
Examples for program extraction in Higher-Order

Logic

Stefan Berghofer

November 22, 2007

Contents

1 Auxiliary lemmas used in program extraction examples 1

2 Quotient and remainder 3

3 Greatest common divisor 4

4 Warshall’s algorithm 6

5 Higman’s lemma 11
5.1 Extracting the program . 17
5.2 Some examples . 18

6 The pigeonhole principle 21

7 Euclid’s theorem 27

1 Auxiliary lemmas used in program extraction
examples

theory Util
imports Main
begin

Decidability of equality on natural numbers.

lemma nat-eq-dec:
∧

n::nat . m = n ∨ m 6= n
apply (induct m)
apply (case-tac n)
apply (case-tac [3] n)
apply (simp only : nat .simps, iprover?)+
done

1

Well-founded induction on natural numbers, derived using the standard
structural induction rule.

lemma nat-wf-ind :
assumes R:

∧
x ::nat . (

∧
y . y < x =⇒ P y) =⇒ P x

shows P z
proof (rule R)
show

∧
y . y < z =⇒ P y

proof (induct z)
case 0
thus ?case by simp

next
case (Suc n y)
from nat-eq-dec show ?case
proof
assume ny : n = y
have P n
by (rule R) (rule Suc)

with ny show ?case by simp
next
assume n 6= y
with Suc have y < n by simp
thus ?case by (rule Suc)

qed
qed

qed

Bounded search for a natural number satisfying a decidable predicate.

lemma search:
assumes dec:

∧
x ::nat . P x ∨ ¬ P x

shows (∃ x<y . P x) ∨ ¬ (∃ x<y . P x)
proof (induct y)
case 0 show ?case by simp

next
case (Suc z)
thus ?case
proof
assume ∃ x<z . P x
then obtain x where le: x < z and P : P x by iprover
from le have x < Suc z by simp
with P show ?case by iprover

next
assume nex : ¬ (∃ x<z . P x)
from dec show ?case
proof
assume P : P z
have z < Suc z by simp
with P show ?thesis by iprover

next
assume nP : ¬ P z

2

have ¬ (∃ x<Suc z . P x)
proof
assume ∃ x<Suc z . P x
then obtain x where le: x < Suc z and P : P x by iprover
have x < z
proof (cases x = z)
case True
with nP and P show ?thesis by simp

next
case False
with le show ?thesis by simp

qed
with P have ∃ x<z . P x by iprover
with nex show False ..

qed
thus ?case by iprover

qed
qed

qed

end

2 Quotient and remainder

theory QuotRem imports Util begin

Derivation of quotient and remainder using program extraction.

theorem division: ∃ r q . a = Suc b ∗ q + r ∧ r ≤ b
proof (induct a)
case 0
have 0 = Suc b ∗ 0 + 0 ∧ 0 ≤ b by simp
thus ?case by iprover

next
case (Suc a)
then obtain r q where I : a = Suc b ∗ q + r and r ≤ b by iprover
from nat-eq-dec show ?case
proof
assume r = b
with I have Suc a = Suc b ∗ (Suc q) + 0 ∧ 0 ≤ b by simp
thus ?case by iprover

next
assume r 6= b
with 〈r ≤ b〉 have r < b by (simp add : order-less-le)
with I have Suc a = Suc b ∗ q + (Suc r) ∧ (Suc r) ≤ b by simp
thus ?case by iprover

qed
qed

3

extract division

The program extracted from the above proof looks as follows

division ≡
λx xa.

nat-rec (0 , 0)
(λa H . let (x , y) = H

in case nat-eq-dec x xa of Left ⇒ (0 , Suc y)
| Right ⇒ (Suc x , y))

x

The corresponding correctness theorem is

a = Suc b ∗ snd (division a b) + fst (division a b) ∧ fst (division a b) ≤ b

code-module Div
contains

test = division 9 2

export-code division in SML

end

3 Greatest common divisor

theory Greatest-Common-Divisor
imports QuotRem
begin

theorem greatest-common-divisor :∧
n::nat . Suc m < n =⇒ ∃ k n1 m1 . k ∗ n1 = n ∧ k ∗ m1 = Suc m ∧
(∀ l l1 l2 . l ∗ l1 = n −→ l ∗ l2 = Suc m −→ l ≤ k)

proof (induct m rule: nat-wf-ind)
case (1 m n)
from division obtain r q where h1 : n = Suc m ∗ q + r and h2 : r ≤ m
by iprover

show ?case
proof (cases r)
case 0
with h1 have Suc m ∗ q = n by simp
moreover have Suc m ∗ 1 = Suc m by simp
moreover {
fix l2 have

∧
l l1 . l ∗ l1 = n =⇒ l ∗ l2 = Suc m =⇒ l ≤ Suc m

by (cases l2) simp-all }
ultimately show ?thesis by iprover

next
case (Suc nat)

4

with h2 have h: nat < m by simp
moreover from h have Suc nat < Suc m by simp
ultimately have ∃ k m1 r1 . k ∗ m1 = Suc m ∧ k ∗ r1 = Suc nat ∧

(∀ l l1 l2 . l ∗ l1 = Suc m −→ l ∗ l2 = Suc nat −→ l ≤ k)
by (rule 1)

then obtain k m1 r1 where
h1 ′: k ∗ m1 = Suc m
and h2 ′: k ∗ r1 = Suc nat
and h3 ′:

∧
l l1 l2 . l ∗ l1 = Suc m =⇒ l ∗ l2 = Suc nat =⇒ l ≤ k

by iprover
have mn: Suc m < n by (rule 1)
from h1 h1 ′ h2 ′ Suc have k ∗ (m1 ∗ q + r1) = n
by (simp add : add-mult-distrib2 nat-mult-assoc [symmetric])

moreover have
∧

l l1 l2 . l ∗ l1 = n =⇒ l ∗ l2 = Suc m =⇒ l ≤ k
proof −
fix l l1 l2
assume ll1n: l ∗ l1 = n
assume ll2m: l ∗ l2 = Suc m
moreover have l ∗ (l1 − l2 ∗ q) = Suc nat
by (simp add : diff-mult-distrib2 h1 Suc [symmetric] mn ll1n ll2m [symmetric])
ultimately show l ≤ k by (rule h3 ′)

qed
ultimately show ?thesis using h1 ′ by iprover

qed
qed

extract greatest-common-divisor

The extracted program for computing the greatest common divisor is

greatest-common-divisor ≡
λx . nat-wf-ind-P x

(λx H2 xa.
let (xa, y) = division xa x
in case xa of 0 ⇒ (Suc x , y , 1)
| Suc nat ⇒

let (x , ya) = H2 nat (Suc x); (xa, ya) = ya
in (x , xa ∗ y + ya, xa))

consts-code
arbitrary ((error arbitrary))

code-module GCD
contains

test = greatest-common-divisor 7 12

ML GCD .test

end

5

4 Warshall’s algorithm

theory Warshall
imports Main
begin

Derivation of Warshall’s algorithm using program extraction, based on Berger,
Schwichtenberg and Seisenberger [1].

datatype b = T | F

consts
is-path ′ :: (′a ⇒ ′a ⇒ b) ⇒ ′a ⇒ ′a list ⇒ ′a ⇒ bool

primrec
is-path ′ r x [] z = (r x z = T)
is-path ′ r x (y # ys) z = (r x y = T ∧ is-path ′ r y ys z)

constdefs
is-path :: (nat ⇒ nat ⇒ b) ⇒ (nat ∗ nat list ∗ nat) ⇒

nat ⇒ nat ⇒ nat ⇒ bool
is-path r p i j k == fst p = j ∧ snd (snd p) = k ∧

list-all (λx . x < i) (fst (snd p)) ∧
is-path ′ r (fst p) (fst (snd p)) (snd (snd p))

conc :: (′a ∗ ′a list ∗ ′a) ⇒ (′a ∗ ′a list ∗ ′a) ⇒ (′a ∗ ′a list ∗ ′a)
conc p q == (fst p, fst (snd p) @ fst q # fst (snd q), snd (snd q))

theorem is-path ′-snoc [simp]:∧
x . is-path ′ r x (ys @ [y]) z = (is-path ′ r x ys y ∧ r y z = T)

by (induct ys) simp+

theorem list-all-scoc [simp]: list-all P (xs @ [x]) = (P x ∧ list-all P xs)
by (induct xs, simp+, iprover)

theorem list-all-lemma:
list-all P xs =⇒ (

∧
x . P x =⇒ Q x) =⇒ list-all Q xs

proof −
assume PQ :

∧
x . P x =⇒ Q x

show list-all P xs =⇒ list-all Q xs
proof (induct xs)
case Nil
show ?case by simp

next
case (Cons y ys)
hence Py : P y by simp
from Cons have Pys: list-all P ys by simp
show ?case
by simp (rule conjI PQ Py Cons Pys)+

qed

6

qed

theorem lemma1 :
∧

p. is-path r p i j k =⇒ is-path r p (Suc i) j k
apply (unfold is-path-def)
apply (simp cong add : conj-cong add : split-paired-all)
apply (erule conjE)+
apply (erule list-all-lemma)
apply simp
done

theorem lemma2 :
∧

p. is-path r p 0 j k =⇒ r j k = T
apply (unfold is-path-def)
apply (simp cong add : conj-cong add : split-paired-all)
apply (case-tac aa)
apply simp+
done

theorem is-path ′-conc: is-path ′ r j xs i =⇒ is-path ′ r i ys k =⇒
is-path ′ r j (xs @ i # ys) k

proof −
assume pys: is-path ′ r i ys k
show

∧
j . is-path ′ r j xs i =⇒ is-path ′ r j (xs @ i # ys) k

proof (induct xs)
case (Nil j)
hence r j i = T by simp
with pys show ?case by simp

next
case (Cons z zs j)
hence jzr : r j z = T by simp
from Cons have pzs: is-path ′ r z zs i by simp
show ?case
by simp (rule conjI jzr Cons pzs)+

qed
qed

theorem lemma3 :∧
p q . is-path r p i j i =⇒ is-path r q i i k =⇒

is-path r (conc p q) (Suc i) j k
apply (unfold is-path-def conc-def)
apply (simp cong add : conj-cong add : split-paired-all)
apply (erule conjE)+
apply (rule conjI)
apply (erule list-all-lemma)
apply simp
apply (rule conjI)
apply (erule list-all-lemma)
apply simp
apply (rule is-path ′-conc)
apply assumption+

7

done

theorem lemma5 :∧
p. is-path r p (Suc i) j k =⇒ ∼ is-path r p i j k =⇒

(∃ q . is-path r q i j i) ∧ (∃ q ′. is-path r q ′ i i k)
proof (simp cong add : conj-cong add : split-paired-all is-path-def , (erule conjE)+)
fix xs
assume asms:

list-all (λx . x < Suc i) xs
is-path ′ r j xs k
¬ list-all (λx . x < i) xs

show (∃ ys. list-all (λx . x < i) ys ∧ is-path ′ r j ys i) ∧
(∃ ys. list-all (λx . x < i) ys ∧ is-path ′ r i ys k)

proof
show

∧
j . list-all (λx . x < Suc i) xs =⇒ is-path ′ r j xs k =⇒

¬ list-all (λx . x < i) xs =⇒
∃ ys. list-all (λx . x < i) ys ∧ is-path ′ r j ys i (is PROP ?ih xs)
proof (induct xs)
case Nil
thus ?case by simp

next
case (Cons a as j)
show ?case
proof (cases a=i)
case True
show ?thesis
proof
from True and Cons have r j i = T by simp
thus list-all (λx . x < i) [] ∧ is-path ′ r j [] i by simp

qed
next
case False
have PROP ?ih as by (rule Cons)
then obtain ys where ys: list-all (λx . x < i) ys ∧ is-path ′ r a ys i
proof
from Cons show list-all (λx . x < Suc i) as by simp
from Cons show is-path ′ r a as k by simp
from Cons and False show ¬ list-all (λx . x < i) as by (simp)

qed
show ?thesis
proof
from Cons False ys
show list-all (λx . x<i) (a#ys) ∧ is-path ′ r j (a#ys) i by simp

qed
qed

qed
show

∧
k . list-all (λx . x < Suc i) xs =⇒ is-path ′ r j xs k =⇒

¬ list-all (λx . x < i) xs =⇒
∃ ys. list-all (λx . x < i) ys ∧ is-path ′ r i ys k (is PROP ?ih xs)

8

proof (induct xs rule: rev-induct)
case Nil
thus ?case by simp

next
case (snoc a as k)
show ?case
proof (cases a=i)
case True
show ?thesis
proof
from True and snoc have r i k = T by simp
thus list-all (λx . x < i) [] ∧ is-path ′ r i [] k by simp

qed
next
case False
have PROP ?ih as by (rule snoc)
then obtain ys where ys: list-all (λx . x < i) ys ∧ is-path ′ r i ys a
proof
from snoc show list-all (λx . x < Suc i) as by simp
from snoc show is-path ′ r j as a by simp
from snoc and False show ¬ list-all (λx . x < i) as by simp

qed
show ?thesis
proof
from snoc False ys
show list-all (λx . x < i) (ys @ [a]) ∧ is-path ′ r i (ys @ [a]) k
by simp

qed
qed

qed
qed (rule asms)+

qed

theorem lemma5 ′:∧
p. is-path r p (Suc i) j k =⇒ ¬ is-path r p i j k =⇒
¬ (∀ q . ¬ is-path r q i j i) ∧ ¬ (∀ q ′. ¬ is-path r q ′ i i k)
by (iprover dest : lemma5)

theorem warshall :∧
j k . ¬ (∃ p. is-path r p i j k) ∨ (∃ p. is-path r p i j k)

proof (induct i)
case (0 j k)
show ?case
proof (cases r j k)
assume r j k = T
hence is-path r (j , [], k) 0 j k
by (simp add : is-path-def)

hence ∃ p. is-path r p 0 j k ..
thus ?thesis ..

9

next
assume r j k = F
hence r j k ∼= T by simp
hence ¬ (∃ p. is-path r p 0 j k)
by (iprover dest : lemma2)

thus ?thesis ..
qed

next
case (Suc i j k)
thus ?case
proof
assume h1 : ¬ (∃ p. is-path r p i j k)
from Suc show ?case
proof
assume ¬ (∃ p. is-path r p i j i)
with h1 have ¬ (∃ p. is-path r p (Suc i) j k)
by (iprover dest : lemma5 ′)

thus ?case ..
next
assume ∃ p. is-path r p i j i
then obtain p where h2 : is-path r p i j i ..
from Suc show ?case
proof
assume ¬ (∃ p. is-path r p i i k)
with h1 have ¬ (∃ p. is-path r p (Suc i) j k)
by (iprover dest : lemma5 ′)

thus ?case ..
next
assume ∃ q . is-path r q i i k
then obtain q where is-path r q i i k ..
with h2 have is-path r (conc p q) (Suc i) j k
by (rule lemma3)

hence ∃ pq . is-path r pq (Suc i) j k ..
thus ?case ..

qed
qed

next
assume ∃ p. is-path r p i j k
hence ∃ p. is-path r p (Suc i) j k
by (iprover intro: lemma1)

thus ?case ..
qed

qed

extract warshall

The program extracted from the above proof looks as follows

warshall ≡
λx xa xb xc.

10

nat-rec (λxa xb. case x xa xb of T ⇒ Some (xa, [], xb) | F ⇒ None)
(λx H2 xa xb.

case H2 xa xb of
None ⇒

case H2 xa x of None ⇒ None
| Some q ⇒

case H2 x xb of None ⇒ None | Some qa ⇒ Some (conc q qa)
| Some q ⇒ Some q)

xa xb xc

The corresponding correctness theorem is

case warshall r i j k of None ⇒ ∀ x . ¬ is-path r x i j k
| Some q ⇒ is-path r q i j k

end

5 Higman’s lemma

theory Higman
imports Main
begin

Formalization by Stefan Berghofer and Monika Seisenberger, based on Co-
quand and Fridlender [2].

datatype letter = A | B

inductive emb :: letter list ⇒ letter list ⇒ bool
where

emb0 [Pure.intro]: emb [] bs
| emb1 [Pure.intro]: emb as bs =⇒ emb as (b # bs)
| emb2 [Pure.intro]: emb as bs =⇒ emb (a # as) (a # bs)

inductive L :: letter list ⇒ letter list list ⇒ bool
for v :: letter list

where
L0 [Pure.intro]: emb w v =⇒ L v (w # ws)

| L1 [Pure.intro]: L v ws =⇒ L v (w # ws)

inductive good :: letter list list ⇒ bool
where

good0 [Pure.intro]: L w ws =⇒ good (w # ws)
| good1 [Pure.intro]: good ws =⇒ good (w # ws)

inductive R :: letter ⇒ letter list list ⇒ letter list list ⇒ bool
for a :: letter

where

11

R0 [Pure.intro]: R a [] []
| R1 [Pure.intro]: R a vs ws =⇒ R a (w # vs) ((a # w) # ws)

inductive T :: letter ⇒ letter list list ⇒ letter list list ⇒ bool
for a :: letter

where
T0 [Pure.intro]: a 6= b =⇒ R b ws zs =⇒ T a (w # zs) ((a # w) # zs)

| T1 [Pure.intro]: T a ws zs =⇒ T a (w # ws) ((a # w) # zs)
| T2 [Pure.intro]: a 6= b =⇒ T a ws zs =⇒ T a ws ((b # w) # zs)

inductive bar :: letter list list ⇒ bool
where

bar1 [Pure.intro]: good ws =⇒ bar ws
| bar2 [Pure.intro]: (

∧
w . bar (w # ws)) =⇒ bar ws

theorem prop1 : bar ([] # ws) by iprover

theorem lemma1 : L as ws =⇒ L (a # as) ws
by (erule L.induct , iprover+)

lemma lemma2 ′: R a vs ws =⇒ L as vs =⇒ L (a # as) ws
apply (induct set : R)
apply (erule L.cases)
apply simp+
apply (erule L.cases)
apply simp-all
apply (rule L0)
apply (erule emb2)
apply (erule L1)
done

lemma lemma2 : R a vs ws =⇒ good vs =⇒ good ws
apply (induct set : R)
apply iprover
apply (erule good .cases)
apply simp-all
apply (rule good0)
apply (erule lemma2 ′)
apply assumption
apply (erule good1)
done

lemma lemma3 ′: T a vs ws =⇒ L as vs =⇒ L (a # as) ws
apply (induct set : T)
apply (erule L.cases)
apply simp-all
apply (rule L0)
apply (erule emb2)
apply (rule L1)

12

apply (erule lemma1)
apply (erule L.cases)
apply simp-all
apply iprover+
done

lemma lemma3 : T a ws zs =⇒ good ws =⇒ good zs
apply (induct set : T)
apply (erule good .cases)
apply simp-all
apply (rule good0)
apply (erule lemma1)
apply (erule good1)
apply (erule good .cases)
apply simp-all
apply (rule good0)
apply (erule lemma3 ′)
apply iprover+
done

lemma lemma4 : R a ws zs =⇒ ws 6= [] =⇒ T a ws zs
apply (induct set : R)
apply iprover
apply (case-tac vs)
apply (erule R.cases)
apply simp
apply (case-tac a)
apply (rule-tac b=B in T0)
apply simp
apply (rule R0)
apply (rule-tac b=A in T0)
apply simp
apply (rule R0)
apply simp
apply (rule T1)
apply simp
done

lemma letter-neq : (a::letter) 6= b =⇒ c 6= a =⇒ c = b
apply (case-tac a)
apply (case-tac b)
apply (case-tac c, simp, simp)
apply (case-tac c, simp, simp)
apply (case-tac b)
apply (case-tac c, simp, simp)
apply (case-tac c, simp, simp)
done

lemma letter-eq-dec: (a::letter) = b ∨ a 6= b

13

apply (case-tac a)
apply (case-tac b)
apply simp
apply simp
apply (case-tac b)
apply simp
apply simp
done

theorem prop2 :
assumes ab: a 6= b and bar : bar xs
shows

∧
ys zs. bar ys =⇒ T a xs zs =⇒ T b ys zs =⇒ bar zs using bar

proof induct
fix xs zs assume T a xs zs and good xs
hence good zs by (rule lemma3)
then show bar zs by (rule bar1)

next
fix xs ys
assume I :

∧
w ys zs. bar ys =⇒ T a (w # xs) zs =⇒ T b ys zs =⇒ bar zs

assume bar ys
thus

∧
zs. T a xs zs =⇒ T b ys zs =⇒ bar zs

proof induct
fix ys zs assume T b ys zs and good ys
then have good zs by (rule lemma3)
then show bar zs by (rule bar1)

next
fix ys zs assume I ′:

∧
w zs. T a xs zs =⇒ T b (w # ys) zs =⇒ bar zs

and ys:
∧

w . bar (w # ys) and Ta: T a xs zs and Tb: T b ys zs
show bar zs
proof (rule bar2)
fix w
show bar (w # zs)
proof (cases w)
case Nil
thus ?thesis by simp (rule prop1)

next
case (Cons c cs)
from letter-eq-dec show ?thesis
proof
assume ca: c = a
from ab have bar ((a # cs) # zs) by (iprover intro: I ys Ta Tb)
thus ?thesis by (simp add : Cons ca)

next
assume c 6= a
with ab have cb: c = b by (rule letter-neq)
from ab have bar ((b # cs) # zs) by (iprover intro: I ′ Ta Tb)
thus ?thesis by (simp add : Cons cb)

qed
qed

14

qed
qed

qed

theorem prop3 :
assumes bar : bar xs
shows

∧
zs. xs 6= [] =⇒ R a xs zs =⇒ bar zs using bar

proof induct
fix xs zs
assume R a xs zs and good xs
then have good zs by (rule lemma2)
then show bar zs by (rule bar1)

next
fix xs zs
assume I :

∧
w zs. w # xs 6= [] =⇒ R a (w # xs) zs =⇒ bar zs

and xsb:
∧

w . bar (w # xs) and xsn: xs 6= [] and R: R a xs zs
show bar zs
proof (rule bar2)
fix w
show bar (w # zs)
proof (induct w)
case Nil
show ?case by (rule prop1)

next
case (Cons c cs)
from letter-eq-dec show ?case
proof
assume c = a
thus ?thesis by (iprover intro: I [simplified] R)

next
from R xsn have T : T a xs zs by (rule lemma4)
assume c 6= a
thus ?thesis by (iprover intro: prop2 Cons xsb xsn R T)

qed
qed

qed
qed

theorem higman: bar []
proof (rule bar2)
fix w
show bar [w]
proof (induct w)
show bar [[]] by (rule prop1)

next
fix c cs assume bar [cs]
thus bar [c # cs] by (rule prop3) (simp, iprover)

qed
qed

15

consts
is-prefix :: ′a list ⇒ (nat ⇒ ′a) ⇒ bool

primrec
is-prefix [] f = True
is-prefix (x # xs) f = (x = f (length xs) ∧ is-prefix xs f)

theorem L-idx :
assumes L: L w ws
shows is-prefix ws f =⇒ ∃ i . emb (f i) w ∧ i < length ws using L

proof induct
case (L0 v ws)
hence emb (f (length ws)) w by simp
moreover have length ws < length (v # ws) by simp
ultimately show ?case by iprover

next
case (L1 ws v)
then obtain i where emb: emb (f i) w and i < length ws
by simp iprover

hence i < length (v # ws) by simp
with emb show ?case by iprover

qed

theorem good-idx :
assumes good : good ws
shows is-prefix ws f =⇒ ∃ i j . emb (f i) (f j) ∧ i < j using good

proof induct
case (good0 w ws)
hence w = f (length ws) and is-prefix ws f by simp-all
with good0 show ?case by (iprover dest : L-idx)

next
case (good1 ws w)
thus ?case by simp

qed

theorem bar-idx :
assumes bar : bar ws
shows is-prefix ws f =⇒ ∃ i j . emb (f i) (f j) ∧ i < j using bar

proof induct
case (bar1 ws)
thus ?case by (rule good-idx)

next
case (bar2 ws)
hence is-prefix (f (length ws) # ws) f by simp
thus ?case by (rule bar2)

qed

Strong version: yields indices of words that can be embedded into each

16

other.

theorem higman-idx : ∃ (i ::nat) j . emb (f i) (f j) ∧ i < j
proof (rule bar-idx)
show bar [] by (rule higman)
show is-prefix [] f by simp

qed

Weak version: only yield sequence containing words that can be embedded
into each other.

theorem good-prefix-lemma:
assumes bar : bar ws
shows is-prefix ws f =⇒ ∃ vs. is-prefix vs f ∧ good vs using bar

proof induct
case bar1
thus ?case by iprover

next
case (bar2 ws)
from bar2 .prems have is-prefix (f (length ws) # ws) f by simp
thus ?case by (iprover intro: bar2)

qed

theorem good-prefix : ∃ vs. is-prefix vs f ∧ good vs
using higman
by (rule good-prefix-lemma) simp+

5.1 Extracting the program

declare R.induct [ind-realizer]
declare T .induct [ind-realizer]
declare L.induct [ind-realizer]
declare good .induct [ind-realizer]
declare bar .induct [ind-realizer]

extract higman-idx

Program extracted from the proof of higman-idx :

higman-idx ≡ λx . bar-idx x higman

Corresponding correctness theorem:

emb (f (fst (higman-idx f))) (f (snd (higman-idx f))) ∧
fst (higman-idx f) < snd (higman-idx f)

Program extracted from the proof of higman:

higman ≡
bar2 [] (list-rec (prop1 []) (λa w H . prop3 a [a # w] H (R1 [] [] w R0)))

Program extracted from the proof of prop1 :

17

prop1 ≡
λx . bar2 ([] # x) (λw . bar1 (w # [] # x) (good0 w ([] # x) (L0 [] x)))

Program extracted from the proof of prop2 :

prop2 ≡
λx xa xb xc H .

barT-rec (λws xa xb xc H Ha Hb. bar1 xc (lemma3 x Ha xa))
(λws xb r xc xd H .

barT-rec (λws x xb H Ha. bar1 xb (lemma3 xa Ha x))
(λwsa xb ra xc H Ha.

bar2 xc
(list-case (prop1 xc)

(λa list .
case letter-eq-dec a x of
Left ⇒

r list wsa ((x # list) # xc) (bar2 wsa xb)
(T1 ws xc list H) (T2 x wsa xc list Ha)

| Right ⇒
ra list ((xa # list) # xc) (T2 xa ws xc list H)
(T1 wsa xc list Ha))))

H xd)
H xb xc

Program extracted from the proof of prop3 :

prop3 ≡
λx xa H .

barT-rec (λws xa xb H . bar1 xb (lemma2 x H xa))
(λws xa r xb H .

bar2 xb
(list-rec (prop1 xb)

(λa w Ha.
case letter-eq-dec a x of
Left ⇒ r w ((x # w) # xb) (R1 ws xb w H)
| Right ⇒

prop2 a x ws ((a # w) # xb) Ha (bar2 ws xa)
(T0 x ws xb w H) (T2 a ws xb w (lemma4 x H)))))

H xa

5.2 Some examples

consts-code
arbitrary :: LT (({∗ L0 [] [] ∗}))
arbitrary :: TT (({∗ T0 A [] [] [] R0 ∗}))

code-module Higman
contains

higman = higman-idx

18

ML 〈〈
local open Higman in

val a = 16807 .0 ;
val m = 2147483647 .0 ;

fun nextRand seed =
let val t = a∗seed
in t − m ∗ real (Real .floor(t/m)) end ;

fun mk-word seed l =
let

val r = nextRand seed ;
val i = Real .round (r / m ∗ 10 .0);

in if i > 7 andalso l > 2 then (r , []) else
apsnd (cons (if i mod 2 = 0 then A else B)) (mk-word r (l+1))

end ;

fun f s zero = mk-word s 0
| f s (Suc n) = f (fst (mk-word s 0)) n;

val g1 = snd o (f 20000 .0);

val g2 = snd o (f 50000 .0);

fun f1 zero = [A,A]
| f1 (Suc zero) = [B]
| f1 (Suc (Suc zero)) = [A,B]
| f1 - = [];

fun f2 zero = [A,A]
| f2 (Suc zero) = [B]
| f2 (Suc (Suc zero)) = [B ,A]
| f2 - = [];

val (i1 , j1) = higman g1 ;
val (v1 , w1) = (g1 i1 , g1 j1);
val (i2 , j2) = higman g2 ;
val (v2 , w2) = (g2 i2 , g2 j2);
val (i3 , j3) = higman f1 ;
val (v3 , w3) = (f1 i3 , f1 j3);
val (i4 , j4) = higman f2 ;
val (v4 , w4) = (f2 i4 , f2 j4);

end ;
〉〉

definition

19

arbitrary-LT :: LT where
[symmetric, code inline]: arbitrary-LT = arbitrary

definition
arbitrary-TT :: TT where
[symmetric, code inline]: arbitrary-TT = arbitrary

code-datatype L0 L1 arbitrary-LT
code-datatype T0 T1 T2 arbitrary-TT

export-code higman-idx in SML module-name Higman

ML 〈〈
local

open Higman
in

val a = 16807 .0 ;
val m = 2147483647 .0 ;

fun nextRand seed =
let val t = a∗seed
in t − m ∗ real (Real .floor(t/m)) end ;

fun mk-word seed l =
let

val r = nextRand seed ;
val i = Real .round (r / m ∗ 10 .0);

in if i > 7 andalso l > 2 then (r , []) else
apsnd (cons (if i mod 2 = 0 then A else B)) (mk-word r (l+1))

end ;

fun f s Zero-nat = mk-word s 0
| f s (Suc n) = f (fst (mk-word s 0)) n;

val g1 = snd o (f 20000 .0);

val g2 = snd o (f 50000 .0);

fun f1 Zero-nat = [A,A]
| f1 (Suc Zero-nat) = [B]
| f1 (Suc (Suc Zero-nat)) = [A,B]
| f1 - = [];

fun f2 Zero-nat = [A,A]
| f2 (Suc Zero-nat) = [B]
| f2 (Suc (Suc Zero-nat)) = [B ,A]
| f2 - = [];

20

val (i1 , j1) = higman-idx g1 ;
val (v1 , w1) = (g1 i1 , g1 j1);
val (i2 , j2) = higman-idx g2 ;
val (v2 , w2) = (g2 i2 , g2 j2);
val (i3 , j3) = higman-idx f1 ;
val (v3 , w3) = (f1 i3 , f1 j3);
val (i4 , j4) = higman-idx f2 ;
val (v4 , w4) = (f2 i4 , f2 j4);

end ;
〉〉

end

6 The pigeonhole principle

theory Pigeonhole
imports Util Efficient-Nat
begin

We formalize two proofs of the pigeonhole principle, which lead to extracted
programs of quite different complexity. The original formalization of these
proofs in Nuprl is due to Aleksey Nogin [3].
This proof yields a polynomial program.

theorem pigeonhole:∧
f . (

∧
i . i ≤ Suc n =⇒ f i ≤ n) =⇒ ∃ i j . i ≤ Suc n ∧ j < i ∧ f i = f j

proof (induct n)
case 0
hence Suc 0 ≤ Suc 0 ∧ 0 < Suc 0 ∧ f (Suc 0) = f 0 by simp
thus ?case by iprover

next
case (Suc n)
{
fix k
have

k ≤ Suc (Suc n) =⇒
(
∧

i j . Suc k ≤ i =⇒ i ≤ Suc (Suc n) =⇒ j < i =⇒ f i 6= f j) =⇒
(∃ i j . i ≤ k ∧ j < i ∧ f i = f j)

proof (induct k)
case 0
let ?f = λi . if f i = Suc n then f (Suc (Suc n)) else f i
have ¬ (∃ i j . i ≤ Suc n ∧ j < i ∧ ?f i = ?f j)
proof
assume ∃ i j . i ≤ Suc n ∧ j < i ∧ ?f i = ?f j
then obtain i j where i : i ≤ Suc n and j : j < i
and f : ?f i = ?f j by iprover

from j have i-nz : Suc 0 ≤ i by simp

21

from i have iSSn: i ≤ Suc (Suc n) by simp
have S0SSn: Suc 0 ≤ Suc (Suc n) by simp
show False
proof cases
assume fi : f i = Suc n
show False
proof cases
assume fj : f j = Suc n
from i-nz and iSSn and j have f i 6= f j by (rule 0)
moreover from fi have f i = f j
by (simp add : fj [symmetric])

ultimately show ?thesis ..
next
from i and j have j < Suc (Suc n) by simp
with S0SSn and le-refl have f (Suc (Suc n)) 6= f j
by (rule 0)

moreover assume f j 6= Suc n
with fi and f have f (Suc (Suc n)) = f j by simp
ultimately show False ..

qed
next
assume fi : f i 6= Suc n
show False
proof cases
from i have i < Suc (Suc n) by simp
with S0SSn and le-refl have f (Suc (Suc n)) 6= f i
by (rule 0)

moreover assume f j = Suc n
with fi and f have f (Suc (Suc n)) = f i by simp
ultimately show False ..

next
from i-nz and iSSn and j
have f i 6= f j by (rule 0)
moreover assume f j 6= Suc n
with fi and f have f i = f j by simp
ultimately show False ..

qed
qed

qed
moreover have

∧
i . i ≤ Suc n =⇒ ?f i ≤ n

proof −
fix i assume i ≤ Suc n
hence i : i < Suc (Suc n) by simp
have f (Suc (Suc n)) 6= f i
by (rule 0) (simp-all add : i)

moreover have f (Suc (Suc n)) ≤ Suc n
by (rule Suc) simp

moreover from i have i ≤ Suc (Suc n) by simp
hence f i ≤ Suc n by (rule Suc)

22

ultimately show ?thesis i
by simp

qed
hence ∃ i j . i ≤ Suc n ∧ j < i ∧ ?f i = ?f j
by (rule Suc)

ultimately show ?case ..
next
case (Suc k)
from search [OF nat-eq-dec] show ?case
proof
assume ∃ j<Suc k . f (Suc k) = f j
thus ?case by (iprover intro: le-refl)

next
assume nex : ¬ (∃ j<Suc k . f (Suc k) = f j)
have ∃ i j . i ≤ k ∧ j < i ∧ f i = f j
proof (rule Suc)
from Suc show k ≤ Suc (Suc n) by simp
fix i j assume k : Suc k ≤ i and i : i ≤ Suc (Suc n)
and j : j < i

show f i 6= f j
proof cases
assume eq : i = Suc k
show ?thesis
proof
assume f i = f j
hence f (Suc k) = f j by (simp add : eq)
with nex and j and eq show False by iprover

qed
next
assume i 6= Suc k
with k have Suc (Suc k) ≤ i by simp
thus ?thesis using i and j by (rule Suc)

qed
qed
thus ?thesis by (iprover intro: le-SucI)

qed
qed

}
note r = this
show ?case by (rule r) simp-all

qed

The following proof, although quite elegant from a mathematical point of
view, leads to an exponential program:

theorem pigeonhole-slow :∧
f . (

∧
i . i ≤ Suc n =⇒ f i ≤ n) =⇒ ∃ i j . i ≤ Suc n ∧ j < i ∧ f i = f j

proof (induct n)
case 0
have Suc 0 ≤ Suc 0 ..

23

moreover have 0 < Suc 0 ..
moreover from 0 have f (Suc 0) = f 0 by simp
ultimately show ?case by iprover

next
case (Suc n)
from search [OF nat-eq-dec] show ?case
proof
assume ∃ j < Suc (Suc n). f (Suc (Suc n)) = f j
thus ?case by (iprover intro: le-refl)

next
assume ¬ (∃ j < Suc (Suc n). f (Suc (Suc n)) = f j)
hence nex : ∀ j < Suc (Suc n). f (Suc (Suc n)) 6= f j by iprover
let ?f = λi . if f i = Suc n then f (Suc (Suc n)) else f i
have

∧
i . i ≤ Suc n =⇒ ?f i ≤ n

proof −
fix i assume i : i ≤ Suc n
show ?thesis i
proof (cases f i = Suc n)
case True
from i and nex have f (Suc (Suc n)) 6= f i by simp
with True have f (Suc (Suc n)) 6= Suc n by simp
moreover from Suc have f (Suc (Suc n)) ≤ Suc n by simp
ultimately have f (Suc (Suc n)) ≤ n by simp
with True show ?thesis by simp

next
case False
from Suc and i have f i ≤ Suc n by simp
with False show ?thesis by simp

qed
qed
hence ∃ i j . i ≤ Suc n ∧ j < i ∧ ?f i = ?f j by (rule Suc)
then obtain i j where i : i ≤ Suc n and ji : j < i and f : ?f i = ?f j
by iprover

have f i = f j
proof (cases f i = Suc n)
case True
show ?thesis
proof (cases f j = Suc n)
assume f j = Suc n
with True show ?thesis by simp

next
assume f j 6= Suc n
moreover from i ji nex have f (Suc (Suc n)) 6= f j by simp
ultimately show ?thesis using True f by simp

qed
next
case False
show ?thesis
proof (cases f j = Suc n)

24

assume f j = Suc n
moreover from i nex have f (Suc (Suc n)) 6= f i by simp
ultimately show ?thesis using False f by simp

next
assume f j 6= Suc n
with False f show ?thesis by simp

qed
qed
moreover from i have i ≤ Suc (Suc n) by simp
ultimately show ?thesis using ji by iprover

qed
qed

extract pigeonhole pigeonhole-slow

The programs extracted from the above proofs look as follows:

pigeonhole ≡
nat-rec (λx . (Suc 0 , 0))
(λx H2 xa.

nat-rec arbitrary
(λx H2 .

case search (Suc x) (λxb. nat-eq-dec (xa (Suc x)) (xa xb)) of
None ⇒ let (x , y) = H2 in (x , y) | Some p ⇒ (Suc x , p))

(Suc (Suc x)))

pigeonhole-slow ≡
nat-rec (λx . (Suc 0 , 0))
(λx H2 xa.

case search (Suc (Suc x))
(λxb. nat-eq-dec (xa (Suc (Suc x))) (xa xb)) of

None ⇒
let (x , y) = H2 (λi . if xa i = Suc x then xa (Suc (Suc x)) else xa i)
in (x , y)

| Some p ⇒ (Suc (Suc x), p))

The program for searching for an element in an array is

search ≡
λx H . nat-rec None

(λy Ha.
case Ha of None ⇒ case H y of Left ⇒ Some y | Right ⇒ None
| Some p ⇒ Some p)

x

The correctness statement for pigeonhole is

(
∧

i . i ≤ Suc n =⇒ f i ≤ n) =⇒
fst (pigeonhole n f) ≤ Suc n ∧
snd (pigeonhole n f) < fst (pigeonhole n f) ∧
f (fst (pigeonhole n f)) = f (snd (pigeonhole n f))

25

In order to analyze the speed of the above programs, we generate ML code
from them.

definition
test n u = pigeonhole n (λm. m − 1)

definition
test ′ n u = pigeonhole-slow n (λm. m − 1)

definition
test ′′ u = pigeonhole 8 (op ! [0 , 1 , 2 , 3 , 4 , 5 , 6 , 3 , 7 , 8])

consts-code
arbitrary :: nat ({∗ 0 ::nat ∗})
arbitrary :: nat × nat ({∗ (0 ::nat , 0 ::nat) ∗})

definition
arbitrary-nat-pair :: nat × nat where
[symmetric, code inline]: arbitrary-nat-pair = arbitrary

definition
arbitrary-nat :: nat where
[symmetric, code inline]: arbitrary-nat = arbitrary

code-const arbitrary-nat-pair (SML (∼1 , ∼1))

code-const arbitrary-nat (SML ∼1)

code-module PH1
contains

test = test
test ′ = test ′

test ′′ = test ′′

export-code test test ′ test ′′ in SML module-name PH2

ML timeit (PH1 .test 10)
ML timeit (PH2 .test 10)

ML timeit (PH1 .test ′ 10)
ML timeit (PH2 .test ′ 10)

ML timeit (PH1 .test 20)
ML timeit (PH2 .test 20)

ML timeit (PH1 .test ′ 20)
ML timeit (PH2 .test ′ 20)

ML timeit (PH1 .test 25)
ML timeit (PH2 .test 25)

26

ML timeit (PH1 .test ′ 25)
ML timeit (PH2 .test ′ 25)

ML timeit (PH1 .test 500)
ML timeit (PH2 .test 500)

ML timeit PH1 .test ′′

ML timeit PH2 .test ′′

end

7 Euclid’s theorem

theory Euclid
imports ∼∼/src/HOL/NumberTheory/Factorization Efficient-Nat Util
begin

A constructive version of the proof of Euclid’s theorem by Markus Wenzel
and Freek Wiedijk [4].
lemma prime-eq : prime p = (1 < p ∧ (∀m. m dvd p −→ 1 < m −→ m = p))
apply (simp add : prime-def)
apply (rule iffI)
apply blast
apply (erule conjE)
apply (rule conjI)
apply assumption
apply (rule allI impI)+
apply (erule allE)
apply (erule impE)
apply assumption
apply (case-tac m=0)
apply simp
apply (case-tac m=Suc 0)
apply simp
apply simp
done

lemma prime-eq ′: prime p = (1 < p ∧ (∀m k . p = m ∗ k −→ 1 < m −→ m =
p))
by (simp add : prime-eq dvd-def all-simps [symmetric] del : all-simps)

lemma factor-greater-one1 : n = m ∗ k =⇒ m < n =⇒ k < n =⇒ Suc 0 < m
by (induct m) auto

lemma factor-greater-one2 : n = m ∗ k =⇒ m < n =⇒ k < n =⇒ Suc 0 < k
by (induct k) auto

27

lemma not-prime-ex-mk :
assumes n: Suc 0 < n
shows (∃m k . Suc 0 < m ∧ Suc 0 < k ∧ m < n ∧ k < n ∧ n = m ∗ k) ∨

prime n
proof −

{
fix k
from nat-eq-dec
have (∃m<n. n = m ∗ k) ∨ ¬ (∃m<n. n = m ∗ k)
by (rule search)

}
hence (∃ k<n. ∃m<n. n = m ∗ k) ∨ ¬ (∃ k<n. ∃m<n. n = m ∗ k)
by (rule search)

thus ?thesis
proof
assume ∃ k<n. ∃m<n. n = m ∗ k
then obtain k m where k : k<n and m: m<n and nmk : n = m ∗ k
by iprover

from nmk m k have Suc 0 < m by (rule factor-greater-one1)
moreover from nmk m k have Suc 0 < k by (rule factor-greater-one2)
ultimately show ?thesis using k m nmk by iprover

next
assume ¬ (∃ k<n. ∃m<n. n = m ∗ k)
hence A: ∀ k<n. ∀m<n. n 6= m ∗ k by iprover
have ∀m k . n = m ∗ k −→ Suc 0 < m −→ m = n
proof (intro allI impI)
fix m k
assume nmk : n = m ∗ k
assume m: Suc 0 < m
from n m nmk have k : 0 < k
by (cases k) auto

moreover from n have n: 0 < n by simp
moreover note m
moreover from nmk have m ∗ k = n by simp
ultimately have kn: k < n by (rule prod-mn-less-k)
show m = n
proof (cases k = Suc 0)
case True
with nmk show ?thesis by (simp only : mult-Suc-right)

next
case False
from m have 0 < m by simp
moreover note n
moreover from False n nmk k have Suc 0 < k by auto
moreover from nmk have k ∗ m = n by (simp only : mult-ac)
ultimately have mn: m < n by (rule prod-mn-less-k)
with kn A nmk show ?thesis by iprover

qed
qed

28

with n have prime n
by (simp only : prime-eq ′ One-nat-def simp-thms)

thus ?thesis ..
qed

qed

Unfortunately, the proof in the Factorization theory using metis is non-
constructive.

lemma split-primel ′:
primel xs =⇒ primel ys =⇒ ∃ l . primel l ∧ prod l = prod xs ∗ prod ys
apply (rule exI)
apply safe
apply (rule-tac [2] prod-append)
apply (simp add : primel-append)
done

lemma factor-exists: Suc 0 < n =⇒ (∃ l . primel l ∧ prod l = n)
proof (induct n rule: nat-wf-ind)
case (1 n)
from 〈Suc 0 < n〉

have (∃m k . Suc 0 < m ∧ Suc 0 < k ∧ m < n ∧ k < n ∧ n = m ∗ k) ∨ prime
n

by (rule not-prime-ex-mk)
then show ?case
proof
assume ∃m k . Suc 0 < m ∧ Suc 0 < k ∧ m < n ∧ k < n ∧ n = m ∗ k
then obtain m k where m: Suc 0 < m and k : Suc 0 < k and mn: m < n
and kn: k < n and nmk : n = m ∗ k by iprover

from mn and m have ∃ l . primel l ∧ prod l = m by (rule 1)
then obtain l1 where primel-l1 : primel l1 and prod-l1-m: prod l1 = m
by iprover

from kn and k have ∃ l . primel l ∧ prod l = k by (rule 1)
then obtain l2 where primel-l2 : primel l2 and prod-l2-k : prod l2 = k
by iprover

from primel-l1 primel-l2
have ∃ l . primel l ∧ prod l = prod l1 ∗ prod l2
by (rule split-primel ′)

with prod-l1-m prod-l2-k nmk show ?thesis by simp
next
assume prime n
hence primel [n] ∧ prod [n] = n by (rule prime-primel)
thus ?thesis ..

qed
qed

lemma dvd-prod [iff]: n dvd prod (n # ns)
by simp

consts fact :: nat ⇒ nat ((-!) [1000] 999)

29

primrec
0 ! = 1
(Suc n)! = n! ∗ Suc n

lemma fact-greater-0 [iff]: 0 < n!
by (induct n) simp-all

lemma dvd-factorial : 0 < m =⇒ m ≤ n =⇒ m dvd n!
proof (induct n)
case 0
then show ?case by simp

next
case (Suc n)
from 〈m ≤ Suc n〉 show ?case
proof (rule le-SucE)
assume m ≤ n
with 〈0 < m〉 have m dvd n! by (rule Suc)
then have m dvd (n! ∗ Suc n) by (rule dvd-mult2)
then show ?thesis by simp

next
assume m = Suc n
then have m dvd (n! ∗ Suc n)
by (auto intro: dvdI simp: mult-ac)

then show ?thesis by simp
qed

qed

lemma prime-factor-exists:
assumes N : (1 ::nat) < n
shows ∃ p. prime p ∧ p dvd n

proof −
from N obtain l where primel-l : primel l
and prod-l : n = prod l using factor-exists
by simp iprover

from prems have l 6= []
by (auto simp add : primel-nempty-g-one)

then obtain x xs where l : l = x # xs
by (cases l) simp

from primel-l l have prime x by (simp add : primel-hd-tl)
moreover from primel-l l prod-l
have x dvd n by (simp only : dvd-prod)
ultimately show ?thesis by iprover

qed

Euclid’s theorem: there are infinitely many primes.

lemma Euclid : ∃ p. prime p ∧ n < p
proof −
let ?k = n! + 1
have 1 < n! + 1 by simp

30

then obtain p where prime: prime p and dvd : p dvd ?k using prime-factor-exists
by iprover
have n < p
proof −
have ¬ p ≤ n
proof
assume pn: p ≤ n
from 〈prime p〉 have 0 < p by (rule prime-g-zero)
then have p dvd n! using pn by (rule dvd-factorial)
with dvd have p dvd ?k − n! by (rule dvd-diff)
then have p dvd 1 by simp
with prime show False using prime-nd-one by auto

qed
then show ?thesis by simp

qed
with prime show ?thesis by iprover

qed

extract Euclid

The program extracted from the proof of Euclid’s theorem looks as follows.

Euclid ≡ λx . prime-factor-exists (x ! + 1)

The program corresponding to the proof of the factorization theorem is

factor-exists ≡
λx . nat-wf-ind-P x

(λx H2 .
case not-prime-ex-mk x of None ⇒ [x]
| Some p ⇒ let (x , y) = p in split-primel ′ (H2 x) (H2 y))

consts-code
arbitrary ((error arbitrary))

code-module Prime
contains Euclid

ML Prime.factor-exists 1007
ML Prime.factor-exists 567
ML Prime.factor-exists 345
ML Prime.factor-exists 999
ML Prime.factor-exists 876

ML Prime.Euclid 0
ML Prime.Euclid it
ML Prime.Euclid it
ML Prime.Euclid it

end

31

References

[1] U. Berger, H. Schwichtenberg, and M. Seisenberger. The Warshall algo-
rithm and Dickson’s lemma: Two examples of realistic program extrac-
tion. Journal of Automated Reasoning, 26:205–221, 2001.

[2] T. Coquand and D. Fridlender. A proof of Higman’s lemma by structural
induction. Technical report, Chalmers University, November 1993.

[3] A. Nogin. Writing constructive proofs yielding efficient extracted pro-
grams. In D. Galmiche, editor, Proceedings of the Workshop on Type-
Theoretic Languages: Proof Search and Semantics, volume 37 of Elec-
tronic Notes in Theoretical Computer Science. Elsevier Science Publish-
ers, 2000.

[4] M. Wenzel and F. Wiedijk. A comparison of the mathematical proof
languages Mizar and Isar. Journal of Automated Reasoning, 29(3-4):389–
411, 2002.

32

	Auxiliary lemmas used in program extraction examples
	Quotient and remainder
	Greatest common divisor
	Warshall's algorithm
	Higman's lemma
	Extracting the program
	Some examples

	The pigeonhole principle
	Euclid's theorem

