Theory Ssum

Up to index of Isabelle/HOLCF

theory Ssum
imports Cprod
begin

(*  Title:      HOLCF/Ssum.thy
    ID:         $Id: Ssum.thy,v 1.20 2007/10/21 12:21:49 wenzelm Exp $
    Author:     Franz Regensburger and Brian Huffman

Strict sum with typedef.
*)

header {* The type of strict sums *}

theory Ssum
imports Cprod
begin

defaultsort pcpo

subsection {* Definition of strict sum type *}

pcpodef (Ssum)  ('a, 'b) "++" (infixr "++" 10) = 
        "{p::'a × 'b. cfst·p = ⊥ ∨ csnd·p = ⊥}"
by simp

syntax (xsymbols)
  "++"          :: "[type, type] => type"       ("(_ ⊕/ _)" [21, 20] 20)
syntax (HTML output)
  "++"          :: "[type, type] => type"       ("(_ ⊕/ _)" [21, 20] 20)


subsection {* Definitions of constructors *}

definition
  sinl :: "'a -> ('a ++ 'b)" where
  "sinl = (Λ a. Abs_Ssum <a, ⊥>)"

definition
  sinr :: "'b -> ('a ++ 'b)" where
  "sinr = (Λ b. Abs_Ssum <⊥, b>)"

subsection {* Properties of @{term sinl} and @{term sinr} *}

lemma sinl_Abs_Ssum: "sinl·a = Abs_Ssum <a, ⊥>"
by (unfold sinl_def, simp add: cont_Abs_Ssum Ssum_def)

lemma sinr_Abs_Ssum: "sinr·b = Abs_Ssum <⊥, b>"
by (unfold sinr_def, simp add: cont_Abs_Ssum Ssum_def)

lemma Rep_Ssum_sinl: "Rep_Ssum (sinl·a) = <a, ⊥>"
by (unfold sinl_def, simp add: cont_Abs_Ssum Abs_Ssum_inverse Ssum_def)

lemma Rep_Ssum_sinr: "Rep_Ssum (sinr·b) = <⊥, b>"
by (unfold sinr_def, simp add: cont_Abs_Ssum Abs_Ssum_inverse Ssum_def)

lemma compact_sinl [simp]: "compact x ==> compact (sinl·x)"
by (rule compact_Ssum, simp add: Rep_Ssum_sinl)

lemma compact_sinr [simp]: "compact x ==> compact (sinr·x)"
by (rule compact_Ssum, simp add: Rep_Ssum_sinr)

lemma sinl_strict [simp]: "sinl·⊥ = ⊥"
by (simp add: sinl_Abs_Ssum Abs_Ssum_strict cpair_strict)

lemma sinr_strict [simp]: "sinr·⊥ = ⊥"
by (simp add: sinr_Abs_Ssum Abs_Ssum_strict cpair_strict)

lemma sinl_eq [simp]: "(sinl·x = sinl·y) = (x = y)"
by (simp add: sinl_Abs_Ssum Abs_Ssum_inject Ssum_def)

lemma sinr_eq [simp]: "(sinr·x = sinr·y) = (x = y)"
by (simp add: sinr_Abs_Ssum Abs_Ssum_inject Ssum_def)

lemma sinl_inject: "sinl·x = sinl·y ==> x = y"
by (rule sinl_eq [THEN iffD1])

lemma sinr_inject: "sinr·x = sinr·y ==> x = y"
by (rule sinr_eq [THEN iffD1])

lemma sinl_defined_iff [simp]: "(sinl·x = ⊥) = (x = ⊥)"
by (cut_tac sinl_eq [of "x" "⊥"], simp)

lemma sinr_defined_iff [simp]: "(sinr·x = ⊥) = (x = ⊥)"
by (cut_tac sinr_eq [of "x" "⊥"], simp)

lemma sinl_defined [intro!]: "x ≠ ⊥ ==> sinl·x ≠ ⊥"
by simp

lemma sinr_defined [intro!]: "x ≠ ⊥ ==> sinr·x ≠ ⊥"
by simp

subsection {* Case analysis *}

lemma Exh_Ssum: 
  "z = ⊥ ∨ (∃a. z = sinl·a ∧ a ≠ ⊥) ∨ (∃b. z = sinr·b ∧ b ≠ ⊥)"
apply (rule_tac x=z in Abs_Ssum_induct)
apply (rule_tac p=y in cprodE)
apply (simp add: sinl_Abs_Ssum sinr_Abs_Ssum)
apply (simp add: Abs_Ssum_inject Ssum_def)
apply (auto simp add: cpair_strict Abs_Ssum_strict)
done

lemma ssumE:
  "[|p = ⊥ ==> Q;
   !!x. [|p = sinl·x; x ≠ ⊥|] ==> Q;
   !!y. [|p = sinr·y; y ≠ ⊥|] ==> Q|] ==> Q"
by (cut_tac z=p in Exh_Ssum, auto)

lemma ssumE2:
  "[|!!x. p = sinl·x ==> Q; !!y. p = sinr·y ==> Q|] ==> Q"
apply (rule_tac p=p in ssumE)
apply (simp only: sinl_strict [symmetric])
apply simp
apply simp
done

subsection {* Ordering properties of @{term sinl} and @{term sinr} *}

lemma sinl_less [simp]: "(sinl·x \<sqsubseteq> sinl·y) = (x \<sqsubseteq> y)"
by (simp add: less_Ssum_def Rep_Ssum_sinl)

lemma sinr_less [simp]: "(sinr·x \<sqsubseteq> sinr·y) = (x \<sqsubseteq> y)"
by (simp add: less_Ssum_def Rep_Ssum_sinr)

lemma sinl_less_sinr [simp]: "(sinl·x \<sqsubseteq> sinr·y) = (x = ⊥)"
by (simp add: less_Ssum_def Rep_Ssum_sinl Rep_Ssum_sinr)

lemma sinr_less_sinl [simp]: "(sinr·x \<sqsubseteq> sinl·y) = (x = ⊥)"
by (simp add: less_Ssum_def Rep_Ssum_sinl Rep_Ssum_sinr)

lemma sinl_eq_sinr [simp]: "(sinl·x = sinr·y) = (x = ⊥ ∧ y = ⊥)"
by (subst po_eq_conv, simp)

lemma sinr_eq_sinl [simp]: "(sinr·x = sinl·y) = (x = ⊥ ∧ y = ⊥)"
by (subst po_eq_conv, simp)

subsection {* Chains of strict sums *}

lemma less_sinlD: "p \<sqsubseteq> sinl·x ==> ∃y. p = sinl·y ∧ y \<sqsubseteq> x"
apply (rule_tac p=p in ssumE)
apply (rule_tac x="⊥" in exI, simp)
apply simp
apply simp
done

lemma less_sinrD: "p \<sqsubseteq> sinr·x ==> ∃y. p = sinr·y ∧ y \<sqsubseteq> x"
apply (rule_tac p=p in ssumE)
apply (rule_tac x="⊥" in exI, simp)
apply simp
apply simp
done

lemma ssum_chain_lemma:
"chain Y ==> (∃A. chain A ∧ Y = (λi. sinl·(A i))) ∨
             (∃B. chain B ∧ Y = (λi. sinr·(B i)))"
 apply (rule_tac p="lub (range Y)" in ssumE2)
  apply (rule disjI1)
  apply (rule_tac x="λi. cfst·(Rep_Ssum (Y i))" in exI)
  apply (rule conjI)
   apply (rule chain_monofun)
   apply (erule cont_Rep_Ssum [THEN ch2ch_cont])
  apply (rule ext, drule_tac x=i in is_ub_thelub, simp)
  apply (drule less_sinlD, clarify)
  apply (simp add: Rep_Ssum_sinl)
 apply (rule disjI2)
 apply (rule_tac x="λi. csnd·(Rep_Ssum (Y i))" in exI)
 apply (rule conjI)
  apply (rule chain_monofun)
  apply (erule cont_Rep_Ssum [THEN ch2ch_cont])
 apply (rule ext, drule_tac x=i in is_ub_thelub, simp)
 apply (drule less_sinrD, clarify)
 apply (simp add: Rep_Ssum_sinr)
done

subsection {* Definitions of constants *}

definition
  Iwhen :: "['a -> 'c, 'b -> 'c, 'a ++ 'b] => 'c" where
  "Iwhen = (λf g s.
    if cfst·(Rep_Ssum s) ≠ ⊥ then f·(cfst·(Rep_Ssum s)) else
    if csnd·(Rep_Ssum s) ≠ ⊥ then g·(csnd·(Rep_Ssum s)) else ⊥)"

text {* rewrites for @{term Iwhen} *}

lemma Iwhen1 [simp]: "Iwhen f g ⊥ = ⊥"
by (simp add: Iwhen_def Rep_Ssum_strict)

lemma Iwhen2 [simp]: "x ≠ ⊥ ==> Iwhen f g (sinl·x) = f·x"
by (simp add: Iwhen_def Rep_Ssum_sinl)

lemma Iwhen3 [simp]: "y ≠ ⊥ ==> Iwhen f g (sinr·y) = g·y"
by (simp add: Iwhen_def Rep_Ssum_sinr)

lemma Iwhen4: "Iwhen f g (sinl·x) = strictify·f·x"
by (simp add: strictify_conv_if)

lemma Iwhen5: "Iwhen f g (sinr·y) = strictify·g·y"
by (simp add: strictify_conv_if)

subsection {* Continuity of @{term Iwhen} *}

text {* @{term Iwhen} is continuous in all arguments *}

lemma cont_Iwhen1: "cont (λf. Iwhen f g s)"
by (rule_tac p=s in ssumE, simp_all)

lemma cont_Iwhen2: "cont (λg. Iwhen f g s)"
by (rule_tac p=s in ssumE, simp_all)

lemma cont_Iwhen3: "cont (λs. Iwhen f g s)"
apply (rule contI)
apply (drule ssum_chain_lemma, safe)
apply (simp add: contlub_cfun_arg [symmetric])
apply (simp add: Iwhen4 cont_cfun_arg)
apply (simp add: contlub_cfun_arg [symmetric])
apply (simp add: Iwhen5 cont_cfun_arg)
done

subsection {* Continuous versions of constants *}

definition
  sscase :: "('a -> 'c) -> ('b -> 'c) -> ('a ++ 'b) -> 'c" where
  "sscase = (Λ f g s. Iwhen f g s)"

translations
  "case s of CONST sinl·x => t1 | CONST sinr·y => t2" == "CONST sscase·(Λ x. t1)·(Λ y. t2)·s"

translations
  "Λ(CONST sinl·x). t" == "CONST sscase·(Λ x. t)·⊥"
  "Λ(CONST sinr·y). t" == "CONST sscase·⊥·(Λ y. t)"

text {* continuous versions of lemmas for @{term sscase} *}

lemma beta_sscase: "sscase·f·g·s = Iwhen f g s"
by (simp add: sscase_def cont_Iwhen1 cont_Iwhen2 cont_Iwhen3)

lemma sscase1 [simp]: "sscase·f·g·⊥ = ⊥"
by (simp add: beta_sscase)

lemma sscase2 [simp]: "x ≠ ⊥ ==> sscase·f·g·(sinl·x) = f·x"
by (simp add: beta_sscase)

lemma sscase3 [simp]: "y ≠ ⊥ ==> sscase·f·g·(sinr·y) = g·y"
by (simp add: beta_sscase)

lemma sscase4 [simp]: "sscase·sinl·sinr·z = z"
by (rule_tac p=z in ssumE, simp_all)

end

Definition of strict sum type

Definitions of constructors

Properties of @{term sinl} and @{term sinr}

lemma sinl_Abs_Ssum:

  sinl·a = Abs_Ssum <a, UU>

lemma sinr_Abs_Ssum:

  sinr·b = Abs_Ssum <UU, b>

lemma Rep_Ssum_sinl:

  Rep_Ssum (sinl·a) = <a, UU>

lemma Rep_Ssum_sinr:

  Rep_Ssum (sinr·b) = <UU, b>

lemma compact_sinl:

  compact x ==> compact (sinl·x)

lemma compact_sinr:

  compact x ==> compact (sinr·x)

lemma sinl_strict:

  sinl·UU = UU

lemma sinr_strict:

  sinr·UU = UU

lemma sinl_eq:

  (sinl·x = sinl·y) = (x = y)

lemma sinr_eq:

  (sinr·x = sinr·y) = (x = y)

lemma sinl_inject:

  sinl·x = sinl·y ==> x = y

lemma sinr_inject:

  sinr·x = sinr·y ==> x = y

lemma sinl_defined_iff:

  (sinl·x = UU) = (x = UU)

lemma sinr_defined_iff:

  (sinr·x = UU) = (x = UU)

lemma sinl_defined:

  x  UU ==> sinl·x  UU

lemma sinr_defined:

  x  UU ==> sinr·x  UU

Case analysis

lemma Exh_Ssum:

  z = UU ∨ (∃a. z = sinl·aa  UU) ∨ (∃b. z = sinr·bb  UU)

lemma ssumE:

  [| p = UU ==> Q; !!x. [| p = sinl·x; x  UU |] ==> Q;
     !!y. [| p = sinr·y; y  UU |] ==> Q |]
  ==> Q

lemma ssumE2:

  [| !!x. p = sinl·x ==> Q; !!y. p = sinr·y ==> Q |] ==> Q

Ordering properties of @{term sinl} and @{term sinr}

lemma sinl_less:

  sinl·x << sinl·y = x << y

lemma sinr_less:

  sinr·x << sinr·y = x << y

lemma sinl_less_sinr:

  sinl·x << sinr·y = (x = UU)

lemma sinr_less_sinl:

  sinr·x << sinl·y = (x = UU)

lemma sinl_eq_sinr:

  (sinl·x = sinr·y) = (x = UUy = UU)

lemma sinr_eq_sinl:

  (sinr·x = sinl·y) = (x = UUy = UU)

Chains of strict sums

lemma less_sinlD:

  p << sinl·x ==> ∃y. p = sinl·yy << x

lemma less_sinrD:

  p << sinr·x ==> ∃y. p = sinr·yy << x

lemma ssum_chain_lemma:

  chain Y
  ==> (∃A. chain AY = (λi. sinl·(A i))) ∨ (∃B. chain BY = (λi. sinr·(B i)))

Definitions of constants

lemma Iwhen1:

  Iwhen f g UU = UU

lemma Iwhen2:

  x  UU ==> Iwhen f g (sinl·x) = f·x

lemma Iwhen3:

  y  UU ==> Iwhen f g (sinr·y) = g·y

lemma Iwhen4:

  Iwhen f g (sinl·x) = strictify·f·x

lemma Iwhen5:

  Iwhen f g (sinr·y) = strictify·g·y

Continuity of @{term Iwhen}

lemma cont_Iwhen1:

  contf. Iwhen f g s)

lemma cont_Iwhen2:

  contg. Iwhen f g s)

lemma cont_Iwhen3:

  cont (Iwhen f g)

Continuous versions of constants

lemma beta_sscase:

  sscase·f·g·s = Iwhen f g s

lemma sscase1:

  sscase·f·g·UU = UU

lemma sscase2:

  x  UU ==> sscase·f·g·(sinl·x) = f·x

lemma sscase3:

  y  UU ==> sscase·f·g·(sinr·y) = g·y

lemma sscase4:

  sscase·sinl·sinr·z = z