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1 Miscellaneous Tools for Size-Change Termina-
tion

theory Misc-Tools
imports Main
begin

1.1 Searching in lists

fun index-of :: 'a list = 'a = nat
where
index-of [] ¢ = 0
| index-of (z#xs) ¢ = (if v = ¢ then 0 else Suc (index-of xs c))

lemma index-of-member:
(z € set ) = (1! index-of l x = )
by (induct 1) auto

lemma index-of-length:
(z € set 1) = (index-of | x < length 1)
by (induct 1) auto

1.2 Some reasoning tools

lemma three-cases:
assumes al — thesis
assumes a2 — thesis
assumes a3 = thesis
assumes AR. [al = R; a2 — R; a3 — R] = R
shows thesis
using assms
by auto

1.3 Sequences

types
'a sequence = nat = 'a



1.3.1 Increasing sequences

definition
increasing :: (nat = nat) = bool where
increasing s = (Vij. i <j — si < sj)

lemma increasing-strict:
assumes increasing s
assumes i < j
shows s i < sj
using assms
unfolding increasing-def by simp

lemma increasing-weak:
assumes increasing s
assumes { < j
shows s i < sj
using assms increasing-strict[of s i j]
by (cases i < j) auto

lemma increasing-inc:
assumes increasing s
shows n < s n
proof (induct n)
case () then show ?case by simp
next
case (Suc n)
with increasing-strict [OF tincreasing $), of n Suc n|
show ?case by auto
qed

lemma increasing-bij:
assumes [simp|: increasing s
shows (si < sj) = (i < j)
proof
assume s 1 < §J
show i < j
proof (rule classical)
assume — ?thesis
hence j < i by arith
with increasing-weak have s j < s ¢ by simp
with (s i < s j> show %thesis by simp
qed
qed (simp add:increasing-strict)

1.3.2 Sections induced by an increasing sequence

abbreviation
section s i == {s i ..< s (Suc i)}



definition
section-of s n = (LEAST i. n < s (Suc 1))

lemma section-help:
assumes increasing s
shows Ji. n < s (Suc 9)
proof —
have n < s n
using <increasing s» by (rule increasing-inc)
also have ... < s (Suc n)
using «ncreasing s) increasing-strict by simp
finally show ?thesis .
qed

lemma section-of2:
assumes increasing s
shows n < s (Suc (section-of s n))
unfolding section-of-def
by (rule Leastl-ex) (rule section-help [OF tincreasing $)])

lemma section-of1:
assumes [simp, intro|: increasing s
assumes s 1 < n
shows s (section-of s n) < n
proof (rule classical)
let ?m = section-of s n

assume — ?thesis
hence a: n < s ?m by simp

have nonzero: ?m # 0
proof
assume ?m = (
from increasing-weak have s 0 < s i by simp
also note ... < n
finally show Fulse using (Ym = () (n < s ?m) by simp
qged
with a have n < s (Suc (Ym — 1)) by simp
with Least-le have ?m < ?m — 1
unfolding section-of-def .
with nonzero show ?thesis by simp
qed

lemma section-of-known:
assumes [simp|: increasing s
assumes in-sect: k € section s i
shows section-of s k = i (is %s = i)
proof (rule classical)
assume — ?thesis



hence ?s < i V %s > i by arith

thus ?thesis

proof
assume ?s < i
hence Suc s < i by simp
with increasing-weak have s (Suc ?s) < s i by simp
moreover have k < s (Suc ?s) using section-of2 by simp
moreover from in-sect have s i < k by simp
ultimately show ?thesis by simp

next
assume i < ?s hence Suc i < ?s by simp
with increasing-weak have s (Suc i) < s ?s by simp
moreover
from in-sect have s i < k by simp
with section-of! have s ?s < k by simp
moreover from in-sect have k < s (Suc i) by simp
ultimately show ?thesis by simp

qed

qed

lemma in-section-of:
assumes increasing S
assumes s 1 < k
shows k € section s (section-of s k)
using assms
by (auto intro:section-of1 section-of2)

end

2 Kleene Algebras

theory Kleene-Algebras
imports Main
begin

A type class of kleene algebras
class star = type +

fixes star :: 'a = 'a

class idem-add = ab-semigroup-add +
assumes add-idem [simp]: z + z = z

lemma add-idem2[simp]: (z::'a:idem-add) + (z + y) =z + y
unfolding add-assoc[symmetric]

by simp

class order-by-add = idem-add + ord +



assumes order-def: a < b+«— a+ b=2»>
assumes strict-order-def: a < b +— a < bAa#b

lemma ord-simp1[simp]: (z::'a::order-by-add) < y = = + y
unfolding order-def .

lemma ord-simp2[simp): (z::’a::order-by-add) < y = y + z
unfolding order-def add-commute .

lemma ord-intro: (z::'a::order-by-add) + y =y =z < y
unfolding order-def .

instance order-by-add C order
proof
fixzyz:'a
show z < z unfolding order-def by simp

show [z < y; y < z] = 2 <2
proof (rule ord-intro)

assume z < yy < 2

have 2 + z = . + y + z by (simp add:<y < 2) add-assoc)

also have ... = y + z by (simp add:<x < )
also have ... = z by (simp add:«y < 2))
finally show z + 2z = z .

qed

show [z < y; y < 2] = z = y unfolding order-def
by (simp add:add-commute)
show z < y «— z < y A = # y by (fact strict-order-def)
qed

class pre-kleene = semiring-1 + order-by-add
instance pre-kleene C pordered-semiring
proof

fixzyz:'a

assume r < y

show z + 2 < z + y

proof (rule ord-intro)
have z + z + (z + y) =z + y + z by (simp add:add-ac)

also have ... = z + y by (simp add:«x < y add-ac)
finally show z + z + (z + y) =2 + y .
qed

show z x x < z x y
proof (rule ord-intro)
from z < y have z x (z + y) = z x y by simp



thus z x 2 + z x y = z * y by (simp add:right-distrib)
qed

show z * z <y * 2
proof (rule ord-intro)
from x < y have (z + y) *x z = y x z by simp
thus z * 2 + y x 2 = y x z by (simp add:left-distrib)
qed
qed

class kleene = pre-kleene + star +
assumes starl: 1 + a * star a < star a
and star2: 1 + star a * a < star a
and star3: a x x < x — stara x v <
and starf: z x a < x = x * stara < z

class kleene-by-complete-lattice = pre-kleene
+ complete-lattice + recpower + star +
assumes star-cont: a * star b * ¢ = SUPR UNIV (An. a b " n * c)

lemma plus-lel:
fixes z :: 'a :: order-by-add
showsr <2 = y<:z=z+y <z
unfolding order-def by (simp add:add-assoc)

lemma le-SUPI":
fixes [ :: 'a :: complete-lattice
assumes [ < M i
shows [ < (SUP i. M 1)
using assms by (rule order-trans) (rule le-SUPI [OF UNIV-I))

lemma zero-minimum[simp]: (0::'a::pre-kleene) < z
unfolding order-def by simp

instance kleene-by-complete-lattice C kleene
proof

fixaz:'a

have [simp]: 1 < star a
unfolding star-contl[of 1 a 1, simplified]
by (subst power-0[symmetric]) (rule le-SUPI [OF UNIV-I])

show 1 + a x star a < star a
apply (rule plus-lel, simp)
apply (simp add:star-cont|of a a 1, simplified])
apply (simp add:star-cont[of 1 a 1, simplified])
apply (subst power-Suc[symmetric|)
by (intro SUP-lel le-SUPI UNIV-I)



show 1 + star a * a < star a
apply (rule plus-lel, simp)
apply (simp add:star-cont[of 1 a a, simplified])
apply (simp add:star-cont[of 1 a 1, simplified])
by (auto intro: SUP-lel le-SUPI UNIV-I simp add: power-Suc[symmetric]
power-commutes)

show a x xt <z — stara xz <z
proof —
assume a: a x ¢ < T

{

fix n
have a ~ (Sucn) *xz <a "nxzx
proof (induct n)
case 0 thus Zcase by (simp add:a power-Suc)
next
case (Suc n)
hence a % (a " Sucn xz) < ax*x(a "n*zx)
by (auto intro: mult-mono)
thus Zcase
by (simp add:power-Suc mult-assoc)
qed

}

note a = this

{

fix n have a "nxz <z
proof (induct n)
case () show ?case by simp
next
case (Suc n) with afof n]
show ?case by simp
qed

}

note b = this

show star a x ¢z < z
unfolding star-cont[of 1 a z, simplified]
by (rule SUP-lel) (rule b)
qed

show z x a <z =z x stara <z
proof —
assume a: r x a < T

{

fix n



~

have z x a " (Sucn) <z *xa "n
proof (induct n)

case 0 thus Zcase by (simp add:a power-Suc)
next

case (Suc n)

hence (£ x a "Sucn) xa < (z*xa "n)x*a

by (auto intro: mult-mono)
thus Zcase

by (simp add:power-Suc power-commutes mult-assoc)

qed

}

note a = this

{

fixnhave z xa "n <z
proof (induct n)
case 0 show fZcase by simp
next
case (Suc n) with a[of n|
show ?case by simp
qed
}

note b = this

show z * star a < x
unfolding star-cont[of x a 1, simplified]
by (rule SUP-lel) (rule b)
qed
qed

lemma less-add[simp]:
fixes a b :: 'a :: order-by-add
shows a < a + b
and b<a+ b
unfolding order-def
by (auto simp:add-ac)

lemma add-est1:
fixes a b ¢ :: 'a :: order-by-add
assumes a: a + b < ¢
shows a < ¢
using less-add(1) a
by (rule order-trans)

lemma add-est2:
fixes a b ¢ :: 'a :: order-by-add
assumes a: a + b < ¢
shows b < ¢
using less-add(2) a



by (rule order-trans)

lemma star3”
fixes a bz :: 'a :: kleene
assumes a: b+ a x v < x
shows star a x b < z
proof (rule order-trans)
from a have b < z by (rule add-estl)
show star a x b < star a * z
by (rule mult-mono) (auto simp:<b < )

/

from a have a *x © < z by (rule add-est2)
with star3 show star a x ¢ < z .
qed

lemma starj":
fixes a bz :: 'a :: kleene
assumes a: b+ xa <z
shows b * star a < z
proof (rule order-trans)
from a have b < z by (rule add-est1)
show b * star a < z * star a
by (rule mult-mono) (auto simp:<b < x)

from a have z x a < z by (rule add-est2)

with star4 show z * star a < z .
qed

lemma star-idemp:

fixes = :: 'a :: kleene
shows star (star z) = star
oops

lemma star-unfold-left:

fixes a :: 'a :: kleene

shows 1 + a * star a = star a
proof (rule order-antisym, rule starl)

have I + a x (I + a % star a) < 1 + a * star a
apply (rule add-mono, rule)
apply (rule mult-mono, auto)
apply (rule stari)
done

with star3’ have star a x 1 < 1 + a * star a .
thus star a < 1 + a * star a by simp



qed

lemma star-unfold-right:

fixes a :: 'a :: kleene

shows 1 + star a * a = star a
proof (rule order-antisym, rule star2)

have I + (1 + stara * a) * a < 1 + star a * a
apply (rule add-mono, rule)
apply (rule mult-mono, auto)
apply (rule star2)
done

with star{’ have 1 * star a < 1 + star a * a .
thus star a < 1 + star a * a by simp
qed

lemma star-zero[simp]:
shows star (0::'a::kleene) = 1
by (rule star-unfold-left[of 0, simplified])

lemma star-commute:
fixes a bz :: 'a :: kleene
assumes a: a x £ = T * b
shows star a *x £ = z * star b
proof (rule order-antisym)

show star a * © < z * star b
proof (rule star3’, rule order-trans)

from o have a x x < z x b by simp

hence a * z * star b < x % b * star b
by (rule mult-mono) auto

thus z + a * (z % star b) <z + z % b % star b
using add-mono by (auto simp: mult-assoc)

show ... < z % star b
proof —
have = * (1 4+ b * star b) < z * star b
by (rule mult-mono[OF - starl]) auto
thus ?thesis
by (simp add:right-distrib mult-assoc)
qed
qed

show z * star b < star a * x
proof (rule star4’, rule order-trans)
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from a have b: z * b < a * x by simp

have star a *x z * b < star a * a x x
unfolding mult-assoc
by (rule mult-mono[OF - b)) auto

thus z + stara sz x b <z + stara x a x x
using add-mono by auto

show ... < star a x x
proof —
have (1 + star a x a) x ¢ < star a * «
by (rule mult-mono[OF star2]) auto
thus ?thesis
by (simp add:left-distrib mult-assoc)
qed
qed
qed

lemma star-assoc:
fixes ¢ d :: a :: kleene
shows star (¢ * d) x ¢ = ¢ * star (d x c)
by (auto simp:mult-assoc star-commute)

lemma star-dist:
fixes a b :: 'a :: kleene
shows star (a + b) = star a * star (b * star a)
oops

lemma star-one:
fixes a p p’:: 'a :: kleene
assumes p x p'= 1 and p' * p = 1
shows p’ x star a x p = star (p’ * a * p)
proof —
from assms
have p’ * star a x p = p’ * star (p * p’ * a) * p
by simp

also have ... = p’ x p x star (p’ x a * p)
by (simp add: mult-assoc star-assoc)
also have ... = star (p' * a * p)

by (simp add: assms)
finally show ?thesis .
qed

lemma star-mono:
fixes z y :: 'a :: kleene
assumes z < y
shows star x < star vy
oops
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lemma z-less-star[simp]:
fixes z :: 'a :: kleene
shows z < z * star a

proof —
have z < z % (I + a * star a) by (simp add:right-distrib)
also have ... = z * star a by (simp only: star-unfold-left)
finally show ?thesis .

qed

2.1 Transitive Closure

definition
tel (z::'az:kleene) = star © * x

lemma tcl-zero:
tel (0:'az:kleene) = 0
unfolding tcl-def by simp

lemma tcl-unfold-right: tcl a = a + tcl a * a
proof —
from star-unfold-right|[of a]
have a * (1 + star a * a) = a * star a by simp
from this[simplified right-distrib, simplified]
show ?thesis
by (simp add:tcl-def star-commute mult-ac)

qed

lemma less-tcl: a < tcl a

proof —
have a < a + tcl a *x a by simp
also have ... = tcl a by (rule tcl-unfold-right[symmetric])
finally show ?thesis .

qed

2.2 Naive Algorithm to generate the transitive closure

function (default Azx. 0, tailrec, domintros)
mk-tcl 2 (Ya:{plus,times,ord,zero}) = 'a = 'a

where
mk-tcl A X = (if X * A < X then X else mk-tcl A (X + X = A))
by pat-completeness simp

declare mk-tcl.simps[simp del]

lemma mk-tcl-code[code]:
mk-tcl A X =
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(let XA=X x A
in if XA < X then X else mk-tcl A (X + XA))
unfolding mk-tel.simps[of A X| Let-def ..

lemma mk-tcl-lemmal:
fixes X :: 'a :: kleene
shows (X + X x A) % star A = X x star A

proof —
have A x star A < 1 4+ A * star A by simp
also have ... = star A by (simp add:star-unfold-left)

finally have star A + A * star A = star A by simp

hence X x (star A + A x star A) = X * star A by simp

thus ?thesis by (simp add:left-distrib right-distrib mult-ac)
qed

lemma mk-tcl-lemma2:
fixes X :: 'a :: kleene
shows X * A < X — X *x star A = X
by (rule order-antisym) (auto simp:stars)

lemma mk-tcl-correctness:
fixes A X :: 'a :: {kleene}
assumes mk-tcl-dom (A, X)
shows mk-tcl A X = X * star A
using assms
by induct (auto simp:mk-tcl-lemmal mk-tcl-lemma?2)

lemma graph-implies-dom: mk-tcl-graph x y = mk-tcl-dom x
by (rule mk-tcl-graph.induct) (auto intro:accp.accl elim:mk-tcl-rel.cases)

lemma mk-tcl-default: = mk-tcl-dom (a,x) = mk-tcl a z = 0
unfolding mk-tcl-def
by (rule fundef-default-value|OF mk-tcl-sum-def graph-implies-dom))

We can replace the dom-Condition of the correctness theorem with some-
thing executable

lemma mk-tcl-correctness?:
fixes A X :: 'a :: {kleene}
assumes mk-tcl A A # 0
shows mk-tcl A A = tcl A
using assms mk-tcl-default mk-tcl-correctness
unfolding tcl-def
by (auto simp:star-commute)

end
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3 General Graphs as Sets

theory Graphs
imports Main Misc-Tools Kleene-Algebras
begin

3.1 Basic types, Size Change Graphs

datatype (‘a, 'b) graph =
Graph ('a x 'b x 'a) set

fun dest-graph :: ('a, 'b) graph = (‘a x 'b x 'a) set
where dest-graph (Graph G) = G

lemma graph-dest-graph[simp]:
Graph (dest-graph G) = G
by (cases G) simp

lemma split-graph-all:
(Agr. PROP P gr) = (\set. PROP P (Graph set))
proof
fix set
assume Agr. PROP P gr
then show PROP P (Graph set) .
next
fix gr
assume Aset. PROP P (Graph set)
then have PROP P (Graph (dest-graph gr)) .
then show PROP P gr by simp
qed

definition

has-edge :: ('n,’e) graph = 'n = 'e = 'n = bool
(-F -~ 1)
where

has-edge G n e n' = ((n, e, n') € dest-graph G)

3.2 Graph composition

fun grcomp :: ('n, 'e::times) graph = ('n, 'e) graph = ('n, 'e) graph
where
grcomp (Graph G) (Graph H) =

Graph {(p,b,q) | p b q.
(Fkee' (pek)eG A (ke',q)eH ANb=exce)}

declare grcomp.simps|code del]

lemma graph-ezt:
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assumes An e n’. has-edge G n e n’ = has-edge Hn e n’
shows G = H

using assms

by (cases G, cases H) (auto simp:split-paired-all has-edge-def)

instance graph :: (type, type) {comm-monoid-add}

graph-zero-def: 0 == Graph {}

graph-plus-def: G + H == Graph (dest-graph G U dest-graph H)
proof

fix zy 2z :: (Ya,’b) graph

show z + y+ 2=z + (y + 2)
andzrz+y=y+z=z
and 0 + z ==z
unfolding graph-plus-def graph-zero-def
by auto

qed

lemmas [code func del] = graph-plus-def

instance graph :: (type, type) {distrib-lattice, complete-lattice}
graph-leg-def: G < H = dest-graph G C dest-graph H
graph-less-def: G < H = dest-graph G C dest-graph H
inf G H = Graph (dest-graph G N dest-graph H)
sup GH=G+ H
Inf-graph-def: Inf = AGs. Graph ([ (dest-graph ¢ Gs))
Sup-graph-def: Sup = AGs. Graph (| (dest-graph ¢ Gs))
proof
fix x y z :: (Ya,’d) graph
fix A :: (‘a, 'b) graph set

show (z < y)=(x <yAz#y)
unfolding graph-leq-def graph-less-def
by (cases z, cases y) auto

show z < z unfolding graph-leq-def ..

{assume z < yy < 2
with order-trans show z < z
unfolding graph-leq-def . }

{assume z < yy <z thusz =y
unfolding graph-leg-def
by (cases x, cases y) simp }

show infrzy <zinfry <y

unfolding inf-graph-def graph-leq-def
by auto
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{assume z < yz < zthusz < infyz
unfolding inf-graph-def graph-leq-def
by auto }

show z < supzxyy < supzy
unfolding sup-graph-def graph-leq-def graph-plus-def by auto

{assumeygxz <zthussupyz <z
unfolding sup-graph-def graph-leq-def graph-plus-def by auto }

show sup z (infy z) = inf (sup z y) (sup = z)
unfolding inf-graph-def sup-graph-def graph-leq-def graph-plus-def by auto

{ assume z € A thus Inf A < x
unfolding Inf-graph-def graph-leg-def by auto }

{ assume A\z. 2 € A = 2z < z thus z < Inf A
unfolding Inf-graph-def graph-leq-def by auto }

{ assume z € A thus z < Sup A
unfolding Sup-graph-def graph-leq-def by auto }

{ assume A\z. 1 € A = z < 2z thus Sup A < z
unfolding Sup-graph-def graph-leq-def by auto }
qed

lemmas [code func del] = graph-leq-def graph-less-def
inf-graph-def sup-graph-def Inf-graph-def Sup-graph-def

lemma in-grplus:
has-edge (G + H) p b ¢ = (has-edge G p b q V has-edge H p b q)
by (cases G, cases H, auto simp:has-edge-def graph-plus-def)

lemma in-grzero:
has-edge 0 p b q = False
by (simp add:graph-zero-def has-edge-def)

3.2.1 Multiplicative Structure

instance graph :: (type, times) mult-zero
graph-mult-def: G x H == grcomp G H
proof
fix a :: ("a, 'b) graph

show 0 x a = 0
unfolding graph-mult-def graph-zero-def
by (cases a) (simp add:grcomp.simps)
show a x 0 = 0
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unfolding graph-mult-def graph-zero-def
by (cases a) (simp add:grcomp.simps)
qed

lemmas [code func del] = graph-mult-def

instance graph :: (type, one) one
graph-one-def: 1 == Graph { (z, 1, z) |z. True} ..

lemma in-grcomp:
has-edge (G * H) p b q
= (3k e e’ has-edge G p e k N has-edge Hk e’ ¢ N b= e x ¢)
by (cases G, cases H) (auto simp:graph-mult-def has-edge-def image-def)

lemma in-grunit:
has-edge I pbgq=(p=qgANb=1)
by (auto simp:graph-one-def has-edge-def)

instance graph :: (type, semigroup-mult) semigroup-mult
proof
fix G1 G2 G3 :: ('a,’b) graph

show G1 x G2 x G3 = G1 x (G2 x G3)
proof (rule graph-ext, rule trans)
fix p Jgq
show has-edge ((G1 * G2) x G3) p J q =
3GiHjI.
has-edge G1 p G 4
A has-edge G2 i H j
A has-edge G3 j I q
ANJ=(Gx* H)xI)
by (simp only:in-grcomp) blast

show ... = has-edge (G1 * (G2 x G3)) p J q
by (simp only:in-grcomp mult-assoc) blast
qed
qed

fun grpow :: nat = (‘a::type, 'b::monoid-mult) graph = ('a, 'b) graph
where

grpow 0 A = 1
| grpow (Suc n) A = A * (grpow n A)

instance graph :: (type, monoid-mult)
{semiring-1,idem-add,recpower,star}
graph-pow-def: A ~n == grpow n A
graph-star-def: star G == (SUP n. G " n)
proof
fix a bc:: (‘a, 'b) graph
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show 1 x a = a

by (rule graph-ext) (auto simp:in-grcomp in-grunit)
show a x 1 = a

by (rule graph-ext) (auto simp:in-grcomp in-grunit)

show (a + b)) x c=a*xc+ bxc
by (rule graph-ext, simp add:in-grcomp in-grplus) blast

show a x (b+¢)=a*xb+axc
by (rule graph-ext, simp add:in-grcomp in-grplus) blast

show (0::('a,’b) graph) # 1 unfolding graph-zero-def graph-one-def
by simp

show a 4+ a = a unfolding graph-plus-def by simp

show a "0 =1 An.a " (Sucn)=ax*xa "n
unfolding graph-pow-def by simp-all
qed

lemma graph-leql:
assumes An e n’. has-edge G n e n' = has-edge Hn e n’
shows G < H
using assms
unfolding graph-leq-def has-edge-def
by auto

lemma in-graph-plusk:
assumes has-edge (G + H) n e n’
assumes has-edge G n en’ = P
assumes has-edge Hn e n’ = P
shows P
using assms
by (auto simp: in-grplus)

lemma in-graph-compF:
assumes GH: has-edge (G « H) n e n’
obtains el k e2
where has-edge G n el k has-edge Hk e2n’ e = el * e2
using GH
by (auto simp: in-grcomp)

lemma
assumes ¢ € Sk
shows =z € (Jk. S k)
using assms by blast

lemma graph-union-least:
assumes An. Graph (Gn) < C

18



shows Graph ((Un. Gn) < C
using assms unfolding graph-leq-def
by auto

lemma Sup-graph-eq:
(SUP n. Graph (G n)) = Graph (Un. G n)
proof (rule order-antisym)
show (SUP n. Graph (G n)) < Graph (Un. G n)
by (rule SUP-lel) (auto simp add: graph-leq-def)

show Graph ((Jn. G n) < (SUP n. Graph (G n))
by (rule graph-union-least, rule le-SUPI’, rule)
qed

lemma has-edge-leq: has-edge G p b ¢ = (Graph {(p,b,q)} < G)
unfolding has-edge-def graph-leg-def
by (cases G) simp

lemma Sup-graph-eq2:
(SUP n. G n) = Graph (Un. dest-graph (G n))
using Sup-graph-eq[of An. dest-graph (G n), simplified)
by simp

lemma in-SUP:
has-edge (SUP z. Gs ) p b ¢ = (3z. has-edge (Gs x) p b q)
unfolding Sup-graph-eq2 has-edge-leq graph-leg-def
by simp

instance graph :: (type, monoid-mult) kleene-by-complete-lattice
proof
fix a bc: (‘a, 'b) graph

show a < b «— a 4+ b = b unfolding graph-leq-def graph-plus-def
by (cases a, cases b) auto

from order-less-le show a < b «—— a < b A a #b.
show a * star b * ¢ = (SUPn.axb "n * ¢)
unfolding graph-star-def

by (rule graph-ext) (force simp:in-SUP in-grcomp)
qged

lemma in-star:
has-edge (star G) a x b = (3In. has-edge (G “n) a z b)
by (auto simp:graph-star-def in-SUP)

lemma tcl-is-SUP:
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tel (G::('a::type, 'b::monoid-mult) graph) =
(SUP n. G ~ (Suc n))

unfolding tcl-def

using star-cont[of 1 G G|

by (simp add:power-Suc power-commutes)

lemma in-tcl:
has-edge (tcl G) a x b = (In>0. has-edge (G " n) a z b)
apply (auto simp: tcl-is-SUP in-SUP)
apply (rule-tac z = n — 1 in ezl, auto)
done

3.3 Infinite Paths

types ('n, ’e) ipath = ('n X 'e) sequence

definition has-ipath :: ('n, 'e) graph = ('n, ’'e) ipath = bool
where

has-ipath G p =

(Vi. has-edge G (fst (p i) (snd (p 7)) (fst (p (Suc i))))

3.4 Finite Paths
types ('n, ‘e) fpath = ('n x (‘e x 'n) list)

inductive has-fpath :: ('n, 'e) graph = ('n, 'e) fpath = bool
for G :: ('n, 'e) graph
where
has-fpath-empty: has-fpath G (n, [])
| has-fpath-join: [G F n ~€ n'; has-fpath G (n', es)] = has-fpath G (n, (e,
n)des)

definition
end-node p =
(if snd p =[] then fst p else snd (snd p ! (length (snd p) — 1)))

definition path-nth :: ('n, 'e) fpath = nat = ('n x ‘e x 'n)
where
path-nth p k = (if k = 0 then fst p else snd (sndp ! (k — 1)), snd p ! k)

lemma endnode-nth:
assumes length (snd p) = Suc k
shows end-node p = snd (snd (path-nth p k))
using assms unfolding end-node-def path-nth-def
by auto

lemma path-nth-graph:

assumes k < length (snd p)
assumes has-fpath G p
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shows (A(n,e,n’). has-edge G n e n') (path-nth p k)
using assms
proof (induct k arbitrary: p)
case 0 thus ?case
unfolding path-nth-def by (auto elim:has-fpath.cases)
next
case (Suc k p)

from chas-fpath G p> show ?Zcase
proof (rule has-fpath.cases)
case goall with Suc show ?case by simp
next
fix nen’es
assume st: p = (n, (e, n') # es)
Gt n~¢n’
has-fpath G (n’, es)
with Suc
have (A\(n, b, a). G+ n ~" a) (path-nth (n’, es) k) by simp
with st show ?thesis by (cases k, auto simp:path-nth-def)
qed
qed

lemma path-nth-connected:
assumes Suc k < length (snd p)
shows fst (path-nth p (Suc k)) = snd (snd (path-nth p k))
using assms
unfolding path-nth-def
by auto

definition path-loop :: ('n, 'e) fpath = ('n, 'e) ipath (omega)
where
omega p = (Ai. (M(n,e,n’). (n,e)) (path-nth p (i mod (length (snd p)))))

lemma fst-p0: fst (path-nth p 0) = fst p
unfolding path-nth-def by simp

lemma path-loop-connect:
assumes fst p = end-node p
and 0 < length (snd p) (is 0 < ?1)
shows fst (path-nth p (Suc i mod (length (snd p))))
= snd (snd (path-nth p (i mod length (snd p))))

(is ... = snd (snd (path-nth p ?k)))
proof —
from 0 < ¢l have i mod 21 < 2l (is %k < ?I)
by simp

show ?thesis
proof (cases Suc %k < ?1)
case True
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hence Suc %k # ?1 by simp
with path-nth-connected[OF True]
show ?thesis
by (simp add:mod-Suc)
next
case Fulse
with %k < 2) have wrap: Suc ?k = ?] by simp

hence fst (path-nth p (Suc i mod ?1)) = fst (path-nth p 0)
by (simp add: mod-Suc)

also from fst-p0 have ... = fst p .
also have ... = end-node p by fact
also have ... = snd (snd (path-nth p ?k))

by (auto simp: endnode-nth wrap)
finally show ?thesis .
qged
qed

lemma path-loop-graph:
assumes has-fpath G p
and loop: fst p = end-node p
and nonempty: 0 < length (snd p) (is 0 < ?I)
shows has-ipath G (omega p)

proof —
{
fix i
from 0 < ¢l have i mod 21 < 2l (is % < ?I)
by simp

from this and <has-fpath G p
have pk-G: (A(n,e,n’). has-edge G n e n’) (path-nth p %k)
by (rule path-nth-graph)

from path-loop-connect[OF loop nonempty| pk-G
have has-edge G (fst (omega p 1)) (snd (omega p i)) (fst (omega p (Suc i)))
unfolding path-loop-def has-edge-def split-def
by simp
}
then show ?thesis by (auto simp:has-ipath-def)
qed

definition prod :: ('n, ‘e::monoid-mult) fpath = 'e
where
prod p = foldr (op *) (map fst (snd p)) 1

lemma prod-simps|simp]:

prod (n, []) = 1

prod (n, (e,n’)#es) = e * (prod (n'jes))
unfolding prod-def
by simp-all
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lemma power-induces-path:
assumes a: has-edge (A " k) n G m
obtains p
where has-fpath A p
and n = fst p m = end-node p
and G = prod p
and k = length (snd p)
using a
proof (induct k arbitrary:m n G thesis)
case (0 mn Q)
let 7 = (n, [}
from 0 have has-fpath A ?p m = end-node ?p G = prod ?p
by (auto simp:in-grunit end-node-def intro:has-fpath.intros)
thus ?case using 0 by (auto simp:end-node-def)
next
case (Suc km n G)
hence has-edge (A« A "k)n Gm
by (simp add:power-Suc power-commutes)
then obtain G’ H j where
a-A: has-edge A n G'j
and H-pow: has-edge (A " k) j Hm
and [simp]: G = G'+« H
by (auto simp:in-grcomp)

from H-pow and Suc
obtain p
where p-path: has-fpath A p
and [simp]: j = fst p m = end-node p H = prod p
k = length (snd p)
by blast

let ?p' = (n, (G, j)#snd p)
from a-A and p-path
have has-fpath A ?p’ m = end-node ?p’ G = prod ?p’
by (auto simp:end-node-def nth.simps intro:has-fpath.intros split:nat.split)
thus ?case using Suc by auto
qged

3.5 Sub-Paths

definition sub-path :: ('n, 'e) ipath = nat = nat = ('n, ’e) fpath
((-(=-))
where

p<i,j> =

(fst (p i), map (Ak. (snd (p k), fst (p (Suc k)))) [i ..<j])

lemma sub-path-is-path:
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assumes ipath: has-ipath G p

assumes [: i < j

shows has-fpath G (p(i,j))

using |/
proof (induct i rule:inc-induct)

case base show ?case by (auto simp:sub-path-def intro:has-fpath.intros)
next

case (step 1)

with ipath upt-rec[of i j]

show ?case

by (auto simp:sub-path-def has-ipath-def intro:has-fpath.intros)

qed

lemma sub-path-start[simp):

fst (p(i.4)) = fst (p i)
by (simp add:sub-path-def)

lemma nth-upto[simp]: k < j —i=[i .<jllk=1i+k
by (induct k) auto

lemma sub-path-end[simp]:
i < j = end-node (p(i,j)) = fst (p j)
by (auto simp:sub-path-def end-node-def)

lemma foldr-map: foldr f (map g xs) = foldr (f o g) zs
by (induct zs) auto

lemma upto-append[simp):
assumes i < 55 < k
shows [i.<j|Q[ .<k|=1[i.<Ek
using assms and upt-add-eg-append|of i j k — j]
by simp

lemma foldr-monoid: foldr (op *) xs 1 * foldr (op *) ys 1
= foldr (op *) (zs Q ys) (1::’a::monoid-mult)
by (induct zs) (auto simp:mult-assoc)

lemma sub-path-prod:
assumes i < j
assumes j < k
shows prod (p(i,k)) = prod (p(i,j)) * prod (p(j.k))
using assms
unfolding prod-def sub-path-def
by (simp add:map-compose|symmetric] comp-def)
(simp only:foldr-monoid map-append|[symmetric] upto-append)

lemma path-acgpow-auz:
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assumes length es = [

assumes has-fpath G (n,es)

shows has-edge (G “ 1) n (prod (n,es)) (end-node (n,es))
using assms
proof (induct [ arbitrary:n es)

case 0 thus ?case

by (simp add:in-grunit end-node-def)

next

case (Suc I n es)

hence es # || by auto

let ?n’ = snd (hd es)

let %es’ = tl es

let %e = fst (hd es)

from Suc have len: length ?es’ = | by auto

from Suc
have [simp]: end-node (n, es) = end-node (?n’, ?es’)
by (cases es) (auto simp:end-node-def nth.simps split:nat.split)

from c(has-fpath G (n,es))

have has-fpath G (n’', %es’)
by (rule has-fpath.cases) (auto intro:has-fpath.intros)

with Suc len

have has-edge (G " 1) ?n' (prod (?n’, ?es’)) (end-node (?n’, %es’))
by auto

moreover

from ces # [

have prod (n, es) = ?e x (prod (?n’, ?es’))
by (cases es) auto

moreover

from c(has-fpath G (n,es)) have c:has-edge G n %e ?n’
by (rule has-fpath.cases) (insert <es # [, auto)

ultimately
show ?case
unfolding power-Suc
by (auto simp:in-grcomp)
qed

lemma path-acgpow:

has-fpath G p

= has-edge (G " length (snd p)) (fst p) (prod p) (end-node p)
by (cases p)

(rule path-acgpow-auz|of snd p length (snd p) - fst p, simplified])

lemma star-paths:
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has-edge (star G) axz b =
(3p. has-fpath G p A a = fst p A b = end-node p N z = prod p)
proof
assume has-edge (star G) a z b
then obtain n where pow: has-edge (G “n) ax b
by (auto simp:in-star)

then obtain p where
has-fpath G p a = fst p b = end-node p x = prod p
by (rule power-induces-path)

thus dp. has-fpath G p A a = fst p A b = end-node p A x = prod p
by blast
next
assume 3 p. has-fpath Gp N a = fst p A b = end-node p N\ © = prod p
then obtain p where
has-fpath G p a = fst p b = end-node p x = prod p
by blast

hence has-edge (G “ length (snd p)) a x b
by (auto intro:path-acgpow)

thus has-edge (star G) a z b
by (auto simp:in-star)
qed

lemma plus-paths:

has-edge (tcl G) az b =

(I p. has-fpath G p A a = fst p A b = end-node p A © = prod p N\ 0 < length
(snd p))
proof

assume has-edge (tcl G) a z b

then obtain n where pow: has-edge (G “n) az band 0 < n
by (auto simp:in-tcl)

from pow obtain p where
has-fpath G p a = fst p b = end-node p x = prod p
n = length (snd p)
by (rule power-induces-path)

with (0 < n
show Jp. has-fpath G p A a = fst p A b = end-node p A\ x = prod p A\ 0 <
length (snd p)
by blast
next
assume 3 p. has-fpath Gp N a = fst p A b = end-node p N\ © = prod p
A 0 < length (snd p)
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then obtain p where
has-fpath G p a = fst p b = end-node p x = prod p
0 < length (snd p)
by blast

hence has-edge (G ~ length (snd p)) az b
by (auto intro:path-acgpow)

with 0 < length (snd p)
show has-edge (tcl G) a z b
by (auto simp:in-tcl)
qed

definition
contract s p =

(Ai. (fst (p (s 4)), prod (p(s i,s (Suc i)))))

lemma ipath-contract:
assumes [simp]: increasing s
assumes ipath: has-ipath G p
shows has-ipath (tcl G) (contract s p)
unfolding has-ipath-def

proof
fix i
let ?p = p(s i,s (Suc i))

from increasing-strict
have fst (p (s (Suc i))) = end-node ?p by simp

moreover

from increasing-strict[of s i Suc i] have snd ?p # ||
by (simp add:sub-path-def)

moreover

from ipath increasing-weak[of s] have has-fpath G %p
by (rule sub-path-is-path) auto

ultimately

show has-edge (tcl G)
(fst (contract s p i)) (snd (contract s p i)) (fst (contract s p (Suc 7)))
unfolding contract-def plus-paths
by (intro exl) auto

qed

lemma prod-unfold:
i <j = prod (p(i.j))
= snd (p i) * prod (p(Suc i, j))
unfolding prod-def
by (simp add:sub-path-def upt-rec|of i j])
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lemma sub-path-loop:

assumes 0 < k

assumes k: k = length (snd loop)

assumes loop: fst loop = end-node loop

shows (omega loop){k * i,k * Suc i) = loop (is w = loop)
proof (rule prod-eql)

show fst ?w = fst loop

by (auto simp:path-loop-def path-nth-def split-def k)

show snd ?w = snd loop
proof (rule nth-equalityl[rule-format])
show leneq: length (snd ?w) = length (snd loop)
unfolding sub-path-def k by simp

fix j assume j < length (snd (?w))
with leneq and k have j < k by simp

have a: Ai. fst (path-nth loop (Suc i mod k))
= snd (snd (path-nth loop (i mod k)))
unfolding &
apply (rule path-loop-connect| OF loop])
using <0 < ky and k
apply auto
done

from G < b

show snd ?w ! j = snd loop ! j
unfolding sub-path-def
apply (simp add:path-loop-def split-def add-ac)
apply (simp add:a k[symmetric])
apply (simp add:path-nth-def)
done

qed
qed

end

4 The Size-Change Principle (Definition)

theory Criterion
imports Graphs Infinite-Set
begin

4.1 Size-Change Graphs

datatype sedge =
LESS (])

| LEQ (V)
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instance sedge :: one
one-sedge-def: 1 = | ..

instance sedge :: times
mult-sedge-def: a * b = if a = | then | else b ..

instance sedge :: comm-monoid-mult
proof
fix a b c :: sedge
show a * b x ¢ = a x (b * ¢) by (simp add:mult-sedge-def)
show 1 x a = a by (simp add:mult-sedge-def one-sedge-def)
show a * b = b * a unfolding mult-sedge-def
by (cases a, simp) (cases b, auto)
qed

lemma sedge-UNIV:
UNIV = { LESS, LEQ }
proof (intro equalityl subsetl)
fix  show z € { LESS, LEQ }
by (cases x) auto
qed auto

instance sedge :: finite
proof
show finite (UNIV ::sedge set)
by (simp add: sedge-UNIV')
qed

lemmas [code func] = sedge-UNIV

types ‘a scg = ('a, sedge) graph
types ‘a acg = ('a, 'a scg) graph

4.2 Size-Change Termination
abbreviation (input)

desc P Q == ((3nVi>n. Pi) A (3t Q1))

abbreviation (input)
dsc G i j = has-edge G i LESS j

abbreviation (input)
eq Gij = has-edge G i LEQ j

abbreviation

eql :: 'a scg = 'a = 'a = bool
(-F -~
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where
eql G ij = has-edge G i LESS j V has-edge G i LEQ j

abbreviation (input) descat :: ('a, 'a scg) ipath = 'a sequence = nat = bool
where
descat p ¥ i = has-edge (snd (p 1)) (¢ i) LESS (¢ (Suc 1))

abbreviation (input) eqat :: (‘a, 'a scg) ipath = 'a sequence = nat = bool
where
eqat p ¥ i = has-edge (snd (p 1)) (9 i) LEQ (9 (Suc 1))

abbreviation (input) eglat :: ('a, 'a scg) ipath = 'a sequence = nat = bool
where
eqlat p ¥ i = (has-edge (snd (p 1)) (¥ i) LESS (¥ (Suc 7))
V has-edge (snd (p 1)) (9 i) LEQ (9 (Suc 7))

definition is-desc-thread :: 'a sequence = ('a, 'a scg) ipath = bool
where
is-desc-thread ¥ p = ((In.Vi>n. eqlat p ¥ i) A (Fi. descat p 9 7))

definition SCT :: 'a acg = bool
where
SCT A =
(Vp. has-ipath A p — (3 9. is-desc-thread 9 p))

definition no-bad-graphs :: 'a acg = bool
where
no-bad-graphs A =
(Vn G. has-edge An GnANGxG=G
— (I p. has-edge G p LESS p))

definition SCT' :: 'a acg = bool
where
SCT' A = no-bad-graphs (tcl A)

end

5 Proof of the Size-Change Principle
theory Correctness

imports Main Ramsey Misc-Tools Criterion
begin
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5.1 Auxiliary definitions

definition is-thread :: nat = 'a sequence = ('a, 'a scg) ipath = bool
where
is-thread n 9 p = (Vi>n. eqlat p 9 1)

definition is-fthread ::

'a sequence = ('a, 'a scg) ipath = nat = nat = bool
where

is-fthread 9 mp i j = (Vke{i..<j}. eqlat mp ¥ k)

definition is-desc-fthread ::

'a sequence = ('a, 'a scg) ipath = nat = nat = bool
where

is-desc-fthread ¥ mp i1 j =

(is-fthread ¥ mp i j A

(Fke{i..<j}. descat mp 9 k))

definition
has-fth p i jnm =
(39. is-fthread 9 pij NI i=n ANV j=m)

definition
has-desc-fth p i j n m =
(39. is-desc-fthread Y pij A9 i=n A9 j=m)

5.2 Everything is finite

lemma finite-range:
fixes [ :: nat = 'a
assumes fin: finite (range f)
shows dz. 3 1. fi =2
proof (rule classical)
assume —(Jz. Fi. fi = z)
hence Vz. 35. Vi>j. fi £ x
unfolding INF-nat by blast
with choice
have 3j. Vz. Vi>(jz). fi #z .
then obtain j where
neq: Nz i. jr < i = fi # x by blast

from fin have finite (range (j o f))
by (auto simp:comp-def)
with finite-nat-bounded
obtain m where range (j o f) C {..<m} by blast
hence j (f m) < m unfolding comp-def by auto

with neg[of f m m] show ?thesis by blast
qed
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lemma finite-range-ignore-prefix:
fixes [ :: nat = a
assumes fA: finite A
assumes inA: Vz>n. fz € A
shows finite (range f)
proof —
have a: UNIV = {0 ..< (nunat)} U { z. n <z } by auto
have b: range f = f ‘{0 .<n}Uf‘{z.n<z}
(is...= 24U ?B)
by (unfold a) (simp add:image-Un)

have finite ?A by (rule finite-imagel) simp
moreover
from inA have B C A by auto
from this fA have finite ?B by (rule finite-subset)
ultimately show ?thesis using b by simp

qed

definition

finite-graph G = finite (dest-graph G)
definition

all-finite G = (Vn H m. has-edge G n H m — finite-graph H)
definition

finite-acg A = (finite-graph A A all-finite A)
definition

nodes G = fst ¢ dest-graph G U snd ‘ snd * dest-graph G
definition

edges G = fst ‘ snd ‘¢ dest-graph G
definition

smallnodes G = |J (nodes * edges G)

lemma thread-image-nodes:
assumes th: is-thread n ¥ p
shows Vi>n. ¥ i € nodes (snd (p 1))
using prems
unfolding is-thread-def has-edge-def nodes-def
by force

lemma finite-nodes: finite-graph G = finite (nodes G)
unfolding finite-graph-def nodes-def
by auto

lemma nodes-subgraph: A < B = nodes A C nodes B

unfolding graph-leg-def nodes-def
by auto
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lemma finite-edges: finite-graph G = finite (edges G)
unfolding finite-graph-def edges-def
by auto

lemma edges-sum[simp]: edges (A + B) = edges A U edges B
unfolding edges-def graph-plus-def
by auto

lemma nodes-sum|[simp|: nodes (A + B) = nodes A U nodes B
unfolding nodes-def graph-plus-def
by auto

lemma finite-acg-subset:
A < B = finite-acg B = finite-acg A
unfolding finite-acg-def finite-graph-def all-finite-def
has-edge-def graph-leq-def
by (auto elim:finite-subset)

lemma scg-finite:
fixes G :: 'a scg
assumes fin: finite (nodes G)
shows finite-graph G
unfolding finite-graph-def
proof (rule finite-subset)
show dest-graph G C nodes G x UNIV X nodes G (is - C ?P)
unfolding nodes-def
by force
show finite 2P
by (intro finite-cartesian-product fin finite)
qed

lemma smallnodes-sum|[simp]:
smallnodes (A + B) = smallnodes A U smallnodes B
unfolding smallnodes-def
by auto

lemma in-smallnodes:
fixes A :: 'a acy
assumes e: has-edge A © G y
shows nodes G C smallnodes A
proof —
have fst (snd (z, G, y)) € fst ‘ snd * dest-graph A
unfolding has-edge-def
by (rule imagel )+ (rule e[unfolded has-edge-def])
then have G € edges A
unfolding edges-def by simp
thus ?thesis
unfolding smallnodes-def
by blast
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qed

lemma finite-smallnodes:
assumes fA: finite-acg A
shows finite (smallnodes A)
unfolding smallnodes-def edges-def
proof
from fA
show finite (nodes * fst ‘ snd  dest-graph A)
unfolding finite-acg-def finite-graph-def
by simp

fix M assume M € nodes ‘ fst ‘ snd ¢ dest-graph A

then obtain n G m
where M: M = nodes G and nGm: (n,G,m) € dest-graph A
by auto

from fA
have all-finite A unfolding finite-acg-def by simp
with nGm have finite-graph G
unfolding all-finite-def has-edge-def by auto
with finite-nodes
show finite M
unfolding finite-graph-def M .
qed

lemma nodes-tcl:
nodes (tcl A) = nodes A
proof
show nodes A C nodes (tcl A)
apply (rule nodes-subgraph)
by (subst tcl-unfold-right) simp

show nodes (tcl A) C nodes A
proof
fix x assume = € nodes (tcl A)
then obtain z G y
where z: z € dest-graph (tcl A)
and dis: z = (z, G, y) V z = (y, G, z)
unfolding nodes-def
by auto force+

from dis
show z € nodes A
proof
assume z = (z, G, y)
with z have has-edge (tcl A) z G y unfolding has-edge-def by simp
then obtain n where n > 0 and An: has-edge (A " n) x Gy
unfolding in-tcl by auto
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then obtain n’ where n = Suc n’ by (cases n, auto)

hence A "n=Ax A " n' by (simp add:power-Suc)

with An obtain e k
where has-edge A z e k by (auto simp:in-grcomp)

thus z € nodes A unfolding has-edge-def nodes-def
by force

next

assume z = (y, G, 1)

with z have has-edge (tcl A) y G z unfolding has-edge-def by simp

then obtain n where n > 0 and An: has-edge (A "n) y Gz
unfolding in-tcl by auto

then obtain n’ where n = Suc n’ by (cases n, auto)

hence A "n = A "n’x A by (simp add:power-Suc power-commutes)

with An obtain e k
where has-edge A k e x by (auto simp:in-grcomp)

thus z € nodes A unfolding has-edge-def nodes-def
by force

qed
qed
qed

lemma smallnodes-tcl:
fixes A :: 'a acg
shows smallnodes (tcl A) = smallnodes A
proof (intro equalityl subsetl)
fix n assume n € smallnodes (tcl A)
then obtain z G y where edge: has-edge (tcl A) = Gy
and n € nodes G
unfolding smallnodes-def edges-def has-edge-def
by auto

from (n € nodes &)
have n € fst ‘ dest-graph G V n € snd ‘ snd * dest-graph G
(is A Vv ?B)
unfolding nodes-def by blast
thus n € smallnodes A
proof
assume ?A
then obtain m e where A: has-edge G n e m
unfolding has-edge-def by auto

have tcl A = A * star A
unfolding tcl-def
by (simp add: star-commute[of A A A, simplified))

with edge
have has-edge (A * star A) x G y by simp
then obtain H H' z
where AH: has-edge A v Hz and G: G = H =« H'
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by (auto simp:in-grcomp)

from A

obtain m’ e’ where has-edge Hn e’ m’
by (auto simp:G in-grcomp)

hence n € nodes H unfolding nodes-def has-edge-def
by force

with in-smallnodes|OF AH| show n € smallnodes A ..

next

assume ?B

then obtain m e where B: has-edge G m e n
unfolding has-edge-def by auto

with edge
have has-edge (star A x A) x G y by (simp add:tcl-def)
then obtain H H' z
where AH": has-edge A z H' y and G: G = H =« H’
by (auto simp:in-grcomp)
from B
obtain m’ e’ where has-edge H' m' e’ n
by (auto simp:G in-grcomp)
hence n € nodes H' unfolding nodes-def has-edge-def
by force
with in-smallnodes|OF AH'] show n € smallnodes A ..
qed
next
fix  assume z € smallnodes A
then show z € smallnodes (tcl A)
by (subst tcl-unfold-right) simp
qed

lemma finite-nodegraphs:
assumes F': finite F
shows finite { G::'a scg. nodes G C F } (is finite ?P)
proof (rule finite-subset)
show ?P C Graph ‘ (Pow (F x UNIV x F)) (is 7P C ?Q)
proof
fix z assume zP: z € ?P
obtain S where z[simp]: © = Graph S
by (cases x) auto
from zP
show z € 2(Q)
apply (simp add:nodes-def )
apply (rule imagel)
apply (rule Powl)
apply force
done
qed
show finite 70Q)
by (auto intro:finite-imagel finite-cartesian-product F' finite)
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qed

lemma finite-graphl:
fixes A :: 'a acg
assumes fin: finite (nodes A) finite (smallnodes A)
shows finite-graph A
proof —
obtain S where A[simp]: A = Graph S
by (cases A) auto

have finite S
proof (rule finite-subset)
show S C nodes A x { G::'a scg. nodes G C smallnodes A } X nodes A
(is § C ?T)
proof
fix z assume z5: x € §
obtain a b ¢ where z[simp]: z = (a, b, ¢)
by (cases z) auto

then have edg: has-edge A a b c
unfolding has-edge-def using z.5
by simp

hence a € nodes A ¢ € nodes A
unfolding nodes-def has-edge-def by force+
moreover
from edg have nodes b C smallnodes A by (rule in-smallnodes)
hence b € { G :: 'a scg. nodes G C smallnodes A } by simp
ultimately show z € ¢T by simp
qed

show finite ?T
by (intro finite-cartesian-product fin finite-nodegraphs)
qed
thus ?thesis
unfolding finite-graph-def by simp
qed

lemma smallnodes-allfinite:
fixes A :: 'a acg
assumes fin: finite (smallnodes A)
shows all-finite A
unfolding all-finite-def
proof (intro alll impI)
fix n H m assume has-edge A n Hm
then have nodes H C smallnodes A
by (rule in-smallnodes)
then have finite (nodes H)
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by (rule finite-subset) (rule fin)
thus finite-graph H by (rule scg-finite)
qed

lemma finite-tcl:
fixes A :: 'a acg
shows finite-acg (tcl A) «—— finite-acg A
proof
assume f: finite-acg A
from f have g: finite-graph A and all-finite A
unfolding finite-acg-def by auto

from ¢ have finite (nodes A) by (rule finite-nodes)

then have finite (nodes (tcl A)) unfolding nodes-tcl .

moreover

from f have finite (smallnodes A) by (rule finite-smallnodes)

then have fs: finite (smallnodes (tcl A)) unfolding smallnodes-tcl .
ultimately

have finite-graph (tcl A) by (rule finite-graphI)

moreover from fs have all-finite (tcl A)
by (rule smallnodes-allfinite)
ultimately show finite-acg (tcl A) unfolding finite-acg-def ..
next
assume a: finite-acg (tcl A)
have A < tcl A by (rule less-tcl)
thus finite-acg A using a
by (rule finite-acg-subset)
qed

lemma finite-acg-empty: finite-acg (Graph {})
unfolding finite-acg-def finite-graph-def all-finite-def
has-edge-def
by simp

lemma finite-acg-ins:
assumes fA: finite-acg (Graph A)
assumes fG: finite G
shows finite-acg (Graph (insert (a, Graph G, b) A))
using fA fG
unfolding finite-acg-def finite-graph-def all-finite-def
has-edge-def
by auto

lemmas finite-acg-simps = finite-acg-empty finite-acg-ins finite-graph-def

5.3 Contraction and more

abbreviation
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pdesc P == (fst P, prod P, end-node P)

lemma pdesc-acgplus:
assumes has-ipath A p
and i < j
shows has-edge (tcl A) (fst (p{i,j))) (prod (p{i,j))) (end-node (p{i,j)))
unfolding plus-paths
apply (rule exl)
apply (insert prems)
by (auto intro:sub-path-is-path[of A p i j] simp:sub-path-def)

lemma combine-fthreads:
assumes range: 1 < jj < k
shows
has-fth p i k m r =
(In. has-fth pijmn A has-fth p jknr) (is L = ?R)
proof (intro iffI)
assume ?L
then obtain 9
where is-fthread ¥ p i k
and [simpl: di=mVVk=r
by (auto simp:has-fth-def)

with range

have is-fthread ¥ p i j and is-fthread 9 p j k
by (auto simp:is-fthread-def)

hence has-fth p i jm (9 j) and has-fth p j k (¢ j) r
by (auto simp:has-fth-def)

thus 7R by auto

next

assume ?R

then obtain n ¥1 92
where ths: is-fthread ©¥1 p i j is-fthread 92 p j k
and [simp]: 91 i=mdI1lj=nd2j=nd2k=r
by (auto simp:has-fth-def)

let 29 = (\i. if i < jthen 91 i else 92 1)
have is-fthread 79 p i k

unfolding is-fthread-def
proof

fix | assume range: | € {i..<k}

show eqlat p 29 1
proof (cases rule:three-cases)
assume Suc | < j
with ths range show ?thesis
unfolding is-fthread-def Ball-def
by simp
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next
assume Suc | = j
hence | < j 92 (Suc l) = 91 (Suc l) by auto
with ths range show ?thesis
unfolding is-fthread-def Ball-def
by simp
next
assume j < [
with ths range show ?thesis
unfolding is-fthread-def Ball-def
by simp
qed arith
qed
moreover
have ?¢ i = m 29 k = r using range by auto
ultimately show has-fth p i k m r
by (auto simp:has-fth-def)
qed

lemma desc-is-fthread:
is-desc-fthread ¥ p i k = is-fthread ¥ p 1 k
unfolding is-desc-fthread-def
by simp

lemma combine-dfthreads:
assumes range: 1 < jj < k
shows
has-desc-fth p i k m r =
(3n. (has-desc-fth p i jmn A has-fth p jkn r)
V (has-fth p i j m n A has-desc-fth p j kn r)) (is 2L = ?R)
proof
assume ?L
then obtain 9
where desc: is-desc-fthread ¢ p i k
and [simp]: 9 i=mP k=1
by (auto simp:has-desc-fth-def)

hence is-fthread ¢ p i k
by (simp add: desc-is-fthread)

with range have fths: is-fthread ¥ p i j is-fthread ¥ p j k
unfolding is-fthread-def
by auto

hence hfths: has-fth p i jm (0 j) has-fthp jk (9 5) r
by (auto simp:has-fth-def)

from desc obtain [
where 1 <[] < k
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and descat p 9 [
by (auto simp:is-desc-fthread-def)

with fths

have is-desc-fthread ¥ p i j V is-desc-fthread 9 p j k
unfolding is-desc-fthread-def
by (cases | < j) auto

hence has-desc-fth p i j m (9 j) V has-desc-fth p 5 k (9 j) r
by (auto simp:has-desc-fth-def)

with hfths show R
by auto

next

assume ?R

then obtain n 91 92
where (is-desc-fthread 91 p i j A is-fthread 92 p j k)
V (is-fthread 91 p i j A is-desc-fthread 92 p j k)
and [simp]: 91 i=mdI1j=nV2j=nd2k=r
by (auto simp:has-fth-def has-desc-fth-def)

hence ths2: is-fthread V1 p i j is-fthread 92 p j k
and dths: is-desc-fthread 91 p i j V is-desc-fthread 92 p j k
by (auto simp:desc-is-fthread)

let 29 = (Ni. if i < j then U1 i else V2 14)
have is-fthread 79 p i k

unfolding is-fthread-def
proof

fix | assume range: | € {i..<k}

show eqlat p 79 1
proof (cases rule:three-cases)
assume Suc | < j
with ths2 range show ?thesis
unfolding is-fthread-def Ball-def
by simp
next
assume Suc | = j
hence | < j 92 (Sucl) = 91 (Suc l) by auto
with ths2 range show ?thesis
unfolding is-fthread-def Ball-def
by simp
next
assume j < [
with ths2 range show ?thesis
unfolding is-fthread-def Ball-def
by simp
qed arith
qged
moreover
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from dths
have 3. i < I Al <k A descat p 291
proof

assume is-desc-fthread 91 p i j

then obtain [ where range: i« <[] < j and descat p V11
unfolding is-desc-fthread-def Bex-def by auto
hence descat p 29 1
by (cases Suc | = j, auto)
with ¢ < k) and range show ?thesis
by (rule-tac z=I in exl, auto)
next
assume is-desc-fthread 92 p j k
then obtain [ where range: 7 < Il < k and descat p 921
unfolding is-desc-fthread-def Bex-def by auto
with ¢ < j» have descat p 29 i < I
by auto
with range show ?thesis
by (rule-tac z=I[ in ezl, auto)
qed
ultimately have is-desc-fthread 29 p i k
by (simp add: is-desc-fthread-def Bex-def)

moreover
have ?¢ i = m 29 k = r using range by auto

ultimately show has-desc-fth p i k m r
by (auto simp:has-desc-fth-def)
qed

lemma fth-single:
has-fth p i (Suc i) m n = eql (snd (p 1)) m n (is ?L = ?R)
proof
assume ?L thus 7R
unfolding is-fthread-def Ball-def has-fth-def
by auto
next
let 20 = A\k. if k = i then m else n
assume edge: ?R
hence is-fthread 79 p i (Suc i) A 9 i = m A 29 (Suc i) = n
unfolding is-fthread-def Ball-def
by auto

thus 7L
unfolding has-fth-def
by auto
qed
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lemma desc-fth-single:
has-desc-fth p i (Suc i) m n =
dsc (snd (p 1)) mn (is L = ?R)
proof
assume ?L thus 7R
unfolding is-desc-fthread-def has-desc-fth-def is-fthread-def
Bez-def
by (elim exE conjE) (case-tac k = i, auto)
next
let 29 = M\k. if k = i then m else n
assume edge: ?R
hence is-desc-fthread 79 p i (Suc i) A 29 i = m A 79 (Suci) = n
unfolding is-desc-fthread-def is-fthread-def Ball-def Bex-def
by auto
thus 7L
unfolding has-desc-fth-def
by auto
qed

lemma mk-eql: (G + m ~¢n) = el G mn
by (cases e, auto)

lemma egl-scgcomp:
eql (G+ H) mr =
(n. eqdl Gmn A egl Hnr) (is L = ?R)
proof
show ?L = %R
by (auto simp:in-grcomp introl:mk-eql)

assume ?R
then obtain n where [: eql G m n and r:eql H n r by auto
thus 2L
by (cases dsc G m n) (auto simp:in-grcomp mult-sedge-def )
qed

lemma desc-scgcomp:

dsc (G HYy mr =

(3n.(dsc Gmn ANegl Hnr)V (eq Gmn A dsc Hnr)) (is L = ?R)
proof

show R = ?L by (auto simp:in-grcomp mult-sedge-def)

assume ?L
thus ?R
by (auto simp:in-grcomp mult-sedge-def')
(case-tac e, auto, case-tac e, auto)
qed
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lemma has-fth-unfold:
assumes ¢ < j
shows has-fth p i jmn =
(7. has-fth p i (Suc i) m r A has-fth p (Suc i) j r n)
by (rule combine-fthreads) (insert (i < j», auto)

lemma has-dfth-unfold:
assumes range: i < j
shows
has-desc-fth p i jm r =
(I n. (has-desc-fth p i (Suc i) m n A has-fth p (Suc i) jn )
V (has-fth p i (Suc i) m n A has-desc-fth p (Suc i) jn r))
by (rule combine-dfthreads) (insert i < j, auto)

lemma Lemma7a:
i < j = has-fthp ijmn = eql (prod (p(i,j))) mn
proof (induct i arbitrary: m rule:inc-induct)
case base show Zcase
unfolding has-fth-def is-fthread-def sub-path-def
by (auto simp:in-grunit one-sedge-def)
next
case (step i)
note IH = (Am. has-fth p (Suc i) jmn =
eql (prod (p(Suc i,5))) m n)

have has-fth p i j mn
= (3r. has-fth p i (Suc i) m r A has-fth p (Suc i) jrn)
by (rule has-fth-unfold[OF ¢ < ])
also have ... = (3r. has-fth p i (Suci) mr
A eql (prod (p{Suc i,j5))) r n)
by (simp only:IH)
also have ... = (3r. eql (snd (p 1)) mr
A eql (prod (p(Suc i.3)) 7 n)
by (simp only:fth-single)

also have ... = eql (snd (p i) * prod (p(Suc i,j))) m n
by (simp only:eql-scgcomp)
also have ... = eql (prod (p(i,j))) mn

by (simp only:prod-unfold[OF « < j)])
finally show ?Zcase .
qed

lemma Lemma7b:
assumes ¢ < j
shows
has-desc-fth p i j m n =
dse (prod (p(i.j))) m n
using prems
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proof (induct i arbitrary: m rule:inc-induct)
case base show Zcase
unfolding has-desc-fth-def is-desc-fthread-def sub-path-def
by (auto simp:in-grunit one-sedge-def)
next
case (step i)
thus ?case
by (simp only:prod-unfold desc-scgcomp desc-fth-single
has-dfth-unfold fth-single Lemma7a) auto
qed

lemma descat-contract:
assumes [simp]: increasing s
shows
descat (contract s p) ¥ i =
has-desc-fth p (s i) (s (Suc 7)) (9 @) (¥ (Suc i))
by (simp add:Lemma7b increasing-weak contract-def)

lemma eglat-contract:
assumes [simp]: increasing s
shows
eqlat (contract s p) ¥ i =
has-fth p (s ) (s (Suc 4)) (9 i) (9 (Suc 1))

by (auto simp:LemmaTa increasing-weak contract-def)

5.3.1 Connecting threads

definition
connect s ¥s = (k. ¥s (section-of s k) k)

lemma nezxt-in-range:

assumes [simp]: increasing s

assumes a: k € section s @

shows (Suc k € section s i) V (Suc k € section s (Suc 1))
proof —

from a have k < s (Suc i) by simp

hence Suc k < s (Suc i) V Suc k = s (Suc i) by arith
thus ?thesis
proof
assume Suc k < s (Suc 7)
with a have Suc k € section s i by simp
thus ?thesis ..
next
assume eq: Suc k = s (Suc 1)
with increasing-strict have Suc k < s (Suc (Suc 1)) by simp
with eq have Suc k € section s (Suc i) by simp
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thus ?thesis ..
qed
qed

lemma connect-threads:
assumes [simp|: increasing s
assumes connected: ¥s i (s (Suc 1)) = ¥s (Suc i) (s (Suc 7))
assumes fth: is-fthread (9s i) p (s 1) (s (Suc 1))

shows
is-fthread (connect s 9s) p (s i) (s (Suc 7))
unfolding is-fthread-def
proof
fix k assume krng: k € section s i

with fth have eqlat: eglat p (9s i) k
unfolding is-fthread-def by simp

from krng and next-in-range
have (Suc k € section s i) V (Suc k € section s (Suc 1))
by simp
thus eglat p (connect s ¥s) k
proof
assume Suc k € section s i
with krng eqlat show ?thesis
unfolding connect-def
by (simp only:section-of-known <increasing $))
next
assume skrng: Suc k € section s (Suc 1)
with krng have Suc k = s (Suc i) by auto

with krng skrng eqlat show ?thesis
unfolding connect-def
by (simp only:section-of-known connected|symmetric] (increasing $))
qed
qed

lemma connect-dthreads:

assumes inc[simpl: increasing s

assumes connected: ¥s i (s (Suc i)) = ¥s (Suc i) (s (Suc 7))
assumes fth: is-desc-fthread (9s i) p (s i) (s (Suc 7))

shows
is-desc-fthread (connect s 9s) p (s i) (s (Suc 7))
unfolding is-desc-fthread-def
proof
show is-fthread (connect s ¥s) p (s 1) (s (Suc 7))
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apply (rule connect-threads)

apply (insert fth)
by (auto simp:connected is-desc-fthread-def)

from fth
obtain k& where dsc: descat p (Us i) k and krng: k € section s i
unfolding is-desc-fthread-def by blast

from krng and next-in-range
have (Suc k € section s i) V (Suc k € section s (Suc 1))
by simp
hence descat p (connect s ¥s) k
proof
assume Suc k € section s i
with krng dsc show ?thesis unfolding connect-def
by (simp only:section-of-known inc)
next
assume skrng: Suc k € section s (Suc 1)
with krng have Suc k = s (Suc i) by auto

with krng skrng dsc show ?thesis unfolding connect-def
by (simp only:section-of-known connected[symmetric] inc)
qed
with krng show Jkéesection s i. descat p (connect s Us) k ..
qed

lemma mk-inf-thread:
assumes [simp|: increasing s
assumes fths: N\i. i > n = is-fthread U p (s i) (s (Suc 1))
shows is-thread (s (Suc n)) ¥ p
unfolding is-thread-def
proof (intro alll impl)
fix j assume st: s (Suc n) < j

let 2k = section-of s j
from in-section-of st
have rs: j € section s ?k by simp

with st have s (Suc n) < s (Suc ?k) by simp

with increasing-bij have n < %k by simp

with rs and fths[of 2k]

show eqlat p ¥ j by (simp add:is-fthread-def)
qed

lemma mk-inf-desc-thread:
assumes [simp]: increasing s
assumes fths: N\i. i > n = is-fthread ¥ p (s i) (s (Suc 1))
assumes fdths: 3 oi. is-desc-fthread 9 p (s i) (s (Suc 7))
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shows is-desc-thread 9 p
unfolding is-desc-thread-def
proof (intro exl conjl)

from mk-inf-thread[of s n O p] fths
show Vi>s (Suc n). eqlat p 9 i
by (fold is-thread-def) simp

show 3 1. descat p ¥ 1
unfolding INF-nat
proof
fix ¢

let 2k = section-of s i

from fdths obtain j
where %k < j is-desc-fthread 9 p (s j) (s (Suc 7))
unfolding INF-nat by auto

then obtain | where s j < [ and desc: descat p 9 1
unfolding is-desc-fthread-def
by auto

have i < s (Suc %k) by (rule section-of2) simp

also have ... < s
by (rule increasing-weak [OF tincreasing $)]) (insert <%k < j», arith)
also note ... < I
finally have i < [ .
with desc
show 31. i < I A descat p ¥ | by blast
qged
qed

lemma desc-ex-choice:
assumes A: (3n.Vi>n. 3z. Pz i) A (3i. J2. Q 1))
and imp: Nz i. Qi = Pzxi
shows Jas. (3nVi>n. P (zsi) i) A (Fooi. Q (xs1) 1))
(is Jxs. ?Ps xs N ?Qs zs)
proof
let 2w = Ai. (if (3z. Q z i) then (SOME z. Q x 1)
else (SOME . P x 1))

from A
obtain n where P: A\i. n < i = Jz. Pz
by auto

{

fix i::’a assume n < ¢

have P (%w i) i
proof (cases Jz. Q z 1)
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case True
hence @ (?w i) i by (auto intro:somel)
with imp show P (Ywi) i .
next
case False
with P[OF (n < »] show P (%w i) i
by (auto intro:somel )
qed

}

hence ?Ps ?w by (rule-tac x=n in ezl) auto

moreover
from A have 3i. (3z. Q z 1) ..
hence ?Qs ?w by (rule INF-mono) (auto intro:somel)
ultimately
show ?Ps 2w A ?Qs ?w ..

qed

lemma dthreads-join:
assumes [simp|: increasing s
assumes dthread: is-desc-thread 9 (contract s p)
shows 3vs. desc (Ai. is-fthread (9s i) p (s 1) (s (Suc 7))
ANdsi(si) =191
A 9s i (s (Suc i) =9 (Suc 7))
(Ai. is-desc-fthread (¥s i) p (s 1) (s (Suc i))
ANdsi(si) =11
As i (s (Suc i) =19 (Suc i)
apply (rule desc-ex-choice)
apply (insert dthread)
apply (simp only:is-desc-thread-def)
apply (simp add:eglat-contract)
apply (simp add:descat-contract)
apply (simp only:has-fth-def has-desc-fth-def)
by (auto simp:is-desc-fthread-def)

lemma INF-drop-prefiz:
(Fooiznat. i > n A Pi) = (Ii. P i)
apply (auto simp:INF-nat)
apply (drule-tac x = maz m n in spec)
apply (elim exE conjE)
apply (rule-tac ¢ = na in exl)
by auto
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lemma contract-keeps-threads:
assumes inc[simpl: increasing s
shows (3¢. is-desc-thread ¢ p)
«—— (39. is-desc-thread ¥ (contract s p))
(is ?A «—— ?B)
proof
assume ?A
then obtain ¥ n
where fr: Vi>n. eglat p 9 1
and ds: I i. descat p 9 i
unfolding is-desc-thread-def
by auto

let 2c = Ni. ¥ (s i)

have is-desc-thread ?c¢9 (contract s p)
unfolding is-desc-thread-def
proof (intro exl congl)

show Vi>n. eqlat (contract s p) 2¢¥ i
proof (intro alll impl)
fix i assume n < 3§
also have 7 < s 4
using increasing-inc by auto
finally have n < s .

with fr have is-fthread ¥ p (s i) (s (Suc 7))
unfolding is-fthread-def by auto

hence has-fth p (s i) (s (Suc i)) (¥ (s14)) (¥ (s (Suc 1))
unfolding has-fth-def by auto

with less-imp-le[OF increasing-strict]

have eql (prod (p(s i,s (Suc 4)))) (9 (s14)) (9 (s (Suc 7)))
by (simp add:LemmaTa)

thus eglat (contract s p) ?c¥ i unfolding contract-def
by auto

qed

show 3 i. descat (contract s p) 2¢cd i
unfolding INF-nat

proof
fix 1

let ?K = section-of s (max (s (Suc 7)) n)
from (3. i. descat p ¥ i obtain j
where s (Suc ?K) < j descat p ¥ j
unfolding INF-nat by blast

let ?L = section-of s j
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fix z assume r: z € section s ?L

have el: maz (s (Suc i)) n < s (Suc ?K) by (rule section-of2) simp
note (s (Suc ?K) <
also have j < s (Suc ?L)
by (rule section-of2) simp
finally have Suc ?K < ?L
by (simp add:increasing-bij)
with increasing-weak have s (Suc ?K) < s ?L by simp
with el r have maz (s (Suc i)) n < z by simp

hence (s (Suc i)) < z n < z by auto

}

note range-est = this

have is-desc-fthread 9 p (s ?L) (s (Suc ?L))
unfolding is-desc-fthread-def is-fthread-def
proof
show V méesection s ?L. eqlat p ¥ m
proof
fix m assume mé&section s 7L
with range-est(2) have n < m .
with fr show eglat p ¢ m by simp
qed

from in-section-of inc less-imp-le[OF (s (Suc ?K) < j]
have j € section s ?L .

with «descat p ¥
show dmesection s ?L. descat p ¥ m ..
qed

with less-imp-le[OF increasing-strict]
have a: descat (contract s p) ?¢d 7L
unfolding contract-def Lemma7b[symmetric)
by (auto simp:Lemma7b[symmetric] has-desc-fth-def)

have i < ?L
proof (rule classical)
assume - < 7L
hence s 7L < s (Suc i)
by (simp add:increasing-bij)
also have ... < s 7L
by (rule range-est(1)) (simp add:increasing-strict)
finally show ?thesis .
qed
with @ show 31. i < I A descat (contract s p) ¢t 1
by blast
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qed
qed
with ex] show ?B .
next
assume ?B
then obtain 9
where dthread: is-desc-thread ¥ (contract s p) ..

with dthreads-join inc
obtain ¥s where ths-spec:
desc (Ni. is-fthread (9s i) p (s i) (s (Suc 1))
ANVsi(si)=11
AUs i (s (Suci)) =9 (Suci))
(Ai. is-desc-fthread (¥s i) p (s i) (s (Suc i))
ANVsi(si)=11
A 9s i (s (Suc 1))
(is desc Zalw ?inf)
by blast

then obtain n where fr: Vi>n. Zalw ¢ by blast
hence connected: \i. n < i = 9s i (s (Suc i)) = Is (Suc i) (s (Suc i))
by auto

let 2j09 = connect s ¥s

from fr ths-spec have ths-spec2:
Ni. i > n = is-fthread (Vs i) p (s i) (s (Suc 7))
J oot. is-desc-fthread (9s i) p (s i) (s (Suc 1))
by (auto intro:INF-mono)

have p1: \i. i > n = is-fthread 2j9 p (s 1) (s (Suc 7))
by (rule connect-threads) (auto simp:connected ths-spec2)

from ths-spec2(2)
have 3 i. n < i A is-desc-fthread (Vs i) p (s 1) (s (Suc i))
unfolding INF-drop-prefix .

hence p2: 3 i. is-desc-fthread 259 p (s i) (s (Suc 1))
apply (rule INF-mono)
apply (rule connect-dthreads)
by (auto simp:connected)

with (increasing s) pl
have is-desc-thread 2j9 p
by (rule mk-inf-desc-thread)
with ezl show 74 .
qed

52



lemma repeated-edge:
assumes Ai. i > n = dsc (snd (p i) k k
shows is-desc-thread (\i. k) p

proof—
have th: V m. 3na>m. n < na by arith
show ?thesis using prems
unfolding is-desc-thread-def
apply (auto)
apply (rule-tac t=Suc n in exl, auto)
apply (rule INF-mono[where P=\i. n < i])
apply (simp only:INF-nat)
by (auto simp add: th)

qed

lemma fin-from-inf:
assumes is-thread n 9 p
assumes n < i
assumes i < j
shows is-fthread ¢ p i j
using prems
unfolding is-thread-def is-fthread-def
by auto

5.4 Ramsey’s Theorem

definition
set2pair S = (THE (z,y). z <y A S = {z,y})

lemma set2pair-conv:
fixes z y :: nat
assumes r < Yy
shows set2pair {z, y} = (z, y)
unfolding set2pair-def
proof (rule the-equality, simp-all only:split-conv split-paired-all)
from x < y show z < y A {z,y}={z,y} by simp
next
fix a b
assume a: a < b A {z, y} = {a, b}
hence {a, b} = {z, y} by simp-all
hence (a, b) = (z, y) V (a, b) = (y, z)
by (cases x = y) auto
thus (a, b) = (z, y)
proof
assume (a, b) = (y, z)
with ¢ and @ <
show ?thesis by auto
qed
qed
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definition
set2list = inv set

lemma finite-set2list:
assumes finite S
shows set (set2list S) = S
unfolding set2list-def
proof (rule f-inv-f)
from (finite S) have 3. set | = §
by (rule finite-list)
thus S € range set
unfolding image-def
by auto
qed

corollary RamseyNatpairs:
fixes S :: 'a set
and f :: nat X nat = 'a

assumes finite S
and inS: A\ey. e <y=f (z,y) €8

obtains T :: nat set and s :: 'a
where infinite T
and s € S
and A\zy. [zre TsyeTz<y] = f(z,y) =s
proof —
from (finite S)
have set (set2list S) = S by (rule finite-set2list)

then
obtain [ where S: § = set [ by auto
also from set-conv-nth have ... = {l i |i. i < length I} .

finally have S = {l ! i |i. i < length I} .
let ?s = length [

from nS
have indez-less: Nz y. © # y = indez-of | (f (setpair {z, y})) < s
proof —
fix z y :: nat
assume neq: T # y
have f (set2pair {z, y}) € S
proof (cases © < y)
case True hence set2pair {z, y} = (z, y)
by (rule set2pair-conv)
with True inS
show ?thesis by simp
next

54



case Fulse
with neq have y-less: y < = by simp
have z:{z,y} = {y,z} by auto
with y-less have set2pair {z, y} = (y, z)
by (simp add:set2pair-conv)
with y-less inS
show ?thesis by simp
qed

thus indez-of | (f (set2pair {z, y})) < length |
by (simp add: S indez-of-length)
qed

have 3 Y. infinite Y A
(Ft. t < 2 A
VzeY.VyeY.z £y —
index-of 1 (f (set2pair {z, y})) = t))
by (rule Ramsey2lof UNIV ::nat set, simplified])
(auto simp:index-less)
then obtain 7' ¢
where inf: infinite T
and i: i < length [
and d: Nz y. [z € T; yeT; z # y]
= index-of | (f (set2pair {z, y})) =i
by auto

have [ ! i € S unfolding S using i
by (rule nth-mem)

moreover

have Nz y. 2 € T = yeT =z < y
= f(x,y) =14

proof —
fixzxyassumez € Tye Tx <y
with d have
indez-of I (f (set2pair {z, y})) = i by auto
with @ <

have i = indez-of | (f (z, y))
by (simp add:set2pair-conv)
with « < length D
show f (z,y) =11
by (auto intro:indez-of-member|symmetric] iff :index-of-length)
qed
moreover note inf
ultimately
show ?thesis using prems
by blast
qed
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5.5 Main Result

theorem LJA-Theorem/:
assumes finite-acg A
shows SCT A «—— SCT' A
proof
assume SCT A

show SCT’' A
proof (rule classical)
assume - SCT' A

then obtain n G
where in-closure: (tcl A) F n ~G
and idemp: G x G = G
and no-strict-arc: Vp. =(G F p ~d D)
unfolding SCT’-def no-bad-graphs-def by auto

from in-closure obtain k
where k-pow: A "k Fn ~G o
and 0 < k
unfolding in-tcl by auto

from power-induces-path k-pow

obtain loop where loop-props:
has-fpath A loop
n = fst loop n = end-node loop
G = prod loop k = length (snd loop) .

with (0 < k» and path-loop-graph

have has-ipath A (omega loop) by blast

with (SCT A

have thread: 39. is-desc-thread ¥ (omega loop) by (auto simp:SCT-def)

let 2s = Xi. k * ¢
let ?cp = Xiznat. (n, G)

from loop-props have fst loop = end-node loop by auto
with 0 < k» «k = length (snd loop)
have Ai. (omega loop)(?s i,%s (Suc 1)) = loop

by (rule sub-path-loop)

with (n = fst loopy (G = prod loop) <k = length (snd loop))
have a: contract ?s (omega loop) = %cp

unfolding contract-def

by (simp add:path-loop-def split-def fst-p0)

from <0 < k) have increasing ?s

by (auto simp:increasing-def)
with thread have 34¢. is-desc-thread ¥ ?cp

o6



unfolding a[symmetric]
by (unfold contract-keeps-threads|symmetric])

then obtain ¥ where desc: is-desc-thread ¥ ?cp by auto

then obtain n where thr: is-thread n ¥ ?cp
unfolding is-desc-thread-def is-thread-def
by auto

have finite (range 9)
proof (rule finite-range-ignore-prefiz)

from (finite-acg A

have finite-acg (tcl A) by (simp add:finite-tcl)

with in-closure have finite-graph G
unfolding finite-acg-def all-finite-def by blast

thus finite (nodes G) by (rule finite-nodes)

from thread-image-nodes[OF thr]
show Vi>n. ¥ i € nodes G by simp
qed
with finite-range
obtain p where inf-visit: 3 . ¥ i = p by auto

then obtain i where n < i ¥ i =7p
by (auto simp:INF-nat)

from desc
have 3 ,i. descat ?cp 9 i
unfolding is-desc-thread-def by auto
then obtain j
where i < j and descat ?cp ¥ j
unfolding INF-nat by auto
from inf-visit obtain £ where j < k¢ k =1p
by (auto simp:INF-nat)

from G < p G < ky (n < i thr
fin-from-infof n 9 %cp]
(descat Zcp U

have is-desc-fthread ¥ %cp i k
unfolding is-desc-fthread-def
by auto

with Wk =p @ i=mpm

have dfth: has-desc-fth ?cp i k p p
unfolding has-desc-fth-def
by auto

from < < j» j < k) have i < k by auto

o7



hence prod (%cp(i, k)) = G
proof (induct i rule:strict-inc-induct)
case base thus ?case by (simp add:sub-path-def)
next
case (step i) thus ?case
by (simp add:sub-path-def upt-rec|of i k] idemp)
qed

with < < § ¢ < k> dfth Lemma7blof i k ?cp p p)
have dsc G p p by auto
with no-strict-arc have Fualse by auto
thus ?thesis ..
qed
next
assume SCT' A

show SCT A
proof (rule classical)
assume = SCT A

with SCT-def

obtain p
where ipath: has-ipath A p
and no-desc-th: = (3. is-desc-thread 9 p)
by blast

from (finite-acg A

have finite-acg (tcl A) by (simp add: finite-tcl)

hence finite (dest-graph (tcl A)) (is finite ?AG)
by (simp add: finite-acg-def finite-graph-def)

from pdesc-acgplus|OF ipath]
have a: Az y. <y = pdesc p(z,y) € dest-graph (tcl A)
unfolding has-edge-def .

obtain S G
where infinite S G € dest-graph (tcl A)
and all-G: Nz y. [z € S;ye€ S,z < y] =
plesc (p(z.y)) = G
apply (rule RamseyNatpairs[of ?AG A(z,y). pdesc p{z, y)])
apply (rule (finite 2AG))
by (simp only:split-conv, rule a, auto)

obtain n H m where
G-struct: G = (n, H, m) by (cases G)

let 2s = enumerate S
let ?2q = contract ?s p
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note all-in-S[simp] = enumerate-in-set|OF dnfinite S)]
from cnfinite S)
have inc[simp]: increasing ?s
unfolding increasing-def by (simp add:enumerate-mono)
note increasing-bij|OF this, simp]

from ipath-contract inc ipath
have has-ipath (tcl A) ?q .

from all-G G-struct
have all-H: \i. (snd (?q 1)) = H
unfolding contract-def
by simp

have loop: (tcl A) F n ~H n
and idemp: H x H = H
proof —
let % = %s 0 and % = %s (Suc 0) and %k = %s (Suc (Suc 0))

have pdesc (p(?i,%j)) = G
and pdesc (p(?j,%k))
and pdesc (p{?i,?k))
using all-G
by auto

=G
=G

with G-struct
have m = end-node (p(%i,%]))
and Hs: prod (p(%i,%)) = H
prod (p(?),7%)) = H
prod (p{?i,%k)) = H
by auto

hence m = n by simp

thus tcl AF n~Hp
using G-struct (G € dest-graph (tcl A)
by (simp add:has-edge-def)

from sub-path-prod|of %i ?j 2k p)
show H x H =H
unfolding Hs by simp
qged
moreover have \k. -dsc Hk k
proof
fix k :: 'a assume dsc H k k

with all-H repeated-edge

have 39. is-desc-thread 9 ?q by fast
with inc have 349. is-desc-thread 9 p

99



by (subst contract-keeps-threads)

with no-desc-th
show Fulse ..

qed

ultimately

have Fulse
using (SCT' A [unfolded SCT'-def no-bad-graphs-def]
by blast

thus ?thesis ..

qged
qed

end

6 Applying SCT to function definitions

theory Interpretation
imports Main Misc-Tools Criterion
begin

definition
idseq R sz = (s 0=z AN (Vi. R (s (Suci)) (s1)))

lemma not-acc-smaller:
assumes notacc: = accp R x
shows dy. Ryz A = accp R y
proof (rule classical)
assume — ?thesis
hence Ay. R y & = accp R y by blast
with acep.accl have accp R x .
with notacc show ?thesis by contradiction
qed

lemma non-acc-has-idseq:
assumes — accp R x
shows ds. idseq R s ©
proof —

have 3f. V. maccp Rz — R (fz) x A —acep R (f z)
by (rule choice, auto simp:not-acc-smaller)

then obtain f where
in-R: Nx. maccp Rz = R (fz) x
and nia: Az. ~acep R © = —acep R (f )
by blast

let s = Xi. (f " i) z
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fix ¢
have —acep R (?s i)
by (induct i) (auto simp:nia (—accp R o)
hence R (f (?s14)) (%s 1)
by (rule in-R)
}

hence idseq R %s x
unfolding idseq-def
by auto

thus ?thesis by auto
qed

types ('a, 'q) cdesc =
("qg = bool) x ('qg = 'a) x('¢ = 'a)

fun in-cdesc :: (‘a, 'q) cdesc = 'a = 'a = bool
where
in-cdesc (T, ry ) zcy=3Fqax=rqghNy=1qgATq)

fun mk-rel :: ('a, 'q) cdesc list = 'a = 'a = bool
where

mk-rel || © y = False
| mk-rel (c#tcs) zy =

(in-cdesc ¢ x y V mk-rel cs x y)

lemma some-rd:
assumes mk-rel rds T y
shows Jrdeset rds. in-cdesc rd z y
using assms
by (induct rds) (auto simp:in-cdesc-def)

lemma ex-cs:
assumes idseq: idseq (mk-rel rds) s x
shows Jc¢s. Vi. cs i € set rds A in-cdesc (cs i) (s (Suc 7)) (s 1)
proof —
from idseq
have a: Vi. 3rd € set rds. in-cdesc rd (s (Suc 1)) (s 9)
by (auto simp:idseg-def intro:some-rd)
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show ?thesis
by (rule choice) (insert a, blast)
qed

types ‘a measures = nat = 'a = nat

fun stepP :: (‘a, 'q) cdesc = (‘a, 'q) cdesc =

('a = nat) = ('a = nat) = (nat = nat = bool) = bool
where

stepP (T'1,r1,l1) (T'2,r2,12) mI m2 R

=g q2T1qu ANT2q2 N7l g1 =12¢2

— R (m2 (12 ¢2)) ((m1 (i1 q1))))

definition
decr :: ('a, 'q) cdesc = ('a, 'q) cdesc =
('a = nat) = (‘a = nat) = bool
where
decr ¢1 ¢2 m1 m2 = stepP c1 ¢2 m1 m2 (op <)

definition
decreq :: ('a, 'q) cdesc = (a, 'q) cdesc =
('a = nat) = (‘a = nat) = bool
where
decreq c¢1 c2 m1 m2 = stepP c1 ¢2 m1 m2 (op <)

definition
no-step :: ('a, 'q) cdesc = ('a, 'q) cdesc = bool
where
no-step ¢l ¢2 = stepP ¢l ¢2 (Az. 0) (Az. 0) (\z y. False)

lemma decr-in-cdesc:
assumes in-cdesc RD1 y z
assumes in-cdesc RD2 z y
assumes decr RD1 RD2 m1 m2
shows m2y < mi z
using assms
by (cases RD1, cases RD2, auto simp:decr-def)

lemma decreg-in-cdesc:
assumes in-cdesc RD1 y x
assumes in-cdesc RD2 z y
assumes decreq RD1 RD2 m1 m2
shows m2 y < ml z
using assms
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by (cases RD1, cases RD2, auto simp:decreq-def)

lemma no-inf-desc-nat-sequence:
fixes s :: nat = nat
assumes leg: Ni.n < i = s (Suci) < si
assumes less: Jooi. s (Suc i) < 54
shows Fulse
proof —
{
fix i j:: nat
assume n < ¢
assume i < j
{
fix k
have s (i + k) < s
proof (induct k)
case 0 thus ?case by simp
next
case (Suc k)
with leglof i + k] <0 <
show ?case by simp
qed
}
from this[of j — i] (n < @ < P
have s j < s i by auto

}

note decr = this

let ?min = LEAST . x € range (Xi. s (n + 1))
have ?min € range (\i. s (n + 1))
by (rule Leastl) auto
then obtain & where min: ?min = s (n + k) by auto

from less

obtain k' where n + k < k'
and s (Suc k) < sk’
unfolding INF-nat by auto

with decr[of n + k k'] min
have s (Suc k') < ?min by auto
moreover from (n + k < k’
have s (Suc k') = s (n + (Suc k' — n)) by simp
ultimately
show Fulse using not-less-Least by blast
qed
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definition
approz :: nat scg = ('a, 'q) cdesc = ('a, 'q) cdesc
= 'a measures = 'a measures = bool
where
approx G C C' M M’
= (Vij. (dsc Gij — decr C C' (Mi) (M'37))
Neq G ij — decreq C C' (M i) (M'3)))

lemma approz-empty:
approz (Graph {}) c¢1 ¢2 msl ms2
unfolding approz-def has-edge-def dest-graph.simps by simp

lemma approz-less:
assumes stepP c1 ¢2 (msl i) (ms2j) (op <)
assumes approx (Graph Es) cl ¢2 msl ms2
shows approz (Graph (insert (i, |, j) Es)) ¢l c2 msl ms2
using assms
unfolding approx-def has-edge-def dest-graph.simps decr-def
by auto

lemma approz-leq:
assumes stepP c1 ¢2 (msl i) (ms2j) (op <)
assumes approz (Graph Es) cl ¢2 msl ms2
shows approz (Graph (insert (i, |, j) Es)) c1 c2 msl ms2
using assms
unfolding approz-def has-edge-def dest-graph.simps decreq-def
by auto

lemma approz (Graph {(1, |, 2),(2, |, 3)}) ¢l c2 msl ms2
apply (intro approz-less approz-leq approz-empty)
oops

lemma no-stepl:
stepP c1 ¢2 m1 m2 (A\z y. False)
= no-step cl c2
by (cases cl1, cases c2) (auto simp: no-step-def)

definition

sound-int :: nat acg = ('a, 'q) cdesc list
= 'a measures list = bool
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where
sound-int A RDs M =
(Vn<length RDs. ¥ m<length RDs.
no-step (RDs ! n) (RDs ! m) V
(3G. (A+ n~C m) A approz G (RDs ! n) (RDs ! m) (M ! n) (M ! m)))

lemma length-simps: length [| = 0 length (z#xs) = Suc (length xs)
by auto

lemma all-less-zero: ¥V n<(0::nat). P n
by simp

lemma all-less-Suc:
assumes Pk: P k
assumes Pn: Vn<k. Pn
shows Vn<Suc k. P n
proof (intro alll impl)
fix n assume n < Suc k
show P n
proof (cases n < k)
case True with Pn show ?thesis by simp
next
case Fualse with (n < Suc k) have n = k by simp
with Pk show ?thesis by simp
qed
qed

lemma step-witness:
assumes in-cdesc RD1 y x
assumes in-cdesc RD2 z y
shows — no-step RD1 RD2
using assms
by (cases RD1, cases RD2) (auto simp:no-step-def )

theorem SCT-on-relations:
assumes R: R = mk-rel RDs
assumes sound: sound-int A RDs M
assumes SCT A
shows Vz. accp R x
proof (rule, rule classical)
fix z
assume - accp R z
with non-acc-has-idseq
have ds. idseq R s = .
then obtain s where idseq R s x ..
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hence Jc¢s. Vi. csi € set RDs A
in-cdesc (cs i) (s (Suci)) (s 1)
unfolding R by (rule ex-cs)
then obtain cs where
[simp]: Ni. cs i € set RDs
and ird[simp]: \i. in-cdesc (cs i) (s (Suc 1)) (s 14)
by blast

let ?cis = Xi. index-of RDs (cs i)
have Vi. 3G. (A F %cis i ~G (2cis (Suc 1))

A approx G (RDs ! ?cis i) (RDs ! ?cis (Suc 1))

(M ! %cis i) (M %cis (Suci)) (isVi. 3G. 2P i G)
proof

fix ¢

let ?n = %cis i and ?n' = ?cis (Suc 1)

have in-cdesc (RDs ! ?n) (s (Suc i)) (s
in-cdesc (RDs ! 2n') (s (Suc (Suc i))) (
by (simp-all add:index-of-member)

with step-witness

have — no-step (RDs ! ?n) (RDs ! ?n’) .

moreover have
?n < length RDs
?n’ < length RDs
by (simp-all add:index-of-length|[symmetric])

ultimately

obtain G
where A+ 7n ~G 2/
and approx G (RDs ! ?n) (RDs ! ?n’) (M ! 2n) (M ! ?n’)
using sound
unfolding sound-int-def by auto

)
s (Suc 1))

thus 3 G. ?P i G by blast
qed
with choice
have 3 Gs. Vi. ?P i (Gs i) .
then obtain Gs where
A: Ni. AE fcis i ~(Gs 9) (Zcis (Suc 1))
and B: Ai. approx (Gs i) (RDs ! %cis i) (RDs ! ?cis (Suc 1))
(M ! %cis i) (M %cis (Suc 1))
by blast

let ?p = Ai. (Pcis i, Gs i)

from A have has-ipath A ?p
unfolding has-ipath-def
by auto

with «(SCT A SCT-def
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obtain th where is-desc-thread th ?p
by auto

then obtain n
where fr: Vi>n. eqglat ?p th i
and inf: 3 1. descat ?p th i
unfolding is-desc-thread-def by auto

from B

have approx:
Ni. approz (Gs i) (cs i) (es (Suc 7))
(M ! %cis i) (M %cis (Suc 1))
by (simp add:indez-of-member)

let %seq = \i. (M ! %cis i) (th i) (s 7)

have A\i. n < i = %seq (Suc i) < ?seq i
proof —
fix 4
let 2q1 = th i and ?¢2 = th (Suc i)
assume n < %

with fr have eqlat ?p th i by simp
hence dsc (Gs i) 2q1 2q2 V eq (Gs i) ?q1 9¢2
by simp
thus ?seq (Suc i) < ?seq i
proof
assume dsc (Gs i) ?q1 292

with approx

have a:decr (cs i) (cs (Suc 7))
(M ! 2cis i) 2q1) (M ! %cis (Suc 1)) 992)
unfolding approz-def by auto

show ?thesis
apply (rule less-imp-le)
apply (rule decr-in-cdesc[of - s (Suc i) s i])
by (rule ird a)+
next
assume eq (Gs i) ?q1 9¢2

with approz

have a:decreq (cs i) (¢s (Suc 1))
(M ! %cis i) 2q1) (M ! 2cis (Suc i) 2¢2)
unfolding approz-def by auto

show Zthesis

apply (rule decreg-in-cdesc[of - s (Suc i) s i])
by (rule ird a)+
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qed

qed
moreover have 3 ,i. ?seq (Suc i) < ?seq i unfolding INF-nat
proof
fix 1
from inf obtain j where i < j and d: descat ?p th j
unfolding INF-nat by auto
let g1 = th j and ?¢2 = th (Suc j)
from d have dsc (Gs j) ?q1 292 by auto
with approx
have a:decr (cs j) (cs (Suc 7))
(M %cis j) 2q1) (M ! %cis (Suc j)) 792)
unfolding approz-def by auto
have %seq (Suc j) < %seq j
apply (rule decr-in-cdesc[of - s (Suc j) s j])
by (rule ird a)+
with ¢ < p
show 3j. i < j A %seq (Suc j) < ?seq j by auto
qged

ultimately have Fulse
by (rule no-inf-desc-nat-sequencelof Suc n]) simp
thus accp R ..
qed

end

7 Implemtation of the SCT criterion

theory Implementation
imports Correctness
begin

fun edges-match :: ('n x ‘e x 'n) x ('n x 'e x 'n) = bool
where
edges-match ((n, e, m), (n';e’,;m’)) = (m = n’)

fun connect-edges ::
('n x (‘extimes) x 'n) x ('n x ‘e x 'n)
= ('n x ‘e x 'n)
where
connect-edges ((n,e,m), (n’, e/, m")) = (n, e x ¢/, m’)

lemma grcomp-code [code]:
grcomp (Graph G) (Graph H) = Graph (connect-edges ‘ { x € Gx H. edges-match

z })

by (rule graph-ext) (auto simp:graph-mult-def has-edge-def image-def)
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lemma mk-tcl-finite-terminates:
fixes A :: 'a acg
assumes fA: finite-acg A
shows mk-tcl-dom (A, A)
proof —
from fA have fin-tcl: finite-acg (tcl A)
by (simp add:finite-tcl)

hence finite (dest-graph (tcl A))
unfolding finite-acg-def finite-graph-def ..

let Zcount = AG. card (dest-graph G)
let 2N = Zcount (tcl A)
let #m = AX. N — (Zcount X)

let P = AX. mk-tcl-dom (A, X)

{
fix X

assume X < tcl A
then
have mk-tcl-dom (A, X)
proof (induct X rule:measure-induct-rule[of ¢m])
case (less X)
show ?case
proof (cases X x A < X)
case True
with mk-tcl.domintros show ?thesis by auto
next
case Fulse
then have I: X < X + X x A4
unfolding graph-less-def graph-leq-def graph-plus-def
by auto

from (X < tcl A
have X x A < tcl A * A by (simp add:mult-mono)
also have ... < A + tcl A x A by simp
also have ... = tcl A by (simp add:tcl-unfold-right[symmetric])
finally have X « A < tcl A .
with (X < tel A
have X + X « A < tcl A + tcl A

by (rule add-mono)
hence less-tcl: X + X x A < tcl A by simp
hence X < tcl A

using [ (X < tcl A by auto

from less-tcl fin-tcl
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have finite-acg (X + X * A) by (rule finite-acg-subset)

hence finite (dest-graph (X + X = A))
unfolding finite-acg-def finite-graph-def ..

hence X: Zcount X < Zcount (X + X x A)
using [[simplified graph-less-def graph-leq-def]
by (rule psubset-card-mono)

have “count X < ?N
apply (rule psubset-card-mono)
by fact (rule <X < tel A)[simplified graph-less-def])

with X have ?m (X + X x A) < %m X by arith

from less.hyps this less-tcl
have mk-tcl-dom (A, X + X x A) .
with mk-tcl.domintros show ?thesis .
qed
qed
}
from this less-tcl show Zthesis .
qged

lemma mk-tcl-finite-tcl:
fixes A :: 'a acg
assumes fA: finite-acg A
shows mk-tcl A A = tcl A
using mk-tcl-finite-terminates| OF fA]
by (simp only: tcl-def mk-tcl-correctness star-commute)

definition test-SCT :: nat acg = bool
where
test-SCT A =
(let T = mk-tcl A A
in (V(n,G,m)edest-graph T.
n#FmVGxG#GV
(3 (p::nat,e,q)Edest-graph G. p = q¢ A e = LESS)))

lemma SCT'-ezxec:
assumes fin: finite-acg A
shows SCT' A = test-SCT A
using mk-tcl-finite-tcl[OF fin]
unfolding test-SCT-def Let-def
unfolding SCT'-def no-bad-graphs-def has-edge-def
by force

code-modulename SML
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Implementation Graphs

lemma [code func]:
(G::('a:eq, 'bieq) graph) < H «—— dest-graph G C dest-graph H
(G::("a::eq, 'bizeq) graph) < H «— dest-graph G C dest-graph H
unfolding graph-leg-def graph-less-def by rule+

lemma [code func]:
(G::('a:eq, 'b:ieq) graph) + H = Graph (dest-graph G U dest-graph H)
unfolding graph-plus-def ..

lemma [code func]:
(G::('a:eq, 'b::{eq, times}) graph) x H = grcomp G H
unfolding graph-mult-def ..

lemma SCT'-empty: SCT' (Graph {})
unfolding SCT’-def no-bad-graphs-def graph-zero-def[symmetric)
tel-zero
by (simp add:in-grzero)

7.1 Witness checking

definition test-SCT-witness :: nat acg = nat acg = bool
where
test-SCT-witness A T =
(A<STANA«xT<TA
(V (n,G,m)edest-graph T.
nZmV Gx G#£GV
(3 (p::nat,e,q)edest-graph G. p = q¢ A e = LESS)))

lemma no-bad-graphs-ucl:
assumes A < B
assumes no-bad-graphs B
shows no-bad-graphs A
using assms
unfolding no-bad-graphs-def has-edge-def graph-leq-def
by blast

lemma SCT'-witness:
assumes a: test-SCT-witness A T
shows SCT’ A
proof —
from ¢ have A < T A« T < T by (auto simp:test-SCT-witness-def )
hence A + A« T < T
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by (subst add-idem[of T, symmetric], rule add-mono)
with star3’ have tcl A < T unfolding tcl-def .
moreover
from o have no-bad-graphs T
unfolding no-bad-graphs-def test-SCT-witness-def has-edge-def
by auto
ultimately
show ?thesis
unfolding SCT'-def
by (rule no-bad-graphs-ucl)
qed

code-modulename SML
Graphs SCT
Kleene-Algebras SCT
Implementation SCT

export-code test-SCT in SML

end

8 Size-Change Termination

theory Size-Change-Termination

imports Correctness Interpretation Implementation
uses sct.ML

begin

8.1 Simplifier setup

This is needed to run the SCT algorithm in the simplifier:

lemma setbcomp-simps:

{ze{}. Pz} = {}
{z€insert y ys. P x} = (if P y then insert y {x€ys. P z} else {x€ys. P x})
by auto

lemma setbcomp-cong:
A=B = (Az. Pz = Qz) = {z€A. Pz} = {2€B. Q z}
by auto
lemma cartprod-simps:
{} x A=A}
insert a A X B = Paira ‘B U (4 x B)
by (auto simp:image-def)

lemma image-simps:
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fu {3 ={}
fu “insert a A = insert (fu a) (fu © A)
by (auto simp:image-def)

lemmas union-simps =
Un-empty-left Un-empty-right Un-insert-left

lemma subset-simps:
{tc B
mserta AC B=ae€ BANACB
by auto

lemma element-simps:

z € {} = False
reinsertaA=x=aVaeA
by auto

lemma set-eq-simp:
A=B+— AC BA B C A by auto

lemma ball-simps:

Vze{}. Pz = True

(Vzeinsert a A. Px) = Pa A (Vz€A. P 1)
by auto

lemma bez-simps:

Jze{}. P x = False

(Jz€insert a A. Px) = PaV (3z€A. P 1)
by auto

lemmas set-simps =
setbcomp-simps
cartprod-simps image-simps union-simps subset-simps
element-simps set-eq-simp
ball-simps bex-simps

lemma sedge-simps:
Lz=]
lxz =2
by (auto simp:mult-sedge-def)

lemmas sctTest-simps =
simp-thms
if-True
if-False
nat.inject
nat.distinct
Pair-eq
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grcomp-code
edges-match.simps
connect-edges.simps

sedge-simps
sedge.distinct
set-stmps

graph-mult-def
graph-leg-def
dest-graph.simps
graph-plus-def
graph.ingject
graph-zero-def

test-SCT-def

mk-tcl-code

Let-def
split-conv

lemmas sctTest-congs =
if-weak-cong let-weak-cong setbcomp-cong

lemma SCT-Main:
finite-acg A = test-SCT A = SCT A
using LJA-Theorems SCT'-exec
by auto

end

9 Examples for Size-Change Termination

theory Fxamples
imports Size-Change-Termination
begin

function f :: nat = nat = nat
where

fn0=n
| f0 (Suc m) = f (Sucm) m
| f (Suc n) (Sucm) =fmn
by pat-completeness auto

termination
unfolding f-rel-def Ifp-const
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apply (rule SCT-on-relations)
apply (tactic Sct.abs-rel-tac)
apply (rule ext, rule ext, simp)
apply (tactic Sct.mk-call-graph)
apply (rule SCT-Main)

apply (simp add:finite-acg-simps)
by eval

function p :: nat = nat = nat = nat
where
pmmnr=(ifr>0thenpm (r — 1) n else
if n>0thenpr (n — 1) m
else m)
by pat-completeness auto

termination

unfolding p-rel-def lfp-const

apply (rule SCT-on-relations)

apply (tactic Sct.abs-rel-tac)

apply (rule ect, rule ext, simp)

apply (tactic Sct.mk-call-graph)

apply (rule SCT-Main)
apply (simp add:finite-acg-ins finite-acg-empty finite-graph-def)
by eval

function foo :: bool = nat = nat = nat
where

foo True (Suc n) m = foo True n (Suc m)
| foo True 0 m = foo False 0 m
| foo False n (Suc m) = foo False (Suc n) m
| foo False n 0 = n
by pat-completeness auto

termination

unfolding foo-rel-def Ifp-const

apply (rule SCT-on-relations)

apply (tactic Sct.abs-rel-tac)

apply (rule ext, rule ext, simp)

apply (tactic Sct.mk-call-graph)

apply (rule SCT-Main)
apply (simp add:finite-acg-ins finite-acg-empty finite-graph-def)
by eval

function (sequential)

bar :: nat = nat = nat = nat
where

bar 0 (Suc n) m = bar m m m
| bar knm = 0
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by pat-completeness auto

termination
unfolding bar-rel-def lfp-const
apply (rule SCT-on-relations)
apply (tactic Sct.abs-rel-tac)
apply (rule ext, rule ext, simp)
apply (tactic Sct.mk-call-graph)
apply (rule SCT-Main)
apply (simp add:finite-acg-ins finite-acg-empty finite-graph-def)
by (simp only:sctTest-simps cong: sctTest-congs)

end
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