ArgoUML User Manual

A tutorial and reference description

Alejandro Ramirez
Philippe Vanpeperstraete
Andreas Rueckert
Kunle Odutola
Jeremy Bennett
Linus Tolke
Michiel van der Wulp

ArgoUML User Manual: A tutorial and reference description

by Algjandro Ramirez, Philippe Vanpeperstraete, Andreas Rueckert, Kunle Odutola, Jeremy Bennett,
Linus Tolke, and Michiel van der Wulp

Copyright © 2004, 2005, 2006 Michiel van der Wulp

Copyright © 2003 Linus Tolke

Copyright © 2001, 2002 Jeremy Bennett

Copyright © 2001 Kunle Odutola

Copyright © 2000 Philippe Vanpeperstraete

Copyright © 2000 Algjandro Ramirez

Copyright © 2000 Andreas Rueckert

Abstract

This version of the manual is intended to describe the version 0.22 of ArgoUML.

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later. A
copy of this license is included in the section Open Publication License. The latest version is presently available at ht-
tp://www.opencontent.org/openpub/ [http://www.opencontent.org/openpub/].

http://www.opencontent.org/openpub/
http://www.opencontent.org/openpub/

Table of Contents

O ot Xvii
O | g oo [T 1 o o PP 1
1.1. Origins and Overview of ArgOUMLcoouiiiiiiiii e 1
1.1.1. Object Oriented Analysisand DeSigNccuvvvniiiiiiiiii e, 1
1.1.2. The Development of ArgOUMLcvveiiiiiiiiii e e 1

1.1.3. Finding Out More About the ArgoUML Projectcoccovvviiviiiiievinennnnn, 2

1.2. Scope of ThiISUSEr ManUaluiiiiiiiiiiiiiii e 2
1.2.0. Target AUdIENCEoovuiieiiiiii et e 2

S ol o] o< PP 3

1.3. Overview of the User Manual ..o 3
1.3.1. Tutorial Manual SEUCTUNEcevuniiiiiiie e 3

1.3.2. Reference Manual SETUCLUIEuiiieieiiiiiiii e 3
1.3.3. User FEedbackooveeiii e 4

L4, ASSUMPLIONS ..ottt e ettt e e et e e e et e e e e e e eaans 4
O 1o g PP 5
2. Introduction (DEING WITEEN)o.iii e e 6
3. UML BaSed OOAEDuiiiiiieeee e 7
3.1 Background tO UMLiiiieiiiie e e 7

3.2. UML Based Processes for OOAEDoveuiiiiiieiiie e 7
321 TYPES O PrOCESSvueieeiiie ettt 8

3.2.2. A Development Processfor ThisManualcccoceiveiiiiiiiineeinnnes 11

3.3. Why ArgoUML isDifferentccooiiiiiiiiii e 12
3.3.1. Cognitive PSYChOIOGYuuevveeeiiiiiii e e e e 12

3.3.2. OpeN StANAArASuevveeeiiieeee e 13

3.3.3. 100% PUrE JAVA .. et 15

3.3.4. OPEN SOUICE ...uierieiiiie ittt ettt e e e e e 15

G AN o 0 U =T [t 15
341 Getting Startedcvveieiiiee e 15

3.4.2. The ArgoUML User Interfacecooovvveviiiiiiiiiiii e 18

G 30 T 111 0 26

3.4.4, Working With DeSign CritiCScceuuuiiiiiiiiiieiiii e 29

3.5. The Case Study (TODEWIITIEN)iiiiiiiceii e 32

4. ReqQUITEMENES CaPEUIEiieiiiei et et e e et e e e e ean e aeees 33
A2 INEFOAUCTION .ttt e e et e e e e ean e 33

4.2. The Requirements Capture PrOCESScvvueiiiieeiieeeieeeiiieeaeesaneeseeesanees 33
42,1, PrOCESS SIEDS ..ivuiiieii ettt et 34

4.3. Output of the Requirements Capture PrOCESSceeuuveeinieeeneriieeiiieaennas 34
4.3.1. ViSiON DOCUMENE ...eeuiiitiieeiie ettt e e e e e e ea e eees 34

4.3.2.Use Case Diagramcccuuiiiiieeieeei e 35

4.3.3. The Use Case SpeCificationccocevviiiiiiiiiiii e, 40

4.3.4. Supplementary Requirement Specificationccccoceevvviiiveennnenn, 43

4.4. Using Use CaseSiN ArgOUMLcouiiiiiiii e e 44
AA.D. ACKONS .ot 44

AA.2. USECASES ...ttt 44

A.4.3. ASSOCIALIONS ...eveeiii ettt et 46

4.4.4. Hierarchical USBCaSseSc..vvevuiiiiieiiiicii e 47

TS [(=011 0= 48

4.4.6. DOCUMENEALION ...evuiieiiiiiiee et 48

4.4.7. System Boundary BOXccouuviiiiiiiiiiiiiieeei e 49

A5, CASESHULY ..eeveeeieit ettt 49
4.5.2. ViSiON DOCUMENE ...ceuniitiiiii et e e e ee e eees 49

4.5.2. Identifying Actors and Use CaseSceuvveiiiiiiiieiieeeee e 51

4.5.3. Associations (ToObe Written)ccovvviiiieiii i, 51

iv

ArgoUML User Manual

4.5.4. Advanced Diagram Features (To bewritten)cccccevvvevveennnenn. 52
4.5.5. Use Case Specifications (To bewritten)ccooeveveviiiveiiveennnenn, 52
4.5.6. Supplementary Requirements Specification (To be written) 52

B ANBIYSIS et 53
5.1 The ANAlYSISPIOCESSiiiiiiiiiieii et 53
5.1.1. Class, Responsibilities, and Collaborators (CRC) Cards 53
5.1.2. Concept Diagram (ToO be WIitten)coeevveiiiiiiiii e 54

5.1.3. System Sequence Diagram (To bewritten)cccoeeiviviiiiviiieennns 54
5.1.4. System Statechart Diagram (To bewritten)coooeeeiiiiiiiiinneennnn, 54
5.1.5. Realization Use Case Diagram (To bewritten)cccooovvveiiineeennnn. 54
5.1.6. Documents (TO be Written)oiiiiiiiiiii e 54

5.2. Class Diagrams (Tobewritten)coooviiiiiiii e, 54
5.2.1. The Class Diagram (TObe Written)ccoevviiiiiiieiiiieeii e eeeies 54

5.2.2. Advanced Class Diagrams (To be Written)ccccoevevivivinnennnnns 54

5.3. Creating Class Diagramsin ArgoUMLccooiiiiiiiiiiiiiiiiiii e, 55
B.3. L. ClASSES .uuiiiiiiiiee ittt ettt 55
5.3.2. Associations (TO be Written)coouiiiiiiiiiii e 55

5.3.3. Class Attributes and Operations (To bewritten)ccoooeviiiiinnnes 55

5.3.4. Advanced Class Features (To bewritten)ccooevviiiiiiiiiineeins 55

5.4. Sequence Diagrams (TO be WHLtEN)ccvvviiiiiiiieiii e 55
5.4.1. The Sequence Diagram (To be written)ccccoeviiviiiiniiiiiiinneeennn, 56
5.4.2. Identifying Actions (To be WHtten)ccoovvviiiiniiiiiiieiiiieeeeeen 56
5.4.3. Advanced Sequence Diagrams (To bewritten)c..ocooviiiiiiis 56

5.5. Creating Sequence Diagramsin ArgoUMLcoiiiiiiiiiiiiiiicceeee, 56
5.5.1. SEqUENCE DIagramScvveeeeieeeiieeei e e e e e e et e e e e e e e e aeaees 56
5.5.2. Actions (TODEWIIEEN)vvveieii i 56

5.5.3. Advanced Sequence Diagrams (To bewritten)cccooovvveiineeennnn. 56

5.6. Statechart Diagrams (TO DeWIItteNn)ocovvviiiiiiiii e 56
5.6.1. The Statechart Diagram (To bewritten)ccoiviiiiiiiiiiiiis 56

5.6.2. Advanced Statechart Diagrams (To bewritten)ccooeeevvieennnen. 56

5.7. Creating Statechart Diagramsin ArgoUMLcccoveviiiiiiiiccii e, 56
5.7.1. Statechart Diagrams (To bewritten)c.cccovviiiiiiiiiiiiee 56

5.7.2. States (TODeWIITEEN) .ooeveiiiiiii e 56

5.7.3. Transitions (TO e WItteN)uiiiiiiiiiiii e 57

5.7.4. Actions (TODEWIILEEN)oieeeiiiii e 57

5.7.5. Advanced Statechart Diagrams (To bewritten)ccoocevvieennnen. 57

5.8. Realization Use Cases (ToObeWritten)coovvviviiiiiiiii e, 57
5.9. Creating Realization Use Casesin ArgoUML (To bewritten)c........ 57
5.10. Case Study (TOBEWIILEEN)oovviiiiii e 57
I L0 B O 2 (O 0 o S 57
5.10.2. Concept Class Diagrams (To bewritten)coooveiiiiiiiiiiiinis 58
5.10.3. System Sequence Diagrams (To be Written)c..occeeveviiieeinnnnes 58
5.10.4. System Statechart Diagrams (To be written)cccevevivieennnnnns 58
5.10.5. Redlization Use Cases (To bewritten)cccooeeivviiiiiiicviiiees 58

L L= o o PSPPI 59
6.1. The Design Process (TO heWIItten)ocovvviiiiiiiiinieiii e 59
6.1.1. Class, Responsibilities, and Collaborators (CRC) Cards 59
6.1.2. Package Diagram (TO be Written)ccoveviiiiiiiiciiie e 60
6.1.3. Redlization Class Diagrams (To bewritten)ccoovvviiviviiieeinns 60
6.1.4. Segquence Diagrams and Collaboration Diagrams (To be written) 60
6.1.5. Statechart Diagrams and Activity Diagrams (To be written) 60
6.1.6. Deployment Diagram (To bewritten)oocoiiiiiiiiiiniiiiineeene, 60
6.1.7. Documents (TO be WIitten) ... 60

6.2. Package Diagrams (TObeWIItten)ccveinieiiiiiei e 60
6.2.1. The Package Diagram (To bewritten)ccoooeviveiiiiiiiiiiiiees 60
6.2.2. Advanced Package Diagrams (To bewritten)cccooovieviviiennnnnns 60

6.3. Creating Package Diagramsin ArgoUMLcooiiiiiiiiiiiiiiicei e, 60
B.3.1. PaCKagESevvvieiiiiieee et 60

ArgoUML User Manual

6.3.2. Relationships between packages (To bewritten)cccoveviieennnnnns 61
6.3.3. Advanced Package Features (To be written)ccoovevvvevinieennnnnns 61

6.4. More on Class Diagrams (TO be Wrtten)oooveviiiiiiiiiiiiiiiii e, 61
6.4.1. The Class Diagram (To bewritten)cccoovvviiiiiiiiiiiiieeeee, 61

6.4.2. Advanced Class Diagrams (To be Written)cccoeveeiieiiinieennnnes 61

6.5. More on Class Diagrams in ArgoUML (To bewritten)ccooovviiiininnnnen. 61
6.5.1. Classes (TObeWIILtEN)coeviviiiiiii e e 61

6.5.2. Class Attributes and Operations (To bewritten)cccoeeviievenns 62

6.5.3. Advanced ClasS FEAtUIESoveuniiiiieeie e e e e e 62

6.6. Sequence and Collaboration Diagrams (To be written)cccooevvevvieeennn. 64
6.6.1. More on the Sequence Diagram (To bewritten)ccoovvviiiennnes 64

6.6.2. The Collaboration Diagram (To bewritten)ccoeeevviiviineennnen. 65

6.6.3. Advanced Collaboration Diagrams (To bewritten)ccoeeeeennees 65

6.7. Creating Collaboration Diagramsin ArgoUML (To bewritten) 65
6.7.1. Collaboration Diagrams (To bewritten)cccooovvviiiiiiiiiiinneennnn, 65
6.7.2. Messages (To beWritten)coooeiiiiiiiiii e, 65

6.7.3. Advanced Collaboration Diagrams (To be written)ccoeeeeunieee 65

6.8. Statechart Diagrams (To beWritten)ccoveeiiiiiii e, 65
6.8.1. The Statechart Diagram (To bewritten)cccoovviiiiiiiiiiiiees 65

6.8.2. Advanced Statechart Diagrams (To bewritten)cccoveviievnnnnns 65

6.9. Creating Statechart Diagramsin ArgoUML (To bewritten)ccccoeeeeen. 66
6.9.1. Statechart Diagrams (TO be WIitten)cooeeeevviiiiiiiiiieeiiiineeeene, 66

6.9.2. States (TObeWIIttEN)ceu e 66

6.9.3. Transitions (TOBeWTIItteN)ccoevviiiiii e 66

6.9.4. Actions (TODEWIIEEN)uivvvieii e e 66

6.9.5. Advanced Statechart Diagrams (To bewritten)cccovvviievinns 66

6.10. Activity Diagrams (TO be Written)cccoiiiiiiiiniiiii e, 67
6.10.1. The Activity Diagram (To be written)ccccooviiiiiiiniiiiiiinneeenn, 67

6.11. Creating Activity Diagramsin ArgoUML (To bewritten)cccoceeuieeennn. 67
6.11.1. Activity Diagrams (To bewritten)ccoovviiiieiiieiiici e, 67
6.11.2. Action States (TObeWIItten)cocevveiiii e 67

6.12. Deployment Diagrams (TO be WHtteN)ccvvvvveieiiiieei e 67
6.12.1. The Deployment Diagram (To bewritten)c.oooeeiiiiiiiinieennnn, 67

6.13. Creating Deployment Diagramsin ArgoUML (To bewritten) 67
6.13.1. Nodes (TobeWritten)o 67
6.13.2. Components (TO De WIILEEN)cccuuiiiiiiiiiiiiee e 68
6.13.3. Relationships between nodes and components (To be written) 68

6.14. System Architecture (Tobewritten)ccooeviiiiiii e, 68
6.15. Case Study (TOBEWIILEEN)oovveiie e 68
6.15.1. CRC Cards (TODeWIItten)coovviiiiiiiiiieiiiii e 68
6.15.2. Packages (TO e WHILteN)couiiiiiiiiieei e 68
6.15.3. Class Diagrams (TObeWritten)cocoveiiiiiiiieee e 68
6.15.4. Sequence Diagrams (ToO be Written)ccovvviviieiiiieiiii e, 69
6.15.5. Collaboration Diagrams (TO be Written)ccovvvvveviieviineeinns 69
6.15.6. Statechart Diagrams (TO be Written)ovvvviiiniiiiiiiiicei e, 69
6.15.7. Activity Diagrams (To bewritten)cccoooeeiiiiiiiiiniieeee, 69
6.15.8. The Deployment Diagram (To be written)ccoevevviiiineeennnnes 69
6.15.9. The System Architecture (To bewritten)ccocceveeiviiiiiiieennnen. 69

7. Code Generation, Reverse Engineering, and Round Trip Engineering 70
4% O 1 1o o [0 1o I PSP 70
AV @ e SY €= 4 1= - 1o o 70
7.2.1. Generating Code from the Static Structureocoevvevveveiineeennnn. 70
7.2.2. Generating code from interactions and state machines 71

7.3. Code Generation in ArgOUMLoouiiiiiii e 72
7.3. 1. SEAIC SEUCLUI ..ottt et e s 72
7.3.2. Interactions and statechart diagramscccooeeoivviiiiiiiineviiecs 72

7.4 REVEISE ENQINEEIING ...uieiiii et 72
7.5. ROUNG-TFIP ENGINEEIING .oevvuneiiiiiieeeiii ettt e 72

Vi

ArgoUML User Manual

2. User INterfaCe REFEIEINCEvuiiiiiii it e eaens 73
S 10 (U [o o R PP 74
8.1. Overview of the WINOWoouiiiiiiiii e, 74
8.2. General Mouse Behavior in ArgOUML ..o, 75
8.2.1. Mouse BUtton Terminologyoceeueeeuieeiiiieiieeeieeeiie e e 75
8.2.2. BULLON L ClICK ...evvvviieeiiii e 75
8.2.3. Button 1 Double Clickoovveiiiiiiiiiie e 76
8.2.4. BULLON L MOLION ..eevviiiiiiiiieiiii e 76
8.2.5. Shift and Ctrl modifierswithButton 1ccooiiiiiiiiiiiiieeen, 76
8.2.6. Alt with BULtON 1: PanNingccoevvuiiiieiiiieiiiiieeeeni e 77
8.2.7. Ctrl with Button 1: Constrained Dragcoeeeuueeiinieiiineiiieaeines 77
8.2.8. BULLON 2 ACHIONScevieiiii et 77
8.2.9. Button 2 Double ClicKvivveiiiiiiiiieecii e 77
8.2.10. BULEON 2 MOION ...uiiiiiiiieieiiis e 77
8.3. General Information AbBOUt Panesc.cccviiiiiiiiiiie e, 77
8.3.L. RE-SIZING PANESeuniiiiiii e 77
8.4, TRESAUS DAiveii e 78
9. TRETOOIDAN ... e e 79
S I =Y 0] o 1= - 1o 79
0.2, Edit OPEratioNSeevieeei e e 79
9.3, VIBW OPEIBLIONS ...ttt ettt et 79
9.4. Create OPEIALIONSuuieeeiii ettt ettt ettt eaaas 80
10. TREMENU DN ...t et et e e e e e 82
080 I g 0o (0o 1o o SRR 82
10.2. Mouse Behavior inthe Menu Barccoeeviiieiiiiinieiiiiiieeecneeeeeineeees 82
10.3. ThE FIEMENU ...uiiiiiieee e 83
10.3.1. D = ST 83

#
10.3.2. =7 OPEN PrOJECL... «.oieeiee e 83
10.3.3. SAVE PrOJECE ...viiiee e 84
10.34. IEI SAVE PIOJECE AS... oo 85
10.35. REVEIT O SAVEA ...ovviiiiii e 85
10.3.6. IMPOIt XML, oo 85
10.3.7. EXPOIt XM . oo e et eeaaa e e e 86
10.3.8. % IMPOIT SOUMCES... ...eeieieiie ittt et e e 87
10.3.9. & Page SEtUP... «iiieeie e 89
10.3.10. El . 0 PP 89
10.3.11. EXPOrt GraphiCs... ..c.ueeeneiiieei e 89
10.3.12. EXpOrt All GraphiCs...vcvvuiiiiiieiiiieeii e e e e e e e e 90
L0 S \\ Lo - 1o o USRS 90
10.3.14. E- Properties ... 91
10.3.15. Save ConfigUuIationcoeuuuieieeiinieeiiis e 93
10.3.16. Most Recent Used FilESuvieiiiiiieiiiii e 93
O B A | SRR 93
10.4. TRE EAIt MENU ..ot e e ees 94
L1041 SEIECE coeveieeie e 94
10.4.2. & Remove From Diagramcoovvviieiiiiiiiiieein e 95
10.4.3. ﬁi Delete From Modeloooovviiiiiiiiii e 95
10.4.4. E Configure Perspectives...couveviiieee e 95
10.4.5. E- SEINGS... weeneeiii e 95
10.5. TREVIEBW MENU ...oivniiii e 102
10.5.1. GOtO DIagram... oceevunieeieiiiiee e e et e e e e et e e e e e eae s 102

Vii

ArgoUML User Manual

10.5.2. H FING... e 103
F0.5.3. ZOOM ettt 105
O3 o = 1 o 106
10.5.5. AdJUSE GId SNED .evvueiiiiiiee i 106
10.5.6. PagE BreaKsSiiveiiieeiiie ettt 106

10.6. ThE Creafe@ MENU ...ccvvviieiieie e e e e e 107
10.6.1. New Use Case DIiagramc..oeveeueeeiniiiiiieeineeiine e 107
10.6.2. New Class Diagramcooeeviiiiieieeee e 107
10.6.3. @ New Sequence DIiagramooeeeiieeeiiiiieeineeeeeeee e 107
10.6.4. New Collaboration Diagramccoceveiiiiiiiiieii e, 107
10.6.5. @ New Statechart Diagramccoveeveiiieiiiii e, 108
10.6.6. @ New Activity Diagramcccoeeeieiiieiicee e, 108
10.6.7. New Deployment Diagramcceeeuiveiiieiiineiiiieeiieeeins 108

10.7. TREAITANGE IMENUueneitie e e e e e e e enas 108
FO.7.0 AN o 108
10.7.2. DISDULE .oeveieieei e 109

0 0 T o o 109
O N[o o= S SPP 110
10.7.5. SEt Preferred SIZEuuoiiiie e 110
10.7.6. TOQQIE AULO RESIZING ...vvuivieiiiei e e e e e e 110
O - Yo 11 | O 110

10.8. The Generation MENUoveeiiiiiieeiiiiie et 110
10.8.1. Generate SElected ClasseS ... wvuvvvvriiviiieeiiieee e 111
10.8.2. Generate All ClasSES... ovvvuiiiiieii et 112
10.8.3. Generate Code for Project... (To be Written)cccooveevviennnn. 112
10.8.4. Settings for Generate for Project... (To be Written) 112

10.9. ThE CritiQUEIMENU ...eve e e e e e e eaeees 112
10.9.1. TOQQIe AULO-CritiQUE ... eeveeeeeeei e ee e e e e e e e 112
10.9.2. DESIGN ISSUBS... ..ceieiiiieiieii ettt 113
10.9.3. DESIGN GOAIS... ..eieerinieiiiiieee ittt 114
10.9.4. BrOWSE CritiCS... tevvvunieeiiiiieeeiiiiieeeetineeeeetineeeeetiaeesetinaeeenenns 115
10.10. The TOOIS IMEBNUviiiiiiii e 117
10.11. The HEIP MENU .oiiiiiei e 117
10.11.1. System INfOrmationccoovevuniiiiiieeie e e 118
10.11.2. ABOUt ArQOUML ..uiiiiiiii e 118

11 TRE EXPIOIEr ..ttt 121
0 I g 1 0o [0 1o o U PTRPPRN 121
11.2. Mouse Behavior inthe EXplorer ..o 121
2 I 21U 11) o i A oSO 122
11.2.2. Button 1 Double Clickooeiiiiiiiiiiiieec e 122
220G T 210 11 (o ¢ 1Y ' o o 122
11.2.4. BULEON 2 ACHIONSeetiiiiee et e e 122
11.2.5. Button 2 Double CliCKuiiiiiiiiieeiiie e 122

11.3. Keyboard Behavior inthe EXplorercooooiiiiiiiiiiiee 123
11.4. Perspective SEIECHIONcvve e 123
11.5. Configuring PErsPECtIVEScvvviiiii e e e 124
11.5.1. The Configure Perspectives dialogcccuviveiiiiiiniiiiiiinneiiiinnnn, 124

11.6. Context SENSItIVE MENUoieuiiii e 126
11.6.1. Add tO DIagramuueeeiiiiieeeiie e 126
11.6.2. -m- Delete From Modelcoooiiiiiii 126
11.6.3. Set Source Path... (Tobewritten)cooevveiiiiiiiiieeeee, 127
11.6.4. Add PaCKAGEoieeeiieeeii et 127
11.6.5. Add All Classesin NameSPatec.uvevevveeinieeinieeiieeeieeeeneennns 127

viii

ArgoUML User Manual

o I T o] o 128
2 1 11 oo 01 o o PSP 128
12.2. Mouse Behavior inthe Editing Paneccooviiiiiiiiiiiii e, 128

12.2.1. BUttON L CHCK ovviieniiiicie e 129
12.2.2. Button 1 Double CliCKuiiiiiiiiieiiiiiieeccei e 129
12.2.3. BULEON L IMOLION ...uiiiiiiiieec e e 129
12.2.4. Shift and Ctrl modifierswith Button 1ccccoivieviiiinneiinnnnnn. 130
12.2.5. Alt with BULtON 1 MOLIONeeiiiieeiiiiie e 130
12.2.6. BULON 2 ACHIONS . .ceuiiiiiii e 130
12.2.7. Button 2 Double Clickooeviiiiiiiece e, 130
12.2.8. BULEON 2 MOLION ...t 130
12.3. THETOO! DA ...t 130
2 50 R I (Yo 1 | oo = 131
12.3.2. ANNOLALION TOOIS ..evvnieiiiiiee e 131
12.3.3. Drawing TOOIS .. .ccoeuuiieiiiii e 132
12.3.4. Use Case Diagram Specific TOOISveeviviiieiiiiiiieciiieeceii, 133
12.3.5. Class Diagram SpeCific TOOISvveuiiiiiiiiiicic e, 134
12.3.6. Sequence Diagram Specific TOOISc.vviiuiiiiiiiiiiiiiiiieeeiee, 136
12.3.7. Collaboration Diagram Specific TOOIScccovevvnieviiiiiiieeeieeen, 136
12.3.8. Statechart Diagram Specific TOOISccevvviiieiiiieeiii e, 137
12.3.9. Activity Diagram Specific TOOISoveeiiviiiiiiiiiiieccieeccii, 138
12.3.10. Deployment Diagram Specific TOOIScocvvnveeiiiiiiiiiiiieeceii, 139
12.4. TREBIOOIM ...ttt e e e e et e e e e eanaes 140
12.5. Selection ACtION BULLONSuiiieiiiicii e 142
12,6, ClarifierS cuuu i 142
A O Y B = V1T oo I o 143
12.8. The Diagram Talviiiiiiiiie e 143
12.9. POP-UPMENUSceviiiiiiieiei ettt et e e 143
12.9.1. CritIQUES .evvviieiiiie ettt e e et e e e e 143
12.9.2. Orderinguevneiie e 143
L1293 A0 . 144
1294, SNOW ..ovviiiiei e 144
12,95, MOAIFIErS c.oniiie e 145
12.9.6. MUIIPHCITY ovvvneeiiiie e 145
12.9.7. AQOIrEaION ...unieieeit e 146
12.9.8. NaVIgabilityoeeeeiiieeiiii e 146
2 L0 Lo - 1o o U SPPR 147
12.10.1. NOtation LanQUaBOESeeeeuieeineeeineeeiieeeieeeaaeeaneeeeaneeennaeeens 147
12.10.2. Notation Editing onthe diagramcccooeveiiiiiniiiiiiineecciinne, 147
12.10.3. NOtatiON ParSiNgcccevuueeieiiieeieiie e 148

13. ThEDEAISPANE .. .ciiiiii et e e e 149
132, INEFOAUCTION ..ttt e e e e e ea e 149
13.2. TODO HEM TaAD .uuieiiiii e 149

L1321 WIZAIUS .. 153

13.2.2. The HEIP BUION ..coovniiiiiiiccc e 153
13.3. PropeartieS TalDu i 154
13.4. DOCUMENLEEION Tab ...ccveiiiieii e 155
13.5. Presentation Tabooouuiiiiiiii e 156
13.6. SOUMCE TED «.ieiiii e 160
13.7. CONSIrAINIS T ..ueiiiiiiieeeei e 161

13.7.1. The Constraint EQItOrccooeeviiiieiiieiii e, 164
13.8. SEFEOLYPE T@AD ...neeiiiie et 166
13.9. Tagged ValUES Tah ..ovvuiiiiiii i 167
13.10. ChECKIISE T wuvueeiiiiie e 167

14. ThE TODO PANE ... 169
I T 1o o 01 o o PSP 169
14.2. Mouse Behavior inthe To-DOPanecooveiiviiiiiiii e 169

14.2.1. BUttON L CHCK ooviiiiiiicie e 169

ArgoUML User Manual

14.2.2. Button 1 Double ClicKvoviiiiiiieiiiieeec e 170
14.2.3. BULEON 2 ACHIONS ..oevvieiiiiieeeeei e 170
14.2.4. Button 2 Double ClCKovvviiiiieee e 170

14.3. Presentation SElECHONoiiiuiiiiiii e 170
T4.4. HEM COUNE ..ieiiieee e e e e e e e et e e e et e e e e aen s 171
15, TRE CHITICS ettt e aeas 172
ST I 1 11 oo 0o o o PSP 172
300 50 O = 1 1190 oo Y/ 172
15.1.2. DESIGN ISSUESiiiiiiieeeiii ettt 172

15.2. UNCAEGONIZE ... it 172
15.3. Class SEECHONcceiiiiieei et 172
15.3. 1. Wrap DataTYPE ...ccueenieeeeieiieeeee et 172
15.3.2. Reduce Classesin diagram <diagram>cccoeevvvviveineennnnnn, 173
15.3.3. Clean Up Diagramcccvveeiiieiiieiiie e e e e e e 173

I5.4. NAIMING cotini e et e e eeaaa s 173
15.4.1. Resolve Association Name Conflictoccoviiiiiiiiiiiiiiieie, 173
15.4.2. Revise Attribute Names to Avoid Conflictc.ccoviiiiiiiinnnn. 173
15.4.3. Change Names or Signaturesinan Artifactccoeeeeenn, 174
15.4.4. Duplicate End (Role) Names for an Associationccccevuneeee. 174
15.4.5. Role name conflictswith membercccoooviiiiiiii, 174
15.4.6. Choose a Name (Classes and Interfaces)cccveveeviiiineeiinnnnnn. 174
15.4.7. Choose a Unique Name for an Artifact (Classes and Interfaces) 174
15.4.8. Choose a Name (ALtribULES)oveeeiiiiiiiiiiee e 175
15.4.9. Choose a Name (OPerations)cceueeeeuieeunneeuineeiiieeeieeennaenn 175
15.4.10. Choose aName (StA€S)cevvevrrereiieeiii e v e e eaeeeee 175
15.4.11. Choose a Unique Name for a (State related) Artifact 175
15.4.12. Revise Nameto Avoid Confusionccevevineiiiieeineeeinen, 175
15.4.13. ChoosealLegal Nameccoovuieiiiiiiieeiiiie e 175
15.4.14. Change an Artifact to aNon-Reserved Wordccoeveeennnene. 175
15.4.15. Choose a Better Operation Namecovvvviiiiieiinieeieeeeeen 175
15.4.16. Choose a Better Attribute Nameoooveviviiiiiiiniiciiiineeccii, 176
15.4.17. Capitalize ClasS NaMEccvuiiviiieeie e 176
15.4.18. Revise Package Namecoouuiiiiiiiiiiieiiii e 176

155, SEOTAOE ... iveiiit e 176
15.5.1. Revise Attribute Names to Avoid Conflictccoviiiiiiennnn. 176
15.5.2. Add Instance Variablesto aClassc.coevevieiiiiiiniiiieccie, 176
15.5.3. Add aConstructor t0 @ Classceevvvvieeiiiiiieeieiie e 176
15.5.4. Reduce Attributeson aClassccccvviveeiiiiiieeiiiin e 177

15.6. Planned EXIENSIONSuiieiiiiiieee e e e e 177
15.6.1. Operationsin Interfacesmust be publiccccooevieiiiiiiieiinnnnnn. 177
15.6.2. Interfaces may only have operationscccoceeieiiiiiieiiieennneenn. 177
15.6.3. Remove Reference to Specific SUDCIESSoceviieiiiiiiiiiiiiie, 178

15.7. StAEMACIINES ... 178
15.7.1. Reduce Transitions ON <SEALE>ocvvvviieeiiiiiieecci e 178
15.7.2. Reduce States in machine <machine>cccoooviiiviiivienen, 178
15.7.3. Add TransitionS to <SEAE>vvvvviiiieiiiiecc e 178
15.7.4. Add Incoming Transitionsto <artifact>ccccoeeeeviiineeninnnnnn. 178
15.7.5. Add Outgoing Transitions from <artifact>cc.ceeviiennnen. 179
15.7.6. Remove Extralnitial Statesooovvvviieiiiiiiieeiiii e 179
15.7.7. Place an Initial Stateccooevviiiiiiiiiiiieei e 179
15.7.8. Add Trigger or Guard to TranSitionccoeveeveiiineeiiiineeeeiinnnn, 179
15.7.9. Change JoiN TranSitioNSoveeeerineeieiiiieeeeie e eeeie e 179
15.7.10. Change Fork TranSitionsooeeuiiiiiiiiiiecieei e 179
15.7.11. Add Choice/dunction TranSIitionsoceeuuveeiiieiiinnieieeeineenn 179
15.7.12. Add Guard to TranSitionoveeveiiiieeiiiiieeecee e 179
15.7.13. Clean Up Diagramceeeunieiiiieeii e e e e e e e e e e eees 179
15.7.14. Make Edge More Visiblecooooiiiiiiiiiiiiii e, 179
15.7.15. Composite Association End with Multiplicity > 1 180

ArgoUML User Manual

15.8. DESIGN PAEINS ...cvviiiiiieiie e e e e e e e e e e e e 180
15.8.1. Consider using Singleton Pattern for <class>cccoocevivvennnnnne. 180
15.8.2. Singleton Stereotype Violated in <Class>cccovvviiiviiiveinnnnne, 180
15.8.3. Nodes normally have no encloSersccoevviveeiiiiineeiiiiieeeeeiine, 181
15.8.4. Nodelnstances normally have no encloserscoceevvvevieinnne. 181
15.8.5. Components normally areinside nodesccceveeeiieevieinnnnn, 181
15.8.6. Componentlnstances normally areinsidenodes...............c..ccuuveeee. 181
15.8.7. Classes normally are inside COmponentscccoeevvevevevnveennnennn. 181
15.8.8. Interfaces normally are inside COMpONENtscoeeevevvneeeennnnnn. 181
15.8.9. Objects normally areinside COMPONENtSoevvueveiieeeinieeinne. 181
15.8.10. LinkEnds have not the same 10cationscccoeeeiiieiieennne. 181
15.8.11. Set classifier (Deployment Diagram)c.ccoeeeuveeeiniennneennnen. 182
15.8.12. MisSING FEtUrN-aCtIONSvvvieiiiieeieee e e e e e e e e e eeees 182
15.8.13. Missing call(send)-actionccoveviiiiiiiieeie e 182
15.8.14. No Stimuli onthese linksccooveiiviiiiii e, 182
15.8.15. Set Classifier (Sequence Diagram)cccvviveeviiineeiiiineeeeiinnnn, 182
15.8.16. Wrong position of these stimulicooooiiiiiiiiiii, 182

15.9. REAONSNIPS ..cvniieiie e 182
15.9.1. Circular ASSOCIBIION ...cccvvuneeiiiiie et 182
15.9.2. Make <association> Navigableccccovviiiiiiiiic e, 183
15.9.3. Remove Navigation from Interface via <association> 183
15.9.4. Add Associationsto <artifaCt>ccocoeoiiiiiiiiiiiii e, 183
15.9.5. Remove Reference to Specific SUDCIaSSoeevvieiiiiiiiiiiiiie, 183
15.9.6. Reduce Associations on <artifact™>ccoccevevieiiniiiiniiiiieeee, 183
15.9.7. Make Edge More Visiblecccoviviiiiiii e, 183

15.10. INSEANEIALTON .oevvueeiiiie e e 184

1511 MOAUIBITEY ..eeveeeeiii et 184
15.11.1. Classifier not in Namespace of itS ASSOCIationcceeevevvnnnn. 184
15.11.2. Add Elements to Package <package>cccoveviiiieinieennann. 184

15.12. EXPECLEd USBOEuueieeiiiieei ettt 184
15.12.1. Clean Up Diagramceveunieiiiieeiiieeiii e e e e e e e e e e e eens 184

1513 MEINOAS ... 184
15.13.1. Change Names or Signatures in <artifact>cccooeveiiinnnnnn. 185
15.13.2. Class Must be ADSLIaCtveevuiiiiieie e 185
15.13.3. Add Operationsto <ClasS™c..oeeeuiiiiiiiiiieeieeei e 185
15.13.4. Reduce Operations on <artifact>c.cccooviiiiiiiiiniiiii e, 185

15.14. COUE GENEIALONevuueeiiii e e e e e e 185
15.14.1. Change Multiple Inheritance to interfacescccoovvvviveennnnnn. 185

15.15. SEEIOLYIIES ..eevu et ettt ettt et e 185

15.16. INNEITTANCE ... 185
15.16.1. Revise Attribute Names to Avoid Conflictccooeveviiiennenn. 186
15.16.2. Remove <class>'s Circular Inheritancecccocccovvieiiiiennneen. 186
15.16.3. Class MUSt DE ADSIFECEoeveviieeciie e 186
15.16.4. Remove final keyword or remove subclassesc.ccceevevvnnnnne. 186
15.16.5. lllegal Generalizationooveeiiiiiieiiiiiiee e 186
15.16.6. Remove Unneeded Redlizes from <class>cccovvviviviennnnnn. 186
15.16.7. Define Concrete (SUD)CIESSccvvviveineeiiieiei e 186
15.16.8. Define Class to Implement <interface>cccooeiiiiiiiienee, 186
15.16.9. Change Multiple Inheritance to interfacescccovevvvveennnnnn. 187
15.16.10. Make Edge More Visiblecocoeveviiiiiii e, 187

15.27. CONAINMENTeeeiieeie e e e e e e e e e e e et e e e e e een e eeaneeeanaees 187
15.17.1. Remove Circular COmMPOSITIONuuveeieriiieeiiiiieeeeiie e 187
15.17.2. Duplicate Parameter Namecoeuieiiiiiiiiieiiiiecieeei e 187
15.17.3. Two Aggregate Ends (Roles) in Binary Association 187
15.17.4. Aggregate End (Role) in 3-way (or More) Association 188
15.17.5. Wrap DatalTYPe . oeuoeeeee e e e e 188

BV oo L= B = 1= = o 189
16. Top Level Artifact REFEIENCEccvvniiiiiii e 190

Xi

ArgoUML User Manual

G20 1 11 oo o1 o o O PR 190
16.2. ThEMOGEL ... 190
16.2.1. Model DetailS Tabsovvvnieiiiii e 190
16.2.2. Model Property ToOoIDarooveiiiiiiiiiiiiic e 191
16.2.3. Property Fields For The Modelcooooviiiiiiiiiiiiieee, 191

R R BT = 1 o L= S SPPT 193
16.3.1. Datatype DetailS Tahsocvvnieiiiiiiieeece e, 193
16.3.2. Datatype Property Toolbarcoovvuveviiiiiiiee e 194
16.3.3. Property Fields FOr Datatypeooevevenieeiiiiiieecii e 195

16.4. ENUMEIELION ...evnieeiieiii et e e e e e e et e e e e e eanaaes 197
16.4.1. Enumeration DetaillS Tabsovivviiiiieiiceee e 198
16.4.2. Enumeration Property Toolbarcccoiviiiiiiiii, 198
16.4.3. Property Fields For Enumerationcooevveveviieviieeeiieeeeeeenn 199

ST T S 1= =17/ 0= 201
16.5.1. Stereotype DetailS TahSevieviieeiiiie e 201
16.5.2. Stereotype Property TOOIDarccoevvieiiiiiiieeiiiieceeiee e 202
16.5.3. Property Fields FOr Stereotypecccueveeiiiiiiiiiieeiieceieeeeeen 202

GG T T o 203
16.6.1. Diagram DetailS Tabhscocevniiiiiiiiii e, 205
16.6.2. Diagram Property Toolbarccocvvviviiiiiii e, 205
16.6.3. Property Fields For Diagramcccooveeiiiiiniiiiiineecci e 205

17. Use Case Diagram Artifact REFEreNCeccoovviiiiiiiiiiici e 206
% I g 1 0o (0o 1o o RPN 206
17.1.1. ArgoUML Limitations Concerning Use Case Diagrams 206

L7.2. ACHOT ettt 207
17.2.1. Actor DEtalS TaDS ..vuiiiiiiiee e 207
17.2.2. Actor Property TOOIDArccccuuiiiiiiiiiieiiiii e 208
17.2.3. Property FieldSFOr ACLOrccovuniiiiiiiieeiei e 208

17,3 USB AL i eiiiiit ettt 209
17.3.1. Use Case DetallS Tahsccvvveeiiiie e 210
17.3.2. Use Case Property Toolbarcocoeveviiiiiiiiieiiiecn e, 211
17.3.3. Property FieldSFOr USE Caseoovvveviiiiiiii e 211

17.4. EXIENSION POINE ...oeeiiiiieis et e e e e 213
17.4.1. Extension Point DetailS Tabscoeuiviiiiiiiiiieiecece e 213
17.4.2. Extension Point Property Toolbarcooceiiiiiiiiiiiiiiiiieeeiee, 214
17.4.3. Property Fields For Extension Pointcccoceviiiiiniiiiieenneee, 214

17.5. ASSOCIAHON .eeviiiieiiiii e 215
17.6. ASSOCIAHON ENAoiiiiiiiii e 215
17.7. DEPENAEINCY ..ottt 215
17.8. GENErAlIZBHION ... 216
17.8.1. Generaization DetailS Tabsocevuiiiiiiiiiiii e, 216
17.8.2. Generalization Property Toolbarc.cooveeiiiiiiiiiiiiiiiiiieeeiee, 217
17.8.3. Property Fields For Generalizationccooeviveviiiiiiiieeeneenn, 217

L7.9. EXEENA .o 219
17.9.1. EXtend DetaillS TahS ...vuveveeieee e 220
17.9.2. Extend Property TOOIDErccuuuieiiiiiiieeiiiie e 220
17.9.3. Property Fields For EXtendcccoiveiiiiiiiieiiiin e 221
L1700 INCIUTE ... 222
17.10.1. Include DetailS Tabsuveiiiiiiieeiiiie e 223
17.10.2. Include Property Toolbarccoovvviviiiiiiie e, 223
17.10.3. Property Fields For Includecooveiiiiiiniiiiii e, 224

18. Class Diagram Artifact REFEreNCecoiiiiiiiiiiiiii e 226
18.2. INEFOAUCTION ..ttt e e e e e eaas 226
18.1.1. Limitations Concerning Class Diagramsin ArgoUML 227

18.2. PaCKAOE ..vvvniiii et 227
18.2.1. Package DetailS Tahsvvevniiiii i 227
18.2.2. Package Property TOOIDAroveeiiiiiieiiiiiiieciiii e 228
18.2.3. Property Fields For Packagecccooveiiiiiniiiiiieece, 229

Xii

ArgoUML User Manual

G TG T I T -] = 230
S S 1= = 1Y/ o= 230
18,5, ClBSS . iiiiiieeii et 230
18.5.1. Class DetallS TahScccvuuiuiiiieiiiiiiiii e 230
18.5.2. Class Property Toolbar ..o, 231
18.5.3. Property FieldSFOr Classcouuiiiiiieiiiicicccc e 232

18.6. AUMDULE ...veieie e 235
18.6.1. Attribute DetailS TabScvvveeiiiiieeciie e 235
18.6.2. Attribute Property TOOIDarcovvviiieiiiiiiieiiii e, 236
18.6.3. Property Fields For Attributecooveeiiiiiiiiii e, 236

18.7. OPEBIION L.ueiieiiie et e 238
18.7.1. Operation DetailS Tahsc.uviiviiiiiiii e 239
18.7.2. Operation Property TooIbarcocvvuveviiiiiiiiieeiieece e, 240
18.7.3. Property Fields For Operationccoceuvvviiiiieiiineeiii e, 241

18.8. ParamMELEr ... e 243
18.8.1. Parameter DetaillS TabhSuveviiiiii e 243
18.8.2. Parameter Property Toolbarcooiiiiiiiiiii e, 244
18.8.3. Property Fields For Parametercccooviiviiiiiiniiiiniiiiieeiee, 245

18.9. SIgNEAl ovvnciii i 246
18.9.1. Signal DetailS TabhSvuivev e e 246
18.9.2. Signal Property TOOIDAroveiiiiiiieeiiiieeeei e 247
18.9.3. Property FieldsFor Signaloooeiiiiiiiiiiii e 248
18.10. Reception (10 be WIILEEN)iieeiieii e 249
18.10. ASSOCIBLION ...ttt ettt ettt e e e e e et e et e e ea e 249
18.11.1. Three-way and Greater Associations and Association Classes 250
18.11.2. Association DetailS Tabsccuuuveiiiiiiieiiiiiieee e 250
18.11.3. Association Property TOOIDarccuuuveeiiiiiieiiiiin e, 251
18.11.4. Property Fields FOr ASSOCIatiONuveevevinieeiiiii e 251
18.12. ASSOCIAtION ENGovvviiiiii e e s 253
18.12.1. Association End DetailS Tabsc..oveeviiiiiiiiiiiiiiiiciceiee, 253
18.12.2. Association End Property Toolbarccoovevviiviiiiiiiieeeiee, 254
18.12.3. Property Fields For Association Endcoceeveviiiiiiiieennenn, 255
18.13. DEPENAENCY ..evvneeiiii ettt 258
18.13.1. Dependency DetailS Taldscccvvneeiiiiiieeiiiieece e 258
18.13.2. Dependency Property Toolbarocceuiiiiiiiiiiiiiiiceieeeiee, 259
18.13.3. Property Fields For Dependencyc.oovveviieeeineiiinnieieeeieeenn 259
18.14. GENErAlIZALION ...eeieii et 260
RS T | 1= o = o= ST PTT 260
18.15.1. Interface DetaillS TabhSuveviie e 260
18.15.2. Interface Property TooIbarcoovivieiiiiiiiii e, 261
18.15.3. Property Fields For Interfaceccoooeiiiiiiiiiiiiieee, 262
18.16. ADSLIACION ...cenieeiieiie e 263
18.16.1. Abstraction DetailS TabhScocvvnieeiiiiieeeci e 264
18.16.2. Abstraction Property Toolbarcccoovvviiiiiiiiiiie e, 265
18.16.3. Property Fields For AbStractionccccoiveiiiiiiniiiiiiineecciin, 265

19. Sequence Diagram Artifact Reference ... 267
S I g 0o (0o 1o o RO PTRPPRN 267
19.1.1. Limitations Concerning Sequence Diagramsin ArgoUML 268

19.2. OBJECL .ot 268
19.2.1. Object DetailS Tahsuvvvvnieeiiee e e 268
19.2.2. Object Property TOOIDarcccuuiiiiiiiiiieiiii e 269
19.2.3. Property FieldSFOr Objectooeeiiiiiieiiiiiieecc e 269

TO.3. SHMUIUS .t et e et e e e ea s 270
19.3.1. Simulus DetailS Tabsc.uieiiiiiii e 271
19.3.2. Stimulus Property Toolbarccoooviieiiiiiiiiicee e, 272
19.3.3. Property Fields For Stimuluscccoveveiiiiiiiccecee e, 273

19.4. SEMUIUS Call ..oeneiiie e e e e 274
195, SHMUIUS CrEALE ...cevi ettt e e 274

ArgoUML User Manual

19.6. SHMUIUS DESITOY ..ovuiiiiieiiiceie et e et e e e e e e e e e aaaees 274
19.7. SHMUIUS SENA ..t 275
19.8. SMUIUS RELUIN ...ceiiiie et e e e e e 275
ST T o 1S PT 275
19.9.1. Link DEtailS TabhS .ovvvueeiiiiieeiiie e 275
19.9.2. Link Property Toolbarcoooouiiiiii e, 276
19.9.3. Property FieldSFOr Linkcoovvviiiiieiiie e, 277

20. Statechart Diagram Artifact REFErencecooviviiiviii i, 278
220 I R 1 11 o [0 Tox o o 278
20.1.1. Limitations Concerning Statechart Diagramsin ArgoUML 279

20,2, SEBEE ettt ettt e e e aaat e aaa 279
20.2.1. State DetallS Tals ...oovvvveiiiiiii e 279
20.2.2. State Property TOOIbaroevvvviiiiiieiiieci e 280
20.2.3. Property FieldS FOr Stateccevvviiieiiiieii e 280

20.3. ACHION Lo aes 282
20.3.1. ActioN DetailS TahScvvunieeiieeii e 282
20.3.2. Action Property Toolbaroooiiiiiiiiii e, 283
20.3.3. Property FieldS FOr ACHONc..viiiiieiiiiiiiecece e 283

20.4. COMPOSITE SEALE ...vueeeieieii e e e e e e e e e e e e e e e e eees 284
20.5. CONCUITENE REGION ...evviiiii e e e e e e e e e e e e eeees 285
20.6. SUDMACNINGE SEAEE ...evvueeii e e e e et e e e e e e eeees 285
20.7. SEUD SEAE ..evvve et aa 285
20.8. TrANSILION ...iiieiiit ettt e e e e e e e ees 286
20.8.1. Transition DetaillS TabSccuuiiiiiiiiiei e 286
20.8.2. Transition Property Toolbarccooeeviiiiiiiiiiiieeeeee, 286
20.8.3. Property Fields For Transitionc.ccoveviiiiiiiiicenecce e, 287

20.9. EVENE ooitieiiii e 288
20.9.1. Event DetaillS TahS ..uviveiiiieeii e 288
20.9.2. Event Property Toolbar ..o 289
20.9.3. Property FieldS For EVENtcoooviiiiiiiiiiiiiieceecc e 289

220 O 1= o USRS 291
20.10.1. GUard DetailS TahS ...c.vvuieiieiiiieeiiii e e 291
20.10.2. Guard Property TOOIDEroveveiiiiieiiiiiiieeeii e 291
20.10.3. Property Fields FOr GUardoveveeiiieeiiiinieeeiiieeeeiieeees 291
20.10. PSEUAOSIAEE ...t eeeevieeeeeie et e e e e et e e e et e e e et e e e eaba e e eae 292
20.11.1. Pseudostate DetailS Tabscoevniiiiiieiiiii e 292
20.11.2. Pseudostate Property Toolbarccccuveviiiiiiiiiciice e, 293
20.11.3. Property Fields For Pseudostatecocvvvvvieineiiiniiiiiieeieeennnn, 293
20.12. INitial SEALE ..vvueeeeiieeeee e e e 294
20.13. FiNAl SEAE ..vvvieeiiiii et 294
20.13.1. Fina State DetailS Tabsuvveviiiiiiiiiiiiiieeee e 294
20.13.2. Final State Property Toolbarcoeeviiiiiiiiiiiiciiiceceeee 295
20.13.3. Property Fields For Final Statecccoveviiiviiiiceiecce e, 295
20.14. JUNCHION .iiitiee ettt et e et e e e et e e e e et e e e eeba e aaae 296
20 I 5 T O o o 296
0 0 T o PSP PN 296
220 I 2N o o PSPPSR 297
20.18. ShAlOW HISLOIY ..eevvieeiiiieee et e e eees 297
20.19. DEEP HISIONY ...veeieeiiie it et e e e e e 297
20.20. SYNCH SEALE ...t et e 298
20.20.1. Synch State DEtailS TahSvvueiiiiiiieeeiii e 298
20.20.2. Synch State Property Toolbarccooiiiiiiiiiiiiies 298
20.20.3. Property Fields For Synch Statecocooviiiiiiiiiiiiiieeeenn, 299

21. Collaboration Diagram Artifact Referenceccoooviiiiiiiiiii e 300
P24 50 I 1 o (8o [o o PSPPI 300
21.1.1. Limitations Concerning Collaboration Diagramsin ArgoUML 301

21.2. ClasSifier ROIE ...oeeeeeeieie e e 301
21.2.1. Classifier Role DetallsS Tabsovveviveiiiiiiieiieeeiece e 302

Xiv

ArgoUML User Manual

21.2.2. Classifier Role Property Toolbarcoevuiiiiiiiiiiiiiiiiccceeeeen, 303
21.2.3. Property Fields For Classifier Rolec.ccovviiiiiiiiiiiiicceeen, 303

21.3. ASSOCIALION ROIEieiiiei e e e e 306
21.3.1. Association Role DetailS Tahsovvveveieniiiiiieiiieeeeee e 306
21.3.2. Association Role Property Toolbarccoviiiiiiiiiiiiiiieeenn, 307
21.3.3. Property Fields For Association Roleccoiiiiiiiiiiniiineeann, 307

21.4. AssOCIatioNn ENAROIEcovvniiiiiiice e 308
21.4.1. Association End Role Details Tahsccccvvvveiiiinieiiiiiiieiiiineeee 309
21.4.2. Association End Role Property Toolbarcooovviiiiiiiiins 309
21.4.3. Property Fields For Association End Roleoccvvviiiiiiiinnenes 310

AR L2 o PP 311
21.5.1. Message DetailS Tabhscccvveniiiiiiicee e 311
21.5.2. Message Property Toolbarcoccoviveiiiiiiiiieiii e, 312
21.5.3. Property FieldS FOr MESSAEvvvvvvnieiiieii e 313

22. Activity Diagram Artifact REFEreNnCeoovviviiiiiii e 315
272 W L g1 oo [UTox o] [315
22.1.1. Limitations Concerning Activity Diagramsin ArgoUML 316

222, ACHON SEBEE ..ottt ae 316
22.2.1. Action State DetailS TalSccvvveiiiiiieicii e 317
22.2.2. Action State Property TOOIBarcoevveveviiiiiiiieceiecee e, 317
22.2.3. Property fieldsfor action Stateocoeeviiiiiiiiniiiiiieees 318

223 ACHON et aas 319
P I =01 L o] o PSP 319
P o [RSP 319
22.6. INITIAl SEAEE .evvveeeeii e 319
227 FINAl SEBLE ..oeeveieeeei e 319
22.8. JUNCLON (DECISION) ...ueeeetiee ettt e et et e et eeeeai e eees 319
P B o] USSP 319
22725 0 TN ' o PSPPSR 320
22.10. ObJECIFIOWSEAE . .vuieeieiieeeeeiie e et e e e e 320
23. Deployment Diagram Artifact REFErenCecoovvvviveiiiciiiiei e, 321
P22 50 110 o [F o [o o KOS UPPRTPPPN 321
23.1.1. Limitations Concerning Deployment Diagramsin ArgoUML 322

23.2. NOUE ...t a e 322
23.2.1. NOe DEAilS TADS ...cevvviieeiiii e 322
23.2.2. Node Property TOOIDEroeeeuiiiiiieiiei e 323
23.2.3. Property FieldsS FOr NOEcccvviviiiieiii e 324

23.3. NOUEINSEANCE .. .eeeviieiieie et 325
23.3.1. Node Instance DetailS Tahscc.vvvviveeiieiiieei e 325
23.3.2. Node Instance Property Toolbarcccccovieiiiiiiiiiiiiieeees 326
23.3.3. Property Fields For Node INStancecc.vevevieiiiiiiineiineeenn, 326

23,4, COMPONENLeteiteeee ettt et e ettt e et e e e e et e e e e aeeaeenns 327
23.4.1. Component DetaillS TabSevviiiiiiiieii e, 327
23.4.2. Component Property Toolbarccocevvviviiiiiiiiieiiece e, 328
23.4.3. Property Fields FOr Componentcceuvveieiiinieiiiiinneeeiiineeeens 328

23.5. COoMPONENE INSEANCEevvieirieeiriie et eees 329
23.5.1. Component Instance DetaillS Tabsocovuiiiiiiiiiiiiiiicceeeeeeen 330
23.5.2. Component Instance Property Toolbarccoooiiiiiiiiinnnnnnn. 330
23.5.3. Property Fields For Component INStanceccoeevvvvevvievinennnnn. 331

23.6. DEPENAENCY ..ovvueeeeneeeie et ettt e e e e e e e e e 332
P - SRR 332
238 INEEITACE oeniiit e 332
23.9. ASSOCIBIION vttt ettt et eees 332
P2 o 1= TSP 333
23100 LINK et 333
24. Built In DataTypes, Classes, Interfaces and Stereotypescoovvvvvvevivvviievinnennnnn. 334
25 T 1 oo [0 o o o 334
24.1.1. PaCKage SIIUCIUIceeevi et e 334

XV

ArgoUML User Manual

24.1.2. Exposureinthemodelc.cooviiiiiiii i, 336

24.2. BUIt IN DEALYPES .. uevvvneeeineeeeeeei e e e e e e e e e e e e s e e e e e e e e eanaeeees 336

24.3. BUIHE TN ClASSES ..oeuneiiieiii et et e e e e e e e eees 336

24.3.1. BuiltInClassesFromj ava. | angccccoooevveiiiieiiiiinieeiiineees 337

24.3.2. Built InClassesFromj ava. mat h ..., 337

24.3.3. Built InClassesFromj ava. Netccoociveiiiiiiiiiiiiiicceeeenn, 337

24.34. BuiltInClassesFromj ava. utilccoccooiiiiiiiiiiiinceeeeenn, 337

244, BUIlt IN INEEMTACES .ovviiiiii e 337

24.5. BUIlt 1N SEEMEOLYPES ... ettt ettt 338

GlOSSANY ..ttt ettt e e e e e 342
A. Supplementary Material for the Case StUYcoeuiiiiiiiiiiii e, 349
AL INETOOUCTION ..ttt e e e e e eaa e eees 349

A.2. Requirements Documents (TObe Written)cooevvviieiiiiiiii e 349
A.2.1. Vision Document (TObeWritten)ccooevviviiiiiiiiei e 349

A.2.2. Use Case Specifications (To bewritten)ccoooiiiiiiiiiiiiiiin, 349

A.2.3. Supplementary Reguirements Specification (To bewritten) 349

B. UML FBSOUITESieiitieite ettt ettt e e et et e et e et e et e et e e an e e e e et e et e eaaenns 350
B.1. The UML Specs (TODeWIItteN)c..uiieiiiiiie e 350

B.2. UML related papers (TObeWIitten)ccoevniiiiiiiiii e 350
B.2.1. UML action specifications (To be Written)cccoevevviveviiniiiiieennnns 350

B.3. UML related websites (TObBe WITTEN)iiiiiiieii e 350

C. UML Conforming CASE TOOISociiiiiieiiiiie et 351
C.1. Other Open Source Projects (TO be WItteNn)ooeeuiiiiiiiiiiiiceieee e, 351

C.2. Commercial ToolS(TODEeWTIITEN)c.eeriiie e 351

D. ThE CHH MOAUIE ... e 352
D.1. MOdeling fOr G e 352
D.1.1. G @SS tagged VAIUESuuiiiiiii e 352

D.1.2. Attribut etagged ValUEScooeiiiiiieiiiiii e 353

D.1.3. Par @mMBL @IS ..o 354

D.1.4. Preserved SECHIONSc..uiiiiiiiee ettt e ea s 34

E. Limitsand SNOMCOMINGScouuiiiiiiiiieiieee e e e e e e e e e e e e e et e e e e e aanaees 356
E.L Diagram CanVas SIZEceuuiiiii i et e et e e e e e e e e e e e an s 356

E.2. MiSSING FUNCLIONSoeviiiiiii e 356

F. Open PUBIICALION LICENSEcooviiiiiei et e 357
F.1. Requirements On Both Unmodified And Modified Versionsccccoeeeueeennn. 357

F.2. COPYIIGNL e 357

F.3. SCOPE Of LICENSE . ovviiiiii et e e e e e e e aaaas 357

F.4. Requirements On Modified WOrKSccooviiiiiiiiiiieie e 357

F.5. Good-Practice RecommeNdationsccuuveiiiiiiieeiie e e e 358

F.6. LICENSE OPLIONSeiieiiiee ettt ettt ettt e e e e e 358

F.7. Open Publication Policy APPendiX:ccuvieiiiiiiiiiiee e 359

G. The CRC Card MethOdolOgyccuiieniiiieiieie e e 360
L0 T I 0= O o USSP 360

L2 I =Y o o 361

TG T I ==\ o o 361

T B I oY 00 TP 361
g0 L PP 362

XVi

Preface

Software design is a cognitively challenging task. Designers must manually enter designs, but the
primary difficulty is decision-making rather than data-entry. If designers improved their decision-mak-
ing capabilities, it would result in better designs.

Current CASE tools provide automation and graphical user interfaces that reduce the manual work of
entering a design and transforming a design into code. They aid designers in decision-making mainly by
providing visualization of design diagrams and simple syntactic checks. Also many CASE tools provide
substantial benefits in the area of version control and concurrent design mechanisms. One area of design
support that has been not been well supported is analysis of design decisions.

Current CASE tools are usable in that they provide a GUI that allows designers to access all the features
provided by the tool. And they support the design process in that they allow the designer to enter dia-
grams in the style of popular design methodologies. But they typically do not provide process support to
guide the designer through the design task. Instead, designers typically start with a blank page and must
remember to cover every aspect of the design.

ArgoUML is a domain-oriented design environment that provides cognitive support of object-oriented
design. ArgoUML provides some of the same automation features of a commercial CASE tool, but it fo-
cuses on features that support the cognitive needs of designers. These cognitive needs are described by
three cognitive theories:

1

reflection-in-action;
2.

opportunistic design; and
3.

comprehension and problem solving.

ArgoUML is based directly on the UML 1.4 specification. The core model repository is an implementa-
tion of the Java Metadata Interface (JM1) which directly supports MOF and uses the machine readable
version of the UML 1.4 specification provided by the OMG.

Furthermore, it is our goal to provide comprehensive support for OCL (the Object Constraint Language)
and XMI (the XML Model Interchange format).

ArgoUML was originally developed by a small group of people as a research project. ArgoUML has
many features that make it special, but it does not implement all the features that commercial CASE
tools provide.

The current V0.20 release of ArgoUML implements all the diagram types of the UML 1.4 standard
[http://www.omg.org/cgi-bin/doc?ormal/01-09-67] (versions of ArgoUML prior to 0.20 implemented
the UML 1.3 standard [http://www.omg.org/cgi-bin/doc?formal/00-03-01]). It iswritten in Javaand runs
on every computer which provides a Java 2 platform of Java 1.4 or newer. It uses the open file formats
XMI [http://www.omg.org/cgi-bin/doc?formal/02-01-01] (XML Metadata Interchange format) (for
model information) and PGML [http://www.w3.0rg/TR/1998/NOTE-PGML] (Precision Graphics
Markup Language) (for graph information) for storage. When ArgoUML implements UML 2.0, PGML
will be replaced by the UML Diagram Interchange specification.

This manual isthe cumulative work of several people and has been evolving over several years. Connec-
ted to the release 0.10 of ArgoUML, Jeremy Bennett, wrote a lot of the new material that was added to
the earlier versions by Alejandro Ramirez, Philippe Vanpeperstraete and Andreas Rueckert. He also ad-

XVii

http://www.omg.org/cgi-bin/doc?formal/01-09-67
http://www.omg.org/cgi-bin/doc?formal/00-03-01
http://www.omg.org/cgi-bin/doc?formal/02-01-01
http://www.w3.org/TR/1998/NOTE-PGML

Preface

ded things from some of the other documents namely the developers cookbook by Markus Klink and
Linus Tolke, the Quick Guide by Kunle Odutola, and the FAQ by Dennis Daniels. Connected to the re-
lease 0.14 changes were made by Linus Tolke, and by Michiel van der Wulp. These changes were
mostly to adopt the manual to the new functions and appearance of ArgoUML version 0.14, and intro-
duction of the index. The users and developers that have contributed by providing valuable input, such
as review comments or observations while reading and using this manual are too many to name.

ArgoUML is available for free and can be used in commercial settings. For terms of use, see the license
agreement presented when you download ArgoUML. We are providing the source code for ArgoUML
for you to review, customize to your needs, and improve. Over time, we hope that ArgoUML will
evolve into a powerful and useful tool for everyone to use.

This User Manual is aimed at the working designer, who wishes to make use of ArgoUML. The manual
is presently written assuming familiarity with UML, but eventually it will support those new to UML.

The manual iswritten in DocBook/XML and available as both HTML and PDF.

The ArgoUML project welcomes those who want to get more involved. Look at the project website
[http://argouml.tigris.org/] to find out more.

Tell us what you think about this User Manual! Y our comments will help us improve things. See Sec-
tion 1.3.3, “User Feedback” .

XViii

http://argouml.tigris.org/

Chapter 1. Introduction
1.1. Origins and Overview of ArgoUML

1.1.1.

1.1.2.

Object Oriented Analysis and Design

Over the past decade, Object Oriented Analysis and Design (OOA& D) has become the dominant soft-
ware development paradigm. With it has come a major shift in the thought processes of al involved in
the software development life cycle.

Programming language support for objects began with Simula 67, but it was the emergence in the 1980's
of hybrid languages, such as C++, Ada and Object Pascal that allowed OOA&D to take off. These lan-
guages provided support for both OO and procedural programming. Object Oriented programming be-
came mainstream.

An OO system is designed and implemented as a simulation of the real world using software artifacts.
This premiseis as powerful asit issimple. By using an OO approach to design a system can be designed
and tested (or more correctly simulated) without having to actually build the system first.

It is the development during the 1990's of tools to support Object Oriented analysis and design that
moved this approach into the mainstream. When coupled with the ability to design systems at a very
high level, a tool based OOA&D approach has enabled the implementation of more complex systems
than previously possible.

The final driver that has propelled OOA&D has been its suitability for modeling graphical user inter-
faces. The popularity of object based and object oriented graphical languages such as Visual Basic and
Javareflect the effectiveness of this approach.

The Development of ArgoUML

During the 1980's a number of OOA& D process methodol ogies and notations were developed by differ-
ent research teams. It became clear there were many common themes and, during the 1990's, a unified
approach for OOA&D notation was developed under the auspices of the Object Management Group
[http://www.omg.org]. This standard became known as the Unified Modeling Language (UML), and is
now the standard language for communicating OO concepts.

ArgoUML was conceived as atool and environment for use in the analysis and design of object-oriented
software systems. In this sense it is similar to many of the commercial CASE tools that are sold as tools
for modeling software systems. ArgoUML has a number of very important distinctions from many of
these toals.

1. ArgoUML draws on research in cognitive psychology to provide novel features that increase pro-
ductivity by supporting the cognitive needs of object-oriented software designers and architects.
2. ArgoUML supports open standards extensively—UML, XMI, SVG, OCL and others.

3. ArgoUML is a 100% pure Java application. This allows ArgoUML to run on al platforms for
which areliable port of the Java2 platform is available.

4. ArgoUML isan open source project. The availability of the source ensures that a new generation of
software designers and researchers now have a proven framework from which they can drive the
development and evolution of CASE tool technologies.

http://www.omg.org

Introduction

UML is the most prevalent OO modeling language and Javais one of the most productive OO devel op-
ment platforms. Jason Robbins and the rest of his research team at the University of California, Irvine
leveraged these benefits in creating ArgoUML. The result is a solid development tool and environment
for OO systems design. Further, it provides a test bed for the evolution of object oriented CASE tools
development and research.

A first release of ArgoUML was available in 1998 and more than 100,000 downloads by mid-2001 show
the impact that this project has made, being popular in educational and commercia fields.

1.1.3. Finding Out More About the ArgoUML Project
1.1.3.1. How ArgoUML is Developed

Jason Elliot Robbins founded the Argo Project and provided early project leadership. While Jason re-
mains active in the project, he has handed off project leadership. The project continues to move forward
strongly. There are more than 300 members on the developer mailing list (see ht-
tp:/fargouml.tigris.org/serviets/ProjectMailingListList

[http://argouml tigris.org/servlets/ProjectMailingListList]), with a couple of dozen of those forming the
core development group.

The developer mailing list is the place where all the discussion on the latest tasks takes place, and de-
velopers discuss the directions the project should take. Although controversial at times, these discus-
sions are aways kept nice and friendly (no flame-wars and such), so newbies should not hesitate and
participate in them. You'll ways get awarm welcome there.

If you want to learn how the project is run and how to contribute to it, go the the ArgpUML Web Site
Developer Zone [http://argouml .tigris.org/dev.html] and read through the documentation there. The De-
velopers' Cookbook was written specifically for this purpose.

1.1.3.2. More on Infrastructure

Besides the devel oper mailing list, there's also a mailing for users (see The ArgoUML Mailing List List
[http://argouml .tigris.org/servlets/ProjectMailingListList]), where we can discuss problems from a user
perspective. Developers also read thislist, so highly qualified help will generally be provided.

Before posting to this list, you should take a look a the wuser FAQ
[http://argouml tigris.org/fags/users.html] maintained by Ewan R. Grantham.

More information on ArgoUML and other UML related topics is also available on the ArgoUML web-
site [http://argouml tigris.org], maintained by Linus Tolke.

1.2. Scope of This User Manual
1.2.1. Target Audience

The current release of this document is aimed at experienced users of UML in OOA&D (perhaps with
other tools) who wish to transfer to ArgoUML.

Future releases will support designers who know OOA& D, and wish to adopt UML notation within their
development process.

A long term goal is to support i) those who are learning design and wish to start with an OOA&D pro-
cess that uses UML notation, and ii) people interested in modularized code design with a GUI.

http://argouml.tigris.org/servlets/ProjectMailingListList
http://argouml.tigris.org/servlets/ProjectMailingListList
http://argouml.tigris.org/dev.html
http://argouml.tigris.org/dev.html
http://argouml.tigris.org/servlets/ProjectMailingListList
http://argouml.tigris.org/faqs/users.html
http://argouml.tigris.org
http://argouml.tigris.org

1.2.2.

Introduction

Scope

The intention is that this document will provide a comprehensive guide, enabling designers to use
ArgoUML toitsfull extent. Itisin two parts.

* A tutorial manual, showing how to work with ArgopUML

» A complete reference manual, recording everything you can do with ArgoUML.

Version 0.22 of the document achieved the second of these.

In this guide there are some things you will not find, because they are covered el sewhere.

e Descriptions of how ArgoUML works on the inside.
* How toimprove ArgoUML with new features and functions.
» A trouble shooting guide.

* A summary quick reference to using ArgoUML.

These are covered in the Developers Cookbook
[http://argouml-stats.tigris.org/documentati on/defaul thtml/cookbook/], the FAQ
[http://argouml.tigris.org/fags/users.html], and the Quick Guide

[http://argouml .tigris.org/documentati on/defaulthtml/quickguide/].

1.3. Overview of the User Manual

1.3.1.

1.3.2.

Tutorial Manual Structure

Chapter 2, Introduction (being written) provides an overview of UML based OOA&D, including aguide
to getting ArgoUML up and running.

Chapter 4, Requirements Capture through Chapter 7, Code Generation, Reverse Engineering, and
Round Trip Engineering then step through each part of the design process from initial requirements cap-
ture through to final project build and deployment.

As each UML concept is encountered, its use is explained. Its use within ArgoUML is then described.
Finally a case study is used to give examples of the conceptsin use.

Reference Manual Structure

Chapter 8, Introduction is an overview of the user interface and provides a summary of the support for
the various UML diagram typesin ArgoUML. Chapter 10, The Menu bar and Chapter 11, The Explorer
describe the menu bar, and each of the sub-windows of the user interface, known as Panes.

Chapter 15, The Critics gives details of all the cognitive critics within the system. Eventually ArgoUML
will link directly to this manua when giving advice on critics.

Chapter 16, Top Level Artifact Reference is an overview of the artifacts (i.e. the UML entities that can
be placed on diagrams) within ArgoUML. The following chapters (Chapter 17, Use Case Diagram Arti-
fact Reference through Chapter 24, Built In DataTypes, Classes, Interfaces and Stereotypes) describe,
the artifacts that can be created through each ArgoUML diagram, and their properties, as well as some

3

http://argouml-stats.tigris.org/documentation/defaulthtml/cookbook/
http://argouml.tigris.org/faqs/users.html
http://argouml.tigris.org/documentation/defaulthtml/quickguide/

1.3.3.

Introduction

standard artifacts provided with the system.

A complete Glossary is provided. Appendix A, Supplementary Material for the Case Study provides ma-
terial to supplement the case study used throughout the document. Appendix B, UML resources and Ap-
pendix C, UML Conforming CASE Tools identify background information on UML and UML CASE
tools. Appendix F, Open Publication License is a copy of the GNU Free Documentation License.

A future ambition is to provide a comprehensive index.

User Feedback

Please tell us what you think about this User Manual. Y our comments will help us make improvements.
Email your thoughts to the ArgoUML Users Mailing List [mailto:users@argouml.tigris.org]. In case you
would like to add to the missing chapters you should contact the ArgopUML Developer Mailing List
[mailto:dev@argouml.tigris.org] to check whether anyone else is working on this part. You can sub-
scribe to either of the mailing lists viathe ArgoUML web site [http://argouml.tigris.org].

1.4. Assumptions

This release of the manual assumes the reader is very familiar with UML already. Thisis reflected in the
sparseness of the description of UML conceptsin the tutorial.

The case study is described, but not yet fully realized throughout the tutorial. This will be achieved in
future releases of the manual.

mailto:users@argouml.tigris.org
mailto:dev@argouml.tigris.org
http://argouml.tigris.org

Part 1. Tutorial

Chapter 2. Introduction (being written)

Thistutorial will be taking you through a tour of the use of ArgoUML to model a system.

An ATM (automated teller machine) project has been chosen as a case study to demonstrate the various
aspects of modeling that ArgoUML offers. In subsegquent sections we are going to develop the ATM ex-
ample into a complete description in UML. The tutorial, however, will only walk you through part of it.

At this point you should create a directory to contain your project. Name the directory anything you feel
is consistent with the rest of your file system. You should name the contents and any subdirectories as
directed for reasons that will become apparent.

The state of the model at the end of key sections will be available in .zargo files. These are available so
that you can play with various alternatives and restore yourself back to the proper state of the model in
your work area. These .zargo files will be identified at the end of the sections whose work they repres-
ent.

The case study will be an ATM system. Y our company is FlyByNight Industries. Y ou are going to play
two roles. That of the Project Manager and that of the Designer Analyst.

We are not going to build aphysical ATM, of course.

First you will become familiar with the feel of the product and then we will go through an analysis and
development process for atest case.

How your company arranges its work into projectsis usually determined as much by politics as anything
else and is, therefore, out of the scope of this document. We will go into how you structure the project it-
self once one has been defined.

Chapter 3. UML Based OOA&D

In this chapter, we look at how UML as anotation is used within OOA&D.

3.1. Background to UML

Object orientation as a concept has been around since the 1960's, and as a design concept since 1972.
However it was in the 1980's that it started to develop as a credible alternative to a functional approach
in analysis and design. We can identify a number of drivers.

1. The emergence of mainstream OO programming languages like SmallTalk and particularly C++.
C++ was a pragmatic OO language derived from C, widely used because of its association with
Unix.

2. The development of powerful workstations, and with them the emergence into the mainstream of
windowing operating user environments. Graphical User Interfaces (GUI) have an inherent object
structure.

3. A number of very public major project failures, suggesting that current approaches were not satis-
factory.

A number of researchers proposed OOA&D processes, and with them notations. Those that achieved
some success include Coad-Y ourdon, Booch, Rumbaugh OMT, OOSE/Jacobson, Shlaer-Mellor, ROOM
(for real-time design) and the hybrid Jackson Structured Development.

During the early 1990's it became clear that these approaches had many good ideas, often very similar.
A major stumbling block was the diversity of notation, meaning engineers tended to be familiar with one
OOA& D methodology, rather than the approach in general.

UML was conceived as a common notation, that would be in the interests of al involved. The origina
standard was driven by Rational Software (www.rational.com [http://www.rational.com], in which three
of the key researchers in the field (Booch, Jacobson and Rumbaugh were involved). They produced doc-
uments describing UML v0.9 and v0.91 during 1996. The effort was taken industry wide through the
Object Management Group (OMG), already well known for the CORBA standard. A first proposal, 1.0
was published in early 1997, with an improved version 1.1 approved that autumn.

ArgoUML is based on UML v1.4, which was adopted by OMG in March 2000. The current official ver-
sionisUML v1.5 dated March 2003, soon to be replaced by a major revision, UML v2.0, which isin the
final stages of standardization and is expected to be complete in 2006.

3.2. UML Based Processes for OOA&D

It is important to understand that UML is a notation for OOA&D. It does not prescribe any particular
process. Whatever process is adopted, it must take the system being constructed through a number of
phases.

1. Requirements Capture. This is where we identify the requirements for the system, using the lan-
guage of the problem domain. In other words we describe the problem in the “customer's’ terms.

2. Andysis. We take the requirements and start to recast them in the language of a putative solu-
tion—the solution domain. At this stage, although thinking in terms of a solution, we ensure we
keep things at a high level, away from concrete details of a specific solution—what is known as ab-

http://www.rational.com

UML Based OOA&D

straction.

3. Design. We take the specification from the Analysis phase and construct the solution in full detail.
We are moving from abstraction of the problem to its realization in concrete terms.

4. Build Phase. We take the actual design and write it in areal programming language. This includes
not just the programming, but the testing that the program meets the requirements (verification),
testing that the program actually solves the customer's problem (validation) and writing all user
documentation.

3.2.1. Types of Process

In this section we look at the two main types of process in use for software engineering. There are oth-
ers, but they are less widely used.

In recent years there has also been a move to reduce the effort required in devel oping software. This has
led to the development of a number of lightweight variants of processes (often known as agile comput-
ing or extreme programming) that are suited to very small teams of engineers.

3.2.1.1. The Waterfall Process

In this process, each stage of the process—requirements, analysis, design and build (code and test) is
completed before the next one starts. Thisisillustrated in Figure 3.1, “ The Waterfall Process”.

Figure 3.1. The Waterfall Process

Keq 1

Aﬂal}rsiST

Design +

Code 1

Test

Thisis avery satisfactory process where requirements are well designed and not expected to change, for
example automating awell proven manual system.

The weaknesses of this approach show with less well defined problems. Invariably some of the uncer-
tainties in the requirements will not be clarified until well into the analysis and design, or even code

UML Based OOA&D

phases, requiring backtracking to redo work.

The worst aspect of this, is that working code does not become available until near the end of the
project, and very often it is only at this stage that problems with the original requirements (for example
with the user interface) become apparent.

This is exacerbated, by each successive stage requiring more effort, than the previous, so that the costs

of late problem discovery are hugely expensive. Thisisillustrated by the pyramid in Figure 3.2, “Effort
Involved in the Steps of the Waterfall Process’.

Figure 3.2. Effort Involved in the Steps of the Waterfall Process

Req
/ Analysis

Design

Code

Test

The waterfall processis still probably the dominant design process. However because of its limitations it
isincreasingly replaced by iterative processes, particularly for projects where the requirements are not
well defined.

3.2.1.2. Iterative Development Processes

In recent years a new approach has been used, which aimsto get at least part of the code up and running
as quickly as possible, to bring discovery of problems forward in the development cycle.

These processes use a series of “mini-waterfalls’, defining afew requirements (the most important) first,
taking them through analysis, design and build to get an early version of the product, with limited func-
tionality, related to the most important requirements. Feedback from this can then be used to refine the
requirements, spot problems etc before more work is done.

The process is then repeated for further requirements to construct a product with a step up in functional -
ity. Again further feedback can be applied to the requirements.

The process is repeated, until eventually al requirements have been implemented and the product is
complete. It is this iteration that gives these processes their name. Figure 3.3, “Effort Involved in the
Steps of an Iterative Process’ shows how this process compares to the pyramid structure of the Waterfall
Process.

UML Based OOA&D

Figure 3.3. Effort Involved in the Steps of an Iterative Process

S iCadet % %

A P Y

The growth in popularity of iterative processes is closely tied to the growth of OOA&D. It is the clean
encapsulation of objects that allows a part of a system to be built with stubs for the remaining code
clearly defined.

3.2.1.2.1. The Rational Unified Process

Perhaps the best known Iterative Process is the Rational Unified Process (RUP) from Rationa Software
(www.rational.com [http://www.rational .com]).

This process recognizes that our pyramid view of even dlices of the waterfall is not realistic. In practice
the early iterations tend to be heavy on the requirements end of things (you need to define a reasonable
amount even to get started), while the later iterations have more of their effort in the design and build
aress.

RUP recognizes that iterations can be grouped into a number of phases according to their stage in the
overall project. Each phase may have one or more iterations.
* Inthe inception phase iterations tend to be heavy on the requirements/analysis end, while any build

activity may be limited to emulation of the design within a CASE tool.

* Inthe elaboration phase iterations tend to be completing the specification of the requirements, and
starting to focus on the analysis and design, and possibly the first real built code.

* In the construction phase iterations the requirements and analysis are more or less completed, and
the effort is mostly in design and build.

« Finally, in the deployment phase iterations are largely about build activity, and in particular the test-
ing of the software.

10

http://www.rational.com

UML Based OOA&D

Note

It should be clear that testing is an integral part of al phases. Even in the early phases the
requirements and design should be tested, and thisisfacilitated by a good CASE tool.

We shall use an iterative process in this manual, that is loosely based on the RUP.

3.2.1.2.2. lteration Size

A good rule of thumb is that an iteration should take between six and ten weeks for typical commercial
projects. Any longer and you have probably bitten off too many requirements to do in one go. You also
lose focus on getting the next working iteration completed. Any shorter and you probably haven't got
enough requirements to make a significant advance. In this case the additional overhead associated with
an interation will become a problem.

The total number of iterations depends on the size of project. Take the estimated time (working out/
guessing that is a whole subject on its own), and divide it into 8 week chunks. Experience seems to sug-
gest that the iterations will divide in the ratio of around 1:2:3:3 into RUP style inception, elaboration,
construction and deployment phases. A project that has great vagueness in its specification (some ad-
vanced research projects for example) will tend to be heavier on the early phases.

When building a product to contract for a customer the end point is well defined. However when devel-
oping a new product for the market place, a strategy that can be used is to decide the product launch
date, and hence the end date for completion of engineering (some time before). The time is then divided
into iterations, and as much of the product as can be built in that time developed. The iterative processis
very effective where time to market is more important than the exact functionality.

3.2.1.3. Recursive Development Processes

3.2.2.

Very few software systems are conceived as monolithic artifacts. They are broken down into subsys-
tems, modules etc.

Software processes are the same, with early parts of the process defining a top level structure, and the
process reapplying to parts of the structure in turn to define ever greater details.

For example the initial design of a telephone system might identify objects to i) handle the phone lines,
ii) process the calls, iii) manage the system and iv) bill the customer. The software process can then be
reapplied to each of these four components to identify their design.

OOA&D with its clean boundaries to objects, naturally supports this approach. Such OOA&D with re-
cursive devel opment is sometimes abbreviated as OOA& D/RD.

Recursive development can be applied equally well to waterfall or iterative processes. It is not an altern-
ative to them.

A Development Process for This Manual

For the purpose of this manua we will use a stripped down iterative process with recursive develop-
ment, loosely akin to RUP. The case study will take us through the first iteration, although at the end of
the tutorial section of the manual we will look at how the project will develop to completion.

Within that first iteration, we will tackle each of the requirements capture, analysis, design and build
activitiesin turn. Not all parts of the process are based on UML or ArgoUML. We will look at what oth-
er material is needed outside.

Within this process we will have an opportunity to see the various UML diagramsin use. The full range

11

UML Based OOA&D

of UML diagrams and how they are supported is described in the reference manual (see Section 16.6,
“Diagram”).

3.2.2.1. Requirements Capture
Our requirements capture will use the UML concept of Use Cases. Starting with a Vision Document we

will see how Use Cases can be developed to describe all aspects of the system's behavior in the problem
domain.

3.2.2.2. Analysis

During the analysis stage, we will introduce the UML concept of classesto alow us to build atop level
view of the objects that will make up the solution—sometimes known as a concept diagram.

We will introduce the UML sequence diagram and statechart diagram to capture requirements for the
overall behavior of the system.

Finally we will take the Use Cases from the requirements capture stage, and recast them in the language
of the solution domain. Thiswill illustrate the UML ideas of stereotyping and realization.

3.2.2.3. Design

We use the UML package diagram to organize the components of the project. We then revisit the class
diagram, sequence diagram and statechart diagram, to show how they can be used recursively to design
the complete solution.

During this part of the process, we need to develop our system architecture, to define how al the com-
ponents will fit together and operate.

Although not strictly part of our process, we'll look at how the UML collaboration diagram can be used
as an dternative to, or to complement the sequence diagram. Similarly we will look at the UML activity
diagram as an alternative or complement to the statechart diagram.

Finally we shall use the UML deployment diagram to specify how the system will actualy be realized.
3.2.2.4. Build

UML is not really concerned with code writing. However at this stage we will show how ArgoUML can
be used for code generation.

We will also look at how the UML Use Case Diagram and Use Case Specification are invaluable tools
for atest program.

3.3. Why ArgoUML is Different

In the introduction, we listed the four key things that make ArgoUML different: i) it makes use of ideas
from cognitive psychology, ii) it is based on open standards; iii) it is 100% pure Java; and iv) it is an
open source project.

3.3.1. Cognitive Psychology
3.3.1.1. Theory

ArgoUML is particularly inspired by three theories within cognitive psychology: i) reflection-in-action,
ii) opportunistic design iii) and comprehension and problem solving.

12

UML Based OOA&D

» Reflection-in-Action
This theory observes that designers of complex systems do not conceive a design fully-formed. In-
stead, they must construct a partial design, evaluate, reflect on, and revise it, until they are ready to
extend it further.

As developers work hands-on with the design, their mental model of the problem situation improves,
hence improving their design.

» Opportunistic Design
A theory within cognitive psychology suggesting that although designers plan and describe their
work in an ordered, hierarchical fashion, in reality, they choose successive tasks based on the criteria
of cognitive cost.

Simply stated, designers do not follow even their own plans in order, but choose steps that are men-
tally least expensive among alternatives.

» Comprehension and Problem Solving

A design visualization theory within cognitive psychology. The theory notes that designers must

bridge a gap between their mental model of the problem or situation and the formal model of a solu-

tion or system.

This theory suggests that programmers will benefit from:

1. Multiple representations such as program syntactic decomposition, state transitions, control
flow, and data flow. These allow the programmer to better identify elements and relationships
in the problem and solution and thus more readily create a mapping between their situation
models and working system models.

2. Familiar aspects of a situation model, which improve designers' abilities to formulate solutions.

3.3.1.2. Practical Application in ArgoUML

ArgoUML implements these theories using a number of techniques.

1. Thedesign of auser interface which allows the user to view the design from a number of different
perspectives, and allows the user to achieve goals through a number of alternative routes.

2. The the use of processes running in parallel with the design tool, evaluating the current design
against models of how “best practice” design might work. These processes are known as design

critics.

3. Theuse of to-do lists to convey suggestions from the design critics to the user, as well as alowing
the user to record areas for future action.

4. Theuse of checklists, to guide the user through a complex process.

3.3.2. Open Standards

UML is itself an open standard. ArgoUML throughout has tried to use open standards for all its inter-
faces.

The key advantage of adherence to open standards is that it permits easy inter-working between applica

13

UML Based OOA&D

tions, and the ability to move from one application to another as necessary.

3.3.2.1. XML Metadata Interchange (XMI)

XML Metadata Interchange (XMI) is the standard for saving the meta-data that make up a particular
UML model. In principle this will allow you to take the model you have created in ArgpUML and im-
port it into another tool.

This clearly has advantages in allowing UML to meet its goal of being a standard for communication
between designers.

The redlity is not quite this good. Prior to UML 2.0 the XMI file includes no information about the
graphical representation of the models, so diagram layout is lost. ArgoUML gets round this by saving
graphical information separate from the model (see Section 3.4.3.1, “Loading and Saving”).

3.3.2.2. Graphics Formats - EPS, GIF, PGML, PNG, PS, SVG

» Encapsulated PostScript (EPS) [http://en.wikipedia.org/wiki/Encapsulated_PostScript] file is a Post-
Script file which satisfies additional restrictions. These restrictions are intended to make it easier for
software to embed an EPS file within another PostScript document.

e Graphics Interchange Format (GIF) [http://en.wikipedia.org/wiki/GIF] is a patent encumbered
format, athough the patents will run out in August of 2006.

* Precision Graphics Markup Language (PGML) [http://en.wikipedia.org/wiki/PGML] is an XML-
based language for representing vector graphics. It was a W3C draft, but was not adopted as a re-
commendation. PGML and VML, another XML -based vector graphics language, were later joined
and improved upon to create SVG.

» Portable Network Graphics (PNG) [http://en.wikipedia.org/wiki/PNG] is an ISO/IEC standard
(15948:2004) and is also a W3C recommendation. PNG is a bitmap image format that employs
lossless data compression. PNG was created to both improve upon and replace the GIF format with
an image file format that does not require a patent license to use. PNG is officialy pronounced
"ping" but it is often just spelled out — probably to avoid confusion with the network tool ping.
PNG is supported by the libpng reference library, a platform-independent library that contains C
functions for handling PNG images.

» PostScript (PS) [http://en.wikipedia.org/wiki/PostScript/] is a page description language and pro-
gramming language used primarily in the electronic and desktop publishing aress.

e Scalable Vector Graphics (SVG) [http://en.wikipedia.org/wiki/Scalable Vector _Graphics] is an
XML markup language for describing two-dimensional vector graphics, both static and animated,
and either declarative or scripted. It is an open standard created by the World Wide Web Consorti-
um. The use of SVG ontheweb isinitsinfancy. Thereis agreat deal of inertia due to the long-time
use of pure raster formats and other formats like Macromedia Flash or Java applets, but also browser
support is still uneven, with native support in Opera and Firefox, but Safari and Internet Explorer re-
quire aplugin. See PGML above.

3.3.2.3. Object Constraint Language (OCL)

Object Constraint Language (OCL) [[http://en.wikipedia.org/wiki/Object_Constraint_L anguage] is a de-
clarative language for describing rules that apply to UML models. It was developed at IBM and is now
part of the UML standard. Initially OCL was only a formal specification language extension to UML.
OCL may now be used with any Meta-Object Facility (MOF) compliant metamodel, including UML.
The Object Constraint Language is a precise text language that provides constraint and object query ex-

14

http://en.wikipedia.org/wiki/Encapsulated_PostScript
http://en.wikipedia.org/wiki/GIF
http://en.wikipedia.org/wiki/PGML
http://en.wikipedia.org/wiki/PNG
http://en.wikipedia.org/wiki/PostScript/
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
[http://en.wikipedia.org/wiki/Object_Constraint_Language

UML Based OOA&D

pressions on any MOF model or metamodel that cannot otherwise be expressed by diagrammatic nota-
tion.

3.3.3. 100% Pure Java

Java was conceived as an interpreted language. It doesn't have a compiler to produce code for any par-
ticular target machine. It compiles code for its own target, the Java Virtual Machine (JVM).

Writing an interpreter for aJJVM is much easier than writing a compiler, and such machines are now in-
corporated into amost every Web Browser. As a result most machines can run Java, with no further
work.

(In case you wonder why all languages aren't like this, it is because interpreted languages tend to be
slower than compiled languages. However with the high performance of modern PCs, the trade-off for
portability is worthwhile for many applications. Furthermore modern multi-level caches can mean that
interpreted languages, which produce denser code, may actually not be that much slower anyway.)

By choosing to write ArgoUML in pure Java, it isimmediately made available to the maximum number
of users with the minimum amount of effort.

3.3.4. Open Source

ArgoUML is an open source project. That means anyone can have a free copy of the source code,
change it, use it for new purposes and so on. The only (major) obligation is that you pass your code on
in the same way to others. The precise nature of what you can and can't do varies from project to project,
but the principle is the same.

The advantage is that a small project like ArgoUML suddenly is open to a lot of additional help from
those who can chip in their ideas for how the program might be improved. At any one time their may be
10, 15, 20 or more people making significant contributions to ArgoUML. To do that commercially
would cost $1m+ per year.

Its not just a spirit of pure atruism. Contributing is a way of learning “hands-on” about leading edge
software. Its a way of getting alot of visibility (over 100,000 people had downloaded ArgoUML by the
spring of 2001). That's alot of good experience on aresumé and alot of potential employers seeing you!

And its great for the ego!

Open Source doesnt preclude making money. Gentleware www.gentleware.com
[http://Iwww.gentleware.com] sell acommercia version of ArgoUML, Poseidon. Their value proposition
is not a piece of private code. Its the commercial polish and support that take risk out of using

ArgoUML in acommercial development, allowing customers to take advantage of ArgoUML's leading
edge technology.

3.4. ArgoUML Basics

The aim of this section is to get you started with ArgoUML.. It takes you through obtaining the code and
getting it running.

3.4.1. Getting Started
3.4.1.1. System Requirements

Since ArgoUML is written in 100% pure Java, it should run on any machine with Java installed. Java,
version 1.4 or later is needed. You may have this in place, but if not it can be downloaded free from
www.java.com [http://www.java.com]. Note that you only need the Java Runtime Environment (JRE),

15

http://www.gentleware.com
http://www.java.com

UML Based OOA&D

there is no need to download the whole Java Development Kit (JDK).

ArgoUML needs a reasonable amount of computing resource. A PC with 200MHz processor, 64Mb
RAM and 10Mb of space available on a harddisk should be adequate. Download the code from Down-
load section of the project website argouml .tigris.org [http://argouml.tigris.org]. Choose the version that
suits your needs as described in the section below.

3.4.1.2. Downloading Options

Y ou have three options for obtaining ArgoUML.

1. RunArgoUML directly from the Web Site using Java Web Start. Thisisthe easiest option.

2. Download the binary executable code. Thisis the right option if you intend using ArgoUML regu-
larly and is not that difficult.

3. Download the source code using CV'S and build your own version. Choose this option if you want
to look at the internal workings of ArgoUML, or want to join in as a developer. This option does
require the whole JDK (see Section 3.4.1.1, “ System Requirements”).

All three options are freely avalable through the project web site, argouml.tigris.org
[http://argouml.tigris.org].

3.4.1.3. ArgoUML Using Java Web Start

There are two stepsto this.

1. Install Java Web Start on your machine. This is available from java.sun.com/products/javawebstart
[http://java.sun.com/products/javawebstart], or viathe Java Web St art link on the ArgopUML
home page [http://argouml.tigris.org].

2. Click on the Launch |atest stable release link on the ArgpML home page
[http://argouml tigris.org].

Java Web Start will download ArgoUML, cache it and start it the first time, then on subsequent starts,
check if ArgoUML is updated and only download any updated parts and then start it. The ArgoUML
home page [http://argouml.tigris.org] also provides details on starting ArgoUML from the Java Web
Start console.

3.4.1.4. Downloading the Binary Executable

If you choose to download the binary executable, you will have a choice of downloading the latest stable
version of the code (which will be more reliable, but not have al the latest features), or the current ver-
sion (which will be less reliable, but have more features). Choose according to your own situation.

ArgoUML comesin . zi p ort ar. gz flavors. Choose the former if you are a Microsoft Windows user,
and the latter if you are running some flavor of Unix. Unpacking is as follows.

* On Windows. Unzip the . zi p file with WinZip, or on later versions of Windows (ME, XP) copy
the files out of the compressed folder and put them into a directory of your choosing.

e On Unix. Use GNU tar to unzip and break out the files to a directory of your choice
tar zxvf <file>. tar.gz.If youhave an older version of tar, the z option may not be avail-
able, sousegunzip < file.tar.gz | tar xvf -.

16

http://argouml.tigris.org
http://argouml.tigris.org
http://java.sun.com/products/javawebstart
http://argouml.tigris.org
http://argouml.tigris.org
http://argouml.tigris.org

UML Based OOA&D

Y ou should have a directory containing a number of . j ar filesand a README. t xt .

3.4.1.5. Problems Downloading

If you get completely stuck and you have no local assistance, try the web site, particularly the FAQ
[http://argouml tigris.org/fags/users.html]. If this still doesn't solve the problem, try the ArgoUML users
mailing list.

You can subscribe through the mailing lists section of the project web site argouml.tigris.org
[http://argouml.tigris.org], or send an empty message to users@argouml.org
[mailto:users@argouml.org] with the subject linesubscri be.

Y ou can then send your problem to users@argouml.org [mailto:users@argouml.org] and see how other
users are able to help.

The users mailing list is an excellent introduction to the live activity of the project. If you want to get
further involved there are additional mailing lists that cover the development of the product and issuesin
the current and future releases.

3.4.1.6. Running ArgoUML

To run ArgoUML depends on whether you use Microsoft Windows or some flavor of Unix.

* On Windows. Start an MSDOS shell window by e.g. using Start/Run with “command” in the text
window. In the window change to the directory holding your ArgoUML files and type
java -jar argouml . jar. Thismethod has the advantage that progress and debugging inform-
ation isvisible in the DOS window. Alternatively create a batch file (.bat) containing the above com-
mand, with a shortcut to it on the desktop. The batch file should end with a "pause" statement in case
any debugging information is created during a run. On some systems, simply (double) clicking on
thear goum . j ar file works. On others doing so initiates a zip utility. Refer to you operating sys-
tem instructions or help facility to determine how to configure this.

e OnUnix. Start ashell window andtypej ava -j ar argoun .j ar

3.4.1.7. Problems Running ArgoUML

It's unusual to encounter problems if you have made a successful download. If you can't solve the prob-
lem. Try the users mailing list (see Section 3.4.1.5, “Problems Downloading”).

e Wrong JRE. The most common issue is not having a new enough Java Runtime Environment (it
must be 1.4 or later).

» Wrong language. If the product came up in a language you can't read or just don't want, go to the
second leftmost menu item in the menu bar at the top of the screen. Select the bottom most menu
entry in the drop down. Figure 3.5, “ Setting Language in the Appearance Pane”’ show thisin Russi-
an. Then click on the second tab from the bottom in the column of tabs on the left. Drop down the
list as shown in Figure 3.5, “ Setting Language in the Appearance Pane”. and select alanguage. Note
that the languages are listed in themselves. The language shown as being selected is German in
which the word for “German” is “Deutsch”. You will have to exit ArgoUML and restart it for the
change to take effect. Use the X button at the upper right.

Figure 3.4. Finding the Settings Wizard

17

http://argouml.tigris.org/faqs/users.html
http://argouml.tigris.org
mailto:users@argouml.org
mailto:users@argouml.org

UML Based OOA&D

i

Dakn | PeAakTHpoEaTE [MpocMoTp Co3AaTe AMarpamidy PAccTaEMTe [EHEpauMA KoAa HKpWTHKE WHCTPYMeHTEl Mool
[y Bofare - DB EEBREBERD

= ﬁ Hl} YaanHTE He AHanpaniel| Delete S
= ﬁl’ W AANHTE HE MO4E0H Chrl+Deleke j g =Y S (B9 = ? E i P g g = D O -

-

-

Order E

Tarpan ¥CTAHOBKH. ..

ﬂwarpama E3PHAHTOE WCMoeE 310

4 |

_1| | j Lz Diagran |
Mo nprHopHTeTy VI 2 NYHKTEI 1 Moo | [FRraHHYErHHA | 4 Stereotvoe & WMEHOBaHHEIE SHAYEHKHA |7 ikeespme
4 Caenats & CeoiicTea 4 JorymeHTalHA | Criie
9 Model A D o EDISDISLL[EHHF!Z T PMHE NS ALLIAE 3 AEMEHT L
st urtitedh odel

MNpocTpaHeTES HMEHZI - I

|' BugumocTe: | Cneuranmsaum

* my. omp. pa. =a.

MoagrerkaTope:

— — n.__ ..

Figure 3.5. Setting Language in the Appear ance Pane

x

Tpeanoureniin Brevarnerre W o ywyeHHe:; i
Eop— : |W|ndnws ll
_MNonesosarens [WwyeHMe MeTana; Istee| ;I
Horawe
EHewHocTE [T CraasWeaTs EpoMEH AHHHA QHarpa...
Modules
Asbik: es [espafiol) ll
en [Enalish)

fr [francaiz)
ez [ezpafiol)

de [Deutsch)
MNepesanycTHTe NpHAo#eH] nb [Monwegian Bakmal |
i [pyccini) =
zh D)
—|en_GE [Englizh United Kingdom) -

3.4.2. The ArgoUML User Interface

Before beginning the Case Study, you need to become familiar with the user interface. Start by reading
theintroduction to the User Interface Reference. See Chapter 8, Introduction.

18

UML Based OOA&D

As you go through this tutorial you will be told what to do, and when to do it but how to do it will often
be left to the User Interface Reference. It is not necessary at this point to read all of the Reference, but
you should leaf through enough of it to become familiar with how to find thingsin it. Every attempt will
be made to direct you to the appropriate part of the Reference at those points in the tutorial where they
apply.

Figure 3.6, “Initial ArgoUML window”, shows the main ArgoUML window as it appears when
ArgoUML isfirst entered.

Figure 3.6. Initial ArgoUML window
& ArgoUML M= B3

File Edit Yiew Create Diagram Arrange Generation Critigue Tools Help

aEs XBAaE<Y A BERNEEEBERE
| Package-certric v|E "t 1 B-EH—-73% %% H® BHE O

@ [untitlediadel
I_Ej Class Diagram 1
Uszecase Diagram 1
AKIEE
A= Diagram
X X B SRR AN AR NS N R RN NSNS SRS NS SENS SN AEN AR SRS S HN SRR N AR AN NS SN R NS AN SRR
| Ey Friority - |E Z tems ‘ & Style rj. SEnEE |/j Eanstraints: |/‘ Tagged Yaluss |
=3 High ‘ A ToDo tern |/ A Froperties |/ A& Doeimrentatien |
@ [Medium B t1a=s Diagram
3 Low W= |I:Iass Diagram 1 |
| |

Grab the vertica divider bars and move them back and forth. Grab the horizontal divider bar and move
it up and down. Play around a little with the little arrows at the left or top of the divider bars. See Sec-
tion 8.3, “General Information About Panes’;.

3.4.2.1. The Explorer Pane

At this time you should take the time to read Chapter 11, The Explorer. Thereis not alot that you can do
at this point with the Explorer Pane as there is nothing in it but the root of the tree (currently "untitled-
Model") and two empty diagrams. However, the Explorer Pane is fundamental to almost everything that
you do and we will be coming back to it again and again in what follows.

There is an expand or contract control in front of the package symbol for “untittedModel” in the Ex-
plorer Pand and the package symbol for “Medium” in the To-Do Pane. Click on these controls and ob-
serve that these panes are tree widgets that behave pretty much as you would expect them to. The ex-
pand or contract control is either plus (+)/minus (-) sign or knob with aright or bottom pointer depend-
ing upon the look and feel that you have chosen for an appearance.

At this point you should try the various choices available for alook and feel. Y ou used the editor that es-
tablishes the look and feel when you were selecting a language, however, you only saw it in Russian. It
you look at an English rendition Section 10.4.5.4, “Appearance Tab” you will see that the topmost com-
bobox is for selecting the look and feel. When the panel is first opened the box contains the current
value. Select another one, exit from ArgoUML and restart it.

19

UML Based OOA&D

Select aternately Class Diagram 1 and Use Case Diagram 1 observing that the detail pane changes to
track to the selected item in the Explorer. The detail pane is described in Chapter 12. It is not necessary
to read Chapter 12 at this point, but it couldn't hurt.

3.4.2.2. The Editing Pane

- Note

* Reading assignment.

» Walk through a couple of changes.
* Add some stuff.

» Delete some stuff.

* Resizethings.

e Select stuff with click and drag.

» Select stuff with click and ctrl click.
+ Edit namesinline.

* Remove "images/tutorial/editoverview.gif" from file system.

3.4.2.3. The Details Pane

- Note

* Reading assignment.

* To-Do Item. Discuss differences with other tabs about |ocations of items selected. Hold
particulars for discussion of To-Do Pane.

» Properties,

» Documentation,
* Presentation,

* Source,

» Constraints,

o Stereotype,

» Tagged Values,
¢ Checklist.

* Remove "images/tutorial/detail soverview.gif" from file system.

20

UML Based OOA&D

3.4.2.4. The To-Do Pane

- Note

* Reading assignment.

* Describe priorities.

* Resolving items.

» Relationto ToDo Item tab in details pane.

* Remove "images/tutorial/todooverview.gif" from file system.

3.4.2.5. The Menu Bar and Toolbars

The menu bar and toolbars gives access to all the main features of ArgoUML. Asis conventional, menu
options and toolbar options that are not available are grayed out and menu items that invoke a dialog box
are followed by an dlipsis (...).

File menu. This allows you to create a new project, save and open projects, import sources from
elsewhere, load and save the model to and from a database, print the model, save the graphics of the
model, save the configuration of the model and exit ArgopUML

Edit menu. This allows you to select one or more UML items on a diagram, undo and redo edits, re-
move items from diagrams or the whole model, empty the trash and change settings.

View menu. This allows you to switch between diagrams, find artifacts in the model, zoom in a dia-
gram, select a particular diagram representation (although at present there is only one), select a par-
ticular tab in the details menu, adjust the grid, view buttons on a selection, and switch between UML
and Java notation.

Create Diagram menu. This allows you to create any one of the seven UML diagram types (class,
use case, state, activity, collaboration, deployment and sequence) supported by ArgoUML.
State and activity diagrams can only be created when aclass or actor is selected, even though the rel-

evant menu entries are not grayed out if this has not been done (hothing will happen under this cir-
cumstance).

Arrange menu. This allows you to align, distribute, reorder and nudge artifacts on a diagram and set
the layout strategy for the diagram.

Generation menu. This alows you to generate Java code for selected classes or all classes.

Critigue menu. This alows you to toggle the auto-critique on and off, set the level of importance of
design issues and design goals and browse the critics available.

21

UML Based OOA&D

Tools menu. This menu is permanently grayed out unless there is some tool available in your version
of ArgoUML.

Help menu. This menu gives access to details of those who authored the system, and where addition-
a help may be found.

File Toolbar. Thistoolbar contains some of the tools from the File menu.
Edit Toolbar. Thistoolbar contains some of the tools from the Edit menu.
View Toolbar. This toolbar contains some of the tools from the View menu.

Create Diagram Toolbar. Thistoolbar contains some of the tools from the Create Diagram menu.

3.4.2.6. The Mouse

The mouse and mouse buttons (or their equivalent with alternative tracking devices) are used in awide
variety of ways. In this section we look at the common modes of use.

ArgoUML assumes a two button mouse. We will refer to the buttons as “button 1” and “button 2”. But-
ton 1 is the leftmost button on a right-handed mouse, and sometimes referred to as the “select” button.
Button 2 is sometimes referred to as the “adjust” button.

1. Button 1 click. This action is generally used to select an item for subsequent operations. If the item
isan artifact in the explorer or the editing pane it will be highlighted.

In the case of the Edit Pane Toolbar, that artifact is selected as the next to be added to the diagram
(but only once—see double clicking for adding multiple artifacts). The adding to the diagram is
achieved by moving the mouse to the editing area and clicking again.

2. Button 1 double click. This action isidentical to asingle click except, when it is used with the edit
pane toolbar. Under these circumstances the selected artifact will be added multiple times to the
drawing area, once for each further button click, until the tool is again selected or another tool
chosen.

3. Button 2 click. When used over text items in the the explorer or details panes, or graphical artifacts
in the editing pane, this will display a context dependent drop-down menu.

If the item has not yet been selected it will also be selected.

4. Button 1 motion. Where button 1 click has been used to pull down a menu from the menu bar, but-
ton 1 motion is used to select items on that menu.

Button 1 motion also has an effect in the editing pane. Over graphical artifacts it will move the arti-
fact to a new position. Graphical artifacts that are selected show handles, and these can be used for
re-sizing.

Where the artifact is some form of connector between other items, button 1 motion other than at a
handle will cause a new handle to be created, allowing the connector to be articulated at that point.
Such new handles can be removed by moving them to the end of the connector.

22

UML Based OOA&D

5. Button 2 motion. Thisis used to select items in a context sensitive menu popped up by use of but-
ton 2 click.

There are other more specific behaviors that will be encountered under the specific cases where they are
used.

3.4.2.7. Drawing Diagrams
In general diagrams are drawn by using the edit pane toolbar to select the artifact desired and clicking in
the diagram at the position required as described in Section 3.4.2.6, “The Mouse’. That section also ex-
plains the use of the mouse for re-sizing artifacts.
Artifacts that are already in the model, but not on a diagram, may be added to a diagram by selecting the
artifact in the explorer, using Add t o Di agr amfrom the drop down menu (button 2) over that arti-
fact, and then clicking button 1 at the desired location on the diagram.

As well as UML artifacts, the Edit pane toolbar provides for general drawing artifacts (rectangles,
circles, lines, polygons, curves, text) to provide supplementary information on diagrams.

3.4.2.7.1. Moving Diagram Elements
There are several ways to move diagram elements.
3.4.2.7.1.1. Using the Mouse Keys

Select the elements you want to move. By holding down the Ctrl key while selecting you can select sev-
eral elementsto move at the sametime.

Now hit your arrow keys. Y our elements move alittle with every key stroke.
If you also hold down the Shift key, they move a bit faster.
3.4.2.7.1.2. Using the Edit Pane Toolbar

Click on the broom button on the toolbar. Move your mouse to the diagram pane, right click and hold.
Now moving your mouse will align elements.

3.4.2.7.2. Arranging Elements

The menu item Ar r ange alows you to align, group, or nudge elements.

3.4.2.8. Working with Projects
3.4.2.8.1. The Start-Up Window

Figure 3.6, “Initial ArgoUML window” shows the ArgoUML main window as it appears as right after
start-up

The main window's client area, below the menu and toolbar, is subdivided into four panes. Starting at
the leftmost top pane, and working around the clock, you can see the Explorer, showing a tree view of
your UML model, the Editing Pane with its toolbar, two scroll bars and gray drawing area, the Details
Pane with the ToDoltem tab selected, and the To-Do Pane with atree view of the to do items, ranked in
various ways selected viathe drop down list at the top of the pane.

Each time ArgoUML is started up without a project file as an argument, a new blank project is created.
This project contains a model called unti t | edMbdel . This model contains a blank Class Diagram,
caledcl ass di agram 1, and ablank Use Case Diagram called use case di agram 1.

23

UML Based OOA&D

The model and both empty diagrams can be seen in the explorer, which is the main tool for you to nav-
igate through your model.

Let's assume for amoment that thisis the point where you want to start modeling a new purchasing sys-
tem. You want to give the name “purchasingmodel” to your model, and you want to store it in a file
caledFi r st Proj ect .

3.4.2.8.2. Saving a Project - The File Menu

For now ArgoUML; saves diagrams using an earlier proposed standard, Precision Graphics Markup
Language (PGML). However it has the option to export graphical data as SVG for those who can make
use of it. When ArgoUML; supports UML 2.0, it will store diagrams using the UML 2.0 Diagram Inter-
change format.

First, let's save the model in it's current (empty and unnamed) state. On the menu bar, click on Fi | e,
thenon Save Project As... asshowninFigure3.7,“Invoking Save Project As...".

Figure3.7. Invoking Save Project As...

w2 ArgoUML M=] E3

EilelEdit “iew Creste Dizgram Arrange Senerstion Critigue Tools Help

& ERERDBEB
BE-—-4 444 8% 5B DO

[3 New Ctrl-H

= Open Project... Cil-0

Sawve Project Cir-S
Save Project As...

Irnpart sources. ..

L Frirt... Ctr-P

Fage Setup...

Sawve Sraphics..

Bave Configuration [
- ToDo tem r & Froperties r [Ecurmentaticn rStyie r SO EE rCDnslraints rTagged Walues. |

Ewxit Ht-Fa
|| High = Class Disgram
& [Medium Hame: |I3Iass Diagram 1 |
|j Loy :

Please notice that the File menu contains the usual options for creating a new project, for opening an ex-
isting project, for saving a project under a new name, for printing the currently displayed diagram, for
saving the currently displayed diagram as afile, and for program Exit.

Some of these menu commands can be invoked by pressing key combinations, as indicated on the drop-
down menu. For instance, holding down the “Ctrl” key, and pressing “N”, will create a new project.

In the current version, ArgoUML can only contain one active project at atime. In addition, a project can
only contain one UML model. Since an UML model can contain an unlimited number of elements and
diagrams, this should not present any serious limitations, even for modeling quite large and complex
systems.

3.4.2.8.3. The File Chooser Dialog

24

UML Based OOA&D

But let's go back to saving our project. After clicking on the Save Proj ect As... menucommand,
we get the file chooser dialog to enter the file name we wish to use as shown in Figure 3.8, “File
Chooser Dialog”.

Figure 3.8. File Chooser Dialog

ﬂ Save ProjectOldProjectd.zargo E3
. P 00| o—
Save In: |j inepxw e |:+j ‘ﬁ[— oo O—

|j Docurnentation
|j Manufacturing
|j Mar keting

|j Ficture=s

|j Flan=

|j Precurerernt

Ij Salas

Fila Narme: FirstF'r-:-je-:ﬂrzargcl

Files of Type: | Argo compressed project file [*.zarga] -

Sawe Cancel

Thisisastandard Java FileChooser. Let's go over it in some detail.

The main, outstanding feature, is the scrollable folderslist in the center of the dialog. By using the scroll
bar on the right, you can move up and down in the list of folders contained inside the currently selected
folder. If it is scrollable or not depends on the amount of files and folders shown and also how they are
shown. If everything fits the window is not scrollable as seen in the picture.

Double-clicking on one of the displayed folders navigates you into that folder, allowing you to quickly
navigate down into the folders hierarchy on your hard disk.

Notice that only folder names, and no file names are displayed in the scrollable area. Indeed, the dialog
iscurrently set up in order to show only ArgoUML project files with an extension of . zar go, as can be
seen on the lower drop-down control labeled Fi | es of Type: .

Also notice that the currently selected folder's name is displayed in the upper drop-down control labeled
Look in:. A single click on afolder inside the scrollable area does select that folder on screen but
does not select the folder for saving.

At the top of the dialog, above the scrollable folder chooser area, there are a few more folder navigation
tools.

25

UML Based OOA&D

The Folder drop-down control.

|j imEpxw -

Clicking on the down-arrow displays a tree view of the folder hierarchy, alowing you to navigate
quickly up the hierarchy, and at the same time to quickly determine where in the hierarchy we are
currently positioned.

. G.j The Folder-Up icon. Clicking on this icon will bring us to the parent folder of the current
folder.

. E The Home Folder icon. Clicking on thisicon will bring us to our home directory.

. - The New Folder icon. Clicking on thisicon will create a new folder called "New Folder" un-

der the current folder. After the folder is created selecting it an clicking in the name allows us to se-
lect the name of our choice.

. 5 The Folders Presentation Icon.

o-o-
o0 O—
OK, now we navigate to the directory where we want to save our ArgoUML project, fill in the

Fi | e nane: with an appropriate name, such as “FirstProject” and click on the Save button.

You have now an active project called FirstProject, connected to the file FirstPro-
j ect. zargo.

3.4.3. Output

3.4.3.1. Loading and Saving
3.4.3.1.1. Saving XMl files in ArgoUML

ArgoUML saves the diagram information in a PGML file (with extension . pgm , the model informa-
tion in an XMI file (with extension . xni and information about the project in a file with extension
. ar go. See Section 3.4.3.2.2, “Precision Graphics Markup Language (PGML)” and Section 3.4.3.3,
“XMI” for more about PGML and XMI respectively.

All of these are then zipped to a file with extension . zar go. You can easily extract the. xmi file from
the . zar go fileusing any old generic ZIP application. Give it atry and look into the magic of Argo.

. Warning

Be aware that double clicking will launcha zZl P utility, if oneisinstaled, and NOT
Argo.

3.4.3.2. Graphics and Printing
3.4.3.2.1. The Graph Editing Framework (GEF)

26

UML Based OOA&D

GEF is the software package that is the foundation of the diagrams that appear in the Editing Pane. GEF
was an integral part of ArgoUML but has been separated. Like ArgoUML it is an open source project
available via Tigris [http://www. tigris.org].

3.4.3.2.2. Precision Graphics Markup Language (PGML)

PGML is the current storage format for diagram information used in ArgoUML. In the future, PGML
will be replaced by the UML 2.0 Diagram Interchange format.

3.4.3.2.3. Applications Which Open PGML

PGML is a predecessor of SVG (see Section 3.4.3.2.5, “Scalable Vector Graphics (SVG)”. It was
dropped by the W3C Consortium.

Currently there are no other tools that we know of working on PGML.
3.4.3.2.4. Printing Diagrams

Select adiagram, then go to Fi | e#Export Di agr ans. You can generate GIF, PostScript, Encapsu-
lated PostScript or SVG format.

3.4.3.2.5. Scalable Vector Graphics (SVG)

A World Wide Web Consortium (W3C) standard vector graphics format (http://www.w3.org/TR/SVG/
[http:/Iwww.w3.0rg/ TR/ISV G]).

Support is built in to modern browsers, but you can also get a plugin for older browsers from adobe.com
[http://www.adobe.com].

3.4.3.2.6. Saving Diagrams as SVG

1. Select. svg asthefiletype.

2. Type the name of the file as you like with the . svg tag at the end. Example myum di a-
gram svg

Et violal SVG! Give it atry and zoom around alittle... They are not pretty though, so if you know any-

thing about rendering beautiful SV G let us know.

Most modern browsers support SVG. If yours doesn't try Firefox [http://www.mozilla.com/firefox/] or
get aplugin for your current browser from adobe.com [http://www.adobe.com]

Note
¥
You will not have scroll bars for your SVG unless it is embedded in HTML. Good luck
and let us know what you find!
3.4.3.3. XMI

ArgoUML supports XMI 1.0, 1.1, and 1.2 files which contain UML 1.3 and UML 1.4 models. For best
compatibility with ArgoUML, export your models using UML 1.4 and XMI 1.1 or 1.2. Be sure to turn
off any proprietary extensions (such as Poseidon's diagram data).

With UML versions earlier than UML 2.0, it isn't possible to save diagram information, so no diagrams
will be transferred.

27

http://www.tigris.org
http://www.w3.org/TR/SVG/
http://www.adobe.com
http://www.mozilla.com/firefox/
http://www.adobe.com

UML Based OOA&D

There is aso a tool that converts XMl to HTML. For more information, see ht-
tp://www.objectsbydesign.com/projects/xmi_to_html_2.html
[http://www.objectsbydesign.com/projects/’xmi_to_html_2.html].

3.4.3.3.1. Using XMI from Rational Rose

3.4.3.3.2. Using Models Created by Poseidon

Inthe Export project to XM dialog, but sureto clear the selection of Save wi t h di agram
dat aliteral>.

3.4.3.3.3. Using Models Created by MagicDraw

3.4.3.3.4. XMI Compatibility with other versions of ArgoUML

Versions of ArgoUML prior to 0.19.7 supported UML 1.3/XMI 1.0. After this time, the save format is
UML 1.4/XMI 1.2 which is not backward compatible. Newer versions of ArgoUML will read projects
written by older versions, but not vice versa. If you might need to return to an older version of
ArgoUML you should be careful to save a backup of your old projects.

Additionally, if you write XMI files which need to be read by other tools, you should take into account

the different versions. Most modern UML modelling tools should read UML 1.4, but you may have in-
house code generators or other tools which aretied to UML 1.3.

3.4.3.3.5. Importing Other XMI Formats into ArgoUML

XMI compatibility between UML modeling tools has improved over the years, but you may still occa
sionally runinto problems.

ArgoUML will not read XMI files which contain UML 1.5 or UML 2.0 models, but it should be able to

open most UML 1.4 and UML 1.3 files. If you find one that it can't open, please file a bug report so that
adeveloper can investigate.

3.4.3.3.6. Generating XMI Format

Select thecommand Fi | e# Export as XM and choose afilename.

3.4.3.4. Code Generation
3.4.3.4.1. Code Generated by ArgoUML

It is possible to compile your generated code with ArgoUML, you still need to implement method bod-
ies, though, to get usable results.

3.4.3.4.2. Generating Code for Methods
At the moment you cannot write code for methods (operations) within ArgoUML. The source pane is
editable, but the changes are ignored. ArgoUML is a pure design tool for now, no IDE functionality but
the desire isthere. Y ou might consider using Forte and ArgoUML together—it's a good work around!

You can help us out there if you'd like!

28

http://www.objectsbydesign.com/projects/xmi_to_html_2.html
http://www.objectsbydesign.com/projects/xmi_to_html_2.html

UML Based OOA&D

3.4.4. Working With Design Critics
3.4.4.1. The To-Do Pane—Messages From the Design Critics

Where do we stand now? A new project has been created, and is connected to the file Fi r st Pr o-

j ect . argo. Figure 3.9, “ ArgoUML Window Having Saved Fi r st Pr oj ect . zar go ” shows how
your ArgoUML window should look at this stage.

Figure 3.9. ArgoUML Window Having Saved Fi r st Proj ect . zar go
wif ArgoUML M=l E3

File Edit “iew Creste Diagram Arrange Senerstion Critiqgue Tools Help
Fackage-certric i E k 4 E| st E — - A AP AT.I Z|) E ¢ g

@ [untitiedmodal -
Class Diagram 1 =
Uzecaze Diagram 1 | P |;;;;;;;| | ..|_

A= Dimgram
T T L T L L
| By Pricrity - E 2 kems Shie |/ SEnEE rtnnstrairds rTagged Salles |
|j High ‘ -4 ToDo kem |/ Braperties |/ [eeurmertaticn
o= |j M dium o Mo ToDoltemn selected
|j Ly :

The project contains a top-level package, called unt i t | edMbdel , which contains a class diagram and
ause case diagram.

If we look carefully at the screen, we can see that the "Medium" folder in the To Do pane (the lower |eft
pane) must contain some items, since its activation icon o= is displayed.

Clicking on thisicon will open the "Medium” folder. An open folder isindicated by the .? icon.

But what isthis“To-Do” Pane anyway. Y ou haven't recorded anything yet that has to be done, so where
do these to do items originate.

The answer is simple, and is at the same time one of the strong points of ArgoUML. While you are
working on your UML model, your work is monitored continuously and invisibly by a piece of code
called a design critic. Thisis like a personal mentor that watches over your shoulder and notifies you
each time he sees something questionable in your design.

29

UML Based OOA&D

Critics are quite unobtrusive. They give you a friendly warning, but they do not force you into design
principles that you don't want or like to follow. Let us take alook at what the critics are telling us. Click
on the - icon next to the Medium folder, and click on the Re-

vi se Package Nane Untitl| edMbdel item.

Figure 3.10, “ArgoUML Window Showing the Critic Item Re-
vi se Package Name Untitl edMbdel " showshow your screen should now look.

Figure 3.10. ArgoUML Window Showing the Critic [tem
Revi se Package Nane Untitl edMbdel

» ArgoumL =] E3
File Edit “iew Creste Diagram Arrange Senerstion Critiqgue Tools Help
e EsS . X688 &< > 4 BHEBEEEBERE
5 i / i
Package-centric | = k 4 B B —- A AP AL zls = 4‘:. =
@ R untitiedmadel : -
Clazs Diagram 1 =
Uszecase Diagram 4 | P |5;5;5;5| ['¥]
A= Diagram
T e T P AR P AR AR R R AR A AR R AR AR AR R A A A AR R AR AR R AR A AR SRR AR R AR AR AR R AR AR ARAAR:
o = 1 :
| By Pricrity | = 2Hems ‘ Shie |/ SEnEE rtnnstramis rTagged Salles |
3 ToDo kem Frepentes [EEurertaticn
[Hign : [2 [
'? |j Medinm : .Nnr.rnally,r package names are written in all In:.-wer case wi.th periods us.ed to
3 indicate "nested" packages. The name 'untitleddodel’ iz unconventional
D Revize Package Name unti because itiz not all loweer case with periods.
[Add Elements to Fackage { P
Ij Loy . Following good naming conventions help to improve the understandability
3 = and maintainability of the design.
@ To fix this, use the "Mext=" button, or manually select untitledbodel and use
the Froperies tab to give it a different name.
: Mt Finish Hel
- o =

Notice that your selection is highlighted in red in the To-Do Pane, and that a full explanation appears
now in the Details Pane (the lower right pane). You may have to re-size your Details Pane or to scroll
down in order to see the full message as displayed in our example.

What ArgoUML is trying to tell you is that usually, package names are written in lower cases. The de-
fault top level package created by ArgoUML iscaled unti t | edMbdel and therefore violates a sound
design principle. (Actually, this could be considered as a bug within ArgoUML, but it comes in handy to
demonstrate the working of critics).

At this point, you can choose to change the package name manually, to impose silence on the design
critic for some time or permanently, or to request a more comprehensive explanation by Email from an
expert.

We will do nothing of this (we'll come back to it when we talk about the design critics in more detail)
but we'll use another handy feature of ArgoUML—an auto-correct feature.

30

UML Based OOA&D

In order to do that, just click on the Next button on the Details Pane. Thiswill cause a renaming wizard
to be displayed inside the properties panel, proposing to use the name unt i t | ednodel (&l in lower
case).

3.4.4.2. Design Critics at Work: The Rename Package Wizard

Replace the name unt i t | ednmodel with pur chasi ngnodel , and click on the Fi ni sh button.
Figure 3.11, “ArgoUML Window Showing the Critic Wizard to Rename the Package’ shows how the
ArgoUML window will now look.

Figure 3.11. ArgoUML Window Showing the Critic Wizard to Rename the

Package
& ArgoUML M=l E3
File Edit Wiew Create Dlagram Arrange Generztion Crlthue Taols Help
nebe X¥baE<> 4% BREREDGEMG
Package-certric i E k 4 E|T E — ¥ A AP AL £|> E & g
@ 3 untitledhodel ; -
; -
[Le |»
A= Diagram
T e T P AR P AR AR R R AR A AR R AR AR AR R A A A AR R AR AR R AR A AR SRR AR R AR AR AR R AR AR ARAAR:
|Byprigrity - E 2 kems ‘ She rSDurce rEDnstramis rTagged Salles |
Ij High : ‘ -« ToDo kem Eroperties |/ Weeurentaticn
|jru1edium 3 £
'P 3 Change the name of this package.
[Add Elements to Fackage |
H Revize Package Hame unti E
i Name: |purchasmgl‘nndel
T Low | =
=
T D Back (Firizh| | Help |
I |

Watch now how the design critic note in the To Do panel disappears, leaving only the
Add El emrents to Package purchasi ngnodel noteintheTo-Dolist.

If this doesn't happen at once, wait for a few seconds. ArgoUML makes heavy use of several threads of
execution that execute in parallel. This can cause delays of a few seconds before the information gets
updated on the screen.

The package name change should also be reflected in the explorer, in the top left corner of your
ArgoUML window.

We are now ready to create our first UML diagram, a Use Case diagram, but first let's save what we've
done sofar.

Click on the Fi | e menu item, and select Save Proj ect. You can now safely exit ArgoUML

31

UML Based OOA&D

without losing your work so far, or go on creating your first diagram.

3.5. The Case Study (To be written)

To be written...

32

Chapter 4. Requirements Capture
4.1. Introduction

Requirements capture is the process of identifying what the “customer” wants from the proposed sys-
tem.

The key at this stage is that we are in the problem domain. At this stage we must describe everything
from the “ customer” perspective and in the language of the “ customer”.

The biggest risk we have in requirements capture is to start thinking in terms of possible solutions. That
must wait until the Analysis Phase (see Chapter 5, Analysis). One of the steps of the Analysis Phase will
be to take the output of the Requirements Phase and recast it in the language of a deemed solution.

Remember we are using both aincremental, and an iterative process.

We may well come back to the requirements process again as we break down the problem into smaller
chunks, each of which must have its requirements captured.

We will certainly come back through the requirements phase on each iteration as we seek to define the
requirements of more and more of the system

- Note

The only part of the requirements notation specified by the UML standard is the use case
diagram. The remainder is process specific. The process described in this chapter draws
heavily on the Rational Unified Process.

4.2. The Requirements Capture Process

We start with a top-level view of the problem we are solving and the key areas of functionality that we
must address in any solution. Thisis our vision document, and should be just a few pageslong.

For example the top-level view of an automated teller machine (ATM) might be that it should support
the following.
1. Cash deposit, cash withdrawal and account inquiries by customers.

2. Maintenance of the equipment by the bank's engineers, and unloading of deposits and loading of
cash by the local bank branch.

3. Audit trail for all activities sent to the bank's central computer.
From this top-level view we can extract the principal activities of the system, and the external agents
(people, equipment) that are involved in those activities. These activities are known as use cases and the

external agents are known as actors.

Actors may be people or machines. From a practical standpoint it is worth knowing the stakeholder be-
hind any machine, since only they will be able to engage with the requirements capture process.

Use cases should be significant activities for the system. For example customer use of the ATM machine
isause case. Entering a PIN number is not.

33

Requirements Capture

There is a gray area between these two extremes. As we shall see it is often useful to break very large
use cases into smaller sub-use cases. For example we may have sub-use cases covering cash deposit,
cash withdrawal and account inquiry.

There is no hard and fast rule. Some architects will prefer a small number of relatively large use cases,
others will prefer a larger number of smaller use cases. A useful rule of thumb is that any practica
project ought to require no more than about 30 use cases (if it needs more, it should be broken into sep-
arate projects).

We then show the relationship between use cases and actors on one or more use case diagrams. For a
large project more than one diagram will be needed. Usually groups of related use cases are shown on
one diagram.

We must then give a more detailed specification of each use case. This covers its normal behavior, al-
ternative behaviors and any pre- and post-conditions. Thisis captured in a document variously known as
a use case specification or use case scenario.

Finally, since use cases are functional in nature, we need a document to capture the non-functional re-

quirements (capacity, performance, environmental needs etc). These requirements are captured in a doc-
ument known as a supplementary requirements specification.

4.2.1. Process Steps

The stepsin the requirements capture process can be summarized as follows.

1
Capture an overall view of the problem, and the desired characteristics of its solution in the vision
document.

2.
Identify the use case and actors from the vision document and show their relationships on one or
more use case diagrams.

3.
Give detailed use case specifications for each use case, covering normal and alternate behavior,
pre- and post-conditions.

4

Capture all non-functional requirementsin a supplementary requirements specification.

In any iterative development process, we will prioritize, and early iterations will focus on capturing the
key behavior of the most important use cases.

Most modern requirements capture processes agree that it is essential that the authoritative representat-
ive of the customer is fully involved throughout the process.

4.3. Output of the Requirements Capture Pro-
cess

Almost al the output of the requirements capture process is documentary. The only diagram is the use
case diagram, showing the relationships between use cases and actors.

4.3.1. Vision Document

4.3.2.

Requirements Capture

Typical sections of this document would be as follows.
e Summary. A statement of the context, problem and solution goals.
Goals. What are we trying to achieve (and how do we wish to achieveit).

Market Context or Contractual Arrangements. For a market led development, this should indicate
target markets, competitive differentiators, compelling events and so forth. For a contractual devel-
opment this should explain the key contractual drivers.

Sakeholders. The users (in the widest sense) of the system. Many of these will map in to actors, or
control equipment that maps into actors.

Key Features. At the very highest level what are they key functional aspects of the problem/desired
solution. These will largely map down to the use cases. It is helpful to give some prioritization here.

Congtraints. A high level view of the non-functional parameters of the system. These will be worked
out in detail in the supplementary requirements specification.

e Appendix. A listing of the actors and use cases that will be needed to meet this vision. It is useful to
link to these from the earlier sections to ensure comprehensive coverage.

Use Case Diagram

The vision document has identified the use cases and actors. The use case diagram captures how they in-
teract. In our ATM example we have identified “customer uses maching’, “maintain maching’ and
“audit” as the three main use cases. We have identified “customer”, maintenance engineer”,” “local

branch official” and “central computer” as the actors.

Figure 4.1, “Basic use case diagram for an ATM system” shows how this could be displayed on a use
case diagram. The use cases are shown as ovals, the actors as stick people (even where they are ma-
chines), with lines (known as associations connecting use cases to the actors who are involved with
them. A box around the use cases emphasizes the boundary between the system (defined by the use
cases) and the actors who are external.

- Note

Not all analysts like to use abox around the use cases. It is a matter of persona choice.

Figure4.1. Basic use case diagram for an ATM system

35

Requirements Capture

Maintain ATM .' '.

Bank Engineer

\
\
(o %

Central Computer

The following sections show how the basic use case diagram can be extended to show additional inform-
ation about the system being designed.

4.3.2.1. Active and Passive Actors

Active actors initiate interaction with the system. This can be shown by placing an arrow on the associ-
ation from the actor pointing toward the use case. In the ATM example, the customer is an active actor.

Interaction with passive actors is initiated by the system. This can be shown by placing an arrow on the
association from the use case pointing toward the actor. In the ATM example, the central computer is a
passive actor.

Thisis a good example where the arrow helps, since it allows us to distinguish an event driven system
(the ATM initiates interaction with the central computer) from a polling system (the central computer in-
terrogates the ATM from time to time).

Where an actor may be either active or passive, depending on circumstances, the arrow may be omitted.
In the ATM example the bank engineer fits into this category. Normally he is active, turning up on a
regular cycle to service the machine. However if the ATM detects a fault, it may summon the engineer
to fix it.

The use of arrows on associations is referred to as the navigation of the association. We shall see this
used elsewherein UML later on.

Figure 4.2, “Use case diagram for an ATM system showing navigation.” shows the ATM use case dia-
gram with navigation displayed.

Figure4.2. Use case diagram for an ATM system showing navigation.

36

Requirements Capture

Maintain ATM .' '.

Bank Engineer

\
\
(o %

Central Computer

4.3.2.2. Multiplicity

It can be useful to show the multiplicity of associations between actors and use cases. By this we mean
how many instances of an actor interact with how many instances of the use case.

By default we assume one instance of an actor interacts with one instance of a use case. In other cases
we can label the multiplicity of one end of the association, either with a number to indicate how many
instances are involved, or with arange separated by two periods (. .). An asterisk (*) isused to indicate
an arbitrary number.

In the ATM example, there is only one central computer, but it may be auditing any number of ATM
uses. So we place the label 0. . * at the use case end. There is no need for alabel at the other end, since
the default is one.

A loca bank will have up to three officials authorized to unload and load ATM machines. So at the actor
end of the relationship with the use case Mai nt ai n ATM we placethelabel 1. . 3. They may be deal-
ing with any number of ATM machines, so at the other end we place thelabel 0. . *.

There may be any number of customers and there may be any number of ATM systems they could use.
So at each end of the association we place thelabel 0. . *.

Figure 4.3, “Use case diagram for an ATM system showing multiplicity.” shows the ATM use case dia-
gram with multiplicity displayed.

Figure4.3. Use case diagram for an ATM system showing multiplicity.

37

Requirements Capture

Ed

\

Maintain AT Bank Engineer

1

/

o.F

Use AT 0.
Customer Local Bank Official

D“x

——

Audit

IV

Central Computer

Multiplicity can clutter adiagram, and is often not shown, except where it is critical to understanding. In
the ATM example we would only choose to show 1. . 3 against the local bank official, since al others
are obvious from the context.

4.3.2.3. Hierarchies of Use Cases

In our ATM example so far we have just three use cases to describe al the behavior of the system.
While use cases should always describe a significant chunk of system behavior, if they are too genera
they can be difficult to describe.

We could for example define the behavior of the use case “Use ATM” in terms of the behavior of three
simpler use cases, “Deposit Cash”, “Withdraw Cash” and “Query Account”. The main use case could be
specified by including the behavior of the subsidiary use cases where needed.

Similarly the “Maintain ATM” use case could be defined in terms of two use cases “Maintain Equip-
ment” and “Reload ATM”. In this case the two actors involved in the main use case are really only in-
volved in one or other of the two subsidiary use cases and this can be shown on the diagram.

The decomposition of a use case into simpler sub-use cases is shown in UML by using an include rela-
tionship, a dotted arrow from the main use case to the subsidiary, with the label «include».

Figure4.4. Use case diagram for an ATM system showing include relationships.

38

Requirements Capture

Maintain ATM

P digcludes
pificludes =4
i
/g\ _____%
- Maintain Equipmant Reload ATM 1.3
Bank Enginzer Local Bank Official
-
Customer T ! #includes
- ’ Ry I
/ :

Central Computer

~ginclud
L Fineiuces «i{n’clude»
: Query Account
De pozit Cazh

Include relationships are fine for breaking down the use case behaviors in to hierarchies. However we
may also want to show a use case that is an extension to an existing use case to cater for a particular cir-
cumstance.

In the ATM example we have a use case covering routine maintenance of the ATM, “Maintain Equip-
ment”. We also want to cover the special case of an unscheduled repair caused by the ATM detecting an
internal fault.

Thisis shown in UML by the extend relationship. In the main use case, we specify a name for alocation
in the description, where an extension to the behavior could be attached. The name and location are
shown in a separate compartment within the use case oval. The representation extend relationship is the
same as the include relationship, but with the label «extend». Alongside the extend relationship, we spe-
cify the condition under which that behavior will be attached.

Figure 4.5, “Use case diagram for an ATM system showing an extend relationship.” showsthe ATM use
case diagram with an extend relationship to a use case for unscheduled repairs. The diagram is now get-
ting rather complex, and so we have split it into two, one for the maintenance side of things, the other
for customer usage and audit.

The “Maintain Equipment” use case defines a name “Unsched”, at the start of its description. The ex-
tending use case “Unscheduled Repair” is attached there when the ATM detects an internal error.

Figure 4.5. Use case diagram for an ATM system showing an extend relationship.

39

4.3.3.

Requirements Capture

% Maintain ATM

i
I whaclude
=

g b
include
OCI.l x - 13
Maintain Equipme nt Aoh
R load ATM Local Bank Official
Unzched: Start of spac
¢

)
wextends ¢

when ATMFietects
inte rna} fault
£

Bank Enginzer

£

Unscheduled Re pair

Use cases may be linked together in one other way. One use case may be a generalization of a subsidi-
ary use case (or aternatively the subsidiary is a specialization of the main use case).

Thisisvery like the extends relationship, but without the constraint of specific extension points at which
the main use case may be extended, and with no condition on when the subsidiary use case may be used.

Generalization is shown on a use case diagram by an arrow with solid line and solid white head from the
subsidiary to the main use case.

This may be useful when a subsidiary use case specializes the behavior of the main use case at alarge
number of positions and under awide range of circumstances.

However the lack of any restriction makes generalization very hard to specify precisely. In general use
an extend relationship instead.

The Use Case Specification

Each use case must be documented to explain in detail the behavior it is specifying. This document is
known by different names in different processes. use case specification,use case scenario or even
(confusingly) just use case.

A typical use case will include the following sections.

Name. The name of the use case to which this relates.

Goal. A one or two line summary of what this use case achieves for its actors.

» Actors. The actorsinvolved in this use case, and any context regarding their involvement.

- Note

This should not be a description of the actor. That should be associated with the actor
on the use case diagram.

40

Requirements Capture

Pre-condition. These would be better named “pre-assumptions’, but the term used everywhere is
pre-conditions. This is a statement of any simplifying assumptions we can make at the start of the
use case.

In the ATM example we might make the assumption for the*Maintain Equipment” use case that an
engineer is aways available, and we do not need to worry about the case where a routine mainten-
ance visit is missed.

a Caution

Avoid pre-conditions wherever possible. Y ou need to be absolutely certain that the pre-
condition holds under al possible circumstances. If not your system will be under spe-
cified and hence will fail when the pre-condition is not true. Alternatively, when you
cannot be certain the pre-condition is always true, you will need to specify a second
use case to handle the pre-condition being false. In the first case, pre-conditions are a
source of problems, in the second a source of more work.

Basic Flow. The linear sequence of steps that describe the behavior of the use case in the “normal”
scenario. Where a use case has a number of scenarios that could be normal, one is arbitrarily selec-
ted. Specifying the basic flow is described in more detail in Section 4.3.3.1, “ Specifying the Basic
Flow” below.

Alternate Flows. A series of linear sequences describing each of the alternative behaviors to the ba-
sic flow. Specifying aternate flows is described in more detail in Section 4.3.3.2, “ Specifying the
Alternate Flows”.

Post-conditions. These would be better named “post-assumptions’. This is a statement of any as-
sumptions that we can make at the end of the use case. Most useful where the use case is one of a
series of subsidiary use cases that are included in a main use case, where they can form the pre-
conditions of the next use case to be included.

A Caution

Like pre-conditions, post-conditions are best avoided. They place a burden on the spe-
cification of the use case flows, to ensure that the post-condition always holds. They
therefore are also a source of problems and extrawork.

Requirements. In an ideal world the vision document, use case diagrams, use case specifications and
supplementary requirements specification would form the requirements for a project.

For most market-led developments, where ownership of regquirements is within the same business as
the team who will do the development, this is now usually the case. The marketing department can
learn use case based requirements capture and analysisto link to their customer facing activities.

However for external contract developments, customers may insist on a traditional “list of features’
as the basis of the contract. Where this is the case, this section of the use case specification should
link to the contract features that are covered by the use case.

This is often done through a third party tool that can link documents, providing automated checking
of coverage, in which case this section is not needed, or may be generated automatically.

41

Requirements Capture

The final size of the use case specification will depend on the complexity of the use case. As a rule of
thumb, most use cases take around 10-15 pages to specify, the bulk of which is alternate flows. If you
are much larger than this, consider breaking the use case down. If you are much smaller consider wheth-
er the use case is addressing too small a chunk of behavior.

4.3.3.1. Specifying the Basic Flow

All flowsin a use case specification are linear—that is there is no conditional branching. Any choicesin
flows are handled by specifying another alternate flow that takes over at the choice point. It isimportant
to remember we are specifying behavior here, not programming it.

A flow is specified as a series of numbered steps. Each step must involve some interaction with an actor,
or at least generate a change that is observable externally by an actor. Requirements capture should not
be specifying hidden internal behavior of a system.

For example we might give the following sequence of steps for the basic flow of the use case "Withdraw
Cash" inour ATM example.

1. Customer indicates areceipt isrequired.

2. Customer enters amount of cash required.

3. ATM verifieswith the central computer that the customer can make this withdrawal.

4. ATM dispenses cash to the customer.

5. ATM issuesreceipt to customer.

Remember this is a sub-use case included in the main “Use ATM” use case, which will presumably
handle checking of cards and PINs before invoking this included use case.

- Note

The first step is not a condition. We take as our basic flow the case where the customer
does want a receipt. The case where the customer does not want a receipt will be an altern-
ative flow.

4.3.3.2. Specifying the Alternate Flows
This captures the alternative scenarios, as linear flows, by reference to the basic flow. Initially we just
build alist of the alternate flows.
A.
A.l. Customer does not require areceipt.
A.2. Customer's account will not support the withdrawal.
A.3. Communication to the central computer is down.

A.4. The customer cancels the transaction.

A.5. The customer fails to take the dispensed cash.

42

Requirements Capture

Subsequently we flesh out each aternate flow, by reference to the basic flow. For example the first al-
ternate flow might look like.

A.
A.1. Customer does not require areceipt.
A.l. At step 1 of the basic flow the customer indicates they do not want areceipt.

1
A.1l. Thebasic flow proceeds from step 2 to step 4, and step 5 is not used.
2.

The convention isto number the various alternate flows as A.1, A.2, A.3, etc. The steps within an altern-
ate flow are then numbered from this. So the steps of the first alternate flow would be A.1.1, A.1.2,
A.1.3, etc.

4.3.3.3. lterative Development of Use Case Specifications

4.3.4.

Iterative development will prioritize the use cases, and the first iterations will address the most import-
ant.

Early iterations will capture the basic flows of the most important use cases with only essential detail
and list the headings of the main alternate flows.

Later iterations will address the remaining use cases, flesh out the steps on individua alternate flows and
possibly provide more detail on individual steps.

Supplementary Requirement Specification

This captures the non-functional requirements or constraints placed on the system. Since use cases are
inherently functional in nature, they cannot capture this sort of information.

Note

¥
Some analysts like to place non-functional requirements in a section at the end of each use
case specification, containing the non-functional requirements relevant to the use case.

| don't like this for two reasons. First key non-functional requirements (for example about
performance) may need to appear in many use cases and it is bad practice to replicate in-
formation. Secondly there are invariably some non-functional regquirements that are system
wide and need a system wide document. Hence my preference for a single supplementary
requirements specification.

There should be a section for each of the main areas of non-functional requirements. The checklist
provided by lan Sommerville in his book Software Engineering (Third Edn, Addison-Wesley, 1989) isa
useful guide.

* Speed. Processor performance, user/event response times, screen refresh time.

» Sze Main memory (and possibly caches), disc capacity.

» Easeof use. Training time, style and detail of help system.

* Reliability. Mean timeto failure, probability of unavailability, rate of failure, availability.

* Robustness. Timeto restart after failure, percentage of events causing failure, probability of data cor-

43

Requirements Capture

ruption on failure.

» Portability. Percentage of target-dependent code/classes, number of target systems.

To this we should add sections on environment (temperature, humidity, lightening protection status) and
standards compliance.

4.4. Using Use Cases in ArgoUML

4.4.1.

4.4.2.

ArgoUML alows you to draw use case diagrams. When you create a new project it has a use case dia-
gram created by default, named use case di agram 1. Select this by button 1 click on the diagram
name in the explorer (the upper left quadrant of the user screen).

New use case diagrams can be created as needed through Cr eat e Di agr amon the main menu bar or
on the Create Diagram Toolbar. They are edited in the editing pane (the upper right quadrant of the user
screen).

Actors

To add an actor to the diagram use button 1 click on the actor icon on the editing pane toolbar (;T:_)

and then button 1 click at the location where you wish to place it. The actor can be moved subsequently
by button 1 motion (i.e. button 1 down over the actor to select it, move to the new position and button 1
release to drop the actor in place.

Multiple actors can be added in one go, by using button 1 double click on the actor icon. Each sub-
sequent button 1 click will drop an actor on the diagram. A button 1 click on the select icon (h) will

stop adding actors.

The actors name is set in its property panel. First select the actor (if not already selected) on the editing
pane using button 1 click. Then click on the Pr opert i es tab in the details pane. The name is entered
in the name field, and will appear on the screen.

As a shortcut, double button 1 click on the name of the actor in the editing pane (or just typing on the
keyboard when an actor is selected) will allow the name to be edited directly. This is a convenient way
to enter aname for a new actor.

Having created the actor, you will see it appear in the explorer (the upper left quadrant of the user
screen). This shows all the artifacts created within the UML design. A drop down at the top of the ex-
plorer controls the ordering of artifacts in the explorer. The most useful are the Package-centric
(default) and Di agr am cent ri c. The latter shows artifacts grouped by the diagram on which they

appesr.

Use Cases

The procedure for adding use cases is the same as that for adding actors, but using the use case icon on
the editing pane toolbar (£).

By default use casesin ArgoUML do not display their extension points (for use in extend relationships).
Y ou can show the extension point compartment in one of two ways.

1. Select the use case in the editing pane with button 1 click, then select the St yl e tab in the details
pane and button 1 click onthe Di spl ay: Ext ensi on Poi nt s check box.

44

Requirements Capture

2. Usebutton 2 click over the use case in the editing pane to display a context-sensitive pop-up menu
and from that choose Show/ Show Ext ensi on Poi nt Conpart nent.

The same approaches can be used to hide the extension point compartment.

4.4.2.1. Adding an Extension Point to a Use Case

There are two ways to add an extension point to a use case.

1. Select the use case on the editing pane with button 1 click. Then click on the Add Ext ensi on
Poi nt icon (=) on the toolbar, and a new extension point with default name and location will

be added after any existing extension points.

- Note
The Add Ext ensi on Poi nt icon is grayed out and unusable until a use case is
selected.

2. Select the use case on the editing pane with button 1 click and then select its property tab in the de-
tails pane. A button 2 click over the Ext ensi on Poi nt s: field will bring up a context-sensitive
pop-up menu. Select Add to add a new extension point.

If any extension points already exist, they will be shown in this field on the property tab. The new
extension point will be inserted immediately before the entry over which the pop-up menu was in-
voked. This ordering can be changed later by using the Move Up and Move Down entries on the
pop-up menu.

Whichever method is used, the new extension point is selected, and its property tab can be displayed in
the details pane. The name and location of the extension point are free text, set in the corresponding
fields of the property tab.

An existing extension point can be edited from its property tab. The property tab can be reached in two
ways.

1. If the extension point compartment for the use case is displayed on the diagram, select the use case
with button 1 click and then select the extension point with a further button 1 click. The property
tab can then be selected in the details pane.

2. Otherwise select the use case and its property tab in the details pane. A button 1 click on the desired
entry in the Ext ensi on Poi nt s field will bring up the property tab for the extension point in
the details pane.

The name and location fields of the extension point may then be edited.

As a shortcut, where the extension point compartment is displayed, double click on the extension point
allowstext to be typed in directly. Thisis parsed to set name and location for the extension point.

Extension points may be deleted, or their ordering changed by using the button 2 pop-up menu over the
Ext ensi on Poi nt s field in the use case property tab.

Having created an extension point, it will appear in the explorer (upper left quadrant of the user screen).
Extension points are always shown in a sub-tree beneath their owning use case.

45

Requirements Capture

4.4.3. Associations

To join a use case to an actor on the diagram use button 1 click on the association icon on the editing
pane toolbar (P). Hold button 1 down at the use case, move to the actor and release button 1 (or al-

ternatively start at the actor and finish at the use case).

This will create a straight line between actor and use case. Y ou can segment the line by holding down
button 1 down on the line and moving before releasing. A vertex will be added to the line, which you
can move by button 1 motion. A vertex can be removed by picking it up and dliding to one end of the
line.

Multiple associations can be added in one go, by using button 1 double click on the association icon.
Each subsequent button 1 down/motion/rel ease sequence will join an actor to a use case. Use button 1 on
the select icon (h) to stop adding associations.

It is aso possible to add associations using small “handles’ that appear to the left and right of a use case
or actor when it is selected and the mouse is over it. Dragging the handle from a use case to an actor will
create an association to that actor (and similarly by dragging a handle from an actor to a use case).

Dragging a handle from a use case into empty space will create a new actor to go on the other end. Sim-
ilarly dragging a handle from an actor into empty space will create a new use case.

It is possible to give an association a name, describing the relationship of the actor to the use case, al-
though this is not usually necessary. This is done through the property tab of the association. Such a
name appears alongside the association near its center.

4.4.3.1. Setting Navigation

There are two ways of setting the navigation of an association.

1. Usebutton 2 click on the association to bring up a context-sensitive pop-up menu. The Navi gab-
i lity sub-menu has options for bi-directional navigation (the default, with no arrows) and for
navigability Actor#Use Case and Use CasetfActor.

2. Usebutton 1 to select the association and select its property tab in the details pane. This shows a
field named Associ ati on Ends: , with entries for each end labeled by the actor or use case
name and its multiplicity. Select the end that should be at the tail of the arrow with button 1 click.
This brings up the property tab for the association end. Use button 1 click to uncheck the Navi g-
abi i ty box.

Note

L EF
This may seem counter-intuitive, but in fact associations by default are navigable in
both directions (when no arrows are shown). This process is turning off navigation at
one end, rather than turning it on at the other.

You will seeit is possible to give an association end a name in its property tab. This name will appear at
that end of the association, and can be used to indicate the role being played by an actor or use case in
an association.

For example a time management system for a business may have use cases for completing time sheets
and for signing off time sheets. An employee actor may be involved in both, one as an employee, but the
other in arole as manager.

46

Requirements Capture

4.4.3.2. Setting Multiplicity

There are two ways of setting multiplicity at the end of an association.

1. Button 2 click over the end of an association will cause a context-sensitive pop-up menu to appear
with a sub-menu labeled Mul ti pli ci ty. This alows you to select from 1 (the default), 0. . 1,
0..*and1l..*.

2. Bring up the property sheet for the association end as described for setting navigation (see the
second option in Section 4.4.3.1, “ Setting Navigation”). A drop down menu gives arange of multi-
plicity options that may be selected.

The second of these two approaches has a wider range of options, although ArgoUML does not cur-
rently allow the user to set an arbitrary multiplicity.

4.4.4. Hierarchical Use Cases
4.4.4.1. Includes

The procedure for adding an include relationship is the same as that for adding an association, but using
the include icon from the editing pane toolbar (. i) tojointwo use cases.
3

Since include relationships are directional the order in which the two ends are selected is important. The
including (main) use case should be selected first (button 1 down) and the included (subsidiary) use case
second (button 1 release).

It is possible to name include rel ationships using the property tab, but thisis rarely done, and will not be
displayed on the use case diagram.

4.4.4.2. Extends

The procedure for adding an extend relationship is the same as that for adding an include relationship,
but using the extend icon from the editing pane toolbar (Efp) to join two use cases.

As with include relationships, the order of selection matters. In this case, the extending (subsidiary) use
case should be selected first (button 1 down) and the extending (main) use case second (button 1 re-
lease).

Note

L
This is the reverse of the include relationship, but reflects the way that designer's tend to
think. The fact that the extend icon's arrow points upward (the opposite of the include icon)
should help remind you of this.

To set acondition for the extend relationship, select the extend relationship in the editing pane (button 1
click) and then bring up its property tab in the details pane ((button 1 click on the tab). The text of the
condition may be typed in the Condi t i on field. Long conditions may be split over severa linesif de-
sired. The condition is displayed under the «ext end» label on the diagram.

It is possible to name extend relationships using the property tab, but thisis rarely done, and will not be
displayed on the use case diagram.

47

Requirements Capture

4.4.4.3. Generalization

4.4.5.

4.4.6.

The procedure for adding generalizations, is the same as for adding extend relationships, but using the
generalization icon from the editing pane toolbar (-ﬁl':-).

Since generalization is a directed relationship, the order of selection matters. The specialized use case
should be selected first (button 1 down) and the generalized second (button 1 release).

It is aso possible to add generalizations using small “handles’ that appear to the top and bottom of a use
case when it is selected. Dragging the handle at the top to another use case will create a generalization.
The original use case is the specializing end, and the use case to which the handle was dragged will be
the generalizing end. Dragging into empty space will create a new use case to be the generalizing end.

Similarly dragging on the bottom handle will create a generalization in which the original use caseisthe
generalizing end.

Generalization is aso permitted between actors, although its use is beyond the scope of this tutorial. Un-
like use cases there are no generalization handles on actors, so generalizations must be created using the
toolbar icon.

It is possible to name generalization relationships using the property tab, but this is rarely done. If a
name s provided, it will be displayed on the use case diagram.

Stereotypes

UML has the concept of stereotyping as a way of extending the basic notation. It may prove useful for
example to model a problem at both the business level and the engineering level. For both of these we
will need use cases, but the use cases at the business level hold a different sort of information to those at
the engineering level. Very likely they use different language and notation in their underlying use case
specifications.

Sereotypes are used to label UML artifacts such as use cases, to indicate that they belong to a certain
category. Such labels are shown in guillemots («») above the name of the artifact on the diagram. The
UML standard defines a number of standard stereotypes, and the user may define more stereotypes of
his own.

You will see that ArgoUML has a drop down selector, St er eot ype on every property tab. This is
populated with the standard stereotypes, to which you may add your own user defined ones.

The details of stereotyping are beyond the scope of this tutorial. The reference manual (see Section 16.5,
“ Stereotype”) documents the support provided in ArgoUML.

. Warning

ArgoUML is missing a few of the standard UML stereotypes. In addition not al artifacts
will actually display the stereotype on the diagram. At present this includes use cases and
actors.

Documentation

ArgoUML has some simple documentation facilities associated with artifacts on a diagram. In genera
these should be used only to record the location of material in documents that can be handled by a main-
stream editor or word processor, not the actual documentation itself.

Documentation for a particular artifact is recorded through the documentation tab in the details pane (the

48

4.4.7.

Requirements Capture

quadrant of the user screen at the bottom right).

In addition annotation may be added to diagrams using the text icon on the editing pane toolbar (A.).

The recommendation is that a use case diagram should use the documentation tab of actors to record in-
formation about the actor, or if the actor is complex to refer to a separate document that holds informa-
tion about the actor.

The documentation tab of use cases should record the location of the use case specification. The inform-
ation in a use case specification (for al but the simplest use cases) is too complex to be placed directly
in the tab.

The project should also have a separate vision document and supplementary requirements specification.
A text annotation on diagrams may be used to refer to these if the user finds this helpful.

Warning

The documentation tab includes a Depr ecat ed check box. The state of this flag is not
preserved over save and load in the current release of ArgoUML

System Boundary Box

ArgoUML provides a series of tools to provide arbitrary graphical annotation on diagrams (we have
already mentioned the text tool). These are found at the right hand end of the editing pane toolbar and
are fully documented in the reference manual (see Chapter 12, The Editing Pane).

The rectangle tool can be used to draw the boundary box. Use the button 2 context-sensitive Or der i ng
pop-up menu to place it behind everything else. However there is no way to changeitsfill color from the
default white. Y ou may therefore prefer to draw the boundary box as four lines. This is the method used
for the diagramsin this chapter.

Note

CEF
The editing pane in ArgoUML has a grid to which objects snap to aid in drawing. The size
of this grid and its effect may be altered through the Vi ew menu (using Adj ust Gri d
and Adjust Gid Snap). This is described fully in the reference manua (see
Chapter 10, The Menu bar).

4.5. Case Study

4.5.1.

Vision Document

A vision document contains more than those things needed for the modeling effort. It also contains fin-
ancial and scheduling pertinent information. The following sections are those parts of the Vision Docu-
ment spelled out in Section 4.3.1, “Vision Document” above. In practice this format need not be fol-
lowed religiously, but is used here for consistency.

4.5.1.1. Summary

The company wishes to produce and market a line of ATM devices. The purpose of this project is to
produce the hardware and the software to drive it that are both maintainable and robust.

49

Requirements Capture

45.1.2. Goals

To produce better designed products based on newer technology. Follow the MDA philosophy of the
OMG by producing first a Platform Independent Model (PIM). As current modeling technology does not
admit of maintaining the integrity of the connection between the PIM and Platform Specific Models
(PSMs), the PIM will become comparatively stable before the first iteration of the PSM is produced. The
software platform will be Java technology. The system will use a simple userid (from ATM card) and
password (or PIN) mechanism.

45.1.3. Market Context

Equipment currently on the market is based on older technology for both hardware and software. This
technology has not reached the end of its useful life, making it unlikely that the vendors of that gear are
going to update it in the near future. On the other hand newer technology is available that would put us
at acompetitive advantage if implemented now.

45.1.4. Stakeholders

Among the stakeholders for this system are the Engineering Department, the Maintenance Department,
and the Central Computer Facility. The full list of these stakeholders and the specific individuals repres-
enting them are.

» Engineering. Bunny, Bugs
e Maintenance. Hardy, Oliver
e Computer Facility. Laurel, Stanley

» Chief Executive Officer. Hun, AtillaThe

» Marketing. Harry, Oil Can

4.5.1.5. Key Features

Cash deposit, cash withdrawal, and account inquiries by customers. Customers include people who have
accounts at the owning bank as well as people who wish to make withdrawals from accounts in other
banks or from credit card accounts.

Maintenance of the equipment by the bank's engineers. This action may be initiated by the engineer on a
routine basis. It may also be initiated by the equipment that can call the engineer when it detects an in-
terna fault.

Unloading of deposits and loading of cash by officials of the local bank branch. These actions occur
either on a scheduled basis or when the central computer determines that the cash supply is low or the
deposit receptacle isliable to be getting full.

An audit trail for all activities will be maintained and sent periodically to the bank's central computer. It
will be possible for the maintenance engineer to save a copy of the audit trail to a diskette for transport-
ing to the central computer.

Both dialup and leased line support will be provided. The ATM will continue to provide services to cus-
tomers when communications with the central computer is not available.

45.1.6. Constraints

50

Requirements Capture

The project must be completed within nine months. It must cost no more than 1,750,000 USD excluding
production costs. Components may be contracted out, but the basic architecture as well as the infrastruc-
ture will be designed in house. Close liaison must be maintained between the software development and
the design, development and production of the hardware. Neither the hardware nor the software shall be
considered the independent variable, but rather they shall be considered equal.

4.5.1.7. Appendix

4.5.2.

4.5.3.

The following are the actors that directly support this vision. Additional actors may be identified later
that are needed to support this or that technology. They should not be added to this list unless they are
deemed to directly support the vision as described in this document.

» Centra Computer
e Customer
» Local Branch Official

e Maintenance Engineer

The following are the use cases that directly support this vision. Additional use cases may be identified
later that are needed to support this or that technology or to support the use cases listed here. They
should not be added to this list unless they are deemed to directly support the vision as described in this
document.

e Audit
e Customer Uses Machine

e Maintain Machine

ldentifying Actors and Use Cases

For the ATM case study, we will elaborate on the examples in Section 4.3, “Output of the Requirements
Capture Process’, Figure 4.4, “Use case diagram for an ATM system showing include relationships.”
and Figure 4.5, “Use case diagram for an ATM system showing an extend relationship.”, and progress to
identify additional actors and use cases that comprise our model of the ATM system. Figure 4.4, “Use
case diagram for an ATM system showing include relationships.” and Figure 4.5, “Use case diagram for
an ATM system showing an extend relationship.” exemplified the essential concepts and components of
a use case diagram such as, use cases, actors, multiplicity, and include / extend relationships. They
showed the relationships between the actors and use cases, and demonstrated how these actors and use
cases interact.

In Figure 4.4, “Use case diagram for an ATM system showing include relationships.” we see a use case
diagram for an ATM system consisting of «include» relationships for the use cases, Maintain ATM and
Use ATM. Maintain ATM was further defined by two use cases, "Maintain Equipment” and "Reload
ATM". Use ATM was further defined in terms of the behavior of three simpler use cases. "Deposit
Cash", "Withdraw Cash" and "Query Account”.

More to be written...

Associations (To be written)

To be written...

51

Requirements Capture

4.5.4. Advanced Diagram Features (To be written)

To be written...

4.5.5. Use Case Specifications (To be written)

To be written...

4.5.6. Supplementary Requirements Specification (To be
written)

To be written...

52

Chapter 5. Analysis

Analysis is the process of taking the “customer” requirements and re-casting them in the language of,
and from the perspective of, a putative solution.

We are not actualy trying the flesh out the detailed solution at this stage. That occurs in the Design
Phase (see Chapter 6, Design).

Unlike the boundary between Requirements and Analysis Phases, the boundary between Analysis and
Design Phases is inherently blurred. The key isthat analysis should define the solution no further than is
necessary to specify the requirements in the language of the solution. The artifacts in Analysis generally
represent a high level of abstraction.

Once again the recursive, and iterative nature of our process means we will come back to the Analysis
phase many times in the future.

5.1. The Analysis Process

There are three schools of thought on how Analysis should be approached. The ontologist defines the
data (actually the metadata) first and worries about processes later. The true ontologist would prefer not
to have to think about processes at al. The phenomenonologist reverses this and favors process over
data. The panparadigmist considers both process and data to be equally important and addresses both
from the start.

When it comes to being a purist the ontologist has the upper hand. It is possible to define and build a
database into which data can be entered and retrieved without concern for what happens to it or is done

with it. On the other hand implementing a process without having any data structures for it to operate on
is not very meaningful.

5.1.1. Class, Responsibilities, and Collaborators (CRC)
Cards

The CRC methodology favors the phenomenonologists preference for analysis. It is the equivalent of
starting with the use cases, the process aspects (operations) of the class diagrams, and scenarios from
which sequence diagrams can be initiated.

CRC cards and the associated methodology are described in detail in Appendix G, The CRC Card Meth-
odology. They are used again in the design phase and are further discussed in Chapter 6, Design.

The strength of CRC cards during analysis.

e Common Project Vocabulary -

» Spread Domain Knowledge -

e Making the Paradigm Shift -

* LivePrototyping -

e ldentifying Holesin Reguirements -

In this phase the group should consist of two or three domain experts, one object-oriented technology fa
cilitator, and the rest of the group made up of people who are responsible for delivering the system.

53

5.1.2.

5.1.3.

5.1.4.

5.1.5.

5.1.6.

Anaysis

The first time that the Analysis phase occurs a specia case of the CRC session happens as there are no
classes or scenarios to choose from to define a CRC session. At this point a special type of session
known as brainstorming is held. During this session you identify the initial set of classes in the problem
domain by using the problem statement or requirements document or whatever you know about the de-
sired result for a starting point. The nouns that are found in whatever you are starting from are a good
key to an initial set of classes in the system. In a brainstorming session there should be little or no dis-
cussion of the ideas. Record them and filter the results after the brainstorming. At this stage the distinc-
tion between class and object is blurred.

Once a reasonable set of classes has been defined by the group, responsibilities can be added. Add re-
sponsibilities that are obvious from the requirements or the name of the class. You don't need to find
them al (or any for that matter). The scenarios will make them more obvious. The advantage of finding
somein the beginning isthat it helps provide a starting place.

Select the initial scenarios from the requirements document by examining it's verbs in much the same
way that we scanned its nouns earlier. Then as many walk through sessions as necessary to complete the
analysis phase are performed.

When is enough of the analysis complete that design can begin? When all the different responsihilities
are in place and the system has become stable. After all the normal behavior has been covered, excep-
tional behavior needs to be simulated. When you natice that the responsibilities are al in place to sup-
port the new scenarios, and there is little change to the cards, this is a sign the you are ready to start
design.

Concept Diagram (To be written)

To be written...

System Sequence Diagram (To be written)

To be written...

System Statechart Diagram (To be written)

To be written...

Realization Use Case Diagram (To be written)

To be written...

Documents (To be written)

Use Case Specifications and Supplementary Requirements Specifications recast in solution language. To
be written...

5.2. Class Diagrams (To be written)

5.2.1.

5.2.2.

To be written...

The Class Diagram (To be written)

To be written...

Advanced Class Diagrams (To be written)

To be written...

5.2.2.1. Association Classes (To be written)

To be written...

Anaysis

5.3. Creating Class Diagrams in ArgoUML
5.3.1. Classes

Identifying class diagrams from existing materials (Vision, Use Cases etc). To be written...

5.3.1.1. Using the Note Icon in the Tool Bar

Click on your target class. Then click on the note icon. ArgoUML will generate the link automatically.

You can also right click to add a note as well! Be aware that you can add an undefined number of notes
to any one class!

. Warning

Be aware that your note will not appear in the source code documentation tab.

5.3.2. Associations (To be written)

To be written...

5.3.2.1. Aggregation (To be written)

To be written...

5.3.3. Class Attributes and Operations (To be written)

To be written...

5.3.3.1. Entering Data Into Attributes and Methods Windows

Click directly in the class artifact and start typing. Do not use the properties window dialog fields—they
are not fully functional and liable to cause you alittle frustration.

In fact, it would be interesting to see if you can type stereotypes write in the class attribute box for gen-
erating XML diagrams.

5.3.3.2. Class Attributes (To be written)

To be written...

5.3.3.3. Class Operations (To be written)

To be written...

5.3.4. Advanced Class Features (To be written)

5.3.4.1. Association Classes (To be written)
To bewritten...

5.3.4.2. Stereotypes (To be written)

To be written...

5.4. Sequence Diagrams (To be written)

To be written...

55

Anaysis

5.4.1. The Sequence Diagram (To be written)

To be written...

5.4.2. Identifying Actions (To be written)

To be written...

5.4.3. Advanced Sequence Diagrams (To be written)

To be written...

5.5. Creating Sequence Diagrams in ArgoUML

5.5.1. Sequence Diagrams

5.5.1.1. Creating a Sequence Diagram

Normally, you can just start a sequence diagram right away. On the Cr eat e Di agr ammenu choose
Sequence.

5.5.2. Actions (To be written)

To be written...

5.5.3. Advanced Sequence Diagrams (To be written)

To be written...

5.6. Statechart Diagrams (To be written)

To be written...

5.6.1. The Statechart Diagram (To be written)

Types of statechart diagram (Moore, Mealy); Hierarchical diagrams. To be written...

5.6.2. Advanced Statechart Diagrams (To be written)

To be written...

5.6.2.1. Hierarchical Statechart Diagrams (To be written)
To be written...

5.7. Creating Statechart Diagrams in ArgoUML
5.7.1. Statechart Diagrams (To be written)

To be written...

5.7.1.1. Creating a Statechart Diagram

Select a class, then you can create a statechart diagram.

5.7.2. States (To be written)

To be written...

56

Anaysis

5.7.2.1. Editing a Composite State

When editing a composite state, how do you provide do and event for a composite state?
The answer isto select a class, then you can create a statechart diagram.

5.7.3. Transitions (To be written)

To be written...

5.7.4. Actions (To be written)

To be written...

5.7.5. Advanced Statechart Diagrams (To be written)

To be written...

5.7.5.1. Hierarchical Statechart Diagrams (To be written)
To be written...

5.8. Realization Use Cases (To be written)

To be written...

5.9. Creating Realization Use Cases in
ArgoUML (To be written)

To be written...

5.10. Case Study (To be written)

Regardless of which methodology you use, at this time you are undoubtedly going to take the problem
statement from Section 4.5, “ Case Study” and extract the nouns from it. Thislist should be compacted to
contain only those nouns that are expected to result in aclass. This effort resultsin the following.

e Account
e Audit trail
« Bank

+ Cash

e Customer

5.10.1. CRC Cards

The project manager convenes a CRC session at which the initial set of classes are to be defined. The fa-
cilitator reminds the participants that we are in the analysis phase and are only interested in what needs
to be done (at the business level) and are to leave out anything that smacks of how to do it. As a general
rule of thumb this means a subset of the nouns from the problem statement (see above). The group starts
with acomplete list of al of the nounsin the statement, examines each one, and decides which are inap-
propriate crossing them off the list. Each class is then assigned to one of the participants.

57

Anaysis

to be continued...

5.10.2. Concept Class Diagrams (To be written)

To be written...

5.10.2.1. Identifying classes (To be written)

To be written...

5.10.2.2. Identifying associations (To be written)
To bewritten...

5.10.3. System Sequence Diagrams (To be written)

To be written...

5.10.3.1. Identifying actions (To be written)

To be written...

5.10.4. System Statechart Diagrams (To be written)

To be written...

5.10.5. Realization Use Cases (To be written)

To be written...

58

Chapter 6. Design

We now have the problem we are trying to solve specified in the language of a putative solution. In the
Design Phase, we construct all the details of that solution.

The blurred boundary between Analysis and Design is reflected in their use of many of the same UML
tools. In this chapter we will mostly be reusing UML technology we have already met once. The big step
is casting everything into concrete terms. We move from the abstract concepts of analysis to their con-
crete realization.

Once again the recursive, and iterative nature of our process means we will come back to the Design
phase many times in the future.

6.1. The Design Process (To be written)

To be written...

6.1.1. Class, Responsibilities, and Collaborators (CRC)
Cards

Strength of CRC cards during Design

» Spreading Objet-Oriented Design Expertise
» Design Reviews

e Framework for Implementation

* Informal Notation

» Choice of supporting software components

» Performance Requirements

In this phase devel opers replace some of the domain experts in the group, but there should always be at
least one domain expert in the group.

The focus of the group moves from what is to be done to how to do it. The classes from the solution do-
main are added to those defined in the analysis phase. Think about what classes are needed to make the
system work. Do you need a List class to hold objects? Do you need classes to handle exceptions? Do
you need wrapper classes for other subsystems? New classes that are looked for in this part, are classes
that support the implementation of the system.

During the design phase the distinction between class and object becomes important. Think about the
objects in your scenarios. Who creates the objects? What happens when it is created and destroyed?
What isthe lifetime of the object vs. the lifetime of the information held be the object?

Now is the time to look at what information the objects hold compared to what is requested from other
classes or computed on the fly. Use the back of the card to record the attributes found for the classes.
Break you responsibilities into subresponsibilities and list the subresponsibilities indented under the
main responsibilities. Move the collaborators next to the subresponsibilities that use them.

After the Collaborator class on your card list the responsibility of the used class that is used in the col-
laboration. After the collaborating responsibilities on your cards, list the data passed back by the collab-

59

Design

orating object in parenthesis.

Redo the scenarios you did in the analysis phase, but know take into consideration all of the design heur-
istics discussed. Make up your own scenarios and try them.

6.1.2. Package Diagram (To be written)

To be written...

6.1.3. Realization Class Diagrams (To be written)

To be written...
6.1.4. Sequence Diagrams and Collaboration Diagrams
(To be written)

To be written...
6.1.5. Statechart Diagrams and Activity Diagrams (To be
written)

To be written...

6.1.6. Deployment Diagram (To be written)

To be written...

6.1.7. Documents (To be written)
System Architecture. To be written...

6.2. Package Diagrams (To be written)

To be written...

6.2.1. The Package Diagram (To be written)

To be written...

6.2.2. Advanced Package Diagrams (To be written)

To be written...

6.2.2.1. Subpackages (To be written)

To be written...

6.2.2.2. Adding DataTypes (To be written)

To be written...

6.2.2.3. Adding Stereotypes (To be written)

To be written...

6.3. Creating Package Diagrams in ArgoUML
6.3.1. Packages

How to work out what goes in packages. To be written...

60

Design

6.3.1.1. Subpackages (To be written)

To be written...

6.3.2. Relationships between packages (To be written)

To be written...

6.3.2.1. Dependency (To be written)

To be written...

6.3.2.2. Generalization (To be written)
To be written...

6.3.2.3. Realization and Abstraction (To be written)
To be written...

6.3.3. Advanced Package Features (To be written)

To be written...

6.3.3.1. Creating New Datatypes (To be written)

To be written...

6.3.3.2. Creating New Stereotypes (To be written)

To be written...

6.4. More on Class Diagrams (To be written)

To be written...

6.4.1. The Class Diagram (To be written)

To be written...

6.4.1.1. Class Attributes (To be written)

To be written...

6.4.1.2. Class Operations (To be written)

To be written...

6.4.2. Advanced Class Diagrams (To be written)

To be written...

6.4.2.1. Realization and Abstraction (To be written)
To be written...

6.5. More on Class Diagrams in ArgoUML (To
be written)

6.5.1. Classes (To be written)

More on identifying classes from existing materials and use of stereotypes. To be written...

61

Design

6.5.2. Class Attributes and Operations (To be written)

To be written...

6.5.2.1. Class Attributes (To be written)

To be written...

6.5.2.2. Class Operations (To be written)

To be written...

6.5.3. Advanced Class Features

6.5.3.1. Operations on Interfaces

6.5.3.1.1. Interfaces that extend interfaces

Add a unnamed interface to the current classdiagram by single-clicking on the interface icon in the tool
bar and then clicking at the diagram pane (see Figure 6.1, “ Selecting the Interface tool”).

Figure6.1. Se