Theory Extraction

Up to index of Isabelle/HOL

theory Extraction
imports Datatype
uses Tools/rewrite_hol_proof.ML
begin

(*  Title:      HOL/Extraction.thy
    ID:         $Id: Extraction.thy,v 1.24 2007/11/13 10:00:29 berghofe Exp $
    Author:     Stefan Berghofer, TU Muenchen
*)

header {* Program extraction for HOL *}

theory Extraction
imports Datatype
uses "Tools/rewrite_hol_proof.ML"
begin

subsection {* Setup *}

setup {*
let
fun realizes_set_proc (Const ("realizes", Type ("fun", [Type ("Null", []), _])) $ r $
      (Const ("op :", _) $ x $ S)) = (case strip_comb S of
        (Var (ixn, U), ts) => SOME (list_comb (Var (ixn, binder_types U @
           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), ts @ [x]))
      | (Free (s, U), ts) => SOME (list_comb (Free (s, binder_types U @
           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), ts @ [x]))
      | _ => NONE)
  | realizes_set_proc (Const ("realizes", Type ("fun", [T, _])) $ r $
      (Const ("op :", _) $ x $ S)) = (case strip_comb S of
        (Var (ixn, U), ts) => SOME (list_comb (Var (ixn, T :: binder_types U @
           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), r :: ts @ [x]))
      | (Free (s, U), ts) => SOME (list_comb (Free (s, T :: binder_types U @
           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), r :: ts @ [x]))
      | _ => NONE)
  | realizes_set_proc _ = NONE;

fun mk_realizes_set r rT s (setT as Type ("set", [elT])) =
  Abs ("x", elT, Const ("realizes", rT --> HOLogic.boolT --> HOLogic.boolT) $
    incr_boundvars 1 r $ (Const ("op :", elT --> setT --> HOLogic.boolT) $
      Bound 0 $ incr_boundvars 1 s));
in
  Extraction.add_types
      [("bool", ([], NONE)),
       ("set", ([realizes_set_proc], SOME mk_realizes_set))] #>
  Extraction.set_preprocessor (fn thy =>
      Proofterm.rewrite_proof_notypes
        ([], ("HOL/elim_cong", RewriteHOLProof.elim_cong) ::
          ProofRewriteRules.rprocs true) o
      Proofterm.rewrite_proof thy
        (RewriteHOLProof.rews, ProofRewriteRules.rprocs true) o
      ProofRewriteRules.elim_vars (curry Const "arbitrary"))
end
*}

lemmas [extraction_expand] =
  meta_spec atomize_eq atomize_all atomize_imp atomize_conj
  allE rev_mp conjE Eq_TrueI Eq_FalseI eqTrueI eqTrueE eq_cong2
  notE' impE' impE iffE imp_cong simp_thms eq_True eq_False
  induct_forall_eq induct_implies_eq induct_equal_eq induct_conj_eq
  induct_forall_def induct_implies_def induct_equal_def induct_conj_def
  induct_atomize induct_rulify induct_rulify_fallback
  True_implies_equals TrueE

datatype sumbool = Left | Right

subsection {* Type of extracted program *}

extract_type
  "typeof (Trueprop P) ≡ typeof P"

  "typeof P ≡ Type (TYPE(Null)) ==> typeof Q ≡ Type (TYPE('Q)) ==>
     typeof (P --> Q) ≡ Type (TYPE('Q))"

  "typeof Q ≡ Type (TYPE(Null)) ==> typeof (P --> Q) ≡ Type (TYPE(Null))"

  "typeof P ≡ Type (TYPE('P)) ==> typeof Q ≡ Type (TYPE('Q)) ==>
     typeof (P --> Q) ≡ Type (TYPE('P => 'Q))"

  "(λx. typeof (P x)) ≡ (λx. Type (TYPE(Null))) ==>
     typeof (∀x. P x) ≡ Type (TYPE(Null))"

  "(λx. typeof (P x)) ≡ (λx. Type (TYPE('P))) ==>
     typeof (∀x::'a. P x) ≡ Type (TYPE('a => 'P))"

  "(λx. typeof (P x)) ≡ (λx. Type (TYPE(Null))) ==>
     typeof (∃x::'a. P x) ≡ Type (TYPE('a))"

  "(λx. typeof (P x)) ≡ (λx. Type (TYPE('P))) ==>
     typeof (∃x::'a. P x) ≡ Type (TYPE('a × 'P))"

  "typeof P ≡ Type (TYPE(Null)) ==> typeof Q ≡ Type (TYPE(Null)) ==>
     typeof (P ∨ Q) ≡ Type (TYPE(sumbool))"

  "typeof P ≡ Type (TYPE(Null)) ==> typeof Q ≡ Type (TYPE('Q)) ==>
     typeof (P ∨ Q) ≡ Type (TYPE('Q option))"

  "typeof P ≡ Type (TYPE('P)) ==> typeof Q ≡ Type (TYPE(Null)) ==>
     typeof (P ∨ Q) ≡ Type (TYPE('P option))"

  "typeof P ≡ Type (TYPE('P)) ==> typeof Q ≡ Type (TYPE('Q)) ==>
     typeof (P ∨ Q) ≡ Type (TYPE('P + 'Q))"

  "typeof P ≡ Type (TYPE(Null)) ==> typeof Q ≡ Type (TYPE('Q)) ==>
     typeof (P ∧ Q) ≡ Type (TYPE('Q))"

  "typeof P ≡ Type (TYPE('P)) ==> typeof Q ≡ Type (TYPE(Null)) ==>
     typeof (P ∧ Q) ≡ Type (TYPE('P))"

  "typeof P ≡ Type (TYPE('P)) ==> typeof Q ≡ Type (TYPE('Q)) ==>
     typeof (P ∧ Q) ≡ Type (TYPE('P × 'Q))"

  "typeof (P = Q) ≡ typeof ((P --> Q) ∧ (Q --> P))"

  "typeof (x ∈ P) ≡ typeof P"

subsection {* Realizability *}

realizability
  "(realizes t (Trueprop P)) ≡ (Trueprop (realizes t P))"

  "(typeof P) ≡ (Type (TYPE(Null))) ==>
     (realizes t (P --> Q)) ≡ (realizes Null P --> realizes t Q)"

  "(typeof P) ≡ (Type (TYPE('P))) ==>
   (typeof Q) ≡ (Type (TYPE(Null))) ==>
     (realizes t (P --> Q)) ≡ (∀x::'P. realizes x P --> realizes Null Q)"

  "(realizes t (P --> Q)) ≡ (∀x. realizes x P --> realizes (t x) Q)"

  "(λx. typeof (P x)) ≡ (λx. Type (TYPE(Null))) ==>
     (realizes t (∀x. P x)) ≡ (∀x. realizes Null (P x))"

  "(realizes t (∀x. P x)) ≡ (∀x. realizes (t x) (P x))"

  "(λx. typeof (P x)) ≡ (λx. Type (TYPE(Null))) ==>
     (realizes t (∃x. P x)) ≡ (realizes Null (P t))"

  "(realizes t (∃x. P x)) ≡ (realizes (snd t) (P (fst t)))"

  "(typeof P) ≡ (Type (TYPE(Null))) ==>
   (typeof Q) ≡ (Type (TYPE(Null))) ==>
     (realizes t (P ∨ Q)) ≡
     (case t of Left => realizes Null P | Right => realizes Null Q)"

  "(typeof P) ≡ (Type (TYPE(Null))) ==>
     (realizes t (P ∨ Q)) ≡
     (case t of None => realizes Null P | Some q => realizes q Q)"

  "(typeof Q) ≡ (Type (TYPE(Null))) ==>
     (realizes t (P ∨ Q)) ≡
     (case t of None => realizes Null Q | Some p => realizes p P)"

  "(realizes t (P ∨ Q)) ≡
   (case t of Inl p => realizes p P | Inr q => realizes q Q)"

  "(typeof P) ≡ (Type (TYPE(Null))) ==>
     (realizes t (P ∧ Q)) ≡ (realizes Null P ∧ realizes t Q)"

  "(typeof Q) ≡ (Type (TYPE(Null))) ==>
     (realizes t (P ∧ Q)) ≡ (realizes t P ∧ realizes Null Q)"

  "(realizes t (P ∧ Q)) ≡ (realizes (fst t) P ∧ realizes (snd t) Q)"

  "typeof P ≡ Type (TYPE(Null)) ==>
     realizes t (¬ P) ≡ ¬ realizes Null P"

  "typeof P ≡ Type (TYPE('P)) ==>
     realizes t (¬ P) ≡ (∀x::'P. ¬ realizes x P)"

  "typeof (P::bool) ≡ Type (TYPE(Null)) ==>
   typeof Q ≡ Type (TYPE(Null)) ==>
     realizes t (P = Q) ≡ realizes Null P = realizes Null Q"

  "(realizes t (P = Q)) ≡ (realizes t ((P --> Q) ∧ (Q --> P)))"

subsection {* Computational content of basic inference rules *}

theorem disjE_realizer:
  assumes r: "case x of Inl p => P p | Inr q => Q q"
  and r1: "!!p. P p ==> R (f p)" and r2: "!!q. Q q ==> R (g q)"
  shows "R (case x of Inl p => f p | Inr q => g q)"
proof (cases x)
  case Inl
  with r show ?thesis by simp (rule r1)
next
  case Inr
  with r show ?thesis by simp (rule r2)
qed

theorem disjE_realizer2:
  assumes r: "case x of None => P | Some q => Q q"
  and r1: "P ==> R f" and r2: "!!q. Q q ==> R (g q)"
  shows "R (case x of None => f | Some q => g q)"
proof (cases x)
  case None
  with r show ?thesis by simp (rule r1)
next
  case Some
  with r show ?thesis by simp (rule r2)
qed

theorem disjE_realizer3:
  assumes r: "case x of Left => P | Right => Q"
  and r1: "P ==> R f" and r2: "Q ==> R g"
  shows "R (case x of Left => f | Right => g)"
proof (cases x)
  case Left
  with r show ?thesis by simp (rule r1)
next
  case Right
  with r show ?thesis by simp (rule r2)
qed

theorem conjI_realizer:
  "P p ==> Q q ==> P (fst (p, q)) ∧ Q (snd (p, q))"
  by simp

theorem exI_realizer:
  "P y x ==> P (snd (x, y)) (fst (x, y))" by simp

theorem exE_realizer: "P (snd p) (fst p) ==>
  (!!x y. P y x ==> Q (f x y)) ==> Q (let (x, y) = p in f x y)"
  by (cases p) (simp add: Let_def)

theorem exE_realizer': "P (snd p) (fst p) ==>
  (!!x y. P y x ==> Q) ==> Q" by (cases p) simp

realizers
  impI (P, Q): "λpq. pq"
    "Λ P Q pq (h: _). allI · _ • (Λ x. impI · _ · _ • (h · x))"

  impI (P): "Null"
    "Λ P Q (h: _). allI · _ • (Λ x. impI · _ · _ • (h · x))"

  impI (Q): "λq. q" "Λ P Q q. impI · _ · _"

  impI: "Null" "impI"

  mp (P, Q): "λpq. pq"
    "Λ P Q pq (h: _) p. mp · _ · _ • (spec · _ · p • h)"

  mp (P): "Null"
    "Λ P Q (h: _) p. mp · _ · _ • (spec · _ · p • h)"

  mp (Q): "λq. q" "Λ P Q q. mp · _ · _"

  mp: "Null" "mp"

  allI (P): "λp. p" "Λ P p. allI · _"

  allI: "Null" "allI"

  spec (P): "λx p. p x" "Λ P x p. spec · _ · x"

  spec: "Null" "spec"

  exI (P): "λx p. (x, p)" "Λ P x p. exI_realizer · P · p · x"

  exI: "λx. x" "Λ P x (h: _). h"

  exE (P, Q): "λp pq. let (x, y) = p in pq x y"
    "Λ P Q p (h: _) pq. exE_realizer · P · p · Q · pq • h"

  exE (P): "Null"
    "Λ P Q p. exE_realizer' · _ · _ · _"

  exE (Q): "λx pq. pq x"
    "Λ P Q x (h1: _) pq (h2: _). h2 · x • h1"

  exE: "Null"
    "Λ P Q x (h1: _) (h2: _). h2 · x • h1"

  conjI (P, Q): "Pair"
    "Λ P Q p (h: _) q. conjI_realizer · P · p · Q · q • h"

  conjI (P): "λp. p"
    "Λ P Q p. conjI · _ · _"

  conjI (Q): "λq. q"
    "Λ P Q (h: _) q. conjI · _ · _ • h"

  conjI: "Null" "conjI"

  conjunct1 (P, Q): "fst"
    "Λ P Q pq. conjunct1 · _ · _"

  conjunct1 (P): "λp. p"
    "Λ P Q p. conjunct1 · _ · _"

  conjunct1 (Q): "Null"
    "Λ P Q q. conjunct1 · _ · _"

  conjunct1: "Null" "conjunct1"

  conjunct2 (P, Q): "snd"
    "Λ P Q pq. conjunct2 · _ · _"

  conjunct2 (P): "Null"
    "Λ P Q p. conjunct2 · _ · _"

  conjunct2 (Q): "λp. p"
    "Λ P Q p. conjunct2 · _ · _"

  conjunct2: "Null" "conjunct2"

  disjI1 (P, Q): "Inl"
    "Λ P Q p. iffD2 · _ · _ • (sum.cases_1 · P · _ · p)"

  disjI1 (P): "Some"
    "Λ P Q p. iffD2 · _ · _ • (option.cases_2 · _ · P · p)"

  disjI1 (Q): "None"
    "Λ P Q. iffD2 · _ · _ • (option.cases_1 · _ · _)"

  disjI1: "Left"
    "Λ P Q. iffD2 · _ · _ • (sumbool.cases_1 · _ · _)"

  disjI2 (P, Q): "Inr"
    "Λ Q P q. iffD2 · _ · _ • (sum.cases_2 · _ · Q · q)"

  disjI2 (P): "None"
    "Λ Q P. iffD2 · _ · _ • (option.cases_1 · _ · _)"

  disjI2 (Q): "Some"
    "Λ Q P q. iffD2 · _ · _ • (option.cases_2 · _ · Q · q)"

  disjI2: "Right"
    "Λ Q P. iffD2 · _ · _ • (sumbool.cases_2 · _ · _)"

  disjE (P, Q, R): "λpq pr qr.
     (case pq of Inl p => pr p | Inr q => qr q)"
    "Λ P Q R pq (h1: _) pr (h2: _) qr.
       disjE_realizer · _ · _ · pq · R · pr · qr • h1 • h2"

  disjE (Q, R): "λpq pr qr.
     (case pq of None => pr | Some q => qr q)"
    "Λ P Q R pq (h1: _) pr (h2: _) qr.
       disjE_realizer2 · _ · _ · pq · R · pr · qr • h1 • h2"

  disjE (P, R): "λpq pr qr.
     (case pq of None => qr | Some p => pr p)"
    "Λ P Q R pq (h1: _) pr (h2: _) qr (h3: _).
       disjE_realizer2 · _ · _ · pq · R · qr · pr • h1 • h3 • h2"

  disjE (R): "λpq pr qr.
     (case pq of Left => pr | Right => qr)"
    "Λ P Q R pq (h1: _) pr (h2: _) qr.
       disjE_realizer3 · _ · _ · pq · R · pr · qr • h1 • h2"

  disjE (P, Q): "Null"
    "Λ P Q R pq. disjE_realizer · _ · _ · pq · (λx. R) · _ · _"

  disjE (Q): "Null"
    "Λ P Q R pq. disjE_realizer2 · _ · _ · pq · (λx. R) · _ · _"

  disjE (P): "Null"
    "Λ P Q R pq (h1: _) (h2: _) (h3: _).
       disjE_realizer2 · _ · _ · pq · (λx. R) · _ · _ • h1 • h3 • h2"

  disjE: "Null"
    "Λ P Q R pq. disjE_realizer3 · _ · _ · pq · (λx. R) · _ · _"

  FalseE (P): "arbitrary"
    "Λ P. FalseE · _"

  FalseE: "Null" "FalseE"

  notI (P): "Null"
    "Λ P (h: _). allI · _ • (Λ x. notI · _ • (h · x))"

  notI: "Null" "notI"

  notE (P, R): "λp. arbitrary"
    "Λ P R (h: _) p. notE · _ · _ • (spec · _ · p • h)"

  notE (P): "Null"
    "Λ P R (h: _) p. notE · _ · _ • (spec · _ · p • h)"

  notE (R): "arbitrary"
    "Λ P R. notE · _ · _"

  notE: "Null" "notE"

  subst (P): "λs t ps. ps"
    "Λ s t P (h: _) ps. subst · s · t · P ps • h"

  subst: "Null" "subst"

  iffD1 (P, Q): "fst"
    "Λ Q P pq (h: _) p.
       mp · _ · _ • (spec · _ · p • (conjunct1 · _ · _ • h))"

  iffD1 (P): "λp. p"
    "Λ Q P p (h: _). mp · _ · _ • (conjunct1 · _ · _ • h)"

  iffD1 (Q): "Null"
    "Λ Q P q1 (h: _) q2.
       mp · _ · _ • (spec · _ · q2 • (conjunct1 · _ · _ • h))"

  iffD1: "Null" "iffD1"

  iffD2 (P, Q): "snd"
    "Λ P Q pq (h: _) q.
       mp · _ · _ • (spec · _ · q • (conjunct2 · _ · _ • h))"

  iffD2 (P): "λp. p"
    "Λ P Q p (h: _). mp · _ · _ • (conjunct2 · _ · _ • h)"

  iffD2 (Q): "Null"
    "Λ P Q q1 (h: _) q2.
       mp · _ · _ • (spec · _ · q2 • (conjunct2 · _ · _ • h))"

  iffD2: "Null" "iffD2"

  iffI (P, Q): "Pair"
    "Λ P Q pq (h1 : _) qp (h2 : _). conjI_realizer ·
       (λpq. ∀x. P x --> Q (pq x)) · pq ·
       (λqp. ∀x. Q x --> P (qp x)) · qp •
       (allI · _ • (Λ x. impI · _ · _ • (h1 · x))) •
       (allI · _ • (Λ x. impI · _ · _ • (h2 · x)))"

  iffI (P): "λp. p"
    "Λ P Q (h1 : _) p (h2 : _). conjI · _ · _ •
       (allI · _ • (Λ x. impI · _ · _ • (h1 · x))) •
       (impI · _ · _ • h2)"

  iffI (Q): "λq. q"
    "Λ P Q q (h1 : _) (h2 : _). conjI · _ · _ •
       (impI · _ · _ • h1) •
       (allI · _ • (Λ x. impI · _ · _ • (h2 · x)))"

  iffI: "Null" "iffI"

(*
  classical: "Null"
    "Λ P. classical · _"
*)

end

Setup

lemma

  (!!x. PROP P x) ==> PROP P x
  (x == y) == x = y
  (!!x. P x) == ∀x. P x
  (A ==> B) == A --> B
  (A && B) == AB
  [| ∀x. P x; P x ==> R |] ==> R
  [| P; P --> Q |] ==> Q
  [| PQ; [| P; Q |] ==> R |] ==> R
  P ==> P == True
  ¬ P ==> P == False
  P ==> P = True
  P = True ==> P
  u = u' ==> (t == u) == t == u'
  [| ¬ P; ¬ P ==> P |] ==> R
  [| P --> Q; Q ==> R; P --> Q ==> P |] ==> R
  [| P --> Q; P; Q ==> R |] ==> R
  [| P = Q; [| P --> Q; Q --> P |] ==> R |] ==> R
  [| P = P'; P' ==> Q = Q' |] ==> (P --> Q) = (P' --> Q')
  (¬ ¬ P) = P
  ((¬ P) = (¬ Q)) = (P = Q)
  (P  Q) = (P = (¬ Q))
  (P ∨ ¬ P) = True
  PP) = True
  (x = x) = True
  (¬ True) = False
  (¬ False) = True
  P)  P
  P P)
  (True = P) = P
  (P = True) = P
  (False = P) = (¬ P)
  (P = False) = (¬ P)
  (True --> P) = P
  (False --> P) = True
  (P --> True) = True
  (P --> P) = True
  (P --> False) = (¬ P)
  (P --> ¬ P) = (¬ P)
  (P ∧ True) = P
  (True ∧ P) = P
  (P ∧ False) = False
  (False ∧ P) = False
  (PP) = P
  (PPQ) = (PQ)
  (P ∧ ¬ P) = False
  PP) = False
  (P ∨ True) = True
  (True ∨ P) = True
  (P ∨ False) = P
  (False ∨ P) = P
  (PP) = P
  (PPQ) = (PQ)
  (∀x. P) = P
  (∃x. P) = P
  x. x = t
  x. t = x
  (∃x. x = tP x) = P t
  (∃x. t = xP x) = P t
  (∀x. x = t --> P x) = P t
  (∀x. t = x --> P x) = P t
  (P = True) = P
  (P = False) = (¬ P)
  (!!x. P x) == ??.HOL.induct_forall P
  (A ==> B) == ??.HOL.induct_implies A B
  (x == y) == ??.HOL.induct_equal x y
  (A && B) == ??.HOL.induct_conj A B
  ??.HOL.induct_forall P == ∀x. P x
  ??.HOL.induct_implies A B == A --> B
  ??.HOL.induct_equal x y == x = y
  ??.HOL.induct_conj A B == AB
  (!!x. P x) == ??.HOL.induct_forall P
  (A ==> B) == ??.HOL.induct_implies A B
  (x == y) == ??.HOL.induct_equal x y
  (A && B) == ??.HOL.induct_conj A B
  ??.HOL.induct_forall P == (!!x. P x)
  ??.HOL.induct_implies A B == (A ==> B)
  ??.HOL.induct_equal x y == x == y
  ??.HOL.induct_conj A B == A && B
  ??.HOL.induct_forall P == ∀x. P x
  ??.HOL.induct_implies A B == A --> B
  ??.HOL.induct_equal x y == x = y
  ??.HOL.induct_conj A B == AB
  (True ==> PROP P) == PROP P
  [| True; P |] ==> P

Type of extracted program

Realizability

Computational content of basic inference rules

theorem disjE_realizer:

  [| case x of Inl p => P p | Inr q => Q q; !!p. P p ==> R (f p);
     !!q. Q q ==> R (g q) |]
  ==> R (case x of Inl p => f p | Inr q => g q)

theorem disjE_realizer2:

  [| case x of None => P | Some q => Q q; P ==> R f; !!q. Q q ==> R (g q) |]
  ==> R (case x of None => f | Some q => g q)

theorem disjE_realizer3:

  [| case x of Left => P | Right => Q; P ==> R f; Q ==> R g |]
  ==> R (case x of Left => f | Right => g)

theorem conjI_realizer:

  [| P p; Q q |] ==> P (fst (p, q)) ∧ Q (snd (p, q))

theorem exI_realizer:

  P y x ==> P (snd (x, y)) (fst (x, y))

theorem exE_realizer:

  [| P (snd p) (fst p); !!x y. P y x ==> Q (f x y) |]
  ==> Q (let (x, y) = p in f x y)

theorem exE_realizer':

  [| P (snd p) (fst p); !!x y. P y x ==> Q |] ==> Q