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Abstract

The Hahn-Banach Theorem is one of the most fundamental results in
functional analysis. We present a fully formal proof of two versions of the
theorem, one for general linear spaces and another for normed spaces. This
development is based on simply-typed classical set-theory, as provided by
Isabelle/HOL.
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1 Preface

This is a fully formal proof of the Hahn-Banach Theorem. It closely follows
the informal presentation given in Heuser’s textbook [1, § 36]. Another formal
proof of the same theorem has been done in Mizar [3]. A general overview of
the relevance and history of the Hahn-Banach Theorem is given by Narici and
Beckenstein [2].

The document is structured as follows. The first part contains definitions of
basic notions of linear algebra: vector spaces, subspaces, normed spaces, con-
tinuous linear-forms, norm of functions and an order on functions by domain
extension. The second part contains some lemmas about the supremum (w.r.t.
the function order) and extension of non-maximal functions. With these pre-
liminaries, the main proof of the theorem (in its two versions) is conducted in
the third part. The dependencies of individual theories are as follows.
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Part I

Basic Notions

2 Bounds

theory Bounds imports Main Real begin

locale lub =
fixes A and x
assumes least [intro? ]: (

∧
a. a ∈ A =⇒ a ≤ b) =⇒ x ≤ b

and upper [intro? ]: a ∈ A =⇒ a ≤ x

lemmas [elim? ] = lub.least lub.upper

definition
the-lub :: ′a::order set ⇒ ′a where
the-lub A = The (lub A)

notation (xsymbols)
the-lub (

⊔
- [90 ] 90 )

lemma the-lub-equality [elim? ]:
includes lub
shows

⊔
A = (x :: ′a::order)

proof (unfold the-lub-def )
from lub-axioms show The (lub A) = x
proof
fix x ′ assume lub ′: lub A x ′

show x ′ = x
proof (rule order-antisym)
from lub ′ show x ′ ≤ x
proof
fix a assume a ∈ A
then show a ≤ x ..

qed
show x ≤ x ′

proof
fix a assume a ∈ A
with lub ′ show a ≤ x ′ ..

qed
qed

qed
qed

lemma the-lubI-ex :
assumes ex : ∃ x . lub A x
shows lub A (

⊔
A)

proof −
from ex obtain x where x : lub A x ..
also from x have [symmetric]:

⊔
A = x ..

finally show ?thesis .
qed
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lemma lub-compat : lub A x = isLub UNIV A x
proof −
have isUb UNIV A = (λx . A ∗<= x ∧ x ∈ UNIV )
by (rule ext) (simp only : isUb-def )

then show ?thesis
by (simp only : lub-def isLub-def leastP-def setge-def setle-def ) blast

qed

lemma real-complete:
fixes A :: real set
assumes nonempty : ∃ a. a ∈ A
and ex-upper : ∃ y . ∀ a ∈ A. a ≤ y

shows ∃ x . lub A x
proof −
from ex-upper have ∃ y . isUb UNIV A y
by (unfold isUb-def setle-def ) blast

with nonempty have ∃ x . isLub UNIV A x
by (rule reals-complete)

then show ?thesis by (simp only : lub-compat)
qed

end

3 Vector spaces

theory VectorSpace imports Real Bounds Zorn begin

3.1 Signature

For the definition of real vector spaces a type ′a of the sort {plus, minus, zero}
is considered, on which a real scalar multiplication · is declared.

consts
prod :: real ⇒ ′a::{plus, minus, zero} ⇒ ′a (infixr ′(∗ ′) 70 )

notation (xsymbols)
prod (infixr · 70 )

notation (HTML output)
prod (infixr · 70 )

3.2 Vector space laws

A vector space is a non-empty set V of elements from ′a with the following
vector space laws: The set V is closed under addition and scalar multiplication,
addition is associative and commutative; − x is the inverse of x w. r. t. addi-
tion and 0 is the neutral element of addition. Addition and multiplication are
distributive; scalar multiplication is associative and the real number 1 is the
neutral element of scalar multiplication.

locale vectorspace = var V +
assumes non-empty [iff , intro? ]: V 6= {}
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and add-closed [iff ]: x ∈ V =⇒ y ∈ V =⇒ x + y ∈ V
and mult-closed [iff ]: x ∈ V =⇒ a · x ∈ V
and add-assoc: x ∈ V =⇒ y ∈ V =⇒ z ∈ V =⇒ (x + y) + z = x + (y + z )
and add-commute: x ∈ V =⇒ y ∈ V =⇒ x + y = y + x
and diff-self [simp]: x ∈ V =⇒ x − x = 0
and add-zero-left [simp]: x ∈ V =⇒ 0 + x = x
and add-mult-distrib1 : x ∈ V =⇒ y ∈ V =⇒ a · (x + y) = a · x + a · y
and add-mult-distrib2 : x ∈ V =⇒ (a + b) · x = a · x + b · x
and mult-assoc: x ∈ V =⇒ (a ∗ b) · x = a · (b · x )
and mult-1 [simp]: x ∈ V =⇒ 1 · x = x
and negate-eq1 : x ∈ V =⇒ − x = (− 1 ) · x
and diff-eq1 : x ∈ V =⇒ y ∈ V =⇒ x − y = x + − y

lemma (in vectorspace) negate-eq2 : x ∈ V =⇒ (− 1 ) · x = − x
by (rule negate-eq1 [symmetric])

lemma (in vectorspace) negate-eq2a: x ∈ V =⇒ −1 · x = − x
by (simp add : negate-eq1 )

lemma (in vectorspace) diff-eq2 : x ∈ V =⇒ y ∈ V =⇒ x + − y = x − y
by (rule diff-eq1 [symmetric])

lemma (in vectorspace) diff-closed [iff ]: x ∈ V =⇒ y ∈ V =⇒ x − y ∈ V
by (simp add : diff-eq1 negate-eq1 )

lemma (in vectorspace) neg-closed [iff ]: x ∈ V =⇒ − x ∈ V
by (simp add : negate-eq1 )

lemma (in vectorspace) add-left-commute:
x ∈ V =⇒ y ∈ V =⇒ z ∈ V =⇒ x + (y + z ) = y + (x + z )

proof −
assume xyz : x ∈ V y ∈ V z ∈ V
hence x + (y + z ) = (x + y) + z
by (simp only : add-assoc)

also from xyz have ... = (y + x ) + z by (simp only : add-commute)
also from xyz have ... = y + (x + z ) by (simp only : add-assoc)
finally show ?thesis .

qed

theorems (in vectorspace) add-ac =
add-assoc add-commute add-left-commute

The existence of the zero element of a vector space follows from the non-
emptiness of carrier set.

lemma (in vectorspace) zero [iff ]: 0 ∈ V
proof −
from non-empty obtain x where x : x ∈ V by blast
then have 0 = x − x by (rule diff-self [symmetric])
also from x x have ... ∈ V by (rule diff-closed)
finally show ?thesis .

qed

lemma (in vectorspace) add-zero-right [simp]:
x ∈ V =⇒ x + 0 = x



3.2 Vector space laws 7

proof −
assume x : x ∈ V
from this and zero have x + 0 = 0 + x by (rule add-commute)
also from x have ... = x by (rule add-zero-left)
finally show ?thesis .

qed

lemma (in vectorspace) mult-assoc2 :
x ∈ V =⇒ a · b · x = (a ∗ b) · x

by (simp only : mult-assoc)

lemma (in vectorspace) diff-mult-distrib1 :
x ∈ V =⇒ y ∈ V =⇒ a · (x − y) = a · x − a · y

by (simp add : diff-eq1 negate-eq1 add-mult-distrib1 mult-assoc2 )

lemma (in vectorspace) diff-mult-distrib2 :
x ∈ V =⇒ (a − b) · x = a · x − (b · x )

proof −
assume x : x ∈ V
have (a − b) · x = (a + − b) · x
by (simp add : real-diff-def )

also from x have ... = a · x + (− b) · x
by (rule add-mult-distrib2 )

also from x have ... = a · x + − (b · x )
by (simp add : negate-eq1 mult-assoc2 )

also from x have ... = a · x − (b · x )
by (simp add : diff-eq1 )

finally show ?thesis .
qed

lemmas (in vectorspace) distrib =
add-mult-distrib1 add-mult-distrib2
diff-mult-distrib1 diff-mult-distrib2

Further derived laws:

lemma (in vectorspace) mult-zero-left [simp]:
x ∈ V =⇒ 0 · x = 0

proof −
assume x : x ∈ V
have 0 · x = (1 − 1 ) · x by simp
also have ... = (1 + − 1 ) · x by simp
also from x have ... = 1 · x + (− 1 ) · x
by (rule add-mult-distrib2 )

also from x have ... = x + (− 1 ) · x by simp
also from x have ... = x + − x by (simp add : negate-eq2a)
also from x have ... = x − x by (simp add : diff-eq2 )
also from x have ... = 0 by simp
finally show ?thesis .

qed

lemma (in vectorspace) mult-zero-right [simp]:
a · 0 = (0 :: ′a)

proof −
have a · 0 = a · (0 − (0 :: ′a)) by simp
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also have ... = a · 0 − a · 0
by (rule diff-mult-distrib1 ) simp-all

also have ... = 0 by simp
finally show ?thesis .

qed

lemma (in vectorspace) minus-mult-cancel [simp]:
x ∈ V =⇒ (− a) · − x = a · x

by (simp add : negate-eq1 mult-assoc2 )

lemma (in vectorspace) add-minus-left-eq-diff :
x ∈ V =⇒ y ∈ V =⇒ − x + y = y − x

proof −
assume xy : x ∈ V y ∈ V
hence − x + y = y + − x by (simp add : add-commute)
also from xy have ... = y − x by (simp add : diff-eq1 )
finally show ?thesis .

qed

lemma (in vectorspace) add-minus [simp]:
x ∈ V =⇒ x + − x = 0

by (simp add : diff-eq2 )

lemma (in vectorspace) add-minus-left [simp]:
x ∈ V =⇒ − x + x = 0

by (simp add : diff-eq2 add-commute)

lemma (in vectorspace) minus-minus [simp]:
x ∈ V =⇒ − (− x ) = x

by (simp add : negate-eq1 mult-assoc2 )

lemma (in vectorspace) minus-zero [simp]:
− (0 :: ′a) = 0

by (simp add : negate-eq1 )

lemma (in vectorspace) minus-zero-iff [simp]:
x ∈ V =⇒ (− x = 0 ) = (x = 0 )

proof
assume x : x ∈ V
{
from x have x = − (− x ) by (simp add : minus-minus)
also assume − x = 0
also have − ... = 0 by (rule minus-zero)
finally show x = 0 .

next
assume x = 0
then show − x = 0 by simp

}
qed

lemma (in vectorspace) add-minus-cancel [simp]:
x ∈ V =⇒ y ∈ V =⇒ x + (− x + y) = y

by (simp add : add-assoc [symmetric] del : add-commute)
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lemma (in vectorspace) minus-add-cancel [simp]:
x ∈ V =⇒ y ∈ V =⇒ − x + (x + y) = y

by (simp add : add-assoc [symmetric] del : add-commute)

lemma (in vectorspace) minus-add-distrib [simp]:
x ∈ V =⇒ y ∈ V =⇒ − (x + y) = − x + − y

by (simp add : negate-eq1 add-mult-distrib1 )

lemma (in vectorspace) diff-zero [simp]:
x ∈ V =⇒ x − 0 = x

by (simp add : diff-eq1 )

lemma (in vectorspace) diff-zero-right [simp]:
x ∈ V =⇒ 0 − x = − x

by (simp add : diff-eq1 )

lemma (in vectorspace) add-left-cancel :
x ∈ V =⇒ y ∈ V =⇒ z ∈ V =⇒ (x + y = x + z ) = (y = z )

proof
assume x : x ∈ V and y : y ∈ V and z : z ∈ V
{
from y have y = 0 + y by simp
also from x y have ... = (− x + x ) + y by simp
also from x y have ... = − x + (x + y)
by (simp add : add-assoc neg-closed)

also assume x + y = x + z
also from x z have − x + (x + z ) = − x + x + z
by (simp add : add-assoc [symmetric] neg-closed)

also from x z have ... = z by simp
finally show y = z .

next
assume y = z
then show x + y = x + z by (simp only :)

}
qed

lemma (in vectorspace) add-right-cancel :
x ∈ V =⇒ y ∈ V =⇒ z ∈ V =⇒ (y + x = z + x ) = (y = z )

by (simp only : add-commute add-left-cancel)

lemma (in vectorspace) add-assoc-cong :
x ∈ V =⇒ y ∈ V =⇒ x ′ ∈ V =⇒ y ′ ∈ V =⇒ z ∈ V

=⇒ x + y = x ′ + y ′ =⇒ x + (y + z ) = x ′ + (y ′ + z )
by (simp only : add-assoc [symmetric])

lemma (in vectorspace) mult-left-commute:
x ∈ V =⇒ a · b · x = b · a · x

by (simp add : real-mult-commute mult-assoc2 )

lemma (in vectorspace) mult-zero-uniq :
x ∈ V =⇒ x 6= 0 =⇒ a · x = 0 =⇒ a = 0

proof (rule classical)
assume a: a 6= 0
assume x : x ∈ V x 6= 0 and ax : a · x = 0
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from x a have x = (inverse a ∗ a) · x by simp
also from 〈x ∈ V 〉 have ... = inverse a · (a · x ) by (rule mult-assoc)
also from ax have ... = inverse a · 0 by simp
also have ... = 0 by simp
finally have x = 0 .
with 〈x 6= 0 〉 show a = 0 by contradiction

qed

lemma (in vectorspace) mult-left-cancel :
x ∈ V =⇒ y ∈ V =⇒ a 6= 0 =⇒ (a · x = a · y) = (x = y)

proof
assume x : x ∈ V and y : y ∈ V and a: a 6= 0
from x have x = 1 · x by simp
also from a have ... = (inverse a ∗ a) · x by simp
also from x have ... = inverse a · (a · x )
by (simp only : mult-assoc)

also assume a · x = a · y
also from a y have inverse a · ... = y
by (simp add : mult-assoc2 )

finally show x = y .
next
assume x = y
then show a · x = a · y by (simp only :)

qed

lemma (in vectorspace) mult-right-cancel :
x ∈ V =⇒ x 6= 0 =⇒ (a · x = b · x ) = (a = b)

proof
assume x : x ∈ V and neq : x 6= 0
{
from x have (a − b) · x = a · x − b · x
by (simp add : diff-mult-distrib2 )

also assume a · x = b · x
with x have a · x − b · x = 0 by simp
finally have (a − b) · x = 0 .
with x neq have a − b = 0 by (rule mult-zero-uniq)
thus a = b by simp

next
assume a = b
then show a · x = b · x by (simp only :)

}
qed

lemma (in vectorspace) eq-diff-eq :
x ∈ V =⇒ y ∈ V =⇒ z ∈ V =⇒ (x = z − y) = (x + y = z )

proof
assume x : x ∈ V and y : y ∈ V and z : z ∈ V
{
assume x = z − y
hence x + y = z − y + y by simp
also from y z have ... = z + − y + y
by (simp add : diff-eq1 )

also have ... = z + (− y + y)
by (rule add-assoc) (simp-all add : y z )
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also from y z have ... = z + 0
by (simp only : add-minus-left)

also from z have ... = z
by (simp only : add-zero-right)

finally show x + y = z .
next
assume x + y = z
hence z − y = (x + y) − y by simp
also from x y have ... = x + y + − y
by (simp add : diff-eq1 )

also have ... = x + (y + − y)
by (rule add-assoc) (simp-all add : x y)

also from x y have ... = x by simp
finally show x = z − y ..

}
qed

lemma (in vectorspace) add-minus-eq-minus:
x ∈ V =⇒ y ∈ V =⇒ x + y = 0 =⇒ x = − y

proof −
assume x : x ∈ V and y : y ∈ V
from x y have x = (− y + y) + x by simp
also from x y have ... = − y + (x + y) by (simp add : add-ac)
also assume x + y = 0
also from y have − y + 0 = − y by simp
finally show x = − y .

qed

lemma (in vectorspace) add-minus-eq :
x ∈ V =⇒ y ∈ V =⇒ x − y = 0 =⇒ x = y

proof −
assume x : x ∈ V and y : y ∈ V
assume x − y = 0
with x y have eq : x + − y = 0 by (simp add : diff-eq1 )
with - - have x = − (− y)
by (rule add-minus-eq-minus) (simp-all add : x y)

with x y show x = y by simp
qed

lemma (in vectorspace) add-diff-swap:
a ∈ V =⇒ b ∈ V =⇒ c ∈ V =⇒ d ∈ V =⇒ a + b = c + d

=⇒ a − c = d − b
proof −
assume vs: a ∈ V b ∈ V c ∈ V d ∈ V
and eq : a + b = c + d

then have − c + (a + b) = − c + (c + d)
by (simp add : add-left-cancel)

also have ... = d using 〈c ∈ V 〉 〈d ∈ V 〉 by (rule minus-add-cancel)
finally have eq : − c + (a + b) = d .
from vs have a − c = (− c + (a + b)) + − b
by (simp add : add-ac diff-eq1 )

also from vs eq have ... = d + − b
by (simp add : add-right-cancel)

also from vs have ... = d − b by (simp add : diff-eq2 )
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finally show a − c = d − b .
qed

lemma (in vectorspace) vs-add-cancel-21 :
x ∈ V =⇒ y ∈ V =⇒ z ∈ V =⇒ u ∈ V

=⇒ (x + (y + z ) = y + u) = (x + z = u)
proof
assume vs: x ∈ V y ∈ V z ∈ V u ∈ V
{
from vs have x + z = − y + y + (x + z ) by simp
also have ... = − y + (y + (x + z ))
by (rule add-assoc) (simp-all add : vs)

also from vs have y + (x + z ) = x + (y + z )
by (simp add : add-ac)

also assume x + (y + z ) = y + u
also from vs have − y + (y + u) = u by simp
finally show x + z = u .

next
assume x + z = u
with vs show x + (y + z ) = y + u
by (simp only : add-left-commute [of x ])

}
qed

lemma (in vectorspace) add-cancel-end :
x ∈ V =⇒ y ∈ V =⇒ z ∈ V =⇒ (x + (y + z ) = y) = (x = − z )

proof
assume vs: x ∈ V y ∈ V z ∈ V
{
assume x + (y + z ) = y
with vs have (x + z ) + y = 0 + y
by (simp add : add-ac)

with vs have x + z = 0
by (simp only : add-right-cancel add-closed zero)

with vs show x = − z by (simp add : add-minus-eq-minus)
next
assume eq : x = − z
hence x + (y + z ) = − z + (y + z ) by simp
also have ... = y + (− z + z )
by (rule add-left-commute) (simp-all add : vs)

also from vs have ... = y by simp
finally show x + (y + z ) = y .

}
qed

end

4 Subspaces

theory Subspace imports VectorSpace begin
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4.1 Definition

A non-empty subset U of a vector space V is a subspace of V, iff U is closed
under addition and scalar multiplication.

locale subspace = var U + var V +
assumes non-empty [iff , intro]: U 6= {}
and subset [iff ]: U ⊆ V
and add-closed [iff ]: x ∈ U =⇒ y ∈ U =⇒ x + y ∈ U
and mult-closed [iff ]: x ∈ U =⇒ a · x ∈ U

notation (symbols)
subspace (infix � 50 )

declare vectorspace.intro [intro? ] subspace.intro [intro? ]

lemma subspace-subset [elim]: U � V =⇒ U ⊆ V
by (rule subspace.subset)

lemma (in subspace) subsetD [iff ]: x ∈ U =⇒ x ∈ V
using subset by blast

lemma subspaceD [elim]: U � V =⇒ x ∈ U =⇒ x ∈ V
by (rule subspace.subsetD)

lemma rev-subspaceD [elim? ]: x ∈ U =⇒ U � V =⇒ x ∈ V
by (rule subspace.subsetD)

lemma (in subspace) diff-closed [iff ]:
includes vectorspace
shows x ∈ U =⇒ y ∈ U =⇒ x − y ∈ U
by (simp add : diff-eq1 negate-eq1 )

Similar as for linear spaces, the existence of the zero element in every subspace
follows from the non-emptiness of the carrier set and by vector space laws.

lemma (in subspace) zero [intro]:
includes vectorspace
shows 0 ∈ U

proof −
have U 6= {} by (rule U-V .non-empty)
then obtain x where x : x ∈ U by blast
hence x ∈ V .. hence 0 = x − x by simp
also from 〈vectorspace V 〉 x x have ... ∈ U by (rule U-V .diff-closed)
finally show ?thesis .

qed

lemma (in subspace) neg-closed [iff ]:
includes vectorspace
shows x ∈ U =⇒ − x ∈ U
by (simp add : negate-eq1 )

Further derived laws: every subspace is a vector space.

lemma (in subspace) vectorspace [iff ]:
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includes vectorspace
shows vectorspace U

proof
show U 6= {} ..
fix x y z assume x : x ∈ U and y : y ∈ U and z : z ∈ U
fix a b :: real
from x y show x + y ∈ U by simp
from x show a · x ∈ U by simp
from x y z show (x + y) + z = x + (y + z ) by (simp add : add-ac)
from x y show x + y = y + x by (simp add : add-ac)
from x show x − x = 0 by simp
from x show 0 + x = x by simp
from x y show a · (x + y) = a · x + a · y by (simp add : distrib)
from x show (a + b) · x = a · x + b · x by (simp add : distrib)
from x show (a ∗ b) · x = a · b · x by (simp add : mult-assoc)
from x show 1 · x = x by simp
from x show − x = − 1 · x by (simp add : negate-eq1 )
from x y show x − y = x + − y by (simp add : diff-eq1 )

qed

The subspace relation is reflexive.

lemma (in vectorspace) subspace-refl [intro]: V � V
proof
show V 6= {} ..
show V ⊆ V ..
fix x y assume x : x ∈ V and y : y ∈ V
fix a :: real
from x y show x + y ∈ V by simp
from x show a · x ∈ V by simp

qed

The subspace relation is transitive.

lemma (in vectorspace) subspace-trans [trans]:
U � V =⇒ V � W =⇒ U � W

proof
assume uv : U � V and vw : V � W
from uv show U 6= {} by (rule subspace.non-empty)
show U ⊆ W
proof −
from uv have U ⊆ V by (rule subspace.subset)
also from vw have V ⊆ W by (rule subspace.subset)
finally show ?thesis .

qed
fix x y assume x : x ∈ U and y : y ∈ U
from uv and x y show x + y ∈ U by (rule subspace.add-closed)
from uv and x show

∧
a. a · x ∈ U by (rule subspace.mult-closed)

qed

4.2 Linear closure

The linear closure of a vector x is the set of all scalar multiples of x.

definition
lin :: ( ′a::{minus, plus, zero}) ⇒ ′a set where
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lin x = {a · x | a. True}

lemma linI [intro]: y = a · x =⇒ y ∈ lin x
by (unfold lin-def ) blast

lemma linI ′ [iff ]: a · x ∈ lin x
by (unfold lin-def ) blast

lemma linE [elim]:
x ∈ lin v =⇒ (

∧
a::real . x = a · v =⇒ C ) =⇒ C

by (unfold lin-def ) blast

Every vector is contained in its linear closure.

lemma (in vectorspace) x-lin-x [iff ]: x ∈ V =⇒ x ∈ lin x
proof −
assume x ∈ V
hence x = 1 · x by simp
also have . . . ∈ lin x ..
finally show ?thesis .

qed

lemma (in vectorspace) 0-lin-x [iff ]: x ∈ V =⇒ 0 ∈ lin x
proof
assume x ∈ V
thus 0 = 0 · x by simp

qed

Any linear closure is a subspace.

lemma (in vectorspace) lin-subspace [intro]:
x ∈ V =⇒ lin x � V

proof
assume x : x ∈ V
thus lin x 6= {} by (auto simp add : x-lin-x )
show lin x ⊆ V
proof
fix x ′ assume x ′ ∈ lin x
then obtain a where x ′ = a · x ..
with x show x ′ ∈ V by simp

qed
fix x ′ x ′′ assume x ′: x ′ ∈ lin x and x ′′: x ′′ ∈ lin x
show x ′ + x ′′ ∈ lin x
proof −
from x ′ obtain a ′ where x ′ = a ′ · x ..
moreover from x ′′ obtain a ′′ where x ′′ = a ′′ · x ..
ultimately have x ′ + x ′′ = (a ′ + a ′′) · x
using x by (simp add : distrib)

also have . . . ∈ lin x ..
finally show ?thesis .

qed
fix a :: real
show a · x ′ ∈ lin x
proof −
from x ′ obtain a ′ where x ′ = a ′ · x ..
with x have a · x ′ = (a ∗ a ′) · x by (simp add : mult-assoc)
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also have . . . ∈ lin x ..
finally show ?thesis .

qed
qed

Any linear closure is a vector space.

lemma (in vectorspace) lin-vectorspace [intro]:
assumes x ∈ V
shows vectorspace (lin x )

proof −
from 〈x ∈ V 〉 have subspace (lin x ) V
by (rule lin-subspace)

from this and 〈vectorspace V 〉 show ?thesis
by (rule subspace.vectorspace)

qed

4.3 Sum of two vectorspaces

The sum of two vectorspaces U and V is the set of all sums of elements from
U and V.

instance set :: (plus) plus ..

defs (overloaded)
sum-def : U + V ≡ {u + v | u v . u ∈ U ∧ v ∈ V }

lemma sumE [elim]:
x ∈ U + V =⇒ (

∧
u v . x = u + v =⇒ u ∈ U =⇒ v ∈ V =⇒ C ) =⇒ C

by (unfold sum-def ) blast

lemma sumI [intro]:
u ∈ U =⇒ v ∈ V =⇒ x = u + v =⇒ x ∈ U + V

by (unfold sum-def ) blast

lemma sumI ′ [intro]:
u ∈ U =⇒ v ∈ V =⇒ u + v ∈ U + V

by (unfold sum-def ) blast

U is a subspace of U + V.

lemma subspace-sum1 [iff ]:
includes vectorspace U + vectorspace V
shows U � U + V

proof
show U 6= {} ..
show U ⊆ U + V
proof
fix x assume x : x ∈ U
moreover have 0 ∈ V ..
ultimately have x + 0 ∈ U + V ..
with x show x ∈ U + V by simp

qed
fix x y assume x : x ∈ U and y ∈ U
thus x + y ∈ U by simp
from x show

∧
a. a · x ∈ U by simp
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qed

The sum of two subspaces is again a subspace.

lemma sum-subspace [intro? ]:
includes subspace U E + vectorspace E + subspace V E
shows U + V � E

proof
have 0 ∈ U + V
proof
show 0 ∈ U using 〈vectorspace E 〉 ..
show 0 ∈ V using 〈vectorspace E 〉 ..
show (0 :: ′a) = 0 + 0 by simp

qed
thus U + V 6= {} by blast
show U + V ⊆ E
proof
fix x assume x ∈ U + V
then obtain u v where x = u + v and

u ∈ U and v ∈ V ..
then show x ∈ E by simp

qed
fix x y assume x : x ∈ U + V and y : y ∈ U + V
show x + y ∈ U + V
proof −
from x obtain ux vx where x = ux + vx and ux ∈ U and vx ∈ V ..
moreover
from y obtain uy vy where y = uy + vy and uy ∈ U and vy ∈ V ..
ultimately
have ux + uy ∈ U
and vx + vy ∈ V
and x + y = (ux + uy) + (vx + vy)
using x y by (simp-all add : add-ac)

thus ?thesis ..
qed
fix a show a · x ∈ U + V
proof −
from x obtain u v where x = u + v and u ∈ U and v ∈ V ..
hence a · u ∈ U and a · v ∈ V
and a · x = (a · u) + (a · v) by (simp-all add : distrib)

thus ?thesis ..
qed

qed

The sum of two subspaces is a vectorspace.

lemma sum-vs [intro? ]:
U � E =⇒ V � E =⇒ vectorspace E =⇒ vectorspace (U + V )

by (rule subspace.vectorspace) (rule sum-subspace)

4.4 Direct sums

The sum of U and V is called direct, iff the zero element is the only common
element of U and V. For every element x of the direct sum of U and V the
decomposition in x = u + v with u ∈ U and v ∈ V is unique.
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lemma decomp:
includes vectorspace E + subspace U E + subspace V E
assumes direct : U ∩ V = {0}
and u1 : u1 ∈ U and u2 : u2 ∈ U
and v1 : v1 ∈ V and v2 : v2 ∈ V
and sum: u1 + v1 = u2 + v2

shows u1 = u2 ∧ v1 = v2
proof
have U : vectorspace U
using 〈subspace U E 〉 〈vectorspace E 〉 by (rule subspace.vectorspace)

have V : vectorspace V
using 〈subspace V E 〉 〈vectorspace E 〉 by (rule subspace.vectorspace)

from u1 u2 v1 v2 and sum have eq : u1 − u2 = v2 − v1
by (simp add : add-diff-swap)

from u1 u2 have u: u1 − u2 ∈ U
by (rule vectorspace.diff-closed [OF U ])

with eq have v ′: v2 − v1 ∈ U by (simp only :)
from v2 v1 have v : v2 − v1 ∈ V
by (rule vectorspace.diff-closed [OF V ])

with eq have u ′: u1 − u2 ∈ V by (simp only :)

show u1 = u2
proof (rule add-minus-eq)
from u1 show u1 ∈ E ..
from u2 show u2 ∈ E ..
from u u ′ and direct show u1 − u2 = 0 by blast

qed
show v1 = v2
proof (rule add-minus-eq [symmetric])
from v1 show v1 ∈ E ..
from v2 show v2 ∈ E ..
from v v ′ and direct show v2 − v1 = 0 by blast

qed
qed

An application of the previous lemma will be used in the proof of the Hahn-
Banach Theorem (see page 40): for any element y + a · x 0 of the direct sum of
a vectorspace H and the linear closure of x 0 the components y ∈ H and a are
uniquely determined.

lemma decomp-H ′:
includes vectorspace E + subspace H E
assumes y1 : y1 ∈ H and y2 : y2 ∈ H
and x ′: x ′ /∈ H x ′ ∈ E x ′ 6= 0
and eq : y1 + a1 · x ′ = y2 + a2 · x ′

shows y1 = y2 ∧ a1 = a2
proof
have c: y1 = y2 ∧ a1 · x ′ = a2 · x ′

proof (rule decomp)
show a1 · x ′ ∈ lin x ′ ..
show a2 · x ′ ∈ lin x ′ ..
show H ∩ lin x ′ = {0}
proof
show H ∩ lin x ′ ⊆ {0}
proof
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fix x assume x : x ∈ H ∩ lin x ′

then obtain a where xx ′: x = a · x ′

by blast
have x = 0
proof cases
assume a = 0
with xx ′ and x ′ show ?thesis by simp

next
assume a: a 6= 0
from x have x ∈ H ..
with xx ′ have inverse a · a · x ′ ∈ H by simp
with a and x ′ have x ′ ∈ H by (simp add : mult-assoc2 )
with 〈x ′ /∈ H 〉 show ?thesis by contradiction

qed
thus x ∈ {0} ..

qed
show {0} ⊆ H ∩ lin x ′

proof −
have 0 ∈ H using 〈vectorspace E 〉 ..
moreover have 0 ∈ lin x ′ using 〈x ′ ∈ E 〉 ..
ultimately show ?thesis by blast

qed
qed
show lin x ′ � E using 〈x ′ ∈ E 〉 ..

qed (rule 〈vectorspace E 〉, rule 〈subspace H E 〉, rule y1 , rule y2 , rule eq)
thus y1 = y2 ..
from c have a1 · x ′ = a2 · x ′ ..
with x ′ show a1 = a2 by (simp add : mult-right-cancel)

qed

Since for any element y + a · x ′ of the direct sum of a vectorspace H and the
linear closure of x ′ the components y ∈ H and a are unique, it follows from y
∈ H that a = 0.

lemma decomp-H ′-H :
includes vectorspace E + subspace H E
assumes t : t ∈ H
and x ′: x ′ /∈ H x ′ ∈ E x ′ 6= 0

shows (SOME (y , a). t = y + a · x ′ ∧ y ∈ H ) = (t , 0 )
proof (rule, simp-all only : split-paired-all split-conv)
from t x ′ show t = t + 0 · x ′ ∧ t ∈ H by simp
fix y and a assume ya: t = y + a · x ′ ∧ y ∈ H
have y = t ∧ a = 0
proof (rule decomp-H ′)
from ya x ′ show y + a · x ′ = t + 0 · x ′ by simp
from ya show y ∈ H ..

qed (rule 〈vectorspace E 〉, rule 〈subspace H E 〉, rule t , (rule x ′)+)
with t x ′ show (y , a) = (y + a · x ′, 0 ) by simp

qed

The components y ∈ H and a in y + a · x ′ are unique, so the function h ′

defined by h ′ (y + a · x ′) = h y + a · ξ is definite.

lemma h ′-definite:
includes var H
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assumes h ′-def :
h ′ ≡ (λx . let (y , a) = SOME (y , a). (x = y + a · x ′ ∧ y ∈ H )

in (h y) + a ∗ xi)
and x : x = y + a · x ′

includes vectorspace E + subspace H E
assumes y : y ∈ H
and x ′: x ′ /∈ H x ′ ∈ E x ′ 6= 0

shows h ′ x = h y + a ∗ xi
proof −
from x y x ′ have x ∈ H + lin x ′ by auto
have ∃ !p. (λ(y , a). x = y + a · x ′ ∧ y ∈ H ) p (is ∃ !p. ?P p)
proof (rule ex-ex1I )
from x y show ∃ p. ?P p by blast
fix p q assume p: ?P p and q : ?P q
show p = q
proof −
from p have xp: x = fst p + snd p · x ′ ∧ fst p ∈ H
by (cases p) simp

from q have xq : x = fst q + snd q · x ′ ∧ fst q ∈ H
by (cases q) simp

have fst p = fst q ∧ snd p = snd q
proof (rule decomp-H ′)
from xp show fst p ∈ H ..
from xq show fst q ∈ H ..
from xp and xq show fst p + snd p · x ′ = fst q + snd q · x ′

by simp
qed (rule 〈vectorspace E 〉, rule 〈subspace H E 〉, (rule x ′)+)
thus ?thesis by (cases p, cases q) simp

qed
qed
hence eq : (SOME (y , a). x = y + a · x ′ ∧ y ∈ H ) = (y , a)
by (rule some1-equality) (simp add : x y)

with h ′-def show h ′ x = h y + a ∗ xi by (simp add : Let-def )
qed

end

5 Normed vector spaces

theory NormedSpace imports Subspace begin

5.1 Quasinorms

A seminorm ‖·‖ is a function on a real vector space into the reals that has the
following properties: it is positive definite, absolute homogenous and subaddi-
tive.

locale norm-syntax =
fixes norm :: ′a ⇒ real (‖-‖)

locale seminorm = var V + norm-syntax +
assumes ge-zero [iff? ]: x ∈ V =⇒ 0 ≤ ‖x‖
and abs-homogenous [iff? ]: x ∈ V =⇒ ‖a · x‖ = |a| ∗ ‖x‖
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and subadditive [iff? ]: x ∈ V =⇒ y ∈ V =⇒ ‖x + y‖ ≤ ‖x‖ + ‖y‖

declare seminorm.intro [intro? ]

lemma (in seminorm) diff-subadditive:
includes vectorspace
shows x ∈ V =⇒ y ∈ V =⇒ ‖x − y‖ ≤ ‖x‖ + ‖y‖

proof −
assume x : x ∈ V and y : y ∈ V
hence x − y = x + − 1 · y
by (simp add : diff-eq2 negate-eq2a)

also from x y have ‖. . .‖ ≤ ‖x‖ + ‖− 1 · y‖
by (simp add : subadditive)

also from y have ‖− 1 · y‖ = |− 1 | ∗ ‖y‖
by (rule abs-homogenous)

also have . . . = ‖y‖ by simp
finally show ?thesis .

qed

lemma (in seminorm) minus:
includes vectorspace
shows x ∈ V =⇒ ‖− x‖ = ‖x‖

proof −
assume x : x ∈ V
hence − x = − 1 · x by (simp only : negate-eq1 )
also from x have ‖. . .‖ = |− 1 | ∗ ‖x‖
by (rule abs-homogenous)

also have . . . = ‖x‖ by simp
finally show ?thesis .

qed

5.2 Norms

A norm ‖·‖ is a seminorm that maps only the 0 vector to 0.

locale norm = seminorm +
assumes zero-iff [iff ]: x ∈ V =⇒ (‖x‖ = 0 ) = (x = 0 )

5.3 Normed vector spaces

A vector space together with a norm is called a normed space.

locale normed-vectorspace = vectorspace + norm

declare normed-vectorspace.intro [intro? ]

lemma (in normed-vectorspace) gt-zero [intro? ]:
x ∈ V =⇒ x 6= 0 =⇒ 0 < ‖x‖

proof −
assume x : x ∈ V and neq : x 6= 0
from x have 0 ≤ ‖x‖ ..
also have [symmetric]: . . . 6= 0
proof
assume ‖x‖ = 0
with x have x = 0 by simp
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with neq show False by contradiction
qed
finally show ?thesis .

qed

Any subspace of a normed vector space is again a normed vectorspace.

lemma subspace-normed-vs [intro? ]:
includes subspace F E + normed-vectorspace E
shows normed-vectorspace F norm

proof
show vectorspace F by (rule vectorspace) unfold-locales

next
have NormedSpace.norm E norm by unfold-locales
with subset show NormedSpace.norm F norm
by (simp add : norm-def seminorm-def norm-axioms-def )

qed

end

6 Linearforms

theory Linearform imports VectorSpace begin

A linear form is a function on a vector space into the reals that is additive and
multiplicative.

locale linearform = var V + var f +
assumes add [iff ]: x ∈ V =⇒ y ∈ V =⇒ f (x + y) = f x + f y
and mult [iff ]: x ∈ V =⇒ f (a · x ) = a ∗ f x

declare linearform.intro [intro? ]

lemma (in linearform) neg [iff ]:
includes vectorspace
shows x ∈ V =⇒ f (− x ) = − f x

proof −
assume x : x ∈ V
hence f (− x ) = f ((− 1 ) · x ) by (simp add : negate-eq1 )
also from x have ... = (− 1 ) ∗ (f x ) by (rule mult)
also from x have ... = − (f x ) by simp
finally show ?thesis .

qed

lemma (in linearform) diff [iff ]:
includes vectorspace
shows x ∈ V =⇒ y ∈ V =⇒ f (x − y) = f x − f y

proof −
assume x : x ∈ V and y : y ∈ V
hence x − y = x + − y by (rule diff-eq1 )
also have f ... = f x + f (− y) by (rule add) (simp-all add : x y)
also have f (− y) = − f y using 〈vectorspace V 〉 y by (rule neg)
finally show ?thesis by simp

qed



23

Every linear form yields 0 for the 0 vector.

lemma (in linearform) zero [iff ]:
includes vectorspace
shows f 0 = 0

proof −
have f 0 = f (0 − 0 ) by simp
also have . . . = f 0 − f 0 using 〈vectorspace V 〉 by (rule diff ) simp-all
also have . . . = 0 by simp
finally show ?thesis .

qed

end

7 An order on functions

theory FunctionOrder imports Subspace Linearform begin

7.1 The graph of a function

We define the graph of a (real) function f with domain F as the set

{(x , f x ). x ∈ F}

So we are modeling partial functions by specifying the domain and the mapping
function. We use the term “function” also for its graph.

types ′a graph = ( ′a × real) set

definition
graph :: ′a set ⇒ ( ′a ⇒ real) ⇒ ′a graph where
graph F f = {(x , f x ) | x . x ∈ F}

lemma graphI [intro]: x ∈ F =⇒ (x , f x ) ∈ graph F f
by (unfold graph-def ) blast

lemma graphI2 [intro? ]: x ∈ F =⇒ ∃ t ∈ graph F f . t = (x , f x )
by (unfold graph-def ) blast

lemma graphE [elim? ]:
(x , y) ∈ graph F f =⇒ (x ∈ F =⇒ y = f x =⇒ C ) =⇒ C

by (unfold graph-def ) blast

7.2 Functions ordered by domain extension

A function h ′ is an extension of h, iff the graph of h is a subset of the graph of
h ′.

lemma graph-extI :
(
∧

x . x ∈ H =⇒ h x = h ′ x ) =⇒ H ⊆ H ′

=⇒ graph H h ⊆ graph H ′ h ′

by (unfold graph-def ) blast
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lemma graph-extD1 [dest? ]:
graph H h ⊆ graph H ′ h ′ =⇒ x ∈ H =⇒ h x = h ′ x
by (unfold graph-def ) blast

lemma graph-extD2 [dest? ]:
graph H h ⊆ graph H ′ h ′ =⇒ H ⊆ H ′

by (unfold graph-def ) blast

7.3 Domain and function of a graph

The inverse functions to graph are domain and funct.

definition
domain :: ′a graph ⇒ ′a set where
domain g = {x . ∃ y . (x , y) ∈ g}

definition
funct :: ′a graph ⇒ ( ′a ⇒ real) where
funct g = (λx . (SOME y . (x , y) ∈ g))

The following lemma states that g is the graph of a function if the relation
induced by g is unique.

lemma graph-domain-funct :
assumes uniq :

∧
x y z . (x , y) ∈ g =⇒ (x , z ) ∈ g =⇒ z = y

shows graph (domain g) (funct g) = g
proof (unfold domain-def funct-def graph-def , auto)
fix a b assume g : (a, b) ∈ g
from g show (a, SOME y . (a, y) ∈ g) ∈ g by (rule someI2 )
from g show ∃ y . (a, y) ∈ g ..
from g show b = (SOME y . (a, y) ∈ g)
proof (rule some-equality [symmetric])
fix y assume (a, y) ∈ g
with g show y = b by (rule uniq)

qed
qed

7.4 Norm-preserving extensions of a function

Given a linear form f on the space F and a seminorm p on E. The set of all
linear extensions of f, to superspaces H of F, which are bounded by p, is defined
as follows.

definition
norm-pres-extensions ::

′a::{plus, minus, zero} set ⇒ ( ′a ⇒ real) ⇒ ′a set ⇒ ( ′a ⇒ real)
⇒ ′a graph set where

norm-pres-extensions E p F f
= {g . ∃H h. g = graph H h

∧ linearform H h
∧ H � E
∧ F � H
∧ graph F f ⊆ graph H h
∧ (∀ x ∈ H . h x ≤ p x )}
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lemma norm-pres-extensionE [elim]:
g ∈ norm-pres-extensions E p F f
=⇒ (

∧
H h. g = graph H h =⇒ linearform H h

=⇒ H � E =⇒ F � H =⇒ graph F f ⊆ graph H h
=⇒ ∀ x ∈ H . h x ≤ p x =⇒ C ) =⇒ C

by (unfold norm-pres-extensions-def ) blast

lemma norm-pres-extensionI2 [intro]:
linearform H h =⇒ H � E =⇒ F � H

=⇒ graph F f ⊆ graph H h =⇒ ∀ x ∈ H . h x ≤ p x
=⇒ graph H h ∈ norm-pres-extensions E p F f

by (unfold norm-pres-extensions-def ) blast

lemma norm-pres-extensionI :
∃H h. g = graph H h
∧ linearform H h
∧ H � E
∧ F � H
∧ graph F f ⊆ graph H h
∧ (∀ x ∈ H . h x ≤ p x ) =⇒ g ∈ norm-pres-extensions E p F f

by (unfold norm-pres-extensions-def ) blast

end

8 The norm of a function

theory FunctionNorm imports NormedSpace FunctionOrder begin

8.1 Continuous linear forms

A linear form f on a normed vector space (V , ‖·‖) is continuous, iff it is bounded,
i.e.

∃ c ∈ R. ∀ x ∈ V . |f x | ≤ c · ‖x‖

In our application no other functions than linear forms are considered, so we
can define continuous linear forms as bounded linear forms:

locale continuous = var V + norm-syntax + linearform +
assumes bounded : ∃ c. ∀ x ∈ V . |f x | ≤ c ∗ ‖x‖

declare continuous.intro [intro? ] continuous-axioms.intro [intro? ]

lemma continuousI [intro]:
includes norm-syntax + linearform
assumes r :

∧
x . x ∈ V =⇒ |f x | ≤ c ∗ ‖x‖

shows continuous V norm f
proof
show linearform V f by fact
from r have ∃ c. ∀ x∈V . |f x | ≤ c ∗ ‖x‖ by blast
then show continuous-axioms V norm f ..

qed
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8.2 The norm of a linear form

The least real number c for which holds

∀ x ∈ V . |f x | ≤ c · ‖x‖

is called the norm of f.
For non-trivial vector spaces V 6= {0} the norm can be defined as

‖f ‖ = sup x 6= 0 . |f x | / ‖x‖

For the case V = {0} the supremum would be taken from an empty set. Since
IR is unbounded, there would be no supremum. To avoid this situation it must
be guaranteed that there is an element in this set. This element must be {} ≥
0 so that fn-norm has the norm properties. Furthermore it does not have to
change the norm in all other cases, so it must be 0, as all other elements are {}
≥ 0.
Thus we define the set B where the supremum is taken from as follows:

{0} ∪ {|f x | / ‖x‖. x 6= 0 ∧ x ∈ F}

fn-norm is equal to the supremum of B, if the supremum exists (otherwise it is
undefined).

locale fn-norm = norm-syntax +
fixes B defines B V f ≡ {0} ∪ {|f x | / ‖x‖ | x . x 6= 0 ∧ x ∈ V }
fixes fn-norm (‖-‖-- [0 , 1000 ] 999 )
defines ‖f ‖-V ≡

⊔
(B V f )

lemma (in fn-norm) B-not-empty [intro]: 0 ∈ B V f
by (simp add : B-def )

The following lemma states that every continuous linear form on a normed space
(V , ‖·‖) has a function norm.

lemma (in normed-vectorspace) fn-norm-works:
includes fn-norm + continuous
shows lub (B V f ) (‖f ‖-V )

proof −

The existence of the supremum is shown using the completeness of the reals. Com-
pleteness means, that every non-empty bounded set of reals has a supremum.

have ∃ a. lub (B V f ) a
proof (rule real-complete)

First we have to show that B is non-empty:

have 0 ∈ B V f ..
thus ∃ x . x ∈ B V f ..

Then we have to show that B is bounded:

show ∃ c. ∀ y ∈ B V f . y ≤ c
proof −

We know that f is bounded by some value c.
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from bounded obtain c where c: ∀ x ∈ V . |f x | ≤ c ∗ ‖x‖ ..

To prove the thesis, we have to show that there is some b, such that y ≤ b for all y ∈
B. Due to the definition of B there are two cases.

def b ≡ max c 0
have ∀ y ∈ B V f . y ≤ b
proof
fix y assume y : y ∈ B V f
show y ≤ b
proof cases
assume y = 0
thus ?thesis by (unfold b-def ) arith

next

The second case is y = |f x | / ‖x‖ for some x ∈ V with x 6= 0.

assume y 6= 0
with y obtain x where y-rep: y = |f x | ∗ inverse ‖x‖

and x : x ∈ V and neq : x 6= 0
by (auto simp add : B-def real-divide-def )

from x neq have gt : 0 < ‖x‖ ..

The thesis follows by a short calculation using the fact that f is bounded.

note y-rep
also have |f x | ∗ inverse ‖x‖ ≤ (c ∗ ‖x‖) ∗ inverse ‖x‖
proof (rule mult-right-mono)
from c x show |f x | ≤ c ∗ ‖x‖ ..
from gt have 0 < inverse ‖x‖
by (rule positive-imp-inverse-positive)

thus 0 ≤ inverse ‖x‖ by (rule order-less-imp-le)
qed
also have . . . = c ∗ (‖x‖ ∗ inverse ‖x‖)
by (rule real-mult-assoc)

also
from gt have ‖x‖ 6= 0 by simp
hence ‖x‖ ∗ inverse ‖x‖ = 1 by simp
also have c ∗ 1 ≤ b by (simp add : b-def le-maxI1 )
finally show y ≤ b .

qed
qed
thus ?thesis ..

qed
qed
then show ?thesis by (unfold fn-norm-def ) (rule the-lubI-ex )

qed

lemma (in normed-vectorspace) fn-norm-ub [iff? ]:
includes fn-norm + continuous
assumes b: b ∈ B V f
shows b ≤ ‖f ‖-V

proof −
have lub (B V f ) (‖f ‖-V )
unfolding B-def fn-norm-def
using 〈continuous V norm f 〉 by (rule fn-norm-works)

from this and b show ?thesis ..
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qed

lemma (in normed-vectorspace) fn-norm-leastB :
includes fn-norm + continuous
assumes b:

∧
b. b ∈ B V f =⇒ b ≤ y

shows ‖f ‖-V ≤ y
proof −
have lub (B V f ) (‖f ‖-V )
unfolding B-def fn-norm-def
using 〈continuous V norm f 〉 by (rule fn-norm-works)

from this and b show ?thesis ..
qed

The norm of a continuous function is always ≥ 0.

lemma (in normed-vectorspace) fn-norm-ge-zero [iff ]:
includes fn-norm + continuous
shows 0 ≤ ‖f ‖-V

proof −

The function norm is defined as the supremum of B. So it is ≥ 0 if all elements in B
are ≥ 0, provided the supremum exists and B is not empty.

have lub (B V f ) (‖f ‖-V )
unfolding B-def fn-norm-def
using 〈continuous V norm f 〉 by (rule fn-norm-works)

moreover have 0 ∈ B V f ..
ultimately show ?thesis ..

qed

The fundamental property of function norms is:

|f x | ≤ ‖f ‖ · ‖x‖

lemma (in normed-vectorspace) fn-norm-le-cong :
includes fn-norm + continuous + linearform
assumes x : x ∈ V
shows |f x | ≤ ‖f ‖-V ∗ ‖x‖

proof cases
assume x = 0
then have |f x | = |f 0 | by simp
also have f 0 = 0 by rule unfold-locales
also have |. . .| = 0 by simp
also have a: 0 ≤ ‖f ‖-V
unfolding B-def fn-norm-def
using 〈continuous V norm f 〉 by (rule fn-norm-ge-zero)

from x have 0 ≤ norm x ..
with a have 0 ≤ ‖f ‖-V ∗ ‖x‖ by (simp add : zero-le-mult-iff )
finally show |f x | ≤ ‖f ‖-V ∗ ‖x‖ .

next
assume x 6= 0
with x have neq : ‖x‖ 6= 0 by simp
then have |f x | = (|f x | ∗ inverse ‖x‖) ∗ ‖x‖ by simp
also have . . . ≤ ‖f ‖-V ∗ ‖x‖
proof (rule mult-right-mono)
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from x show 0 ≤ ‖x‖ ..
from x and neq have |f x | ∗ inverse ‖x‖ ∈ B V f
by (auto simp add : B-def real-divide-def )

with 〈continuous V norm f 〉 show |f x | ∗ inverse ‖x‖ ≤ ‖f ‖-V
unfolding B-def fn-norm-def by (rule fn-norm-ub)

qed
finally show ?thesis .

qed

The function norm is the least positive real number for which the following
inequation holds:

|f x | ≤ c · ‖x‖

lemma (in normed-vectorspace) fn-norm-least [intro? ]:
includes fn-norm + continuous
assumes ineq : ∀ x ∈ V . |f x | ≤ c ∗ ‖x‖ and ge: 0 ≤ c
shows ‖f ‖-V ≤ c

proof (rule fn-norm-leastB [folded B-def fn-norm-def ])
fix b assume b: b ∈ B V f
show b ≤ c
proof cases
assume b = 0
with ge show ?thesis by simp

next
assume b 6= 0
with b obtain x where b-rep: b = |f x | ∗ inverse ‖x‖

and x-neq : x 6= 0 and x : x ∈ V
by (auto simp add : B-def real-divide-def )

note b-rep
also have |f x | ∗ inverse ‖x‖ ≤ (c ∗ ‖x‖) ∗ inverse ‖x‖
proof (rule mult-right-mono)
have 0 < ‖x‖ using x x-neq ..
then show 0 ≤ inverse ‖x‖ by simp
from ineq and x show |f x | ≤ c ∗ ‖x‖ ..

qed
also have . . . = c
proof −
from x-neq and x have ‖x‖ 6= 0 by simp
then show ?thesis by simp

qed
finally show ?thesis .

qed
qed (insert 〈continuous V norm f 〉, simp-all add : continuous-def )

end

9 Zorn’s Lemma

theory ZornLemma imports Zorn begin

Zorn’s Lemmas states: if every linear ordered subset of an ordered set S has an
upper bound in S, then there exists a maximal element in S. In our application,
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S is a set of sets ordered by set inclusion. Since the union of a chain of sets is
an upper bound for all elements of the chain, the conditions of Zorn’s lemma
can be modified: if S is non-empty, it suffices to show that for every non-empty
chain c in S the union of c also lies in S.

theorem Zorn ′s-Lemma:
assumes r :

∧
c. c ∈ chain S =⇒ ∃ x . x ∈ c =⇒

⋃
c ∈ S

and aS : a ∈ S
shows ∃ y ∈ S . ∀ z ∈ S . y ⊆ z −→ y = z

proof (rule Zorn-Lemma2 )1

show ∀ c ∈ chain S . ∃ y ∈ S . ∀ z ∈ c. z ⊆ y
proof
fix c assume c ∈ chain S
show ∃ y ∈ S . ∀ z ∈ c. z ⊆ y
proof cases

If c is an empty chain, then every element in S is an upper bound of c.

assume c = {}
with aS show ?thesis by fast

If c is non-empty, then
⋃

c is an upper bound of c, lying in S.

next
assume c: c 6= {}
show ?thesis
proof
show ∀ z ∈ c. z ⊆

⋃
c by fast

show
⋃

c ∈ S
proof (rule r)
from c show ∃ x . x ∈ c by fast
show c ∈ chain S by fact

qed
qed

qed
qed

qed

end

1See http://isabelle.in.tum.de/library/HOL/HOL-Complex/Zorn.html

http://isabelle.in.tum.de/library/HOL/HOL-Complex/Zorn.html
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Part II

Lemmas for the Proof

10 The supremum w.r.t. the function order

theory HahnBanachSupLemmas imports FunctionNorm ZornLemma begin

This section contains some lemmas that will be used in the proof of the Hahn-
Banach Theorem. In this section the following context is presumed. Let E be a
real vector space with a seminorm p on E. F is a subspace of E and f a linear
form on F. We consider a chain c of norm-preserving extensions of f, such that⋃

c = graph H h. We will show some properties about the limit function h, i.e.
the supremum of the chain c.

Let c be a chain of norm-preserving extensions of the function f and let graph H
h be the supremum of c. Every element in H is member of one of the elements
of the chain.

lemmas [dest? ] = chainD
lemmas chainE2 [elim? ] = chainD2 [elim-format , standard ]

lemma some-H ′h ′t :
assumes M : M = norm-pres-extensions E p F f
and cM : c ∈ chain M
and u: graph H h =

⋃
c

and x : x ∈ H
shows ∃H ′ h ′. graph H ′ h ′ ∈ c
∧ (x , h x ) ∈ graph H ′ h ′

∧ linearform H ′ h ′ ∧ H ′ � E
∧ F � H ′ ∧ graph F f ⊆ graph H ′ h ′

∧ (∀ x ∈ H ′. h ′ x ≤ p x )
proof −
from x have (x , h x ) ∈ graph H h ..
also from u have . . . =

⋃
c .

finally obtain g where gc: g ∈ c and gh: (x , h x ) ∈ g by blast

from cM have c ⊆ M ..
with gc have g ∈ M ..
also from M have . . . = norm-pres-extensions E p F f .
finally obtain H ′ and h ′ where g : g = graph H ′ h ′

and ∗ : linearform H ′ h ′ H ′ � E F � H ′

graph F f ⊆ graph H ′ h ′ ∀ x ∈ H ′. h ′ x ≤ p x ..

from gc and g have graph H ′ h ′ ∈ c by (simp only :)
moreover from gh and g have (x , h x ) ∈ graph H ′ h ′ by (simp only :)
ultimately show ?thesis using ∗ by blast

qed

Let c be a chain of norm-preserving extensions of the function f and let graph
H h be the supremum of c. Every element in the domain H of the supremum
function is member of the domain H ′ of some function h ′, such that h extends
h ′.
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lemma some-H ′h ′:
assumes M : M = norm-pres-extensions E p F f
and cM : c ∈ chain M
and u: graph H h =

⋃
c

and x : x ∈ H
shows ∃H ′ h ′. x ∈ H ′ ∧ graph H ′ h ′ ⊆ graph H h
∧ linearform H ′ h ′ ∧ H ′ � E ∧ F � H ′

∧ graph F f ⊆ graph H ′ h ′ ∧ (∀ x ∈ H ′. h ′ x ≤ p x )
proof −
from M cM u x obtain H ′ h ′ where

x-hx : (x , h x ) ∈ graph H ′ h ′

and c: graph H ′ h ′ ∈ c
and ∗ : linearform H ′ h ′ H ′ � E F � H ′

graph F f ⊆ graph H ′ h ′ ∀ x ∈ H ′. h ′ x ≤ p x
by (rule some-H ′h ′t [elim-format ]) blast

from x-hx have x ∈ H ′ ..
moreover from cM u c have graph H ′ h ′ ⊆ graph H h
by (simp only : chain-ball-Union-upper)

ultimately show ?thesis using ∗ by blast
qed

Any two elements x and y in the domain H of the supremum function h are
both in the domain H ′ of some function h ′, such that h extends h ′.

lemma some-H ′h ′2 :
assumes M : M = norm-pres-extensions E p F f
and cM : c ∈ chain M
and u: graph H h =

⋃
c

and x : x ∈ H
and y : y ∈ H

shows ∃H ′ h ′. x ∈ H ′ ∧ y ∈ H ′

∧ graph H ′ h ′ ⊆ graph H h
∧ linearform H ′ h ′ ∧ H ′ � E ∧ F � H ′

∧ graph F f ⊆ graph H ′ h ′ ∧ (∀ x ∈ H ′. h ′ x ≤ p x )
proof −

y is in the domain H ′′ of some function h ′′, such that h extends h ′′.

from M cM u and y obtain H ′ h ′ where
y-hy : (y , h y) ∈ graph H ′ h ′

and c ′: graph H ′ h ′ ∈ c
and ∗ :

linearform H ′ h ′ H ′ � E F � H ′

graph F f ⊆ graph H ′ h ′ ∀ x ∈ H ′. h ′ x ≤ p x
by (rule some-H ′h ′t [elim-format ]) blast

x is in the domain H ′ of some function h ′, such that h extends h ′.

from M cM u and x obtain H ′′ h ′′ where
x-hx : (x , h x ) ∈ graph H ′′ h ′′

and c ′′: graph H ′′ h ′′ ∈ c
and ∗∗ :

linearform H ′′ h ′′ H ′′ � E F � H ′′

graph F f ⊆ graph H ′′ h ′′ ∀ x ∈ H ′′. h ′′ x ≤ p x
by (rule some-H ′h ′t [elim-format ]) blast
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Since both h ′ and h ′′ are elements of the chain, h ′′ is an extension of h ′ or vice versa.
Thus both x and y are contained in the greater one.

from cM c ′′ c ′ have graph H ′′ h ′′ ⊆ graph H ′ h ′ ∨ graph H ′ h ′ ⊆ graph H ′′ h ′′

(is ?case1 ∨ ?case2 ) ..
then show ?thesis
proof
assume ?case1
have (x , h x ) ∈ graph H ′′ h ′′ by fact
also have ... ⊆ graph H ′ h ′ by fact
finally have xh:(x , h x ) ∈ graph H ′ h ′ .
then have x ∈ H ′ ..
moreover from y-hy have y ∈ H ′ ..
moreover from cM u and c ′ have graph H ′ h ′ ⊆ graph H h
by (simp only : chain-ball-Union-upper)

ultimately show ?thesis using ∗ by blast
next
assume ?case2
from x-hx have x ∈ H ′′ ..
moreover {
have (y , h y) ∈ graph H ′ h ′ by (rule y-hy)
also have . . . ⊆ graph H ′′ h ′′ by fact
finally have (y , h y) ∈ graph H ′′ h ′′ .

} then have y ∈ H ′′ ..
moreover from cM u and c ′′ have graph H ′′ h ′′ ⊆ graph H h
by (simp only : chain-ball-Union-upper)

ultimately show ?thesis using ∗∗ by blast
qed

qed

The relation induced by the graph of the supremum of a chain c is definite,
i. e. t is the graph of a function.

lemma sup-definite:
assumes M-def : M ≡ norm-pres-extensions E p F f
and cM : c ∈ chain M
and xy : (x , y) ∈

⋃
c

and xz : (x , z ) ∈
⋃

c
shows z = y

proof −
from cM have c: c ⊆ M ..
from xy obtain G1 where xy ′: (x , y) ∈ G1 and G1 : G1 ∈ c ..
from xz obtain G2 where xz ′: (x , z ) ∈ G2 and G2 : G2 ∈ c ..

from G1 c have G1 ∈ M ..
then obtain H1 h1 where G1-rep: G1 = graph H1 h1
by (unfold M-def ) blast

from G2 c have G2 ∈ M ..
then obtain H2 h2 where G2-rep: G2 = graph H2 h2
by (unfold M-def ) blast

G1 is contained in G2 or vice versa, since both G1 and G2 are members of c.

from cM G1 G2 have G1 ⊆ G2 ∨ G2 ⊆ G1 (is ?case1 ∨ ?case2 ) ..
then show ?thesis
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proof
assume ?case1
with xy ′ G2-rep have (x , y) ∈ graph H2 h2 by blast
hence y = h2 x ..
also
from xz ′ G2-rep have (x , z ) ∈ graph H2 h2 by (simp only :)
hence z = h2 x ..
finally show ?thesis .

next
assume ?case2
with xz ′ G1-rep have (x , z ) ∈ graph H1 h1 by blast
hence z = h1 x ..
also
from xy ′ G1-rep have (x , y) ∈ graph H1 h1 by (simp only :)
hence y = h1 x ..
finally show ?thesis ..

qed
qed

The limit function h is linear. Every element x in the domain of h is in the
domain of a function h ′ in the chain of norm preserving extensions. Furthermore,
h is an extension of h ′ so the function values of x are identical for h ′ and h.
Finally, the function h ′ is linear by construction of M.

lemma sup-lf :
assumes M : M = norm-pres-extensions E p F f
and cM : c ∈ chain M
and u: graph H h =

⋃
c

shows linearform H h
proof
fix x y assume x : x ∈ H and y : y ∈ H
with M cM u obtain H ′ h ′ where

x ′: x ∈ H ′ and y ′: y ∈ H ′

and b: graph H ′ h ′ ⊆ graph H h
and linearform: linearform H ′ h ′

and subspace: H ′ � E
by (rule some-H ′h ′2 [elim-format ]) blast

show h (x + y) = h x + h y
proof −
from linearform x ′ y ′ have h ′ (x + y) = h ′ x + h ′ y
by (rule linearform.add)

also from b x ′ have h ′ x = h x ..
also from b y ′ have h ′ y = h y ..
also from subspace x ′ y ′ have x + y ∈ H ′

by (rule subspace.add-closed)
with b have h ′ (x + y) = h (x + y) ..
finally show ?thesis .

qed
next
fix x a assume x : x ∈ H
with M cM u obtain H ′ h ′ where

x ′: x ∈ H ′

and b: graph H ′ h ′ ⊆ graph H h
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and linearform: linearform H ′ h ′

and subspace: H ′ � E
by (rule some-H ′h ′ [elim-format ]) blast

show h (a · x ) = a ∗ h x
proof −
from linearform x ′ have h ′ (a · x ) = a ∗ h ′ x
by (rule linearform.mult)

also from b x ′ have h ′ x = h x ..
also from subspace x ′ have a · x ∈ H ′

by (rule subspace.mult-closed)
with b have h ′ (a · x ) = h (a · x ) ..
finally show ?thesis .

qed
qed

The limit of a non-empty chain of norm preserving extensions of f is an extension
of f, since every element of the chain is an extension of f and the supremum is
an extension for every element of the chain.

lemma sup-ext :
assumes graph: graph H h =

⋃
c

and M : M = norm-pres-extensions E p F f
and cM : c ∈ chain M
and ex : ∃ x . x ∈ c

shows graph F f ⊆ graph H h
proof −
from ex obtain x where xc: x ∈ c ..
from cM have c ⊆ M ..
with xc have x ∈ M ..
with M have x ∈ norm-pres-extensions E p F f
by (simp only :)

then obtain G g where x = graph G g and graph F f ⊆ graph G g ..
then have graph F f ⊆ x by (simp only :)
also from xc have . . . ⊆

⋃
c by blast

also from graph have . . . = graph H h ..
finally show ?thesis .

qed

The domain H of the limit function is a superspace of F, since F is a subset of
H. The existence of the 0 element in F and the closure properties follow from
the fact that F is a vector space.

lemma sup-supF :
assumes graph: graph H h =

⋃
c

and M : M = norm-pres-extensions E p F f
and cM : c ∈ chain M
and ex : ∃ x . x ∈ c
and FE : F � E

shows F � H
proof
from FE show F 6= {} by (rule subspace.non-empty)
from graph M cM ex have graph F f ⊆ graph H h by (rule sup-ext)
then show F ⊆ H ..
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fix x y assume x ∈ F and y ∈ F
with FE show x + y ∈ F by (rule subspace.add-closed)

next
fix x a assume x ∈ F
with FE show a · x ∈ F by (rule subspace.mult-closed)

qed

The domain H of the limit function is a subspace of E.

lemma sup-subE :
assumes graph: graph H h =

⋃
c

and M : M = norm-pres-extensions E p F f
and cM : c ∈ chain M
and ex : ∃ x . x ∈ c
and FE : F � E
and E : vectorspace E

shows H � E
proof
show H 6= {}
proof −
from FE E have 0 ∈ F by (rule subspace.zero)
also from graph M cM ex FE have F � H by (rule sup-supF )
then have F ⊆ H ..
finally show ?thesis by blast

qed
show H ⊆ E
proof
fix x assume x ∈ H
with M cM graph
obtain H ′ h ′ where x : x ∈ H ′ and H ′E : H ′ � E
by (rule some-H ′h ′ [elim-format ]) blast

from H ′E have H ′ ⊆ E ..
with x show x ∈ E ..

qed
fix x y assume x : x ∈ H and y : y ∈ H
show x + y ∈ H
proof −
from M cM graph x y obtain H ′ h ′ where

x ′: x ∈ H ′ and y ′: y ∈ H ′ and H ′E : H ′ � E
and graphs: graph H ′ h ′ ⊆ graph H h

by (rule some-H ′h ′2 [elim-format ]) blast
from H ′E x ′ y ′ have x + y ∈ H ′

by (rule subspace.add-closed)
also from graphs have H ′ ⊆ H ..
finally show ?thesis .

qed
next
fix x a assume x : x ∈ H
show a · x ∈ H
proof −
from M cM graph x
obtain H ′ h ′ where x ′: x ∈ H ′ and H ′E : H ′ � E

and graphs: graph H ′ h ′ ⊆ graph H h
by (rule some-H ′h ′ [elim-format ]) blast

from H ′E x ′ have a · x ∈ H ′ by (rule subspace.mult-closed)
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also from graphs have H ′ ⊆ H ..
finally show ?thesis .

qed
qed

The limit function is bounded by the norm p as well, since all elements in the
chain are bounded by p.

lemma sup-norm-pres:
assumes graph: graph H h =

⋃
c

and M : M = norm-pres-extensions E p F f
and cM : c ∈ chain M

shows ∀ x ∈ H . h x ≤ p x
proof
fix x assume x ∈ H
with M cM graph obtain H ′ h ′ where x ′: x ∈ H ′

and graphs: graph H ′ h ′ ⊆ graph H h
and a: ∀ x ∈ H ′. h ′ x ≤ p x

by (rule some-H ′h ′ [elim-format ]) blast
from graphs x ′ have [symmetric]: h ′ x = h x ..
also from a x ′ have h ′ x ≤ p x ..
finally show h x ≤ p x .

qed

The following lemma is a property of linear forms on real vector spaces. It will
be used for the lemma abs-HahnBanach (see page 48). For real vector spaces
the following inequations are equivalent:

∀ x ∈ H . |h x | ≤ p x and ∀ x ∈ H . h x ≤ p x

lemma abs-ineq-iff :
includes subspace H E + vectorspace E + seminorm E p + linearform H h
shows (∀ x ∈ H . |h x | ≤ p x ) = (∀ x ∈ H . h x ≤ p x ) (is ?L = ?R)

proof
have H : vectorspace H using 〈vectorspace E 〉 ..
{
assume l : ?L
show ?R
proof
fix x assume x : x ∈ H
have h x ≤ |h x | by arith
also from l x have . . . ≤ p x ..
finally show h x ≤ p x .

qed
next
assume r : ?R
show ?L
proof
fix x assume x : x ∈ H
show

∧
a b :: real . − a ≤ b =⇒ b ≤ a =⇒ |b| ≤ a

by arith
from 〈linearform H h〉 and H x
have − h x = h (− x ) by (rule linearform.neg [symmetric])
also
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from H x have − x ∈ H by (rule vectorspace.neg-closed)
with r have h (− x ) ≤ p (− x ) ..
also have . . . = p x
using 〈seminorm E p〉 〈vectorspace E 〉

proof (rule seminorm.minus)
from x show x ∈ E ..

qed
finally have − h x ≤ p x .
then show − p x ≤ h x by simp
from r x show h x ≤ p x ..

qed
}

qed

end

11 Extending non-maximal functions

theory HahnBanachExtLemmas imports FunctionNorm begin

In this section the following context is presumed. Let E be a real vector space
with a seminorm q on E. F is a subspace of E and f a linear function on F. We
consider a subspace H of E that is a superspace of F and a linear form h on
H. H is a not equal to E and x 0 is an element in E − H. H is extended to the
direct sum H ′ = H + lin x 0, so for any x ∈ H ′ the decomposition of x = y +
a · x with y ∈ H is unique. h ′ is defined on H ′ by h ′ x = h y + a · ξ for a
certain ξ.
Subsequently we show some properties of this extension h ′ of h.

This lemma will be used to show the existence of a linear extension of f (see
page 45). It is a consequence of the completeness of IR. To show

∃ ξ. ∀ y ∈ F . a y ≤ ξ ∧ ξ ≤ b y

it suffices to show that

∀ u ∈ F . ∀ v ∈ F . a u ≤ b v

lemma ex-xi :
includes vectorspace F
assumes r :

∧
u v . u ∈ F =⇒ v ∈ F =⇒ a u ≤ b v

shows ∃ xi ::real . ∀ y ∈ F . a y ≤ xi ∧ xi ≤ b y
proof −

From the completeness of the reals follows: The set S = {a u. u ∈ F} has a supremum,
if it is non-empty and has an upper bound.

let ?S = {a u | u. u ∈ F}
have ∃ xi . lub ?S xi
proof (rule real-complete)
have a 0 ∈ ?S by blast
then show ∃X . X ∈ ?S ..
have ∀ y ∈ ?S . y ≤ b 0
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proof
fix y assume y : y ∈ ?S
then obtain u where u: u ∈ F and y : y = a u by blast
from u and zero have a u ≤ b 0 by (rule r)
with y show y ≤ b 0 by (simp only :)

qed
then show ∃ u. ∀ y ∈ ?S . y ≤ u ..

qed
then obtain xi where xi : lub ?S xi ..
{
fix y assume y ∈ F
then have a y ∈ ?S by blast
with xi have a y ≤ xi by (rule lub.upper)

} moreover {
fix y assume y : y ∈ F
from xi have xi ≤ b y
proof (rule lub.least)
fix au assume au ∈ ?S
then obtain u where u: u ∈ F and au: au = a u by blast
from u y have a u ≤ b y by (rule r)
with au show au ≤ b y by (simp only :)

qed
} ultimately show ∃ xi . ∀ y ∈ F . a y ≤ xi ∧ xi ≤ b y by blast

qed

The function h ′ is defined as a h ′ x = h y + a · ξ where x = y + a · ξ is a
linear extension of h to H ′.

lemma h ′-lf :
includes var H + var h + var E
assumes h ′-def : h ′ ≡ λx . let (y , a) =

SOME (y , a). x = y + a · x0 ∧ y ∈ H in h y + a ∗ xi
and H ′-def : H ′ ≡ H + lin x0
and HE : H � E

includes linearform H h
assumes x0 : x0 /∈ H x0 ∈ E x0 6= 0
includes vectorspace E
shows linearform H ′ h ′

proof
note E = 〈vectorspace E 〉

have H ′: vectorspace H ′

proof (unfold H ′-def )
from 〈x0 ∈ E 〉

have lin x0 � E ..
with HE show vectorspace (H + lin x0 ) using E ..

qed
{
fix x1 x2 assume x1 : x1 ∈ H ′ and x2 : x2 ∈ H ′

show h ′ (x1 + x2 ) = h ′ x1 + h ′ x2
proof −
from H ′ x1 x2 have x1 + x2 ∈ H ′

by (rule vectorspace.add-closed)
with x1 x2 obtain y y1 y2 a a1 a2 where

x1x2 : x1 + x2 = y + a · x0 and y : y ∈ H



40 11 EXTENDING NON-MAXIMAL FUNCTIONS

and x1-rep: x1 = y1 + a1 · x0 and y1 : y1 ∈ H
and x2-rep: x2 = y2 + a2 · x0 and y2 : y2 ∈ H

by (unfold H ′-def sum-def lin-def ) blast

have ya: y1 + y2 = y ∧ a1 + a2 = a using E HE - y x0
proof (rule decomp-H ′) from HE y1 y2 show y1 + y2 ∈ H

by (rule subspace.add-closed)
from x0 and HE y y1 y2
have x0 ∈ E y ∈ E y1 ∈ E y2 ∈ E by auto
with x1-rep x2-rep have (y1 + y2 ) + (a1 + a2 ) · x0 = x1 + x2
by (simp add : add-ac add-mult-distrib2 )

also note x1x2
finally show (y1 + y2 ) + (a1 + a2 ) · x0 = y + a · x0 .

qed

from h ′-def x1x2 E HE y x0
have h ′ (x1 + x2 ) = h y + a ∗ xi
by (rule h ′-definite)

also have . . . = h (y1 + y2 ) + (a1 + a2 ) ∗ xi
by (simp only : ya)

also from y1 y2 have h (y1 + y2 ) = h y1 + h y2
by simp

also have . . . + (a1 + a2 ) ∗ xi = (h y1 + a1 ∗ xi) + (h y2 + a2 ∗ xi)
by (simp add : left-distrib)

also from h ′-def x1-rep E HE y1 x0
have h y1 + a1 ∗ xi = h ′ x1
by (rule h ′-definite [symmetric])

also from h ′-def x2-rep E HE y2 x0
have h y2 + a2 ∗ xi = h ′ x2
by (rule h ′-definite [symmetric])

finally show ?thesis .
qed

next
fix x1 c assume x1 : x1 ∈ H ′

show h ′ (c · x1 ) = c ∗ (h ′ x1 )
proof −
from H ′ x1 have ax1 : c · x1 ∈ H ′

by (rule vectorspace.mult-closed)
with x1 obtain y a y1 a1 where

cx1-rep: c · x1 = y + a · x0 and y : y ∈ H
and x1-rep: x1 = y1 + a1 · x0 and y1 : y1 ∈ H

by (unfold H ′-def sum-def lin-def ) blast

have ya: c · y1 = y ∧ c ∗ a1 = a using E HE - y x0
proof (rule decomp-H ′)
from HE y1 show c · y1 ∈ H
by (rule subspace.mult-closed)

from x0 and HE y y1
have x0 ∈ E y ∈ E y1 ∈ E by auto
with x1-rep have c · y1 + (c ∗ a1 ) · x0 = c · x1
by (simp add : mult-assoc add-mult-distrib1 )

also note cx1-rep
finally show c · y1 + (c ∗ a1 ) · x0 = y + a · x0 .

qed
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from h ′-def cx1-rep E HE y x0 have h ′ (c · x1 ) = h y + a ∗ xi
by (rule h ′-definite)

also have . . . = h (c · y1 ) + (c ∗ a1 ) ∗ xi
by (simp only : ya)

also from y1 have h (c · y1 ) = c ∗ h y1
by simp

also have . . . + (c ∗ a1 ) ∗ xi = c ∗ (h y1 + a1 ∗ xi)
by (simp only : right-distrib)

also from h ′-def x1-rep E HE y1 x0 have h y1 + a1 ∗ xi = h ′ x1
by (rule h ′-definite [symmetric])

finally show ?thesis .
qed

}
qed

The linear extension h ′ of h is bounded by the seminorm p.

lemma h ′-norm-pres:
includes var H + var h + var E
assumes h ′-def : h ′ ≡ λx . let (y , a) =

SOME (y , a). x = y + a · x0 ∧ y ∈ H in h y + a ∗ xi
and H ′-def : H ′ ≡ H + lin x0
and x0 : x0 /∈ H x0 ∈ E x0 6= 0

includes vectorspace E + subspace H E + seminorm E p + linearform H h
assumes a: ∀ y ∈ H . h y ≤ p y
and a ′: ∀ y ∈ H . − p (y + x0 ) − h y ≤ xi ∧ xi ≤ p (y + x0 ) − h y

shows ∀ x ∈ H ′. h ′ x ≤ p x
proof
note E = 〈vectorspace E 〉

note HE = 〈subspace H E 〉

fix x assume x ′: x ∈ H ′

show h ′ x ≤ p x
proof −
from a ′ have a1 : ∀ ya ∈ H . − p (ya + x0 ) − h ya ≤ xi
and a2 : ∀ ya ∈ H . xi ≤ p (ya + x0 ) − h ya by auto

from x ′ obtain y a where
x-rep: x = y + a · x0 and y : y ∈ H

by (unfold H ′-def sum-def lin-def ) blast
from y have y ′: y ∈ E ..
from y have ay : inverse a · y ∈ H by simp

from h ′-def x-rep E HE y x0 have h ′ x = h y + a ∗ xi
by (rule h ′-definite)

also have . . . ≤ p (y + a · x0 )
proof (rule linorder-cases)
assume z : a = 0
then have h y + a ∗ xi = h y by simp
also from a y have . . . ≤ p y ..
also from x0 y ′ z have p y = p (y + a · x0 ) by simp
finally show ?thesis .

next

In the case a < 0, we use a1 with ya taken as y / a:

assume lz : a < 0 hence nz : a 6= 0 by simp
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from a1 ay
have − p (inverse a · y + x0 ) − h (inverse a · y) ≤ xi ..
with lz have a ∗ xi ≤

a ∗ (− p (inverse a · y + x0 ) − h (inverse a · y))
by (simp add : mult-left-mono-neg order-less-imp-le)

also have . . . =
− a ∗ (p (inverse a · y + x0 )) − a ∗ (h (inverse a · y))

by (simp add : right-diff-distrib)
also from lz x0 y ′ have − a ∗ (p (inverse a · y + x0 )) =

p (a · (inverse a · y + x0 ))
by (simp add : abs-homogenous)

also from nz x0 y ′ have . . . = p (y + a · x0 )
by (simp add : add-mult-distrib1 mult-assoc [symmetric])

also from nz y have a ∗ (h (inverse a · y)) = h y
by simp

finally have a ∗ xi ≤ p (y + a · x0 ) − h y .
then show ?thesis by simp

next

In the case a > 0, we use a2 with ya taken as y / a:

assume gz : 0 < a hence nz : a 6= 0 by simp
from a2 ay
have xi ≤ p (inverse a · y + x0 ) − h (inverse a · y) ..
with gz have a ∗ xi ≤

a ∗ (p (inverse a · y + x0 ) − h (inverse a · y))
by simp

also have ... = a ∗ p (inverse a · y + x0 ) − a ∗ h (inverse a · y)
by (simp add : right-diff-distrib)

also from gz x0 y ′

have a ∗ p (inverse a · y + x0 ) = p (a · (inverse a · y + x0 ))
by (simp add : abs-homogenous)

also from nz x0 y ′ have . . . = p (y + a · x0 )
by (simp add : add-mult-distrib1 mult-assoc [symmetric])

also from nz y have a ∗ h (inverse a · y) = h y
by simp

finally have a ∗ xi ≤ p (y + a · x0 ) − h y .
then show ?thesis by simp

qed
also from x-rep have . . . = p x by (simp only :)
finally show ?thesis .

qed
qed

end
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Part III

The Main Proof

12 The Hahn-Banach Theorem

theory HahnBanach imports HahnBanachLemmas begin

We present the proof of two different versions of the Hahn-Banach Theorem,
closely following [1, §36].

12.1 The Hahn-Banach Theorem for vector spaces

Hahn-Banach Theorem. Let F be a subspace of a real vector space E, let
p be a semi-norm on E, and f be a linear form defined on F such that f is
bounded by p, i.e. ∀ x ∈ F . f x ≤ p x. Then f can be extended to a linear form
h on E such that h is norm-preserving, i.e. h is also bounded by p.

Proof Sketch.

1. Define M as the set of norm-preserving extensions of f to subspaces of E.
The linear forms in M are ordered by domain extension.

2. We show that every non-empty chain in M has an upper bound in M.

3. With Zorn’s Lemma we conclude that there is a maximal function g in M.

4. The domain H of g is the whole space E, as shown by classical contradic-
tion:

• Assuming g is not defined on whole E, it can still be extended in a
norm-preserving way to a super-space H ′ of H.

• Thus g can not be maximal. Contradiction!

theorem HahnBanach:
includes vectorspace E + subspace F E + seminorm E p + linearform F f
assumes fp: ∀ x ∈ F . f x ≤ p x
shows ∃ h. linearform E h ∧ (∀ x ∈ F . h x = f x ) ∧ (∀ x ∈ E . h x ≤ p x )

— Let E be a vector space, F a subspace of E, p a seminorm on E,
— and f a linear form on F such that f is bounded by p,
— then f can be extended to a linear form h on E in a norm-preserving way.

proof −
def M ≡ norm-pres-extensions E p F f
hence M : M = . . . by (simp only :)
note E = 〈vectorspace E 〉

then have F : vectorspace F ..
note FE = 〈F � E 〉

{
fix c assume cM : c ∈ chain M and ex : ∃ x . x ∈ c
have

⋃
c ∈ M

— Show that every non-empty chain c of M has an upper bound in M :



44 12 THE HAHN-BANACH THEOREM

—
⋃

c is greater than any element of the chain c, so it suffices to show
⋃

c ∈ M.
proof (unfold M-def , rule norm-pres-extensionI )
let ?H = domain (

⋃
c)

let ?h = funct (
⋃

c)

have a: graph ?H ?h =
⋃

c
proof (rule graph-domain-funct)
fix x y z assume (x , y) ∈

⋃
c and (x , z ) ∈

⋃
c

with M-def cM show z = y by (rule sup-definite)
qed
moreover from M cM a have linearform ?H ?h
by (rule sup-lf )

moreover from a M cM ex FE E have ?H � E
by (rule sup-subE)

moreover from a M cM ex FE have F � ?H
by (rule sup-supF )

moreover from a M cM ex have graph F f ⊆ graph ?H ?h
by (rule sup-ext)

moreover from a M cM have ∀ x ∈ ?H . ?h x ≤ p x
by (rule sup-norm-pres)

ultimately show ∃H h.
⋃

c = graph H h
∧ linearform H h
∧ H � E
∧ F � H
∧ graph F f ⊆ graph H h
∧ (∀ x ∈ H . h x ≤ p x ) by blast

qed
}
hence ∃ g ∈ M . ∀ x ∈ M . g ⊆ x −→ g = x
— With Zorn’s Lemma we can conclude that there is a maximal element in M.

proof (rule Zorn ′s-Lemma)
— We show that M is non-empty:

show graph F f ∈ M
proof (unfold M-def , rule norm-pres-extensionI2 )
show linearform F f by fact
show F � E by fact
from F show F � F by (rule vectorspace.subspace-refl)
show graph F f ⊆ graph F f ..
show ∀ x∈F . f x ≤ p x by fact

qed
qed
then obtain g where gM : g ∈ M and gx : ∀ x ∈ M . g ⊆ x −→ g = x
by blast

from gM [unfolded M-def ] obtain H h where
g-rep: g = graph H h

and linearform: linearform H h
and HE : H � E and FH : F � H
and graphs: graph F f ⊆ graph H h
and hp: ∀ x ∈ H . h x ≤ p x ..

— g is a norm-preserving extension of f, in other words:
— g is the graph of some linear form h defined on a subspace H of E,
— and h is an extension of f that is again bounded by p.

from HE E have H : vectorspace H
by (rule subspace.vectorspace)
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have HE-eq : H = E
— We show that h is defined on whole E by classical contradiction.

proof (rule classical)
assume neq : H 6= E

— Assume h is not defined on whole E. Then show that h can be extended
— in a norm-preserving way to a function h ′ with the graph g ′.

have ∃ g ′ ∈ M . g ⊆ g ′ ∧ g 6= g ′

proof −
from HE have H ⊆ E ..
with neq obtain x ′ where x ′E : x ′ ∈ E and x ′ /∈ H by blast
obtain x ′: x ′ 6= 0
proof
show x ′ 6= 0
proof
assume x ′ = 0
with H have x ′ ∈ H by (simp only : vectorspace.zero)
with 〈x ′ /∈ H 〉 show False by contradiction

qed
qed

def H ′ ≡ H + lin x ′

— Define H ′ as the direct sum of H and the linear closure of x ′.

have HH ′: H � H ′

proof (unfold H ′-def )
from x ′E have vectorspace (lin x ′) ..
with H show H � H + lin x ′ ..

qed

obtain xi where
xi : ∀ y ∈ H . − p (y + x ′) − h y ≤ xi
∧ xi ≤ p (y + x ′) − h y

— Pick a real number ξ that fulfills certain inequations; this will
— be used to establish that h ′ is a norm-preserving extension of h.

proof −
from H have ∃ xi . ∀ y ∈ H . − p (y + x ′) − h y ≤ xi

∧ xi ≤ p (y + x ′) − h y
proof (rule ex-xi)
fix u v assume u: u ∈ H and v : v ∈ H
with HE have uE : u ∈ E and vE : v ∈ E by auto
from H u v linearform have h v − h u = h (v − u)
by (simp add : linearform.diff )

also from hp and H u v have . . . ≤ p (v − u)
by (simp only : vectorspace.diff-closed)

also from x ′E uE vE have v − u = x ′ + − x ′ + v + − u
by (simp add : diff-eq1 )

also from x ′E uE vE have . . . = v + x ′ + − (u + x ′)
by (simp add : add-ac)

also from x ′E uE vE have . . . = (v + x ′) − (u + x ′)
by (simp add : diff-eq1 )

also from x ′E uE vE E have p . . . ≤ p (v + x ′) + p (u + x ′)
by (simp add : diff-subadditive)

finally have h v − h u ≤ p (v + x ′) + p (u + x ′) .
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then show − p (u + x ′) − h u ≤ p (v + x ′) − h v by simp
qed
then show thesis by (blast intro: that)

qed

def h ′ ≡ λx . let (y , a) =
SOME (y , a). x = y + a · x ′ ∧ y ∈ H in h y + a ∗ xi

— Define the extension h ′ of h to H ′ using ξ.

have g ⊆ graph H ′ h ′ ∧ g 6= graph H ′ h ′

— h ′ is an extension of h . . .

proof
show g ⊆ graph H ′ h ′

proof −
have graph H h ⊆ graph H ′ h ′

proof (rule graph-extI )
fix t assume t : t ∈ H
from E HE t have (SOME (y , a). t = y + a · x ′ ∧ y ∈ H ) = (t , 0 )
using 〈x ′ /∈ H 〉 〈x ′ ∈ E 〉 〈x ′ 6= 0 〉 by (rule decomp-H ′-H )

with h ′-def show h t = h ′ t by (simp add : Let-def )
next
from HH ′ show H ⊆ H ′ ..

qed
with g-rep show ?thesis by (simp only :)

qed

show g 6= graph H ′ h ′

proof −
have graph H h 6= graph H ′ h ′

proof
assume eq : graph H h = graph H ′ h ′

have x ′ ∈ H ′

proof (unfold H ′-def , rule)
from H show 0 ∈ H by (rule vectorspace.zero)
from x ′E show x ′ ∈ lin x ′ by (rule x-lin-x )
from x ′E show x ′ = 0 + x ′ by simp

qed
hence (x ′, h ′ x ′) ∈ graph H ′ h ′ ..
with eq have (x ′, h ′ x ′) ∈ graph H h by (simp only :)
hence x ′ ∈ H ..
with 〈x ′ /∈ H 〉 show False by contradiction

qed
with g-rep show ?thesis by simp

qed
qed
moreover have graph H ′ h ′ ∈ M

— and h ′ is norm-preserving.

proof (unfold M-def )
show graph H ′ h ′ ∈ norm-pres-extensions E p F f
proof (rule norm-pres-extensionI2 )
show linearform H ′ h ′

using h ′-def H ′-def HE linearform 〈x ′ /∈ H 〉 〈x ′ ∈ E 〉 〈x ′ 6= 0 〉 E
by (rule h ′-lf )
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show H ′ � E
unfolding H ′-def
proof
show H � E by fact
show vectorspace E by fact
from x ′E show lin x ′ � E ..

qed
from H 〈F � H 〉 HH ′ show FH ′: F � H ′

by (rule vectorspace.subspace-trans)
show graph F f ⊆ graph H ′ h ′

proof (rule graph-extI )
fix x assume x : x ∈ F
with graphs have f x = h x ..
also have . . . = h x + 0 ∗ xi by simp
also have . . . = (let (y , a) = (x , 0 ) in h y + a ∗ xi)
by (simp add : Let-def )

also have (x , 0 ) =
(SOME (y , a). x = y + a · x ′ ∧ y ∈ H )

using E HE
proof (rule decomp-H ′-H [symmetric])
from FH x show x ∈ H ..
from x ′ show x ′ 6= 0 .
show x ′ /∈ H by fact
show x ′ ∈ E by fact

qed
also have

(let (y , a) = (SOME (y , a). x = y + a · x ′ ∧ y ∈ H )
in h y + a ∗ xi) = h ′ x by (simp only : h ′-def )

finally show f x = h ′ x .
next
from FH ′ show F ⊆ H ′ ..

qed
show ∀ x ∈ H ′. h ′ x ≤ p x
using h ′-def H ′-def 〈x ′ /∈ H 〉 〈x ′ ∈ E 〉 〈x ′ 6= 0 〉 E HE

〈seminorm E p〉 linearform and hp xi
by (rule h ′-norm-pres)

qed
qed
ultimately show ?thesis ..

qed
hence ¬ (∀ x ∈ M . g ⊆ x −→ g = x ) by simp

— So the graph g of h cannot be maximal. Contradiction!

with gx show H = E by contradiction
qed

from HE-eq and linearform have linearform E h
by (simp only :)

moreover have ∀ x ∈ F . h x = f x
proof
fix x assume x ∈ F
with graphs have f x = h x ..
then show h x = f x ..

qed
moreover from HE-eq and hp have ∀ x ∈ E . h x ≤ p x
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by (simp only :)
ultimately show ?thesis by blast

qed

12.2 Alternative formulation

The following alternative formulation of the Hahn-Banach Theorem uses the
fact that for a real linear form f and a seminorm p the following inequations
are equivalent:2

∀ x ∈ H . |h x | ≤ p x and ∀ x ∈ H . h x ≤ p x

theorem abs-HahnBanach:
includes vectorspace E + subspace F E + linearform F f + seminorm E p
assumes fp: ∀ x ∈ F . |f x | ≤ p x
shows ∃ g . linearform E g
∧ (∀ x ∈ F . g x = f x )
∧ (∀ x ∈ E . |g x | ≤ p x )

proof −
note E = 〈vectorspace E 〉

note FE = 〈subspace F E 〉

note sn = 〈seminorm E p〉

note lf = 〈linearform F f 〉

have ∃ g . linearform E g ∧ (∀ x ∈ F . g x = f x ) ∧ (∀ x ∈ E . g x ≤ p x )
using E FE sn lf
proof (rule HahnBanach)
show ∀ x ∈ F . f x ≤ p x
using FE E sn lf and fp by (rule abs-ineq-iff [THEN iffD1 ])

qed
then obtain g where lg : linearform E g and ∗: ∀ x ∈ F . g x = f x

and ∗∗: ∀ x ∈ E . g x ≤ p x by blast
have ∀ x ∈ E . |g x | ≤ p x
using - E sn lg ∗∗
proof (rule abs-ineq-iff [THEN iffD2 ])
show E � E ..

qed
with lg ∗ show ?thesis by blast

qed

12.3 The Hahn-Banach Theorem for normed spaces

Every continuous linear form f on a subspace F of a norm space E, can be
extended to a continuous linear form g on E such that ‖f ‖ = ‖g‖.

theorem norm-HahnBanach:
includes normed-vectorspace E + subspace F E + linearform F f + fn-norm +

continuous F norm (‖-‖) f
shows ∃ g . linearform E g
∧ continuous E norm g
∧ (∀ x ∈ F . g x = f x )
∧ ‖g‖-E = ‖f ‖-F

proof −
2This was shown in lemma abs-ineq-iff (see page 37).
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have E : vectorspace E by unfold-locales
have E-norm: normed-vectorspace E norm by rule unfold-locales
note FE = 〈F � E 〉

have F : vectorspace F by rule unfold-locales
note linearform = 〈linearform F f 〉

have F-norm: normed-vectorspace F norm
using FE E-norm by (rule subspace-normed-vs)

have ge-zero: 0 ≤ ‖f ‖-F
by (rule normed-vectorspace.fn-norm-ge-zero

[OF F-norm 〈continuous F norm f 〉, folded B-def fn-norm-def ])

We define a function p on E as follows: p x = ‖f ‖ · ‖x‖

def p ≡ λx . ‖f ‖-F ∗ ‖x‖

p is a seminorm on E :

have q : seminorm E p
proof
fix x y a assume x : x ∈ E and y : y ∈ E

p is positive definite:

have 0 ≤ ‖f ‖-F by (rule ge-zero)
moreover from x have 0 ≤ ‖x‖ ..

ultimately show 0 ≤ p x
by (simp add : p-def zero-le-mult-iff )

p is absolutely homogenous:

show p (a · x ) = |a| ∗ p x
proof −
have p (a · x ) = ‖f ‖-F ∗ ‖a · x‖ by (simp only : p-def )
also from x have ‖a · x‖ = |a| ∗ ‖x‖ by (rule abs-homogenous)
also have ‖f ‖-F ∗ (|a| ∗ ‖x‖) = |a| ∗ (‖f ‖-F ∗ ‖x‖) by simp
also have . . . = |a| ∗ p x by (simp only : p-def )
finally show ?thesis .

qed

Furthermore, p is subadditive:

show p (x + y) ≤ p x + p y
proof −
have p (x + y) = ‖f ‖-F ∗ ‖x + y‖ by (simp only : p-def )
also have a: 0 ≤ ‖f ‖-F by (rule ge-zero)
from x y have ‖x + y‖ ≤ ‖x‖ + ‖y‖ ..
with a have ‖f ‖-F ∗ ‖x + y‖ ≤ ‖f ‖-F ∗ (‖x‖ + ‖y‖)
by (simp add : mult-left-mono)

also have . . . = ‖f ‖-F ∗ ‖x‖ + ‖f ‖-F ∗ ‖y‖ by (simp only : right-distrib)
also have . . . = p x + p y by (simp only : p-def )
finally show ?thesis .

qed
qed

f is bounded by p.

have ∀ x ∈ F . |f x | ≤ p x
proof
fix x assume x ∈ F
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from this and 〈continuous F norm f 〉

show |f x | ≤ p x
by (unfold p-def ) (rule normed-vectorspace.fn-norm-le-cong

[OF F-norm, folded B-def fn-norm-def ])
qed

Using the fact that p is a seminorm and f is bounded by p we can apply the Hahn-
Banach Theorem for real vector spaces. So f can be extended in a norm-preserving
way to some function g on the whole vector space E.

with E FE linearform q obtain g where
linearformE : linearform E g

and a: ∀ x ∈ F . g x = f x
and b: ∀ x ∈ E . |g x | ≤ p x

by (rule abs-HahnBanach [elim-format ]) iprover

We furthermore have to show that g is also continuous:

have g-cont : continuous E norm g using linearformE
proof
fix x assume x ∈ E
with b show |g x | ≤ ‖f ‖-F ∗ ‖x‖
by (simp only : p-def )

qed

To complete the proof, we show that ‖g‖ = ‖f ‖.

have ‖g‖-E = ‖f ‖-F
proof (rule order-antisym)

First we show ‖g‖ ≤ ‖f ‖. The function norm ‖g‖ is defined as the smallest c ∈ IR
such that

∀ x ∈ E . |g x | ≤ c · ‖x‖

Furthermore holds

∀ x ∈ E . |g x | ≤ ‖f ‖ · ‖x‖

have ∀ x ∈ E . |g x | ≤ ‖f ‖-F ∗ ‖x‖
proof
fix x assume x ∈ E
with b show |g x | ≤ ‖f ‖-F ∗ ‖x‖
by (simp only : p-def )

qed
from g-cont this ge-zero
show ‖g‖-E ≤ ‖f ‖-F
by (rule fn-norm-least [of g , folded B-def fn-norm-def ])

The other direction is achieved by a similar argument.

show ‖f ‖-F ≤ ‖g‖-E
proof (rule normed-vectorspace.fn-norm-least [OF F-norm, folded B-def fn-norm-def ])

show ∀ x ∈ F . |f x | ≤ ‖g‖-E ∗ ‖x‖
proof
fix x assume x : x ∈ F
from a x have g x = f x ..
hence |f x | = |g x | by (simp only :)
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also from g-cont
have . . . ≤ ‖g‖-E ∗ ‖x‖
proof (rule fn-norm-le-cong [of g , folded B-def fn-norm-def ])
from FE x show x ∈ E ..

qed
finally show |f x | ≤ ‖g‖-E ∗ ‖x‖ .

qed
show 0 ≤ ‖g‖-E
using g-cont
by (rule fn-norm-ge-zero [of g , folded B-def fn-norm-def ])

next
show continuous F norm f by fact

qed
qed
with linearformE a g-cont show ?thesis by blast

qed

end
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