Theory Prolog

Up to index of Isabelle/FOL/ex

theory Prolog
imports FOL
begin

(*  Title:      FOL/ex/prolog.thy
    ID:         $Id: Prolog.thy,v 1.6 2006/06/07 21:21:56 wenzelm Exp $
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1992  University of Cambridge
*)

header {* First-Order Logic: PROLOG examples *}

theory Prolog
imports FOL
begin

typedecl 'a list
arities list :: ("term") "term"
consts
  Nil     :: "'a list"
  Cons    :: "['a, 'a list]=> 'a list"    (infixr ":" 60)
  app     :: "['a list, 'a list, 'a list] => o"
  rev     :: "['a list, 'a list] => o"
axioms
  appNil:  "app(Nil,ys,ys)"
  appCons: "app(xs,ys,zs) ==> app(x:xs, ys, x:zs)"
  revNil:  "rev(Nil,Nil)"
  revCons: "[| rev(xs,ys);  app(ys, x:Nil, zs) |] ==> rev(x:xs, zs)"

lemma "app(a:b:c:Nil, d:e:Nil, ?x)"
apply (rule appNil appCons)
apply (rule appNil appCons)
apply (rule appNil appCons)
apply (rule appNil appCons)
done

lemma "app(?x, c:d:Nil, a:b:c:d:Nil)"
apply (rule appNil appCons)+
done

lemma "app(?x, ?y, a:b:c:d:Nil)"
apply (rule appNil appCons)+
back
back
back
back
done

(*app([x1,...,xn], y, ?z) requires (n+1) inferences*)
(*rev([x1,...,xn], ?y) requires (n+1)(n+2)/2 inferences*)

lemmas rules = appNil appCons revNil revCons

lemma "rev(a:b:c:d:Nil, ?x)"
apply (rule rules)+
done

lemma "rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:Nil, ?w)"
apply (rule rules)+
done

lemma "rev(?x, a:b:c:Nil)"
apply (rule rules)+  -- {* does not solve it directly! *}
back
back
done

(*backtracking version*)
ML {*
val prolog_tac = DEPTH_FIRST (has_fewer_prems 1) (resolve_tac (thms "rules") 1)
*}

lemma "rev(?x, a:b:c:Nil)"
apply (tactic prolog_tac)
done

lemma "rev(a:?x:c:?y:Nil, d:?z:b:?u)"
apply (tactic prolog_tac)
done

(*rev([a..p], ?w) requires 153 inferences *)
lemma "rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:Nil, ?w)"
apply (tactic {* DEPTH_SOLVE (resolve_tac ([refl, conjI] @ thms "rules") 1) *})
done

(*?x has 16, ?y has 32;  rev(?y,?w) requires 561 (rather large) inferences
  total inferences = 2 + 1 + 17 + 561 = 581*)
lemma "a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:Nil = ?x & app(?x,?x,?y) & rev(?y,?w)"
apply (tactic {* DEPTH_SOLVE (resolve_tac ([refl, conjI] @ thms "rules") 1) *})
done

end

lemma

  app(a : b : c : Nil, d : e : Nil, a : b : c : d : e : Nil)

lemma

  app(a : b : Nil, c : d : Nil, a : b : c : d : Nil)

lemma

  app(a : b : c : d : Nil, Nil, a : b : c : d : Nil)

lemma rules:

  app(Nil, ys, ys)
  app(xs, ys, zs) ==> app(x : xs, ys, x : zs)
  rev(Nil, Nil)
  [| rev(xs, ys); app(ys, x : Nil, zs) |] ==> rev(x : xs, zs)

lemma

  rev(a : b : c : d : Nil, d : c : b : a : Nil)

lemma

  rev(a : b : c : d : e : f : g : h : i : j : k : l : m : n : Nil,
      n : m : l : k : j : i : h : g : f : e : d : c : b : a : Nil)

lemma

  rev(c : b : a : Nil, a : b : c : Nil)

lemma

  rev(c : b : a : Nil, a : b : c : Nil)

lemma

  rev(a : b : c : d : Nil, d : c : b : a : Nil)

lemma

  rev(a : b : c : d : e : f : g : h : i : j : k : l : m : n : o : p : Nil,
      p : o : n : m : l : k : j : i : h : g : f : e : d : c : b : a : Nil)

lemma

  a : b : c : d : e : f : g : h : i : j : k : l : m : n : o : p : Nil =
  a : b : c : d : e : f : g : h : i : j : k : l : m : n : o : p : Nil ∧
  app(a : b : c : d : e : f : g : h : i : j : k : l : m : n : o : p : Nil,
      a : b : c : d : e : f : g : h : i : j : k : l : m : n : o : p : Nil,
      a : b : c : d : e : f : g : h : i : j :
  k : l : m : n : o : p : a : b : c : d : e :
  f : g : h : i : j : k : l : m : n : o : p : Nil) ∧
  rev(a : b : c : d : e : f : g : h : i : j :
  k : l : m : n : o : p : a : b : c : d : e :
  f : g : h : i : j : k : l : m : n : o : p : Nil,
      p : o : n : m : l : k : j : i : h : g :
  f : e : d : c : b : a : p : o : n : m : l :
  k : j : i : h : g : f : e : d : c : b : a : Nil)