(* Title: state_space.ML ID: $Id: state_space.ML,v 1.2 2007/11/12 10:07:22 schirmer Exp $ Author: Norbert Schirmer, TU Muenchen *) signature STATE_SPACE = sig val KN : string val distinct_compsN : string val getN : string val putN : string val injectN : string val namespaceN : string val projectN : string val valuetypesN : string val quiet_mode : bool ref val namespace_definition : bstring -> Term.typ -> Locale.expr -> string list -> string list -> Context.theory -> Context.theory val define_statespace : string list -> string -> (string list * bstring * (string * string) list) list -> (string * string) list -> Context.theory -> Context.theory val define_statespace_i : string option -> string list -> string -> (Term.typ list * bstring * (string * string) list) list -> (string * Term.typ) list -> Context.theory -> Context.theory val statespace_decl : OuterParse.token list -> ((string list * bstring) * ((string list * xstring * (bstring * bstring) list) list * (bstring * string) list)) * OuterParse.token list val neq_x_y : Context.proof -> Term.term -> Term.term -> Thm.thm option val distinctNameSolver : MetaSimplifier.solver val distinctTree_tac : Context.proof -> Term.term * int -> Tactical.tactic val distinct_simproc : MetaSimplifier.simproc val change_simpset : (MetaSimplifier.simpset -> MetaSimplifier.simpset) -> Context.generic -> Context.generic val get_comp : Context.generic -> string -> (Term.typ * string) Option.option val get_silent : Context.generic -> bool val set_silent : bool -> Context.generic -> Context.generic val read_typ : Context.theory -> string -> (string * Term.sort) list -> Term.typ * (string * Term.sort) list val gen_lookup_tr : Context.proof -> Term.term -> string -> Term.term val lookup_swap_tr : Context.proof -> Term.term list -> Term.term val lookup_tr : Context.proof -> Term.term list -> Term.term val lookup_tr' : Context.proof -> Term.term list -> Term.term val gen_update_tr : bool -> Context.proof -> string -> Term.term -> Term.term -> Term.term val update_tr : Context.proof -> Term.term list -> Term.term val update_tr' : Context.proof -> Term.term list -> Term.term end; structure StateSpace: STATE_SPACE = struct (* Theorems *) (* Names *) val distinct_compsN = "distinct_names" val namespaceN = "_namespace" val valuetypesN = "_valuetypes" val projectN = "project" val injectN = "inject" val getN = "get" val putN = "put" val project_injectL = "StateSpaceLocale.project_inject"; val KN = "StateFun.K_statefun" (* messages *) val quiet_mode = ref false; fun message s = if ! quiet_mode then () else writeln s; (* Library *) fun fold1 f xs = fold f (tl xs) (hd xs) fun fold1' f [] x = x | fold1' f xs _ = fold1 f xs fun sublist_idx eq xs ys = let fun sublist n xs ys = if is_prefix eq xs ys then SOME n else (case ys of [] => NONE | (y::ys') => sublist (n+1) xs ys') in sublist 0 xs ys end; fun is_sublist eq xs ys = is_some (sublist_idx eq xs ys); fun sorted_subset eq [] ys = true | sorted_subset eq (x::xs) [] = false | sorted_subset eq (x::xs) (y::ys) = if eq (x,y) then sorted_subset eq xs ys else sorted_subset eq (x::xs) ys; type namespace_info = {declinfo: (typ*string) Termtab.table, (* type, name of statespace *) distinctthm: thm Symtab.table, silent: bool }; structure NameSpaceArgs = struct type T = namespace_info; val empty = {declinfo = Termtab.empty, distinctthm = Symtab.empty, silent = false}; val extend = I; fun merge pp ({declinfo=declinfo1, distinctthm=distinctthm1, silent=silent1}, {declinfo=declinfo2, distinctthm=distinctthm2, silent=silent2}) = {declinfo = Termtab.merge (K true) (declinfo1, declinfo2), distinctthm = Symtab.merge (K true) (distinctthm1, distinctthm2), silent = silent1 andalso silent2} end; structure NameSpaceData = GenericDataFun(NameSpaceArgs); fun make_namespace_data declinfo distinctthm silent = {declinfo=declinfo,distinctthm=distinctthm,silent=silent}; fun delete_declinfo n ctxt = let val {declinfo,distinctthm,silent} = NameSpaceData.get ctxt; in NameSpaceData.put (make_namespace_data (Termtab.delete_safe n declinfo) distinctthm silent) ctxt end; fun update_declinfo (n,v) ctxt = let val {declinfo,distinctthm,silent} = NameSpaceData.get ctxt; in NameSpaceData.put (make_namespace_data (Termtab.update (n,v) declinfo) distinctthm silent) ctxt end; fun set_silent silent ctxt = let val {declinfo,distinctthm,...} = NameSpaceData.get ctxt; in NameSpaceData.put (make_namespace_data declinfo distinctthm silent) ctxt end; val get_silent = #silent o NameSpaceData.get; fun prove_interpretation_in ctxt_tac (name, expr) thy = thy |> Locale.interpretation_in_locale I (name, expr) |> Proof.global_terminal_proof (Method.Basic (fn ctxt => Method.SIMPLE_METHOD (ctxt_tac ctxt),Position.none), NONE) |> ProofContext.theory_of type statespace_info = {args: (string * sort) list, (* type arguments *) parents: (typ list * string * string option list) list, (* type instantiation, state-space name, component renamings *) components: (string * typ) list, types: typ list (* range types of state space *) }; structure StateSpaceArgs = struct val name = "HOL/StateSpace"; type T = statespace_info Symtab.table; val empty = Symtab.empty; val extend = I; fun merge pp (nt1,nt2) = Symtab.merge (K true) (nt1, nt2); end; structure StateSpaceData = GenericDataFun(StateSpaceArgs); fun add_statespace name args parents components types ctxt = StateSpaceData.put (Symtab.update_new (name, {args=args,parents=parents, components=components,types=types}) (StateSpaceData.get ctxt)) ctxt; fun get_statespace ctxt name = Symtab.lookup (StateSpaceData.get ctxt) name; fun lookupI eq xs n = (case AList.lookup eq xs n of SOME v => v | NONE => n); fun mk_free ctxt name = if Variable.is_fixed ctxt name orelse Variable.is_declared ctxt name then let val n' = lookupI (op =) (Variable.fixes_of ctxt) name in SOME (Free (n',ProofContext.infer_type ctxt n')) end else NONE fun get_dist_thm ctxt name = Symtab.lookup (#distinctthm (NameSpaceData.get ctxt)) name; fun get_comp ctxt name = Option.mapPartial (Termtab.lookup (#declinfo (NameSpaceData.get ctxt))) (mk_free (Context.proof_of ctxt) name); (*** Tactics ***) fun neq_x_y ctxt x y = (let val dist_thm = the (get_dist_thm (Context.Proof ctxt) (#1 (dest_Free x))); val ctree = cprop_of dist_thm |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2; val tree = term_of ctree; val x_path = the (DistinctTreeProver.find_tree x tree); val y_path = the (DistinctTreeProver.find_tree y tree); val thm = DistinctTreeProver.distinctTreeProver dist_thm x_path y_path; in SOME thm end handle Option => NONE) fun distinctTree_tac ctxt (Const ("Trueprop",_) $ (Const ("Not", _) $ (Const ("op =", _) $ (x as Free _)$ (y as Free _))), i) = (case (neq_x_y ctxt x y) of SOME neq => rtac neq i | NONE => no_tac) | distinctTree_tac _ _ = no_tac; val distinctNameSolver = mk_solver' "distinctNameSolver" (fn ss => case #context (#1 (rep_ss ss)) of SOME ctxt => SUBGOAL (distinctTree_tac ctxt) | NONE => fn i => no_tac) val distinct_simproc = Simplifier.simproc HOL.thy "StateSpace.distinct_simproc" ["x = y"] (fn thy => fn ss => (fn (Const ("op =",_)$(x as Free _)$(y as Free _)) => (case #context (#1 (rep_ss ss)) of SOME ctxt => Option.map (fn neq => DistinctTreeProver.neq_to_eq_False OF [neq]) (neq_x_y ctxt x y) | NONE => NONE) | _ => NONE)) fun change_simpset f = Context.mapping (fn thy => (change_simpset_of thy f; thy)) (fn ctxt => Simplifier.put_local_simpset (f (Simplifier.get_local_simpset ctxt)) ctxt); fun read_typ thy s = Sign.read_typ thy s; local val ss = HOL_basic_ss in fun interprete_parent name dist_thm_name parent_expr thy = let fun solve_tac ctxt (_,i) st = let val distinct_thm = ProofContext.get_thm ctxt (Name dist_thm_name); val goal = List.nth (cprems_of st,i-1); val rule = DistinctTreeProver.distinct_implProver distinct_thm goal; in EVERY [rtac rule i] st end fun tac ctxt = EVERY [Locale.intro_locales_tac true ctxt [], ALLGOALS (SUBGOAL (solve_tac ctxt))] in thy |> prove_interpretation_in tac (name,parent_expr) end; end; fun namespace_definition name nameT parent_expr parent_comps new_comps thy = let val all_comps = parent_comps @ new_comps; val vars = Locale.Merge (map (fn n => Locale.Rename (Locale.Locale (Locale.intern thy "var") ,[SOME (n,NONE)])) all_comps); val full_name = Sign.full_name thy name; val dist_thm_name = distinct_compsN; val dist_thm_full_name = let val prefix = fold1' (fn name => fn prfx => prfx ^ "_" ^ name) all_comps ""; in if prefix = "" then dist_thm_name else prefix ^ "." ^ dist_thm_name end; fun comps_of_thm thm = prop_of thm |> (fn (_$(_$t)) => DistinctTreeProver.dest_tree t) |> map (fst o dest_Free); fun type_attr phi (ctxt,thm) = (case ctxt of Context.Theory _ => (ctxt,thm) | _ => let val {declinfo,distinctthm=tt,silent} = (NameSpaceData.get ctxt); val all_names = comps_of_thm thm; fun upd name tt = (case (Symtab.lookup tt name) of SOME dthm => if sorted_subset (op =) (comps_of_thm dthm) all_names then Symtab.update (name,thm) tt else tt | NONE => Symtab.update (name,thm) tt) val tt' = tt |> fold upd all_names; val activate_simproc = Output.no_warnings (change_simpset (fn ss => ss addsimprocs [distinct_simproc])); val ctxt' = ctxt |> NameSpaceData.put {declinfo=declinfo,distinctthm=tt',silent=silent} |> activate_simproc in (ctxt',thm) end) val attr = Attrib.internal type_attr; val assumes = Element.Assumes [((dist_thm_name,[attr]), [(HOLogic.Trueprop $ (Const ("DistinctTreeProver.all_distinct", Type ("DistinctTreeProver.tree",[nameT]) --> HOLogic.boolT) $ DistinctTreeProver.mk_tree (fn n => Free (n,nameT)) nameT (sort fast_string_ord all_comps)), ([]))])]; in thy |> Locale.add_locale_i (SOME "") name vars [assumes] ||> ProofContext.theory_of ||> interprete_parent name dist_thm_full_name parent_expr |> #2 end; structure Typetab = TableFun(type key=typ val ord = Term.typ_ord); fun encode_dot x = if x= #"." then #"_" else x; fun encode_type (TFree (s, _)) = s | encode_type (TVar ((s,i),_)) = "?" ^ s ^ string_of_int i | encode_type (Type (n,Ts)) = let val Ts' = fold1' (fn x => fn y => x ^ "_" ^ y) (map encode_type Ts) ""; val n' = String.map encode_dot n; in if Ts'="" then n' else Ts' ^ "_" ^ n' end; fun project_name T = projectN ^"_"^encode_type T; fun inject_name T = injectN ^"_"^encode_type T; fun project_free T pT V = Free (project_name T, V --> pT); fun inject_free T pT V = Free (inject_name T, pT --> V); fun get_name n = getN ^ "_" ^ n; fun put_name n = putN ^ "_" ^ n; fun get_const n T nT V = Free (get_name n, (nT --> V) --> T); fun put_const n T nT V = Free (put_name n, T --> (nT --> V) --> (nT --> V)); fun lookup_const T nT V = Const ("StateFun.lookup",(V --> T) --> nT --> (nT --> V) --> T); fun update_const T nT V = Const ("StateFun.update", (V --> T) --> (T --> V) --> nT --> (T --> T) --> (nT --> V) --> (nT --> V)); fun K_const T = Const ("StateFun.K_statefun",T --> T --> T); val no_syn = #3 (Syntax.no_syn ((),())); fun add_declaration name decl thy = thy |> TheoryTarget.init name |> (fn lthy => LocalTheory.declaration (decl lthy) lthy) |> LocalTheory.exit |> ProofContext.theory_of; fun parent_components thy (Ts, pname, renaming) = let val ctxt = Context.Theory thy; fun rename [] xs = xs | rename (NONE::rs) (x::xs) = x::rename rs xs | rename (SOME r::rs) ((x,T)::xs) = (r,T)::rename rs xs; val {args,parents,components,...} = the (Symtab.lookup (StateSpaceData.get ctxt) pname); val inst = map fst args ~~ Ts; val subst = Term.map_type_tfree (the o AList.lookup (op =) inst o fst); val parent_comps = List.concat (map (fn (Ts',n,rs) => parent_components thy (map subst Ts',n,rs)) parents); val all_comps = rename renaming (parent_comps @ map (apsnd subst) components); in all_comps end; fun take_upto i xs = List.take(xs,i) handle Subscript => xs; fun statespace_definition state_type args name parents parent_comps components thy = let val full_name = Sign.full_name thy name; val all_comps = parent_comps @ components; val components' = map (fn (n,T) => (n,(T,full_name))) components; val all_comps' = map (fn (n,T) => (n,(T,full_name))) all_comps; fun parent_expr (_,n,rs) = Locale.Rename (Locale.Locale (suffix namespaceN n), map (Option.map (fn s => (s,NONE))) rs); val parents_expr = Locale.Merge (fold (fn p => fn es => parent_expr p::es) parents []); fun distinct_types Ts = let val tab = fold (fn T => fn tab => Typetab.update (T,()) tab) Ts Typetab.empty; in map fst (Typetab.dest tab) end; val Ts = distinct_types (map snd all_comps); val arg_names = map fst args; val valueN = Name.variant arg_names "'value"; val nameN = Name.variant (valueN::arg_names) "'name"; val valueT = TFree (valueN, Sign.defaultS thy); val nameT = TFree (nameN, Sign.defaultS thy); val stateT = nameT --> valueT; fun projectT T = valueT --> T; fun injectT T = T --> valueT; val locs = map (fn T => Locale.Rename (Locale.Locale project_injectL, [SOME (project_name T,NONE), SOME (inject_name T ,NONE)])) Ts; val constrains = List.concat (map (fn T => [(project_name T,projectT T),(inject_name T,injectT T)]) Ts); fun interprete_parent_valuetypes (Ts, pname, _) = let val {args,types,...} = the (Symtab.lookup (StateSpaceData.get (Context.Theory thy)) pname); val inst = map fst args ~~ Ts; val subst = Term.map_type_tfree (the o AList.lookup (op =) inst o fst); val pars = List.concat (map ((fn T => [project_name T,inject_name T]) o subst) types); val expr = Locale.Rename (Locale.Locale (suffix valuetypesN name), map (fn n => SOME (n,NONE)) pars); in prove_interpretation_in (K all_tac) (suffix valuetypesN name, expr) end; fun interprete_parent (_, pname, rs) = let val expr = Locale.Rename (Locale.Locale pname, map (Option.map (fn n => (n,NONE))) rs) in prove_interpretation_in (fn ctxt => Locale.intro_locales_tac false ctxt []) (full_name, expr) end; fun declare_declinfo updates lthy phi ctxt = let fun upd_prf ctxt = let fun upd (n,v) = let val nT = ProofContext.infer_type (LocalTheory.target_of lthy) n in Context.proof_map (update_declinfo (Morphism.term phi (Free (n,nT)),v)) end; in ctxt |> fold upd updates end; in Context.mapping I upd_prf ctxt end; fun string_of_typ T = setmp show_sorts true (setmp print_mode [] (Syntax.string_of_typ (ProofContext.init thy))) T; val fixestate = (case state_type of NONE => [] | SOME s => let val fx = Element.Fixes [(s,SOME (string_of_typ stateT),NoSyn)]; val cs = Element.Constrains (map (fn (n,T) => (n,string_of_typ T)) ((map (fn (n,_) => (n,nameT)) all_comps) @ constrains)) in [fx,cs] end ) in thy |> namespace_definition (suffix namespaceN name) nameT parents_expr (map fst parent_comps) (map fst components) |> Context.theory_map (add_statespace full_name args parents components []) |> Locale.add_locale_i (SOME "") (suffix valuetypesN name) (Locale.Merge locs) [Element.Constrains constrains] |> ProofContext.theory_of o #2 |> fold interprete_parent_valuetypes parents |> Locale.add_locale (SOME "") name (Locale.Merge [Locale.Locale (suffix namespaceN full_name) ,Locale.Locale (suffix valuetypesN full_name)]) fixestate |> ProofContext.theory_of o #2 |> fold interprete_parent parents |> add_declaration (SOME full_name) (declare_declinfo components') end; (* prepare arguments *) fun read_raw_parent sg s = (case Sign.read_typ_abbrev sg s handle TYPE (msg, _, _) => error msg of Type (name, Ts) => (Ts, name) | _ => error ("Bad parent statespace specification: " ^ quote s)); fun read_typ sg s env = let fun def_sort (x, ~1) = AList.lookup (op =) env x | def_sort _ = NONE; val T = Type.no_tvars (Sign.read_def_typ (sg, def_sort) s) handle TYPE (msg, _, _) => error msg; in (T, Term.add_typ_tfrees (T, env)) end; fun cert_typ sg raw_T env = let val T = Type.no_tvars (Sign.certify_typ sg raw_T) handle TYPE (msg, _, _) => error msg in (T, Term.add_typ_tfrees (T, env)) end; fun gen_define_statespace prep_typ state_space args name parents comps thy = let (* - args distinct - only args may occur in comps and parent-instantiations - number of insts must match parent args - no duplicate renamings - renaming should occur in namespace *) val _ = message ("Defining statespace " ^ quote name ^ " ..."); fun add_parent (Ts,pname,rs) env = let val full_pname = Sign.full_name thy pname; val {args,components,...} = (case get_statespace (Context.Theory thy) full_pname of SOME r => r | NONE => error ("Undefined statespace " ^ quote pname)); val (Ts',env') = fold_map (prep_typ thy) Ts env handle ERROR msg => cat_error msg ("The error(s) above occured in parent statespace specification " ^ quote pname); val err_insts = if length args <> length Ts' then ["number of type instantiation(s) does not match arguments of parent statespace " ^ quote pname] else []; val rnames = map fst rs val err_dup_renamings = (case duplicates (op =) rnames of [] => [] | dups => ["Duplicate renaming(s) for " ^ commas dups]) val cnames = map fst components; val err_rename_unknowns = (case (filter (fn n => not (n mem cnames))) rnames of [] => [] | rs => ["Unknown components " ^ commas rs]); val rs' = map (AList.lookup (op =) rs o fst) components; val errs =err_insts @ err_dup_renamings @ err_rename_unknowns in if null errs then ((Ts',full_pname,rs'),env') else error (cat_lines (errs @ ["in parent statespace " ^ quote pname])) end; val (parents',env) = fold_map add_parent parents []; val err_dup_args = (case duplicates (op =) args of [] => [] | dups => ["Duplicate type argument(s) " ^ commas dups]); val err_dup_components = (case duplicates (op =) (map fst comps) of [] => [] | dups => ["Duplicate state-space components " ^ commas dups]); fun prep_comp (n,T) env = let val (T', env') = prep_typ thy T env handle ERROR msg => cat_error msg ("The error(s) above occured in component " ^ quote n) in ((n,T'), env') end; val (comps',env') = fold_map prep_comp comps env; val err_extra_frees = (case subtract (op =) args (map fst env') of [] => [] | extras => ["Extra free type variable(s) " ^ commas extras]); val defaultS = Sign.defaultS thy; val args' = map (fn x => (x, AList.lookup (op =) env x |> the_default defaultS)) args; fun fst_eq ((x:string,_),(y,_)) = x = y; fun snd_eq ((_,t:typ),(_,u)) = t = u; val raw_parent_comps = (List.concat (map (parent_components thy) parents')); fun check_type (n,T) = (case distinct (snd_eq) (filter (curry fst_eq (n,T)) raw_parent_comps) of [] => [] | [_] => [] | rs => ["Different types for component " ^ n ^": " ^ commas (map (Pretty.string_of o Display.pretty_ctyp o ctyp_of thy o snd) rs)]) val err_dup_types = List.concat (map check_type (duplicates fst_eq raw_parent_comps)) val parent_comps = distinct (fst_eq) raw_parent_comps; val all_comps = parent_comps @ comps'; val err_comp_in_parent = (case duplicates (op =) (map fst all_comps) of [] => [] | xs => ["Components already defined in parents: " ^ commas xs]); val errs = err_dup_args @ err_dup_components @ err_extra_frees @ err_dup_types @ err_comp_in_parent; in if null errs then thy |> statespace_definition state_space args' name parents' parent_comps comps' else error (cat_lines errs) end handle ERROR msg => cat_error msg ("Failed to define statespace " ^ quote name); val define_statespace = gen_define_statespace read_typ NONE; val define_statespace_i = gen_define_statespace cert_typ; (*** parse/print - translations ***) local fun map_get_comp f ctxt (Free (name,_)) = (case (get_comp ctxt name) of SOME (T,_) => f T T dummyT | NONE => (Syntax.free "arbitrary"(*; error "context not ready"*))) | map_get_comp _ _ _ = Syntax.free "arbitrary"; val get_comp_projection = map_get_comp project_free; val get_comp_injection = map_get_comp inject_free; fun name_of (Free (n,_)) = n; in fun gen_lookup_tr ctxt s n = (case get_comp (Context.Proof ctxt) n of SOME (T,_) => Syntax.const "StateFun.lookup"$Syntax.free (project_name T)$Syntax.free n$s | NONE => if get_silent (Context.Proof ctxt) then Syntax.const "StateFun.lookup"$Syntax.const "arbitrary"$Syntax.free n$s else raise TERM ("StateSpace.gen_lookup_tr: component " ^ n ^ " not defined",[])); fun lookup_tr ctxt [s,Free (n,_)] = gen_lookup_tr ctxt s n; fun lookup_swap_tr ctxt [Free (n,_),s] = gen_lookup_tr ctxt s n; fun lookup_tr' ctxt [_$Free (prj,_),n as (_$Free (name,_)),s] = ( case get_comp (Context.Proof ctxt) name of SOME (T,_) => if prj=project_name T then Syntax.const "_statespace_lookup" $ s $ n else raise Match | NONE => raise Match) | lookup_tr' _ ts = raise Match; fun gen_update_tr id ctxt n v s = let fun pname T = if id then "Fun.id" else project_name T fun iname T = if id then "Fun.id" else inject_name T in (case get_comp (Context.Proof ctxt) n of SOME (T,_) => Syntax.const "StateFun.update"$ Syntax.free (pname T)$Syntax.free (iname T)$ Syntax.free n$(Syntax.const KN $ v)$s | NONE => if get_silent (Context.Proof ctxt) then Syntax.const "StateFun.update"$ Syntax.const "arbitrary"$Syntax.const "arbitrary"$ Syntax.free n$(Syntax.const KN $ v)$s else raise TERM ("StateSpace.gen_update_tr: component " ^ n ^ " not defined",[])) end; fun update_tr ctxt [s,Free (n,_),v] = gen_update_tr false ctxt n v s; fun update_tr' ctxt [_$Free (prj,_),_$Free (inj,_),n as (_$Free (name,_)),(Const (k,_)$v),s] = if NameSpace.base k = NameSpace.base KN then (case get_comp (Context.Proof ctxt) name of SOME (T,_) => if inj=inject_name T andalso prj=project_name T then Syntax.const "_statespace_update" $ s $ n $ v else raise Match | NONE => raise Match) else raise Match | update_tr' _ _ = raise Match; end; (*** outer syntax *) local structure P = OuterParse and K = OuterKeyword in val type_insts = P.typ >> single || P.$$$ "(" |-- P.!!! (P.list1 P.typ --| P.$$$ ")") val comp = P.name -- (P.$$$ "::" |-- P.!!! P.typ); fun plus1_unless test scan = scan -- Scan.repeat (P.$$$ "+" |-- Scan.unless test (P.!!! scan)) >> op ::; val mapsto = P.$$$ "="; val rename = P.name -- (mapsto |-- P.name); val renames = Scan.optional (P.$$$ "[" |-- P.!!! (P.list1 rename --| P.$$$ "]")) []; val parent = ((type_insts -- P.xname) || (P.xname >> pair [])) -- renames >> (fn ((insts,name),renames) => (insts,name,renames)) val statespace_decl = P.type_args -- P.name -- (P.$$$ "=" |-- ((Scan.repeat1 comp >> pair []) || (plus1_unless comp parent -- Scan.optional (P.$$$ "+" |-- P.!!! (Scan.repeat1 comp)) []))) val statespace_command = OuterSyntax.command "statespace" "define state space" K.thy_decl (statespace_decl >> (fn ((args,name),(parents,comps)) => Toplevel.theory (define_statespace args name parents comps))) end; end;