RX Reference Manual
Release 0.6.3

Jorg Lehmann
André Wobst

April 27, 2004

http://pyx.sourceforge.net/

Abstract

RyX is a Python package to create encapsulated PostScript figures. It provides classes and methods to access basic
PostScript functionality at an abstract level. At the same time the emerging structures are very convenient to
produce all kinds of drawings in a non-interactive way. In combination with the Python language itself the user
can just code any complexity of the figure wanted. Additionally gi/[FTEX interface enables one to use the

famous high quality typesetting within the figures.

A major part of X on top of the already described basis is the provision of high level functionality for complex
tasks like 2d plots in publication-ready quality.

CONTENTS

Introduction 1
1.1 Organisation of the/R package. e 1
Basic graphics 3
2.1 Introduction L e e 3
2.2 Pathoperations e e 4
2.3 Attributes: Stylesand Decorations e 6
24 Modulepath . . . 7
25 Modulecanvas e e 11
Module text : TEX/IATEX interface 13
3.1 Basicfunctionality. 13
3.2 TheteXrunner e 13
3.3 TEX/MATRX attributes e 15
3.4 Usingthe graphics-bundle withTEX o o o oo 15
3.5 TEX/ATEX MEeSSAQEe PArSEIS. . . v v v o v i e e e e e e e e e e 16
3.6 Thedefaulttexrunnerinstance. e e 16
Graphs 17
4.1 IntroduCtion e e e 17
4.2 Componentarchitecture e 18
4.3 X-Y-Graphs 19
44 Data e e e e 20
45 Styles. e e 22
4.6 KeBYS . . o e e e e 25
Axes 27
5.1 0 AXES . . o e e 27
5.2 TiCKS . . . e 29
5.3 Partitioners. e e e e e 30
54 Texter.o e e e e 31
5.5 Painter 33
5.6 Rater. e e e e 34
Module box: convex box handling 37
6.1 polygon. . . . o e 37
6.2 functionsworkingonahboxlist. e 38
6.3 rectangularboxes. e e 38
Module connector 39
7.1 Classline. o e e 39
7.2 ClassarC. o o o e 39
7.3 ClassS CUIVE o e e e e e e e 39
7.4 Classtwolines. e 40

10

11

12

m O O @ >»

Module epsfile: EPS file inclusion

Module bbox

9.1 bboxconstructor. e
9.2 bboxmethods.

Module color

10.1 Colormodels.
10.2 Example
10.3 Colorpalettes

Module unit

11.1 Classlength.
11.2 Subclassesoflength
11.3 Conversionfunctions.

Module trafo: linear transformations

12.1 Classtrafo. e
12.2 Subclassesoftrafo.

Mathematical expressions
Named colors

Named palettes

Module style

Arrows in deco module

Index

41

43

.................. 43

55

57

59

61

CHAPTER
ONE

Introduction

RX is a Python package for the creation of vector drawings. As such it allows one to readily generate encap-
sulated PostScript files by providing an abstraction of the PostScript graphics model. Based on this layer and in
combination with the full power of the Python language itself, the user can just code any complexity of the figure
wanted. ¥X distinguishes itself from other similar solution by itgXVIATEX interface that enables one to make
directly use of the famous high quality typesetting of these programs.

A major part of X on top of the already described basis is the provision of high level functionality for complex
tasks like 2d plots in publication-ready quality.

1.1 Organisation of the RXX package

The RX package is split in several modules, which can be categorised in the following groups

Functionality Modules

basic graphics functionality canvas , path , deco, style ,color , andconnector

text output via EX/IATEX text andbox

linear transformations and unitstrafo andunit

graph plotting functionality graph (including sub modules) amgraph.axis (including sub modules)
EPS file inclusion epsfile

These modules (and some other less import ones) are imported into the module namespace by using
from pyx import *

at the beginning of your Python program. However, in order to prevent namespace pollution, you may also simply
use import pyx . Throughout this manual, we shall always assume that former import line form has been
used.

CHAPTER
TWO

Basic graphics

2.1 Introduction

The path module allows one to construct PostScriptii&ths which are one of the main building blocks for the
generation of drawings. A PostScript path is an arbitrary shape built up of straight lines, arc segments and cubic
Bezier curves. Such a path does not have to be connected but may also consist of multiple connected segments,
which will be calledsub pathsn the following.

Usually, a path is constructed by passing a list of the path primitivegeto , lineto , curveto , etc., to the
constructor of thgpath class. The following code snippet, for instance, defines app#that consists of a straight
line from the point(0, 0) to the point(1, 1)

from pyx import *
p = path.path(path.moveto(0, 0), path.lineto(1, 1))

Equivalently, one can also use the predefipath subclasdine and write

p = path.line(0, 0, 1, 1)

While you can already do some geometrical operations with the just created path (see next section), we need
another ¥X object in order to be actually able to draw the path, namely an instance chthas class. By
convention, we use the narador this instance:

¢ = canvas.canvas()
In order to draw the path on the canvas, we usestreke() = method of thecanvas class, i.e.,

c.stroke(p)
c.writeEPSfile("line™)

To complete the example, we have addediteEP Sfile() call, which writes the contents of the canvas into
the given file.

Let us as second example define a path which consists of more than one sub path:

cross = path.path(path.moveto(0, 0), path.rlineto(1, 1),
path.moveto(1, 0), path.rlineto(-1, 1))

The first sub path is again a straight line fré¢f0) to (1, 1), with the only difference that we now have used the
rlineto class, whose arguments count relative from the last point in the path. The secertb instance
opens a new sub path starting at the p¢int)) and ending a0, 1). Note that although both lines intersect at the

not closed closed filled

Figure 2.1: Not closed (left) and closed (midlle) rectangle. Filling a path (right) always closes it automatically.

point (1/2,1/2), they count as separate sub paths. The general rule is that each occuremmestaf opens a
new sub path. This means that if one wants to draw a rectangle, one should not use

wrong: do not use moveto when you want a single sub path

rectl = path.path(path.moveto(0, 0), path.lineto(0, 1),
path.moveto(1, 0), path.lineto(1, 1),
path.moveto(1, 1), path.lineto(1, 1),
path.moveto(0, 1), path.lineto(0, 0))

which would construct a rectangle consisting of four disconnected sub paths. Instead the correct way of defining
arectangle is

correct: a rectangle consisting of a single closed sub path

rect2 = path.path(path.moveto(0, 0), path.lineto(0, 1),
path.lineto(1, 1), path.lineto(1, 0),
path.closepath())

Note that for the last straight line of the rectangle (frd¢fp1) back to the origin af0,0))) we have used
closepath . This directive adds a straight line from the current point to the first point of the current sub path and
furthermoreclosesthe sub path, i.e., it joins the beginning and the end of the line segment. The difference can be
appreciated in Fig. 2.1, where also a filled (and at the same time stroked) rectangle is shown. The corresponding
code looks like

c.stroke(rectl, [deco.filled([color.grey(0.95)])])

The important point to remember here is that when filling a path, PostScript automatically closes it. More details
on the available path elements can be found in Sect. 2.4.2.

XXX more on styles and attributes and reference to corresponding section

Of course, rectangles are also predefined/y Bo above we could have as well written
rect2 = path.rect(0, 0, 1, 1)

Here, the first two arguments specify the origin of the rectangle while the second two arguments define its width
and height, respectively. For more details on the predefined paths, we refer the reader to Sect. 2.4.4.

2.2 Path operations

Often, one not only wants to stroke or fill a path on the canvas but before do some geometrical operations with
it. For instance, one might want to intersect one path with another one and the split the paths at the intersection
points and then join the segments together in a new wa¢.sipports such tasks by means of a number of path
methods, which we will introduce in the following.

Suppose you want to draw the radii to the intersection points of a circle with a straight line. This task can be done

4 Chapter 2. Basic graphics

using the following code which gives the result shown in Fig. 2.2
from pyx import *
¢ = canvas.canvas()

circle = path.circle(0, 0, 2)
line = path.line(-3, 1, 3, 2)
c.stroke(circle, [style.linewidth.Thick])
c.stroke(line, [style.linewidth.Thick])

isects_circle, isects_line = circle.intersect(line)
for isect in isects_circle:
c.stroke(path.line(0, 0, *circle.at(isect)))

c.writeEPSfile("radii")

Passing another path, hdiee, to theintersect() method ofcircle, we obtain a tuple of parameter val-

ues of the intersection points. The first element of the tuple is a list of parameter values for the path whose
intersect() method we have called, the second element is the corresponding list for the path passed as ar-
gument to this method. In the present example, we only need one list of parameter values,iseatelgircle

Iterating over the elements of this list, we draw the radii, usingatife path method to obtain the point corre-
sponding to the parameter value.

Another powerful feature of/X is its ability to split paths at a given set of parameters. For instance, in order to
fill in the previous example the segment of the circle delimited by the straight line (cf. Fig. 2.2), you first have to
construct a path corresponding to the outline of this segment. The following code snippet does yssdrtiest

arcl, arc2 = circle.split(isects_circle)
arc = arcl.arclen()<arc2.arclen() and arcl or arc2

isects_line.sort()
linel, line2, line3 = line.split(isects_line)

segment = line2 << arc

Here, we first split the circle using tteplit() method passing the list of parameters obtained above. Since the
circle is closed, this yields two arc segments. We then usartien() , which returns the arc length of the

2.2. Path operations 5

path, to find the shorter of the two arcs. Before splitting the line, we have to take into account taltt{he

method only accepts a sorted list of parameters. Finally, we join the straight line and the arc segment. For this, we
make use of the< operator, which not only adds the paths (which could be done ubi&®‘ + arc '), but

also joins the last sub path bifie2 and the first one ofirc. Thus,segmentonsists of only a single sub path and

filling works as expected.

An important issue when operating on paths is the parametrisation used. Intespaliisdd a parametrisation
which uses an interval of lengthfor each path element of a path. For instance, for a simple straight line, the
possible parameter values range frorno 1, corresponding to the first and last point, respectively, of the line.
Appending another straight line, would extend this range to a maximal val@e ¥bu can always query this
maximal value using theange() method of thepath class.

However, the situation becomes more complicated if more complex objects like a circle are involved. Then,
one could be tempted to assume that again the parameter value rangetlsxdmbecause the predefined circle

consists just of onarc together with aclosepath element. However, as a simpleath.circle(0, 0,

1).range() ' will tell, this is not the case: the actual range is much larger. The reason for this behaviour lies

in the internal path handling ofR: Before performing any non-trivial geometrical operation with a path, it will
automatically be converted into an instance of tleempath class (see also Sect. 2.4.3). These so generated
paths are already separated in their sub paths and only contain straight lines and Bézier curve segments. Thus, as
is easily imaginable, they are much simpler to deal with.

A unique way of accessing a point on the path is to use the arc length of the path segment from the first point of
the path to the given point. Thus, ajpPpath methods that accept a parameter value also allow the user to pass
an arc length. For instance,

from math import pi

ptl
pt2

path.circle(0, 0, 1).at(arclen=pi)
path.circle(0, 0, 1).at(arclen=3*pi/2)

c.stroke(path.path(path.moveto(*ptl), path.lineto(*pt2)))
will draw a straight line from a point at angl&80 degrees (in radians) to another point at angt&r0 degrees (in
radians3r/2) on the unit circle.
More information on the available path methods can be found in Sect. 2.4.1.

2.3 Attributes: Styles and Decorations

XXX to be done

6 Chapter 2. Basic graphics

2.4 Module path

Thepath module defines several important classes which are documented in the present section.

2.4.1 Class path — PostScript-like paths

classpath (*pathelg
This class represents a PostScript like path consisting of the path elgraémts

All possible path elements are described in Sect. 2.4.2. Note that there are restrictions on the first path
element and likewise on each path element afteloaepath directive. In both cases, no current point

is defined and the path element has to be an instance of one of the following classeso , arc , and

arcn .

Instances of the clagmth provide the following methods (in alphabetic order):

append (pathe)
Appends gathelto the end of the path.

arclen ()
Returns the total arc length of the pdth.

arclentoparam (lengthg
Returns the parameter values corresponding to the arc |elegifhs’

at (param=None, arclen=None
Returns the coordinates (as 2-tuple) of the path point corresponding to the parameteparalmeor,
alternatively, the arc lengthrclen The parameter valuparam (arclen) has to be smaller or equal to
self.range() (self.arclen()), otherwise an exception is raised. At discontinuities in the path, the
limit from below is returned.

bbox ()
Returns the bounding box of the path. Note that this returned bounding box may be too large, if the path
contains anycurveto elements, since for these the control box, i.e., the bounding box enclosing the
control points of the Bézier curve is returned.

begin ()
Returns the coordinates (as 2-tuple) of the first point of the path.

curvradius (param=None, arclen=None
Returns the curvature radius (or None if infinite) at parameter param or, alternatively, arcdecigth
This is the inverse of the curvature at this parameter Please note that this radius can be negative or positive,
depending on the sign of the curvattire.

end ()
Returns the coordinates (as 2-tuple) of the end point of thefpath.

intersect (opath
Returns a tuple consisting of two lists of parameter values corresponding to the intersection points of the
path with the other patbpath respectively.

joined (opath
Appendsopathto the end of the path, thereby merging the last sub path (which must not be closed) of the
path with the first sub path afpathand returns the resulting new pdth.

range ()
Returns the maximal parameter vaperamthat is allowed in the path methods.

reversed ()
Returns the reversed paith.

split (param3

Splits the path at the parametgrarams which have to be sorted in ascending order, and returns a corre-
sponding list olhormpath instances.

2.4. Module path 7

tangent (param=None, arclen=None, length=None
Return aline instance corresponding to the tangent vector to the path at the parametepasduoeor,
alternatively, the arc lengthrclen The parameter valuparam (arclen) has to be smaller or equal to
self.range() (self.arclen()), otherwise an exception is raised. At discontinuities in the path, the
limit from below is returned. Ifengthis notNone, the tangent vector will be scaled correspondirigly.

trafo (param=None, arclen=None
Returns a trafo which maps a poiftt, 1) to the tangent vector to the path at the parameter vaduiam
or, alternatively, the arc lengtérclen The parameter valugaram (arclen) has to be smaller or equal to
self.range() (self.arclen()), otherwise an exception is raised. At discontinuities in the path, the
limit from below is returned.

transformed (trafo)
Returns the path transformed according to the linear transformtadifon Here trafo must be an instance
of thetrafo.trafo class!

Some notes on the above:

e The 1 denotes methods which require a prior conversion of the path inrmpath instance. This is
done automatically, but if you need to call such methods often or if you need to change the precision used
for this conversion, it is a good idea to manually perform the conversion.

e Instead of using thined() = method, you can also join two paths together with help oktheperator,
forinstancep = pl « p2".

¢ In the methods accepting both a parameter v@laeam and an arc lengtlarclen, exactly one of these
arguments has to provided.

2.4.2 Path elements

The clasgathel s the superclass of all PostScript path construction primitives. It is never used directly, but
only by instantiating its subclasses, which correspond one by one to the PostScript primitives.

Except for the path elements ending ipt , all coordinates passed to the path elements can be given as number
(in which case they are interpreted as user units with the currently set default typeyXrangths.

The following operation move the current point and open a new sub path:

classmoveto (X, y)
Path element which sets the current point to the absolute coordinat@s {This operation opens a new
subpath.

classrmoveto (dx, dy)
Path element which moves the current point thy, fly). This operation opens a new subpath.

Drawing a straight line can be accomplished using:

classlineto (x,y)
Path element which appends a straight line from the current point to the point with absolute coordjnates (
y), which becomes the new current point.

classrlineto (dx, dy)
Path element which appends a straight line from the current point to the a point with relative coordinates
(dx, dy), which becomes the new current point.

For the construction of arc segments, the following three operations are available:

classarc (x,Y,r, anglel, anglep
Path element which appends an arc segment in counterclockwise direction with absolute coordigates (
of the center and radiusfrom anglelto angle2(in degrees). If before the operation, the current point is
defined, a straight line is from the current point to the beginning of the arc segment is prepended. Otherwise,
a subpath, which thus is the first one in the path, is opened. After the operation, the current point is at the
end of the arc segment.

8 Chapter 2. Basic graphics

classarcn (X, vy, r, anglel, angleR
Path element which appends an arc segment in clockwise direction with absolute coordingtes the
center and radiusfrom anglelto angle2(in degrees). If before the operation, the current point is defined,
a straight line is from the current point to the beginning of the arc segment is prepended. Otherwise, a
subpath, which thus is the first one in the path, is opened. After the operation, the current point is at the end
of the arc segment.

classarct (x1,yl,x2,y2,¥
Path element which appends an arc segment of radioanecting betweerxy, y1) and 2, y2).

Bézier curves can be constructed using:

classcurveto (x1,yl, x2,y2, x3, 3
Path element which appends a Bézier curve with the current point as first control point and the other control
points 1, y1), (x2, y2), and &3, y3).

classrcurveto (dx1, dyl, dx2, dy2, dx3, dy3
Path element which appends a Bézier curve with the current point as first control point and the other control
points defined relative to the current point by the coordinate$ @y1), (dx2 dy2), and ¢x3 dy3.

Note that when calculating the bounding box (see Sect. 9) of Bézier cupxesses for performance reasons the
so-called control box, i.e., the smallest rectangle enclosing the four control points of the Bézier curve. In general,
this is not the smallest rectangle enclosing the Bézier curve.

Finally, an open sub path can be closed using:

classclosepath ()
Path element which closes the current subpath.

For performance reasons, two non-PostScript path elements are defined, which perform multiple identical opera-
tions:

classmultilineto_pt (pointg
Path element which appends straight line segments starting from the current point and going through the list
of points given in theointsargument. All coordinates have to be given in PostScript points.

classmulticurveto_pt (pointy
Path element which appends Bézier curve segments starting from the current point and going through the
list of each three control points given in theintsargument.

2.4.3 Class normpath

Thenormpath class represents a specialized form @lagh containing only the elementaoveto , lineto
curveto andclosepath . Such normalized paths are used for all of the more sophisticated path operations
which are denoted by fin the description of thpath class above.

Any path can easily be converted to its normalized form by passing it as parametentortipath constructor,
np = normpath(p)

Additionally, you can specify the accuracy (in points) which is used imalmpath calculations by means of
the keyword argumerepsilon which defaults tal0—>. Note that the sum of aormpath and apath always
yields anormpath .

classnormpath (arg=[], epsilon=1e-5
Construct a normpath fromrg. All numerical calculations will be performed using an accuracy of the order
of epsilonpoints. The first argumetrg can be gath or a anothenormpath instance. Alternatively, a
list of normsubpath instances can be supplied as argument.

In addition to thepath methods, anormpath instance also offers the following methods, which operate on the
instance itself:

join (other

2.4. Module path 9

Joinother, which has to be path instance, to th@ormpath instance.

reverse ()
Reverses thaormpath instance.

transform (trafo)
Transforms theormpath instance according to the linear transformaticfo.

2.4.4 Predefined paths

For your convenience, some oft-used paths are already pre-defined. All of them are sub clasgestiof thass.

classline (x1,yl, x2,y2,x3,y3
A straight line from the point(l, y1) to the point &2, y2).

classcurve (x1,y1, x2,y2, x3,y3, x4, y4
A Bézier curve with control pointQ, y0), .. ., (x3, y3).

classrect (x,y,w,h
A closed rectangle with lower left poink,(y), width w, and heighh.

classcircle (x,y,1
A closed circle with centerx(y) and radius.

10 Chapter 2. Basic graphics

2.5 Module canvas

One of the central modules for the PostScript accessXhi®namedcanvas . Besides providing the class
canvas , which presents a collection of visual elements like paths, other canvasésr TATEX elements, it
contains the classanvas.clip which allows clipping of the output.

A canvas may also be embedded in another one usimgsigst method. This may be useful when you want to
apply a transformation on a whole set of operations..

2.5.1 Class canvas

This is the basic class of the canvas module, which serves to collect various graphical and text elements you want
to write eventually to an (E)PS file.

classcanvas (attrs=[], texrunner=Nong
Construct a new canvas, applying the givatirs, which can be instances dfrafo.trafo ,
canvas.clip , style.strokestyle or stlye fillstyle . Thetexrunnerargument can be used
to specify the texrunner instance used fortidnet() method of the canvas. If not specified, it defaults to
text.defaulttexrunner

Paths can be drawn on the canvas using one of the following methods:

draw (path, attrg
Drawspathon the canvas applying the givattrs.

fill (path, attrs=[])
Fills the givenpathon the canvas applying the givettrs.

stroke (path, attrs=[])
Strokes the givepathon the canvas applying the givelttrs.

Arbitrary allowed elements like otheanvas instances can be inserted in the canvas using

insert (PSOp, attrs=[)
Inserts an instance dfase.PSOp into the canvas. Ifttrs are present, PSOp is inserted into a new
canvas instance withattrs as arguments passed to its constructor is created. Theratigas instance is
inserted itself into the canvas. RetufdSOp

Text output on the canvas is possible using

text (x, Y, text, attrs=[)
Inserts text at position & y) into the canvas applyingattrs. This is a shortcut for
insert(texrunner.text(x, y, text, attrs))).

Thecanvas class provides access to the total geometrical size of its element:

bbox ()
Returns the bounding box enclosing all elements of the canvas.

A canvas also allows one to set global options:

set (styles
Sets the givestyles(instances oftyle.fillstyle or style.strokestyle or subclasses thereof).
for the rest of the canvas.

settexrunner (texrunnej
Sets a nevtexrunnerfor the canvas.

The contents of the canvas can be written using:

writeEPSfile (filename, paperformat=None, rotated=0, fittosize=0, margin="1t cm", bbox=None, bboxen-
large="1t pt")
Writes the canvas tblename(the extensioneps is appended automatically). Optionallypaperformat
can be specified, in which case the output will be centered with respect to the corresponding size using the
givenmargin Seecanvas._paperformat®r a list of known paper formats . Usetated if you want to
center on &@0° rotated version of the respective paper formatffitibsizeis set, the output is additionally

2.5. Module canvas 11

scaled to the maximal possible size. Normally, the bounding box of the canvas is calculated automatically
from the bounding box of its elements. Alternatively, you may specifythex manually. In any case,

the bounding box becomes enlarged on all siddbgxenlarge This may be used to compensate for the
inability of RX to take the linewidths into account for the calculation of the bounding box.

2.5.2 Patterns

Thepattern class allows the definition of PostScript Tiling patterns (cf. Sect. 4.9 of the PostScript Language
Reference Manual) which may then be used to fill paths. The clasgesn andcanvas differ only in their
constructor and in the absence ofiateEP Sfile() method in the former. Theattern constructor accepts

the following keyword arguments:

keyword description

painttype 1 (default) for coloured patterns @rfor uncoloured patterns

tilingtype 1 (default) for constant spacing tilings (patterns are spaced constantly by a multiple of a
device pixel),2 for undistored pattern cell, whereby the spacing may vary by as much as
one device pixel, 08 for constant spacing and faster tiling which behaves as tiling 1ype
but with additional distortion allowed to permit a more efficient implementation.

xstep desired horizontal spacing between pattern cellsNe® (default) for automatic
calculation from pattern bounding box.

ystep desired vertical spacing between pattern cells,Niziee (default) for automatic calculation
from pattern bounding box.

bbox bounding box of pattern. Usdone for an automatical determination of the bounding box
(including an enlargement bypts on each side.)

trafo additional transformation applied to patternNwne (default). This may be used to rotate

the pattern or to shift its phase (by a translation).

After you have created a pattern instance, you define the pattern shape by drawing in it like in an ordinary canvas.
To use the pattern, you simply pass the pattern instancestimke() |, fill() ,draw() orset() method
of the canvas, just like you would do with a colour, etc.

12

Chapter 2. Basic graphics

CHAPTER
THREE

Module text : TEX/IATEX interface

3.1 Basic functionality

Thetext module seamlessly integrates the famous typesetting techniqX@fTEX into RX. The basic pro-
cedure is:

e start a EX/IATEX instance as soon as apXVIATEX preamble setting or a text creation is requested
e create boxes containing the requested text and shipout those boxes to the dvi file

e immediately analyse thegX/IATEX output for errors; the box extents are also contained in EATEX
output and thus become available immediately

e when your TeX installation supports tifgc mode and X is configured to use it, the dvi output is also
analysed immediately; alternativeyPquits the BX/IATEX instance to read the dvi output once PostScript
needs to be written or markers are accessed

e Typel fonts are used for the PostScript generation

Note that for using Typel fonts an appropriate font mapping file has to be provided. Whergfoust&llation

is configured to use Typel fonts by default, gefonts.map will contain entries for the standargX fonts
already. Alternatively, you may either look for updmap used by ma{imstallations to create an appropriate
font mapping file or you may specify some alternative font mapping filesp#fents.cmz in the pyxrc or
thefontmaps keyword argument of theexrunner constructor (or theet method).

3.2 The texrunner

Instances of the clagexrunner represent agX/IATEX instance. The keyword arguments of the constructor
are listed in the following table:

13

keyword description

mode "tex" (default) or'latex"

Ifs Specifies a latex font size file to be used wigkTnot in IATEX).
Those files (with the suffidfs) can be created by
createlfs.tex . Possible values are listed when a requested
name could not be found.

docclass IATEX document class; default farticle"

docopt specifies options for the document class; defaultase

usefiles access to gX/IATeX jobname files; defaultNone; example:
['spam.aux”, "eggs.log"]

fontmaps whitespace separated names of font mapping files; default
"psfonts.map"

waitfortex wait this number of seconds for gX/IATEX response; defauiO

showwaitfortex show a message about waiting f@XTATEX response omstrerr
default5

texipc use theipc option of TEX/IATEX for immediate dvi-output access
(boolean); check the output tdx -help if this option is
available in your EX/IATEX installation; defaulD

texdebug filename to storegX/IATEX commands; defaullione

dvidebug dvi debug messages liklvitype (boolean); defaul®

errordebug verbose level of BX/IATEX error messages; valid values &gl
(default),2

pyxgraphics enables the usage of the graphics package without further
configuration (boolean); default 1

texmessagesstart parsers for thegxX/IATEX start message; default:

texmessagesdocclass
texmessagesbegindoc

texmessagesend

texmessagesdefaultpreamble

texmessagesdefaultrun

[texmessage.start]

parsers forAIeXs \documentclass statement; default:
[texmessage.load]

parsers forAIpXs \begin{document} statement; default:
[texmessage.load, texmessage.noaux]

parsers for g@Xs\end / IATpXs \end{document} statement;
default: [texmessage.texend]

default parsers for preamble statements; default:
[texmessage.load]

default parsers for text statements; default:
[texmessage.loadfd, texmessage.graphicsload]

The default values of the parametdomtmaps , waitfortex , showwaitfortex , andtexipc can be

modified in thetext section of gpyxrc .

Thetexrunner instance provides several methods to be called by the user. First there is a methosktallkd
takes the same kewword arguments as the constructor and its purpose is to provide an accesgtmtiee

settings for a given instance. This is important for tregaulttextunner . Theset method fails, when a
modification can’'t be applied anymore (e.geXIIATEX was already started).

Thepreamble method can be called before ttext method only (see below). It takes pXVIATEX expression

and optionally a list of EX/IATEX message parsers. The preamble expressions should be used to perform global
settings, but should not create argXfATEX dvi output. In BTEX, the preamble expressions are inserted before
the \begin{document} statement. Note, that you can uggBeginDocumentf...} to postpone the

direct evaluation.

Finally there is @ext method. The first two parameters are thandy position of the output to be generated.
The third parameter is g2XK/LATEX expression. There are two further keyword arguments. Thetiodhttrs ,

is a list of TEX/IATEX settings as described below)®ransformations, and/R fill styles (like colors). The second
keyword argumentexmessages takes a list of EX/IATEX message parsers as described below as well. The
text method returns a box (see chapter 6), which can be inserted into a canvas instanéeseytits method

to get the text.

The box returned by thiext method has an additional metharker . You can place markers in theU/IATEX
expression by the commanByXMarker{<string>} . When calling themarker method with the same

14 Chapter 3. Module text : TEX/IATEX interface

valign.top

— parbox.top

valign.middle —

— parbox.middle

parbox.bottom

valign.bottom

Figure 3.1: valign example

<string> you can get back the position of the marker later on. Only digits, letters ar@<mbol are allowed
within the string. Strings containing ti@symbol are not considered for end users like it is done for commands
including the@symbol in BTEX.

Note that for the generation of the PostScript code the/[FTEX instance must be terminated except when
texipc is turned on. However, agK/IATEX instance is started again when ttlext method is called again.
A call of thepreamble method will still fail, but you can explicitly call theeset method to allow for new
preamble settings as well. Theeset method takes a boolean parametinit which can be set to run the
old preamble settings.

3.3 TpX/ETEX attributes

Horizontal alignment: halign.left (default),halign.center , halign.right , halign(x) (xisa
value betwee and1 standing for left and right, respectively)

Vertical alignment: valign.top , valign.middle , valign.bottom , valign.baseline (default);
see the left hand side of figure 3.1

Vertical box: Usually, EX/IATEX expressions are handled in horizontal mode (so-called LR-modeXAATEX;
everything goes into a single line). You may ysebox(x) , wherex is the width of the text, to switch
to a multiline mode (so-called vertical mode ipXTIATEX). The additional keyword parameteaseline
allows the user to alter the position of the baseline. It can be getrtmox.top (default),
parbox.middle , parbox.bottom (see the right hand side of figure 3.1). The baseline position is
relevant when the vertical alignment is set to baseline only.

Vertical shift: vshift(lowerratio, heightstr="0") (lowers the output bjowerratio of the
height ofheightstr), vshift.bottomzero=vshift(0) (doesn't have an effect),
vshift.middlezero=vshift(0.5) (shifts down by half of the height df),
vshift.topzero=vshift(1) (shifts down by the height d@), vshift. mathaxis (shifts down
by the height of the mathematical axis)

Mathmode: mathmode switches to mathmode ofX/IATEX in \displaystyle (nomathmode removes
this attribute)

Font size: size.tiny=size(-4) , Size.scriptsize=size(-3) ,
size.footnotesize=size(-2) , Size.small=size(-1) , Size.normalsize=size(0) ,
(default),size.large=size(1) , Size.Large=size(2) , size.LARGE=size(3)
size.huge=size(4) , Size.Huge=size(5)

3.4 Using the graphics-bundle with IATEX

The packages inATpX-graphics bundle (color.sty, graphics.sty, graphicx.sty, ...) make extensive use of
\special commands. Here are some notes on this topic. Please install the appropriate driver file

3.3. TEX/WTEX attributes 15

pyx.def , which defines all the specials, in yo#TgX-tree and add the content of both fileslor.cfg and
graphics.cfg to your personal configuration filésAfter you have installed thecfg files please use the
text module always with th@yxgraphics keyword set to 0, this switches off a hack that might be conve-
nient for less experiencedleX-users.

You can then import the packages of the graphics-bundle and related packages (e.g. rotating, ...) with the op-
tion pyx , e.g.\usepackage[pyxJ{color,graphicx} . Please note that the optigiyx is only available

with pyxgraphics=0 and a properly installed driver file. Otherwise do not use this option, omit it completely

or say[dvips]

When defining colours imIX as one of the colour modefgray , cmyk, rgb , RGB hsb then X will use
the corresponding values (one to four real numbers) for output. When you use onaaftbd colors in ETpX
then X will use the corresponding predefined colour (see modaler and the colour table at the end of the
manual).

When importing eps-graphics iATEX then RX will rotate, scale and clip your file like you expect it. Note that
RyX cannot import other graphics files thaps at the moment.

For reference purpose, the following specials can be handled ligxhe module at the moment:

PyX:color_begin (model) (spec)
starts a colour. (model) is one ofifay , cmyk, rgb , hsb, texnamed }. (spec) depends on the model: a
name or some numbers.

PyX:color_end ends a colour.

PyX:epsinclude file= lix= lly= urx= ury= width= height= clip=0/1
includes an eps-file. The values of lIx to ury are in the files’ coordinate system and specify the part of the
graphics that should become the specified width and height in the outcome. The graphics may be clipped.
The last three parameters are optional.

PyX:scale_begin (x) (y)
begins scaling from the current point.
PyX:scale_end ends scaling.
PyX:rotate_begin (angle) begins rotation around the current point.
PyX:rotate_end ends rotation.

3.5 TpX/BTEX message parsers

Message parsers are used to scan the outpuXIATEX. The output is analysed by a sequence of message
parsers. Each of them analyses the output and remove those parts of the output, it feels responsible for. If there is
nothing left in the end, the message got validated, otherwise an exception is raised reporting the problem.

parser name purpose
texmessage.load loading of files (accep(ffile ...))
texmessage.loadfd loading of files (accep(file.fd))
texmessage.graphicsload loading of graphic files (accegfile.eps>)
texmessage.ignore accept everything as a valid output

More specialised message parsers should become available as required. Please feal free to contribute (e.g. with
ideas/problems; code is desired as well, of course). There are further message pargXssifaefal use, but
we skip them here as they are not interesting from the users point of view.

3.6 The defaulttexrunner instance

Thedefaulttexrunner is an instance of the clagasxrunner , which is automatically created by thext
module. Additionally, the methodsext , preamble , andset are available as module functions accessing the
defaulttexrunner . This singletexrunner instance is sufficient in most cases.

1If you do not know what | am talking about right now — just ignore this paragraph, but make sure not tometgraphics keyword
to 0.

16 Chapter 3. Module text : TEX/IATEX interface

CHAPTER
FOUR

Graphs

4.1 Introduction

R/X can be used for data and function plotting. At present only x-y-graphs are supported. However, the component
architecture of the graph system described in section 4.2 allows for additional graph geometries while reusing most
of the existing components.

Creating a graph splits into two basic steps. First you have to create a graph instance. The most simples form
would look like:

from pyx import *
g = graph.graphxy(width=8)

The graph instancg created in this example can than be used to actually plot something into the graph. Suppose
you have some data in a filgraph.dat’ you want to plot. The content of the file could look like:

2
3
8
13

18
21

OO0 WNBE

To plot these data into the graghyou must perform:
g.plot(graph.data.file("graph.dat”", x=1, y=2))

The methodplot() takes the data to be plotted and optionally a graph style to be used to plot the data. When
no style is provided, a default style defined by the data instance is used. For data read from a file by an instance of
graph.data.file , the default are symbols. When instantiatgrgph.data.file , you not only specify

the file name, but also a mapping from columns to axis names and other information the style migtd.ase

for error bars for the symbol style).

While the graph is already created by that, we still need to perform a write of the result into a file. Since the graph
instance is a canvas, we can just calltsteEPSfile() method.

g.writeEPSfile("graph")
will create the file graph.eps’ as shown in figure 4.1.

Instead of plotting data from a file, we could also use other data sources like functions. The procedure would be
as before, but we would place different data iptot()

17

25 . T Ll T Ll T T T

20 | 2
X J
15 | -
X
10 f .
X
5 L]
X X
0 1 1 1 1 1 1 1
1 2 3 4 5 6

Figure 4.1: A minimalistic plot for the data from filgraph.dat’.

g.plot(graph.data.function("y=x**2"))

You can plot different data into a single graph by calling phet() several times. Thus the command above

might just be inserted beforgriteEPSfile() of the original example. Note that a callpdot() will fail
once you forced the graph to “finish” itself. This happens automatically, when you write the output. Thus it is not
an option to calplot() afterwriteEPSfile() . The topic of the finalization of a graph is addressed in more

detail in section 4.3. As you can see in figure 4.2, a function is plotted as a line by default.

40 T T T T T T T T

0 L 1 L 1 L 1 L 1

1 2 3 4 5 6

Figure 4.2: Plotting data from a file together with a function.

4.2 Component architecture

Creating a graph involves a variety of tasks, which thus can be separated into components without significant
additional costs. This structure manifests itself also in thedeurce, where there are different modules for the
different tasks. They interact by some welldefined interfaces. They certainly has to be completed and stabilized in
its details, but the basic structure came up in the continuous development quite clearly. The basic parts of a graph
are:

graph
Defines the geometry of the graph by means of graph coordinates with range [0:1]. Keeps lists of plotted
data, axegtc.

data

18 Chapter 4. Graphs

Produces or prepare data to be plotted in graphs.

style
Performs the plotting of the data into the graph. It get data, convert them via the axes into graph coordinates
and uses the graph to finally plot the data with respect to the graph geometry methods.

key
Responsible for the graph keys.

axis
Creates axes for the graph, which take care of the mapping from data values to graph coordinates. Because
axes are also responsible for creating ticks and labels, showing up in the graph themselfs and other things,
this task is splitted into several independend subtasks. Axes are discussed separately in chapter 5.

4.3 X-Y-Graphs

The clasgraphxy is part of the modulgraph.graph . However, there is a shortcut to access this class via
graph.graphxy
classgraphxy (xpos=0, ypos=0, width=None, height=None, ratio=goldenmean, key=None, backgroundat-
) trs=None, axesdist="0.8 cm", **ax¢s .

This class provides a x-y-graph. A graph instance is also a full functional canvas.

The position of the graph on its own canvas is specifiedgmsandypos The size of the graph is specified

by width, height andratio. These parameters define the size of the graph area not taking into account the

additional space needed for the axes. Note that you have to specify awiddsor height ratio will be

used as the ratio betweerndth andheightwhen only one of these are provided.

keycan be set to graph.key.key instance to create an automatic graph Régne omits the graph key.

backgroundattrds a list of attributes for drawing the background of the graph. Allowed are decorators,
strokestyles, and fillstyle®None disables background drawing.

axisdistis the distance between axes drawn at the same side of a graph.

**axes recieves axes instances. Allowed keywords (axes names), a2, x3, etc. andy, y2, y3, etc.
When not providing & ory axis, linear axes instances will be used automatically. When not providing a
X2 ory2 axis, linked axes to the andy axes are created automatically. You may set those axXésrie

to disable the automatic creation of axes. The even numbered axes are plotted at yhaxtes) @nd right

(x axes) while the others are plotted at the bottanaxes) and lefty axes) in ascending order each. Axes
instances should be used once only.

Some instance attributes might be usefull for outside read-access. Those are:

axes
A dictionary mapping axes names to #rds instances.

axespos
A dictionary mapping axes names to dedspos instances.

To actually plot something into the graph, the following instance megtotf) is provided:

plot (data, style=Nong
Addsdatato the list of data to be plotted. Settylethe be used for plotting the data. Whstyleis None,
the default style for the data as provideddatais used.

datashould be an instance of any of the data described in section 4.4. This instance should used once only.

When a style is used several times within the same graph instance, it is kindly asked by the graph to iterate
its appearence. Its up to the style how this is performed.

Instead of calling the plot method several times with diffeatbut the same style, you can use a list (or
something iterateable) falata

While a graph instance only collects data initially, at a certain point it must create the whole plot. Once this
is done, further calls oplot() will fail. Usually you do not need to take care about the finalization of the
graph, because it happens automatically once you write the plot into a file. However, sometime position methods

4.3. X-Y-Graphs 19

(described below) are nice to be accessable. For that, at least the layout of the graph must be done. By calling
the do-methods yourself you can also alter the order in which the graph is plotted. Multiple calls the any of the
do-methods have no effect (only the first call counts). The orginal order in whictidhmethods are called is:

dolayout ()
Fixes the layout of the graph. As part of this work, the ranges of the axes are fitted to the data when the axes
ranges are allowed to addjust themselfs to the data ranges. Thalotmeethods ensure, that this method
is always called first.

dobackground ()
Draws the background.

doaxes ()
Inserts the axes.

dodata ()
Plots the data.

dokey ()
Inserts the graph key.

finish ()
Finishes the graph by calling all pendinip-methods. This is done automatically, when the output is
created.

The graph provides some methods to access its geometry:

pos (X, Yy, xaxis=None, yaxis=Noje
Returns the given point atandy as a tuplgxpos, ypos) at the graph canvas andy are axis data
values for the two axesaxisandyaxis Whenxaxisor yaxisareNone, the axes with names andy are
used. This method fails if called befodelayout()

vpos (vX, vy
Returns the given point atx andvy as a tuplgxpos, ypos) at the graph canvasix andvy are graph
coordinates with range [0:1].

vgeodesic (vx1, vyl, vx2, w2
Returns the geodesic between pointg vylandvxl, vylas a path. All parameters are in graph coordinates
with range [0:1]. Fographxy this is a straight line.

vgeodesic_el (vx1, vyl, vx2, vy2
Like vgeodesic() but this method returns the path element to connect the two points.

Further geometry information is available by #reespos instance variable. Shortcuts to taeispos methods
for thex andy axis become available aftdplayout() asgraphxy methodsXbasepath , Xvbasepath
Xgridpath , Xvgridpath , Xtickpoint ~ , Xvtickpoint , Xtickdirection , andXvtickdirection
where the prefiX stands foix andy.

4.4 Data

The following classes provide data for tipdot() method of a graph. The classes are implemented in
graph.data

classfile (filename, commentpattern=defaultcommentpattern, columnpattern=defaultcolumnpattern, string-
pattern=defaultstringpattern, skiphead=0, skiptail=0, every=1, title=notitle, parser=dataparser(),

context={}, **columng
This class reads data from a file and makes them available to the graph sfiistieameis the name of the

file to be read. The data should be organized in columns.

The argumentsommentpatterncolumnpatternandstringpatternare responsible for identifying the data
in each line of the file. Lines matchirmmentpatterare ignored except for the column name search of
the last non-emtpy comment line before the data. By default a line starting with one of the chatcters *
‘9%, or ‘!’ are treated as comments. A line is analysed by repeatingly matstringpatternand, whenever
the stringpattern does not match edglumnpattern When thestringpatternmatches, the result is taken as

20 Chapter 4. Graphs

the value for the next column without further transformations. We@nomnpatterrmatches, it is tried to
convert the result to a float. When this fails the result is taken as a string as well. By default, you can write
strings with spaces surrounded By immediately surrounded by spaces or begin/end of line in the data
file. Otherwise "’ is not taken to be special.

skipheadand skipfootare numbers of data lines to be ignored at the beginning and end of the file while
everyselects only evergveryline from the data.

title is the title of the data to be used in the graph key. A default title is constructed dilérafmeand
**columns You may setitle to None to disable the title.

parseris the parser for mathematical expression provide*@aolumns When in doubt, this is proba-
bly uninteresting for you.contextallows for accessing external variables and functions when evaluating
mathematical expressions for columns. As an example you magamext=locals() or something
similar.

Finally, columnsdefines the data columns. To make it a bit more complicated, there are file column names
and new created data column names, namely the keywordsatimns. File column names occure when

the data file contains a comment line immediately in front of the data. This line will be parsed skipping
the comment character (even if it occures multiple times) as if it would be regular data, but it will not
be converted to floats even if it would be possible to convert them. The valugsadfimns can refer

to column numbers in the file (starting with). The columnO is also available and contains the line
number starting fronl not counting comment lines. Furthermore values@blumns can be strings:

file column names or mathematical expressions. To refer to columns within mathematical expressions
you can also use file column names when they are valid variable names or by the &yntember>

or even$(<expression>) , Where<number> is a non-negative integer argxpression> a valid
mathematical expression itself. For the later negative numbers count the columns from the end. Example:

graph.data.file("test.dat", a=1, b="B", c="2*B+$3")

with ‘test.dat’ looking like:

#A BC
1234 1 2
5.678 3 4

The columns with namea’, ‘b’, ‘¢’ will become 1.234, 5.678] ', '[1.0, 3.0] ', and ‘[4.0,
10.0] ’, respectively.

When creating the several data instances accessing the same file, the file is read only once. There is an
inherent caching of the file contents.

For the sake of completeness the default patterns:

defaultcommentpattern
re.compile(r" (#+|!+|%+)\s*")

defaultcolumnpattern
re.compile(r'\"(.*?)\"(\s+|$)")

defaultstringpattern
re.compile(r"(.*?)(\s+|$)")

classfunction (expression, title=notitle, min=None, max=None, points=100, parser=mathtree.parser(), con-

text={})
This class creates graph data from a functiexpressions the mathematical expression of the function. It

must also contain the result variable name by assignment. Thus a typical example looksdikéx) .

title is the title of the data to be used in the graph key. By defexjtressioris used. You may sditle to
None to disable the title.

min andmaxgive the range of the variable. If not set the range spans the hole axis range. The axis range
might be set explicitly or implicitly by ranges of other dafaointsis the number of points for which the
function is calculated. The points are lineary choosen in terms of graph coordinates.

4.4. Data 21

parser is the parser for the mathematical expression. When in doubt, this is probably uninteresting
for you. contextallows for accessing external variables and functions. As an example you may use
context=locals() or something similar.

Note when accessing external variables: When doing so, at first it renders unclear, which of the variables
should be used as the dependent variable. The solution is, that there should be exactly one variable, which
is a valid and used axis name. Example:

[graph.data.function("y=x**i", context=locals()) for i in range(l, 5)]

The result of this expression could just be passed to a gptiy method, since not only data instances
but also lists of data instances are allowed.

classparamfunction (varname, min, max, expression, title=notitle, points=100, parser=mathtree.parser(),

context={})
This class creates graph data from a parametric functimmameis the parameter of the functiominand

maxgive the range for that variablpointsis the number of points for which the function is calculated. The
points are choosen lineary in terms of the parameter.

expressiorns the mathematical expression for the parametric function. It contains an assignment of a tuple
of functions to a tuple of variables.

title is the title of the data to be used in the graph key. By defxjressions used. You may sditle to
None to disable the title.

parser is the parser for mathematical expression. When in doubt, this is probably uninteresting for
you. contextallows for accessing external variables and functions. As an example you may use
context=locals() or something similar.

classlist (points, title="user provided list", maxcolumns=None, addlinenumbers=1, **colymns
This class creates graph data from external provided gatatsis a list of lines, where each line is a list of
data values for the columns.

title is the title of the data to be used in the graph key.

maxcolumnis the number of columns in the points list. If setNone, the number of columns will be
calculated by cycling through the points. Each elemenpaifts i.e. each line, will be checked and
adjusted to the number of columns.

addlinenumberss a boolean indicating whether line numbers should be added or not. Note that the line
numbers are storred in colunn A transformation (sedata below) will always keep the first column.
When not adding line humbers, you should be aware, that the numberttigoinmns becomes different

form the usual case, where the first column containing data (not the line number) has column humber

The keywords of*columns become the data column names. The values are the column numbers starting
from one, wheraddlinenumberss turned on (the zeroth column is the line number then), while the column
numbers starts from zero, whaddlinenumberss switched off.

classdata (data, title=notitle, parser=dataparser(), context=, **columns
This class provides graph data out of other graph ddaé#ais the source of the data. All other paramters
work like the equally called parametersgnaph.data.file . Indeed, the later is build on top of this
class by reading the file and caching its contentsgnagh.data.list instance. The columns are then
selected by creating new data out of the existing data. Note that the data itself is not copied as long as no
new columns need to be calculated.

classconffile (filename, title=notitle, parser=dataparser(), context=, **columns
This class reads data from a config file with the file ndite@ame The format of a config file is described
within the documentation of th€onfigParser module of the Python Standard Library.

Each section of the config file becomes a data line. The options in a section are the columns. The name
of the options will be used as file column names. All other parameters work gaji.data.fileand
graph.data.dataince they all use the same code.

45 Styles

22 Chapter 4. Graphs

Please note that we're talking about graph styles here. Those are responsible for plotting symbols, lines, bars and
whatever else into a graph. Do not mix it up with path styles like the line width, the line style (solid, dashed,
dottedetc) and others.

The following classes provide styles to be used aflof() method of a graph. The classes are implemented
in graph.style

classsymbolline (symbol=changecross, size="0.2 cm", errorscale=0.5, symbolattrs=[], errorbarattrs=[],
lineattrs=[], epsilon=1e-10Q

This class is a style for plot symbols, lines and errorbars into a graghmbolrefers to a (changable)
symbol method (see below). The symbol is drawn at size(a visual X length; also changeable) using
symbolattrs symbolattrsare merged with the decoratdeco.stroked . errorscaleis the size of the error
bars compared to the symbol sizerorbarattrsandlineattrsare strokestyles for stroking the errorbars and
lines, respecivelineattrsare merged witlthangelinestylésee below)epsilonis used to determine, when
a symbol is outside of the graph (in graph coordinates).

symbollineis useable on graphs with arbitrary dimension and geometry. It needs one data column for each
graph dimension. The data hames must be equal to an axis name. Furthermore there can be data names
constructed out of the axis names for identifying data for the error bars. Sugpsss axis name. Then
symbolline allows for the following data names as well:

data name | description

Xmin minimal value

Xmax maximal value

Xd minimal and maximal delta
Xdmin minimal delta

Xdmax maximal delta

Minimal and maximal values are calculated from delta by subtracting and adding it to the value itself. Most
of the data names are mutal exclusive (whenever a minimal or maximal value would be set twice).

symbolline provides some symbol methods, namely:

cross (x_pt,y_pt, size_pt
A cross. Should be used for stroking only.

plus (x_pt,y_pt, size_pt
A plus. Should be used for stroking only.

square (Xx_pt, y_pt, size_pt
A square. Might be stroked or filled or both.

triangle (x_pt, y_pt, size_pt
A triangle. Might be stroked or filled or both.

circle (x_pt,y_pt, size_pt
A circle. Might be stroked or filled or both.

diamond (x_pt, y_pt, size_pt
A diamond. Might be stroked or filled or both.

symbolline provides some changeable symbol methods as class variables, namely:

changecross
attr.changelist([cross, plus, square, triangle, circle, diamond)])

changeplus
attr.changelist([plus, square, triangle, circle, diamond, cross])

changesquare
attr.changelist([square, triangle, circle, diamond, cross, plus])

changetriangle
attr.changelist([triangle, circle, diamond, cross, plus, square])

changecircle
attr.changelist([circle, diamond, cross, plus, square, triangle])

changediamond

4.5. Styles 23

attr.changelist([diamond, cross, plus, square, triangle, circle])

changesquaretwice
attr.changelist([square, square, triangle, triangle, circle, circle, diamond, diamond])

changetriangletwice
attr.changelist([triangle, triangle, circle, circle, diamond, diamond, square, square])

changecircletwice
attr.changelist([circle, circle, diamond, diamond, square, square, triangle, triangle])

changediamondtwice
attr.changelist([diamond, diamond, square, square, triangle, triangle, circle, circle])

symbolline provides two changeable decorators for alternated filling and stroking. Those are especially usefull
in combination with the&ehange -twice -symbol methods above. They are:

changestrokedfilled
attr.changelist([deco.stroked, deco.filled])

changefilledstroked
attr.changelist([deco.filled, deco.stroked])

Finally, there is a changeable linestyle used by default. It is defined as:

changelinestyle
attr.changelist([style.linestyle.solid, style.linestyle.dashed, style.linestyle.dotted,
style.linestyle.dashdotted])

classsymbol (symbol=changecross, size="0.2 cm", errorscale=0.5, symbolattrs=[], errorbarattrs=[],
epsilon=1e-10
This class is a style to plot symbols and errorbars into a graph. It is equivalsyinioollines except
that it does not allow for lines. An instance ®fmbol is the default style for all data classes described in
section 4.4 except fdunction andparamfunction

classline (errorbarattrs=[])
This class is a style to stroke lines into graph. It is equivalerstytobollines except that it does not
allow for symbols and errorbars. Thus it also does not accept data names for error bars. Instimees of
are the default style for the data clasfasction andparamfunction

classtext (textdx="0", textdy="0.3 cm", textattrs=[], symbol=changecross, size="0.2 cm", errorscale=0.5,

symbolattrs=[], errorbarattrs=[], epsilon=1e-1)
This class enhancesymbol by adding text to the symbol. The text to be written has provided in the

additional data column namadxt . textdxandtextdyare the position of the text with respect of the
symbol. textattrsare text attributes for the output of the text. All other parameters have the same meaning
as in thesymbol class.

classarrow (linelength="0.25 cm", arrowsize="0.15 cm", lineattrs=[], arrowattrs=[], epsilon=1e-10
This class is a style to plot short lines with arrows into a two-dimensional graph. The position of the arrow
is defined by two data columns named like an axes for each graph dimension. Two additional data columns
namedsize andangle define the size and angle for each arr@ize is taken as a factor tarrowsize
andlinelength the size of the arrow and the length of the line the arrow is plottedragle is the angle
the arrow points to with respect to a horizonal lines. &hgle is taken in degree and use in mathematical
positive sensdineattrsandarrowattrsare styles for the arrow line and arrow head respectiveggilonis
used to determine, when the arrow is outside of the graph (in graph coordinates).

classrect (palette=color.palette.Gray
This class is a style to plot coloured rectangles into a two-dimensional graph. The position of the rectangles
are given by 4 data columns nam¥din and Xmax whereX stands for two axes names, one for each
graph dimension. The additional data column nam@dr specifies the color of the rectangle defined by
palette Thus the valid color range is [0:1].

Note: Although this style can be used for plotting coloured surfaces, it will lead to a huge memory footprint
of RyXtogether with a long running time and large outputs. Improved support for coloured surfaces are
planned for the future.

classbar (fromvalue=None, frompathattrs=[], barattrs=[], subnames=None, epsilon=1&-10

24 Chapter 4. Graphs

This class is a style to plot bars into a two-dimensional graph. The bars are plotted on top of a specialized
axis, namely a bar axis. The data column for this bar axis is natnadhe whereX is an axis name. The

bar value have a name an axis of the other graph dimension. Suppose the name of this valuéthais is

you can stack further bars on top of this bar by providing additional data columns consecutively named
Ystackl , Ystack2 , Ystack3 , etc. When plotting several bars in a single graph, those bars are placed
side by side (at the same valueXifiame). The name axis, a bar axis, must then be a nested bar axis. The
names used for the subaxis can be sesldynamesWhen not set, integer numbers starting from zero will

be used.

The bars start dtomvaluewhen provided. Théomvalueis marked by a gridline stroked usifigmpathat-

trs. The bars are filled usinfparattrs barattrs is merged with [color.palette.Rainbow,
deco.stroked([color.gray.black])] " and iterated independently when several bars are plot-
ted side by side and when several bars are plotted on top of each other. When mixing both possibilities, you
may use nested changeable styles.

4.6 Keys

The following class provides a key, whose instances can be passed to the constructor keyword &eyrotat
graph. The class is implementedgraph.key

classkey (dist="0.2 cm", pos="tr", hinside=1, vinside=1, hdist="0.6 cm", vdist="0.4 cm", symbolwidth="0.5

cm"”, symbolheight="0.25 cm", symbolspace="0.2 cm", textattry=[]
This class writes the title of the data in a plot together with a small illustration of the style. The style is

responsible for its illustration.

distis a visual length and a distance between the key enfpiesis the position of the key with respect to
the graph. Allowed values are combinations bf (top) and b’ (bottom) with ‘1 * (left) and ‘r ’ (right).
hdistandvdistare the distances from the specified corner of the grapisideandvinsideare booleans to
define whether the key should be placed horizontally and vertically inside of the graph or not.

symbolwidthandsymbolheights passed to the style to control the size of the style illustraggmbolspace
is the space between the illustration and the tégktattrsare attributes for the text creation. They are
merged with ftext.vshift. mathaxis] ",

4.6. Keys 25

26

CHAPTER
FIVE

AXes

Axes are a fundamental component of graphs although there might be use cases outside of the graph system.
Internally axes are constructed out of components, which handle different tasks and axis need to fullfill:

axis
Basically a container for axis data and the components. It implements the conversion of a data value to a
graph coordinate of range [0:1]. It does also handle the proper usage of the components in complicated
tasks {.e. combine the partitioner, texter, painter and rater to find the best partitioning).

tick
Ticks are plotted along the axis. They might be labeled with text as well.

partitioner, in the code the short form “parter” is used
Creates one or several choises of tick lists suitable to a certain axis range.

texter
Creates labels for ticks when they are not set manually.

painter
Responsible to paint the axis.

rater
Calculate ratings, which can be used to select the best suitable partitioning.

The names above map directly to modules, which are provided in the diregtapp/axis’. Sometimes it might
be conventient to import the axis directory directly rather access them through the graph. This would look like:

from pyx import *
graph.axis.painter() # and the like

from pyx.graph import axis
axis.painter() # this is shorter ...

In most cases different implementations are available through different classes, which can be combined in various
ways. There are various axis examples distributed wi¥) ®here you can see some of the features of the axis
with a few lines of code each. Hence we can here directly step on to the reference of the available components.

5.1 Axes

The following classes are part of the modglaph.axis.axis . However, there is a shortcut to access those
classes vigraph.axis directly.

The position of an axis is defined by an instance of a class providing the following methods:

basepath (x1=None, x2=Nong
Returns a path instance for the the base peattandx2 are the axis range, the base path should cover.

27

vbasepath (v1=None, v2=Nong
Like basepath butin graph coordinates.

gridpath (x)

Returns a path instance for the the grid path at poskidvight returnNone when no grid path is available.
vgridpath (V)

Like gridpath but in graph coordinates.

tickpoint (X)
Returns the position ofas a tuple(x, y)

vtickpoint (v)
Like tickpoint but in graph coordinates.

tickdirection (x)

Returns the direction of a tick atas a tuple(dx, dy) '. The tick direction points inside of the graph.
vtickdirection (v)

Like tickdirection but in graph coordinates.

Instances of the following classes can be passed t&*thess keyword arguments of a graph. Those instances
should be used once only.

classlinear (min=None, max=None, reverse=0, divisor=None, title=None, parter=parter.autolinear(),
manualticks=[], density=1, maxworse=2, rater=raterlinear(), texter=texter.mixed(),

painter=painter.regular()
This class provides a linear axisin andmaxare the axis range. When not set, they are adjusted automati-

cally by the data to be plotted in the graph. Note, that some data might want to access the range of an axis
(e.g. thefunction class when no range was provided there) or you need to specify a range when using
the axis without plugging it into a grapke.g.when drawing a axis along a path).

reversecan be set to indicate a reversed axis starting with bigger values first. Alternatively you can fix the
axis range byninandmaxaccordingly. When divisor is set, it is taken to divide all data range and position
informations while creating ticks. You can create ticks not taking into account a factor bytitlesis the

title of the axis.

parter is a partitioner instance, which creates suitable ticks for the axis range. Those ticks are merged
with manual given ticks bynanualtickshefore proceeding with rating, paintiregc. Manually placed ticks

win against those created by the partitioner. For automatic partitioners, which are able to calculate several
possible tick lists for a given axis range, thensityis a (linear) factor to favour more or less ticks. It should

not be stressed to much (its likely, that the result would be unappropriate or not at all valid in terms of rating
label distances). But within a range of say 0.5 to 2 (even bigger for large graphs) it can help to get less or
more ticks than the default would lead toaxworsés a the number of trials with more and less ticks when

a better rating was already founiter is a rater instance, which rates the ticks and the label distances for
being best suitable. It also takes into accodertsity The rater is only needed, when the partitioner creates
several tick lists.

texteris a texter instance. It creates labels for those ticks, which claim to have a label, but do not have a
label string set already. Ticks created by partitioners typically receive their label strings by texters. The
painter is finally used to construct the output. Note, that usually several output constructions are needed,
since the rater is also used to rate the distances between the label for an optimum.

classlin (...
This class is an abbreviation lifiear described above.
classlogarithmic ~ (min=None, max=None, reverse=0, divisor=None, titte=None,
parter=parter.autologarithmic(), manualticks=[], density=1, maxworse=2,

rater=rater.logarithmic(), texter=texter.mixed(), painter=painter.regulgr()
This class provides a logarithmic axis. All parameters work likear . Only two parameters have a

different default:parter andrater. Furthermore and most importantly, the mapping between data and graph
coordinates is logarithmic.

classlog (...
This class is an abbreviation lafgarithmic described above.

classlinked (linkedaxis, painter=painter.linked)

28 Chapter 5. Axes

This class provides an axis, which is linked to another axis instance. This means, it shares all its properties
with the axis it is linked too except for the painter. Thus a linked axis is painted differently.

A standard use case are tk2 andy2 axes in an x-y-graph. Linked axes to theandy axes are created
automatically when not disabled by setting those axd$doe. By that, ticks are stroked at both sides of

an x-y-graph. However, linked axes can be used for in other cases as well. You can link axes within a graph
or between different graphs as long as the orgininal axis is finished first (it must fix its layout first).

classsplit (subaxes, splitlist=[0.5], splitdist=0.1, relsizesplitdist=1, titte=None, painter=painter.split()
This class provides an axis, splitting the input values to its subaxes depeding on the range of the subaxes.
Thus the subaxes need to have fixed range, up to the minimum of the first axis and the maximum of the
last axis. subaxesactually takes the list of subaxesplitlist defines the positions of the spliting in graph
coordinates. Thus the length sfibaxesnust be the length dplitlist plus one. If an entry irsplitlist is
None, the axes aside define the split position taking into account the ratio of the axes ranges (meassured by
an internakelsize attribute of each axis).

splitdistis the space reserved for a splitting in graph coordinates, when the corresponding eptitjist
is notNone. relsizesplitdisis the space reserved for the splitting in terms, when the corresponding entry in
splitlistis None compared to theelsize of the axes aside.

title is the title of the split axes anghinteris a specialized painter, which takes care of marking the axes
breaks, while the painting of the subaxes are performed by their painters themself.

classlinkedsplit (linkedaxis, painter=painter.linkedsplit(), subaxispainter=omitsubaxispa)nter
This class provides an axis, which is linked to an instanceptit . The purpose of a linked axis is
described in clasinked above.painterreplaces the painter from thiekedaxisinstance.

While this class creates linked axes for the subaxéiskddsplitas well, the question arises what painters to
use there. Whesubaxispainteis not set, no painter is given explicitly leaving this decision to the subaxes
themself. This will lead to omitting all labels and the title. However, you can use a changeable attribute of
painters insubaxispainteto replace the default.

classbar (subaxis=None, multisubaxis=None, dist=0.5, firstdist=None, lastdist=None, title=None,

painter=painter.bar()
This class provides an axis suitable for a bar style. It handles a discrete set of values and maps them to

distinct ranges in graph coordinates. For that, the axis gets a list as data values. The first entry is taken to
be one of the discrete values valid on this axis. All other parameters, lets call them others, are passed to
a subaxis. When others has only one entry, it is passed as a value, otherwise as a list. The result of the
conversion done by the subaxis is mapped into the graph coordinate range for this discrete value. When
neighersubaxisnor multisubaxiss set, others must be a single value in range [0:1]. This value is used for
the position at the subaxis without converion.

Whensubaxiss set, it is used for the conversion of others. Whanltisubaxids set, it must be an instance

of bar as well. It is than dublicated for each of the discrete values allowed for the axis. By that, you can
create nested bar axes with a different discrete values for each discrete value of the axis. It is not allowed to
set bothsubaxisandmultisubaxis

distis used as the spacing between the ranges for each distinct value. It is measured in the same units as
the subaxis results, thus the default valu® & means halve the width between the distinct values as the
width for each distinct valudirstdistandlastdistare used before the first and after the last value. When set

to None, halve ofdistis used.

title is the title of the split axes anghinteris a specialized painter for an bar axis. Whmaltisubaxisis
used, their painters are called as well, otherwise they are not taken into account.

pathaxis (path, axis, direction=)
This function returns a (specialized) canvas containing theaigpainted along the patbath direction
defines the direction of the ticks. Allowed values ar@eft) and-1 (right).

5.2 Ticks

The following classes are part of the modglaph.axis.tick

5.2. Ticks 29

classrational (x, power=1, floatprecision=10
This class implements a rational number with infinite precision. For that it stores two integers, the enumer-
atorenumand a denomintodenom. Note that the implementation of rational number arithmetics is not at
all complete and designed for its special use case of axis parititioniggiprBventing any roundoff errors.

x is the value of the rational created by a conversion from one of the following input values:

oA float. It is converted to a rational with finite precision determinedlbgtprecision

oA string, which is parsed to a rational number with full precision. It is also allowed to provide a
fraction like ‘1/3 .

oA sequence of two integers. Those integers are taken as enumerator and denominator of the rational.
eAn instance defining instance variabksum anddenom like rational itself.

poweris an integer to calculate* power. This is usefull at certain places in partitioners.

classtick (x, ticklevel=0, labellevel=0, label=None, labelattrs=[], power=1, floatprecision310
This class implements ticks based on rational numbers. Instances of this class can be passed to the
manualticks parameter of a regular axis.

The parameters, power, andfloatprecisionshare its meaning withational

A tick has a tick level i(e. markers at the axis path) and a label lawel.(place text at the axis path),
ticklevelandlabellevel These are non-negative integerdName A value of0 means a regular tick or label,
1 stands for a subtick or sublab&lfor subsubtick or subsublabel and so dlone means omitting the tick
or label. label s the text of the label. When not set, it can be created automatically by a tizlielattrs
are the attributes for the labels.

5.3 Partitioners

The following classes are part of the modglaph.axis.parter . Instances of the classes can be passed to
the parter keyword argument of regular axes.

classlinear (tickdist=None, labeldist=None, extendtick=0, extendlabel=None, epsilon=]}e-10
Instances of this class creates equally spaced tick lists. The distances between the ticks, subticks, sub-
subticksetc. starting from a tick at zero are given as first, second, thtcd item of the listtickdist For
a tick position, the lowest level wing.e. for [2, 1] even numbers will have ticks whereas subticks
are placed at odd integer. The itemstiokdist might be strings, floats or tuples as described forgbs
parameter of clastick

labeldistworks equally for placing labels. Whéabeldistis keptNone, labels will be placed at each tick
position, but sublabelstc. will not be used. This copy behaviour is also availatilee versaand can be
disabled by an empty list.

extendtickcan be set to a tick level for including the next tick of that level when the data exceed the range
covered by the ticks by more thepsilon epsilonis taken relative to the axis rangextendtickis disabled
when set tdNone or for fixed range axeextendlabelorks similar toextendtickout for labels.

classlin (..)
This class is an abbreviation tiiear described above.

classautolinear (variants=defaultvariants, extendtick=0, epsilon=1e}10
Instances of this class creates equally spaced tick lists, where the distance between the ticks is adjusted to
the range of the axis automatically. Variants are a list of possible choicéisKdistof linear . Further
variants are build out of these by multiplying or dividing all the values by multipledofvariantsshould
be ordered that way, that the number of ticks for a given range will decrease, hence the distances between the
ticks should increase within thariantslist. extendtickandepsilonhave the same meaning adimear

defaultvariants
[[tick.rational((1, 1)), tick.rational((1, 2))], [tick.rational((2,
1)), tick.rational((1, 1))], [tick.rational((5, 2)), tick.rational((5,
4))], [tick.rational((5, 1)), tick.rational((5, 2))]]

30 Chapter 5. Axes

classautolin (..)
This class is an abbreviation afitolinear described above.

classpreexp (pres, exp
This is a storrage class defining positions of ticks on a logarithmic scale. It containpies$isf positions
pi andexp a multiplicatorm. Valid tick positions are defined kyim™ for any integem.

classlogarithmic (tickpos=None, labelpos=None, extendtick=0, extendlabel=None, epsilon=Jle-10
Instances of this class creates tick lists suitable to logarithmic axes. The positions of the ticks, subticks,
subsubticksetc. are defined by the first, second, thatt. item of the listtickpos which are allpreexp
instances.

labelposworks equally for placing labels. Wheabelposis keptNone, labels will be placed at each tick
position, but sublabelstc. will not be used. This copy behaviour is also availatilee versaand can be
disabled by an empty list.

extendtickextendlabelndepsilonhave the same meaning adimear

Somepreexp instances for the use Ingarithmic are available as instance variables (should be used read-
only):

prelexp5
preexp([tick.rational((1, 1))], 100000)

prelexp4
preexp([tick.rational((1, 1))], 10000)

prelexp3
preexp([tick.rational((1, 1))], 1000)

prelexp2
preexp([tick.rational((1, 1))], 100)

prelexp
preexp([tick.rational((1, 1))], 10)

prel25exp
preexp([tick.rational((1, 1)), tick.rational((2, 1)), tick.rational((5,
1))], 10)

prelto9exp
preexp([tick.rational((1, 1)) for x in range(1, 10)], 10)

classlog (...
This class is an abbreviation tafgarithmic described above.

classautologarithmic (variants=defaultvariants, extendtick=0, extendlabel=None, epsilon=1e-10
Instances of this class creates tick lists suitable to logarithmic axes, where the distance between the ticks is
adjusted to the range of the axis automatically. Variants are a list of tuples with possible chotesgtor
andlabelposof logarithmic . variantsshould be ordered that way, that the number of ticks for a given
range will decrease within theariantslist.

extendtickextendlabelndepsilonhave the same meaning adimear

defaultvariants
[([log.prelexp, log.prelto9exp], [log.prelexp, log.prel25exp]),
(log.prelexp, log.prelto9exp], None), ([log.prelexp2, log.prelexp],
None), ([log.prelexp3, log.prelexp], None), ([log.prelexp4,
log.prelexp], None), ([log.prelexp5, log.prelexp], None)]

classautolog (..)
This class is an abbreviation afitologarithmic described above.

5.4 Texter

5.4. Texter 31

The following classes are part of the modglaph.axis.texter . Instances of the classes can be passed to

the texter keyword argument of regular axes. Texters are used to define the label text for ticks, which request to
have a label, but not label text was specified actually. A typical case are ticks created by partitioners described
above.

, infix=

classdecimal (prefix= , suffix="", equalprecision=0, decimalsep=".", thousandsep="", thousandth-
partsep="", plus="", minus="-", period=r"\overline{%s}", labelattrs=[text.mathmode]
Instances of this class create decimal formatted labels.
The stringsprefix infix, andsuffixare added to the label at the begin, immediately after the plus or minus,
and at the end, respectivelgecimalsepthousandsepandthousandthpartsepre strings used to separate
integer from fractional part and three-digit groups in the integer and fractional part. The gthiisgand
minusare inserted in front of the unsigned value for non-negative and negative numbers, respectively.

The format stringperiod should generate a period. It must contain one string insert oper&grfor the
period.

labelattrsis a list of attributes to be added to the label attributes given in the painter. It should be used to
setup TeX features likeext.mathmode . Text format options likéext.size should instead be set at
the painter.

classexponential (plus="", minus="-", mantissaexp=r"{{%s}\cdot10™{%s}}", skipexp0=r"{%s}", skip-
expl=None, nomantissaexp=r"{10M%s}}", minusnomantissaexp=r"{-10"%s}}", man-
tissamin=tick.rational((1, 1)), mantissamax=tick.rational((10L, 1)), skipmantissal=0,
skipallmantissal=1, mantissatexter=decimal()
Instances of this class create decimal formatted labels with an exponential.
The stringgplusandminusare inserted in front of the unsigned value of the exponent.

The format stringmantissaexghould generate the exponent. It must contain two string insert opera-
tors %s, the first for the mantissa and the second for the exponent. An alternative to the default is
‘r"{%sH\rm eH%s}}" .

The format stringskipexpQs used to skip exponeBtand must contain one string insert operags’ for
the mantissaNone turns off the special handling of exponéht The format stringskipexplis similar to
skipexpQbut for exponent.

The format stringhomantissaexfs used to skip the mantisdaand must contain one string insert operator
‘9%s for the exponentNone turns off the special handling of mantiskaThe format stringninusnoman-
tissaexgds similar tonomantissaexput for mantissal .

Thetick.rational instancesnantissamikmantissamaxre minimum (including) and maximum (ex-
cluding) of the mantissa.

The boolearskipmantissaknables the skipping of any mantissa equaland-1 , when minusnoman-
tissaexpis set. When the booleaskipallmantissals set, a mantissa equalsis skipped only, when all
mantissa values ate Skipping of a mantissa is stronger than the skipping of an exponent.

mantissatexteis a texter instance for the mantissa.

classmixed (smallestdecimal=tick.rational((1, 1000)), biggestdecimal=tick.rational((9999, 1)), equaldeci-
sion=1, decimal=decimal(), exponential=exponentigal()
Instances of this class create decimal formatted labels with an exponential, when the unsigned values are
small or large compared th

The rational instancesmallestdecimahnd biggestdecimahre the smallest and biggest decimal values,
where the decimal texter should be used. The sign of the value is ignored here. For a tick at zero the
decimal texter is considered best as wetjualdecisions a boolean to indicate whether the decision for the
decimal or exponential texter should be done globally for all ticks.

decimalandexponentiabre a decimal and an exponential texter instance, respectively.

classrational (prefix="", infix="", suffix= , enuminfix="", enumsuffix="", denomprefix="",
denominfix="", denomsuffix="", plus="", minus="-", minuspos=0, over=r"%s\over%s",
equaldenom=0, skipl=1, skipenumO=1, skipenuml=1, skipdenoml=1, Ilabelat-
trs;[text.mathmod@]b _
Instances of this class create labels formated as fractions.
The stringsprefix infix, andsuffixare added to the label at the begin, immediately after the plus or minus,
and at the end, respectively. The stringefixenum infixenum and suffixenumare added to the labels

enumerator accordingly whergagfixdenominfixdenomandsuffixdenondo the same for the denominator.

, enumprefix=

32 Chapter 5. Axes

The stringgplusandminusare inserted in front of the unsigned value. The position of the sign is defined by
minusposwith valuesl (at the enumerator}) (in front of the fraction), andl (at the denomerator).

The format stringovershould generate the fraction. It must contain two string insert oper&asthe first
for the enumerator and the second for the denominator. An alternative to the defg{f#os/{%s}}" ",

Usually, the enumerator and denominator are canceled, while, eduigaldenonis set, the least common
multiple of all denominators is used.

The boolearskiplindicates, that only the prefix, plus or minus, the infix and the suffix should be printed,
when the value id4 or-1 and at least one girefix infix andsuffixis present.

The boolearskipenumOndicates, that only @ is printed when the enumerator is zero.
skipenumis like skip1but for the enumerator.

skipdenomXkips the denominator, when it istaking into accountlenomprefixdenominfix denomsuffix
minusposand the sign of the number.

labelattrshas the same meaning than é@cimal

5.5 Painter

The following classes are part of the modgleph.axis.painter . Instances of the painter classes can be
passed to the painter keyword argument of regular axes.

classrotatetext (direction, epsilon=1e-1p
This helper class is used in direction arguments of the painters below to prevent axis labels and titles being
written upside down. In those cases the text will be rotated by 180 degliesstionis an angle to be used
relative to the tick directionepsilonis the value by which 90 degrees can be exceeded before an 180 degree
rotation is performed.

The following two class variables are initialized with the most common use case:

parallel
rotatetext(90)

orthogonal
rotatetext(180)

classticklength (initial, factor)
This helper class provides changealy® Rngths starting from an initial valuiaitial multiplied by factor
again and again. The resulting lengths are thus a geometric series.

There are some class variables initialized with suitable values for tick stroking. They are named
ticklength. SHORT , ticklength.SHORt , ..., ticklength.short , ticklength.normal
ticklength.long , ..., ticklength.LONG . ticklength.normal is initialized with a length 0D.12
and the reciprocal of the golden mearfagor whereas the others have a modified inital value by multiplication
or division by multiples of,/2 appropriately.

classregular (innerticklength=ticklength.normal, outerticklength=None, tickattrs=[], gridattrs=None,

basepathattrs=[], labeldist="0.3 cm", labelattrs=[], labeldirection=None, labelhequal-
ize=0, labelvequalize=1, titledist="0.3 cm", titleattrs=[], titledirection=rotatetext.parallel,
titlepos=0.5, texrunner=text.defaulttexrunner

Instances of this class are painters for regular axes like linear and logarithmic axes.

innerticklengthand outerticklengthare visual ¥X lengths of the ticks, subticks, subsubtick. plotted

along the axis inside and outside of the graph. Provide changeable attributes to modify the lengths of ticks

compared to subtickstc. None turns off the ticks inside and outside the graph, respectively.

tickattrsandgridattrs are changeable stroke attributes for the ticks and the grid, vieme turns off the
feature.basepathattrare stroke attributes for the axis Mone to turn it off. basepathattrss merged with
‘[style.linecap.square] '

labeldistis the distance of the labels from the axis base path as a vigdiiyth. labelattrsis a list of text
attributes for the labels. It is merged witlext.halign.center, text.vshift. mathaxis] ",
labeldirectionis an instance oftatetextto rotate the labels relative to the axis tick directiorName.

5.5. Painter 33

The boolean valuekbelhequalizeand labelvequalizeforce an equal alignment of all labels for straight
vertical and horizontal axes, respectively.

titledistis the distance of the title from the rest of the axis as a visgélileattrsis a list of text attributes
for the title. It is merged with[text.halign.center, text.vshift. mathaxis] ', titledirec-
tion is an instance ofotatetextto rotate the title relative to the axis tick directiondone. titleposis the
position of the title in graph coordinates.

texrunneris the texrunner instance to create axis text like the axis title or labels.

classlinked (innerticklength=ticklength.short, outerticklength=None, tickattrs=[], gridattrs=None, basepa-
thattrs=[], labeldist="0.3 cm", labelattrs=None, labeldirection=None, labelhequalize=0, la-
belvequalize=1, titledist="0.3 cm", titleattrs=None, titledirection=rotatetext.parallel, title-

pos=0.5, texrunner=text.defaulttexrunner
This class is identical teegular up to the default values ddibelattrsandtitleattrs. By turning off those

features, this painter is suitable for linked axes.

classsplit (breaklinesdist="0.05 cm", breaklineslength="0.5 cm", breaklinesangle=-60, titledist="0.3 cm", ti-
tleattrs=None, titledirection=rotatetext.parallel, tittepos=0.5, texrunner=text.defaulttexrunner
Instances of this class are suitable painters for split axes.
breaklinesdistand breaklineslengthare the distance between axes break markers in vigaleRgths.
breaklinesanglés the angle of the axis break marker with respect to the base path of the axis. All other
parameters have the same meaning asdular

classlinkedsplit (breaklinesdist="0.05 cm", breaklineslength="0.5 cm", breaklinesangle=-60, ti-
tledist="0.3 cm", titleattrs=None, titledirection=rotatetext.parallel, titlepos=0.5,

texrunner=text.defaulttexrunnpr
This class is identical teplit up to the default value dftleattrs. By turning off this feature, this painter

is suitable for linked split axes.

classbar (innerticklength=None, outerticklength=None, tickattrs=[], basepathattrs=[], namedist="0.3
cm”, nameattrs=[], namedirection=None, namepos=0.5, namehequalize=0, namevequal-
ize=1, titledist="0.3 cm", titleattrs=[], titledirection=rotatetext.parallel, titlepos=0.5, texrun-
ner=text.defaulttexrunner
Instances of this class are suitable painters for bar axes.
innerticklengthand outerticklengthare visual ¥X length to mark the different bar regions along the axis
inside and outside of the grapNone turns off the ticks inside and outside the graph, respectitiekattrs

are stroke attributes for the ticks None to turns all ticks off.

The parameters with prefiameare identical to theilabel counterparts imegular . All other parameters
have the same meaning ag@gular

classlinkedbar (innerticklength=None, outerticklength=None, tickattrs=[], basepathattrs=[], namedist="0.3
cm", nameattrs=None, namedirection=None, namepos=0.5, namehequalize=0, namevequal-
ize=1, titledist="0.3 cm", titleattrs=None, titledirection=rotatetext.parallel, titlepos=0.5,

texrunner=text.defaulttexrunnger
This class is identical tbar up to the default values afameattrsandtitleattrs. By turning off those

features, this painter is suitable for linked bar axes.

5.6 Rater

The rating of axes is implemented gmaph.axis.rater . When an axis partitioning scheme returns several
partitioning possibilities, the partitions needs to be rated by a positive number. The lowest rated axis partitioning
is considered best.

The rating consists of two steps. The first takes into account only the number of ticks, subticks, labels and so on
in comparison to optimal numbers. Additionally, the extension of the axis range by ticks and labels is taken into
account. This rating leads to a preselection of possible partitions. In the second step, after the layout of prefered
partitionings is calculated, the distance of the labels in a partition is taken into account as well at a smaller weight
factor by default. Thereby partitions with overlapping labels will be rejected completely. Exceptionally sparse or
dense labels will receive a bad rating as well.

34 Chapter 5. Axes

classcube (opt, left=None, right=None, weight31
Instances of this class provide a number radgtis the optimal value. When not providddft is set to0
andright is set to3* opt. Weight is a multiplicator to the result.

The rater calculatesidht*((x- opt)/(other- opt))**3 to rate the valuex, whereother is left
(x<opt) or right (x>opt).

classdistance (opt, weight=0.)
Instances of this class provide a rater for a list of numbers. The purpose is to rate the distance between label
boxes.optis the optimal value.

The rater calculates the sumwéight(opt/x-1) (x<opt) orweight(x/ opt1) (x>opt)for all elements
x of the list. It returns this value divided by the number of elements in the list.

classrater (ticks, labels, range, distante
Instances of this class are raters for axes partitionings.

ticks andlabelsare both lists of number rater instances, where the first items are used for the number of
ticks and labels, the second items are used for the number of subticks (including the ticks) and sublabels
(including the labels) and so on until the end of the list is reached or no corresponding ticks are available.

rangeis a number rater instance which rates the range of the ticks relative to the range of the data.
distances an distance rater instance.

classlinear (ticks=[cube(4), cube(10, weight=0.5)], labels=[cube(4)], range=cube(l, weight=2), dis-
tance=distance("1 cm})
This class is suitable to rate partitionings of linear axes. Itis equaltes but defines predefined values

for the arguments.

classlin (..)
This class is an abbreviation liiear described above.

classlogarithmic (ticks=[cube(5, right=20), cube(20, right=100, weight=0.5)], labels=[cube(5, right=20),
cube(5, right=20, weight=0.5)], range=cube(1, weight=2), distance=distance("1 rm")
This class is suitable to rate partitionings of logarithmic axes. It is equaltés but defines predefined
values for the arguments.

classlog (...
This class is an abbreviation lafgarithmic described above.

5.6. Rater 35

36

CHAPTER
SIX

Module box: convex box handling

This module has a quite internal character, but might still be useful from the users point of view. It might also get
further enhanced to cover a broader range of standard arranging problems.

In the context of this module a box is a convex polygon having optionally a center coordinate, which plays an
important role for the box alignment. The center might not at all be central, but it should be within the box.
The convexity is necessary in order to keep the problems to be solved by this module quite a bit easier and
unambiguous.

Directions (for the alignment etc.) are usually provided as pairs (dx, dy) within this module. It is required, that at
least one of these two numbers is unequal to zero. No further assumptions are taken.

6.1 polygon

A polygon is the most general case of a box. It is an instance of the ptdggon . The constructor takes a
list of points (which are (x, y) tuples) in the keyword argumeotners and optionally another (x, y) tuple as
the keyword argumertenter . The corners have to be ordered counterclockwise. In the following list some
methods of thipolygon class are explained:

path(centerradius=None, bezierradius=None, beziersoftness=1) . returns a path of the
box; the center might be marked by a small circle of radiisterradius ; the corners might be
rounded using the parametdmszierradius andbeziersoftness . For each corner of the box

there may be one value for beziersoftness and two bezierradii. For convenience, it is not necessary to
specify the whole list (for beziersoftness) and the whole list of lists (bezierradius) here. You may give a
single value and/or a 2-tuple instead.

transform(*trafos) . performs a list of transformations to the box
reltransform(*trafos) . performs a list of transformations to the box relative to the box center
circlealignvector(a, dx, dy) . returns a vector (a tuple (x, y)) to align the box at a circle with radius
a in the direction ¢@x, dy); see figure 6.1
linealignvector(a, dx, dy) : as above, but align at a line with distarace
circlealign(a, dx, dy) . as circlealignvector, but perform the alignment instead of returning the vector
circle, align| 1}“6 Align

Figure 6.1: circle and line alignment examples (equal direction and distance)

37

linealign(a, dx, dy) . as linealignvector, but perform the alignment instead of returning the vector

extent(dx, dy) . extent of the box in the directioml, dy)
pointdistance(x, Yy) . distance of the pointx(, y) to the box; the point must be outside of the box
boxdistance(other) . distance of the box to the bather ; when the boxes are overlapping,

BoxCrossError is raised

bbox() : returns a bounding box instance appropriate to the box

6.2 functions working on a box list

circlealignequal(boxes, a, dx, dy) . Performs a circle alignment of the boxdesxes using the
parameters, dx, anddy as in thecirclealign method. For the length of the alignment vector its
largest value is taken for all cases.

linealignequal(boxes, a, dx, dy) . as above, but performing a line alignment

tile(boxes, a, dx, dy) . tiles the boxedoxes with a distancea between the boxes (additional the
maximal box extent in the given directiodx, dy) is taken into account)

6.3 rectangular boxes

For easier creation of rectangular boxes, the module provides the specializecectass Its constructor first

takes four parameters, namely the X, y position and the box width and height. Additionally, for the definition
of the position of the center, two keyword arguments are available. The paramletarter takes a tuple
containing a relative x, y position of the center (they are relative to the box extent, thus values be&veth

should be used). The paramesdrscenter takes a tuple containing the x and y position of the center. This
values are measured with respect to the lower left corner of the box. By default, the center of the rectangular box
is set to this lower left corner.

38 Chapter 6. Module box: convex box handling

CHAPTER
SEVEN

Module connector

This module provides classes for connecting twa -instances with lines, arcs or curves. All constructors of the
following connector-classes take twox -instances as first arguments. They retumoempath -instance from

the first to the second box, starting/ending at the boxes’ outlate . The behaviour of the path is determined

by the boxes’ center and some angle- and distance-keywords. The resulting path will additionally be shortened by
lengths given in théoxdists -keyword (a list of two lengths, defaJ®,0]).

7.1 Class line

The constructor of théne class accepts only boxes and thexdists -keyword.

7.2 Class arc

The constructor also takes either ttedangle -keyword or a combination ofelbulge andabsbulge .
The “bulge” is the greatest distance between the connecting arc and the straight connecting line. (Default:
relangle=45 | relbulge=None , absbulge=None)

Note that the bulge- override the angle-keyword. When belthulge andabsbulge are given they will be
added.

7.3 Class curve

The construktor takes both angle- and bulge-keywords. Here, the bulges are used as distances between bezier-
curve control points:

absanglel orrelanglel
absangle2 or relangle2 , where the absolute angle overrides the relative if both are given. (Default:
relanglel=45 ,relangle2=45 , absanglel=None ,absangle2=None)

absbulge andrelbulge , where they will be added if both are given.
(Default: absbulge =Nonerelbulge =0.39; these default values produce similar output like the defaults of the
arc-class.)

Note that relative angle-keywords are counted in the following walanglel is counted in negative direction,
starting at the straight connector line, amethngle2 is counted in positive direction. Therefore, the outcome
with two positive relative angles will always leave the straight connector at its left and will not cross it.

39

7.4 Class twolines

This class returns two connected straight lines. There is a vast variety of combinations for angle- and length-
keywords. The user has to make sure to provide a non-ambiguous set of keywords:

absanglel orrelanglel for the first angle,

relangleM for the middle angle and

absangle?2 orrelangle2 for the ending angle. Again, the absolute angle overrides the relative if both are
given. (Default: all five angles afdone)

lengthl andlength2 for the lengths of the connecting lines. (DefaiNibne)

40 Chapter 7. Module connector

CHAPTER
EIGHT

Module epsfile: EPS file inclusion

With help of theepsfile.epsfile class, you can easily embed another EPS file in your canvas, thereby
scaling, aligning the content at discretion. The most simple example looks like

from pyx import *

¢ = canvas.canvas()
c.insert(epsfile.epsfile(0, 0, "file.eps"))
c.writeEPSfile("output")

All relevant parameters are passed togpsfile.epsfile constructor. They are summarized in the following

table:

argument name

description

X

x-coordinate of position (measured in user units by default).

y y-coordinate of position (measured in user units by default).

filename Name of the EPS file (including a possible extension).

width=None Desired width of EPS graphics dione for original width. Cannot be combined
with scale specification.

heigth=None Desired height of EPS graphics one for original height. Cannot be combined
with scale specification.

scale=None Scaling factor for EPS graphics bione for no scaling. Cannot be combined with
width or height specification.

align="bl" Alignment of EPS graphics. The first character specifies the vertical aligniment:
for bottom,c for center, and for top. The second character fixes the horizontal
alignment:| for left, ¢ for centerr for right.

clip=1 Clip to bounding box of EPS file?

translatebbox=1 Use lower left corner of bounding box of EPS file? Sef twith care.

bbox=None If given, usebbox instance instead of bounding box of EPS file.

41

42

CHAPTER
NINE

Module bbox

Thebbox module contains the definition of thox class representing bounding boxes of graphical elements
like paths, canvases, etc. usedyXPUsually, you obtairbbox instances as return values of the corresponding
bbox()) method, but you may also construct a bounding box by yourself.

9.1 bbox constructor

Thebbox constructor accepts the following keyword arguments

keyword description

[1x None (default) for—oo or z-position of the lower left corner of the bbox (in user units)
Iy None (default) for—oco or y-position of the lower left corner of the bbox (in user units)
urx None (default) foroo or z-position of the upper right corner of the bbox (in user units)
ury None (default) forco or y-position of the upper right corner of the bbox (in user units)

9.2 bbox methods

bbox method

function

intersects(other)

transformed(self, trafo)

enlarged(all=0, bottom=None,
left=None, top=None,
right=None)

path() orrect()

height()
width()
top()

bottom()

left()

right()

Furthermore, two bounding boxes can be added (giving the bounding box enclosing both) and multiplied (giving

the intersection of both bounding boxes).

returnsl if the bbox instance andther intersect with
each other.

returnsself transformed by transformatidrafo

return the bounding box enlarged by the given amount (in
visual units).all is the default for all other directions,
which is used whenevétone is given for the corresponding
direction.

return thepath corresponding to the bounding box
rectangle.

returns the height of the bounding box (iXRengths).
returns the width of the bounding box (ip@engths).
returns they-position of the top of the bounding box (igXP
lengths).

returns they-position of the bottom of the bounding box (in
R/X lengths).

returns thec-position of the left side of the bounding box (in
RX lengths).

returns theec-position of the right side of the bounding box
(in RX lengths).

43

44

CHAPTER
TEN

Module color

10.1 Color models

PostScript provides different color models. They are availablgXdol different color classes, which just pass

the colors down to the PostScript level. This implies, that there are no conversion routines between different color
models available. However, some color model conversion routines are included in Python’s standard library in the
modulecolorsym . Furthermore also the comparision of colors within a color model is not supported, but might
be added in future versions at least for checking color identity and for ordering gray colors.

There is a class for each of the supported color models, nagnay , rgb , cmyk, andhsb. The constructors
take variables appropriate to the color model. Additionally, a list of named colors is given in appendix B.

10.2 Example

from pyx import *

¢ = canvas.canvas()

c.fill(path.rect(0, 0, 7, 3), [color.gray(0.8)])
cfill(path.rect(1, 1, 1, 1), [color.rgb.red])

cfill(path.rect(3, 1, 1, 1), [color.rgb.green])
c.fill(path.rect(5, 1, 1, 1), [color.rgb.blue])

c.writeEPSfile("color")

The filecolor.eps s created and looks like:

10.3 Color palettes

The color module provides a clapalette . The constructor of that class receives two colors from the same
color model and two named parametsrs andmax, which are set t® and1 by default. Between those colors
a linear interpolation takes place by the metigeticolor depending on a value betwestin andmax.

A list of named palettes is available in appendix C.

45

46

CHAPTER
ELEVEN

Module unit

With the unit module X makes available classes and functions for the specification and manipulation of
lengths. As usual, lengths consist of a number together with a measurement unit, e.g., 1 cm, 50 points, 0.42 inch.
In addition, lengths inyX are composed of the five types “true”, “user”, “visual”, “width”, and=x", e.g., 1 user

cm, 50 true points(0.42 visual + 0.2 width) inch. As their names indicate, they serve different purposes. True
lengths are not scalable and are mainly used for return valueg<diuBRctions. The other length types can be

rescaled by the user and differ with respect to the type of object they are applied to:

user length: used for lengths of graphical objects like positions etc.
visual length: used for sizes of visual elements, like arrows, graph symbols, axis ticks, etc.
width length: used for line widths

TeX length: used for all X and BTEX output

For instance, if you only want thicker lines for a publication version of your figure, you can just rescale the width
lengths. How this all works, is described in the following sections.

11.1 Class length

The constructor of thiength class accepts as first argument either a number or a string:

¢ length(number) means a user length in wunits of the default unit, defined via
unit.set(defaultunit=defaultunit)

e Forlength(string) , thestring has to consist of a maximum of three parts separated by one or more
whitespaces:

quantifier: integer/float value. Optional, defaults1o
type: "t" (true),"u" (user),"v" (visual),"w" (width), or"x" (TeX). Optional, defaults tbu" .

m-,

unit: cm" ,"mm","inch" | or"pt" . Optional, defaults to the default unit.
The default for the first argument is chosen in such a way Shleingth()==length(5) . Note that the

default unit is initially set tdcm" , but can be changed at any time by the user. For instance, use

unit.set(defaultunit="inch")

if you want to specify per default every length in inches. Furthermore, the scaling of the user, visual and width
types can be changed with teet function, as well. To this endset accepts the named argumentale |,

vscale , andwscale . For example, if you like to change the thickness of all lines (with predefined linewidths)
by a factor of two, just insert

47

unit.set(wscale = 2)

at the beginning of your program.

To complete the discussion of thength class, we mention, that as expectg Rngths can be added, sub-
tracted, multiplied by a numerical factor, converted to a string and compared with each other.

11.2 Subclasses of length

A number of subclasses Ength are already predefined. They only differ in their defaultsype andunit .
Note that again the default value for the quantifiet jsuch that, for instanc&*m(1)==m(5)

Subclass ofength Type Unit | Subclass ofength Type Unit
m(x) user m v_m(x) visual m
cm(x) user cm v_cm(Xx) visual cm
mm(x) user mm | v_mm(X) visual mm
inch(x) user inch | v_inch(x) visual inch
pt(x) user points| v_pt(x) visual points
t_ m(x) true m w_m(x) width m
t_cm(x) true cm w_cm(x) width cm
t_mm(x) true mm w_mm(x) width mm
t_inch(x) true inch | w_inch(x) width inch
t_pt(x) true points| w_pt(x) width points
u_m(x) user m X_m(x) TeX m
u_cm(x) user cm x_cm(x) TeX cm
u_mm(x) user mm | x_mm(x) TeX mm w
u_inch(x) user inch | x_inch(x) TeX inch
u_pt(x) user points| x_pt(x) TeX points

Here,x is either a number or a string, which, as mentioned above, defadlts to

11.3 Conversion functions

If you want to know the value of a/R length in certain units, you may use the predefined conversion functions
which are given in the following table

function result

to_m(l) I in units of m
to_cm(l) I in units of cm
to_mm(l) [in units of mm
to_inch(l) | in units of inch
to_pt(l) I in units of points

If | is not yet dength instance, it is converted first into one, as described above. You can also specify a tuple,
if you want to convert multiple lengths at once.

48 Chapter 11. Module unit

CHAPTER
TWELVE

Module trafo: linear transformations

With thetrafo modulo X supports linear transformations, which can then be applied to canvases, Bézier paths
and other objects. It consists of the main cliafo representing a general linear transformation and subclasses
thereof, which provide special operations like translation, rotation, scaling, and mirroring.

12.1 Class trafo

Thetrafo class represents a general linear transformation, which is defined for a ¥exgor
#=AZ+0,

whereA is the transformation matrix aricthe translation vector. The transformation matrix must not be singular,
i.e. we requiredet A # 0.

Multiple trafo instances can be multiplied, corresponding to a consecutive application of the respective transfor-
mation. Note thatrafol*trafo2 means thatrafol s applied aftetrafo2 , i.e. the new transformation

is given byA = A1A2 andb = A1b2 + b1. Use thetrafo methods described below, if you prefer thinking the
other way round. The inverse of a transformation can be obtained vieafloee methodinverse() , defined

by the inverseA—! of the transformation matrix and the translation veetdr1b.

The methods of theafo class are summarized in the following table.

trafo method function
__init__(matrix=((1,0),(0,1)), create newirafo instance with transformatiomatrix and
vector=(0,0)): vector

apply(x, y) applytrafo to point vector(x, y).

inverse() returns inverse transformation wéfo

mirrored(angle) returnstrafo followed by mirroring at line througko, 0) with
directionangle in degrees.

rotated(angle, returnstrafo followed by rotation byangle degrees around

x=None, y=None) point (x,y), or (0, 0), if not given.
scaled(sx, sy=None, returnstrafo followed by scaling with scaling fact@x in
x=None, y=None) z-direction,sy in y-direction gy = sx, if not given) with

scaling cente(x, y), or (0, 0), if not given.

translated(x, y) returnstrafo followed by translation by vectdk, y).

slanted(a, angle=0, x=None, returnstrafo followed by XXX

y=None)

12.2 Subclasses of trafo

Thetrafo module provides provides a number of subclasses di#tie class, each of which corresponds to
onetrafo method. They are listed in the following table:

49

trafo subclass

function

mirror(angle)
rotate(angle,

x=None, y=None)
scale(sx, sy=None,

x=None, y=None)

translate(x, y)
slant(a, angle=0, x=None,
y=None)

mirroring at line throughO0, 0) with directionangle in degrees.
rotation byangle degrees around poif, y), or (0, 0), if not given.

scaling with scaling factosx in z-direction,sy in y-direction
(sy = sx, if not given) with scaling centefx, y), or (0,0), if not
given.

translation by vectofx, y).

XXX

50

Chapter 12. Module trafo: linear transformations

APPENDIX

A

Mathematical expressions

At several points withiny mathematical expressions can be provided in form of string parameters. They are
evaluated by the modulmathtree . This module is not described futher in this user manual, because it is

considered to be a technical detail. We just give a list of available operators, functions and predefined variable
names here here.

Operators: +;-;*;/;**

Functions: neg (negate);abs (absolute value)sgn (signum);sqrt (square root)exp; log (natural loga-
rithm); sin , cos,tan ,asin ,acos,atan (trigonometric functions in radian unitgind , cosd ,tand ,

asind , acosd , atand (as before but in degree unitslorm (v/a? + b? as an example for functions with
multiple arguments)

predefined variables: pi (x); e (e)

51

52

APPENDIX
B

<

< I
< IS
< I

< I

X X X X X

< IS

X
X
i X
~ I
X
i <
i <
i <
< I
X

grey.black

grey.white

rgb.red
rgb.green
rgb.blue
rgb.white

rgb.black

cmyk.GreenYellow

cmyk.Yellow
cmyk.Goldenrod
cmyk.Dandelion
cmyk.Apricot
cmyk.Peach
cmyk.Melon
cmyk.YellowOrange
cmyk.Orange
cmyk . BurntOrange
cmyk.Bittersweet
cmyk.RedOrange
cmyk . Mahogany
cmyk.Maroon
cmyk.BrickRed
cmyk.Red

cmyk.OrangeRed

< I
< IS
X
< IS
< I
< IS
< IS
< I
< I
< IS

< IS
< IS
< I
< IS
< IS
X<
X
< IS
< IS
< I

< I
< IS
< IS
xS

cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.

cmyk.

RubineRed
WildStrawberry
Salmon
CarnationPink
Magenta
VioletRed
Rhodamine
Mulberry
RedViolet
Fuchsia
Lavender
Thistle
Orchid
DarkOrchid
Purple

Plum

Violet
RoyalPurple
BlueViolet
Periwinkle
CadetBlue
CornflowerBlue
MidnightBlue
NavyBlue
RoyalBlue

Blue

Named colors

< IS

X X X X X X X

< IS
<
X

< IS
< B
< I

< I
xS
xS
<
< IS
< I
< IS

cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.

cmyk.

Cerulean
Cyan
ProcessBlue
SkyBlue
Turquoise
TealBlue
Aquamarine
BlueGreen
Emerald
JungleGreen
SeaGreen
Green
ForestGreen
PineGreen
LimeGreen
YellowGreen
SpringGreen
OliveGreen
RawSienna
Sepia
Brown

Tan

Gray

Black

White

53

54

APPENDIX
C

o

Named palettes

“" —

M

ﬂ\

!
.

lll
|

1
N

palette.

palette
palette

palette

palette.

palette.

palette
palette
palette
palette
palette

palette

palette.

palette

palette.

palette

palette

palette.

palette
palette
palette
palette
palette

palette

Gray

.ReverseGray
.RedGreen

.RedBlue

GreenRed

GreenBlue

.BlueRed

.BlueGreen

.RedBlack

.BlackRed

.RedWhite

.WhiteRed

GreenBlack

.BlackGreen

GreenWhite

.WhiteGreen

.BlueBlack

BlackBlue

.BlueWhite

.WhiteBlue

.Rainbow

.ReverseRainbow

.Hue

.ReverseHue

55

56

APPENDIX
D

222)22

DI>22000 0000

Module style

linecap.butt (default) miterlimit.lessthan180deg

linecap.round miterlimit.lessthan90deg

miterlimit.lessthan4bdeg

2\
2\
linecap.square /\\ niterlimit.lessthan60deg
2\
2\

linejoin.miter (default) miterlimit.lessthanildeg (default)
linejoin.round

linejoin.bevel o dash((1, 1, 2, 2, 3, 3), 0)

#7%, dash((1, 1, 2, 2, 3, 3), 1)

linestyle.solid (default) ,"":, dash((1, 2, 3), 2)
linestyle.dashed ,“"'./ dash((1, 2, 3), 3)
linestyle.dotted %, dash((1, 2, 3), 4)
linestyle.dashdotted “", dash((1, 2, 3), rellengths=1)

linewidth.THIN
linewidth.THIn
linewidth.THin
linewidth.Thin
linewidth.thin
linewidth.normal (default)
linewidth.thick
linewidth.Thick
linewidth.THick
linewidth.THIck
linewidth.THICk

linewidth.THICK

57

58

APPENDIX
E

22))) 2))))

earrow.

earrow

earrow

earrow.

earrow.

barrow.

earrow

earrow.

earrow.

earrow.

Arrows in deco module

Small

.small

.normal

large

Large

normal

.Large([deco.filled([color.rgb.red]), style.linewidth.normal])

normal (constriction=0)
Large([style.linejoin.round])

Large([deco.stroked.clear])

59

60

A

append() (path method), 7

arc (class in path), 8

arclen() (path method), 7

arclentoparam() (path method), 7

arcn (class in path), 9

arct (class in path), 9

arrow (class in graph.style), 24

at() (path method), 7

autolin (class in graph.axis.parter), 31

autolinear (class in graph.axis.parter), 30

autolog (class in graph.axis.parter), 31

autologarithmic (class in graph.axis.parter),
31

axes (graphxy attribute), 19

axespos (graphxy attribute), 19

B

bar
class in graph.axis.axis, 29
class in graph.axis.painter, 34
class in graph.style, 24
basepath() (axispos method), 27
bbox()
canvas method, 11
path method, 7
begin() (path method), 7

C

canvas
class in canvas, 11
module,11
changecircle (symbolline attribute), 23
changecircletwice (symbolline attribute), 24
changecross (symbolline attribute), 23
changediamond (symbolline attribute), 23
changediamondtwice (symbolline attribute),
24
changefilledstroked
24
changelinestyle (symbolline attribute), 24
changeplus (symbolline attribute), 23
changesquare (symbolline attribute), 23
changesquaretwice (symbolline attribute), 24
changestrokedfilled (symbolline attribute),
24

(symbolline attribute),

INDEX

changetriangle (symbolline attribute), 23

changetriangletwice (symbolline attribute),
24

circle() (symbolline method), 23

circle (class in path), 10

closepath (class in path), 9
conffile (class in graph.data), 22
cross() (symbolline method), 23

cube (class in graph.axis.rater), 35
curve (class in path), 10

curveto (class in path), 9
curvradius() (path method), 7
D

data (class in graph.data), 22
decimal (class in graph.axis.texter), 32
defaultcolumnpattern (file attribute), 21
defaultcommentpattern (file attribute), 21
defaultstringpattern (file attribute), 21
defaultvariants

autolinear attribute, 30

autologarithmic attribute, 31
diamond() (symbolline method), 23
distance (class in graph.axis.rater), 35
doaxes() (graphxy method), 20
dobackground() (graphxy method), 20
dodata() (graphxy method), 20
dokey() (graphxy method), 20

dolayout() (graphxy method), 20

draw() (canvas method), 11

E

end() (path method), 7

exponential (class in graph.axis.texter), 32
F

file (class in graph.data), 20
fill() (canvas method), 11

finish() (graphxy method), 20
function (class in graph.data), 21
G

graph.axis.axis (module),27
graph.axis.painter (module),33
graph.axis.parter (module),30

61

graph.axis.rater (module),34
graph.axis.texter (module),31
graph.axis.tick (module),29

graph.data (module),20
graph.graph (module),19
graph.key (module),25
graph.style (module),22
graphxy (class in graph.graph), 19
gridpath() (axispos method), 28

insert() (canvas method), 11
intersect() (path method), 7

J

join() (normpath method), 9
joined() (path method), 7

K
key (class in graph.key), 25

L
lin
class in graph.axis.axis, 28
class in graph.axis.parter, 30
class in graph.axis.rater, 35
line
class in graph.style, 24
class in path, 10
linear
class in graph.axis.axis, 28
class in graph.axis.parter, 30
class in graph.axis.rater, 35
lineto (class in path), 8
linked
class in graph.axis.axis, 28
class in graph.axis.painter, 34
linkedbar (class in graph.axis.painter), 34
linkedsplit
class in graph.axis.axis, 29
class in graph.axis.painter, 34
list (class in graph.data), 22
log
class in graph.axis.axis, 28
class in graph.axis.parter, 31
class in graph.axis.rater, 35
logarithmic
class in graph.axis.axis, 28
class in graph.axis.parter, 31
class in graph.axis.rater, 35

M

mixed (class in graph.axis.texter), 32
moveto (class in path), 8
multicurveto_pt (class in path), 9
multilineto_pt (class in path), 9

N

normpath (class in path), 9

O

orthogonal (rotatetext attribute), 33

P

parallel (rotatetext attribute), 33
paramfunction (class in graph.data), 22
path

class in path, 7

module,7
pathaxis() (in module graph.axis.axis), 29
plot() (graphxy method), 19
plus() (symbolline method), 23
pos() (graphxy method), 20
prel25exp (logarithmic attribute), 31
prelexp (logarithmic attribute), 31
prelexp2 (logarithmic attribute), 31
prelexp3 (logarithmic attribute), 31
prelexp4 (logarithmic attribute), 31
prelexp5 (logarithmic attribute), 31
prelto9exp (logarithmic attribute), 31
preexp (class in graph.axis.parter), 31

R

range() (path method), 7
rater (class in graph.axis.rater), 35
rational
class in graph.axis.texter, 32
class in graph.axis.tick, 30
rcurveto (class in path), 9
rect
class in graph.style, 24
class in path, 10
regular (class in graph.axis.painter), 33
reverse() (normpath method), 10
reversed() (path method), 7
rineto (class in path), 8
rmoveto (class in path), 8
rotatetext (class in graph.axis.painter), 33

S

set() (canvas method), 11
settexrunner() (canvas method), 11
split() (path method), 7
split

class in graph.axis.axis, 29

class in graph.axis.painter, 34
square() (symbolline method), 23
stroke() (canvas method), 11
symbol (class in graph.style), 24
symbolline (class in graph.style), 23

T

tangent() (path method), 8
text() (canvas method), 11

62

Index

text (classin graph.style), 24

tick (class in graph.axis.tick), 30
tickdirection() (axispos method), 28
ticklength (class in graph.axis.painter), 33
tickpoint() (axispos method), 28

trafo() (path method), 8

transform() (normpath method), 10
transformed() (path method), 8

triangle() (symbolline method), 23

Vv

vbasepath() (axispos method), 28
vgeodesic() (graphxy method), 20
vgeodesic_el() (graphxy method), 20
vgridpath() (axispos method), 28
vpos() (graphxy method), 20

vtickdirection() (axispos method), 28
vtickpoint() (axispos method), 28

W

writeEPSfile() (canvas method), 11

X

xbasepath() (graphxy method), 20
xgridpath() (graphxy method), 20
xtickdirection() (graphxy method), 20
xtickpoint() (graphxy method), 20
xvbasepath() (graphxy method), 20
xvgridpath() (graphxy method), 20

xvtickdirection() (graphxy method), 20
xvtickpoint() (graphxy method), 20
Y

ybasepath() (graphxy method), 20
ygridpath() (graphxy method), 20
ytickdirection() (graphxy method), 20
ytickpoint() (graphxy method), 20
yvbasepath() (graphxy method), 20
yvgridpath() (graphxy method), 20
yvtickdirection() (graphxy method), 20
yvtickpoint() (graphxy method), 20

Index

63

	1 Introduction
	1.1 Organisation of the P-.3em.5exY-.18em X package

	2 Basic graphics
	2.1 Introduction
	2.2 Path operations
	2.3 Attributes: Styles and Decorations
	2.4 Module path
	2.4.1 Class path --- PostScript-like paths
	2.4.2 Path elements
	2.4.3 Class normpath
	2.4.4 Predefined paths

	2.5 Module canvas
	2.5.1 Class canvas
	2.5.2 Patterns

	3 Module text: T-.1667em.5exE-.125emXspacefactor @m m / interface
	3.1 Basic functionality
	3.2 The texrunner
	3.3 T-.1667em.5exE-.125emXspacefactor @m m / attributes
	3.4 Using the graphics-bundle with
	3.5 T-.1667em.5exE-.125emXspacefactor @m m / message parsers
	3.6 The defaulttexrunner instance

	4 Graphs
	4.1 Introduction
	4.2 Component architecture
	4.3 X-Y-Graphs
	4.4 Data
	4.5 Styles
	4.6 Keys

	5 Axes
	5.1 Axes
	5.2 Ticks
	5.3 Partitioners
	5.4 Texter
	5.5 Painter
	5.6 Rater

	6 Module box: convex box handling
	6.1 polygon
	6.2 functions working on a box list
	6.3 rectangular boxes

	7 Module connector
	7.1 Class line
	7.2 Class arc
	7.3 Class curve
	7.4 Class twolines

	8 Module epsfile: EPS file inclusion
	9 Module bbox
	9.1 bbox constructor
	9.2 bbox methods

	10 Module color
	10.1 Color models
	10.2 Example
	10.3 Color palettes

	11 Module unit
	11.1 Class length
	11.2 Subclasses of length
	11.3 Conversion functions

	12 Module trafo: linear transformations
	12.1 Class trafo
	12.2 Subclasses of trafo

	A Mathematical expressions
	B Named colors
	C Named palettes
	D Module style
	E Arrows in deco module
	Index

