Theory Separation

Up to index of Isabelle/HOL/Hoare

theory Separation
imports HoareAbort SepLogHeap
begin

(*  Title:      HOL/Hoare/Separation.thy
    ID:         $Id: Separation.thy,v 1.9 2005/12/21 11:03:05 paulson Exp $
    Author:     Tobias Nipkow
    Copyright   2003 TUM

A first attempt at a nice syntactic embedding of separation logic.
Already builds on the theory for list abstractions.

If we suppress the H parameter for "List", we have to hardwired this
into parser and pretty printer, which is not very modular.
Alternative: some syntax like <P> which stands for P H. No more
compact, but avoids the funny H.

*)

theory Separation imports HoareAbort SepLogHeap begin

text{* The semantic definition of a few connectives: *}

constdefs
 ortho:: "heap => heap => bool" (infix "⊥" 55)
"h1 ⊥ h2 == dom h1 ∩ dom h2 = {}"

 is_empty :: "heap => bool"
"is_empty h == h = empty"

 singl:: "heap => nat => nat => bool"
"singl h x y == dom h = {x} & h x = Some y"

 star:: "(heap => bool) => (heap => bool) => (heap => bool)"
"star P Q == λh. ∃h1 h2. h = h1++h2 ∧ h1 ⊥ h2 ∧ P h1 ∧ Q h2"

 wand:: "(heap => bool) => (heap => bool) => (heap => bool)"
"wand P Q == λh. ∀h'. h' ⊥ h ∧ P h' --> Q(h++h')"

text{*This is what assertions look like without any syntactic sugar: *}

lemma "VARS x y z w h
 {star (%h. singl h x y) (%h. singl h z w) h}
 SKIP
 {x ≠ z}"
apply vcg
apply(auto simp:star_def ortho_def singl_def)
done

text{* Now we add nice input syntax.  To suppress the heap parameter
of the connectives, we assume it is always called H and add/remove it
upon parsing/printing. Thus every pointer program needs to have a
program variable H, and assertions should not contain any locally
bound Hs - otherwise they may bind the implicit H. *}

syntax
 "@emp" :: "bool" ("emp")
 "@singl" :: "nat => nat => bool" ("[_ \<mapsto> _]")
 "@star" :: "bool => bool => bool" (infixl "**" 60)
 "@wand" :: "bool => bool => bool" (infixl "-*" 60)

(* FIXME does not handle "_idtdummy" *)
ML{*
(* free_tr takes care of free vars in the scope of sep. logic connectives:
   they are implicitly applied to the heap *)
fun free_tr(t as Free _) = t $ Syntax.free "H"
(*
  | free_tr((list as Free("List",_))$ p $ ps) = list $ Syntax.free "H" $ p $ ps
*)
  | free_tr t = t

fun emp_tr [] = Syntax.const "is_empty" $ Syntax.free "H"
  | emp_tr ts = raise TERM ("emp_tr", ts);
fun singl_tr [p,q] = Syntax.const "singl" $ Syntax.free "H" $ p $ q
  | singl_tr ts = raise TERM ("singl_tr", ts);
fun star_tr [P,Q] = Syntax.const "star" $
      absfree("H",dummyT,free_tr P) $ absfree("H",dummyT,free_tr Q) $
      Syntax.free "H"
  | star_tr ts = raise TERM ("star_tr", ts);
fun wand_tr [P,Q] = Syntax.const "wand" $
      absfree("H",dummyT,P) $ absfree("H",dummyT,Q) $ Syntax.free "H"
  | wand_tr ts = raise TERM ("wand_tr", ts);
*}

parse_translation
 {* [("@emp", emp_tr), ("@singl", singl_tr),
     ("@star", star_tr), ("@wand", wand_tr)] *}

text{* Now it looks much better: *}

lemma "VARS H x y z w
 {[x\<mapsto>y] ** [z\<mapsto>w]}
 SKIP
 {x ≠ z}"
apply vcg
apply(auto simp:star_def ortho_def singl_def)
done

lemma "VARS H x y z w
 {emp ** emp}
 SKIP
 {emp}"
apply vcg
apply(auto simp:star_def ortho_def is_empty_def)
done

text{* But the output is still unreadable. Thus we also strip the heap
parameters upon output: *}

(* debugging code:
fun sot(Free(s,_)) = s
  | sot(Var((s,i),_)) = "?" ^ s ^ string_of_int i
  | sot(Const(s,_)) = s
  | sot(Bound i) = "B." ^ string_of_int i
  | sot(s $ t) = "(" ^ sot s ^ " " ^ sot t ^ ")"
  | sot(Abs(_,_,t)) = "(% " ^ sot t ^ ")";
*)

ML{*
local
fun strip (Abs(_,_,(t as Const("_free",_) $ Free _) $ Bound 0)) = t
  | strip (Abs(_,_,(t as Free _) $ Bound 0)) = t
(*
  | strip (Abs(_,_,((list as Const("List",_))$ Bound 0 $ p $ ps))) = list$p$ps
*)
  | strip (Abs(_,_,(t as Const("_var",_) $ Var _) $ Bound 0)) = t
  | strip (Abs(_,_,P)) = P
  | strip (Const("is_empty",_)) = Syntax.const "@emp"
  | strip t = t;
in
fun is_empty_tr' [_] = Syntax.const "@emp"
fun singl_tr' [_,p,q] = Syntax.const "@singl" $ p $ q
fun star_tr' [P,Q,_] = Syntax.const "@star" $ strip P $ strip Q
fun wand_tr' [P,Q,_] = Syntax.const "@wand" $ strip P $ strip Q
end
*}

print_translation
 {* [("is_empty", is_empty_tr'),("singl", singl_tr'),
     ("star", star_tr'),("wand", wand_tr')] *}

text{* Now the intermediate proof states are also readable: *}

lemma "VARS H x y z w
 {[x\<mapsto>y] ** [z\<mapsto>w]}
 y := w
 {x ≠ z}"
apply vcg
apply(auto simp:star_def ortho_def singl_def)
done

lemma "VARS H x y z w
 {emp ** emp}
 SKIP
 {emp}"
apply vcg
apply(auto simp:star_def ortho_def is_empty_def)
done

text{* So far we have unfolded the separation logic connectives in
proofs. Here comes a simple example of a program proof that uses a law
of separation logic instead. *}

(* a law of separation logic *)
lemma star_comm: "P ** Q = Q ** P"
  by(auto simp add:star_def ortho_def dest: map_add_comm)

lemma "VARS H x y z w
 {P ** Q}
 SKIP
 {Q ** P}"
apply vcg
apply(simp add: star_comm)
done


lemma "VARS H
 {p≠0 ∧ [p \<mapsto> x] ** List H q qs}
 H := H(p \<mapsto> q)
 {List H p (p#qs)}"
apply vcg
apply(simp add: star_def ortho_def singl_def)
apply clarify
apply(subgoal_tac "p ∉ set qs")
 prefer 2
 apply(blast dest:list_in_heap)
apply simp
done

lemma "VARS H p q r
  {List H p Ps ** List H q Qs}
  WHILE p ≠ 0
  INV {∃ps qs. (List H p ps ** List H q qs) ∧ rev ps @ qs = rev Ps @ Qs}
  DO r := p; p := the(H p); H := H(r \<mapsto> q); q := r OD
  {List H q (rev Ps @ Qs)}"
apply vcg
apply(simp_all add: star_def ortho_def singl_def)

apply fastsimp

apply (clarsimp simp add:List_non_null)
apply(rename_tac ps')
apply(rule_tac x = ps' in exI)
apply(rule_tac x = "p#qs" in exI)
apply simp
apply(rule_tac x = "h1(p:=None)" in exI)
apply(rule_tac x = "h2(p\<mapsto>q)" in exI)
apply simp
apply(rule conjI)
 apply(rule ext)
 apply(simp add:map_add_def split:option.split)
apply(rule conjI)
 apply blast
apply(simp add:map_add_def split:option.split)
apply(rule conjI)
apply(subgoal_tac "p ∉ set qs")
 prefer 2
 apply(blast dest:list_in_heap)
apply(simp)
apply fast

apply(fastsimp)
done

end

lemma

  {star (λh. singl h x y) (λh. singl h z w) h} 
   Basic id 
   {x  z}

lemma

  {star (λH. singl H x y) (λH. singl H z w) H} 
   Basic id 
   {x  z}

lemma

  {star Separation.is_empty Separation.is_empty H} 
   Basic id 
   {Separation.is_empty H}

lemma

  {[x \<mapsto> y] ** [z \<mapsto> w]} 
   y := w 
   {x  z}

lemma

  {Separation.is_empty B.0 ** Separation.is_empty B.0} 
   Basic id 
   {Separation.is_empty H}

lemma star_comm:

  P ** Q = Q ** P

lemma

  {P ** Q} 
   Basic id 
   {Q ** P}

lemma

  {p  0 ∧ [p \<mapsto> x] ** List B.0 q qs} 
   H := H(p |-> q) 
   {List H p (p # qs)}

lemma

  {List B.0 p Ps ** List B.0 q Qs} 
   WHILE p  0
    INV {∃ps qs. List B.0 p ps ** List B.0 q qs ∧ rev ps @ qs = rev Ps @ Qs} 
    DO r := p; p := the (H p); H := H(r |-> q); q := r OD 
   {List H q (rev Ps @ Qs)}