Theory Ring

Up to index of Isabelle/HOL/HOL-Algebra

theory Ring
imports FiniteProduct
uses (ringsimp.ML)
begin

(*
  Title:     The algebraic hierarchy of rings
  Id:        $Id: Ring.thy,v 1.5 2007/07/24 13:29:58 ballarin Exp $
  Author:    Clemens Ballarin, started 9 December 1996
  Copyright: Clemens Ballarin
*)

theory Ring imports FiniteProduct
uses ("ringsimp.ML") begin


section {* Abelian Groups *}

record 'a ring = "'a monoid" +
  zero :: 'a ("\<zero>\<index>")
  add :: "['a, 'a] => 'a" (infixl "⊕\<index>" 65)

text {* Derived operations. *}

constdefs (structure R)
  a_inv :: "[('a, 'm) ring_scheme, 'a ] => 'a" ("\<ominus>\<index> _" [81] 80)
  "a_inv R == m_inv (| carrier = carrier R, mult = add R, one = zero R |)"

  a_minus :: "[('a, 'm) ring_scheme, 'a, 'a] => 'a" (infixl "\<ominus>\<index>" 65)
  "[| x ∈ carrier R; y ∈ carrier R |] ==> x \<ominus> y == x ⊕ (\<ominus> y)"

locale abelian_monoid =
  fixes G (structure)
  assumes a_comm_monoid:
     "comm_monoid (| carrier = carrier G, mult = add G, one = zero G |)"


text {*
  The following definition is redundant but simple to use.
*}

locale abelian_group = abelian_monoid +
  assumes a_comm_group:
     "comm_group (| carrier = carrier G, mult = add G, one = zero G |)"


subsection {* Basic Properties *}

lemma abelian_monoidI:
  fixes R (structure)
  assumes a_closed:
      "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y ∈ carrier R"
    and zero_closed: "\<zero> ∈ carrier R"
    and a_assoc:
      "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |] ==>
      (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)"
    and l_zero: "!!x. x ∈ carrier R ==> \<zero> ⊕ x = x"
    and a_comm:
      "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y = y ⊕ x"
  shows "abelian_monoid R"
  by (auto intro!: abelian_monoid.intro comm_monoidI intro: prems)

lemma abelian_groupI:
  fixes R (structure)
  assumes a_closed:
      "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y ∈ carrier R"
    and zero_closed: "zero R ∈ carrier R"
    and a_assoc:
      "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |] ==>
      (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)"
    and a_comm:
      "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y = y ⊕ x"
    and l_zero: "!!x. x ∈ carrier R ==> \<zero> ⊕ x = x"
    and l_inv_ex: "!!x. x ∈ carrier R ==> EX y : carrier R. y ⊕ x = \<zero>"
  shows "abelian_group R"
  by (auto intro!: abelian_group.intro abelian_monoidI
      abelian_group_axioms.intro comm_monoidI comm_groupI
    intro: prems)

lemma (in abelian_monoid) a_monoid:
  "monoid (| carrier = carrier G, mult = add G, one = zero G |)"
by (rule comm_monoid.axioms, rule a_comm_monoid) 

lemma (in abelian_group) a_group:
  "group (| carrier = carrier G, mult = add G, one = zero G |)"
  by (simp add: group_def a_monoid)
    (simp add: comm_group.axioms group.axioms a_comm_group)

lemmas monoid_record_simps = partial_object.simps monoid.simps

lemma (in abelian_monoid) a_closed [intro, simp]:
  "[| x ∈ carrier G; y ∈ carrier G |] ==> x ⊕ y ∈ carrier G"
  by (rule monoid.m_closed [OF a_monoid, simplified monoid_record_simps]) 

lemma (in abelian_monoid) zero_closed [intro, simp]:
  "\<zero> ∈ carrier G"
  by (rule monoid.one_closed [OF a_monoid, simplified monoid_record_simps])

lemma (in abelian_group) a_inv_closed [intro, simp]:
  "x ∈ carrier G ==> \<ominus> x ∈ carrier G"
  by (simp add: a_inv_def
    group.inv_closed [OF a_group, simplified monoid_record_simps])

lemma (in abelian_group) minus_closed [intro, simp]:
  "[| x ∈ carrier G; y ∈ carrier G |] ==> x \<ominus> y ∈ carrier G"
  by (simp add: a_minus_def)

lemma (in abelian_group) a_l_cancel [simp]:
  "[| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
   (x ⊕ y = x ⊕ z) = (y = z)"
  by (rule group.l_cancel [OF a_group, simplified monoid_record_simps])

lemma (in abelian_group) a_r_cancel [simp]:
  "[| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
   (y ⊕ x = z ⊕ x) = (y = z)"
  by (rule group.r_cancel [OF a_group, simplified monoid_record_simps])

lemma (in abelian_monoid) a_assoc:
  "[|x ∈ carrier G; y ∈ carrier G; z ∈ carrier G|] ==>
  (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)"
  by (rule monoid.m_assoc [OF a_monoid, simplified monoid_record_simps])

lemma (in abelian_monoid) l_zero [simp]:
  "x ∈ carrier G ==> \<zero> ⊕ x = x"
  by (rule monoid.l_one [OF a_monoid, simplified monoid_record_simps])

lemma (in abelian_group) l_neg:
  "x ∈ carrier G ==> \<ominus> x ⊕ x = \<zero>"
  by (simp add: a_inv_def
    group.l_inv [OF a_group, simplified monoid_record_simps])

lemma (in abelian_monoid) a_comm:
  "[|x ∈ carrier G; y ∈ carrier G|] ==> x ⊕ y = y ⊕ x"
  by (rule comm_monoid.m_comm [OF a_comm_monoid,
    simplified monoid_record_simps])

lemma (in abelian_monoid) a_lcomm:
  "[|x ∈ carrier G; y ∈ carrier G; z ∈ carrier G|] ==>
   x ⊕ (y ⊕ z) = y ⊕ (x ⊕ z)"
  by (rule comm_monoid.m_lcomm [OF a_comm_monoid,
                                simplified monoid_record_simps])

lemma (in abelian_monoid) r_zero [simp]:
  "x ∈ carrier G ==> x ⊕ \<zero> = x"
  using monoid.r_one [OF a_monoid]
  by simp

lemma (in abelian_group) r_neg:
  "x ∈ carrier G ==> x ⊕ (\<ominus> x) = \<zero>"
  using group.r_inv [OF a_group]
  by (simp add: a_inv_def)

lemma (in abelian_group) minus_zero [simp]:
  "\<ominus> \<zero> = \<zero>"
  by (simp add: a_inv_def
    group.inv_one [OF a_group, simplified monoid_record_simps])

lemma (in abelian_group) minus_minus [simp]:
  "x ∈ carrier G ==> \<ominus> (\<ominus> x) = x"
  using group.inv_inv [OF a_group, simplified monoid_record_simps]
  by (simp add: a_inv_def)

lemma (in abelian_group) a_inv_inj:
  "inj_on (a_inv G) (carrier G)"
  using group.inv_inj [OF a_group, simplified monoid_record_simps]
  by (simp add: a_inv_def)

lemma (in abelian_group) minus_add:
  "[| x ∈ carrier G; y ∈ carrier G |] ==> \<ominus> (x ⊕ y) = \<ominus> x ⊕ \<ominus> y"
  using comm_group.inv_mult [OF a_comm_group]
  by (simp add: a_inv_def)

lemma (in abelian_group) minus_equality: 
  "[| x ∈ carrier G; y ∈ carrier G; y ⊕ x = \<zero> |] ==> \<ominus> x = y" 
  using group.inv_equality [OF a_group] 
  by (auto simp add: a_inv_def) 
 
lemma (in abelian_monoid) minus_unique: 
  "[| x ∈ carrier G; y ∈ carrier G; y' ∈ carrier G;
      y ⊕ x = \<zero>; x ⊕ y' = \<zero> |] ==> y = y'" 
  using monoid.inv_unique [OF a_monoid] 
  by (simp add: a_inv_def) 

lemmas (in abelian_monoid) a_ac = a_assoc a_comm a_lcomm

text {* Derive an @{text "abelian_group"} from a @{text "comm_group"} *}
lemma comm_group_abelian_groupI:
  fixes G (structure)
  assumes cg: "comm_group (|carrier = carrier G, mult = add G, one = zero G|)),"
  shows "abelian_group G"
proof -
  interpret comm_group ["(|carrier = carrier G, mult = add G, one = zero G|)),"]
    by (rule cg)
  show "abelian_group G" by (unfold_locales)
qed


subsection {* Sums over Finite Sets *}

text {*
  This definition makes it easy to lift lemmas from @{term finprod}.
*}

constdefs
  finsum :: "[('b, 'm) ring_scheme, 'a => 'b, 'a set] => 'b"
  "finsum G f A == finprod (| carrier = carrier G,
     mult = add G, one = zero G |) f A"

syntax
  "_finsum" :: "index => idt => 'a set => 'b => 'b"
      ("(3\<Oplus>__:_. _)" [1000, 0, 51, 10] 10)
syntax (xsymbols)
  "_finsum" :: "index => idt => 'a set => 'b => 'b"
      ("(3\<Oplus>__∈_. _)" [1000, 0, 51, 10] 10)
syntax (HTML output)
  "_finsum" :: "index => idt => 'a set => 'b => 'b"
      ("(3\<Oplus>__∈_. _)" [1000, 0, 51, 10] 10)
translations
  "\<Oplus>\<index>i:A. b" == "finsum \<struct>\<index> (%i. b) A"
  -- {* Beware of argument permutation! *}

(*
  lemmas (in abelian_monoid) finsum_empty [simp] =
    comm_monoid.finprod_empty [OF a_comm_monoid, simplified]
  is dangeous, because attributes (like simplified) are applied upon opening
  the locale, simplified refers to the simpset at that time!!!

  lemmas (in abelian_monoid) finsum_empty [simp] =
    abelian_monoid.finprod_empty [OF a_abelian_monoid, folded finsum_def,
      simplified monoid_record_simps]
  makes the locale slow, because proofs are repeated for every
  "lemma (in abelian_monoid)" command.
  When lemma is used time in UnivPoly.thy from beginning to UP_cring goes down
  from 110 secs to 60 secs.
*)

lemma (in abelian_monoid) finsum_empty [simp]:
  "finsum G f {} = \<zero>"
  by (rule comm_monoid.finprod_empty [OF a_comm_monoid,
    folded finsum_def, simplified monoid_record_simps])

lemma (in abelian_monoid) finsum_insert [simp]:
  "[| finite F; a ∉ F; f ∈ F -> carrier G; f a ∈ carrier G |]
  ==> finsum G f (insert a F) = f a ⊕ finsum G f F"
  by (rule comm_monoid.finprod_insert [OF a_comm_monoid,
    folded finsum_def, simplified monoid_record_simps])

lemma (in abelian_monoid) finsum_zero [simp]:
  "finite A ==> (\<Oplus>i∈A. \<zero>) = \<zero>"
  by (rule comm_monoid.finprod_one [OF a_comm_monoid, folded finsum_def,
    simplified monoid_record_simps])

lemma (in abelian_monoid) finsum_closed [simp]:
  fixes A
  assumes fin: "finite A" and f: "f ∈ A -> carrier G" 
  shows "finsum G f A ∈ carrier G"
  apply (rule comm_monoid.finprod_closed [OF a_comm_monoid,
    folded finsum_def, simplified monoid_record_simps])
   apply (rule fin)
  apply (rule f)
  done

lemma (in abelian_monoid) finsum_Un_Int:
  "[| finite A; finite B; g ∈ A -> carrier G; g ∈ B -> carrier G |] ==>
     finsum G g (A Un B) ⊕ finsum G g (A Int B) =
     finsum G g A ⊕ finsum G g B"
  by (rule comm_monoid.finprod_Un_Int [OF a_comm_monoid,
    folded finsum_def, simplified monoid_record_simps])

lemma (in abelian_monoid) finsum_Un_disjoint:
  "[| finite A; finite B; A Int B = {};
      g ∈ A -> carrier G; g ∈ B -> carrier G |]
   ==> finsum G g (A Un B) = finsum G g A ⊕ finsum G g B"
  by (rule comm_monoid.finprod_Un_disjoint [OF a_comm_monoid,
    folded finsum_def, simplified monoid_record_simps])

lemma (in abelian_monoid) finsum_addf:
  "[| finite A; f ∈ A -> carrier G; g ∈ A -> carrier G |] ==>
   finsum G (%x. f x ⊕ g x) A = (finsum G f A ⊕ finsum G g A)"
  by (rule comm_monoid.finprod_multf [OF a_comm_monoid,
    folded finsum_def, simplified monoid_record_simps])

lemma (in abelian_monoid) finsum_cong':
  "[| A = B; g : B -> carrier G;
      !!i. i : B ==> f i = g i |] ==> finsum G f A = finsum G g B"
  by (rule comm_monoid.finprod_cong' [OF a_comm_monoid,
    folded finsum_def, simplified monoid_record_simps]) auto

lemma (in abelian_monoid) finsum_0 [simp]:
  "f : {0::nat} -> carrier G ==> finsum G f {..0} = f 0"
  by (rule comm_monoid.finprod_0 [OF a_comm_monoid, folded finsum_def,
    simplified monoid_record_simps])

lemma (in abelian_monoid) finsum_Suc [simp]:
  "f : {..Suc n} -> carrier G ==>
   finsum G f {..Suc n} = (f (Suc n) ⊕ finsum G f {..n})"
  by (rule comm_monoid.finprod_Suc [OF a_comm_monoid, folded finsum_def,
    simplified monoid_record_simps])

lemma (in abelian_monoid) finsum_Suc2:
  "f : {..Suc n} -> carrier G ==>
   finsum G f {..Suc n} = (finsum G (%i. f (Suc i)) {..n} ⊕ f 0)"
  by (rule comm_monoid.finprod_Suc2 [OF a_comm_monoid, folded finsum_def,
    simplified monoid_record_simps])

lemma (in abelian_monoid) finsum_add [simp]:
  "[| f : {..n} -> carrier G; g : {..n} -> carrier G |] ==>
     finsum G (%i. f i ⊕ g i) {..n::nat} =
     finsum G f {..n} ⊕ finsum G g {..n}"
  by (rule comm_monoid.finprod_mult [OF a_comm_monoid, folded finsum_def,
    simplified monoid_record_simps])

lemma (in abelian_monoid) finsum_cong:
  "[| A = B; f : B -> carrier G;
      !!i. i : B =simp=> f i = g i |] ==> finsum G f A = finsum G g B"
  by (rule comm_monoid.finprod_cong [OF a_comm_monoid, folded finsum_def,
    simplified monoid_record_simps]) (auto simp add: simp_implies_def)

text {*Usually, if this rule causes a failed congruence proof error,
   the reason is that the premise @{text "g ∈ B -> carrier G"} cannot be shown.
   Adding @{thm [source] Pi_def} to the simpset is often useful. *}


section {* The Algebraic Hierarchy of Rings *}


subsection {* Basic Definitions *}

locale ring = abelian_group R + monoid R +
  assumes l_distr: "[| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
      ==> (x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗ z"
    and r_distr: "[| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
      ==> z ⊗ (x ⊕ y) = z ⊗ x ⊕ z ⊗ y"

locale cring = ring + comm_monoid R

locale "domain" = cring +
  assumes one_not_zero [simp]: "\<one> ~= \<zero>"
    and integral: "[| a ⊗ b = \<zero>; a ∈ carrier R; b ∈ carrier R |] ==>
                  a = \<zero> | b = \<zero>"

locale field = "domain" +
  assumes field_Units: "Units R = carrier R - {\<zero>}"


subsection {* Rings *}

lemma ringI:
  fixes R (structure)
  assumes abelian_group: "abelian_group R"
    and monoid: "monoid R"
    and l_distr: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
      ==> (x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗ z"
    and r_distr: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
      ==> z ⊗ (x ⊕ y) = z ⊗ x ⊕ z ⊗ y"
  shows "ring R"
  by (auto intro: ring.intro
    abelian_group.axioms ring_axioms.intro prems)

lemma (in ring) is_abelian_group:
  "abelian_group R"
  by (auto intro!: abelian_groupI a_assoc a_comm l_neg)

lemma (in ring) is_monoid:
  "monoid R"
  by (auto intro!: monoidI m_assoc)

lemma (in ring) is_ring:
  "ring R"
  by fact

lemmas ring_record_simps = monoid_record_simps ring.simps

lemma cringI:
  fixes R (structure)
  assumes abelian_group: "abelian_group R"
    and comm_monoid: "comm_monoid R"
    and l_distr: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
      ==> (x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗ z"
  shows "cring R"
proof (intro cring.intro ring.intro)
  show "ring_axioms R"
    -- {* Right-distributivity follows from left-distributivity and
          commutativity. *}
  proof (rule ring_axioms.intro)
    fix x y z
    assume R: "x ∈ carrier R" "y ∈ carrier R" "z ∈ carrier R"
    note [simp] = comm_monoid.axioms [OF comm_monoid]
      abelian_group.axioms [OF abelian_group]
      abelian_monoid.a_closed
        
    from R have "z ⊗ (x ⊕ y) = (x ⊕ y) ⊗ z"
      by (simp add: comm_monoid.m_comm [OF comm_monoid.intro])
    also from R have "... = x ⊗ z ⊕ y ⊗ z" by (simp add: l_distr)
    also from R have "... = z ⊗ x ⊕ z ⊗ y"
      by (simp add: comm_monoid.m_comm [OF comm_monoid.intro])
    finally show "z ⊗ (x ⊕ y) = z ⊗ x ⊕ z ⊗ y" .
  qed (rule l_distr)
qed (auto intro: cring.intro
  abelian_group.axioms comm_monoid.axioms ring_axioms.intro prems)

lemma (in cring) is_comm_monoid:
  "comm_monoid R"
  by (auto intro!: comm_monoidI m_assoc m_comm)

lemma (in cring) is_cring:
  "cring R" by fact


subsubsection {* Normaliser for Rings *}

lemma (in abelian_group) r_neg2:
  "[| x ∈ carrier G; y ∈ carrier G |] ==> x ⊕ (\<ominus> x ⊕ y) = y"
proof -
  assume G: "x ∈ carrier G" "y ∈ carrier G"
  then have "(x ⊕ \<ominus> x) ⊕ y = y"
    by (simp only: r_neg l_zero)
  with G show ?thesis 
    by (simp add: a_ac)
qed

lemma (in abelian_group) r_neg1:
  "[| x ∈ carrier G; y ∈ carrier G |] ==> \<ominus> x ⊕ (x ⊕ y) = y"
proof -
  assume G: "x ∈ carrier G" "y ∈ carrier G"
  then have "(\<ominus> x ⊕ x) ⊕ y = y" 
    by (simp only: l_neg l_zero)
  with G show ?thesis by (simp add: a_ac)
qed

text {* 
  The following proofs are from Jacobson, Basic Algebra I, pp.~88--89
*}

lemma (in ring) l_null [simp]:
  "x ∈ carrier R ==> \<zero> ⊗ x = \<zero>"
proof -
  assume R: "x ∈ carrier R"
  then have "\<zero> ⊗ x ⊕ \<zero> ⊗ x = (\<zero> ⊕ \<zero>) ⊗ x"
    by (simp add: l_distr del: l_zero r_zero)
  also from R have "... = \<zero> ⊗ x ⊕ \<zero>" by simp
  finally have "\<zero> ⊗ x ⊕ \<zero> ⊗ x = \<zero> ⊗ x ⊕ \<zero>" .
  with R show ?thesis by (simp del: r_zero)
qed

lemma (in ring) r_null [simp]:
  "x ∈ carrier R ==> x ⊗ \<zero> = \<zero>"
proof -
  assume R: "x ∈ carrier R"
  then have "x ⊗ \<zero> ⊕ x ⊗ \<zero> = x ⊗ (\<zero> ⊕ \<zero>)"
    by (simp add: r_distr del: l_zero r_zero)
  also from R have "... = x ⊗ \<zero> ⊕ \<zero>" by simp
  finally have "x ⊗ \<zero> ⊕ x ⊗ \<zero> = x ⊗ \<zero> ⊕ \<zero>" .
  with R show ?thesis by (simp del: r_zero)
qed

lemma (in ring) l_minus:
  "[| x ∈ carrier R; y ∈ carrier R |] ==> \<ominus> x ⊗ y = \<ominus> (x ⊗ y)"
proof -
  assume R: "x ∈ carrier R" "y ∈ carrier R"
  then have "(\<ominus> x) ⊗ y ⊕ x ⊗ y = (\<ominus> x ⊕ x) ⊗ y" by (simp add: l_distr)
  also from R have "... = \<zero>" by (simp add: l_neg l_null)
  finally have "(\<ominus> x) ⊗ y ⊕ x ⊗ y = \<zero>" .
  with R have "(\<ominus> x) ⊗ y ⊕ x ⊗ y ⊕ \<ominus> (x ⊗ y) = \<zero> ⊕ \<ominus> (x ⊗ y)" by simp
  with R show ?thesis by (simp add: a_assoc r_neg)
qed

lemma (in ring) r_minus:
  "[| x ∈ carrier R; y ∈ carrier R |] ==> x ⊗ \<ominus> y = \<ominus> (x ⊗ y)"
proof -
  assume R: "x ∈ carrier R" "y ∈ carrier R"
  then have "x ⊗ (\<ominus> y) ⊕ x ⊗ y = x ⊗ (\<ominus> y ⊕ y)" by (simp add: r_distr)
  also from R have "... = \<zero>" by (simp add: l_neg r_null)
  finally have "x ⊗ (\<ominus> y) ⊕ x ⊗ y = \<zero>" .
  with R have "x ⊗ (\<ominus> y) ⊕ x ⊗ y ⊕ \<ominus> (x ⊗ y) = \<zero> ⊕ \<ominus> (x ⊗ y)" by simp
  with R show ?thesis by (simp add: a_assoc r_neg )
qed

lemma (in abelian_group) minus_eq:
  "[| x ∈ carrier G; y ∈ carrier G |] ==> x \<ominus> y = x ⊕ \<ominus> y"
  by (simp only: a_minus_def)

text {* Setup algebra method:
  compute distributive normal form in locale contexts *}

use "ringsimp.ML"

setup Algebra.setup

lemmas (in ring) ring_simprules
  [algebra ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"] =
  a_closed zero_closed a_inv_closed minus_closed m_closed one_closed
  a_assoc l_zero l_neg a_comm m_assoc l_one l_distr minus_eq
  r_zero r_neg r_neg2 r_neg1 minus_add minus_minus minus_zero
  a_lcomm r_distr l_null r_null l_minus r_minus

lemmas (in cring)
  [algebra del: ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"] =
  _

lemmas (in cring) cring_simprules
  [algebra add: cring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"] =
  a_closed zero_closed a_inv_closed minus_closed m_closed one_closed
  a_assoc l_zero l_neg a_comm m_assoc l_one l_distr m_comm minus_eq
  r_zero r_neg r_neg2 r_neg1 minus_add minus_minus minus_zero
  a_lcomm m_lcomm r_distr l_null r_null l_minus r_minus


lemma (in cring) nat_pow_zero:
  "(n::nat) ~= 0 ==> \<zero> (^) n = \<zero>"
  by (induct n) simp_all

lemma (in ring) one_zeroD:
  assumes onezero: "\<one> = \<zero>"
  shows "carrier R = {\<zero>}"
proof (rule, rule)
  fix x
  assume xcarr: "x ∈ carrier R"
  from xcarr
      have "x = x ⊗ \<one>" by simp
  from this and onezero
      have "x = x ⊗ \<zero>" by simp
  from this and xcarr
      have "x = \<zero>" by simp
  thus "x ∈ {\<zero>}" by fast
qed fast

lemma (in ring) one_zeroI:
  assumes carrzero: "carrier R = {\<zero>}"
  shows "\<one> = \<zero>"
proof -
  from one_closed and carrzero
      show "\<one> = \<zero>" by simp
qed

lemma (in ring) one_zero:
  shows "(carrier R = {\<zero>}) = (\<one> = \<zero>)"
  by (rule, erule one_zeroI, erule one_zeroD)

lemma (in ring) one_not_zero:
  shows "(carrier R ≠ {\<zero>}) = (\<one> ≠ \<zero>)"
  by (simp add: one_zero)

text {* Two examples for use of method algebra *}

lemma
  includes ring R + cring S
  shows "[| a ∈ carrier R; b ∈ carrier R; c ∈ carrier S; d ∈ carrier S |] ==> 
  a ⊕ \<ominus> (a ⊕ \<ominus> b) = b & c ⊗S d = d ⊗S c"
  by algebra

lemma
  includes cring
  shows "[| a ∈ carrier R; b ∈ carrier R |] ==> a \<ominus> (a \<ominus> b) = b"
  by algebra


subsubsection {* Sums over Finite Sets *}

lemma (in cring) finsum_ldistr:
  "[| finite A; a ∈ carrier R; f ∈ A -> carrier R |] ==>
   finsum R f A ⊗ a = finsum R (%i. f i ⊗ a) A"
proof (induct set: finite)
  case empty then show ?case by simp
next
  case (insert x F) then show ?case by (simp add: Pi_def l_distr)
qed

lemma (in cring) finsum_rdistr:
  "[| finite A; a ∈ carrier R; f ∈ A -> carrier R |] ==>
   a ⊗ finsum R f A = finsum R (%i. a ⊗ f i) A"
proof (induct set: finite)
  case empty then show ?case by simp
next
  case (insert x F) then show ?case by (simp add: Pi_def r_distr)
qed


subsection {* Integral Domains *}

lemma (in "domain") zero_not_one [simp]:
  "\<zero> ~= \<one>"
  by (rule not_sym) simp

lemma (in "domain") integral_iff: (* not by default a simp rule! *)
  "[| a ∈ carrier R; b ∈ carrier R |] ==> (a ⊗ b = \<zero>) = (a = \<zero> | b = \<zero>)"
proof
  assume "a ∈ carrier R" "b ∈ carrier R" "a ⊗ b = \<zero>"
  then show "a = \<zero> | b = \<zero>" by (simp add: integral)
next
  assume "a ∈ carrier R" "b ∈ carrier R" "a = \<zero> | b = \<zero>"
  then show "a ⊗ b = \<zero>" by auto
qed

lemma (in "domain") m_lcancel:
  assumes prem: "a ~= \<zero>"
    and R: "a ∈ carrier R" "b ∈ carrier R" "c ∈ carrier R"
  shows "(a ⊗ b = a ⊗ c) = (b = c)"
proof
  assume eq: "a ⊗ b = a ⊗ c"
  with R have "a ⊗ (b \<ominus> c) = \<zero>" by algebra
  with R have "a = \<zero> | (b \<ominus> c) = \<zero>" by (simp add: integral_iff)
  with prem and R have "b \<ominus> c = \<zero>" by auto 
  with R have "b = b \<ominus> (b \<ominus> c)" by algebra 
  also from R have "b \<ominus> (b \<ominus> c) = c" by algebra
  finally show "b = c" .
next
  assume "b = c" then show "a ⊗ b = a ⊗ c" by simp
qed

lemma (in "domain") m_rcancel:
  assumes prem: "a ~= \<zero>"
    and R: "a ∈ carrier R" "b ∈ carrier R" "c ∈ carrier R"
  shows conc: "(b ⊗ a = c ⊗ a) = (b = c)"
proof -
  from prem and R have "(a ⊗ b = a ⊗ c) = (b = c)" by (rule m_lcancel)
  with R show ?thesis by algebra
qed


subsection {* Fields *}

text {* Field would not need to be derived from domain, the properties
  for domain follow from the assumptions of field *}
lemma (in cring) cring_fieldI:
  assumes field_Units: "Units R = carrier R - {\<zero>}"
  shows "field R"
proof unfold_locales
  from field_Units
  have a: "\<zero> ∉ Units R" by fast
  have "\<one> ∈ Units R" by fast
  from this and a
  show "\<one> ≠ \<zero>" by force
next
  fix a b
  assume acarr: "a ∈ carrier R"
    and bcarr: "b ∈ carrier R"
    and ab: "a ⊗ b = \<zero>"
  show "a = \<zero> ∨ b = \<zero>"
  proof (cases "a = \<zero>", simp)
    assume "a ≠ \<zero>"
    from this and field_Units and acarr
    have aUnit: "a ∈ Units R" by fast
    from bcarr
    have "b = \<one> ⊗ b" by algebra
    also from aUnit acarr
    have "... = (inv a ⊗ a) ⊗ b" by (simp add: Units_l_inv)
    also from acarr bcarr aUnit[THEN Units_inv_closed]
    have "... = (inv a) ⊗ (a ⊗ b)" by algebra
    also from ab and acarr bcarr aUnit
    have "... = (inv a) ⊗ \<zero>" by simp
    also from aUnit[THEN Units_inv_closed]
    have "... = \<zero>" by algebra
    finally
    have "b = \<zero>" .
    thus "a = \<zero> ∨ b = \<zero>" by simp
  qed
qed (rule field_Units)

text {* Another variant to show that something is a field *}
lemma (in cring) cring_fieldI2:
  assumes notzero: "\<zero> ≠ \<one>"
  and invex: "!!a. [|a ∈ carrier R; a ≠ \<zero>|] ==> ∃b∈carrier R. a ⊗ b = \<one>"
  shows "field R"
  apply (rule cring_fieldI, simp add: Units_def)
  apply (rule, clarsimp)
  apply (simp add: notzero)
proof (clarsimp)
  fix x
  assume xcarr: "x ∈ carrier R"
    and "x ≠ \<zero>"
  from this
  have "∃y∈carrier R. x ⊗ y = \<one>" by (rule invex)
  from this
  obtain y
    where ycarr: "y ∈ carrier R"
    and xy: "x ⊗ y = \<one>"
    by fast
  from xy xcarr ycarr have "y ⊗ x = \<one>" by (simp add: m_comm)
  from ycarr and this and xy
  show "∃y∈carrier R. y ⊗ x = \<one> ∧ x ⊗ y = \<one>" by fast
qed


subsection {* Morphisms *}

constdefs (structure R S)
  ring_hom :: "[('a, 'm) ring_scheme, ('b, 'n) ring_scheme] => ('a => 'b) set"
  "ring_hom R S == {h. h ∈ carrier R -> carrier S &
      (ALL x y. x ∈ carrier R & y ∈ carrier R -->
        h (x ⊗ y) = h x ⊗S h y & h (x ⊕ y) = h x ⊕S h y) &
      h \<one> = \<one>S}"

lemma ring_hom_memI:
  fixes R (structure) and S (structure)
  assumes hom_closed: "!!x. x ∈ carrier R ==> h x ∈ carrier S"
    and hom_mult: "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==>
      h (x ⊗ y) = h x ⊗S h y"
    and hom_add: "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==>
      h (x ⊕ y) = h x ⊕S h y"
    and hom_one: "h \<one> = \<one>S"
  shows "h ∈ ring_hom R S"
  by (auto simp add: ring_hom_def prems Pi_def)

lemma ring_hom_closed:
  "[| h ∈ ring_hom R S; x ∈ carrier R |] ==> h x ∈ carrier S"
  by (auto simp add: ring_hom_def funcset_mem)

lemma ring_hom_mult:
  fixes R (structure) and S (structure)
  shows
    "[| h ∈ ring_hom R S; x ∈ carrier R; y ∈ carrier R |] ==>
    h (x ⊗ y) = h x ⊗S h y"
    by (simp add: ring_hom_def)

lemma ring_hom_add:
  fixes R (structure) and S (structure)
  shows
    "[| h ∈ ring_hom R S; x ∈ carrier R; y ∈ carrier R |] ==>
    h (x ⊕ y) = h x ⊕S h y"
    by (simp add: ring_hom_def)

lemma ring_hom_one:
  fixes R (structure) and S (structure)
  shows "h ∈ ring_hom R S ==> h \<one> = \<one>S"
  by (simp add: ring_hom_def)

locale ring_hom_cring = cring R + cring S +
  fixes h
  assumes homh [simp, intro]: "h ∈ ring_hom R S"
  notes hom_closed [simp, intro] = ring_hom_closed [OF homh]
    and hom_mult [simp] = ring_hom_mult [OF homh]
    and hom_add [simp] = ring_hom_add [OF homh]
    and hom_one [simp] = ring_hom_one [OF homh]

lemma (in ring_hom_cring) hom_zero [simp]:
  "h \<zero> = \<zero>S"
proof -
  have "h \<zero> ⊕S h \<zero> = h \<zero> ⊕S \<zero>S"
    by (simp add: hom_add [symmetric] del: hom_add)
  then show ?thesis by (simp del: S.r_zero)
qed

lemma (in ring_hom_cring) hom_a_inv [simp]:
  "x ∈ carrier R ==> h (\<ominus> x) = \<ominus>S h x"
proof -
  assume R: "x ∈ carrier R"
  then have "h x ⊕S h (\<ominus> x) = h x ⊕S (\<ominus>S h x)"
    by (simp add: hom_add [symmetric] R.r_neg S.r_neg del: hom_add)
  with R show ?thesis by simp
qed

lemma (in ring_hom_cring) hom_finsum [simp]:
  "[| finite A; f ∈ A -> carrier R |] ==>
  h (finsum R f A) = finsum S (h o f) A"
proof (induct set: finite)
  case empty then show ?case by simp
next
  case insert then show ?case by (simp add: Pi_def)
qed

lemma (in ring_hom_cring) hom_finprod:
  "[| finite A; f ∈ A -> carrier R |] ==>
  h (finprod R f A) = finprod S (h o f) A"
proof (induct set: finite)
  case empty then show ?case by simp
next
  case insert then show ?case by (simp add: Pi_def)
qed

declare ring_hom_cring.hom_finprod [simp]

lemma id_ring_hom [simp]:
  "id ∈ ring_hom R R"
  by (auto intro!: ring_hom_memI)

end

Abelian Groups

Basic Properties

lemma abelian_monoidI:

  [| !!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> xR y ∈ carrier R;
     \<zero>R ∈ carrier R;
     !!x y z.
        [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
        ==> xR yR z = xR (yR z);
     !!x. x ∈ carrier R ==> \<zero>RR x = x;
     !!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> xR y = yR x |]
  ==> abelian_monoid R

lemma abelian_groupI:

  [| !!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> xR y ∈ carrier R;
     \<zero>R ∈ carrier R;
     !!x y z.
        [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
        ==> xR yR z = xR (yR z);
     !!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> xR y = yR x;
     !!x. x ∈ carrier R ==> \<zero>RR x = x;
     !!x. x ∈ carrier R ==> ∃y∈carrier R. yR x = \<zero>R |]
  ==> abelian_group R

lemma a_monoid:

  monoid (| carrier = carrier G, mult = op ⊕, one = \<zero>, ... = () |)

lemma a_group:

  group (| carrier = carrier G, mult = op ⊕, one = \<zero>, ... = () |)

lemma monoid_record_simps:

  carrier (| carrier = carrier, ... = more |) = carrier
  partial_object.more (| carrier = carrier, ... = more |) = more
  carrier_update carrier' (| carrier = carrier, ... = more |) =
  (| carrier = carrier' carrier, ... = more |)
  partial_object.more_update more' (| carrier = carrier, ... = more |) =
  (| carrier = carrier, ... = more' more |)
  op ⊗(| carrier = carrier, mult = mult, one = one, ... = more |) = mult
  \<one>(| carrier = carrier, mult = mult, one = one, ... = more |) = one
  monoid.more (| carrier = carrier, mult = mult, one = one, ... = more |) = more
  mult_update mult' (| carrier = carrier, mult = mult, one = one, ... = more |) =
  (| carrier = carrier, mult = mult' mult, one = one, ... = more |)
  one_update one' (| carrier = carrier, mult = mult, one = one, ... = more |) =
  (| carrier = carrier, mult = mult, one = one' one, ... = more |)
  monoid.more_update more'
   (| carrier = carrier, mult = mult, one = one, ... = more |) =
  (| carrier = carrier, mult = mult, one = one, ... = more' more |)

lemma a_closed:

  [| x ∈ carrier G; y ∈ carrier G |] ==> xy ∈ carrier G

lemma zero_closed:

  \<zero> ∈ carrier G

lemma a_inv_closed:

  x ∈ carrier G ==> \<ominus> x ∈ carrier G

lemma minus_closed:

  [| x ∈ carrier G; y ∈ carrier G |] ==> x \<ominus> y ∈ carrier G

lemma a_l_cancel:

  [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==> (xy = xz) = (y = z)

lemma a_r_cancel:

  [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==> (yx = zx) = (y = z)

lemma a_assoc:

  [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==> xyz = x ⊕ (yz)

lemma l_zero:

  x ∈ carrier G ==> \<zero> ⊕ x = x

lemma l_neg:

  x ∈ carrier G ==> \<ominus> xx = \<zero>

lemma a_comm:

  [| x ∈ carrier G; y ∈ carrier G |] ==> xy = yx

lemma a_lcomm:

  [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==> x ⊕ (yz) = y ⊕ (xz)

lemma r_zero:

  x ∈ carrier G ==> x ⊕ \<zero> = x

lemma r_neg:

  x ∈ carrier G ==> x ⊕ \<ominus> x = \<zero>

lemma minus_zero:

  \<ominus> \<zero> = \<zero>

lemma minus_minus:

  x ∈ carrier G ==> \<ominus> (\<ominus> x) = x

lemma a_inv_inj:

  inj_on (a_inv G) (carrier G)

lemma minus_add:

  [| x ∈ carrier G; y ∈ carrier G |]
  ==> \<ominus> (xy) = \<ominus> x ⊕ \<ominus> y

lemma minus_equality:

  [| x ∈ carrier G; y ∈ carrier G; yx = \<zero> |] ==> \<ominus> x = y

lemma minus_unique:

  [| x ∈ carrier G; y ∈ carrier G; y' ∈ carrier G; yx = \<zero>;
     xy' = \<zero> |]
  ==> y = y'

lemma a_ac:

  [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==> xyz = x ⊕ (yz)
  [| x ∈ carrier G; y ∈ carrier G |] ==> xy = yx
  [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==> x ⊕ (yz) = y ⊕ (xz)

lemma comm_group_abelian_groupI:

  comm_group (| carrier = carrier G, mult = op ⊕G, one = \<zero>G, ... = () |)
  ==> abelian_group G

Sums over Finite Sets

lemma finsum_empty:

  finsum G f {} = \<zero>

lemma finsum_insert:

  [| finite F; a  F; fF -> carrier G; f a ∈ carrier G |]
  ==> finsum G f (insert a F) = f a ⊕ finsum G f F

lemma finsum_zero:

  finite A ==> (\<Oplus>iA. \<zero>) = \<zero>

lemma finsum_closed:

  [| finite A; fA -> carrier G |] ==> finsum G f A ∈ carrier G

lemma finsum_Un_Int:

  [| finite A; finite B; gA -> carrier G; gB -> carrier G |]
  ==> finsum G g (AB) ⊕ finsum G g (AB) = finsum G g A ⊕ finsum G g B

lemma finsum_Un_disjoint:

  [| finite A; finite B; AB = {}; gA -> carrier G; gB -> carrier G |]
  ==> finsum G g (AB) = finsum G g A ⊕ finsum G g B

lemma finsum_addf:

  [| finite A; fA -> carrier G; gA -> carrier G |]
  ==> (\<Oplus>xA. f xg x) = finsum G f A ⊕ finsum G g A

lemma finsum_cong':

  [| A = B; gB -> carrier G; !!i. iB ==> f i = g i |]
  ==> finsum G f A = finsum G g B

lemma finsum_0:

  f ∈ {0} -> carrier G ==> finsum G f {..0} = f 0

lemma finsum_Suc:

  f{..Suc n} -> carrier G
  ==> finsum G f {..Suc n} = f (Suc n) ⊕ finsum G f {..n}

lemma finsum_Suc2:

  f{..Suc n} -> carrier G
  ==> finsum G f {..Suc n} = (\<Oplus>i{..n}. f (Suc i)) ⊕ f 0

lemma finsum_add:

  [| f{..n} -> carrier G; g{..n} -> carrier G |]
  ==> (\<Oplus>i{..n}. f ig i) = finsum G f {..n} ⊕ finsum G g {..n}

lemma finsum_cong:

  [| A = B; fB -> carrier G; !!i. iB =simp=> f i = g i |]
  ==> finsum G f A = finsum G g B

The Algebraic Hierarchy of Rings

Basic Definitions

Rings

lemma ringI:

  [| abelian_group R; monoid R;
     !!x y z.
        [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
        ==> (xR y) ⊗R z = xR zR yR z;
     !!x y z.
        [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
        ==> zR (xR y) = zR xR zR y |]
  ==> Ring.ring R

lemma is_abelian_group:

  abelian_group R

lemma is_monoid:

  monoid R

lemma is_ring:

  Ring.ring R

lemma ring_record_simps:

  carrier (| carrier = carrier, ... = more |) = carrier
  partial_object.more (| carrier = carrier, ... = more |) = more
  carrier_update carrier' (| carrier = carrier, ... = more |) =
  (| carrier = carrier' carrier, ... = more |)
  partial_object.more_update more' (| carrier = carrier, ... = more |) =
  (| carrier = carrier, ... = more' more |)
  op ⊗(| carrier = carrier, mult = mult, one = one, ... = more |) = mult
  \<one>(| carrier = carrier, mult = mult, one = one, ... = more |) = one
  monoid.more (| carrier = carrier, mult = mult, one = one, ... = more |) = more
  mult_update mult' (| carrier = carrier, mult = mult, one = one, ... = more |) =
  (| carrier = carrier, mult = mult' mult, one = one, ... = more |)
  one_update one' (| carrier = carrier, mult = mult, one = one, ... = more |) =
  (| carrier = carrier, mult = mult, one = one' one, ... = more |)
  monoid.more_update more'
   (| carrier = carrier, mult = mult, one = one, ... = more |) =
  (| carrier = carrier, mult = mult, one = one, ... = more' more |)
  \<zero>(| carrier = carrier, mult = mult, one = one, zero = zero, add = add, ... = more |) =
  zero
  op ⊕(| carrier = carrier, mult = mult, one = one, zero = zero, add = add, ... = more |) =
  add
  ring.more
   (| carrier = carrier, mult = mult, one = one, zero = zero, add = add,
      ... = more |) =
  more
  zero_update zero'
   (| carrier = carrier, mult = mult, one = one, zero = zero, add = add,
      ... = more |) =
  (| carrier = carrier, mult = mult, one = one, zero = zero' zero, add = add,
     ... = more |)
  add_update add'
   (| carrier = carrier, mult = mult, one = one, zero = zero, add = add,
      ... = more |) =
  (| carrier = carrier, mult = mult, one = one, zero = zero, add = add' add,
     ... = more |)
  ring.more_update more'
   (| carrier = carrier, mult = mult, one = one, zero = zero, add = add,
      ... = more |) =
  (| carrier = carrier, mult = mult, one = one, zero = zero, add = add,
     ... = more' more |)

lemma cringI:

  [| abelian_group R; comm_monoid R;
     !!x y z.
        [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
        ==> (xR y) ⊗R z = xR zR yR z |]
  ==> cring R

lemma is_comm_monoid:

  comm_monoid R

lemma is_cring:

  cring R

Normaliser for Rings

lemma r_neg2:

  [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊕ (\<ominus> xy) = y

lemma r_neg1:

  [| x ∈ carrier G; y ∈ carrier G |] ==> \<ominus> x ⊕ (xy) = y

lemma l_null:

  x ∈ carrier R ==> \<zero> ⊗ x = \<zero>

lemma r_null:

  x ∈ carrier R ==> x ⊗ \<zero> = \<zero>

lemma l_minus:

  [| x ∈ carrier R; y ∈ carrier R |] ==> \<ominus> xy = \<ominus> (xy)

lemma r_minus:

  [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊗ \<ominus> y = \<ominus> (xy)

lemma minus_eq:

  [| x ∈ carrier G; y ∈ carrier G |] ==> x \<ominus> y = x ⊕ \<ominus> y

lemma ring_simprules:

  [| x ∈ carrier R; y ∈ carrier R |] ==> xy ∈ carrier R
  \<zero> ∈ carrier R
  x ∈ carrier R ==> \<ominus> x ∈ carrier R
  [| x ∈ carrier R; y ∈ carrier R |] ==> x \<ominus> y ∈ carrier R
  [| x ∈ carrier R; y ∈ carrier R |] ==> xy ∈ carrier R
  \<one> ∈ carrier R
  [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |] ==> xyz = x ⊕ (yz)
  x ∈ carrier R ==> \<zero> ⊕ x = x
  x ∈ carrier R ==> \<ominus> xx = \<zero>
  [| x ∈ carrier R; y ∈ carrier R |] ==> xy = yx
  [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |] ==> xyz = x ⊗ (yz)
  x ∈ carrier R ==> \<one> ⊗ x = x
  [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
  ==> (xy) ⊗ z = xzyz
  [| x ∈ carrier R; y ∈ carrier R |] ==> x \<ominus> y = x ⊕ \<ominus> y
  x ∈ carrier R ==> x ⊕ \<zero> = x
  x ∈ carrier R ==> x ⊕ \<ominus> x = \<zero>
  [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ (\<ominus> xy) = y
  [| x ∈ carrier R; y ∈ carrier R |] ==> \<ominus> x ⊕ (xy) = y
  [| x ∈ carrier R; y ∈ carrier R |]
  ==> \<ominus> (xy) = \<ominus> x ⊕ \<ominus> y
  x ∈ carrier R ==> \<ominus> (\<ominus> x) = x
  \<ominus> \<zero> = \<zero>
  [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |] ==> x ⊕ (yz) = y ⊕ (xz)
  [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
  ==> z ⊗ (xy) = zxzy
  x ∈ carrier R ==> \<zero> ⊗ x = \<zero>
  x ∈ carrier R ==> x ⊗ \<zero> = \<zero>
  [| x ∈ carrier R; y ∈ carrier R |] ==> \<ominus> xy = \<ominus> (xy)
  [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊗ \<ominus> y = \<ominus> (xy)

lemma

  PROP psi ==> PROP psi

lemma cring_simprules:

  [| x ∈ carrier R; y ∈ carrier R |] ==> xy ∈ carrier R
  \<zero> ∈ carrier R
  x ∈ carrier R ==> \<ominus> x ∈ carrier R
  [| x ∈ carrier R; y ∈ carrier R |] ==> x \<ominus> y ∈ carrier R
  [| x ∈ carrier R; y ∈ carrier R |] ==> xy ∈ carrier R
  \<one> ∈ carrier R
  [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |] ==> xyz = x ⊕ (yz)
  x ∈ carrier R ==> \<zero> ⊕ x = x
  x ∈ carrier R ==> \<ominus> xx = \<zero>
  [| x ∈ carrier R; y ∈ carrier R |] ==> xy = yx
  [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |] ==> xyz = x ⊗ (yz)
  x ∈ carrier R ==> \<one> ⊗ x = x
  [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
  ==> (xy) ⊗ z = xzyz
  [| x ∈ carrier R; y ∈ carrier R |] ==> xy = yx
  [| x ∈ carrier R; y ∈ carrier R |] ==> x \<ominus> y = x ⊕ \<ominus> y
  x ∈ carrier R ==> x ⊕ \<zero> = x
  x ∈ carrier R ==> x ⊕ \<ominus> x = \<zero>
  [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ (\<ominus> xy) = y
  [| x ∈ carrier R; y ∈ carrier R |] ==> \<ominus> x ⊕ (xy) = y
  [| x ∈ carrier R; y ∈ carrier R |]
  ==> \<ominus> (xy) = \<ominus> x ⊕ \<ominus> y
  x ∈ carrier R ==> \<ominus> (\<ominus> x) = x
  \<ominus> \<zero> = \<zero>
  [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |] ==> x ⊕ (yz) = y ⊕ (xz)
  [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |] ==> x ⊗ (yz) = y ⊗ (xz)
  [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
  ==> z ⊗ (xy) = zxzy
  x ∈ carrier R ==> \<zero> ⊗ x = \<zero>
  x ∈ carrier R ==> x ⊗ \<zero> = \<zero>
  [| x ∈ carrier R; y ∈ carrier R |] ==> \<ominus> xy = \<ominus> (xy)
  [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊗ \<ominus> y = \<ominus> (xy)

lemma nat_pow_zero:

  n  0 ==> \<zero> (^) n = \<zero>

lemma one_zeroD:

  \<one> = \<zero> ==> carrier R = {\<zero>}

lemma one_zeroI:

  carrier R = {\<zero>} ==> \<one> = \<zero>

lemma one_zero:

  (carrier R = {\<zero>}) = (\<one> = \<zero>)

lemma one_not_zero:

  (carrier R  {\<zero>}) = (\<one>  \<zero>)

lemma

  [| Ring.ring R; cring S; a ∈ carrier R; b ∈ carrier R; c ∈ carrier S;
     d ∈ carrier S |]
  ==> aR \<ominus>R (aR \<ominus>R b) = bcS d = dS c

lemma

  [| cring R; a ∈ carrier R; b ∈ carrier R |]
  ==> a \<ominus>R (a \<ominus>R b) = b

Sums over Finite Sets

lemma finsum_ldistr:

  [| finite A; a ∈ carrier R; fA -> carrier R |]
  ==> finsum R f Aa = (\<Oplus>iA. f ia)

lemma finsum_rdistr:

  [| finite A; a ∈ carrier R; fA -> carrier R |]
  ==> a ⊗ finsum R f A = (\<Oplus>iA. af i)

Integral Domains

lemma zero_not_one:

  \<zero>  \<one>

lemma integral_iff:

  [| a ∈ carrier R; b ∈ carrier R |]
  ==> (ab = \<zero>) = (a = \<zero> ∨ b = \<zero>)

lemma m_lcancel:

  [| a  \<zero>; a ∈ carrier R; b ∈ carrier R; c ∈ carrier R |]
  ==> (ab = ac) = (b = c)

lemma conc:

  [| a  \<zero>; a ∈ carrier R; b ∈ carrier R; c ∈ carrier R |]
  ==> (ba = ca) = (b = c)

Fields

lemma cring_fieldI:

  Units R = carrier R - {\<zero>} ==> Ring.field R

lemma cring_fieldI2:

  [| \<zero>  \<one>;
     !!a. [| a ∈ carrier R; a  \<zero> |] ==> ∃b∈carrier R. ab = \<one> |]
  ==> Ring.field R

Morphisms

lemma ring_hom_memI:

  [| !!x. x ∈ carrier R ==> h x ∈ carrier S;
     !!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> h (xR y) = h xS h y;
     !!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> h (xR y) = h xS h y;
     h \<one>R = \<one>S |]
  ==> h ∈ ring_hom R S

lemma ring_hom_closed:

  [| h ∈ ring_hom R S; x ∈ carrier R |] ==> h x ∈ carrier S

lemma ring_hom_mult:

  [| h ∈ ring_hom R S; x ∈ carrier R; y ∈ carrier R |] ==> h (xR y) = h xS h y

lemma ring_hom_add:

  [| h ∈ ring_hom R S; x ∈ carrier R; y ∈ carrier R |] ==> h (xR y) = h xS h y

lemma ring_hom_one:

  h ∈ ring_hom R S ==> h \<one>R = \<one>S

lemma hom_zero:

  h \<zero> = \<zero>S

lemma hom_a_inv:

  x ∈ carrier R ==> h (\<ominus> x) = \<ominus>S h x

lemma hom_finsum:

  [| finite A; fA -> carrier R |] ==> h (finsum R f A) = finsum S (h o f) A

lemma hom_finprod:

  [| finite A; fA -> carrier R |] ==> h (finprod R f A) = finprod S (h o f) A

lemma id_ring_hom:

  id ∈ ring_hom R R