Theory BinEx

Up to index of Isabelle/HOL/HOL-Complex/ex

theory BinEx
imports Complex_Main
begin

(*  Title:      HOL/Complex/ex/BinEx.thy
    ID:         $Id: BinEx.thy,v 1.6 2007/07/30 22:56:28 wenzelm Exp $
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1999  University of Cambridge
*)

header {* Binary arithmetic examples *}

theory BinEx
imports Complex_Main
begin

text {*
  Examples of performing binary arithmetic by simplification.  This time
  we use the reals, though the representation is just of integers.
*}

subsection{*Real Arithmetic*}

subsubsection {*Addition *}

lemma "(1359::real) + -2468 = -1109"
by simp

lemma "(93746::real) + -46375 = 47371"
by simp


subsubsection {*Negation *}

lemma "- (65745::real) = -65745"
by simp

lemma "- (-54321::real) = 54321"
by simp


subsubsection {*Multiplication *}

lemma "(-84::real) * 51 = -4284"
by simp

lemma "(255::real) * 255 = 65025"
by simp

lemma "(1359::real) * -2468 = -3354012"
by simp


subsubsection {*Inequalities *}

lemma "(89::real) * 10 ≠ 889"
by simp

lemma "(13::real) < 18 - 4"
by simp

lemma "(-345::real) < -242 + -100"
by simp

lemma "(13557456::real) < 18678654"
by simp

lemma "(999999::real) ≤ (1000001 + 1) - 2"
by simp

lemma "(1234567::real) ≤ 1234567"
by simp


subsubsection {*Powers *}

lemma "2 ^ 15 = (32768::real)"
by simp

lemma "-3 ^ 7 = (-2187::real)"
by simp

lemma "13 ^ 7 = (62748517::real)"
by simp

lemma "3 ^ 15 = (14348907::real)"
by simp

lemma "-5 ^ 11 = (-48828125::real)"
by simp


subsubsection {*Tests *}

lemma "(x + y = x) = (y = (0::real))"
by arith

lemma "(x + y = y) = (x = (0::real))"
by arith

lemma "(x + y = (0::real)) = (x = -y)"
by arith

lemma "(x + y = (0::real)) = (y = -x)"
by arith

lemma "((x + y) < (x + z)) = (y < (z::real))"
by arith

lemma "((x + z) < (y + z)) = (x < (y::real))"
by arith

lemma "(¬ x < y) = (y ≤ (x::real))"
by arith

lemma "¬ (x < y ∧ y < (x::real))"
by arith

lemma "(x::real) < y ==> ¬ y < x"
by arith

lemma "((x::real) ≠ y) = (x < y ∨ y < x)"
by arith

lemma "(¬ x ≤ y) = (y < (x::real))"
by arith

lemma "x ≤ y ∨ y ≤ (x::real)"
by arith

lemma "x ≤ y ∨ y < (x::real)"
by arith

lemma "x < y ∨ y ≤ (x::real)"
by arith

lemma "x ≤ (x::real)"
by arith

lemma "((x::real) ≤ y) = (x < y ∨ x = y)"
by arith

lemma "((x::real) ≤ y ∧ y ≤ x) = (x = y)"
by arith

lemma "¬(x < y ∧ y ≤ (x::real))"
by arith

lemma "¬(x ≤ y ∧ y < (x::real))"
by arith

lemma "(-x < (0::real)) = (0 < x)"
by arith

lemma "((0::real) < -x) = (x < 0)"
by arith

lemma "(-x ≤ (0::real)) = (0 ≤ x)"
by arith

lemma "((0::real) ≤ -x) = (x ≤ 0)"
by arith

lemma "(x::real) = y ∨ x < y ∨ y < x"
by arith

lemma "(x::real) = 0 ∨ 0 < x ∨ 0 < -x"
by arith

lemma "(0::real) ≤ x ∨ 0 ≤ -x"
by arith

lemma "((x::real) + y ≤ x + z) = (y ≤ z)"
by arith

lemma "((x::real) + z ≤ y + z) = (x ≤ y)"
by arith

lemma "(w::real) < x ∧ y < z ==> w + y < x + z"
by arith

lemma "(w::real) ≤ x ∧ y ≤ z ==> w + y ≤ x + z"
by arith

lemma "(0::real) ≤ x ∧ 0 ≤ y ==> 0 ≤ x + y"
by arith

lemma "(0::real) < x ∧ 0 < y ==> 0 < x + y"
by arith

lemma "(-x < y) = (0 < x + (y::real))"
by arith

lemma "(x < -y) = (x + y < (0::real))"
by arith

lemma "(y < x + -z) = (y + z < (x::real))"
by arith

lemma "(x + -y < z) = (x < z + (y::real))"
by arith

lemma "x ≤ y ==> x < y + (1::real)"
by arith

lemma "(x - y) + y = (x::real)"
by arith

lemma "y + (x - y) = (x::real)"
by arith

lemma "x - x = (0::real)"
by arith

lemma "(x - y = 0) = (x = (y::real))"
by arith

lemma "((0::real) ≤ x + x) = (0 ≤ x)"
by arith

lemma "(-x ≤ x) = ((0::real) ≤ x)"
by arith

lemma "(x ≤ -x) = (x ≤ (0::real))"
by arith

lemma "(-x = (0::real)) = (x = 0)"
by arith

lemma "-(x - y) = y - (x::real)"
by arith

lemma "((0::real) < x - y) = (y < x)"
by arith

lemma "((0::real) ≤ x - y) = (y ≤ x)"
by arith

lemma "(x + y) - x = (y::real)"
by arith

lemma "(-x = y) = (x = (-y::real))"
by arith

lemma "x < (y::real) ==> ¬(x = y)"
by arith

lemma "(x ≤ x + y) = ((0::real) ≤ y)"
by arith

lemma "(y ≤ x + y) = ((0::real) ≤ x)"
by arith

lemma "(x < x + y) = ((0::real) < y)"
by arith

lemma "(y < x + y) = ((0::real) < x)"
by arith

lemma "(x - y) - x = (-y::real)"
by arith

lemma "(x + y < z) = (x < z - (y::real))"
by arith

lemma "(x - y < z) = (x < z + (y::real))"
by arith

lemma "(x < y - z) = (x + z < (y::real))"
by arith

lemma "(x ≤ y - z) = (x + z ≤ (y::real))"
by arith

lemma "(x - y ≤ z) = (x ≤ z + (y::real))"
by arith

lemma "(-x < -y) = (y < (x::real))"
by arith

lemma "(-x ≤ -y) = (y ≤ (x::real))"
by arith

lemma "(a + b) - (c + d) = (a - c) + (b - (d::real))"
by arith

lemma "(0::real) - x = -x"
by arith

lemma "x - (0::real) = x"
by arith

lemma "w ≤ x ∧ y < z ==> w + y < x + (z::real)"
by arith

lemma "w < x ∧ y ≤ z ==> w + y < x + (z::real)"
by arith

lemma "(0::real) ≤ x ∧ 0 < y ==> 0 < x + (y::real)"
by arith

lemma "(0::real) < x ∧ 0 ≤ y ==> 0 < x + y"
by arith

lemma "-x - y = -(x + (y::real))"
by arith

lemma "x - (-y) = x + (y::real)"
by arith

lemma "-x - -y = y - (x::real)"
by arith

lemma "(a - b) + (b - c) = a - (c::real)"
by arith

lemma "(x = y - z) = (x + z = (y::real))"
by arith

lemma "(x - y = z) = (x = z + (y::real))"
by arith

lemma "x - (x - y) = (y::real)"
by arith

lemma "x - (x + y) = -(y::real)"
by arith

lemma "x = y ==> x ≤ (y::real)"
by arith

lemma "(0::real) < x ==> ¬(x = 0)"
by arith

lemma "(x + y) * (x - y) = (x * x) - (y * y)"
  oops

lemma "(-x = -y) = (x = (y::real))"
by arith

lemma "(-x < -y) = (y < (x::real))"
by arith

lemma "!!a::real. a ≤ b ==> c ≤ d ==> x + y < z ==> a + c ≤ b + d"
by (tactic "fast_arith_tac @{context} 1")

lemma "!!a::real. a < b ==> c < d ==> a - d ≤ b + (-c)"
by (tactic "fast_arith_tac @{context} 1")

lemma "!!a::real. a ≤ b ==> b + b ≤ c ==> a + a ≤ c"
by (tactic "fast_arith_tac @{context} 1")

lemma "!!a::real. a + b ≤ i + j ==> a ≤ b ==> i ≤ j ==> a + a ≤ j + j"
by (tactic "fast_arith_tac @{context} 1")

lemma "!!a::real. a + b < i + j ==> a < b ==> i < j ==> a + a < j + j"
by (tactic "fast_arith_tac @{context} 1")

lemma "!!a::real. a + b + c ≤ i + j + k ∧ a ≤ b ∧ b ≤ c ∧ i ≤ j ∧ j ≤ k --> a + a + a ≤ k + k + k"
by arith

lemma "!!a::real. a + b + c + d ≤ i + j + k + l ==> a ≤ b ==> b ≤ c
    ==> c ≤ d ==> i ≤ j ==> j ≤ k ==> k ≤ l ==> a ≤ l"
by (tactic "fast_arith_tac @{context} 1")

lemma "!!a::real. a + b + c + d ≤ i + j + k + l ==> a ≤ b ==> b ≤ c
    ==> c ≤ d ==> i ≤ j ==> j ≤ k ==> k ≤ l ==> a + a + a + a ≤ l + l + l + l"
by (tactic "fast_arith_tac @{context} 1")

lemma "!!a::real. a + b + c + d ≤ i + j + k + l ==> a ≤ b ==> b ≤ c
    ==> c ≤ d ==> i ≤ j ==> j ≤ k ==> k ≤ l ==> a + a + a + a + a ≤ l + l + l + l + i"
by (tactic "fast_arith_tac @{context} 1")

lemma "!!a::real. a + b + c + d ≤ i + j + k + l ==> a ≤ b ==> b ≤ c
    ==> c ≤ d ==> i ≤ j ==> j ≤ k ==> k ≤ l ==> a + a + a + a + a + a ≤ l + l + l + l + i + l"
by (tactic "fast_arith_tac @{context} 1")


subsection{*Complex Arithmetic*}

lemma "(1359 + 93746*ii) - (2468 + 46375*ii) = -1109 + 47371*ii"
by simp

lemma "- (65745 + -47371*ii) = -65745 + 47371*ii"
by simp

text{*Multiplication requires distributive laws.  Perhaps versions instantiated
to literal constants should be added to the simpset.*}

lemma "(1 + ii) * (1 - ii) = 2"
by (simp add: ring_distribs)

lemma "(1 + 2*ii) * (1 + 3*ii) = -5 + 5*ii"
by (simp add: ring_distribs)

lemma "(-84 + 255*ii) + (51 * 255*ii) = -84 + 13260 * ii"
by (simp add: ring_distribs)

text{*No inequalities or linear arithmetic: the complex numbers are unordered!*}

text{*No powers (not supported yet)*}

end

Real Arithmetic

Addition

lemma

  1359 + -2468 = -1109

lemma

  93746 + -46375 = 47371

Negation

lemma

  - 65745 = -65745

lemma

  - -54321 = 54321

Multiplication

lemma

  -84 * 51 = -4284

lemma

  255 * 255 = 65025

lemma

  1359 * -2468 = -3354012

Inequalities

lemma

  89 * 10  889

lemma

  13 < 18 - 4

lemma

  -345 < -242 + -100

lemma

  13557456 < 18678654

lemma

  999999  1000001 + 1 - 2

lemma

  1234567  1234567

Powers

lemma

  2 ^ 15 = 32768

lemma

  -3 ^ 7 = -2187

lemma

  13 ^ 7 = 62748517

lemma

  3 ^ 15 = 14348907

lemma

  -5 ^ 11 = -48828125

Tests

lemma

  (x + y = x) = (y = 0)

lemma

  (x + y = y) = (x = 0)

lemma

  (x + y = 0) = (x = - y)

lemma

  (x + y = 0) = (y = - x)

lemma

  (x + y < x + z) = (y < z)

lemma

  (x + z < y + z) = (x < y)

lemma

  x < y) = (y  x)

lemma

  ¬ (x < yy < x)

lemma

  x < y ==> ¬ y < x

lemma

  (x  y) = (x < yy < x)

lemma

  x  y) = (y < x)

lemma

  x  yy  x

lemma

  x  yy < x

lemma

  x < yy  x

lemma

  x  x

lemma

  (x  y) = (x < yx = y)

lemma

  (x  yy  x) = (x = y)

lemma

  ¬ (x < yy  x)

lemma

  ¬ (x  yy < x)

lemma

  (- x < 0) = (0 < x)

lemma

  (0 < - x) = (x < 0)

lemma

  (- x  0) = (0  x)

lemma

  (0  - x) = (x  0)

lemma

  x = yx < yy < x

lemma

  x = 00 < x0 < - x

lemma

  0  x0  - x

lemma

  (x + y  x + z) = (y  z)

lemma

  (x + z  y + z) = (x  y)

lemma

  w < xy < z ==> w + y < x + z

lemma

  w  xy  z ==> w + y  x + z

lemma

  0  x0  y ==> 0  x + y

lemma

  0 < x0 < y ==> 0 < x + y

lemma

  (- x < y) = (0 < x + y)

lemma

  (x < - y) = (x + y < 0)

lemma

  (y < x + - z) = (y + z < x)

lemma

  (x + - y < z) = (x < z + y)

lemma

  x  y ==> x < y + 1

lemma

  x - y + y = x

lemma

  y + (x - y) = x

lemma

  x - x = 0

lemma

  (x - y = 0) = (x = y)

lemma

  (0  x + x) = (0  x)

lemma

  (- x  x) = (0  x)

lemma

  (x  - x) = (x  0)

lemma

  (- x = 0) = (x = 0)

lemma

  - (x - y) = y - x

lemma

  (0 < x - y) = (y < x)

lemma

  (0  x - y) = (y  x)

lemma

  x + y - x = y

lemma

  (- x = y) = (x = - y)

lemma

  x < y ==> x  y

lemma

  (x  x + y) = (0  y)

lemma

  (y  x + y) = (0  x)

lemma

  (x < x + y) = (0 < y)

lemma

  (y < x + y) = (0 < x)

lemma

  x - y - x = - y

lemma

  (x + y < z) = (x < z - y)

lemma

  (x - y < z) = (x < z + y)

lemma

  (x < y - z) = (x + z < y)

lemma

  (x  y - z) = (x + z  y)

lemma

  (x - y  z) = (x  z + y)

lemma

  (- x < - y) = (y < x)

lemma

  (- x  - y) = (y  x)

lemma

  a + b - (c + d) = a - c + (b - d)

lemma

  0 - x = - x

lemma

  x - 0 = x

lemma

  w  xy < z ==> w + y < x + z

lemma

  w < xy  z ==> w + y < x + z

lemma

  0  x0 < y ==> 0 < x + y

lemma

  0 < x0  y ==> 0 < x + y

lemma

  - x - y = - (x + y)

lemma

  x - - y = x + y

lemma

  - x - - y = y - x

lemma

  a - b + (b - c) = a - c

lemma

  (x = y - z) = (x + z = y)

lemma

  (x - y = z) = (x = z + y)

lemma

  x - (x - y) = y

lemma

  x - (x + y) = - y

lemma

  x = y ==> x  y

lemma

  0 < x ==> x  0

lemma

  (- x = - y) = (x = y)

lemma

  (- x < - y) = (y < x)

lemma

  [| a  b; c  d; x + y < z |] ==> a + c  b + d

lemma

  [| a < b; c < d |] ==> a - d  b + - c

lemma

  [| a  b; b + b  c |] ==> a + a  c

lemma

  [| a + b  i + j; a  b; i  j |] ==> a + a  j + j

lemma

  [| a + b < i + j; a < b; i < j |] ==> a + a < j + j

lemma

  a + b + c  i + j + ka  bb  ci  jj  k --> a + a + a  k + k + k

lemma

  [| a + b + c + d  i + j + k + l; a  b; b  c; c  d; i  j; j  k; k  l |]
  ==> a  l

lemma

  [| a + b + c + d  i + j + k + l; a  b; b  c; c  d; i  j; j  k; k  l |]
  ==> a + a + a + a  l + l + l + l

lemma

  [| a + b + c + d  i + j + k + l; a  b; b  c; c  d; i  j; j  k; k  l |]
  ==> a + a + a + a + a  l + l + l + l + i

lemma

  [| a + b + c + d  i + j + k + l; a  b; b  c; c  d; i  j; j  k; k  l |]
  ==> a + a + a + a + a + a  l + l + l + l + i + l

Complex Arithmetic

lemma

  1359 + 93746 * \<i> - (2468 + 46375 * \<i>) = -1109 + 47371 * \<i>

lemma

  - (65745 + -47371 * \<i>) = -65745 + 47371 * \<i>

lemma

  (1 + \<i>) * (1 - \<i>) = 2

lemma

  (1 + 2 * \<i>) * (1 + 3 * \<i>) = -5 + 5 * \<i>

lemma

  -84 + 255 * \<i> + 51 * 255 * \<i> = -84 + 13260 * \<i>