Theory Guar

Up to index of Isabelle/HOL/UNITY

theory Guar
imports Comp
begin

(*  Title:      HOL/UNITY/Guar.thy
    ID:         $Id: Guar.thy,v 1.14 2005/07/01 12:16:32 berghofe Exp $
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1999  University of Cambridge

From Chandy and Sanders, "Reasoning About Program Composition",
Technical Report 2000-003, University of Florida, 2000.

Revised by Sidi Ehmety on January 2001

Added: Compatibility, weakest guarantees, etc.

and Weakest existential property,
from Charpentier and Chandy "Theorems about Composition",
Fifth International Conference on Mathematics of Program, 2000.

*)

header{*Guarantees Specifications*}

theory Guar imports Comp begin

instance program :: (type) order
  by (intro_classes,
      (assumption | rule component_refl component_trans component_antisym
                     program_less_le)+)


text{*Existential and Universal properties.  I formalize the two-program
      case, proving equivalence with Chandy and Sanders's n-ary definitions*}

constdefs

  ex_prop  :: "'a program set => bool"
   "ex_prop X == ∀F G. F ok G -->F ∈ X | G ∈ X --> (F\<squnion>G) ∈ X"

  strict_ex_prop  :: "'a program set => bool"
   "strict_ex_prop X == ∀F G.  F ok G --> (F ∈ X | G ∈ X) = (F\<squnion>G ∈ X)"

  uv_prop  :: "'a program set => bool"
   "uv_prop X == SKIP ∈ X & (∀F G. F ok G --> F ∈ X & G ∈ X --> (F\<squnion>G) ∈ X)"

  strict_uv_prop  :: "'a program set => bool"
   "strict_uv_prop X == 
      SKIP ∈ X & (∀F G. F ok G --> (F ∈ X & G ∈ X) = (F\<squnion>G ∈ X))"


text{*Guarantees properties*}

constdefs

  guar :: "['a program set, 'a program set] => 'a program set"
          (infixl "guarantees" 55)  (*higher than membership, lower than Co*)
   "X guarantees Y == {F. ∀G. F ok G --> F\<squnion>G ∈ X --> F\<squnion>G ∈ Y}"
  

  (* Weakest guarantees *)
   wg :: "['a program, 'a program set] =>  'a program set"
  "wg F Y == Union({X. F ∈ X guarantees Y})"

   (* Weakest existential property stronger than X *)
   wx :: "('a program) set => ('a program)set"
   "wx X == Union({Y. Y ⊆ X & ex_prop Y})"
  
  (*Ill-defined programs can arise through "Join"*)
  welldef :: "'a program set"
  "welldef == {F. Init F ≠ {}}"
  
  refines :: "['a program, 'a program, 'a program set] => bool"
                        ("(3_ refines _ wrt _)" [10,10,10] 10)
  "G refines F wrt X ==
     ∀H. (F ok H & G ok H & F\<squnion>H ∈ welldef ∩ X) --> 
         (G\<squnion>H ∈ welldef ∩ X)"

  iso_refines :: "['a program, 'a program, 'a program set] => bool"
                              ("(3_ iso'_refines _ wrt _)" [10,10,10] 10)
  "G iso_refines F wrt X ==
   F ∈ welldef ∩ X --> G ∈ welldef ∩ X"


lemma OK_insert_iff:
     "(OK (insert i I) F) = 
      (if i ∈ I then OK I F else OK I F & (F i ok JOIN I F))"
by (auto intro: ok_sym simp add: OK_iff_ok)


subsection{*Existential Properties*}

lemma ex1 [rule_format]: 
 "[| ex_prop X; finite GG |] ==>  
     GG ∩ X ≠ {}--> OK GG (%G. G) --> (\<Squnion>G ∈ GG. G) ∈ X"
apply (unfold ex_prop_def)
apply (erule finite_induct)
apply (auto simp add: OK_insert_iff Int_insert_left)
done


lemma ex2: 
     "∀GG. finite GG & GG ∩ X ≠ {} --> OK GG (%G. G) -->(\<Squnion>G ∈ GG. G):X 
      ==> ex_prop X"
apply (unfold ex_prop_def, clarify)
apply (drule_tac x = "{F,G}" in spec)
apply (auto dest: ok_sym simp add: OK_iff_ok)
done


(*Chandy & Sanders take this as a definition*)
lemma ex_prop_finite:
     "ex_prop X = 
      (∀GG. finite GG & GG ∩ X ≠ {} & OK GG (%G. G)--> (\<Squnion>G ∈ GG. G) ∈ X)"
by (blast intro: ex1 ex2)


(*Their "equivalent definition" given at the end of section 3*)
lemma ex_prop_equiv: 
     "ex_prop X = (∀G. G ∈ X = (∀H. (G component_of H) --> H ∈ X))"
apply auto
apply (unfold ex_prop_def component_of_def, safe, blast, blast) 
apply (subst Join_commute) 
apply (drule ok_sym, blast) 
done


subsection{*Universal Properties*}

lemma uv1 [rule_format]: 
     "[| uv_prop X; finite GG |] 
      ==> GG ⊆ X & OK GG (%G. G) --> (\<Squnion>G ∈ GG. G) ∈ X"
apply (unfold uv_prop_def)
apply (erule finite_induct)
apply (auto simp add: Int_insert_left OK_insert_iff)
done

lemma uv2: 
     "∀GG. finite GG & GG ⊆ X & OK GG (%G. G) --> (\<Squnion>G ∈ GG. G) ∈ X  
      ==> uv_prop X"
apply (unfold uv_prop_def)
apply (rule conjI)
 apply (drule_tac x = "{}" in spec)
 prefer 2
 apply clarify 
 apply (drule_tac x = "{F,G}" in spec)
apply (auto dest: ok_sym simp add: OK_iff_ok)
done

(*Chandy & Sanders take this as a definition*)
lemma uv_prop_finite:
     "uv_prop X = 
      (∀GG. finite GG & GG ⊆ X & OK GG (%G. G) --> (\<Squnion>G ∈ GG. G): X)"
by (blast intro: uv1 uv2)

subsection{*Guarantees*}

lemma guaranteesI:
     "(!!G. [| F ok G; F\<squnion>G ∈ X |] ==> F\<squnion>G ∈ Y) ==> F ∈ X guarantees Y"
by (simp add: guar_def component_def)

lemma guaranteesD: 
     "[| F ∈ X guarantees Y;  F ok G;  F\<squnion>G ∈ X |] ==> F\<squnion>G ∈ Y"
by (unfold guar_def component_def, blast)

(*This version of guaranteesD matches more easily in the conclusion
  The major premise can no longer be  F ⊆ H since we need to reason about G*)
lemma component_guaranteesD: 
     "[| F ∈ X guarantees Y;  F\<squnion>G = H;  H ∈ X;  F ok G |] ==> H ∈ Y"
by (unfold guar_def, blast)

lemma guarantees_weaken: 
     "[| F ∈ X guarantees X'; Y ⊆ X; X' ⊆ Y' |] ==> F ∈ Y guarantees Y'"
by (unfold guar_def, blast)

lemma subset_imp_guarantees_UNIV: "X ⊆ Y ==> X guarantees Y = UNIV"
by (unfold guar_def, blast)

(*Equivalent to subset_imp_guarantees_UNIV but more intuitive*)
lemma subset_imp_guarantees: "X ⊆ Y ==> F ∈ X guarantees Y"
by (unfold guar_def, blast)

(*Remark at end of section 4.1 *)

lemma ex_prop_imp: "ex_prop Y ==> (Y = UNIV guarantees Y)"
apply (simp (no_asm_use) add: guar_def ex_prop_equiv)
apply safe
 apply (drule_tac x = x in spec)
 apply (drule_tac [2] x = x in spec)
 apply (drule_tac [2] sym)
apply (auto simp add: component_of_def)
done

lemma guarantees_imp: "(Y = UNIV guarantees Y) ==> ex_prop(Y)"
by (auto simp add: guar_def ex_prop_equiv component_of_def dest: sym)

lemma ex_prop_equiv2: "(ex_prop Y) = (Y = UNIV guarantees Y)"
apply (rule iffI)
apply (rule ex_prop_imp)
apply (auto simp add: guarantees_imp) 
done


subsection{*Distributive Laws.  Re-Orient to Perform Miniscoping*}

lemma guarantees_UN_left: 
     "(\<Union>i ∈ I. X i) guarantees Y = (\<Inter>i ∈ I. X i guarantees Y)"
by (unfold guar_def, blast)

lemma guarantees_Un_left: 
     "(X ∪ Y) guarantees Z = (X guarantees Z) ∩ (Y guarantees Z)"
by (unfold guar_def, blast)

lemma guarantees_INT_right: 
     "X guarantees (\<Inter>i ∈ I. Y i) = (\<Inter>i ∈ I. X guarantees Y i)"
by (unfold guar_def, blast)

lemma guarantees_Int_right: 
     "Z guarantees (X ∩ Y) = (Z guarantees X) ∩ (Z guarantees Y)"
by (unfold guar_def, blast)

lemma guarantees_Int_right_I:
     "[| F ∈ Z guarantees X;  F ∈ Z guarantees Y |]  
     ==> F ∈ Z guarantees (X ∩ Y)"
by (simp add: guarantees_Int_right)

lemma guarantees_INT_right_iff:
     "(F ∈ X guarantees (INTER I Y)) = (∀i∈I. F ∈ X guarantees (Y i))"
by (simp add: guarantees_INT_right)

lemma shunting: "(X guarantees Y) = (UNIV guarantees (-X ∪ Y))"
by (unfold guar_def, blast)

lemma contrapositive: "(X guarantees Y) = -Y guarantees -X"
by (unfold guar_def, blast)

(** The following two can be expressed using intersection and subset, which
    is more faithful to the text but looks cryptic.
**)

lemma combining1: 
    "[| F ∈ V guarantees X;  F ∈ (X ∩ Y) guarantees Z |] 
     ==> F ∈ (V ∩ Y) guarantees Z"
by (unfold guar_def, blast)

lemma combining2: 
    "[| F ∈ V guarantees (X ∪ Y);  F ∈ Y guarantees Z |] 
     ==> F ∈ V guarantees (X ∪ Z)"
by (unfold guar_def, blast)

(** The following two follow Chandy-Sanders, but the use of object-quantifiers
    does not suit Isabelle... **)

(*Premise should be (!!i. i ∈ I ==> F ∈ X guarantees Y i) *)
lemma all_guarantees: 
     "∀i∈I. F ∈ X guarantees (Y i) ==> F ∈ X guarantees (\<Inter>i ∈ I. Y i)"
by (unfold guar_def, blast)

(*Premises should be [| F ∈ X guarantees Y i; i ∈ I |] *)
lemma ex_guarantees: 
     "∃i∈I. F ∈ X guarantees (Y i) ==> F ∈ X guarantees (\<Union>i ∈ I. Y i)"
by (unfold guar_def, blast)


subsection{*Guarantees: Additional Laws (by lcp)*}

lemma guarantees_Join_Int: 
    "[| F ∈ U guarantees V;  G ∈ X guarantees Y; F ok G |]  
     ==> F\<squnion>G ∈ (U ∩ X) guarantees (V ∩ Y)"
apply (simp add: guar_def, safe)
 apply (simp add: Join_assoc)
apply (subgoal_tac "F\<squnion>G\<squnion>Ga = G\<squnion>(F\<squnion>Ga) ")
 apply (simp add: ok_commute)
apply (simp add: Join_ac)
done

lemma guarantees_Join_Un: 
    "[| F ∈ U guarantees V;  G ∈ X guarantees Y; F ok G |]   
     ==> F\<squnion>G ∈ (U ∪ X) guarantees (V ∪ Y)"
apply (simp add: guar_def, safe)
 apply (simp add: Join_assoc)
apply (subgoal_tac "F\<squnion>G\<squnion>Ga = G\<squnion>(F\<squnion>Ga) ")
 apply (simp add: ok_commute)
apply (simp add: Join_ac)
done

lemma guarantees_JN_INT: 
     "[| ∀i∈I. F i ∈ X i guarantees Y i;  OK I F |]  
      ==> (JOIN I F) ∈ (INTER I X) guarantees (INTER I Y)"
apply (unfold guar_def, auto)
apply (drule bspec, assumption)
apply (rename_tac "i")
apply (drule_tac x = "JOIN (I-{i}) F\<squnion>G" in spec)
apply (auto intro: OK_imp_ok
            simp add: Join_assoc [symmetric] JN_Join_diff JN_absorb)
done

lemma guarantees_JN_UN: 
    "[| ∀i∈I. F i ∈ X i guarantees Y i;  OK I F |]  
     ==> (JOIN I F) ∈ (UNION I X) guarantees (UNION I Y)"
apply (unfold guar_def, auto)
apply (drule bspec, assumption)
apply (rename_tac "i")
apply (drule_tac x = "JOIN (I-{i}) F\<squnion>G" in spec)
apply (auto intro: OK_imp_ok
            simp add: Join_assoc [symmetric] JN_Join_diff JN_absorb)
done


subsection{*Guarantees Laws for Breaking Down the Program (by lcp)*}

lemma guarantees_Join_I1: 
     "[| F ∈ X guarantees Y;  F ok G |] ==> F\<squnion>G ∈ X guarantees Y"
by (simp add: guar_def Join_assoc)

lemma guarantees_Join_I2:         
     "[| G ∈ X guarantees Y;  F ok G |] ==> F\<squnion>G ∈ X guarantees Y"
apply (simp add: Join_commute [of _ G] ok_commute [of _ G])
apply (blast intro: guarantees_Join_I1)
done

lemma guarantees_JN_I: 
     "[| i ∈ I;  F i ∈ X guarantees Y;  OK I F |]  
      ==> (\<Squnion>i ∈ I. (F i)) ∈ X guarantees Y"
apply (unfold guar_def, clarify)
apply (drule_tac x = "JOIN (I-{i}) F\<squnion>G" in spec)
apply (auto intro: OK_imp_ok 
            simp add: JN_Join_diff JN_Join_diff Join_assoc [symmetric])
done


(*** well-definedness ***)

lemma Join_welldef_D1: "F\<squnion>G ∈ welldef ==> F ∈ welldef"
by (unfold welldef_def, auto)

lemma Join_welldef_D2: "F\<squnion>G ∈ welldef ==> G ∈ welldef"
by (unfold welldef_def, auto)

(*** refinement ***)

lemma refines_refl: "F refines F wrt X"
by (unfold refines_def, blast)

(*We'd like transitivity, but how do we get it?*)
lemma refines_trans:
     "[| H refines G wrt X;  G refines F wrt X |] ==> H refines F wrt X"
apply (simp add: refines_def) 
oops


lemma strict_ex_refine_lemma: 
     "strict_ex_prop X  
      ==> (∀H. F ok H & G ok H & F\<squnion>H ∈ X --> G\<squnion>H ∈ X)  
              = (F ∈ X --> G ∈ X)"
by (unfold strict_ex_prop_def, auto)

lemma strict_ex_refine_lemma_v: 
     "strict_ex_prop X  
      ==> (∀H. F ok H & G ok H & F\<squnion>H ∈ welldef & F\<squnion>H ∈ X --> G\<squnion>H ∈ X) =  
          (F ∈ welldef ∩ X --> G ∈ X)"
apply (unfold strict_ex_prop_def, safe)
apply (erule_tac x = SKIP and P = "%H. ?PP H --> ?RR H" in allE)
apply (auto dest: Join_welldef_D1 Join_welldef_D2)
done

lemma ex_refinement_thm:
     "[| strict_ex_prop X;   
         ∀H. F ok H & G ok H & F\<squnion>H ∈ welldef ∩ X --> G\<squnion>H ∈ welldef |]  
      ==> (G refines F wrt X) = (G iso_refines F wrt X)"
apply (rule_tac x = SKIP in allE, assumption)
apply (simp add: refines_def iso_refines_def strict_ex_refine_lemma_v)
done


lemma strict_uv_refine_lemma: 
     "strict_uv_prop X ==> 
      (∀H. F ok H & G ok H & F\<squnion>H ∈ X --> G\<squnion>H ∈ X) = (F ∈ X --> G ∈ X)"
by (unfold strict_uv_prop_def, blast)

lemma strict_uv_refine_lemma_v: 
     "strict_uv_prop X  
      ==> (∀H. F ok H & G ok H & F\<squnion>H ∈ welldef & F\<squnion>H ∈ X --> G\<squnion>H ∈ X) =  
          (F ∈ welldef ∩ X --> G ∈ X)"
apply (unfold strict_uv_prop_def, safe)
apply (erule_tac x = SKIP and P = "%H. ?PP H --> ?RR H" in allE)
apply (auto dest: Join_welldef_D1 Join_welldef_D2)
done

lemma uv_refinement_thm:
     "[| strict_uv_prop X;   
         ∀H. F ok H & G ok H & F\<squnion>H ∈ welldef ∩ X --> 
             G\<squnion>H ∈ welldef |]  
      ==> (G refines F wrt X) = (G iso_refines F wrt X)"
apply (rule_tac x = SKIP in allE, assumption)
apply (simp add: refines_def iso_refines_def strict_uv_refine_lemma_v)
done

(* Added by Sidi Ehmety from Chandy & Sander, section 6 *)
lemma guarantees_equiv: 
    "(F ∈ X guarantees Y) = (∀H. H ∈ X --> (F component_of H --> H ∈ Y))"
by (unfold guar_def component_of_def, auto)

lemma wg_weakest: "!!X. F∈ (X guarantees Y) ==> X ⊆ (wg F Y)"
by (unfold wg_def, auto)

lemma wg_guarantees: "F∈ ((wg F Y) guarantees Y)"
by (unfold wg_def guar_def, blast)

lemma wg_equiv: "(H ∈ wg F X) = (F component_of H --> H ∈ X)"
by (simp add: guarantees_equiv wg_def, blast)

lemma component_of_wg: "F component_of H ==> (H ∈ wg F X) = (H ∈ X)"
by (simp add: wg_equiv)

lemma wg_finite: 
    "∀FF. finite FF & FF ∩ X ≠ {} --> OK FF (%F. F)  
          --> (∀F∈FF. ((\<Squnion>F ∈ FF. F): wg F X) = ((\<Squnion>F ∈ FF. F):X))"
apply clarify
apply (subgoal_tac "F component_of (\<Squnion>F ∈ FF. F) ")
apply (drule_tac X = X in component_of_wg, simp)
apply (simp add: component_of_def)
apply (rule_tac x = "\<Squnion>F ∈ (FF-{F}) . F" in exI)
apply (auto intro: JN_Join_diff dest: ok_sym simp add: OK_iff_ok)
done

lemma wg_ex_prop: "ex_prop X ==> (F ∈ X) = (∀H. H ∈ wg F X)"
apply (simp (no_asm_use) add: ex_prop_equiv wg_equiv)
apply blast
done

(** From Charpentier and Chandy "Theorems About Composition" **)
(* Proposition 2 *)
lemma wx_subset: "(wx X)<=X"
by (unfold wx_def, auto)

lemma wx_ex_prop: "ex_prop (wx X)"
apply (simp add: wx_def ex_prop_equiv cong: bex_cong, safe, blast)
apply force 
done

lemma wx_weakest: "∀Z. Z<= X --> ex_prop Z --> Z ⊆ wx X"
by (auto simp add: wx_def)

(* Proposition 6 *)
lemma wx'_ex_prop: "ex_prop({F. ∀G. F ok G --> F\<squnion>G ∈ X})"
apply (unfold ex_prop_def, safe)
 apply (drule_tac x = "G\<squnion>Ga" in spec)
 apply (force simp add: ok_Join_iff1 Join_assoc)
apply (drule_tac x = "F\<squnion>Ga" in spec)
apply (simp add: ok_Join_iff1 ok_commute  Join_ac) 
done

text{* Equivalence with the other definition of wx *}

lemma wx_equiv: "wx X = {F. ∀G. F ok G --> (F\<squnion>G) ∈ X}"
apply (unfold wx_def, safe)
 apply (simp add: ex_prop_def, blast) 
apply (simp (no_asm))
apply (rule_tac x = "{F. ∀G. F ok G --> F\<squnion>G ∈ X}" in exI, safe)
apply (rule_tac [2] wx'_ex_prop)
apply (drule_tac x = SKIP in spec)+
apply auto 
done


text{* Propositions 7 to 11 are about this second definition of wx. 
   They are the same as the ones proved for the first definition of wx,
 by equivalence *}
   
(* Proposition 12 *)
(* Main result of the paper *)
lemma guarantees_wx_eq: "(X guarantees Y) = wx(-X ∪ Y)"
by (simp add: guar_def wx_equiv)


(* Rules given in section 7 of Chandy and Sander's
    Reasoning About Program composition paper *)
lemma stable_guarantees_Always:
     "Init F ⊆ A ==> F ∈ (stable A) guarantees (Always A)"
apply (rule guaranteesI)
apply (simp add: Join_commute)
apply (rule stable_Join_Always1)
 apply (simp_all add: invariant_def Join_stable)
done

lemma constrains_guarantees_leadsTo:
     "F ∈ transient A ==> F ∈ (A co A ∪ B) guarantees (A leadsTo (B-A))"
apply (rule guaranteesI)
apply (rule leadsTo_Basis')
 apply (drule constrains_weaken_R)
  prefer 2 apply assumption
 apply blast
apply (blast intro: Join_transient_I1)
done

end

lemma OK_insert_iff:

  OK (insert i I) F = (if iI then OK I F else OK I FF i ok JOIN I F)

Existential Properties

lemma ex1:

  [| ex_prop X; finite GG; GGX  {}; OK GGG. G) |] ==> (JN G:GG. G) ∈ X

lemma ex2:

  GG. finite GGGGX  {} --> OK GGG. G) --> (JN G:GG. G) ∈ X
  ==> ex_prop X

lemma ex_prop_finite:

  ex_prop X = (∀GG. finite GGGGX  {} ∧ OK GGG. G) --> (JN G:GG. G) ∈ X)

lemma ex_prop_equiv:

  ex_prop X = (∀G. (GX) = (∀H. G component_of H --> HX))

Universal Properties

lemma uv1:

  [| uv_prop X; finite GG; GG  X ∧ OK GGG. G) |] ==> (JN G:GG. G) ∈ X

lemma uv2:

  GG. finite GGGG  X ∧ OK GGG. G) --> (JN G:GG. G) ∈ X ==> uv_prop X

lemma uv_prop_finite:

  uv_prop X = (∀GG. finite GGGG  X ∧ OK GGG. G) --> (JN G:GG. G) ∈ X)

Guarantees

lemma guaranteesI:

  (!!G. [| F ok G; F Join GX |] ==> F Join GY) ==> FX guarantees Y

lemma guaranteesD:

  [| FX guarantees Y; F ok G; F Join GX |] ==> F Join GY

lemma component_guaranteesD:

  [| FX guarantees Y; F Join G = H; HX; F ok G |] ==> HY

lemma guarantees_weaken:

  [| FX guarantees X'; Y  X; X'  Y' |] ==> FY guarantees Y'

lemma subset_imp_guarantees_UNIV:

  X  Y ==> X guarantees Y = UNIV

lemma subset_imp_guarantees:

  X  Y ==> FX guarantees Y

lemma ex_prop_imp:

  ex_prop Y ==> Y = UNIV guarantees Y

lemma guarantees_imp:

  Y = UNIV guarantees Y ==> ex_prop Y

lemma ex_prop_equiv2:

  ex_prop Y = (Y = UNIV guarantees Y)

Distributive Laws. Re-Orient to Perform Miniscoping

lemma guarantees_UN_left:

  (UN i:I. X i) guarantees Y = (INT i:I. X i guarantees Y)

lemma guarantees_Un_left:

  XY guarantees Z = (X guarantees Z) ∩ (Y guarantees Z)

lemma guarantees_INT_right:

  X guarantees (INT i:I. Y i) = (INT i:I. X guarantees Y i)

lemma guarantees_Int_right:

  Z guarantees XY = (Z guarantees X) ∩ (Z guarantees Y)

lemma guarantees_Int_right_I:

  [| FZ guarantees X; FZ guarantees Y |] ==> FZ guarantees XY

lemma guarantees_INT_right_iff:

  (FX guarantees INTER I Y) = (∀iI. FX guarantees Y i)

lemma shunting:

  X guarantees Y = UNIV guarantees - XY

lemma contrapositive:

  X guarantees Y = - Y guarantees - X

lemma combining1:

  [| FV guarantees X; FXY guarantees Z |] ==> FVY guarantees Z

lemma combining2:

  [| FV guarantees XY; FY guarantees Z |] ==> FV guarantees XZ

lemma all_guarantees:

  iI. FX guarantees Y i ==> FX guarantees (INT i:I. Y i)

lemma ex_guarantees:

  iI. FX guarantees Y i ==> FX guarantees (UN i:I. Y i)

Guarantees: Additional Laws (by lcp)

lemma guarantees_Join_Int:

  [| FU guarantees V; GX guarantees Y; F ok G |]
  ==> F Join GUX guarantees VY

lemma guarantees_Join_Un:

  [| FU guarantees V; GX guarantees Y; F ok G |]
  ==> F Join GUX guarantees VY

lemma guarantees_JN_INT:

  [| ∀iI. F iX i guarantees Y i; OK I F |]
  ==> JOIN I F ∈ INTER I X guarantees INTER I Y

lemma guarantees_JN_UN:

  [| ∀iI. F iX i guarantees Y i; OK I F |]
  ==> JOIN I F ∈ UNION I X guarantees UNION I Y

Guarantees Laws for Breaking Down the Program (by lcp)

lemma guarantees_Join_I1:

  [| FX guarantees Y; F ok G |] ==> F Join GX guarantees Y

lemma guarantees_Join_I2:

  [| GX guarantees Y; F ok G |] ==> F Join GX guarantees Y

lemma guarantees_JN_I:

  [| iI; F iX guarantees Y; OK I F |] ==> JOIN I FX guarantees Y

lemma Join_welldef_D1:

  F Join G ∈ welldef ==> F ∈ welldef

lemma Join_welldef_D2:

  F Join G ∈ welldef ==> G ∈ welldef

lemma refines_refl:

  F refines F wrt X

lemma strict_ex_refine_lemma:

  strict_ex_prop X
  ==> (∀H. F ok HG ok HF Join HX --> G Join HX) = (FX --> GX)

lemma strict_ex_refine_lemma_v:

  strict_ex_prop X
  ==> (∀H. F ok HG ok HF Join H ∈ welldef ∧ F Join HX --> G Join HX) =
      (F ∈ welldef ∩ X --> GX)

lemma ex_refinement_thm:

  [| strict_ex_prop X;
     ∀H. F ok HG ok HF Join H ∈ welldef ∩ X --> G Join H ∈ welldef |]
  ==> (G refines F wrt X) = (G iso_refines F wrt X)

lemma strict_uv_refine_lemma:

  strict_uv_prop X
  ==> (∀H. F ok HG ok HF Join HX --> G Join HX) = (FX --> GX)

lemma strict_uv_refine_lemma_v:

  strict_uv_prop X
  ==> (∀H. F ok HG ok HF Join H ∈ welldef ∧ F Join HX --> G Join HX) =
      (F ∈ welldef ∩ X --> GX)

lemma uv_refinement_thm:

  [| strict_uv_prop X;
     ∀H. F ok HG ok HF Join H ∈ welldef ∩ X --> G Join H ∈ welldef |]
  ==> (G refines F wrt X) = (G iso_refines F wrt X)

lemma guarantees_equiv:

  (FX guarantees Y) = (∀H. HX --> F component_of H --> HY)

lemma wg_weakest:

  FX guarantees Y ==> X  wg F Y

lemma wg_guarantees:

  F ∈ wg F Y guarantees Y

lemma wg_equiv:

  (H ∈ wg F X) = (F component_of H --> HX)

lemma component_of_wg:

  F component_of H ==> (H ∈ wg F X) = (HX)

lemma wg_finite:

  FF. finite FFFFX  {} -->
       OK FFF. F) --> (∀FFF. ((JN F:FF. F) ∈ wg F X) = ((JN F:FF. F) ∈ X))

lemma wg_ex_prop:

  ex_prop X ==> (FX) = (∀H. H ∈ wg F X)

lemma wx_subset:

  wx X  X

lemma wx_ex_prop:

  ex_prop (wx X)

lemma wx_weakest:

  ZX. ex_prop Z --> Z  wx X

lemma wx'_ex_prop:

  ex_prop {F. ∀G. F ok G --> F Join GX}

lemma wx_equiv:

  wx X = {F. ∀G. F ok G --> F Join GX}

lemma guarantees_wx_eq:

  X guarantees Y = wx (- XY)

lemma stable_guarantees_Always:

  Init F  A ==> F ∈ stable A guarantees Always A

lemma constrains_guarantees_leadsTo:

  F ∈ transient A ==> FA co AB guarantees A leadsTo B - A