland, September 1997. Selected
Papers, Springer-Verlag LNCS Vol 1467.

[Br75] Fred P. Brooks. The Mythical Man-Month: Essays on Software Engi-
neering. Addison-Wesley Publishing Company, 1975.

[Br99] Lawrie Brown and Dan Sahlin. Extending Erlang for Safe Mobile Code
Execution. The Second International conference on Information and Com-
munication Security. Sydney, Australia, November, 1999.

[Bu90] Alan Burns and Andy Wellings. Real-time Systems and their Program-
ming Languages. Addison-Wesley Publishing Company Inc, 1990, ISBN
0-201-17529-0.

[Bu92] M Buhgard, P Granestrand, M Lindblom and L Thyl�en. Photonic
Switching in High Capacity Networks. XIV International Switching Sym-
posium. Yokohama, 1992.

[B�a84] G�oran B�age. The Programming Language EriPascal. LME/UE 83 018,
1984-05-04. Internal paper.

[Ca99] Maurice Castro. Erlang in Real Time. ISBN: 0864447434. 1999.
Web site http://www.serc.rmit.edu.au/~maurice/erlbk/

[CC84a] Speci�cation and Description Language SDL. C.C.I.T.T. Recommen-
dation Z.100, 1984.

[CC84b] CCITT High Level Language CHILL. C.C.I.T.T. Recommendation
Z.200, 1984.

[Cew] Core Erlang Initiative.
Web site http://www.csd.uu.se/projects/hipe/corerl/

[Cl81] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-
Verlag, 1981.

[Clw] Concurrent Clean Home Page.
Web site http://www.cs.kun.nl/~clean/

[Cs99] Ericsson k�oper del av SoftLab. Computer Sweden, January 18, 1999.

58 BIBLIOGRAPHY

[Csd] Computing Science Department (CSD). Uppsala University.
Web site http://www.csd.uu.se

[Csw] Computer Science Laboratory. Ericsson Utvecklings AB.
Web site http://www.ericsson.se/cslab

[Da96] Hans Dahlquist. Tunnelbygget blir
era hundra miljoner dyrare. Ny
Teknik, no 40, 1996.

[Da98] Mads Dam, Dilian Gurov and Lars-�ake Fredlund. Compositional Veri�-
cation of Erlang Programs. Third International Workshop on Formal Meth-
ods for Industrial Critical Systems. Amsterdam, May 25-26, 1998.

[Di91] Distorsion. Student project with 17 participants. UU/DoCS, 1991.

[Dow] Department of Computer Systems (DoCS). Uppsala University.
Web site http://www.docs.uu.se

[Dpw] Erlang Programming Rules and Conventions.
Web site http://www.erlang.se/doc/programming rules.shtml

[Dy96] Kent Dybigg. The Scheme Programming Language: ANSI Scheme.
Prentice-Hall. ISBN 0-13-454646-6.

[D�a79] Bjarne D�acker. EriChill/EriPascal Programmeringsspr�ak. F�orslag.
LME/X/Td 2419. 1979-06-15. Internal paper.

[D�a83] Bjarne D�acker. Using Lisp to Develop Programming Support Environ-
ments in the Industrial Environment. International Workshop on Software
Development Tools for Telecommunication Systems. Anaheim, April 6-8,
1983.

[D�a84a] Bjarne D�acker, Nabiel Elshiewy, Per Hedeland, Carl Wilhelm Welin,
and Mike Williams. Experiments with Programming Languages and Tech-
niques for Telecommunications Applications. ETX/XT/DU 84 030. Jan-
uary, 1984. Internal paper.

[D�a84b] Bjarne D�acker. XT/DU Datalogi. Ansvarsbeskrivning.
ETX/XT/DU 84 048. April, 1984. Internal paper.

[D�a86] Bjarne D�acker, Nabiel Elshiewy, Per Hedeland, Carl Wilhelm Welin, and
Mike Williams. Experiments with Programming Languages and Techniques
for Telecommunications Applications. Software Engineering for Telecom-
munication Switching Systems. Eindhoven, April 14-18, 1986.

[D�a89] Bjarne D�acker and Kerstin �Odling. ACS/DUNDER. Software Archi-
tecture and Technology. EBC/KX/DM 89 101. December, 1989. Internal
paper.

[D�a91] Bjarne D�acker. Management of Technology with Regard to Software.
First Australian Conference on Telecommunications Software. Invited pa-
per. Melbourne, April 22-24, 1991.

[D�a93a] Bjarne D�acker. Erlang - A New Programming Language. Ericsson Re-
view, no 2, 1993.

BIBLIOGRAPHY 59

[D�a93b] Bjarne D�acker. Breakthrough in Software Design Productivity through
the Use of Declarative Programming. Eighth World Productivity Congress.
Stockholm, May 23-27, 1993.

[D�a94a] Bjarne D�acker. Introducing Concurrent Functional Programming into
the Telecommunications Industry. TELECOM'94. Varna, September 20-22,
1994.

[D�a94b] Bjarne D�acker. Industrial Applications of Declarative Programming.
SOFT 13 - Improved Productivity of Quality Software. Link�oping, Octo-
ber 3-4, 1994.

[D�a95] Bjarne D�acker. The Development and Use of Erlang. Concurrent Func-
tional Programming in Industry. ConTel'95. Conference on Telecommuni-
cations. Zagreb, June 7-9, 1995.

[Edw] The Eddie Open Source Project. Web site http://www.eddieware.org

[Ek79] T Ekman and G Eriksson. Programmering i Fortran 77. Studentlitter-
atur 1979. ISBN 91-44-16663-X.

[En98] Erlang/OTP News, CeBit Special, April, 1998.

[Er44] Erlang Extensions Since 4.4
Web site http://www.erlang.org/doc/r7a/doc/extensions/part frame.html

[Er92] Dick Eriksson, Mats Persson and Kerstin �Odling. A Switching Software
Architecture Prototype Using Real Time Declarative Language. XIV In-
ternational Switching Symposium. Yokohama, 1992.

[Er95] Bernt Ericson. Applied Research at Ericsson. LME/DT-95:3003 Ue. Jan-
uary, 1995. Internal paper.

[Erl] Table of the Erlang Loss Formula. Telefon AB LM Ericsson.
X/Yg 102 903 Ue. Stockholm, 1979.

[Erm] Enhanced Radio MEssaging System (ERMES).
Web site http://www.ermes.org

[Ers] Erlang Language Speci�cation.
Web site http://www.erlang.org/download/erl spec47.ps.gz

[Erw] Erlang Systems. Web site http://www.erlang.se

[Euc99] Fifth International Erlang/OTP User Conference, Stockholm, Septem-
ber 30, 1999. Web site http://www.erlang.se/euc/99

[Euc00] Sixth International Erlang/OTP User Conference, Stockholm, Octo-
ber 3, 2000. Web site http://www.erlang.se/euc/00

[Exw] ExoKernel Home Page.
Web site http://www.pdos.lcs.mit.edu/exo.html

[Fe98] Anna Fedoriw. Easy Design, Fewer Flaws and Low Sustaining Costs.
Erlang/OTP News, February 1998.

60 BIBLIOGRAPHY

[Fe99] Marc Feeley, Patrick Pich�e, Sylvain Beaulieu, Martin Larosse, and Mario
Latendresse. Status Report on the ETOS Erlang to Scheme Compiler. Fifth
International Erlang/OTP User Conference. Stockholm, September 30,
1999.

[Fo79] C. L. Forgy. OPS4 User's Manual. Technical Report CMU-CS-79-132.
Department of Computer Science. Carnegie-Mellon University, 1979.

[Fo89] I. Foster and S. Taylor. STRAND. New Concepts in Parallel Processing.
Prentice-Hall, 1989.

[Fr93] Magnus Fr�oberg. Automatic Code Generation from SDL to a Declara-
tive Programming Language. Sixth SDL Forum. Darmstadt, October 11-15,
1993.

[Fr00] Scott Lystig Fritchie, Jim Larson, Nick Christenson, Debi Jones, Lennart
�Ohman. Sendmail Meets Erlang: Experiences Using Erlang for Email Ap-
plications. Sixth International Erlang/OTP User Conference. Stockholm,
October 3, 2000.

[Gaw] Gambit Scheme Home Page.
Web site http://www.iro.umontreal.ca/~gambit

[Gi94] W. Wayt Gibbs. Software's Chronic Crisis. Scienti�c American. Septem-
ber, 1994.

[Go96] James Gosling, Bill Joy and Guy Steele. The Java Language Speci�ca-
tion. Addison-Wesley, 1996.

[Gprs] Always \on-line" with GPRS. Web site
http://www.ericsson.se/wireless/products/mobsys/gsm/subpages/wise/gprs.shtml

[Gr82] Ove Granstrand. Technology, Management and Markets. Pinter. Lon-
don, 1982.

[Gr99] H�akan Granbohm and Joakim Wiklund. GPRS - General Packet Radio
Service. Ericsson Review, no 2, 1999.

[Ha93] Bogumil Hausman. Turbo Erlang. International Logic Programming
Symposium. Vancouver, October 26-29, 1993.

[Ha94] Bogumil Hausman. Turbo Erlang: Approaching the Speed of C. In Im-
plementations of Logic Programming Systems, pp. 119-135. Kluwer Aca-
demic Publishers, 1994.

[Ha99] Seif Haridi. Missf�orst�and om Mozart. Letter to the Editor.
Datateknik 3.0, no 6, 1999.

[Haw] Haskell Home Page. Web site http://haskell.cs.yale.edu

[He76] G�oran Hemdal. AXE 10 - Software Structure and Features. Ericsson
Review, no 2, 1976.

[He98] Pekka Hedqvist. A Parallel and Multi-threaded Erlang Implementation.
UU/CSD, Master's Thesis, 1998.

BIBLIOGRAPHY 61

[He00a] Thomas Hedlund. Spr�aket b�ast i komplexa realtidssystem. Computer
Sweden, no 11, 2000.

[He00b] Thomas Hedlund. Roligt att utveckla i Erlang. Computer Sweden,
no 11, 2000.

[Hi00] Sean Hinde. Use of Erlang/OTP as a Service Creation Tool for IN Ser-
vices. Sixth International Erlang/OTP User Conference. Stockholm, Octo-
ber 3, 2000.

[Hiw] High Performance Erlang.
Web site http://www.csd.uu.se/projects/hipe/osh

[Hj90] Thomas Hjalmarsson. AXE 10 Central Processors. Ericsson Review,
no 1, 1990.

[Ho83a] S�oren Holmstr�om. PFL - A Functional Language for Parallel Pro-
gramming. Report no 83.03-R, Programming Methodology Laboratory.
Chalmers University of Technology, 1983.

[Ho83b] R. C. Holt. Concurrent Euclid, the UNIX System and TUNIS. Addison-
Welsley, 1983.

[Hu87] Joan Kirkby Hughes. PL/I Structured Programming. JohnWiley & Sons
Inc, 1987.

[Hu89] John Hughes. Why Functional Programming Matters. The Computer
Journal, vol 32, no 2, 1989.

[Hu00] Frank Huch and Ulrich Norbisrath. Distributed Programming in Haskell
with Ports. Twelfth International Workshop on Implementation of Func-
tional Languages. Aachen, September 4-7, 2000.

[Isw] Integrated Systems, Inc. Web site http://www.isi.com

[Iv90] Ny generation av programspr�ak p�a v�ag. Framsteg inom forskning och
teknik 1990. IVAs �arsbok 1990.

[Je75] Kathleen Jensen and Niklaus Wirth. Pascal - User Manual and Report.
Springer-Verlag, 1975.

[Jo88] Geraint Jones and Michael Goldsmith. Programming in Occam2.
Prentice-Hall, 1988.

[Jo97] Ing-Marie Jonsson, Dan Sahlin et al. A Platform for Secure Mobile
Agents. Practical Applications of Agents and Mobility. London, April 21-23,
1997.

[Jo99] Erik Johansson, Sven-Olof Nystr�om, Mikael Pettersson, and Konstanti-
nos Sagonas. HiPE: High Performance Erlang. ASTEC Technical Reports
1999. Web site http://www.docs.uu.se/astec/Reports

[Jo00a] Erik Johansson, Mikael Pettersson, and Konstantinos Sagonas. A High
Performance Erlang System. 2nd International Conference on Principles
and Practice of Declarative Programming. Montr�eal, September 20-22,
2000.

62 BIBLIOGRAPHY

[Jo00b] Torbj�orn Johnson. Open Source Software - Industriell Anv�andning.
Sveriges Verkstadsindustrier, 2000 (to be published).

[Ka68] K. Katze� and T. Andersson. The Tumba Stored Program Controlled
Telephone Exchange. Ericsson Review, no 3, 1968.

[Ka99] Magnus Karlson. Coming Releases of Erlang/OTP. Fifth International
Erlang/OTP User Conference. Stockholm. September 1999.

[Ka00a] Lars Anders Karlberg. Genombrott f�or forskarna som Ericsson inte ville
ha. Dagens IT, no 7, February 16, 2000.

[Ka00b] Lars Anders Karlberg. Nortel k�oper avhoppade Ericsson-forskare. Da-
gens IT, August 28, 2000.

[Ke78] B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice-Hall, 1978.

[Li79] Barbara Liskov et al. CLU Reference Manual. MIT/LCS/TR-225, 1979.

[Li99] Thomas Lindgren and Christer Jonsson. The Design and Implementation
of a High-Performance Erlang Compiler. ASTEC Technical Reports 1999.

[Low] Lodbroker Pty. Web site http://www.lodbroker.com/

[Ma86] Peter Magn�eli. Communications Computer APN 167 with ERIPASCAL.
Ericsson Review, no 4, 1986.

[Ma88] D. Maier and D. S. Warren. Computing with Logic: Logic Programming
with Prolog. Benjamin Cummings, 1988.

[Ma97] Simon Marlow and Philip Wadler. A Practical Subtyping System for
Erlang. ACM International Conference on Functional Programming. 1997.

[Ma99] H�akan Mattsson, Hans Nilsson and Claes Wikstr�om. Mnesia - A Dis-
tributed Robust DBMS for Telecommunications Applications. First Inter-
national Workshop on Practical Aspects of Declarative Languages. San An-
tonio, Texas, January 18-19, 1999.

[Mc65] LISP 1.5 Programmer's Manual. J. McCarthy et al. M.I.T. Press, Cam-
bridge, 1965.

[Mdw] MD110 BC10.
Web site http://www.ericsson.se/enterprise/portfolio/system

[Mew] The Mercury Project.
Web site http://www.cs.mu.oz.au/research/mercury/

[Me00] Jan Melin. Trogna bes�okare f�ar gr�add�l p�a Internet. Ny Teknik, no 8,
2000.

[Mi98] H�akan Millroth. Platform for High-Availability Applications: Er-
lang/OTP vs Java. Internal paper.

[Miw] Open Source Erlang. Mirror Sites.
Web site http://www.erlang.org/mirrors.html

BIBLIOGRAPHY 63

[Mlw] The ML language.
Web site http://burks.bton.ac.uk/burks/language/ml/

[Mo93] Francisco Monfort. Control Switching Implementation of the BIPED
Demonstrator. Second Australian Conference on Telecommunications Soft-
ware. Sydney, 1993.

[Mo00] Markus Mohnen and Pieter Koopman, editors. Proceedings of the
12th International Workshop on Implementation of Functional Languages.
Aachen, September 4-7, 2000. Aachener Informatik-Berichte, ISSN 0935-
3232.

[Moz] Mozart Programming System. Web site http://www.mozart-oz.org

[M�o82] Rolf M�orlinger. MD 110 - a Digital SPC PABX. Ericsson Review, no 1,
1982.

[Na99] Hans Nahringbauer. Telia Call Guide. Fifth International Erlang/OTP
User Conference. Stockholm. September 1999.

[Nmw] Natural Micro Systems.
Web site http://www.naturalmicrosystems.com

[Ni96a] Hans Nilsson. Amnesia - An Industrial Deductive DBMS with Trans-
actions and Distribution. Logic Databases and the Meaning of Change.
Dagstuhl, September 23-27, 1996.

[Ni96b] Hans Nilsson and Claes Wikstr�om. Mnesia - An Industrial DBMS with
Transactions, Distribution and a Logical Query Language. International
Symposium on Co-operative Database Systems for Advanced Applications.
Kyoto, 1996.

[Ni98] Patrik Nilsson and Michael Persson. ANx - High speed Internet Access.
Ericsson Review, Special Issue on Internet Access, 1998.

[Nuw] NUTEK - N�arings och teknikutvecklingsverket.
Web site http://www.nutek.se

[Ny00] Patrik Nyblom. The Bit Syntax - The Released Version. Sixth Interna-
tional Erlang/OTP User Conference. Stockholm, October 3, 2000.

[Ok90] Richard O'Keefe. The Craft of Prolog. The MIT Press, 1990.

[Ok98] Richard O'Keefe. Abstract Patterns for Erlang. Fourth International
Erlang/OTP User Conference. Stockholm, September 22-23, 1998.

[Ol00] Nils-Olof Ollevik. Alteon k�oper Bluetail. Svenska Dagbladet. August 28,
2000.

[Ol95] Hans Olsson. Ericsson l�agger ner utveckling. Dagens Nyheter. Decem-
ber 8, 1995.

[Ol99] Kent Olsson and Even-Andr�e Karlsson. Daily Build - Rapid Development
and Control. Sveriges Verkstadsindustrier, 1999.

[Omg] Object Management Group. Web site http://www.omg.org

64 BIBLIOGRAPHY

[Opd] Open Source De�nition.
Web site http://www.opensource.org/osd.html

[Opw] Open Source Erlang.
Web site http://www.erlang.org
Current statistics http://www.erlang.org/stats.html

[Pe89] Mats Persson. ACS/Dunder Prototyping Report. Executive Sum-
mary/Management Report. EBC/KX/DC 89:069. December, 1989. Inter-
nal paper.

[Pe98] Eia Persson. 20 jobb �ar i farozonen. �Ostg�otacorrespondenten, Novem-
ber 21, 1998.

[Po00] R F Pointon, P W Trinder, and H-W Loidl. The Design and Implemen-
tation of Glasgow distributed Haskell. Twelfth International Workshop on
Implementation of Functional Languages. Aachen, September 4-7, 2000.

[Pr98] Ericsson signs two year contract for ADSL with Telia. Ericsson Press
Releases. October 19, 1998.

[Pr99a] Ericsson wins groundbreaking GBP 270 million contract with BT. Er-
icsson Press Releases. January 21, 1999.

[Pr99b] Ericsson and T-Mobil in world's �rst GPRS contract. Ericsson Press
Releases. January 26, 1999.

[Pr99c] Ericsson presents ENGINE. Ericsson Press Releases. November 16,
1999.

[Pr00a] Ericsson sells its Energy Systems business to Emerson Electric. Ericsson
Press Releases. January 18, 2000.

[Pr00b] Ericsson shows �rst live GPRS phone in �rst end-to-end live GPRS
network demo. Ericsson Press Releases. February 2, 2000.

[Pr00c] Nortel Networks to Acquire Alteon WebSystems for US$7.8 Billion.
Alteon Press Releases. July 28, 2000.

[Pr00d] Alteon WebSystems to Acquire Bluetail for $152 Million. Alteon Press
Releases. August 28, 2000.

[Ra88] Lars Ramqvist. Ericsson's Strategies and Technologies for the 1990's.
Ericsson Review, no 3, 1988.

[Raw] Rational Inc. Web site http://www.rational.com

[Ra99] Eric S. Raymond. The Cathedral and the Bazaar. Web site
http://www.tuxedo.org/~esr/writings/cathedral-bazaar

[Re97] Red Hat Linux 5.0. The OÆcial Red Hat Linux Installation Guide. Red
Hat Software Inc., 1997.

[Rew] Red Hat Inc. Web site http://www.redhat.com

BIBLIOGRAPHY 65

[Ri98] Tommy Ringqvist. BR Policy concerning Use of Erlang. ERA/BR/TV-
98:007. March 12, 1998. Internal paper.

[Ro82] Everett Rogers. Di�ussion of Innovations. Free Press, Chicago, 1982.

[Ro85] Anders Rockstr�om. An Introduction to the C.C.I.T.T. SDL. Televerkets
tryckeri. Stockholm. 1985

[Ro99] Tony Rogvall and Claes Wikstr�om. Protocol Programming in Erlang us-
ing Binaries. Fifth International Erlang/OTP User Conference. Stockholm.
September 30, 1999.

[Sa96] Dan Sahlin. The Concurrent Functional Programming Language Erlang
- An Overview. Joint International Conference and Symposium on Logic
Programming. Bonn, September 2-6, 1996.

[Sew] Software Engineering Research Centre.
Web site http://www.serc.rmit.edu.au

[Si96] Jon Siegel. CORBA. Fundamentals and Programming. John Wiley and
Sons Inc. 1996.

[Siw] Swedish Institute of Computer Science.
Web site http://www.sics.se

[Sk86] Roger Skagerwall and Carl Wilhelm Welin. Design of an Expert Sys-
tem and Man-Machine Interface for Operation and Maintenance of AXE
Telephone Exchanges. International Seminar on Digital Communications.
Z�urich, March 11-13, 1986.

[Sm83] C. H. Smedema, P. Medema and M. Boasson. The Programming Lan-
guages Pascal, Modula, CHILL and Ada. Prentice-Hall, 1983, ISBN 0-13-
729756-4.

[Sm00a] Johan Smitt. USA n�asta f�or uppstickare. Dagens Nyheter, February 20,
2000.

[Sm00b] Johan Smitt. Miljardklipp f�or Bluetail. Dagens Nyheter, August 29,
2000.

[Smw] Sendmail, Inc. Web site http://www.sendmail.com

[Sow] SoftLab AB. Web site http://softlab.ericsson.se/

[St90] D. Steedman. Abstract Syntax Notation One (ASN.1) Tutorial and Ref-
erence. Technology Appraisals, 1990.

[St91] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
1991.

[St99a] William Stallings. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2.
Addison-Wesley, 1999.

[St99b] Fredrik Str�om. Use of Erlang/OTP in the Brainpool M/3 Communica-
tion System. Fifth International Erlang/OTP User Conference. Stockholm,
September 30, 1999.

66 BIBLIOGRAPHY

[Th95] Simon Thompson. Miranda. The Craft of Functional Programming.
Addison-Wesley, 1995.

[To97] Seved Torstendahl. Open Telecom Platform. Ericsson Review, no 1,
1997.

[Tyw] Erlang Type System.
Web site http://www.ericsson.se/cslab/~thomas/types.shtml

[T�a00] Jan T�angring. G�a f�ore i k�on till webbplatsen. Datateknik 3.0, no 3, 2000.

[Vew] Veri�cation of Erlang Programs.
Web site http://www.sics.se/fdt/Erlang

[Vi93] Robert Virding. Erlang. FORTE - Sixth International Conference on
Formal Description Techniques. Boston, October 26-29, 1993.

[Vi95] Robert Virding. A Garbage Collector for the Concurrent Real-Time Lan-
guage Erlang. International Workshop on Memory Management. Kinross,
Scotland, September 27-29, 1995.

[Wa95a] Anders Wallerius. Ericsson ger upp framtidens telen�at. Ny
Teknik/Teknisk Tidskrift, no 50-52, 1995.

[Wa95b] Anders Wallerius. Programmeringen blev f�or sv�ar. Ny Teknik/Teknisk
Tidskrift, no 50-52, 1995.

[Wa98a] Jane Walerud. The Hidden Asset at CeBit. Erlang/OTP behind many
Successes at the Hannover Trade Fair. Erlang/OTP News, CeBit Special,
April, 1998.

[Wa98b] Jane Walerud. Professional Mobile Radio over GSM. The Ninth Erlang
based System at CeBit. Erlang/OTP News, May, 1998.

[Wa98c] Jane Walerud. From Idea to Reality in Six Months. Erlang/OTP News,
September, 1998.

[Wa98d] Philip Wadler. Why No One Uses Functional Languages. SIGPLAN
Notices - Functional Programming Column. August 1998, pp 23-27.

[Wa99] Philip Wadler. The Next 700 Markup Languages. Second Conference on
Domain-Speci�c Languages. Invited paper. Austin, October 3-5, 1999.

[We81] Richard L. Wexelblat, editor. History of Programming Languages. Aca-
demic Press Inc. 1981, ISBN 0-12-745040-8.

[We83] Carl Wilhelm Welin. The Frames System. LME/XT/DU 83 159, 1983,
Internal paper.

[We95] Bruce F. Webster. Pitfalls of Object-Oriented Development. M&T
Books, 1995.

[Whp] Open-source Erlang - White Paper.
Web site http://www.erlang.org/white paper.html

BIBLIOGRAPHY 67

[Wi76] Niklaus Wirth. Modula: A Language for Modular Multiprogramming.
Eidgen�ossische Technische Hochschule. Z�urich, 1976.

[Wi81] Patrick H. Winston and Berthold K. P. Horn. LISP. Addison-Wesley
Publishing Company. 1981.

[Wi87] �Ake Wikstr�om. Functional Programming Using Standard ML. Prentice-
Hall, 1987.

[Wi92] Claes Wikstr�om. Processing ASN.1 Speci�cations in a Declarative Lan-
guage. Software Engineering for Telecommunication Systems and Services.
Florence, March 30-April 1, 1992.

[Wi94] Claes Wikstr�om. Distributed Programming in Erlang. First Interna-
tional Symposium on Parallel Symbolic Computation. Linz, September 26-
28, 1994.

[Wi95] Martin Wikborg. Comparing Erlang and SDL/SDT for Software Devel-
opment. UU/DoCS, Master's Thesis, 1995.

[Wi96] Claes Wikstr�om. Implementing Distributed Real-time Control Systems
in a Functional Language. IEEE Workshop on Parallel and Distributed
Real-Time Systems. Honolulu, April 15-16, 1996.

[Wi98a] Ulf Wiger. Ericsson ATM Switch AXD 301 - A New Way to Design
Systems. Erlang/OTP News, April, 1998.

[Wi98b] Mike Williams. Erlang/OTP Economics. ETX/DN/S-98:353, May 25,
1989. Internal paper.

[Wo98] Geo� Wong. Continuous System Monitoring. Ph.D. Thesis under way.
RMIT, November 1998.

[Wre] Wind River Systems Erlang Home Page.
Web site http://www.wrs.com/products/html/erlang.html

[Wrw] Wind River Systems. Web site http://www.wrs.com

[Xmw] The XML Industry Portal. Web site http://www.xml.org

[Yo92] Edward Yourdon. Decline and Fall of the American Programmer. Your-
don Press, PTR Prentice Hall, 1992.

[�Od93] Kerstin �Odling. New Technology for Prototyping New Services. Ericsson
Review, no 2, 1993.

68 BIBLIOGRAPHY

Appendix 1: Master's Theses and Students' Projects

The following is a list of theses and projects which have either contributed
to the Erlang system or utilized it to implement applications and systems.

� P-A Eriksson and J Tjernlund. Erlang och realtidskontrollerad j�arnv�ag.
Tekniska H�ogskolan, Lule�a, 1990.

� Martin Sk�old. Distributed Real Time Databases. LiTH/IDA, 1990.

� Adam Aquilon. Automatic Code Generation from Sequence Charts. KTH/EIT,
1991.

� Rudolf Hers�en. Sequence Chart Editor. KTH/EIT, 1991.

� J�orgen Bergstedt and Thomas Persson. Intelligent Network. Tekniska
H�ogskolan, Lule�a, 1991.

� Distorsion. Student project with 17 participants. UU/DoCS, 1991. Also
as [Di91].

� Lennart �Ohman. Framprovocering av fel i programkod. UU/DoCS, 1992.

� Anders Dahlin and Peter Jansson. SUN Controlled Telephone. UU/DoCS,
1992.

� Klas Mikaelsson and Henrik Forsgren. Demonstrationssystem f�or telefoni
implementerat i Erlang. UU/DoCS, 1992.

� Patric Jansson and Bj�orn Axelsson. Direktledningssignalsystem f�or en
MD 110 v�axel. UU/DoCS, 1992.

� Bj�orn Bergqvist. Testmilj�o f�or accessignalering. KTH/EIT, 1992.

� Joakim Greben�o and Niklas Hanberger. An Object Oriented Call Model
(OOCM). UU/DoCS, 1993.

� Magnus H�oglund. Distributed Telephony with Erlang. LiTH/IDA, 1993.

� Li Wei. Gateway between Packet and Switched Networks for Speech Com-
munication. KTH/EIT, 1994.

� Lars Bj�orup. The Connection Model Implemented in Erlang. LiTH/IDA,
1994.

� Johan Thureson. Q.93B Test Tool. KTH/EIT, 1994.

� Beshar Zudhy. Erlang Port to the Parsytec MIMD Parallel Platform.
LiTH/IDA, 1994.

� Andreas Ermedahl. Discrete Event Simulation in Erlang. UU/CSD, 1994.

� Ali Imitiaz Shah. Design and Implementation of ET-155 Device Processor
Software. KTH/EIT, 1994.

� Jan-Erik Thomasson. Hantering av telefonisystem med hj�alp av Erlang.
KTH/NADA, 1994.

BIBLIOGRAPHY 69

� Tobias Lindgren. An Erlang Interface to SQL. LiTH/IDA, 1994.

� Anders Frank and Ola Samuelsson. A Graphical User Interface for Erlang.
UU/CSD, 1994.

� Sim94 - A Concurrent Simulator for Plan-driven Troops. Student project
with about 27 participants. UU/UPMAIL Technical Report 98, Febru-
ary 15, 1995. ISSN 0283-359X.

� Martin Bj�orklund and Klas Eriksson. A Framework for SNMPv2 in Er-
lang. KTH/NADA, 1995. Also as [Bj95].

� Kent Engstr�om. Parallel Erlang. LiTH/IDA, 1995.

� Samuel Tronje. Process-based Simulation of Interactive Agents in a Dy-
namic Terrain. UU/CSD, 1995.

� Greger Ottosson. An Extension of Erlang with Finite Domain Constraints.
UU/CSD, 1995.

� Martin Wikborg. Comparing Erlang and SDL/SDT for Software Devel-
opment. UU/DoCS, 1995. Also as [Wi95].

� Johan Agat and Lennart Dahlstr�om. En unders�okning av tv�a deklarativa
programspr�ak. CTH/IDV, 1995.

� Tomas Aronsson and Johan Grafstr�om. A Comparison between Erlang
and C++ for Implementation of Telecom Applications. LiTH/IDA, 1995.

� Plan95: A Distributed Planning System. UU/UPMAIL Technical Report
122, 1996.

� Niklas Kaltea. A Speci�cation Language for Intelligent Agents. UU/CSD,
1996.

� Johan Carleson. Industriella Erfarenheter av Erlang. LiTH/IDA, 1996.

� Jian-Liang Cai. Implementation of an Object-Oriented DBMS Using the
Erlang Programming Language. RMIT, 1996.

� Kristina Sirhuber. YERL - A Literate Documenting Tool and a Program
Development Environment for Erlang. UU/DoCS, 1996.

� Peter Molin and Fredrik Str�om. A GUI Builder for Erlang/GS. UU/CSD,
1996.

� Anders Lindgren. A Prototype of a Soft Type System for Erlang. UU/CSD,
1996.

� Erik Johansson and Christer Jonsson. Native Code Compilation for Er-
lang. UU/CSD, 1996.

� Babbis Xagorarakis. Java RMI Interface to Erlang, Implementation och
Utv�ardering. UU/CSD, 1997.

� Richard Carlsson. Towards a Deadlock Analysis for Erlang Programs.
UU/CSD, 1997.

70 BIBLIOGRAPHY

� Gustaf Naeser. Safe Erlang. UU/CSD, 1997.

� Hans Danielsson and Kent Olsson. How to Measure Reliability in an
Erlang System. LTH/DCS, 1998.

� Pekka Hedqvist. A Parallel and Multi-threaded Erlang Implementation.
UU/CSD, 1998. Also as [He98].

� Ronny Andersson. SQL Compiler For the Mnesia DBMS. CTH, 1998.

� Johanna Isaksson and Elinor Sturesson. Design Guidelines for Erlang.
CTH and RMIT, 1999.

� Hans Danielsson and Kent Olsson. How to Measure Reliability in an
Erlang System. LTH and RMIT, 1999.

� Clara Benac-Earle. Symbolic Program Execution using the Erlang Veri�-
cation Tool. UU/CSD, 2000.

� Raimo Niskanen. Integration of Erlang and TelORB. KTH/IT, 2000.

� Rickard Green. Enhancing Security in Distributed Erlang by Access Con-
trol. KTH/IT, 2000.

� Bertil Karlsson. Secure Distributed Communication in SafeErlang. KTH/IT,
2000.

� Peter Andersson and Markus Kvisth. A General Protocol Stack Interface
in Erlang. UU/CSD, 2000.

BIBLIOGRAPHY 71

Appendix 2: User Conference, September 30, 1999

Papers presented at the Fifth International Erlang/OTP User Conference.
Web site http://www.erlang.se/euc/99

� Hans Nahringbauer, Telia Promotor AB. Telia Call Guide. Also as [Na99].

� Fredrik Str�om, Brainpool AB. Use of Erlang/OTP in the Brainpool M/3
Communication System. Also as [St99b].

� Marc Feeley, Patrick Pich�e, Sylvain Beaulieu, Martin Larosse, and Mario
Latendresse, Universit�e de Montr�eal. Status Report on the ETOS Erlang
to Scheme Compiler. Also as [Fe99].

� H�akanMillroth, Bluetail AB. Mail Robusti�er Product based on Erlang/OTP.

� Per Bergqvist, Ericsson Radio AB. Hatchet.

� Johan Blom, Ericsson Wireless Internet AB. A Modular WAP Reference
Stack Protocol Implementation.

� Hans Nilsson, Ericsson Utvecklings AB. An Experimental SIP Implemen-
tation in Erlang.

� Magnus Karlson, Ericsson Utvecklings AB. Coming Releases of Erlang/OTP.
Also as [Ka99].

� Maurice Castro, SERC. Towards an Event Modelling Language.

� Tony Rogvall and Claes Wikstr�om, Bluetail AB. Protocol Programming
in Erlang using Binaries. Also as [Ro99].

72 BIBLIOGRAPHY

Appendix 3: User Conference, October 3, 2000

Papers and demos presented at the Sixth International Erlang/OTP User
Conference. Web site http://www.erlang.se/euc/00

� Sean Hinde, one2one. Use of Erlang/OTP as a Service Creation Tool for
IN Services. Also as [Hi00].

� Scott Lystig Fritchie, Jim Larson, Nick Christenson, Debi Jones, and
Lennart �Ohman. Sendmail Meets Erlang: Experiences Using Erlang for
Email Applications. Also as [Fr00].

� Per Bergqvist, CellPoint. MPowered by Erlang.

� Bengt Tillman, Ericsson Radio Systems AB. NETSim - Six Years with
Erlang.

� Mikael Pettersson, Uppsala University. A High Performance Erlang Sys-
tem.

� Robert Tj�arnstr�om and Peter Lundell, Ericsson Telecom. ECOMP - an
Erlang Processor.

� Richard A. O'Keefe, Otago University. An Erlang DTD.

� Ulf Wiger, Ericsson Telecom. XMErl - Interfacing XML and Erlang.

� Micka�el R�emond, IDEALX. XML and Erlang: Building a Powerful Data
Management Tool.

� Richard Carlsson, Uppsala University. Extending Erlang with structured
Module Packages.

� Kenneth Lundin, OTP Product Unit. Highlights from Erlang 5.0 / OTPR7B.

� Jakob Cederlund, OTP Product Unit. COMET - An Erlang-to-COM
Port.

� Patrik Nyblom, OTP Product Unit. The Bit Syntax - The Released Ver-
sion. Also as [Ny00].

� Lars-�Ake Fredlund, SICS. A Tool for Verifying SoftwareWritten in Erlang.

� Miguel Barreiro, Victor M. Gulias, and Juan J. Sanchez, Universidade da
Coru~na. A Monitoring and Instrumentation Tool Developed in Erlang.

