(* Title: Tools/code/code_target.ML ID: $Id: code_target.ML,v 1.23 2007/10/26 17:58:32 wenzelm Exp $ Author: Florian Haftmann, TU Muenchen Serializer from intermediate language ("Thin-gol") to target languages (like SML or Haskell). *) signature CODE_TARGET = sig include BASIC_CODE_THINGOL; val add_syntax_class: string -> class -> (string * (string * string) list) option -> theory -> theory; val add_syntax_inst: string -> string * class -> bool -> theory -> theory; val add_syntax_tycoP: string -> string -> OuterParse.token list -> (theory -> theory) * OuterParse.token list; val add_syntax_constP: string -> string -> OuterParse.token list -> (theory -> theory) * OuterParse.token list; val add_undefined: string -> string -> string -> theory -> theory; val add_pretty_list: string -> string -> string -> theory -> theory; val add_pretty_list_string: string -> string -> string -> string -> string list -> theory -> theory; val add_pretty_char: string -> string -> string list -> theory -> theory val add_pretty_numeral: string -> bool -> string -> string -> string -> string -> string -> string -> theory -> theory; val add_pretty_message: string -> string -> string list -> string -> string -> string -> theory -> theory; val allow_exception: string -> theory -> theory; type serializer; val add_serializer: string * serializer -> theory -> theory; val get_serializer: theory -> string -> bool -> string option -> string option -> Args.T list -> string list option -> CodeThingol.code -> unit; val assert_serializer: theory -> string -> string; val eval_verbose: bool ref; val eval_invoke: theory -> (string * (unit -> 'a) option ref) -> CodeThingol.code -> CodeThingol.iterm * CodeThingol.itype -> string list -> 'a; val code_width: int ref; val setup: theory -> theory; end; structure CodeTarget : CODE_TARGET = struct open BasicCodeThingol; (** basics **) infixr 5 @@; infixr 5 @|; fun x @@ y = [x, y]; fun xs @| y = xs @ [y]; val str = PrintMode.setmp [] Pretty.str; val concat = Pretty.block o Pretty.breaks; val brackets = Pretty.enclose "(" ")" o Pretty.breaks; fun semicolon ps = Pretty.block [concat ps, str ";"]; (** syntax **) datatype lrx = L | R | X; datatype fixity = BR | NOBR | INFX of (int * lrx); val APP = INFX (~1, L); fun eval_lrx L L = false | eval_lrx R R = false | eval_lrx _ _ = true; fun eval_fxy NOBR NOBR = false | eval_fxy BR NOBR = false | eval_fxy NOBR BR = false | eval_fxy (INFX (pr, lr)) (INFX (pr_ctxt, lr_ctxt)) = pr < pr_ctxt orelse pr = pr_ctxt andalso eval_lrx lr lr_ctxt orelse pr_ctxt = ~1 | eval_fxy _ (INFX _) = false | eval_fxy (INFX _) NOBR = false | eval_fxy _ _ = true; fun gen_brackify _ [p] = p | gen_brackify true (ps as _::_) = Pretty.enclose "(" ")" ps | gen_brackify false (ps as _::_) = Pretty.block ps; fun brackify fxy_ctxt ps = gen_brackify (eval_fxy BR fxy_ctxt) (Pretty.breaks ps); fun brackify_infix infx fxy_ctxt ps = gen_brackify (eval_fxy (INFX infx) fxy_ctxt) (Pretty.breaks ps); type class_syntax = string * (string -> string option); type typ_syntax = int * ((fixity -> itype -> Pretty.T) -> fixity -> itype list -> Pretty.T); type term_syntax = int * ((CodeName.var_ctxt -> fixity -> iterm -> Pretty.T) -> CodeName.var_ctxt -> fixity -> (iterm * itype) list -> Pretty.T); (* user-defined syntax *) datatype 'a mixfix = Arg of fixity | Pretty of Pretty.T; fun mk_mixfix prep_arg (fixity_this, mfx) = let fun is_arg (Arg _) = true | is_arg _ = false; val i = (length o filter is_arg) mfx; fun fillin _ [] [] = [] | fillin pr (Arg fxy :: mfx) (a :: args) = (pr fxy o prep_arg) a :: fillin pr mfx args | fillin pr (Pretty p :: mfx) args = p :: fillin pr mfx args | fillin _ [] _ = error ("Inconsistent mixfix: too many arguments") | fillin _ _ [] = error ("Inconsistent mixfix: too less arguments"); in (i, fn pr => fn fixity_ctxt => fn args => gen_brackify (eval_fxy fixity_this fixity_ctxt) (fillin pr mfx args)) end; fun parse_infix prep_arg (x, i) s = let val l = case x of L => INFX (i, L) | _ => INFX (i, X); val r = case x of R => INFX (i, R) | _ => INFX (i, X); in mk_mixfix prep_arg (INFX (i, x), [Arg l, (Pretty o Pretty.brk) 1, (Pretty o str) s, (Pretty o Pretty.brk) 1, Arg r]) end; fun parse_mixfix prep_arg s = let val sym_any = Scan.one Symbol.is_regular; val parse = Scan.optional ($$ "!" >> K true) false -- Scan.repeat ( ($$ "(" -- $$ "_" -- $$ ")" >> K (Arg NOBR)) || ($$ "_" >> K (Arg BR)) || ($$ "/" |-- Scan.repeat ($$ " ") >> (Pretty o Pretty.brk o length)) || (Scan.repeat1 ( $$ "'" |-- sym_any || Scan.unless ($$ "_" || $$ "/" || $$ "(" |-- $$ "_" |-- $$ ")") sym_any) >> (Pretty o str o implode))); in case Scan.finite Symbol.stopper parse (Symbol.explode s) of ((_, p as [_]), []) => mk_mixfix prep_arg (NOBR, p) | ((b, p as _ :: _ :: _), []) => mk_mixfix prep_arg (if b then NOBR else BR, p) | _ => Scan.!! (the_default ("malformed mixfix annotation: " ^ quote s) o snd) Scan.fail () end; fun parse_args f args = case Scan.read Args.stopper f args of SOME x => x | NONE => error "Bad serializer arguments"; (* generic serializer combinators *) fun gen_pr_app pr_app' pr_term const_syntax labelled_name is_cons lhs vars fxy (app as ((c, (_, tys)), ts)) = case const_syntax c of NONE => if lhs andalso not (is_cons c) then error ("non-constructor on left hand side of equation: " ^ labelled_name c) else brackify fxy (pr_app' lhs vars app) | SOME (i, pr) => let val k = if i < 0 then length tys else i; fun pr' fxy ts = pr (pr_term lhs) vars fxy (ts ~~ curry Library.take k tys); in if k = length ts then pr' fxy ts else if k < length ts then case chop k ts of (ts1, ts2) => brackify fxy (pr' APP ts1 :: map (pr_term lhs vars BR) ts2) else pr_term lhs vars fxy (CodeThingol.eta_expand app k) end; fun gen_pr_bind pr_bind' pr_term fxy ((v, pat), ty) vars = let val vs = case pat of SOME pat => CodeThingol.fold_varnames (insert (op =)) pat [] | NONE => []; val vars' = CodeName.intro_vars (the_list v) vars; val vars'' = CodeName.intro_vars vs vars'; val v' = Option.map (CodeName.lookup_var vars') v; val pat' = Option.map (pr_term true vars'' fxy) pat; in (pr_bind' ((v', pat'), ty), vars'') end; (* list, char, string, numeral and monad abstract syntax transformations *) fun implode_list c_nil c_cons t = let fun dest_cons (IConst (c, _) `$ t1 `$ t2) = if c = c_cons then SOME (t1, t2) else NONE | dest_cons _ = NONE; val (ts, t') = CodeThingol.unfoldr dest_cons t; in case t' of IConst (c, _) => if c = c_nil then SOME ts else NONE | _ => NONE end; fun decode_char c_nibbles (IConst (c1, _), IConst (c2, _)) = let fun idx c = find_index (curry (op =) c) c_nibbles; fun decode ~1 _ = NONE | decode _ ~1 = NONE | decode n m = SOME (chr (n * 16 + m)); in decode (idx c1) (idx c2) end | decode_char _ _ = NONE; fun implode_string c_char c_nibbles mk_char mk_string ts = let fun implode_char (IConst (c, _) `$ t1 `$ t2) = if c = c_char then decode_char c_nibbles (t1, t2) else NONE | implode_char _ = NONE; val ts' = map implode_char ts; in if forall is_some ts' then (SOME o str o mk_string o implode o map_filter I) ts' else NONE end; fun implode_numeral c_bit0 c_bit1 c_pls c_min c_bit = let fun dest_bit (IConst (c, _)) = if c = c_bit0 then SOME 0 else if c = c_bit1 then SOME 1 else NONE | dest_bit _ = NONE; fun dest_numeral (IConst (c, _)) = if c = c_pls then SOME 0 else if c = c_min then SOME ~1 else NONE | dest_numeral (IConst (c, _) `$ t1 `$ t2) = if c = c_bit then case (dest_numeral t1, dest_bit t2) of (SOME n, SOME b) => SOME (2 * n + b) | _ => NONE else NONE | dest_numeral _ = NONE; in dest_numeral end; fun implode_monad c_bind t = let fun dest_monad (IConst (c, _) `$ t1 `$ t2) = if c = c_bind then case CodeThingol.split_abs t2 of SOME (((v, pat), ty), t') => SOME ((SOME (((SOME v, pat), ty), true), t1), t') | NONE => NONE else NONE | dest_monad t = case CodeThingol.split_let t of SOME (((pat, ty), tbind), t') => SOME ((SOME (((NONE, SOME pat), ty), false), tbind), t') | NONE => NONE; in CodeThingol.unfoldr dest_monad t end; (** name auxiliary **) val first_upper = implode o nth_map 0 Symbol.to_ascii_upper o explode; val first_lower = implode o nth_map 0 Symbol.to_ascii_lower o explode; val dest_name = apfst NameSpace.implode o split_last o fst o split_last o NameSpace.explode; fun mk_modl_name_tab init_names prefix module_alias code = let fun nsp_map f = NameSpace.explode #> map f #> NameSpace.implode; fun mk_alias name = case module_alias name of SOME name' => name' | NONE => nsp_map (fn name => (the_single o fst) (Name.variants [name] init_names)) name; fun mk_prefix name = case prefix of SOME prefix => NameSpace.append prefix name | NONE => name; val tab = Symtab.empty |> Graph.fold ((fn name => Symtab.default (name, (mk_alias #> mk_prefix) name)) o fst o dest_name o fst) code in fn name => (the o Symtab.lookup tab) name end; (** SML/OCaml serializer **) datatype ml_def = MLFuns of (string * (typscheme * (iterm list * iterm) list)) list | MLDatas of (string * ((vname * sort) list * (string * itype list) list)) list | MLClass of string * (vname * ((class * string) list * (string * itype) list)) | MLClassinst of string * ((class * (string * (vname * sort) list)) * ((class * (string * (string * dict list list))) list * (string * const) list)); fun pr_sml tyco_syntax const_syntax labelled_name init_syms deresolv is_cons ml_def = let val pr_label_classrel = translate_string (fn "." => "__" | c => c) o NameSpace.qualifier; val pr_label_classparam = NameSpace.base o NameSpace.qualifier; fun pr_dicts fxy ds = let fun pr_dictvar (v, (_, 1)) = first_upper v ^ "_" | pr_dictvar (v, (i, _)) = first_upper v ^ string_of_int (i+1) ^ "_"; fun pr_proj [] p = p | pr_proj [p'] p = brackets [p', p] | pr_proj (ps as _ :: _) p = brackets [Pretty.enum " o" "(" ")" ps, p]; fun pr_dictc fxy (DictConst (inst, dss)) = brackify fxy ((str o deresolv) inst :: map (pr_dicts BR) dss) | pr_dictc fxy (DictVar (classrels, v)) = pr_proj (map (str o deresolv) classrels) ((str o pr_dictvar) v) in case ds of [] => str "()" | [d] => pr_dictc fxy d | _ :: _ => (Pretty.list "(" ")" o map (pr_dictc NOBR)) ds end; fun pr_tyvars vs = vs |> map (fn (v, sort) => map_index (fn (i, _) => DictVar ([], (v, (i, length sort)))) sort) |> map (pr_dicts BR); fun pr_tycoexpr fxy (tyco, tys) = let val tyco' = (str o deresolv) tyco in case map (pr_typ BR) tys of [] => tyco' | [p] => Pretty.block [p, Pretty.brk 1, tyco'] | (ps as _::_) => Pretty.block [Pretty.list "(" ")" ps, Pretty.brk 1, tyco'] end and pr_typ fxy (tyco `%% tys) = (case tyco_syntax tyco of NONE => pr_tycoexpr fxy (tyco, tys) | SOME (i, pr) => if not (i = length tys) then error ("Number of argument mismatch in customary serialization: " ^ (string_of_int o length) tys ^ " given, " ^ string_of_int i ^ " expected") else pr pr_typ fxy tys) | pr_typ fxy (ITyVar v) = str ("'" ^ v); fun pr_term lhs vars fxy (IConst c) = pr_app lhs vars fxy (c, []) | pr_term lhs vars fxy (IVar v) = str (CodeName.lookup_var vars v) | pr_term lhs vars fxy (t as t1 `$ t2) = (case CodeThingol.unfold_const_app t of SOME c_ts => pr_app lhs vars fxy c_ts | NONE => brackify fxy [pr_term lhs vars NOBR t1, pr_term lhs vars BR t2]) | pr_term lhs vars fxy (t as _ `|-> _) = let val (binds, t') = CodeThingol.unfold_abs t; fun pr ((v, pat), ty) = pr_bind NOBR ((SOME v, pat), ty) #>> (fn p => concat [str "fn", p, str "=>"]); val (ps, vars') = fold_map pr binds vars; in brackets (ps @ [pr_term lhs vars' NOBR t']) end | pr_term lhs vars fxy (ICase (cases as (_, t0))) = (case CodeThingol.unfold_const_app t0 of SOME (c_ts as ((c, _), _)) => if is_none (const_syntax c) then pr_case vars fxy cases else pr_app lhs vars fxy c_ts | NONE => pr_case vars fxy cases) and pr_app' lhs vars (app as ((c, (iss, tys)), ts)) = if is_cons c then let val k = length tys in if k < 2 then (str o deresolv) c :: map (pr_term lhs vars BR) ts else if k = length ts then [(str o deresolv) c, Pretty.enum "," "(" ")" (map (pr_term lhs vars NOBR) ts)] else [pr_term lhs vars BR (CodeThingol.eta_expand app k)] end else (str o deresolv) c :: (map (pr_dicts BR) o filter_out null) iss @ map (pr_term lhs vars BR) ts and pr_app lhs vars = gen_pr_app pr_app' pr_term const_syntax labelled_name is_cons lhs vars and pr_bind' ((NONE, NONE), _) = str "_" | pr_bind' ((SOME v, NONE), _) = str v | pr_bind' ((NONE, SOME p), _) = p | pr_bind' ((SOME v, SOME p), _) = concat [str v, str "as", p] and pr_bind fxy = gen_pr_bind pr_bind' pr_term fxy and pr_case vars fxy (cases as ((_, [_]), _)) = let val (binds, t') = CodeThingol.unfold_let (ICase cases); fun pr ((pat, ty), t) vars = vars |> pr_bind NOBR ((NONE, SOME pat), ty) |>> (fn p => semicolon [str "val", p, str "=", pr_term false vars NOBR t]) val (ps, vars') = fold_map pr binds vars; in Pretty.chunks [ [str ("let"), Pretty.fbrk, Pretty.chunks ps] |> Pretty.block, [str ("in"), Pretty.fbrk, pr_term false vars' NOBR t'] |> Pretty.block, str ("end") ] end | pr_case vars fxy (((td, ty), b::bs), _) = let fun pr delim (pat, t) = let val (p, vars') = pr_bind NOBR ((NONE, SOME pat), ty) vars; in concat [str delim, p, str "=>", pr_term false vars' NOBR t] end; in (Pretty.enclose "(" ")" o single o brackify fxy) ( str "case" :: pr_term false vars NOBR td :: pr "of" b :: map (pr "|") bs ) end | pr_case vars fxy ((_, []), _) = str "raise Fail \"empty case\"" fun pr_def (MLFuns (funns as (funn :: funns'))) = let val definer = let fun no_args _ ((ts, _) :: _) = length ts | no_args ty [] = (length o fst o CodeThingol.unfold_fun) ty; fun mk 0 [] = "val" | mk 0 vs = if (null o filter_out (null o snd)) vs then "val" else "fun" | mk k _ = "fun"; fun chk (_, ((vs, ty), eqs)) NONE = SOME (mk (no_args ty eqs) vs) | chk (_, ((vs, ty), eqs)) (SOME defi) = if defi = mk (no_args ty eqs) vs then SOME defi else error ("Mixing simultaneous vals and funs not implemented: " ^ commas (map (labelled_name o fst) funns)); in the (fold chk funns NONE) end; fun pr_funn definer (name, ((raw_vs, ty), [])) = let val vs = filter_out (null o snd) raw_vs; val n = length vs + (length o fst o CodeThingol.unfold_fun) ty; val exc_str = (ML_Syntax.print_string o NameSpace.base o NameSpace.qualifier) name; in concat ( str definer :: (str o deresolv) name :: map str (replicate n "_") @ str "=" :: str "raise" :: str "(Fail" :: str exc_str @@ str ")" ) end | pr_funn definer (name, ((raw_vs, ty), eqs as eq :: eqs')) = let val vs = filter_out (null o snd) raw_vs; val shift = if null eqs' then I else map (Pretty.block o single o Pretty.block o single); fun pr_eq definer (ts, t) = let val consts = map_filter (fn c => if (is_some o const_syntax) c then NONE else (SOME o NameSpace.base o deresolv) c) ((fold o CodeThingol.fold_constnames) (insert (op =)) (t :: ts) []); val vars = init_syms |> CodeName.intro_vars consts |> CodeName.intro_vars ((fold o CodeThingol.fold_unbound_varnames) (insert (op =)) ts []); in concat ( [str definer, (str o deresolv) name] @ (if null ts andalso null vs then [str ":", pr_typ NOBR ty] else pr_tyvars vs @ map (pr_term true vars BR) ts) @ [str "=", pr_term false vars NOBR t] ) end in (Pretty.block o Pretty.fbreaks o shift) ( pr_eq definer eq :: map (pr_eq "|") eqs' ) end; val (ps, p) = split_last (pr_funn definer funn :: map (pr_funn "and") funns'); in Pretty.chunks (ps @ [Pretty.block ([p, str ";"])]) end | pr_def (MLDatas (datas as (data :: datas'))) = let fun pr_co (co, []) = str (deresolv co) | pr_co (co, tys) = concat [ str (deresolv co), str "of", Pretty.enum " *" "" "" (map (pr_typ (INFX (2, X))) tys) ]; fun pr_data definer (tyco, (vs, [])) = concat ( str definer :: pr_tycoexpr NOBR (tyco, map (ITyVar o fst) vs) :: str "=" @@ str "EMPTY__" ) | pr_data definer (tyco, (vs, cos)) = concat ( str definer :: pr_tycoexpr NOBR (tyco, map (ITyVar o fst) vs) :: str "=" :: separate (str "|") (map pr_co cos) ); val (ps, p) = split_last (pr_data "datatype" data :: map (pr_data "and") datas'); in Pretty.chunks (ps @ [Pretty.block ([p, str ";"])]) end | pr_def (MLClass (class, (v, (superclasses, classparams)))) = let val w = first_upper v ^ "_"; fun pr_superclass_field (class, classrel) = (concat o map str) [ pr_label_classrel classrel, ":", "'" ^ v, deresolv class ]; fun pr_classparam_field (classparam, ty) = concat [ (str o pr_label_classparam) classparam, str ":", pr_typ NOBR ty ]; fun pr_classparam_proj (classparam, _) = semicolon [ str "fun", (str o deresolv) classparam, Pretty.enclose "(" ")" [str (w ^ ":'" ^ v ^ " " ^ deresolv class)], str "=", str ("#" ^ pr_label_classparam classparam), str w ]; fun pr_superclass_proj (_, classrel) = semicolon [ str "fun", (str o deresolv) classrel, Pretty.enclose "(" ")" [str (w ^ ":'" ^ v ^ " " ^ deresolv class)], str "=", str ("#" ^ pr_label_classrel classrel), str w ]; in Pretty.chunks ( concat [ str ("type '" ^ v), (str o deresolv) class, str "=", Pretty.enum "," "{" "};" ( map pr_superclass_field superclasses @ map pr_classparam_field classparams ) ] :: map pr_superclass_proj superclasses @ map pr_classparam_proj classparams ) end | pr_def (MLClassinst (inst, ((class, (tyco, arity)), (superarities, classparam_insts)))) = let fun pr_superclass (_, (classrel, dss)) = concat [ (str o pr_label_classrel) classrel, str "=", pr_dicts NOBR [DictConst dss] ]; fun pr_classparam (classparam, c_inst) = concat [ (str o pr_label_classparam) classparam, str "=", pr_app false init_syms NOBR (c_inst, []) ]; in semicolon ([ str (if null arity then "val" else "fun"), (str o deresolv) inst ] @ pr_tyvars arity @ [ str "=", Pretty.enum "," "{" "}" (map pr_superclass superarities @ map pr_classparam classparam_insts), str ":", pr_tycoexpr NOBR (class, [tyco `%% map (ITyVar o fst) arity]) ]) end; in pr_def ml_def end; fun pr_sml_modl name content = Pretty.chunks ([ str ("structure " ^ name ^ " = "), str "struct", str "" ] @ content @ [ str "", str ("end; (*struct " ^ name ^ "*)") ]); fun pr_ocaml tyco_syntax const_syntax labelled_name init_syms deresolv is_cons ml_def = let fun pr_dicts fxy ds = let fun pr_dictvar (v, (_, 1)) = "_" ^ first_upper v | pr_dictvar (v, (i, _)) = "_" ^ first_upper v ^ string_of_int (i+1); fun pr_proj ps p = fold_rev (fn p2 => fn p1 => Pretty.block [p1, str ".", str p2]) ps p fun pr_dictc fxy (DictConst (inst, dss)) = brackify fxy ((str o deresolv) inst :: map (pr_dicts BR) dss) | pr_dictc fxy (DictVar (classrels, v)) = pr_proj (map deresolv classrels) ((str o pr_dictvar) v) in case ds of [] => str "()" | [d] => pr_dictc fxy d | _ :: _ => (Pretty.list "(" ")" o map (pr_dictc NOBR)) ds end; fun pr_tyvars vs = vs |> map (fn (v, sort) => map_index (fn (i, _) => DictVar ([], (v, (i, length sort)))) sort) |> map (pr_dicts BR); fun pr_tycoexpr fxy (tyco, tys) = let val tyco' = (str o deresolv) tyco in case map (pr_typ BR) tys of [] => tyco' | [p] => Pretty.block [p, Pretty.brk 1, tyco'] | (ps as _::_) => Pretty.block [Pretty.list "(" ")" ps, Pretty.brk 1, tyco'] end and pr_typ fxy (tyco `%% tys) = (case tyco_syntax tyco of NONE => pr_tycoexpr fxy (tyco, tys) | SOME (i, pr) => if not (i = length tys) then error ("Number of argument mismatch in customary serialization: " ^ (string_of_int o length) tys ^ " given, " ^ string_of_int i ^ " expected") else pr pr_typ fxy tys) | pr_typ fxy (ITyVar v) = str ("'" ^ v); fun pr_term lhs vars fxy (IConst c) = pr_app lhs vars fxy (c, []) | pr_term lhs vars fxy (IVar v) = str (CodeName.lookup_var vars v) | pr_term lhs vars fxy (t as t1 `$ t2) = (case CodeThingol.unfold_const_app t of SOME c_ts => pr_app lhs vars fxy c_ts | NONE => brackify fxy [pr_term lhs vars NOBR t1, pr_term lhs vars BR t2]) | pr_term lhs vars fxy (t as _ `|-> _) = let val (binds, t') = CodeThingol.unfold_abs t; fun pr ((v, pat), ty) = pr_bind BR ((SOME v, pat), ty); val (ps, vars') = fold_map pr binds vars; in brackets (str "fun" :: ps @ str "->" @@ pr_term lhs vars' NOBR t') end | pr_term lhs vars fxy (ICase (cases as (_, t0))) = (case CodeThingol.unfold_const_app t0 of SOME (c_ts as ((c, _), _)) => if is_none (const_syntax c) then pr_case vars fxy cases else pr_app lhs vars fxy c_ts | NONE => pr_case vars fxy cases) and pr_app' lhs vars (app as ((c, (iss, tys)), ts)) = if is_cons c then if length tys = length ts then case ts of [] => [(str o deresolv) c] | [t] => [(str o deresolv) c, pr_term lhs vars BR t] | _ => [(str o deresolv) c, Pretty.enum "," "(" ")" (map (pr_term lhs vars NOBR) ts)] else [pr_term lhs vars BR (CodeThingol.eta_expand app (length tys))] else (str o deresolv) c :: ((map (pr_dicts BR) o filter_out null) iss @ map (pr_term lhs vars BR) ts) and pr_app lhs vars = gen_pr_app pr_app' pr_term const_syntax labelled_name is_cons lhs vars and pr_bind' ((NONE, NONE), _) = str "_" | pr_bind' ((SOME v, NONE), _) = str v | pr_bind' ((NONE, SOME p), _) = p | pr_bind' ((SOME v, SOME p), _) = brackets [p, str "as", str v] and pr_bind fxy = gen_pr_bind pr_bind' pr_term fxy and pr_case vars fxy (cases as ((_, [_]), _)) = let val (binds, t') = CodeThingol.unfold_let (ICase cases); fun pr ((pat, ty), t) vars = vars |> pr_bind NOBR ((NONE, SOME pat), ty) |>> (fn p => concat [str "let", p, str "=", pr_term false vars NOBR t, str "in"]) val (ps, vars') = fold_map pr binds vars; in Pretty.chunks (ps @| pr_term false vars' NOBR t') end | pr_case vars fxy (((td, ty), b::bs), _) = let fun pr delim (pat, t) = let val (p, vars') = pr_bind NOBR ((NONE, SOME pat), ty) vars; in concat [str delim, p, str "->", pr_term false vars' NOBR t] end; in (Pretty.enclose "(" ")" o single o brackify fxy) ( str "match" :: pr_term false vars NOBR td :: pr "with" b :: map (pr "|") bs ) end | pr_case vars fxy ((_, []), _) = str "failwith \"empty case\""; fun pr_def (MLFuns (funns as funn :: funns')) = let fun fish_parm _ (w as SOME _) = w | fish_parm (IVar v) NONE = SOME v | fish_parm _ NONE = NONE; fun fillup_parm _ (_, SOME v) = v | fillup_parm x (i, NONE) = x ^ string_of_int i; fun fish_parms vars eqs = let val fished1 = fold (map2 fish_parm) eqs (replicate (length (hd eqs)) NONE); val x = Name.variant (map_filter I fished1) "x"; val fished2 = map_index (fillup_parm x) fished1; val (fished3, _) = Name.variants fished2 Name.context; val vars' = CodeName.intro_vars fished3 vars; in map (CodeName.lookup_var vars') fished3 end; fun pr_eq (ts, t) = let val consts = map_filter (fn c => if (is_some o const_syntax) c then NONE else (SOME o NameSpace.base o deresolv) c) ((fold o CodeThingol.fold_constnames) (insert (op =)) (t :: ts) []); val vars = init_syms |> CodeName.intro_vars consts |> CodeName.intro_vars ((fold o CodeThingol.fold_unbound_varnames) (insert (op =)) ts []); in concat [ (Pretty.block o Pretty.commas) (map (pr_term true vars NOBR) ts), str "->", pr_term false vars NOBR t ] end; fun pr_eqs name ty [] = let val n = (length o fst o CodeThingol.unfold_fun) ty; val exc_str = (ML_Syntax.print_string o NameSpace.base o NameSpace.qualifier) name; in concat ( map str (replicate n "_") @ str "=" :: str "failwith" @@ str exc_str ) end | pr_eqs _ _ [(ts, t)] = let val consts = map_filter (fn c => if (is_some o const_syntax) c then NONE else (SOME o NameSpace.base o deresolv) c) ((fold o CodeThingol.fold_constnames) (insert (op =)) (t :: ts) []); val vars = init_syms |> CodeName.intro_vars consts |> CodeName.intro_vars ((fold o CodeThingol.fold_unbound_varnames) (insert (op =)) ts []); in concat ( map (pr_term true vars BR) ts @ str "=" @@ pr_term false vars NOBR t ) end | pr_eqs _ _ (eqs as (eq as ([_], _)) :: eqs') = Pretty.block ( str "=" :: Pretty.brk 1 :: str "function" :: Pretty.brk 1 :: pr_eq eq :: maps (append [Pretty.fbrk, str "|", Pretty.brk 1] o single o pr_eq) eqs' ) | pr_eqs _ _ (eqs as eq :: eqs') = let val consts = map_filter (fn c => if (is_some o const_syntax) c then NONE else (SOME o NameSpace.base o deresolv) c) ((fold o CodeThingol.fold_constnames) (insert (op =)) (map snd eqs) []); val vars = init_syms |> CodeName.intro_vars consts; val dummy_parms = (map str o fish_parms vars o map fst) eqs; in Pretty.block ( Pretty.breaks dummy_parms @ Pretty.brk 1 :: str "=" :: Pretty.brk 1 :: str "match" :: Pretty.brk 1 :: (Pretty.block o Pretty.commas) dummy_parms :: Pretty.brk 1 :: str "with" :: Pretty.brk 1 :: pr_eq eq :: maps (append [Pretty.fbrk, str "|", Pretty.brk 1] o single o pr_eq) eqs' ) end; fun pr_funn definer (name, ((vs, ty), eqs)) = concat ( str definer :: (str o deresolv) name :: pr_tyvars (filter_out (null o snd) vs) @| pr_eqs name ty eqs ); val (ps, p) = split_last (pr_funn "let rec" funn :: map (pr_funn "and") funns'); in Pretty.chunks (ps @ [Pretty.block ([p, str ";;"])]) end | pr_def (MLDatas (datas as (data :: datas'))) = let fun pr_co (co, []) = str (deresolv co) | pr_co (co, tys) = concat [ str (deresolv co), str "of", Pretty.enum " *" "" "" (map (pr_typ (INFX (2, X))) tys) ]; fun pr_data definer (tyco, (vs, [])) = concat ( str definer :: pr_tycoexpr NOBR (tyco, map (ITyVar o fst) vs) :: str "=" @@ str "EMPTY_" ) | pr_data definer (tyco, (vs, cos)) = concat ( str definer :: pr_tycoexpr NOBR (tyco, map (ITyVar o fst) vs) :: str "=" :: separate (str "|") (map pr_co cos) ); val (ps, p) = split_last (pr_data "type" data :: map (pr_data "and") datas'); in Pretty.chunks (ps @ [Pretty.block ([p, str ";;"])]) end | pr_def (MLClass (class, (v, (superclasses, classparams)))) = let val w = "_" ^ first_upper v; fun pr_superclass_field (class, classrel) = (concat o map str) [ deresolv classrel, ":", "'" ^ v, deresolv class ]; fun pr_classparam_field (classparam, ty) = concat [ (str o deresolv) classparam, str ":", pr_typ NOBR ty ]; fun pr_classparam_proj (classparam, _) = concat [ str "let", (str o deresolv) classparam, str w, str "=", str (w ^ "." ^ deresolv classparam ^ ";;") ]; in Pretty.chunks ( concat [ str ("type '" ^ v), (str o deresolv) class, str "=", Pretty.enum ";" "{" "};;" ( map pr_superclass_field superclasses @ map pr_classparam_field classparams ) ] :: map pr_classparam_proj classparams ) end | pr_def (MLClassinst (inst, ((class, (tyco, arity)), (superarities, classparam_insts)))) = let fun pr_superclass (_, (classrel, dss)) = concat [ (str o deresolv) classrel, str "=", pr_dicts NOBR [DictConst dss] ]; fun pr_classparam_inst (classparam, c_inst) = concat [ (str o deresolv) classparam, str "=", pr_app false init_syms NOBR (c_inst, []) ]; in concat ( str "let" :: (str o deresolv) inst :: pr_tyvars arity @ str "=" @@ (Pretty.enclose "(" ");;" o Pretty.breaks) [ Pretty.enum ";" "{" "}" (map pr_superclass superarities @ map pr_classparam_inst classparam_insts), str ":", pr_tycoexpr NOBR (class, [tyco `%% map (ITyVar o fst) arity]) ] ) end; in pr_def ml_def end; fun pr_ocaml_modl name content = Pretty.chunks ([ str ("module " ^ name ^ " = "), str "struct", str "" ] @ content @ [ str "", str ("end;; (*struct " ^ name ^ "*)") ]); val code_width = ref 80; fun code_output p = Pretty.setmp_margin (!code_width) Pretty.output p ^ "\n"; fun seri_ml pr_def pr_modl module output labelled_name reserved_syms includes raw_module_alias (_ : string -> class_syntax option) tyco_syntax const_syntax code = let val module_alias = if is_some module then K module else raw_module_alias; val is_cons = CodeThingol.is_cons code; datatype node = Def of string * ml_def option | Module of string * ((Name.context * Name.context) * node Graph.T); val init_names = Name.make_context reserved_syms; val init_module = ((init_names, init_names), Graph.empty); fun map_node [] f = f | map_node (m::ms) f = Graph.default_node (m, Module (m, init_module)) #> Graph.map_node m (fn (Module (dmodlname, (nsp, nodes))) => Module (dmodlname, (nsp, map_node ms f nodes))); fun map_nsp_yield [] f (nsp, nodes) = let val (x, nsp') = f nsp in (x, (nsp', nodes)) end | map_nsp_yield (m::ms) f (nsp, nodes) = let val (x, nodes') = nodes |> Graph.default_node (m, Module (m, init_module)) |> Graph.map_node_yield m (fn Module (dmodlname, nsp_nodes) => let val (x, nsp_nodes') = map_nsp_yield ms f nsp_nodes in (x, Module (dmodlname, nsp_nodes')) end) in (x, (nsp, nodes')) end; val init_syms = CodeName.make_vars reserved_syms; val name_modl = mk_modl_name_tab init_names NONE module_alias code; fun name_def upper name nsp = let val (_, base) = dest_name name; val base' = if upper then first_upper base else base; val ([base''], nsp') = Name.variants [base'] nsp; in (base'', nsp') end; fun map_nsp_fun f (nsp_fun, nsp_typ) = let val (x, nsp_fun') = f nsp_fun in (x, (nsp_fun', nsp_typ)) end; fun map_nsp_typ f (nsp_fun, nsp_typ) = let val (x, nsp_typ') = f nsp_typ in (x, (nsp_fun, nsp_typ')) end; fun mk_funs defs = fold_map (fn (name, CodeThingol.Fun info) => map_nsp_fun (name_def false name) >> (fn base => (base, (name, (apsnd o map) fst info))) | (name, def) => error ("Function block containing illegal definition: " ^ labelled_name name) ) defs >> (split_list #> apsnd MLFuns); fun mk_datatype defs = fold_map (fn (name, CodeThingol.Datatype info) => map_nsp_typ (name_def false name) >> (fn base => (base, SOME (name, info))) | (name, CodeThingol.Datatypecons _) => map_nsp_fun (name_def true name) >> (fn base => (base, NONE)) | (name, def) => error ("Datatype block containing illegal definition: " ^ labelled_name name) ) defs >> (split_list #> apsnd (map_filter I #> (fn [] => error ("Datatype block without data definition: " ^ (commas o map (labelled_name o fst)) defs) | infos => MLDatas infos))); fun mk_class defs = fold_map (fn (name, CodeThingol.Class info) => map_nsp_typ (name_def false name) >> (fn base => (base, SOME (name, info))) | (name, CodeThingol.Classrel _) => map_nsp_fun (name_def false name) >> (fn base => (base, NONE)) | (name, CodeThingol.Classparam _) => map_nsp_fun (name_def false name) >> (fn base => (base, NONE)) | (name, def) => error ("Class block containing illegal definition: " ^ labelled_name name) ) defs >> (split_list #> apsnd (map_filter I #> (fn [] => error ("Class block without class definition: " ^ (commas o map (labelled_name o fst)) defs) | [info] => MLClass info))); fun mk_inst [(name, CodeThingol.Classinst info)] = map_nsp_fun (name_def false name) >> (fn base => ([base], MLClassinst (name, (apsnd o apsnd o map) fst info))); fun add_group mk defs nsp_nodes = let val names as (name :: names') = map fst defs; val deps = [] |> fold (fold (insert (op =)) o Graph.imm_succs code) names |> subtract (op =) names; val (modls, _) = (split_list o map dest_name) names; val modl' = (the_single o distinct (op =) o map name_modl) modls handle Empty => error ("Different namespace prefixes for mutual dependencies:\n" ^ commas (map labelled_name names) ^ "\n" ^ commas (map (NameSpace.qualifier o NameSpace.qualifier) names)); val modl_explode = NameSpace.explode modl'; fun add_dep name name'' = let val modl'' = (name_modl o fst o dest_name) name''; in if modl' = modl'' then map_node modl_explode (Graph.add_edge (name, name'')) else let val (common, (diff1::_, diff2::_)) = chop_prefix (op =) (modl_explode, NameSpace.explode modl''); in map_node common (fn gr => Graph.add_edge_acyclic (diff1, diff2) gr handle Graph.CYCLES _ => error ("Dependency " ^ quote name ^ " -> " ^ quote name'' ^ " would result in module dependency cycle")) end end; in nsp_nodes |> map_nsp_yield modl_explode (mk defs) |-> (fn (base' :: bases', def') => apsnd (map_node modl_explode (Graph.new_node (name, (Def (base', SOME def'))) #> fold2 (fn name' => fn base' => Graph.new_node (name', (Def (base', NONE)))) names' bases'))) |> apsnd (fold (fn name => fold (add_dep name) deps) names) |> apsnd (fold (map_node modl_explode o Graph.add_edge) (product names names)) end; fun group_defs [(_, CodeThingol.Bot)] = I | group_defs ((defs as (_, CodeThingol.Fun _)::_)) = add_group mk_funs defs | group_defs ((defs as (_, CodeThingol.Datatypecons _)::_)) = add_group mk_datatype defs | group_defs ((defs as (_, CodeThingol.Datatype _)::_)) = add_group mk_datatype defs | group_defs ((defs as (_, CodeThingol.Class _)::_)) = add_group mk_class defs | group_defs ((defs as (_, CodeThingol.Classrel _)::_)) = add_group mk_class defs | group_defs ((defs as (_, CodeThingol.Classparam _)::_)) = add_group mk_class defs | group_defs ((defs as [(_, CodeThingol.Classinst _)])) = add_group mk_inst defs | group_defs defs = error ("Illegal mutual dependencies: " ^ (commas o map (labelled_name o fst)) defs) val (_, nodes) = init_module |> fold group_defs (map (AList.make (Graph.get_node code)) (rev (Graph.strong_conn code))) fun deresolver prefix name = let val modl = (fst o dest_name) name; val modl' = (NameSpace.explode o name_modl) modl; val (_, (_, remainder)) = chop_prefix (op =) (prefix, modl'); val defname' = nodes |> fold (fn m => fn g => case Graph.get_node g m of Module (_, (_, g)) => g) modl' |> (fn g => case Graph.get_node g name of Def (defname, _) => defname); in NameSpace.implode (remainder @ [defname']) end handle Graph.UNDEF _ => error ("Unknown definition name: " ^ labelled_name name); fun pr_node prefix (Def (_, NONE)) = NONE | pr_node prefix (Def (_, SOME def)) = SOME (pr_def tyco_syntax const_syntax labelled_name init_syms (deresolver prefix) is_cons def) | pr_node prefix (Module (dmodlname, (_, nodes))) = SOME (pr_modl dmodlname ( separate (str "") ((map_filter (pr_node (prefix @ [dmodlname]) o Graph.get_node nodes) o rev o flat o Graph.strong_conn) nodes))); val p = Pretty.chunks (separate (str "") (map snd includes @ (map_filter (pr_node [] o Graph.get_node nodes) o rev o flat o Graph.strong_conn) nodes)) in output p end; val eval_verbose = ref false; fun isar_seri_sml module file = let val output = case file of NONE => use_text "generated code" Output.ml_output (!eval_verbose) o code_output | SOME "-" => PrintMode.setmp [] writeln o code_output | SOME file => File.write (Path.explode file) o code_output; in parse_args (Scan.succeed ()) #> (fn () => seri_ml pr_sml pr_sml_modl module output) end; fun isar_seri_ocaml module file = let val output = case file of NONE => error "OCaml: no internal compilation" | SOME "-" => PrintMode.setmp [] writeln o code_output | SOME file => File.write (Path.explode file) o code_output; fun output_file file = File.write (Path.explode file) o code_output; val output_diag = PrintMode.setmp [] writeln o code_output; in parse_args (Scan.succeed ()) #> (fn () => seri_ml pr_ocaml pr_ocaml_modl module output) end; (** Haskell serializer **) local fun pr_bind' ((NONE, NONE), _) = str "_" | pr_bind' ((SOME v, NONE), _) = str v | pr_bind' ((NONE, SOME p), _) = p | pr_bind' ((SOME v, SOME p), _) = brackets [str v, str "@", p] val pr_bind_haskell = gen_pr_bind pr_bind'; in fun pr_haskell class_syntax tyco_syntax const_syntax labelled_name init_syms deresolv_here deresolv is_cons deriving_show def = let fun class_name class = case class_syntax class of NONE => deresolv class | SOME (class, _) => class; fun classparam_name class classparam = case class_syntax class of NONE => deresolv_here classparam | SOME (_, classparam_syntax) => case classparam_syntax classparam of NONE => (snd o dest_name) classparam | SOME classparam => classparam fun pr_typparms tyvars vs = case maps (fn (v, sort) => map (pair v) sort) vs of [] => str "" | xs => Pretty.block [ Pretty.enum "," "(" ")" ( map (fn (v, class) => str (class_name class ^ " " ^ CodeName.lookup_var tyvars v)) xs ), str " => " ]; fun pr_tycoexpr tyvars fxy (tyco, tys) = brackify fxy (str tyco :: map (pr_typ tyvars BR) tys) and pr_typ tyvars fxy (tycoexpr as tyco `%% tys) = (case tyco_syntax tyco of NONE => pr_tycoexpr tyvars fxy (deresolv tyco, tys) | SOME (i, pr) => if not (i = length tys) then error ("Number of argument mismatch in customary serialization: " ^ (string_of_int o length) tys ^ " given, " ^ string_of_int i ^ " expected") else pr (pr_typ tyvars) fxy tys) | pr_typ tyvars fxy (ITyVar v) = (str o CodeName.lookup_var tyvars) v; fun pr_typscheme_expr tyvars (vs, tycoexpr) = Pretty.block (pr_typparms tyvars vs @@ pr_tycoexpr tyvars NOBR tycoexpr); fun pr_typscheme tyvars (vs, ty) = Pretty.block (pr_typparms tyvars vs @@ pr_typ tyvars NOBR ty); fun pr_term lhs vars fxy (IConst c) = pr_app lhs vars fxy (c, []) | pr_term lhs vars fxy (t as (t1 `$ t2)) = (case CodeThingol.unfold_const_app t of SOME app => pr_app lhs vars fxy app | _ => brackify fxy [ pr_term lhs vars NOBR t1, pr_term lhs vars BR t2 ]) | pr_term lhs vars fxy (IVar v) = (str o CodeName.lookup_var vars) v | pr_term lhs vars fxy (t as _ `|-> _) = let val (binds, t') = CodeThingol.unfold_abs t; fun pr ((v, pat), ty) = pr_bind BR ((SOME v, pat), ty); val (ps, vars') = fold_map pr binds vars; in brackets (str "\\" :: ps @ str "->" @@ pr_term lhs vars' NOBR t') end | pr_term lhs vars fxy (ICase (cases as (_, t0))) = (case CodeThingol.unfold_const_app t0 of SOME (c_ts as ((c, _), _)) => if is_none (const_syntax c) then pr_case vars fxy cases else pr_app lhs vars fxy c_ts | NONE => pr_case vars fxy cases) and pr_app' lhs vars ((c, _), ts) = (str o deresolv) c :: map (pr_term lhs vars BR) ts and pr_app lhs vars = gen_pr_app pr_app' pr_term const_syntax labelled_name is_cons lhs vars and pr_bind fxy = pr_bind_haskell pr_term fxy and pr_case vars fxy (cases as ((_, [_]), _)) = let val (binds, t) = CodeThingol.unfold_let (ICase cases); fun pr ((pat, ty), t) vars = vars |> pr_bind BR ((NONE, SOME pat), ty) |>> (fn p => semicolon [p, str "=", pr_term false vars NOBR t]) val (ps, vars') = fold_map pr binds vars; in Pretty.block_enclose ( str "let {", concat [str "}", str "in", pr_term false vars' NOBR t] ) ps end | pr_case vars fxy (((td, ty), bs as _ :: _), _) = let fun pr (pat, t) = let val (p, vars') = pr_bind NOBR ((NONE, SOME pat), ty) vars; in semicolon [p, str "->", pr_term false vars' NOBR t] end; in Pretty.block_enclose ( concat [str "(case", pr_term false vars NOBR td, str "of", str "{"], str "})" ) (map pr bs) end | pr_case vars fxy ((_, []), _) = str "error \"empty case\""; fun pr_def (name, CodeThingol.Fun ((vs, ty), [])) = let val tyvars = CodeName.intro_vars (map fst vs) init_syms; val n = (length o fst o CodeThingol.unfold_fun) ty; in Pretty.chunks [ Pretty.block [ (str o suffix " ::" o deresolv_here) name, Pretty.brk 1, pr_typscheme tyvars (vs, ty), str ";" ], concat ( (str o deresolv_here) name :: map str (replicate n "_") @ str "=" :: str "error" @@ (str o (fn s => s ^ ";") o ML_Syntax.print_string o NameSpace.base o NameSpace.qualifier) name ) ] end | pr_def (name, CodeThingol.Fun ((vs, ty), eqs)) = let val tyvars = CodeName.intro_vars (map fst vs) init_syms; fun pr_eq ((ts, t), _) = let val consts = map_filter (fn c => if (is_some o const_syntax) c then NONE else (SOME o NameSpace.base o deresolv) c) ((fold o CodeThingol.fold_constnames) (insert (op =)) (t :: ts) []); val vars = init_syms |> CodeName.intro_vars consts |> CodeName.intro_vars ((fold o CodeThingol.fold_unbound_varnames) (insert (op =)) ts []); in semicolon ( (str o deresolv_here) name :: map (pr_term true vars BR) ts @ str "=" @@ pr_term false vars NOBR t ) end; in Pretty.chunks ( Pretty.block [ (str o suffix " ::" o deresolv_here) name, Pretty.brk 1, pr_typscheme tyvars (vs, ty), str ";" ] :: map pr_eq eqs ) end | pr_def (name, CodeThingol.Datatype (vs, [])) = let val tyvars = CodeName.intro_vars (map fst vs) init_syms; in semicolon [ str "data", pr_typscheme_expr tyvars (vs, (deresolv_here name, map (ITyVar o fst) vs)) ] end | pr_def (name, CodeThingol.Datatype (vs, [(co, [ty])])) = let val tyvars = CodeName.intro_vars (map fst vs) init_syms; in semicolon ( str "newtype" :: pr_typscheme_expr tyvars (vs, (deresolv_here name, map (ITyVar o fst) vs)) :: str "=" :: (str o deresolv_here) co :: pr_typ tyvars BR ty :: (if deriving_show name then [str "deriving (Read, Show)"] else []) ) end | pr_def (name, CodeThingol.Datatype (vs, co :: cos)) = let val tyvars = CodeName.intro_vars (map fst vs) init_syms; fun pr_co (co, tys) = concat ( (str o deresolv_here) co :: map (pr_typ tyvars BR) tys ) in semicolon ( str "data" :: pr_typscheme_expr tyvars (vs, (deresolv_here name, map (ITyVar o fst) vs)) :: str "=" :: pr_co co :: map ((fn p => Pretty.block [str "| ", p]) o pr_co) cos @ (if deriving_show name then [str "deriving (Read, Show)"] else []) ) end | pr_def (name, CodeThingol.Class (v, (superclasses, classparams))) = let val tyvars = CodeName.intro_vars [v] init_syms; fun pr_classparam (classparam, ty) = semicolon [ (str o classparam_name name) classparam, str "::", pr_typ tyvars NOBR ty ] in Pretty.block_enclose ( Pretty.block [ str "class ", pr_typparms tyvars [(v, map fst superclasses)], str (deresolv_here name ^ " " ^ CodeName.lookup_var tyvars v), str " where {" ], str "};" ) (map pr_classparam classparams) end | pr_def (_, CodeThingol.Classinst ((class, (tyco, vs)), (_, classparam_insts))) = let val tyvars = CodeName.intro_vars (map fst vs) init_syms; fun pr_instdef ((classparam, c_inst), _) = semicolon [ (str o classparam_name class) classparam, str "=", pr_app false init_syms NOBR (c_inst, []) ]; in Pretty.block_enclose ( Pretty.block [ str "instance ", pr_typparms tyvars vs, str (class_name class ^ " "), pr_typ tyvars BR (tyco `%% map (ITyVar o fst) vs), str " where {" ], str "};" ) (map pr_instdef classparam_insts) end; in pr_def def end; fun pretty_haskell_monad c_bind = let fun pretty pr vars fxy [(t, _)] = let val pr_bind = pr_bind_haskell (K pr); fun pr_monad (NONE, t) vars = (semicolon [pr vars NOBR t], vars) | pr_monad (SOME (bind, true), t) vars = vars |> pr_bind NOBR bind |>> (fn p => semicolon [p, str "<-", pr vars NOBR t]) | pr_monad (SOME (bind, false), t) vars = vars |> pr_bind NOBR bind |>> (fn p => semicolon [str "let", p, str "=", pr vars NOBR t]); val (binds, t) = implode_monad c_bind t; val (ps, vars') = fold_map pr_monad binds vars; fun brack p = if eval_fxy BR fxy then Pretty.block [str "(", p, str ")"] else p; in (brack o Pretty.block_enclose (str "do {", str "}")) (ps @| pr vars' NOBR t) end; in (1, pretty) end; end; (*local*) fun seri_haskell module_prefix module destination string_classes labelled_name reserved_syms includes raw_module_alias class_syntax tyco_syntax const_syntax code = let val _ = Option.map File.check destination; val is_cons = CodeThingol.is_cons code; val module_alias = if is_some module then K module else raw_module_alias; val init_names = Name.make_context reserved_syms; val name_modl = mk_modl_name_tab init_names module_prefix module_alias code; fun add_def (name, (def, deps)) = let val (modl, base) = dest_name name; val name_def = yield_singleton Name.variants; fun add_fun upper (nsp_fun, nsp_typ) = let val (base', nsp_fun') = name_def (if upper then first_upper base else base) nsp_fun in (base', (nsp_fun', nsp_typ)) end; fun add_typ (nsp_fun, nsp_typ) = let val (base', nsp_typ') = name_def (first_upper base) nsp_typ in (base', (nsp_fun, nsp_typ')) end; val add_name = case def of CodeThingol.Bot => pair base | CodeThingol.Fun _ => add_fun false | CodeThingol.Datatype _ => add_typ | CodeThingol.Datatypecons _ => add_fun true | CodeThingol.Class _ => add_typ | CodeThingol.Classrel _ => pair base | CodeThingol.Classparam _ => add_fun false | CodeThingol.Classinst _ => pair base; val modlname' = name_modl modl; fun add_def base' = case def of CodeThingol.Bot => I | CodeThingol.Datatypecons _ => cons (name, ((NameSpace.append modlname' base', base'), NONE)) | CodeThingol.Classrel _ => I | CodeThingol.Classparam _ => cons (name, ((NameSpace.append modlname' base', base'), NONE)) | _ => cons (name, ((NameSpace.append modlname' base', base'), SOME def)); in Symtab.map_default (modlname', ([], ([], (init_names, init_names)))) (apfst (fold (insert (op = : string * string -> bool)) deps)) #> `(fn code => add_name ((snd o snd o the o Symtab.lookup code) modlname')) #-> (fn (base', names) => (Symtab.map_entry modlname' o apsnd) (fn (defs, _) => (add_def base' defs, names))) end; val code' = fold add_def (AList.make (fn name => (Graph.get_node code name, Graph.imm_succs code name)) (Graph.strong_conn code |> flat)) Symtab.empty; val init_syms = CodeName.make_vars reserved_syms; fun deresolv name = (fst o fst o the o AList.lookup (op =) ((fst o snd o the o Symtab.lookup code') ((name_modl o fst o dest_name) name))) name handle Option => error ("Unknown definition name: " ^ labelled_name name); fun deresolv_here name = (snd o fst o the o AList.lookup (op =) ((fst o snd o the o Symtab.lookup code') ((name_modl o fst o dest_name) name))) name handle Option => error ("Unknown definition name: " ^ labelled_name name); fun deriving_show tyco = let fun deriv _ "fun" = false | deriv tycos tyco = member (op =) tycos tyco orelse case the_default CodeThingol.Bot (try (Graph.get_node code) tyco) of CodeThingol.Bot => true | CodeThingol.Datatype (_, cs) => forall (deriv' (tyco :: tycos)) (maps snd cs) and deriv' tycos (tyco `%% tys) = deriv tycos tyco andalso forall (deriv' tycos) tys | deriv' _ (ITyVar _) = true in deriv [] tyco end; fun seri_def qualified = pr_haskell class_syntax tyco_syntax const_syntax labelled_name init_syms deresolv_here (if qualified then deresolv else deresolv_here) is_cons (if string_classes then deriving_show else K false); fun write_modulefile (SOME destination) modlname = let val filename = case modlname of "" => Path.explode "Main.hs" | _ => (Path.ext "hs" o Path.explode o implode o separate "/" o NameSpace.explode) modlname; val pathname = Path.append destination filename; val _ = File.mkdir (Path.dir pathname); in File.write pathname end | write_modulefile NONE _ = PrintMode.setmp [] writeln; fun write_module destination (modulename, content) = Pretty.chunks [ str ("module " ^ modulename ^ " where {"), str "", content, str "", str "}" ] |> code_output |> write_modulefile destination modulename; fun seri_module (modlname', (imports, (defs, _))) = let val imports' = imports |> map (name_modl o fst o dest_name) |> distinct (op =) |> remove (op =) modlname'; val qualified = imports @ map fst defs |> distinct (op =) |> map_filter (try deresolv) |> map NameSpace.base |> has_duplicates (op =); val mk_import = str o (if qualified then prefix "import qualified " else prefix "import ") o suffix ";"; fun import_include (name, _) = str ("import " ^ name ^ ";"); val content = Pretty.chunks ( map mk_import imports' @ map import_include includes @ str "" :: separate (str "") (map_filter (fn (name, (_, SOME def)) => SOME (seri_def qualified (name, def)) | (_, (_, NONE)) => NONE) defs) ) in write_module destination (modlname', content) end; in ( map (write_module destination) includes; Symtab.fold (fn modl => fn () => seri_module modl) code' () ) end; fun isar_seri_haskell module file = let val destination = case file of NONE => error ("Haskell: no internal compilation") | SOME "-" => NONE | SOME file => SOME (Path.explode file) in parse_args (Scan.option (Args.$$$ "root" -- Args.colon |-- Args.name) -- Scan.optional (Args.$$$ "string_classes" >> K true) false >> (fn (module_prefix, string_classes) => seri_haskell module_prefix module destination string_classes)) end; (** diagnosis serializer **) fun seri_diagnosis labelled_name _ _ _ _ _ _ code = let val init_names = CodeName.make_vars []; fun pr_fun "fun" = SOME (2, fn pr_typ => fn fxy => fn [ty1, ty2] => brackify_infix (1, R) fxy [ pr_typ (INFX (1, X)) ty1, str "->", pr_typ (INFX (1, R)) ty2 ]) | pr_fun _ = NONE val pr = pr_haskell (K NONE) pr_fun (K NONE) labelled_name init_names I I (K false) (K false); in [] |> Graph.fold (fn (name, (def, _)) => case try pr (name, def) of SOME p => cons p | NONE => I) code |> Pretty.chunks2 |> code_output |> PrintMode.setmp [] writeln end; (** theory data **) datatype syntax_expr = SyntaxExpr of { class: (string * (string -> string option)) Symtab.table, inst: unit Symtab.table, tyco: typ_syntax Symtab.table, const: term_syntax Symtab.table }; fun mk_syntax_expr ((class, inst), (tyco, const)) = SyntaxExpr { class = class, inst = inst, tyco = tyco, const = const }; fun map_syntax_expr f (SyntaxExpr { class, inst, tyco, const }) = mk_syntax_expr (f ((class, inst), (tyco, const))); fun merge_syntax_expr (SyntaxExpr { class = class1, inst = inst1, tyco = tyco1, const = const1 }, SyntaxExpr { class = class2, inst = inst2, tyco = tyco2, const = const2 }) = mk_syntax_expr ( (Symtab.join (K snd) (class1, class2), Symtab.join (K snd) (inst1, inst2)), (Symtab.join (K snd) (tyco1, tyco2), Symtab.join (K snd) (const1, const2)) ); type serializer = string option -> string option -> Args.T list -> (string -> string) -> string list -> (string * Pretty.T) list -> (string -> string option) -> (string -> class_syntax option) -> (string -> typ_syntax option) -> (string -> term_syntax option) -> CodeThingol.code -> unit; datatype target = Target of { serial: serial, serializer: serializer, reserved: string list, includes: Pretty.T Symtab.table, syntax_expr: syntax_expr, module_alias: string Symtab.table }; fun mk_target ((serial, serializer), ((reserved, includes), (syntax_expr, module_alias))) = Target { serial = serial, serializer = serializer, reserved = reserved, includes = includes, syntax_expr = syntax_expr, module_alias = module_alias }; fun map_target f ( Target { serial, serializer, reserved, includes, syntax_expr, module_alias } ) = mk_target (f ((serial, serializer), ((reserved, includes), (syntax_expr, module_alias)))); fun merge_target target (Target { serial = serial1, serializer = serializer, reserved = reserved1, includes = includes1, syntax_expr = syntax_expr1, module_alias = module_alias1 }, Target { serial = serial2, serializer = _, reserved = reserved2, includes = includes2, syntax_expr = syntax_expr2, module_alias = module_alias2 }) = if serial1 = serial2 then mk_target ((serial1, serializer), ((merge (op =) (reserved1, reserved2), Symtab.merge (op =) (includes1, includes2)), (merge_syntax_expr (syntax_expr1, syntax_expr2), Symtab.join (K snd) (module_alias1, module_alias2)) )) else error ("Incompatible serializers: " ^ quote target); structure CodeTargetData = TheoryDataFun ( type T = target Symtab.table * string list; val empty = (Symtab.empty, []); val copy = I; val extend = I; fun merge _ ((target1, exc1) : T, (target2, exc2)) = (Symtab.join merge_target (target1, target2), Library.merge (op =) (exc1, exc2)); ); val target_SML = "SML"; val target_OCaml = "OCaml"; val target_Haskell = "Haskell"; val target_diag = "diag"; fun the_serializer (Target { serializer, ... }) = serializer; fun the_reserved (Target { reserved, ... }) = reserved; fun the_includes (Target { includes, ... }) = includes; fun the_syntax_expr (Target { syntax_expr = SyntaxExpr x, ... }) = x; fun the_module_alias (Target { module_alias , ... }) = module_alias; fun assert_serializer thy target = case Symtab.lookup (fst (CodeTargetData.get thy)) target of SOME data => target | NONE => error ("Unknown code target language: " ^ quote target); fun add_serializer (target, seri) thy = let val _ = case Symtab.lookup (fst (CodeTargetData.get thy)) target of SOME _ => warning ("overwriting existing serializer " ^ quote target) | NONE => (); in thy |> (CodeTargetData.map o apfst oo Symtab.map_default) (target, mk_target ((serial (), seri), (([], Symtab.empty), (mk_syntax_expr ((Symtab.empty, Symtab.empty), (Symtab.empty, Symtab.empty)), Symtab.empty)))) ((map_target o apfst o apsnd o K) seri) end; fun map_seri_data target f thy = let val _ = assert_serializer thy target; in thy |> (CodeTargetData.map o apfst o Symtab.map_entry target o map_target) f end; fun map_adaptions target = map_seri_data target o apsnd o apfst; fun map_syntax_exprs target = map_seri_data target o apsnd o apsnd o apfst o map_syntax_expr; fun map_module_alias target = map_seri_data target o apsnd o apsnd o apsnd; fun get_serializer thy target permissive module file args = fn cs => let val (seris, exc) = CodeTargetData.get thy; val data = case Symtab.lookup seris target of SOME data => data | NONE => error ("Unknown code target language: " ^ quote target); val seri = the_serializer data; val reserved = the_reserved data; val includes = Symtab.dest (the_includes data); val alias = the_module_alias data; val { class, inst, tyco, const } = the_syntax_expr data; val project = if target = target_diag then I else CodeThingol.project_code permissive (Symtab.keys class @ Symtab.keys inst @ Symtab.keys tyco @ Symtab.keys const) cs; fun check_empty_funs code = case (filter_out (member (op =) exc) (CodeThingol.empty_funs code)) of [] => code | names => error ("No defining equations for " ^ commas (map (CodeName.labelled_name thy) names)); in project #> check_empty_funs #> seri module file args (CodeName.labelled_name thy) reserved includes (Symtab.lookup alias) (Symtab.lookup class) (Symtab.lookup tyco) (Symtab.lookup const) end; fun eval_invoke thy (ref_name, reff) code (t, ty) args = let val _ = if CodeThingol.contains_dictvar t then error "Term to be evaluated constains free dictionaries" else (); val val_args = space_implode " " (NameSpace.qualifier CodeName.value_name :: map (enclose "(" ")") args); val seri = get_serializer thy "SML" false (SOME "Isabelle_Eval") NONE []; val code' = CodeThingol.add_value_stmt (t, ty) code; val label = "evaluation in SML"; fun eval () = (seri (SOME [CodeName.value_name]) code'; ML_Context.evaluate Output.ml_output (!eval_verbose) (ref_name, reff) val_args); in NAMED_CRITICAL label eval end; (** optional pretty serialization **) local val pretty : (string * { pretty_char: string -> string, pretty_string: string -> string, pretty_numeral: bool -> int -> string, pretty_list: Pretty.T list -> Pretty.T, infix_cons: int * string }) list = [ ("SML", { pretty_char = prefix "#" o quote o ML_Syntax.print_char, pretty_string = ML_Syntax.print_string, pretty_numeral = fn unbounded => fn k => if unbounded then "(" ^ string_of_int k ^ " : IntInf.int)" else string_of_int k, pretty_list = Pretty.enum "," "[" "]", infix_cons = (7, "::")}), ("OCaml", { pretty_char = fn c => enclose "'" "'" (let val i = ord c in if i < 32 orelse i = 39 orelse i = 92 then prefix "\\" (string_of_int i) else c end), pretty_string = ML_Syntax.print_string, pretty_numeral = fn unbounded => fn k => if k >= 0 then if unbounded then "(Big_int.big_int_of_int " ^ string_of_int k ^ ")" else string_of_int k else if unbounded then "(Big_int.big_int_of_int " ^ (enclose "(" ")" o prefix "-" o string_of_int o op ~) k ^ ")" else (enclose "(" ")" o prefix "-" o string_of_int o op ~) k, pretty_list = Pretty.enum ";" "[" "]", infix_cons = (6, "::")}), ("Haskell", { pretty_char = fn c => enclose "'" "'" (let val i = ord c in if i < 32 orelse i = 39 orelse i = 92 then Library.prefix "\\" (string_of_int i) else c end), pretty_string = ML_Syntax.print_string, pretty_numeral = fn unbounded => fn k => if k >= 0 then string_of_int k else enclose "(" ")" (signed_string_of_int k), pretty_list = Pretty.enum "," "[" "]", infix_cons = (5, ":")}) ]; in fun pr_pretty target = case AList.lookup (op =) pretty target of SOME x => x | NONE => error ("Unknown code target language: " ^ quote target); fun default_list (target_fxy, target_cons) pr fxy t1 t2 = brackify_infix (target_fxy, R) fxy [ pr (INFX (target_fxy, X)) t1, str target_cons, pr (INFX (target_fxy, R)) t2 ]; fun pretty_list c_nil c_cons target = let val pretty_ops = pr_pretty target; val mk_list = #pretty_list pretty_ops; fun pretty pr vars fxy [(t1, _), (t2, _)] = case Option.map (cons t1) (implode_list c_nil c_cons t2) of SOME ts => mk_list (map (pr vars NOBR) ts) | NONE => default_list (#infix_cons pretty_ops) (pr vars) fxy t1 t2; in (2, pretty) end; fun pretty_list_string c_nil c_cons c_char c_nibbles target = let val pretty_ops = pr_pretty target; val mk_list = #pretty_list pretty_ops; val mk_char = #pretty_char pretty_ops; val mk_string = #pretty_string pretty_ops; fun pretty pr vars fxy [(t1, _), (t2, _)] = case Option.map (cons t1) (implode_list c_nil c_cons t2) of SOME ts => case implode_string c_char c_nibbles mk_char mk_string ts of SOME p => p | NONE => mk_list (map (pr vars NOBR) ts) | NONE => default_list (#infix_cons pretty_ops) (pr vars) fxy t1 t2; in (2, pretty) end; fun pretty_char c_char c_nibbles target = let val mk_char = #pretty_char (pr_pretty target); fun pretty _ _ _ [(t1, _), (t2, _)] = case decode_char c_nibbles (t1, t2) of SOME c => (str o mk_char) c | NONE => error "Illegal character expression"; in (2, pretty) end; fun pretty_numeral unbounded c_bit0 c_bit1 c_pls c_min c_bit target = let val mk_numeral = #pretty_numeral (pr_pretty target); fun pretty _ _ _ [(t, _)] = case implode_numeral c_bit0 c_bit1 c_pls c_min c_bit t of SOME k => (str o mk_numeral unbounded) k | NONE => error "Illegal numeral expression"; in (1, pretty) end; fun pretty_message c_char c_nibbles c_nil c_cons target = let val pretty_ops = pr_pretty target; val mk_char = #pretty_char pretty_ops; val mk_string = #pretty_string pretty_ops; fun pretty pr vars fxy [(t, _)] = case implode_list c_nil c_cons t of SOME ts => (case implode_string c_char c_nibbles mk_char mk_string ts of SOME p => p | NONE => error "Illegal message expression") | NONE => error "Illegal message expression"; in (1, pretty) end; fun pretty_imperative_monad_bind bind' = let fun dest_abs ((v, ty) `|-> t, _) = ((v, ty), t) | dest_abs (t, ty) = let val vs = CodeThingol.fold_varnames cons t []; val v = Name.variant vs "x"; val ty' = (hd o fst o CodeThingol.unfold_fun) ty; in ((v, ty'), t `$ IVar v) end; fun tr_bind [(t1, _), (t2, ty2)] = let val ((v, ty), t) = dest_abs (t2, ty2); in ICase (((t1, ty), [(IVar v, tr_bind' t)]), IVar "") end and tr_bind' (t as _ `$ _) = (case CodeThingol.unfold_app t of (IConst (c, (_, ty1 :: ty2 :: _)), [x1, x2]) => if c = bind' then tr_bind [(x1, ty1), (x2, ty2)] else t | _ => t) | tr_bind' t = t; fun pretty pr vars fxy ts = pr vars fxy (tr_bind ts); in (2, pretty) end; fun no_bindings x = (Option.map o apsnd) (fn pretty => fn pr => fn vars => pretty (pr vars)) x; end; (*local*) (** ML and Isar interface **) local fun cert_class thy class = let val _ = AxClass.get_info thy class; in class end; fun read_class thy raw_class = let val class = Sign.intern_class thy raw_class; val _ = AxClass.get_info thy class; in class end; fun cert_tyco thy tyco = let val _ = if Sign.declared_tyname thy tyco then () else error ("No such type constructor: " ^ quote tyco); in tyco end; fun read_tyco thy raw_tyco = let val tyco = Sign.intern_type thy raw_tyco; val _ = if Sign.declared_tyname thy tyco then () else error ("No such type constructor: " ^ quote raw_tyco); in tyco end; fun gen_add_syntax_class prep_class prep_const target raw_class raw_syn thy = let val class = prep_class thy raw_class; val class' = CodeName.class thy class; fun mk_classparam c = case AxClass.class_of_param thy c of SOME class'' => if class = class'' then CodeName.const thy c else error ("Not a class operation for class " ^ quote class ^ ": " ^ quote c) | NONE => error ("Not a class operation: " ^ quote c); fun mk_syntax_params raw_params = AList.lookup (op =) ((map o apfst) (mk_classparam o prep_const thy) raw_params); in case raw_syn of SOME (syntax, raw_params) => thy |> (map_syntax_exprs target o apfst o apfst) (Symtab.update (class', (syntax, mk_syntax_params raw_params))) | NONE => thy |> (map_syntax_exprs target o apfst o apfst) (Symtab.delete_safe class') end; fun gen_add_syntax_inst prep_class prep_tyco target (raw_tyco, raw_class) add_del thy = let val inst = CodeName.instance thy (prep_class thy raw_class, prep_tyco thy raw_tyco); in if add_del then thy |> (map_syntax_exprs target o apfst o apsnd) (Symtab.update (inst, ())) else thy |> (map_syntax_exprs target o apfst o apsnd) (Symtab.delete_safe inst) end; fun gen_add_syntax_tyco prep_tyco target raw_tyco raw_syn thy = let val tyco = prep_tyco thy raw_tyco; val tyco' = if tyco = "fun" then "fun" else CodeName.tyco thy tyco; fun check_args (syntax as (n, _)) = if n <> Sign.arity_number thy tyco then error ("Number of arguments mismatch in syntax for type constructor " ^ quote tyco) else syntax in case raw_syn of SOME syntax => thy |> (map_syntax_exprs target o apsnd o apfst) (Symtab.update (tyco', check_args syntax)) | NONE => thy |> (map_syntax_exprs target o apsnd o apfst) (Symtab.delete_safe tyco') end; fun gen_add_syntax_const prep_const target raw_c raw_syn thy = let val c = prep_const thy raw_c; val c' = CodeName.const thy c; fun check_args (syntax as (n, _)) = if n > CodeUnit.no_args thy c then error ("Too many arguments in syntax for constant " ^ quote c) else syntax; in case raw_syn of SOME syntax => thy |> (map_syntax_exprs target o apsnd o apsnd) (Symtab.update (c', check_args syntax)) | NONE => thy |> (map_syntax_exprs target o apsnd o apsnd) (Symtab.delete_safe c') end; fun add_reserved target = let fun add sym syms = if member (op =) syms sym then error ("Reserved symbol " ^ quote sym ^ " already declared") else insert (op =) sym syms in map_adaptions target o apfst o add end; fun add_include target = let fun add (name, SOME content) incls = let val _ = if Symtab.defined incls name then warning ("Overwriting existing include " ^ name) else (); in Symtab.update (name, str content) incls end | add (name, NONE) incls = Symtab.delete name incls; in map_adaptions target o apsnd o add end; fun add_modl_alias target = map_module_alias target o Symtab.update o apsnd CodeName.check_modulename; fun add_monad target c_run c_bind thy = let val c_run' = CodeUnit.read_const thy c_run; val c_bind' = CodeUnit.read_const thy c_bind; val c_bind'' = CodeName.const thy c_bind'; in if target = target_Haskell then thy |> gen_add_syntax_const (K I) target_Haskell c_run' (SOME (pretty_haskell_monad c_bind'')) |> gen_add_syntax_const (K I) target_Haskell c_bind' (no_bindings (SOME (parse_infix fst (L, 1) ">>="))) else thy |> gen_add_syntax_const (K I) target c_bind' (SOME (pretty_imperative_monad_bind c_bind'')) end; fun gen_allow_exception prep_cs raw_c thy = let val c = prep_cs thy raw_c; val c' = CodeName.const thy c; in thy |> (CodeTargetData.map o apsnd) (insert (op =) c') end; fun zip_list (x::xs) f g = f #-> (fn y => fold_map (fn x => g |-- f >> pair x) xs #-> (fn xys => pair ((x, y) :: xys))); structure P = OuterParse and K = OuterKeyword fun parse_multi_syntax parse_thing parse_syntax = P.and_list1 parse_thing #-> (fn things => Scan.repeat1 (P.$$$ "(" |-- P.name -- (zip_list things parse_syntax (P.$$$ "and")) --| P.$$$ ")")); val (infixK, infixlK, infixrK) = ("infix", "infixl", "infixr"); fun parse_syntax prep_arg xs = Scan.option (( ((P.$$$ infixK >> K X) || (P.$$$ infixlK >> K L) || (P.$$$ infixrK >> K R)) -- P.nat >> parse_infix prep_arg || Scan.succeed (parse_mixfix prep_arg)) -- P.string >> (fn (parse, s) => parse s)) xs; in val parse_syntax = parse_syntax; val add_syntax_class = gen_add_syntax_class cert_class (K I); val add_syntax_inst = gen_add_syntax_inst cert_class cert_tyco; val add_syntax_tyco = gen_add_syntax_tyco cert_tyco; val add_syntax_const = gen_add_syntax_const (K I); val allow_exception = gen_allow_exception (K I); val add_syntax_class_cmd = gen_add_syntax_class read_class CodeUnit.read_const; val add_syntax_inst_cmd = gen_add_syntax_inst read_class read_tyco; val add_syntax_tyco_cmd = gen_add_syntax_tyco read_tyco; val add_syntax_const_cmd = gen_add_syntax_const CodeUnit.read_const; val allow_exception_cmd = gen_allow_exception CodeUnit.read_const; fun add_syntax_tycoP target tyco = parse_syntax I >> add_syntax_tyco_cmd target tyco; fun add_syntax_constP target c = parse_syntax fst >> (add_syntax_const_cmd target c o no_bindings); fun add_undefined target undef target_undefined thy = let fun pr _ _ _ _ = str target_undefined; in thy |> add_syntax_const target undef (SOME (~1, pr)) end; fun add_pretty_list target nill cons thy = let val nil' = CodeName.const thy nill; val cons' = CodeName.const thy cons; val pr = pretty_list nil' cons' target; in thy |> add_syntax_const target cons (SOME pr) end; fun add_pretty_list_string target nill cons charr nibbles thy = let val nil' = CodeName.const thy nill; val cons' = CodeName.const thy cons; val charr' = CodeName.const thy charr; val nibbles' = map (CodeName.const thy) nibbles; val pr = pretty_list_string nil' cons' charr' nibbles' target; in thy |> add_syntax_const target cons (SOME pr) end; fun add_pretty_char target charr nibbles thy = let val charr' = CodeName.const thy charr; val nibbles' = map (CodeName.const thy) nibbles; val pr = pretty_char charr' nibbles' target; in thy |> add_syntax_const target charr (SOME pr) end; fun add_pretty_numeral target unbounded number_of b0 b1 pls min bit thy = let val b0' = CodeName.const thy b0; val b1' = CodeName.const thy b1; val pls' = CodeName.const thy pls; val min' = CodeName.const thy min; val bit' = CodeName.const thy bit; val pr = pretty_numeral unbounded b0' b1' pls' min' bit' target; in thy |> add_syntax_const target number_of (SOME pr) end; fun add_pretty_message target charr nibbles nill cons str thy = let val charr' = CodeName.const thy charr; val nibbles' = map (CodeName.const thy) nibbles; val nil' = CodeName.const thy nill; val cons' = CodeName.const thy cons; val pr = pretty_message charr' nibbles' nil' cons' target; in thy |> add_syntax_const target str (SOME pr) end; val _ = OuterSyntax.keywords [infixK, infixlK, infixrK]; val _ = OuterSyntax.command "code_class" "define code syntax for class" K.thy_decl ( parse_multi_syntax P.xname (Scan.option (P.string -- Scan.optional (P.$$$ "where" |-- Scan.repeat1 (P.term --| (P.$$$ "≡" || P.$$$ "==") -- P.string)) [])) >> (Toplevel.theory oo fold) (fn (target, syns) => fold (fn (raw_class, syn) => add_syntax_class_cmd target raw_class syn) syns) ); val _ = OuterSyntax.command "code_instance" "define code syntax for instance" K.thy_decl ( parse_multi_syntax (P.xname --| P.$$$ "::" -- P.xname) ((P.minus >> K true) || Scan.succeed false) >> (Toplevel.theory oo fold) (fn (target, syns) => fold (fn (raw_inst, add_del) => add_syntax_inst_cmd target raw_inst add_del) syns) ); val _ = OuterSyntax.command "code_type" "define code syntax for type constructor" K.thy_decl ( parse_multi_syntax P.xname (parse_syntax I) >> (Toplevel.theory oo fold) (fn (target, syns) => fold (fn (raw_tyco, syn) => add_syntax_tyco_cmd target raw_tyco syn) syns) ); val _ = OuterSyntax.command "code_const" "define code syntax for constant" K.thy_decl ( parse_multi_syntax P.term (parse_syntax fst) >> (Toplevel.theory oo fold) (fn (target, syns) => fold (fn (raw_const, syn) => add_syntax_const_cmd target raw_const (no_bindings syn)) syns) ); val _ = OuterSyntax.command "code_monad" "define code syntax for monads" K.thy_decl ( P.term -- P.term -- Scan.repeat1 P.name >> (fn ((raw_run, raw_bind), targets) => Toplevel.theory (fold (fn target => add_monad target raw_run raw_bind) targets)) ); val _ = OuterSyntax.command "code_reserved" "declare words as reserved for target language" K.thy_decl ( P.name -- Scan.repeat1 P.name >> (fn (target, reserveds) => (Toplevel.theory o fold (add_reserved target)) reserveds) ); val _ = OuterSyntax.command "code_include" "declare piece of code to be included in generated code" K.thy_decl ( P.name -- P.name -- (P.text >> (fn "-" => NONE | s => SOME s)) >> (fn ((target, name), content) => (Toplevel.theory o add_include target) (name, content)) ); val _ = OuterSyntax.command "code_modulename" "alias module to other name" K.thy_decl ( P.name -- Scan.repeat1 (P.name -- P.name) >> (fn (target, modlnames) => (Toplevel.theory o fold (add_modl_alias target)) modlnames) ); val _ = OuterSyntax.command "code_exception" "permit exceptions for constant" K.thy_decl ( Scan.repeat1 P.term >> (Toplevel.theory o fold allow_exception_cmd) ); (*including serializer defaults*) val setup = add_serializer (target_SML, isar_seri_sml) #> add_serializer (target_OCaml, isar_seri_ocaml) #> add_serializer (target_Haskell, isar_seri_haskell) #> add_serializer (target_diag, fn _ => fn _=> fn _ => seri_diagnosis) #> add_syntax_tyco "SML" "fun" (SOME (2, fn pr_typ => fn fxy => fn [ty1, ty2] => (gen_brackify (case fxy of NOBR => false | _ => eval_fxy (INFX (1, R)) fxy) o Pretty.breaks) [ pr_typ (INFX (1, X)) ty1, str "->", pr_typ (INFX (1, R)) ty2 ])) #> add_syntax_tyco "OCaml" "fun" (SOME (2, fn pr_typ => fn fxy => fn [ty1, ty2] => (gen_brackify (case fxy of NOBR => false | _ => eval_fxy (INFX (1, R)) fxy) o Pretty.breaks) [ pr_typ (INFX (1, X)) ty1, str "->", pr_typ (INFX (1, R)) ty2 ])) #> add_syntax_tyco "Haskell" "fun" (SOME (2, fn pr_typ => fn fxy => fn [ty1, ty2] => brackify_infix (1, R) fxy [ pr_typ (INFX (1, X)) ty1, str "->", pr_typ (INFX (1, R)) ty2 ])) #> fold (add_reserved "SML") ML_Syntax.reserved_names #> fold (add_reserved "SML") ["o" (*dictionary projections use it already*), "Fail", "div", "mod" (*standard infixes*)] #> fold (add_reserved "OCaml") [ "and", "as", "assert", "begin", "class", "constraint", "do", "done", "downto", "else", "end", "exception", "external", "false", "for", "fun", "function", "functor", "if", "in", "include", "inherit", "initializer", "lazy", "let", "match", "method", "module", "mutable", "new", "object", "of", "open", "or", "private", "rec", "sig", "struct", "then", "to", "true", "try", "type", "val", "virtual", "when", "while", "with" ] #> fold (add_reserved "OCaml") ["failwith", "mod"] #> fold (add_reserved "Haskell") [ "hiding", "deriving", "where", "case", "of", "infix", "infixl", "infixr", "import", "default", "forall", "let", "in", "class", "qualified", "data", "newtype", "instance", "if", "then", "else", "type", "as", "do", "module" ] #> fold (add_reserved "Haskell") [ "Prelude", "Main", "Bool", "Maybe", "Either", "Ordering", "Char", "String", "Int", "Integer", "Float", "Double", "Rational", "IO", "Eq", "Ord", "Enum", "Bounded", "Num", "Real", "Integral", "Fractional", "Floating", "RealFloat", "Monad", "Functor", "AlreadyExists", "ArithException", "ArrayException", "AssertionFailed", "AsyncException", "BlockedOnDeadMVar", "Deadlock", "Denormal", "DivideByZero", "DotNetException", "DynException", "Dynamic", "EOF", "EQ", "EmptyRec", "ErrorCall", "ExitException", "ExitFailure", "ExitSuccess", "False", "GT", "HeapOverflow", "IOError", "IOException", "IllegalOperation", "IndexOutOfBounds", "Just", "Key", "LT", "Left", "LossOfPrecision", "NoMethodError", "NoSuchThing", "NonTermination", "Nothing", "Obj", "OtherError", "Overflow", "PatternMatchFail", "PermissionDenied", "ProtocolError", "RecConError", "RecSelError", "RecUpdError", "ResourceBusy", "ResourceExhausted", "Right", "StackOverflow", "ThreadKilled", "True", "TyCon", "TypeRep", "UndefinedElement", "Underflow", "UnsupportedOperation", "UserError", "abs", "absReal", "acos", "acosh", "all", "and", "any", "appendFile", "asTypeOf", "asciiTab", "asin", "asinh", "atan", "atan2", "atanh", "basicIORun", "blockIO", "boundedEnumFrom", "boundedEnumFromThen", "boundedEnumFromThenTo", "boundedEnumFromTo", "boundedPred", "boundedSucc", "break", "catch", "catchException", "ceiling", "compare", "concat", "concatMap", "const", "cos", "cosh", "curry", "cycle", "decodeFloat", "denominator", "div", "divMod", "doubleToRatio", "doubleToRational", "drop", "dropWhile", "either", "elem", "emptyRec", "encodeFloat", "enumFrom", "enumFromThen", "enumFromThenTo", "enumFromTo", "error", "even", "exp", "exponent", "fail", "filter", "flip", "floatDigits", "floatProperFraction", "floatRadix", "floatRange", "floatToRational", "floor", "fmap", "foldl", "foldl'", "foldl1", "foldr", "foldr1", "fromDouble", "fromEnum", "fromEnum_0", "fromInt", "fromInteger", "fromIntegral", "fromObj", "fromRational", "fst", "gcd", "getChar", "getContents", "getLine", "head", "id", "inRange", "index", "init", "intToRatio", "interact", "ioError", "isAlpha", "isAlphaNum", "isDenormalized", "isDigit", "isHexDigit", "isIEEE", "isInfinite", "isLower", "isNaN", "isNegativeZero", "isOctDigit", "isSpace", "isUpper", "iterate", "iterate'", "last", "lcm", "length", "lex", "lexDigits", "lexLitChar", "lexmatch", "lines", "log", "logBase", "lookup", "loop", "map", "mapM", "mapM_", "max", "maxBound", "maximum", "maybe", "min", "minBound", "minimum", "mod", "negate", "nonnull", "not", "notElem", "null", "numerator", "numericEnumFrom", "numericEnumFromThen", "numericEnumFromThenTo", "numericEnumFromTo", "odd", "or", "otherwise", "pi", "pred", "print", "product", "properFraction", "protectEsc", "putChar", "putStr", "putStrLn", "quot", "quotRem", "range", "rangeSize", "rationalToDouble", "rationalToFloat", "rationalToRealFloat", "read", "readDec", "readField", "readFieldName", "readFile", "readFloat", "readHex", "readIO", "readInt", "readList", "readLitChar", "readLn", "readOct", "readParen", "readSigned", "reads", "readsPrec", "realFloatToRational", "realToFrac", "recip", "reduce", "rem", "repeat", "replicate", "return", "reverse", "round", "scaleFloat", "scanl", "scanl1", "scanr", "scanr1", "seq", "sequence", "sequence_", "show", "showChar", "showException", "showField", "showList", "showLitChar", "showParen", "showString", "shows", "showsPrec", "significand", "signum", "signumReal", "sin", "sinh", "snd", "span", "splitAt", "sqrt", "subtract", "succ", "sum", "tail", "take", "takeWhile", "takeWhile1", "tan", "tanh", "threadToIOResult", "throw", "toEnum", "toInt", "toInteger", "toObj", "toRational", "truncate", "uncurry", "undefined", "unlines", "unsafeCoerce", "unsafeIndex", "unsafeRangeSize", "until", "unwords", "unzip", "unzip3", "userError", "words", "writeFile", "zip", "zip3", "zipWith", "zipWith3" ] (*due to weird handling of ':', we can't do anything else than to import *all* prelude symbols*); end; (*local*) end; (*struct*)