
Miscellaneous HOL-Complex Examples

November 22, 2007

Contents

1 Binary arithmetic examples 2
1.1 Real Arithmetic . 2

1.1.1 Addition . 2
1.1.2 Negation . 3
1.1.3 Multiplication . 3
1.1.4 Inequalities . 3
1.1.5 Powers . 3
1.1.6 Tests . 4

1.2 Complex Arithmetic . 10

2 Square roots of primes are irrational 10
2.1 Preliminaries . 10
2.2 Main theorem . 11
2.3 Variations . 12

3 Square roots of primes are irrational (script version) 13
3.1 Preliminaries . 13
3.2 The set of rational numbers 14
3.3 Main theorem . 14

4 The Nonstandard Primes as an Extension of the Prime Num-
bers 14
4.1 Another characterization of infinite set of natural numbers . . 16
4.2 An injective function cannot define an embedded natural num-

ber . 17
4.3 Existence of Infinitely Many Primes: a Nonstandard Proof . . 19

5 Big O notation – continued 21

6 Arithmetic Series for Reals 22

7 Divergence of the Harmonic Series 22

1

8 Abstract 23

9 Formal Proof 23

10 Denumerability of the Rationals 29

11 Type of indices 31
11.1 Datatype of indices . 31
11.2 Built-in integers as datatype on numerals 32
11.3 Basic arithmetic . 32
11.4 Conversion to and from nat 34
11.5 ML interface . 35
11.6 Code serialization . 35

12 Pretty integer literals for code generation 36

13 Quatifier elimination for R(0,1,+,floor,¡) 38

14 Implementation of natural numbers by integers 172
14.1 Logical rewrites . 172
14.2 Code generator setup for basic functions 175
14.3 Preprocessors . 176
14.4 Module names . 177

15 Quatifier elimination for R(0,1,+,¡) 177

1 Binary arithmetic examples

theory BinEx
imports Complex-Main
begin

Examples of performing binary arithmetic by simplification. This time we
use the reals, though the representation is just of integers.

1.1 Real Arithmetic

1.1.1 Addition

lemma (1359 ::real) + −2468 = −1109
by simp

lemma (93746 ::real) + −46375 = 47371
by simp

2

1.1.2 Negation

lemma − (65745 ::real) = −65745
by simp

lemma − (−54321 ::real) = 54321
by simp

1.1.3 Multiplication

lemma (−84 ::real) ∗ 51 = −4284
by simp

lemma (255 ::real) ∗ 255 = 65025
by simp

lemma (1359 ::real) ∗ −2468 = −3354012
by simp

1.1.4 Inequalities

lemma (89 ::real) ∗ 10 6= 889
by simp

lemma (13 ::real) < 18 − 4
by simp

lemma (−345 ::real) < −242 + −100
by simp

lemma (13557456 ::real) < 18678654
by simp

lemma (999999 ::real) ≤ (1000001 + 1) − 2
by simp

lemma (1234567 ::real) ≤ 1234567
by simp

1.1.5 Powers

lemma 2 ˆ 15 = (32768 ::real)
by simp

lemma −3 ˆ 7 = (−2187 ::real)
by simp

lemma 13 ˆ 7 = (62748517 ::real)
by simp

3

lemma 3 ˆ 15 = (14348907 ::real)
by simp

lemma −5 ˆ 11 = (−48828125 ::real)
by simp

1.1.6 Tests

lemma (x + y = x) = (y = (0 ::real))
by arith

lemma (x + y = y) = (x = (0 ::real))
by arith

lemma (x + y = (0 ::real)) = (x = −y)
by arith

lemma (x + y = (0 ::real)) = (y = −x)
by arith

lemma ((x + y) < (x + z)) = (y < (z ::real))
by arith

lemma ((x + z) < (y + z)) = (x < (y ::real))
by arith

lemma (¬ x < y) = (y ≤ (x ::real))
by arith

lemma ¬ (x < y ∧ y < (x ::real))
by arith

lemma (x ::real) < y ==> ¬ y < x
by arith

lemma ((x ::real) 6= y) = (x < y ∨ y < x)
by arith

lemma (¬ x ≤ y) = (y < (x ::real))
by arith

lemma x ≤ y ∨ y ≤ (x ::real)
by arith

lemma x ≤ y ∨ y < (x ::real)
by arith

lemma x < y ∨ y ≤ (x ::real)
by arith

4

lemma x ≤ (x ::real)
by arith

lemma ((x ::real) ≤ y) = (x < y ∨ x = y)
by arith

lemma ((x ::real) ≤ y ∧ y ≤ x) = (x = y)
by arith

lemma ¬(x < y ∧ y ≤ (x ::real))
by arith

lemma ¬(x ≤ y ∧ y < (x ::real))
by arith

lemma (−x < (0 ::real)) = (0 < x)
by arith

lemma ((0 ::real) < −x) = (x < 0)
by arith

lemma (−x ≤ (0 ::real)) = (0 ≤ x)
by arith

lemma ((0 ::real) ≤ −x) = (x ≤ 0)
by arith

lemma (x ::real) = y ∨ x < y ∨ y < x
by arith

lemma (x ::real) = 0 ∨ 0 < x ∨ 0 < −x
by arith

lemma (0 ::real) ≤ x ∨ 0 ≤ −x
by arith

lemma ((x ::real) + y ≤ x + z) = (y ≤ z)
by arith

lemma ((x ::real) + z ≤ y + z) = (x ≤ y)
by arith

lemma (w ::real) < x ∧ y < z ==> w + y < x + z
by arith

lemma (w ::real) ≤ x ∧ y ≤ z ==> w + y ≤ x + z
by arith

5

lemma (0 ::real) ≤ x ∧ 0 ≤ y ==> 0 ≤ x + y
by arith

lemma (0 ::real) < x ∧ 0 < y ==> 0 < x + y
by arith

lemma (−x < y) = (0 < x + (y ::real))
by arith

lemma (x < −y) = (x + y < (0 ::real))
by arith

lemma (y < x + −z) = (y + z < (x ::real))
by arith

lemma (x + −y < z) = (x < z + (y ::real))
by arith

lemma x ≤ y ==> x < y + (1 ::real)
by arith

lemma (x − y) + y = (x ::real)
by arith

lemma y + (x − y) = (x ::real)
by arith

lemma x − x = (0 ::real)
by arith

lemma (x − y = 0) = (x = (y ::real))
by arith

lemma ((0 ::real) ≤ x + x) = (0 ≤ x)
by arith

lemma (−x ≤ x) = ((0 ::real) ≤ x)
by arith

lemma (x ≤ −x) = (x ≤ (0 ::real))
by arith

lemma (−x = (0 ::real)) = (x = 0)
by arith

lemma −(x − y) = y − (x ::real)
by arith

lemma ((0 ::real) < x − y) = (y < x)

6

by arith

lemma ((0 ::real) ≤ x − y) = (y ≤ x)
by arith

lemma (x + y) − x = (y ::real)
by arith

lemma (−x = y) = (x = (−y ::real))
by arith

lemma x < (y ::real) ==> ¬(x = y)
by arith

lemma (x ≤ x + y) = ((0 ::real) ≤ y)
by arith

lemma (y ≤ x + y) = ((0 ::real) ≤ x)
by arith

lemma (x < x + y) = ((0 ::real) < y)
by arith

lemma (y < x + y) = ((0 ::real) < x)
by arith

lemma (x − y) − x = (−y ::real)
by arith

lemma (x + y < z) = (x < z − (y ::real))
by arith

lemma (x − y < z) = (x < z + (y ::real))
by arith

lemma (x < y − z) = (x + z < (y ::real))
by arith

lemma (x ≤ y − z) = (x + z ≤ (y ::real))
by arith

lemma (x − y ≤ z) = (x ≤ z + (y ::real))
by arith

lemma (−x < −y) = (y < (x ::real))
by arith

lemma (−x ≤ −y) = (y ≤ (x ::real))
by arith

7

lemma (a + b) − (c + d) = (a − c) + (b − (d ::real))
by arith

lemma (0 ::real) − x = −x
by arith

lemma x − (0 ::real) = x
by arith

lemma w ≤ x ∧ y < z ==> w + y < x + (z ::real)
by arith

lemma w < x ∧ y ≤ z ==> w + y < x + (z ::real)
by arith

lemma (0 ::real) ≤ x ∧ 0 < y ==> 0 < x + (y ::real)
by arith

lemma (0 ::real) < x ∧ 0 ≤ y ==> 0 < x + y
by arith

lemma −x − y = −(x + (y ::real))
by arith

lemma x − (−y) = x + (y ::real)
by arith

lemma −x − −y = y − (x ::real)
by arith

lemma (a − b) + (b − c) = a − (c::real)
by arith

lemma (x = y − z) = (x + z = (y ::real))
by arith

lemma (x − y = z) = (x = z + (y ::real))
by arith

lemma x − (x − y) = (y ::real)
by arith

lemma x − (x + y) = −(y ::real)
by arith

lemma x = y ==> x ≤ (y ::real)
by arith

8

lemma (0 ::real) < x ==> ¬(x = 0)
by arith

lemma (x + y) ∗ (x − y) = (x ∗ x) − (y ∗ y)
oops

lemma (−x = −y) = (x = (y ::real))
by arith

lemma (−x < −y) = (y < (x ::real))
by arith

lemma !!a::real . a ≤ b ==> c ≤ d ==> x + y < z ==> a + c ≤ b + d
by (tactic fast-arith-tac @{context} 1)

lemma !!a::real . a < b ==> c < d ==> a − d ≤ b + (−c)
by (tactic fast-arith-tac @{context} 1)

lemma !!a::real . a ≤ b ==> b + b ≤ c ==> a + a ≤ c
by (tactic fast-arith-tac @{context} 1)

lemma !!a::real . a + b ≤ i + j ==> a ≤ b ==> i ≤ j ==> a + a ≤ j + j
by (tactic fast-arith-tac @{context} 1)

lemma !!a::real . a + b < i + j ==> a < b ==> i < j ==> a + a < j + j
by (tactic fast-arith-tac @{context} 1)

lemma !!a::real . a + b + c ≤ i + j + k ∧ a ≤ b ∧ b ≤ c ∧ i ≤ j ∧ j ≤ k −−>
a + a + a ≤ k + k + k
by arith

lemma !!a::real . a + b + c + d ≤ i + j + k + l ==> a ≤ b ==> b ≤ c
==> c ≤ d ==> i ≤ j ==> j ≤ k ==> k ≤ l ==> a ≤ l

by (tactic fast-arith-tac @{context} 1)

lemma !!a::real . a + b + c + d ≤ i + j + k + l ==> a ≤ b ==> b ≤ c
==> c ≤ d ==> i ≤ j ==> j ≤ k ==> k ≤ l ==> a + a + a + a ≤ l +

l + l + l
by (tactic fast-arith-tac @{context} 1)

lemma !!a::real . a + b + c + d ≤ i + j + k + l ==> a ≤ b ==> b ≤ c
==> c ≤ d ==> i ≤ j ==> j ≤ k ==> k ≤ l ==> a + a + a + a + a ≤

l + l + l + l + i
by (tactic fast-arith-tac @{context} 1)

lemma !!a::real . a + b + c + d ≤ i + j + k + l ==> a ≤ b ==> b ≤ c
==> c ≤ d ==> i ≤ j ==> j ≤ k ==> k ≤ l ==> a + a + a + a + a +

a ≤ l + l + l + l + i + l
by (tactic fast-arith-tac @{context} 1)

9

1.2 Complex Arithmetic

lemma (1359 + 93746∗ii) − (2468 + 46375∗ii) = −1109 + 47371∗ii
by simp

lemma − (65745 + −47371∗ii) = −65745 + 47371∗ii
by simp

Multiplication requires distributive laws. Perhaps versions instantiated to
literal constants should be added to the simpset.

lemma (1 + ii) ∗ (1 − ii) = 2
by (simp add : ring-distribs)

lemma (1 + 2∗ii) ∗ (1 + 3∗ii) = −5 + 5∗ii
by (simp add : ring-distribs)

lemma (−84 + 255∗ii) + (51 ∗ 255∗ii) = −84 + 13260 ∗ ii
by (simp add : ring-distribs)

No inequalities or linear arithmetic: the complex numbers are unordered!

No powers (not supported yet)

end

2 Square roots of primes are irrational

theory Sqrt
imports Primes Complex-Main
begin

2.1 Preliminaries

The set of rational numbers, including the key representation theorem.

definition
rationals (Q) where
Q = {x . ∃m n. n 6= 0 ∧ |x | = real (m::nat) / real (n::nat)}

theorem rationals-rep [elim?]:
assumes x ∈ Q
obtains m n where n 6= 0 and |x | = real m / real n and gcd (m, n) = 1

proof −
from 〈x ∈ Q 〉 obtain m n :: nat where

n: n 6= 0 and x-rat : |x | = real m / real n
unfolding rationals-def by blast

let ?gcd = gcd (m, n)
from n have gcd : ?gcd 6= 0 by (simp add : gcd-zero)
let ?k = m div ?gcd

10

let ?l = n div ?gcd
let ?gcd ′ = gcd (?k , ?l)
have ?gcd dvd m .. then have gcd-k : ?gcd ∗ ?k = m
by (rule dvd-mult-div-cancel)

have ?gcd dvd n .. then have gcd-l : ?gcd ∗ ?l = n
by (rule dvd-mult-div-cancel)

from n and gcd-l have ?l 6= 0
by (auto iff del : neq0-conv)

moreover
have |x | = real ?k / real ?l
proof −
from gcd have real ?k / real ?l =

real (?gcd ∗ ?k) / real (?gcd ∗ ?l) by simp
also from gcd-k and gcd-l have . . . = real m / real n by simp
also from x-rat have . . . = |x | ..
finally show ?thesis ..

qed
moreover
have ?gcd ′ = 1
proof −
have ?gcd ∗ ?gcd ′ = gcd (?gcd ∗ ?k , ?gcd ∗ ?l)
by (rule gcd-mult-distrib2)

with gcd-k gcd-l have ?gcd ∗ ?gcd ′ = ?gcd by simp
with gcd show ?thesis by simp

qed
ultimately show ?thesis ..

qed

2.2 Main theorem

The square root of any prime number (including 2) is irrational.

theorem sqrt-prime-irrational :
assumes prime p
shows sqrt (real p) /∈ Q

proof
from 〈prime p〉 have p: 1 < p by (simp add : prime-def)
assume sqrt (real p) ∈ Q
then obtain m n where

n: n 6= 0 and sqrt-rat : |sqrt (real p)| = real m / real n
and gcd : gcd (m, n) = 1 ..

have eq : m2 = p ∗ n2

proof −
from n and sqrt-rat have real m = |sqrt (real p)| ∗ real n by simp
then have real (m2) = (sqrt (real p))2 ∗ real (n2)
by (auto simp add : power2-eq-square)

also have (sqrt (real p))2 = real p by simp
also have . . . ∗ real (n2) = real (p ∗ n2) by simp
finally show ?thesis ..

11

qed
have p dvd m ∧ p dvd n
proof
from eq have p dvd m2 ..
with 〈prime p〉 show p dvd m by (rule prime-dvd-power-two)
then obtain k where m = p ∗ k ..
with eq have p ∗ n2 = p2 ∗ k2 by (auto simp add : power2-eq-square mult-ac)
with p have n2 = p ∗ k2 by (simp add : power2-eq-square)
then have p dvd n2 ..
with 〈prime p〉 show p dvd n by (rule prime-dvd-power-two)

qed
then have p dvd gcd (m, n) ..
with gcd have p dvd 1 by simp
then have p ≤ 1 by (simp add : dvd-imp-le)
with p show False by simp

qed

corollary sqrt (real (2 ::nat)) /∈ Q
by (rule sqrt-prime-irrational) (rule two-is-prime)

2.3 Variations

Here is an alternative version of the main proof, using mostly linear forward-
reasoning. While this results in less top-down structure, it is probably closer
to proofs seen in mathematics.
theorem
assumes prime p
shows sqrt (real p) /∈ Q

proof
from 〈prime p〉 have p: 1 < p by (simp add : prime-def)
assume sqrt (real p) ∈ Q
then obtain m n where

n: n 6= 0 and sqrt-rat : |sqrt (real p)| = real m / real n
and gcd : gcd (m, n) = 1 ..

from n and sqrt-rat have real m = |sqrt (real p)| ∗ real n by simp
then have real (m2) = (sqrt (real p))2 ∗ real (n2)
by (auto simp add : power2-eq-square)

also have (sqrt (real p))2 = real p by simp
also have . . . ∗ real (n2) = real (p ∗ n2) by simp
finally have eq : m2 = p ∗ n2 ..
then have p dvd m2 ..
with 〈prime p〉 have dvd-m: p dvd m by (rule prime-dvd-power-two)
then obtain k where m = p ∗ k ..
with eq have p ∗ n2 = p2 ∗ k2 by (auto simp add : power2-eq-square mult-ac)
with p have n2 = p ∗ k2 by (simp add : power2-eq-square)
then have p dvd n2 ..
with 〈prime p〉 have p dvd n by (rule prime-dvd-power-two)
with dvd-m have p dvd gcd (m, n) by (rule gcd-greatest)
with gcd have p dvd 1 by simp

12

then have p ≤ 1 by (simp add : dvd-imp-le)
with p show False by simp

qed

end

3 Square roots of primes are irrational (script ver-
sion)

theory Sqrt-Script
imports Primes Complex-Main
begin

Contrast this linear Isabelle/Isar script with Markus Wenzel’s more mathe-
matical version.

3.1 Preliminaries

lemma prime-nonzero: prime p =⇒ p 6= 0
by (force simp add : prime-def)

lemma prime-dvd-other-side:
n ∗ n = p ∗ (k ∗ k) =⇒ prime p =⇒ p dvd n

apply (subgoal-tac p dvd n ∗ n, blast dest : prime-dvd-mult)
apply (rule-tac j = k ∗ k in dvd-mult-left , simp)
done

lemma reduction: prime p =⇒
0 < k =⇒ k ∗ k = p ∗ (j ∗ j) =⇒ k < p ∗ j ∧ 0 < j

apply (rule ccontr)
apply (simp add : linorder-not-less)
apply (erule disjE)
apply (frule mult-le-mono, assumption)
apply auto
apply (force simp add : prime-def)
done

lemma rearrange: (j ::nat) ∗ (p ∗ j) = k ∗ k =⇒ k ∗ k = p ∗ (j ∗ j)
by (simp add : mult-ac)

lemma prime-not-square:
prime p =⇒ (

∧
k . 0 < k =⇒ m ∗ m 6= p ∗ (k ∗ k))

apply (induct m rule: nat-less-induct)
apply clarify
apply (frule prime-dvd-other-side, assumption)
apply (erule dvdE)
apply (simp add : nat-mult-eq-cancel-disj prime-nonzero)

13

apply (blast dest : rearrange reduction)
done

3.2 The set of rational numbers

definition
rationals :: real set (Q) where
Q = {x . ∃m n. n 6= 0 ∧ |x | = real (m::nat) / real (n::nat)}

3.3 Main theorem

The square root of any prime number (including 2) is irrational.

theorem prime-sqrt-irrational :
prime p =⇒ x ∗ x = real p =⇒ 0 ≤ x =⇒ x /∈ Q

apply (simp add : rationals-def real-abs-def)
apply clarify
apply (erule-tac P = real m / real n ∗ ?x = ?y in rev-mp)
apply (simp del : real-of-nat-mult

add : divide-eq-eq prime-not-square real-of-nat-mult [symmetric])
done

lemmas two-sqrt-irrational =
prime-sqrt-irrational [OF two-is-prime]

end

4 The Nonstandard Primes as an Extension of the
Prime Numbers

theory NSPrimes
imports ∼∼/src/HOL/NumberTheory/Factorization Complex-Main
begin

These can be used to derive an alternative proof of the infinitude of primes
by considering a property of nonstandard sets.

definition
hdvd :: [hypnat , hypnat] => bool (infixl hdvd 50) where
[transfer-unfold]: (M ::hypnat) hdvd N = (∗p2∗ (op dvd)) M N

definition
starprime :: hypnat set where
[transfer-unfold]: starprime = (∗s∗ {p. prime p})

definition
choicefun :: ′a set => ′a where
choicefun E = (@x . ∃X ∈ Pow(E) −{{}}. x : X)

14

consts injf-max :: nat => (′a::{order} set) => ′a
primrec

injf-max-zero: injf-max 0 E = choicefun E
injf-max-Suc: injf-max (Suc n) E = choicefun({e. e:E & injf-max n E < e})

lemma dvd-by-all : ∀M . ∃N . 0 < N & (∀m. 0 < m & (m::nat) <= M −−> m
dvd N)
apply (rule allI)
apply (induct-tac M , auto)
apply (rule-tac x = N ∗ (Suc n) in exI)
apply (safe, force)
apply (drule le-imp-less-or-eq , erule disjE)
apply (force intro!: dvd-mult2)
apply (force intro!: dvd-mult)
done

lemmas dvd-by-all2 = dvd-by-all [THEN spec, standard]

lemma hypnat-of-nat-le-zero-iff : (hypnat-of-nat n <= 0) = (n = 0)
by (transfer , simp)
declare hypnat-of-nat-le-zero-iff [simp]

lemma hdvd-by-all : ∀M . ∃N . 0 < N & (∀m. 0 < m & (m::hypnat) <= M −−>
m hdvd N)
by (transfer , rule dvd-by-all)

lemmas hdvd-by-all2 = hdvd-by-all [THEN spec, standard]

lemma hypnat-dvd-all-hypnat-of-nat :
∃ (N ::hypnat). 0 < N & (∀n ∈ −{0 ::nat}. hypnat-of-nat(n) hdvd N)

apply (cut-tac hdvd-by-all)
apply (drule-tac x = whn in spec, auto)
apply (rule exI , auto)
apply (drule-tac x = hypnat-of-nat n in spec)
apply (auto simp add : linorder-not-less star-of-eq-0)
done

The nonstandard extension of the set prime numbers consists of precisely
those hypernaturals exceeding 1 that have no nontrivial factors

lemma starprime:
starprime = {p. 1 < p & (∀m. m hdvd p −−> m = 1 | m = p)}

by (transfer , auto simp add : prime-def)

lemma prime-two: prime 2

15

apply (unfold prime-def , auto)
apply (frule dvd-imp-le)
apply (auto dest : dvd-0-left)
apply (case-tac m, simp, arith)
done
declare prime-two [simp]

lemma prime-factor-exists [rule-format]: Suc 0 < n −−> (∃ k . prime k & k dvd
n)
apply (rule-tac n = n in nat-less-induct , auto)
apply (case-tac prime n)
apply (rule-tac x = n in exI , auto)
apply (drule conjI [THEN not-prime-ex-mk], auto)
apply (drule-tac x = m in spec, auto)
apply (rule-tac x = ka in exI)
apply (auto intro: dvd-mult2)
done

lemma hyperprime-factor-exists [rule-format]:
!!n. 1 < n ==> (∃ k ∈ starprime. k hdvd n)

by (transfer , simp add : prime-factor-exists)

lemma NatStar-hypnat-of-nat : finite A ==> ∗s∗ A = hypnat-of-nat ‘ A
by (rule starset-finite)

4.1 Another characterization of infinite set of natural num-
bers

lemma finite-nat-set-bounded : finite N ==> ∃n. (∀ i ∈ N . i<(n::nat))
apply (erule-tac F = N in finite-induct , auto)
apply (rule-tac x = Suc n + x in exI , auto)
done

lemma finite-nat-set-bounded-iff : finite N = (∃n. (∀ i ∈ N . i<(n::nat)))
by (blast intro: finite-nat-set-bounded bounded-nat-set-is-finite)

lemma not-finite-nat-set-iff : (∼ finite N) = (∀n. ∃ i ∈ N . n <= (i ::nat))
by (auto simp add : finite-nat-set-bounded-iff le-def)

lemma bounded-nat-set-is-finite2 : (∀ i ∈ N . i<=(n::nat)) ==> finite N
apply (rule finite-subset)
apply (rule-tac [2] finite-atMost , auto)
done

lemma finite-nat-set-bounded2 : finite N ==> ∃n. (∀ i ∈ N . i<=(n::nat))
apply (erule-tac F = N in finite-induct , auto)

16

apply (rule-tac x = n + x in exI , auto)
done

lemma finite-nat-set-bounded-iff2 : finite N = (∃n. (∀ i ∈ N . i<=(n::nat)))
by (blast intro: finite-nat-set-bounded2 bounded-nat-set-is-finite2)

lemma not-finite-nat-set-iff2 : (∼ finite N) = (∀n. ∃ i ∈ N . n < (i ::nat))
by (auto simp add : finite-nat-set-bounded-iff2 le-def)

4.2 An injective function cannot define an embedded natural
number

lemma lemma-infinite-set-singleton: ∀m n. m 6= n −−> f n 6= f m
==> {n. f n = N } = {} | (∃m. {n. f n = N } = {m})

apply auto
apply (drule-tac x = x in spec, auto)
apply (subgoal-tac ∀n. (f n = f x) = (x = n))
apply auto
done

lemma inj-fun-not-hypnat-in-SHNat :
assumes inj-f : inj (f ::nat=>nat)
shows starfun f whn /∈ Nats

proof
from inj-f have inj-f ′: inj (starfun f)
by (transfer inj-on-def Ball-def UNIV-def)

assume starfun f whn ∈ Nats
then obtain N where N : starfun f whn = hypnat-of-nat N
by (auto simp add : Nats-def)

hence ∃n. starfun f n = hypnat-of-nat N ..
hence ∃n. f n = N by transfer
then obtain n where n: f n = N ..
hence starfun f (hypnat-of-nat n) = hypnat-of-nat N
by transfer

with N have starfun f whn = starfun f (hypnat-of-nat n)
by simp

with inj-f ′ have whn = hypnat-of-nat n
by (rule injD)

thus False
by (simp add : whn-neq-hypnat-of-nat)

qed

lemma range-subset-mem-starsetNat :
range f <= A ==> starfun f whn ∈ ∗s∗ A

apply (rule-tac x=whn in spec)
apply (transfer , auto)
done

17

lemma lemmaPow3 : E 6= {} ==> ∃ x . ∃X ∈ (Pow E − {{}}). x : X
by auto

lemma choicefun-mem-set : E 6= {} ==> choicefun E ∈ E
apply (unfold choicefun-def)
apply (rule lemmaPow3 [THEN someI2-ex], auto)
done
declare choicefun-mem-set [simp]

lemma injf-max-mem-set : [| E 6={}; ∀ x . ∃ y ∈ E . x < y |] ==> injf-max n E ∈
E
apply (induct-tac n, force)
apply (simp (no-asm) add : choicefun-def)
apply (rule lemmaPow3 [THEN someI2-ex], auto)
done

lemma injf-max-order-preserving : ∀ x . ∃ y ∈ E . x < y ==> injf-max n E <
injf-max (Suc n) E
apply (simp (no-asm) add : choicefun-def)
apply (rule lemmaPow3 [THEN someI2-ex], auto)
done

lemma injf-max-order-preserving2 : ∀ x . ∃ y ∈ E . x < y
==> ∀n m. m < n −−> injf-max m E < injf-max n E

apply (rule allI)
apply (induct-tac n, auto)
apply (simp (no-asm) add : choicefun-def)
apply (rule lemmaPow3 [THEN someI2-ex])
apply (auto simp add : less-Suc-eq)
apply (drule-tac x = m in spec)
apply (drule subsetD , auto)
apply (drule-tac x = injf-max m E in order-less-trans, auto)
done

lemma inj-injf-max : ∀ x . ∃ y ∈ E . x < y ==> inj (%n. injf-max n E)
apply (rule inj-onI)
apply (rule ccontr , auto)
apply (drule injf-max-order-preserving2)
apply (metis linorder-antisym-conv3 order-less-le)
done

18

lemma infinite-set-has-order-preserving-inj :
[| (E ::(′a::{order} set)) 6= {}; ∀ x . ∃ y ∈ E . x < y |]
==> ∃ f . range f <= E & inj (f ::nat => ′a) & (∀m. f m < f (Suc m))

apply (rule-tac x = %n. injf-max n E in exI , safe)
apply (rule injf-max-mem-set)
apply (rule-tac [3] inj-injf-max)
apply (rule-tac [4] injf-max-order-preserving , auto)
done

Only need the existence of an injective function from N to A for proof

lemma hypnat-infinite-has-nonstandard :
∼ finite A ==> hypnat-of-nat ‘ A < (∗s∗ A)

apply auto
apply (subgoal-tac A 6= {})
prefer 2 apply force
apply (drule infinite-set-has-order-preserving-inj)
apply (erule not-finite-nat-set-iff2 [THEN iffD1], auto)
apply (drule inj-fun-not-hypnat-in-SHNat)
apply (drule range-subset-mem-starsetNat)
apply (auto simp add : SHNat-eq)
done

lemma starsetNat-eq-hypnat-of-nat-image-finite: ∗s∗ A = hypnat-of-nat ‘ A ==>
finite A
apply (rule ccontr)
apply (auto dest : hypnat-infinite-has-nonstandard)
done

lemma finite-starsetNat-iff : (∗s∗ A = hypnat-of-nat ‘ A) = (finite A)
by (blast intro!: starsetNat-eq-hypnat-of-nat-image-finite NatStar-hypnat-of-nat)

lemma hypnat-infinite-has-nonstandard-iff : (∼ finite A) = (hypnat-of-nat ‘ A <
∗s∗ A)
apply (rule iffI)
apply (blast intro!: hypnat-infinite-has-nonstandard)
apply (auto simp add : finite-starsetNat-iff [symmetric])
done

4.3 Existence of Infinitely Many Primes: a Nonstandard
Proof

lemma lemma-not-dvd-hypnat-one: ∼ (∀n ∈ − {0}. hypnat-of-nat n hdvd 1)
apply auto
apply (rule-tac x = 2 in bexI)
apply (transfer , auto)
done
declare lemma-not-dvd-hypnat-one [simp]

lemma lemma-not-dvd-hypnat-one2 : ∃n ∈ − {0}. ∼ hypnat-of-nat n hdvd 1

19

apply (cut-tac lemma-not-dvd-hypnat-one)
apply (auto simp del : lemma-not-dvd-hypnat-one)
done
declare lemma-not-dvd-hypnat-one2 [simp]

lemma hypnat-gt-zero-gt-one:
!!N . [| 0 < (N ::hypnat); N 6= 1 |] ==> 1 < N

by (transfer , simp)

lemma hypnat-add-one-gt-one:
!!N . 0 < N ==> 1 < (N ::hypnat) + 1

by (transfer , simp)

lemma zero-not-prime: ¬ prime 0
apply safe
apply (drule prime-g-zero, auto)
done
declare zero-not-prime [simp]

lemma hypnat-of-nat-zero-not-prime: hypnat-of-nat 0 /∈ starprime
by (transfer , simp)
declare hypnat-of-nat-zero-not-prime [simp]

lemma hypnat-zero-not-prime:
0 /∈ starprime

by (cut-tac hypnat-of-nat-zero-not-prime, simp)
declare hypnat-zero-not-prime [simp]

lemma one-not-prime: ¬ prime 1
apply safe
apply (drule prime-g-one, auto)
done
declare one-not-prime [simp]

lemma one-not-prime2 : ¬ prime(Suc 0)
apply safe
apply (drule prime-g-one, auto)
done
declare one-not-prime2 [simp]

lemma hypnat-of-nat-one-not-prime: hypnat-of-nat 1 /∈ starprime
by (transfer , simp)
declare hypnat-of-nat-one-not-prime [simp]

lemma hypnat-one-not-prime: 1 /∈ starprime
by (cut-tac hypnat-of-nat-one-not-prime, simp)
declare hypnat-one-not-prime [simp]

20

lemma hdvd-diff : !!k m n. [| k hdvd m; k hdvd n |] ==> k hdvd (m − n)
by (transfer , rule dvd-diff)

lemma dvd-one-eq-one: x dvd (1 ::nat) ==> x = 1
by (unfold dvd-def , auto)

lemma hdvd-one-eq-one: !!x . x hdvd 1 ==> x = 1
by (transfer , rule dvd-one-eq-one)

theorem not-finite-prime: ∼ finite {p. prime p}
apply (rule hypnat-infinite-has-nonstandard-iff [THEN iffD2])
apply (cut-tac hypnat-dvd-all-hypnat-of-nat)
apply (erule exE)
apply (erule conjE)
apply (subgoal-tac 1 < N + 1)
prefer 2 apply (blast intro: hypnat-add-one-gt-one)
apply (drule hyperprime-factor-exists)
apply auto
apply (subgoal-tac k /∈ hypnat-of-nat ‘ {p. prime p})
apply (force simp add : starprime-def , safe)
apply (drule-tac x = x in bspec)
apply (rule ccontr , simp)
apply (drule hdvd-diff , assumption)
apply (auto dest : hdvd-one-eq-one)
done

end

5 Big O notation – continued

theory BigO-Complex
imports BigO Complex
begin

Additional lemmas that require the HOL-Complex logic image.

lemma bigo-LIMSEQ1 : f =o O(g) ==> g −−−−> 0 ==> f −−−−> (0 ::real)
apply (simp add : LIMSEQ-def bigo-alt-def)
apply clarify
apply (drule-tac x = r / c in spec)
apply (drule mp)
apply (erule divide-pos-pos)
apply assumption
apply clarify
apply (rule-tac x = no in exI)
apply (rule allI)
apply (drule-tac x = n in spec)+
apply (rule impI)
apply (drule mp)

21

apply assumption
apply (rule order-le-less-trans)
apply assumption
apply (rule order-less-le-trans)
apply (subgoal-tac c ∗ abs(g n) < c ∗ (r / c))
apply assumption
apply (erule mult-strict-left-mono)
apply assumption
apply simp

done

lemma bigo-LIMSEQ2 : f =o g +o O(h) ==> h −−−−> 0 ==> f −−−−> a
==> g −−−−> (a::real)

apply (drule set-plus-imp-minus)
apply (drule bigo-LIMSEQ1)
apply assumption
apply (simp only : func-diff)
apply (erule LIMSEQ-diff-approach-zero2)
apply assumption

done

end

6 Arithmetic Series for Reals

theory Arithmetic-Series-Complex
imports Complex-Main
begin

lemma arith-series-real :
(2 ::real) ∗ (

∑
i∈{..<n}. a + of-nat i ∗ d) =

of-nat n ∗ (a + (a + of-nat(n − 1)∗d))
proof −
have

((1 ::real) + 1) ∗ (
∑

i∈{..<n}. a + of-nat(i)∗d) =
of-nat(n) ∗ (a + (a + of-nat(n − 1)∗d))
by (rule arith-series-general)

thus ?thesis by simp
qed

end

7 Divergence of the Harmonic Series

theory HarmonicSeries
imports Complex-Main

22

begin

8 Abstract

The following document presents a proof of the Divergence of Harmonic
Series theorem formalised in the Isabelle/Isar theorem proving system.
Theorem: The series

∑∞
n=1

1
n does not converge to any number.

Informal Proof: The informal proof is based on the following auxillary lem-
mas:

• aux:
∑2m

n=2m−1
1
n ≥

1
2

• aux2:
∑2M

n=1
1
n = 1 +

∑M
m=1

∑2m

n=2m−1
1
n

From aux and aux2 we can deduce that
∑2M

n=1
1
n ≥ 1 + M

2 for all M . Now
for contradiction, assume that

∑∞
n=1

1
n = s for some s. Because ∀n. 1

n > 0
all the partial sums in the series must be less than s. However with our
deduction above we can choose N > 2 ∗ s − 2 and thus

∑2N

n=1
1
n > s. This

leads to a contradiction and hence
∑∞

n=1
1
n is not summable. QED.

9 Formal Proof

lemma two-pow-sub:
0 < m =⇒ (2 ::nat)ˆm − 2ˆ(m − 1) = 2ˆ(m − 1)
by (induct m) auto

We first prove the following auxillary lemma. This lemma simply states that
the finite sums: 1

2 , 1
3 + 1

4 , 1
5 + 1

6 + 1
7 + 1

8 etc. are all greater than or equal
to 1

2 . We do this by observing that each term in the sum is greater than or
equal to the last term, e.g. 1

3 > 1
4 and thus 1

3 + 1
4 > 1

4 + 1
4 = 1

2 .

lemma harmonic-aux :
∀m>0 . (

∑
n∈{(2 ::nat)ˆ(m − 1)+1 ..2ˆm}. 1/real n) ≥ 1/2

(is ∀m>0 . (
∑

n∈(?S m). 1/real n) ≥ 1/2)
proof
fix m::nat
obtain tm where tmdef : tm = (2 ::nat)ˆm by simp
{
assume mgt0 : 0 < m
have

∧
x . x∈(?S m) =⇒ 1/(real x) ≥ 1/(real tm)

proof −
fix x ::nat
assume xs: x∈(?S m)
have xgt0 : x>0
proof −
from xs have

23

x ≥ 2ˆ(m − 1) + 1 by auto
moreover with mgt0 have

2ˆ(m − 1) + 1 ≥ (1 ::nat) by auto
ultimately have

x ≥ 1 by (rule xtrans)
thus ?thesis by simp

qed
moreover from xs have x ≤ 2ˆm by auto
ultimately have

inverse (real x) ≥ inverse (real ((2 ::nat)ˆm)) by simp
moreover
from xgt0 have real x 6= 0 by simp
then have

inverse (real x) = 1 / (real x)
by (rule nonzero-inverse-eq-divide)

moreover from mgt0 have real tm 6= 0 by (simp add : tmdef)
then have

inverse (real tm) = 1 / (real tm)
by (rule nonzero-inverse-eq-divide)

ultimately show
1/(real x) ≥ 1/(real tm) by (auto simp add : tmdef)

qed
then have

(
∑

n∈(?S m). 1 / real n) ≥ (
∑

n∈(?S m). 1/(real tm))
by (rule setsum-mono)

moreover have
(
∑

n∈(?S m). 1/(real tm)) = 1/2
proof −
have

(
∑

n∈(?S m). 1/(real tm)) =
(1/(real tm))∗(

∑
n∈(?S m). 1)

by simp
also have

. . . = ((1/(real tm)) ∗ real (card (?S m)))
by (simp add : real-of-card real-of-nat-def)

also have
. . . = ((1/(real tm)) ∗ real (tm − (2ˆ(m − 1))))
by (simp add : tmdef)

also from mgt0 have
. . . = ((1/(real tm)) ∗ real ((2 ::nat)ˆ(m − 1)))
by (auto simp: tmdef dest : two-pow-sub)

also have
. . . = (real (2 ::nat))ˆ(m − 1) / (real (2 ::nat))ˆm
by (simp add : tmdef realpow-real-of-nat [symmetric])

also from mgt0 have
. . . = (real (2 ::nat))ˆ(m − 1) / (real (2 ::nat))ˆ((m − 1) + 1)
by auto

also have . . . = 1/2 by simp
finally show ?thesis .

24

qed
ultimately have

(
∑

n∈(?S m). 1 / real n) ≥ 1/2
by − (erule subst)

}
thus 0 < m −→ 1 / 2 ≤ (

∑
n∈(?S m). 1 / real n) by simp

qed

We then show that the sum of a finite number of terms from the harmonic
series can be regrouped in increasing powers of 2. For example: 1 + 1

2 + 1
3 +

1
4 + 1

5 + 1
6 + 1

7 + 1
8 = 1 + (1

2) + (1
3 + 1

4) + (1
5 + 1

6 + 1
7 + 1

8).

lemma harmonic-aux2 [rule-format]:
0<M =⇒ (

∑
n∈{1 ..(2 ::nat)ˆM }. 1/real n) =

(1 + (
∑

m∈{1 ..M }.
∑

n∈{(2 ::nat)ˆ(m − 1)+1 ..2ˆm}. 1/real n))
(is 0<M =⇒ ?LHS M = ?RHS M)

proof (induct M)
case 0 show ?case by simp

next
case (Suc M)
have ant : 0 < Suc M by fact
{
have suc: ?LHS (Suc M) = ?RHS (Suc M)
proof cases — show that LHS = c and RHS = c, and thus LHS = RHS
assume mz : M=0
{
then have

?LHS (Suc M) = ?LHS 1 by simp
also have

. . . = (
∑

n∈{(1 ::nat)..2}. 1/real n) by simp
also have

. . . = ((
∑

n∈{Suc 1 ..2}. 1/real n) + 1/(real (1 ::nat)))
by (subst setsum-head)

(auto simp: atLeastSucAtMost-greaterThanAtMost)
also have

. . . = ((
∑

n∈{2 ..2 ::nat}. 1/real n) + 1/(real (1 ::nat)))
by (simp add : nat-number)

also have
. . . = 1/(real (2 ::nat)) + 1/(real (1 ::nat)) by simp

finally have
?LHS (Suc M) = 1/2 + 1 by simp

}
moreover
{
from mz have

?RHS (Suc M) = ?RHS 1 by simp
also have

. . . = (
∑

n∈{((2 ::nat)ˆ0)+1 ..2ˆ1}. 1/real n) + 1
by simp

also have

25

. . . = (
∑

n∈{2 ::nat ..2}. 1/real n) + 1
proof −
have (2 ::nat)ˆ0 = 1 by simp
then have (2 ::nat)ˆ0+1 = 2 by simp
moreover have (2 ::nat)ˆ1 = 2 by simp
ultimately have {((2 ::nat)ˆ0)+1 ..2ˆ1} = {2 ::nat ..2} by auto
thus ?thesis by simp

qed
also have

. . . = 1/2 + 1
by simp

finally have
?RHS (Suc M) = 1/2 + 1 by simp

}
ultimately show ?LHS (Suc M) = ?RHS (Suc M) by simp

next
assume mnz : M 6=0
then have mgtz : M>0 by simp
with Suc have suc:

(?LHS M) = (?RHS M) by blast
have

(?LHS (Suc M)) =
((?LHS M) + (

∑
n∈{(2 ::nat)ˆM+1 ..2ˆ(Suc M)}. 1 / real n))

proof −
have
{1 ..(2 ::nat)ˆ(Suc M)} =
{1 ..(2 ::nat)ˆM }∪{(2 ::nat)ˆM+1 ..(2 ::nat)ˆ(Suc M)}
by auto

moreover have
{1 ..(2 ::nat)ˆM }∩{(2 ::nat)ˆM+1 ..(2 ::nat)ˆ(Suc M)} = {}
by auto

moreover have
finite {1 ..(2 ::nat)ˆM } and finite {(2 ::nat)ˆM+1 ..(2 ::nat)ˆ(Suc M)}
by auto

ultimately show ?thesis
by (auto intro: setsum-Un-disjoint)

qed
moreover
{
have

(?RHS (Suc M)) =
(1 + (

∑
m∈{1 ..M }.

∑
n∈{(2 ::nat)ˆ(m − 1)+1 ..2ˆm}. 1/real n) +

(
∑

n∈{(2 ::nat)ˆ(Suc M − 1)+1 ..2ˆ(Suc M)}. 1/real n)) by simp
also have

. . . = (?RHS M) + (
∑

n∈{(2 ::nat)ˆM+1 ..2ˆ(Suc M)}. 1/real n)
by simp

also from suc have
. . . = (?LHS M) + (

∑
n∈{(2 ::nat)ˆM+1 ..2ˆ(Suc M)}. 1/real n)

by simp

26

finally have
(?RHS (Suc M)) = . . . by simp

}
ultimately show ?LHS (Suc M) = ?RHS (Suc M) by simp

qed
}
thus ?case by simp

qed

Using harmonic-aux and harmonic-aux2 we now show that each group sum
is greater than or equal to 1

2 and thus the finite sum is bounded below by a
value proportional to the number of elements we choose.

lemma harmonic-aux3 [rule-format]:
shows ∀ (M ::nat). (

∑
n∈{1 ..(2 ::nat)ˆM }. 1 / real n) ≥ 1 + (real M)/2

(is ∀M . ?P M ≥ -)
proof (rule allI , cases)
fix M ::nat
assume M=0
then show ?P M ≥ 1 + (real M)/2 by simp

next
fix M ::nat
assume M 6=0
then have M > 0 by simp
then have

(?P M) =
(1 + (

∑
m∈{1 ..M }.

∑
n∈{(2 ::nat)ˆ(m − 1)+1 ..2ˆm}. 1/real n))

by (rule harmonic-aux2)
also have

. . . ≥ (1 + (
∑

m∈{1 ..M }. 1/2))
proof −
let ?f = (λx . 1/2)
let ?g = (λx . (

∑
n∈{(2 ::nat)ˆ(x − 1)+1 ..2ˆx}. 1/real n))

from harmonic-aux have
∧

x . x∈{1 ..M } =⇒ ?f x ≤ ?g x by simp
then have (

∑
m∈{1 ..M }. ?g m) ≥ (

∑
m∈{1 ..M }. ?f m) by (rule setsum-mono)

thus ?thesis by simp
qed
finally have (?P M) ≥ (1 + (

∑
m∈{1 ..M }. 1/2)) .

moreover
{
have

(
∑

m∈{1 ..M }. (1 ::real)/2) = 1/2 ∗ (
∑

m∈{1 ..M }. 1)
by auto

also have
. . . = 1/2∗(real (card {1 ..M }))
by (simp only : real-of-card [symmetric])

also have
. . . = 1/2∗(real M) by simp

also have
. . . = (real M)/2 by simp

27

finally have (
∑

m∈{1 ..M }. (1 ::real)/2) = (real M)/2 .
}
ultimately show (?P M) ≥ (1 + (real M)/2) by simp

qed

The final theorem shows that as we take more and more elements (see
harmonic-aux3) we get an ever increasing sum. By assuming the sum con-
verges, the lemma series-pos-less ([[summable ?f ; ∀m≥?n. 0 < ?f m]] =⇒
setsum ?f {0 ..<?n} < suminf ?f) states that each sum is bounded above
by the series’ limit. This contradicts our first statement and thus we prove
that the harmonic series is divergent.
theorem DivergenceOfHarmonicSeries:
shows ¬summable (λn. 1/real (Suc n))
(is ¬summable ?f)

proof — by contradiction
let ?s = suminf ?f — let ?s equal the sum of the harmonic series
assume sf : summable ?f
then obtain n::nat where ndef : n = nat d2 ∗ ?se by simp
then have ngt : 1 + real n/2 > ?s
proof −
have ∀n. 0 ≤ ?f n by simp
with sf have ?s ≥ 0
by − (rule suminf-0-le, simp-all)

then have cgt0 : d2∗?se ≥ 0 by simp

from ndef have n = nat d(2∗?s)e .
then have real n = real (nat d2∗?se) by simp
with cgt0 have real n = real d2∗?se
by (auto dest : real-nat-eq-real)

then have real n ≥ 2∗(?s) by simp
then have real n/2 ≥ (?s) by simp
then show 1 + real n/2 > (?s) by simp

qed

obtain j where jdef : j = (2 ::nat)ˆn by simp
have ∀m≥j . 0 < ?f m by simp
with sf have (

∑
i∈{0 ..<j}. ?f i) < ?s by (rule series-pos-less)

then have (
∑

i∈{1 ..<Suc j}. 1/(real i)) < ?s
apply −
apply (subst(asm) setsum-shift-bounds-Suc-ivl [symmetric])
by simp

with jdef have
(
∑

i∈{1 ..< Suc ((2 ::nat)ˆn)}. 1 / (real i)) < ?s by simp
then have

(
∑

i∈{1 ..(2 ::nat)ˆn}. 1 / (real i)) < ?s
by (simp only : atLeastLessThanSuc-atLeastAtMost)

moreover from harmonic-aux3 have
(
∑

i∈{1 ..(2 ::nat)ˆn}. 1 / (real i)) ≥ 1 + real n/2 by simp
moreover from ngt have 1 + real n/2 > ?s by simp

28

ultimately show False by simp
qed

end

10 Denumerability of the Rationals

theory DenumRat
imports

Complex-Main NatPair
begin

lemma nat-to-int-surj : ∃ f ::nat⇒int . surj f
proof
let ?f = λn. if (n mod 2 = 0) then − int (n div 2) else int ((n − 1) div 2 +

1)
have ∀ y . ∃ x . y = ?f x
proof
fix y ::int
{
assume yl0 : y ≤ 0
then obtain n where ndef : n = nat (− y ∗ 2) by simp
from yl0 have g0 : − y ∗ 2 ≥ 0 by simp
hence nat (− y ∗ 2) mod (nat 2) = nat ((−y ∗ 2) mod 2) by (subst

nat-mod-distrib, auto)
moreover have (−y ∗ 2) mod 2 = 0 by arith
ultimately have nat (− y ∗ 2) mod 2 = 0 by simp
with ndef have n mod 2 = 0 by simp
hence ?f n = − int (n div 2) by simp
also with ndef have . . . = − int (nat (−y ∗ 2) div 2) by simp
also with g0 have . . . = − int (nat (((−y) ∗ 2) div 2)) using nat-div-distrib

by auto
also have . . . = − int (nat (−y)) using zdiv-zmult-self1 [of 2 − y]
by simp

also from yl0 have . . . = y using nat-0-le by auto
finally have ?f n = y .
hence ∃ x . y = ?f x by blast

}
moreover
{
assume ¬(y ≤ 0)
hence yg0 : y > 0 by simp
hence yn0 : y 6= 0 by simp
from yg0 have g0 : y∗2 + −2 ≥ 0 by arith
from yg0 obtain n where ndef : n = nat (y ∗ 2 − 1) by simp
from yg0 have nat (y∗2 − 1) mod 2 = nat ((y∗2 − 1) mod 2) using

nat-mod-distrib by auto
also have . . . = nat ((y∗2 + − 1) mod 2) by (auto simp add : diff-int-def)
also have . . . = nat (1) by (auto simp add : zmod-zadd-left-eq)

29

finally have n mod 2 = 1 using ndef by auto
hence ?f n = int ((n − 1) div 2 + 1) by simp
also with ndef have . . . = int ((nat (y∗2 − 1) − 1) div 2 + 1) by simp
also with yg0 have . . . = int (nat (y∗2 − 2) div 2 + 1) by arith
also have . . . = int (nat (y∗2 + −2) div 2 + 1) by (simp add : diff-int-def)
also have . . . = int (nat (y∗2 + −2) div (nat 2) + 1) by auto
also from g0 have . . . = int (nat ((y∗2 + −2) div 2) + 1)
using nat-div-distrib by auto

also have . . . = int (nat ((y∗2) div 2 + (−2) div 2 + ((y∗2) mod 2 + (−2)
mod 2) div 2) + 1)

by (auto simp add : zdiv-zadd1-eq)
also from yg0 g0 have . . . = int (nat (y))
by (auto)

finally have ?f n = y using yg0 by auto
hence ∃ x . y = ?f x by blast

}
ultimately show ∃ x . y = ?f x by (rule case-split)

qed
thus surj ?f by (fold surj-def)

qed

lemma nat2-to-int2-surj : ∃ f ::(nat∗nat)⇒(int∗int). surj f
proof −
from nat-to-int-surj obtain g ::nat⇒int where surj g ..
hence aux : ∀ y . ∃ x . y = g x by (unfold surj-def)
let ?f = λn. (g (fst n), g (snd n))
{
fix y ::(int∗int)
from aux have ∃ x1 x2 . fst y = g x1 ∧ snd y = g x2 by auto
hence ∃ x . fst y = g (fst x) ∧ snd y = g (snd x) by auto
hence ∃ x . (fst y , snd y) = (g (fst x), g (snd x)) by blast
hence ∃ x . y = ?f x by auto

}
hence ∀ y . ∃ x . y = ?f x by auto
hence surj ?f by (fold surj-def)
thus ?thesis by auto

qed

lemma rat-denum:
∃ f ::nat⇒rat . surj f

proof −
have inj nat2-to-nat by (rule nat2-to-nat-inj)
hence surj (inv nat2-to-nat) by (rule inj-imp-surj-inv)
moreover from nat2-to-int2-surj obtain h::(nat∗nat)⇒(int∗int) where surj h

..
ultimately have surj (h o (inv nat2-to-nat)) by (rule comp-surj)
hence ∃ f ::nat⇒(int∗int). surj f by auto
then obtain g ::nat⇒(int∗int) where surj g by auto
hence gdef : ∀ y . ∃ x . y = g x by (unfold surj-def)

30

{
fix y
obtain a b where y : y = Fract a b by (cases y)
from gdef
obtain x where (a,b) = g x by blast
hence g x = (a,b) ..
with y have y = (split Fract o g) x by simp
hence ∃ x . y = (split Fract o g) x ..

}
hence surj (split Fract o g)
by (simp add : surj-def)

thus ?thesis by blast
qed

end

11 Type of indices

theory Code-Index
imports PreList
begin

Indices are isomorphic to HOL int but mapped to target-language builtin
integers

11.1 Datatype of indices

datatype index = index-of-int int

lemmas [code func del] = index .recs index .cases

fun
int-of-index :: index ⇒ int

where
int-of-index (index-of-int k) = k

lemmas [code func del] = int-of-index .simps

lemma index-id [simp]:
index-of-int (int-of-index k) = k
by (cases k) simp-all

lemma index :
(
∧

k ::index . PROP P k) ≡ (
∧

k ::int . PROP P (index-of-int k))
proof
fix k :: int
assume

∧
k ::index . PROP P k

then show PROP P (index-of-int k) .
next

31

fix k :: index
assume

∧
k ::int . PROP P (index-of-int k)

then have PROP P (index-of-int (int-of-index k)) .
then show PROP P k by simp

qed

lemma [code func]: size (k ::index) = 0
by (cases k) simp-all

11.2 Built-in integers as datatype on numerals

instance index :: number
number-of ≡ index-of-int ..

code-datatype number-of :: int ⇒ index

lemma number-of-index-id [simp]:
number-of (int-of-index k) = k
unfolding number-of-index-def by simp

lemma number-of-index-shift :
number-of k = index-of-int (number-of k)
by (simp add : number-of-is-id number-of-index-def)

lemma int-of-index-number-of [simp]:
int-of-index (number-of k) = number-of k
unfolding number-of-index-def number-of-is-id by simp

11.3 Basic arithmetic

instance index :: zero
[simp]: 0 ≡ index-of-int 0 ..

lemmas [code func del] = zero-index-def

instance index :: one
[simp]: 1 ≡ index-of-int 1 ..

lemmas [code func del] = one-index-def

instance index :: plus
[simp]: k + l ≡ index-of-int (int-of-index k + int-of-index l) ..

lemmas [code func del] = plus-index-def
lemma plus-index-code [code func]:

index-of-int k + index-of-int l = index-of-int (k + l)
unfolding plus-index-def by simp

instance index :: minus
[simp]: − k ≡ index-of-int (− int-of-index k)
[simp]: k − l ≡ index-of-int (int-of-index k − int-of-index l) ..

lemmas [code func del] = uminus-index-def minus-index-def
lemma uminus-index-code [code func]:

32

− index-of-int k ≡ index-of-int (− k)
unfolding uminus-index-def by simp

lemma minus-index-code [code func]:
index-of-int k − index-of-int l = index-of-int (k − l)
unfolding minus-index-def by simp

instance index :: times
[simp]: k ∗ l ≡ index-of-int (int-of-index k ∗ int-of-index l) ..

lemmas [code func del] = times-index-def
lemma times-index-code [code func]:

index-of-int k ∗ index-of-int l = index-of-int (k ∗ l)
unfolding times-index-def by simp

instance index :: ord
[simp]: k ≤ l ≡ int-of-index k ≤ int-of-index l
[simp]: k < l ≡ int-of-index k < int-of-index l ..

lemmas [code func del] = less-eq-index-def less-index-def
lemma less-eq-index-code [code func]:

index-of-int k ≤ index-of-int l ←→ k ≤ l
unfolding less-eq-index-def by simp

lemma less-index-code [code func]:
index-of-int k < index-of-int l ←→ k < l
unfolding less-index-def by simp

instance index :: Divides.div
[simp]: k div l ≡ index-of-int (int-of-index k div int-of-index l)
[simp]: k mod l ≡ index-of-int (int-of-index k mod int-of-index l) ..

instance index :: ring-1
by default (auto simp add : left-distrib right-distrib)

lemma of-nat-index : of-nat n = index-of-int (of-nat n)
proof (induct n)
case 0 show ?case by simp

next
case (Suc n)
then have int-of-index (index-of-int (int n))

= int-of-index (of-nat n) by simp
then have int n = int-of-index (of-nat n) by simp
then show ?case by simp

qed

instance index :: number-ring
by default

(simp-all add : left-distrib number-of-index-def of-int-of-nat of-nat-index)

lemma zero-index-code [code inline, code func]:
(0 ::index) = Numeral0
by simp

33

lemma one-index-code [code inline, code func]:
(1 ::index) = Numeral1
by simp

instance index :: abs
|k | ≡ if k < 0 then −k else k ..

lemma index-of-int [code func]:
index-of-int k = (if k = 0 then 0

else if k = −1 then −1
else let (l , m) = divAlg (k , 2) in 2 ∗ index-of-int l +

(if m = 0 then 0 else 1))
by (simp add : number-of-index-shift Let-def split-def divAlg-mod-div) arith

lemma int-of-index [code func]:
int-of-index k = (if k = 0 then 0

else if k = −1 then −1
else let l = k div 2 ; m = k mod 2 in 2 ∗ int-of-index l +

(if m = 0 then 0 else 1))
by (auto simp add : number-of-index-shift Let-def split-def) arith

11.4 Conversion to and from nat

definition
nat-of-index :: index ⇒ nat

where
[code func del]: nat-of-index = nat o int-of-index

definition
nat-of-index-aux :: index ⇒ nat ⇒ nat where
[code func del]: nat-of-index-aux i n = nat-of-index i + n

lemma nat-of-index-aux-code [code]:
nat-of-index-aux i n = (if i ≤ 0 then n else nat-of-index-aux (i − 1) (Suc n))
by (auto simp add : nat-of-index-aux-def nat-of-index-def)

lemma nat-of-index-code [code]:
nat-of-index i = nat-of-index-aux i 0
by (simp add : nat-of-index-aux-def)

definition
index-of-nat :: nat ⇒ index

where
[code func del]: index-of-nat = index-of-int o of-nat

lemma index-of-nat [code func]:
index-of-nat 0 = 0
index-of-nat (Suc n) = index-of-nat n + 1

34

unfolding index-of-nat-def by simp-all

lemma index-nat-id [simp]:
nat-of-index (index-of-nat n) = n
index-of-nat (nat-of-index i) = (if i ≤ 0 then 0 else i)
unfolding index-of-nat-def nat-of-index-def by simp-all

11.5 ML interface

ML 〈〈
structure Index =
struct

fun mk k = @{term index-of-int} $ HOLogic.mk-number @{typ index} k ;

end ;
〉〉

11.6 Code serialization

code-type index
(SML int)
(OCaml int)
(Haskell Integer)

code-instance index :: eq
(Haskell −)

setup 〈〈
fold (fn target => CodeTarget .add-pretty-numeral target true

@{const-name number-index-inst .number-of-index}
@{const-name Numeral .B0} @{const-name Numeral .B1}
@{const-name Numeral .Pls} @{const-name Numeral .Min}
@{const-name Numeral .Bit}

) [SML, OCaml , Haskell]
〉〉

code-reserved SML int
code-reserved OCaml int

code-const op + :: index ⇒ index ⇒ index
(SML Int .+ ((-), (-)))
(OCaml Pervasives.+)
(Haskell infixl 6 +)

code-const uminus :: index ⇒ index
(SML Int .∼)
(OCaml Pervasives.∼−)
(Haskell negate)

35

code-const op − :: index ⇒ index ⇒ index
(SML Int .− ((-), (-)))
(OCaml Pervasives.−)
(Haskell infixl 6 −)

code-const op ∗ :: index ⇒ index ⇒ index
(SML Int .∗ ((-), (-)))
(OCaml Pervasives.∗)
(Haskell infixl 7 ∗)

code-const op = :: index ⇒ index ⇒ bool
(SML !((- : Int .int) = -))
(OCaml !((- : Pervasives.int) = -))
(Haskell infixl 4 ==)

code-const op ≤ :: index ⇒ index ⇒ bool
(SML Int .<= ((-), (-)))
(OCaml !((- : Pervasives.int) <= -))
(Haskell infix 4 <=)

code-const op < :: index ⇒ index ⇒ bool
(SML Int .< ((-), (-)))
(OCaml !((- : Pervasives.int) < -))
(Haskell infix 4 <)

code-reserved SML Int
code-reserved OCaml Pervasives

end

12 Pretty integer literals for code generation

theory Code-Integer
imports IntArith Code-Index
begin

HOL numeral expressions are mapped to integer literals in target languages,
using predefined target language operations for abstract integer operations.
code-type int

(SML IntInf .int)
(OCaml Big ′-int .big ′-int)
(Haskell Integer)

code-instance int :: eq
(Haskell −)

setup 〈〈
fold (fn target => CodeTarget .add-pretty-numeral target true

36

@{const-name number-int-inst .number-of-int}
@{const-name Numeral .B0} @{const-name Numeral .B1}
@{const-name Numeral .Pls} @{const-name Numeral .Min}
@{const-name Numeral .Bit}

) [SML, OCaml , Haskell]
〉〉

code-const Numeral .Pls and Numeral .Min and Numeral .Bit
(SML raise/ Fail/ Pls

and raise/ Fail/ Min
and !((-);/ (-);/ raise/ Fail/ Bit))

(OCaml failwith/ Pls
and failwith/ Min
and !((-);/ (-);/ failwith/ Bit))

(Haskell error/ Pls
and error/ Min
and error/ Bit)

code-const Numeral .pred
(SML IntInf .− ((-), 1))
(OCaml Big ′-int .pred ′-big ′-int)
(Haskell !(-/ −/ 1))

code-const Numeral .succ
(SML IntInf .+ ((-), 1))
(OCaml Big ′-int .succ ′-big ′-int)
(Haskell !(-/ +/ 1))

code-const op + :: int ⇒ int ⇒ int
(SML IntInf .+ ((-), (-)))
(OCaml Big ′-int .add ′-big ′-int)
(Haskell infixl 6 +)

code-const uminus :: int ⇒ int
(SML IntInf .∼)
(OCaml Big ′-int .minus ′-big ′-int)
(Haskell negate)

code-const op − :: int ⇒ int ⇒ int
(SML IntInf .− ((-), (-)))
(OCaml Big ′-int .sub ′-big ′-int)
(Haskell infixl 6 −)

code-const op ∗ :: int ⇒ int ⇒ int
(SML IntInf .∗ ((-), (-)))
(OCaml Big ′-int .mult ′-big ′-int)
(Haskell infixl 7 ∗)

code-const op = :: int ⇒ int ⇒ bool

37

(SML !((- : IntInf .int) = -))
(OCaml Big ′-int .eq ′-big ′-int)
(Haskell infixl 4 ==)

code-const op ≤ :: int ⇒ int ⇒ bool
(SML IntInf .<= ((-), (-)))
(OCaml Big ′-int .le ′-big ′-int)
(Haskell infix 4 <=)

code-const op < :: int ⇒ int ⇒ bool
(SML IntInf .< ((-), (-)))
(OCaml Big ′-int .lt ′-big ′-int)
(Haskell infix 4 <)

code-const index-of-int and int-of-index
(SML IntInf .toInt and IntInf .fromInt)
(OCaml Big ′-int .int ′-of ′-big ′-int and Big ′-int .big ′-int ′-of ′-int)
(Haskell - and -)

code-reserved SML IntInf
code-reserved OCaml Big-int

end

13 Quatifier elimination for R(0,1,+,floor,¡)

theory MIR
imports Real GCD Code-Integer
uses (mireif .ML) (mirtac.ML)
begin

declare real-of-int-floor-cancel [simp del]

fun alluopairs:: ′a list ⇒ (′a × ′a) list where
alluopairs [] = []
| alluopairs (x#xs) = (map (Pair x) (x#xs))@(alluopairs xs)

lemma alluopairs-set1 : set (alluopairs xs) ≤ {(x ,y). x∈ set xs ∧ y∈ set xs}
by (induct xs, auto)

lemma alluopairs-set :
[[x∈ set xs ; y ∈ set xs]] =⇒ (x ,y) ∈ set (alluopairs xs) ∨ (y ,x) ∈ set (alluopairs

xs)
by (induct xs, auto)

lemma alluopairs-ex :
assumes Pc: ∀ x y . P x y = P y x
shows (∃ x ∈ set xs. ∃ y ∈ set xs. P x y) = (∃ (x ,y) ∈ set (alluopairs xs). P x

y)

38

proof
assume ∃ x∈set xs. ∃ y∈set xs. P x y
then obtain x y where x : x ∈ set xs and y :y ∈ set xs and P : P x y by blast
from alluopairs-set [OF x y] P Pc show∃ (x , y)∈set (alluopairs xs). P x y
by auto

next
assume ∃ (x , y)∈set (alluopairs xs). P x y
then obtain x and y where xy :(x ,y) ∈ set (alluopairs xs) and P : P x y by

blast+
from xy have x ∈ set xs ∧ y∈ set xs using alluopairs-set1 by blast
with P show ∃ x∈set xs. ∃ y∈set xs. P x y by blast

qed

consts iupt :: int × int ⇒ int list
recdef iupt measure (λ (i ,j). nat (j−i +1))

iupt (i ,j) = (if j <i then [] else (i# iupt(i+1 , j)))

lemma iupt-set : set (iupt(i ,j)) = {i .. j}
proof(induct rule: iupt .induct)
case (1 a b)
show ?case
using prems by (simp add : simp-from-to)

qed

lemma nth-pos2 : 0 < n =⇒ (x#xs) ! n = xs ! (n − 1)
using Nat .gr0-conv-Suc
by clarsimp

lemma myl : ∀ (a:: ′a::{pordered-ab-group-add}) (b:: ′a). (a ≤ b) = (0 ≤ b − a)
proof(clarify)
fix x y :: ′a
have (x ≤ y) = (x − y ≤ 0) by (simp only : le-iff-diff-le-0 [where a=x and

b=y])
also have . . . = (− (y − x) ≤ 0) by simp
also have . . . = (0 ≤ y − x) by (simp only : neg-le-0-iff-le[where a=y−x])
finally show (x ≤ y) = (0 ≤ y − x) .

qed

lemma myless: ∀ (a:: ′a::{pordered-ab-group-add}) (b:: ′a). (a < b) = (0 < b − a)

proof(clarify)
fix x y :: ′a
have (x < y) = (x − y < 0) by (simp only : less-iff-diff-less-0 [where a=x and

b=y])
also have . . . = (− (y − x) < 0) by simp
also have . . . = (0 < y − x) by (simp only : neg-less-0-iff-less[where a=y−x])
finally show (x < y) = (0 < y − x) .

39

qed

lemma myeq : ∀ (a:: ′a::{pordered-ab-group-add}) (b:: ′a). (a = b) = (0 = b − a)
by auto

lemma floor-int-eq : (real n≤ x ∧ x < real (n+1)) = (floor x = n)
proof(auto)
assume lb: real n ≤ x
and ub: x < real n + 1

have real (floor x) ≤ x by simp
hence real (floor x) < real (n + 1) using ub by arith
hence floor x < n+1 by simp
moreover from lb have n ≤ floor x using floor-mono2 [where x=real n and

y=x]
by simp ultimately show floor x = n by simp

qed

lemma dvd-period :
assumes advdd : (a::int) dvd d
shows (a dvd (x + t)) = (a dvd ((x+ c∗d) + t))
using advdd

proof−
{fix x k
from inf-period(3)[OF advdd , rule-format , where x=x and k=−k]
have ((a::int) dvd (x + t)) = (a dvd (x+k∗d + t)) by simp}

hence ∀ x .∀ k . ((a::int) dvd (x + t)) = (a dvd (x+k∗d + t)) by simp
then show ?thesis by simp

qed

definition
rdvd :: real ⇒ real ⇒ bool (infixl rdvd 50)

where
rdvd-def : x rdvd y ←→ (∃ k ::int . y = x ∗ real k)

lemma int-rdvd-real :
shows real (i ::int) rdvd x = (i dvd (floor x) ∧ real (floor x) = x) (is ?l = ?r)

proof
assume ?l
hence th: ∃ k . x=real (i∗k) by (simp add : rdvd-def)
hence th ′: real (floor x) = x by (auto simp del : real-of-int-mult)
with th have ∃ k . real (floor x) = real (i∗k) by simp
hence ∃ k . floor x = i∗k by (simp only : real-of-int-inject)
thus ?r using th ′ by (simp add : dvd-def)

next
assume ?r hence (i ::int) dvd bx ::realc ..
hence ∃ k . real (floor x) = real (i∗k)

40

by (simp only : real-of-int-inject) (simp add : dvd-def)
thus ?l using prems by (simp add : rdvd-def)

qed

lemma int-rdvd-iff : (real (i ::int) rdvd real t) = (i dvd t)
by (auto simp add : rdvd-def dvd-def) (rule-tac x=k in exI , simp only :real-of-int-mult [symmetric])

lemma rdvd-abs1 :
(abs (real d) rdvd t) = (real (d ::int) rdvd t)

proof
assume d : real d rdvd t
from d int-rdvd-real have d2 : d dvd (floor t) and ti : real (floor t) = t by auto

from iffD2 [OF zdvd-abs1] d2 have (abs d) dvd (floor t) by blast
with ti int-rdvd-real [symmetric] have real (abs d) rdvd t by blast
thus abs (real d) rdvd t by simp

next
assume abs (real d) rdvd t hence real (abs d) rdvd t by simp
with int-rdvd-real [where i=abs d and x=t] have d2 : abs d dvd floor t and ti :

real (floor t) =t by auto
from iffD1 [OF zdvd-abs1] d2 have d dvd floor t by blast
with ti int-rdvd-real [symmetric] show real d rdvd t by blast

qed

lemma rdvd-minus: (real (d ::int) rdvd t) = (real d rdvd −t)
apply (auto simp add : rdvd-def)
apply (rule-tac x=−k in exI , simp)
apply (rule-tac x=−k in exI , simp)

done

lemma rdvd-left-0-eq : (0 rdvd t) = (t=0)
by (auto simp add : rdvd-def)

lemma rdvd-mult :
assumes knz : k 6=0
shows (real (n::int) ∗ real (k ::int) rdvd x ∗ real k) = (real n rdvd x)

using knz by (simp add :rdvd-def)

lemma rdvd-trans: assumes mn:m rdvd n and nk :n rdvd k
shows m rdvd k

proof−
from rdvd-def mn obtain c where nmc:n = m ∗ real (c::int) by auto
from rdvd-def nk obtain c ′ where nkc:k = n ∗ real (c ′::int) by auto
hence k = m ∗ real (c ∗ c ′) using nmc by simp
thus ?thesis using rdvd-def by blast

qed

41

datatype num = C int | Bound nat | CN nat int num | Neg num | Add num num|
Sub num num
| Mul int num | Floor num| CF int num num

fun num-size :: num ⇒ nat where
num-size (C c) = 1
| num-size (Bound n) = 1
| num-size (Neg a) = 1 + num-size a
| num-size (Add a b) = 1 + num-size a + num-size b
| num-size (Sub a b) = 3 + num-size a + num-size b
| num-size (CN n c a) = 4 + num-size a
| num-size (CF c a b) = 4 + num-size a + num-size b
| num-size (Mul c a) = 1 + num-size a
| num-size (Floor a) = 1 + num-size a

fun Inum :: real list ⇒ num ⇒ real where
Inum bs (C c) = (real c)
| Inum bs (Bound n) = bs!n
| Inum bs (CN n c a) = (real c) ∗ (bs!n) + (Inum bs a)
| Inum bs (Neg a) = −(Inum bs a)
| Inum bs (Add a b) = Inum bs a + Inum bs b
| Inum bs (Sub a b) = Inum bs a − Inum bs b
| Inum bs (Mul c a) = (real c) ∗ Inum bs a
| Inum bs (Floor a) = real (floor (Inum bs a))
| Inum bs (CF c a b) = real c ∗ real (floor (Inum bs a)) + Inum bs b
definition isint t bs ≡ real (floor (Inum bs t)) = Inum bs t

lemma isint-iff : isint n bs = (real (floor (Inum bs n)) = Inum bs n)
by (simp add : isint-def)

lemma isint-Floor : isint (Floor n) bs
by (simp add : isint-iff)

lemma isint-Mul : isint e bs =⇒ isint (Mul c e) bs
proof−
let ?e = Inum bs e
let ?fe = floor ?e
assume be: isint e bs hence efe:real ?fe = ?e by (simp add : isint-iff)
have real ((floor (Inum bs (Mul c e)))) = real (floor (real (c ∗ ?fe))) using efe

by simp
also have . . . = real (c∗ ?fe) by (simp only : floor-real-of-int)
also have . . . = real c ∗ ?e using efe by simp
finally show ?thesis using isint-iff by simp

qed

42

lemma isint-neg : isint e bs =⇒ isint (Neg e) bs
proof−
let ?I = λ t . Inum bs t
assume ie: isint e bs
hence th: real (floor (?I e)) = ?I e by (simp add : isint-def)
have real (floor (?I (Neg e))) = real (floor (− (real (floor (?I e))))) by (simp

add : th)
also have . . . = − real (floor (?I e)) by(simp add : floor-minus-real-of-int)
finally show isint (Neg e) bs by (simp add : isint-def th)

qed

lemma isint-sub:
assumes ie: isint e bs shows isint (Sub (C c) e) bs

proof−
let ?I = λ t . Inum bs t
from ie have th: real (floor (?I e)) = ?I e by (simp add : isint-def)
have real (floor (?I (Sub (C c) e))) = real (floor ((real (c −floor (?I e))))) by

(simp add : th)
also have . . . = real (c− floor (?I e)) by(simp add : floor-minus-real-of-int)
finally show isint (Sub (C c) e) bs by (simp add : isint-def th)

qed

lemma isint-add : assumes
ai :isint a bs and bi : isint b bs shows isint (Add a b) bs

proof−
let ?a = Inum bs a
let ?b = Inum bs b
from ai bi isint-iff have real (floor (?a + ?b)) = real (floor (real (floor ?a) +

real (floor ?b))) by simp
also have . . . = real (floor ?a) + real (floor ?b) by simp
also have . . . = ?a + ?b using ai bi isint-iff by simp
finally show isint (Add a b) bs by (simp add : isint-iff)

qed

lemma isint-c: isint (C j) bs
by (simp add : isint-iff)

datatype fm =
T | F | Lt num| Le num| Gt num| Ge num| Eq num| NEq num| Dvd int num|

NDvd int num|
NOT fm| And fm fm| Or fm fm| Imp fm fm| Iff fm fm| E fm| A fm

fun fmsize :: fm ⇒ nat where
fmsize (NOT p) = 1 + fmsize p

43

| fmsize (And p q) = 1 + fmsize p + fmsize q
| fmsize (Or p q) = 1 + fmsize p + fmsize q
| fmsize (Imp p q) = 3 + fmsize p + fmsize q
| fmsize (Iff p q) = 3 + 2∗(fmsize p + fmsize q)
| fmsize (E p) = 1 + fmsize p
| fmsize (A p) = 4+ fmsize p
| fmsize (Dvd i t) = 2
| fmsize (NDvd i t) = 2
| fmsize p = 1

lemma fmsize-pos: fmsize p > 0
by (induct p rule: fmsize.induct) simp-all

fun Ifm ::real list ⇒ fm ⇒ bool where
Ifm bs T = True
| Ifm bs F = False
| Ifm bs (Lt a) = (Inum bs a < 0)
| Ifm bs (Gt a) = (Inum bs a > 0)
| Ifm bs (Le a) = (Inum bs a ≤ 0)
| Ifm bs (Ge a) = (Inum bs a ≥ 0)
| Ifm bs (Eq a) = (Inum bs a = 0)
| Ifm bs (NEq a) = (Inum bs a 6= 0)
| Ifm bs (Dvd i b) = (real i rdvd Inum bs b)
| Ifm bs (NDvd i b) = (¬(real i rdvd Inum bs b))
| Ifm bs (NOT p) = (¬ (Ifm bs p))
| Ifm bs (And p q) = (Ifm bs p ∧ Ifm bs q)
| Ifm bs (Or p q) = (Ifm bs p ∨ Ifm bs q)
| Ifm bs (Imp p q) = ((Ifm bs p) −→ (Ifm bs q))
| Ifm bs (Iff p q) = (Ifm bs p = Ifm bs q)
| Ifm bs (E p) = (∃ x . Ifm (x#bs) p)
| Ifm bs (A p) = (∀ x . Ifm (x#bs) p)

consts prep :: fm ⇒ fm
recdef prep measure fmsize

prep (E T) = T
prep (E F) = F
prep (E (Or p q)) = Or (prep (E p)) (prep (E q))
prep (E (Imp p q)) = Or (prep (E (NOT p))) (prep (E q))
prep (E (Iff p q)) = Or (prep (E (And p q))) (prep (E (And (NOT p) (NOT

q))))
prep (E (NOT (And p q))) = Or (prep (E (NOT p))) (prep (E (NOT q)))
prep (E (NOT (Imp p q))) = prep (E (And p (NOT q)))
prep (E (NOT (Iff p q))) = Or (prep (E (And p (NOT q)))) (prep (E (And

(NOT p) q)))
prep (E p) = E (prep p)
prep (A (And p q)) = And (prep (A p)) (prep (A q))
prep (A p) = prep (NOT (E (NOT p)))
prep (NOT (NOT p)) = prep p

44

prep (NOT (And p q)) = Or (prep (NOT p)) (prep (NOT q))
prep (NOT (A p)) = prep (E (NOT p))
prep (NOT (Or p q)) = And (prep (NOT p)) (prep (NOT q))
prep (NOT (Imp p q)) = And (prep p) (prep (NOT q))
prep (NOT (Iff p q)) = Or (prep (And p (NOT q))) (prep (And (NOT p) q))
prep (NOT p) = NOT (prep p)
prep (Or p q) = Or (prep p) (prep q)
prep (And p q) = And (prep p) (prep q)
prep (Imp p q) = prep (Or (NOT p) q)
prep (Iff p q) = Or (prep (And p q)) (prep (And (NOT p) (NOT q)))
prep p = p

(hints simp add : fmsize-pos)
lemma prep:

∧
bs. Ifm bs (prep p) = Ifm bs p

by (induct p rule: prep.induct , auto)

consts qfree:: fm ⇒ bool
recdef qfree measure size

qfree (E p) = False
qfree (A p) = False
qfree (NOT p) = qfree p
qfree (And p q) = (qfree p ∧ qfree q)
qfree (Or p q) = (qfree p ∧ qfree q)
qfree (Imp p q) = (qfree p ∧ qfree q)
qfree (Iff p q) = (qfree p ∧ qfree q)
qfree p = True

consts
numbound0 :: num ⇒ bool
bound0 :: fm ⇒ bool
numsubst0 :: num ⇒ num ⇒ num
subst0 :: num ⇒ fm ⇒ fm

primrec
numbound0 (C c) = True
numbound0 (Bound n) = (n>0)
numbound0 (CN n i a) = (n > 0 ∧ numbound0 a)
numbound0 (Neg a) = numbound0 a
numbound0 (Add a b) = (numbound0 a ∧ numbound0 b)
numbound0 (Sub a b) = (numbound0 a ∧ numbound0 b)
numbound0 (Mul i a) = numbound0 a
numbound0 (Floor a) = numbound0 a
numbound0 (CF c a b) = (numbound0 a ∧ numbound0 b)

lemma numbound0-I :
assumes nb: numbound0 a
shows Inum (b#bs) a = Inum (b ′#bs) a

using nb
by (induct a rule: numbound0 .induct) (auto simp add : nth-pos2)

45

lemma numbound0-gen:
assumes nb: numbound0 t and ti : isint t (x#bs)
shows ∀ y . isint t (y#bs)

using nb ti
proof(clarify)
fix y
from numbound0-I [OF nb, where bs=bs and b=y and b ′=x] ti [simplified

isint-def]
show isint t (y#bs)
by (simp add : isint-def)

qed

primrec
bound0 T = True
bound0 F = True
bound0 (Lt a) = numbound0 a
bound0 (Le a) = numbound0 a
bound0 (Gt a) = numbound0 a
bound0 (Ge a) = numbound0 a
bound0 (Eq a) = numbound0 a
bound0 (NEq a) = numbound0 a
bound0 (Dvd i a) = numbound0 a
bound0 (NDvd i a) = numbound0 a
bound0 (NOT p) = bound0 p
bound0 (And p q) = (bound0 p ∧ bound0 q)
bound0 (Or p q) = (bound0 p ∧ bound0 q)
bound0 (Imp p q) = ((bound0 p) ∧ (bound0 q))
bound0 (Iff p q) = (bound0 p ∧ bound0 q)
bound0 (E p) = False
bound0 (A p) = False

lemma bound0-I :
assumes bp: bound0 p
shows Ifm (b#bs) p = Ifm (b ′#bs) p

using bp numbound0-I [where b=b and bs=bs and b ′=b ′]
by (induct p rule: bound0 .induct) (auto simp add : nth-pos2)

primrec
numsubst0 t (C c) = (C c)
numsubst0 t (Bound n) = (if n=0 then t else Bound n)
numsubst0 t (CN n i a) = (if n=0 then Add (Mul i t) (numsubst0 t a) else CN

n i (numsubst0 t a))
numsubst0 t (CF i a b) = CF i (numsubst0 t a) (numsubst0 t b)
numsubst0 t (Neg a) = Neg (numsubst0 t a)
numsubst0 t (Add a b) = Add (numsubst0 t a) (numsubst0 t b)
numsubst0 t (Sub a b) = Sub (numsubst0 t a) (numsubst0 t b)
numsubst0 t (Mul i a) = Mul i (numsubst0 t a)

46

numsubst0 t (Floor a) = Floor (numsubst0 t a)

lemma numsubst0-I :
shows Inum (b#bs) (numsubst0 a t) = Inum ((Inum (b#bs) a)#bs) t
by (induct t) (simp-all add : nth-pos2)

lemma numsubst0-I ′:
assumes nb: numbound0 a
shows Inum (b#bs) (numsubst0 a t) = Inum ((Inum (b ′#bs) a)#bs) t
by (induct t) (simp-all add : nth-pos2 numbound0-I [OF nb, where b=b and

b ′=b ′])

primrec
subst0 t T = T
subst0 t F = F
subst0 t (Lt a) = Lt (numsubst0 t a)
subst0 t (Le a) = Le (numsubst0 t a)
subst0 t (Gt a) = Gt (numsubst0 t a)
subst0 t (Ge a) = Ge (numsubst0 t a)
subst0 t (Eq a) = Eq (numsubst0 t a)
subst0 t (NEq a) = NEq (numsubst0 t a)
subst0 t (Dvd i a) = Dvd i (numsubst0 t a)
subst0 t (NDvd i a) = NDvd i (numsubst0 t a)
subst0 t (NOT p) = NOT (subst0 t p)
subst0 t (And p q) = And (subst0 t p) (subst0 t q)
subst0 t (Or p q) = Or (subst0 t p) (subst0 t q)
subst0 t (Imp p q) = Imp (subst0 t p) (subst0 t q)
subst0 t (Iff p q) = Iff (subst0 t p) (subst0 t q)

lemma subst0-I : assumes qfp: qfree p
shows Ifm (b#bs) (subst0 a p) = Ifm ((Inum (b#bs) a)#bs) p
using qfp numsubst0-I [where b=b and bs=bs and a=a]
by (induct p) (simp-all add : nth-pos2)

consts
decrnum:: num ⇒ num
decr :: fm ⇒ fm

recdef decrnum measure size
decrnum (Bound n) = Bound (n − 1)
decrnum (Neg a) = Neg (decrnum a)
decrnum (Add a b) = Add (decrnum a) (decrnum b)
decrnum (Sub a b) = Sub (decrnum a) (decrnum b)
decrnum (Mul c a) = Mul c (decrnum a)
decrnum (Floor a) = Floor (decrnum a)
decrnum (CN n c a) = CN (n − 1) c (decrnum a)
decrnum (CF c a b) = CF c (decrnum a) (decrnum b)
decrnum a = a

47

recdef decr measure size
decr (Lt a) = Lt (decrnum a)
decr (Le a) = Le (decrnum a)
decr (Gt a) = Gt (decrnum a)
decr (Ge a) = Ge (decrnum a)
decr (Eq a) = Eq (decrnum a)
decr (NEq a) = NEq (decrnum a)
decr (Dvd i a) = Dvd i (decrnum a)
decr (NDvd i a) = NDvd i (decrnum a)
decr (NOT p) = NOT (decr p)
decr (And p q) = And (decr p) (decr q)
decr (Or p q) = Or (decr p) (decr q)
decr (Imp p q) = Imp (decr p) (decr q)
decr (Iff p q) = Iff (decr p) (decr q)
decr p = p

lemma decrnum: assumes nb: numbound0 t
shows Inum (x#bs) t = Inum bs (decrnum t)
using nb by (induct t rule: decrnum.induct , simp-all add : nth-pos2)

lemma decr : assumes nb: bound0 p
shows Ifm (x#bs) p = Ifm bs (decr p)
using nb
by (induct p rule: decr .induct , simp-all add : nth-pos2 decrnum)

lemma decr-qf : bound0 p =⇒ qfree (decr p)
by (induct p, simp-all)

consts
isatom :: fm ⇒ bool

recdef isatom measure size
isatom T = True
isatom F = True
isatom (Lt a) = True
isatom (Le a) = True
isatom (Gt a) = True
isatom (Ge a) = True
isatom (Eq a) = True
isatom (NEq a) = True
isatom (Dvd i b) = True
isatom (NDvd i b) = True
isatom p = False

lemma numsubst0-numbound0 : assumes nb: numbound0 t
shows numbound0 (numsubst0 t a)

using nb by (induct a rule: numsubst0 .induct , auto)

lemma subst0-bound0 : assumes qf : qfree p and nb: numbound0 t

48

shows bound0 (subst0 t p)
using qf numsubst0-numbound0 [OF nb] by (induct p rule: subst0 .induct , auto)

lemma bound0-qf : bound0 p =⇒ qfree p
by (induct p, simp-all)

constdefs djf :: (′a ⇒ fm) ⇒ ′a ⇒ fm ⇒ fm
djf f p q ≡ (if q=T then T else if q=F then f p else
(let fp = f p in case fp of T ⇒ T | F ⇒ q | - ⇒ Or fp q))

constdefs evaldjf :: (′a ⇒ fm) ⇒ ′a list ⇒ fm
evaldjf f ps ≡ foldr (djf f) ps F

lemma djf-Or : Ifm bs (djf f p q) = Ifm bs (Or (f p) q)
by (cases q=T , simp add : djf-def ,cases q=F ,simp add : djf-def)
(cases f p, simp-all add : Let-def djf-def)

lemma evaldjf-ex : Ifm bs (evaldjf f ps) = (∃ p ∈ set ps. Ifm bs (f p))
by(induct ps, simp-all add : evaldjf-def djf-Or)

lemma evaldjf-bound0 :
assumes nb: ∀ x∈ set xs. bound0 (f x)
shows bound0 (evaldjf f xs)
using nb by (induct xs, auto simp add : evaldjf-def djf-def Let-def) (case-tac f a,

auto)

lemma evaldjf-qf :
assumes nb: ∀ x∈ set xs. qfree (f x)
shows qfree (evaldjf f xs)
using nb by (induct xs, auto simp add : evaldjf-def djf-def Let-def) (case-tac f a,

auto)

consts
disjuncts :: fm ⇒ fm list
conjuncts :: fm ⇒ fm list

recdef disjuncts measure size
disjuncts (Or p q) = (disjuncts p) @ (disjuncts q)
disjuncts F = []
disjuncts p = [p]

recdef conjuncts measure size
conjuncts (And p q) = (conjuncts p) @ (conjuncts q)
conjuncts T = []
conjuncts p = [p]

lemma disjuncts: (∃ q∈ set (disjuncts p). Ifm bs q) = Ifm bs p
by(induct p rule: disjuncts.induct , auto)
lemma conjuncts: (∀ q∈ set (conjuncts p). Ifm bs q) = Ifm bs p
by(induct p rule: conjuncts.induct , auto)

49

lemma disjuncts-nb: bound0 p =⇒ ∀ q∈ set (disjuncts p). bound0 q
proof−
assume nb: bound0 p
hence list-all bound0 (disjuncts p) by (induct p rule:disjuncts.induct ,auto)
thus ?thesis by (simp only : list-all-iff)

qed
lemma conjuncts-nb: bound0 p =⇒ ∀ q∈ set (conjuncts p). bound0 q
proof−
assume nb: bound0 p
hence list-all bound0 (conjuncts p) by (induct p rule:conjuncts.induct ,auto)
thus ?thesis by (simp only : list-all-iff)

qed

lemma disjuncts-qf : qfree p =⇒ ∀ q∈ set (disjuncts p). qfree q
proof−
assume qf : qfree p
hence list-all qfree (disjuncts p)
by (induct p rule: disjuncts.induct , auto)

thus ?thesis by (simp only : list-all-iff)
qed
lemma conjuncts-qf : qfree p =⇒ ∀ q∈ set (conjuncts p). qfree q
proof−
assume qf : qfree p
hence list-all qfree (conjuncts p)
by (induct p rule: conjuncts.induct , auto)

thus ?thesis by (simp only : list-all-iff)
qed

constdefs DJ :: (fm ⇒ fm) ⇒ fm ⇒ fm
DJ f p ≡ evaldjf f (disjuncts p)

lemma DJ : assumes fdj : ∀ p q . f (Or p q) = Or (f p) (f q)
and fF : f F = F
shows Ifm bs (DJ f p) = Ifm bs (f p)

proof−
have Ifm bs (DJ f p) = (∃ q ∈ set (disjuncts p). Ifm bs (f q))
by (simp add : DJ-def evaldjf-ex)

also have . . . = Ifm bs (f p) using fdj fF by (induct p rule: disjuncts.induct ,
auto)
finally show ?thesis .

qed

lemma DJ-qf : assumes
fqf : ∀ p. qfree p −→ qfree (f p)
shows ∀ p. qfree p −→ qfree (DJ f p)

proof(clarify)
fix p assume qf : qfree p
have th: DJ f p = evaldjf f (disjuncts p) by (simp add : DJ-def)
from disjuncts-qf [OF qf] have ∀ q∈ set (disjuncts p). qfree q .

50

with fqf have th ′:∀ q∈ set (disjuncts p). qfree (f q) by blast

from evaldjf-qf [OF th ′] th show qfree (DJ f p) by simp
qed

lemma DJ-qe: assumes qe: ∀ bs p. qfree p −→ qfree (qe p) ∧ (Ifm bs (qe p) =
Ifm bs (E p))

shows ∀ bs p. qfree p −→ qfree (DJ qe p) ∧ (Ifm bs ((DJ qe p)) = Ifm bs (E
p))
proof(clarify)
fix p::fm and bs
assume qf : qfree p
from qe have qth: ∀ p. qfree p −→ qfree (qe p) by blast
from DJ-qf [OF qth] qf have qfth:qfree (DJ qe p) by auto
have Ifm bs (DJ qe p) = (∃ q∈ set (disjuncts p). Ifm bs (qe q))
by (simp add : DJ-def evaldjf-ex)

also have . . . = (∃ q ∈ set(disjuncts p). Ifm bs (E q)) using qe disjuncts-qf [OF
qf] by auto
also have . . . = Ifm bs (E p) by (induct p rule: disjuncts.induct , auto)
finally show qfree (DJ qe p) ∧ Ifm bs (DJ qe p) = Ifm bs (E p) using qfth by

blast
qed

consts bnds:: num ⇒ nat list
lex-ns:: nat list × nat list ⇒ bool

recdef bnds measure size
bnds (Bound n) = [n]
bnds (CN n c a) = n#(bnds a)
bnds (Neg a) = bnds a
bnds (Add a b) = (bnds a)@(bnds b)
bnds (Sub a b) = (bnds a)@(bnds b)
bnds (Mul i a) = bnds a
bnds (Floor a) = bnds a
bnds (CF c a b) = (bnds a)@(bnds b)
bnds a = []

recdef lex-ns measure (λ (xs,ys). length xs + length ys)
lex-ns ([], ms) = True
lex-ns (ns, []) = False
lex-ns (n#ns, m#ms) = (n<m ∨ ((n = m) ∧ lex-ns (ns,ms)))

constdefs lex-bnd :: num ⇒ num ⇒ bool
lex-bnd t s ≡ lex-ns (bnds t , bnds s)

consts
numgcdh:: num ⇒ int ⇒ int
reducecoeffh:: num ⇒ int ⇒ num
dvdnumcoeff :: num ⇒ int ⇒ bool

consts maxcoeff :: num ⇒ int

51

recdef maxcoeff measure size
maxcoeff (C i) = abs i
maxcoeff (CN n c t) = max (abs c) (maxcoeff t)
maxcoeff (CF c t s) = max (abs c) (maxcoeff s)
maxcoeff t = 1

lemma maxcoeff-pos: maxcoeff t ≥ 0
apply (induct t rule: maxcoeff .induct , auto)
done

recdef numgcdh measure size
numgcdh (C i) = (λg . igcd i g)
numgcdh (CN n c t) = (λg . igcd c (numgcdh t g))
numgcdh (CF c s t) = (λg . igcd c (numgcdh t g))
numgcdh t = (λg . 1)

definition
numgcd :: num ⇒ int

where
numgcd-def : numgcd t = numgcdh t (maxcoeff t)

recdef reducecoeffh measure size
reducecoeffh (C i) = (λ g . C (i div g))
reducecoeffh (CN n c t) = (λ g . CN n (c div g) (reducecoeffh t g))
reducecoeffh (CF c s t) = (λ g . CF (c div g) s (reducecoeffh t g))
reducecoeffh t = (λg . t)

definition
reducecoeff :: num ⇒ num

where
reducecoeff-def : reducecoeff t =
(let g = numgcd t in
if g = 0 then C 0 else if g=1 then t else reducecoeffh t g)

recdef dvdnumcoeff measure size
dvdnumcoeff (C i) = (λ g . g dvd i)
dvdnumcoeff (CN n c t) = (λ g . g dvd c ∧ (dvdnumcoeff t g))
dvdnumcoeff (CF c s t) = (λ g . g dvd c ∧ (dvdnumcoeff t g))
dvdnumcoeff t = (λg . False)

lemma dvdnumcoeff-trans:
assumes gdg : g dvd g ′ and dgt ′:dvdnumcoeff t g ′

shows dvdnumcoeff t g
using dgt ′ gdg
by (induct t rule: dvdnumcoeff .induct , simp-all add : gdg zdvd-trans[OF gdg])

declare zdvd-trans [trans add]

lemma natabs0 : (nat (abs x) = 0) = (x = 0)

52

by arith

lemma numgcd0 :
assumes g0 : numgcd t = 0
shows Inum bs t = 0

proof−
have

∧
x . numgcdh t x= 0 =⇒ Inum bs t = 0

by (induct t rule: numgcdh.induct , auto simp add : igcd-def gcd-zero natabs0
max-def maxcoeff-pos)
thus ?thesis using g0 [simplified numgcd-def] by blast

qed

lemma numgcdh-pos: assumes gp: g ≥ 0 shows numgcdh t g ≥ 0
using gp
by (induct t rule: numgcdh.induct , auto simp add : igcd-def)

lemma numgcd-pos: numgcd t ≥0
by (simp add : numgcd-def numgcdh-pos maxcoeff-pos)

lemma reducecoeffh:
assumes gt : dvdnumcoeff t g and gp: g > 0
shows real g ∗(Inum bs (reducecoeffh t g)) = Inum bs t
using gt

proof(induct t rule: reducecoeffh.induct)
case (1 i) hence gd : g dvd i by simp
from gp have gnz : g 6= 0 by simp
from prems show ?case by (simp add : real-of-int-div [OF gnz gd])

next
case (2 n c t) hence gd : g dvd c by simp
from gp have gnz : g 6= 0 by simp
from prems show ?case by (simp add : real-of-int-div [OF gnz gd] ring-simps)

next
case (3 c s t) hence gd : g dvd c by simp
from gp have gnz : g 6= 0 by simp
from prems show ?case by (simp add : real-of-int-div [OF gnz gd] ring-simps)

qed (auto simp add : numgcd-def gp)
consts ismaxcoeff :: num ⇒ int ⇒ bool
recdef ismaxcoeff measure size

ismaxcoeff (C i) = (λ x . abs i ≤ x)
ismaxcoeff (CN n c t) = (λx . abs c ≤ x ∧ (ismaxcoeff t x))
ismaxcoeff (CF c s t) = (λx . abs c ≤ x ∧ (ismaxcoeff t x))
ismaxcoeff t = (λx . True)

lemma ismaxcoeff-mono: ismaxcoeff t c =⇒ c ≤ c ′ =⇒ ismaxcoeff t c ′

by (induct t rule: ismaxcoeff .induct , auto)

lemma maxcoeff-ismaxcoeff : ismaxcoeff t (maxcoeff t)
proof (induct t rule: maxcoeff .induct)
case (2 n c t)

53

hence H :ismaxcoeff t (maxcoeff t) .
have thh: maxcoeff t ≤ max (abs c) (maxcoeff t) by (simp add : le-maxI2)
from ismaxcoeff-mono[OF H thh] show ?case by (simp add : le-maxI1)

next
case (3 c t s)
hence H1 :ismaxcoeff s (maxcoeff s) by auto
have thh1 : maxcoeff s ≤ max |c| (maxcoeff s) by (simp add : max-def)
from ismaxcoeff-mono[OF H1 thh1] show ?case by (simp add : le-maxI1)

qed simp-all

lemma igcd-gt1 : igcd i j > 1 =⇒ ((abs i > 1 ∧ abs j > 1) ∨ (abs i = 0 ∧ abs j
> 1) ∨ (abs i > 1 ∧ abs j = 0))
apply (unfold igcd-def)
apply (cases i = 0 , simp-all)
apply (cases j = 0 , simp-all)
apply (cases abs i = 1 , simp-all)
apply (cases abs j = 1 , simp-all)
apply auto
done

lemma numgcdh0 :numgcdh t m = 0 =⇒ m =0
by (induct t rule: numgcdh.induct , auto simp add :igcd0)

lemma dvdnumcoeff-aux :
assumes ismaxcoeff t m and mp:m ≥ 0 and numgcdh t m > 1
shows dvdnumcoeff t (numgcdh t m)

using prems
proof(induct t rule: numgcdh.induct)
case (2 n c t)
let ?g = numgcdh t m
from prems have th:igcd c ?g > 1 by simp
from igcd-gt1 [OF th] numgcdh-pos[OF mp, where t=t]
have (abs c > 1 ∧ ?g > 1) ∨ (abs c = 0 ∧ ?g > 1) ∨ (abs c > 1 ∧ ?g = 0)

by simp
moreover {assume abs c > 1 and gp: ?g > 1 with prems
have th: dvdnumcoeff t ?g by simp
have th ′: igcd c ?g dvd ?g by (simp add :igcd-dvd2)
from dvdnumcoeff-trans[OF th ′ th] have ?case by (simp add : igcd-dvd1)}

moreover {assume abs c = 0 ∧ ?g > 1
with prems have th: dvdnumcoeff t ?g by simp
have th ′: igcd c ?g dvd ?g by (simp add :igcd-dvd2)
from dvdnumcoeff-trans[OF th ′ th] have ?case by (simp add : igcd-dvd1)
hence ?case by simp }

moreover {assume abs c > 1 and g0 :?g = 0
from numgcdh0 [OF g0] have m=0 . with prems have ?case by simp }

ultimately show ?case by blast
next
case (3 c s t)
let ?g = numgcdh t m
from prems have th:igcd c ?g > 1 by simp

54

from igcd-gt1 [OF th] numgcdh-pos[OF mp, where t=t]
have (abs c > 1 ∧ ?g > 1) ∨ (abs c = 0 ∧ ?g > 1) ∨ (abs c > 1 ∧ ?g = 0)

by simp
moreover {assume abs c > 1 and gp: ?g > 1 with prems
have th: dvdnumcoeff t ?g by simp
have th ′: igcd c ?g dvd ?g by (simp add :igcd-dvd2)
from dvdnumcoeff-trans[OF th ′ th] have ?case by (simp add : igcd-dvd1)}

moreover {assume abs c = 0 ∧ ?g > 1
with prems have th: dvdnumcoeff t ?g by simp
have th ′: igcd c ?g dvd ?g by (simp add :igcd-dvd2)
from dvdnumcoeff-trans[OF th ′ th] have ?case by (simp add : igcd-dvd1)
hence ?case by simp }

moreover {assume abs c > 1 and g0 :?g = 0
from numgcdh0 [OF g0] have m=0 . with prems have ?case by simp }

ultimately show ?case by blast
qed(auto simp add : igcd-dvd1)

lemma dvdnumcoeff-aux2 :
assumes numgcd t > 1 shows dvdnumcoeff t (numgcd t) ∧ numgcd t > 0
using prems

proof (simp add : numgcd-def)
let ?mc = maxcoeff t
let ?g = numgcdh t ?mc
have th1 : ismaxcoeff t ?mc by (rule maxcoeff-ismaxcoeff)
have th2 : ?mc ≥ 0 by (rule maxcoeff-pos)
assume H : numgcdh t ?mc > 1
from dvdnumcoeff-aux [OF th1 th2 H] show dvdnumcoeff t ?g .

qed

lemma reducecoeff : real (numgcd t) ∗ (Inum bs (reducecoeff t)) = Inum bs t
proof−
let ?g = numgcd t
have ?g ≥ 0 by (simp add : numgcd-pos)
hence ?g = 0 ∨ ?g = 1 ∨ ?g > 1 by auto
moreover {assume ?g = 0 hence ?thesis by (simp add : numgcd0)}
moreover {assume ?g = 1 hence ?thesis by (simp add : reducecoeff-def)}
moreover { assume g1 :?g > 1
from dvdnumcoeff-aux2 [OF g1] have th1 :dvdnumcoeff t ?g and g0 : ?g > 0 by

blast+
from reducecoeffh[OF th1 g0 , where bs=bs] g1 have ?thesis
by (simp add : reducecoeff-def Let-def)}

ultimately show ?thesis by blast
qed

lemma reducecoeffh-numbound0 : numbound0 t =⇒ numbound0 (reducecoeffh t g)
by (induct t rule: reducecoeffh.induct , auto)

lemma reducecoeff-numbound0 : numbound0 t =⇒ numbound0 (reducecoeff t)
using reducecoeffh-numbound0 by (simp add : reducecoeff-def Let-def)

55

consts
simpnum:: num ⇒ num
numadd :: num × num ⇒ num
nummul :: num ⇒ int ⇒ num

recdef numadd measure (λ (t ,s). size t + size s)
numadd (CN n1 c1 r1 ,CN n2 c2 r2) =
(if n1=n2 then
(let c = c1 + c2
in (if c=0 then numadd(r1 ,r2) else CN n1 c (numadd (r1 ,r2))))
else if n1 ≤ n2 then CN n1 c1 (numadd (r1 ,CN n2 c2 r2))
else (CN n2 c2 (numadd (CN n1 c1 r1 ,r2))))
numadd (CN n1 c1 r1 ,t) = CN n1 c1 (numadd (r1 , t))
numadd (t ,CN n2 c2 r2) = CN n2 c2 (numadd (t ,r2))
numadd (CF c1 t1 r1 ,CF c2 t2 r2) =
(if t1 = t2 then
(let c=c1+c2 ; s= numadd(r1 ,r2) in (if c=0 then s else CF c t1 s))

else if lex-bnd t1 t2 then CF c1 t1 (numadd(r1 ,CF c2 t2 r2))
else CF c2 t2 (numadd(CF c1 t1 r1 ,r2)))

numadd (CF c1 t1 r1 ,C c) = CF c1 t1 (numadd (r1 , C c))
numadd (C c,CF c1 t1 r1) = CF c1 t1 (numadd (r1 , C c))
numadd (C b1 , C b2) = C (b1+b2)
numadd (a,b) = Add a b

lemma numadd [simp]: Inum bs (numadd (t ,s)) = Inum bs (Add t s)
apply (induct t s rule: numadd .induct , simp-all add : Let-def)
apply (case-tac c1+c2 = 0 ,case-tac n1 ≤ n2 , simp-all)
apply (case-tac n1 = n2 , simp-all add : ring-simps)
apply (simp only : left-distrib[symmetric])
apply simp
apply (case-tac lex-bnd t1 t2 , simp-all)
apply (case-tac c1+c2 = 0)
by (case-tac t1 = t2 , simp-all add : ring-simps left-distrib[symmetric] real-of-int-mult [symmetric]

real-of-int-add [symmetric]del : real-of-int-mult real-of-int-add left-distrib)

lemma numadd-nb[simp]: [[numbound0 t ; numbound0 s]] =⇒ numbound0 (numadd
(t ,s))
by (induct t s rule: numadd .induct , auto simp add : Let-def)

recdef nummul measure size
nummul (C j) = (λ i . C (i∗j))
nummul (CN n c t) = (λ i . CN n (c∗i) (nummul t i))
nummul (CF c t s) = (λ i . CF (c∗i) t (nummul s i))
nummul (Mul c t) = (λ i . nummul t (i∗c))
nummul t = (λ i . Mul i t)

lemma nummul [simp]:
∧

i . Inum bs (nummul t i) = Inum bs (Mul i t)
by (induct t rule: nummul .induct , auto simp add : ring-simps)

56

lemma nummul-nb[simp]:
∧

i . numbound0 t =⇒ numbound0 (nummul t i)
by (induct t rule: nummul .induct , auto)

constdefs numneg :: num ⇒ num
numneg t ≡ nummul t (− 1)

constdefs numsub :: num ⇒ num ⇒ num
numsub s t ≡ (if s = t then C 0 else numadd (s,numneg t))

lemma numneg [simp]: Inum bs (numneg t) = Inum bs (Neg t)
using numneg-def nummul by simp

lemma numneg-nb[simp]: numbound0 t =⇒ numbound0 (numneg t)
using numneg-def by simp

lemma numsub[simp]: Inum bs (numsub a b) = Inum bs (Sub a b)
using numsub-def by simp

lemma numsub-nb[simp]: [[numbound0 t ; numbound0 s]] =⇒ numbound0 (numsub
t s)
using numsub-def by simp

lemma isint-CF : assumes si : isint s bs shows isint (CF c t s) bs
proof−
have cti : isint (Mul c (Floor t)) bs by (simp add : isint-Mul isint-Floor)

have ?thesis = isint (Add (Mul c (Floor t)) s) bs by (simp add : isint-def)
also have . . . by (simp add : isint-add cti si)
finally show ?thesis .

qed

consts split-int :: num ⇒ num×num
recdef split-int measure num-size

split-int (C c) = (C 0 , C c)
split-int (CN n c b) =

(let (bv ,bi) = split-int b
in (CN n c bv , bi))

split-int (CF c a b) =
(let (bv ,bi) = split-int b

in (bv , CF c a bi))
split-int a = (a,C 0)

lemma split-int :
∧

tv ti . split-int t = (tv ,ti) =⇒ (Inum bs (Add tv ti) = Inum bs
t) ∧ isint ti bs
proof (induct t rule: split-int .induct)
case (2 c n b tv ti)
let ?bv = fst (split-int b)
let ?bi = snd (split-int b)

57

have split-int b = (?bv ,?bi) by simp
with prems(1) have b:Inum bs (Add ?bv ?bi) = Inum bs b and bii : isint ?bi bs

by blast+
from prems(2) have tibi : ti = ?bi by (simp add : Let-def split-def)
from prems(2) b[symmetric] bii show ?case by (auto simp add : Let-def split-def)

next
case (3 c a b tv ti)
let ?bv = fst (split-int b)
let ?bi = snd (split-int b)
have split-int b = (?bv ,?bi) by simp
with prems(1) have b:Inum bs (Add ?bv ?bi) = Inum bs b and bii : isint ?bi bs

by blast+
from prems(2) have tibi : ti = CF c a ?bi by (simp add : Let-def split-def)
from prems(2) b[symmetric] bii show ?case by (auto simp add : Let-def split-def

isint-Floor isint-add isint-Mul isint-CF)
qed (auto simp add : Let-def isint-iff isint-Floor isint-add isint-Mul split-def ring-simps)

lemma split-int-nb: numbound0 t =⇒ numbound0 (fst (split-int t)) ∧ numbound0
(snd (split-int t))
by (induct t rule: split-int .induct , auto simp add : Let-def split-def)

definition
numfloor :: num ⇒ num

where
numfloor-def : numfloor t = (let (tv ,ti) = split-int t in
(case tv of C i ⇒ numadd (tv ,ti)
| - ⇒ numadd(CF 1 tv (C 0),ti)))

lemma numfloor [simp]: Inum bs (numfloor t) = Inum bs (Floor t) (is ?n t = ?N
(Floor t))
proof−
let ?tv = fst (split-int t)
let ?ti = snd (split-int t)
have tvti :split-int t = (?tv ,?ti) by simp
{assume H : ∀ v . ?tv 6= C v
hence th1 : ?n t = ?N (Add (Floor ?tv) ?ti)
by (cases ?tv , auto simp add : numfloor-def Let-def split-def numadd)
from split-int [OF tvti] have ?N (Floor t) = ?N (Floor(Add ?tv ?ti)) and

tii :isint ?ti bs by simp+
hence ?N (Floor t) = real (floor (?N (Add ?tv ?ti))) by simp
also have . . . = real (floor (?N ?tv) + (floor (?N ?ti)))
by (simp,subst tii [simplified isint-iff , symmetric]) simp

also have . . . = ?N (Add (Floor ?tv) ?ti) by (simp add : tii [simplified isint-iff])
finally have ?thesis using th1 by simp}

moreover {fix v assume H :?tv = C v
from split-int [OF tvti] have ?N (Floor t) = ?N (Floor(Add ?tv ?ti)) and

tii :isint ?ti bs by simp+
hence ?N (Floor t) = real (floor (?N (Add ?tv ?ti))) by simp
also have . . . = real (floor (?N ?tv) + (floor (?N ?ti)))

58

by (simp,subst tii [simplified isint-iff , symmetric]) simp
also have . . . = ?N (Add (Floor ?tv) ?ti) by (simp add : tii [simplified isint-iff])
finally have ?thesis by (simp add : H numfloor-def Let-def split-def numadd)

}
ultimately show ?thesis by auto

qed

lemma numfloor-nb[simp]: numbound0 t =⇒ numbound0 (numfloor t)
using split-int-nb[where t=t]
by (cases fst(split-int t) , auto simp add : numfloor-def Let-def split-def numadd-nb)

recdef simpnum measure num-size
simpnum (C j) = C j
simpnum (Bound n) = CN n 1 (C 0)
simpnum (Neg t) = numneg (simpnum t)
simpnum (Add t s) = numadd (simpnum t ,simpnum s)
simpnum (Sub t s) = numsub (simpnum t) (simpnum s)
simpnum (Mul i t) = (if i = 0 then (C 0) else nummul (simpnum t) i)
simpnum (Floor t) = numfloor (simpnum t)
simpnum (CN n c t) = (if c=0 then simpnum t else CN n c (simpnum t))
simpnum (CF c t s) = simpnum(Add (Mul c (Floor t)) s)

lemma simpnum-ci [simp]: Inum bs (simpnum t) = Inum bs t
by (induct t rule: simpnum.induct , auto)

lemma simpnum-numbound0 [simp]:
numbound0 t =⇒ numbound0 (simpnum t)

by (induct t rule: simpnum.induct , auto)

consts nozerocoeff :: num ⇒ bool
recdef nozerocoeff measure size

nozerocoeff (C c) = True
nozerocoeff (CN n c t) = (c 6=0 ∧ nozerocoeff t)
nozerocoeff (CF c s t) = (c 6= 0 ∧ nozerocoeff t)
nozerocoeff (Mul c t) = (c 6=0 ∧ nozerocoeff t)
nozerocoeff t = True

lemma numadd-nz : nozerocoeff a =⇒ nozerocoeff b =⇒ nozerocoeff (numadd
(a,b))
by (induct a b rule: numadd .induct ,auto simp add : Let-def)

lemma nummul-nz :
∧

i . i 6=0 =⇒ nozerocoeff a =⇒ nozerocoeff (nummul a i)
by (induct a rule: nummul .induct ,auto simp add : Let-def numadd-nz)

lemma numneg-nz : nozerocoeff a =⇒ nozerocoeff (numneg a)
by (simp add : numneg-def nummul-nz)

lemma numsub-nz : nozerocoeff a =⇒ nozerocoeff b =⇒ nozerocoeff (numsub a b)
by (simp add : numsub-def numneg-nz numadd-nz)

59

lemma split-int-nz : nozerocoeff t =⇒ nozerocoeff (fst (split-int t)) ∧ nozerocoeff
(snd (split-int t))
by (induct t rule: split-int .induct ,auto simp add : Let-def split-def)

lemma numfloor-nz : nozerocoeff t =⇒ nozerocoeff (numfloor t)
by (simp add : numfloor-def Let-def split-def)
(cases fst (split-int t), simp-all add : split-int-nz numadd-nz)

lemma simpnum-nz : nozerocoeff (simpnum t)
by(induct t rule: simpnum.induct , auto simp add : numadd-nz numneg-nz numsub-nz
nummul-nz numfloor-nz)

lemma maxcoeff-nz : nozerocoeff t =⇒ maxcoeff t = 0 =⇒ t = C 0
proof (induct t rule: maxcoeff .induct)
case (2 n c t)
hence cnz : c 6=0 and mx : max (abs c) (maxcoeff t) = 0 by simp+
have max (abs c) (maxcoeff t) ≥ abs c by (simp add : le-maxI1)
with cnz have max (abs c) (maxcoeff t) > 0 by arith
with prems show ?case by simp

next
case (3 c s t)
hence cnz : c 6=0 and mx : max (abs c) (maxcoeff t) = 0 by simp+
have max (abs c) (maxcoeff t) ≥ abs c by (simp add : le-maxI1)
with cnz have max (abs c) (maxcoeff t) > 0 by arith
with prems show ?case by simp

qed auto

lemma numgcd-nz : assumes nz : nozerocoeff t and g0 : numgcd t = 0 shows t =
C 0
proof−
from g0 have th:numgcdh t (maxcoeff t) = 0 by (simp add : numgcd-def)
from numgcdh0 [OF th] have th:maxcoeff t = 0 .
from maxcoeff-nz [OF nz th] show ?thesis .

qed

constdefs simp-num-pair :: (num × int) ⇒ num × int
simp-num-pair ≡ (λ (t ,n). (if n = 0 then (C 0 , 0) else
(let t ′ = simpnum t ; g = numgcd t ′ in

if g > 1 then (let g ′ = igcd n g in
if g ′ = 1 then (t ′,n)
else (reducecoeffh t ′ g ′, n div g ′))

else (t ′,n))))

lemma simp-num-pair-ci :
shows ((λ (t ,n). Inum bs t / real n) (simp-num-pair (t ,n))) = ((λ (t ,n). Inum

bs t / real n) (t ,n))
(is ?lhs = ?rhs)

proof−

60

let ?t ′ = simpnum t
let ?g = numgcd ?t ′

let ?g ′ = igcd n ?g
{assume nz : n = 0 hence ?thesis by (simp add : Let-def simp-num-pair-def)}
moreover
{ assume nnz : n 6= 0
{assume ¬ ?g > 1 hence ?thesis by (simp add : Let-def simp-num-pair-def)}
moreover
{assume g1 :?g>1 hence g0 : ?g > 0 by simp
from igcd0 g1 nnz have gp0 : ?g ′ 6= 0 by simp
hence g ′p: ?g ′ > 0 using igcd-pos[where i=n and j=numgcd ?t ′] by arith
hence ?g ′= 1 ∨ ?g ′ > 1 by arith

moreover {assume ?g ′=1 hence ?thesis by (simp add : Let-def simp-num-pair-def)}
moreover {assume g ′1 :?g ′>1
from dvdnumcoeff-aux2 [OF g1] have th1 :dvdnumcoeff ?t ′ ?g ..
let ?tt = reducecoeffh ?t ′ ?g ′

let ?t = Inum bs ?tt
have gpdg : ?g ′ dvd ?g by (simp add : igcd-dvd2)
have gpdd : ?g ′ dvd n by (simp add : igcd-dvd1)
have gpdgp: ?g ′ dvd ?g ′ by simp
from reducecoeffh[OF dvdnumcoeff-trans[OF gpdg th1] g ′p]
have th2 :real ?g ′ ∗ ?t = Inum bs ?t ′ by simp

from prems have ?lhs = ?t / real (n div ?g ′) by (simp add : simp-num-pair-def
Let-def)

also have . . . = (real ?g ′ ∗ ?t) / (real ?g ′ ∗ (real (n div ?g ′))) by simp
also have . . . = (Inum bs ?t ′ / real n)
using real-of-int-div [OF gp0 gpdd] th2 gp0 by simp

finally have ?lhs = Inum bs t / real n by simp
then have ?thesis using prems by (simp add : simp-num-pair-def)}

ultimately have ?thesis by blast}
ultimately have ?thesis by blast}

ultimately show ?thesis by blast
qed

lemma simp-num-pair-l : assumes tnb: numbound0 t and np: n >0 and tn:
simp-num-pair (t ,n) = (t ′,n ′)
shows numbound0 t ′ ∧ n ′ >0

proof−
let ?t ′ = simpnum t

let ?g = numgcd ?t ′

let ?g ′ = igcd n ?g
{assume nz : n = 0 hence ?thesis using prems by (simp add : Let-def simp-num-pair-def)}
moreover
{ assume nnz : n 6= 0

{assume ¬ ?g > 1 hence ?thesis using prems by (auto simp add : Let-def
simp-num-pair-def)}

moreover
{assume g1 :?g>1 hence g0 : ?g > 0 by simp
from igcd0 g1 nnz have gp0 : ?g ′ 6= 0 by simp

61

hence g ′p: ?g ′ > 0 using igcd-pos[where i=n and j=numgcd ?t ′] by arith
hence ?g ′= 1 ∨ ?g ′ > 1 by arith
moreover {assume ?g ′=1 hence ?thesis using prems

by (auto simp add : Let-def simp-num-pair-def)}
moreover {assume g ′1 :?g ′>1
have gpdg : ?g ′ dvd ?g by (simp add : igcd-dvd2)
have gpdd : ?g ′ dvd n by (simp add : igcd-dvd1)
have gpdgp: ?g ′ dvd ?g ′ by simp
from zdvd-imp-le[OF gpdd np] have g ′n: ?g ′ ≤ n .
from zdiv-mono1 [OF g ′n g ′p, simplified zdiv-self [OF gp0]]
have n div ?g ′ >0 by simp
hence ?thesis using prems
by(auto simp add : simp-num-pair-def Let-def reducecoeffh-numbound0)}

ultimately have ?thesis by blast}
ultimately have ?thesis by blast}

ultimately show ?thesis by blast
qed

consts not :: fm ⇒ fm
recdef not measure size

not (NOT p) = p
not T = F
not F = T
not (Lt t) = Ge t
not (Le t) = Gt t
not (Gt t) = Le t
not (Ge t) = Lt t
not (Eq t) = NEq t
not (NEq t) = Eq t
not (Dvd i t) = NDvd i t
not (NDvd i t) = Dvd i t
not (And p q) = Or (not p) (not q)
not (Or p q) = And (not p) (not q)
not p = NOT p

lemma not [simp]: Ifm bs (not p) = Ifm bs (NOT p)
by (induct p) auto
lemma not-qf [simp]: qfree p =⇒ qfree (not p)
by (induct p, auto)
lemma not-nb[simp]: bound0 p =⇒ bound0 (not p)
by (induct p, auto)

constdefs conj :: fm ⇒ fm ⇒ fm
conj p q ≡ (if (p = F ∨ q=F) then F else if p=T then q else if q=T then p else
if p = q then p else And p q)

lemma conj [simp]: Ifm bs (conj p q) = Ifm bs (And p q)
by (cases p=F ∨ q=F ,simp-all add : conj-def) (cases p,simp-all)

lemma conj-qf [simp]: [[qfree p ; qfree q]] =⇒ qfree (conj p q)
using conj-def by auto

62

lemma conj-nb[simp]: [[bound0 p ; bound0 q]] =⇒ bound0 (conj p q)
using conj-def by auto

constdefs disj :: fm ⇒ fm ⇒ fm
disj p q ≡ (if (p = T ∨ q=T) then T else if p=F then q else if q=F then p

else if p=q then p else Or p q)

lemma disj [simp]: Ifm bs (disj p q) = Ifm bs (Or p q)
by (cases p=T ∨ q=T ,simp-all add : disj-def) (cases p,simp-all)
lemma disj-qf [simp]: [[qfree p ; qfree q]] =⇒ qfree (disj p q)
using disj-def by auto
lemma disj-nb[simp]: [[bound0 p ; bound0 q]] =⇒ bound0 (disj p q)
using disj-def by auto

constdefs imp :: fm ⇒ fm ⇒ fm
imp p q ≡ (if (p = F ∨ q=T ∨ p=q) then T else if p=T then q else if q=F then

not p
else Imp p q)

lemma imp[simp]: Ifm bs (imp p q) = Ifm bs (Imp p q)
by (cases p=F ∨ q=T ,simp-all add : imp-def)
lemma imp-qf [simp]: [[qfree p ; qfree q]] =⇒ qfree (imp p q)
using imp-def by (cases p=F ∨ q=T ,simp-all add : imp-def)
lemma imp-nb[simp]: [[bound0 p ; bound0 q]] =⇒ bound0 (imp p q)
using imp-def by (cases p=F ∨ q=T ∨ p=q ,simp-all add : imp-def)

constdefs iff :: fm ⇒ fm ⇒ fm
iff p q ≡ (if (p = q) then T else if (p = not q ∨ not p = q) then F else

if p=F then not q else if q=F then not p else if p=T then q else if q=T then
p else

Iff p q)
lemma iff [simp]: Ifm bs (iff p q) = Ifm bs (Iff p q)
by (unfold iff-def ,cases p=q , simp,cases p=not q , simp add :not)

(cases not p= q , auto simp add :not)
lemma iff-qf [simp]: [[qfree p ; qfree q]] =⇒ qfree (iff p q)
by (unfold iff-def ,cases p=q , auto)

lemma iff-nb[simp]: [[bound0 p ; bound0 q]] =⇒ bound0 (iff p q)
using iff-def by (unfold iff-def ,cases p=q , auto)

consts check-int :: num ⇒ bool
recdef check-int measure size

check-int (C i) = True
check-int (Floor t) = True
check-int (Mul i t) = check-int t
check-int (Add t s) = (check-int t ∧ check-int s)
check-int (Neg t) = check-int t
check-int (CF c t s) = check-int s
check-int t = False

lemma check-int : check-int t =⇒ isint t bs
by (induct t , auto simp add : isint-add isint-Floor isint-Mul isint-neg isint-c isint-CF)

63

lemma rdvd-left1-int : real btc = t =⇒ 1 rdvd t
by (simp add : rdvd-def ,rule-tac x=btc in exI) simp

lemma rdvd-reduce:
assumes gd :g dvd d and gc:g dvd c and gp: g > 0
shows real (d ::int) rdvd real (c::int)∗t = (real (d div g) rdvd real (c div g)∗t)

proof
assume d : real d rdvd real c ∗ t
from d rdvd-def obtain k where k-def : real c ∗ t = real d∗ real (k ::int) by

auto
from gd dvd-def obtain kd where kd-def : d = g ∗ kd by auto
from gc dvd-def obtain kc where kc-def : c = g ∗ kc by auto
from k-def kd-def kc-def have real g ∗ real kc ∗ t = real g ∗ real kd ∗ real k by

simp
hence real kc ∗ t = real kd ∗ real k using gp by simp
hence th:real kd rdvd real kc ∗ t using rdvd-def by blast
from kd-def gp have th ′:kd = d div g by simp
from kc-def gp have kc = c div g by simp
with th th ′ show real (d div g) rdvd real (c div g) ∗ t by simp

next
assume d : real (d div g) rdvd real (c div g) ∗ t
from gp have gnz : g 6= 0 by simp
thus real d rdvd real c ∗ t using d rdvd-mult [OF gnz , where n=d div g and

x=real (c div g) ∗ t] real-of-int-div [OF gnz gd] real-of-int-div [OF gnz gc] by simp
qed

constdefs simpdvd :: int ⇒ num ⇒ (int × num)
simpdvd d t ≡
(let g = numgcd t in

if g > 1 then (let g ′ = igcd d g in
if g ′ = 1 then (d , t)
else (d div g ′,reducecoeffh t g ′))

else (d , t))
lemma simpdvd :
assumes tnz : nozerocoeff t and dnz : d 6= 0
shows Ifm bs (Dvd (fst (simpdvd d t)) (snd (simpdvd d t))) = Ifm bs (Dvd d t)

proof−
let ?g = numgcd t
let ?g ′ = igcd d ?g
{assume ¬ ?g > 1 hence ?thesis by (simp add : Let-def simpdvd-def)}
moreover
{assume g1 :?g>1 hence g0 : ?g > 0 by simp
from igcd0 g1 dnz have gp0 : ?g ′ 6= 0 by simp
hence g ′p: ?g ′ > 0 using igcd-pos[where i=d and j=numgcd t] by arith
hence ?g ′= 1 ∨ ?g ′ > 1 by arith
moreover {assume ?g ′=1 hence ?thesis by (simp add : Let-def simpdvd-def)}
moreover {assume g ′1 :?g ′>1
from dvdnumcoeff-aux2 [OF g1] have th1 :dvdnumcoeff t ?g ..

64

let ?tt = reducecoeffh t ?g ′

let ?t = Inum bs ?tt
have gpdg : ?g ′ dvd ?g by (simp add : igcd-dvd2)
have gpdd : ?g ′ dvd d by (simp add : igcd-dvd1)
have gpdgp: ?g ′ dvd ?g ′ by simp
from reducecoeffh[OF dvdnumcoeff-trans[OF gpdg th1] g ′p]
have th2 :real ?g ′ ∗ ?t = Inum bs t by simp
from prems have Ifm bs (Dvd (fst (simpdvd d t)) (snd(simpdvd d t))) = Ifm

bs (Dvd (d div ?g ′) ?tt)
by (simp add : simpdvd-def Let-def)

also have . . . = (real d rdvd (Inum bs t))
using rdvd-reduce[OF gpdd gpdgp g ′p, where t=?t , simplified zdiv-self [OF

gp0]]
th2 [symmetric] by simp

finally have ?thesis by simp }
ultimately have ?thesis by blast

}
ultimately show ?thesis by blast

qed

consts simpfm :: fm ⇒ fm
recdef simpfm measure fmsize

simpfm (And p q) = conj (simpfm p) (simpfm q)
simpfm (Or p q) = disj (simpfm p) (simpfm q)
simpfm (Imp p q) = imp (simpfm p) (simpfm q)
simpfm (Iff p q) = iff (simpfm p) (simpfm q)
simpfm (NOT p) = not (simpfm p)
simpfm (Lt a) = (let a ′ = simpnum a in case a ′ of C v ⇒ if (v < 0) then T

else F
| - ⇒ Lt (reducecoeff a ′))
simpfm (Le a) = (let a ′ = simpnum a in case a ′ of C v ⇒ if (v ≤ 0) then T

else F | - ⇒ Le (reducecoeff a ′))
simpfm (Gt a) = (let a ′ = simpnum a in case a ′ of C v ⇒ if (v > 0) then T

else F | - ⇒ Gt (reducecoeff a ′))
simpfm (Ge a) = (let a ′ = simpnum a in case a ′ of C v ⇒ if (v ≥ 0) then T

else F | - ⇒ Ge (reducecoeff a ′))
simpfm (Eq a) = (let a ′ = simpnum a in case a ′ of C v ⇒ if (v = 0) then T

else F | - ⇒ Eq (reducecoeff a ′))
simpfm (NEq a) = (let a ′ = simpnum a in case a ′ of C v ⇒ if (v 6= 0) then T

else F | - ⇒ NEq (reducecoeff a ′))
simpfm (Dvd i a) = (if i=0 then simpfm (Eq a)

else if (abs i = 1) ∧ check-int a then T
else let a ′ = simpnum a in case a ′ of C v ⇒ if (i dvd v) then T else F

| - ⇒ (let (d ,t) = simpdvd i a ′ in Dvd d t))
simpfm (NDvd i a) = (if i=0 then simpfm (NEq a)

else if (abs i = 1) ∧ check-int a then F
else let a ′ = simpnum a in case a ′ of C v ⇒ if (¬(i dvd v)) then T else

F | - ⇒ (let (d ,t) = simpdvd i a ′ in NDvd d t))
simpfm p = p

65

lemma simpfm[simp]: Ifm bs (simpfm p) = Ifm bs p
proof(induct p rule: simpfm.induct)
case (6 a) let ?sa = simpnum a have sa: Inum bs ?sa = Inum bs a by simp
{fix v assume ?sa = C v hence ?case using sa by simp }
moreover {assume H :¬ (∃ v . ?sa = C v)
let ?g = numgcd ?sa
let ?rsa = reducecoeff ?sa
let ?r = Inum bs ?rsa
have sa-nz : nozerocoeff ?sa by (rule simpnum-nz)
{assume gz : ?g=0 from numgcd-nz [OF sa-nz gz] H have False by auto}
with numgcd-pos[where t=?sa] have ?g > 0 by (cases ?g=0 , auto)
hence gp: real ?g > 0 by simp
have Inum bs ?sa = real ?g∗ ?r by (simp add : reducecoeff)
with sa have Inum bs a < 0 = (real ?g ∗ ?r < real ?g ∗ 0) by simp
also have . . . = (?r < 0) using gp
by (simp only : mult-less-cancel-left) simp

finally have ?case using H by (cases ?sa , simp-all add : Let-def)}
ultimately show ?case by blast

next
case (7 a) let ?sa = simpnum a have sa: Inum bs ?sa = Inum bs a by simp
{fix v assume ?sa = C v hence ?case using sa by simp }
moreover {assume H :¬ (∃ v . ?sa = C v)
let ?g = numgcd ?sa
let ?rsa = reducecoeff ?sa
let ?r = Inum bs ?rsa
have sa-nz : nozerocoeff ?sa by (rule simpnum-nz)
{assume gz : ?g=0 from numgcd-nz [OF sa-nz gz] H have False by auto}
with numgcd-pos[where t=?sa] have ?g > 0 by (cases ?g=0 , auto)
hence gp: real ?g > 0 by simp
have Inum bs ?sa = real ?g∗ ?r by (simp add : reducecoeff)
with sa have Inum bs a ≤ 0 = (real ?g ∗ ?r ≤ real ?g ∗ 0) by simp
also have . . . = (?r ≤ 0) using gp
by (simp only : mult-le-cancel-left) simp

finally have ?case using H by (cases ?sa , simp-all add : Let-def)}
ultimately show ?case by blast

next
case (8 a) let ?sa = simpnum a have sa: Inum bs ?sa = Inum bs a by simp
{fix v assume ?sa = C v hence ?case using sa by simp }
moreover {assume H :¬ (∃ v . ?sa = C v)
let ?g = numgcd ?sa
let ?rsa = reducecoeff ?sa
let ?r = Inum bs ?rsa
have sa-nz : nozerocoeff ?sa by (rule simpnum-nz)
{assume gz : ?g=0 from numgcd-nz [OF sa-nz gz] H have False by auto}
with numgcd-pos[where t=?sa] have ?g > 0 by (cases ?g=0 , auto)
hence gp: real ?g > 0 by simp
have Inum bs ?sa = real ?g∗ ?r by (simp add : reducecoeff)
with sa have Inum bs a > 0 = (real ?g ∗ ?r > real ?g ∗ 0) by simp

66

also have . . . = (?r > 0) using gp
by (simp only : mult-less-cancel-left) simp

finally have ?case using H by (cases ?sa , simp-all add : Let-def)}
ultimately show ?case by blast

next
case (9 a) let ?sa = simpnum a have sa: Inum bs ?sa = Inum bs a by simp
{fix v assume ?sa = C v hence ?case using sa by simp }
moreover {assume H :¬ (∃ v . ?sa = C v)
let ?g = numgcd ?sa
let ?rsa = reducecoeff ?sa
let ?r = Inum bs ?rsa
have sa-nz : nozerocoeff ?sa by (rule simpnum-nz)
{assume gz : ?g=0 from numgcd-nz [OF sa-nz gz] H have False by auto}
with numgcd-pos[where t=?sa] have ?g > 0 by (cases ?g=0 , auto)
hence gp: real ?g > 0 by simp
have Inum bs ?sa = real ?g∗ ?r by (simp add : reducecoeff)
with sa have Inum bs a ≥ 0 = (real ?g ∗ ?r ≥ real ?g ∗ 0) by simp
also have . . . = (?r ≥ 0) using gp
by (simp only : mult-le-cancel-left) simp

finally have ?case using H by (cases ?sa , simp-all add : Let-def)}
ultimately show ?case by blast

next
case (10 a) let ?sa = simpnum a have sa: Inum bs ?sa = Inum bs a by simp
{fix v assume ?sa = C v hence ?case using sa by simp }
moreover {assume H :¬ (∃ v . ?sa = C v)
let ?g = numgcd ?sa
let ?rsa = reducecoeff ?sa
let ?r = Inum bs ?rsa
have sa-nz : nozerocoeff ?sa by (rule simpnum-nz)
{assume gz : ?g=0 from numgcd-nz [OF sa-nz gz] H have False by auto}
with numgcd-pos[where t=?sa] have ?g > 0 by (cases ?g=0 , auto)
hence gp: real ?g > 0 by simp
have Inum bs ?sa = real ?g∗ ?r by (simp add : reducecoeff)
with sa have Inum bs a = 0 = (real ?g ∗ ?r = 0) by simp
also have . . . = (?r = 0) using gp
by (simp add : mult-eq-0-iff)

finally have ?case using H by (cases ?sa , simp-all add : Let-def)}
ultimately show ?case by blast

next
case (11 a) let ?sa = simpnum a have sa: Inum bs ?sa = Inum bs a by simp
{fix v assume ?sa = C v hence ?case using sa by simp }
moreover {assume H :¬ (∃ v . ?sa = C v)
let ?g = numgcd ?sa
let ?rsa = reducecoeff ?sa
let ?r = Inum bs ?rsa
have sa-nz : nozerocoeff ?sa by (rule simpnum-nz)
{assume gz : ?g=0 from numgcd-nz [OF sa-nz gz] H have False by auto}
with numgcd-pos[where t=?sa] have ?g > 0 by (cases ?g=0 , auto)
hence gp: real ?g > 0 by simp

67

have Inum bs ?sa = real ?g∗ ?r by (simp add : reducecoeff)
with sa have Inum bs a 6= 0 = (real ?g ∗ ?r 6= 0) by simp
also have . . . = (?r 6= 0) using gp
by (simp add : mult-eq-0-iff)

finally have ?case using H by (cases ?sa , simp-all add : Let-def)}
ultimately show ?case by blast

next
case (12 i a) let ?sa = simpnum a have sa: Inum bs ?sa = Inum bs a by

simp
have i=0 ∨ (abs i = 1 ∧ check-int a) ∨ (i 6=0 ∧ ((abs i 6= 1) ∨ (¬ check-int

a))) by auto
{assume i=0 hence ?case using 12 .hyps by (simp add : rdvd-left-0-eq Let-def)}
moreover
{assume ai1 : abs i = 1 and ai : check-int a
hence i=1 ∨ i= − 1 by arith
moreover {assume i1 : i = 1
from rdvd-left1-int [OF check-int [OF ai , simplified isint-iff]]
have ?case using i1 ai by simp }

moreover {assume i1 : i = − 1
from rdvd-left1-int [OF check-int [OF ai , simplified isint-iff]]

rdvd-abs1 [where d=− 1 and t=Inum bs a]
have ?case using i1 ai by simp }

ultimately have ?case by blast}
moreover
{assume inz : i 6=0 and cond : (abs i 6= 1) ∨ (¬ check-int a)

{fix v assume ?sa = C v hence ?case using sa[symmetric] inz cond
by (cases abs i = 1 , auto simp add : int-rdvd-iff) }

moreover {assume H :¬ (∃ v . ?sa = C v)
hence th: simpfm (Dvd i a) = Dvd (fst (simpdvd i ?sa)) (snd (simpdvd i

?sa)) using inz cond by (cases ?sa, auto simp add : Let-def split-def)
from simpnum-nz have nz :nozerocoeff ?sa by simp
from simpdvd [OF nz inz] th have ?case using sa by simp}

ultimately have ?case by blast}
ultimately show ?case by blast

next
case (13 i a) let ?sa = simpnum a have sa: Inum bs ?sa = Inum bs a by

simp
have i=0 ∨ (abs i = 1 ∧ check-int a) ∨ (i 6=0 ∧ ((abs i 6= 1) ∨ (¬ check-int

a))) by auto
{assume i=0 hence ?case using 13 .hyps by (simp add : rdvd-left-0-eq Let-def)}
moreover
{assume ai1 : abs i = 1 and ai : check-int a
hence i=1 ∨ i= − 1 by arith
moreover {assume i1 : i = 1
from rdvd-left1-int [OF check-int [OF ai , simplified isint-iff]]
have ?case using i1 ai by simp }

moreover {assume i1 : i = − 1
from rdvd-left1-int [OF check-int [OF ai , simplified isint-iff]]

rdvd-abs1 [where d=− 1 and t=Inum bs a]

68

have ?case using i1 ai by simp }
ultimately have ?case by blast}

moreover
{assume inz : i 6=0 and cond : (abs i 6= 1) ∨ (¬ check-int a)

{fix v assume ?sa = C v hence ?case using sa[symmetric] inz cond
by (cases abs i = 1 , auto simp add : int-rdvd-iff) }

moreover {assume H :¬ (∃ v . ?sa = C v)
hence th: simpfm (NDvd i a) = NDvd (fst (simpdvd i ?sa)) (snd (simpdvd i

?sa)) using inz cond
by (cases ?sa, auto simp add : Let-def split-def)

from simpnum-nz have nz :nozerocoeff ?sa by simp
from simpdvd [OF nz inz] th have ?case using sa by simp}

ultimately have ?case by blast}
ultimately show ?case by blast

qed (induct p rule: simpfm.induct , simp-all)

lemma simpdvd-numbound0 : numbound0 t =⇒ numbound0 (snd (simpdvd d t))
by (simp add : simpdvd-def Let-def split-def reducecoeffh-numbound0)

lemma simpfm-bound0 [simp]: bound0 p =⇒ bound0 (simpfm p)
proof(induct p rule: simpfm.induct)
case (6 a) hence nb: numbound0 a by simp
hence numbound0 (simpnum a) by (simp only : simpnum-numbound0 [OF nb])
thus ?case by (cases simpnum a, auto simp add : Let-def reducecoeff-numbound0)

next
case (7 a) hence nb: numbound0 a by simp
hence numbound0 (simpnum a) by (simp only : simpnum-numbound0 [OF nb])
thus ?case by (cases simpnum a, auto simp add : Let-def reducecoeff-numbound0)

next
case (8 a) hence nb: numbound0 a by simp
hence numbound0 (simpnum a) by (simp only : simpnum-numbound0 [OF nb])
thus ?case by (cases simpnum a, auto simp add : Let-def reducecoeff-numbound0)

next
case (9 a) hence nb: numbound0 a by simp
hence numbound0 (simpnum a) by (simp only : simpnum-numbound0 [OF nb])
thus ?case by (cases simpnum a, auto simp add : Let-def reducecoeff-numbound0)

next
case (10 a) hence nb: numbound0 a by simp
hence numbound0 (simpnum a) by (simp only : simpnum-numbound0 [OF nb])
thus ?case by (cases simpnum a, auto simp add : Let-def reducecoeff-numbound0)

next
case (11 a) hence nb: numbound0 a by simp
hence numbound0 (simpnum a) by (simp only : simpnum-numbound0 [OF nb])
thus ?case by (cases simpnum a, auto simp add : Let-def reducecoeff-numbound0)

next
case (12 i a) hence nb: numbound0 a by simp
hence numbound0 (simpnum a) by (simp only : simpnum-numbound0 [OF nb])
thus ?case by (cases simpnum a, auto simp add : Let-def reducecoeff-numbound0

simpdvd-numbound0 split-def)

69

next
case (13 i a) hence nb: numbound0 a by simp
hence numbound0 (simpnum a) by (simp only : simpnum-numbound0 [OF nb])
thus ?case by (cases simpnum a, auto simp add : Let-def reducecoeff-numbound0

simpdvd-numbound0 split-def)
qed(auto simp add : disj-def imp-def iff-def conj-def)

lemma simpfm-qf [simp]: qfree p =⇒ qfree (simpfm p)
by (induct p rule: simpfm.induct , auto simp add : Let-def)
(case-tac simpnum a,auto simp add : split-def Let-def)+

constdefs list-conj :: fm list ⇒ fm
list-conj ps ≡ foldr conj ps T

lemma list-conj : Ifm bs (list-conj ps) = (∀ p∈ set ps. Ifm bs p)
by (induct ps, auto simp add : list-conj-def)

lemma list-conj-qf : ∀ p∈ set ps. qfree p =⇒ qfree (list-conj ps)
by (induct ps, auto simp add : list-conj-def)

lemma list-conj-nb: ∀ p∈ set ps. bound0 p =⇒ bound0 (list-conj ps)
by (induct ps, auto simp add : list-conj-def)

constdefs CJNB :: (fm ⇒ fm) ⇒ fm ⇒ fm
CJNB f p ≡ (let cjs = conjuncts p ; (yes,no) = partition bound0 cjs

in conj (decr (list-conj yes)) (f (list-conj no)))

lemma CJNB-qe:
assumes qe: ∀ bs p. qfree p −→ qfree (qe p) ∧ (Ifm bs (qe p) = Ifm bs (E p))
shows ∀ bs p. qfree p −→ qfree (CJNB qe p) ∧ (Ifm bs ((CJNB qe p)) = Ifm bs

(E p))
proof(clarify)
fix bs p
assume qfp: qfree p
let ?cjs = conjuncts p
let ?yes = fst (partition bound0 ?cjs)
let ?no = snd (partition bound0 ?cjs)
let ?cno = list-conj ?no
let ?cyes = list-conj ?yes
have part : partition bound0 ?cjs = (?yes,?no) by simp
from partition-P [OF part] have ∀ q∈ set ?yes. bound0 q by blast
hence yes-nb: bound0 ?cyes by (simp add : list-conj-nb)
hence yes-qf : qfree (decr ?cyes) by (simp add : decr-qf)
from conjuncts-qf [OF qfp] partition-set [OF part]
have ∀ q∈ set ?no. qfree q by auto
hence no-qf : qfree ?cnoby (simp add : list-conj-qf)
with qe have cno-qf :qfree (qe ?cno)
and noE : Ifm bs (qe ?cno) = Ifm bs (E ?cno) by blast+

from cno-qf yes-qf have qf : qfree (CJNB qe p)
by (simp add : CJNB-def Let-def conj-qf split-def)

70

{fix bs
from conjuncts have Ifm bs p = (∀ q∈ set ?cjs. Ifm bs q) by blast
also have . . . = ((∀ q∈ set ?yes. Ifm bs q) ∧ (∀ q∈ set ?no. Ifm bs q))
using partition-set [OF part] by auto

finally have Ifm bs p = ((Ifm bs ?cyes) ∧ (Ifm bs ?cno)) using list-conj by
simp}
hence Ifm bs (E p) = (∃ x . (Ifm (x#bs) ?cyes) ∧ (Ifm (x#bs) ?cno)) by simp
also have . . . = (∃ x . (Ifm (y#bs) ?cyes) ∧ (Ifm (x#bs) ?cno))
using bound0-I [OF yes-nb, where bs=bs and b ′=y] by blast

also have . . . = (Ifm bs (decr ?cyes) ∧ Ifm bs (E ?cno))
by (auto simp add : decr [OF yes-nb])

also have . . . = (Ifm bs (conj (decr ?cyes) (qe ?cno)))
using qe[rule-format , OF no-qf] by auto

finally have Ifm bs (E p) = Ifm bs (CJNB qe p)
by (simp add : Let-def CJNB-def split-def)

with qf show qfree (CJNB qe p) ∧ Ifm bs (CJNB qe p) = Ifm bs (E p) by blast
qed

consts qelim :: fm ⇒ (fm ⇒ fm) ⇒ fm
recdef qelim measure fmsize

qelim (E p) = (λ qe. DJ (CJNB qe) (qelim p qe))
qelim (A p) = (λ qe. not (qe ((qelim (NOT p) qe))))
qelim (NOT p) = (λ qe. not (qelim p qe))
qelim (And p q) = (λ qe. conj (qelim p qe) (qelim q qe))
qelim (Or p q) = (λ qe. disj (qelim p qe) (qelim q qe))
qelim (Imp p q) = (λ qe. disj (qelim (NOT p) qe) (qelim q qe))
qelim (Iff p q) = (λ qe. iff (qelim p qe) (qelim q qe))
qelim p = (λ y . simpfm p)

lemma qelim-ci :
assumes qe-inv : ∀ bs p. qfree p −→ qfree (qe p) ∧ (Ifm bs (qe p) = Ifm bs (E

p))
shows

∧
bs. qfree (qelim p qe) ∧ (Ifm bs (qelim p qe) = Ifm bs p)

using qe-inv DJ-qe[OF CJNB-qe[OF qe-inv]]
by(induct p rule: qelim.induct)
(auto simp del : simpfm.simps)

The ZZ Part

Linearity for fm where Bound 0 ranges over ZZ

consts
zsplit0 :: num ⇒ int × num

recdef zsplit0 measure num-size
zsplit0 (C c) = (0 ,C c)
zsplit0 (Bound n) = (if n=0 then (1 , C 0) else (0 ,Bound n))
zsplit0 (CN n c a) = zsplit0 (Add (Mul c (Bound n)) a)
zsplit0 (CF c a b) = zsplit0 (Add (Mul c (Floor a)) b)
zsplit0 (Neg a) = (let (i ′,a ′) = zsplit0 a in (−i ′, Neg a ′))
zsplit0 (Add a b) = (let (ia,a ′) = zsplit0 a ;

(ib,b ′) = zsplit0 b

71

in (ia+ib, Add a ′ b ′))
zsplit0 (Sub a b) = (let (ia,a ′) = zsplit0 a ;

(ib,b ′) = zsplit0 b
in (ia−ib, Sub a ′ b ′))

zsplit0 (Mul i a) = (let (i ′,a ′) = zsplit0 a in (i∗i ′, Mul i a ′))
zsplit0 (Floor a) = (let (i ′,a ′) = zsplit0 a in (i ′,Floor a ′))

(hints simp add : Let-def)

lemma zsplit0-I :
shows

∧
n a. zsplit0 t = (n,a) =⇒ (Inum ((real (x ::int)) #bs) (CN 0 n a) =

Inum (real x #bs) t) ∧ numbound0 a
(is

∧
n a. ?S t = (n,a) =⇒ (?I x (CN 0 n a) = ?I x t) ∧ ?N a)

proof(induct t rule: zsplit0 .induct)
case (1 c n a) thus ?case by auto

next
case (2 m n a) thus ?case by (cases m=0) auto

next
case (3 n i a n a ′) thus ?case by auto

next
case (4 c a b n a ′) thus ?case by auto

next
case (5 t n a)
let ?nt = fst (zsplit0 t)
let ?at = snd (zsplit0 t)
have abj : zsplit0 t = (?nt ,?at) by simp hence th: a=Neg ?at ∧ n=−?nt using

prems
by (simp add : Let-def split-def)

from abj prems have th2 : (?I x (CN 0 ?nt ?at) = ?I x t) ∧ ?N ?at by blast
from th2 [simplified] th[simplified] show ?case by simp

next
case (6 s t n a)
let ?ns = fst (zsplit0 s)
let ?as = snd (zsplit0 s)
let ?nt = fst (zsplit0 t)
let ?at = snd (zsplit0 t)
have abjs: zsplit0 s = (?ns,?as) by simp
moreover have abjt : zsplit0 t = (?nt ,?at) by simp
ultimately have th: a=Add ?as ?at ∧ n=?ns + ?nt using prems
by (simp add : Let-def split-def)

from abjs[symmetric] have bluddy : ∃ x y . (x ,y) = zsplit0 s by blast
from prems have (∃ x y . (x ,y) = zsplit0 s) −→ (∀ xa xb. zsplit0 t = (xa, xb)
−→ Inum (real x # bs) (CN 0 xa xb) = Inum (real x # bs) t ∧ numbound0 xb)
by simp
with bluddy abjt have th3 : (?I x (CN 0 ?nt ?at) = ?I x t) ∧ ?N ?at by blast
from abjs prems have th2 : (?I x (CN 0 ?ns ?as) = ?I x s) ∧ ?N ?as by blast
from th3 [simplified] th2 [simplified] th[simplified] show ?case
by (simp add : left-distrib)

next
case (7 s t n a)

72

let ?ns = fst (zsplit0 s)
let ?as = snd (zsplit0 s)
let ?nt = fst (zsplit0 t)
let ?at = snd (zsplit0 t)
have abjs: zsplit0 s = (?ns,?as) by simp
moreover have abjt : zsplit0 t = (?nt ,?at) by simp
ultimately have th: a=Sub ?as ?at ∧ n=?ns − ?nt using prems
by (simp add : Let-def split-def)

from abjs[symmetric] have bluddy : ∃ x y . (x ,y) = zsplit0 s by blast
from prems have (∃ x y . (x ,y) = zsplit0 s) −→ (∀ xa xb. zsplit0 t = (xa, xb)
−→ Inum (real x # bs) (CN 0 xa xb) = Inum (real x # bs) t ∧ numbound0 xb)
by simp
with bluddy abjt have th3 : (?I x (CN 0 ?nt ?at) = ?I x t) ∧ ?N ?at by blast
from abjs prems have th2 : (?I x (CN 0 ?ns ?as) = ?I x s) ∧ ?N ?as by blast
from th3 [simplified] th2 [simplified] th[simplified] show ?case
by (simp add : left-diff-distrib)

next
case (8 i t n a)
let ?nt = fst (zsplit0 t)
let ?at = snd (zsplit0 t)
have abj : zsplit0 t = (?nt ,?at) by simp hence th: a=Mul i ?at ∧ n=i∗?nt

using prems
by (simp add : Let-def split-def)

from abj prems have th2 : (?I x (CN 0 ?nt ?at) = ?I x t) ∧ ?N ?at by blast
hence ?I x (Mul i t) = (real i) ∗ ?I x (CN 0 ?nt ?at) by simp
also have . . . = ?I x (CN 0 (i∗?nt) (Mul i ?at)) by (simp add : right-distrib)
finally show ?case using th th2 by simp

next
case (9 t n a)
let ?nt = fst (zsplit0 t)
let ?at = snd (zsplit0 t)
have abj : zsplit0 t = (?nt ,?at) by simp hence th: a= Floor ?at ∧ n=?nt using

prems
by (simp add : Let-def split-def)

from abj prems have th2 : (?I x (CN 0 ?nt ?at) = ?I x t) ∧ ?N ?at by blast
hence na: ?N a using th by simp
have th ′: (real ?nt)∗(real x) = real (?nt ∗ x) by simp
have ?I x (Floor t) = ?I x (Floor (CN 0 ?nt ?at)) using th2 by simp
also have . . . = real (floor ((real ?nt)∗ real(x) + ?I x ?at)) by simp
also have . . . = real (floor (?I x ?at + real (?nt∗ x))) by (simp add : add-ac)
also have . . . = real (floor (?I x ?at) + (?nt∗ x))
using floor-add [where x=?I x ?at and a=?nt∗ x] by simp

also have . . . = real (?nt)∗(real x) + real (floor (?I x ?at)) by (simp add :
add-ac)
finally have ?I x (Floor t) = ?I x (CN 0 n a) using th by simp
with na show ?case by simp

qed

consts

73

iszlfm :: fm ⇒ real list ⇒ bool
zlfm :: fm ⇒ fm

recdef iszlfm measure size
iszlfm (And p q) = (λ bs. iszlfm p bs ∧ iszlfm q bs)
iszlfm (Or p q) = (λ bs. iszlfm p bs ∧ iszlfm q bs)
iszlfm (Eq (CN 0 c e)) = (λ bs. c>0 ∧ numbound0 e ∧ isint e bs)
iszlfm (NEq (CN 0 c e)) = (λ bs. c>0 ∧ numbound0 e ∧ isint e bs)
iszlfm (Lt (CN 0 c e)) = (λ bs. c>0 ∧ numbound0 e ∧ isint e bs)
iszlfm (Le (CN 0 c e)) = (λ bs. c>0 ∧ numbound0 e ∧ isint e bs)
iszlfm (Gt (CN 0 c e)) = (λ bs. c>0 ∧ numbound0 e ∧ isint e bs)
iszlfm (Ge (CN 0 c e)) = (λ bs. c>0 ∧ numbound0 e ∧ isint e bs)
iszlfm (Dvd i (CN 0 c e)) =

(λ bs. c>0 ∧ i>0 ∧ numbound0 e ∧ isint e bs)
iszlfm (NDvd i (CN 0 c e))=

(λ bs. c>0 ∧ i>0 ∧ numbound0 e ∧ isint e bs)
iszlfm p = (λ bs. isatom p ∧ (bound0 p))

lemma zlin-qfree: iszlfm p bs =⇒ qfree p
by (induct p rule: iszlfm.induct) auto

lemma iszlfm-gen:
assumes lp: iszlfm p (x#bs)
shows ∀ y . iszlfm p (y#bs)

proof
fix y
show iszlfm p (y#bs)
using lp

by(induct p rule: iszlfm.induct , simp-all add : numbound0-gen[rule-format , where
x=x and y=y])
qed

lemma conj-zl [simp]: iszlfm p bs =⇒ iszlfm q bs =⇒ iszlfm (conj p q) bs
using conj-def by (cases p,auto)

lemma disj-zl [simp]: iszlfm p bs =⇒ iszlfm q bs =⇒ iszlfm (disj p q) bs
using disj-def by (cases p,auto)

lemma not-zl [simp]: iszlfm p bs =⇒ iszlfm (not p) bs
by (induct p rule:iszlfm.induct ,auto)

recdef zlfm measure fmsize
zlfm (And p q) = conj (zlfm p) (zlfm q)
zlfm (Or p q) = disj (zlfm p) (zlfm q)
zlfm (Imp p q) = disj (zlfm (NOT p)) (zlfm q)
zlfm (Iff p q) = disj (conj (zlfm p) (zlfm q)) (conj (zlfm (NOT p)) (zlfm (NOT

q)))
zlfm (Lt a) = (let (c,r) = zsplit0 a in

if c=0 then Lt r else
if c>0 then Or (Lt (CN 0 c (Neg (Floor (Neg r))))) (And (Eq (CN 0 c (Neg

(Floor (Neg r))))) (Lt (Add (Floor (Neg r)) r)))
else Or (Gt (CN 0 (−c) (Floor(Neg r)))) (And (Eq(CN 0 (−c) (Floor(Neg

74

r)))) (Lt (Add (Floor (Neg r)) r))))
zlfm (Le a) = (let (c,r) = zsplit0 a in

if c=0 then Le r else
if c>0 then Or (Le (CN 0 c (Neg (Floor (Neg r))))) (And (Eq (CN 0 c (Neg

(Floor (Neg r))))) (Lt (Add (Floor (Neg r)) r)))
else Or (Ge (CN 0 (−c) (Floor(Neg r)))) (And (Eq(CN 0 (−c) (Floor(Neg

r)))) (Lt (Add (Floor (Neg r)) r))))
zlfm (Gt a) = (let (c,r) = zsplit0 a in

if c=0 then Gt r else
if c>0 then Or (Gt (CN 0 c (Floor r))) (And (Eq (CN 0 c (Floor r))) (Lt

(Sub (Floor r) r)))
else Or (Lt (CN 0 (−c) (Neg (Floor r)))) (And (Eq(CN 0 (−c) (Neg (Floor

r)))) (Lt (Sub (Floor r) r))))
zlfm (Ge a) = (let (c,r) = zsplit0 a in

if c=0 then Ge r else
if c>0 then Or (Ge (CN 0 c (Floor r))) (And (Eq (CN 0 c (Floor r))) (Lt

(Sub (Floor r) r)))
else Or (Le (CN 0 (−c) (Neg (Floor r)))) (And (Eq(CN 0 (−c) (Neg (Floor

r)))) (Lt (Sub (Floor r) r))))
zlfm (Eq a) = (let (c,r) = zsplit0 a in

if c=0 then Eq r else
if c>0 then (And (Eq (CN 0 c (Neg (Floor (Neg r))))) (Eq (Add (Floor (Neg

r)) r)))
else (And (Eq (CN 0 (−c) (Floor (Neg r)))) (Eq (Add (Floor (Neg r)) r))))

zlfm (NEq a) = (let (c,r) = zsplit0 a in
if c=0 then NEq r else

if c>0 then (Or (NEq (CN 0 c (Neg (Floor (Neg r))))) (NEq (Add (Floor
(Neg r)) r)))

else (Or (NEq (CN 0 (−c) (Floor (Neg r)))) (NEq (Add (Floor (Neg r))
r))))

zlfm (Dvd i a) = (if i=0 then zlfm (Eq a)
else (let (c,r) = zsplit0 a in

if c=0 then Dvd (abs i) r else
if c>0 then And (Eq (Sub (Floor r) r)) (Dvd (abs i) (CN 0 c (Floor r)))
else And (Eq (Sub (Floor r) r)) (Dvd (abs i) (CN 0 (−c) (Neg (Floor r))))))

zlfm (NDvd i a) = (if i=0 then zlfm (NEq a)
else (let (c,r) = zsplit0 a in

if c=0 then NDvd (abs i) r else
if c>0 then Or (NEq (Sub (Floor r) r)) (NDvd (abs i) (CN 0 c (Floor r)))
else Or (NEq (Sub (Floor r) r)) (NDvd (abs i) (CN 0 (−c) (Neg (Floor

r))))))
zlfm (NOT (And p q)) = disj (zlfm (NOT p)) (zlfm (NOT q))
zlfm (NOT (Or p q)) = conj (zlfm (NOT p)) (zlfm (NOT q))
zlfm (NOT (Imp p q)) = conj (zlfm p) (zlfm (NOT q))
zlfm (NOT (Iff p q)) = disj (conj (zlfm p) (zlfm(NOT q))) (conj (zlfm(NOT p))

(zlfm q))
zlfm (NOT (NOT p)) = zlfm p
zlfm (NOT T) = F
zlfm (NOT F) = T

75

zlfm (NOT (Lt a)) = zlfm (Ge a)
zlfm (NOT (Le a)) = zlfm (Gt a)
zlfm (NOT (Gt a)) = zlfm (Le a)
zlfm (NOT (Ge a)) = zlfm (Lt a)
zlfm (NOT (Eq a)) = zlfm (NEq a)
zlfm (NOT (NEq a)) = zlfm (Eq a)
zlfm (NOT (Dvd i a)) = zlfm (NDvd i a)
zlfm (NOT (NDvd i a)) = zlfm (Dvd i a)
zlfm p = p (hints simp add : fmsize-pos)

lemma split-int-less-real :
(real (a::int) < b) = (a < floor b ∨ (a = floor b ∧ real (floor b) < b))

proof(auto)
assume alb: real a < b and agb: ¬ a < floor b
from agb have floor b ≤ a by simp hence th: b < real a + 1 by (simp only :

floor-le-eq)
from floor-eq [OF alb th] show a= floor b by simp

next
assume alb: a < floor b
hence real a < real (floor b) by simp
moreover have real (floor b) ≤ b by simp ultimately show real a < b by

arith
qed

lemma split-int-less-real ′:
(real (a::int) + b < 0) = (real a − real (floor(−b)) < 0 ∨ (real a − real (floor

(−b)) = 0 ∧ real (floor (−b)) + b < 0))
proof−
have (real a + b <0) = (real a < −b) by arith
with split-int-less-real [where a=a and b=−b] show ?thesis by arith

qed

lemma split-int-gt-real ′:
(real (a::int) + b > 0) = (real a + real (floor b) > 0 ∨ (real a + real (floor b)

= 0 ∧ real (floor b) − b < 0))
proof−
have th: (real a + b >0) = (real (−a) + (−b)< 0) by arith
show ?thesis using myless[rule-format , where b=real (floor b)]
by (simp only :th split-int-less-real ′[where a=−a and b=−b])
(simp add : ring-simps diff-def [symmetric],arith)

qed

lemma split-int-le-real :
(real (a::int) ≤ b) = (a ≤ floor b ∨ (a = floor b ∧ real (floor b) < b))

proof(auto)
assume alb: real a ≤ b and agb: ¬ a ≤ floor b
from alb have floor (real a) ≤ floor b by (simp only : floor-mono2)
hence a ≤ floor b by simp with agb show False by simp

next

76

assume alb: a ≤ floor b
hence real a ≤ real (floor b) by (simp only : floor-mono2)
also have . . .≤ b by simp finally show real a ≤ b .

qed

lemma split-int-le-real ′:
(real (a::int) + b ≤ 0) = (real a − real (floor(−b)) ≤ 0 ∨ (real a − real (floor

(−b)) = 0 ∧ real (floor (−b)) + b < 0))
proof−
have (real a + b ≤0) = (real a ≤ −b) by arith
with split-int-le-real [where a=a and b=−b] show ?thesis by arith

qed

lemma split-int-ge-real ′:
(real (a::int) + b ≥ 0) = (real a + real (floor b) ≥ 0 ∨ (real a + real (floor b)

= 0 ∧ real (floor b) − b < 0))
proof−
have th: (real a + b ≥0) = (real (−a) + (−b) ≤ 0) by arith
show ?thesis by (simp only : th split-int-le-real ′[where a=−a and b=−b])

(simp add : ring-simps diff-def [symmetric],arith)
qed

lemma split-int-eq-real : (real (a::int) = b) = (a = floor b ∧ b = real (floor b))
(is ?l = ?r)
by auto

lemma split-int-eq-real ′: (real (a::int) + b = 0) = (a − floor (−b) = 0 ∧ real
(floor (−b)) + b = 0) (is ?l = ?r)
proof−
have ?l = (real a = −b) by arith
with split-int-eq-real [where a=a and b=−b] show ?thesis by simp arith

qed

lemma zlfm-I :
assumes qfp: qfree p
shows (Ifm (real i #bs) (zlfm p) = Ifm (real i# bs) p) ∧ iszlfm (zlfm p) (real

(i ::int) #bs)
(is (?I (?l p) = ?I p) ∧ ?L (?l p))

using qfp
proof(induct p rule: zlfm.induct)
case (5 a)
let ?c = fst (zsplit0 a)
let ?r = snd (zsplit0 a)
have spl : zsplit0 a = (?c,?r) by simp
from zsplit0-I [OF spl , where x=i and bs=bs]
have Ia:Inum (real i # bs) a = Inum (real i #bs) (CN 0 ?c ?r) and nb:

numbound0 ?r by auto
let ?N = λ t . Inum (real i#bs) t
have ?c = 0 ∨ (?c >0 ∧ ?c 6=0) ∨ (?c<0 ∧ ?c 6=0) by arith

77

moreover
{assume ?c=0 hence ?case using zsplit0-I [OF spl , where x=i and bs=bs]

by (cases ?r , simp-all add : Let-def split-def ,case-tac nat , simp-all)}
moreover
{assume cp: ?c > 0 and cnz : ?c 6=0 hence l : ?L (?l (Lt a))

by (simp add : nb Let-def split-def isint-Floor isint-neg)
have ?I (Lt a) = (real (?c ∗ i) + (?N ?r) < 0) using Ia by (simp add : Let-def

split-def)
also have . . . = (?I (?l (Lt a))) apply (simp only : split-int-less-real ′[where

a=?c∗i and b=?N ?r]) by (simp add : Ia cp cnz Let-def split-def diff-def)
finally have ?case using l by simp}

moreover
{assume cn: ?c < 0 and cnz : ?c 6=0 hence l : ?L (?l (Lt a))

by (simp add : nb Let-def split-def isint-Floor isint-neg)
have ?I (Lt a) = (real (?c ∗ i) + (?N ?r) < 0) using Ia by (simp add : Let-def

split-def)
also from cn cnz have . . . = (?I (?l (Lt a))) by (simp only : split-int-less-real ′[where

a=?c∗i and b=?N ?r]) (simp add : Ia Let-def split-def diff-def [symmetric] add-ac,
arith)

finally have ?case using l by simp}
ultimately show ?case by blast

next
case (6 a)
let ?c = fst (zsplit0 a)
let ?r = snd (zsplit0 a)
have spl : zsplit0 a = (?c,?r) by simp
from zsplit0-I [OF spl , where x=i and bs=bs]
have Ia:Inum (real i # bs) a = Inum (real i #bs) (CN 0 ?c ?r) and nb:

numbound0 ?r by auto
let ?N = λ t . Inum (real i#bs) t
have ?c = 0 ∨ (?c >0 ∧ ?c 6=0) ∨ (?c<0 ∧ ?c 6=0) by arith
moreover
{assume ?c=0 hence ?case using zsplit0-I [OF spl , where x=i and bs=bs]

by (cases ?r , simp-all add : Let-def split-def , case-tac nat ,simp-all)}
moreover
{assume cp: ?c > 0 and cnz : ?c 6=0 hence l : ?L (?l (Le a))

by (simp add : nb Let-def split-def isint-Floor isint-neg)
have ?I (Le a) = (real (?c ∗ i) + (?N ?r) ≤ 0) using Ia by (simp add : Let-def

split-def)
also have . . . = (?I (?l (Le a))) by (simp only : split-int-le-real ′[where a=?c∗i

and b=?N ?r]) (simp add : Ia cp cnz Let-def split-def diff-def)
finally have ?case using l by simp}

moreover
{assume cn: ?c < 0 and cnz : ?c 6=0 hence l : ?L (?l (Le a))

by (simp add : nb Let-def split-def isint-Floor isint-neg)
have ?I (Le a) = (real (?c ∗ i) + (?N ?r) ≤ 0) using Ia by (simp add : Let-def

split-def)
also from cn cnz have . . . = (?I (?l (Le a))) by (simp only : split-int-le-real ′[where

a=?c∗i and b=?N ?r]) (simp add : Ia Let-def split-def diff-def [symmetric] add-ac

78

,arith)
finally have ?case using l by simp}

ultimately show ?case by blast
next
case (7 a)
let ?c = fst (zsplit0 a)
let ?r = snd (zsplit0 a)
have spl : zsplit0 a = (?c,?r) by simp
from zsplit0-I [OF spl , where x=i and bs=bs]
have Ia:Inum (real i # bs) a = Inum (real i #bs) (CN 0 ?c ?r) and nb:

numbound0 ?r by auto
let ?N = λ t . Inum (real i#bs) t
have ?c = 0 ∨ (?c >0 ∧ ?c 6=0) ∨ (?c<0 ∧ ?c 6=0) by arith
moreover
{assume ?c=0 hence ?case using zsplit0-I [OF spl , where x=i and bs=bs]

by (cases ?r , simp-all add : Let-def split-def , case-tac nat , simp-all)}
moreover
{assume cp: ?c > 0 and cnz : ?c 6=0 hence l : ?L (?l (Gt a))

by (simp add : nb Let-def split-def isint-Floor isint-neg)
have ?I (Gt a) = (real (?c ∗ i) + (?N ?r) > 0) using Ia by (simp add :

Let-def split-def)
also have . . . = (?I (?l (Gt a))) by (simp only : split-int-gt-real ′[where a=?c∗i

and b=?N ?r]) (simp add : Ia cp cnz Let-def split-def diff-def)
finally have ?case using l by simp}

moreover
{assume cn: ?c < 0 and cnz : ?c 6=0 hence l : ?L (?l (Gt a))

by (simp add : nb Let-def split-def isint-Floor isint-neg)
have ?I (Gt a) = (real (?c ∗ i) + (?N ?r) > 0) using Ia by (simp add :

Let-def split-def)
also from cn cnz have . . . = (?I (?l (Gt a))) by (simp only : split-int-gt-real ′[where

a=?c∗i and b=?N ?r]) (simp add : Ia Let-def split-def diff-def [symmetric] add-ac,
arith)

finally have ?case using l by simp}
ultimately show ?case by blast

next
case (8 a)
let ?c = fst (zsplit0 a)
let ?r = snd (zsplit0 a)
have spl : zsplit0 a = (?c,?r) by simp
from zsplit0-I [OF spl , where x=i and bs=bs]
have Ia:Inum (real i # bs) a = Inum (real i #bs) (CN 0 ?c ?r) and nb:

numbound0 ?r by auto
let ?N = λ t . Inum (real i#bs) t
have ?c = 0 ∨ (?c >0 ∧ ?c 6=0) ∨ (?c<0 ∧ ?c 6=0) by arith
moreover
{assume ?c=0 hence ?case using zsplit0-I [OF spl , where x=i and bs=bs]

by (cases ?r , simp-all add : Let-def split-def , case-tac nat , simp-all)}
moreover
{assume cp: ?c > 0 and cnz : ?c 6=0 hence l : ?L (?l (Ge a))

79

by (simp add : nb Let-def split-def isint-Floor isint-neg)
have ?I (Ge a) = (real (?c ∗ i) + (?N ?r) ≥ 0) using Ia by (simp add :

Let-def split-def)
also have . . . = (?I (?l (Ge a))) by (simp only : split-int-ge-real ′[where a=?c∗i

and b=?N ?r]) (simp add : Ia cp cnz Let-def split-def diff-def)
finally have ?case using l by simp}

moreover
{assume cn: ?c < 0 and cnz : ?c 6=0 hence l : ?L (?l (Ge a))

by (simp add : nb Let-def split-def isint-Floor isint-neg)
have ?I (Ge a) = (real (?c ∗ i) + (?N ?r) ≥ 0) using Ia by (simp add :

Let-def split-def)
also from cn cnz have . . . = (?I (?l (Ge a))) by (simp only : split-int-ge-real ′[where

a=?c∗i and b=?N ?r]) (simp add : Ia Let-def split-def diff-def [symmetric] add-ac,
arith)

finally have ?case using l by simp}
ultimately show ?case by blast

next
case (9 a)
let ?c = fst (zsplit0 a)
let ?r = snd (zsplit0 a)
have spl : zsplit0 a = (?c,?r) by simp
from zsplit0-I [OF spl , where x=i and bs=bs]
have Ia:Inum (real i # bs) a = Inum (real i #bs) (CN 0 ?c ?r) and nb:

numbound0 ?r by auto
let ?N = λ t . Inum (real i#bs) t
have ?c = 0 ∨ (?c >0 ∧ ?c 6=0) ∨ (?c<0 ∧ ?c 6=0) by arith
moreover
{assume ?c=0 hence ?case using zsplit0-I [OF spl , where x=i and bs=bs]

by (cases ?r , simp-all add : Let-def split-def , case-tac nat , simp-all)}
moreover
{assume cp: ?c > 0 and cnz : ?c 6=0 hence l : ?L (?l (Eq a))

by (simp add : nb Let-def split-def isint-Floor isint-neg)
have ?I (Eq a) = (real (?c ∗ i) + (?N ?r) = 0) using Ia by (simp add :

Let-def split-def)
also have . . . = (?I (?l (Eq a))) using cp cnz by (simp only : split-int-eq-real ′[where

a=?c∗i and b=?N ?r]) (simp add : Let-def split-def Ia real-of-int-mult [symmetric]
del : real-of-int-mult)

finally have ?case using l by simp}
moreover
{assume cn: ?c < 0 and cnz : ?c 6=0 hence l : ?L (?l (Eq a))

by (simp add : nb Let-def split-def isint-Floor isint-neg)
have ?I (Eq a) = (real (?c ∗ i) + (?N ?r) = 0) using Ia by (simp add :

Let-def split-def)
also from cn cnz have . . . = (?I (?l (Eq a))) by (simp only : split-int-eq-real ′[where

a=?c∗i and b=?N ?r]) (simp add : Let-def split-def Ia real-of-int-mult [symmetric]
del : real-of-int-mult ,arith)

finally have ?case using l by simp}
ultimately show ?case by blast

next

80

case (10 a)
let ?c = fst (zsplit0 a)
let ?r = snd (zsplit0 a)
have spl : zsplit0 a = (?c,?r) by simp
from zsplit0-I [OF spl , where x=i and bs=bs]
have Ia:Inum (real i # bs) a = Inum (real i #bs) (CN 0 ?c ?r) and nb:

numbound0 ?r by auto
let ?N = λ t . Inum (real i#bs) t
have ?c = 0 ∨ (?c >0 ∧ ?c 6=0) ∨ (?c<0 ∧ ?c 6=0) by arith
moreover
{assume ?c=0 hence ?case using zsplit0-I [OF spl , where x=i and bs=bs]

by (cases ?r , simp-all add : Let-def split-def , case-tac nat , simp-all)}
moreover
{assume cp: ?c > 0 and cnz : ?c 6=0 hence l : ?L (?l (NEq a))

by (simp add : nb Let-def split-def isint-Floor isint-neg)
have ?I (NEq a) = (real (?c ∗ i) + (?N ?r) 6= 0) using Ia by (simp add :

Let-def split-def)
also have . . . = (?I (?l (NEq a))) using cp cnz by (simp only : split-int-eq-real ′[where

a=?c∗i and b=?N ?r]) (simp add : Let-def split-def Ia real-of-int-mult [symmetric]
del : real-of-int-mult)

finally have ?case using l by simp}
moreover
{assume cn: ?c < 0 and cnz : ?c 6=0 hence l : ?L (?l (NEq a))

by (simp add : nb Let-def split-def isint-Floor isint-neg)
have ?I (NEq a) = (real (?c ∗ i) + (?N ?r) 6= 0) using Ia by (simp add :

Let-def split-def)
also from cn cnz have . . . = (?I (?l (NEq a))) by (simp only : split-int-eq-real ′[where

a=?c∗i and b=?N ?r]) (simp add : Let-def split-def Ia real-of-int-mult [symmetric]
del : real-of-int-mult ,arith)

finally have ?case using l by simp}
ultimately show ?case by blast

next
case (11 j a)
let ?c = fst (zsplit0 a)
let ?r = snd (zsplit0 a)
have spl : zsplit0 a = (?c,?r) by simp
from zsplit0-I [OF spl , where x=i and bs=bs]
have Ia:Inum (real i # bs) a = Inum (real i #bs) (CN 0 ?c ?r) and nb:

numbound0 ?r by auto
let ?N = λ t . Inum (real i#bs) t
have j=0 ∨ (j 6=0 ∧ ?c = 0) ∨ (j 6=0 ∧ ?c >0 ∧ ?c 6=0) ∨ (j 6= 0 ∧ ?c<0 ∧

?c 6=0) by arith
moreover
{assume j=0 hence z : zlfm (Dvd j a) = (zlfm (Eq a)) by (simp add : Let-def)

hence ?case using prems by (simp del : zlfm.simps add : rdvd-left-0-eq)}
moreover
{assume ?c=0 and j 6=0 hence ?case

using zsplit0-I [OF spl , where x=i and bs=bs] rdvd-abs1 [where d=j]
by (cases ?r , simp-all add : Let-def split-def , case-tac nat , simp-all)}

81

moreover
{assume cp: ?c > 0 and cnz : ?c 6=0 and jnz : j 6=0 hence l : ?L (?l (Dvd j a))

by (simp add : nb Let-def split-def isint-Floor isint-neg)
have ?I (Dvd j a) = (real j rdvd (real (?c ∗ i) + (?N ?r)))
using Ia by (simp add : Let-def split-def)

also have . . . = (real (abs j) rdvd real (?c∗i) + (?N ?r))
by (simp only : rdvd-abs1 [where d=j and t=real (?c∗i) + ?N ?r , symmetric])

simp
also have . . . = ((abs j) dvd (floor ((?N ?r) + real (?c∗i))) ∧

(real (floor ((?N ?r) + real (?c∗i))) = (real (?c∗i) + (?N ?r))))
by(simp only : int-rdvd-real [where i=abs j and x=real (?c∗i) + (?N ?r)])

(simp only : add-ac)
also have . . . = (?I (?l (Dvd j a))) using cp cnz jnz
by (simp add : Let-def split-def int-rdvd-iff [symmetric]

del : real-of-int-mult) (auto simp add : add-ac)
finally have ?case using l jnz by simp }

moreover
{assume cn: ?c < 0 and cnz : ?c 6=0 and jnz : j 6=0 hence l : ?L (?l (Dvd j a))

by (simp add : nb Let-def split-def isint-Floor isint-neg)
have ?I (Dvd j a) = (real j rdvd (real (?c ∗ i) + (?N ?r)))
using Ia by (simp add : Let-def split-def)

also have . . . = (real (abs j) rdvd real (?c∗i) + (?N ?r))
by (simp only : rdvd-abs1 [where d=j and t=real (?c∗i) + ?N ?r , symmetric])

simp
also have . . . = ((abs j) dvd (floor ((?N ?r) + real (?c∗i))) ∧

(real (floor ((?N ?r) + real (?c∗i))) = (real (?c∗i) + (?N ?r))))
by(simp only : int-rdvd-real [where i=abs j and x=real (?c∗i) + (?N ?r)])

(simp only : add-ac)
also have . . . = (?I (?l (Dvd j a))) using cn cnz jnz

using rdvd-minus [where d=abs j and t=real (?c∗i + floor (?N ?r)),
simplified , symmetric]

by (simp add : Let-def split-def int-rdvd-iff [symmetric]
del : real-of-int-mult) (auto simp add : add-ac)

finally have ?case using l jnz by blast }
ultimately show ?case by blast

next
case (12 j a)
let ?c = fst (zsplit0 a)
let ?r = snd (zsplit0 a)
have spl : zsplit0 a = (?c,?r) by simp
from zsplit0-I [OF spl , where x=i and bs=bs]
have Ia:Inum (real i # bs) a = Inum (real i #bs) (CN 0 ?c ?r) and nb:

numbound0 ?r by auto
let ?N = λ t . Inum (real i#bs) t
have j=0 ∨ (j 6=0 ∧ ?c = 0) ∨ (j 6=0 ∧ ?c >0 ∧ ?c 6=0) ∨ (j 6= 0 ∧ ?c<0 ∧

?c 6=0) by arith
moreover
{assume j=0 hence z : zlfm (NDvd j a) = (zlfm (NEq a)) by (simp add : Let-def)

82

hence ?case using prems by (simp del : zlfm.simps add : rdvd-left-0-eq)}
moreover
{assume ?c=0 and j 6=0 hence ?case

using zsplit0-I [OF spl , where x=i and bs=bs] rdvd-abs1 [where d=j]
by (cases ?r , simp-all add : Let-def split-def , case-tac nat , simp-all)}

moreover
{assume cp: ?c > 0 and cnz : ?c 6=0 and jnz : j 6=0 hence l : ?L (?l (NDvd j a))

by (simp add : nb Let-def split-def isint-Floor isint-neg)
have ?I (NDvd j a) = (¬ (real j rdvd (real (?c ∗ i) + (?N ?r))))
using Ia by (simp add : Let-def split-def)

also have . . . = (¬ (real (abs j) rdvd real (?c∗i) + (?N ?r)))
by (simp only : rdvd-abs1 [where d=j and t=real (?c∗i) + ?N ?r , symmetric])

simp
also have . . . = (¬ ((abs j) dvd (floor ((?N ?r) + real (?c∗i))) ∧

(real (floor ((?N ?r) + real (?c∗i))) = (real (?c∗i) + (?N ?r)))))
by(simp only : int-rdvd-real [where i=abs j and x=real (?c∗i) + (?N ?r)])

(simp only : add-ac)
also have . . . = (?I (?l (NDvd j a))) using cp cnz jnz
by (simp add : Let-def split-def int-rdvd-iff [symmetric]

del : real-of-int-mult) (auto simp add : add-ac)
finally have ?case using l jnz by simp }

moreover
{assume cn: ?c < 0 and cnz : ?c 6=0 and jnz : j 6=0 hence l : ?L (?l (NDvd j a))

by (simp add : nb Let-def split-def isint-Floor isint-neg)
have ?I (NDvd j a) = (¬ (real j rdvd (real (?c ∗ i) + (?N ?r))))
using Ia by (simp add : Let-def split-def)

also have . . . = (¬ (real (abs j) rdvd real (?c∗i) + (?N ?r)))
by (simp only : rdvd-abs1 [where d=j and t=real (?c∗i) + ?N ?r , symmetric])

simp
also have . . . = (¬ ((abs j) dvd (floor ((?N ?r) + real (?c∗i))) ∧

(real (floor ((?N ?r) + real (?c∗i))) = (real (?c∗i) + (?N ?r)))))
by(simp only : int-rdvd-real [where i=abs j and x=real (?c∗i) + (?N ?r)])

(simp only : add-ac)
also have . . . = (?I (?l (NDvd j a))) using cn cnz jnz

using rdvd-minus [where d=abs j and t=real (?c∗i + floor (?N ?r)),
simplified , symmetric]

by (simp add : Let-def split-def int-rdvd-iff [symmetric]
del : real-of-int-mult) (auto simp add : add-ac)

finally have ?case using l jnz by blast }
ultimately show ?case by blast

qed auto

plusinf : Virtual substitution of +∞ minusinf: Virtual substitution of −∞
δ Compute lcm d | Dvd d c∗x+t ∈ p dδ checks if a given l divides all the
ds above

consts
plusinf :: fm ⇒ fm

83

minusinf :: fm ⇒ fm
δ :: fm ⇒ int
dδ :: fm ⇒ int ⇒ bool

recdef minusinf measure size
minusinf (And p q) = conj (minusinf p) (minusinf q)
minusinf (Or p q) = disj (minusinf p) (minusinf q)
minusinf (Eq (CN 0 c e)) = F
minusinf (NEq (CN 0 c e)) = T
minusinf (Lt (CN 0 c e)) = T
minusinf (Le (CN 0 c e)) = T
minusinf (Gt (CN 0 c e)) = F
minusinf (Ge (CN 0 c e)) = F
minusinf p = p

lemma minusinf-qfree: qfree p =⇒ qfree (minusinf p)
by (induct p rule: minusinf .induct , auto)

recdef plusinf measure size
plusinf (And p q) = conj (plusinf p) (plusinf q)
plusinf (Or p q) = disj (plusinf p) (plusinf q)
plusinf (Eq (CN 0 c e)) = F
plusinf (NEq (CN 0 c e)) = T
plusinf (Lt (CN 0 c e)) = F
plusinf (Le (CN 0 c e)) = F
plusinf (Gt (CN 0 c e)) = T
plusinf (Ge (CN 0 c e)) = T
plusinf p = p

recdef δ measure size
δ (And p q) = ilcm (δ p) (δ q)
δ (Or p q) = ilcm (δ p) (δ q)
δ (Dvd i (CN 0 c e)) = i
δ (NDvd i (CN 0 c e)) = i
δ p = 1

recdef dδ measure size
dδ (And p q) = (λ d . dδ p d ∧ dδ q d)
dδ (Or p q) = (λ d . dδ p d ∧ dδ q d)
dδ (Dvd i (CN 0 c e)) = (λ d . i dvd d)
dδ (NDvd i (CN 0 c e)) = (λ d . i dvd d)
dδ p = (λ d . True)

lemma delta-mono:
assumes lin: iszlfm p bs
and d : d dvd d ′

and ad : dδ p d
shows dδ p d ′

using lin ad d

84

proof(induct p rule: iszlfm.induct)
case (9 i c e) thus ?case using d
by (simp add : zdvd-trans[where m=i and n=d and k=d ′])

next
case (10 i c e) thus ?case using d
by (simp add : zdvd-trans[where m=i and n=d and k=d ′])

qed simp-all

lemma δ : assumes lin:iszlfm p bs
shows dδ p (δ p) ∧ δ p >0

using lin
proof (induct p rule: iszlfm.induct)
case (1 p q)
let ?d = δ (And p q)
from prems ilcm-pos have dp: ?d >0 by simp
have d1 : δ p dvd δ (And p q) using prems by simp
hence th: dδ p ?d
using delta-mono prems by (auto simp del : dvd-ilcm-self1)

have δ q dvd δ (And p q) using prems by simp
hence th ′: dδ q ?d using delta-mono prems by (auto simp del : dvd-ilcm-self2)
from th th ′ dp show ?case by simp

next
case (2 p q)
let ?d = δ (And p q)
from prems ilcm-pos have dp: ?d >0 by simp
have δ p dvd δ (And p q) using prems by simp hence th: dδ p ?d using

delta-mono prems
by (auto simp del : dvd-ilcm-self1)

have δ q dvd δ (And p q) using prems by simp hence th ′: dδ q ?d using
delta-mono prems by (auto simp del : dvd-ilcm-self2)
from th th ′ dp show ?case by simp

qed simp-all

lemma minusinf-inf :
assumes linp: iszlfm p (a # bs)
shows ∃ (z ::int). ∀ x < z . Ifm ((real x)#bs) (minusinf p) = Ifm ((real x)#bs)

p
(is ?P p is ∃ (z ::int). ∀ x < z . ?I x (?M p) = ?I x p)

using linp
proof (induct p rule: minusinf .induct)
case (1 f g)
from prems have ?P f by simp
then obtain z1 where z1-def : ∀ x < z1 . ?I x (?M f) = ?I x f by blast
from prems have ?P g by simp
then obtain z2 where z2-def : ∀ x < z2 . ?I x (?M g) = ?I x g by blast
let ?z = min z1 z2
from z1-def z2-def have ∀ x < ?z . ?I x (?M (And f g)) = ?I x (And f g) by

simp

85

thus ?case by blast
next
case (2 f g) from prems have ?P f by simp
then obtain z1 where z1-def : ∀ x < z1 . ?I x (?M f) = ?I x f by blast
from prems have ?P g by simp
then obtain z2 where z2-def : ∀ x < z2 . ?I x (?M g) = ?I x g by blast
let ?z = min z1 z2
from z1-def z2-def have ∀ x < ?z . ?I x (?M (Or f g)) = ?I x (Or f g) by simp
thus ?case by blast

next
case (3 c e)
from prems have c > 0 by simp hence rcpos: real c > 0 by simp
from prems have nbe: numbound0 e by simp
have ∀ x < (floor (− (Inum (y#bs) e) / (real c))). ?I x (?M (Eq (CN 0 c e)))

= ?I x (Eq (CN 0 c e))
proof (simp add : less-floor-eq , rule allI , rule impI)
fix x
assume A: real x + (1 ::real) ≤ − (Inum (y # bs) e / real c)
hence th1 :real x < − (Inum (y # bs) e / real c) by simp
with rcpos have (real c)∗(real x) < (real c)∗(− (Inum (y # bs) e / real c))
by (simp only : real-mult-less-mono2 [OF rcpos th1])

hence real c ∗ real x + Inum (y # bs) e 6= 0using rcpos by simp
thus real c ∗ real x + Inum (real x # bs) e 6= 0
using numbound0-I [OF nbe, where b=y and bs=bs and b ′=real x] by simp

qed
thus ?case by blast

next
case (4 c e)
from prems have c > 0 by simp hence rcpos: real c > 0 by simp
from prems have nbe: numbound0 e by simp
have ∀ x < (floor (− (Inum (y#bs) e) / (real c))). ?I x (?M (NEq (CN 0 c

e))) = ?I x (NEq (CN 0 c e))
proof (simp add : less-floor-eq , rule allI , rule impI)
fix x
assume A: real x + (1 ::real) ≤ − (Inum (y # bs) e / real c)
hence th1 :real x < − (Inum (y # bs) e / real c) by simp
with rcpos have (real c)∗(real x) < (real c)∗(− (Inum (y # bs) e / real c))
by (simp only : real-mult-less-mono2 [OF rcpos th1])

hence real c ∗ real x + Inum (y # bs) e 6= 0using rcpos by simp
thus real c ∗ real x + Inum (real x # bs) e 6= 0
using numbound0-I [OF nbe, where b=y and bs=bs and b ′=real x] by simp

qed
thus ?case by blast

next
case (5 c e)
from prems have c > 0 by simp hence rcpos: real c > 0 by simp
from prems have nbe: numbound0 e by simp
have ∀ x < (floor (− (Inum (y#bs) e) / (real c))). ?I x (?M (Lt (CN 0 c e)))

= ?I x (Lt (CN 0 c e))

86

proof (simp add : less-floor-eq , rule allI , rule impI)
fix x
assume A: real x + (1 ::real) ≤ − (Inum (y # bs) e / real c)
hence th1 :real x < − (Inum (y # bs) e / real c) by simp
with rcpos have (real c)∗(real x) < (real c)∗(− (Inum (y # bs) e / real c))
by (simp only : real-mult-less-mono2 [OF rcpos th1])

thus real c ∗ real x + Inum (real x # bs) e < 0
using numbound0-I [OF nbe, where b=y and bs=bs and b ′=real x] rcpos

by simp
qed
thus ?case by blast

next
case (6 c e)
from prems have c > 0 by simp hence rcpos: real c > 0 by simp
from prems have nbe: numbound0 e by simp
have ∀ x < (floor (− (Inum (y#bs) e) / (real c))). ?I x (?M (Le (CN 0 c e)))

= ?I x (Le (CN 0 c e))
proof (simp add : less-floor-eq , rule allI , rule impI)
fix x
assume A: real x + (1 ::real) ≤ − (Inum (y # bs) e / real c)
hence th1 :real x < − (Inum (y # bs) e / real c) by simp
with rcpos have (real c)∗(real x) < (real c)∗(− (Inum (y # bs) e / real c))
by (simp only : real-mult-less-mono2 [OF rcpos th1])

thus real c ∗ real x + Inum (real x # bs) e ≤ 0
using numbound0-I [OF nbe, where b=y and bs=bs and b ′=real x] rcpos

by simp
qed
thus ?case by blast

next
case (7 c e)
from prems have c > 0 by simp hence rcpos: real c > 0 by simp
from prems have nbe: numbound0 e by simp
have ∀ x < (floor (− (Inum (y#bs) e) / (real c))). ?I x (?M (Gt (CN 0 c e)))

= ?I x (Gt (CN 0 c e))
proof (simp add : less-floor-eq , rule allI , rule impI)
fix x
assume A: real x + (1 ::real) ≤ − (Inum (y # bs) e / real c)
hence th1 :real x < − (Inum (y # bs) e / real c) by simp
with rcpos have (real c)∗(real x) < (real c)∗(− (Inum (y # bs) e / real c))
by (simp only : real-mult-less-mono2 [OF rcpos th1])

thus ¬ (real c ∗ real x + Inum (real x # bs) e>0)
using numbound0-I [OF nbe, where b=y and bs=bs and b ′=real x] rcpos

by simp
qed
thus ?case by blast

next
case (8 c e)
from prems have c > 0 by simp hence rcpos: real c > 0 by simp
from prems have nbe: numbound0 e by simp

87

have ∀ x < (floor (− (Inum (y#bs) e) / (real c))). ?I x (?M (Ge (CN 0 c e)))
= ?I x (Ge (CN 0 c e))
proof (simp add : less-floor-eq , rule allI , rule impI)
fix x
assume A: real x + (1 ::real) ≤ − (Inum (y # bs) e / real c)
hence th1 :real x < − (Inum (y # bs) e / real c) by simp
with rcpos have (real c)∗(real x) < (real c)∗(− (Inum (y # bs) e / real c))
by (simp only : real-mult-less-mono2 [OF rcpos th1])

thus ¬ real c ∗ real x + Inum (real x # bs) e ≥ 0
using numbound0-I [OF nbe, where b=y and bs=bs and b ′=real x] rcpos

by simp
qed
thus ?case by blast

qed simp-all

lemma minusinf-repeats:
assumes d : dδ p d and linp: iszlfm p (a # bs)
shows Ifm ((real(x − k∗d))#bs) (minusinf p) = Ifm (real x #bs) (minusinf p)

using linp d
proof(induct p rule: iszlfm.induct)
case (9 i c e) hence nbe: numbound0 e and id : i dvd d by simp+
hence ∃ k . d=i∗k by (simp add : dvd-def)
then obtain di where di-def : d=i∗di by blast
show ?case
proof(simp add : numbound0-I [OF nbe,where bs=bs and b=real x − real k ∗

real d and b ′=real x] right-diff-distrib, rule iffI)
assume
real i rdvd real c ∗ real x − real c ∗ (real k ∗ real d) + Inum (real x # bs) e

(is ?ri rdvd ?rc∗?rx − ?rc∗(?rk∗?rd) + ?I x e is ?ri rdvd ?rt)
hence ∃ (l ::int). ?rt = ?ri ∗ (real l) by (simp add : rdvd-def)
hence ∃ (l ::int). ?rc∗?rx+ ?I x e = ?ri∗(real l)+?rc∗(?rk ∗ (real i) ∗ (real

di))
by (simp add : ring-simps di-def)

hence ∃ (l ::int). ?rc∗?rx+ ?I x e = ?ri∗(real (l + c∗k∗di))
by (simp add : ring-simps)

hence ∃ (l ::int). ?rc∗?rx+ ?I x e = ?ri∗ (real l) by blast
thus real i rdvd real c ∗ real x + Inum (real x # bs) e using rdvd-def by

simp
next
assume

real i rdvd real c ∗ real x + Inum (real x # bs) e (is ?ri rdvd ?rc∗?rx+?e)
hence ∃ (l ::int). ?rc∗?rx+?e = ?ri ∗ (real l) by (simp add : rdvd-def)
hence ∃ (l ::int). ?rc∗?rx − real c ∗ (real k ∗ real d) +?e = ?ri ∗ (real l) −

real c ∗ (real k ∗ real d) by simp
hence ∃ (l ::int). ?rc∗?rx − real c ∗ (real k ∗ real d) +?e = ?ri ∗ (real l) −

real c ∗ (real k ∗ real i ∗ real di) by (simp add : di-def)
hence ∃ (l ::int). ?rc∗?rx − real c ∗ (real k ∗ real d) +?e = ?ri ∗ (real (l −

c∗k∗di)) by (simp add : ring-simps)
hence ∃ (l ::int). ?rc∗?rx − real c ∗ (real k ∗ real d) +?e = ?ri ∗ (real l)

88

by blast
thus real i rdvd real c ∗ real x − real c ∗ (real k ∗ real d) + Inum (real x #

bs) e using rdvd-def by simp
qed

next
case (10 i c e) hence nbe: numbound0 e and id : i dvd d by simp+
hence ∃ k . d=i∗k by (simp add : dvd-def)
then obtain di where di-def : d=i∗di by blast
show ?case
proof(simp add : numbound0-I [OF nbe,where bs=bs and b=real x − real k ∗

real d and b ′=real x] right-diff-distrib, rule iffI)
assume
real i rdvd real c ∗ real x − real c ∗ (real k ∗ real d) + Inum (real x # bs) e

(is ?ri rdvd ?rc∗?rx − ?rc∗(?rk∗?rd) + ?I x e is ?ri rdvd ?rt)
hence ∃ (l ::int). ?rt = ?ri ∗ (real l) by (simp add : rdvd-def)
hence ∃ (l ::int). ?rc∗?rx+ ?I x e = ?ri∗(real l)+?rc∗(?rk ∗ (real i) ∗ (real

di))
by (simp add : ring-simps di-def)

hence ∃ (l ::int). ?rc∗?rx+ ?I x e = ?ri∗(real (l + c∗k∗di))
by (simp add : ring-simps)

hence ∃ (l ::int). ?rc∗?rx+ ?I x e = ?ri∗ (real l) by blast
thus real i rdvd real c ∗ real x + Inum (real x # bs) e using rdvd-def by

simp
next
assume

real i rdvd real c ∗ real x + Inum (real x # bs) e (is ?ri rdvd ?rc∗?rx+?e)
hence ∃ (l ::int). ?rc∗?rx+?e = ?ri ∗ (real l) by (simp add : rdvd-def)
hence ∃ (l ::int). ?rc∗?rx − real c ∗ (real k ∗ real d) +?e = ?ri ∗ (real l) −

real c ∗ (real k ∗ real d) by simp
hence ∃ (l ::int). ?rc∗?rx − real c ∗ (real k ∗ real d) +?e = ?ri ∗ (real l) −

real c ∗ (real k ∗ real i ∗ real di) by (simp add : di-def)
hence ∃ (l ::int). ?rc∗?rx − real c ∗ (real k ∗ real d) +?e = ?ri ∗ (real (l −

c∗k∗di)) by (simp add : ring-simps)
hence ∃ (l ::int). ?rc∗?rx − real c ∗ (real k ∗ real d) +?e = ?ri ∗ (real l)
by blast

thus real i rdvd real c ∗ real x − real c ∗ (real k ∗ real d) + Inum (real x #
bs) e using rdvd-def by simp

qed
qed (auto simp add : nth-pos2 numbound0-I [where bs=bs and b=real(x − k∗d)
and b ′=real x] simp del : real-of-int-mult real-of-int-diff)

lemma minusinf-ex :
assumes lin: iszlfm p (real (a::int) #bs)
and exmi : ∃ (x ::int). Ifm (real x#bs) (minusinf p) (is ∃ x . ?P1 x)
shows ∃ (x ::int). Ifm (real x#bs) p (is ∃ x . ?P x)

proof−
let ?d = δ p
from δ [OF lin] have dpos: ?d >0 by simp
from δ [OF lin] have alld : dδ p ?d by simp

89

from minusinf-repeats[OF alld lin] have th1 :∀ x k . ?P1 x = ?P1 (x − (k ∗ ?d))
by simp
from minusinf-inf [OF lin] have th2 :∃ z . ∀ x . x<z −→ (?P x = ?P1 x) by blast
from minusinfinity [OF dpos th1 th2] exmi show ?thesis by blast

qed

lemma minusinf-bex :
assumes lin: iszlfm p (real (a::int) #bs)
shows (∃ (x ::int). Ifm (real x#bs) (minusinf p)) =

(∃ (x ::int)∈ {1 ..δ p}. Ifm (real x#bs) (minusinf p))
(is (∃ x . ?P x) = -)

proof−
let ?d = δ p
from δ [OF lin] have dpos: ?d >0 by simp
from δ [OF lin] have alld : dδ p ?d by simp
from minusinf-repeats[OF alld lin] have th1 :∀ x k . ?P x = ?P (x − (k ∗ ?d))

by simp
from periodic-finite-ex [OF dpos th1] show ?thesis by blast

qed

lemma dvd1-eq1 : x >0 =⇒ (x ::int) dvd 1 = (x = 1) by auto

consts
aβ :: fm ⇒ int ⇒ fm
dβ :: fm ⇒ int ⇒ bool
ζ :: fm ⇒ int
β :: fm ⇒ num list
α :: fm ⇒ num list

recdef aβ measure size
aβ (And p q) = (λ k . And (aβ p k) (aβ q k))
aβ (Or p q) = (λ k . Or (aβ p k) (aβ q k))
aβ (Eq (CN 0 c e)) = (λ k . Eq (CN 0 1 (Mul (k div c) e)))
aβ (NEq (CN 0 c e)) = (λ k . NEq (CN 0 1 (Mul (k div c) e)))
aβ (Lt (CN 0 c e)) = (λ k . Lt (CN 0 1 (Mul (k div c) e)))
aβ (Le (CN 0 c e)) = (λ k . Le (CN 0 1 (Mul (k div c) e)))
aβ (Gt (CN 0 c e)) = (λ k . Gt (CN 0 1 (Mul (k div c) e)))
aβ (Ge (CN 0 c e)) = (λ k . Ge (CN 0 1 (Mul (k div c) e)))
aβ (Dvd i (CN 0 c e)) =(λ k . Dvd ((k div c)∗i) (CN 0 1 (Mul (k div c) e)))
aβ (NDvd i (CN 0 c e))=(λ k . NDvd ((k div c)∗i) (CN 0 1 (Mul (k div c) e)))
aβ p = (λ k . p)

recdef dβ measure size
dβ (And p q) = (λ k . (dβ p k) ∧ (dβ q k))
dβ (Or p q) = (λ k . (dβ p k) ∧ (dβ q k))
dβ (Eq (CN 0 c e)) = (λ k . c dvd k)
dβ (NEq (CN 0 c e)) = (λ k . c dvd k)
dβ (Lt (CN 0 c e)) = (λ k . c dvd k)
dβ (Le (CN 0 c e)) = (λ k . c dvd k)

90

dβ (Gt (CN 0 c e)) = (λ k . c dvd k)
dβ (Ge (CN 0 c e)) = (λ k . c dvd k)
dβ (Dvd i (CN 0 c e)) =(λ k . c dvd k)
dβ (NDvd i (CN 0 c e))=(λ k . c dvd k)
dβ p = (λ k . True)

recdef ζ measure size
ζ (And p q) = ilcm (ζ p) (ζ q)
ζ (Or p q) = ilcm (ζ p) (ζ q)
ζ (Eq (CN 0 c e)) = c
ζ (NEq (CN 0 c e)) = c
ζ (Lt (CN 0 c e)) = c
ζ (Le (CN 0 c e)) = c
ζ (Gt (CN 0 c e)) = c
ζ (Ge (CN 0 c e)) = c
ζ (Dvd i (CN 0 c e)) = c
ζ (NDvd i (CN 0 c e))= c
ζ p = 1

recdef β measure size
β (And p q) = (β p @ β q)
β (Or p q) = (β p @ β q)
β (Eq (CN 0 c e)) = [Sub (C −1) e]
β (NEq (CN 0 c e)) = [Neg e]
β (Lt (CN 0 c e)) = []
β (Le (CN 0 c e)) = []
β (Gt (CN 0 c e)) = [Neg e]
β (Ge (CN 0 c e)) = [Sub (C −1) e]
β p = []

recdef α measure size
α (And p q) = (α p @ α q)
α (Or p q) = (α p @ α q)
α (Eq (CN 0 c e)) = [Add (C −1) e]
α (NEq (CN 0 c e)) = [e]
α (Lt (CN 0 c e)) = [e]
α (Le (CN 0 c e)) = [Add (C −1) e]
α (Gt (CN 0 c e)) = []
α (Ge (CN 0 c e)) = []
α p = []

consts mirror :: fm ⇒ fm
recdef mirror measure size

mirror (And p q) = And (mirror p) (mirror q)
mirror (Or p q) = Or (mirror p) (mirror q)
mirror (Eq (CN 0 c e)) = Eq (CN 0 c (Neg e))
mirror (NEq (CN 0 c e)) = NEq (CN 0 c (Neg e))
mirror (Lt (CN 0 c e)) = Gt (CN 0 c (Neg e))
mirror (Le (CN 0 c e)) = Ge (CN 0 c (Neg e))
mirror (Gt (CN 0 c e)) = Lt (CN 0 c (Neg e))

91

mirror (Ge (CN 0 c e)) = Le (CN 0 c (Neg e))
mirror (Dvd i (CN 0 c e)) = Dvd i (CN 0 c (Neg e))
mirror (NDvd i (CN 0 c e)) = NDvd i (CN 0 c (Neg e))
mirror p = p

lemma mirrorαβ:
assumes lp: iszlfm p (a#bs)
shows (Inum (real (i ::int)#bs)) ‘ set (α p) = (Inum (real i#bs)) ‘ set (β (mirror

p))
using lp
by (induct p rule: mirror .induct , auto)

lemma mirror :
assumes lp: iszlfm p (a#bs)
shows Ifm (real (x ::int)#bs) (mirror p) = Ifm (real (− x)#bs) p

using lp
proof(induct p rule: iszlfm.induct)
case (9 j c e)
have th: (real j rdvd real c ∗ real x − Inum (real x # bs) e) =

(real j rdvd − (real c ∗ real x − Inum (real x # bs) e))
by (simp only : rdvd-minus[symmetric])

from prems show ?case
by (simp add : ring-simps th[simplified ring-simps]

numbound0-I [where bs=bs and b ′=real x and b=− real x])
next

case (10 j c e)
have th: (real j rdvd real c ∗ real x − Inum (real x # bs) e) =

(real j rdvd − (real c ∗ real x − Inum (real x # bs) e))
by (simp only : rdvd-minus[symmetric])

from prems show ?case
by (simp add : ring-simps th[simplified ring-simps]

numbound0-I [where bs=bs and b ′=real x and b=− real x])
qed (auto simp add : numbound0-I [where bs=bs and b=real x and b ′=− real x]
nth-pos2)

lemma mirror-l : iszlfm p (a#bs) =⇒ iszlfm (mirror p) (a#bs)
by (induct p rule: mirror .induct , auto simp add : isint-neg)

lemma mirror-dβ: iszlfm p (a#bs) ∧ dβ p 1
=⇒ iszlfm (mirror p) (a#bs) ∧ dβ (mirror p) 1

by (induct p rule: mirror .induct , auto simp add : isint-neg)

lemma mirror-δ: iszlfm p (a#bs) =⇒ δ (mirror p) = δ p
by (induct p rule: mirror .induct ,auto)

lemma mirror-ex :
assumes lp: iszlfm p (real (i ::int)#bs)
shows (∃ (x ::int). Ifm (real x#bs) (mirror p)) = (∃ (x ::int). Ifm (real x#bs)

92

p)
(is (∃ x . ?I x ?mp) = (∃ x . ?I x p))

proof(auto)
fix x assume ?I x ?mp hence ?I (− x) p using mirror [OF lp] by blast
thus ∃ x . ?I x p by blast

next
fix x assume ?I x p hence ?I (− x) ?mp
using mirror [OF lp, where x=− x , symmetric] by auto

thus ∃ x . ?I x ?mp by blast
qed

lemma β-numbound0 : assumes lp: iszlfm p bs
shows ∀ b∈ set (β p). numbound0 b
using lp by (induct p rule: β.induct ,auto)

lemma dβ-mono:
assumes linp: iszlfm p (a #bs)
and dr : dβ p l
and d : l dvd l ′

shows dβ p l ′

using dr linp zdvd-trans[where n=l and k=l ′, simplified d]
by (induct p rule: iszlfm.induct) simp-all

lemma α-l : assumes lp: iszlfm p (a#bs)
shows ∀ b∈ set (α p). numbound0 b ∧ isint b (a#bs)

using lp
by(induct p rule: α.induct , auto simp add : isint-add isint-c)

lemma ζ:
assumes linp: iszlfm p (a #bs)
shows ζ p > 0 ∧ dβ p (ζ p)

using linp
proof(induct p rule: iszlfm.induct)
case (1 p q)
from prems have dl1 : ζ p dvd ilcm (ζ p) (ζ q) by simp
from prems have dl2 : ζ q dvd ilcm (ζ p) (ζ q) by simp
from prems dβ-mono[where p = p and l=ζ p and l ′=ilcm (ζ p) (ζ q)]

dβ-mono[where p = q and l=ζ q and l ′=ilcm (ζ p) (ζ q)]
dl1 dl2 show ?case by (auto simp add : ilcm-pos)

next
case (2 p q)
from prems have dl1 : ζ p dvd ilcm (ζ p) (ζ q) by simp
from prems have dl2 : ζ q dvd ilcm (ζ p) (ζ q) by simp
from prems dβ-mono[where p = p and l=ζ p and l ′=ilcm (ζ p) (ζ q)]

dβ-mono[where p = q and l=ζ q and l ′=ilcm (ζ p) (ζ q)]
dl1 dl2 show ?case by (auto simp add : ilcm-pos)

qed (auto simp add : ilcm-pos)

lemma aβ: assumes linp: iszlfm p (a #bs) and d : dβ p l and lp: l > 0

93

shows iszlfm (aβ p l) (a #bs) ∧ dβ (aβ p l) 1 ∧ (Ifm (real (l ∗ x) #bs) (aβ p
l) = Ifm ((real x)#bs) p)
using linp d
proof (induct p rule: iszlfm.induct)

case (5 c e) hence cp: c>0 and be: numbound0 e and ei :isint e (a#bs) and
d ′: c dvd l by simp+

from lp cp have clel : c≤l by (simp add : zdvd-imp-le [OF d ′ lp])
from cp have cnz : c 6= 0 by simp
have c div c≤ l div c
by (simp add : zdiv-mono1 [OF clel cp])

then have ldcp:0 < l div c
by (simp add : zdiv-self [OF cnz])

have c ∗ (l div c) = c∗ (l div c) + l mod c using d ′ zdvd-iff-zmod-eq-0 [where
m=c and n=l] by simp

hence cl :c ∗ (l div c) =l using zmod-zdiv-equality [where a=l and b=c,
symmetric]

by simp
hence (real l ∗ real x + real (l div c) ∗ Inum (real x # bs) e < (0 ::real)) =

(real (c ∗ (l div c)) ∗ real x + real (l div c) ∗ Inum (real x # bs) e < 0)
by simp

also have . . . = (real (l div c) ∗ (real c ∗ real x + Inum (real x # bs) e) <
(real (l div c)) ∗ 0) by (simp add : ring-simps)

also have . . . = (real c ∗ real x + Inum (real x # bs) e < 0)
using mult-less-0-iff [where a=real (l div c) and b=real c ∗ real x + Inum

(real x # bs) e] ldcp by simp
finally show ?case using numbound0-I [OF be,where b=real (l ∗ x) and b ′=real

x and bs=bs] be isint-Mul [OF ei] by simp
next

case (6 c e) hence cp: c>0 and be: numbound0 e and ei :isint e (a#bs) and
d ′: c dvd l by simp+

from lp cp have clel : c≤l by (simp add : zdvd-imp-le [OF d ′ lp])
from cp have cnz : c 6= 0 by simp
have c div c≤ l div c
by (simp add : zdiv-mono1 [OF clel cp])

then have ldcp:0 < l div c
by (simp add : zdiv-self [OF cnz])

have c ∗ (l div c) = c∗ (l div c) + l mod c using d ′ zdvd-iff-zmod-eq-0 [where
m=c and n=l] by simp

hence cl :c ∗ (l div c) =l using zmod-zdiv-equality [where a=l and b=c,
symmetric]

by simp
hence (real l ∗ real x + real (l div c) ∗ Inum (real x # bs) e ≤ (0 ::real)) =

(real (c ∗ (l div c)) ∗ real x + real (l div c) ∗ Inum (real x # bs) e ≤ 0)
by simp

also have . . . = (real (l div c) ∗ (real c ∗ real x + Inum (real x # bs) e) ≤
(real (l div c)) ∗ 0) by (simp add : ring-simps)

also have . . . = (real c ∗ real x + Inum (real x # bs) e ≤ 0)
using mult-le-0-iff [where a=real (l div c) and b=real c ∗ real x + Inum (real

x # bs) e] ldcp by simp

94

finally show ?case using numbound0-I [OF be,where b=real (l ∗ x) and b ′=real
x and bs=bs] be isint-Mul [OF ei] by simp
next

case (7 c e) hence cp: c>0 and be: numbound0 e and ei :isint e (a#bs) and
d ′: c dvd l by simp+

from lp cp have clel : c≤l by (simp add : zdvd-imp-le [OF d ′ lp])
from cp have cnz : c 6= 0 by simp
have c div c≤ l div c
by (simp add : zdiv-mono1 [OF clel cp])

then have ldcp:0 < l div c
by (simp add : zdiv-self [OF cnz])

have c ∗ (l div c) = c∗ (l div c) + l mod c using d ′ zdvd-iff-zmod-eq-0 [where
m=c and n=l] by simp

hence cl :c ∗ (l div c) =l using zmod-zdiv-equality [where a=l and b=c,
symmetric]

by simp
hence (real l ∗ real x + real (l div c) ∗ Inum (real x # bs) e > (0 ::real)) =

(real (c ∗ (l div c)) ∗ real x + real (l div c) ∗ Inum (real x # bs) e > 0)
by simp

also have . . . = (real (l div c) ∗ (real c ∗ real x + Inum (real x # bs) e) >
(real (l div c)) ∗ 0) by (simp add : ring-simps)

also have . . . = (real c ∗ real x + Inum (real x # bs) e > 0)
using zero-less-mult-iff [where a=real (l div c) and b=real c ∗ real x + Inum

(real x # bs) e] ldcp by simp
finally show ?case using numbound0-I [OF be,where b=real (l ∗ x) and b ′=real

x and bs=bs] be isint-Mul [OF ei] by simp
next
case (8 c e) hence cp: c>0 and be: numbound0 e and ei :isint e (a#bs) and

d ′: c dvd l by simp+
from lp cp have clel : c≤l by (simp add : zdvd-imp-le [OF d ′ lp])
from cp have cnz : c 6= 0 by simp
have c div c≤ l div c
by (simp add : zdiv-mono1 [OF clel cp])

then have ldcp:0 < l div c
by (simp add : zdiv-self [OF cnz])

have c ∗ (l div c) = c∗ (l div c) + l mod c using d ′ zdvd-iff-zmod-eq-0 [where
m=c and n=l] by simp

hence cl :c ∗ (l div c) =l using zmod-zdiv-equality [where a=l and b=c,
symmetric]

by simp
hence (real l ∗ real x + real (l div c) ∗ Inum (real x # bs) e ≥ (0 ::real)) =

(real (c ∗ (l div c)) ∗ real x + real (l div c) ∗ Inum (real x # bs) e ≥ 0)
by simp

also have . . . = (real (l div c) ∗ (real c ∗ real x + Inum (real x # bs) e) ≥
(real (l div c)) ∗ 0) by (simp add : ring-simps)

also have . . . = (real c ∗ real x + Inum (real x # bs) e ≥ 0)
using zero-le-mult-iff [where a=real (l div c) and b=real c ∗ real x + Inum

(real x # bs) e] ldcp by simp
finally show ?case using numbound0-I [OF be,where b=real (l ∗ x) and b ′=real

95

x and bs=bs] be isint-Mul [OF ei] by simp
next

case (3 c e) hence cp: c>0 and be: numbound0 e and ei :isint e (a#bs) and
d ′: c dvd l by simp+

from lp cp have clel : c≤l by (simp add : zdvd-imp-le [OF d ′ lp])
from cp have cnz : c 6= 0 by simp
have c div c≤ l div c
by (simp add : zdiv-mono1 [OF clel cp])

then have ldcp:0 < l div c
by (simp add : zdiv-self [OF cnz])

have c ∗ (l div c) = c∗ (l div c) + l mod c using d ′ zdvd-iff-zmod-eq-0 [where
m=c and n=l] by simp

hence cl :c ∗ (l div c) =l using zmod-zdiv-equality [where a=l and b=c,
symmetric]

by simp
hence (real l ∗ real x + real (l div c) ∗ Inum (real x # bs) e = (0 ::real)) =

(real (c ∗ (l div c)) ∗ real x + real (l div c) ∗ Inum (real x # bs) e = 0)
by simp

also have . . . = (real (l div c) ∗ (real c ∗ real x + Inum (real x # bs) e) =
(real (l div c)) ∗ 0) by (simp add : ring-simps)

also have . . . = (real c ∗ real x + Inum (real x # bs) e = 0)
using mult-eq-0-iff [where a=real (l div c) and b=real c ∗ real x + Inum

(real x # bs) e] ldcp by simp
finally show ?case using numbound0-I [OF be,where b=real (l ∗ x) and b ′=real

x and bs=bs] be isint-Mul [OF ei] by simp
next

case (4 c e) hence cp: c>0 and be: numbound0 e and ei :isint e (a#bs) and
d ′: c dvd l by simp+

from lp cp have clel : c≤l by (simp add : zdvd-imp-le [OF d ′ lp])
from cp have cnz : c 6= 0 by simp
have c div c≤ l div c
by (simp add : zdiv-mono1 [OF clel cp])

then have ldcp:0 < l div c
by (simp add : zdiv-self [OF cnz])

have c ∗ (l div c) = c∗ (l div c) + l mod c using d ′ zdvd-iff-zmod-eq-0 [where
m=c and n=l] by simp

hence cl :c ∗ (l div c) =l using zmod-zdiv-equality [where a=l and b=c,
symmetric]

by simp
hence (real l ∗ real x + real (l div c) ∗ Inum (real x # bs) e 6= (0 ::real)) =

(real (c ∗ (l div c)) ∗ real x + real (l div c) ∗ Inum (real x # bs) e 6= 0)
by simp

also have . . . = (real (l div c) ∗ (real c ∗ real x + Inum (real x # bs) e) 6=
(real (l div c)) ∗ 0) by (simp add : ring-simps)

also have . . . = (real c ∗ real x + Inum (real x # bs) e 6= 0)
using zero-le-mult-iff [where a=real (l div c) and b=real c ∗ real x + Inum

(real x # bs) e] ldcp by simp
finally show ?case using numbound0-I [OF be,where b=real (l ∗ x) and b ′=real

x and bs=bs] be isint-Mul [OF ei] by simp

96

next
case (9 j c e) hence cp: c>0 and be: numbound0 e and ei :isint e (a#bs) and

jp: j > 0 and d ′: c dvd l by simp+
from lp cp have clel : c≤l by (simp add : zdvd-imp-le [OF d ′ lp])
from cp have cnz : c 6= 0 by simp
have c div c≤ l div c
by (simp add : zdiv-mono1 [OF clel cp])

then have ldcp:0 < l div c
by (simp add : zdiv-self [OF cnz])

have c ∗ (l div c) = c∗ (l div c) + l mod c using d ′ zdvd-iff-zmod-eq-0 [where
m=c and n=l] by simp

hence cl :c ∗ (l div c) =l using zmod-zdiv-equality [where a=l and b=c,
symmetric]

by simp
hence (∃ (k ::int). real l ∗ real x + real (l div c) ∗ Inum (real x # bs) e =

(real (l div c) ∗ real j) ∗ real k) = (∃ (k ::int). real (c ∗ (l div c)) ∗ real x + real
(l div c) ∗ Inum (real x # bs) e = (real (l div c) ∗ real j) ∗ real k) by simp

also have . . . = (∃ (k ::int). real (l div c) ∗ (real c ∗ real x + Inum (real x #
bs) e − real j ∗ real k) = real (l div c)∗0) by (simp add : ring-simps)

also have . . . = (∃ (k ::int). real c ∗ real x + Inum (real x # bs) e − real j ∗
real k = 0)

using zero-le-mult-iff [where a=real (l div c) and b=real c ∗ real x + Inum
(real x # bs) e − real j ∗ real k] ldcp by simp

also have . . . = (∃ (k ::int). real c ∗ real x + Inum (real x # bs) e = real j ∗
real k) by simp
finally show ?case using numbound0-I [OF be,where b=real (l ∗ x) and b ′=real

x and bs=bs] rdvd-def be isint-Mul [OF ei] mult-strict-mono[OF ldcp jp ldcp] by
simp
next
case (10 j c e) hence cp: c>0 and be: numbound0 e and ei :isint e (a#bs) and

jp: j > 0 and d ′: c dvd l by simp+
from lp cp have clel : c≤l by (simp add : zdvd-imp-le [OF d ′ lp])
from cp have cnz : c 6= 0 by simp
have c div c≤ l div c
by (simp add : zdiv-mono1 [OF clel cp])

then have ldcp:0 < l div c
by (simp add : zdiv-self [OF cnz])

have c ∗ (l div c) = c∗ (l div c) + l mod c using d ′ zdvd-iff-zmod-eq-0 [where
m=c and n=l] by simp

hence cl :c ∗ (l div c) =l using zmod-zdiv-equality [where a=l and b=c,
symmetric]

by simp
hence (∃ (k ::int). real l ∗ real x + real (l div c) ∗ Inum (real x # bs) e =

(real (l div c) ∗ real j) ∗ real k) = (∃ (k ::int). real (c ∗ (l div c)) ∗ real x + real
(l div c) ∗ Inum (real x # bs) e = (real (l div c) ∗ real j) ∗ real k) by simp

also have . . . = (∃ (k ::int). real (l div c) ∗ (real c ∗ real x + Inum (real x #
bs) e − real j ∗ real k) = real (l div c)∗0) by (simp add : ring-simps)

also have . . . = (∃ (k ::int). real c ∗ real x + Inum (real x # bs) e − real j ∗
real k = 0)

97

using zero-le-mult-iff [where a=real (l div c) and b=real c ∗ real x + Inum
(real x # bs) e − real j ∗ real k] ldcp by simp

also have . . . = (∃ (k ::int). real c ∗ real x + Inum (real x # bs) e = real j ∗
real k) by simp
finally show ?case using numbound0-I [OF be,where b=real (l ∗ x) and b ′=real

x and bs=bs] rdvd-def be isint-Mul [OF ei] mult-strict-mono[OF ldcp jp ldcp]
by simp
qed (simp-all add : nth-pos2 numbound0-I [where bs=bs and b=real (l ∗ x) and
b ′=real x] isint-Mul del : real-of-int-mult)

lemma aβ-ex : assumes linp: iszlfm p (a#bs) and d : dβ p l and lp: l>0
shows (∃ x . l dvd x ∧ Ifm (real x #bs) (aβ p l)) = (∃ (x ::int). Ifm (real x#bs)

p)
(is (∃ x . l dvd x ∧ ?P x) = (∃ x . ?P ′ x))

proof−
have (∃ x . l dvd x ∧ ?P x) = (∃ (x ::int). ?P (l∗x))
using unity-coeff-ex [where l=l and P=?P , simplified] by simp

also have . . . = (∃ (x ::int). ?P ′ x) using aβ[OF linp d lp] by simp
finally show ?thesis .

qed

lemma β:
assumes lp: iszlfm p (a#bs)
and u: dβ p 1
and d : dδ p d
and dp: d > 0
and nob: ¬(∃ (j ::int) ∈ {1 .. d}. ∃ b∈ (Inum (a#bs)) ‘ set(β p). real x = b +

real j)
and p: Ifm (real x#bs) p (is ?P x)
shows ?P (x − d)

using lp u d dp nob p
proof(induct p rule: iszlfm.induct)
case (5 c e) hence c1 : c=1 and bn:numbound0 e using dvd1-eq1 [where x=c]

by simp+
with dp p c1 numbound0-I [OF bn,where b=real (x−d) and b ′=real x and

bs=bs] prems
show ?case by (simp del : real-of-int-minus)

next
case (6 c e) hence c1 : c=1 and bn:numbound0 e using dvd1-eq1 [where x=c]

by simp+
with dp p c1 numbound0-I [OF bn,where b=real (x−d) and b ′=real x and

bs=bs] prems
show ?case by (simp del : real-of-int-minus)

next
case (7 c e) hence p: Ifm (real x #bs) (Gt (CN 0 c e)) and c1 : c=1 and

bn:numbound0 e and ie1 :isint e (a#bs) using dvd1-eq1 [where x=c] by simp+
let ?e = Inum (real x # bs) e
from ie1 have ie: real (floor ?e) = ?e using isint-iff [where n=e and

bs=a#bs]

98

numbound0-I [OF bn,where b=a and b ′=real x and bs=bs]
by (simp add : isint-iff)

{assume real (x−d) +?e > 0 hence ?case using c1
numbound0-I [OF bn,where b=real (x−d) and b ′=real x and bs=bs]
by (simp del : real-of-int-minus)}

moreover
{assume H : ¬ real (x−d) + ?e > 0
let ?v=Neg e
have vb: ?v ∈ set (β (Gt (CN 0 c e))) by simp

from prems(11)[simplified simp-thms Inum.simps β.simps set .simps bex-simps
numbound0-I [OF bn,where b=a and b ′=real x and bs=bs]]

have nob: ¬ (∃ j∈ {1 ..d}. real x = − ?e + real j) by auto
from H p have real x + ?e > 0 ∧ real x + ?e ≤ real d by (simp add : c1)
hence real (x + floor ?e) > real (0 ::int) ∧ real (x + floor ?e) ≤ real d
using ie by simp

hence x + floor ?e ≥ 1 ∧ x + floor ?e ≤ d by simp
hence ∃ (j ::int) ∈ {1 .. d}. j = x + floor ?e by simp
hence ∃ (j ::int) ∈ {1 .. d}. real x = real (− floor ?e + j)
by (simp only : real-of-int-inject) (simp add : ring-simps)

hence ∃ (j ::int) ∈ {1 .. d}. real x = − ?e + real j
by (simp add : ie[simplified isint-iff])

with nob have ?case by auto}
ultimately show ?case by blast

next
case (8 c e) hence p: Ifm (real x #bs) (Ge (CN 0 c e)) and c1 : c=1 and

bn:numbound0 e
and ie1 :isint e (a #bs) using dvd1-eq1 [where x=c] by simp+
let ?e = Inum (real x # bs) e
from ie1 have ie: real (floor ?e) = ?e using numbound0-I [OF bn,where

b=real x and b ′=a and bs=bs] isint-iff [where n=e and bs=(real x)#bs]
by (simp add : isint-iff)

{assume real (x−d) +?e ≥ 0 hence ?case using c1
numbound0-I [OF bn,where b=real (x−d) and b ′=real x and bs=bs]
by (simp del : real-of-int-minus)}

moreover
{assume H : ¬ real (x−d) + ?e ≥ 0
let ?v=Sub (C −1) e
have vb: ?v ∈ set (β (Ge (CN 0 c e))) by simp

from prems(11)[simplified simp-thms Inum.simps β.simps set .simps bex-simps
numbound0-I [OF bn,where b=a and b ′=real x and bs=bs]]

have nob: ¬ (∃ j∈ {1 ..d}. real x = − ?e − 1 + real j) by auto
from H p have real x + ?e ≥ 0 ∧ real x + ?e < real d by (simp add : c1)
hence real (x + floor ?e) ≥ real (0 ::int) ∧ real (x + floor ?e) < real d
using ie by simp

hence x + floor ?e +1 ≥ 1 ∧ x + floor ?e + 1 ≤ d by simp
hence ∃ (j ::int) ∈ {1 .. d}. j = x + floor ?e + 1 by simp
hence ∃ (j ::int) ∈ {1 .. d}. x= − floor ?e − 1 + j by (simp add : ring-simps)
hence ∃ (j ::int) ∈ {1 .. d}. real x= real (− floor ?e − 1 + j)
by (simp only : real-of-int-inject)

99

hence ∃ (j ::int) ∈ {1 .. d}. real x= − ?e − 1 + real j
by (simp add : ie[simplified isint-iff])

with nob have ?case by simp }
ultimately show ?case by blast

next
case (3 c e) hence p: Ifm (real x #bs) (Eq (CN 0 c e)) (is ?p x) and c1 : c=1

and bn:numbound0 e and ie1 : isint e (a #bs) using dvd1-eq1 [where x=c]
by simp+

let ?e = Inum (real x # bs) e
let ?v=(Sub (C −1) e)
have vb: ?v ∈ set (β (Eq (CN 0 c e))) by simp
from p have real x= − ?e by (simp add : c1) with prems(11) show ?case

using dp
by simp (erule ballE [where x=1],
simp-all add :ring-simps numbound0-I [OF bn,where b=real xand b ′=aand

bs=bs])
next
case (4 c e)hence p: Ifm (real x #bs) (NEq (CN 0 c e)) (is ?p x) and c1 : c=1

and bn:numbound0 e and ie1 : isint e (a #bs) using dvd1-eq1 [where x=c]
by simp+

let ?e = Inum (real x # bs) e
let ?v=Neg e
have vb: ?v ∈ set (β (NEq (CN 0 c e))) by simp
{assume real x − real d + Inum ((real (x −d)) # bs) e 6= 0
hence ?case by (simp add : c1)}

moreover
{assume H : real x − real d + Inum ((real (x −d)) # bs) e = 0
hence real x = − Inum ((real (x −d)) # bs) e + real d by simp
hence real x = − Inum (a # bs) e + real d
by (simp add : numbound0-I [OF bn,where b=real x − real dand b ′=aand

bs=bs])
with prems(11) have ?case using dp by simp}

ultimately show ?case by blast
next
case (9 j c e) hence p: Ifm (real x #bs) (Dvd j (CN 0 c e)) (is ?p x) and c1 :

c=1
and bn:numbound0 e using dvd1-eq1 [where x=c] by simp+
let ?e = Inum (real x # bs) e
from prems have isint e (a #bs) by simp
hence ie: real (floor ?e) = ?e using isint-iff [where n=e and bs=(real x)#bs]

numbound0-I [OF bn,where b=real x and b ′=a and bs=bs]
by (simp add : isint-iff)

from prems have id : j dvd d by simp
from c1 ie[symmetric] have ?p x = (real j rdvd real (x+ floor ?e)) by simp
also have . . . = (j dvd x + floor ?e)
using int-rdvd-real [where i=j and x=real (x+ floor ?e)] by simp

also have . . . = (j dvd x − d + floor ?e)
using dvd-period [OF id , where x=x and c=−1 and t=floor ?e] by simp

100

also have . . . = (real j rdvd real (x − d + floor ?e))
using int-rdvd-real [where i=j and x=real (x−d + floor ?e),symmetric,

simplified]
ie by simp

also have . . . = (real j rdvd real x − real d + ?e)
using ie by simp

finally show ?case
using numbound0-I [OF bn,where b=real (x−d) and b ′=real x and bs=bs]

c1 p by simp
next

case (10 j c e) hence p: Ifm (real x #bs) (NDvd j (CN 0 c e)) (is ?p x) and
c1 : c=1 and bn:numbound0 e using dvd1-eq1 [where x=c] by simp+

let ?e = Inum (real x # bs) e
from prems have isint e (a#bs) by simp
hence ie: real (floor ?e) = ?e using numbound0-I [OF bn,where b=real x and

b ′=a and bs=bs] isint-iff [where n=e and bs=(real x)#bs]
by (simp add : isint-iff)

from prems have id : j dvd d by simp
from c1 ie[symmetric] have ?p x = (¬ real j rdvd real (x+ floor ?e)) by simp
also have . . . = (¬ j dvd x + floor ?e)
using int-rdvd-real [where i=j and x=real (x+ floor ?e)] by simp

also have . . . = (¬ j dvd x − d + floor ?e)
using dvd-period [OF id , where x=x and c=−1 and t=floor ?e] by simp

also have . . . = (¬ real j rdvd real (x − d + floor ?e))
using int-rdvd-real [where i=j and x=real (x−d + floor ?e),symmetric,

simplified]
ie by simp

also have . . . = (¬ real j rdvd real x − real d + ?e)
using ie by simp
finally show ?case using numbound0-I [OF bn,where b=real (x−d) and

b ′=real x and bs=bs] c1 p by simp
qed (auto simp add : numbound0-I [where bs=bs and b=real (x − d) and b ′=real
x] nth-pos2 simp del : real-of-int-diff)

lemma β ′:
assumes lp: iszlfm p (a #bs)
and u: dβ p 1
and d : dδ p d
and dp: d > 0
shows ∀ x . ¬(∃ (j ::int) ∈ {1 .. d}. ∃ b∈ set(β p). Ifm ((Inum (a#bs) b + real

j) #bs) p) −→ Ifm (real x#bs) p −→ Ifm (real (x − d)#bs) p (is ∀ x . ?b −→
?P x −→ ?P (x − d))
proof(clarify)
fix x
assume nb:?b and px : ?P x
hence nb2 : ¬(∃ (j ::int) ∈ {1 .. d}. ∃ b∈ (Inum (a#bs)) ‘ set(β p). real x = b

+ real j)
by auto

from β[OF lp u d dp nb2 px] show ?P (x −d) .

101

qed

lemma β-int : assumes lp: iszlfm p bs
shows ∀ b∈ set (β p). isint b bs

using lp by (induct p rule: iszlfm.induct) (auto simp add : isint-neg isint-sub)

lemma cpmi-eq : 0 < D =⇒ (EX z ::int . ALL x . x < z −−> (P x = P1 x))
==> ALL x .∼(EX (j ::int) : {1 ..D}. EX (b::int) : B . P(b+j)) −−> P (x) −−>
P (x − D)
==> (ALL (x ::int). ALL (k ::int). ((P1 x)= (P1 (x−k∗D))))
==> (EX (x ::int). P(x)) = ((EX (j ::int) : {1 ..D} . (P1 (j))) | (EX (j ::int) :
{1 ..D}. EX (b::int) : B . P (b+j)))
apply(rule iffI)
prefer 2
apply(drule minusinfinity)
apply assumption+
apply(fastsimp)
apply clarsimp
apply(subgoal-tac !!k . 0<=k =⇒ !x . P x −→ P (x − k∗D))
apply(frule-tac x = x and z=z in decr-lemma)
apply(subgoal-tac P1 (x − (|x − z | + 1) ∗ D))
prefer 2
apply(subgoal-tac 0 <= (|x − z | + 1))
prefer 2 apply arith
apply fastsimp
apply(drule (1) periodic-finite-ex)
apply blast
apply(blast dest :decr-mult-lemma)
done

theorem cp-thm:
assumes lp: iszlfm p (a #bs)
and u: dβ p 1
and d : dδ p d
and dp: d > 0
shows (∃ (x ::int). Ifm (real x #bs) p) = (∃ j∈ {1 .. d}. Ifm (real j #bs)

(minusinf p) ∨ (∃ b ∈ set (β p). Ifm ((Inum (a#bs) b + real j) #bs) p))
(is (∃ (x ::int). ?P (real x)) = (∃ j∈ ?D . ?M j ∨ (∃ b∈ ?B . ?P (?I b + real

j))))
proof−
from minusinf-inf [OF lp]
have th: ∃ (z ::int). ∀ x<z . ?P (real x) = ?M x by blast
let ?B ′ = {floor (?I b) | b. b∈ ?B}
from β-int [OF lp] isint-iff [where bs=a # bs] have B : ∀ b∈ ?B . real (floor (?I

b)) = ?I b by simp
from B [rule-format]
have (∃ j∈?D . ∃ b∈ ?B . ?P (?I b + real j)) = (∃ j∈?D . ∃ b∈ ?B . ?P (real (floor

(?I b)) + real j))

102

by simp
also have . . . = (∃ j∈?D . ∃ b∈ ?B . ?P (real (floor (?I b) + j))) by simp
also have. . . = (∃ j ∈ ?D . ∃ b ∈ ?B ′. ?P (real (b + j))) by blast
finally have BB ′:
(∃ j∈?D . ∃ b∈ ?B . ?P (?I b + real j)) = (∃ j ∈ ?D . ∃ b ∈ ?B ′. ?P (real (b +

j)))
by blast

hence th2 : ∀ x . ¬ (∃ j ∈ ?D . ∃ b ∈ ?B ′. ?P (real (b + j))) −→ ?P (real x)
−→ ?P (real (x − d)) using β ′[OF lp u d dp] by blast
from minusinf-repeats[OF d lp]
have th3 : ∀ x k . ?M x = ?M (x−k∗d) by simp
from cpmi-eq [OF dp th th2 th3] BB ′ show ?thesis by blast

qed

consts
% :: fm ⇒ (num × int) list
σ%:: fm ⇒ num × int ⇒ fm
α% :: fm ⇒ (num×int) list
a% :: fm ⇒ int ⇒ fm

recdef % measure size
% (And p q) = (% p @ % q)
% (Or p q) = (% p @ % q)
% (Eq (CN 0 c e)) = [(Sub (C −1) e,c)]
% (NEq (CN 0 c e)) = [(Neg e,c)]
% (Lt (CN 0 c e)) = []
% (Le (CN 0 c e)) = []
% (Gt (CN 0 c e)) = [(Neg e, c)]
% (Ge (CN 0 c e)) = [(Sub (C (−1)) e, c)]
% p = []

recdef σ% measure size
σ% (And p q) = (λ (t ,k). And (σ% p (t ,k)) (σ% q (t ,k)))
σ% (Or p q) = (λ (t ,k). Or (σ% p (t ,k)) (σ% q (t ,k)))
σ% (Eq (CN 0 c e)) = (λ (t ,k). if k dvd c then (Eq (Add (Mul (c div k) t) e))

else (Eq (Add (Mul c t) (Mul k e))))
σ% (NEq (CN 0 c e)) = (λ (t ,k). if k dvd c then (NEq (Add (Mul (c div k) t)

e))
else (NEq (Add (Mul c t) (Mul k e))))

σ% (Lt (CN 0 c e)) = (λ (t ,k). if k dvd c then (Lt (Add (Mul (c div k) t) e))
else (Lt (Add (Mul c t) (Mul k e))))

σ% (Le (CN 0 c e)) = (λ (t ,k). if k dvd c then (Le (Add (Mul (c div k) t) e))
else (Le (Add (Mul c t) (Mul k e))))

σ% (Gt (CN 0 c e)) = (λ (t ,k). if k dvd c then (Gt (Add (Mul (c div k) t) e))
else (Gt (Add (Mul c t) (Mul k e))))

σ% (Ge (CN 0 c e)) = (λ (t ,k). if k dvd c then (Ge (Add (Mul (c div k) t) e))
else (Ge (Add (Mul c t) (Mul k e))))

103

σ% (Dvd i (CN 0 c e)) =(λ (t ,k). if k dvd c then (Dvd i (Add (Mul (c div k) t)
e))

else (Dvd (i∗k) (Add (Mul c t) (Mul k e))))
σ% (NDvd i (CN 0 c e))=(λ (t ,k). if k dvd c then (NDvd i (Add (Mul (c div k)

t) e))
else (NDvd (i∗k) (Add (Mul c t) (Mul k e))))

σ% p = (λ (t ,k). p)

recdef α% measure size
α% (And p q) = (α% p @ α% q)
α% (Or p q) = (α% p @ α% q)
α% (Eq (CN 0 c e)) = [(Add (C −1) e,c)]
α% (NEq (CN 0 c e)) = [(e,c)]
α% (Lt (CN 0 c e)) = [(e,c)]
α% (Le (CN 0 c e)) = [(Add (C −1) e,c)]
α% p = []

recdef a% measure size
a% (And p q) = (λ k . And (a% p k) (a% q k))
a% (Or p q) = (λ k . Or (a% p k) (a% q k))
a% (Eq (CN 0 c e)) = (λ k . if k dvd c then (Eq (CN 0 (c div k) e))

else (Eq (CN 0 c (Mul k e))))
a% (NEq (CN 0 c e)) = (λ k . if k dvd c then (NEq (CN 0 (c div k) e))

else (NEq (CN 0 c (Mul k e))))
a% (Lt (CN 0 c e)) = (λ k . if k dvd c then (Lt (CN 0 (c div k) e))

else (Lt (CN 0 c (Mul k e))))
a% (Le (CN 0 c e)) = (λ k . if k dvd c then (Le (CN 0 (c div k) e))

else (Le (CN 0 c (Mul k e))))
a% (Gt (CN 0 c e)) = (λ k . if k dvd c then (Gt (CN 0 (c div k) e))

else (Gt (CN 0 c (Mul k e))))
a% (Ge (CN 0 c e)) = (λ k . if k dvd c then (Ge (CN 0 (c div k) e))

else (Ge (CN 0 c (Mul k e))))
a% (Dvd i (CN 0 c e)) = (λ k . if k dvd c then (Dvd i (CN 0 (c div k) e))

else (Dvd (i∗k) (CN 0 c (Mul k e))))
a% (NDvd i (CN 0 c e)) = (λ k . if k dvd c then (NDvd i (CN 0 (c div k) e))

else (NDvd (i∗k) (CN 0 c (Mul k e))))
a% p = (λ k . p)

constdefs σ :: fm ⇒ int ⇒ num ⇒ fm
σ p k t ≡ And (Dvd k t) (σ% p (t ,k))

lemma σ%:
assumes linp: iszlfm p (real (x ::int)#bs)
and kpos: real k > 0
and tnb: numbound0 t
and tint : isint t (real x#bs)
and kdt : k dvd floor (Inum (b ′#bs) t)

104

shows Ifm (real x#bs) (σ% p (t ,k)) =
(Ifm ((real ((floor (Inum (b ′#bs) t)) div k))#bs) p)
(is ?I (real x) (?s p) = (?I (real ((floor (?N b ′ t)) div k)) p) is - = (?I ?tk p))

using linp kpos tnb
proof(induct p rule: σ%.induct)
case (3 c e)
from prems have cp: c > 0 and nb: numbound0 e by auto

{assume kdc: k dvd c
from kpos have knz : k 6=0 by simp
from tint have ti : real (floor (?N (real x) t)) = ?N (real x) t using isint-def

by simp
from prems have ?case using real-of-int-div [OF knz kdc] real-of-int-div [OF

knz kdt]
numbound0-I [OF tnb, where bs=bs and b=b ′ and b ′=real x]

numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x] by (simp add :
ti) }

moreover
{assume ¬ k dvd c
from kpos have knz : k 6=0 by simp hence knz ′: real k 6= 0 by simp
from tint have ti : real (floor (?N (real x) t)) = ?N (real x) t using isint-def

by simp
from prems have ?I (real x) (?s (Eq (CN 0 c e))) = ((real c ∗ (?N (real x)

t / real k) + ?N (real x) e)∗ real k = 0)
using real-of-int-div [OF knz kdt]

numbound0-I [OF tnb, where bs=bs and b=b ′ and b ′=real x]
numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x] by (simp

add : ti ring-simps)
also have . . . = (?I ?tk (Eq (CN 0 c e))) using nonzero-eq-divide-eq [OF knz ′,

where a=real c ∗ (?N (real x) t / real k) + ?N (real x) e and b=0 , symmetric]
real-of-int-div [OF knz kdt] numbound0-I [OF tnb, where bs=bs and b=b ′ and
b ′=real x]

numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x]
by (simp add : ti)

finally have ?case . }
ultimately show ?case by blast

next
case (4 c e)
from prems have cp: c > 0 and nb: numbound0 e by auto

{assume kdc: k dvd c
from kpos have knz : k 6=0 by simp
from tint have ti : real (floor (?N (real x) t)) = ?N (real x) t using isint-def

by simp
from prems have ?case using real-of-int-div [OF knz kdc] real-of-int-div [OF

knz kdt]
numbound0-I [OF tnb, where bs=bs and b=b ′ and b ′=real x]

numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x] by (simp add :
ti) }

moreover
{assume ¬ k dvd c

105

from kpos have knz : k 6=0 by simp hence knz ′: real k 6= 0 by simp
from tint have ti : real (floor (?N (real x) t)) = ?N (real x) t using isint-def

by simp
from prems have ?I (real x) (?s (NEq (CN 0 c e))) = ((real c ∗ (?N (real

x) t / real k) + ?N (real x) e)∗ real k 6= 0)
using real-of-int-div [OF knz kdt]

numbound0-I [OF tnb, where bs=bs and b=b ′ and b ′=real x]
numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x] by (simp

add : ti ring-simps)
also have . . . = (?I ?tk (NEq (CN 0 c e))) using nonzero-eq-divide-eq [OF

knz ′, where a=real c ∗ (?N (real x) t / real k) + ?N (real x) e and b=0 ,
symmetric] real-of-int-div [OF knz kdt] numbound0-I [OF tnb, where bs=bs and
b=b ′ and b ′=real x]

numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x]
by (simp add : ti)

finally have ?case . }
ultimately show ?case by blast

next
case (5 c e)
from prems have cp: c > 0 and nb: numbound0 e by auto

{assume kdc: k dvd c
from kpos have knz : k 6=0 by simp
from tint have ti : real (floor (?N (real x) t)) = ?N (real x) t using isint-def

by simp
from prems have ?case using real-of-int-div [OF knz kdc] real-of-int-div [OF

knz kdt]
numbound0-I [OF tnb, where bs=bs and b=b ′ and b ′=real x]

numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x] by (simp add :
ti) }

moreover
{assume ¬ k dvd c
from kpos have knz : k 6=0 by simp
from tint have ti : real (floor (?N (real x) t)) = ?N (real x) t using isint-def

by simp
from prems have ?I (real x) (?s (Lt (CN 0 c e))) = ((real c ∗ (?N (real x)

t / real k) + ?N (real x) e)∗ real k < 0)
using real-of-int-div [OF knz kdt]

numbound0-I [OF tnb, where bs=bs and b=b ′ and b ′=real x]
numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x] by (simp

add : ti ring-simps)
also have . . . = (?I ?tk (Lt (CN 0 c e))) using pos-less-divide-eq [OF kpos,

where a=real c ∗ (?N (real x) t / real k) + ?N (real x) e and b=0 , symmetric]
real-of-int-div [OF knz kdt] numbound0-I [OF tnb, where bs=bs and b=b ′ and
b ′=real x]

numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x]
by (simp add : ti)

finally have ?case . }
ultimately show ?case by blast

next

106

case (6 c e)
from prems have cp: c > 0 and nb: numbound0 e by auto

{assume kdc: k dvd c
from kpos have knz : k 6=0 by simp
from tint have ti : real (floor (?N (real x) t)) = ?N (real x) t using isint-def

by simp
from prems have ?case using real-of-int-div [OF knz kdc] real-of-int-div [OF

knz kdt]
numbound0-I [OF tnb, where bs=bs and b=b ′ and b ′=real x]

numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x] by (simp add :
ti) }

moreover
{assume ¬ k dvd c
from kpos have knz : k 6=0 by simp
from tint have ti : real (floor (?N (real x) t)) = ?N (real x) t using isint-def

by simp
from prems have ?I (real x) (?s (Le (CN 0 c e))) = ((real c ∗ (?N (real x)

t / real k) + ?N (real x) e)∗ real k ≤ 0)
using real-of-int-div [OF knz kdt]

numbound0-I [OF tnb, where bs=bs and b=b ′ and b ′=real x]
numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x] by (simp

add : ti ring-simps)
also have . . . = (?I ?tk (Le (CN 0 c e))) using pos-le-divide-eq [OF kpos,

where a=real c ∗ (?N (real x) t / real k) + ?N (real x) e and b=0 , symmetric]
real-of-int-div [OF knz kdt] numbound0-I [OF tnb, where bs=bs and b=b ′ and
b ′=real x]

numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x]
by (simp add : ti)

finally have ?case . }
ultimately show ?case by blast

next
case (7 c e)
from prems have cp: c > 0 and nb: numbound0 e by auto

{assume kdc: k dvd c
from kpos have knz : k 6=0 by simp
from tint have ti : real (floor (?N (real x) t)) = ?N (real x) t using isint-def

by simp
from prems have ?case using real-of-int-div [OF knz kdc] real-of-int-div [OF

knz kdt]
numbound0-I [OF tnb, where bs=bs and b=b ′ and b ′=real x]

numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x] by (simp add :
ti) }

moreover
{assume ¬ k dvd c
from kpos have knz : k 6=0 by simp
from tint have ti : real (floor (?N (real x) t)) = ?N (real x) t using isint-def

by simp
from prems have ?I (real x) (?s (Gt (CN 0 c e))) = ((real c ∗ (?N (real x)

t / real k) + ?N (real x) e)∗ real k > 0)

107

using real-of-int-div [OF knz kdt]
numbound0-I [OF tnb, where bs=bs and b=b ′ and b ′=real x]
numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x] by (simp

add : ti ring-simps)
also have . . . = (?I ?tk (Gt (CN 0 c e))) using pos-divide-less-eq [OF kpos,

where a=real c ∗ (?N (real x) t / real k) + ?N (real x) e and b=0 , symmetric]
real-of-int-div [OF knz kdt] numbound0-I [OF tnb, where bs=bs and b=b ′ and
b ′=real x]

numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x]
by (simp add : ti)

finally have ?case . }
ultimately show ?case by blast

next
case (8 c e)
from prems have cp: c > 0 and nb: numbound0 e by auto

{assume kdc: k dvd c
from kpos have knz : k 6=0 by simp
from tint have ti : real (floor (?N (real x) t)) = ?N (real x) t using isint-def

by simp
from prems have ?case using real-of-int-div [OF knz kdc] real-of-int-div [OF

knz kdt]
numbound0-I [OF tnb, where bs=bs and b=b ′ and b ′=real x]

numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x] by (simp add :
ti) }

moreover
{assume ¬ k dvd c
from kpos have knz : k 6=0 by simp
from tint have ti : real (floor (?N (real x) t)) = ?N (real x) t using isint-def

by simp
from prems have ?I (real x) (?s (Ge (CN 0 c e))) = ((real c ∗ (?N (real x)

t / real k) + ?N (real x) e)∗ real k ≥ 0)
using real-of-int-div [OF knz kdt]

numbound0-I [OF tnb, where bs=bs and b=b ′ and b ′=real x]
numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x] by (simp

add : ti ring-simps)
also have . . . = (?I ?tk (Ge (CN 0 c e))) using pos-divide-le-eq [OF kpos,

where a=real c ∗ (?N (real x) t / real k) + ?N (real x) e and b=0 , symmetric]
real-of-int-div [OF knz kdt] numbound0-I [OF tnb, where bs=bs and b=b ′ and
b ′=real x]

numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x]
by (simp add : ti)

finally have ?case . }
ultimately show ?case by blast

next
case (9 i c e) from prems have cp: c > 0 and nb: numbound0 e by auto

{assume kdc: k dvd c
from kpos have knz : k 6=0 by simp
from tint have ti : real (floor (?N (real x) t)) = ?N (real x) t using isint-def

by simp

108

from prems have ?case using real-of-int-div [OF knz kdc] real-of-int-div [OF
knz kdt]

numbound0-I [OF tnb, where bs=bs and b=b ′ and b ′=real x]
numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x] by (simp add :

ti) }
moreover
{assume ¬ k dvd c
from kpos have knz : k 6=0 by simp hence knz ′: real k 6= 0 by simp
from tint have ti : real (floor (?N (real x) t)) = ?N (real x) t using isint-def

by simp
from prems have ?I (real x) (?s (Dvd i (CN 0 c e))) = (real i ∗ real k rdvd

(real c ∗ (?N (real x) t / real k) + ?N (real x) e)∗ real k)
using real-of-int-div [OF knz kdt]

numbound0-I [OF tnb, where bs=bs and b=b ′ and b ′=real x]
numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x] by (simp

add : ti ring-simps)
also have . . . = (?I ?tk (Dvd i (CN 0 c e))) using rdvd-mult [OF knz , where

n=i] real-of-int-div [OF knz kdt] numbound0-I [OF tnb, where bs=bs and b=b ′

and b ′=real x]
numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x]

by (simp add : ti)
finally have ?case . }

ultimately show ?case by blast
next
case (10 i c e) from prems have cp: c > 0 and nb: numbound0 e by auto

{assume kdc: k dvd c
from kpos have knz : k 6=0 by simp
from tint have ti : real (floor (?N (real x) t)) = ?N (real x) t using isint-def

by simp
from prems have ?case using real-of-int-div [OF knz kdc] real-of-int-div [OF

knz kdt]
numbound0-I [OF tnb, where bs=bs and b=b ′ and b ′=real x]

numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x] by (simp add :
ti) }

moreover
{assume ¬ k dvd c
from kpos have knz : k 6=0 by simp hence knz ′: real k 6= 0 by simp
from tint have ti : real (floor (?N (real x) t)) = ?N (real x) t using isint-def

by simp
from prems have ?I (real x) (?s (NDvd i (CN 0 c e))) = (¬ (real i ∗ real k

rdvd (real c ∗ (?N (real x) t / real k) + ?N (real x) e)∗ real k))
using real-of-int-div [OF knz kdt]

numbound0-I [OF tnb, where bs=bs and b=b ′ and b ′=real x]
numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x] by (simp

add : ti ring-simps)
also have . . . = (?I ?tk (NDvd i (CN 0 c e))) using rdvd-mult [OF knz ,

where n=i] real-of-int-div [OF knz kdt] numbound0-I [OF tnb, where bs=bs and
b=b ′ and b ′=real x]

numbound0-I [OF nb, where bs=bs and b=?tk and b ′=real x]

109

by (simp add : ti)
finally have ?case . }

ultimately show ?case by blast
qed (simp-all add : nth-pos2 bound0-I [where bs=bs and b=real ((floor (?N b ′ t))
div k) and b ′=real x] numbound0-I [where bs=bs and b=real ((floor (?N b ′ t))
div k) and b ′=real x])

lemma a%:
assumes lp: iszlfm p (real (x ::int)#bs) and kp: real k > 0
shows Ifm (real (x∗k)#bs) (a% p k) = Ifm (real x#bs) p (is ?I (x∗k) (?f p k)

= ?I x p)
using lp bound0-I [where bs=bs and b=real (x∗k) and b ′=real x] numbound0-I [where
bs=bs and b=real (x∗k) and b ′=real x]
proof(induct p rule: a%.induct)
case (3 c e)
from prems have cp: c > 0 and nb: numbound0 e by auto
from kp have knz : k 6=0 by simp hence knz ′: real k 6= 0 by simp

{assume kdc: k dvd c from prems have ?case using real-of-int-div [OF knz
kdc] by simp }

moreover
{assume nkdc: ¬ k dvd c hence ?case using numbound0-I [OF nb, where

bs=bs and b=real (x∗k) and b ′=real x] nonzero-eq-divide-eq [OF knz ′, where
b=0 and a=real c ∗ real x + Inum (real x # bs) e, symmetric] by (simp add :
ring-simps)}

ultimately show ?case by blast
next
case (4 c e)
from prems have cp: c > 0 and nb: numbound0 e by auto
from kp have knz : k 6=0 by simp hence knz ′: real k 6= 0 by simp

{assume kdc: k dvd c from prems have ?case using real-of-int-div [OF knz
kdc] by simp }

moreover
{assume nkdc: ¬ k dvd c hence ?case using numbound0-I [OF nb, where

bs=bs and b=real (x∗k) and b ′=real x] nonzero-eq-divide-eq [OF knz ′, where
b=0 and a=real c ∗ real x + Inum (real x # bs) e, symmetric] by (simp add :
ring-simps)}

ultimately show ?case by blast
next
case (5 c e)
from prems have cp: c > 0 and nb: numbound0 e by auto
from kp have knz : k 6=0 by simp hence knz ′: real k 6= 0 by simp

{assume kdc: k dvd c from prems have ?case using real-of-int-div [OF knz
kdc] by simp }

moreover
{assume nkdc: ¬ k dvd c hence ?case using numbound0-I [OF nb, where

bs=bs and b=real (x∗k) and b ′=real x] pos-less-divide-eq [OF kp, where b=0 and
a=real c ∗ real x + Inum (real x # bs) e, symmetric] by (simp add : ring-simps)}

ultimately show ?case by blast

110

next
case (6 c e)
from prems have cp: c > 0 and nb: numbound0 e by auto
from kp have knz : k 6=0 by simp hence knz ′: real k 6= 0 by simp

{assume kdc: k dvd c from prems have ?case using real-of-int-div [OF knz
kdc] by simp }

moreover
{assume nkdc: ¬ k dvd c hence ?case using numbound0-I [OF nb, where

bs=bs and b=real (x∗k) and b ′=real x] pos-le-divide-eq [OF kp, where b=0 and
a=real c ∗ real x + Inum (real x # bs) e, symmetric] by (simp add : ring-simps)}

ultimately show ?case by blast
next
case (7 c e)
from prems have cp: c > 0 and nb: numbound0 e by auto
from kp have knz : k 6=0 by simp hence knz ′: real k 6= 0 by simp

{assume kdc: k dvd c from prems have ?case using real-of-int-div [OF knz
kdc] by simp }

moreover
{assume nkdc: ¬ k dvd c hence ?case using numbound0-I [OF nb, where

bs=bs and b=real (x∗k) and b ′=real x] pos-divide-less-eq [OF kp, where b=0 and
a=real c ∗ real x + Inum (real x # bs) e, symmetric] by (simp add : ring-simps)}

ultimately show ?case by blast
next
case (8 c e)
from prems have cp: c > 0 and nb: numbound0 e by auto
from kp have knz : k 6=0 by simp hence knz ′: real k 6= 0 by simp

{assume kdc: k dvd c from prems have ?case using real-of-int-div [OF knz
kdc] by simp }

moreover
{assume nkdc: ¬ k dvd c hence ?case using numbound0-I [OF nb, where

bs=bs and b=real (x∗k) and b ′=real x] pos-divide-le-eq [OF kp, where b=0 and
a=real c ∗ real x + Inum (real x # bs) e, symmetric] by (simp add : ring-simps)}

ultimately show ?case by blast
next
case (9 i c e)
from prems have cp: c > 0 and nb: numbound0 e by auto
from kp have knz : k 6=0 by simp hence knz ′: real k 6= 0 by simp
{assume kdc: k dvd c from prems have ?case using real-of-int-div [OF knz

kdc] by simp }
moreover
{assume ¬ k dvd c
hence Ifm (real (x∗k)#bs) (a% (Dvd i (CN 0 c e)) k) =

(real i ∗ real k rdvd (real c ∗ real x + Inum (real x#bs) e) ∗ real k)
using numbound0-I [OF nb, where bs=bs and b=real (x∗k) and b ′=real x]
by (simp add : ring-simps)

also have . . . = (Ifm (real x#bs) (Dvd i (CN 0 c e))) by (simp add : rdvd-mult [OF
knz , where n=i])

finally have ?case . }
ultimately show ?case by blast

111

next
case (10 i c e)
from prems have cp: c > 0 and nb: numbound0 e by auto
from kp have knz : k 6=0 by simp hence knz ′: real k 6= 0 by simp
{assume kdc: k dvd c from prems have ?case using real-of-int-div [OF knz

kdc] by simp }
moreover
{assume ¬ k dvd c
hence Ifm (real (x∗k)#bs) (a% (NDvd i (CN 0 c e)) k) =

(¬ (real i ∗ real k rdvd (real c ∗ real x + Inum (real x#bs) e) ∗ real k))
using numbound0-I [OF nb, where bs=bs and b=real (x∗k) and b ′=real x]
by (simp add : ring-simps)
also have . . . = (Ifm (real x#bs) (NDvd i (CN 0 c e))) by (simp add :

rdvd-mult [OF knz , where n=i])
finally have ?case . }

ultimately show ?case by blast
qed (simp-all add : nth-pos2)

lemma a%-ex :
assumes lp: iszlfm p (real (x ::int)#bs) and kp: k > 0
shows (∃ (x ::int). real k rdvd real x ∧ Ifm (real x#bs) (a% p k)) =
(∃ (x ::int). Ifm (real x#bs) p) (is (∃ x . ?D x ∧ ?P ′ x) = (∃ x . ?P x))

proof−
have (∃ x . ?D x ∧ ?P ′ x) = (∃ x . k dvd x ∧ ?P ′ x) using int-rdvd-iff by simp
also have . . . = (∃ x . ?P ′ (x∗k)) using unity-coeff-ex [where P=?P ′ and l=k ,

simplified]
by (simp add : ring-simps)

also have . . . = (∃ x . ?P x) using a% iszlfm-gen[OF lp] kp by auto
finally show ?thesis .

qed

lemma σ% ′: assumes lp: iszlfm p (real (x ::int)#bs) and kp: k > 0 and nb:
numbound0 t
shows Ifm (real x#bs) (σ% p (t ,k)) = Ifm ((Inum (real x#bs) t)#bs) (a% p k)

using lp
by(induct p rule: σ%.induct , simp-all add :
numbound0-I [OF nb, where bs=bs and b=Inum (real x#bs) t and b ′=real x]
numbound0-I [where bs=bs and b=Inum (real x#bs) t and b ′=real x]
bound0-I [where bs=bs and b=Inum (real x#bs) t and b ′=real x] nth-pos2 cong :

imp-cong)

lemma σ%-nb: assumes lp:iszlfm p (a#bs) and nb: numbound0 t
shows bound0 (σ% p (t ,k))
using lp
by (induct p rule: iszlfm.induct , auto simp add : nb)

lemma %-l :
assumes lp: iszlfm p (real (i ::int)#bs)
shows ∀ (b,k) ∈ set (% p). k >0 ∧ numbound0 b ∧ isint b (real i#bs)

112

using lp by (induct p rule: %.induct , auto simp add : isint-sub isint-neg)

lemma α%-l :
assumes lp: iszlfm p (real (i ::int)#bs)
shows ∀ (b,k) ∈ set (α% p). k >0 ∧ numbound0 b ∧ isint b (real i#bs)

using lp isint-add [OF isint-c[where j=− 1],where bs=real i#bs]
by (induct p rule: α%.induct , auto)

lemma zminusinf-%:
assumes lp: iszlfm p (real (i ::int)#bs)
and nmi : ¬ (Ifm (real i#bs) (minusinf p)) (is ¬ (Ifm (real i#bs) (?M p)))
and ex : Ifm (real i#bs) p (is ?I i p)
shows ∃ (e,c) ∈ set (% p). real (c∗i) > Inum (real i#bs) e (is ∃ (e,c) ∈ ?R p.

real (c∗i) > ?N i e)
using lp nmi ex

by (induct p rule: minusinf .induct , auto)

lemma σ-And : Ifm bs (σ (And p q) k t) = Ifm bs (And (σ p k t) (σ q k t))
using σ-def by auto
lemma σ-Or : Ifm bs (σ (Or p q) k t) = Ifm bs (Or (σ p k t) (σ q k t))
using σ-def by auto

lemma %: assumes lp: iszlfm p (real (i ::int) #bs)
and pi : Ifm (real i#bs) p
and d : dδ p d
and dp: d > 0
and nob: ∀ (e,c) ∈ set (% p). ∀ j∈ {1 .. c∗d}. real (c∗i) 6= Inum (real i#bs) e

+ real j
(is ∀ (e,c) ∈ set (% p). ∀ j∈ {1 .. c∗d}. - 6= ?N i e + -)
shows Ifm (real(i − d)#bs) p
using lp pi d nob

proof(induct p rule: iszlfm.induct)
case (3 c e) hence cp: c >0 and nb: numbound0 e and ei : isint e (real i#bs)
and pi : real (c∗i) = − 1 − ?N i e + real (1 ::int) and nob: ∀ j∈ {1 .. c∗d}.

real (c∗i) 6= −1 − ?N i e + real j
by simp+

from mult-strict-left-mono[OF dp cp] have one:1 ∈ {1 .. c∗d} by auto
from nob[rule-format , where j=1 , OF one] pi show ?case by simp

next
case (4 c e)
hence cp: c >0 and nb: numbound0 e and ei : isint e (real i#bs)
and nob: ∀ j∈ {1 .. c∗d}. real (c∗i) 6= − ?N i e + real j
by simp+

{assume real (c∗i) 6= − ?N i e + real (c∗d)
with numbound0-I [OF nb, where bs=bs and b=real i − real d and b ′=real i]
have ?case by (simp add : ring-simps)}

moreover
{assume pi : real (c∗i) = − ?N i e + real (c∗d)

113

from mult-strict-left-mono[OF dp cp] have d : (c∗d) ∈ {1 .. c∗d} by simp
from nob[rule-format , where j=c∗d , OF d] pi have ?case by simp }

ultimately show ?case by blast
next
case (5 c e) hence cp: c > 0 by simp
from prems mult-strict-left-mono[OF dp cp, simplified real-of-int-less-iff [symmetric]

real-of-int-mult]
show ?case using prems dp

by (simp add : add : numbound0-I [where bs=bs and b=real i − real d and
b ′=real i]

ring-simps)
next
case (6 c e) hence cp: c > 0 by simp
from prems mult-strict-left-mono[OF dp cp, simplified real-of-int-less-iff [symmetric]

real-of-int-mult]
show ?case using prems dp

by (simp add : add : numbound0-I [where bs=bs and b=real i − real d and
b ′=real i]

ring-simps)
next
case (7 c e) hence cp: c >0 and nb: numbound0 e and ei : isint e (real i#bs)
and nob: ∀ j∈ {1 .. c∗d}. real (c∗i) 6= − ?N i e + real j
and pi : real (c∗i) + ?N i e > 0 and cp ′: real c >0
by simp+

let ?fe = floor (?N i e)
from pi cp have th:(real i +?N i e / real c)∗real c > 0 by (simp add : ring-simps)
from pi ei [simplified isint-iff] have real (c∗i + ?fe) > real (0 ::int) by simp
hence pi ′: c∗i + ?fe > 0 by (simp only : real-of-int-less-iff [symmetric])
have real (c∗i) + ?N i e > real (c∗d) ∨ real (c∗i) + ?N i e ≤ real (c∗d) by

auto
moreover
{assume real (c∗i) + ?N i e > real (c∗d) hence ?case

by (simp add : ring-simps
numbound0-I [OF nb,where bs=bs and b=real i − real d and b ′=real i])}

moreover
{assume H :real (c∗i) + ?N i e ≤ real (c∗d)
with ei [simplified isint-iff] have real (c∗i + ?fe) ≤ real (c∗d) by simp
hence pid : c∗i + ?fe ≤ c∗d by (simp only : real-of-int-le-iff)
with pi ′ have ∃ j1∈ {1 .. c∗d}. c∗i + ?fe = j1 by auto
hence ∃ j1∈ {1 .. c∗d}. real (c∗i) = − ?N i e + real j1
by (simp only : diff-def [symmetric] real-of-int-mult real-of-int-add real-of-int-inject [symmetric]

ei [simplified isint-iff] ring-simps)
with nob have ?case by blast }

ultimately show ?case by blast
next
case (8 c e) hence cp: c >0 and nb: numbound0 e and ei : isint e (real i#bs)
and nob: ∀ j∈ {1 .. c∗d}. real (c∗i) 6= − 1 − ?N i e + real j

114

and pi : real (c∗i) + ?N i e ≥ 0 and cp ′: real c >0
by simp+

let ?fe = floor (?N i e)
from pi cp have th:(real i +?N i e / real c)∗real c ≥ 0 by (simp add : ring-simps)
from pi ei [simplified isint-iff] have real (c∗i + ?fe) ≥ real (0 ::int) by simp
hence pi ′: c∗i + 1 + ?fe ≥ 1 by (simp only : real-of-int-le-iff [symmetric])
have real (c∗i) + ?N i e ≥ real (c∗d) ∨ real (c∗i) + ?N i e < real (c∗d) by

auto
moreover
{assume real (c∗i) + ?N i e ≥ real (c∗d) hence ?case

by (simp add : ring-simps
numbound0-I [OF nb,where bs=bs and b=real i − real d and b ′=real i])}

moreover
{assume H :real (c∗i) + ?N i e < real (c∗d)
with ei [simplified isint-iff] have real (c∗i + ?fe) < real (c∗d) by simp
hence pid : c∗i + 1 + ?fe ≤ c∗d by (simp only : real-of-int-le-iff)
with pi ′ have ∃ j1∈ {1 .. c∗d}. c∗i + 1+ ?fe = j1 by auto
hence ∃ j1∈ {1 .. c∗d}. real (c∗i) + 1= − ?N i e + real j1
by (simp only : diff-def [symmetric] real-of-int-mult real-of-int-add real-of-int-inject [symmetric]

ei [simplified isint-iff] ring-simps real-of-one)
hence ∃ j1∈ {1 .. c∗d}. real (c∗i) = (− ?N i e + real j1) − 1
by (simp only : ring-simps diff-def [symmetric])
hence ∃ j1∈ {1 .. c∗d}. real (c∗i) = − 1 − ?N i e + real j1
by (simp only : add-ac diff-def)

with nob have ?case by blast }
ultimately show ?case by blast

next
case (9 j c e) hence p: real j rdvd real (c∗i) + ?N i e (is ?p x) and cp: c > 0

and bn:numbound0 e by simp+
let ?e = Inum (real i # bs) e
from prems have isint e (real i #bs) by simp
hence ie: real (floor ?e) = ?e using isint-iff [where n=e and bs=(real i)#bs]

numbound0-I [OF bn,where b=real i and b ′=real i and bs=bs]
by (simp add : isint-iff)

from prems have id : j dvd d by simp
from ie[symmetric] have ?p i = (real j rdvd real (c∗i+ floor ?e)) by simp
also have . . . = (j dvd c∗i + floor ?e)
using int-rdvd-iff [where i=j and t=c∗i+ floor ?e] by simp

also have . . . = (j dvd c∗i − c∗d + floor ?e)
using dvd-period [OF id , where x=c∗i and c=−c and t=floor ?e] by simp

also have . . . = (real j rdvd real (c∗i − c∗d + floor ?e))
using int-rdvd-iff [where i=j and t=(c∗i − c∗d + floor ?e),symmetric,

simplified]
ie by simp

also have . . . = (real j rdvd real (c∗(i − d)) + ?e)
using ie by (simp add :ring-simps)

finally show ?case
using numbound0-I [OF bn,where b=real i − real d and b ′=real i and bs=bs]

p

115

by (simp add : ring-simps)
next
case (10 j c e) hence p: ¬ (real j rdvd real (c∗i) + ?N i e) (is ?p x) and cp:

c > 0 and bn:numbound0 e by simp+
let ?e = Inum (real i # bs) e
from prems have isint e (real i #bs) by simp
hence ie: real (floor ?e) = ?e using isint-iff [where n=e and bs=(real i)#bs]

numbound0-I [OF bn,where b=real i and b ′=real i and bs=bs]
by (simp add : isint-iff)

from prems have id : j dvd d by simp
from ie[symmetric] have ?p i = (¬ (real j rdvd real (c∗i+ floor ?e))) by simp
also have . . . = Not (j dvd c∗i + floor ?e)
using int-rdvd-iff [where i=j and t=c∗i+ floor ?e] by simp

also have . . . = Not (j dvd c∗i − c∗d + floor ?e)
using dvd-period [OF id , where x=c∗i and c=−c and t=floor ?e] by simp

also have . . . = Not (real j rdvd real (c∗i − c∗d + floor ?e))
using int-rdvd-iff [where i=j and t=(c∗i − c∗d + floor ?e),symmetric,

simplified]
ie by simp

also have . . . = Not (real j rdvd real (c∗(i − d)) + ?e)
using ie by (simp add :ring-simps)

finally show ?case
using numbound0-I [OF bn,where b=real i − real d and b ′=real i and bs=bs]

p
by (simp add : ring-simps)

qed(auto simp add : numbound0-I [where bs=bs and b=real i − real d and b ′=real
i] nth-pos2)

lemma σ-nb: assumes lp: iszlfm p (a#bs) and nb: numbound0 t
shows bound0 (σ p k t)
using σ%-nb[OF lp nb] nb by (simp add : σ-def)

lemma % ′: assumes lp: iszlfm p (a #bs)
and d : dδ p d
and dp: d > 0
shows ∀ x . ¬(∃ (e,c) ∈ set(% p). ∃ (j ::int) ∈ {1 .. c∗d}. Ifm (a #bs) (σ p c

(Add e (C j)))) −→ Ifm (real x#bs) p −→ Ifm (real (x − d)#bs) p (is ∀ x . ?b x
−→ ?P x −→ ?P (x − d))
proof(clarify)
fix x
assume nob1 :?b x and px : ?P x
from iszlfm-gen[OF lp, rule-format , where y=real x] have lp ′: iszlfm p (real

x#bs).
have nob: ∀ (e, c)∈set (% p). ∀ j∈{1 ..c ∗ d}. real (c ∗ x) 6= Inum (real x # bs)

e + real j
proof(clarify)
fix e c j assume ecR: (e,c) ∈ set (% p) and jD : j∈ {1 .. c∗d}
and cx : real (c∗x) = Inum (real x#bs) e + real j

let ?e = Inum (real x#bs) e

116

let ?fe = floor ?e
from %-l [OF lp ′] ecR have ei :isint e (real x#bs) and cp:c>0 and nb:numbound0

e
by auto

from numbound0-gen [OF nb ei , rule-format ,where y=a] have isint e (a#bs)
.

from cx ei [simplified isint-iff] have real (c∗x) = real (?fe + j) by simp
hence cx : c∗x = ?fe + j by (simp only : real-of-int-inject)
hence cdej :c dvd ?fe + j by (simp add : dvd-def) (rule-tac x=x in exI , simp)
hence real c rdvd real (?fe + j) by (simp only : int-rdvd-iff)
hence rcdej : real c rdvd ?e + real j by (simp add : ei [simplified isint-iff])
from cx have (c∗x) div c = (?fe + j) div c by simp
with cp have x = (?fe + j) div c by simp
with px have th: ?P ((?fe + j) div c) by auto
from cp have cp ′: real c > 0 by simp
from cdej have cdej ′: c dvd floor (Inum (real x#bs) (Add e (C j))) by simp
from nb have nb ′: numbound0 (Add e (C j)) by simp
have ji : isint (C j) (real x#bs) by (simp add : isint-def)
from isint-add [OF ei ji] have ei ′:isint (Add e (C j)) (real x#bs) .
from th σ%[where b ′=real x , OF lp ′ cp ′ nb ′ ei ′ cdej ′,symmetric]
have Ifm (real x#bs) (σ% p (Add e (C j), c)) by simp
with rcdej have th: Ifm (real x#bs) (σ p c (Add e (C j))) by (simp add :

σ-def)
from th bound0-I [OF σ-nb[OF lp nb ′, where k=c],where bs=bs and b=real

x and b ′=a]
have Ifm (a#bs) (σ p c (Add e (C j))) by blast
with ecR jD nob1 show False by blast

qed
from %[OF lp ′ px d dp nob] show ?P (x −d) .

qed

lemma rl-thm:
assumes lp: iszlfm p (real (i ::int)#bs)
shows (∃ (x ::int). Ifm (real x#bs) p) = ((∃ j∈ {1 .. δ p}. Ifm (real j#bs)

(minusinf p)) ∨ (∃ (e,c) ∈ set (% p). ∃ j∈ {1 .. c∗(δ p)}. Ifm (a#bs) (σ p c (Add
e (C j)))))

(is (∃ (x ::int). ?P x) = ((∃ j∈ {1 .. δ p}. ?MP j)∨(∃ (e,c) ∈ ?R. ∃ j∈ -. ?SP c
e j))

is ?lhs = (?MD ∨ ?RD) is ?lhs = ?rhs)
proof−
let ?d= δ p
from δ[OF lp] have d :dδ p ?d and dp: ?d > 0 by auto
{ assume H :?MD hence th:∃ (x ::int). ?MP x by blast
from H minusinf-ex [OF lp th] have ?thesis by blast}

moreover
{ fix e c j assume exR:(e,c) ∈ ?R and jD :j∈ {1 .. c∗?d} and spx :?SP c e j

from exR %-l [OF lp] have nb: numbound0 e and ei :isint e (real i#bs) and
cp: c > 0

117

by auto
have isint (C j) (real i#bs) by (simp add : isint-iff)
with isint-add [OF numbound0-gen[OF nb ei ,rule-format , where y=real i]]
have eji :isint (Add e (C j)) (real i#bs) by simp
from nb have nb ′: numbound0 (Add e (C j)) by simp
from spx bound0-I [OF σ-nb[OF lp nb ′, where k=c], where bs=bs and b=a

and b ′=real i]
have spx ′: Ifm (real i # bs) (σ p c (Add e (C j))) by blast
from spx ′ have rcdej :real c rdvd (Inum (real i#bs) (Add e (C j)))
and sr :Ifm (real i#bs) (σ% p (Add e (C j),c)) by (simp add : σ-def)+

from rcdej eji [simplified isint-iff]
have real c rdvd real (floor (Inum (real i#bs) (Add e (C j)))) by simp
hence cdej :c dvd floor (Inum (real i#bs) (Add e (C j))) by (simp only :

int-rdvd-iff)
from cp have cp ′: real c > 0 by simp
from σ%[OF lp cp ′ nb ′ eji cdej] spx ′ have ?P (bInum (real i # bs) (Add e (C

j))c div c)
by (simp add : σ-def)

hence ?lhs by blast
with exR jD spx have ?thesis by blast}

moreover
{ fix x assume px : ?P x and nob: ¬ ?RD
from iszlfm-gen [OF lp,rule-format , where y=a] have lp ′:iszlfm p (a#bs) .
from % ′[OF lp ′ d dp, rule-format , OF nob] have th:∀ x . ?P x −→ ?P (x −

?d) by blast
from minusinf-inf [OF lp] obtain z where z :∀ x<z . ?MP x = ?P x by blast
have zp: abs (x − z) + 1 ≥ 0 by arith
from decr-lemma[OF dp,where x=x and z=z]
decr-mult-lemma[OF dp th zp, rule-format , OF px] z have th:∃ x . ?MP x by

auto
with minusinf-bex [OF lp] px nob have ?thesis by blast}

ultimately show ?thesis by blast
qed

lemma mirror-α%: assumes lp: iszlfm p (a#bs)
shows (λ (t ,k). (Inum (a#bs) t , k)) ‘ set (α% p) = (λ (t ,k). (Inum (a#bs) t ,k))

‘ set (% (mirror p))
using lp
by (induct p rule: mirror .induct , simp-all add : split-def image-Un)

The IR part

Linearity for fm where Bound 0 ranges over IR
consts

isrlfm :: fm ⇒ bool
recdef isrlfm measure size

isrlfm (And p q) = (isrlfm p ∧ isrlfm q)
isrlfm (Or p q) = (isrlfm p ∧ isrlfm q)
isrlfm (Eq (CN 0 c e)) = (c>0 ∧ numbound0 e)
isrlfm (NEq (CN 0 c e)) = (c>0 ∧ numbound0 e)

118

isrlfm (Lt (CN 0 c e)) = (c>0 ∧ numbound0 e)
isrlfm (Le (CN 0 c e)) = (c>0 ∧ numbound0 e)
isrlfm (Gt (CN 0 c e)) = (c>0 ∧ numbound0 e)
isrlfm (Ge (CN 0 c e)) = (c>0 ∧ numbound0 e)
isrlfm p = (isatom p ∧ (bound0 p))

constdefs fp :: fm ⇒ int ⇒ num ⇒ int ⇒ fm
fp p n s j ≡ (if n > 0 then

(And p (And (Ge (CN 0 n (Sub s (Add (Floor s) (C j)))))
(Lt (CN 0 n (Sub s (Add (Floor s) (C (j+1))))))))

else
(And p (And (Le (CN 0 (−n) (Add (Neg s) (Add (Floor s) (C j)))))

(Gt (CN 0 (−n) (Add (Neg s) (Add (Floor s) (C (j + 1)))))))))

consts rsplit0 :: num ⇒ (fm × int × num) list
recdef rsplit0 measure num-size

rsplit0 (Bound 0) = [(T ,1 ,C 0)]
rsplit0 (Add a b) = (let acs = rsplit0 a ; bcs = rsplit0 b

in map (λ ((p,n,t),(q ,m,s)). (And p q , n+m, Add t s)) [(a,b).
a←acs,b←bcs])

rsplit0 (Sub a b) = rsplit0 (Add a (Neg b))
rsplit0 (Neg a) = map (λ (p,n,s). (p,−n,Neg s)) (rsplit0 a)
rsplit0 (Floor a) = foldl (op @) [] (map

(λ (p,n,s). if n=0 then [(p,0 ,Floor s)]
else (map (λ j . (fp p n s j , 0 , Add (Floor s) (C j))) (if n > 0 then iupt

(0 ,n) else iupt(n,0))))
(rsplit0 a))

rsplit0 (CN 0 c a) = map (λ (p,n,s). (p,n+c,s)) (rsplit0 a)
rsplit0 (CN m c a) = map (λ (p,n,s). (p,n,CN m c s)) (rsplit0 a)
rsplit0 (CF c t s) = rsplit0 (Add (Mul c (Floor t)) s)
rsplit0 (Mul c a) = map (λ (p,n,s). (p,c∗n,Mul c s)) (rsplit0 a)
rsplit0 t = [(T ,0 ,t)]

lemma not-rl [simp]: isrlfm p =⇒ isrlfm (not p)
by (induct p rule: isrlfm.induct , auto)

lemma conj-rl [simp]: isrlfm p =⇒ isrlfm q =⇒ isrlfm (conj p q)
using conj-def by (cases p, auto)

lemma disj-rl [simp]: isrlfm p =⇒ isrlfm q =⇒ isrlfm (disj p q)
using disj-def by (cases p, auto)

lemma rsplit0-cs:
shows ∀ (p,n,s) ∈ set (rsplit0 t).
(Ifm (x#bs) p −→ (Inum (x#bs) t = Inum (x#bs) (CN 0 n s))) ∧ numbound0

s ∧ isrlfm p
(is ∀ (p,n,s) ∈ ?SS t . (?I p −→ ?N t = ?N (CN 0 n s)) ∧ - ∧ -)

proof(induct t rule: rsplit0 .induct)
case (5 a)

119

let ?p = λ (p,n,s) j . fp p n s j
let ?f = (λ (p,n,s) j . (?p (p,n,s) j , (0 ::int),Add (Floor s) (C j)))
let ?J = λ n. if n>0 then iupt (0 ,n) else iupt (n,0)
let ?ff = (λ (p,n,s). if n= 0 then [(p,0 ,Floor s)] else map (?f (p,n,s)) (?J n))
have int-cases: ∀ (i ::int). i= 0 ∨ i < 0 ∨ i > 0 by arith
have U1 : (UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n=0} (λ (p,n,s). set (?ff

(p,n,s)))) =
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n=0} (λ (p,n,s). set [(p,0 ,Floor s)])) by

auto
have U2 ′: ∀ (p,n,s) ∈ {(p,n,s). (p,n,s) ∈ ?SS a ∧ n>0}.

?ff (p,n,s) = map (?f (p,n,s)) (iupt(0 ,n)) by auto
hence U2 : (UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n>0} (λ (p,n,s). set (?ff

(p,n,s)))) =
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n>0} (λ (p,n,s).
set (map (?f (p,n,s)) (iupt(0 ,n)))))

proof−
fix M :: (′a× ′b× ′c) set and f :: (′a× ′b× ′c) ⇒ ′d list and g
assume ∀ (a,b,c) ∈ M . f (a,b,c) = g a b c
thus (UNION M (λ (a,b,c). set (f (a,b,c)))) = (UNION M (λ (a,b,c). set (g

a b c)))
by (auto simp add : split-def)

qed
have U3 ′: ∀ (p,n,s) ∈ {(p,n,s). (p,n,s) ∈ ?SS a ∧ n<0}. ?ff (p,n,s) = map

(?f (p,n,s)) (iupt(n,0))
by auto

hence U3 : (UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n<0} (λ (p,n,s). set (?ff
(p,n,s)))) =

(UNION {(p,n,s). (p,n,s)∈ ?SS a∧n<0} (λ(p,n,s). set (map (?f (p,n,s))
(iupt(n,0)))))

proof−
fix M :: (′a× ′b× ′c) set and f :: (′a× ′b× ′c) ⇒ ′d list and g
assume ∀ (a,b,c) ∈ M . f (a,b,c) = g a b c
thus (UNION M (λ (a,b,c). set (f (a,b,c)))) = (UNION M (λ (a,b,c). set (g

a b c)))
by (auto simp add : split-def)

qed
have ?SS (Floor a) = UNION (?SS a) (λx . set (?ff x))
by (auto simp add : foldl-conv-concat)

also have . . . = UNION (?SS a) (λ (p,n,s). set (?ff (p,n,s))) by auto
also have . . . =
((UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n=0} (λ (p,n,s). set (?ff (p,n,s)))) Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n>0} (λ (p,n,s). set (?ff (p,n,s)))) Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n<0} (λ (p,n,s). set (?ff (p,n,s)))))
using int-cases[rule-format] by blast

also have . . . =
((UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n=0} (λ (p,n,s). set [(p,0 ,Floor s)]))

Un
(UNION {(p,n,s). (p,n,s)∈ ?SS a∧n>0} (λ(p,n,s). set(map(?f (p,n,s)) (iupt(0 ,n)))))

Un

120

(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n<0} (λ (p,n,s).
set (map (?f (p,n,s)) (iupt(n,0)))))) by (simp only : U1 U2 U3)

also have . . . =
((UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n=0} (λ (p,n,s). {(p,0 ,Floor s)})) Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n>0} (λ (p,n,s). (?f (p,n,s)) ‘ {0 .. n}))

Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n<0} (λ (p,n,s). (?f (p,n,s)) ‘ {n .. 0})))
by (simp only : set-map iupt-set set .simps)

also have . . . =
((UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n=0} (λ (p,n,s). {(p,0 ,Floor s)})) Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n>0} (λ (p,n,s). {?f (p,n,s) j | j . j∈ {0

.. n}})) Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n<0} (λ (p,n,s). {?f (p,n,s) j | j . j∈ {n

.. 0}}))) by blast
finally
have FS : ?SS (Floor a) =

((UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n=0} (λ (p,n,s). {(p,0 ,Floor s)})) Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n>0} (λ (p,n,s). {?f (p,n,s) j | j . j∈ {0

.. n}})) Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n<0} (λ (p,n,s). {?f (p,n,s) j | j . j∈ {n

.. 0}}))) by blast
show ?case
proof(simp only : FS , clarsimp simp del : Ifm.simps Inum.simps, −)
fix p n s
let ?ths = (?I p −→ (?N (Floor a) = ?N (CN 0 n s))) ∧ numbound0 s ∧

isrlfm p
assume (∃ ba. (p, 0 , ba) ∈ set (rsplit0 a) ∧ n = 0 ∧ s = Floor ba) ∨
(∃ ab ac ba.

(ab, ac, ba) ∈ set (rsplit0 a) ∧
0 < ac ∧
(∃ j . p = fp ab ac ba j ∧

n = 0 ∧ s = Add (Floor ba) (C j) ∧ 0 ≤ j ∧ j ≤ ac)) ∨
(∃ ab ac ba.

(ab, ac, ba) ∈ set (rsplit0 a) ∧
ac < 0 ∧
(∃ j . p = fp ab ac ba j ∧

n = 0 ∧ s = Add (Floor ba) (C j) ∧ ac ≤ j ∧ j ≤ 0))
moreover
{fix s ′

assume (p, 0 , s ′) ∈ ?SS a and n = 0 and s = Floor s ′

hence ?ths using prems by auto}
moreover
{ fix p ′ n ′ s ′ j
assume pns: (p ′, n ′, s ′) ∈ ?SS a
and np: 0 < n ′

and p-def : p = ?p (p ′,n ′,s ′) j
and n0 : n = 0
and s-def : s = (Add (Floor s ′) (C j))
and jp: 0 ≤ j and jn: j ≤ n ′

121

from prems pns have H :(Ifm ((x ::real) # (bs::real list)) p ′ −→
Inum (x # bs) a = Inum (x # bs) (CN 0 n ′ s ′)) ∧
numbound0 s ′ ∧ isrlfm p ′ by blast

hence nb: numbound0 s ′ by simp
from H have nf : isrlfm (?p (p ′,n ′,s ′) j) using fp-def np by (simp add :

numsub-nb)
let ?nxs = CN 0 n ′ s ′

let ?l = floor (?N s ′) + j
from H
have ?I (?p (p ′,n ′,s ′) j) −→

(((?N ?nxs ≥ real ?l) ∧ (?N ?nxs < real (?l + 1))) ∧ (?N a = ?N ?nxs
))

by (simp add : fp-def np ring-simps numsub numadd numfloor)
also have . . . −→ ((floor (?N ?nxs) = ?l) ∧ (?N a = ?N ?nxs))
using floor-int-eq [where x=?N ?nxs and n=?l] by simp

moreover
have . . . −→ (?N (Floor a) = ?N ((Add (Floor s ′) (C j)))) by simp
ultimately have ?I (?p (p ′,n ′,s ′) j) −→ (?N (Floor a) = ?N ((Add (Floor

s ′) (C j))))
by blast

with s-def n0 p-def nb nf have ?ths by auto}
moreover
{fix p ′ n ′ s ′ j
assume pns: (p ′, n ′, s ′) ∈ ?SS a
and np: n ′ < 0
and p-def : p = ?p (p ′,n ′,s ′) j
and n0 : n = 0
and s-def : s = (Add (Floor s ′) (C j))
and jp: n ′ ≤ j and jn: j ≤ 0

from prems pns have H :(Ifm ((x ::real) # (bs::real list)) p ′ −→
Inum (x # bs) a = Inum (x # bs) (CN 0 n ′ s ′)) ∧
numbound0 s ′ ∧ isrlfm p ′ by blast

hence nb: numbound0 s ′ by simp
from H have nf : isrlfm (?p (p ′,n ′,s ′) j) using fp-def np by (simp add :

numneg-nb)
let ?nxs = CN 0 n ′ s ′

let ?l = floor (?N s ′) + j
from H
have ?I (?p (p ′,n ′,s ′) j) −→

(((?N ?nxs ≥ real ?l) ∧ (?N ?nxs < real (?l + 1))) ∧ (?N a = ?N ?nxs
))

by (simp add : np fp-def ring-simps numneg numfloor numadd numsub)
also have . . . −→ ((floor (?N ?nxs) = ?l) ∧ (?N a = ?N ?nxs))
using floor-int-eq [where x=?N ?nxs and n=?l] by simp

moreover
have . . . −→ (?N (Floor a) = ?N ((Add (Floor s ′) (C j)))) by simp
ultimately have ?I (?p (p ′,n ′,s ′) j) −→ (?N (Floor a) = ?N ((Add (Floor

s ′) (C j))))
by blast

122

with s-def n0 p-def nb nf have ?ths by auto}
ultimately show ?ths by auto

qed
next
case (3 a b) thus ?case by auto

qed (auto simp add : Let-def split-def ring-simps conj-rl)

lemma real-in-int-intervals:
assumes xb: real m ≤ x ∧ x < real ((n::int) + 1)
shows ∃ j∈ {m.. n}. real j ≤ x ∧ x < real (j+1) (is ∃ j∈ ?N . ?P j)

by (rule bexI [where P=?P and x=floor x and A=?N])
(auto simp add : floor-less-eq [where x=x and a=n+1 , simplified] xb[simplified]
floor-mono2 [where x=real m and y=x , OF conjunct1 [OF xb], simplified floor-real-of-int [where
n=m]])

lemma rsplit0-complete:
assumes xp:0 ≤ x and x1 :x < 1
shows ∃ (p,n,s) ∈ set (rsplit0 t). Ifm (x#bs) p (is ∃ (p,n,s) ∈ ?SS t . ?I p)

proof(induct t rule: rsplit0 .induct)
case (2 a b)
from prems have ∃ (pa,na,sa) ∈ ?SS a. ?I pa by auto
then obtain pa na sa where pa: (pa,na,sa)∈ ?SS a ∧ ?I pa by blast
from prems have ∃ (pb,nb,sb) ∈ ?SS b. ?I pb by auto
then obtain pb nb sb where pb: (pb,nb,sb)∈ ?SS b ∧ ?I pb by blast
from pa pb have th: ((pa,na,sa),(pb,nb,sb)) ∈ set [(x ,y). x←rsplit0 a, y←rsplit0

b]
by (auto)

let ?f =(λ ((p,n,t),(q ,m,s)). (And p q , n+m, Add t s))
from imageI [OF th, where f =?f] have ?f ((pa,na,sa),(pb,nb,sb)) ∈ ?SS (Add

a b)
by (simp add : Let-def)

hence (And pa pb, na +nb, Add sa sb) ∈ ?SS (Add a b) by simp
moreover from pa pb have ?I (And pa pb) by simp
ultimately show ?case by blast

next
case (5 a)
let ?p = λ (p,n,s) j . fp p n s j
let ?f = (λ (p,n,s) j . (?p (p,n,s) j , (0 ::int),(Add (Floor s) (C j))))
let ?J = λ n. if n>0 then iupt (0 ,n) else iupt (n,0)
let ?ff = (λ (p,n,s). if n= 0 then [(p,0 ,Floor s)] else map (?f (p,n,s)) (?J n))
have int-cases: ∀ (i ::int). i= 0 ∨ i < 0 ∨ i > 0 by arith
have U1 : (UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n=0} (λ (p,n,s). set (?ff

(p,n,s)))) = (UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n=0} (λ (p,n,s). set [(p,0 ,Floor
s)])) by auto

have U2 ′: ∀ (p,n,s) ∈ {(p,n,s). (p,n,s) ∈ ?SS a ∧ n>0}. ?ff (p,n,s) = map
(?f (p,n,s)) (iupt(0 ,n))

by auto
hence U2 : (UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n>0} (λ (p,n,s). set (?ff

(p,n,s)))) = (UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n>0} (λ (p,n,s). set (map

123

(?f (p,n,s)) (iupt(0 ,n)))))
proof−
fix M :: (′a× ′b× ′c) set and f :: (′a× ′b× ′c) ⇒ ′d list and g
assume ∀ (a,b,c) ∈ M . f (a,b,c) = g a b c
thus (UNION M (λ (a,b,c). set (f (a,b,c)))) = (UNION M (λ (a,b,c). set (g

a b c)))
by (auto simp add : split-def)

qed
have U3 ′: ∀ (p,n,s) ∈ {(p,n,s). (p,n,s) ∈ ?SS a ∧ n<0}. ?ff (p,n,s) = map

(?f (p,n,s)) (iupt(n,0))
by auto

hence U3 : (UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n<0} (λ (p,n,s). set (?ff
(p,n,s)))) = (UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n<0} (λ (p,n,s). set (map
(?f (p,n,s)) (iupt(n,0)))))
proof−
fix M :: (′a× ′b× ′c) set and f :: (′a× ′b× ′c) ⇒ ′d list and g
assume ∀ (a,b,c) ∈ M . f (a,b,c) = g a b c
thus (UNION M (λ (a,b,c). set (f (a,b,c)))) = (UNION M (λ (a,b,c). set (g

a b c)))
by (auto simp add : split-def)

qed

have ?SS (Floor a) = UNION (?SS a) (λx . set (?ff x)) by (auto simp add :
foldl-conv-concat)
also have . . . = UNION (?SS a) (λ (p,n,s). set (?ff (p,n,s))) by auto
also have . . . =
((UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n=0} (λ (p,n,s). set (?ff (p,n,s)))) Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n>0} (λ (p,n,s). set (?ff (p,n,s)))) Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n<0} (λ (p,n,s). set (?ff (p,n,s)))))
using int-cases[rule-format] by blast

also have . . . =
((UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n=0} (λ (p,n,s). set [(p,0 ,Floor s)]))

Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n>0} (λ (p,n,s). set (map (?f (p,n,s))

(iupt(0 ,n))))) Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n<0} (λ (p,n,s). set (map (?f (p,n,s))

(iupt(n,0)))))) by (simp only : U1 U2 U3)
also have . . . =

((UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n=0} (λ (p,n,s). {(p,0 ,Floor s)})) Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n>0} (λ (p,n,s). (?f (p,n,s)) ‘ {0 .. n}))

Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n<0} (λ (p,n,s). (?f (p,n,s)) ‘ {n .. 0})))
by (simp only : set-map iupt-set set .simps)

also have . . . =
((UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n=0} (λ (p,n,s). {(p,0 ,Floor s)})) Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n>0} (λ (p,n,s). {?f (p,n,s) j | j . j∈ {0

.. n}})) Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n<0} (λ (p,n,s). {?f (p,n,s) j | j . j∈ {n

.. 0}}))) by blast

124

finally
have FS : ?SS (Floor a) =

((UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n=0} (λ (p,n,s). {(p,0 ,Floor s)})) Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n>0} (λ (p,n,s). {?f (p,n,s) j | j . j∈ {0

.. n}})) Un
(UNION {(p,n,s). (p,n,s) ∈ ?SS a ∧ n<0} (λ (p,n,s). {?f (p,n,s) j | j . j∈ {n

.. 0}}))) by blast
from prems have ∃ (p,n,s) ∈ ?SS a. ?I p by auto
then obtain p n s where pns: (p,n,s) ∈ ?SS a ∧ ?I p by blast
let ?N = λ t . Inum (x#bs) t
from rsplit0-cs[rule-format] pns have ans:(?N a = ?N (CN 0 n s)) ∧ numbound0

s ∧ isrlfm p
by auto

have n=0 ∨ n >0 ∨ n <0 by arith
moreover {assume n=0 hence ?case using pns by (simp only : FS) auto }
moreover
{
assume np: n > 0
from real-of-int-floor-le[where r=?N s] have ?N (Floor s) ≤ ?N s by simp
also from mult-left-mono[OF xp] np have ?N s ≤ real n ∗ x + ?N s by simp
finally have ?N (Floor s) ≤ real n ∗ x + ?N s .
moreover
{from mult-strict-left-mono[OF x1] np
have real n ∗x + ?N s < real n + ?N s by simp
also from real-of-int-floor-add-one-gt [where r=?N s]
have . . . < real n + ?N (Floor s) + 1 by simp
finally have real n ∗x + ?N s < ?N (Floor s) + real (n+1) by simp}

ultimately have ?N (Floor s) ≤ real n ∗x + ?N s∧ real n ∗x + ?N s < ?N
(Floor s) + real (n+1) by simp

hence th: 0 ≤ real n ∗x + ?N s − ?N (Floor s) ∧ real n ∗x + ?N s − ?N
(Floor s) < real (n+1) by simp

from real-in-int-intervals th have ∃ j∈ {0 .. n}. real j ≤ real n ∗x + ?N s −
?N (Floor s)∧ real n ∗x + ?N s − ?N (Floor s) < real (j+1) by simp

hence ∃ j∈ {0 .. n}. 0 ≤ real n ∗x + ?N s − ?N (Floor s) − real j ∧ real n
∗x + ?N s − ?N (Floor s) − real (j+1) < 0

by(simp only : myl [rule-format , where b=real n ∗ x + Inum (x # bs) s
− Inum (x # bs) (Floor s)] less-iff-diff-less-0 [where a=real n ∗x + ?N s − ?N
(Floor s)])

hence ∃ j∈ {0 .. n}. ?I (?p (p,n,s) j)
using pns by (simp add : fp-def np ring-simps numsub numadd)

then obtain j where j-def : j∈ {0 .. n} ∧ ?I (?p (p,n,s) j) by blast
hence ∃ x ∈ {?p (p,n,s) j |j . 0≤ j ∧ j ≤ n }. ?I x by auto
hence ?case using pns
by (simp only : FS ,simp add : bex-Un)

(rule disjI2 , rule disjI1 ,rule exI [where x=p],
rule exI [where x=n],rule exI [where x=s],simp-all add : np)

}

125

moreover
{ assume nn: n < 0 hence np: −n >0 by simp

from real-of-int-floor-le[where r=?N s] have ?N (Floor s) + 1 > ?N s by
simp

moreover from mult-left-mono-neg [OF xp] nn have ?N s ≥ real n ∗ x + ?N
s by simp

ultimately have ?N (Floor s) + 1 > real n ∗ x + ?N s by arith
moreover
{from mult-strict-left-mono-neg [OF x1 , where c=real n] nn
have real n ∗x + ?N s ≥ real n + ?N s by simp
moreover from real-of-int-floor-le[where r=?N s] have real n + ?N s ≥

real n + ?N (Floor s) by simp
ultimately have real n ∗x + ?N s ≥ ?N (Floor s) + real n
by (simp only : ring-simps)}

ultimately have ?N (Floor s) + real n ≤ real n ∗x + ?N s∧ real n ∗x + ?N
s < ?N (Floor s) + real (1 ::int) by simp

hence th: real n ≤ real n ∗x + ?N s − ?N (Floor s) ∧ real n ∗x + ?N s −
?N (Floor s) < real (1 ::int) by simp

have th1 : ∀ (a::real). (− a > 0) = (a < 0) by auto
have th2 : ∀ (a::real). (0 ≥ − a) = (a ≥ 0) by auto
from real-in-int-intervals th have ∃ j∈ {n .. 0}. real j ≤ real n ∗x + ?N s

− ?N (Floor s)∧ real n ∗x + ?N s − ?N (Floor s) < real (j+1) by simp

hence ∃ j∈ {n .. 0}. 0 ≤ real n ∗x + ?N s − ?N (Floor s) − real j ∧ real n
∗x + ?N s − ?N (Floor s) − real (j+1) < 0

by(simp only : myl [rule-format , where b=real n ∗ x + Inum (x # bs) s
− Inum (x # bs) (Floor s)] less-iff-diff-less-0 [where a=real n ∗x + ?N s − ?N
(Floor s)])

hence ∃ j∈ {n .. 0}. 0 ≥ − (real n ∗x + ?N s − ?N (Floor s) − real j) ∧ − (real
n ∗x + ?N s − ?N (Floor s) − real (j+1)) > 0 by (simp only : th1 [rule-format]
th2 [rule-format])

hence ∃ j∈ {n.. 0}. ?I (?p (p,n,s) j)
using pns by (simp add : fp-def nn diff-def add-ac mult-ac numfloor numadd

numneg
del : diff-less-0-iff-less diff-le-0-iff-le)

then obtain j where j-def : j∈ {n .. 0} ∧ ?I (?p (p,n,s) j) by blast
hence ∃ x ∈ {?p (p,n,s) j |j . n≤ j ∧ j ≤ 0 }. ?I x by auto
hence ?case using pns
by (simp only : FS ,simp add : bex-Un)

(rule disjI2 , rule disjI2 ,rule exI [where x=p],
rule exI [where x=n],rule exI [where x=s],simp-all add : nn)

}
ultimately show ?case by blast

qed (auto simp add : Let-def split-def)

constdefs rsplit :: (int ⇒ num ⇒ fm) ⇒ num ⇒ fm
rsplit f a ≡ foldr disj (map (λ (ϕ, n, s). conj ϕ (f n s)) (rsplit0 a)) F

126

lemma foldr-disj-map: Ifm bs (foldr disj (map f xs) F) = (∃ x ∈ set xs. Ifm bs
(f x))
by(induct xs, simp-all)

lemma foldr-conj-map: Ifm bs (foldr conj (map f xs) T) = (∀ x ∈ set xs. Ifm bs
(f x))
by(induct xs, simp-all)

lemma foldr-disj-map-rlfm:
assumes lf : ∀ n s. numbound0 s −→ isrlfm (f n s)
and ϕ: ∀ (ϕ,n,s) ∈ set xs. numbound0 s ∧ isrlfm ϕ
shows isrlfm (foldr disj (map (λ (ϕ, n, s). conj ϕ (f n s)) xs) F)

using lf ϕ by (induct xs, auto)

lemma rsplit-ex : Ifm bs (rsplit f a) = (∃ (ϕ,n,s) ∈ set (rsplit0 a). Ifm bs (conj ϕ
(f n s)))
using foldr-disj-map[where xs=rsplit0 a] rsplit-def by (simp add : split-def)

lemma rsplit-l : assumes lf : ∀ n s. numbound0 s −→ isrlfm (f n s)
shows isrlfm (rsplit f a)

proof−
from rsplit0-cs[where t=a] have th: ∀ (ϕ,n,s) ∈ set (rsplit0 a). numbound0 s
∧ isrlfm ϕ by blast
from foldr-disj-map-rlfm[OF lf th] rsplit-def show ?thesis by simp

qed

lemma rsplit :
assumes xp: x ≥ 0 and x1 : x < 1
and f : ∀ a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) ∧ numbound0 s −→

(Ifm (x#bs) (f n s) = Ifm (x#bs) (g a))
shows Ifm (x#bs) (rsplit f a) = Ifm (x#bs) (g a)

proof(auto)
let ?I = λx p. Ifm (x#bs) p
let ?N = λ x t . Inum (x#bs) t
assume ?I x (rsplit f a)
hence ∃ (ϕ,n,s) ∈ set (rsplit0 a). ?I x (And ϕ (f n s)) using rsplit-ex by simp
then obtain ϕ n s where fnsS :(ϕ,n,s) ∈ set (rsplit0 a) and ?I x (And ϕ (f n

s)) by blast
hence ϕ: ?I x ϕ and fns: ?I x (f n s) by auto
from rsplit0-cs[where t=a and bs=bs and x=x , rule-format , OF fnsS] ϕ
have th: (?N x a = ?N x (CN 0 n s)) ∧ numbound0 s by auto
from f [rule-format , OF th] fns show ?I x (g a) by simp

next
let ?I = λx p. Ifm (x#bs) p
let ?N = λ x t . Inum (x#bs) t
assume ga: ?I x (g a)
from rsplit0-complete[OF xp x1 , where bs=bs and t=a]
obtain ϕ n s where fnsS :(ϕ,n,s) ∈ set (rsplit0 a) and fx : ?I x ϕ by blast

127

from rsplit0-cs[where t=a and x=x and bs=bs] fnsS fx
have ans: ?N x a = ?N x (CN 0 n s) and nb: numbound0 s by auto
with ga f have ?I x (f n s) by auto
with rsplit-ex fnsS fx show ?I x (rsplit f a) by auto

qed

definition lt :: int ⇒ num ⇒ fm where
lt-def : lt c t = (if c = 0 then (Lt t) else if c > 0 then (Lt (CN 0 c t))

else (Gt (CN 0 (−c) (Neg t))))

definition le :: int ⇒ num ⇒ fm where
le-def : le c t = (if c = 0 then (Le t) else if c > 0 then (Le (CN 0 c t))

else (Ge (CN 0 (−c) (Neg t))))

definition gt :: int ⇒ num ⇒ fm where
gt-def : gt c t = (if c = 0 then (Gt t) else if c > 0 then (Gt (CN 0 c t))

else (Lt (CN 0 (−c) (Neg t))))

definition ge :: int ⇒ num ⇒ fm where
ge-def : ge c t = (if c = 0 then (Ge t) else if c > 0 then (Ge (CN 0 c t))

else (Le (CN 0 (−c) (Neg t))))

definition eq :: int ⇒ num ⇒ fm where
eq-def : eq c t = (if c = 0 then (Eq t) else if c > 0 then (Eq (CN 0 c t))

else (Eq (CN 0 (−c) (Neg t))))

definition neq :: int ⇒ num ⇒ fm where
neq-def : neq c t = (if c = 0 then (NEq t) else if c > 0 then (NEq (CN 0 c t))

else (NEq (CN 0 (−c) (Neg t))))

lemma lt-mono: ∀ a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) ∧ numbound0
s −→ Ifm (x#bs) (lt n s) = Ifm (x#bs) (Lt a)

(is ∀ a n s . ?N a = ?N (CN 0 n s) ∧ -−→ ?I (lt n s) = ?I (Lt a))
proof(clarify)
fix a n s
assume H : ?N a = ?N (CN 0 n s)
show ?I (lt n s) = ?I (Lt a) using H by (cases n=0 , (simp add : lt-def))
(cases n > 0 , simp-all add : lt-def ring-simps myless[rule-format , where b=0])

qed

lemma lt-l : isrlfm (rsplit lt a)
by (rule rsplit-l [where f =lt and a=a], auto simp add : lt-def ,

case-tac s, simp-all , case-tac nat , simp-all)

lemma le-mono: ∀ a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) ∧ numbound0
s −→ Ifm (x#bs) (le n s) = Ifm (x#bs) (Le a) (is ∀ a n s. ?N a = ?N (CN 0 n
s) ∧ - −→ ?I (le n s) = ?I (Le a))
proof(clarify)
fix a n s

128

assume H : ?N a = ?N (CN 0 n s)
show ?I (le n s) = ?I (Le a) using H by (cases n=0 , (simp add : le-def))
(cases n > 0 , simp-all add : le-def ring-simps myl [rule-format , where b=0])

qed

lemma le-l : isrlfm (rsplit le a)
by (rule rsplit-l [where f =le and a=a], auto simp add : le-def)

(case-tac s, simp-all , case-tac nat ,simp-all)

lemma gt-mono: ∀ a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) ∧ numbound0
s −→ Ifm (x#bs) (gt n s) = Ifm (x#bs) (Gt a) (is ∀ a n s. ?N a = ?N (CN 0 n
s) ∧ - −→ ?I (gt n s) = ?I (Gt a))
proof(clarify)
fix a n s
assume H : ?N a = ?N (CN 0 n s)
show ?I (gt n s) = ?I (Gt a) using H by (cases n=0 , (simp add : gt-def))
(cases n > 0 , simp-all add : gt-def ring-simps myless[rule-format , where b=0])

qed
lemma gt-l : isrlfm (rsplit gt a)
by (rule rsplit-l [where f =gt and a=a], auto simp add : gt-def)

(case-tac s, simp-all , case-tac nat , simp-all)

lemma ge-mono: ∀ a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) ∧ num-
bound0 s −→ Ifm (x#bs) (ge n s) = Ifm (x#bs) (Ge a) (is ∀ a n s . ?N a = ?N
(CN 0 n s) ∧ - −→ ?I (ge n s) = ?I (Ge a))
proof(clarify)
fix a n s
assume H : ?N a = ?N (CN 0 n s)
show ?I (ge n s) = ?I (Ge a) using H by (cases n=0 , (simp add : ge-def))
(cases n > 0 , simp-all add : ge-def ring-simps myl [rule-format , where b=0])

qed
lemma ge-l : isrlfm (rsplit ge a)
by (rule rsplit-l [where f =ge and a=a], auto simp add : ge-def)

(case-tac s, simp-all , case-tac nat , simp-all)

lemma eq-mono: ∀ a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) ∧ num-
bound0 s −→ Ifm (x#bs) (eq n s) = Ifm (x#bs) (Eq a) (is ∀ a n s. ?N a = ?N
(CN 0 n s) ∧ - −→ ?I (eq n s) = ?I (Eq a))
proof(clarify)
fix a n s
assume H : ?N a = ?N (CN 0 n s)
show ?I (eq n s) = ?I (Eq a) using H by (auto simp add : eq-def ring-simps)

qed
lemma eq-l : isrlfm (rsplit eq a)
by (rule rsplit-l [where f =eq and a=a], auto simp add : eq-def)

(case-tac s, simp-all , case-tacnat , simp-all)

lemma neq-mono: ∀ a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) ∧ num-
bound0 s −→ Ifm (x#bs) (neq n s) = Ifm (x#bs) (NEq a) (is ∀ a n s. ?N a =

129

?N (CN 0 n s) ∧ - −→ ?I (neq n s) = ?I (NEq a))
proof(clarify)
fix a n s bs
assume H : ?N a = ?N (CN 0 n s)
show ?I (neq n s) = ?I (NEq a) using H by (auto simp add : neq-def ring-simps)

qed

lemma neq-l : isrlfm (rsplit neq a)
by (rule rsplit-l [where f =neq and a=a], auto simp add : neq-def)

(case-tac s, simp-all , case-tacnat , simp-all)

lemma small-le:
assumes u0 :0 ≤ u and u1 : u < 1
shows (−u ≤ real (n::int)) = (0 ≤ n)

using u0 u1 by auto

lemma small-lt :
assumes u0 :0 ≤ u and u1 : u < 1
shows (real (n::int) < real (m::int) − u) = (n < m)

using u0 u1 by auto

lemma rdvd01-cs:
assumes up: u ≥ 0 and u1 : u<1 and np: real n > 0
shows (real (i ::int) rdvd real (n::int) ∗ u − s) = (∃ j∈ {0 .. n − 1}. real n ∗

u = s − real (floor s) + real j ∧ real i rdvd real (j − floor s)) (is ?lhs = ?rhs)
proof−
let ?ss = s − real (floor s)
from real-of-int-floor-add-one-gt [where r=s, simplified myless[rule-format ,where

a=s]]
real-of-int-floor-le[where r=s] have ss0 :?ss ≥ 0 and ss1 :?ss < 1

by (auto simp add : myl [rule-format , where b=s, symmetric] myless[rule-format ,
where a=?ss])
from np have n0 : real n ≥ 0 by simp
from mult-left-mono[OF up n0] mult-strict-left-mono[OF u1 np]
have nu0 :real n ∗ u − s ≥ −s and nun:real n ∗ u −s < real n − s by auto
from int-rdvd-real [where i=i and x=real (n::int) ∗ u − s]
have real i rdvd real n ∗ u − s =
(i dvd floor (real n ∗ u −s) ∧ (real (floor (real n ∗ u − s)) = real n ∗ u − s))
(is - = (?DE) is - = (?D ∧ ?E)) by simp

also have . . . = (?DE ∧ real(floor (real n ∗ u − s) + floor s)≥ −?ss
∧ real(floor (real n ∗ u − s) + floor s)< real n − ?ss) (is -=(?DE ∧real ?a ≥

- ∧ real ?a < -))
using nu0 nun by auto

also have . . . = (?DE ∧ ?a ≥ 0 ∧ ?a < n) by(simp only : small-le[OF ss0 ss1]
small-lt [OF ss0 ss1])
also have . . . = (?DE ∧ (∃ j∈ {0 .. (n − 1)}. ?a = j)) by simp
also have . . . = (?DE ∧ (∃ j∈ {0 .. (n − 1)}. real (breal n ∗ u − sc) = real j
− real bsc))

by (simp only : ring-simps real-of-int-diff [symmetric] real-of-int-inject del : real-of-int-diff)

130

also have . . . = ((∃ j∈ {0 .. (n − 1)}. real n ∗ u − s = real j − real bsc ∧ real
i rdvd real n ∗ u − s)) using int-rdvd-iff [where i=i and t=breal n ∗ u − sc]

by (auto cong : conj-cong)
also have . . . = ?rhs by(simp cong : conj-cong) (simp add : ring-simps)
finally show ?thesis .

qed

definition
DVDJ :: int ⇒ int ⇒ num ⇒ fm

where
DVDJ-def : DVDJ i n s = (foldr disj (map (λ j . conj (Eq (CN 0 n (Add s (Sub

(Floor (Neg s)) (C j))))) (Dvd i (Sub (C j) (Floor (Neg s))))) (iupt(0 ,n − 1)))
F)

definition
NDVDJ :: int ⇒ int ⇒ num ⇒ fm

where
NDVDJ-def : NDVDJ i n s = (foldr conj (map (λ j . disj (NEq (CN 0 n (Add s

(Sub (Floor (Neg s)) (C j))))) (NDvd i (Sub (C j) (Floor (Neg s))))) (iupt(0 ,n −
1))) T)

lemma DVDJ-DVD :
assumes xp:x≥ 0 and x1 : x < 1 and np:real n > 0
shows Ifm (x#bs) (DVDJ i n s) = Ifm (x#bs) (Dvd i (CN 0 n s))

proof−
let ?f = λ j . conj (Eq(CN 0 n (Add s (Sub(Floor (Neg s)) (C j))))) (Dvd i (Sub

(C j) (Floor (Neg s))))
let ?s= Inum (x#bs) s
from foldr-disj-map[where xs=iupt(0 ,n − 1) and bs=x#bs and f =?f]
have Ifm (x#bs) (DVDJ i n s) = (∃ j∈ {0 .. (n − 1)}. Ifm (x#bs) (?f j))
by (simp add : iupt-set np DVDJ-def del : iupt .simps)

also have . . . = (∃ j∈ {0 .. (n − 1)}. real n ∗ x = (− ?s) − real (floor (−
?s)) + real j ∧ real i rdvd real (j − floor (− ?s))) by (simp add : ring-simps
diff-def [symmetric])
also from rdvd01-cs[OF xp x1 np, where i=i and s=−?s]
have . . . = (real i rdvd real n ∗ x − (−?s)) by simp
finally show ?thesis by simp

qed

lemma NDVDJ-NDVD :
assumes xp:x≥ 0 and x1 : x < 1 and np:real n > 0
shows Ifm (x#bs) (NDVDJ i n s) = Ifm (x#bs) (NDvd i (CN 0 n s))

proof−
let ?f = λ j . disj (NEq(CN 0 n (Add s (Sub (Floor (Neg s)) (C j))))) (NDvd i

(Sub (C j) (Floor(Neg s))))
let ?s= Inum (x#bs) s
from foldr-conj-map[where xs=iupt(0 ,n − 1) and bs=x#bs and f =?f]
have Ifm (x#bs) (NDVDJ i n s) = (∀ j∈ {0 .. (n − 1)}. Ifm (x#bs) (?f j))
by (simp add : iupt-set np NDVDJ-def del : iupt .simps)

131

also have . . . = (¬ (∃ j∈ {0 .. (n − 1)}. real n ∗ x = (− ?s) − real (floor
(− ?s)) + real j ∧ real i rdvd real (j − floor (− ?s)))) by (simp add : ring-simps
diff-def [symmetric])
also from rdvd01-cs[OF xp x1 np, where i=i and s=−?s]
have . . . = (¬ (real i rdvd real n ∗ x − (−?s))) by simp
finally show ?thesis by simp

qed

lemma foldr-disj-map-rlfm2 :
assumes lf : ∀ n . isrlfm (f n)
shows isrlfm (foldr disj (map f xs) F)

using lf by (induct xs, auto)
lemma foldr-And-map-rlfm2 :
assumes lf : ∀ n . isrlfm (f n)
shows isrlfm (foldr conj (map f xs) T)

using lf by (induct xs, auto)

lemma DVDJ-l : assumes ip: i >0 and np: n>0 and nb: numbound0 s
shows isrlfm (DVDJ i n s)

proof−
let ?f =λj . conj (Eq (CN 0 n (Add s (Sub (Floor (Neg s)) (C j)))))

(Dvd i (Sub (C j) (Floor (Neg s))))
have th: ∀ j . isrlfm (?f j) using nb np by auto
from DVDJ-def foldr-disj-map-rlfm2 [OF th] show ?thesis by simp

qed

lemma NDVDJ-l : assumes ip: i >0 and np: n>0 and nb: numbound0 s
shows isrlfm (NDVDJ i n s)

proof−
let ?f =λj . disj (NEq (CN 0 n (Add s (Sub (Floor (Neg s)) (C j)))))

(NDvd i (Sub (C j) (Floor (Neg s))))
have th: ∀ j . isrlfm (?f j) using nb np by auto
from NDVDJ-def foldr-And-map-rlfm2 [OF th] show ?thesis by auto

qed

definition DVD :: int ⇒ int ⇒ num ⇒ fm where
DVD-def : DVD i c t =
(if i=0 then eq c t else
if c = 0 then (Dvd i t) else if c >0 then DVDJ (abs i) c t else DVDJ (abs i)

(−c) (Neg t))

definition NDVD :: int ⇒ int ⇒ num ⇒ fm where
NDVD i c t =
(if i=0 then neq c t else
if c = 0 then (NDvd i t) else if c >0 then NDVDJ (abs i) c t else NDVDJ (abs

i) (−c) (Neg t))

lemma DVD-mono:
assumes xp: 0≤ x and x1 : x < 1

132

shows ∀ a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) ∧ numbound0 s −→
Ifm (x#bs) (DVD i n s) = Ifm (x#bs) (Dvd i a)

(is ∀ a n s. ?N a = ?N (CN 0 n s) ∧ - −→ ?I (DVD i n s) = ?I (Dvd i a))
proof(clarify)
fix a n s
assume H : ?N a = ?N (CN 0 n s) and nb: numbound0 s
let ?th = ?I (DVD i n s) = ?I (Dvd i a)
have i=0 ∨ (i 6=0 ∧ n=0) ∨ (i 6=0 ∧ n < 0) ∨ (i 6=0 ∧ n > 0) by arith
moreover {assume iz : i=0 hence ?th using eq-mono[rule-format , OF conjI [OF

H nb]]
by (simp add : DVD-def rdvd-left-0-eq)}

moreover {assume inz : i 6=0 and n=0 hence ?th by (simp add : H DVD-def)
}
moreover {assume inz : i 6=0 and n<0 hence ?th

by (simp add : DVD-def H DVDJ-DVD [OF xp x1] rdvd-abs1
rdvd-minus[where d=i and t=real n ∗ x + Inum (x # bs) s]) }

moreover {assume inz : i 6=0 and n>0 hence ?th by (simp add :DVD-def H
DVDJ-DVD [OF xp x1] rdvd-abs1)}
ultimately show ?th by blast

qed

lemma NDVD-mono: assumes xp: 0≤ x and x1 : x < 1
shows ∀ a n s. Inum (x#bs) a = Inum (x#bs) (CN 0 n s) ∧ numbound0 s −→

Ifm (x#bs) (NDVD i n s) = Ifm (x#bs) (NDvd i a)
(is ∀ a n s. ?N a = ?N (CN 0 n s) ∧ - −→ ?I (NDVD i n s) = ?I (NDvd i a))

proof(clarify)
fix a n s
assume H : ?N a = ?N (CN 0 n s) and nb: numbound0 s
let ?th = ?I (NDVD i n s) = ?I (NDvd i a)
have i=0 ∨ (i 6=0 ∧ n=0) ∨ (i 6=0 ∧ n < 0) ∨ (i 6=0 ∧ n > 0) by arith
moreover {assume iz : i=0 hence ?th using neq-mono[rule-format , OF conjI [OF

H nb]]
by (simp add : NDVD-def rdvd-left-0-eq)}

moreover {assume inz : i 6=0 and n=0 hence ?th by (simp add : H NDVD-def)
}
moreover {assume inz : i 6=0 and n<0 hence ?th

by (simp add : NDVD-def H NDVDJ-NDVD [OF xp x1] rdvd-abs1
rdvd-minus[where d=i and t=real n ∗ x + Inum (x # bs) s]) }

moreover {assume inz : i 6=0 and n>0 hence ?th
by (simp add :NDVD-def H NDVDJ-NDVD [OF xp x1] rdvd-abs1)}

ultimately show ?th by blast
qed

lemma DVD-l : isrlfm (rsplit (DVD i) a)
by (rule rsplit-l [where f =DVD i and a=a], auto simp add : DVD-def eq-def

DVDJ-l)
(case-tac s, simp-all , case-tac nat , simp-all)

lemma NDVD-l : isrlfm (rsplit (NDVD i) a)

133

by (rule rsplit-l [where f =NDVD i and a=a], auto simp add : NDVD-def neq-def
NDVDJ-l)
(case-tac s, simp-all , case-tac nat , simp-all)

consts rlfm :: fm ⇒ fm
recdef rlfm measure fmsize

rlfm (And p q) = conj (rlfm p) (rlfm q)
rlfm (Or p q) = disj (rlfm p) (rlfm q)
rlfm (Imp p q) = disj (rlfm (NOT p)) (rlfm q)
rlfm (Iff p q) = disj (conj (rlfm p) (rlfm q)) (conj (rlfm (NOT p)) (rlfm (NOT

q)))
rlfm (Lt a) = rsplit lt a
rlfm (Le a) = rsplit le a
rlfm (Gt a) = rsplit gt a
rlfm (Ge a) = rsplit ge a
rlfm (Eq a) = rsplit eq a
rlfm (NEq a) = rsplit neq a
rlfm (Dvd i a) = rsplit (λ t . DVD i t) a
rlfm (NDvd i a) = rsplit (λ t . NDVD i t) a
rlfm (NOT (And p q)) = disj (rlfm (NOT p)) (rlfm (NOT q))
rlfm (NOT (Or p q)) = conj (rlfm (NOT p)) (rlfm (NOT q))
rlfm (NOT (Imp p q)) = conj (rlfm p) (rlfm (NOT q))
rlfm (NOT (Iff p q)) = disj (conj (rlfm p) (rlfm(NOT q))) (conj (rlfm(NOT p))

(rlfm q))
rlfm (NOT (NOT p)) = rlfm p
rlfm (NOT T) = F
rlfm (NOT F) = T
rlfm (NOT (Lt a)) = simpfm (rlfm (Ge a))
rlfm (NOT (Le a)) = simpfm (rlfm (Gt a))
rlfm (NOT (Gt a)) = simpfm (rlfm (Le a))
rlfm (NOT (Ge a)) = simpfm (rlfm (Lt a))
rlfm (NOT (Eq a)) = simpfm (rlfm (NEq a))
rlfm (NOT (NEq a)) = simpfm (rlfm (Eq a))
rlfm (NOT (Dvd i a)) = simpfm (rlfm (NDvd i a))
rlfm (NOT (NDvd i a)) = simpfm (rlfm (Dvd i a))
rlfm p = p (hints simp add : fmsize-pos)

lemma bound0at-l : [[isatom p ; bound0 p]] =⇒ isrlfm p
by (induct p rule: isrlfm.induct , auto)

lemma igcd-le1 : assumes ip: 0 < i shows igcd i j ≤ i
proof−
from igcd-dvd1 have th: igcd i j dvd i by blast
from zdvd-imp-le[OF th ip] show ?thesis .

qed

lemma simpfm-rl : isrlfm p =⇒ isrlfm (simpfm p)
proof (induct p)
case (Lt a)

134

hence bound0 (Lt a) ∨ (∃ c e. a = CN 0 c e ∧ c > 0 ∧ numbound0 e)
by (cases a,simp-all , case-tac nat , simp-all)

moreover
{assume bound0 (Lt a) hence bn:bound0 (simpfm (Lt a))

using simpfm-bound0 by blast
have isatom (simpfm (Lt a)) by (cases simpnum a, auto simp add : Let-def)
with bn bound0at-l have ?case by blast}

moreover
{fix c e assume a = CN 0 c e and c>0 and numbound0 e

{
assume cn1 :numgcd (CN 0 c (simpnum e)) 6= 1 and cnz :numgcd (CN 0 c

(simpnum e)) 6= 0
with numgcd-pos[where t=CN 0 c (simpnum e)]
have th1 :numgcd (CN 0 c (simpnum e)) > 0 by simp
from prems have th:numgcd (CN 0 c (simpnum e)) ≤ c
by (simp add : numgcd-def igcd-le1)

from prems have th ′: c 6=0 by auto
from prems have cp: c ≥ 0 by simp
from zdiv-mono2 [OF cp th1 th, simplified zdiv-self [OF th ′]]
have 0 < c div numgcd (CN 0 c (simpnum e)) by simp

}
with prems have ?case
by (simp add : Let-def reducecoeff-def reducecoeffh-numbound0)}

ultimately show ?case by blast
next
case (Le a)
hence bound0 (Le a) ∨ (∃ c e. a = CN 0 c e ∧ c > 0 ∧ numbound0 e)
by (cases a,simp-all , case-tac nat , simp-all)

moreover
{assume bound0 (Le a) hence bn:bound0 (simpfm (Le a))

using simpfm-bound0 by blast
have isatom (simpfm (Le a)) by (cases simpnum a, auto simp add : Let-def)
with bn bound0at-l have ?case by blast}

moreover
{fix c e assume a = CN 0 c e and c>0 and numbound0 e

{
assume cn1 :numgcd (CN 0 c (simpnum e)) 6= 1 and cnz :numgcd (CN 0 c

(simpnum e)) 6= 0
with numgcd-pos[where t=CN 0 c (simpnum e)]
have th1 :numgcd (CN 0 c (simpnum e)) > 0 by simp
from prems have th:numgcd (CN 0 c (simpnum e)) ≤ c
by (simp add : numgcd-def igcd-le1)

from prems have th ′: c 6=0 by auto
from prems have cp: c ≥ 0 by simp
from zdiv-mono2 [OF cp th1 th, simplified zdiv-self [OF th ′]]
have 0 < c div numgcd (CN 0 c (simpnum e)) by simp

}
with prems have ?case
by (simp add : Let-def reducecoeff-def simpnum-numbound0 reducecoeffh-numbound0)}

135

ultimately show ?case by blast
next
case (Gt a)
hence bound0 (Gt a) ∨ (∃ c e. a = CN 0 c e ∧ c > 0 ∧ numbound0 e)
by (cases a,simp-all , case-tac nat , simp-all)

moreover
{assume bound0 (Gt a) hence bn:bound0 (simpfm (Gt a))

using simpfm-bound0 by blast
have isatom (simpfm (Gt a)) by (cases simpnum a, auto simp add : Let-def)
with bn bound0at-l have ?case by blast}

moreover
{fix c e assume a = CN 0 c e and c>0 and numbound0 e

{
assume cn1 :numgcd (CN 0 c (simpnum e)) 6= 1 and cnz :numgcd (CN 0 c

(simpnum e)) 6= 0
with numgcd-pos[where t=CN 0 c (simpnum e)]
have th1 :numgcd (CN 0 c (simpnum e)) > 0 by simp
from prems have th:numgcd (CN 0 c (simpnum e)) ≤ c
by (simp add : numgcd-def igcd-le1)

from prems have th ′: c 6=0 by auto
from prems have cp: c ≥ 0 by simp
from zdiv-mono2 [OF cp th1 th, simplified zdiv-self [OF th ′]]
have 0 < c div numgcd (CN 0 c (simpnum e)) by simp

}
with prems have ?case
by (simp add : Let-def reducecoeff-def simpnum-numbound0 reducecoeffh-numbound0)}

ultimately show ?case by blast
next
case (Ge a)
hence bound0 (Ge a) ∨ (∃ c e. a = CN 0 c e ∧ c > 0 ∧ numbound0 e)
by (cases a,simp-all , case-tac nat , simp-all)

moreover
{assume bound0 (Ge a) hence bn:bound0 (simpfm (Ge a))

using simpfm-bound0 by blast
have isatom (simpfm (Ge a)) by (cases simpnum a, auto simp add : Let-def)
with bn bound0at-l have ?case by blast}

moreover
{fix c e assume a = CN 0 c e and c>0 and numbound0 e

{
assume cn1 :numgcd (CN 0 c (simpnum e)) 6= 1 and cnz :numgcd (CN 0 c

(simpnum e)) 6= 0
with numgcd-pos[where t=CN 0 c (simpnum e)]
have th1 :numgcd (CN 0 c (simpnum e)) > 0 by simp
from prems have th:numgcd (CN 0 c (simpnum e)) ≤ c
by (simp add : numgcd-def igcd-le1)

from prems have th ′: c 6=0 by auto
from prems have cp: c ≥ 0 by simp
from zdiv-mono2 [OF cp th1 th, simplified zdiv-self [OF th ′]]
have 0 < c div numgcd (CN 0 c (simpnum e)) by simp

136

}
with prems have ?case
by (simp add : Let-def reducecoeff-def simpnum-numbound0 reducecoeffh-numbound0)}

ultimately show ?case by blast
next
case (Eq a)
hence bound0 (Eq a) ∨ (∃ c e. a = CN 0 c e ∧ c > 0 ∧ numbound0 e)
by (cases a,simp-all , case-tac nat , simp-all)

moreover
{assume bound0 (Eq a) hence bn:bound0 (simpfm (Eq a))

using simpfm-bound0 by blast
have isatom (simpfm (Eq a)) by (cases simpnum a, auto simp add : Let-def)
with bn bound0at-l have ?case by blast}

moreover
{fix c e assume a = CN 0 c e and c>0 and numbound0 e

{
assume cn1 :numgcd (CN 0 c (simpnum e)) 6= 1 and cnz :numgcd (CN 0 c

(simpnum e)) 6= 0
with numgcd-pos[where t=CN 0 c (simpnum e)]
have th1 :numgcd (CN 0 c (simpnum e)) > 0 by simp
from prems have th:numgcd (CN 0 c (simpnum e)) ≤ c
by (simp add : numgcd-def igcd-le1)

from prems have th ′: c 6=0 by auto
from prems have cp: c ≥ 0 by simp
from zdiv-mono2 [OF cp th1 th, simplified zdiv-self [OF th ′]]
have 0 < c div numgcd (CN 0 c (simpnum e)) by simp

}
with prems have ?case
by (simp add : Let-def reducecoeff-def simpnum-numbound0 reducecoeffh-numbound0)}

ultimately show ?case by blast
next
case (NEq a)
hence bound0 (NEq a) ∨ (∃ c e. a = CN 0 c e ∧ c > 0 ∧ numbound0 e)
by (cases a,simp-all , case-tac nat , simp-all)

moreover
{assume bound0 (NEq a) hence bn:bound0 (simpfm (NEq a))

using simpfm-bound0 by blast
have isatom (simpfm (NEq a)) by (cases simpnum a, auto simp add : Let-def)
with bn bound0at-l have ?case by blast}

moreover
{fix c e assume a = CN 0 c e and c>0 and numbound0 e

{
assume cn1 :numgcd (CN 0 c (simpnum e)) 6= 1 and cnz :numgcd (CN 0 c

(simpnum e)) 6= 0
with numgcd-pos[where t=CN 0 c (simpnum e)]
have th1 :numgcd (CN 0 c (simpnum e)) > 0 by simp
from prems have th:numgcd (CN 0 c (simpnum e)) ≤ c
by (simp add : numgcd-def igcd-le1)

from prems have th ′: c 6=0 by auto

137

from prems have cp: c ≥ 0 by simp
from zdiv-mono2 [OF cp th1 th, simplified zdiv-self [OF th ′]]
have 0 < c div numgcd (CN 0 c (simpnum e)) by simp

}
with prems have ?case
by (simp add : Let-def reducecoeff-def simpnum-numbound0 reducecoeffh-numbound0)}

ultimately show ?case by blast
next
case (Dvd i a) hence bound0 (Dvd i a) by auto hence bn:bound0 (simpfm (Dvd

i a))
using simpfm-bound0 by blast

have isatom (simpfm (Dvd i a)) by (cases simpnum a, auto simp add : Let-def
split-def)
with bn bound0at-l show ?case by blast

next
case (NDvd i a) hence bound0 (NDvd i a) by auto hence bn:bound0 (simpfm

(NDvd i a))
using simpfm-bound0 by blast

have isatom (simpfm (NDvd i a)) by (cases simpnum a, auto simp add : Let-def
split-def)
with bn bound0at-l show ?case by blast

qed(auto simp add : conj-def imp-def disj-def iff-def Let-def simpfm-bound0 numadd-nb
numneg-nb)

lemma rlfm-I :
assumes qfp: qfree p
and xp: 0 ≤ x and x1 : x < 1
shows (Ifm (x#bs) (rlfm p) = Ifm (x# bs) p) ∧ isrlfm (rlfm p)
using qfp

by (induct p rule: rlfm.induct)
(auto simp add : rsplit [OF xp x1 lt-mono] lt-l rsplit [OF xp x1 le-mono] le-l rsplit [OF
xp x1 gt-mono] gt-l

rsplit [OF xp x1 ge-mono] ge-l rsplit [OF xp x1 eq-mono] eq-l rsplit [OF
xp x1 neq-mono] neq-l

rsplit [OF xp x1 DVD-mono[OF xp x1]] DVD-l rsplit [OF xp x1
NDVD-mono[OF xp x1]] NDVD-l simpfm-rl)
lemma rlfm-l :
assumes qfp: qfree p
shows isrlfm (rlfm p)
using qfp lt-l gt-l ge-l le-l eq-l neq-l DVD-l NDVD-l

by (induct p rule: rlfm.induct ,auto simp add : simpfm-rl)

lemma rminusinf-inf :
assumes lp: isrlfm p
shows ∃ z . ∀ x < z . Ifm (x#bs) (minusinf p) = Ifm (x#bs) p (is ∃ z . ∀ x .

?P z x p)
using lp
proof (induct p rule: minusinf .induct)

138

case (1 p q) thus ?case by (auto,rule-tac x= min z za in exI) auto
next
case (2 p q) thus ?case by (auto,rule-tac x= min z za in exI) auto

next
case (3 c e)
from prems have nb: numbound0 e by simp
from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x < ?z
hence (real c ∗ x < − ?e)
by (simp only : pos-less-divide-eq [OF cp, where a=x and b=− ?e] mult-ac)

hence real c ∗ x + ?e < 0 by arith
hence real c ∗ x + ?e 6= 0 by simp
with xz have ?P ?z x (Eq (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x < ?z . ?P ?z x (Eq (CN 0 c e)) by simp
thus ?case by blast

next
case (4 c e)
from prems have nb: numbound0 e by simp
from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x < ?z
hence (real c ∗ x < − ?e)
by (simp only : pos-less-divide-eq [OF cp, where a=x and b=− ?e] mult-ac)

hence real c ∗ x + ?e < 0 by arith
hence real c ∗ x + ?e 6= 0 by simp
with xz have ?P ?z x (NEq (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x < ?z . ?P ?z x (NEq (CN 0 c e)) by simp
thus ?case by blast

next
case (5 c e)
from prems have nb: numbound0 e by simp

from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x < ?z
hence (real c ∗ x < − ?e)
by (simp only : pos-less-divide-eq [OF cp, where a=x and b=− ?e] mult-ac)

hence real c ∗ x + ?e < 0 by arith
with xz have ?P ?z x (Lt (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x < ?z . ?P ?z x (Lt (CN 0 c e)) by simp

139

thus ?case by blast
next
case (6 c e)
from prems have nb: numbound0 e by simp

from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x < ?z
hence (real c ∗ x < − ?e)
by (simp only : pos-less-divide-eq [OF cp, where a=x and b=− ?e] mult-ac)

hence real c ∗ x + ?e < 0 by arith
with xz have ?P ?z x (Le (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x < ?z . ?P ?z x (Le (CN 0 c e)) by simp
thus ?case by blast

next
case (7 c e)
from prems have nb: numbound0 e by simp

from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x < ?z
hence (real c ∗ x < − ?e)
by (simp only : pos-less-divide-eq [OF cp, where a=x and b=− ?e] mult-ac)

hence real c ∗ x + ?e < 0 by arith
with xz have ?P ?z x (Gt (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x < ?z . ?P ?z x (Gt (CN 0 c e)) by simp
thus ?case by blast

next
case (8 c e)
from prems have nb: numbound0 e by simp

from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x < ?z
hence (real c ∗ x < − ?e)
by (simp only : pos-less-divide-eq [OF cp, where a=x and b=− ?e] mult-ac)

hence real c ∗ x + ?e < 0 by arith
with xz have ?P ?z x (Ge (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x < ?z . ?P ?z x (Ge (CN 0 c e)) by simp
thus ?case by blast

qed simp-all

lemma rplusinf-inf :

140

assumes lp: isrlfm p
shows ∃ z . ∀ x > z . Ifm (x#bs) (plusinf p) = Ifm (x#bs) p (is ∃ z . ∀ x . ?P

z x p)
using lp
proof (induct p rule: isrlfm.induct)
case (1 p q) thus ?case by (auto,rule-tac x= max z za in exI) auto

next
case (2 p q) thus ?case by (auto,rule-tac x= max z za in exI) auto

next
case (3 c e)
from prems have nb: numbound0 e by simp
from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x > ?z
with mult-strict-right-mono [OF xz cp] cp
have (real c ∗ x > − ?e) by (simp add : mult-ac)
hence real c ∗ x + ?e > 0 by arith
hence real c ∗ x + ?e 6= 0 by simp
with xz have ?P ?z x (Eq (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x > ?z . ?P ?z x (Eq (CN 0 c e)) by simp
thus ?case by blast

next
case (4 c e)
from prems have nb: numbound0 e by simp
from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x > ?z
with mult-strict-right-mono [OF xz cp] cp
have (real c ∗ x > − ?e) by (simp add : mult-ac)
hence real c ∗ x + ?e > 0 by arith
hence real c ∗ x + ?e 6= 0 by simp
with xz have ?P ?z x (NEq (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x > ?z . ?P ?z x (NEq (CN 0 c e)) by simp
thus ?case by blast

next
case (5 c e)
from prems have nb: numbound0 e by simp
from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x > ?z
with mult-strict-right-mono [OF xz cp] cp

141

have (real c ∗ x > − ?e) by (simp add : mult-ac)
hence real c ∗ x + ?e > 0 by arith
with xz have ?P ?z x (Lt (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x > ?z . ?P ?z x (Lt (CN 0 c e)) by simp
thus ?case by blast

next
case (6 c e)
from prems have nb: numbound0 e by simp
from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x > ?z
with mult-strict-right-mono [OF xz cp] cp
have (real c ∗ x > − ?e) by (simp add : mult-ac)
hence real c ∗ x + ?e > 0 by arith
with xz have ?P ?z x (Le (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x > ?z . ?P ?z x (Le (CN 0 c e)) by simp
thus ?case by blast

next
case (7 c e)
from prems have nb: numbound0 e by simp
from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x > ?z
with mult-strict-right-mono [OF xz cp] cp
have (real c ∗ x > − ?e) by (simp add : mult-ac)
hence real c ∗ x + ?e > 0 by arith
with xz have ?P ?z x (Gt (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x > ?z . ?P ?z x (Gt (CN 0 c e)) by simp
thus ?case by blast

next
case (8 c e)
from prems have nb: numbound0 e by simp
from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x > ?z
with mult-strict-right-mono [OF xz cp] cp
have (real c ∗ x > − ?e) by (simp add : mult-ac)
hence real c ∗ x + ?e > 0 by arith
with xz have ?P ?z x (Ge (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

142

hence ∀ x > ?z . ?P ?z x (Ge (CN 0 c e)) by simp
thus ?case by blast

qed simp-all

lemma rminusinf-bound0 :
assumes lp: isrlfm p
shows bound0 (minusinf p)
using lp
by (induct p rule: minusinf .induct) simp-all

lemma rplusinf-bound0 :
assumes lp: isrlfm p
shows bound0 (plusinf p)
using lp
by (induct p rule: plusinf .induct) simp-all

lemma rminusinf-ex :
assumes lp: isrlfm p
and ex : Ifm (a#bs) (minusinf p)
shows ∃ x . Ifm (x#bs) p

proof−
from bound0-I [OF rminusinf-bound0 [OF lp], where b=a and bs =bs] ex
have th: ∀ x . Ifm (x#bs) (minusinf p) by auto
from rminusinf-inf [OF lp, where bs=bs]
obtain z where z-def : ∀ x<z . Ifm (x # bs) (minusinf p) = Ifm (x # bs) p by

blast
from th have Ifm ((z − 1)#bs) (minusinf p) by simp
moreover have z − 1 < z by simp
ultimately show ?thesis using z-def by auto

qed

lemma rplusinf-ex :
assumes lp: isrlfm p
and ex : Ifm (a#bs) (plusinf p)
shows ∃ x . Ifm (x#bs) p

proof−
from bound0-I [OF rplusinf-bound0 [OF lp], where b=a and bs =bs] ex
have th: ∀ x . Ifm (x#bs) (plusinf p) by auto
from rplusinf-inf [OF lp, where bs=bs]
obtain z where z-def : ∀ x>z . Ifm (x # bs) (plusinf p) = Ifm (x # bs) p by

blast
from th have Ifm ((z + 1)#bs) (plusinf p) by simp
moreover have z + 1 > z by simp
ultimately show ?thesis using z-def by auto

qed

consts
Υ:: fm ⇒ (num × int) list
υ :: fm ⇒ (num × int) ⇒ fm

143

recdef Υ measure size
Υ (And p q) = (Υ p @ Υ q)
Υ (Or p q) = (Υ p @ Υ q)
Υ (Eq (CN 0 c e)) = [(Neg e,c)]
Υ (NEq (CN 0 c e)) = [(Neg e,c)]
Υ (Lt (CN 0 c e)) = [(Neg e,c)]
Υ (Le (CN 0 c e)) = [(Neg e,c)]
Υ (Gt (CN 0 c e)) = [(Neg e,c)]
Υ (Ge (CN 0 c e)) = [(Neg e,c)]
Υ p = []

recdef υ measure size
υ (And p q) = (λ (t ,n). And (υ p (t ,n)) (υ q (t ,n)))
υ (Or p q) = (λ (t ,n). Or (υ p (t ,n)) (υ q (t ,n)))
υ (Eq (CN 0 c e)) = (λ (t ,n). Eq (Add (Mul c t) (Mul n e)))
υ (NEq (CN 0 c e)) = (λ (t ,n). NEq (Add (Mul c t) (Mul n e)))
υ (Lt (CN 0 c e)) = (λ (t ,n). Lt (Add (Mul c t) (Mul n e)))
υ (Le (CN 0 c e)) = (λ (t ,n). Le (Add (Mul c t) (Mul n e)))
υ (Gt (CN 0 c e)) = (λ (t ,n). Gt (Add (Mul c t) (Mul n e)))
υ (Ge (CN 0 c e)) = (λ (t ,n). Ge (Add (Mul c t) (Mul n e)))
υ p = (λ (t ,n). p)

lemma υ-I : assumes lp: isrlfm p
and np: real n > 0 and nbt : numbound0 t
shows (Ifm (x#bs) (υ p (t ,n)) = Ifm (((Inum (x#bs) t)/(real n))#bs) p) ∧

bound0 (υ p (t ,n)) (is (?I x (υ p (t ,n)) = ?I ?u p) ∧ ?B p is (- = ?I (?t/?n) p)
∧ - is (- = ?I (?N x t /-) p) ∧ -)
using lp

proof(induct p rule: υ.induct)
case (5 c e) from prems have cp: c >0 and nb: numbound0 e by simp+
have ?I ?u (Lt (CN 0 c e)) = (real c ∗(?t/?n) + (?N x e) < 0)
using numbound0-I [OF nb, where bs=bs and b=?u and b ′=x] by simp

also have . . . = (?n∗(real c ∗(?t/?n)) + ?n∗(?N x e) < 0)
by (simp only : pos-less-divide-eq [OF np, where a=real c ∗(?t/?n) + (?N x e)

and b=0 , simplified divide-zero-left]) (simp only : ring-simps)
also have . . . = (real c ∗?t + ?n∗ (?N x e) < 0)
using np by simp

finally show ?case using nbt nb by (simp add : ring-simps)
next
case (6 c e) from prems have cp: c >0 and nb: numbound0 e by simp+
have ?I ?u (Le (CN 0 c e)) = (real c ∗(?t/?n) + (?N x e) ≤ 0)
using numbound0-I [OF nb, where bs=bs and b=?u and b ′=x] by simp

also have . . . = (?n∗(real c ∗(?t/?n)) + ?n∗(?N x e) ≤ 0)
by (simp only : pos-le-divide-eq [OF np, where a=real c ∗(?t/?n) + (?N x e)
and b=0 , simplified divide-zero-left]) (simp only : ring-simps)

also have . . . = (real c ∗?t + ?n∗ (?N x e) ≤ 0)
using np by simp

finally show ?case using nbt nb by (simp add : ring-simps)

144

next
case (7 c e) from prems have cp: c >0 and nb: numbound0 e by simp+
have ?I ?u (Gt (CN 0 c e)) = (real c ∗(?t/?n) + (?N x e) > 0)
using numbound0-I [OF nb, where bs=bs and b=?u and b ′=x] by simp

also have . . . = (?n∗(real c ∗(?t/?n)) + ?n∗(?N x e) > 0)
by (simp only : pos-divide-less-eq [OF np, where a=real c ∗(?t/?n) + (?N x e)

and b=0 , simplified divide-zero-left]) (simp only : ring-simps)
also have . . . = (real c ∗?t + ?n∗ (?N x e) > 0)
using np by simp

finally show ?case using nbt nb by (simp add : ring-simps)
next
case (8 c e) from prems have cp: c >0 and nb: numbound0 e by simp+
have ?I ?u (Ge (CN 0 c e)) = (real c ∗(?t/?n) + (?N x e) ≥ 0)
using numbound0-I [OF nb, where bs=bs and b=?u and b ′=x] by simp

also have . . . = (?n∗(real c ∗(?t/?n)) + ?n∗(?N x e) ≥ 0)
by (simp only : pos-divide-le-eq [OF np, where a=real c ∗(?t/?n) + (?N x e)
and b=0 , simplified divide-zero-left]) (simp only : ring-simps)

also have . . . = (real c ∗?t + ?n∗ (?N x e) ≥ 0)
using np by simp

finally show ?case using nbt nb by (simp add : ring-simps)
next
case (3 c e) from prems have cp: c >0 and nb: numbound0 e by simp+
from np have np: real n 6= 0 by simp
have ?I ?u (Eq (CN 0 c e)) = (real c ∗(?t/?n) + (?N x e) = 0)
using numbound0-I [OF nb, where bs=bs and b=?u and b ′=x] by simp

also have . . . = (?n∗(real c ∗(?t/?n)) + ?n∗(?N x e) = 0)
by (simp only : nonzero-eq-divide-eq [OF np, where a=real c ∗(?t/?n) + (?N x

e)
and b=0 , simplified divide-zero-left]) (simp only : ring-simps)

also have . . . = (real c ∗?t + ?n∗ (?N x e) = 0)
using np by simp

finally show ?case using nbt nb by (simp add : ring-simps)
next
case (4 c e) from prems have cp: c >0 and nb: numbound0 e by simp+
from np have np: real n 6= 0 by simp
have ?I ?u (NEq (CN 0 c e)) = (real c ∗(?t/?n) + (?N x e) 6= 0)
using numbound0-I [OF nb, where bs=bs and b=?u and b ′=x] by simp

also have . . . = (?n∗(real c ∗(?t/?n)) + ?n∗(?N x e) 6= 0)
by (simp only : nonzero-eq-divide-eq [OF np, where a=real c ∗(?t/?n) + (?N x

e)
and b=0 , simplified divide-zero-left]) (simp only : ring-simps)

also have . . . = (real c ∗?t + ?n∗ (?N x e) 6= 0)
using np by simp

finally show ?case using nbt nb by (simp add : ring-simps)
qed(simp-all add : nbt numbound0-I [where bs =bs and b=(Inum (x#bs) t)/ real
n and b ′=x] nth-pos2)

lemma Υ-l :

145

assumes lp: isrlfm p
shows ∀ (t ,k) ∈ set (Υ p). numbound0 t ∧ k >0

using lp
by(induct p rule: Υ.induct) auto

lemma rminusinf-Υ:
assumes lp: isrlfm p
and nmi : ¬ (Ifm (a#bs) (minusinf p)) (is ¬ (Ifm (a#bs) (?M p)))
and ex : Ifm (x#bs) p (is ?I x p)
shows ∃ (s,m) ∈ set (Υ p). x ≥ Inum (a#bs) s / real m (is ∃ (s,m) ∈ ?U p.

x ≥ ?N a s / real m)
proof−

have ∃ (s,m) ∈ set (Υ p). real m ∗ x ≥ Inum (a#bs) s (is ∃ (s,m) ∈ ?U p.
real m ∗x ≥ ?N a s)

using lp nmi ex
by (induct p rule: minusinf .induct , auto simp add :numbound0-I [where bs=bs

and b=a and b ′=x] nth-pos2)
then obtain s m where smU : (s,m) ∈ set (Υ p) and mx : real m ∗ x ≥ ?N a

s by blast
from Υ-l [OF lp] smU have mp: real m > 0 by auto
from pos-divide-le-eq [OF mp, where a=x and b=?N a s, symmetric] mx have

x ≥ ?N a s / real m
by (auto simp add : mult-commute)

thus ?thesis using smU by auto
qed

lemma rplusinf-Υ:
assumes lp: isrlfm p
and nmi : ¬ (Ifm (a#bs) (plusinf p)) (is ¬ (Ifm (a#bs) (?M p)))
and ex : Ifm (x#bs) p (is ?I x p)
shows ∃ (s,m) ∈ set (Υ p). x ≤ Inum (a#bs) s / real m (is ∃ (s,m) ∈ ?U p.

x ≤ ?N a s / real m)
proof−

have ∃ (s,m) ∈ set (Υ p). real m ∗ x ≤ Inum (a#bs) s (is ∃ (s,m) ∈ ?U p.
real m ∗x ≤ ?N a s)

using lp nmi ex
by (induct p rule: minusinf .induct , auto simp add :numbound0-I [where bs=bs

and b=a and b ′=x] nth-pos2)
then obtain s m where smU : (s,m) ∈ set (Υ p) and mx : real m ∗ x ≤ ?N a

s by blast
from Υ-l [OF lp] smU have mp: real m > 0 by auto
from pos-le-divide-eq [OF mp, where a=x and b=?N a s, symmetric] mx have

x ≤ ?N a s / real m
by (auto simp add : mult-commute)

thus ?thesis using smU by auto
qed

lemma lin-dense:
assumes lp: isrlfm p

146

and noS : ∀ t . l < t ∧ t< u −→ t /∈ (λ (t ,n). Inum (x#bs) t / real n) ‘ set (Υ
p)

(is ∀ t . - ∧ - −→ t /∈ (λ (t ,n). ?N x t / real n) ‘ (?U p))
and lx : l < x and xu:x < u and px : Ifm (x#bs) p
and ly : l < y and yu: y < u
shows Ifm (y#bs) p

using lp px noS
proof (induct p rule: isrlfm.induct)
case (5 c e) hence cp: real c > 0 and nb: numbound0 e by simp+
from prems have x ∗ real c + ?N x e < 0 by (simp add : ring-simps)
hence pxc: x < (− ?N x e) / real c
by (simp only : pos-less-divide-eq [OF cp, where a=x and b=−?N x e])

from prems have noSc:∀ t . l < t ∧ t < u −→ t 6= (− ?N x e) / real c by
auto

with ly yu have yne: y 6= − ?N x e / real c by auto
hence y < (− ?N x e) / real c ∨ y > (−?N x e) / real c by auto
moreover {assume y : y < (−?N x e)/ real c
hence y ∗ real c < − ?N x e

by (simp add : pos-less-divide-eq [OF cp, where a=y and b=−?N x e,
symmetric])

hence real c ∗ y + ?N x e < 0 by (simp add : ring-simps)
hence ?case using numbound0-I [OF nb, where bs=bs and b=x and b ′=y]

by simp}
moreover {assume y : y > (− ?N x e) / real c
with yu have eu: u > (− ?N x e) / real c by auto
with noSc ly yu have (− ?N x e) / real c ≤ l by (cases (− ?N x e) / real c

> l , auto)
with lx pxc have False by auto
hence ?case by simp }

ultimately show ?case by blast
next
case (6 c e) hence cp: real c > 0 and nb: numbound0 e by simp +
from prems have x ∗ real c + ?N x e ≤ 0 by (simp add : ring-simps)
hence pxc: x ≤ (− ?N x e) / real c
by (simp only : pos-le-divide-eq [OF cp, where a=x and b=−?N x e])

from prems have noSc:∀ t . l < t ∧ t < u −→ t 6= (− ?N x e) / real c by
auto

with ly yu have yne: y 6= − ?N x e / real c by auto
hence y < (− ?N x e) / real c ∨ y > (−?N x e) / real c by auto
moreover {assume y : y < (−?N x e)/ real c
hence y ∗ real c < − ?N x e

by (simp add : pos-less-divide-eq [OF cp, where a=y and b=−?N x e,
symmetric])

hence real c ∗ y + ?N x e < 0 by (simp add : ring-simps)
hence ?case using numbound0-I [OF nb, where bs=bs and b=x and b ′=y]

by simp}
moreover {assume y : y > (− ?N x e) / real c
with yu have eu: u > (− ?N x e) / real c by auto
with noSc ly yu have (− ?N x e) / real c ≤ l by (cases (− ?N x e) / real c

147

> l , auto)
with lx pxc have False by auto
hence ?case by simp }

ultimately show ?case by blast
next
case (7 c e) hence cp: real c > 0 and nb: numbound0 e by simp+
from prems have x ∗ real c + ?N x e > 0 by (simp add : ring-simps)
hence pxc: x > (− ?N x e) / real c
by (simp only : pos-divide-less-eq [OF cp, where a=x and b=−?N x e])

from prems have noSc:∀ t . l < t ∧ t < u −→ t 6= (− ?N x e) / real c by
auto

with ly yu have yne: y 6= − ?N x e / real c by auto
hence y < (− ?N x e) / real c ∨ y > (−?N x e) / real c by auto
moreover {assume y : y > (−?N x e)/ real c
hence y ∗ real c > − ?N x e

by (simp add : pos-divide-less-eq [OF cp, where a=y and b=−?N x e,
symmetric])

hence real c ∗ y + ?N x e > 0 by (simp add : ring-simps)
hence ?case using numbound0-I [OF nb, where bs=bs and b=x and b ′=y]

by simp}
moreover {assume y : y < (− ?N x e) / real c
with ly have eu: l < (− ?N x e) / real c by auto
with noSc ly yu have (− ?N x e) / real c ≥ u by (cases (− ?N x e) / real c

> l , auto)
with xu pxc have False by auto
hence ?case by simp }

ultimately show ?case by blast
next
case (8 c e) hence cp: real c > 0 and nb: numbound0 e by simp+
from prems have x ∗ real c + ?N x e ≥ 0 by (simp add : ring-simps)
hence pxc: x ≥ (− ?N x e) / real c
by (simp only : pos-divide-le-eq [OF cp, where a=x and b=−?N x e])

from prems have noSc:∀ t . l < t ∧ t < u −→ t 6= (− ?N x e) / real c by
auto

with ly yu have yne: y 6= − ?N x e / real c by auto
hence y < (− ?N x e) / real c ∨ y > (−?N x e) / real c by auto
moreover {assume y : y > (−?N x e)/ real c
hence y ∗ real c > − ?N x e

by (simp add : pos-divide-less-eq [OF cp, where a=y and b=−?N x e,
symmetric])

hence real c ∗ y + ?N x e > 0 by (simp add : ring-simps)
hence ?case using numbound0-I [OF nb, where bs=bs and b=x and b ′=y]

by simp}
moreover {assume y : y < (− ?N x e) / real c
with ly have eu: l < (− ?N x e) / real c by auto
with noSc ly yu have (− ?N x e) / real c ≥ u by (cases (− ?N x e) / real c

> l , auto)
with xu pxc have False by auto
hence ?case by simp }

148

ultimately show ?case by blast
next
case (3 c e) hence cp: real c > 0 and nb: numbound0 e by simp+
from cp have cnz : real c 6= 0 by simp
from prems have x ∗ real c + ?N x e = 0 by (simp add : ring-simps)
hence pxc: x = (− ?N x e) / real c
by (simp only : nonzero-eq-divide-eq [OF cnz , where a=x and b=−?N x e])

from prems have noSc:∀ t . l < t ∧ t < u −→ t 6= (− ?N x e) / real c by
auto

with lx xu have yne: x 6= − ?N x e / real c by auto
with pxc show ?case by simp

next
case (4 c e) hence cp: real c > 0 and nb: numbound0 e by simp+
from cp have cnz : real c 6= 0 by simp
from prems have noSc:∀ t . l < t ∧ t < u −→ t 6= (− ?N x e) / real c by

auto
with ly yu have yne: y 6= − ?N x e / real c by auto
hence y∗ real c 6= −?N x e

by (simp only : nonzero-eq-divide-eq [OF cnz , where a=y and b=−?N x e])
simp

hence y∗ real c + ?N x e 6= 0 by (simp add : ring-simps)
thus ?case using numbound0-I [OF nb, where bs=bs and b=x and b ′=y]
by (simp add : ring-simps)

qed (auto simp add : nth-pos2 numbound0-I [where bs=bs and b=y and b ′=x])

lemma finite-set-intervals:
assumes px : P (x ::real)
and lx : l ≤ x and xu: x ≤ u
and linS : l∈ S and uinS : u ∈ S
and fS :finite S and lS : ∀ x∈ S . l ≤ x and Su: ∀ x∈ S . x ≤ u
shows ∃ a ∈ S . ∃ b ∈ S . (∀ y . a < y ∧ y < b −→ y /∈ S) ∧ a ≤ x ∧ x ≤ b ∧

P x
proof−
let ?Mx = {y . y∈ S ∧ y ≤ x}
let ?xM = {y . y∈ S ∧ x ≤ y}
let ?a = Max ?Mx
let ?b = Min ?xM
have MxS : ?Mx ⊆ S by blast
hence fMx : finite ?Mx using fS finite-subset by auto
from lx linS have linMx : l ∈ ?Mx by blast
hence Mxne: ?Mx 6= {} by blast
have xMS : ?xM ⊆ S by blast
hence fxM : finite ?xM using fS finite-subset by auto
from xu uinS have linxM : u ∈ ?xM by blast
hence xMne: ?xM 6= {} by blast
have ax :?a ≤ x using Mxne fMx by auto
have xb:x ≤ ?b using xMne fxM by auto
have ?a ∈ ?Mx using Max-in[OF fMx Mxne] by simp hence ainS : ?a ∈ S

using MxS by blast

149

have ?b ∈ ?xM using Min-in[OF fxM xMne] by simp hence binS : ?b ∈ S
using xMS by blast
have noy :∀ y . ?a < y ∧ y < ?b −→ y /∈ S
proof(clarsimp)
fix y
assume ay : ?a < y and yb: y < ?b and yS : y ∈ S
from yS have y∈ ?Mx ∨ y∈ ?xM by auto
moreover {assume y ∈ ?Mx hence y ≤ ?a using Mxne fMx by auto with

ay have False by simp}
moreover {assume y ∈ ?xM hence y ≥ ?b using xMne fxM by auto with

yb have False by simp}
ultimately show False by blast

qed
from ainS binS noy ax xb px show ?thesis by blast

qed

lemma finite-set-intervals2 :
assumes px : P (x ::real)
and lx : l ≤ x and xu: x ≤ u
and linS : l∈ S and uinS : u ∈ S
and fS :finite S and lS : ∀ x∈ S . l ≤ x and Su: ∀ x∈ S . x ≤ u
shows (∃ s∈ S . P s) ∨ (∃ a ∈ S . ∃ b ∈ S . (∀ y . a < y ∧ y < b −→ y /∈ S) ∧

a < x ∧ x < b ∧ P x)
proof−
from finite-set-intervals[where P=P , OF px lx xu linS uinS fS lS Su]
obtain a and b where
as: a∈ S and bs: b∈ S and noS :∀ y . a < y ∧ y < b −→ y /∈ S and axb: a ≤

x ∧ x ≤ b ∧ P x by auto
from axb have x= a ∨ x= b ∨ (a < x ∧ x < b) by auto
thus ?thesis using px as bs noS by blast

qed

lemma rinf-Υ:
assumes lp: isrlfm p
and nmi : ¬ (Ifm (x#bs) (minusinf p)) (is ¬ (Ifm (x#bs) (?M p)))
and npi : ¬ (Ifm (x#bs) (plusinf p)) (is ¬ (Ifm (x#bs) (?P p)))
and ex : ∃ x . Ifm (x#bs) p (is ∃ x . ?I x p)
shows ∃ (l ,n) ∈ set (Υ p). ∃ (s,m) ∈ set (Υ p). ?I ((Inum (x#bs) l / real n

+ Inum (x#bs) s / real m) / 2) p
proof−
let ?N = λ x t . Inum (x#bs) t
let ?U = set (Υ p)
from ex obtain a where pa: ?I a p by blast
from bound0-I [OF rminusinf-bound0 [OF lp], where bs=bs and b=x and b ′=a]

nmi
have nmi ′: ¬ (?I a (?M p)) by simp
from bound0-I [OF rplusinf-bound0 [OF lp], where bs=bs and b=x and b ′=a]

npi
have npi ′: ¬ (?I a (?P p)) by simp

150

have ∃ (l ,n) ∈ set (Υ p). ∃ (s,m) ∈ set (Υ p). ?I ((?N a l/real n + ?N a s
/real m) / 2) p
proof−
let ?M = (λ (t ,c). ?N a t / real c) ‘ ?U
have fM : finite ?M by auto
from rminusinf-Υ[OF lp nmi pa] rplusinf-Υ[OF lp npi pa]
have ∃ (l ,n) ∈ set (Υ p). ∃ (s,m) ∈ set (Υ p). a ≤ ?N x l / real n ∧ a ≥ ?N

x s / real m by blast
then obtain t n s m where

tnU : (t ,n) ∈ ?U and smU : (s,m) ∈ ?U
and xs1 : a ≤ ?N x s / real m and tx1 : a ≥ ?N x t / real n by blast

from Υ-l [OF lp] tnU smU numbound0-I [where bs=bs and b=x and b ′=a]
xs1 tx1 have xs: a ≤ ?N a s / real m and tx : a ≥ ?N a t / real n by auto

from tnU have Mne: ?M 6= {} by auto
hence Une: ?U 6= {} by simp
let ?l = Min ?M
let ?u = Max ?M
have linM : ?l ∈ ?M using fM Mne by simp
have uinM : ?u ∈ ?M using fM Mne by simp
have tnM : ?N a t / real n ∈ ?M using tnU by auto
have smM : ?N a s / real m ∈ ?M using smU by auto
have lM : ∀ t∈ ?M . ?l ≤ t using Mne fM by auto
have Mu: ∀ t∈ ?M . t ≤ ?u using Mne fM by auto
have ?l ≤ ?N a t / real n using tnM Mne by simp hence lx : ?l ≤ a using

tx by simp
have ?N a s / real m ≤ ?u using smM Mne by simp hence xu: a ≤ ?u using

xs by simp
from finite-set-intervals2 [where P=λ x . ?I x p,OF pa lx xu linM uinM fM lM

Mu]
have (∃ s∈ ?M . ?I s p) ∨

(∃ t1∈ ?M . ∃ t2 ∈ ?M . (∀ y . t1 < y ∧ y < t2 −→ y /∈ ?M) ∧ t1 < a ∧ a
< t2 ∧ ?I a p) .

moreover { fix u assume um: u∈ ?M and pu: ?I u p
hence ∃ (tu,nu) ∈ ?U . u = ?N a tu / real nu by auto
then obtain tu nu where tuU : (tu,nu) ∈ ?U and tuu:u= ?N a tu / real nu

by blast
have (u + u) / 2 = u by auto with pu tuu
have ?I (((?N a tu / real nu) + (?N a tu / real nu)) / 2) p by simp
with tuU have ?thesis by blast}

moreover{
assume ∃ t1∈ ?M . ∃ t2 ∈ ?M . (∀ y . t1 < y ∧ y < t2 −→ y /∈ ?M) ∧ t1

< a ∧ a < t2 ∧ ?I a p
then obtain t1 and t2 where t1M : t1 ∈ ?M and t2M : t2∈ ?M
and noM : ∀ y . t1 < y ∧ y < t2 −→ y /∈ ?M and t1x : t1 < a and xt2 : a

< t2 and px : ?I a p
by blast

from t1M have ∃ (t1u,t1n) ∈ ?U . t1 = ?N a t1u / real t1n by auto
then obtain t1u t1n where t1uU : (t1u,t1n) ∈ ?U and t1u: t1 = ?N a t1u

/ real t1n by blast

151

from t2M have ∃ (t2u,t2n) ∈ ?U . t2 = ?N a t2u / real t2n by auto
then obtain t2u t2n where t2uU : (t2u,t2n) ∈ ?U and t2u: t2 = ?N a t2u

/ real t2n by blast
from t1x xt2 have t1t2 : t1 < t2 by simp
let ?u = (t1 + t2) / 2
from less-half-sum[OF t1t2] gt-half-sum[OF t1t2] have t1lu: t1 < ?u and

ut2 : ?u < t2 by auto
from lin-dense[OF lp noM t1x xt2 px t1lu ut2] have ?I ?u p .
with t1uU t2uU t1u t2u have ?thesis by blast}

ultimately show ?thesis by blast
qed
then obtain l n s m where lnU : (l ,n) ∈ ?U and smU :(s,m) ∈ ?U
and pu: ?I ((?N a l / real n + ?N a s / real m) / 2) p by blast

from lnU smU Υ-l [OF lp] have nbl : numbound0 l and nbs: numbound0 s by
auto
from numbound0-I [OF nbl , where bs=bs and b=a and b ′=x]

numbound0-I [OF nbs, where bs=bs and b=a and b ′=x] pu
have ?I ((?N x l / real n + ?N x s / real m) / 2) p by simp
with lnU smU
show ?thesis by auto

qed

theorem fr-eq :
assumes lp: isrlfm p
shows (∃ x . Ifm (x#bs) p) = ((Ifm (x#bs) (minusinf p)) ∨ (Ifm (x#bs) (plusinf

p)) ∨ (∃ (t ,n) ∈ set (Υ p). ∃ (s,m) ∈ set (Υ p). Ifm ((((Inum (x#bs) t)/ real n
+ (Inum (x#bs) s) / real m) /2)#bs) p))

(is (∃ x . ?I x p) = (?M ∨ ?P ∨ ?F) is ?E = ?D)
proof
assume px : ∃ x . ?I x p
have ?M ∨ ?P ∨ (¬ ?M ∧ ¬ ?P) by blast
moreover {assume ?M ∨ ?P hence ?D by blast}
moreover {assume nmi : ¬ ?M and npi : ¬ ?P
from rinf-Υ[OF lp nmi npi] have ?F using px by blast hence ?D by blast}

ultimately show ?D by blast
next
assume ?D
moreover {assume m:?M from rminusinf-ex [OF lp m] have ?E .}
moreover {assume p: ?P from rplusinf-ex [OF lp p] have ?E . }
moreover {assume f :?F hence ?E by blast}
ultimately show ?E by blast

qed

lemma fr-eqυ:
assumes lp: isrlfm p
shows (∃ x . Ifm (x#bs) p) = ((Ifm (x#bs) (minusinf p)) ∨ (Ifm (x#bs) (plusinf

p)) ∨ (∃ (t ,k) ∈ set (Υ p). ∃ (s,l) ∈ set (Υ p). Ifm (x#bs) (υ p (Add(Mul l t)

152

(Mul k s) , 2∗k∗l))))
(is (∃ x . ?I x p) = (?M ∨ ?P ∨ ?F) is ?E = ?D)

proof
assume px : ∃ x . ?I x p
have ?M ∨ ?P ∨ (¬ ?M ∧ ¬ ?P) by blast
moreover {assume ?M ∨ ?P hence ?D by blast}
moreover {assume nmi : ¬ ?M and npi : ¬ ?P
let ?f =λ (t ,n). Inum (x#bs) t / real n
let ?N = λ t . Inum (x#bs) t
{fix t n s m assume (t ,n)∈ set (Υ p) and (s,m) ∈ set (Υ p)

with Υ-l [OF lp] have tnb: numbound0 t and np:real n > 0 and snb:
numbound0 s and mp:real m > 0

by auto
let ?st = Add (Mul m t) (Mul n s)
from mult-pos-pos[OF np mp] have mnp: real (2∗n∗m) > 0
by (simp add : mult-commute)

from tnb snb have st-nb: numbound0 ?st by simp
have st : (?N t / real n + ?N s / real m)/2 = ?N ?st / real (2∗n∗m)
using mnp mp np by (simp add : ring-simps add-divide-distrib)

from υ-I [OF lp mnp st-nb, where x=x and bs=bs]
have ?I x (υ p (?st ,2∗n∗m)) = ?I ((?N t / real n + ?N s / real m) /2) p

by (simp only : st [symmetric])}
with rinf-Υ[OF lp nmi npi px] have ?F by blast hence ?D by blast}

ultimately show ?D by blast
next
assume ?D
moreover {assume m:?M from rminusinf-ex [OF lp m] have ?E .}
moreover {assume p: ?P from rplusinf-ex [OF lp p] have ?E . }
moreover {fix t k s l assume (t ,k) ∈ set (Υ p) and (s,l) ∈ set (Υ p)
and px :?I x (υ p (Add (Mul l t) (Mul k s), 2∗k∗l))
with Υ-l [OF lp] have tnb: numbound0 t and np:real k > 0 and snb: numbound0

s and mp:real l > 0 by auto
let ?st = Add (Mul l t) (Mul k s)
from mult-pos-pos[OF np mp] have mnp: real (2∗k∗l) > 0
by (simp add : mult-commute)

from tnb snb have st-nb: numbound0 ?st by simp
from υ-I [OF lp mnp st-nb, where bs=bs] px have ?E by auto}

ultimately show ?E by blast
qed

The overall Part

lemma real-ex-int-real01 :
shows (∃ (x ::real). P x) = (∃ (i ::int) (u::real). 0≤ u ∧ u< 1 ∧ P (real i + u))

proof(auto)
fix x
assume Px : P x
let ?i = floor x
let ?u = x − real ?i
have x = real ?i + ?u by simp

153

hence P (real ?i + ?u) using Px by simp
moreover have real ?i ≤ x using real-of-int-floor-le by simp hence 0 ≤ ?u

by arith
moreover have ?u < 1 using real-of-int-floor-add-one-gt [where r=x] by arith

ultimately show (∃ (i ::int) (u::real). 0≤ u ∧ u< 1 ∧ P (real i + u)) by blast
qed

consts exsplitnum :: num ⇒ num
exsplit :: fm ⇒ fm

recdef exsplitnum measure size
exsplitnum (C c) = (C c)
exsplitnum (Bound 0) = Add (Bound 0) (Bound 1)
exsplitnum (Bound n) = Bound (n+1)
exsplitnum (Neg a) = Neg (exsplitnum a)
exsplitnum (Add a b) = Add (exsplitnum a) (exsplitnum b)
exsplitnum (Sub a b) = Sub (exsplitnum a) (exsplitnum b)
exsplitnum (Mul c a) = Mul c (exsplitnum a)
exsplitnum (Floor a) = Floor (exsplitnum a)
exsplitnum (CN 0 c a) = CN 0 c (Add (Mul c (Bound 1)) (exsplitnum a))
exsplitnum (CN n c a) = CN (n+1) c (exsplitnum a)
exsplitnum (CF c s t) = CF c (exsplitnum s) (exsplitnum t)

recdef exsplit measure size
exsplit (Lt a) = Lt (exsplitnum a)
exsplit (Le a) = Le (exsplitnum a)
exsplit (Gt a) = Gt (exsplitnum a)
exsplit (Ge a) = Ge (exsplitnum a)
exsplit (Eq a) = Eq (exsplitnum a)
exsplit (NEq a) = NEq (exsplitnum a)
exsplit (Dvd i a) = Dvd i (exsplitnum a)
exsplit (NDvd i a) = NDvd i (exsplitnum a)
exsplit (And p q) = And (exsplit p) (exsplit q)
exsplit (Or p q) = Or (exsplit p) (exsplit q)
exsplit (Imp p q) = Imp (exsplit p) (exsplit q)
exsplit (Iff p q) = Iff (exsplit p) (exsplit q)
exsplit (NOT p) = NOT (exsplit p)
exsplit p = p

lemma exsplitnum:
Inum (x#y#bs) (exsplitnum t) = Inum ((x+y) #bs) t
by(induct t rule: exsplitnum.induct) (simp-all add : ring-simps)

lemma exsplit :
assumes qfp: qfree p
shows Ifm (x#y#bs) (exsplit p) = Ifm ((x+y)#bs) p

using qfp exsplitnum[where x=x and y=y and bs=bs]
by(induct p rule: exsplit .induct) simp-all

154

lemma splitex :
assumes qf : qfree p
shows (Ifm bs (E p)) = (∃ (i ::int). Ifm (real i#bs) (E (And (And (Ge(CN 0 1

(C 0))) (Lt (CN 0 1 (C (− 1))))) (exsplit p)))) (is ?lhs = ?rhs)
proof−
have ?rhs = (∃ (i ::int). ∃ x . 0≤ x ∧ x < 1 ∧ Ifm (x#(real i)#bs) (exsplit p))

by (simp add : myless[rule-format , where b=1] myless[rule-format , where
b=0] add-ac diff-def)
also have . . . = (∃ (i ::int). ∃ x . 0≤ x ∧ x < 1 ∧ Ifm ((real i + x) #bs) p)
by (simp only : exsplit [OF qf] add-ac)

also have . . . = (∃ x . Ifm (x#bs) p)
by (simp only : real-ex-int-real01 [where P=λ x . Ifm (x#bs) p])

finally show ?thesis by simp
qed

constdefs ferrack01 :: fm ⇒ fm
ferrack01 p ≡ (let p ′ = rlfm(And (And (Ge(CN 0 1 (C 0))) (Lt (CN 0 1 (C (−

1))))) p);
U = remdups(map simp-num-pair
(map (λ ((t ,n),(s,m)). (Add (Mul m t) (Mul n s) , 2∗n∗m))

(alluopairs (Υ p ′))))
in decr (evaldjf (υ p ′) U))

lemma fr-eq-01 :
assumes qf : qfree p
shows (∃ x . Ifm (x#bs) (And (And (Ge(CN 0 1 (C 0))) (Lt (CN 0 1 (C (−

1))))) p)) = (∃ (t ,n) ∈ set (Υ (rlfm (And (And (Ge(CN 0 1 (C 0))) (Lt (CN 0
1 (C (− 1))))) p))). ∃ (s,m) ∈ set (Υ (rlfm (And (And (Ge(CN 0 1 (C 0))) (Lt
(CN 0 1 (C (− 1))))) p))). Ifm (x#bs) (υ (rlfm (And (And (Ge(CN 0 1 (C 0)))
(Lt (CN 0 1 (C (− 1))))) p)) (Add (Mul m t) (Mul n s), 2∗n∗m)))

(is (∃ x . ?I x ?q) = ?F)
proof−
let ?rq = rlfm ?q
let ?M = ?I x (minusinf ?rq)
let ?P = ?I x (plusinf ?rq)
have MF : ?M = False

apply (simp add : Let-def reducecoeff-def numgcd-def igcd-def rsplit-def ge-def
lt-def conj-def disj-def)

by (cases rlfm p = And (Ge (CN 0 1 (C 0))) (Lt (CN 0 1 (C −1))), simp-all)
have PF : ?P = False apply (simp add : Let-def reducecoeff-def numgcd-def

igcd-def rsplit-def ge-def lt-def conj-def disj-def)
by (cases rlfm p = And (Ge (CN 0 1 (C 0))) (Lt (CN 0 1 (C −1))), simp-all)

have (∃ x . ?I x ?q) =
((?I x (minusinf ?rq)) ∨ (?I x (plusinf ?rq)) ∨ (∃ (t ,n) ∈ set (Υ ?rq). ∃ (s,m)

∈ set (Υ ?rq). ?I x (υ ?rq (Add (Mul m t) (Mul n s), 2∗n∗m))))
(is (∃ x . ?I x ?q) = (?M ∨ ?P ∨ ?F) is ?E = ?D)

proof

155

assume ∃ x . ?I x ?q
then obtain x where qx : ?I x ?q by blast
hence xp: 0≤ x and x1 : x< 1 and px : ?I x p
by (auto simp add : rsplit-def lt-def ge-def rlfm-I [OF qf])

from qx have ?I x ?rq
by (simp add : rsplit-def lt-def ge-def rlfm-I [OF qf xp x1])

hence lqx : ?I x ?rq using simpfm[where p=?rq and bs=x#bs] by auto
from qf have qfq :isrlfm ?rq
by (auto simp add : rsplit-def lt-def ge-def rlfm-I [OF qf xp x1])

with lqx fr-eqυ[OF qfq] show ?M ∨ ?P ∨ ?F by blast
next
assume D : ?D
let ?U = set (Υ ?rq)
from MF PF D have ?F by auto
then obtain t n s m where aU :(t ,n) ∈ ?U and bU :(s,m)∈ ?U and rqx : ?I

x (υ ?rq (Add (Mul m t) (Mul n s), 2∗n∗m)) by blast
from qf have lrq :isrlfm ?rqusing rlfm-l [OF qf]
by (auto simp add : rsplit-def lt-def ge-def)

from aU bU Υ-l [OF lrq] have tnb: numbound0 t and np:real n > 0 and snb:
numbound0 s and mp:real m > 0 by (auto simp add : split-def)

let ?st = Add (Mul m t) (Mul n s)
from tnb snb have stnb: numbound0 ?st by simp
from mult-pos-pos[OF np mp] have mnp: real (2∗n∗m) > 0
by (simp add : mult-commute)

from conjunct1 [OF υ-I [OF lrq mnp stnb, where bs=bs and x=x], symmetric]
rqx

have ∃ x . ?I x ?rq by auto
thus ?E
using rlfm-I [OF qf] by (auto simp add : rsplit-def lt-def ge-def)

qed
with MF PF show ?thesis by blast

qed

lemma Υ-cong-aux :
assumes Ul : ∀ (t ,n) ∈ set U . numbound0 t ∧ n >0
shows ((λ (t ,n). Inum (x#bs) t /real n) ‘ (set (map (λ ((t ,n),(s,m)). (Add (Mul

m t) (Mul n s) , 2∗n∗m)) (alluopairs U)))) = ((λ ((t ,n),(s,m)). (Inum (x#bs) t
/real n + Inum (x#bs) s /real m)/2) ‘ (set U × set U))

(is ?lhs = ?rhs)
proof(auto)
fix t n s m
assume ((t ,n),(s,m)) ∈ set (alluopairs U)
hence th: ((t ,n),(s,m)) ∈ (set U × set U)
using alluopairs-set1 [where xs=U] by blast

let ?N = λ t . Inum (x#bs) t
let ?st= Add (Mul m t) (Mul n s)
from Ul th have mnz : m 6= 0 by auto
from Ul th have nnz : n 6= 0 by auto
have st : (?N t / real n + ?N s / real m)/2 = ?N ?st / real (2∗n∗m)

156

using mnz nnz by (simp add : ring-simps add-divide-distrib)

thus (real m ∗ Inum (x # bs) t + real n ∗ Inum (x # bs) s) /
(2 ∗ real n ∗ real m)
∈ (λ((t , n), s, m).

(Inum (x # bs) t / real n + Inum (x # bs) s / real m) / 2) ‘
(set U × set U)using mnz nnz th

apply (auto simp add : th add-divide-distrib ring-simps split-def image-def)
by (rule-tac x=(s,m) in bexI ,simp-all)

(rule-tac x=(t ,n) in bexI ,simp-all)
next
fix t n s m
assume tnU : (t ,n) ∈ set U and smU :(s,m) ∈ set U
let ?N = λ t . Inum (x#bs) t
let ?st= Add (Mul m t) (Mul n s)
from Ul smU have mnz : m 6= 0 by auto
from Ul tnU have nnz : n 6= 0 by auto
have st : (?N t / real n + ?N s / real m)/2 = ?N ?st / real (2∗n∗m)
using mnz nnz by (simp add : ring-simps add-divide-distrib)

let ?P = λ (t ′,n ′) (s ′,m ′). (Inum (x # bs) t / real n + Inum (x # bs) s / real
m)/2 = (Inum (x # bs) t ′ / real n ′ + Inum (x # bs) s ′ / real m ′)/2
have Pc:∀ a b. ?P a b = ?P b a
by auto

from Ul alluopairs-set1 have Up:∀ ((t ,n),(s,m)) ∈ set (alluopairs U). n 6= 0 ∧
m 6= 0 by blast
from alluopairs-ex [OF Pc, where xs=U] tnU smU
have th ′:∃ ((t ′,n ′),(s ′,m ′)) ∈ set (alluopairs U). ?P (t ′,n ′) (s ′,m ′)
by blast

then obtain t ′ n ′ s ′ m ′ where ts ′-U : ((t ′,n ′),(s ′,m ′)) ∈ set (alluopairs U)
and Pts ′: ?P (t ′,n ′) (s ′,m ′) by blast

from ts ′-U Up have mnz ′: m ′ 6= 0 and nnz ′: n ′6= 0 by auto
let ?st ′ = Add (Mul m ′ t ′) (Mul n ′ s ′)
have st ′: (?N t ′ / real n ′ + ?N s ′ / real m ′)/2 = ?N ?st ′ / real (2∗n ′∗m ′)
using mnz ′ nnz ′ by (simp add : ring-simps add-divide-distrib)

from Pts ′ have
(Inum (x # bs) t / real n + Inum (x # bs) s / real m)/2 = (Inum (x # bs)

t ′ / real n ′ + Inum (x # bs) s ′ / real m ′)/2 by simp
also have . . . = ((λ(t , n). Inum (x # bs) t / real n) ((λ((t , n), s, m). (Add (Mul
m t) (Mul n s), 2 ∗ n ∗ m)) ((t ′,n ′),(s ′,m ′)))) by (simp add : st ′)
finally show (Inum (x # bs) t / real n + Inum (x # bs) s / real m) / 2

∈ (λ(t , n). Inum (x # bs) t / real n) ‘
(λ((t , n), s, m). (Add (Mul m t) (Mul n s), 2 ∗ n ∗ m)) ‘
set (alluopairs U)

using ts ′-U by blast
qed

lemma Υ-cong :
assumes lp: isrlfm p
and UU ′: ((λ (t ,n). Inum (x#bs) t /real n) ‘ U ′) = ((λ ((t ,n),(s,m)). (Inum

157

(x#bs) t /real n + Inum (x#bs) s /real m)/2) ‘ (U × U)) (is ?f ‘ U ′ = ?g ‘
(U×U))
and U : ∀ (t ,n) ∈ U . numbound0 t ∧ n > 0
and U ′: ∀ (t ,n) ∈ U ′. numbound0 t ∧ n > 0
shows (∃ (t ,n) ∈ U . ∃ (s,m) ∈ U . Ifm (x#bs) (υ p (Add (Mul m t) (Mul n

s),2∗n∗m))) = (∃ (t ,n) ∈ U ′. Ifm (x#bs) (υ p (t ,n)))
(is ?lhs = ?rhs)

proof
assume ?lhs
then obtain t n s m where tnU : (t ,n) ∈ U and smU :(s,m) ∈ U and

Pst : Ifm (x#bs) (υ p (Add (Mul m t) (Mul n s),2∗n∗m)) by blast
let ?N = λ t . Inum (x#bs) t
from tnU smU U have tnb: numbound0 t and np: n > 0
and snb: numbound0 s and mp:m > 0 by auto

let ?st= Add (Mul m t) (Mul n s)
from mult-pos-pos[OF np mp] have mnp: real (2∗n∗m) > 0

by (simp add : mult-commute real-of-int-mult [symmetric] del : real-of-int-mult)
from tnb snb have stnb: numbound0 ?st by simp

have st : (?N t / real n + ?N s / real m)/2 = ?N ?st / real (2∗n∗m)
using mp np by (simp add : ring-simps add-divide-distrib)
from tnU smU UU ′ have ?g ((t ,n),(s,m)) ∈ ?f ‘ U ′ by blast
hence ∃ (t ′,n ′) ∈ U ′. ?g ((t ,n),(s,m)) = ?f (t ′,n ′)
by auto (rule-tac x=(a,b) in bexI , auto)

then obtain t ′ n ′ where tnU ′: (t ′,n ′) ∈ U ′ and th: ?g ((t ,n),(s,m)) = ?f (t ′,n ′)
by blast
from U ′ tnU ′ have tnb ′: numbound0 t ′ and np ′: real n ′ > 0 by auto
from υ-I [OF lp mnp stnb, where bs=bs and x=x] Pst
have Pst2 : Ifm (Inum (x # bs) (Add (Mul m t) (Mul n s)) / real (2 ∗ n ∗ m)

bs) p by simp
from conjunct1 [OF υ-I [OF lp np ′ tnb ′, where bs=bs and x=x], symmetric]

th[simplified split-def fst-conv snd-conv ,symmetric] Pst2 [simplified st [symmetric]]
have Ifm (x # bs) (υ p (t ′, n ′)) by (simp only : st)
then show ?rhs using tnU ′ by auto

next
assume ?rhs
then obtain t ′ n ′ where tnU ′: (t ′,n ′) ∈ U ′ and Pt ′: Ifm (x # bs) (υ p (t ′,

n ′))
by blast

from tnU ′ UU ′ have ?f (t ′,n ′) ∈ ?g ‘ (U×U) by blast
hence ∃ ((t ,n),(s,m)) ∈ (U×U). ?f (t ′,n ′) = ?g ((t ,n),(s,m))
by auto (rule-tac x=(a,b) in bexI , auto)

then obtain t n s m where tnU : (t ,n) ∈ U and smU :(s,m) ∈ U and
th: ?f (t ′,n ′) = ?g((t ,n),(s,m)) by blast
let ?N = λ t . Inum (x#bs) t

from tnU smU U have tnb: numbound0 t and np: n > 0
and snb: numbound0 s and mp:m > 0 by auto

let ?st= Add (Mul m t) (Mul n s)
from mult-pos-pos[OF np mp] have mnp: real (2∗n∗m) > 0

by (simp add : mult-commute real-of-int-mult [symmetric] del : real-of-int-mult)

158

from tnb snb have stnb: numbound0 ?st by simp
have st : (?N t / real n + ?N s / real m)/2 = ?N ?st / real (2∗n∗m)
using mp np by (simp add : ring-simps add-divide-distrib)
from U ′ tnU ′ have tnb ′: numbound0 t ′ and np ′: real n ′ > 0 by auto
from υ-I [OF lp np ′ tnb ′, where bs=bs and x=x ,simplified th[simplified split-def

fst-conv snd-conv] st] Pt ′

have Pst2 : Ifm (Inum (x # bs) (Add (Mul m t) (Mul n s)) / real (2 ∗ n ∗ m)
bs) p by simp
with υ-I [OF lp mnp stnb, where x=x and bs=bs] tnU smU show ?lhs by blast

qed

lemma ferrack01 :
assumes qf : qfree p
shows ((∃ x . Ifm (x#bs) (And (And (Ge(CN 0 1 (C 0))) (Lt (CN 0 1 (C (−

1))))) p)) = (Ifm bs (ferrack01 p))) ∧ qfree (ferrack01 p) (is (?lhs = ?rhs) ∧ -)
proof−
let ?I = λ x p. Ifm (x#bs) p
let ?N = λ t . Inum (x#bs) t
let ?q = rlfm (And (And (Ge(CN 0 1 (C 0))) (Lt (CN 0 1 (C (− 1))))) p)
let ?U = Υ ?q
let ?Up = alluopairs ?U
let ?g = λ ((t ,n),(s,m)). (Add (Mul m t) (Mul n s) , 2∗n∗m)
let ?S = map ?g ?Up
let ?SS = map simp-num-pair ?S
let ?Y = remdups ?SS
let ?f = (λ (t ,n). ?N t / real n)
let ?h = λ ((t ,n),(s,m)). (?N t/real n + ?N s/ real m) /2
let ?F = λ p. ∃ a ∈ set (Υ p). ∃ b ∈ set (Υ p). ?I x (υ p (?g(a,b)))
let ?ep = evaldjf (υ ?q) ?Y
from rlfm-l [OF qf] have lq : isrlfm ?q

by (simp add : rsplit-def lt-def ge-def conj-def disj-def Let-def reducecoeff-def
numgcd-def igcd-def)
from alluopairs-set1 [where xs=?U] have UpU : set ?Up ≤ (set ?U × set ?U)

by simp
from Υ-l [OF lq] have U-l : ∀ (t ,n) ∈ set ?U . numbound0 t ∧ n > 0 .
from U-l UpU
have Up-: ∀ ((t ,n),(s,m)) ∈ set ?Up. numbound0 t ∧ n> 0 ∧ numbound0 s ∧

m > 0 by auto
hence Snb: ∀ (t ,n) ∈ set ?S . numbound0 t ∧ n > 0
by (auto simp add : mult-pos-pos)

have Y-l : ∀ (t ,n) ∈ set ?Y . numbound0 t ∧ n > 0
proof−

{ fix t n assume tnY : (t ,n) ∈ set ?Y
hence (t ,n) ∈ set ?SS by simp
hence ∃ (t ′,n ′) ∈ set ?S . simp-num-pair (t ′,n ′) = (t ,n)
by (auto simp add : split-def) (rule-tac x=((aa,ba),(ab,bb)) in bexI , simp-all)
then obtain t ′ n ′ where tn ′S : (t ′,n ′) ∈ set ?S and tns: simp-num-pair

(t ′,n ′) = (t ,n) by blast
from tn ′S Snb have tnb: numbound0 t ′ and np: n ′ > 0 by auto

159

from simp-num-pair-l [OF tnb np tns]
have numbound0 t ∧ n > 0 . }

thus ?thesis by blast
qed

have YU : (?f ‘ set ?Y) = (?h ‘ (set ?U × set ?U))
proof−

from simp-num-pair-ci [where bs=x#bs] have
∀ x . (?f o simp-num-pair) x = ?f x by auto
hence th: ?f o simp-num-pair = ?f using ext by blast

have (?f ‘ set ?Y) = ((?f o simp-num-pair) ‘ set ?S) by (simp add : image-compose)
also have . . . = (?f ‘ set ?S) by (simp add : th)
also have . . . = ((?f o ?g) ‘ set ?Up)
by (simp only : set-map o-def image-compose[symmetric])

also have . . . = (?h ‘ (set ?U × set ?U))
using Υ-cong-aux [OF U-l , where x=x and bs=bs, simplified set-map

image-compose[symmetric]] by blast
finally show ?thesis .

qed
have ∀ (t ,n) ∈ set ?Y . bound0 (υ ?q (t ,n))
proof−

{ fix t n assume tnY : (t ,n) ∈ set ?Y
with Y-l have tnb: numbound0 t and np: real n > 0 by auto
from υ-I [OF lq np tnb]

have bound0 (υ ?q (t ,n)) by simp}
thus ?thesis by blast

qed
hence ep-nb: bound0 ?ep using evaldjf-bound0 [where xs=?Y and f =υ ?q]
by auto

from fr-eq-01 [OF qf , where bs=bs and x=x] have ?lhs = ?F ?q
by (simp only : split-def fst-conv snd-conv)

also have . . . = (∃ (t ,n) ∈ set ?Y . ?I x (υ ?q (t ,n))) using Υ-cong [OF lq YU
U-l Y-l]

by (simp only : split-def fst-conv snd-conv)
also have . . . = (Ifm (x#bs) ?ep)
using evaldjf-ex [where ps=?Y and bs = x#bs and f =υ ?q ,symmetric]
by (simp only : split-def pair-collapse)

also have . . . = (Ifm bs (decr ?ep)) using decr [OF ep-nb] by blast
finally have lr : ?lhs = ?rhs by (simp only : ferrack01-def Let-def)
from decr-qf [OF ep-nb] have qfree (ferrack01 p) by (simp only : Let-def ferrack01-def)
with lr show ?thesis by blast

qed

lemma cp-thm ′:
assumes lp: iszlfm p (real (i ::int)#bs)
and up: dβ p 1 and dd : dδ p d and dp: d > 0
shows (∃ (x ::int). Ifm (real x#bs) p) = ((∃ j∈ {1 .. d}. Ifm (real j#bs)

(minusinf p)) ∨ (∃ j∈ {1 .. d}. ∃ b∈ (Inum (real i#bs)) ‘ set (β p). Ifm ((b+real

160

j)#bs) p))
using cp-thm[OF lp up dd dp] by auto

constdefs unit :: fm ⇒ fm × num list × int
unit p ≡ (let p ′ = zlfm p ; l = ζ p ′ ; q = And (Dvd l (CN 0 1 (C 0))) (aβ p ′

l); d = δ q ;
B = remdups (map simpnum (β q)) ; a = remdups (map simpnum (α

q))
in if length B ≤ length a then (q ,B ,d) else (mirror q , a,d))

lemma unit : assumes qf : qfree p
shows

∧
q B d . unit p = (q ,B ,d) =⇒ ((∃ (x ::int). Ifm (real x#bs) p) = (∃

(x ::int). Ifm (real x#bs) q)) ∧ (Inum (real i#bs)) ‘ set B = (Inum (real i#bs)) ‘
set (β q) ∧ dβ q 1 ∧ dδ q d ∧ d >0 ∧ iszlfm q (real (i ::int)#bs) ∧ (∀ b∈ set B .
numbound0 b)
proof−
fix q B d
assume qBd : unit p = (q ,B ,d)
let ?thes = ((∃ (x ::int). Ifm (real x#bs) p) = (∃ (x ::int). Ifm (real x#bs) q))
∧

Inum (real i#bs) ‘ set B = Inum (real i#bs) ‘ set (β q) ∧
dβ q 1 ∧ dδ q d ∧ 0 < d ∧ iszlfm q (real i # bs) ∧ (∀ b∈ set B . numbound0

b)
let ?I = λ (x ::int) p. Ifm (real x#bs) p
let ?p ′ = zlfm p
let ?l = ζ ?p ′

let ?q = And (Dvd ?l (CN 0 1 (C 0))) (aβ ?p ′ ?l)
let ?d = δ ?q
let ?B = set (β ?q)
let ?B ′= remdups (map simpnum (β ?q))
let ?A = set (α ?q)
let ?A ′= remdups (map simpnum (α ?q))
from conjunct1 [OF zlfm-I [OF qf , where bs=bs]]
have pp ′: ∀ i . ?I i ?p ′ = ?I i p by auto
from iszlfm-gen[OF conjunct2 [OF zlfm-I [OF qf , where bs=bs and i=i]]]
have lp ′: ∀ (i ::int). iszlfm ?p ′ (real i#bs) by simp
hence lp ′′: iszlfm ?p ′ (real (i ::int)#bs) by simp
from lp ′ ζ[where p=?p ′ and bs=bs] have lp: ?l >0 and dl : dβ ?p ′ ?l by auto
from aβ-ex [where p=?p ′ and l=?l and bs=bs, OF lp ′′ dl lp] pp ′

have pq-ex :(∃ (x ::int). ?I x p) = (∃ x . ?I x ?q) by (simp add : int-rdvd-iff)
from lp ′′ lp aβ[OF lp ′′ dl lp] have lq :iszlfm ?q (real i#bs) and uq : dβ ?q 1
by (auto simp add : isint-def)

from δ[OF lq] have dp:?d >0 and dd : dδ ?q ?d by blast+
let ?N = λ t . Inum (real (i ::int)#bs) t
have ?N ‘ set ?B ′ = ((?N o simpnum) ‘ ?B) by (simp add :image-compose)
also have . . . = ?N ‘ ?B using simpnum-ci [where bs=real i #bs] by auto
finally have BB ′: ?N ‘ set ?B ′ = ?N ‘ ?B .
have ?N ‘ set ?A ′ = ((?N o simpnum) ‘ ?A) by (simp add :image-compose)
also have . . . = ?N ‘ ?A using simpnum-ci [where bs=real i #bs] by auto

161

finally have AA ′: ?N ‘ set ?A ′ = ?N ‘ ?A .
from β-numbound0 [OF lq] have B-nb:∀ b∈ set ?B ′. numbound0 b
by (simp add : simpnum-numbound0)

from α-l [OF lq] have A-nb: ∀ b∈ set ?A ′. numbound0 b
by (simp add : simpnum-numbound0)
{assume length ?B ′ ≤ length ?A ′

hence q :q=?q and B = ?B ′ and d :d = ?d
using qBd by (auto simp add : Let-def unit-def)

with BB ′ B-nb have b: ?N ‘ (set B) = ?N ‘ set (β q)
and bn: ∀ b∈ set B . numbound0 b by simp+

with pq-ex dp uq dd lq q d have ?thes by simp}
moreover
{assume ¬ (length ?B ′ ≤ length ?A ′)
hence q :q=mirror ?q and B = ?A ′ and d :d = ?d
using qBd by (auto simp add : Let-def unit-def)

with AA ′ mirrorαβ[OF lq] A-nb have b:?N ‘ (set B) = ?N ‘ set (β q)
and bn: ∀ b∈ set B . numbound0 b by simp+

from mirror-ex [OF lq] pq-ex q
have pqm-eq :(∃ (x ::int). ?I x p) = (∃ (x ::int). ?I x q) by simp
from lq uq q mirror-dβ [where p=?q and bs=bs and a=real i]
have lq ′: iszlfm q (real i#bs) and uq : dβ q 1 by auto
from δ[OF lq ′] mirror-δ[OF lq] q d have dq :dδ q d by auto
from pqm-eq b bn uq lq ′ dp dq q dp d have ?thes by simp

}
ultimately show ?thes by blast

qed

constdefs cooper :: fm ⇒ fm
cooper p ≡
(let (q ,B ,d) = unit p; js = iupt (1 ,d);

mq = simpfm (minusinf q);
md = evaldjf (λ j . simpfm (subst0 (C j) mq)) js

in if md = T then T else
(let qd = evaldjf (λ t . simpfm (subst0 t q))

(remdups (map (λ (b,j). simpnum (Add b (C j)))
[(b,j). b←B ,j←js]))

in decr (disj md qd)))
lemma cooper : assumes qf : qfree p
shows ((∃ (x ::int). Ifm (real x#bs) p) = (Ifm bs (cooper p))) ∧ qfree (cooper p)

(is (?lhs = ?rhs) ∧ -)
proof−

let ?I = λ (x ::int) p. Ifm (real x#bs) p
let ?q = fst (unit p)
let ?B = fst (snd(unit p))
let ?d = snd (snd (unit p))
let ?js = iupt (1 ,?d)

162

let ?mq = minusinf ?q
let ?smq = simpfm ?mq
let ?md = evaldjf (λ j . simpfm (subst0 (C j) ?smq)) ?js
let ?N = λ t . Inum (real (i ::int)#bs) t
let ?bjs = [(b,j). b←?B ,j←?js]
let ?sbjs = map (λ (b,j). simpnum (Add b (C j))) ?bjs
let ?qd = evaldjf (λ t . simpfm (subst0 t ?q)) (remdups ?sbjs)
have qbf :unit p = (?q ,?B ,?d) by simp
from unit [OF qf qbf] have pq-ex : (∃ (x ::int). ?I x p) = (∃ (x ::int). ?I x ?q) and

B :?N ‘ set ?B = ?N ‘ set (β ?q) and
uq :dβ ?q 1 and dd : dδ ?q ?d and dp: ?d > 0 and
lq : iszlfm ?q (real i#bs) and
Bn: ∀ b∈ set ?B . numbound0 b by auto

from zlin-qfree[OF lq] have qfq : qfree ?q .
from simpfm-qf [OF minusinf-qfree[OF qfq]] have qfmq : qfree ?smq.
have jsnb: ∀ j ∈ set ?js. numbound0 (C j) by simp
hence ∀ j∈ set ?js. bound0 (subst0 (C j) ?smq)
by (auto simp only : subst0-bound0 [OF qfmq])

hence th: ∀ j∈ set ?js. bound0 (simpfm (subst0 (C j) ?smq))
by (auto simp add : simpfm-bound0)

from evaldjf-bound0 [OF th] have mdb: bound0 ?md by simp
from Bn jsnb have ∀ (b,j) ∈ set ?bjs. numbound0 (Add b (C j))
by simp

hence ∀ (b,j) ∈ set ?bjs. numbound0 (simpnum (Add b (C j)))
using simpnum-numbound0 by blast

hence ∀ t ∈ set ?sbjs. numbound0 t by simp
hence ∀ t ∈ set (remdups ?sbjs). bound0 (subst0 t ?q)
using subst0-bound0 [OF qfq] by auto

hence th ′: ∀ t ∈ set (remdups ?sbjs). bound0 (simpfm (subst0 t ?q))
using simpfm-bound0 by blast

from evaldjf-bound0 [OF th ′] have qdb: bound0 ?qd by simp
from mdb qdb
have mdqdb: bound0 (disj ?md ?qd) by (simp only : disj-def , cases ?md=T ∨

?qd=T , simp-all)
from trans [OF pq-ex cp-thm ′[OF lq uq dd dp]] B
have ?lhs = (∃ j∈ {1 .. ?d}. ?I j ?mq ∨ (∃ b∈ ?N ‘ set ?B . Ifm ((b+ real j)#bs)

?q)) by auto
also have . . . = ((∃ j∈ set ?js. ?I j ?smq) ∨ (∃ (b,j) ∈ (?N ‘ set ?B × set ?js).

Ifm ((b+ real j)#bs) ?q)) apply (simp only : iupt-set simpfm) by auto
also have . . .= ((∃ j∈ set ?js. ?I j ?smq) ∨ (∃ t ∈ (λ (b,j). ?N (Add b (C j)))

‘ set ?bjs. Ifm (t #bs) ?q)) by simp
also have . . .= ((∃ j∈ set ?js. ?I j ?smq) ∨ (∃ t ∈ (λ (b,j). ?N (simpnum (Add

b (C j)))) ‘ set ?bjs. Ifm (t #bs) ?q)) by (simp only : simpnum-ci)
also have . . .= ((∃ j∈ set ?js. ?I j ?smq) ∨ (∃ t ∈ set ?sbjs. Ifm (?N t #bs)

?q))
by (auto simp add : split-def)

also have . . . = ((∃ j∈ set ?js. (λ j . ?I i (simpfm (subst0 (C j) ?smq))) j) ∨
(∃ t ∈ set (remdups ?sbjs). (λ t . ?I i (simpfm (subst0 t ?q))) t)) by (simp only :

163

simpfm subst0-I [OF qfq] simpfm Inum.simps subst0-I [OF qfmq] set-remdups)
also have . . . = ((?I i (evaldjf (λ j . simpfm (subst0 (C j) ?smq)) ?js)) ∨ (?I i

(evaldjf (λ t . simpfm (subst0 t ?q)) (remdups ?sbjs)))) by (simp only : evaldjf-ex)
finally have mdqd : ?lhs = (?I i (disj ?md ?qd)) by (simp add : disj)
hence mdqd2 : ?lhs = (Ifm bs (decr (disj ?md ?qd))) using decr [OF mdqdb] by

simp
{assume mdT : ?md = T
hence cT :cooper p = T
by (simp only : cooper-def unit-def split-def Let-def if-True) simp

from mdT mdqd have lhs:?lhs by (auto simp add : disj)
from mdT have ?rhs by (simp add : cooper-def unit-def split-def)
with lhs cT have ?thesis by simp }

moreover
{assume mdT : ?md 6= T hence cooper p = decr (disj ?md ?qd)

by (simp only : cooper-def unit-def split-def Let-def if-False)
with mdqd2 decr-qf [OF mdqdb] have ?thesis by simp }

ultimately show ?thesis by blast
qed

lemma DJcooper :
assumes qf : qfree p
shows ((∃ (x ::int). Ifm (real x#bs) p) = (Ifm bs (DJ cooper p))) ∧ qfree (DJ

cooper p)
proof−
from cooper have cqf : ∀ p. qfree p −→ qfree (cooper p) by blast
from DJ-qf [OF cqf] qf have thqf :qfree (DJ cooper p) by blast
have Ifm bs (DJ cooper p) = (∃ q∈ set (disjuncts p). Ifm bs (cooper q))

by (simp add : DJ-def evaldjf-ex)
also have . . . = (∃ q ∈ set(disjuncts p). ∃ (x ::int). Ifm (real x#bs) q)
using cooper disjuncts-qf [OF qf] by blast

also have . . . = (∃ (x ::int). Ifm (real x#bs) p) by (induct p rule: disjuncts.induct ,
auto)
finally show ?thesis using thqf by blast

qed

lemma σ%-cong : assumes lp: iszlfm p (a#bs) and tt ′: Inum (a#bs) t = Inum
(a#bs) t ′

shows Ifm (a#bs) (σ% p (t ,c)) = Ifm (a#bs) (σ% p (t ′,c))
using lp
by (induct p rule: iszlfm.induct , auto simp add : tt ′)

lemma σ-cong : assumes lp: iszlfm p (a#bs) and tt ′: Inum (a#bs) t = Inum
(a#bs) t ′

shows Ifm (a#bs) (σ p c t) = Ifm (a#bs) (σ p c t ′)
by (simp add : σ-def tt ′ σ%-cong [OF lp tt ′])

lemma %-cong : assumes lp: iszlfm p (a#bs)

164

and RR: (λ(b,k). (Inum (a#bs) b,k)) ‘ R = (λ(b,k). (Inum (a#bs) b,k)) ‘ set
(% p)
shows (∃ (e,c) ∈ R. ∃ j∈ {1 .. c∗(δ p)}. Ifm (a#bs) (σ p c (Add e (C j)))) =

(∃ (e,c) ∈ set (% p). ∃ j∈ {1 .. c∗(δ p)}. Ifm (a#bs) (σ p c (Add e (C j))))
(is ?lhs = ?rhs)

proof
let ?d = δ p
assume ?lhs then obtain e c j where ecR: (e,c) ∈ R and jD :j ∈ {1 .. c∗?d}
and px : Ifm (a#bs) (σ p c (Add e (C j))) (is ?sp c e j) by blast

from ecR have (Inum (a#bs) e,c) ∈ (λ(b,k). (Inum (a#bs) b,k)) ‘ R by auto
hence (Inum (a#bs) e,c) ∈ (λ(b,k). (Inum (a#bs) b,k)) ‘ set (% p) using RR

by simp
hence ∃ (e ′,c ′) ∈ set (% p). Inum (a#bs) e = Inum (a#bs) e ′ ∧ c = c ′ by auto
then obtain e ′ c ′ where ecRo:(e ′,c ′) ∈ set (% p) and ee ′:Inum (a#bs) e =

Inum (a#bs) e ′

and cc ′:c = c ′ by blast
from ee ′ have tt ′: Inum (a#bs) (Add e (C j)) = Inum (a#bs) (Add e ′ (C j))

by simp

from σ-cong [OF lp tt ′, where c=c] px have px ′:?sp c e ′ j by simp
from ecRo jD px ′ cc ′ show ?rhs apply auto
by (rule-tac x=(e ′, c ′) in bexI ,simp-all)

(rule-tac x=j in bexI , simp-all add : cc ′[symmetric])
next
let ?d = δ p
assume ?rhs then obtain e c j where ecR: (e,c) ∈ set (% p) and jD :j ∈ {1 ..

c∗?d}
and px : Ifm (a#bs) (σ p c (Add e (C j))) (is ?sp c e j) by blast

from ecR have (Inum (a#bs) e,c) ∈ (λ(b,k). (Inum (a#bs) b,k)) ‘ set (% p)
by auto
hence (Inum (a#bs) e,c) ∈ (λ(b,k). (Inum (a#bs) b,k)) ‘ R using RR by simp
hence ∃ (e ′,c ′) ∈ R. Inum (a#bs) e = Inum (a#bs) e ′ ∧ c = c ′ by auto
then obtain e ′ c ′ where ecRo:(e ′,c ′) ∈ R and ee ′:Inum (a#bs) e = Inum

(a#bs) e ′

and cc ′:c = c ′ by blast
from ee ′ have tt ′: Inum (a#bs) (Add e (C j)) = Inum (a#bs) (Add e ′ (C j))

by simp
from σ-cong [OF lp tt ′, where c=c] px have px ′:?sp c e ′ j by simp
from ecRo jD px ′ cc ′ show ?lhs apply auto
by (rule-tac x=(e ′, c ′) in bexI ,simp-all)

(rule-tac x=j in bexI , simp-all add : cc ′[symmetric])
qed

lemma rl-thm ′:
assumes lp: iszlfm p (real (i ::int)#bs)
and R: (λ(b,k). (Inum (a#bs) b,k)) ‘ R = (λ(b,k). (Inum (a#bs) b,k)) ‘ set

(% p)
shows (∃ (x ::int). Ifm (real x#bs) p) = ((∃ j∈ {1 .. δ p}. Ifm (real j#bs)

(minusinf p)) ∨ (∃ (e,c) ∈ R. ∃ j∈ {1 .. c∗(δ p)}. Ifm (a#bs) (σ p c (Add e (C

165

j)))))
using rl-thm[OF lp] %-cong [OF iszlfm-gen[OF lp, rule-format , where y=a] R]

by simp

constdefs chooset :: fm ⇒ fm × ((num×int) list) × int
chooset p ≡ (let q = zlfm p ; d = δ q ;

B = remdups (map (λ (t ,k). (simpnum t ,k)) (% q)) ;
a = remdups (map (λ (t ,k). (simpnum t ,k)) (α% q))
in if length B ≤ length a then (q ,B ,d) else (mirror q , a,d))

lemma chooset : assumes qf : qfree p
shows

∧
q B d . chooset p = (q ,B ,d) =⇒ ((∃ (x ::int). Ifm (real x#bs) p) =

(∃ (x ::int). Ifm (real x#bs) q)) ∧ ((λ(t ,k). (Inum (real i#bs) t ,k)) ‘ set B =
(λ(t ,k). (Inum (real i#bs) t ,k)) ‘ set (% q)) ∧ (δ q = d) ∧ d >0 ∧ iszlfm q (real
(i ::int)#bs) ∧ (∀ (e,c)∈ set B . numbound0 e ∧ c>0)
proof−
fix q B d
assume qBd : chooset p = (q ,B ,d)
let ?thes = ((∃ (x ::int). Ifm (real x#bs) p) = (∃ (x ::int). Ifm (real x#bs) q))
∧ ((λ(t ,k). (Inum (real i#bs) t ,k)) ‘ set B = (λ(t ,k). (Inum (real i#bs) t ,k)) ‘
set (% q)) ∧ (δ q = d) ∧ d >0 ∧ iszlfm q (real (i ::int)#bs) ∧ (∀ (e,c)∈ set B .
numbound0 e ∧ c>0)
let ?I = λ (x ::int) p. Ifm (real x#bs) p
let ?q = zlfm p
let ?d = δ ?q
let ?B = set (% ?q)
let ?f = λ (t ,k). (simpnum t ,k)
let ?B ′= remdups (map ?f (% ?q))
let ?A = set (α% ?q)
let ?A ′= remdups (map ?f (α% ?q))
from conjunct1 [OF zlfm-I [OF qf , where bs=bs]]
have pp ′: ∀ i . ?I i ?q = ?I i p by auto
hence pq-ex :(∃ (x ::int). ?I x p) = (∃ x . ?I x ?q) by simp
from iszlfm-gen[OF conjunct2 [OF zlfm-I [OF qf , where bs=bs and i=i]], rule-format ,

where y=real i]
have lq : iszlfm ?q (real (i ::int)#bs) .
from δ[OF lq] have dp:?d >0 by blast
let ?N = λ (t ,c). (Inum (real (i ::int)#bs) t ,c)
have ?N ‘ set ?B ′ = ((?N o ?f) ‘ ?B) by (simp add : split-def image-compose)
also have . . . = ?N ‘ ?B
by(simp add : split-def image-compose simpnum-ci [where bs=real i #bs] image-def)
finally have BB ′: ?N ‘ set ?B ′ = ?N ‘ ?B .
have ?N ‘ set ?A ′ = ((?N o ?f) ‘ ?A) by (simp add : split-def image-compose)
also have . . . = ?N ‘ ?A using simpnum-ci [where bs=real i #bs]
by(simp add : split-def image-compose simpnum-ci [where bs=real i #bs] image-def)

finally have AA ′: ?N ‘ set ?A ′ = ?N ‘ ?A .
from %-l [OF lq] have B-nb:∀ (e,c)∈ set ?B ′. numbound0 e ∧ c > 0
by (simp add : simpnum-numbound0 split-def)

166

from α%-l [OF lq] have A-nb: ∀ (e,c)∈ set ?A ′. numbound0 e ∧ c > 0
by (simp add : simpnum-numbound0 split-def)
{assume length ?B ′ ≤ length ?A ′

hence q :q=?q and B = ?B ′ and d :d = ?d
using qBd by (auto simp add : Let-def chooset-def)

with BB ′ B-nb have b: ?N ‘ (set B) = ?N ‘ set (% q)
and bn: ∀ (e,c)∈ set B . numbound0 e ∧ c > 0 by auto

with pq-ex dp lq q d have ?thes by simp}
moreover
{assume ¬ (length ?B ′ ≤ length ?A ′)
hence q :q=mirror ?q and B = ?A ′ and d :d = ?d
using qBd by (auto simp add : Let-def chooset-def)

with AA ′ mirror-α%[OF lq] A-nb have b:?N ‘ (set B) = ?N ‘ set (% q)
and bn: ∀ (e,c)∈ set B . numbound0 e ∧ c > 0 by auto

from mirror-ex [OF lq] pq-ex q
have pqm-eq :(∃ (x ::int). ?I x p) = (∃ (x ::int). ?I x q) by simp
from lq q mirror-l [where p=?q and bs=bs and a=real i]
have lq ′: iszlfm q (real i#bs) by auto
from mirror-δ[OF lq] pqm-eq b bn lq ′ dp q dp d have ?thes by simp

}
ultimately show ?thes by blast

qed

constdefs stage:: fm ⇒ int ⇒ (num × int) ⇒ fm
stage p d ≡ (λ (e,c). evaldjf (λ j . simpfm (σ p c (Add e (C j)))) (iupt (1 ,c∗d)))

lemma stage:
shows Ifm bs (stage p d (e,c)) = (∃ j∈{1 .. c∗d}. Ifm bs (σ p c (Add e (C j))))
by (unfold stage-def split-def ,simp only : evaldjf-ex iupt-set simpfm) simp

lemma stage-nb: assumes lp: iszlfm p (a#bs) and cp: c >0 and nb:numbound0
e
shows bound0 (stage p d (e,c))

proof−
let ?f = λ j . simpfm (σ p c (Add e (C j)))
have th: ∀ j∈ set (iupt(1 ,c∗d)). bound0 (?f j)
proof
fix j
from nb have nb ′:numbound0 (Add e (C j)) by simp
from simpfm-bound0 [OF σ-nb[OF lp nb ′, where k=c]]
show bound0 (simpfm (σ p c (Add e (C j)))) .

qed
from evaldjf-bound0 [OF th] show ?thesis by (unfold stage-def split-def) simp

qed

constdefs redlove:: fm ⇒ fm
redlove p ≡
(let (q ,B ,d) = chooset p;

mq = simpfm (minusinf q);
md = evaldjf (λ j . simpfm (subst0 (C j) mq)) (iupt (1 ,d))

167

in if md = T then T else
(let qd = evaldjf (stage q d) B
in decr (disj md qd)))

lemma redlove: assumes qf : qfree p
shows ((∃ (x ::int). Ifm (real x#bs) p) = (Ifm bs (redlove p))) ∧ qfree (redlove

p)
(is (?lhs = ?rhs) ∧ -)

proof−

let ?I = λ (x ::int) p. Ifm (real x#bs) p
let ?q = fst (chooset p)
let ?B = fst (snd(chooset p))
let ?d = snd (snd (chooset p))
let ?js = iupt (1 ,?d)
let ?mq = minusinf ?q
let ?smq = simpfm ?mq
let ?md = evaldjf (λ j . simpfm (subst0 (C j) ?smq)) ?js
let ?N = λ (t ,k). (Inum (real (i ::int)#bs) t ,k)
let ?qd = evaldjf (stage ?q ?d) ?B
have qbf :chooset p = (?q ,?B ,?d) by simp
from chooset [OF qf qbf] have pq-ex : (∃ (x ::int). ?I x p) = (∃ (x ::int). ?I x ?q)

and
B :?N ‘ set ?B = ?N ‘ set (% ?q) and dd : δ ?q = ?d and dp: ?d > 0 and
lq : iszlfm ?q (real i#bs) and
Bn: ∀ (e,c)∈ set ?B . numbound0 e ∧ c > 0 by auto

from zlin-qfree[OF lq] have qfq : qfree ?q .
from simpfm-qf [OF minusinf-qfree[OF qfq]] have qfmq : qfree ?smq.
have jsnb: ∀ j ∈ set ?js. numbound0 (C j) by simp
hence ∀ j∈ set ?js. bound0 (subst0 (C j) ?smq)
by (auto simp only : subst0-bound0 [OF qfmq])

hence th: ∀ j∈ set ?js. bound0 (simpfm (subst0 (C j) ?smq))
by (auto simp add : simpfm-bound0)

from evaldjf-bound0 [OF th] have mdb: bound0 ?md by simp
from Bn stage-nb[OF lq] have th:∀ x ∈ set ?B . bound0 (stage ?q ?d x) by auto
from evaldjf-bound0 [OF th] have qdb: bound0 ?qd .
from mdb qdb
have mdqdb: bound0 (disj ?md ?qd) by (simp only : disj-def , cases ?md=T ∨

?qd=T , simp-all)
from trans [OF pq-ex rl-thm ′[OF lq B]] dd
have ?lhs = ((∃ j∈ {1 .. ?d}. ?I j ?mq) ∨ (∃ (e,c)∈ set ?B . ∃ j∈ {1 .. c∗?d}.

Ifm (real i#bs) (σ ?q c (Add e (C j))))) by auto
also have . . . = ((∃ j∈ {1 .. ?d}. ?I j ?smq) ∨ (∃ (e,c)∈ set ?B . ?I i (stage ?q

?d (e,c))))
by (simp add : simpfm stage split-def)

also have . . . = ((∃ j∈ {1 .. ?d}. ?I i (subst0 (C j) ?smq)) ∨ ?I i ?qd)
by (simp add : evaldjf-ex subst0-I [OF qfmq])

finally have mdqd :?lhs = (?I i ?md ∨ ?I i ?qd) by (simp only : evaldjf-ex iupt-set
simpfm)

168

also have . . . = (?I i (disj ?md ?qd)) by (simp add : disj)
also have . . . = (Ifm bs (decr (disj ?md ?qd))) by (simp only : decr [OF mdqdb])

finally have mdqd2 : ?lhs = (Ifm bs (decr (disj ?md ?qd))) .
{assume mdT : ?md = T
hence cT :redlove p = T by (simp add : redlove-def Let-def chooset-def split-def)
from mdT have lhs:?lhs using mdqd by simp
from mdT have ?rhs by (simp add : redlove-def chooset-def split-def)
with lhs cT have ?thesis by simp }

moreover
{assume mdT : ?md 6= T hence redlove p = decr (disj ?md ?qd)

by (simp add : redlove-def chooset-def split-def Let-def)
with mdqd2 decr-qf [OF mdqdb] have ?thesis by simp }

ultimately show ?thesis by blast
qed

lemma DJredlove:
assumes qf : qfree p
shows ((∃ (x ::int). Ifm (real x#bs) p) = (Ifm bs (DJ redlove p))) ∧ qfree (DJ

redlove p)
proof−
from redlove have cqf : ∀ p. qfree p −→ qfree (redlove p) by blast
from DJ-qf [OF cqf] qf have thqf :qfree (DJ redlove p) by blast
have Ifm bs (DJ redlove p) = (∃ q∈ set (disjuncts p). Ifm bs (redlove q))

by (simp add : DJ-def evaldjf-ex)
also have . . . = (∃ q ∈ set(disjuncts p). ∃ (x ::int). Ifm (real x#bs) q)
using redlove disjuncts-qf [OF qf] by blast

also have . . . = (∃ (x ::int). Ifm (real x#bs) p) by (induct p rule: disjuncts.induct ,
auto)
finally show ?thesis using thqf by blast

qed

lemma exsplit-qf : assumes qf : qfree p
shows qfree (exsplit p)

using qf by (induct p rule: exsplit .induct , auto)

constdefs mircfr :: fm ⇒ fm
mircfr ≡ (DJ cooper) o ferrack01 o simpfm o exsplit

constdefs mirlfr :: fm ⇒ fm
mirlfr ≡ (DJ redlove) o ferrack01 o simpfm o exsplit

lemma mircfr : ∀ bs p. qfree p −→ qfree (mircfr p) ∧ Ifm bs (mircfr p) = Ifm bs
(E p)
proof(clarsimp simp del : Ifm.simps)
fix bs p
assume qf : qfree p

169

show qfree (mircfr p)∧(Ifm bs (mircfr p) = Ifm bs (E p)) (is - ∧ (?lhs = ?rhs))
proof−
let ?es = (And (And (Ge (CN 0 1 (C 0))) (Lt (CN 0 1 (C (− 1))))) (simpfm

(exsplit p)))
have ?rhs = (∃ (i ::int). ∃ x . Ifm (x#real i#bs) ?es)
using splitex [OF qf] by simp
with ferrack01 [OF simpfm-qf [OF exsplit-qf [OF qf]]] have th1 : ?rhs = (∃

(i ::int). Ifm (real i#bs) (ferrack01 (simpfm (exsplit p)))) and qf ′:qfree (ferrack01
(simpfm (exsplit p))) by simp+

with DJcooper [OF qf ′] show ?thesis by (simp add : mircfr-def)
qed

qed

lemma mirlfr : ∀ bs p. qfree p −→ qfree(mirlfr p) ∧ Ifm bs (mirlfr p) = Ifm bs (E
p)
proof(clarsimp simp del : Ifm.simps)
fix bs p
assume qf : qfree p
show qfree (mirlfr p)∧(Ifm bs (mirlfr p) = Ifm bs (E p)) (is - ∧ (?lhs = ?rhs))
proof−
let ?es = (And (And (Ge (CN 0 1 (C 0))) (Lt (CN 0 1 (C (− 1))))) (simpfm

(exsplit p)))
have ?rhs = (∃ (i ::int). ∃ x . Ifm (x#real i#bs) ?es)
using splitex [OF qf] by simp
with ferrack01 [OF simpfm-qf [OF exsplit-qf [OF qf]]] have th1 : ?rhs = (∃

(i ::int). Ifm (real i#bs) (ferrack01 (simpfm (exsplit p)))) and qf ′:qfree (ferrack01
(simpfm (exsplit p))) by simp+

with DJredlove[OF qf ′] show ?thesis by (simp add : mirlfr-def)
qed

qed

constdefs mircfrqe:: fm ⇒ fm
mircfrqe ≡ (λ p. qelim (prep p) mircfr)

constdefs mirlfrqe:: fm ⇒ fm
mirlfrqe ≡ (λ p. qelim (prep p) mirlfr)

theorem mircfrqe: (Ifm bs (mircfrqe p) = Ifm bs p) ∧ qfree (mircfrqe p)
using qelim-ci [OF mircfr] prep by (auto simp add : mircfrqe-def)

theorem mirlfrqe: (Ifm bs (mirlfrqe p) = Ifm bs p) ∧ qfree (mirlfrqe p)
using qelim-ci [OF mirlfr] prep by (auto simp add : mirlfrqe-def)

declare zdvd-iff-zmod-eq-0 [code]
declare max-def [code unfold]

definition
test1 (u::unit) = mircfrqe (A (And (Le (Sub (Floor (Bound 0)) (Bound 0))) (Le

(Add (Bound 0) (Floor (Neg (Bound 0)))))))

170

definition
test2 (u::unit) = mircfrqe (A (Iff (Eq (Add (Floor (Bound 0)) (Floor (Neg

(Bound 0))))) (Eq (Sub (Floor (Bound 0)) (Bound 0)))))

definition
test3 (u::unit) = mirlfrqe (A (And (Le (Sub (Floor (Bound 0)) (Bound 0))) (Le

(Add (Bound 0) (Floor (Neg (Bound 0)))))))

definition
test4 (u::unit) = mirlfrqe (A (Iff (Eq (Add (Floor (Bound 0)) (Floor (Neg

(Bound 0))))) (Eq (Sub (Floor (Bound 0)) (Bound 0)))))

definition
test5 (u::unit) = mircfrqe (A(E (And (Ge(Sub (Bound 1) (Bound 0))) (Eq (Add

(Floor (Bound 1)) (Floor (Neg(Bound 0))))))))

export-code mircfrqe mirlfrqe test1 test2 test3 test4 test5
in SML module-name Mir

ML set Toplevel .timing
ML Mir .test1 ()
ML Mir .test2 ()
ML Mir .test3 ()
ML Mir .test4 ()
ML Mir .test5 ()
ML reset Toplevel .timing

use mireif .ML
oracle mircfr-oracle (term) = ReflectedMir .mircfr-oracle
oracle mirlfr-oracle (term) = ReflectedMir .mirlfr-oracle
use mirtac.ML
setup MirTac.setup

ML set Toplevel .timing

lemma ALL (x ::real). (bxc = dxe = (x = real bxc))
apply mir
done

lemma ALL (x ::real). real (2 ::int)∗x − (real (1 ::int)) < real bxc + real dxe ∧
real bxc + real dxe ≤ real (2 ::int)∗x + (real (1 ::int))
apply mir
done

lemma ALL (x ::real). 2∗bxc ≤ b2∗xc ∧ b2∗xc ≤ 2∗bx+1 c
apply mir

171

done

lemma ALL (x ::real). ∃ y ≤ x . (bxc = dye)
apply mir
done

ML reset Toplevel .timing

end

14 Implementation of natural numbers by integers

theory Efficient-Nat
imports Main Code-Integer
begin

When generating code for functions on natural numbers, the canonical rep-
resentation using 0 and Suc is unsuitable for computations involving large
numbers. The efficiency of the generated code can be improved drastically
by implementing natural numbers by integers. To do this, just include this
theory.

14.1 Logical rewrites

An int-to-nat conversion restricted to non-negative ints (in contrast to nat).
Note that this restriction has no logical relevance and is just a kind of proof
hint – nothing prevents you from writing nonsense like nat-of-int (−4 :: ′a)

definition
nat-of-int :: int ⇒ nat where
k ≥ 0 =⇒ nat-of-int k = nat k

definition
int-of-nat :: nat ⇒ int where
int-of-nat n = of-nat n

lemma int-of-nat-Suc [simp]:
int-of-nat (Suc n) = 1 + int-of-nat n
unfolding int-of-nat-def by simp

lemma int-of-nat-add :
int-of-nat (m + n) = int-of-nat m + int-of-nat n
unfolding int-of-nat-def by (rule of-nat-add)

lemma int-of-nat-mult :
int-of-nat (m ∗ n) = int-of-nat m ∗ int-of-nat n

172

unfolding int-of-nat-def by (rule of-nat-mult)

lemma nat-of-int-of-number-of :
fixes k
assumes k ≥ 0
shows number-of k = nat-of-int (number-of k)
unfolding nat-of-int-def [OF assms] nat-number-of-def number-of-is-id ..

lemma nat-of-int-of-number-of-aux :
fixes k
assumes Numeral .Pls ≤ k ≡ True
shows k ≥ 0
using assms unfolding Pls-def by simp

lemma nat-of-int-int :
nat-of-int (int-of-nat n) = n
using nat-of-int-def int-of-nat-def by simp

lemma eq-nat-of-int : int-of-nat n = x =⇒ n = nat-of-int x
by (erule subst , simp only : nat-of-int-int)

code-datatype nat-of-int

Case analysis on natural numbers is rephrased using a conditional expres-
sion:

lemma [code unfold , code inline del]:
nat-case ≡ (λf g n. if n = 0 then f else g (n − 1))

proof −
have rewrite:

∧
f g n. nat-case f g n = (if n = 0 then f else g (n − 1))

proof −
fix f g n
show nat-case f g n = (if n = 0 then f else g (n − 1))
by (cases n) simp-all

qed
show nat-case ≡ (λf g n. if n = 0 then f else g (n − 1))
by (rule eq-reflection ext rewrite)+

qed

lemma [code inline]:
nat-case = (λf g n. if n = 0 then f else g (nat-of-int (int-of-nat n − 1)))

proof (rule ext)+
fix f g n
show nat-case f g n = (if n = 0 then f else g (nat-of-int (int-of-nat n − 1)))
by (cases n) (simp-all add : nat-of-int-int)

qed

Most standard arithmetic functions on natural numbers are implemented
using their counterparts on the integers:

lemma [code func]: 0 = nat-of-int 0

173

by (simp add : nat-of-int-def)

lemma [code func, code inline]: 1 = nat-of-int 1
by (simp add : nat-of-int-def)

lemma [code func]: Suc n = nat-of-int (int-of-nat n + 1)
by (simp add : eq-nat-of-int)

lemma [code]: m + n = nat (int-of-nat m + int-of-nat n)
by (simp add : int-of-nat-def nat-eq-iff2)

lemma [code func, code inline]: m + n = nat-of-int (int-of-nat m + int-of-nat n)
by (simp add : eq-nat-of-int int-of-nat-add)

lemma [code, code inline]: m − n = nat (int-of-nat m − int-of-nat n)
by (simp add : int-of-nat-def nat-eq-iff2 of-nat-diff)

lemma [code]: m ∗ n = nat (int-of-nat m ∗ int-of-nat n)
unfolding int-of-nat-def
by (simp add : of-nat-mult [symmetric] del : of-nat-mult)

lemma [code func, code inline]: m ∗ n = nat-of-int (int-of-nat m ∗ int-of-nat n)
by (simp add : eq-nat-of-int int-of-nat-mult)

lemma [code]: m div n = nat (int-of-nat m div int-of-nat n)
unfolding int-of-nat-def zdiv-int [symmetric] by simp

lemma div-nat-code [code func]:
m div k = nat-of-int (fst (divAlg (int-of-nat m, int-of-nat k)))
unfolding div-def [symmetric] int-of-nat-def zdiv-int [symmetric]
unfolding int-of-nat-def [symmetric] nat-of-int-int ..

lemma [code]: m mod n = nat (int-of-nat m mod int-of-nat n)
unfolding int-of-nat-def zmod-int [symmetric] by simp

lemma mod-nat-code [code func]:
m mod k = nat-of-int (snd (divAlg (int-of-nat m, int-of-nat k)))
unfolding mod-def [symmetric] int-of-nat-def zmod-int [symmetric]
unfolding int-of-nat-def [symmetric] nat-of-int-int ..

lemma [code, code inline]: (m < n) ←→ (int-of-nat m < int-of-nat n)
unfolding int-of-nat-def by simp

lemma [code func, code inline]: (m ≤ n) ←→ (int-of-nat m ≤ int-of-nat n)
unfolding int-of-nat-def by simp

lemma [code func, code inline]: m = n ←→ int-of-nat m = int-of-nat n
unfolding int-of-nat-def by simp

174

lemma [code func]: nat k = (if k < 0 then 0 else nat-of-int k)
by (cases k < 0) (simp, simp add : nat-of-int-def)

lemma [code func]:
int-aux n i = (if int-of-nat n = 0 then i else int-aux (nat-of-int (int-of-nat n −

1)) (i + 1))
proof −
have 0 < n =⇒ int-of-nat n = 1 + int-of-nat (nat-of-int (int-of-nat n − 1))
proof −
assume prem: n > 0
then have int-of-nat n − 1 ≥ 0 unfolding int-of-nat-def by auto
then have nat-of-int (int-of-nat n − 1) = nat (int-of-nat n − 1) by (simp

add : nat-of-int-def)
with prem show int-of-nat n = 1 + int-of-nat (nat-of-int (int-of-nat n − 1))

unfolding int-of-nat-def by simp
qed
then show ?thesis unfolding int-aux-def int-of-nat-def by auto

qed

lemma index-of-nat-code [code func, code inline]:
index-of-nat n = index-of-int (int-of-nat n)
unfolding index-of-nat-def int-of-nat-def by simp

lemma nat-of-index-code [code func, code inline]:
nat-of-index k = nat (int-of-index k)
unfolding nat-of-index-def by simp

14.2 Code generator setup for basic functions

nat is no longer a datatype but embedded into the integers.

code-type nat
(SML int)
(OCaml Big ′-int .big ′-int)
(Haskell Integer)

types-code
nat (int)

attach (term-of) 〈〈
val term-of-nat = HOLogic.mk-number HOLogic.natT ;
〉〉
attach (test) 〈〈
fun gen-nat i = random-range 0 i ;
〉〉

consts-code
0 :: nat (0)
Suc ((- + 1))

Since natural numbers are implemented using integers, the coercion func-

175

tion int of type nat ⇒ int is simply implemented by the identity function,
likewise nat-of-int of type int ⇒ nat. For the nat function for converting
an integer to a natural number, we give a specific implementation using an
ML function that returns its input value, provided that it is non-negative,
and otherwise returns 0.

consts-code
int-of-nat ((-))
nat (〈module〉nat)

attach 〈〈
fun nat i = if i < 0 then 0 else i ;
〉〉

code-const int-of-nat
(SML -)
(OCaml -)
(Haskell -)

code-const nat-of-int
(SML -)
(OCaml -)
(Haskell -)

14.3 Preprocessors

Natural numerals should be expressed using nat-of-int.

lemmas [code inline del] = nat-number-of-def

ML 〈〈
fun nat-of-int-of-number-of thy cts =

let
val simplify-less = Simplifier .rewrite
(HOL-basic-ss addsimps (@{thms less-numeral-code} @ @{thms less-eq-numeral-code}));
fun mk-rew (t , ty) =

if ty = HOLogic.natT andalso 0 <= HOLogic.dest-numeral t then
Thm.capply @{cterm (op ≤) Numeral .Pls} (Thm.cterm-of thy t)
|> simplify-less
|> (fn thm => @{thm nat-of-int-of-number-of-aux} OF [thm])
|> (fn thm => @{thm nat-of-int-of-number-of } OF [thm])
|> (fn thm => @{thm eq-reflection} OF [thm])
|> SOME

else NONE
in

fold (HOLogic.add-numerals o Thm.term-of) cts []
|> map-filter mk-rew

end ;
〉〉

setup 〈〈

176

Code.add-inline-proc (nat-of-int-of-number-of , nat-of-int-of-number-of)
〉〉

In contrast to Suc n, the term n + 1 is no longer a constructor term. There-
fore, all occurrences of this term in a position where a pattern is expected
(i.e. on the left-hand side of a recursion equation or in the arguments of an
inductive relation in an introduction rule) must be eliminated. This can be
accomplished by applying the following transformation rules:

theorem Suc-if-eq : (
∧

n. f (Suc n) = h n) =⇒ f 0 = g =⇒
f n = (if n = 0 then g else h (n − 1))
by (case-tac n) simp-all

theorem Suc-clause: (
∧

n. P n (Suc n)) =⇒ n 6= 0 =⇒ P (n − 1) n
by (case-tac n) simp-all

The rules above are built into a preprocessor that is plugged into the code
generator. Since the preprocessor for introduction rules does not know any-
thing about modes, some of the modes that worked for the canonical repre-
sentation of natural numbers may no longer work.

14.4 Module names

code-modulename SML
Nat Integer
Divides Integer
Efficient-Nat Integer

code-modulename OCaml
Nat Integer
Divides Integer
Efficient-Nat Integer

code-modulename Haskell
Nat Integer
Divides Integer
Efficient-Nat Integer

hide const nat-of-int int-of-nat

end

15 Quatifier elimination for R(0,1,+,¡)

theory ReflectedFerrack
imports GCD Real Efficient-Nat
uses (linreif .ML) (linrtac.ML)

begin

177

consts alluopairs:: ′a list ⇒ (′a × ′a) list
primrec

alluopairs [] = []
alluopairs (x#xs) = (map (Pair x) (x#xs))@(alluopairs xs)

lemma alluopairs-set1 : set (alluopairs xs) ≤ {(x ,y). x∈ set xs ∧ y∈ set xs}
by (induct xs, auto)

lemma alluopairs-set :
[[x∈ set xs ; y ∈ set xs]] =⇒ (x ,y) ∈ set (alluopairs xs) ∨ (y ,x) ∈ set (alluopairs

xs)
by (induct xs, auto)

lemma alluopairs-ex :
assumes Pc: ∀ x y . P x y = P y x
shows (∃ x ∈ set xs. ∃ y ∈ set xs. P x y) = (∃ (x ,y) ∈ set (alluopairs xs). P x

y)
proof
assume ∃ x∈set xs. ∃ y∈set xs. P x y
then obtain x y where x : x ∈ set xs and y :y ∈ set xs and P : P x y by blast
from alluopairs-set [OF x y] P Pc show∃ (x , y)∈set (alluopairs xs). P x y
by auto

next
assume ∃ (x , y)∈set (alluopairs xs). P x y
then obtain x and y where xy :(x ,y) ∈ set (alluopairs xs) and P : P x y by

blast+
from xy have x ∈ set xs ∧ y∈ set xs using alluopairs-set1 by blast
with P show ∃ x∈set xs. ∃ y∈set xs. P x y by blast

qed

lemma nth-pos2 : 0 < n =⇒ (x#xs) ! n = xs ! (n − 1)
using Nat .gr0-conv-Suc
by clarsimp

lemma filter-length: length (List .filter P xs) < Suc (length xs)
apply (induct xs, auto) done

consts remdps:: ′a list ⇒ ′a list

recdef remdps measure size
remdps [] = []
remdps (x#xs) = (x#(remdps (List .filter (λ y . y 6= x) xs)))

(hints simp add : filter-length[rule-format])

178

lemma remdps-set [simp]: set (remdps xs) = set xs
by (induct xs rule: remdps.induct , auto)

datatype num = C int | Bound nat | CN nat int num | Neg num | Add num num|
Sub num num
| Mul int num

consts num-size :: num ⇒ nat
primrec

num-size (C c) = 1
num-size (Bound n) = 1
num-size (Neg a) = 1 + num-size a
num-size (Add a b) = 1 + num-size a + num-size b
num-size (Sub a b) = 3 + num-size a + num-size b
num-size (Mul c a) = 1 + num-size a
num-size (CN n c a) = 3 + num-size a

consts Inum :: real list ⇒ num ⇒ real
primrec

Inum bs (C c) = (real c)
Inum bs (Bound n) = bs!n
Inum bs (CN n c a) = (real c) ∗ (bs!n) + (Inum bs a)
Inum bs (Neg a) = −(Inum bs a)
Inum bs (Add a b) = Inum bs a + Inum bs b
Inum bs (Sub a b) = Inum bs a − Inum bs b
Inum bs (Mul c a) = (real c) ∗ Inum bs a

datatype fm =
T | F | Lt num| Le num| Gt num| Ge num| Eq num| NEq num|
NOT fm| And fm fm| Or fm fm| Imp fm fm| Iff fm fm| E fm| A fm

consts fmsize :: fm ⇒ nat
recdef fmsize measure size

fmsize (NOT p) = 1 + fmsize p
fmsize (And p q) = 1 + fmsize p + fmsize q
fmsize (Or p q) = 1 + fmsize p + fmsize q
fmsize (Imp p q) = 3 + fmsize p + fmsize q
fmsize (Iff p q) = 3 + 2∗(fmsize p + fmsize q)

179

fmsize (E p) = 1 + fmsize p
fmsize (A p) = 4+ fmsize p
fmsize p = 1

lemma fmsize-pos: fmsize p > 0
by (induct p rule: fmsize.induct) simp-all

consts Ifm ::real list ⇒ fm ⇒ bool
primrec

Ifm bs T = True
Ifm bs F = False
Ifm bs (Lt a) = (Inum bs a < 0)
Ifm bs (Gt a) = (Inum bs a > 0)
Ifm bs (Le a) = (Inum bs a ≤ 0)
Ifm bs (Ge a) = (Inum bs a ≥ 0)
Ifm bs (Eq a) = (Inum bs a = 0)
Ifm bs (NEq a) = (Inum bs a 6= 0)
Ifm bs (NOT p) = (¬ (Ifm bs p))
Ifm bs (And p q) = (Ifm bs p ∧ Ifm bs q)
Ifm bs (Or p q) = (Ifm bs p ∨ Ifm bs q)
Ifm bs (Imp p q) = ((Ifm bs p) −→ (Ifm bs q))
Ifm bs (Iff p q) = (Ifm bs p = Ifm bs q)
Ifm bs (E p) = (∃ x . Ifm (x#bs) p)
Ifm bs (A p) = (∀ x . Ifm (x#bs) p)

lemma IfmLeSub: [[Inum bs s = s ′ ; Inum bs t = t ′]] =⇒ Ifm bs (Le (Sub s t))
= (s ′ ≤ t ′)
apply simp
done

lemma IfmLtSub: [[Inum bs s = s ′ ; Inum bs t = t ′]] =⇒ Ifm bs (Lt (Sub s t))
= (s ′ < t ′)
apply simp
done
lemma IfmEqSub: [[Inum bs s = s ′ ; Inum bs t = t ′]] =⇒ Ifm bs (Eq (Sub s t))
= (s ′ = t ′)
apply simp
done
lemma IfmNOT : (Ifm bs p = P) =⇒ (Ifm bs (NOT p) = (¬P))
apply simp
done
lemma IfmAnd : [[Ifm bs p = P ; Ifm bs q = Q]] =⇒ (Ifm bs (And p q) = (P ∧
Q))
apply simp
done
lemma IfmOr : [[Ifm bs p = P ; Ifm bs q = Q]] =⇒ (Ifm bs (Or p q) = (P ∨ Q))
apply simp
done

180

lemma IfmImp: [[Ifm bs p = P ; Ifm bs q = Q]] =⇒ (Ifm bs (Imp p q) = (P −→
Q))
apply simp
done
lemma IfmIff : [[Ifm bs p = P ; Ifm bs q = Q]] =⇒ (Ifm bs (Iff p q) = (P = Q))
apply simp
done

lemma IfmE : (!! x . Ifm (x#bs) p = P x) =⇒ (Ifm bs (E p) = (∃ x . P x))
apply simp
done
lemma IfmA: (!! x . Ifm (x#bs) p = P x) =⇒ (Ifm bs (A p) = (∀ x . P x))
apply simp
done

consts not :: fm ⇒ fm
recdef not measure size

not (NOT p) = p
not T = F
not F = T
not p = NOT p

lemma not [simp]: Ifm bs (not p) = Ifm bs (NOT p)
by (cases p) auto

constdefs conj :: fm ⇒ fm ⇒ fm
conj p q ≡ (if (p = F ∨ q=F) then F else if p=T then q else if q=T then p else
if p = q then p else And p q)

lemma conj [simp]: Ifm bs (conj p q) = Ifm bs (And p q)
by (cases p=F ∨ q=F ,simp-all add : conj-def) (cases p,simp-all)

constdefs disj :: fm ⇒ fm ⇒ fm
disj p q ≡ (if (p = T ∨ q=T) then T else if p=F then q else if q=F then p

else if p=q then p else Or p q)

lemma disj [simp]: Ifm bs (disj p q) = Ifm bs (Or p q)
by (cases p=T ∨ q=T ,simp-all add : disj-def) (cases p,simp-all)

constdefs imp :: fm ⇒ fm ⇒ fm
imp p q ≡ (if (p = F ∨ q=T ∨ p=q) then T else if p=T then q else if q=F then

not p
else Imp p q)

lemma imp[simp]: Ifm bs (imp p q) = Ifm bs (Imp p q)
by (cases p=F ∨ q=T ,simp-all add : imp-def)

constdefs iff :: fm ⇒ fm ⇒ fm
iff p q ≡ (if (p = q) then T else if (p = NOT q ∨ NOT p = q) then F else

if p=F then not q else if q=F then not p else if p=T then q else if q=T then
p else

Iff p q)

181

lemma iff [simp]: Ifm bs (iff p q) = Ifm bs (Iff p q)
by (unfold iff-def ,cases p=q , simp,cases p=NOT q , simp) (cases NOT p= q ,

auto)

lemma conj-simps:
conj F Q = F
conj P F = F
conj T Q = Q
conj P T = P
conj P P = P
P 6= T =⇒ P 6= F =⇒ Q 6= T =⇒ Q 6= F =⇒ P 6= Q =⇒ conj P Q = And P

Q
by (simp-all add : conj-def)

lemma disj-simps:
disj T Q = T
disj P T = T
disj F Q = Q
disj P F = P
disj P P = P
P 6= T =⇒ P 6= F =⇒ Q 6= T =⇒ Q 6= F =⇒ P 6= Q =⇒ disj P Q = Or P Q
by (simp-all add : disj-def)

lemma imp-simps:
imp F Q = T
imp P T = T
imp T Q = Q
imp P F = not P
imp P P = T
P 6= T =⇒ P 6= F =⇒ P 6= Q =⇒ Q 6= T =⇒ Q 6= F =⇒ imp P Q = Imp P

Q
by (simp-all add : imp-def)

lemma trivNOT : p 6= NOT p NOT p 6= p
apply (induct p, auto)
done

lemma iff-simps:
iff p p = T
iff p (NOT p) = F
iff (NOT p) p = F
iff p F = not p
iff F p = not p
p 6= NOT T =⇒ iff T p = p
p 6= NOT T =⇒ iff p T = p
p 6=q =⇒ p 6= NOT q =⇒ q 6= NOT p =⇒ p 6= F =⇒ q 6= F =⇒ p 6= T =⇒ q 6=

T =⇒ iff p q = Iff p q
using trivNOT
by (simp-all add : iff-def , cases p, auto)

consts qfree:: fm ⇒ bool

182

recdef qfree measure size
qfree (E p) = False
qfree (A p) = False
qfree (NOT p) = qfree p
qfree (And p q) = (qfree p ∧ qfree q)
qfree (Or p q) = (qfree p ∧ qfree q)
qfree (Imp p q) = (qfree p ∧ qfree q)
qfree (Iff p q) = (qfree p ∧ qfree q)
qfree p = True

consts
numbound0 :: num ⇒ bool
bound0 :: fm ⇒ bool

primrec
numbound0 (C c) = True
numbound0 (Bound n) = (n>0)
numbound0 (CN n c a) = (n 6=0 ∧ numbound0 a)
numbound0 (Neg a) = numbound0 a
numbound0 (Add a b) = (numbound0 a ∧ numbound0 b)
numbound0 (Sub a b) = (numbound0 a ∧ numbound0 b)
numbound0 (Mul i a) = numbound0 a

lemma numbound0-I :
assumes nb: numbound0 a
shows Inum (b#bs) a = Inum (b ′#bs) a

using nb
by (induct a rule: numbound0 .induct ,auto simp add : nth-pos2)

primrec
bound0 T = True
bound0 F = True
bound0 (Lt a) = numbound0 a
bound0 (Le a) = numbound0 a
bound0 (Gt a) = numbound0 a
bound0 (Ge a) = numbound0 a
bound0 (Eq a) = numbound0 a
bound0 (NEq a) = numbound0 a
bound0 (NOT p) = bound0 p
bound0 (And p q) = (bound0 p ∧ bound0 q)
bound0 (Or p q) = (bound0 p ∧ bound0 q)
bound0 (Imp p q) = ((bound0 p) ∧ (bound0 q))
bound0 (Iff p q) = (bound0 p ∧ bound0 q)
bound0 (E p) = False
bound0 (A p) = False

lemma bound0-I :
assumes bp: bound0 p
shows Ifm (b#bs) p = Ifm (b ′#bs) p

using bp numbound0-I [where b=b and bs=bs and b ′=b ′]

183

by (induct p rule: bound0 .induct) (auto simp add : nth-pos2)

lemma not-qf [simp]: qfree p =⇒ qfree (not p)
by (cases p, auto)
lemma not-bn[simp]: bound0 p =⇒ bound0 (not p)
by (cases p, auto)

lemma conj-qf [simp]: [[qfree p ; qfree q]] =⇒ qfree (conj p q)
using conj-def by auto
lemma conj-nb[simp]: [[bound0 p ; bound0 q]] =⇒ bound0 (conj p q)
using conj-def by auto

lemma disj-qf [simp]: [[qfree p ; qfree q]] =⇒ qfree (disj p q)
using disj-def by auto
lemma disj-nb[simp]: [[bound0 p ; bound0 q]] =⇒ bound0 (disj p q)
using disj-def by auto

lemma imp-qf [simp]: [[qfree p ; qfree q]] =⇒ qfree (imp p q)
using imp-def by (cases p=F ∨ q=T ,simp-all add : imp-def)
lemma imp-nb[simp]: [[bound0 p ; bound0 q]] =⇒ bound0 (imp p q)
using imp-def by (cases p=F ∨ q=T ∨ p=q ,simp-all add : imp-def)

lemma iff-qf [simp]: [[qfree p ; qfree q]] =⇒ qfree (iff p q)
by (unfold iff-def ,cases p=q , auto)

lemma iff-nb[simp]: [[bound0 p ; bound0 q]] =⇒ bound0 (iff p q)
using iff-def by (unfold iff-def ,cases p=q , auto)

consts
decrnum:: num ⇒ num
decr :: fm ⇒ fm

recdef decrnum measure size
decrnum (Bound n) = Bound (n − 1)
decrnum (Neg a) = Neg (decrnum a)
decrnum (Add a b) = Add (decrnum a) (decrnum b)
decrnum (Sub a b) = Sub (decrnum a) (decrnum b)
decrnum (Mul c a) = Mul c (decrnum a)
decrnum (CN n c a) = CN (n − 1) c (decrnum a)
decrnum a = a

recdef decr measure size
decr (Lt a) = Lt (decrnum a)
decr (Le a) = Le (decrnum a)
decr (Gt a) = Gt (decrnum a)
decr (Ge a) = Ge (decrnum a)
decr (Eq a) = Eq (decrnum a)
decr (NEq a) = NEq (decrnum a)
decr (NOT p) = NOT (decr p)

184

decr (And p q) = conj (decr p) (decr q)
decr (Or p q) = disj (decr p) (decr q)
decr (Imp p q) = imp (decr p) (decr q)
decr (Iff p q) = iff (decr p) (decr q)
decr p = p

lemma decrnum: assumes nb: numbound0 t
shows Inum (x#bs) t = Inum bs (decrnum t)
using nb by (induct t rule: decrnum.induct , simp-all add : nth-pos2)

lemma decr : assumes nb: bound0 p
shows Ifm (x#bs) p = Ifm bs (decr p)
using nb
by (induct p rule: decr .induct , simp-all add : nth-pos2 decrnum)

lemma decr-qf : bound0 p =⇒ qfree (decr p)
by (induct p, simp-all)

consts
isatom :: fm ⇒ bool

recdef isatom measure size
isatom T = True
isatom F = True
isatom (Lt a) = True
isatom (Le a) = True
isatom (Gt a) = True
isatom (Ge a) = True
isatom (Eq a) = True
isatom (NEq a) = True
isatom p = False

lemma bound0-qf : bound0 p =⇒ qfree p
by (induct p, simp-all)

constdefs djf :: (′a ⇒ fm) ⇒ ′a ⇒ fm ⇒ fm
djf f p q ≡ (if q=T then T else if q=F then f p else
(let fp = f p in case fp of T ⇒ T | F ⇒ q | - ⇒ Or (f p) q))

constdefs evaldjf :: (′a ⇒ fm) ⇒ ′a list ⇒ fm
evaldjf f ps ≡ foldr (djf f) ps F

lemma djf-Or : Ifm bs (djf f p q) = Ifm bs (Or (f p) q)
by (cases q=T , simp add : djf-def ,cases q=F ,simp add : djf-def)
(cases f p, simp-all add : Let-def djf-def)

lemma djf-simps:
djf f p T = T
djf f p F = f p
q 6=T =⇒ q 6=F =⇒ djf f p q = (let fp = f p in case fp of T ⇒ T | F ⇒ q | - ⇒

185

Or (f p) q)
by (simp-all add : djf-def)

lemma evaldjf-ex : Ifm bs (evaldjf f ps) = (∃ p ∈ set ps. Ifm bs (f p))
by(induct ps, simp-all add : evaldjf-def djf-Or)

lemma evaldjf-bound0 :
assumes nb: ∀ x∈ set xs. bound0 (f x)
shows bound0 (evaldjf f xs)
using nb by (induct xs, auto simp add : evaldjf-def djf-def Let-def) (case-tac f a,

auto)

lemma evaldjf-qf :
assumes nb: ∀ x∈ set xs. qfree (f x)
shows qfree (evaldjf f xs)
using nb by (induct xs, auto simp add : evaldjf-def djf-def Let-def) (case-tac f a,

auto)

consts disjuncts :: fm ⇒ fm list
recdef disjuncts measure size

disjuncts (Or p q) = (disjuncts p) @ (disjuncts q)
disjuncts F = []
disjuncts p = [p]

lemma disjuncts: (∃ q∈ set (disjuncts p). Ifm bs q) = Ifm bs p
by(induct p rule: disjuncts.induct , auto)

lemma disjuncts-nb: bound0 p =⇒ ∀ q∈ set (disjuncts p). bound0 q
proof−
assume nb: bound0 p
hence list-all bound0 (disjuncts p) by (induct p rule:disjuncts.induct ,auto)
thus ?thesis by (simp only : list-all-iff)

qed

lemma disjuncts-qf : qfree p =⇒ ∀ q∈ set (disjuncts p). qfree q
proof−
assume qf : qfree p
hence list-all qfree (disjuncts p)
by (induct p rule: disjuncts.induct , auto)

thus ?thesis by (simp only : list-all-iff)
qed

constdefs DJ :: (fm ⇒ fm) ⇒ fm ⇒ fm
DJ f p ≡ evaldjf f (disjuncts p)

lemma DJ : assumes fdj : ∀ p q . Ifm bs (f (Or p q)) = Ifm bs (Or (f p) (f q))
and fF : f F = F
shows Ifm bs (DJ f p) = Ifm bs (f p)

proof−

186

have Ifm bs (DJ f p) = (∃ q ∈ set (disjuncts p). Ifm bs (f q))
by (simp add : DJ-def evaldjf-ex)

also have . . . = Ifm bs (f p) using fdj fF by (induct p rule: disjuncts.induct ,
auto)
finally show ?thesis .

qed

lemma DJ-qf : assumes
fqf : ∀ p. qfree p −→ qfree (f p)
shows ∀ p. qfree p −→ qfree (DJ f p)

proof(clarify)
fix p assume qf : qfree p
have th: DJ f p = evaldjf f (disjuncts p) by (simp add : DJ-def)
from disjuncts-qf [OF qf] have ∀ q∈ set (disjuncts p). qfree q .
with fqf have th ′:∀ q∈ set (disjuncts p). qfree (f q) by blast

from evaldjf-qf [OF th ′] th show qfree (DJ f p) by simp
qed

lemma DJ-qe: assumes qe: ∀ bs p. qfree p −→ qfree (qe p) ∧ (Ifm bs (qe p) =
Ifm bs (E p))

shows ∀ bs p. qfree p −→ qfree (DJ qe p) ∧ (Ifm bs ((DJ qe p)) = Ifm bs (E
p))
proof(clarify)
fix p::fm and bs
assume qf : qfree p
from qe have qth: ∀ p. qfree p −→ qfree (qe p) by blast
from DJ-qf [OF qth] qf have qfth:qfree (DJ qe p) by auto
have Ifm bs (DJ qe p) = (∃ q∈ set (disjuncts p). Ifm bs (qe q))
by (simp add : DJ-def evaldjf-ex)

also have . . . = (∃ q ∈ set(disjuncts p). Ifm bs (E q)) using qe disjuncts-qf [OF
qf] by auto
also have . . . = Ifm bs (E p) by (induct p rule: disjuncts.induct , auto)
finally show qfree (DJ qe p) ∧ Ifm bs (DJ qe p) = Ifm bs (E p) using qfth by

blast
qed

consts
numgcd :: num ⇒ int
numgcdh:: num ⇒ int ⇒ int
reducecoeffh:: num ⇒ int ⇒ num
reducecoeff :: num ⇒ num
dvdnumcoeff :: num ⇒ int ⇒ bool

consts maxcoeff :: num ⇒ int
recdef maxcoeff measure size

maxcoeff (C i) = abs i
maxcoeff (CN n c t) = max (abs c) (maxcoeff t)
maxcoeff t = 1

187

lemma maxcoeff-pos: maxcoeff t ≥ 0
by (induct t rule: maxcoeff .induct , auto)

recdef numgcdh measure size
numgcdh (C i) = (λg . igcd i g)
numgcdh (CN n c t) = (λg . igcd c (numgcdh t g))
numgcdh t = (λg . 1)

defs numgcd-def [code func]: numgcd t ≡ numgcdh t (maxcoeff t)

recdef reducecoeffh measure size
reducecoeffh (C i) = (λ g . C (i div g))
reducecoeffh (CN n c t) = (λ g . CN n (c div g) (reducecoeffh t g))
reducecoeffh t = (λg . t)

defs reducecoeff-def : reducecoeff t ≡
(let g = numgcd t in
if g = 0 then C 0 else if g=1 then t else reducecoeffh t g)

recdef dvdnumcoeff measure size
dvdnumcoeff (C i) = (λ g . g dvd i)
dvdnumcoeff (CN n c t) = (λ g . g dvd c ∧ (dvdnumcoeff t g))
dvdnumcoeff t = (λg . False)

lemma dvdnumcoeff-trans:
assumes gdg : g dvd g ′ and dgt ′:dvdnumcoeff t g ′

shows dvdnumcoeff t g
using dgt ′ gdg
by (induct t rule: dvdnumcoeff .induct , simp-all add : gdg zdvd-trans[OF gdg])

declare zdvd-trans [trans add]

lemma natabs0 : (nat (abs x) = 0) = (x = 0)
by arith

lemma numgcd0 :
assumes g0 : numgcd t = 0
shows Inum bs t = 0
using g0 [simplified numgcd-def]
by (induct t rule: numgcdh.induct , auto simp add : igcd-def gcd-zero natabs0

max-def maxcoeff-pos)

lemma numgcdh-pos: assumes gp: g ≥ 0 shows numgcdh t g ≥ 0
using gp
by (induct t rule: numgcdh.induct , auto simp add : igcd-def)

lemma numgcd-pos: numgcd t ≥0
by (simp add : numgcd-def numgcdh-pos maxcoeff-pos)

lemma reducecoeffh:

188

assumes gt : dvdnumcoeff t g and gp: g > 0
shows real g ∗(Inum bs (reducecoeffh t g)) = Inum bs t
using gt

proof(induct t rule: reducecoeffh.induct)
case (1 i) hence gd : g dvd i by simp
from gp have gnz : g 6= 0 by simp
from prems show ?case by (simp add : real-of-int-div [OF gnz gd])

next
case (2 n c t) hence gd : g dvd c by simp
from gp have gnz : g 6= 0 by simp
from prems show ?case by (simp add : real-of-int-div [OF gnz gd] ring-simps)

qed (auto simp add : numgcd-def gp)
consts ismaxcoeff :: num ⇒ int ⇒ bool
recdef ismaxcoeff measure size

ismaxcoeff (C i) = (λ x . abs i ≤ x)
ismaxcoeff (CN n c t) = (λx . abs c ≤ x ∧ (ismaxcoeff t x))
ismaxcoeff t = (λx . True)

lemma ismaxcoeff-mono: ismaxcoeff t c =⇒ c ≤ c ′ =⇒ ismaxcoeff t c ′

by (induct t rule: ismaxcoeff .induct , auto)

lemma maxcoeff-ismaxcoeff : ismaxcoeff t (maxcoeff t)
proof (induct t rule: maxcoeff .induct)
case (2 n c t)
hence H :ismaxcoeff t (maxcoeff t) .
have thh: maxcoeff t ≤ max (abs c) (maxcoeff t) by (simp add : le-maxI2)
from ismaxcoeff-mono[OF H thh] show ?case by (simp add : le-maxI1)

qed simp-all

lemma igcd-gt1 : igcd i j > 1 =⇒ ((abs i > 1 ∧ abs j > 1) ∨ (abs i = 0 ∧ abs j
> 1) ∨ (abs i > 1 ∧ abs j = 0))
apply (cases abs i = 0 , simp-all add : igcd-def)
apply (cases abs j = 0 , simp-all)
apply (cases abs i = 1 , simp-all)
apply (cases abs j = 1 , simp-all)
apply auto
done

lemma numgcdh0 :numgcdh t m = 0 =⇒ m =0
by (induct t rule: numgcdh.induct , auto simp add :igcd0)

lemma dvdnumcoeff-aux :
assumes ismaxcoeff t m and mp:m ≥ 0 and numgcdh t m > 1
shows dvdnumcoeff t (numgcdh t m)

using prems
proof(induct t rule: numgcdh.induct)
case (2 n c t)
let ?g = numgcdh t m
from prems have th:igcd c ?g > 1 by simp
from igcd-gt1 [OF th] numgcdh-pos[OF mp, where t=t]

189

have (abs c > 1 ∧ ?g > 1) ∨ (abs c = 0 ∧ ?g > 1) ∨ (abs c > 1 ∧ ?g = 0)
by simp
moreover {assume abs c > 1 and gp: ?g > 1 with prems
have th: dvdnumcoeff t ?g by simp
have th ′: igcd c ?g dvd ?g by (simp add :igcd-dvd2)
from dvdnumcoeff-trans[OF th ′ th] have ?case by (simp add : igcd-dvd1)}

moreover {assume abs c = 0 ∧ ?g > 1
with prems have th: dvdnumcoeff t ?g by simp
have th ′: igcd c ?g dvd ?g by (simp add :igcd-dvd2)
from dvdnumcoeff-trans[OF th ′ th] have ?case by (simp add : igcd-dvd1)
hence ?case by simp }

moreover {assume abs c > 1 and g0 :?g = 0
from numgcdh0 [OF g0] have m=0 . with prems have ?case by simp }

ultimately show ?case by blast
qed(auto simp add : igcd-dvd1)

lemma dvdnumcoeff-aux2 :
assumes numgcd t > 1 shows dvdnumcoeff t (numgcd t) ∧ numgcd t > 0
using prems

proof (simp add : numgcd-def)
let ?mc = maxcoeff t
let ?g = numgcdh t ?mc
have th1 : ismaxcoeff t ?mc by (rule maxcoeff-ismaxcoeff)
have th2 : ?mc ≥ 0 by (rule maxcoeff-pos)
assume H : numgcdh t ?mc > 1
from dvdnumcoeff-aux [OF th1 th2 H] show dvdnumcoeff t ?g .

qed

lemma reducecoeff : real (numgcd t) ∗ (Inum bs (reducecoeff t)) = Inum bs t
proof−
let ?g = numgcd t
have ?g ≥ 0 by (simp add : numgcd-pos)
hence ?g = 0 ∨ ?g = 1 ∨ ?g > 1 by auto
moreover {assume ?g = 0 hence ?thesis by (simp add : numgcd0)}
moreover {assume ?g = 1 hence ?thesis by (simp add : reducecoeff-def)}
moreover { assume g1 :?g > 1
from dvdnumcoeff-aux2 [OF g1] have th1 :dvdnumcoeff t ?g and g0 : ?g > 0 by

blast+
from reducecoeffh[OF th1 g0 , where bs=bs] g1 have ?thesis
by (simp add : reducecoeff-def Let-def)}

ultimately show ?thesis by blast
qed

lemma reducecoeffh-numbound0 : numbound0 t =⇒ numbound0 (reducecoeffh t g)
by (induct t rule: reducecoeffh.induct , auto)

lemma reducecoeff-numbound0 : numbound0 t =⇒ numbound0 (reducecoeff t)
using reducecoeffh-numbound0 by (simp add : reducecoeff-def Let-def)

190

consts
simpnum:: num ⇒ num
numadd :: num × num ⇒ num
nummul :: num ⇒ int ⇒ num

recdef numadd measure (λ (t ,s). size t + size s)
numadd (CN n1 c1 r1 ,CN n2 c2 r2) =
(if n1=n2 then
(let c = c1 + c2
in (if c=0 then numadd(r1 ,r2) else CN n1 c (numadd (r1 ,r2))))
else if n1 ≤ n2 then (CN n1 c1 (numadd (r1 ,CN n2 c2 r2)))
else (CN n2 c2 (numadd (CN n1 c1 r1 ,r2))))
numadd (CN n1 c1 r1 ,t) = CN n1 c1 (numadd (r1 , t))
numadd (t ,CN n2 c2 r2) = CN n2 c2 (numadd (t ,r2))
numadd (C b1 , C b2) = C (b1+b2)
numadd (a,b) = Add a b

lemma numadd [simp]: Inum bs (numadd (t ,s)) = Inum bs (Add t s)
apply (induct t s rule: numadd .induct , simp-all add : Let-def)
apply (case-tac c1+c2 = 0 ,case-tac n1 ≤ n2 , simp-all)
apply (case-tac n1 = n2 , simp-all add : ring-simps)
by (simp only : left-distrib[symmetric],simp)

lemma numadd-nb[simp]: [[numbound0 t ; numbound0 s]] =⇒ numbound0 (numadd
(t ,s))
by (induct t s rule: numadd .induct , auto simp add : Let-def)

recdef nummul measure size
nummul (C j) = (λ i . C (i∗j))
nummul (CN n c a) = (λ i . CN n (i∗c) (nummul a i))
nummul t = (λ i . Mul i t)

lemma nummul [simp]:
∧

i . Inum bs (nummul t i) = Inum bs (Mul i t)
by (induct t rule: nummul .induct , auto simp add : ring-simps)

lemma nummul-nb[simp]:
∧

i . numbound0 t =⇒ numbound0 (nummul t i)
by (induct t rule: nummul .induct , auto)

constdefs numneg :: num ⇒ num
numneg t ≡ nummul t (− 1)

constdefs numsub :: num ⇒ num ⇒ num
numsub s t ≡ (if s = t then C 0 else numadd (s,numneg t))

lemma numneg [simp]: Inum bs (numneg t) = Inum bs (Neg t)
using numneg-def by simp

lemma numneg-nb[simp]: numbound0 t =⇒ numbound0 (numneg t)
using numneg-def by simp

191

lemma numsub[simp]: Inum bs (numsub a b) = Inum bs (Sub a b)
using numsub-def by simp

lemma numsub-nb[simp]: [[numbound0 t ; numbound0 s]] =⇒ numbound0 (numsub
t s)
using numsub-def by simp

recdef simpnum measure size
simpnum (C j) = C j
simpnum (Bound n) = CN n 1 (C 0)
simpnum (Neg t) = numneg (simpnum t)
simpnum (Add t s) = numadd (simpnum t ,simpnum s)
simpnum (Sub t s) = numsub (simpnum t) (simpnum s)
simpnum (Mul i t) = (if i = 0 then (C 0) else nummul (simpnum t) i)
simpnum (CN n c t) = (if c = 0 then simpnum t else numadd (CN n c (C

0),simpnum t))

lemma simpnum-ci [simp]: Inum bs (simpnum t) = Inum bs t
by (induct t rule: simpnum.induct , auto simp add : numneg numadd numsub num-
mul)

lemma simpnum-numbound0 [simp]:
numbound0 t =⇒ numbound0 (simpnum t)

by (induct t rule: simpnum.induct , auto)

consts nozerocoeff :: num ⇒ bool
recdef nozerocoeff measure size

nozerocoeff (C c) = True
nozerocoeff (CN n c t) = (c 6=0 ∧ nozerocoeff t)
nozerocoeff t = True

lemma numadd-nz : nozerocoeff a =⇒ nozerocoeff b =⇒ nozerocoeff (numadd
(a,b))
by (induct a b rule: numadd .induct ,auto simp add : Let-def)

lemma nummul-nz :
∧

i . i 6=0 =⇒ nozerocoeff a =⇒ nozerocoeff (nummul a i)
by (induct a rule: nummul .induct ,auto simp add : Let-def numadd-nz)

lemma numneg-nz : nozerocoeff a =⇒ nozerocoeff (numneg a)
by (simp add : numneg-def nummul-nz)

lemma numsub-nz : nozerocoeff a =⇒ nozerocoeff b =⇒ nozerocoeff (numsub a b)
by (simp add : numsub-def numneg-nz numadd-nz)

lemma simpnum-nz : nozerocoeff (simpnum t)
by(induct t rule: simpnum.induct , auto simp add : numadd-nz numneg-nz numsub-nz
nummul-nz)

lemma maxcoeff-nz : nozerocoeff t =⇒ maxcoeff t = 0 =⇒ t = C 0

192

proof (induct t rule: maxcoeff .induct)
case (2 n c t)
hence cnz : c 6=0 and mx : max (abs c) (maxcoeff t) = 0 by simp+
have max (abs c) (maxcoeff t) ≥ abs c by (simp add : le-maxI1)
with cnz have max (abs c) (maxcoeff t) > 0 by arith
with prems show ?case by simp

qed auto

lemma numgcd-nz : assumes nz : nozerocoeff t and g0 : numgcd t = 0 shows t =
C 0
proof−
from g0 have th:numgcdh t (maxcoeff t) = 0 by (simp add : numgcd-def)
from numgcdh0 [OF th] have th:maxcoeff t = 0 .
from maxcoeff-nz [OF nz th] show ?thesis .

qed

constdefs simp-num-pair :: (num × int) ⇒ num × int
simp-num-pair ≡ (λ (t ,n). (if n = 0 then (C 0 , 0) else
(let t ′ = simpnum t ; g = numgcd t ′ in

if g > 1 then (let g ′ = igcd n g in
if g ′ = 1 then (t ′,n)
else (reducecoeffh t ′ g ′, n div g ′))

else (t ′,n))))

lemma simp-num-pair-ci :
shows ((λ (t ,n). Inum bs t / real n) (simp-num-pair (t ,n))) = ((λ (t ,n). Inum

bs t / real n) (t ,n))
(is ?lhs = ?rhs)

proof−
let ?t ′ = simpnum t
let ?g = numgcd ?t ′

let ?g ′ = igcd n ?g
{assume nz : n = 0 hence ?thesis by (simp add : Let-def simp-num-pair-def)}
moreover
{ assume nnz : n 6= 0

{assume ¬ ?g > 1 hence ?thesis by (simp add : Let-def simp-num-pair-def
simpnum-ci)}

moreover
{assume g1 :?g>1 hence g0 : ?g > 0 by simp
from igcd0 g1 nnz have gp0 : ?g ′ 6= 0 by simp
hence g ′p: ?g ′ > 0 using igcd-pos[where i=n and j=numgcd ?t ′] by arith
hence ?g ′= 1 ∨ ?g ′ > 1 by arith

moreover {assume ?g ′=1 hence ?thesis by (simp add : Let-def simp-num-pair-def
simpnum-ci)}

moreover {assume g ′1 :?g ′>1
from dvdnumcoeff-aux2 [OF g1] have th1 :dvdnumcoeff ?t ′ ?g ..
let ?tt = reducecoeffh ?t ′ ?g ′

let ?t = Inum bs ?tt
have gpdg : ?g ′ dvd ?g by (simp add : igcd-dvd2)

193

have gpdd : ?g ′ dvd n by (simp add : igcd-dvd1)
have gpdgp: ?g ′ dvd ?g ′ by simp
from reducecoeffh[OF dvdnumcoeff-trans[OF gpdg th1] g ′p]
have th2 :real ?g ′ ∗ ?t = Inum bs ?t ′ by simp

from prems have ?lhs = ?t / real (n div ?g ′) by (simp add : simp-num-pair-def
Let-def)

also have . . . = (real ?g ′ ∗ ?t) / (real ?g ′ ∗ (real (n div ?g ′))) by simp
also have . . . = (Inum bs ?t ′ / real n)
using real-of-int-div [OF gp0 gpdd] th2 gp0 by simp

finally have ?lhs = Inum bs t / real n by (simp add : simpnum-ci)
then have ?thesis using prems by (simp add : simp-num-pair-def)}

ultimately have ?thesis by blast}
ultimately have ?thesis by blast}

ultimately show ?thesis by blast
qed

lemma simp-num-pair-l : assumes tnb: numbound0 t and np: n >0 and tn:
simp-num-pair (t ,n) = (t ′,n ′)
shows numbound0 t ′ ∧ n ′ >0

proof−
let ?t ′ = simpnum t

let ?g = numgcd ?t ′

let ?g ′ = igcd n ?g
{assume nz : n = 0 hence ?thesis using prems by (simp add : Let-def simp-num-pair-def)}
moreover
{ assume nnz : n 6= 0

{assume ¬ ?g > 1 hence ?thesis using prems by (auto simp add : Let-def
simp-num-pair-def simpnum-numbound0)}

moreover
{assume g1 :?g>1 hence g0 : ?g > 0 by simp
from igcd0 g1 nnz have gp0 : ?g ′ 6= 0 by simp
hence g ′p: ?g ′ > 0 using igcd-pos[where i=n and j=numgcd ?t ′] by arith
hence ?g ′= 1 ∨ ?g ′ > 1 by arith
moreover {assume ?g ′=1 hence ?thesis using prems

by (auto simp add : Let-def simp-num-pair-def simpnum-numbound0)}
moreover {assume g ′1 :?g ′>1
have gpdg : ?g ′ dvd ?g by (simp add : igcd-dvd2)
have gpdd : ?g ′ dvd n by (simp add : igcd-dvd1)
have gpdgp: ?g ′ dvd ?g ′ by simp
from zdvd-imp-le[OF gpdd np] have g ′n: ?g ′ ≤ n .
from zdiv-mono1 [OF g ′n g ′p, simplified zdiv-self [OF gp0]]
have n div ?g ′ >0 by simp
hence ?thesis using prems

by(auto simp add : simp-num-pair-def Let-def reducecoeffh-numbound0
simpnum-numbound0)}

ultimately have ?thesis by blast}
ultimately have ?thesis by blast}

ultimately show ?thesis by blast
qed

194

consts simpfm :: fm ⇒ fm
recdef simpfm measure fmsize

simpfm (And p q) = conj (simpfm p) (simpfm q)
simpfm (Or p q) = disj (simpfm p) (simpfm q)
simpfm (Imp p q) = imp (simpfm p) (simpfm q)
simpfm (Iff p q) = iff (simpfm p) (simpfm q)
simpfm (NOT p) = not (simpfm p)
simpfm (Lt a) = (let a ′ = simpnum a in case a ′ of C v ⇒ if (v < 0) then T

else F
| - ⇒ Lt a ′)
simpfm (Le a) = (let a ′ = simpnum a in case a ′ of C v ⇒ if (v ≤ 0) then T

else F | - ⇒ Le a ′)
simpfm (Gt a) = (let a ′ = simpnum a in case a ′ of C v ⇒ if (v > 0) then T

else F | - ⇒ Gt a ′)
simpfm (Ge a) = (let a ′ = simpnum a in case a ′ of C v ⇒ if (v ≥ 0) then T

else F | - ⇒ Ge a ′)
simpfm (Eq a) = (let a ′ = simpnum a in case a ′ of C v ⇒ if (v = 0) then T

else F | - ⇒ Eq a ′)
simpfm (NEq a) = (let a ′ = simpnum a in case a ′ of C v ⇒ if (v 6= 0) then T

else F | - ⇒ NEq a ′)
simpfm p = p

lemma simpfm: Ifm bs (simpfm p) = Ifm bs p
proof(induct p rule: simpfm.induct)

case (6 a) let ?sa = simpnum a from simpnum-ci have sa: Inum bs ?sa =
Inum bs a by simp

{fix v assume ?sa = C v hence ?case using sa by simp }
moreover {assume ¬ (∃ v . ?sa = C v) hence ?case using sa

by (cases ?sa, simp-all add : Let-def)}
ultimately show ?case by blast

next
case (7 a) let ?sa = simpnum a
from simpnum-ci have sa: Inum bs ?sa = Inum bs a by simp
{fix v assume ?sa = C v hence ?case using sa by simp }
moreover {assume ¬ (∃ v . ?sa = C v) hence ?case using sa

by (cases ?sa, simp-all add : Let-def)}
ultimately show ?case by blast

next
case (8 a) let ?sa = simpnum a
from simpnum-ci have sa: Inum bs ?sa = Inum bs a by simp
{fix v assume ?sa = C v hence ?case using sa by simp }
moreover {assume ¬ (∃ v . ?sa = C v) hence ?case using sa

by (cases ?sa, simp-all add : Let-def)}
ultimately show ?case by blast

next
case (9 a) let ?sa = simpnum a
from simpnum-ci have sa: Inum bs ?sa = Inum bs a by simp
{fix v assume ?sa = C v hence ?case using sa by simp }
moreover {assume ¬ (∃ v . ?sa = C v) hence ?case using sa

195

by (cases ?sa, simp-all add : Let-def)}
ultimately show ?case by blast

next
case (10 a) let ?sa = simpnum a
from simpnum-ci have sa: Inum bs ?sa = Inum bs a by simp
{fix v assume ?sa = C v hence ?case using sa by simp }
moreover {assume ¬ (∃ v . ?sa = C v) hence ?case using sa

by (cases ?sa, simp-all add : Let-def)}
ultimately show ?case by blast

next
case (11 a) let ?sa = simpnum a
from simpnum-ci have sa: Inum bs ?sa = Inum bs a by simp
{fix v assume ?sa = C v hence ?case using sa by simp }
moreover {assume ¬ (∃ v . ?sa = C v) hence ?case using sa

by (cases ?sa, simp-all add : Let-def)}
ultimately show ?case by blast

qed (induct p rule: simpfm.induct , simp-all add : conj disj imp iff not)

lemma simpfm-bound0 : bound0 p =⇒ bound0 (simpfm p)
proof(induct p rule: simpfm.induct)
case (6 a) hence nb: numbound0 a by simp
hence numbound0 (simpnum a) by (simp only : simpnum-numbound0 [OF nb])
thus ?case by (cases simpnum a, auto simp add : Let-def)

next
case (7 a) hence nb: numbound0 a by simp
hence numbound0 (simpnum a) by (simp only : simpnum-numbound0 [OF nb])
thus ?case by (cases simpnum a, auto simp add : Let-def)

next
case (8 a) hence nb: numbound0 a by simp
hence numbound0 (simpnum a) by (simp only : simpnum-numbound0 [OF nb])
thus ?case by (cases simpnum a, auto simp add : Let-def)

next
case (9 a) hence nb: numbound0 a by simp
hence numbound0 (simpnum a) by (simp only : simpnum-numbound0 [OF nb])
thus ?case by (cases simpnum a, auto simp add : Let-def)

next
case (10 a) hence nb: numbound0 a by simp
hence numbound0 (simpnum a) by (simp only : simpnum-numbound0 [OF nb])
thus ?case by (cases simpnum a, auto simp add : Let-def)

next
case (11 a) hence nb: numbound0 a by simp
hence numbound0 (simpnum a) by (simp only : simpnum-numbound0 [OF nb])
thus ?case by (cases simpnum a, auto simp add : Let-def)

qed(auto simp add : disj-def imp-def iff-def conj-def not-bn)

lemma simpfm-qf : qfree p =⇒ qfree (simpfm p)
by (induct p rule: simpfm.induct , auto simp add : disj-qf imp-qf iff-qf conj-qf not-qf
Let-def)

196

(case-tac simpnum a,auto)+

consts prep :: fm ⇒ fm
recdef prep measure fmsize

prep (E T) = T
prep (E F) = F
prep (E (Or p q)) = disj (prep (E p)) (prep (E q))
prep (E (Imp p q)) = disj (prep (E (NOT p))) (prep (E q))
prep (E (Iff p q)) = disj (prep (E (And p q))) (prep (E (And (NOT p) (NOT

q))))
prep (E (NOT (And p q))) = disj (prep (E (NOT p))) (prep (E (NOT q)))
prep (E (NOT (Imp p q))) = prep (E (And p (NOT q)))
prep (E (NOT (Iff p q))) = disj (prep (E (And p (NOT q)))) (prep (E (And

(NOT p) q)))
prep (E p) = E (prep p)
prep (A (And p q)) = conj (prep (A p)) (prep (A q))
prep (A p) = prep (NOT (E (NOT p)))
prep (NOT (NOT p)) = prep p
prep (NOT (And p q)) = disj (prep (NOT p)) (prep (NOT q))
prep (NOT (A p)) = prep (E (NOT p))
prep (NOT (Or p q)) = conj (prep (NOT p)) (prep (NOT q))
prep (NOT (Imp p q)) = conj (prep p) (prep (NOT q))
prep (NOT (Iff p q)) = disj (prep (And p (NOT q))) (prep (And (NOT p) q))
prep (NOT p) = not (prep p)
prep (Or p q) = disj (prep p) (prep q)
prep (And p q) = conj (prep p) (prep q)
prep (Imp p q) = prep (Or (NOT p) q)
prep (Iff p q) = disj (prep (And p q)) (prep (And (NOT p) (NOT q)))
prep p = p

(hints simp add : fmsize-pos)
lemma prep:

∧
bs. Ifm bs (prep p) = Ifm bs p

by (induct p rule: prep.induct , auto)

consts qelim :: fm ⇒ (fm ⇒ fm) ⇒ fm
recdef qelim measure fmsize

qelim (E p) = (λ qe. DJ qe (qelim p qe))
qelim (A p) = (λ qe. not (qe ((qelim (NOT p) qe))))
qelim (NOT p) = (λ qe. not (qelim p qe))
qelim (And p q) = (λ qe. conj (qelim p qe) (qelim q qe))
qelim (Or p q) = (λ qe. disj (qelim p qe) (qelim q qe))
qelim (Imp p q) = (λ qe. imp (qelim p qe) (qelim q qe))
qelim (Iff p q) = (λ qe. iff (qelim p qe) (qelim q qe))
qelim p = (λ y . simpfm p)

lemma qelim-ci :
assumes qe-inv : ∀ bs p. qfree p −→ qfree (qe p) ∧ (Ifm bs (qe p) = Ifm bs (E

p))
shows

∧
bs. qfree (qelim p qe) ∧ (Ifm bs (qelim p qe) = Ifm bs p)

197

using qe-inv DJ-qe[OF qe-inv]
by(induct p rule: qelim.induct)
(auto simp add : not disj conj iff imp not-qf disj-qf conj-qf imp-qf iff-qf

simpfm simpfm-qf simp del : simpfm.simps)

consts
plusinf :: fm ⇒ fm
minusinf :: fm ⇒ fm

recdef minusinf measure size
minusinf (And p q) = conj (minusinf p) (minusinf q)
minusinf (Or p q) = disj (minusinf p) (minusinf q)
minusinf (Eq (CN 0 c e)) = F
minusinf (NEq (CN 0 c e)) = T
minusinf (Lt (CN 0 c e)) = T
minusinf (Le (CN 0 c e)) = T
minusinf (Gt (CN 0 c e)) = F
minusinf (Ge (CN 0 c e)) = F
minusinf p = p

recdef plusinf measure size
plusinf (And p q) = conj (plusinf p) (plusinf q)
plusinf (Or p q) = disj (plusinf p) (plusinf q)
plusinf (Eq (CN 0 c e)) = F
plusinf (NEq (CN 0 c e)) = T
plusinf (Lt (CN 0 c e)) = F
plusinf (Le (CN 0 c e)) = F
plusinf (Gt (CN 0 c e)) = T
plusinf (Ge (CN 0 c e)) = T
plusinf p = p

consts
isrlfm :: fm ⇒ bool

recdef isrlfm measure size
isrlfm (And p q) = (isrlfm p ∧ isrlfm q)
isrlfm (Or p q) = (isrlfm p ∧ isrlfm q)
isrlfm (Eq (CN 0 c e)) = (c>0 ∧ numbound0 e)
isrlfm (NEq (CN 0 c e)) = (c>0 ∧ numbound0 e)
isrlfm (Lt (CN 0 c e)) = (c>0 ∧ numbound0 e)
isrlfm (Le (CN 0 c e)) = (c>0 ∧ numbound0 e)
isrlfm (Gt (CN 0 c e)) = (c>0 ∧ numbound0 e)
isrlfm (Ge (CN 0 c e)) = (c>0 ∧ numbound0 e)
isrlfm p = (isatom p ∧ (bound0 p))

consts rsplit0 :: num ⇒ int × num
recdef rsplit0 measure num-size

rsplit0 (Bound 0) = (1 ,C 0)
rsplit0 (Add a b) = (let (ca,ta) = rsplit0 a ; (cb,tb) = rsplit0 b

in (ca+cb, Add ta tb))

198

rsplit0 (Sub a b) = rsplit0 (Add a (Neg b))
rsplit0 (Neg a) = (let (c,t) = rsplit0 a in (−c,Neg t))
rsplit0 (Mul c a) = (let (ca,ta) = rsplit0 a in (c∗ca,Mul c ta))
rsplit0 (CN 0 c a) = (let (ca,ta) = rsplit0 a in (c+ca,ta))
rsplit0 (CN n c a) = (let (ca,ta) = rsplit0 a in (ca,CN n c ta))
rsplit0 t = (0 ,t)

lemma rsplit0 :
shows Inum bs ((split (CN 0)) (rsplit0 t)) = Inum bs t ∧ numbound0 (snd

(rsplit0 t))
proof (induct t rule: rsplit0 .induct)
case (2 a b)
let ?sa = rsplit0 a let ?sb = rsplit0 b
let ?ca = fst ?sa let ?cb = fst ?sb
let ?ta = snd ?sa let ?tb = snd ?sb
from prems have nb: numbound0 (snd(rsplit0 (Add a b)))
by(cases rsplit0 a,auto simp add : Let-def split-def)

have Inum bs ((split (CN 0)) (rsplit0 (Add a b))) =
Inum bs ((split (CN 0)) ?sa)+Inum bs ((split (CN 0)) ?sb)
by (simp add : Let-def split-def ring-simps)

also have . . . = Inum bs a + Inum bs b using prems by (cases rsplit0 a,
simp-all)
finally show ?case using nb by simp

qed(auto simp add : Let-def split-def ring-simps , simp add : right-distrib[symmetric])

definition
lt :: int ⇒ num ⇒ fm

where
lt c t = (if c = 0 then (Lt t) else if c > 0 then (Lt (CN 0 c t))

else (Gt (CN 0 (−c) (Neg t))))

definition
le :: int ⇒ num ⇒ fm

where
le c t = (if c = 0 then (Le t) else if c > 0 then (Le (CN 0 c t))

else (Ge (CN 0 (−c) (Neg t))))

definition
gt :: int ⇒ num ⇒ fm

where
gt c t = (if c = 0 then (Gt t) else if c > 0 then (Gt (CN 0 c t))

else (Lt (CN 0 (−c) (Neg t))))

definition
ge :: int ⇒ num ⇒ fm

where
ge c t = (if c = 0 then (Ge t) else if c > 0 then (Ge (CN 0 c t))

else (Le (CN 0 (−c) (Neg t))))

199

definition
eq :: int ⇒ num ⇒ fm

where
eq c t = (if c = 0 then (Eq t) else if c > 0 then (Eq (CN 0 c t))

else (Eq (CN 0 (−c) (Neg t))))

definition
neq :: int ⇒ num ⇒ fm

where
neq c t = (if c = 0 then (NEq t) else if c > 0 then (NEq (CN 0 c t))

else (NEq (CN 0 (−c) (Neg t))))

lemma lt : numnoabs t =⇒ Ifm bs (split lt (rsplit0 t)) = Ifm bs (Lt t) ∧ isrlfm
(split lt (rsplit0 t))
using rsplit0 [where bs = bs and t=t]
by (auto simp add : lt-def split-def ,cases snd(rsplit0 t),auto,case-tac nat ,auto)

lemma le: numnoabs t =⇒ Ifm bs (split le (rsplit0 t)) = Ifm bs (Le t) ∧ isrlfm
(split le (rsplit0 t))
using rsplit0 [where bs = bs and t=t]
by (auto simp add : le-def split-def) (cases snd(rsplit0 t),auto,case-tac nat ,auto)

lemma gt : numnoabs t =⇒ Ifm bs (split gt (rsplit0 t)) = Ifm bs (Gt t) ∧ isrlfm
(split gt (rsplit0 t))
using rsplit0 [where bs = bs and t=t]
by (auto simp add : gt-def split-def) (cases snd(rsplit0 t),auto,case-tac nat ,auto)

lemma ge: numnoabs t =⇒ Ifm bs (split ge (rsplit0 t)) = Ifm bs (Ge t) ∧ isrlfm
(split ge (rsplit0 t))
using rsplit0 [where bs = bs and t=t]
by (auto simp add : ge-def split-def) (cases snd(rsplit0 t),auto,case-tac nat ,auto)

lemma eq : numnoabs t =⇒ Ifm bs (split eq (rsplit0 t)) = Ifm bs (Eq t) ∧ isrlfm
(split eq (rsplit0 t))
using rsplit0 [where bs = bs and t=t]
by (auto simp add : eq-def split-def) (cases snd(rsplit0 t),auto,case-tac nat ,auto)

lemma neq : numnoabs t =⇒ Ifm bs (split neq (rsplit0 t)) = Ifm bs (NEq t) ∧
isrlfm (split neq (rsplit0 t))
using rsplit0 [where bs = bs and t=t]
by (auto simp add : neq-def split-def) (cases snd(rsplit0 t),auto,case-tac nat ,auto)

lemma conj-lin: isrlfm p =⇒ isrlfm q =⇒ isrlfm (conj p q)
by (auto simp add : conj-def)
lemma disj-lin: isrlfm p =⇒ isrlfm q =⇒ isrlfm (disj p q)
by (auto simp add : disj-def)

consts rlfm :: fm ⇒ fm
recdef rlfm measure fmsize

200

rlfm (And p q) = conj (rlfm p) (rlfm q)
rlfm (Or p q) = disj (rlfm p) (rlfm q)
rlfm (Imp p q) = disj (rlfm (NOT p)) (rlfm q)
rlfm (Iff p q) = disj (conj (rlfm p) (rlfm q)) (conj (rlfm (NOT p)) (rlfm (NOT

q)))
rlfm (Lt a) = split lt (rsplit0 a)
rlfm (Le a) = split le (rsplit0 a)
rlfm (Gt a) = split gt (rsplit0 a)
rlfm (Ge a) = split ge (rsplit0 a)
rlfm (Eq a) = split eq (rsplit0 a)
rlfm (NEq a) = split neq (rsplit0 a)
rlfm (NOT (And p q)) = disj (rlfm (NOT p)) (rlfm (NOT q))
rlfm (NOT (Or p q)) = conj (rlfm (NOT p)) (rlfm (NOT q))
rlfm (NOT (Imp p q)) = conj (rlfm p) (rlfm (NOT q))
rlfm (NOT (Iff p q)) = disj (conj (rlfm p) (rlfm(NOT q))) (conj (rlfm(NOT p))

(rlfm q))
rlfm (NOT (NOT p)) = rlfm p
rlfm (NOT T) = F
rlfm (NOT F) = T
rlfm (NOT (Lt a)) = rlfm (Ge a)
rlfm (NOT (Le a)) = rlfm (Gt a)
rlfm (NOT (Gt a)) = rlfm (Le a)
rlfm (NOT (Ge a)) = rlfm (Lt a)
rlfm (NOT (Eq a)) = rlfm (NEq a)
rlfm (NOT (NEq a)) = rlfm (Eq a)
rlfm p = p (hints simp add : fmsize-pos)

lemma rlfm-I :
assumes qfp: qfree p
shows (Ifm bs (rlfm p) = Ifm bs p) ∧ isrlfm (rlfm p)
using qfp

by (induct p rule: rlfm.induct , auto simp add : lt le gt ge eq neq conj disj conj-lin
disj-lin)

lemma rminusinf-inf :
assumes lp: isrlfm p
shows ∃ z . ∀ x < z . Ifm (x#bs) (minusinf p) = Ifm (x#bs) p (is ∃ z . ∀ x .

?P z x p)
using lp
proof (induct p rule: minusinf .induct)
case (1 p q) thus ?case by (auto,rule-tac x= min z za in exI) auto

next
case (2 p q) thus ?case by (auto,rule-tac x= min z za in exI) auto

next
case (3 c e)
from prems have nb: numbound0 e by simp
from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e

201

let ?z = (− ?e) / real c
{fix x
assume xz : x < ?z
hence (real c ∗ x < − ?e)
by (simp only : pos-less-divide-eq [OF cp, where a=x and b=− ?e] mult-ac)

hence real c ∗ x + ?e < 0 by arith
hence real c ∗ x + ?e 6= 0 by simp
with xz have ?P ?z x (Eq (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x < ?z . ?P ?z x (Eq (CN 0 c e)) by simp
thus ?case by blast

next
case (4 c e)
from prems have nb: numbound0 e by simp
from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x < ?z
hence (real c ∗ x < − ?e)
by (simp only : pos-less-divide-eq [OF cp, where a=x and b=− ?e] mult-ac)

hence real c ∗ x + ?e < 0 by arith
hence real c ∗ x + ?e 6= 0 by simp
with xz have ?P ?z x (NEq (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x < ?z . ?P ?z x (NEq (CN 0 c e)) by simp
thus ?case by blast

next
case (5 c e)
from prems have nb: numbound0 e by simp

from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x < ?z
hence (real c ∗ x < − ?e)
by (simp only : pos-less-divide-eq [OF cp, where a=x and b=− ?e] mult-ac)

hence real c ∗ x + ?e < 0 by arith
with xz have ?P ?z x (Lt (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x < ?z . ?P ?z x (Lt (CN 0 c e)) by simp
thus ?case by blast

next
case (6 c e)
from prems have nb: numbound0 e by simp

from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x

202

assume xz : x < ?z
hence (real c ∗ x < − ?e)
by (simp only : pos-less-divide-eq [OF cp, where a=x and b=− ?e] mult-ac)

hence real c ∗ x + ?e < 0 by arith
with xz have ?P ?z x (Le (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x < ?z . ?P ?z x (Le (CN 0 c e)) by simp
thus ?case by blast

next
case (7 c e)
from prems have nb: numbound0 e by simp

from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x < ?z
hence (real c ∗ x < − ?e)
by (simp only : pos-less-divide-eq [OF cp, where a=x and b=− ?e] mult-ac)

hence real c ∗ x + ?e < 0 by arith
with xz have ?P ?z x (Gt (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x < ?z . ?P ?z x (Gt (CN 0 c e)) by simp
thus ?case by blast

next
case (8 c e)
from prems have nb: numbound0 e by simp

from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x < ?z
hence (real c ∗ x < − ?e)
by (simp only : pos-less-divide-eq [OF cp, where a=x and b=− ?e] mult-ac)

hence real c ∗ x + ?e < 0 by arith
with xz have ?P ?z x (Ge (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x < ?z . ?P ?z x (Ge (CN 0 c e)) by simp
thus ?case by blast

qed simp-all

lemma rplusinf-inf :
assumes lp: isrlfm p
shows ∃ z . ∀ x > z . Ifm (x#bs) (plusinf p) = Ifm (x#bs) p (is ∃ z . ∀ x . ?P

z x p)
using lp
proof (induct p rule: isrlfm.induct)
case (1 p q) thus ?case by (auto,rule-tac x= max z za in exI) auto

next
case (2 p q) thus ?case by (auto,rule-tac x= max z za in exI) auto

203

next
case (3 c e)
from prems have nb: numbound0 e by simp
from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x > ?z
with mult-strict-right-mono [OF xz cp] cp
have (real c ∗ x > − ?e) by (simp add : mult-ac)
hence real c ∗ x + ?e > 0 by arith
hence real c ∗ x + ?e 6= 0 by simp
with xz have ?P ?z x (Eq (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x > ?z . ?P ?z x (Eq (CN 0 c e)) by simp
thus ?case by blast

next
case (4 c e)
from prems have nb: numbound0 e by simp
from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x > ?z
with mult-strict-right-mono [OF xz cp] cp
have (real c ∗ x > − ?e) by (simp add : mult-ac)
hence real c ∗ x + ?e > 0 by arith
hence real c ∗ x + ?e 6= 0 by simp
with xz have ?P ?z x (NEq (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x > ?z . ?P ?z x (NEq (CN 0 c e)) by simp
thus ?case by blast

next
case (5 c e)
from prems have nb: numbound0 e by simp
from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x > ?z
with mult-strict-right-mono [OF xz cp] cp
have (real c ∗ x > − ?e) by (simp add : mult-ac)
hence real c ∗ x + ?e > 0 by arith
with xz have ?P ?z x (Lt (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x > ?z . ?P ?z x (Lt (CN 0 c e)) by simp
thus ?case by blast

next
case (6 c e)

204

from prems have nb: numbound0 e by simp
from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x > ?z
with mult-strict-right-mono [OF xz cp] cp
have (real c ∗ x > − ?e) by (simp add : mult-ac)
hence real c ∗ x + ?e > 0 by arith
with xz have ?P ?z x (Le (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x > ?z . ?P ?z x (Le (CN 0 c e)) by simp
thus ?case by blast

next
case (7 c e)
from prems have nb: numbound0 e by simp
from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x > ?z
with mult-strict-right-mono [OF xz cp] cp
have (real c ∗ x > − ?e) by (simp add : mult-ac)
hence real c ∗ x + ?e > 0 by arith
with xz have ?P ?z x (Gt (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x > ?z . ?P ?z x (Gt (CN 0 c e)) by simp
thus ?case by blast

next
case (8 c e)
from prems have nb: numbound0 e by simp
from prems have cp: real c > 0 by simp
let ?e=Inum (a#bs) e
let ?z = (− ?e) / real c
{fix x
assume xz : x > ?z
with mult-strict-right-mono [OF xz cp] cp
have (real c ∗ x > − ?e) by (simp add : mult-ac)
hence real c ∗ x + ?e > 0 by arith
with xz have ?P ?z x (Ge (CN 0 c e))
using numbound0-I [OF nb, where b=x and bs=bs and b ′=a] by simp }

hence ∀ x > ?z . ?P ?z x (Ge (CN 0 c e)) by simp
thus ?case by blast

qed simp-all

lemma rminusinf-bound0 :
assumes lp: isrlfm p
shows bound0 (minusinf p)
using lp

205

by (induct p rule: minusinf .induct) simp-all

lemma rplusinf-bound0 :
assumes lp: isrlfm p
shows bound0 (plusinf p)
using lp
by (induct p rule: plusinf .induct) simp-all

lemma rminusinf-ex :
assumes lp: isrlfm p
and ex : Ifm (a#bs) (minusinf p)
shows ∃ x . Ifm (x#bs) p

proof−
from bound0-I [OF rminusinf-bound0 [OF lp], where b=a and bs =bs] ex
have th: ∀ x . Ifm (x#bs) (minusinf p) by auto
from rminusinf-inf [OF lp, where bs=bs]
obtain z where z-def : ∀ x<z . Ifm (x # bs) (minusinf p) = Ifm (x # bs) p by

blast
from th have Ifm ((z − 1)#bs) (minusinf p) by simp
moreover have z − 1 < z by simp
ultimately show ?thesis using z-def by auto

qed

lemma rplusinf-ex :
assumes lp: isrlfm p
and ex : Ifm (a#bs) (plusinf p)
shows ∃ x . Ifm (x#bs) p

proof−
from bound0-I [OF rplusinf-bound0 [OF lp], where b=a and bs =bs] ex
have th: ∀ x . Ifm (x#bs) (plusinf p) by auto
from rplusinf-inf [OF lp, where bs=bs]
obtain z where z-def : ∀ x>z . Ifm (x # bs) (plusinf p) = Ifm (x # bs) p by

blast
from th have Ifm ((z + 1)#bs) (plusinf p) by simp
moreover have z + 1 > z by simp
ultimately show ?thesis using z-def by auto

qed

consts
uset :: fm ⇒ (num × int) list
usubst :: fm ⇒ (num × int) ⇒ fm

recdef uset measure size
uset (And p q) = (uset p @ uset q)
uset (Or p q) = (uset p @ uset q)
uset (Eq (CN 0 c e)) = [(Neg e,c)]
uset (NEq (CN 0 c e)) = [(Neg e,c)]
uset (Lt (CN 0 c e)) = [(Neg e,c)]
uset (Le (CN 0 c e)) = [(Neg e,c)]
uset (Gt (CN 0 c e)) = [(Neg e,c)]

206

uset (Ge (CN 0 c e)) = [(Neg e,c)]
uset p = []

recdef usubst measure size
usubst (And p q) = (λ (t ,n). And (usubst p (t ,n)) (usubst q (t ,n)))
usubst (Or p q) = (λ (t ,n). Or (usubst p (t ,n)) (usubst q (t ,n)))
usubst (Eq (CN 0 c e)) = (λ (t ,n). Eq (Add (Mul c t) (Mul n e)))
usubst (NEq (CN 0 c e)) = (λ (t ,n). NEq (Add (Mul c t) (Mul n e)))
usubst (Lt (CN 0 c e)) = (λ (t ,n). Lt (Add (Mul c t) (Mul n e)))
usubst (Le (CN 0 c e)) = (λ (t ,n). Le (Add (Mul c t) (Mul n e)))
usubst (Gt (CN 0 c e)) = (λ (t ,n). Gt (Add (Mul c t) (Mul n e)))
usubst (Ge (CN 0 c e)) = (λ (t ,n). Ge (Add (Mul c t) (Mul n e)))
usubst p = (λ (t ,n). p)

lemma usubst-I : assumes lp: isrlfm p
and np: real n > 0 and nbt : numbound0 t
shows (Ifm (x#bs) (usubst p (t ,n)) = Ifm (((Inum (x#bs) t)/(real n))#bs) p)
∧ bound0 (usubst p (t ,n)) (is (?I x (usubst p (t ,n)) = ?I ?u p) ∧ ?B p is (- = ?I
(?t/?n) p) ∧ - is (- = ?I (?N x t /-) p) ∧ -)
using lp

proof(induct p rule: usubst .induct)
case (5 c e) from prems have cp: c >0 and nb: numbound0 e by simp+
have ?I ?u (Lt (CN 0 c e)) = (real c ∗(?t/?n) + (?N x e) < 0)
using numbound0-I [OF nb, where bs=bs and b=?u and b ′=x] by simp

also have . . . = (?n∗(real c ∗(?t/?n)) + ?n∗(?N x e) < 0)
by (simp only : pos-less-divide-eq [OF np, where a=real c ∗(?t/?n) + (?N x e)

and b=0 , simplified divide-zero-left]) (simp only : ring-simps)
also have . . . = (real c ∗?t + ?n∗ (?N x e) < 0)
using np by simp

finally show ?case using nbt nb by (simp add : ring-simps)
next
case (6 c e) from prems have cp: c >0 and nb: numbound0 e by simp+
have ?I ?u (Le (CN 0 c e)) = (real c ∗(?t/?n) + (?N x e) ≤ 0)
using numbound0-I [OF nb, where bs=bs and b=?u and b ′=x] by simp

also have . . . = (?n∗(real c ∗(?t/?n)) + ?n∗(?N x e) ≤ 0)
by (simp only : pos-le-divide-eq [OF np, where a=real c ∗(?t/?n) + (?N x e)
and b=0 , simplified divide-zero-left]) (simp only : ring-simps)

also have . . . = (real c ∗?t + ?n∗ (?N x e) ≤ 0)
using np by simp

finally show ?case using nbt nb by (simp add : ring-simps)
next
case (7 c e) from prems have cp: c >0 and nb: numbound0 e by simp+
have ?I ?u (Gt (CN 0 c e)) = (real c ∗(?t/?n) + (?N x e) > 0)
using numbound0-I [OF nb, where bs=bs and b=?u and b ′=x] by simp

also have . . . = (?n∗(real c ∗(?t/?n)) + ?n∗(?N x e) > 0)
by (simp only : pos-divide-less-eq [OF np, where a=real c ∗(?t/?n) + (?N x e)

and b=0 , simplified divide-zero-left]) (simp only : ring-simps)
also have . . . = (real c ∗?t + ?n∗ (?N x e) > 0)

207

using np by simp
finally show ?case using nbt nb by (simp add : ring-simps)

next
case (8 c e) from prems have cp: c >0 and nb: numbound0 e by simp+
have ?I ?u (Ge (CN 0 c e)) = (real c ∗(?t/?n) + (?N x e) ≥ 0)
using numbound0-I [OF nb, where bs=bs and b=?u and b ′=x] by simp

also have . . . = (?n∗(real c ∗(?t/?n)) + ?n∗(?N x e) ≥ 0)
by (simp only : pos-divide-le-eq [OF np, where a=real c ∗(?t/?n) + (?N x e)
and b=0 , simplified divide-zero-left]) (simp only : ring-simps)

also have . . . = (real c ∗?t + ?n∗ (?N x e) ≥ 0)
using np by simp

finally show ?case using nbt nb by (simp add : ring-simps)
next
case (3 c e) from prems have cp: c >0 and nb: numbound0 e by simp+
from np have np: real n 6= 0 by simp
have ?I ?u (Eq (CN 0 c e)) = (real c ∗(?t/?n) + (?N x e) = 0)
using numbound0-I [OF nb, where bs=bs and b=?u and b ′=x] by simp

also have . . . = (?n∗(real c ∗(?t/?n)) + ?n∗(?N x e) = 0)
by (simp only : nonzero-eq-divide-eq [OF np, where a=real c ∗(?t/?n) + (?N x

e)
and b=0 , simplified divide-zero-left]) (simp only : ring-simps)

also have . . . = (real c ∗?t + ?n∗ (?N x e) = 0)
using np by simp

finally show ?case using nbt nb by (simp add : ring-simps)
next
case (4 c e) from prems have cp: c >0 and nb: numbound0 e by simp+
from np have np: real n 6= 0 by simp
have ?I ?u (NEq (CN 0 c e)) = (real c ∗(?t/?n) + (?N x e) 6= 0)
using numbound0-I [OF nb, where bs=bs and b=?u and b ′=x] by simp

also have . . . = (?n∗(real c ∗(?t/?n)) + ?n∗(?N x e) 6= 0)
by (simp only : nonzero-eq-divide-eq [OF np, where a=real c ∗(?t/?n) + (?N x

e)
and b=0 , simplified divide-zero-left]) (simp only : ring-simps)

also have . . . = (real c ∗?t + ?n∗ (?N x e) 6= 0)
using np by simp

finally show ?case using nbt nb by (simp add : ring-simps)
qed(simp-all add : nbt numbound0-I [where bs =bs and b=(Inum (x#bs) t)/ real
n and b ′=x] nth-pos2)

lemma uset-l :
assumes lp: isrlfm p
shows ∀ (t ,k) ∈ set (uset p). numbound0 t ∧ k >0

using lp
by(induct p rule: uset .induct ,auto)

lemma rminusinf-uset :
assumes lp: isrlfm p
and nmi : ¬ (Ifm (a#bs) (minusinf p)) (is ¬ (Ifm (a#bs) (?M p)))
and ex : Ifm (x#bs) p (is ?I x p)

208

shows ∃ (s,m) ∈ set (uset p). x ≥ Inum (a#bs) s / real m (is ∃ (s,m) ∈ ?U
p. x ≥ ?N a s / real m)
proof−
have ∃ (s,m) ∈ set (uset p). real m ∗ x ≥ Inum (a#bs) s (is ∃ (s,m) ∈ ?U p.

real m ∗x ≥ ?N a s)
using lp nmi ex
by (induct p rule: minusinf .induct , auto simp add :numbound0-I [where bs=bs

and b=a and b ′=x] nth-pos2)
then obtain s m where smU : (s,m) ∈ set (uset p) and mx : real m ∗ x ≥ ?N

a s by blast
from uset-l [OF lp] smU have mp: real m > 0 by auto
from pos-divide-le-eq [OF mp, where a=x and b=?N a s, symmetric] mx have

x ≥ ?N a s / real m
by (auto simp add : mult-commute)

thus ?thesis using smU by auto
qed

lemma rplusinf-uset :
assumes lp: isrlfm p
and nmi : ¬ (Ifm (a#bs) (plusinf p)) (is ¬ (Ifm (a#bs) (?M p)))
and ex : Ifm (x#bs) p (is ?I x p)
shows ∃ (s,m) ∈ set (uset p). x ≤ Inum (a#bs) s / real m (is ∃ (s,m) ∈ ?U

p. x ≤ ?N a s / real m)
proof−
have ∃ (s,m) ∈ set (uset p). real m ∗ x ≤ Inum (a#bs) s (is ∃ (s,m) ∈ ?U p.

real m ∗x ≤ ?N a s)
using lp nmi ex
by (induct p rule: minusinf .induct , auto simp add :numbound0-I [where bs=bs

and b=a and b ′=x] nth-pos2)
then obtain s m where smU : (s,m) ∈ set (uset p) and mx : real m ∗ x ≤ ?N

a s by blast
from uset-l [OF lp] smU have mp: real m > 0 by auto
from pos-le-divide-eq [OF mp, where a=x and b=?N a s, symmetric] mx have

x ≤ ?N a s / real m
by (auto simp add : mult-commute)

thus ?thesis using smU by auto
qed

lemma lin-dense:
assumes lp: isrlfm p
and noS : ∀ t . l < t ∧ t< u −→ t /∈ (λ (t ,n). Inum (x#bs) t / real n) ‘ set

(uset p)
(is ∀ t . - ∧ - −→ t /∈ (λ (t ,n). ?N x t / real n) ‘ (?U p))
and lx : l < x and xu:x < u and px : Ifm (x#bs) p
and ly : l < y and yu: y < u
shows Ifm (y#bs) p

using lp px noS
proof (induct p rule: isrlfm.induct)
case (5 c e) hence cp: real c > 0 and nb: numbound0 e by simp+

209

from prems have x ∗ real c + ?N x e < 0 by (simp add : ring-simps)
hence pxc: x < (− ?N x e) / real c
by (simp only : pos-less-divide-eq [OF cp, where a=x and b=−?N x e])

from prems have noSc:∀ t . l < t ∧ t < u −→ t 6= (− ?N x e) / real c by
auto

with ly yu have yne: y 6= − ?N x e / real c by auto
hence y < (− ?N x e) / real c ∨ y > (−?N x e) / real c by auto
moreover {assume y : y < (−?N x e)/ real c
hence y ∗ real c < − ?N x e

by (simp add : pos-less-divide-eq [OF cp, where a=y and b=−?N x e,
symmetric])

hence real c ∗ y + ?N x e < 0 by (simp add : ring-simps)
hence ?case using numbound0-I [OF nb, where bs=bs and b=x and b ′=y]

by simp}
moreover {assume y : y > (− ?N x e) / real c
with yu have eu: u > (− ?N x e) / real c by auto
with noSc ly yu have (− ?N x e) / real c ≤ l by (cases (− ?N x e) / real c

> l , auto)
with lx pxc have False by auto
hence ?case by simp }

ultimately show ?case by blast
next
case (6 c e) hence cp: real c > 0 and nb: numbound0 e by simp +
from prems have x ∗ real c + ?N x e ≤ 0 by (simp add : ring-simps)
hence pxc: x ≤ (− ?N x e) / real c
by (simp only : pos-le-divide-eq [OF cp, where a=x and b=−?N x e])

from prems have noSc:∀ t . l < t ∧ t < u −→ t 6= (− ?N x e) / real c by
auto

with ly yu have yne: y 6= − ?N x e / real c by auto
hence y < (− ?N x e) / real c ∨ y > (−?N x e) / real c by auto
moreover {assume y : y < (−?N x e)/ real c
hence y ∗ real c < − ?N x e

by (simp add : pos-less-divide-eq [OF cp, where a=y and b=−?N x e,
symmetric])

hence real c ∗ y + ?N x e < 0 by (simp add : ring-simps)
hence ?case using numbound0-I [OF nb, where bs=bs and b=x and b ′=y]

by simp}
moreover {assume y : y > (− ?N x e) / real c
with yu have eu: u > (− ?N x e) / real c by auto
with noSc ly yu have (− ?N x e) / real c ≤ l by (cases (− ?N x e) / real c

> l , auto)
with lx pxc have False by auto
hence ?case by simp }

ultimately show ?case by blast
next
case (7 c e) hence cp: real c > 0 and nb: numbound0 e by simp+
from prems have x ∗ real c + ?N x e > 0 by (simp add : ring-simps)
hence pxc: x > (− ?N x e) / real c
by (simp only : pos-divide-less-eq [OF cp, where a=x and b=−?N x e])

210

from prems have noSc:∀ t . l < t ∧ t < u −→ t 6= (− ?N x e) / real c by
auto

with ly yu have yne: y 6= − ?N x e / real c by auto
hence y < (− ?N x e) / real c ∨ y > (−?N x e) / real c by auto
moreover {assume y : y > (−?N x e)/ real c
hence y ∗ real c > − ?N x e

by (simp add : pos-divide-less-eq [OF cp, where a=y and b=−?N x e,
symmetric])

hence real c ∗ y + ?N x e > 0 by (simp add : ring-simps)
hence ?case using numbound0-I [OF nb, where bs=bs and b=x and b ′=y]

by simp}
moreover {assume y : y < (− ?N x e) / real c
with ly have eu: l < (− ?N x e) / real c by auto
with noSc ly yu have (− ?N x e) / real c ≥ u by (cases (− ?N x e) / real c

> l , auto)
with xu pxc have False by auto
hence ?case by simp }

ultimately show ?case by blast
next
case (8 c e) hence cp: real c > 0 and nb: numbound0 e by simp+
from prems have x ∗ real c + ?N x e ≥ 0 by (simp add : ring-simps)
hence pxc: x ≥ (− ?N x e) / real c
by (simp only : pos-divide-le-eq [OF cp, where a=x and b=−?N x e])

from prems have noSc:∀ t . l < t ∧ t < u −→ t 6= (− ?N x e) / real c by
auto

with ly yu have yne: y 6= − ?N x e / real c by auto
hence y < (− ?N x e) / real c ∨ y > (−?N x e) / real c by auto
moreover {assume y : y > (−?N x e)/ real c
hence y ∗ real c > − ?N x e

by (simp add : pos-divide-less-eq [OF cp, where a=y and b=−?N x e,
symmetric])

hence real c ∗ y + ?N x e > 0 by (simp add : ring-simps)
hence ?case using numbound0-I [OF nb, where bs=bs and b=x and b ′=y]

by simp}
moreover {assume y : y < (− ?N x e) / real c
with ly have eu: l < (− ?N x e) / real c by auto
with noSc ly yu have (− ?N x e) / real c ≥ u by (cases (− ?N x e) / real c

> l , auto)
with xu pxc have False by auto
hence ?case by simp }

ultimately show ?case by blast
next
case (3 c e) hence cp: real c > 0 and nb: numbound0 e by simp+
from cp have cnz : real c 6= 0 by simp
from prems have x ∗ real c + ?N x e = 0 by (simp add : ring-simps)
hence pxc: x = (− ?N x e) / real c
by (simp only : nonzero-eq-divide-eq [OF cnz , where a=x and b=−?N x e])

from prems have noSc:∀ t . l < t ∧ t < u −→ t 6= (− ?N x e) / real c by
auto

211

with lx xu have yne: x 6= − ?N x e / real c by auto
with pxc show ?case by simp

next
case (4 c e) hence cp: real c > 0 and nb: numbound0 e by simp+
from cp have cnz : real c 6= 0 by simp
from prems have noSc:∀ t . l < t ∧ t < u −→ t 6= (− ?N x e) / real c by

auto
with ly yu have yne: y 6= − ?N x e / real c by auto
hence y∗ real c 6= −?N x e

by (simp only : nonzero-eq-divide-eq [OF cnz , where a=y and b=−?N x e])
simp

hence y∗ real c + ?N x e 6= 0 by (simp add : ring-simps)
thus ?case using numbound0-I [OF nb, where bs=bs and b=x and b ′=y]
by (simp add : ring-simps)

qed (auto simp add : nth-pos2 numbound0-I [where bs=bs and b=y and b ′=x])

lemma finite-set-intervals:
assumes px : P (x ::real)
and lx : l ≤ x and xu: x ≤ u
and linS : l∈ S and uinS : u ∈ S
and fS :finite S and lS : ∀ x∈ S . l ≤ x and Su: ∀ x∈ S . x ≤ u
shows ∃ a ∈ S . ∃ b ∈ S . (∀ y . a < y ∧ y < b −→ y /∈ S) ∧ a ≤ x ∧ x ≤ b ∧

P x
proof−
let ?Mx = {y . y∈ S ∧ y ≤ x}
let ?xM = {y . y∈ S ∧ x ≤ y}
let ?a = Max ?Mx
let ?b = Min ?xM
have MxS : ?Mx ⊆ S by blast
hence fMx : finite ?Mx using fS finite-subset by auto
from lx linS have linMx : l ∈ ?Mx by blast
hence Mxne: ?Mx 6= {} by blast
have xMS : ?xM ⊆ S by blast
hence fxM : finite ?xM using fS finite-subset by auto
from xu uinS have linxM : u ∈ ?xM by blast
hence xMne: ?xM 6= {} by blast
have ax :?a ≤ x using Mxne fMx by auto
have xb:x ≤ ?b using xMne fxM by auto
have ?a ∈ ?Mx using Max-in[OF fMx Mxne] by simp hence ainS : ?a ∈ S

using MxS by blast
have ?b ∈ ?xM using Min-in[OF fxM xMne] by simp hence binS : ?b ∈ S

using xMS by blast
have noy :∀ y . ?a < y ∧ y < ?b −→ y /∈ S
proof(clarsimp)
fix y
assume ay : ?a < y and yb: y < ?b and yS : y ∈ S
from yS have y∈ ?Mx ∨ y∈ ?xM by auto
moreover {assume y ∈ ?Mx hence y ≤ ?a using Mxne fMx by auto with

ay have False by simp}

212

moreover {assume y ∈ ?xM hence y ≥ ?b using xMne fxM by auto with
yb have False by simp}

ultimately show False by blast
qed
from ainS binS noy ax xb px show ?thesis by blast

qed

lemma finite-set-intervals2 :
assumes px : P (x ::real)
and lx : l ≤ x and xu: x ≤ u
and linS : l∈ S and uinS : u ∈ S
and fS :finite S and lS : ∀ x∈ S . l ≤ x and Su: ∀ x∈ S . x ≤ u
shows (∃ s∈ S . P s) ∨ (∃ a ∈ S . ∃ b ∈ S . (∀ y . a < y ∧ y < b −→ y /∈ S) ∧

a < x ∧ x < b ∧ P x)
proof−
from finite-set-intervals[where P=P , OF px lx xu linS uinS fS lS Su]
obtain a and b where
as: a∈ S and bs: b∈ S and noS :∀ y . a < y ∧ y < b −→ y /∈ S and axb: a ≤

x ∧ x ≤ b ∧ P x by auto
from axb have x= a ∨ x= b ∨ (a < x ∧ x < b) by auto
thus ?thesis using px as bs noS by blast

qed

lemma rinf-uset :
assumes lp: isrlfm p
and nmi : ¬ (Ifm (x#bs) (minusinf p)) (is ¬ (Ifm (x#bs) (?M p)))
and npi : ¬ (Ifm (x#bs) (plusinf p)) (is ¬ (Ifm (x#bs) (?P p)))
and ex : ∃ x . Ifm (x#bs) p (is ∃ x . ?I x p)
shows ∃ (l ,n) ∈ set (uset p). ∃ (s,m) ∈ set (uset p). ?I ((Inum (x#bs) l / real

n + Inum (x#bs) s / real m) / 2) p
proof−
let ?N = λ x t . Inum (x#bs) t
let ?U = set (uset p)
from ex obtain a where pa: ?I a p by blast
from bound0-I [OF rminusinf-bound0 [OF lp], where bs=bs and b=x and b ′=a]

nmi
have nmi ′: ¬ (?I a (?M p)) by simp
from bound0-I [OF rplusinf-bound0 [OF lp], where bs=bs and b=x and b ′=a]

npi
have npi ′: ¬ (?I a (?P p)) by simp
have ∃ (l ,n) ∈ set (uset p). ∃ (s,m) ∈ set (uset p). ?I ((?N a l/real n + ?N a

s /real m) / 2) p
proof−
let ?M = (λ (t ,c). ?N a t / real c) ‘ ?U
have fM : finite ?M by auto
from rminusinf-uset [OF lp nmi pa] rplusinf-uset [OF lp npi pa]
have ∃ (l ,n) ∈ set (uset p). ∃ (s,m) ∈ set (uset p). a ≤ ?N x l / real n ∧ a

≥ ?N x s / real m by blast
then obtain t n s m where

213

tnU : (t ,n) ∈ ?U and smU : (s,m) ∈ ?U
and xs1 : a ≤ ?N x s / real m and tx1 : a ≥ ?N x t / real n by blast

from uset-l [OF lp] tnU smU numbound0-I [where bs=bs and b=x and b ′=a]
xs1 tx1 have xs: a ≤ ?N a s / real m and tx : a ≥ ?N a t / real n by auto

from tnU have Mne: ?M 6= {} by auto
hence Une: ?U 6= {} by simp
let ?l = Min ?M
let ?u = Max ?M
have linM : ?l ∈ ?M using fM Mne by simp
have uinM : ?u ∈ ?M using fM Mne by simp
have tnM : ?N a t / real n ∈ ?M using tnU by auto
have smM : ?N a s / real m ∈ ?M using smU by auto
have lM : ∀ t∈ ?M . ?l ≤ t using Mne fM by auto
have Mu: ∀ t∈ ?M . t ≤ ?u using Mne fM by auto
have ?l ≤ ?N a t / real n using tnM Mne by simp hence lx : ?l ≤ a using

tx by simp
have ?N a s / real m ≤ ?u using smM Mne by simp hence xu: a ≤ ?u using

xs by simp
from finite-set-intervals2 [where P=λ x . ?I x p,OF pa lx xu linM uinM fM lM

Mu]
have (∃ s∈ ?M . ?I s p) ∨

(∃ t1∈ ?M . ∃ t2 ∈ ?M . (∀ y . t1 < y ∧ y < t2 −→ y /∈ ?M) ∧ t1 < a ∧ a
< t2 ∧ ?I a p) .

moreover { fix u assume um: u∈ ?M and pu: ?I u p
hence ∃ (tu,nu) ∈ ?U . u = ?N a tu / real nu by auto
then obtain tu nu where tuU : (tu,nu) ∈ ?U and tuu:u= ?N a tu / real nu

by blast
have (u + u) / 2 = u by auto with pu tuu
have ?I (((?N a tu / real nu) + (?N a tu / real nu)) / 2) p by simp
with tuU have ?thesis by blast}

moreover{
assume ∃ t1∈ ?M . ∃ t2 ∈ ?M . (∀ y . t1 < y ∧ y < t2 −→ y /∈ ?M) ∧ t1

< a ∧ a < t2 ∧ ?I a p
then obtain t1 and t2 where t1M : t1 ∈ ?M and t2M : t2∈ ?M
and noM : ∀ y . t1 < y ∧ y < t2 −→ y /∈ ?M and t1x : t1 < a and xt2 : a

< t2 and px : ?I a p
by blast

from t1M have ∃ (t1u,t1n) ∈ ?U . t1 = ?N a t1u / real t1n by auto
then obtain t1u t1n where t1uU : (t1u,t1n) ∈ ?U and t1u: t1 = ?N a t1u

/ real t1n by blast
from t2M have ∃ (t2u,t2n) ∈ ?U . t2 = ?N a t2u / real t2n by auto
then obtain t2u t2n where t2uU : (t2u,t2n) ∈ ?U and t2u: t2 = ?N a t2u

/ real t2n by blast
from t1x xt2 have t1t2 : t1 < t2 by simp
let ?u = (t1 + t2) / 2
from less-half-sum[OF t1t2] gt-half-sum[OF t1t2] have t1lu: t1 < ?u and

ut2 : ?u < t2 by auto
from lin-dense[OF lp noM t1x xt2 px t1lu ut2] have ?I ?u p .
with t1uU t2uU t1u t2u have ?thesis by blast}

214

ultimately show ?thesis by blast
qed
then obtain l n s m where lnU : (l ,n) ∈ ?U and smU :(s,m) ∈ ?U
and pu: ?I ((?N a l / real n + ?N a s / real m) / 2) p by blast

from lnU smU uset-l [OF lp] have nbl : numbound0 l and nbs: numbound0 s by
auto
from numbound0-I [OF nbl , where bs=bs and b=a and b ′=x]

numbound0-I [OF nbs, where bs=bs and b=a and b ′=x] pu
have ?I ((?N x l / real n + ?N x s / real m) / 2) p by simp
with lnU smU
show ?thesis by auto

qed

theorem fr-eq :
assumes lp: isrlfm p
shows (∃ x . Ifm (x#bs) p) = ((Ifm (x#bs) (minusinf p)) ∨ (Ifm (x#bs) (plusinf

p)) ∨ (∃ (t ,n) ∈ set (uset p). ∃ (s,m) ∈ set (uset p). Ifm ((((Inum (x#bs) t)/
real n + (Inum (x#bs) s) / real m) /2)#bs) p))

(is (∃ x . ?I x p) = (?M ∨ ?P ∨ ?F) is ?E = ?D)
proof
assume px : ∃ x . ?I x p
have ?M ∨ ?P ∨ (¬ ?M ∧ ¬ ?P) by blast
moreover {assume ?M ∨ ?P hence ?D by blast}
moreover {assume nmi : ¬ ?M and npi : ¬ ?P
from rinf-uset [OF lp nmi npi] have ?F using px by blast hence ?D by blast}

ultimately show ?D by blast
next
assume ?D
moreover {assume m:?M from rminusinf-ex [OF lp m] have ?E .}
moreover {assume p: ?P from rplusinf-ex [OF lp p] have ?E . }
moreover {assume f :?F hence ?E by blast}
ultimately show ?E by blast

qed

lemma fr-equsubst :
assumes lp: isrlfm p
shows (∃ x . Ifm (x#bs) p) = ((Ifm (x#bs) (minusinf p)) ∨ (Ifm (x#bs) (plusinf

p)) ∨ (∃ (t ,k) ∈ set (uset p). ∃ (s,l) ∈ set (uset p). Ifm (x#bs) (usubst p (Add(Mul
l t) (Mul k s) , 2∗k∗l))))

(is (∃ x . ?I x p) = (?M ∨ ?P ∨ ?F) is ?E = ?D)
proof
assume px : ∃ x . ?I x p
have ?M ∨ ?P ∨ (¬ ?M ∧ ¬ ?P) by blast
moreover {assume ?M ∨ ?P hence ?D by blast}
moreover {assume nmi : ¬ ?M and npi : ¬ ?P
let ?f =λ (t ,n). Inum (x#bs) t / real n
let ?N = λ t . Inum (x#bs) t

215

{fix t n s m assume (t ,n)∈ set (uset p) and (s,m) ∈ set (uset p)
with uset-l [OF lp] have tnb: numbound0 t and np:real n > 0 and snb:

numbound0 s and mp:real m > 0
by auto

let ?st = Add (Mul m t) (Mul n s)
from mult-pos-pos[OF np mp] have mnp: real (2∗n∗m) > 0
by (simp add : mult-commute)

from tnb snb have st-nb: numbound0 ?st by simp
have st : (?N t / real n + ?N s / real m)/2 = ?N ?st / real (2∗n∗m)
using mnp mp np by (simp add : ring-simps add-divide-distrib)

from usubst-I [OF lp mnp st-nb, where x=x and bs=bs]
have ?I x (usubst p (?st ,2∗n∗m)) = ?I ((?N t / real n + ?N s / real m) /2)

p by (simp only : st [symmetric])}
with rinf-uset [OF lp nmi npi px] have ?F by blast hence ?D by blast}

ultimately show ?D by blast
next
assume ?D
moreover {assume m:?M from rminusinf-ex [OF lp m] have ?E .}
moreover {assume p: ?P from rplusinf-ex [OF lp p] have ?E . }
moreover {fix t k s l assume (t ,k) ∈ set (uset p) and (s,l) ∈ set (uset p)
and px :?I x (usubst p (Add (Mul l t) (Mul k s), 2∗k∗l))
with uset-l [OF lp] have tnb: numbound0 t and np:real k > 0 and snb: num-

bound0 s and mp:real l > 0 by auto
let ?st = Add (Mul l t) (Mul k s)
from mult-pos-pos[OF np mp] have mnp: real (2∗k∗l) > 0
by (simp add : mult-commute)

from tnb snb have st-nb: numbound0 ?st by simp
from usubst-I [OF lp mnp st-nb, where bs=bs] px have ?E by auto}

ultimately show ?E by blast
qed

constdefs ferrack :: fm ⇒ fm
ferrack p ≡ (let p ′ = rlfm (simpfm p); mp = minusinf p ′; pp = plusinf p ′

in if (mp = T ∨ pp = T) then T else
(let U = remdps(map simp-num-pair

(map (λ ((t ,n),(s,m)). (Add (Mul m t) (Mul n s) , 2∗n∗m))
(alluopairs (uset p ′))))

in decr (disj mp (disj pp (evaldjf (simpfm o (usubst p ′)) U)))))

lemma uset-cong-aux :
assumes Ul : ∀ (t ,n) ∈ set U . numbound0 t ∧ n >0
shows ((λ (t ,n). Inum (x#bs) t /real n) ‘ (set (map (λ ((t ,n),(s,m)). (Add (Mul

m t) (Mul n s) , 2∗n∗m)) (alluopairs U)))) = ((λ ((t ,n),(s,m)). (Inum (x#bs) t
/real n + Inum (x#bs) s /real m)/2) ‘ (set U × set U))

(is ?lhs = ?rhs)
proof(auto)
fix t n s m

216

assume ((t ,n),(s,m)) ∈ set (alluopairs U)
hence th: ((t ,n),(s,m)) ∈ (set U × set U)
using alluopairs-set1 [where xs=U] by blast

let ?N = λ t . Inum (x#bs) t
let ?st= Add (Mul m t) (Mul n s)
from Ul th have mnz : m 6= 0 by auto
from Ul th have nnz : n 6= 0 by auto
have st : (?N t / real n + ?N s / real m)/2 = ?N ?st / real (2∗n∗m)
using mnz nnz by (simp add : ring-simps add-divide-distrib)

thus (real m ∗ Inum (x # bs) t + real n ∗ Inum (x # bs) s) /
(2 ∗ real n ∗ real m)
∈ (λ((t , n), s, m).

(Inum (x # bs) t / real n + Inum (x # bs) s / real m) / 2) ‘
(set U × set U)using mnz nnz th

apply (auto simp add : th add-divide-distrib ring-simps split-def image-def)
by (rule-tac x=(s,m) in bexI ,simp-all)

(rule-tac x=(t ,n) in bexI ,simp-all)
next
fix t n s m
assume tnU : (t ,n) ∈ set U and smU :(s,m) ∈ set U
let ?N = λ t . Inum (x#bs) t
let ?st= Add (Mul m t) (Mul n s)
from Ul smU have mnz : m 6= 0 by auto
from Ul tnU have nnz : n 6= 0 by auto
have st : (?N t / real n + ?N s / real m)/2 = ?N ?st / real (2∗n∗m)
using mnz nnz by (simp add : ring-simps add-divide-distrib)

let ?P = λ (t ′,n ′) (s ′,m ′). (Inum (x # bs) t / real n + Inum (x # bs) s / real
m)/2 = (Inum (x # bs) t ′ / real n ′ + Inum (x # bs) s ′ / real m ′)/2
have Pc:∀ a b. ?P a b = ?P b a
by auto

from Ul alluopairs-set1 have Up:∀ ((t ,n),(s,m)) ∈ set (alluopairs U). n 6= 0 ∧
m 6= 0 by blast
from alluopairs-ex [OF Pc, where xs=U] tnU smU
have th ′:∃ ((t ′,n ′),(s ′,m ′)) ∈ set (alluopairs U). ?P (t ′,n ′) (s ′,m ′)
by blast

then obtain t ′ n ′ s ′ m ′ where ts ′-U : ((t ′,n ′),(s ′,m ′)) ∈ set (alluopairs U)
and Pts ′: ?P (t ′,n ′) (s ′,m ′) by blast

from ts ′-U Up have mnz ′: m ′ 6= 0 and nnz ′: n ′6= 0 by auto
let ?st ′ = Add (Mul m ′ t ′) (Mul n ′ s ′)
have st ′: (?N t ′ / real n ′ + ?N s ′ / real m ′)/2 = ?N ?st ′ / real (2∗n ′∗m ′)
using mnz ′ nnz ′ by (simp add : ring-simps add-divide-distrib)

from Pts ′ have
(Inum (x # bs) t / real n + Inum (x # bs) s / real m)/2 = (Inum (x # bs)

t ′ / real n ′ + Inum (x # bs) s ′ / real m ′)/2 by simp
also have . . . = ((λ(t , n). Inum (x # bs) t / real n) ((λ((t , n), s, m). (Add (Mul
m t) (Mul n s), 2 ∗ n ∗ m)) ((t ′,n ′),(s ′,m ′)))) by (simp add : st ′)
finally show (Inum (x # bs) t / real n + Inum (x # bs) s / real m) / 2

∈ (λ(t , n). Inum (x # bs) t / real n) ‘

217

(λ((t , n), s, m). (Add (Mul m t) (Mul n s), 2 ∗ n ∗ m)) ‘
set (alluopairs U)

using ts ′-U by blast
qed

lemma uset-cong :
assumes lp: isrlfm p
and UU ′: ((λ (t ,n). Inum (x#bs) t /real n) ‘ U ′) = ((λ ((t ,n),(s,m)). (Inum

(x#bs) t /real n + Inum (x#bs) s /real m)/2) ‘ (U × U)) (is ?f ‘ U ′ = ?g ‘
(U×U))
and U : ∀ (t ,n) ∈ U . numbound0 t ∧ n > 0
and U ′: ∀ (t ,n) ∈ U ′. numbound0 t ∧ n > 0
shows (∃ (t ,n) ∈ U . ∃ (s,m) ∈ U . Ifm (x#bs) (usubst p (Add (Mul m t) (Mul

n s),2∗n∗m))) = (∃ (t ,n) ∈ U ′. Ifm (x#bs) (usubst p (t ,n)))
(is ?lhs = ?rhs)

proof
assume ?lhs
then obtain t n s m where tnU : (t ,n) ∈ U and smU :(s,m) ∈ U and

Pst : Ifm (x#bs) (usubst p (Add (Mul m t) (Mul n s),2∗n∗m)) by blast
let ?N = λ t . Inum (x#bs) t
from tnU smU U have tnb: numbound0 t and np: n > 0
and snb: numbound0 s and mp:m > 0 by auto

let ?st= Add (Mul m t) (Mul n s)
from mult-pos-pos[OF np mp] have mnp: real (2∗n∗m) > 0

by (simp add : mult-commute real-of-int-mult [symmetric] del : real-of-int-mult)
from tnb snb have stnb: numbound0 ?st by simp

have st : (?N t / real n + ?N s / real m)/2 = ?N ?st / real (2∗n∗m)
using mp np by (simp add : ring-simps add-divide-distrib)
from tnU smU UU ′ have ?g ((t ,n),(s,m)) ∈ ?f ‘ U ′ by blast
hence ∃ (t ′,n ′) ∈ U ′. ?g ((t ,n),(s,m)) = ?f (t ′,n ′)
by auto (rule-tac x=(a,b) in bexI , auto)

then obtain t ′ n ′ where tnU ′: (t ′,n ′) ∈ U ′ and th: ?g ((t ,n),(s,m)) = ?f (t ′,n ′)
by blast
from U ′ tnU ′ have tnb ′: numbound0 t ′ and np ′: real n ′ > 0 by auto
from usubst-I [OF lp mnp stnb, where bs=bs and x=x] Pst
have Pst2 : Ifm (Inum (x # bs) (Add (Mul m t) (Mul n s)) / real (2 ∗ n ∗ m)

bs) p by simp
from conjunct1 [OF usubst-I [OF lp np ′ tnb ′, where bs=bs and x=x], symmetric]

th[simplified split-def fst-conv snd-conv ,symmetric] Pst2 [simplified st [symmetric]]
have Ifm (x # bs) (usubst p (t ′, n ′)) by (simp only : st)
then show ?rhs using tnU ′ by auto

next
assume ?rhs
then obtain t ′ n ′ where tnU ′: (t ′,n ′) ∈ U ′ and Pt ′: Ifm (x # bs) (usubst p

(t ′, n ′))
by blast

from tnU ′ UU ′ have ?f (t ′,n ′) ∈ ?g ‘ (U×U) by blast
hence ∃ ((t ,n),(s,m)) ∈ (U×U). ?f (t ′,n ′) = ?g ((t ,n),(s,m))
by auto (rule-tac x=(a,b) in bexI , auto)

218

then obtain t n s m where tnU : (t ,n) ∈ U and smU :(s,m) ∈ U and
th: ?f (t ′,n ′) = ?g((t ,n),(s,m)) by blast
let ?N = λ t . Inum (x#bs) t

from tnU smU U have tnb: numbound0 t and np: n > 0
and snb: numbound0 s and mp:m > 0 by auto

let ?st= Add (Mul m t) (Mul n s)
from mult-pos-pos[OF np mp] have mnp: real (2∗n∗m) > 0

by (simp add : mult-commute real-of-int-mult [symmetric] del : real-of-int-mult)
from tnb snb have stnb: numbound0 ?st by simp

have st : (?N t / real n + ?N s / real m)/2 = ?N ?st / real (2∗n∗m)
using mp np by (simp add : ring-simps add-divide-distrib)
from U ′ tnU ′ have tnb ′: numbound0 t ′ and np ′: real n ′ > 0 by auto
from usubst-I [OF lp np ′ tnb ′, where bs=bs and x=x ,simplified th[simplified

split-def fst-conv snd-conv] st] Pt ′

have Pst2 : Ifm (Inum (x # bs) (Add (Mul m t) (Mul n s)) / real (2 ∗ n ∗ m)
bs) p by simp
with usubst-I [OF lp mnp stnb, where x=x and bs=bs] tnU smU show ?lhs by

blast
qed

lemma ferrack :
assumes qf : qfree p
shows qfree (ferrack p) ∧ ((Ifm bs (ferrack p)) = (∃ x . Ifm (x#bs) p))
(is - ∧ (?rhs = ?lhs))

proof−
let ?I = λ x p. Ifm (x#bs) p
let ?N = λ t . Inum (x#bs) t
let ?q = rlfm (simpfm p)
let ?U = uset ?q
let ?Up = alluopairs ?U
let ?g = λ ((t ,n),(s,m)). (Add (Mul m t) (Mul n s) , 2∗n∗m)
let ?S = map ?g ?Up
let ?SS = map simp-num-pair ?S
let ?Y = remdps ?SS
let ?f = (λ (t ,n). ?N t / real n)
let ?h = λ ((t ,n),(s,m)). (?N t/real n + ?N s/ real m) /2
let ?F = λ p. ∃ a ∈ set (uset p). ∃ b ∈ set (uset p). ?I x (usubst p (?g(a,b)))
let ?ep = evaldjf (simpfm o (usubst ?q)) ?Y
from rlfm-I [OF simpfm-qf [OF qf]] have lq : isrlfm ?q by blast
from alluopairs-set1 [where xs=?U] have UpU : set ?Up ≤ (set ?U × set ?U)

by simp
from uset-l [OF lq] have U-l : ∀ (t ,n) ∈ set ?U . numbound0 t ∧ n > 0 .
from U-l UpU
have ∀ ((t ,n),(s,m)) ∈ set ?Up. numbound0 t ∧ n> 0 ∧ numbound0 s ∧ m >

0 by auto
hence Snb: ∀ (t ,n) ∈ set ?S . numbound0 t ∧ n > 0
by (auto simp add : mult-pos-pos)

have Y-l : ∀ (t ,n) ∈ set ?Y . numbound0 t ∧ n > 0
proof−

219

{ fix t n assume tnY : (t ,n) ∈ set ?Y
hence (t ,n) ∈ set ?SS by simp
hence ∃ (t ′,n ′) ∈ set ?S . simp-num-pair (t ′,n ′) = (t ,n)
by (auto simp add : split-def) (rule-tac x=((aa,ba),(ab,bb)) in bexI , simp-all)
then obtain t ′ n ′ where tn ′S : (t ′,n ′) ∈ set ?S and tns: simp-num-pair

(t ′,n ′) = (t ,n) by blast
from tn ′S Snb have tnb: numbound0 t ′ and np: n ′ > 0 by auto
from simp-num-pair-l [OF tnb np tns]
have numbound0 t ∧ n > 0 . }

thus ?thesis by blast
qed

have YU : (?f ‘ set ?Y) = (?h ‘ (set ?U × set ?U))
proof−

from simp-num-pair-ci [where bs=x#bs] have
∀ x . (?f o simp-num-pair) x = ?f x by auto
hence th: ?f o simp-num-pair = ?f using ext by blast

have (?f ‘ set ?Y) = ((?f o simp-num-pair) ‘ set ?S) by (simp add : image-compose)
also have . . . = (?f ‘ set ?S) by (simp add : th)
also have . . . = ((?f o ?g) ‘ set ?Up)
by (simp only : set-map o-def image-compose[symmetric])

also have . . . = (?h ‘ (set ?U × set ?U))
using uset-cong-aux [OF U-l , where x=x and bs=bs, simplified set-map

image-compose[symmetric]] by blast
finally show ?thesis .

qed
have ∀ (t ,n) ∈ set ?Y . bound0 (simpfm (usubst ?q (t ,n)))
proof−

{ fix t n assume tnY : (t ,n) ∈ set ?Y
with Y-l have tnb: numbound0 t and np: real n > 0 by auto
from usubst-I [OF lq np tnb]

have bound0 (usubst ?q (t ,n)) by simp hence bound0 (simpfm (usubst ?q
(t ,n)))

using simpfm-bound0 by simp}
thus ?thesis by blast

qed
hence ep-nb: bound0 ?ep using evaldjf-bound0 [where xs=?Y and f =simpfm

o (usubst ?q)] by auto
let ?mp = minusinf ?q
let ?pp = plusinf ?q
let ?M = ?I x ?mp
let ?P = ?I x ?pp
let ?res = disj ?mp (disj ?pp ?ep)
from rminusinf-bound0 [OF lq] rplusinf-bound0 [OF lq] ep-nb
have nbth: bound0 ?res by auto

from conjunct1 [OF rlfm-I [OF simpfm-qf [OF qf]]] simpfm

have th: ?lhs = (∃ x . ?I x ?q) by auto

220

from th fr-equsubst [OF lq , where bs=bs and x=x] have lhfr : ?lhs = (?M ∨
?P ∨ ?F ?q)

by (simp only : split-def fst-conv snd-conv)
also have . . . = (?M ∨ ?P ∨ (∃ (t ,n) ∈ set ?Y . ?I x (simpfm (usubst ?q (t ,n)))))

using uset-cong [OF lq YU U-l Y-l] by (simp only : split-def fst-conv snd-conv
simpfm)
also have . . . = (Ifm (x#bs) ?res)

using evaldjf-ex [where ps=?Y and bs = x#bs and f =simpfm o (usubst
?q),symmetric]

by (simp add : split-def pair-collapse)
finally have lheq : ?lhs = (Ifm bs (decr ?res)) using decr [OF nbth] by blast
hence lr : ?lhs = ?rhs apply (unfold ferrack-def Let-def)
by (cases ?mp = T ∨ ?pp = T , auto) (simp add : disj-def)+

from decr-qf [OF nbth] have qfree (ferrack p) by (auto simp add : Let-def ferrack-def)
with lr show ?thesis by blast

qed

constdefs linrqe:: fm ⇒ fm
linrqe ≡ (λ p. qelim (prep p) ferrack)

theorem linrqe: (Ifm bs (linrqe p) = Ifm bs p) ∧ qfree (linrqe p)
using ferrack qelim-ci prep
unfolding linrqe-def by auto

definition
ferrack-test :: unit ⇒ fm

where
ferrack-test u = linrqe (A (A (Imp (Lt (Sub (Bound 1) (Bound 0)))

(E (Eq (Sub (Add (Bound 0) (Bound 2)) (Bound 1)))))))

export-code linrqe ferrack-test in SML module-name Ferrack

ML 〈〈 Ferrack .ferrack-test () 〉〉

use linreif .ML
oracle linr-oracle (term) = ReflectedFerrack .linrqe-oracle
use linrtac.ML
setup LinrTac.setup

end

221

	Binary arithmetic examples
	Real Arithmetic
	Addition
	Negation
	Multiplication
	Inequalities
	Powers
	Tests

	Complex Arithmetic

	Square roots of primes are irrational
	Preliminaries
	Main theorem
	Variations

	Square roots of primes are irrational (script version)
	Preliminaries
	The set of rational numbers
	Main theorem

	The Nonstandard Primes as an Extension of the Prime Numbers
	Another characterization of infinite set of natural numbers
	An injective function cannot define an embedded natural number
	Existence of Infinitely Many Primes: a Nonstandard Proof

	Big O notation -- continued
	Arithmetic Series for Reals
	Divergence of the Harmonic Series
	Abstract
	Formal Proof
	Denumerability of the Rationals
	Type of indices
	Datatype of indices
	Built-in integers as datatype on numerals
	Basic arithmetic
	Conversion to and from nat
	ML interface
	Code serialization

	Pretty integer literals for code generation
	Quatifier elimination for R(0,1,+,floor,<)
	Implementation of natural numbers by integers
	Logical rewrites
	Code generator setup for basic functions
	Preprocessors
	Module names

	Quatifier elimination for R(0,1,+,<)

