Size-Change Termination

Alexander Krauss

November 22, 2007

1 Miscellaneous Tools for Size-Change Termina-
tion

theory Misc-Tools
imports Main
begin

1.1 Searching in lists

fun index-of :: 'a list = 'a = nat
where
index-of [] ¢ = 0
| index-of (z#xs) ¢ = (if v = ¢ then 0 else Suc (index-of xs c))

lemma index-of-member:
(z € set ) = (1! index-of l x = )
by (induct 1) auto

lemma index-of-length:
(z € set 1) = (index-of | x < length 1)
by (induct 1) auto

1.2 Some reasoning tools

lemma three-cases:
assumes al — thesis
assumes a2 — thesis
assumes a3 = thesis
assumes AR. [al = R; a2 — R; a3 — R] = R
shows thesis
using assms
by auto

1.3 Sequences

types
'a sequence = nat = 'a



1.3.1 Increasing sequences

definition
increasing :: (nat = nat) = bool where
increasing s = (Vij. i <j — si < sj)

lemma increasing-strict:
assumes increasing s
assumes i < j
shows s i < sj
using assms
unfolding increasing-def by simp

lemma increasing-weak:
assumes increasing s
assumes { < j
shows s i < sj
using assms increasing-strict[of s i j]
by (cases i < j) auto

lemma increasing-inc:
assumes increasing s
shows n < s n
proof (induct n)
case () then show ?case by simp
next
case (Suc n)
with increasing-strict [OF tincreasing $), of n Suc n|
show ?case by auto
qed

lemma increasing-bij:
assumes [simp|: increasing s
shows (si < sj) = (i < j)
proof
assume s 1 < §J
show i < j
proof (rule classical)
assume — ?thesis
hence j < i by arith
with increasing-weak have s j < s ¢ by simp
with (s i < s j> show %thesis by simp
qed
qed (simp add:increasing-strict)

1.3.2 Sections induced by an increasing sequence

abbreviation
section s i == {s i ..< s (Suc i)}



definition
section-of s n = (LEAST i. n < s (Suc 1))

lemma section-help:
assumes increasing s
shows Ji. n < s (Suc 9)
proof —
have n < s n
using <increasing s» by (rule increasing-inc)
also have ... < s (Suc n)
using «ncreasing s) increasing-strict by simp
finally show ?thesis .
qed

lemma section-of2:
assumes increasing s
shows n < s (Suc (section-of s n))
unfolding section-of-def
by (rule Leastl-ex) (rule section-help [OF tincreasing $)])

lemma section-of1:
assumes [simp, intro|: increasing s
assumes s 1 < n
shows s (section-of s n) < n
proof (rule classical)
let ?m = section-of s n

assume — ?thesis
hence a: n < s ?m by simp

have nonzero: ?m # 0
proof
assume ?m = (
from increasing-weak have s 0 < s i by simp
also note ... < n
finally show Fulse using (Ym = () (n < s ?m) by simp
qged
with a have n < s (Suc (Ym — 1)) by simp
with Least-le have ?m < ?m — 1
unfolding section-of-def .
with nonzero show ?thesis by simp
qed

lemma section-of-known:
assumes [simp|: increasing s
assumes in-sect: k € section s i
shows section-of s k = i (is %s = i)
proof (rule classical)
assume — ?thesis



hence ?s < i V %s > i by arith

thus ?thesis

proof
assume ?s < i
hence Suc s < i by simp
with increasing-weak have s (Suc ?s) < s i by simp
moreover have k < s (Suc ?s) using section-of2 by simp
moreover from in-sect have s i < k by simp
ultimately show ?thesis by simp

next
assume i < ?s hence Suc i < ?s by simp
with increasing-weak have s (Suc i) < s ?s by simp
moreover
from in-sect have s i < k by simp
with section-of! have s ?s < k by simp
moreover from in-sect have k < s (Suc i) by simp
ultimately show ?thesis by simp

qed

qed

lemma in-section-of:
assumes increasing S
assumes s 1 < k
shows k € section s (section-of s k)
using assms
by (auto intro:section-of1 section-of2)

end

2 Kleene Algebras

theory Kleene-Algebras
imports Main
begin

A type class of kleene algebras
class star = type +

fixes star :: 'a = 'a

class idem-add = ab-semigroup-add +
assumes add-idem [simp]: z + z = z

lemma add-idem2[simp]: (z::'a:idem-add) + (z + y) =z + y
unfolding add-assoc[symmetric]

by simp

class order-by-add = idem-add + ord +



assumes order-def: a < b+«— a+ b=2»>
assumes strict-order-def: a < b +— a < bAa#b

lemma ord-simp1[simp]: (z::'a::order-by-add) < y = = + y
unfolding order-def .

lemma ord-simp2[simp): (z::’a::order-by-add) < y = y + z
unfolding order-def add-commute .

lemma ord-intro: (z::'a::order-by-add) + y =y =z < y
unfolding order-def .

instance order-by-add C order
proof
fixzyz:'a
show z < z unfolding order-def by simp

show [z < y; y < z] = 2 <2
proof (rule ord-intro)

assume z < yy < 2

have 2 + z = . + y + z by (simp add:<y < 2) add-assoc)

also have ... = y + z by (simp add:<x < )
also have ... = z by (simp add:«y < 2))
finally show z + 2z = z .

qed

show [z < y; y < 2] = z = y unfolding order-def
by (simp add:add-commute)
show z < y «— z < y A = # y by (fact strict-order-def)
qed

class pre-kleene = semiring-1 + order-by-add
instance pre-kleene C pordered-semiring
proof

fixzyz:'a

assume r < y

show z + 2 < z + y

proof (rule ord-intro)
have z + z + (z + y) =z + y + z by (simp add:add-ac)

also have ... = z + y by (simp add:«x < y add-ac)
finally show z + z + (z + y) =2 + y .
qed

show z x x < z x y
proof (rule ord-intro)
from z < y have z x (z + y) = z x y by simp



thus z x 2 + z x y = z * y by (simp add:right-distrib)
qed

show z * z <y * 2
proof (rule ord-intro)
from x < y have (z + y) *x z = y x z by simp
thus z * 2 + y x 2 = y x z by (simp add:left-distrib)
qed
qed

class kleene = pre-kleene + star +
assumes starl: 1 + a * star a < star a
and star2: 1 + star a * a < star a
and star3: a x x < x — stara x v <
and starf: z x a < x = x * stara < z

class kleene-by-complete-lattice = pre-kleene
+ complete-lattice + recpower + star +
assumes star-cont: a * star b * ¢ = SUPR UNIV (An. a b " n * c)

lemma plus-lel:
fixes z :: 'a :: order-by-add
showsr <2 = y<:z=z+y <z
unfolding order-def by (simp add:add-assoc)

lemma le-SUPI":
fixes [ :: 'a :: complete-lattice
assumes [ < M i
shows [ < (SUP i. M 1)
using assms by (rule order-trans) (rule le-SUPI [OF UNIV-I))

lemma zero-minimum[simp]: (0::'a::pre-kleene) < z
unfolding order-def by simp

instance kleene-by-complete-lattice C kleene
proof

fixaz:'a

have [simp]: 1 < star a
unfolding star-contl[of 1 a 1, simplified]
by (subst power-0[symmetric]) (rule le-SUPI [OF UNIV-I])

show 1 + a x star a < star a
apply (rule plus-lel, simp)
apply (simp add:star-cont|of a a 1, simplified])
apply (simp add:star-cont[of 1 a 1, simplified])
apply (subst power-Suc[symmetric|)
by (intro SUP-lel le-SUPI UNIV-I)



show 1 + star a * a < star a
apply (rule plus-lel, simp)
apply (simp add:star-cont[of 1 a a, simplified])
apply (simp add:star-cont[of 1 a 1, simplified])
by (auto intro: SUP-lel le-SUPI UNIV-I simp add: power-Suc[symmetric]
power-commutes)

show a x xt <z — stara xz <z
proof —
assume a: a x ¢ < T

{

fix n
have a ~ (Sucn) *xz <a "nxzx
proof (induct n)
case 0 thus Zcase by (simp add:a power-Suc)
next
case (Suc n)
hence a % (a " Sucn xz) < ax*x(a "n*zx)
by (auto intro: mult-mono)
thus Zcase
by (simp add:power-Suc mult-assoc)
qed

}

note a = this

{

fix n have a "nxz <z
proof (induct n)
case () show ?case by simp
next
case (Suc n) with afof n]
show ?case by simp
qed

}

note b = this

show star a x ¢z < z
unfolding star-cont[of 1 a z, simplified]
by (rule SUP-lel) (rule b)
qed

show z x a <z =z x stara <z
proof —
assume a: r x a < T

{

fix n



~

have z x a " (Sucn) <z *xa "n
proof (induct n)

case 0 thus Zcase by (simp add:a power-Suc)
next

case (Suc n)

hence (£ x a "Sucn) xa < (z*xa "n)x*a

by (auto intro: mult-mono)
thus Zcase

by (simp add:power-Suc power-commutes mult-assoc)

qed

}

note a = this

{

fixnhave z xa "n <z
proof (induct n)
case 0 show fZcase by simp
next
case (Suc n) with a[of n|
show ?case by simp
qed
}

note b = this

show z * star a < x
unfolding star-cont[of x a 1, simplified]
by (rule SUP-lel) (rule b)
qed
qed

lemma less-add[simp]:
fixes a b :: 'a :: order-by-add
shows a < a + b
and b<a+ b
unfolding order-def
by (auto simp:add-ac)

lemma add-est1:
fixes a b ¢ :: 'a :: order-by-add
assumes a: a + b < ¢
shows a < ¢
using less-add(1) a
by (rule order-trans)

lemma add-est2:
fixes a b ¢ :: 'a :: order-by-add
assumes a: a + b < ¢
shows b < ¢
using less-add(2) a



by (rule order-trans)

lemma star3”
fixes a bz :: 'a :: kleene
assumes a: b+ a x v < x
shows star a x b < z
proof (rule order-trans)
from a have b < z by (rule add-estl)
show star a x b < star a * z
by (rule mult-mono) (auto simp:<b < )

/

from a have a *x © < z by (rule add-est2)
with star3 show star a x ¢ < z .
qed

lemma starj":
fixes a bz :: 'a :: kleene
assumes a: b+ xa <z
shows b * star a < z
proof (rule order-trans)
from a have b < z by (rule add-est1)
show b * star a < z * star a
by (rule mult-mono) (auto simp:<b < x)

from a have z x a < z by (rule add-est2)

with star4 show z * star a < z .
qed

lemma star-idemp:

fixes = :: 'a :: kleene
shows star (star z) = star
oops

lemma star-unfold-left:

fixes a :: 'a :: kleene

shows 1 + a * star a = star a
proof (rule order-antisym, rule starl)

have I + a x (I + a % star a) < 1 + a * star a
apply (rule add-mono, rule)
apply (rule mult-mono, auto)
apply (rule stari)
done

with star3’ have star a x 1 < 1 + a * star a .
thus star a < 1 + a * star a by simp



qed

lemma star-unfold-right:

fixes a :: 'a :: kleene

shows 1 + star a * a = star a
proof (rule order-antisym, rule star2)

have I + (1 + stara * a) * a < 1 + star a * a
apply (rule add-mono, rule)
apply (rule mult-mono, auto)
apply (rule star2)
done

with star{’ have 1 * star a < 1 + star a * a .
thus star a < 1 + star a * a by simp
qed

lemma star-zero[simp]:
shows star (0::'a::kleene) = 1
by (rule star-unfold-left[of 0, simplified])

lemma star-commute:
fixes a bz :: 'a :: kleene
assumes a: a x £ = T * b
shows star a *x £ = z * star b
proof (rule order-antisym)

show star a * © < z * star b
proof (rule star3’, rule order-trans)

from o have a x x < z x b by simp

hence a * z * star b < x % b * star b
by (rule mult-mono) auto

thus z + a * (z % star b) <z + z % b % star b
using add-mono by (auto simp: mult-assoc)

show ... < z % star b
proof —
have = * (1 4+ b * star b) < z * star b
by (rule mult-mono[OF - starl]) auto
thus ?thesis
by (simp add:right-distrib mult-assoc)
qed
qed

show z * star b < star a * x
proof (rule star4’, rule order-trans)

10



from a have b: z * b < a * x by simp

have star a *x z * b < star a * a x x
unfolding mult-assoc
by (rule mult-mono[OF - b)) auto

thus z + stara sz x b <z + stara x a x x
using add-mono by auto

show ... < star a x x
proof —
have (1 + star a x a) x ¢ < star a * «
by (rule mult-mono[OF star2]) auto
thus ?thesis
by (simp add:left-distrib mult-assoc)
qed
qed
qed

lemma star-assoc:
fixes ¢ d :: a :: kleene
shows star (¢ * d) x ¢ = ¢ * star (d x c)
by (auto simp:mult-assoc star-commute)

lemma star-dist:
fixes a b :: 'a :: kleene
shows star (a + b) = star a * star (b * star a)
oops

lemma star-one:
fixes a p p’:: 'a :: kleene
assumes p x p'= 1 and p' * p = 1
shows p’ x star a x p = star (p’ * a * p)
proof —
from assms
have p’ * star a x p = p’ * star (p * p’ * a) * p
by simp

also have ... = p’ x p x star (p’ x a * p)
by (simp add: mult-assoc star-assoc)
also have ... = star (p' * a * p)

by (simp add: assms)
finally show ?thesis .
qed

lemma star-mono:
fixes z y :: 'a :: kleene
assumes z < y
shows star x < star vy
oops

11



lemma z-less-star[simp]:
fixes z :: 'a :: kleene
shows z < z * star a

proof —
have z < z % (I + a * star a) by (simp add:right-distrib)
also have ... = z * star a by (simp only: star-unfold-left)
finally show ?thesis .

qed

2.1 Transitive Closure

definition
tel (z::'az:kleene) = star © * x

lemma tcl-zero:
tel (0:'az:kleene) = 0
unfolding tcl-def by simp

lemma tcl-unfold-right: tcl a = a + tcl a * a
proof —
from star-unfold-right|[of a]
have a * (1 + star a * a) = a * star a by simp
from this[simplified right-distrib, simplified]
show ?thesis
by (simp add:tcl-def star-commute mult-ac)

qed

lemma less-tcl: a < tcl a

proof —
have a < a + tcl a *x a by simp
also have ... = tcl a by (rule tcl-unfold-right[symmetric])
finally show ?thesis .

qed

2.2 Naive Algorithm to generate the transitive closure

function (default Azx. 0, tailrec, domintros)
mk-tcl 2 (Ya:{plus,times,ord,zero}) = 'a = 'a

where
mk-tcl A X = (if X * A < X then X else mk-tcl A (X + X = A))
by pat-completeness simp

declare mk-tcl.simps[simp del]

lemma mk-tcl-code[code]:
mk-tcl A X =

12



(let XA=X x A
in if XA < X then X else mk-tcl A (X + XA))
unfolding mk-tel.simps[of A X| Let-def ..

lemma mk-tcl-lemmal:
fixes X :: 'a :: kleene
shows (X + X x A) % star A = X x star A

proof —
have A x star A < 1 4+ A * star A by simp
also have ... = star A by (simp add:star-unfold-left)

finally have star A + A * star A = star A by simp

hence X x (star A + A x star A) = X * star A by simp

thus ?thesis by (simp add:left-distrib right-distrib mult-ac)
qed

lemma mk-tcl-lemma2:
fixes X :: 'a :: kleene
shows X * A < X — X *x star A = X
by (rule order-antisym) (auto simp:stars)

lemma mk-tcl-correctness:
fixes A X :: 'a :: {kleene}
assumes mk-tcl-dom (A, X)
shows mk-tcl A X = X * star A
using assms
by induct (auto simp:mk-tcl-lemmal mk-tcl-lemma?2)

lemma graph-implies-dom: mk-tcl-graph x y = mk-tcl-dom x
by (rule mk-tcl-graph.induct) (auto intro:accp.accl elim:mk-tcl-rel.cases)

lemma mk-tcl-default: = mk-tcl-dom (a,x) = mk-tcl a z = 0
unfolding mk-tcl-def
by (rule fundef-default-value|OF mk-tcl-sum-def graph-implies-dom))

We can replace the dom-Condition of the correctness theorem with some-
thing executable

lemma mk-tcl-correctness?:
fixes A X :: 'a :: {kleene}
assumes mk-tcl A A # 0
shows mk-tcl A A = tcl A
using assms mk-tcl-default mk-tcl-correctness
unfolding tcl-def
by (auto simp:star-commute)

end

13



3 General Graphs as Sets

theory Graphs
imports Main Misc-Tools Kleene-Algebras
begin

3.1 Basic types, Size Change Graphs

datatype (‘a, 'b) graph =
Graph ('a x 'b x 'a) set

fun dest-graph :: ('a, 'b) graph = (‘a x 'b x 'a) set
where dest-graph (Graph G) = G

lemma graph-dest-graph[simp]:
Graph (dest-graph G) = G
by (cases G) simp

lemma split-graph-all:
(Agr. PROP P gr) = (\set. PROP P (Graph set))
proof
fix set
assume Agr. PROP P gr
then show PROP P (Graph set) .
next
fix gr
assume Aset. PROP P (Graph set)
then have PROP P (Graph (dest-graph gr)) .
then show PROP P gr by simp
qed

definition

has-edge :: ('n,’e) graph = 'n = 'e = 'n = bool
(-F -~ 1)
where

has-edge G n e n' = ((n, e, n') € dest-graph G)

3.2 Graph composition

fun grcomp :: ('n, 'e::times) graph = ('n, 'e) graph = ('n, 'e) graph
where
grcomp (Graph G) (Graph H) =

Graph {(p,b,q) | p b q.
(Fkee' (pek)eG A (ke',q)eH ANb=exce)}

declare grcomp.simps|code del]

lemma graph-ezt:

14



assumes An e n’. has-edge G n e n’ = has-edge Hn e n’
shows G = H

using assms

by (cases G, cases H) (auto simp:split-paired-all has-edge-def)

instance graph :: (type, type) {comm-monoid-add}

graph-zero-def: 0 == Graph {}

graph-plus-def: G + H == Graph (dest-graph G U dest-graph H)
proof

fix zy 2z :: (Ya,’b) graph

show z + y+ 2=z + (y + 2)
andzrz+y=y+z=z
and 0 + z ==z
unfolding graph-plus-def graph-zero-def
by auto

qed

lemmas [code func del] = graph-plus-def

instance graph :: (type, type) {distrib-lattice, complete-lattice}
graph-leg-def: G < H = dest-graph G C dest-graph H
graph-less-def: G < H = dest-graph G C dest-graph H
inf G H = Graph (dest-graph G N dest-graph H)
sup GH=G+ H
Inf-graph-def: Inf = AGs. Graph ([ (dest-graph ¢ Gs))
Sup-graph-def: Sup = AGs. Graph (| (dest-graph ¢ Gs))
proof
fix x y z :: (Ya,’d) graph
fix A :: (‘a, 'b) graph set

show (z < y)=(x <yAz#y)
unfolding graph-leq-def graph-less-def
by (cases z, cases y) auto

show z < z unfolding graph-leq-def ..

{assume z < yy < 2
with order-trans show z < z
unfolding graph-leq-def . }

{assume z < yy <z thusz =y
unfolding graph-leg-def
by (cases x, cases y) simp }

show infrzy <zinfry <y

unfolding inf-graph-def graph-leq-def
by auto

15



{assume z < yz < zthusz < infyz
unfolding inf-graph-def graph-leq-def
by auto }

show z < supzxyy < supzy
unfolding sup-graph-def graph-leq-def graph-plus-def by auto

{assumeygxz <zthussupyz <z
unfolding sup-graph-def graph-leq-def graph-plus-def by auto }

show sup z (infy z) = inf (sup z y) (sup = z)
unfolding inf-graph-def sup-graph-def graph-leq-def graph-plus-def by auto

{ assume z € A thus Inf A < x
unfolding Inf-graph-def graph-leg-def by auto }

{ assume A\z. 2 € A = 2z < z thus z < Inf A
unfolding Inf-graph-def graph-leq-def by auto }

{ assume z € A thus z < Sup A
unfolding Sup-graph-def graph-leq-def by auto }

{ assume A\z. 1 € A = z < 2z thus Sup A < z
unfolding Sup-graph-def graph-leq-def by auto }
qed

lemmas [code func del] = graph-leq-def graph-less-def
inf-graph-def sup-graph-def Inf-graph-def Sup-graph-def

lemma in-grplus:
has-edge (G + H) p b ¢ = (has-edge G p b q V has-edge H p b q)
by (cases G, cases H, auto simp:has-edge-def graph-plus-def)

lemma in-grzero:
has-edge 0 p b q = False
by (simp add:graph-zero-def has-edge-def)

3.2.1 Multiplicative Structure

instance graph :: (type, times) mult-zero
graph-mult-def: G x H == grcomp G H
proof
fix a :: ("a, 'b) graph

show 0 x a = 0
unfolding graph-mult-def graph-zero-def
by (cases a) (simp add:grcomp.simps)
show a x 0 = 0

16



unfolding graph-mult-def graph-zero-def
by (cases a) (simp add:grcomp.simps)
qed

lemmas [code func del] = graph-mult-def

instance graph :: (type, one) one
graph-one-def: 1 == Graph { (z, 1, z) |z. True} ..

lemma in-grcomp:
has-edge (G * H) p b q
= (3k e e’ has-edge G p e k N has-edge Hk e’ ¢ N b= e x ¢)
by (cases G, cases H) (auto simp:graph-mult-def has-edge-def image-def)

lemma in-grunit:
has-edge I pbgq=(p=qgANb=1)
by (auto simp:graph-one-def has-edge-def)

instance graph :: (type, semigroup-mult) semigroup-mult
proof
fix G1 G2 G3 :: ('a,’b) graph

show G1 x G2 x G3 = G1 x (G2 x G3)
proof (rule graph-ext, rule trans)
fix p Jgq
show has-edge ((G1 * G2) x G3) p J q =
3GiHjI.
has-edge G1 p G 4
A has-edge G2 i H j
A has-edge G3 j I q
ANJ=(Gx* H)xI)
by (simp only:in-grcomp) blast

show ... = has-edge (G1 * (G2 x G3)) p J q
by (simp only:in-grcomp mult-assoc) blast
qed
qed

fun grpow :: nat = (‘a::type, 'b::monoid-mult) graph = ('a, 'b) graph
where

grpow 0 A = 1
| grpow (Suc n) A = A * (grpow n A)

instance graph :: (type, monoid-mult)
{semiring-1,idem-add,recpower,star}
graph-pow-def: A ~n == grpow n A
graph-star-def: star G == (SUP n. G " n)
proof
fix a bc:: (‘a, 'b) graph

17



show 1 x a = a

by (rule graph-ext) (auto simp:in-grcomp in-grunit)
show a x 1 = a

by (rule graph-ext) (auto simp:in-grcomp in-grunit)

show (a + b)) x c=a*xc+ bxc
by (rule graph-ext, simp add:in-grcomp in-grplus) blast

show a x (b+¢)=a*xb+axc
by (rule graph-ext, simp add:in-grcomp in-grplus) blast

show (0::('a,’b) graph) # 1 unfolding graph-zero-def graph-one-def
by simp

show a 4+ a = a unfolding graph-plus-def by simp

show a "0 =1 An.a " (Sucn)=ax*xa "n
unfolding graph-pow-def by simp-all
qed

lemma graph-leql:
assumes An e n’. has-edge G n e n' = has-edge Hn e n’
shows G < H
using assms
unfolding graph-leq-def has-edge-def
by auto

lemma in-graph-plusk:
assumes has-edge (G + H) n e n’
assumes has-edge G n en’ = P
assumes has-edge Hn e n’ = P
shows P
using assms
by (auto simp: in-grplus)

lemma in-graph-compF:
assumes GH: has-edge (G « H) n e n’
obtains el k e2
where has-edge G n el k has-edge Hk e2n’ e = el * e2
using GH
by (auto simp: in-grcomp)

lemma
assumes ¢ € Sk
shows =z € (Jk. S k)
using assms by blast

lemma graph-union-least:
assumes An. Graph (Gn) < C

18



shows Graph ((Un. Gn) < C
using assms unfolding graph-leq-def
by auto

lemma Sup-graph-eq:
(SUP n. Graph (G n)) = Graph (Un. G n)
proof (rule order-antisym)
show (SUP n. Graph (G n)) < Graph (Un. G n)
by (rule SUP-lel) (auto simp add: graph-leq-def)

show Graph ((Jn. G n) < (SUP n. Graph (G n))
by (rule graph-union-least, rule le-SUPI’, rule)
qed

lemma has-edge-leq: has-edge G p b ¢ = (Graph {(p,b,q)} < G)
unfolding has-edge-def graph-leg-def
by (cases G) simp

lemma Sup-graph-eq2:
(SUP n. G n) = Graph (Un. dest-graph (G n))
using Sup-graph-eq[of An. dest-graph (G n), simplified)
by simp

lemma in-SUP:
has-edge (SUP z. Gs ) p b ¢ = (3z. has-edge (Gs x) p b q)
unfolding Sup-graph-eq2 has-edge-leq graph-leg-def
by simp

instance graph :: (type, monoid-mult) kleene-by-complete-lattice
proof
fix a bc: (‘a, 'b) graph

show a < b «— a 4+ b = b unfolding graph-leq-def graph-plus-def
by (cases a, cases b) auto

from order-less-le show a < b «—— a < b A a #b.
show a * star b * ¢ = (SUPn.axb "n * ¢)
unfolding graph-star-def

by (rule graph-ext) (force simp:in-SUP in-grcomp)
qged

lemma in-star:
has-edge (star G) a x b = (3In. has-edge (G “n) a z b)
by (auto simp:graph-star-def in-SUP)

lemma tcl-is-SUP:

19



tel (G::('a::type, 'b::monoid-mult) graph) =
(SUP n. G ~ (Suc n))

unfolding tcl-def

using star-cont[of 1 G G|

by (simp add:power-Suc power-commutes)

lemma in-tcl:
has-edge (tcl G) a x b = (In>0. has-edge (G " n) a z b)
apply (auto simp: tcl-is-SUP in-SUP)
apply (rule-tac z = n — 1 in ezl, auto)
done

3.3 Infinite Paths

types ('n, ’e) ipath = ('n X 'e) sequence

definition has-ipath :: ('n, 'e) graph = ('n, ’'e) ipath = bool
where

has-ipath G p =

(Vi. has-edge G (fst (p i) (snd (p 7)) (fst (p (Suc i))))

3.4 Finite Paths
types ('n, ‘e) fpath = ('n x (‘e x 'n) list)

inductive has-fpath :: ('n, 'e) graph = ('n, 'e) fpath = bool
for G :: ('n, 'e) graph
where
has-fpath-empty: has-fpath G (n, [])
| has-fpath-join: [G F n ~€ n'; has-fpath G (n', es)] = has-fpath G (n, (e,
n)des)

definition
end-node p =
(if snd p =[] then fst p else snd (snd p ! (length (snd p) — 1)))

definition path-nth :: ('n, 'e) fpath = nat = ('n x ‘e x 'n)
where
path-nth p k = (if k = 0 then fst p else snd (sndp ! (k — 1)), snd p ! k)

lemma endnode-nth:
assumes length (snd p) = Suc k
shows end-node p = snd (snd (path-nth p k))
using assms unfolding end-node-def path-nth-def
by auto

lemma path-nth-graph:

assumes k < length (snd p)
assumes has-fpath G p

20



shows (A(n,e,n’). has-edge G n e n') (path-nth p k)
using assms
proof (induct k arbitrary: p)
case 0 thus ?case
unfolding path-nth-def by (auto elim:has-fpath.cases)
next
case (Suc k p)

from chas-fpath G p> show ?Zcase
proof (rule has-fpath.cases)
case goall with Suc show ?case by simp
next
fix nen’es
assume st: p = (n, (e, n') # es)
Gt n~¢n’
has-fpath G (n’, es)
with Suc
have (A\(n, b, a). G+ n ~" a) (path-nth (n’, es) k) by simp
with st show ?thesis by (cases k, auto simp:path-nth-def)
qed
qed

lemma path-nth-connected:
assumes Suc k < length (snd p)
shows fst (path-nth p (Suc k)) = snd (snd (path-nth p k))
using assms
unfolding path-nth-def
by auto

definition path-loop :: ('n, 'e) fpath = ('n, 'e) ipath (omega)
where
omega p = (Ai. (M(n,e,n’). (n,e)) (path-nth p (i mod (length (snd p)))))

lemma fst-p0: fst (path-nth p 0) = fst p
unfolding path-nth-def by simp

lemma path-loop-connect:
assumes fst p = end-node p
and 0 < length (snd p) (is 0 < ?1)
shows fst (path-nth p (Suc i mod (length (snd p))))
= snd (snd (path-nth p (i mod length (snd p))))

(is ... = snd (snd (path-nth p ?k)))
proof —
from 0 < ¢l have i mod 21 < 2l (is %k < ?I)
by simp

show ?thesis
proof (cases Suc %k < ?1)
case True

21



hence Suc %k # ?1 by simp
with path-nth-connected[OF True]
show ?thesis
by (simp add:mod-Suc)
next
case Fulse
with %k < 2) have wrap: Suc ?k = ?] by simp

hence fst (path-nth p (Suc i mod ?1)) = fst (path-nth p 0)
by (simp add: mod-Suc)

also from fst-p0 have ... = fst p .
also have ... = end-node p by fact
also have ... = snd (snd (path-nth p ?k))

by (auto simp: endnode-nth wrap)
finally show ?thesis .
qged
qed

lemma path-loop-graph:
assumes has-fpath G p
and loop: fst p = end-node p
and nonempty: 0 < length (snd p) (is 0 < ?I)
shows has-ipath G (omega p)

proof —
{
fix i
from 0 < ¢l have i mod 21 < 2l (is % < ?I)
by simp

from this and <has-fpath G p
have pk-G: (A(n,e,n’). has-edge G n e n’) (path-nth p %k)
by (rule path-nth-graph)

from path-loop-connect[OF loop nonempty| pk-G
have has-edge G (fst (omega p 1)) (snd (omega p i)) (fst (omega p (Suc i)))
unfolding path-loop-def has-edge-def split-def
by simp
}
then show ?thesis by (auto simp:has-ipath-def)
qed

definition prod :: ('n, ‘e::monoid-mult) fpath = 'e
where
prod p = foldr (op *) (map fst (snd p)) 1

lemma prod-simps|simp]:

prod (n, []) = 1

prod (n, (e,n’)#es) = e * (prod (n'jes))
unfolding prod-def
by simp-all

22



lemma power-induces-path:
assumes a: has-edge (A " k) n G m
obtains p
where has-fpath A p
and n = fst p m = end-node p
and G = prod p
and k = length (snd p)
using a
proof (induct k arbitrary:m n G thesis)
case (0 mn Q)
let 7 = (n, [}
from 0 have has-fpath A ?p m = end-node ?p G = prod ?p
by (auto simp:in-grunit end-node-def intro:has-fpath.intros)
thus ?case using 0 by (auto simp:end-node-def)
next
case (Suc km n G)
hence has-edge (A« A "k)n Gm
by (simp add:power-Suc power-commutes)
then obtain G’ H j where
a-A: has-edge A n G'j
and H-pow: has-edge (A " k) j Hm
and [simp]: G = G'+« H
by (auto simp:in-grcomp)

from H-pow and Suc
obtain p
where p-path: has-fpath A p
and [simp]: j = fst p m = end-node p H = prod p
k = length (snd p)
by blast

let ?p' = (n, (G, j)#snd p)
from a-A and p-path
have has-fpath A ?p’ m = end-node ?p’ G = prod ?p’
by (auto simp:end-node-def nth.simps intro:has-fpath.intros split:nat.split)
thus ?case using Suc by auto
qged

3.5 Sub-Paths

definition sub-path :: ('n, 'e) ipath = nat = nat = ('n, ’e) fpath
((-(=-))
where

p<i,j> =

(fst (p i), map (Ak. (snd (p k), fst (p (Suc k)))) [i ..<j])

lemma sub-path-is-path:

23



assumes ipath: has-ipath G p

assumes [: i < j

shows has-fpath G (p(i,j))

using |/
proof (induct i rule:inc-induct)

case base show ?case by (auto simp:sub-path-def intro:has-fpath.intros)
next

case (step 1)

with ipath upt-rec[of i j]

show ?case

by (auto simp:sub-path-def has-ipath-def intro:has-fpath.intros)

qed

lemma sub-path-start[simp):

fst (p(i.4)) = fst (p i)
by (simp add:sub-path-def)

lemma nth-upto[simp]: k < j —i=[i .<jllk=1i+k
by (induct k) auto

lemma sub-path-end[simp]:
i < j = end-node (p(i,j)) = fst (p j)
by (auto simp:sub-path-def end-node-def)

lemma foldr-map: foldr f (map g xs) = foldr (f o g) zs
by (induct zs) auto

lemma upto-append[simp):
assumes i < 55 < k
shows [i.<j|Q[ .<k|=1[i.<Ek
using assms and upt-add-eg-append|of i j k — j]
by simp

lemma foldr-monoid: foldr (op *) xs 1 * foldr (op *) ys 1
= foldr (op *) (zs Q ys) (1::’a::monoid-mult)
by (induct zs) (auto simp:mult-assoc)

lemma sub-path-prod:
assumes i < j
assumes j < k
shows prod (p(i,k)) = prod (p(i,j)) * prod (p(j.k))
using assms
unfolding prod-def sub-path-def
by (simp add:map-compose|symmetric] comp-def)
(simp only:foldr-monoid map-append|[symmetric] upto-append)

lemma path-acgpow-auz:

24



assumes length es = [

assumes has-fpath G (n,es)

shows has-edge (G “ 1) n (prod (n,es)) (end-node (n,es))
using assms
proof (induct [ arbitrary:n es)

case 0 thus ?case

by (simp add:in-grunit end-node-def)

next

case (Suc I n es)

hence es # || by auto

let ?n’ = snd (hd es)

let %es’ = tl es

let %e = fst (hd es)

from Suc have len: length ?es’ = | by auto

from Suc
have [simp]: end-node (n, es) = end-node (?n’, ?es’)
by (cases es) (auto simp:end-node-def nth.simps split:nat.split)

from c(has-fpath G (n,es))

have has-fpath G (n’', %es’)
by (rule has-fpath.cases) (auto intro:has-fpath.intros)

with Suc len

have has-edge (G " 1) ?n' (prod (?n’, ?es’)) (end-node (?n’, %es’))
by auto

moreover

from ces # [

have prod (n, es) = ?e x (prod (?n’, ?es’))
by (cases es) auto

moreover

from c(has-fpath G (n,es)) have c:has-edge G n %e ?n’
by (rule has-fpath.cases) (insert <es # [, auto)

ultimately
show ?case
unfolding power-Suc
by (auto simp:in-grcomp)
qed

lemma path-acgpow:

has-fpath G p

= has-edge (G " length (snd p)) (fst p) (prod p) (end-node p)
by (cases p)

(rule path-acgpow-auz|of snd p length (snd p) - fst p, simplified])

lemma star-paths:

25



has-edge (star G) axz b =
(3p. has-fpath G p A a = fst p A b = end-node p N z = prod p)
proof
assume has-edge (star G) a z b
then obtain n where pow: has-edge (G “n) ax b
by (auto simp:in-star)

then obtain p where
has-fpath G p a = fst p b = end-node p x = prod p
by (rule power-induces-path)

thus dp. has-fpath G p A a = fst p A b = end-node p A x = prod p
by blast
next
assume 3 p. has-fpath Gp N a = fst p A b = end-node p N\ © = prod p
then obtain p where
has-fpath G p a = fst p b = end-node p x = prod p
by blast

hence has-edge (G “ length (snd p)) a x b
by (auto intro:path-acgpow)

thus has-edge (star G) a z b
by (auto simp:in-star)
qed

lemma plus-paths:

has-edge (tcl G) az b =

(I p. has-fpath G p A a = fst p A b = end-node p A © = prod p N\ 0 < length
(snd p))
proof

assume has-edge (tcl G) a z b

then obtain n where pow: has-edge (G “n) az band 0 < n
by (auto simp:in-tcl)

from pow obtain p where
has-fpath G p a = fst p b = end-node p x = prod p
n = length (snd p)
by (rule power-induces-path)

with (0 < n
show Jp. has-fpath G p A a = fst p A b = end-node p A\ x = prod p A\ 0 <
length (snd p)
by blast
next
assume 3 p. has-fpath Gp N a = fst p A b = end-node p N\ © = prod p
A 0 < length (snd p)

26



then obtain p where
has-fpath G p a = fst p b = end-node p x = prod p
0 < length (snd p)
by blast

hence has-edge (G ~ length (snd p)) az b
by (auto intro:path-acgpow)

with 0 < length (snd p)
show has-edge (tcl G) a z b
by (auto simp:in-tcl)
qed

definition
contract s p =

(Ai. (fst (p (s 4)), prod (p(s i,s (Suc i)))))

lemma ipath-contract:
assumes [simp]: increasing s
assumes ipath: has-ipath G p
shows has-ipath (tcl G) (contract s p)
unfolding has-ipath-def

proof
fix i
let ?p = p(s i,s (Suc i))

from increasing-strict
have fst (p (s (Suc i))) = end-node ?p by simp

moreover

from increasing-strict[of s i Suc i] have snd ?p # ||
by (simp add:sub-path-def)

moreover

from ipath increasing-weak[of s] have has-fpath G %p
by (rule sub-path-is-path) auto

ultimately

show has-edge (tcl G)
(fst (contract s p i)) (snd (contract s p i)) (fst (contract s p (Suc 7)))
unfolding contract-def plus-paths
by (intro exl) auto

qed

lemma prod-unfold:
i <j = prod (p(i.j))
= snd (p i) * prod (p(Suc i, j))
unfolding prod-def
by (simp add:sub-path-def upt-rec|of i j])

27



lemma sub-path-loop:

assumes 0 < k

assumes k: k = length (snd loop)

assumes loop: fst loop = end-node loop

shows (omega loop){k * i,k * Suc i) = loop (is w = loop)
proof (rule prod-eql)

show fst ?w = fst loop

by (auto simp:path-loop-def path-nth-def split-def k)

show snd ?w = snd loop
proof (rule nth-equalityl[rule-format])
show leneq: length (snd ?w) = length (snd loop)
unfolding sub-path-def k by simp

fix j assume j < length (snd (?w))
with leneq and k have j < k by simp

have a: Ai. fst (path-nth loop (Suc i mod k))
= snd (snd (path-nth loop (i mod k)))
unfolding &
apply (rule path-loop-connect| OF loop])
using <0 < ky and k
apply auto
done

from G < b

show snd ?w ! j = snd loop ! j
unfolding sub-path-def
apply (simp add:path-loop-def split-def add-ac)
apply (simp add:a k[symmetric])
apply (simp add:path-nth-def)
done

qed
qed

end

4 The Size-Change Principle (Definition)

theory Criterion
imports Graphs Infinite-Set
begin

4.1 Size-Change Graphs

datatype sedge =
LESS (])

| LEQ (V)

28



instance sedge :: one
one-sedge-def: 1 = | ..

instance sedge :: times
mult-sedge-def: a * b = if a = | then | else b ..

instance sedge :: comm-monoid-mult
proof
fix a b c :: sedge
show a * b x ¢ = a x (b * ¢) by (simp add:mult-sedge-def)
show 1 x a = a by (simp add:mult-sedge-def one-sedge-def)
show a * b = b * a unfolding mult-sedge-def
by (cases a, simp) (cases b, auto)
qed

lemma sedge-UNIV:
UNIV = { LESS, LEQ }
proof (intro equalityl subsetl)
fix  show z € { LESS, LEQ }
by (cases x) auto
qed auto

instance sedge :: finite
proof
show finite (UNIV ::sedge set)
by (simp add: sedge-UNIV')
qed

lemmas [code func] = sedge-UNIV

types ‘a scg = ('a, sedge) graph
types ‘a acg = ('a, 'a scg) graph

4.2 Size-Change Termination
abbreviation (input)

desc P Q == ((3nVi>n. Pi) A (3t Q1))

abbreviation (input)
dsc G i j = has-edge G i LESS j

abbreviation (input)
eq Gij = has-edge G i LEQ j

abbreviation

eql :: 'a scg = 'a = 'a = bool
(-F -~

29



where
eql G ij = has-edge G i LESS j V has-edge G i LEQ j

abbreviation (input) descat :: ('a, 'a scg) ipath = 'a sequence = nat = bool
where
descat p ¥ i = has-edge (snd (p 1)) (¢ i) LESS (¢ (Suc 1))

abbreviation (input) eqat :: (‘a, 'a scg) ipath = 'a sequence = nat = bool
where
eqat p ¥ i = has-edge (snd (p 1)) (9 i) LEQ (9 (Suc 1))

abbreviation (input) eglat :: ('a, 'a scg) ipath = 'a sequence = nat = bool
where
eqlat p ¥ i = (has-edge (snd (p 1)) (¥ i) LESS (¥ (Suc 7))
V has-edge (snd (p 1)) (9 i) LEQ (9 (Suc 7))

definition is-desc-thread :: 'a sequence = ('a, 'a scg) ipath = bool
where
is-desc-thread ¥ p = ((In.Vi>n. eqlat p ¥ i) A (Fi. descat p 9 7))

definition SCT :: 'a acg = bool
where
SCT A =
(Vp. has-ipath A p — (3 9. is-desc-thread 9 p))

definition no-bad-graphs :: 'a acg = bool
where
no-bad-graphs A =
(Vn G. has-edge An GnANGxG=G
— (I p. has-edge G p LESS p))

definition SCT' :: 'a acg = bool
where
SCT' A = no-bad-graphs (tcl A)

end

5 Proof of the Size-Change Principle
theory Correctness

imports Main Ramsey Misc-Tools Criterion
begin

30



5.1 Auxiliary definitions

definition is-thread :: nat = 'a sequence = ('a, 'a scg) ipath = bool
where
is-thread n 9 p = (Vi>n. eqlat p 9 1)

definition is-fthread ::

'a sequence = ('a, 'a scg) ipath = nat = nat = bool
where

is-fthread 9 mp i j = (Vke{i..<j}. eqlat mp ¥ k)

definition is-desc-fthread ::

'a sequence = ('a, 'a scg) ipath = nat = nat = bool
where

is-desc-fthread ¥ mp i1 j =

(is-fthread ¥ mp i j A

(Fke{i..<j}. descat mp 9 k))

definition
has-fth p i jnm =
(39. is-fthread 9 pij NI i=n ANV j=m)

definition
has-desc-fth p i j n m =
(39. is-desc-fthread Y pij A9 i=n A9 j=m)

5.2 Everything is finite

lemma finite-range:
fixes [ :: nat = 'a
assumes fin: finite (range f)
shows dz. 3 1. fi =2
proof (rule classical)
assume —(Jz. Fi. fi = z)
hence Vz. 35. Vi>j. fi £ x
unfolding INF-nat by blast
with choice
have 3j. Vz. Vi>(jz). fi #z .
then obtain j where
neq: Nz i. jr < i = fi # x by blast

from fin have finite (range (j o f))
by (auto simp:comp-def)
with finite-nat-bounded
obtain m where range (j o f) C {..<m} by blast
hence j (f m) < m unfolding comp-def by auto

with neg[of f m m] show ?thesis by blast
qed

31



lemma finite-range-ignore-prefix:
fixes [ :: nat = a
assumes fA: finite A
assumes inA: Vz>n. fz € A
shows finite (range f)
proof —
have a: UNIV = {0 ..< (nunat)} U { z. n <z } by auto
have b: range f = f ‘{0 .<n}Uf‘{z.n<z}
(is...= 24U ?B)
by (unfold a) (simp add:image-Un)

have finite ?A by (rule finite-imagel) simp
moreover
from inA have B C A by auto
from this fA have finite ?B by (rule finite-subset)
ultimately show ?thesis using b by simp

qed

definition

finite-graph G = finite (dest-graph G)
definition

all-finite G = (Vn H m. has-edge G n H m — finite-graph H)
definition

finite-acg A = (finite-graph A A all-finite A)
definition

nodes G = fst ¢ dest-graph G U snd ‘ snd * dest-graph G
definition

edges G = fst ‘ snd ‘¢ dest-graph G
definition

smallnodes G = |J (nodes * edges G)

lemma thread-image-nodes:
assumes th: is-thread n ¥ p
shows Vi>n. ¥ i € nodes (snd (p 1))
using prems
unfolding is-thread-def has-edge-def nodes-def
by force

lemma finite-nodes: finite-graph G = finite (nodes G)
unfolding finite-graph-def nodes-def
by auto

lemma nodes-subgraph: A < B = nodes A C nodes B

unfolding graph-leg-def nodes-def
by auto

32



lemma finite-edges: finite-graph G = finite (edges G)
unfolding finite-graph-def edges-def
by auto

lemma edges-sum[simp]: edges (A + B) = edges A U edges B
unfolding edges-def graph-plus-def
by auto

lemma nodes-sum|[simp|: nodes (A + B) = nodes A U nodes B
unfolding nodes-def graph-plus-def
by auto

lemma finite-acg-subset:
A < B = finite-acg B = finite-acg A
unfolding finite-acg-def finite-graph-def all-finite-def
has-edge-def graph-leq-def
by (auto elim:finite-subset)

lemma scg-finite:
fixes G :: 'a scg
assumes fin: finite (nodes G)
shows finite-graph G
unfolding finite-graph-def
proof (rule finite-subset)
show dest-graph G C nodes G x UNIV X nodes G (is - C ?P)
unfolding nodes-def
by force
show finite 2P
by (intro finite-cartesian-product fin finite)
qed

lemma smallnodes-sum|[simp]:
smallnodes (A + B) = smallnodes A U smallnodes B
unfolding smallnodes-def
by auto

lemma in-smallnodes:
fixes A :: 'a acy
assumes e: has-edge A © G y
shows nodes G C smallnodes A
proof —
have fst (snd (z, G, y)) € fst ‘ snd * dest-graph A
unfolding has-edge-def
by (rule imagel )+ (rule e[unfolded has-edge-def])
then have G € edges A
unfolding edges-def by simp
thus ?thesis
unfolding smallnodes-def
by blast

33



qed

lemma finite-smallnodes:
assumes fA: finite-acg A
shows finite (smallnodes A)
unfolding smallnodes-def edges-def
proof
from fA
show finite (nodes * fst ‘ snd  dest-graph A)
unfolding finite-acg-def finite-graph-def
by simp

fix M assume M € nodes ‘ fst ‘ snd ¢ dest-graph A

then obtain n G m
where M: M = nodes G and nGm: (n,G,m) € dest-graph A
by auto

from fA
have all-finite A unfolding finite-acg-def by simp
with nGm have finite-graph G
unfolding all-finite-def has-edge-def by auto
with finite-nodes
show finite M
unfolding finite-graph-def M .
qed

lemma nodes-tcl:
nodes (tcl A) = nodes A
proof
show nodes A C nodes (tcl A)
apply (rule nodes-subgraph)
by (subst tcl-unfold-right) simp

show nodes (tcl A) C nodes A
proof
fix x assume = € nodes (tcl A)
then obtain z G y
where z: z € dest-graph (tcl A)
and dis: z = (z, G, y) V z = (y, G, z)
unfolding nodes-def
by auto force+

from dis
show z € nodes A
proof
assume z = (z, G, y)
with z have has-edge (tcl A) z G y unfolding has-edge-def by simp
then obtain n where n > 0 and An: has-edge (A " n) x Gy
unfolding in-tcl by auto

34



then obtain n’ where n = Suc n’ by (cases n, auto)

hence A "n=Ax A " n' by (simp add:power-Suc)

with An obtain e k
where has-edge A z e k by (auto simp:in-grcomp)

thus z € nodes A unfolding has-edge-def nodes-def
by force

next

assume z = (y, G, 1)

with z have has-edge (tcl A) y G z unfolding has-edge-def by simp

then obtain n where n > 0 and An: has-edge (A "n) y Gz
unfolding in-tcl by auto

then obtain n’ where n = Suc n’ by (cases n, auto)

hence A "n = A "n’x A by (simp add:power-Suc power-commutes)

with An obtain e k
where has-edge A k e x by (auto simp:in-grcomp)

thus z € nodes A unfolding has-edge-def nodes-def
by force

qed
qed
qed

lemma smallnodes-tcl:
fixes A :: 'a acg
shows smallnodes (tcl A) = smallnodes A
proof (intro equalityl subsetl)
fix n assume n € smallnodes (tcl A)
then obtain z G y where edge: has-edge (tcl A) = Gy
and n € nodes G
unfolding smallnodes-def edges-def has-edge-def
by auto

from (n € nodes &)
have n € fst ‘ dest-graph G V n € snd ‘ snd * dest-graph G
(is A Vv ?B)
unfolding nodes-def by blast
thus n € smallnodes A
proof
assume ?A
then obtain m e where A: has-edge G n e m
unfolding has-edge-def by auto

have tcl A = A * star A
unfolding tcl-def
by (simp add: star-commute[of A A A, simplified))

with edge
have has-edge (A * star A) x G y by simp
then obtain H H' z
where AH: has-edge A v Hz and G: G = H =« H'

35



by (auto simp:in-grcomp)

from A

obtain m’ e’ where has-edge Hn e’ m’
by (auto simp:G in-grcomp)

hence n € nodes H unfolding nodes-def has-edge-def
by force

with in-smallnodes|OF AH| show n € smallnodes A ..

next

assume ?B

then obtain m e where B: has-edge G m e n
unfolding has-edge-def by auto

with edge
have has-edge (star A x A) x G y by (simp add:tcl-def)
then obtain H H' z
where AH": has-edge A z H' y and G: G = H =« H’
by (auto simp:in-grcomp)
from B
obtain m’ e’ where has-edge H' m' e’ n
by (auto simp:G in-grcomp)
hence n € nodes H' unfolding nodes-def has-edge-def
by force
with in-smallnodes|OF AH'] show n € smallnodes A ..
qed
next
fix  assume z € smallnodes A
then show z € smallnodes (tcl A)
by (subst tcl-unfold-right) simp
qed

lemma finite-nodegraphs:
assumes F': finite F
shows finite { G::'a scg. nodes G C F } (is finite ?P)
proof (rule finite-subset)
show ?P C Graph ‘ (Pow (F x UNIV x F)) (is 7P C ?Q)
proof
fix z assume zP: z € ?P
obtain S where z[simp]: © = Graph S
by (cases x) auto
from zP
show z € 2(Q)
apply (simp add:nodes-def )
apply (rule imagel)
apply (rule Powl)
apply force
done
qed
show finite 70Q)
by (auto intro:finite-imagel finite-cartesian-product F' finite)

36



qed

lemma finite-graphl:
fixes A :: 'a acg
assumes fin: finite (nodes A) finite (smallnodes A)
shows finite-graph A
proof —
obtain S where A[simp]: A = Graph S
by (cases A) auto

have finite S
proof (rule finite-subset)
show S C nodes A x { G::'a scg. nodes G C smallnodes A } X nodes A
(is § C ?T)
proof
fix z assume z5: x € §
obtain a b ¢ where z[simp]: z = (a, b, ¢)
by (cases z) auto

then have edg: has-edge A a b c
unfolding has-edge-def using z.5
by simp

hence a € nodes A ¢ € nodes A
unfolding nodes-def has-edge-def by force+
moreover
from edg have nodes b C smallnodes A by (rule in-smallnodes)
hence b € { G :: 'a scg. nodes G C smallnodes A } by simp
ultimately show z € ¢T by simp
qed

show finite ?T
by (intro finite-cartesian-product fin finite-nodegraphs)
qed
thus ?thesis
unfolding finite-graph-def by simp
qed

lemma smallnodes-allfinite:
fixes A :: 'a acg
assumes fin: finite (smallnodes A)
shows all-finite A
unfolding all-finite-def
proof (intro alll impI)
fix n H m assume has-edge A n Hm
then have nodes H C smallnodes A
by (rule in-smallnodes)
then have finite (nodes H)

37



by (rule finite-subset) (rule fin)
thus finite-graph H by (rule scg-finite)
qed

lemma finite-tcl:
fixes A :: 'a acg
shows finite-acg (tcl A) «—— finite-acg A
proof
assume f: finite-acg A
from f have g: finite-graph A and all-finite A
unfolding finite-acg-def by auto

from ¢ have finite (nodes A) by (rule finite-nodes)

then have finite (nodes (tcl A)) unfolding nodes-tcl .

moreover

from f have finite (smallnodes A) by (rule finite-smallnodes)

then have fs: finite (smallnodes (tcl A)) unfolding smallnodes-tcl .
ultimately

have finite-graph (tcl A) by (rule finite-graphI)

moreover from fs have all-finite (tcl A)
by (rule smallnodes-allfinite)
ultimately show finite-acg (tcl A) unfolding finite-acg-def ..
next
assume a: finite-acg (tcl A)
have A < tcl A by (rule less-tcl)
thus finite-acg A using a
by (rule finite-acg-subset)
qed

lemma finite-acg-empty: finite-acg (Graph {})
unfolding finite-acg-def finite-graph-def all-finite-def
has-edge-def
by simp

lemma finite-acg-ins:
assumes fA: finite-acg (Graph A)
assumes fG: finite G
shows finite-acg (Graph (insert (a, Graph G, b) A))
using fA fG
unfolding finite-acg-def finite-graph-def all-finite-def
has-edge-def
by auto

lemmas finite-acg-simps = finite-acg-empty finite-acg-ins finite-graph-def

5.3 Contraction and more

abbreviation

38



pdesc P == (fst P, prod P, end-node P)

lemma pdesc-acgplus:
assumes has-ipath A p
and i < j
shows has-edge (tcl A) (fst (p{i,j))) (prod (p{i,j))) (end-node (p{i,j)))
unfolding plus-paths
apply (rule exl)
apply (insert prems)
by (auto intro:sub-path-is-path[of A p i j] simp:sub-path-def)

lemma combine-fthreads:
assumes range: 1 < jj < k
shows
has-fth p i k m r =
(In. has-fth pijmn A has-fth p jknr) (is L = ?R)
proof (intro iffI)
assume ?L
then obtain 9
where is-fthread ¥ p i k
and [simpl: di=mVVk=r
by (auto simp:has-fth-def)

with range

have is-fthread ¥ p i j and is-fthread 9 p j k
by (auto simp:is-fthread-def)

hence has-fth p i jm (9 j) and has-fth p j k (¢ j) r
by (auto simp:has-fth-def)

thus 7R by auto

next

assume ?R

then obtain n ¥1 92
where ths: is-fthread ©¥1 p i j is-fthread 92 p j k
and [simp]: 91 i=mdI1lj=nd2j=nd2k=r
by (auto simp:has-fth-def)

let 29 = (\i. if i < jthen 91 i else 92 1)
have is-fthread 79 p i k

unfolding is-fthread-def
proof

fix | assume range: | € {i..<k}

show eqlat p 29 1
proof (cases rule:three-cases)
assume Suc | < j
with ths range show ?thesis
unfolding is-fthread-def Ball-def
by simp

39



next
assume Suc | = j
hence | < j 92 (Suc l) = 91 (Suc l) by auto
with ths range show ?thesis
unfolding is-fthread-def Ball-def
by simp
next
assume j < [
with ths range show ?thesis
unfolding is-fthread-def Ball-def
by simp
qed arith
qed
moreover
have ?¢ i = m 29 k = r using range by auto
ultimately show has-fth p i k m r
by (auto simp:has-fth-def)
qed

lemma desc-is-fthread:
is-desc-fthread ¥ p i k = is-fthread ¥ p 1 k
unfolding is-desc-fthread-def
by simp

lemma combine-dfthreads:
assumes range: 1 < jj < k
shows
has-desc-fth p i k m r =
(3n. (has-desc-fth p i jmn A has-fth p jkn r)
V (has-fth p i j m n A has-desc-fth p j kn r)) (is 2L = ?R)
proof
assume ?L
then obtain 9
where desc: is-desc-fthread ¢ p i k
and [simp]: 9 i=mP k=1
by (auto simp:has-desc-fth-def)

hence is-fthread ¢ p i k
by (simp add: desc-is-fthread)

with range have fths: is-fthread ¥ p i j is-fthread ¥ p j k
unfolding is-fthread-def
by auto

hence hfths: has-fth p i jm (0 j) has-fthp jk (9 5) r
by (auto simp:has-fth-def)

from desc obtain [
where 1 <[] < k

40



and descat p 9 [
by (auto simp:is-desc-fthread-def)

with fths

have is-desc-fthread ¥ p i j V is-desc-fthread 9 p j k
unfolding is-desc-fthread-def
by (cases | < j) auto

hence has-desc-fth p i j m (9 j) V has-desc-fth p 5 k (9 j) r
by (auto simp:has-desc-fth-def)

with hfths show R
by auto

next

assume ?R

then obtain n 91 92
where (is-desc-fthread 91 p i j A is-fthread 92 p j k)
V (is-fthread 91 p i j A is-desc-fthread 92 p j k)
and [simp]: 91 i=mdI1j=nV2j=nd2k=r
by (auto simp:has-fth-def has-desc-fth-def)

hence ths2: is-fthread V1 p i j is-fthread 92 p j k
and dths: is-desc-fthread 91 p i j V is-desc-fthread 92 p j k
by (auto simp:desc-is-fthread)

let 29 = (Ni. if i < j then U1 i else V2 14)
have is-fthread 79 p i k

unfolding is-fthread-def
proof

fix | assume range: | € {i..<k}

show eqlat p 79 1
proof (cases rule:three-cases)
assume Suc | < j
with ths2 range show ?thesis
unfolding is-fthread-def Ball-def
by simp
next
assume Suc | = j
hence | < j 92 (Sucl) = 91 (Suc l) by auto
with ths2 range show ?thesis
unfolding is-fthread-def Ball-def
by simp
next
assume j < [
with ths2 range show ?thesis
unfolding is-fthread-def Ball-def
by simp
qed arith
qged
moreover

41



from dths
have 3. i < I Al <k A descat p 291
proof

assume is-desc-fthread 91 p i j

then obtain [ where range: i« <[] < j and descat p V11
unfolding is-desc-fthread-def Bex-def by auto
hence descat p 29 1
by (cases Suc | = j, auto)
with ¢ < k) and range show ?thesis
by (rule-tac z=I in exl, auto)
next
assume is-desc-fthread 92 p j k
then obtain [ where range: 7 < Il < k and descat p 921
unfolding is-desc-fthread-def Bex-def by auto
with ¢ < j» have descat p 29 i < I
by auto
with range show ?thesis
by (rule-tac z=I[ in ezl, auto)
qed
ultimately have is-desc-fthread 29 p i k
by (simp add: is-desc-fthread-def Bex-def)

moreover
have ?¢ i = m 29 k = r using range by auto

ultimately show has-desc-fth p i k m r
by (auto simp:has-desc-fth-def)
qed

lemma fth-single:
has-fth p i (Suc i) m n = eql (snd (p 1)) m n (is ?L = ?R)
proof
assume ?L thus 7R
unfolding is-fthread-def Ball-def has-fth-def
by auto
next
let 20 = A\k. if k = i then m else n
assume edge: ?R
hence is-fthread 79 p i (Suc i) A 9 i = m A 29 (Suc i) = n
unfolding is-fthread-def Ball-def
by auto

thus 7L
unfolding has-fth-def
by auto
qed

42



lemma desc-fth-single:
has-desc-fth p i (Suc i) m n =
dsc (snd (p 1)) mn (is L = ?R)
proof
assume ?L thus 7R
unfolding is-desc-fthread-def has-desc-fth-def is-fthread-def
Bez-def
by (elim exE conjE) (case-tac k = i, auto)
next
let 29 = M\k. if k = i then m else n
assume edge: ?R
hence is-desc-fthread 79 p i (Suc i) A 29 i = m A 79 (Suci) = n
unfolding is-desc-fthread-def is-fthread-def Ball-def Bex-def
by auto
thus 7L
unfolding has-desc-fth-def
by auto
qed

lemma mk-eql: (G + m ~¢n) = el G mn
by (cases e, auto)

lemma egl-scgcomp:
eql (G+ H) mr =
(n. eqdl Gmn A egl Hnr) (is L = ?R)
proof
show ?L = %R
by (auto simp:in-grcomp introl:mk-eql)

assume ?R
then obtain n where [: eql G m n and r:eql H n r by auto
thus 2L
by (cases dsc G m n) (auto simp:in-grcomp mult-sedge-def )
qed

lemma desc-scgcomp:

dsc (G HYy mr =

(3n.(dsc Gmn ANegl Hnr)V (eq Gmn A dsc Hnr)) (is L = ?R)
proof

show R = ?L by (auto simp:in-grcomp mult-sedge-def)

assume ?L
thus ?R
by (auto simp:in-grcomp mult-sedge-def')
(case-tac e, auto, case-tac e, auto)
qed

43



lemma has-fth-unfold:
assumes ¢ < j
shows has-fth p i jmn =
(7. has-fth p i (Suc i) m r A has-fth p (Suc i) j r n)
by (rule combine-fthreads) (insert (i < j», auto)

lemma has-dfth-unfold:
assumes range: i < j
shows
has-desc-fth p i jm r =
(I n. (has-desc-fth p i (Suc i) m n A has-fth p (Suc i) jn )
V (has-fth p i (Suc i) m n A has-desc-fth p (Suc i) jn r))
by (rule combine-dfthreads) (insert i < j, auto)

lemma Lemma7a:
i < j = has-fthp ijmn = eql (prod (p(i,j))) mn
proof (induct i arbitrary: m rule:inc-induct)
case base show Zcase
unfolding has-fth-def is-fthread-def sub-path-def
by (auto simp:in-grunit one-sedge-def)
next
case (step i)
note IH = (Am. has-fth p (Suc i) jmn =
eql (prod (p(Suc i,5))) m n)

have has-fth p i j mn
= (3r. has-fth p i (Suc i) m r A has-fth p (Suc i) jrn)
by (rule has-fth-unfold[OF ¢ < ])
also have ... = (3r. has-fth p i (Suci) mr
A eql (prod (p{Suc i,j5))) r n)
by (simp only:IH)
also have ... = (3r. eql (snd (p 1)) mr
A eql (prod (p(Suc i.3)) 7 n)
by (simp only:fth-single)

also have ... = eql (snd (p i) * prod (p(Suc i,j))) m n
by (simp only:eql-scgcomp)
also have ... = eql (prod (p(i,j))) mn

by (simp only:prod-unfold[OF « < j)])
finally show ?Zcase .
qed

lemma Lemma7b:
assumes ¢ < j
shows
has-desc-fth p i j m n =
dse (prod (p(i.j))) m n
using prems

44



proof (induct i arbitrary: m rule:inc-induct)
case base show Zcase
unfolding has-desc-fth-def is-desc-fthread-def sub-path-def
by (auto simp:in-grunit one-sedge-def)
next
case (step i)
thus ?case
by (simp only:prod-unfold desc-scgcomp desc-fth-single
has-dfth-unfold fth-single Lemma7a) auto
qed

lemma descat-contract:
assumes [simp]: increasing s
shows
descat (contract s p) ¥ i =
has-desc-fth p (s i) (s (Suc 7)) (9 @) (¥ (Suc i))
by (simp add:Lemma7b increasing-weak contract-def)

lemma eglat-contract:
assumes [simp]: increasing s
shows
eqlat (contract s p) ¥ i =
has-fth p (s ) (s (Suc 4)) (9 i) (9 (Suc 1))

by (auto simp:LemmaTa increasing-weak contract-def)

5.3.1 Connecting threads

definition
connect s ¥s = (k. ¥s (section-of s k) k)

lemma nezxt-in-range:

assumes [simp]: increasing s

assumes a: k € section s @

shows (Suc k € section s i) V (Suc k € section s (Suc 1))
proof —

from a have k < s (Suc i) by simp

hence Suc k < s (Suc i) V Suc k = s (Suc i) by arith
thus ?thesis
proof
assume Suc k < s (Suc 7)
with a have Suc k € section s i by simp
thus ?thesis ..
next
assume eq: Suc k = s (Suc 1)
with increasing-strict have Suc k < s (Suc (Suc 1)) by simp
with eq have Suc k € section s (Suc i) by simp

45



thus ?thesis ..
qed
qed

lemma connect-threads:
assumes [simp|: increasing s
assumes connected: ¥s i (s (Suc 1)) = ¥s (Suc i) (s (Suc 7))
assumes fth: is-fthread (9s i) p (s 1) (s (Suc 1))

shows
is-fthread (connect s 9s) p (s i) (s (Suc 7))
unfolding is-fthread-def
proof
fix k assume krng: k € section s i

with fth have eqlat: eglat p (9s i) k
unfolding is-fthread-def by simp

from krng and next-in-range
have (Suc k € section s i) V (Suc k € section s (Suc 1))
by simp
thus eglat p (connect s ¥s) k
proof
assume Suc k € section s i
with krng eqlat show ?thesis
unfolding connect-def
by (simp only:section-of-known <increasing $))
next
assume skrng: Suc k € section s (Suc 1)
with krng have Suc k = s (Suc i) by auto

with krng skrng eqlat show ?thesis
unfolding connect-def
by (simp only:section-of-known connected|symmetric] (increasing $))
qed
qed

lemma connect-dthreads:

assumes inc[simpl: increasing s

assumes connected: ¥s i (s (Suc i)) = ¥s (Suc i) (s (Suc 7))
assumes fth: is-desc-fthread (9s i) p (s i) (s (Suc 7))

shows
is-desc-fthread (connect s 9s) p (s i) (s (Suc 7))
unfolding is-desc-fthread-def
proof
show is-fthread (connect s ¥s) p (s 1) (s (Suc 7))

46



apply (rule connect-threads)

apply (insert fth)
by (auto simp:connected is-desc-fthread-def)

from fth
obtain k& where dsc: descat p (Us i) k and krng: k € section s i
unfolding is-desc-fthread-def by blast

from krng and next-in-range
have (Suc k € section s i) V (Suc k € section s (Suc 1))
by simp
hence descat p (connect s ¥s) k
proof
assume Suc k € section s i
with krng dsc show ?thesis unfolding connect-def
by (simp only:section-of-known inc)
next
assume skrng: Suc k € section s (Suc 1)
with krng have Suc k = s (Suc i) by auto

with krng skrng dsc show ?thesis unfolding connect-def
by (simp only:section-of-known connected[symmetric] inc)
qed
with krng show Jkéesection s i. descat p (connect s Us) k ..
qed

lemma mk-inf-thread:
assumes [simp|: increasing s
assumes fths: N\i. i > n = is-fthread U p (s i) (s (Suc 1))
shows is-thread (s (Suc n)) ¥ p
unfolding is-thread-def
proof (intro alll impl)
fix j assume st: s (Suc n) < j

let 2k = section-of s j
from in-section-of st
have rs: j € section s ?k by simp

with st have s (Suc n) < s (Suc ?k) by simp

with increasing-bij have n < %k by simp

with rs and fths[of 2k]

show eqlat p ¥ j by (simp add:is-fthread-def)
qed

lemma mk-inf-desc-thread:
assumes [simp]: increasing s
assumes fths: N\i. i > n = is-fthread ¥ p (s i) (s (Suc 1))
assumes fdths: 3 oi. is-desc-fthread 9 p (s i) (s (Suc 7))

47



shows is-desc-thread 9 p
unfolding is-desc-thread-def
proof (intro exl conjl)

from mk-inf-thread[of s n O p] fths
show Vi>s (Suc n). eqlat p 9 i
by (fold is-thread-def) simp

show 3 1. descat p ¥ 1
unfolding INF-nat
proof
fix ¢

let 2k = section-of s i

from fdths obtain j
where %k < j is-desc-fthread 9 p (s j) (s (Suc 7))
unfolding INF-nat by auto

then obtain | where s j < [ and desc: descat p 9 1
unfolding is-desc-fthread-def
by auto

have i < s (Suc %k) by (rule section-of2) simp

also have ... < s
by (rule increasing-weak [OF tincreasing $)]) (insert <%k < j», arith)
also note ... < I
finally have i < [ .
with desc
show 31. i < I A descat p ¥ | by blast
qged
qed

lemma desc-ex-choice:
assumes A: (3n.Vi>n. 3z. Pz i) A (3i. J2. Q 1))
and imp: Nz i. Qi = Pzxi
shows Jas. (3nVi>n. P (zsi) i) A (Fooi. Q (xs1) 1))
(is Jxs. ?Ps xs N ?Qs zs)
proof
let 2w = Ai. (if (3z. Q z i) then (SOME z. Q x 1)
else (SOME . P x 1))

from A
obtain n where P: A\i. n < i = Jz. Pz
by auto

{

fix i::’a assume n < ¢

have P (%w i) i
proof (cases Jz. Q z 1)

48



case True
hence @ (?w i) i by (auto intro:somel)
with imp show P (Ywi) i .
next
case False
with P[OF (n < »] show P (%w i) i
by (auto intro:somel )
qed

}

hence ?Ps ?w by (rule-tac x=n in ezl) auto

moreover
from A have 3i. (3z. Q z 1) ..
hence ?Qs ?w by (rule INF-mono) (auto intro:somel)
ultimately
show ?Ps 2w A ?Qs ?w ..

qed

lemma dthreads-join:
assumes [simp|: increasing s
assumes dthread: is-desc-thread 9 (contract s p)
shows 3vs. desc (Ai. is-fthread (9s i) p (s 1) (s (Suc 7))
ANdsi(si) =191
A 9s i (s (Suc i) =9 (Suc 7))
(Ai. is-desc-fthread (¥s i) p (s 1) (s (Suc i))
ANdsi(si) =11
As i (s (Suc i) =19 (Suc i)
apply (rule desc-ex-choice)
apply (insert dthread)
apply (simp only:is-desc-thread-def)
apply (simp add:eglat-contract)
apply (simp add:descat-contract)
apply (simp only:has-fth-def has-desc-fth-def)
by (auto simp:is-desc-fthread-def)

lemma INF-drop-prefiz:
(Fooiznat. i > n A Pi) = (Ii. P i)
apply (auto simp:INF-nat)
apply (drule-tac x = maz m n in spec)
apply (elim exE conjE)
apply (rule-tac ¢ = na in exl)
by auto

49



lemma contract-keeps-threads:
assumes inc[simpl: increasing s
shows (3¢. is-desc-thread ¢ p)
«—— (39. is-desc-thread ¥ (contract s p))
(is ?A «—— ?B)
proof
assume ?A
then obtain ¥ n
where fr: Vi>n. eglat p 9 1
and ds: I i. descat p 9 i
unfolding is-desc-thread-def
by auto

let 2c = Ni. ¥ (s i)

have is-desc-thread ?c¢9 (contract s p)
unfolding is-desc-thread-def
proof (intro exl congl)

show Vi>n. eqlat (contract s p) 2¢¥ i
proof (intro alll impl)
fix i assume n < 3§
also have 7 < s 4
using increasing-inc by auto
finally have n < s .

with fr have is-fthread ¥ p (s i) (s (Suc 7))
unfolding is-fthread-def by auto

hence has-fth p (s i) (s (Suc i)) (¥ (s14)) (¥ (s (Suc 1))
unfolding has-fth-def by auto

with less-imp-le[OF increasing-strict]

have eql (prod (p(s i,s (Suc 4)))) (9 (s14)) (9 (s (Suc 7)))
by (simp add:LemmaTa)

thus eglat (contract s p) ?c¥ i unfolding contract-def
by auto

qed

show 3 i. descat (contract s p) 2¢cd i
unfolding INF-nat

proof
fix 1

let ?K = section-of s (max (s (Suc 7)) n)
from (3. i. descat p ¥ i obtain j
where s (Suc ?K) < j descat p ¥ j
unfolding INF-nat by blast

let ?L = section-of s j

50



fix z assume r: z € section s ?L

have el: maz (s (Suc i)) n < s (Suc ?K) by (rule section-of2) simp
note (s (Suc ?K) <
also have j < s (Suc ?L)
by (rule section-of2) simp
finally have Suc ?K < ?L
by (simp add:increasing-bij)
with increasing-weak have s (Suc ?K) < s ?L by simp
with el r have maz (s (Suc i)) n < z by simp

hence (s (Suc i)) < z n < z by auto

}

note range-est = this

have is-desc-fthread 9 p (s ?L) (s (Suc ?L))
unfolding is-desc-fthread-def is-fthread-def
proof
show V méesection s ?L. eqlat p ¥ m
proof
fix m assume mé&section s 7L
with range-est(2) have n < m .
with fr show eglat p ¢ m by simp
qed

from in-section-of inc less-imp-le[OF (s (Suc ?K) < j]
have j € section s ?L .

with «descat p ¥
show dmesection s ?L. descat p ¥ m ..
qed

with less-imp-le[OF increasing-strict]
have a: descat (contract s p) ?¢d 7L
unfolding contract-def Lemma7b[symmetric)
by (auto simp:Lemma7b[symmetric] has-desc-fth-def)

have i < ?L
proof (rule classical)
assume - < 7L
hence s 7L < s (Suc i)
by (simp add:increasing-bij)
also have ... < s 7L
by (rule range-est(1)) (simp add:increasing-strict)
finally show ?thesis .
qed
with @ show 31. i < I A descat (contract s p) ¢t 1
by blast

o1



qed
qed
with ex] show ?B .
next
assume ?B
then obtain 9
where dthread: is-desc-thread ¥ (contract s p) ..

with dthreads-join inc
obtain ¥s where ths-spec:
desc (Ni. is-fthread (9s i) p (s i) (s (Suc 1))
ANVsi(si)=11
AUs i (s (Suci)) =9 (Suci))
(Ai. is-desc-fthread (¥s i) p (s i) (s (Suc i))
ANVsi(si)=11
A 9s i (s (Suc 1))
(is desc Zalw ?inf)
by blast

then obtain n where fr: Vi>n. Zalw ¢ by blast
hence connected: \i. n < i = 9s i (s (Suc i)) = Is (Suc i) (s (Suc i))
by auto

let 2j09 = connect s ¥s

from fr ths-spec have ths-spec2:
Ni. i > n = is-fthread (Vs i) p (s i) (s (Suc 7))
J oot. is-desc-fthread (9s i) p (s i) (s (Suc 1))
by (auto intro:INF-mono)

have p1: \i. i > n = is-fthread 2j9 p (s 1) (s (Suc 7))
by (rule connect-threads) (auto simp:connected ths-spec2)

from ths-spec2(2)
have 3 i. n < i A is-desc-fthread (Vs i) p (s 1) (s (Suc i))
unfolding INF-drop-prefix .

hence p2: 3 i. is-desc-fthread 259 p (s i) (s (Suc 1))
apply (rule INF-mono)
apply (rule connect-dthreads)
by (auto simp:connected)

with (increasing s) pl
have is-desc-thread 2j9 p
by (rule mk-inf-desc-thread)
with ezl show 74 .
qed

52



lemma repeated-edge:
assumes Ai. i > n = dsc (snd (p i) k k
shows is-desc-thread (\i. k) p

proof—
have th: V m. 3na>m. n < na by arith
show ?thesis using prems
unfolding is-desc-thread-def
apply (auto)
apply (rule-tac t=Suc n in exl, auto)
apply (rule INF-mono[where P=\i. n < i])
apply (simp only:INF-nat)
by (auto simp add: th)

qed

lemma fin-from-inf:
assumes is-thread n 9 p
assumes n < i
assumes i < j
shows is-fthread ¢ p i j
using prems
unfolding is-thread-def is-fthread-def
by auto

5.4 Ramsey’s Theorem

definition
set2pair S = (THE (z,y). z <y A S = {z,y})

lemma set2pair-conv:
fixes z y :: nat
assumes r < Yy
shows set2pair {z, y} = (z, y)
unfolding set2pair-def
proof (rule the-equality, simp-all only:split-conv split-paired-all)
from x < y show z < y A {z,y}={z,y} by simp
next
fix a b
assume a: a < b A {z, y} = {a, b}
hence {a, b} = {z, y} by simp-all
hence (a, b) = (z, y) V (a, b) = (y, z)
by (cases x = y) auto
thus (a, b) = (z, y)
proof
assume (a, b) = (y, z)
with ¢ and @ <
show ?thesis by auto
qed
qed

93



definition
set2list = inv set

lemma finite-set2list:
assumes finite S
shows set (set2list S) = S
unfolding set2list-def
proof (rule f-inv-f)
from (finite S) have 3. set | = §
by (rule finite-list)
thus S € range set
unfolding image-def
by auto
qed

corollary RamseyNatpairs:
fixes S :: 'a set
and f :: nat X nat = 'a

assumes finite S
and inS: A\ey. e <y=f (z,y) €8

obtains T :: nat set and s :: 'a
where infinite T
and s € S
and A\zy. [zre TsyeTz<y] = f(z,y) =s
proof —
from (finite S)
have set (set2list S) = S by (rule finite-set2list)

then
obtain [ where S: § = set [ by auto
also from set-conv-nth have ... = {l i |i. i < length I} .

finally have S = {l ! i |i. i < length I} .
let ?s = length [

from nS
have indez-less: Nz y. © # y = indez-of | (f (setpair {z, y})) < s
proof —
fix z y :: nat
assume neq: T # y
have f (set2pair {z, y}) € S
proof (cases © < y)
case True hence set2pair {z, y} = (z, y)
by (rule set2pair-conv)
with True inS
show ?thesis by simp
next

54



case Fulse
with neq have y-less: y < = by simp
have z:{z,y} = {y,z} by auto
with y-less have set2pair {z, y} = (y, z)
by (simp add:set2pair-conv)
with y-less inS
show ?thesis by simp
qed

thus indez-of | (f (set2pair {z, y})) < length |
by (simp add: S indez-of-length)
qed

have 3 Y. infinite Y A
(Ft. t < 2 A
VzeY.VyeY.z £y —
index-of 1 (f (set2pair {z, y})) = t))
by (rule Ramsey2lof UNIV ::nat set, simplified])
(auto simp:index-less)
then obtain 7' ¢
where inf: infinite T
and i: i < length [
and d: Nz y. [z € T; yeT; z # y]
= index-of | (f (set2pair {z, y})) =i
by auto

have [ ! i € S unfolding S using i
by (rule nth-mem)

moreover

have Nz y. 2 € T = yeT =z < y
= f(x,y) =14

proof —
fixzxyassumez € Tye Tx <y
with d have
indez-of I (f (set2pair {z, y})) = i by auto
with @ <

have i = indez-of | (f (z, y))
by (simp add:set2pair-conv)
with « < length D
show f (z,y) =11
by (auto intro:indez-of-member|symmetric] iff :index-of-length)
qed
moreover note inf
ultimately
show ?thesis using prems
by blast
qed

95



5.5 Main Result

theorem LJA-Theorem/:
assumes finite-acg A
shows SCT A «—— SCT' A
proof
assume SCT A

show SCT’' A
proof (rule classical)
assume - SCT' A

then obtain n G
where in-closure: (tcl A) F n ~G
and idemp: G x G = G
and no-strict-arc: Vp. =(G F p ~d D)
unfolding SCT’-def no-bad-graphs-def by auto

from in-closure obtain k
where k-pow: A "k Fn ~G o
and 0 < k
unfolding in-tcl by auto

from power-induces-path k-pow

obtain loop where loop-props:
has-fpath A loop
n = fst loop n = end-node loop
G = prod loop k = length (snd loop) .

with (0 < k» and path-loop-graph

have has-ipath A (omega loop) by blast

with (SCT A

have thread: 39. is-desc-thread ¥ (omega loop) by (auto simp:SCT-def)

let 2s = Xi. k * ¢
let ?cp = Xiznat. (n, G)

from loop-props have fst loop = end-node loop by auto
with 0 < k» «k = length (snd loop)
have Ai. (omega loop)(?s i,%s (Suc 1)) = loop

by (rule sub-path-loop)

with (n = fst loopy (G = prod loop) <k = length (snd loop))
have a: contract ?s (omega loop) = %cp

unfolding contract-def

by (simp add:path-loop-def split-def fst-p0)

from <0 < k) have increasing ?s

by (auto simp:increasing-def)
with thread have 34¢. is-desc-thread ¥ ?cp

o6



unfolding a[symmetric]
by (unfold contract-keeps-threads|symmetric])

then obtain ¥ where desc: is-desc-thread ¥ ?cp by auto

then obtain n where thr: is-thread n ¥ ?cp
unfolding is-desc-thread-def is-thread-def
by auto

have finite (range 9)
proof (rule finite-range-ignore-prefiz)

from (finite-acg A

have finite-acg (tcl A) by (simp add:finite-tcl)

with in-closure have finite-graph G
unfolding finite-acg-def all-finite-def by blast

thus finite (nodes G) by (rule finite-nodes)

from thread-image-nodes[OF thr]
show Vi>n. ¥ i € nodes G by simp
qed
with finite-range
obtain p where inf-visit: 3 . ¥ i = p by auto

then obtain i where n < i ¥ i =7p
by (auto simp:INF-nat)

from desc
have 3 ,i. descat ?cp 9 i
unfolding is-desc-thread-def by auto
then obtain j
where i < j and descat ?cp ¥ j
unfolding INF-nat by auto
from inf-visit obtain £ where j < k¢ k =1p
by (auto simp:INF-nat)

from G < p G < ky (n < i thr
fin-from-infof n 9 %cp]
(descat Zcp U

have is-desc-fthread ¥ %cp i k
unfolding is-desc-fthread-def
by auto

with Wk =p @ i=mpm

have dfth: has-desc-fth ?cp i k p p
unfolding has-desc-fth-def
by auto

from < < j» j < k) have i < k by auto

o7



hence prod (%cp(i, k)) = G
proof (induct i rule:strict-inc-induct)
case base thus ?case by (simp add:sub-path-def)
next
case (step i) thus ?case
by (simp add:sub-path-def upt-rec|of i k] idemp)
qed

with < < § ¢ < k> dfth Lemma7blof i k ?cp p p)
have dsc G p p by auto
with no-strict-arc have Fualse by auto
thus ?thesis ..
qed
next
assume SCT' A

show SCT A
proof (rule classical)
assume = SCT A

with SCT-def

obtain p
where ipath: has-ipath A p
and no-desc-th: = (3. is-desc-thread 9 p)
by blast

from (finite-acg A

have finite-acg (tcl A) by (simp add: finite-tcl)

hence finite (dest-graph (tcl A)) (is finite ?AG)
by (simp add: finite-acg-def finite-graph-def)

from pdesc-acgplus|OF ipath]
have a: Az y. <y = pdesc p(z,y) € dest-graph (tcl A)
unfolding has-edge-def .

obtain S G
where infinite S G € dest-graph (tcl A)
and all-G: Nz y. [z € S;ye€ S,z < y] =
plesc (p(z.y)) = G
apply (rule RamseyNatpairs[of ?AG A(z,y). pdesc p{z, y)])
apply (rule (finite 2AG))
by (simp only:split-conv, rule a, auto)

obtain n H m where
G-struct: G = (n, H, m) by (cases G)

let 2s = enumerate S
let ?2q = contract ?s p

o8



note all-in-S[simp] = enumerate-in-set|OF dnfinite S)]
from cnfinite S)
have inc[simp]: increasing ?s
unfolding increasing-def by (simp add:enumerate-mono)
note increasing-bij|OF this, simp]

from ipath-contract inc ipath
have has-ipath (tcl A) ?q .

from all-G G-struct
have all-H: \i. (snd (?q 1)) = H
unfolding contract-def
by simp

have loop: (tcl A) F n ~H n
and idemp: H x H = H
proof —
let % = %s 0 and % = %s (Suc 0) and %k = %s (Suc (Suc 0))

have pdesc (p(?i,%j)) = G
and pdesc (p(?j,%k))
and pdesc (p{?i,?k))
using all-G
by auto

=G
=G

with G-struct
have m = end-node (p(%i,%]))
and Hs: prod (p(%i,%)) = H
prod (p(?),7%)) = H
prod (p{?i,%k)) = H
by auto

hence m = n by simp

thus tcl AF n~Hp
using G-struct (G € dest-graph (tcl A)
by (simp add:has-edge-def)

from sub-path-prod|of %i ?j 2k p)
show H x H =H
unfolding Hs by simp
qged
moreover have \k. -dsc Hk k
proof
fix k :: 'a assume dsc H k k

with all-H repeated-edge

have 39. is-desc-thread 9 ?q by fast
with inc have 349. is-desc-thread 9 p

99



by (subst contract-keeps-threads)

with no-desc-th
show Fulse ..

qed

ultimately

have Fulse
using (SCT' A [unfolded SCT'-def no-bad-graphs-def]
by blast

thus ?thesis ..

qged
qed

end

6 Applying SCT to function definitions

theory Interpretation
imports Main Misc-Tools Criterion
begin

definition
idseq R sz = (s 0=z AN (Vi. R (s (Suci)) (s1)))

lemma not-acc-smaller:
assumes notacc: = accp R x
shows dy. Ryz A = accp R y
proof (rule classical)
assume — ?thesis
hence Ay. R y & = accp R y by blast
with acep.accl have accp R x .
with notacc show ?thesis by contradiction
qed

lemma non-acc-has-idseq:
assumes — accp R x
shows ds. idseq R s ©
proof —

have 3f. V. maccp Rz — R (fz) x A —acep R (f z)
by (rule choice, auto simp:not-acc-smaller)

then obtain f where
in-R: Nx. maccp Rz = R (fz) x
and nia: Az. ~acep R © = —acep R (f )
by blast

let s = Xi. (f " i) z

60



fix ¢
have —acep R (?s i)
by (induct i) (auto simp:nia (—accp R o)
hence R (f (?s14)) (%s 1)
by (rule in-R)
}

hence idseq R %s x
unfolding idseq-def
by auto

thus ?thesis by auto
qed

types ('a, 'q) cdesc =
("qg = bool) x ('qg = 'a) x('¢ = 'a)

fun in-cdesc :: (‘a, 'q) cdesc = 'a = 'a = bool
where
in-cdesc (T, ry ) zcy=3Fqax=rqghNy=1qgATq)

fun mk-rel :: ('a, 'q) cdesc list = 'a = 'a = bool
where

mk-rel || © y = False
| mk-rel (c#tcs) zy =

(in-cdesc ¢ x y V mk-rel cs x y)

lemma some-rd:
assumes mk-rel rds T y
shows Jrdeset rds. in-cdesc rd z y
using assms
by (induct rds) (auto simp:in-cdesc-def)

lemma ex-cs:
assumes idseq: idseq (mk-rel rds) s x
shows Jc¢s. Vi. cs i € set rds A in-cdesc (cs i) (s (Suc 7)) (s 1)
proof —
from idseq
have a: Vi. 3rd € set rds. in-cdesc rd (s (Suc 1)) (s 9)
by (auto simp:idseg-def intro:some-rd)

61



show ?thesis
by (rule choice) (insert a, blast)
qed

types ‘a measures = nat = 'a = nat

fun stepP :: (‘a, 'q) cdesc = (‘a, 'q) cdesc =

('a = nat) = ('a = nat) = (nat = nat = bool) = bool
where

stepP (T'1,r1,l1) (T'2,r2,12) mI m2 R

=g q2T1qu ANT2q2 N7l g1 =12¢2

— R (m2 (12 ¢2)) ((m1 (i1 q1))))

definition
decr :: ('a, 'q) cdesc = ('a, 'q) cdesc =
('a = nat) = (‘a = nat) = bool
where
decr ¢1 ¢2 m1 m2 = stepP c1 ¢2 m1 m2 (op <)

definition
decreq :: ('a, 'q) cdesc = (a, 'q) cdesc =
('a = nat) = (‘a = nat) = bool
where
decreq c¢1 c2 m1 m2 = stepP c1 ¢2 m1 m2 (op <)

definition
no-step :: ('a, 'q) cdesc = ('a, 'q) cdesc = bool
where
no-step ¢l ¢2 = stepP ¢l ¢2 (Az. 0) (Az. 0) (\z y. False)

lemma decr-in-cdesc:
assumes in-cdesc RD1 y z
assumes in-cdesc RD2 z y
assumes decr RD1 RD2 m1 m2
shows m2y < mi z
using assms
by (cases RD1, cases RD2, auto simp:decr-def)

lemma decreg-in-cdesc:
assumes in-cdesc RD1 y x
assumes in-cdesc RD2 z y
assumes decreq RD1 RD2 m1 m2
shows m2 y < ml z
using assms

62



by (cases RD1, cases RD2, auto simp:decreq-def)

lemma no-inf-desc-nat-sequence:
fixes s :: nat = nat
assumes leg: Ni.n < i = s (Suci) < si
assumes less: Jooi. s (Suc i) < 54
shows Fulse
proof —
{
fix i j:: nat
assume n < ¢
assume i < j
{
fix k
have s (i + k) < s
proof (induct k)
case 0 thus ?case by simp
next
case (Suc k)
with leglof i + k] <0 <
show ?case by simp
qed
}
from this[of j — i] (n < @ < P
have s j < s i by auto

}

note decr = this

let ?min = LEAST . x € range (Xi. s (n + 1))
have ?min € range (\i. s (n + 1))
by (rule Leastl) auto
then obtain & where min: ?min = s (n + k) by auto

from less

obtain k' where n + k < k'
and s (Suc k) < sk’
unfolding INF-nat by auto

with decr[of n + k k'] min
have s (Suc k') < ?min by auto
moreover from (n + k < k’
have s (Suc k') = s (n + (Suc k' — n)) by simp
ultimately
show Fulse using not-less-Least by blast
qed

63



definition
approz :: nat scg = ('a, 'q) cdesc = ('a, 'q) cdesc
= 'a measures = 'a measures = bool
where
approx G C C' M M’
= (Vij. (dsc Gij — decr C C' (Mi) (M'37))
Neq G ij — decreq C C' (M i) (M'3)))

lemma approz-empty:
approz (Graph {}) c¢1 ¢2 msl ms2
unfolding approz-def has-edge-def dest-graph.simps by simp

lemma approz-less:
assumes stepP c1 ¢2 (msl i) (ms2j) (op <)
assumes approx (Graph Es) cl ¢2 msl ms2
shows approz (Graph (insert (i, |, j) Es)) ¢l c2 msl ms2
using assms
unfolding approx-def has-edge-def dest-graph.simps decr-def
by auto

lemma approz-leq:
assumes stepP c1 ¢2 (msl i) (ms2j) (op <)
assumes approz (Graph Es) cl ¢2 msl ms2
shows approz (Graph (insert (i, |, j) Es)) c1 c2 msl ms2
using assms
unfolding approz-def has-edge-def dest-graph.simps decreq-def
by auto

lemma approz (Graph {(1, |, 2),(2, |, 3)}) ¢l c2 msl ms2
apply (intro approz-less approz-leq approz-empty)
oops

lemma no-stepl:
stepP c1 ¢2 m1 m2 (A\z y. False)
= no-step cl c2
by (cases cl1, cases c2) (auto simp: no-step-def)

definition

sound-int :: nat acg = ('a, 'q) cdesc list
= 'a measures list = bool

64



where
sound-int A RDs M =
(Vn<length RDs. ¥ m<length RDs.
no-step (RDs ! n) (RDs ! m) V
(3G. (A+ n~C m) A approz G (RDs ! n) (RDs ! m) (M ! n) (M ! m)))

lemma length-simps: length [| = 0 length (z#xs) = Suc (length xs)
by auto

lemma all-less-zero: ¥V n<(0::nat). P n
by simp

lemma all-less-Suc:
assumes Pk: P k
assumes Pn: Vn<k. Pn
shows Vn<Suc k. P n
proof (intro alll impl)
fix n assume n < Suc k
show P n
proof (cases n < k)
case True with Pn show ?thesis by simp
next
case Fualse with (n < Suc k) have n = k by simp
with Pk show ?thesis by simp
qed
qed

lemma step-witness:
assumes in-cdesc RD1 y x
assumes in-cdesc RD2 z y
shows — no-step RD1 RD2
using assms
by (cases RD1, cases RD2) (auto simp:no-step-def )

theorem SCT-on-relations:
assumes R: R = mk-rel RDs
assumes sound: sound-int A RDs M
assumes SCT A
shows Vz. accp R x
proof (rule, rule classical)
fix z
assume - accp R z
with non-acc-has-idseq
have ds. idseq R s = .
then obtain s where idseq R s x ..

65



hence Jc¢s. Vi. csi € set RDs A
in-cdesc (cs i) (s (Suci)) (s 1)
unfolding R by (rule ex-cs)
then obtain cs where
[simp]: Ni. cs i € set RDs
and ird[simp]: \i. in-cdesc (cs i) (s (Suc 1)) (s 14)
by blast

let ?cis = Xi. index-of RDs (cs i)
have Vi. 3G. (A F %cis i ~G (2cis (Suc 1))

A approx G (RDs ! ?cis i) (RDs ! ?cis (Suc 1))

(M ! %cis i) (M %cis (Suci)) (isVi. 3G. 2P i G)
proof

fix ¢

let ?n = %cis i and ?n' = ?cis (Suc 1)

have in-cdesc (RDs ! ?n) (s (Suc i)) (s
in-cdesc (RDs ! 2n') (s (Suc (Suc i))) (
by (simp-all add:index-of-member)

with step-witness

have — no-step (RDs ! ?n) (RDs ! ?n’) .

moreover have
?n < length RDs
?n’ < length RDs
by (simp-all add:index-of-length|[symmetric])

ultimately

obtain G
where A+ 7n ~G 2/
and approx G (RDs ! ?n) (RDs ! ?n’) (M ! 2n) (M ! ?n’)
using sound
unfolding sound-int-def by auto

)
s (Suc 1))

thus 3 G. ?P i G by blast
qed
with choice
have 3 Gs. Vi. ?P i (Gs i) .
then obtain Gs where
A: Ni. AE fcis i ~(Gs 9) (Zcis (Suc 1))
and B: Ai. approx (Gs i) (RDs ! %cis i) (RDs ! ?cis (Suc 1))
(M ! %cis i) (M %cis (Suc 1))
by blast

let ?p = Ai. (Pcis i, Gs i)

from A have has-ipath A ?p
unfolding has-ipath-def
by auto

with «(SCT A SCT-def

66



obtain th where is-desc-thread th ?p
by auto

then obtain n
where fr: Vi>n. eqglat ?p th i
and inf: 3 1. descat ?p th i
unfolding is-desc-thread-def by auto

from B

have approx:
Ni. approz (Gs i) (cs i) (es (Suc 7))
(M ! %cis i) (M %cis (Suc 1))
by (simp add:indez-of-member)

let %seq = \i. (M ! %cis i) (th i) (s 7)

have A\i. n < i = %seq (Suc i) < ?seq i
proof —
fix 4
let 2q1 = th i and ?¢2 = th (Suc i)
assume n < %

with fr have eqlat ?p th i by simp
hence dsc (Gs i) 2q1 2q2 V eq (Gs i) ?q1 9¢2
by simp
thus ?seq (Suc i) < ?seq i
proof
assume dsc (Gs i) ?q1 292

with approx

have a:decr (cs i) (cs (Suc 7))
(M ! 2cis i) 2q1) (M ! %cis (Suc 1)) 992)
unfolding approz-def by auto

show ?thesis
apply (rule less-imp-le)
apply (rule decr-in-cdesc[of - s (Suc i) s i])
by (rule ird a)+
next
assume eq (Gs i) ?q1 9¢2

with approz

have a:decreq (cs i) (¢s (Suc 1))
(M ! %cis i) 2q1) (M ! 2cis (Suc i) 2¢2)
unfolding approz-def by auto

show Zthesis

apply (rule decreg-in-cdesc[of - s (Suc i) s i])
by (rule ird a)+

67



qed

qed
moreover have 3 ,i. ?seq (Suc i) < ?seq i unfolding INF-nat
proof
fix 1
from inf obtain j where i < j and d: descat ?p th j
unfolding INF-nat by auto
let g1 = th j and ?¢2 = th (Suc j)
from d have dsc (Gs j) ?q1 292 by auto
with approx
have a:decr (cs j) (cs (Suc 7))
(M %cis j) 2q1) (M ! %cis (Suc j)) 792)
unfolding approz-def by auto
have %seq (Suc j) < %seq j
apply (rule decr-in-cdesc[of - s (Suc j) s j])
by (rule ird a)+
with ¢ < p
show 3j. i < j A %seq (Suc j) < ?seq j by auto
qged

ultimately have Fulse
by (rule no-inf-desc-nat-sequencelof Suc n]) simp
thus accp R ..
qed

end

7 Implemtation of the SCT criterion

theory Implementation
imports Correctness
begin

fun edges-match :: ('n x ‘e x 'n) x ('n x 'e x 'n) = bool
where
edges-match ((n, e, m), (n';e’,;m’)) = (m = n’)

fun connect-edges ::
('n x (‘extimes) x 'n) x ('n x ‘e x 'n)
= ('n x ‘e x 'n)
where
connect-edges ((n,e,m), (n’, e/, m")) = (n, e x ¢/, m’)

lemma grcomp-code [code]:
grcomp (Graph G) (Graph H) = Graph (connect-edges ‘ { x € Gx H. edges-match

z })

by (rule graph-ext) (auto simp:graph-mult-def has-edge-def image-def)

68



lemma mk-tcl-finite-terminates:
fixes A :: 'a acg
assumes fA: finite-acg A
shows mk-tcl-dom (A, A)
proof —
from fA have fin-tcl: finite-acg (tcl A)
by (simp add:finite-tcl)

hence finite (dest-graph (tcl A))
unfolding finite-acg-def finite-graph-def ..

let Zcount = AG. card (dest-graph G)
let 2N = Zcount (tcl A)
let #m = AX. N — (Zcount X)

let P = AX. mk-tcl-dom (A, X)

{
fix X

assume X < tcl A
then
have mk-tcl-dom (A, X)
proof (induct X rule:measure-induct-rule[of ¢m])
case (less X)
show ?case
proof (cases X x A < X)
case True
with mk-tcl.domintros show ?thesis by auto
next
case Fulse
then have I: X < X + X x A4
unfolding graph-less-def graph-leq-def graph-plus-def
by auto

from (X < tcl A
have X x A < tcl A * A by (simp add:mult-mono)
also have ... < A + tcl A x A by simp
also have ... = tcl A by (simp add:tcl-unfold-right[symmetric])
finally have X « A < tcl A .
with (X < tel A
have X + X « A < tcl A + tcl A

by (rule add-mono)
hence less-tcl: X + X x A < tcl A by simp
hence X < tcl A

using [ (X < tcl A by auto

from less-tcl fin-tcl

69



have finite-acg (X + X * A) by (rule finite-acg-subset)

hence finite (dest-graph (X + X = A))
unfolding finite-acg-def finite-graph-def ..

hence X: Zcount X < Zcount (X + X x A)
using [[simplified graph-less-def graph-leq-def]
by (rule psubset-card-mono)

have “count X < ?N
apply (rule psubset-card-mono)
by fact (rule <X < tel A)[simplified graph-less-def])

with X have ?m (X + X x A) < %m X by arith

from less.hyps this less-tcl
have mk-tcl-dom (A, X + X x A) .
with mk-tcl.domintros show ?thesis .
qed
qed
}
from this less-tcl show Zthesis .
qged

lemma mk-tcl-finite-tcl:
fixes A :: 'a acg
assumes fA: finite-acg A
shows mk-tcl A A = tcl A
using mk-tcl-finite-terminates| OF fA]
by (simp only: tcl-def mk-tcl-correctness star-commute)

definition test-SCT :: nat acg = bool
where
test-SCT A =
(let T = mk-tcl A A
in (V(n,G,m)edest-graph T.
n#FmVGxG#GV
(3 (p::nat,e,q)Edest-graph G. p = q¢ A e = LESS)))

lemma SCT'-ezxec:
assumes fin: finite-acg A
shows SCT' A = test-SCT A
using mk-tcl-finite-tcl[OF fin]
unfolding test-SCT-def Let-def
unfolding SCT'-def no-bad-graphs-def has-edge-def
by force

code-modulename SML

70



Implementation Graphs

lemma [code func]:
(G::('a:eq, 'bieq) graph) < H «—— dest-graph G C dest-graph H
(G::("a::eq, 'bizeq) graph) < H «— dest-graph G C dest-graph H
unfolding graph-leg-def graph-less-def by rule+

lemma [code func]:
(G::('a:eq, 'b:ieq) graph) + H = Graph (dest-graph G U dest-graph H)
unfolding graph-plus-def ..

lemma [code func]:
(G::('a:eq, 'b::{eq, times}) graph) x H = grcomp G H
unfolding graph-mult-def ..

lemma SCT'-empty: SCT' (Graph {})
unfolding SCT’-def no-bad-graphs-def graph-zero-def[symmetric)
tel-zero
by (simp add:in-grzero)

7.1 Witness checking

definition test-SCT-witness :: nat acg = nat acg = bool
where
test-SCT-witness A T =
(A<STANA«xT<TA
(V (n,G,m)edest-graph T.
nZmV Gx G#£GV
(3 (p::nat,e,q)edest-graph G. p = q¢ A e = LESS)))

lemma no-bad-graphs-ucl:
assumes A < B
assumes no-bad-graphs B
shows no-bad-graphs A
using assms
unfolding no-bad-graphs-def has-edge-def graph-leq-def
by blast

lemma SCT'-witness:
assumes a: test-SCT-witness A T
shows SCT’ A
proof —
from ¢ have A < T A« T < T by (auto simp:test-SCT-witness-def )
hence A + A« T < T

71



by (subst add-idem[of T, symmetric], rule add-mono)
with star3’ have tcl A < T unfolding tcl-def .
moreover
from o have no-bad-graphs T
unfolding no-bad-graphs-def test-SCT-witness-def has-edge-def
by auto
ultimately
show ?thesis
unfolding SCT'-def
by (rule no-bad-graphs-ucl)
qed

code-modulename SML
Graphs SCT
Kleene-Algebras SCT
Implementation SCT

export-code test-SCT in SML

end

8 Size-Change Termination

theory Size-Change-Termination

imports Correctness Interpretation Implementation
uses sct.ML

begin

8.1 Simplifier setup

This is needed to run the SCT algorithm in the simplifier:

lemma setbcomp-simps:

{ze{}. Pz} = {}
{z€insert y ys. P x} = (if P y then insert y {x€ys. P z} else {x€ys. P x})
by auto

lemma setbcomp-cong:
A=B = (Az. Pz = Qz) = {z€A. Pz} = {2€B. Q z}
by auto
lemma cartprod-simps:
{} x A=A}
insert a A X B = Paira ‘B U (4 x B)
by (auto simp:image-def)

lemma image-simps:

72



fu {3 ={}
fu “insert a A = insert (fu a) (fu © A)
by (auto simp:image-def)

lemmas union-simps =
Un-empty-left Un-empty-right Un-insert-left

lemma subset-simps:
{tc B
mserta AC B=ae€ BANACB
by auto

lemma element-simps:

z € {} = False
reinsertaA=x=aVaeA
by auto

lemma set-eq-simp:
A=B+— AC BA B C A by auto

lemma ball-simps:

Vze{}. Pz = True

(Vzeinsert a A. Px) = Pa A (Vz€A. P 1)
by auto

lemma bez-simps:

Jze{}. P x = False

(Jz€insert a A. Px) = PaV (3z€A. P 1)
by auto

lemmas set-simps =
setbcomp-simps
cartprod-simps image-simps union-simps subset-simps
element-simps set-eq-simp
ball-simps bex-simps

lemma sedge-simps:
Lz=]
lxz =2
by (auto simp:mult-sedge-def)

lemmas sctTest-simps =
simp-thms
if-True
if-False
nat.inject
nat.distinct
Pair-eq

73



grcomp-code
edges-match.simps
connect-edges.simps

sedge-simps
sedge.distinct
set-stmps

graph-mult-def
graph-leg-def
dest-graph.simps
graph-plus-def
graph.ingject
graph-zero-def

test-SCT-def

mk-tcl-code

Let-def
split-conv

lemmas sctTest-congs =
if-weak-cong let-weak-cong setbcomp-cong

lemma SCT-Main:
finite-acg A = test-SCT A = SCT A
using LJA-Theorems SCT'-exec
by auto

end

9 Examples for Size-Change Termination

theory Fxamples
imports Size-Change-Termination
begin

function f :: nat = nat = nat
where

fn0=n
| f0 (Suc m) = f (Sucm) m
| f (Suc n) (Sucm) =fmn
by pat-completeness auto

termination
unfolding f-rel-def Ifp-const

74



apply (rule SCT-on-relations)
apply (tactic Sct.abs-rel-tac)
apply (rule ext, rule ext, simp)
apply (tactic Sct.mk-call-graph)
apply (rule SCT-Main)

apply (simp add:finite-acg-simps)
by eval

function p :: nat = nat = nat = nat
where
pmmnr=(ifr>0thenpm (r — 1) n else
if n>0thenpr (n — 1) m
else m)
by pat-completeness auto

termination

unfolding p-rel-def lfp-const

apply (rule SCT-on-relations)

apply (tactic Sct.abs-rel-tac)

apply (rule ect, rule ext, simp)

apply (tactic Sct.mk-call-graph)

apply (rule SCT-Main)
apply (simp add:finite-acg-ins finite-acg-empty finite-graph-def)
by eval

function foo :: bool = nat = nat = nat
where

foo True (Suc n) m = foo True n (Suc m)
| foo True 0 m = foo False 0 m
| foo False n (Suc m) = foo False (Suc n) m
| foo False n 0 = n
by pat-completeness auto

termination

unfolding foo-rel-def Ifp-const

apply (rule SCT-on-relations)

apply (tactic Sct.abs-rel-tac)

apply (rule ext, rule ext, simp)

apply (tactic Sct.mk-call-graph)

apply (rule SCT-Main)
apply (simp add:finite-acg-ins finite-acg-empty finite-graph-def)
by eval

function (sequential)

bar :: nat = nat = nat = nat
where

bar 0 (Suc n) m = bar m m m
| bar knm = 0

75



by pat-completeness auto

termination
unfolding bar-rel-def lfp-const
apply (rule SCT-on-relations)
apply (tactic Sct.abs-rel-tac)
apply (rule ext, rule ext, simp)
apply (tactic Sct.mk-call-graph)
apply (rule SCT-Main)
apply (simp add:finite-acg-ins finite-acg-empty finite-graph-def)
by (simp only:sctTest-simps cong: sctTest-congs)

end

76



	Miscellaneous Tools for Size-Change Termination
	Searching in lists
	Some reasoning tools
	Sequences
	Increasing sequences
	Sections induced by an increasing sequence


	Kleene Algebras
	Transitive Closure
	Naive Algorithm to generate the transitive closure

	General Graphs as Sets
	Basic types, Size Change Graphs
	Graph composition
	Multiplicative Structure

	Infinite Paths
	Finite Paths
	Sub-Paths

	The Size-Change Principle (Definition)
	Size-Change Graphs
	Size-Change Termination

	Proof of the Size-Change Principle
	Auxiliary definitions
	Everything is finite
	Contraction and more
	Connecting threads

	Ramsey's Theorem
	Main Result

	Applying SCT to function definitions
	Implemtation of the SCT criterion
	Witness checking

	Size-Change Termination
	Simplifier setup

	Examples for Size-Change Termination

