HDF User’s Guide

HDF Version 4.2 Release 0 « December 2003

NCSA

University of lllinois at Urbana-Champaign

National Center for Supercomputing Applications

Copyright Notice and Statement for NCSA Hierarchical Data Format (HDF)
Software Library and Utilities

Copyright 1988-2003 The Board of Trustees of the University of Illinois

All rights reserved.

Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois, Fortner Research,
Unidata Program Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler (gzip), and Dig-
ital Equipment Corporation (DEC).

Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (including
commercial purposes) provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following dis-
claimer in the documentation and/or materials provided with the distribution.

3. In addition, redistributions of modified forms of the source or binary code must carry prominent notices stating that the
original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software must acknowledge that it was devel-
oped by the National Center for Supercomputing Applications at the University of Illinois, and credit the Contributors.

5. Neither the name of the University nor the names of the Contributors may be used to endorse or promote products derived
from this software without specific prior written permission from the University or the Contributors.

Disclaimer

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY AND THE CONTRIBUTORS "AS IS" WITH NO WAR-
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no event shall the University or the Contributors be lia-
ble for any damages suffered by the users arising out of the use of this software, even if advised of the possibility of such
damage.

Trademarks

Sun is a registered trademark, and Sun Workstation, Sun/OS and Solaris are trademarks of Sun Microsystems Inc. / UNIX is
a registered trademark of X/Open / VAX and VMS are trademarks of Digital Equipment Corporation /Macintosh is a trade-
mark of Apple Computer, Inc. / CRAY and UNICOS are registered trademarks of Silicon Graphics , Inc. / IBM PC is a regis-
tered trademark of International Business Machines Corporation ./ MS-DOS is a registered trademark of Microsoft
Corporation.

The SZIP Science Data Lossless Compression Program is Copyright (C) 2001 Science & Technology Corporation @ UNM.
All rights released. Copyright (C) 2003 Lowell H. Miles and Jack A. Venbrux. Licensed to ICs Corp. for distribution by the
University of Illinois' National Center for Supercomputing Applications as a part of the HDF data storage and retrieval file
format and software libraryproducts package. All rights reserved. Do not modify or use for other purposes. See for further
information regarding terms of use.

NCSA Contacts

Mail user feedback, bug reports, and questions to:

NCSA Scientific Data Technologies
HDF Group

152 Computing Applications Bldg.
605 E. Springfield Ave.
Champaign, IL 61820-5518

Send electronic correspondence and bug reports to the following:

hdfhelp@ncsa.uiuc.edu

Internet access

HDF is available without charge from NCSA’s anonymous FTP server:
ftp.ncsa.uiuc.edu/HDF/HDF/

It is also accessible through the HDF Group’s World Wide Web home page:
http://hdf.ncsa.uiuc.edu/

December 30, 2003

Table of Contents

Chapter 1
Introduction to HDF
1.1 Chapter OVEIVIEW . . . oottt ettt e e e e e e e e e e e e e e e e e 1
1.2 What is HDE? ..o 1
1.3 Why Was HDF Created? ot e e e e e e e e 3
1.4 High-Level HDF APIs.o e e e e e e e e e 4
1.5 NCSA HDF Command-Line Utilities and Visualization Tools 5
1.6 Primary HDF Platformso e 5
1.7 HDF4 versus HDESo 6
Chapter 2
HDF Fundamentals
2.1 Chapter OVEIVIEWottt ittt et e e e e e e e e e e e e e e 7
2.2 HDF File FOrmato e e e e e e e e e e e e 7
2.2.1 File Header.ot e e 8
222 Data ObJectot 8
2.2.2.1 Data DesCIIPLOrottt ettt e e 8
2222 Data EICMeNtsottt e 9
2.2.3 Data Descriptor Block 9
2.2.4 Grouping Data Objectsinan HDF File. 10
2.3 Basic Operations on HDF Files Using the Multifile Interfaces. 10
2.3.1 File Identifiersottt 10
2.3.2 Opening HDF Files: Hopen. e e e 11
2.3.3 Closing HDF Files: HClOSE oot e e e e 11
2.3.4 Getting the HDF Library and File Versions: Hgetlibversion and Hgetfileversion 12
2.4 Determining whether a File Is an HDF File: Hishdf/hishdff......... 13
2.5 Programming ISSUES.o 13
2.5.1 Header File Informationttt et 13
2.5.2 HDF Definitionsottt ittt e e e e e e e e e e et e e e e e 13
2.5.2.1 Standard HDF Data Types.ttt e e 13
2.5.2.2 Native Format Data Types. e 14
2.5.2.3 Little-Endian Data Types.ot e 14
2524 Tag Definitions vt ittt e e e 15
2.5.2.5 Limit Definitionsottt 15
2.5.3 FORTRAN-77 and C Language Issues i, 16
Chapter 3
Scientific Data Sets (SD API)
3.1 Chapter OVEIVIEW . .. oottt et e e e e e e e e e e e e e e 19
3.2 The Scientific Data Set Data Model i 19
3.2.1 Required SDS COMPONENLS.ottt ettt et e e e e e e 20
3.2.2 Optional SDS COMPONENLS . . .« o vttt ettt et e e e e e e e e e e et 21
3.2.3 Annotations andthe SD DataModel. i 21
33 The SDINterface e e e 22
3.3.1 Header and Include Files Used by the SD Interface 22
3.3.2 SDInterface ROULINGSot 22
3.3.3 Tagsinthe SDInterface i 24

December 30, 2003 TOC-i

National Center for Supercomputing Applications Table of Contents

3.4 Programming Model for the SD Interface i 25
3.4.1 Establishing Access to Files and Data Sets: SDstart, SDcreate, and SDselect 26
3.4.2 Terminating Access to Files and Data Sets: SDendaccessand SDend 27

3.5 Writing Data to an SDS 30
3.5.1 Writing Data to an SDS Array: SDwritedata. i 30

3.5.1.1 Filling an Entire ATTay.ttt et e e et e e et e 32
3.5.1.2 Writing Slabs to an SDS Arrayot 35
3.5.1.3 Appending Data to an SDS Array along an Unlimited Dimension. 40
3.5.1.4 Determining whether an SDS Array is Appendable: SDisrecord 41
3.5.1.5 Setting the Block Size: SDsetblocksize. i 41
3.5.2 Compressing SDS Data: SDSEtCOMPIESS. . . .« .o vttt ettt e e 45
3.5.3 External File Operationsttt e e 50
3.5.3.1 Specifying the Directory Search Path of an External File: HXsetdir 51
3.5.3.2 Specifying the Location of the Next External File to be
Created: HXsetcreatedir.o. ittt e e e 51
3.5.3.3 Creating a Data Set with Data Stored in an External File: SDsetexternalfile 52
3.5.3.4 Moving Existing Datatoan External File.......... 53

3.6 Reading Data from an SDS Array: SDreaddata. i 55

3.7 Obtaining Information about SD Data Sets e 63
3.7.1 Obtaining Information about the Contents of a File: SDfileinfo........................... 63
3.7.2 Obtaining Information about a Specific SDS: SDgetinfo 63
3.7.3 Obtaining Data Set Compression Information: SDgetcompressc..coviienn.... 64
3.7.4 Determining whether an SDS is empty: SDcheckempty 64
3.7.5 Locating an SDS by Name: SDnametoindeX.ttt 67
3.7.6 Locating an SDS by Reference Number: SDreftoindex 68
3.7.7 Obtaining the Reference Number Assigned to the Specified SDS: SDidtoref 68
3.7.8 Creating SDS Arrays Containing Non-standard Length Data: SDsetnbitdataset 71

3.8 SDS Dimension and Dimension Scale Operationsouuiieneneenenenennenen .. 72
3.8.1 Selecting a Dimension: SDgetdimid 73
3.8.2 Naming a Dimension: SDsetdimname. ittt 73
3.8.3 Old and New Dimension Implementationsttt annnen.. 74

3.8.3.1 Setting the Future Compatibility Mode of a Dimension: SDsetdimval_comp 74
3.8.3.2 Determining the Current Compatibility Mode of a Dimension:
SDisSdimVal_bWCOMPottt 74
3.8.4 DImension SCales.ottt e 75
3.8.4.1 Writing Dimension Scales: SDsetdimscale 75
3.8.4.2 Obtaining Dimension Scale and Other Dimension Information: SDdiminfo 75
3.8.4.3 Reading Dimension Scales: SDgetdimscale 76
3.8.4.4 Distinguishing SDS Arrays from Dimension Scales: SDiscoordvar. 82
3.8.5 Related Data Sets.ottt 84

3.9 User-defined AtriDULESottt e 85
3.9.1 Creating or Writing User-defined Attributes: SDsetattr, 86
3.9.2 Querying User-defined Attributes: SDfindattr and SDattrinfo 89
3.9.3 Reading User-defined Attributes: SDreadattr it 90

3.10 Predefined AttribUtesttt 96
3.10.1 Accessing Predefined Attributes i 97
3.10.2 SDS String AttribDULes.« .ottt e 98

3.10.2.1 Writing String Attributes of an SDS: SDsetdatastrs 98
3.10.2.2 Reading String Attributes of an SDS: SDgetdatastrs. oo oiiinenn. .. 98
3.10.3 String Attributes of DIMeNnSionsc. ittt e 99
3.10.3.1 Writing a String Attribute of a Dimension: SDsetdimstrs. 99
3.10.3.2 Reading a String Attribute of a Dimension: SDgetdimstrs 99

TOC-ii December 30, 2003

3.10.4 Range AttriDULesottt 100

3.10.4.1 Writing a Range Attribute: SDsetrange 100
3.10.4.2 Reading a Range Attribute: SDgetrange.ttt 101
3.10.5 Fill Values and Fill Mode o 101
3.10.5.1 Writing a Fill Value Attribute: SDsetfillvalue 102
3.10.5.2 Reading a Fill Value Attribute: SDgetfillvalue 102
3.10.5.3 Setting the Fill Mode for all SDSs in the Specified File: SDsetfillmode. 102
3.10.6 Calibration AtriDULES ottt ettt e e e e e 103
3.10.6.1 Setting Calibration Information: SDsetcal 103
3.10.6.2 Reading Calibrated Data: SDgetcal 104
3.11 Chunked (or Tiled) Scientific Data SetS.ttt it et e 105
3.11.1 Making an SDS a Chunked SDS: SDsetchunk.ttt i, 105
3.11.2 Setting the Maximum Number of Chunks in the Cache: SDsetchunkcache 107
3.11.3 Writing Data to Chunked SDSs: SDwritechunk and SDwritedata. 108
3.11.4 Reading Data from Chunked SDSs: SDreadchunk and SDreaddata 110
3.11.5 Obtaining Information about a Chunked SDS: SDgetchunkinfo 110
3012 GhOSt ATCAS. . ¢ v vttt et e e e 121
303 netCDF . ..o 121
3.13.1 HDF Interface vs. netCDF Interface. i 122
Chapter 4
Vdatas (VS API)
4.1 Chapter OVeIVIEW . . o\ vt ittt ettt e e e e e e e e e e e e e e e e 125
4.2 The Vdata Model e 125
4.2.1 Recordsand Fieldso 126
4.3 The VdataInterface. i e 126
4.3.1 Header Files Used by the Vdata Interface 126
4.3.2 Vdata Library ROULINES.o e e e e 126
4.3.3 Identifying Vdatas in the Vdata Interface. 129
4.3.4 Programming Model for the VdataInterface 129
4.3.5 Accessing Files and Vdatas: Vstartand VSattach 130
4.3.6 Terminating Access to Vdatas and Files: VSdetachand Vend. 130
4.4 Creating and Writing to Single-Field Vdatas: VHstoredata and VHstoredatam 135
4.5 Writing to Multi-Field Vdatas. e 140
4.5.1 Creating Vdatas.ottt e e 140
4.5.1.1 Assigning a Vdata Name and Class: VSsetname and VSsetclass 141
4.5.1.2 Defining a Field within a Vdata: VSfdefine........... 141
4.5.1.3 Initializing the Fields for Write Access: VSsetfields 142
4.5.1.4 Specifying the Interlace Mode: VSsetinterlaceo, 142
4.5.2 Writing Data to Vdatasottt e 143
4.5.2.1 Resetting the Current Position within Vdatas: VSseek 144
4.5.2.2 Writingtoa Vdata: VSWIIte.ottt ettt 145
4.5.2.3 Setting Up Linked Block Vdatas: VSsetblocksize and VSsetnumblocks 150
4.5.2.4 Packing or Unpacking Field Data: VSfpack. 151
4.6 Reading from Vdatasttt e 157
4.6.1 Initializing the Fields for Read Access: VSsetfields. 158
4.6.2 Reading from the Current Vdata: VSread. i 158
4.7 Searching for Vdatasina File. e 166
4.7.1 Finding All Vdatas that are Not Members of a Vgroup: VSlone 166
4.7.2 Sequentially Searching for a Vdata: VSgetid i 167
4.7.3 Determining a Reference Number from a Vdata Name: VSfind 167

December 30, 2003

TOC-ii

National Center for Supercomputing Applications Table of Contents

4.7.4 Searching for a Vdata by Field Name: VSfexist 168
4.8 Vdata AtribULes 171
4.8.1 Querying the Index of a Vdata Field Given the Field Name: VSfindex 171
4.8.2 Setting the Attribute of a Vdata or Vdata Field: VSsetattr 172
4.8.3 Querying the Values of a Vdata or Vdata Field Attribute: VSgetattr 172
4.8.4 Querying the Total Number of Vdata and Vdata Field Attributes: VSnattrs. 173
4.8.5 Querying the Number of Attributes of a Vdata or a Vdata Field: VSfnattrs. 173
4.8.6 Retrieving the Index of a Vdata or Vdata Field Attribute Given the Attribute
Name: VSEindattr 174
4.8.7 Querying Information on a Vdata or Vdata Field Attribute: VSattrinfo 174
4.8.8 Determining whether a Vdata Is an Attribute: VSisattr. 175
4.9 Obtaining Information about a Specific Vdata i 180
4.9.1 Obtaining Vdata Information: VSinquire i, 180
4.9.2 Obtaining Linked Block Information: VSgetblockinfo........... 184
4.9.3 VSQuery Vdata Information Retrieval Routines. 184
4.9.4 Other Vdata Information Retrieval Routines. 185
4.9.5 VF Field Information Retrieval Routines 186
Chapter 5
Vgroups (V API)
5.1 Chapter OVEIVIEWttt ettt et e e e e e e e e e e e et e e e e 189
5.2 The Vgroup Data Model e e e e et e et e 189
5.2.1 Vgroup Names and Classes v vttt e e ettt et 189
5.2.2 Vgroup OrganizZationv vttt ettt et et et e et e e 190
5.2.3 An Example USing VEIOUPSo vttt e et e et e 191
5.3 The Vgroup Interface i e e e e 192
5.3.1 Vgroup Interface ROULINES.ottt e e et 192
5.3.2 Identifying Vgroups in the Vgroup Interface. i, 194
5.4 Programming Model for the Vgroup Interface i 194
5.4.1 Accessing Files and Vgroups: Vstartand Vattach. 194
5.4.2 Terminating Access to Vgroups and Files: Vdetachand Vend 195
5.5 Creating and Writing t0 @ VEIOUDot vttt ittt e e e et e et ettt 196
5.5.1 Assigning a Vgroup Name and Class: Vsetname and Vsetclass, 197
5.5.2 Inserting Any HDF Data Object into a Vgroup: Vaddtagref............. 197
5.5.3 Inserting a Vdata or Vgroup Into a Vgroup: Vinsert.co i, 197
5.6 Reading from V@roUPS.ottt e e e e 209
5.6.1 Locating Vgroups and Obtaining Vgroup Information 209
5.6.1.1 Locating Lone Vgroups: VIOneottt e eeeae 209
5.6.1.2 Sequentially Searching fora Vgroup: Vgetid 210
5.6.1.3 Obtaining the Name of a Vgroup: Vgetname0 it 210
5.6.1.4 Obtaining the Class Name of a Vgroup: Vgetclass, 211
5.6.1.5 Locating a Vgroup Given Its Name: Vfind 211
5.6.1.6 Locating a Vgroup Given Its Class Name: Vfindclass 211
5.6.2 Obtaining Information about the Contentsof a Vgroupo, 215
5.6.2.1 Obtaining the Number of Objects in a Vgroup: Vntagrefs 215
5.6.2.2 Obtaining the Tag/Reference Number Pair of a Data Object within
aVgroup : Vgettagref. e 215
5.6.2.3 Obtaining the Tag/Reference Number Pairs of Data Objects in
aVgroup: Vgettagrefs e 216
5.6.2.4 Testing Whether a Data Object Belongs to a Vgroup: Vinqtagref 216
5.6.2.5 Testing Whether a Data Object within a Vgroup is a Vgroup: Visvg.................. 217

TOC-iv December 30, 2003

5.6.2.6 Testing Whether an HDF Object within a Vgroup is a Vdata: Visvs.

5.6.2.7 Locating a Vdata in a Vgroup Given Vdata Fields: Vflocate.

5.6.2.8 Retrieving the Number of Tags of a Given Type in a Vgroup: Varefs

5.6.2.9 Retrieving the Reference Number of a Vgroup: VQueryref

5.6.2.10 Retrieving the Tag of a Vgroup: VQuerytagttt

5.7 Deleting Vgroups and Data Objects within a Vgroup
5.7.1 Deleting a Vgroup from a File: Vdelete i
5.7.2 Deleting a Data Object from a Vgroup: Vdeletetagref.............

5.8 Vgroup ALrIDULESottt e e e
5.8.1 Obtaining the Vgroup Version Number of a Given Vgroup: Vgetversion.
5.8.2 Obtaining Information on a Given Vgroup Attribute: Vattrinfo
5.8.3 Obtaining the Total Number of Vgroup Attributes: Vnattrs.
5.8.4 Setting the Attribute of a Vgroup: Vsetattr. it
5.8.5 Retrieving the Values of a Given Vgroup Attribute: Vgetattr
5.8.6 Retrieving the Index of a Vgroup Attribute Given the Attribute Name: Vfindattr

5.9 Obsolete Vgroup Interface Routines. i i i i
5.9.1 Determining the Next Vgroup or Vdata Identifier: Vgetnext.
5.9.2 Determining the Number of Members and Vgroup Name: Vinquire.
5.10 Vgroup Backward Compatibility ISSues. i i i i
5.10.1 Vset Implementation Integrated into the Vgroup Interface

Chapter 6
8-Bit Raster Images (DFRS8 API)

6.1 Chapter OVEIVIBW . . . oottt ettt et e e e e e e e e e e e e e e et e
6.2 The 8-Bit Raster Data Model e e e
6.2.1 Required 8-Bit Raster Image Data Set Objects. it
6.2.1.1 8-Bit Raster Image Data Representationttt innnnnn..
6.2.1.2 8-Bit Raster Image DIimensionttt et ie e
6.2.2 Optional 8-Bit Raster Image Data Set Objects.vi i i
60.2.2.1 Palettesottt e
6.2.3 Compression Method e
6.3 The 8-Bit Raster Image Interface i i e
6.3.1 8-Bit Raster Image Library Routinest
6.4 Writing 8-Bit Raster Imagesot e
6.4.1 Storing a Raster Image: DFR8putimage and DFR8addimage
6.4.2 Adding a Palette to an RIS8 Object: DFRS8setpalette.,
6.4.3 Compressing 8-Bit Raster Image Data: DFR8setcompresscoovtitiinnenn.n..
6.4.4 Specifying the Reference Number of an RIS8: DFR8writeref.............................
6.5 Reading 8-Bit Raster Imagesttt e e e
6.5.1 Reading a Raster Image: DFR8getimage ittt
6.5.2 Querying the Dimensions of an 8-Bit Raster Image: DFR8getdims
6.5.3 Reading an Image with a Given Reference Number: DFR8readref.........................
6.5.4 Specifying the Next 8-Bit Raster Image to be Read: DFRS8restart.
6.6 8-Bit Raster Image Information Retrieval Routines.
6.6.1 Querying the Total Number of 8-Bit Raster Images: DFR8nimages

6.6.2 Determining the Reference Number of the Most-Recently-Accessed
8-Bit Raster Image: DFRS8lastref

6.6.3 Determining the Reference Number of the Palette of the

Most-Recently-Accessed 8-Bit Raster Image: DFR8getpalref

December 30, 2003

TOC-v

National Center for Supercomputing Applications Table of Contents

6.7 RIS8 Backward Compatibility ISSUESt e 248
6.7.1 Attribute "long_name" Included in HDF for netCDF Compatibility. 248
6.7.2 Raster Image Group Implementation with New RIS8 Tags 248

Chapter 7

24-bit Raster Images (DF24 API)

T.1 Chapter OVEIVIBW . .ottt ettt et e et e e e e e e e et et e et et 251

7.2 The 24-Bit Raster Data Model e 251
7.2.1 Required 24-Bit Raster Image Data Set Objectsottt 251

7.2.1.1 24-Bit Raster Image Data Representation, 251
7.2.1.2 24-Bit Raster Image Dimension.t e 252
7.2.2 Optional 24-Bit Raster Image Data Set Objectsttt 252
7.2.2.1 Compression Method. e e e 252
7.2.2.2 Interlace MOdEs oottt e 253

7.3 The 24-Bit Raster Interface i e e 254
7.3.1 24-Bit Raster Image Library Routines. it 254

7.4 Writing 24-Bit Raster Imagest e 255
7.4.1 Writing a 24-Bit Raster Image: DF24putimage and DF24addimage. 255
7.4.2 Setting the Interlace Format: DF24setil. i i 257
7.4.3 Compressing Image Data: DF24setcompress and d2Sjpeg oo v i inin i e 258

7.5 Reading 24-Bit Raster Images oottt e e e 260
7.5.1 Reading a Raster Image: DF24getimageottt e e 260
7.5.2 Determining the Dimensions of an Image: DF24getdims i, 261
7.5.3 Modifying the Interlacing of an Image: DF24reqil 261
7.5.4 Reading a 24-Bit Raster Image with a Given Reference Number: DF24readref. 263
7.5.5 Specifying that the Next Image Read to be the First 24-Bit Raster Image

inthe File: DF24restartt e e e 263

7.6 24-Bit Raster Image Information Retrieval Routines 264
7.6.1 Querying the Total Number of Images in a File: DF24nimages 264
7.6.2 Querying the Reference Number of the Most Recently Read or Written

24-Bit Raster Image: DF24lastref. e 264

Chapter 8

General Raster Images (GR API)

8.1 Chapter OVEIVIEWottt ettt e 265

8.2 The GR Data Model. e e 265
8.2.1 Required GR Data Set COmMPONENtS.ottt ettt e e 266
8.2.2 Optional GR Data Set COMPONENLSottt ettt ettt et 267

8.3 The GRINterfaceot e e e e e 267
8.3.1 GR Interface Routines e 267

8.4 Header Files Required by the GR Interface. 269

8.5 Programming Model for the GR Interface. i 269
8.5.1 Accessing Images and Files: GRstart, GRselect, and GRcreate 270
8.5.2 Terminating Access to Images and Files: GRendaccessand GRend. 271

8.6 Writing Raster Images 272
8.6.1 Writing Raster Images: GRwriteimage i 272
8.6.2 Compressing Raster Images: GRSetcompressttt 281
8.6.3 External File Operations Using the GR Interface 282

8.6.3.1 Creating a Raster Image in an External File: GRsetexternalfile 282
8.6.3.2 Moving Raster Images to an External File 283
8.7 Reading Raster Images.ot 283

TOC-vi December 30, 2003

8.7.1 Reading Data from an Image: GRreadimage i, 284

8.7.2 Setting the Interlace Mode for an Image Read: GRreqimageil. 284
8.8 Difference between the SD and GR Interfaces. 290
8.9 Obtaining Information about Files and Raster Images o .. 290
8.9.1 Obtaining Information about the Contents of a File: GRfileinfo 290
8.9.2 Obtaining Information about an Image: GRgetiminfo 291
8.9.3 Obtaining the Reference Number of a Raster Image from Its Identifier: GRidtoref 291
8.9.4 Obtaining the Index of a Raster Image from Its Reference Number: GRreftoindex 292
8.9.5 Obtaining the Index of a Raster Image from Its Name: GRnametoindex. 292
8.9.6 Obtaining Compression Information for a Raster Image: GRgetcompress 292
8.10 GR Data Set Attributesot e 297
8.10.1 Predefined GR Attributeso e 297
8.10.2 Setting User-defined Attributes: GRsetattr. 297
8.10.3 Querying User-Defined Attributes: GRfindattr and GRattrinfo. 301
8.10.4 Reading User-defined Attributes: GRgetattr i, 301
8.11 Reading and Writing Palette Data Using the GR Interface. 306
8.11.1 Obtaining a Palette ID: GRgetlutid. 306
8.11.2 Obtaining the Number of Palettes Associated with an Image: GRgetnluts 307
8.11.3 Obtaining the Reference Number of a Specified Palette: GRIuttoref. 307
8.11.4 Obtaining Palette Information: GRgetlutinfo........ 307
8.11.5 Writing Palette Data: GRwritelut e 308
8.11.6 Setting the Interlace Mode for a Palette: GRreqlutil 308
8.11.7 Reading Palette Data: GRreadlut i 309
8.12 Chunked Raster IMagesttt e e e e 316
8.12.1 Difference between a Chunked Raster Image and a Chunked SDS........... 317
8.12.2 Making a Raster Image a Chunked Raster Image: GRsetchunk. 317
8.12.3 Writing a Chunked Raster Image: GRwritechunk 318
8.12.4 Reading a Chunked Raster Image: GRreadchunk 325
8.12.5 Obtaining Information about a Chunked Raster Image: GRgetchunkinfo................... 325
8.12.6 Setting the Maximum Number of Chunks in the Cache: GRsetchunkcache 326
Chapter 9
Palettes (DFP API)
9.1 Chapter OVEIVIEW . . . o .ottt e e e e e e e e 329
9.2 The Palette Data Model. 329
9.3 The Palette APIL. 330
9.3.1 Palette Library ROULNESot e e e et et e 330
9.4 Writing Palettes.ot e 330
9.4.1 Writing a Palette: DFPaddpal and DFPputpal 330
9.4.2 Specifying the Reference Number of a Palette: DFPwriteref. 332
9.5 Reading a Palette.ot e 332
9.5.1 Reading a Palette: DFPgetpal i e e e 332
9.5.2 Reading a Palette with a Given Reference Number: DFPreadref. 334
9.5.3 Specifying the Next Palette to be Accessed to be the First Palette: DFPrestart. 334
9.6 Other Palette ROULINES e e 334
9.6.1 Querying the Number of Palettes ina File: DFPnpals 334
9.6.2 Obtaining the Reference Number of the Most Recently Accessed Palette: DFPlastref. 335
9.7 Backward Compatibility ISSUESo e 335

December 30, 2003

TOC-vii

National Center for Supercomputing Applications Table of Contents

Chapter 10
Annotations (AN API)
10.1 Chapter OVEIVIEWottt et e e e e e e e e e e e e e 337
10.2 The Annotation Data Model. e 337
10.2.1 Labels and DesCriptions.ottt e e e e e 337
10.2.2 File ANNOtAtIONS ¢ ottt ettt e e e e e e e e e e e e e 338
10.2.3 Object ANNOALIONSo\ttt ittt et e et e et e e e e e 338
10.2.4 Terminology. . . . oottt et e e e e e 339
10.3 The AN INEEITACE oottt ettt e e e e e e e e e e e e e e 339
10.3.1 AN Library RoUtines o 339
10.3.2 Type and Tag Definitions Used in the AN Interface, 340
10.3.3 Programming Model for the AN Interface. 340
10.3.4 Accessing Files and Annotations: ANstart, ANcreatef, and ANcreate 341
10.3.5 Terminating Access to Annotations and Files: ANendaccess and ANend 341
10.4 Writing an Annotation: ANWIIteannt et 342
10.5 Reading Annotations Using the AN Interface 347
10.5.1 Selecting an Annotation: ANSEIECt ittt e 347
10.5.2 Reading an Annotation: ANreadann i 347
10.6 Obtaining Annotation Information Using the AN Interface 351
10.6.1 Obtaining the Number of Annotations: ANfileinfo.......... 351
10.6.2 Getting the Length of an Annotation: ANannlen. i, 351
10.6.3 Obtaining the Number of Specifically-typed Annotations of a Data Object:
ANDUMANDL. « . oot et e e e e e e e e e e e e 352
10.6.4 Obtaining the List of Specifically-typed Annotation Identifiers of a Data
Object: ANANDLIStot e 352
10.6.5 Obtaining the Tag/Reference Number Pair of the Specified Annotation
Index and Type: ANget_tagref e 353
10.6.6 Obtaining the Tag/Reference Number Pair from a Specified Annotation
Identifier: ANId2tagref e 353
10.6.7 Obtaining the Annotation Identifier from a Specified Tag/Reference
Number Pair: ANtagref2id 354
10.6.8 Obtaining an Annotation Tag from a Specified Annotation Type: ANatype2tag............. 354
10.6.9 Obtaining an Annotation Type from a Specified Object Tag: ANtag2atype................. 354
Chapter 11
Single-file Annotations (DFAN API)
11.1 Chapter OVEIVIEWttt e e e e e e e e e e e e e e e 361
11.2 The Single-file Annotation Interface 361
11.2.1 DFAN Library Routines. 361
11.2.2 Tags in the Annotation Interface 362
11.3 Programming Model for the DFAN Interface 363
11.4 Writing ANNOtAtiONS.ottt ittt ettt ettt e e e e e e e 363
11.4.1 Assigning a File Label: DFANaddfid i, 363
11.4.2 Assigning a File Description: DFANaddfds 363
11.4.3 Assigning an Object Label: DFANputlabel. i ... 365
11.4.4 Assigning an Object Description: DFANputdesc 365
11.5 Reading ANNOtAtiONSttt ettt e ettt 367
11.5.1 Reading a File Label: DFANgetfidlen and DFANgetfid. 367
11.5.2 Reading a File Description: DFANgetfdslen and DFANgetfds. 368
11.5.3 Reading an Object Label: DFANgetlablen and DFANgetlabel. 370

TOC-viii December 30, 2003

11.5.4 Reading an Object Description: DFANgetdesclen and DFANgetdesc. 371
11.6 Maintenance ROULINES.ottt e e e e e e e 373
11.6.1 Clearing the DFAN Interface Internal Structures and Settings: DFANclear 373
11.7 Determining Reference Numbers 373
11.7.1 Determining a Reference Number for the Last Object Accessed:
DF*lastref and DF*writeref 373
11.7.2 Querying a List of Reference Numbers for a Given Tag: DFANIlablist. 374
11.7.3 Locate an Object by Its Tag and Reference Number: Hfind 376
Chapter 12
Single-File Scientific Data Sets (DFSD API)
12.1 Chapter OVeIVIEW . . o\ttt ettt e e e e e e e e e e e e e e et e e e 377
12.2 The DFSD Scientific Data Set DataModel 377
12.2.1 Required DFSD SDS Objects. . . oottt ettt e e e e e e et e e 377
12.2.1.1 DIMENSIONS . . ¢ vttt ettt e e e e e e e e e e e e 378
12.2.2 Optional DFESD SDS ODbjJeCtS . . . oottt ettt et et e ettt et 378
12.2.2.1 DImension Scalesot 378
12.2.2.2 Predefined Attributest e 378
12.3 The Single-File Scientific Data Set Interface i i 378
12.3.1 DFSD Library ROULINESottt e e e ettt e et 378
12.3.2 File Identifiers in the DFSD Interface 379
12.4 Writing DFSD Scientific Data Sets e e e 380
12.4.1 Creating a DFSD Scientific Data Set: DFSDadddata and DFSDputdata. 380
12.4.2 Specifying the Data Type of a DFSD SDS: DFSDsetNT. 381
12.4.3 Overwriting Data for a Given Reference Number: DESDwriteref. 382
12.4.4 Writing Several Data Sets: DFSDsetdims and DFSDclear. 382
12.4.5 Preventing the Reassignment of DFSD Data Set Attributes: DFSDsetdims 383
12.4.6 Resetting the Default DFSD Interface Settings: DFSDclear 383
12.5 Reading DFSD Scientific Data Setst e e 384
12.5.1 Reading a DFSD SDS: DESDgetdata.ttt 384
12.5.2 Specifying the Dimensions and Data Type of an SDS: DFSDgetdims and DFSDgetNT 385
12.5.3 Determining the Number of DFSD Data Sets: DFSDndatasets and DFSDrestart 386
12.5.4 Obtaining Reference Numbers of DFSD Data Sets: DFSDreadref and DFSDlastref 387
12.6 Slabs in the DESD Interface i e e e e 387
12.6.1 Accessing Slabs: DFSDstartslab and DFSDendslab. i .. 387
12.6.2 Writing Slabs: DESDwriteslab 388
12.6.3 Reading Slabs: DFSDreadslab i e 389
12.7 Predefined Attributes and the DFSD Interface. i 390
12.7.1 Writing Data Set AttribULESottt e e e 390
12.7.1.1 Assigning String Attributes to an SDS: DFSDsetlengths and DFSDsetdatastrs 391
12.7.1.2 Assigning Value Attributes to a DFSD SDS: DFSDsetfillvalue,
DFSDsetrange, and DFSDsetcalt e 391
12.7.2 Reading DFSD Data Set Attributesttt i et 394
12.7.2.1 Reading Data Set Attributes: DFSDgetdatalen and DFSDgetdatastrs 394
12.7.2.2 Reading the Value Attributes of a DFSD Data Set: DFSDgetfillvalue and DFSDgetcal . .396
12.7.3 Writing the Dimension Attributes of aDFESD SDS i i 397
12.7.3.1 Writing the String Attributes of a Dimension: DFSDsetlengths and DFSDsetdimstrs 397
12.7.3.2 Writing a Dimension Scale of a DFSD SDS: DFSDsetdimscale 398
12.7.4 Reading the Dimension Attributes of aDFSD SDS. i 398
December 30, 2003 TOC-ix

National Center for Supercomputing Applications Table of Contents

Chapter 13
Error Reporting
8.1 Chapter OVEIVIBWttt ettt e e e e e e e e e e e e e 401
8.2 The HDF Error Reporting APL. e 401
8.3 Error Reporting in HDF o 401
8.3.1 Writing Errorstoa File: HEprint. 402
8.3.2 Returning the Code of the Nth Most Recent Error: HEvalue 402
8.3.3 Returning the Description of an Error Code: HEstring/hestringf 403
Chapter 14
HDF Performance Issues
14.1 Chapter Overview and Introduction.t e e 407
14.2 Examples of HDF Performance Enhancement. 407
14.2.1 One Large SDS versus Several Smaller SDSs. i 408
14.2.2 Sharing Dimensions between Scientific DataSets 409
14.2.3 Settingthe FIlLMOdeot e e e 411
14.2.4 Disabling Fake Dimension Scale Values in Large One-dimensional Scientific
Data Setsot 412
14.3 Data Chunkingottt e e e e 414
14.3.1 What Is Data Chunking?t e e e e e e 414
14.3.2 Writing Concerns and Reading Concerns in Chunking. 415
14.3.3 Chunking without COMPIeSSION. .« . . . oo v vttt et e et e e 415
14.3.4 Chunking with COMPIESSION v\ttt et et e et e e e 418
14.3.5 Effect of Chunk Size on Performance i 419
14.3.6 Insufficient Chunk Cache Space Can Impair Chunking Performance. 419
14.4 Block Size Tuning ISSUES« ottt e e e e e e 423
14.4.1 Tuning Data Descriptor Block Size to Enhance Performance. 423
14.4.2 Tuning Linked Block Size to Enhance Performance. 424
14.4.3 Unlimited Dimension Data Sets (SDSs and Vdatas) and Performance..................... 425
14.5 Use of the Pablo Instrumentation of HDF 425
Chapter 15
HDF Command-line Utilities
15.1 Chapter OVEIVIEWottt e e e e e e e e e e e e e e 427
15.2 Displaying Data Contained in and General Information About the Contents of an
HDF File: hdp (or HDF Dumper).o e 428
15.2.1 General DesCriptionottt et e 428
15.2.2 Command-line SynNtaxttt e 428
15.3 Displaying Data Contained in and General Information About the Contents of an
HDF File: hdp (or HDF Dumper).o e e 432
15.3.1 General DesCriptiono vttt e e e et 432
15.3.2 Command-line SYNtaxttt e 432
15.3.3 EXAMPIES . . oottt e e 433
15.4 Displaying Vdata Information: vShOW 433
15.4.1 General DesCriptionottt e e e e 433
15.4.2 Command-line SYNtaxttt 433
1543 EXAMPIES . . o oottt e 433
15.5 Converting Floating-point or Integer Data to SDS or RIS8: hdfimport. 433
15.5.1 General DesCription« vttt e e e e e e 433
15.5.2 Command-line SYNtaxttt 434

TOC-x December 30, 2003

15.5.3 Structure of Data in non-HDF Input Files 436

15.6 Converting 8-Bit Raster Images to the HDF Format: r8tohdf 437
15.6.1 General DesCriptionottt ettt et e et e e e e e e 437
15.6.2 Command-line SYNtaxttt e e 437
15.6.3 EXamples.ot 438

15.7 Converting 24-Bit Raw Raster Images to RIS8 Images: r24hdf8. 438
15.7.1 General DesCription c. ittt ettt et e e e e e e e e e e 438
15.7.2 Command-line SYNtaxttt e 438
15.7.3 EXAMPIES. . . . oottt e 439

15.8 Converting Raw Palette Data to the HDF Palette Format: paltohdf............ 439
15.8.1 General DesCriptionttt e e e e 439
15.8.2 Command-1ine SYNtaxttt e 439

15.9 Extracting 8-Bit Raster Images and Palettes from HDF Files: hdftor8 439
15.9.1 General DesCriptionttt e e e e 439
15.9.2 Command-line SYNtaxttt e 439
15.9.3 EXAMPIES. . . . oottt e 440

15.10 Extracting Palette Data from an HDF File: hdftopal 440
15.10.1 General DesCriptionttt e e e e e 440
15.10.2 Command-line SYNtaXttt et e e 440

15.11 Converting Several RIS8 Images to One 3D SDS:ristosdst 440
15.11.1 General DesCriptionttt e e e e e e 440
15.11.2 Command-line SYNtaXttt e e e e 440
I5.11.3 EXamPIeS. . . oo oottt e e e 440

15.12 Converting an HDF RIS24 Image to an HDF RIS8 Image: hdf24hdf8 441
15.12.1 General DesCriptionttt e e e e 441
15.12.2 Command-line SYNtaxXttt e e e 441

15.13 Compressing RIS8 Images in an HDF File: hdfcomp 441
15.13.1 General DesCriptionttt e e e e e 441
15.13.2 Command-line SYNtaxXttt e e e e 441
15.13.3 EXAMPIES. . . o oo ottt e 441

15.14 Compressing an HDF File: hdfpack i 442
15.14.1 General DesCriptionttt e e e e 442
15.14.2 Command-line SYNtaXttt et e 442
15.14.3 EXaMPIES. . . o oottt e 442

15.15 Reformatting an HDF File: hrepack i 442
15.15.1 General DesCriptionttt e e e e 442
15.15.2 Command-line SYNtaxXttt e e e 443

15.16 Creating Vgroups and Vdatas: vimake it i 444
15.16.1 General DesCriptionttt e e e e e 444
15.16.2 Command-line SYNtaXttt e e e e e 444
15.16.3 EXamPIeS. . . o oo ottt e 444

15.17 Listing Basic Information about Data Objects in an HDF File: hdfls. 445
15.17.1 General DesCriptionttt e e e e e 445
15.17.2 Command-line SYNtaXttt e e e 445
15.17.3 EXaMPIES. . .o oo ottt e 446

15.18 Editing the Contents of an HDF File: hdfed i 447
15.18.1 General DesCriptionttt e e e e 447
15.18.2 Command-line SYNtaXttt e e e 448

15.19 Working with Both HDF4 and HDFS File Formats i i 457

15.20 Converting an HDF File to a GIF File: hdf2gif 457
15.20.1 General DesCriptionttt e e e 457
15.20.2 Command-line Syntax and Requirements:ttt 457

December 30, 2003

TOC-xi

National Center for Supercomputing Applications Table of Contents

15.20.3 Structure of the GIF File e 457
15.20.4 Building the Utility e e 458
15.21 Converting a GIF File to an HDF File: gif2hdf o i 458
15.21.1 General DesCriptionottt e e e e 458
15.21.2 Command-line Syntax and Requirements i, 458
15.21.3 Structure of the GIF and HDF Files and the Mapping between Them 459
15.21.4 Building the Utility e e 460
15.22 Compiling C applications that Use HDF4: hdcc i 460
15.22.1 General DesCriptionottt e 460
15.22.2 Command-line SYNtax oottt 460
15.22.3 EXAMPIES . . o oottt e 461
15.23 Compiling Fortran applications that Use HDF4: hdfc.........o ... 461
15.23.1 General DesCriptionottt e e e e 461
15.23.2 Command-line SYNtaXttt e et 461
15.23.3 EXaMPIe . . .o oot 462
15.24 Updating HDF4 Compiler Tools after an Installation in a New Location: hdredeploy............. 462
15.24.1 General DesCriptionottt e e e 462
15.24.2 Command-line SYNtaXttt e et e 462
15.25 The HDF User-contributed UtIlities.ttt e e e 463
Appendices
Appendix A NCSA HDF Tagsottt e e e e 465
Al OVEIVIBW . oottt e e e 465
A2 Tag Types and DesCriptions.o vu ittt et ettt e e e 465
Appendix B HDF Installation OVEIrVIEWottt et 469
B.1 General HDF Installation OVerviewttt 469
B.1.1 Acquiring the HDF Library Sourceot 469
B.1.2 Building the HDF Library SOUIcettt i 469

TOC-xii December 31, 2003

List of Tables

TABLE 1A Primary HDF Platforms e 5
TABLE 2A Hopen Parameter List i 11
TABLE 2B File Access Code Flagsot i 11
TABLE 2C Hclose Parameter List e e 12
TABLE 2D Hgetlibversion and Hgetfileversion Parameter Lists 12
TABLE 2E Hishdf/hishdff Parameter List 13
TABLE 2F Standard HDF Data Typesand Flags i, 14
TABLE 2G Native Format Data Type Definitions 14
TABLE 2H Little-Endian Format Data Type Definitions i, 15
TABLE 21 Limit Definitions 15
TABLE 2] Correspondence Between Fortran and HDF C Data Types 17
TABLE 3A SD Interface ROUtines i 23
TABLE 3B File Access Code Flagst 26
TABLE 3C SDstart, SDcreate, SDselect, SDendaccess, and SDend Parameter Lists 27
TABLE 3D SDwritedata Parameter List 32
TABLE 3E SDisrecord Parameter List e 41
TABLE 3F SDsetblocksize Parameter List 41
TABLE 3G SDsetcompress Parameter List i 47
TABLE 3H sfscompress Parameter List i 47
TABLE 31 HXsetdir and HXsetcreatedir Parameter Lists, 52
TABLE 3] SDsetexternalfile Parameter List 53
TABLE 3K SDreaddata Parameter List i, 56
TABLE 3L SDfileinfo and SDgetinfo Parameter Lists iiiiiininann.. 65
TABLE 3M SDnametoindex, SDreftoindex, and SDidtoref Parameter Lists 68
TABLE 3N SDsetnbitdataset Parameter List 72
TABLE 30 SDgetdimid and SDsetdimname Parameter Lists 73
TABLE 3P SDsetdimval_comp and SDisdimval_bwcomp Parameter Lists 75
TABLE 3Q SDsetdimscale, SDdiminfo, and SDgetdimscale Parameter Lists 76
TABLE 3R SDiscoordvar Parameter List e 82
TABLE 3S SDsetattr, SDfindattr, SDattrinfo, and SDreadattr Parameter Lists 91
TABLE 3T Predefined Attributes List e e 96
TABLE 3U Predefined Attribute Definitions 98
TABLE 3V SDsetdatastrs and SDgetdatastrs Parameter Lists 99
TABLE 3W SDsetdimstrs and SDgetdimstrs Parameter Lists 100
TABLE 3X SDsetrange and SDgetrange Parameter Lists 101
TABLE 3Y SDsetfillvalue, SDgetfillvalue, and SDsetfillmode Parameter Lists 103
TABLE 3Z SDsetcal and SDgetcal Parameter Lists 104
TABLE 3AA SDsetchunk Parameter List i 107
TABLE 3AB sfschnk Parameter List e e 107
TABLE 3AC SDsetchunkcache Parameter List 108
TABLE 3AD SDwritechunk Parameter List 109
TABLE 3AE SDreadchunk Parameter List i 110
TABLE 3AF SDgetchunkinfo Parameter List 111
TABLE 3AG sfgichnk Parameter List e 111
TABLE 3AH Summary of HDF and XDR File Compatibility for the HDF and netCDF APIs 123
TABLE 3AI NC Interface Routine Calls and their SD Equivalents 123
TABLE 4A Vdata Interface Routines e 127
TABLE 4B Vstart, VSattach, VSdetach, and Vend Parameter Lists 131
TABLE 4C VHstoredata and VHstoredatam Parameter Lists 137
TABLE 4D Predefined Data Types and Field Names for Vdata Fields 141
December 30, 2003 LOT-xiii

National Center for Supercomputing Applications List of Tables
TABLE 4E VSsetname, VSsetclass, VSfdefine, VSsetfields, and VSsetinterlace Parameter Lists 143
TABLE 4F VSseek and VSwrite Parameter Lists 146
TABLE 4G VSsetblocksize and VSsetnumblocks Parameter Lists 151
TABLE 4H VSfpack Parameter List e i 153
TABLE 41 VSread Parameter List e 159
TABLE 4] VSlone, VSgetid, VSfind, and VSfexist Parameter Lists 168
TABLE 4K VSfindex Parameter List i 172
TABLE 4L VSsetattr and VSgetattr Parameter Lists 173
TABLE 4M VSnattrs and VSfnattrs Parameter Lists 174
TABLE 4N VSfindattr, VSattrinfo, and VSisattr Parameter Lists o u... 175
TABLE 40 VSinquire Parameter List e 181
TABLE 4P VSgetblockinfo Parameter List i 184
TABLE 4Q VSQuery Routines Parameter Lists 185
TABLE 4R VSelts, VSgetfields, VSgetinterlace, VSsizeof, VSgetname, and VSgetclass

Parameter ListSo e 186
TABLE 4S VF Routines Parameter Lists i i 187
TABLE 6A 8-Bit Raster Image Compression Method List 235
TABLE 6B DFRS8 Library Routines e 236
TABLE 6C DFR8putimage and DFR8addimage Parameter List 237
TABLE 6D DFRS8setpalette Parameter List i, 239
TABLE 6E DFR8setcompress Parameter List 240
TABLE 6F DFR8writeref Parameter List i 244
TABLE 6G DFR8getdims and DFR8getimage Parameter List 245
TABLE 6H DFR8readref Parameter List i 247
TABLE 61 DFR8nimages Parameter List 247
TABLE 6] DFR8nimages Parameter List i 248
TABLE 7A 24-Bit Raster Image Compression Method List 253
TABLE 7B 24-Bit Raster Image Interlace Format 254
TABLE 7C DF24 Library Routinesttt 254
TABLE 7D DF24putimage and DF24addimage Parameter List 255
TABLE 7E DF24setil and DF24setcompress Parameter List 259
TABLE 7F DF24getimage, DF24getdims and DF24reqil Parameter List 261
TABLE 7G DF24readref Parameter List o i 263
TABLE 7H DF24restart Parameter List i 263
TABLE 71 DF24nimages Parameter List e 264
TABLE 7] DF24lastref Parameter List i 264
TABLE 8A GR Library Routinest e 268
TABLE 8B GRstart, GRselect, GRcreate, GRendaccess, and GRend, Parameter Lists 271
TABLE 8C GRwriteimage Parameter List 273
TABLE 8D GRsetcompress Parameter List i 282
TABLE 8E GRsetexternalfile Parameter List 283
TABLE 8F GRreadimage and GRreqimageil Parameter Lists 285
TABLE 8G GRfileinfo and GRgetiminfo Parameter Lists v .. 291
TABLE 8H GRidtoref, GRreftoindex, and GRnametoindex Parameter Lists 293
TABLE 81 GRsetattr, GRfindattr, GRattrinfo, and GRgetattr Parameter Lists 302
TABLE 8] GRgetlutid, GRgetlutinfo, and GRluttoref Parameter Lists 307
TABLE 8K GRgetlutid, GRwritelut, GRreqlutil, and GRreadlut Parameter Lists 309
TABLE 8L GRsetchunk, GRgetchunkinfo, GRsetchunkcache, GRwritechunk, and

GRreadchunk Parameter Lists i 327
TABLE 9A DFP Library Routinest 330
TABLE 9B DFPputpal and DFPaddpal Parameter List oo .. 331
TABLE 9C DFPwriteref Parameter List i 332
LOT-xiv December 30, 2003

TABLE 9D

TABLE 9E

TABLE 9F

TABLE 10A
TABLE 10B
TABLE 10C
TABLE 10D
TABLE 10E
TABLE 10F
TABLE 10G

TABLE 11A
TABLE 11B
TABLE 11C
TABLE 11D
TABLE 11E
TABLE 11F
TABLE 11G
TABLE 11H
TABLE 111

TABLE 12A
TABLE 12B
TABLE 12C
TABLE 12D
TABLE 12E
TABLE 12F
TABLE 12G
TABLE 12H
TABLE 121

TABLE 12J

TABLE 12K
TABLE 12L
TABLE 12M
TABLE 12N
TABLE 120
TABLE 12P
TABLE 12Q
TABLE 12R
TABLE 8A

TABLE 8B

TABLE 14A
TABLE 14B
TABLE 14C
TABLE 14D
TABLE 14E

TABLE 14F
TABLE 14G
TABLE 14H
TABLE 15A
TABLE 15B
TABLE 15C

DFPgetpal Parameter List
DFPreadref Parameter List
DFPnpals Parameter List
AN Library Routines
ANstart, ANcreate, ANcreatef, ANendaccess and ANend Parameter Lists
ANwriteann Parameter List
ANselect and ANreadann Parameter Lists
ANfileinfo and ANannlen Parameter Lists i,
ANnumann and ANannlist Parameter Lists
ANget_tagref, ANid2tagref, ANtagref2id, ANatype2tag, and ANtag2atype

Parameter Lists
DFAN Library Routines
List of Annotation Interface Tags in HDF Versions 2.0, 3.0 and 4.0
DFANaddfid and DFANaddfds Parameter List
DFANputlabel and DFANputdesc Parameter List
DFANgetfidlen, DFANgetfid, DFANgetfdslen, and DFANgetfds Parameter List
DFANgetlablen, DFANgetlabel, DFANgetdesc and DFANgetdesclen Parameter List
DFANCclear Parameter List
List and Descriptions of the DF*writeref and DF*lastref Routines
DFANIablist Parameter List
DFSD Library Routines
DFSDadddata and DFSDputdata Parameter List.
DFSDsetNT and DFSDwriteref Parameter List
DFSDsetdims Parameter List
DFSDclear Parameter List
DFSDgetdata Parameter List
DFSDgetNT and DFSDgetdims Parameter List
DFSDreadref Parameter List
DFSDstartslab Parameter List
DFSDwriteslab Parameter List i
DFSDreadslab Parameter List
DFSDsetlengths and DFSDsetdatastrs Parameter List
DFSDsetfillvalue, DFSDsetrange and DFSDsetcal Parameter List
DFSDgetdatalen and DFSDgetdatastrs Parameter List
DFSDgetfillvalue, DFSDgetcal and DFSDgetrange Parameter List
DFSDsetlengths and DFSDsetdimstrs Parameter List
DFSDsetdimscale Parameter List i
DFSDgetdimlen, DFSDgetdimstrs and DFSDgetdimscale Parameter List
Error Reporting Routine List
HDF Error Codes
Results of the Write Operation to 1,000 1 x 1 x 1 Element Scientific Data Sets
Results of the Write Operation to One 10 x 10 x 10 Element Scientific Data Set
Results of the Write Operation to 1,000 1 x 1 x 1 Element Scientific Data Sets
Results of the Write Operation to 1,000 1 x 1 x 1 SDSs with Shared Dimensions
Results of the Write Operation to the 50 10 x 10 x 10 SDSs with the

Fill Value Write Enabled i
Results of the Write Operation to the 50 SDSs with the Fill Value Write Disabled
Results of the SDS Write Operation with the New and Old Dimension Scales
Results of the SDS Write Operation with Only the New Dimension Scale
The HDF Command-line Utilities
hdp Option Flags
The hdp Command Set

December 30, 2003

LOT-xv

National Center for Supercomputing Applications List of Tables
TABLE 15D hdiff Option Flags o e i e 432
TABLE I5E vshow Option Flags e 433
TABLE 15F hdfimport Options and Parametersottt 435
TABLE 15G hdfimport ASCII Text, Native Floating Point, or Native Integer Input Fields 436
TABLE 15H r8tohdf Option Flags e e 438
TABLE 151 hdftor8 Option Flags: o e e e e 439
TABLE 15J hdfcomp Option Flags e 441
TABLE 15K hdfpack Option Flags o e 442
TABLE I5L hdfls Option Flags e et 445
TABLE 15M hdfed Option Flagso i e e 448
TABLE 15N The hdfed Command Set i it 449
TABLE 150 h4cc Options and Compiler Optionsoiuiuniineinnnninnennennnn. 460
TABLE 15P Environment Variables i i 461
TABLE 15Q hdfc Option Flags e e e 462
TABLE 15R Environment Variables i i 462
TABLE 15S hdredeploy Option Flags i 463
TABLE OA The HDF Utility Tags it e e e 466
TABLE OB The HDF General Raster Image Tagsot 466
TABLE OC The HDF Composite Image Tagsttt 467
TABLEOD The HDF Scientific Data Set Tagsottt 467
TABLEOE The HDF VSt Tagsottt e e e e e 468
TABLEOF The Obsolete HDF Tagsot e e e e 468
LOT-xvi December 30, 2003

List of Figures

FIGURE la HDF Data StruCtuIesututin ittt 2
FIGURE 1b Three Levels of Interaction withthe HDF File 3
FIGURE 2a The Physical Layout of an HDF File Containing One Data Object 7
FIGURE 2b Two Data ODbJECtSo oottt et e e e e e e e e e e e et 8
FIGURE 2c The Contents of a Data Descriptorottt e 8
FIGURE 2d Data Descriptor Block e e 10
FIGURE 2e Use of a Function Call Converter to Route FORTRAN-77 HDF Calls to the C Library 16
FIGURE 3a The Contents of a Scientific Data Set i, 19
FIGURE 3b An Example of Access Pattern ("Strides") i 31
FIGURE 3c Dimension Records and Attributes Shared Between Related Data Sets 85
FIGURE 3d Chunk Indexing as an Offsetin Chunks i 109
FIGURE 3e Array Locations Created Beyond the Defined Dimensions of an SDS 121
FIGURE 4a VdataTable Structure o e e e 125
FIGURE 4b Three Different Vdata Structures for Data of the Same Number Type 126
FIGURE 4c Single- and Multi-component Vdatasttt 135
FIGURE 4d Interlaced and Non-Interlaced Vdata Contents i, 142
FIGURE 4e Setting the Record Pointer to the EndofaVdata 145
FIGURE 4f Writing Interlaced or Non-interlaced Buffers into Interlaced or Non-interlaced Vdatas 146
FIGURE 4g Removing Alignment Bytes When Writing Data From a C Structure toaVdata 151
FIGURE 5a Similarity of the HDF Vgroup Structure and the UNIX File System 189
FIGURE 5b Sharing Data Objects among VEIOUPSo vttt ettt et e 190
FIGURE 5¢ A Vgroup Containing Two 8-Bit Raster Images, or RIS8 Objects,and aVdata 191
FIGURE 5d Vgroup Structure Describinga Heated Mesh 192
FIGURE 6a 8-Bit Raster Image Set Contentsttt 233
FIGURE 6b The Data Representation of an 8-Bit RasterImage 234
FIGURE 7a 24-Bit Raster Image Set CONtentsttt 251
FIGURE 7b The Numerical Representation of a 24-Bit Raster Image 252
FIGURE 7c RGB Interlace Format for 24-Bit Raster Images 253
FIGURE 8a GR Data Set CONteNtsttt 265
FIGURE 8b Chunks in a GR raster image datasetttt 317
FIGURE 8c Chunked GR image as written by Cexample 320
FIGURE 8d Chunked GR image as written by FORTRAN example 321
FIGURE 9a Color Mapping Using a Palette i 329
FIGURE 10a File and Object ANNOLAtiONSttt et e ettt e 338
FIGURE 10b Object Annotations with Tag/Reference Number Pairs 338
FIGURE 12a The Contents of a Three-Dimensional DFSD Scientific DataSet 377
FIGURE 14a 1,000 1 x 1 x 1 Element Scientific Data Sets e 408
FIGURE 14b One 10 x 10 x 10 Element Scientific Data Set 409
FIGURE 14¢ 1,000 1 x 1 x 1 Element Scientific Data Sets 410
FIGURE 14d 1,000 1 x 1 x 1 Element Scientific Data Sets Sharing Dimensions 410
FIGURE 14e 50 10 x 10 x 10 Element Scientific Data Sets 411
FIGURE 14f Writing to the 50 10 x 10 x 10 Element Scientific DataSets 412
FIGURE 14g One 10,000 Element Scientific Data Set with Old- and New-Style Dimension Scales 413
FIGURE 14h One 10,000 Element Scientific Data Set with the Old-Style Dimension Scale Disabled 413
FIGURE 14i Comparison between Chunked and Non-chunked Scientific Data Sets 414
FIGURE 14} Filling a Two-dimensional Array with Data Using Row-major Ordering 415
FIGURE 14k Number of Seeks Needed to Access a Row of Data in a Non-chunked SDS 416
FIGURE 141 Number of Seeks Needed to Access a Column of Data in a Non-chunked SDS 416
FIGURE 14m Number of Seeks Needed to Access a Row of Data in a Chunked SDS 417

12/30/03

National Center for Supercomputing Applications List of Figures

FIGURE 14n Number of Seeks Needed to Access a Column of Data in a Chunked SDS 417
FIGURE 140 Compressing and Writing Chunks of Data to a Compressed and Tiled SDS 418
FIGURE 14p Extracting a Subset from a Compressed and Tiled SDS 418
FIGURE 14q Extracting a Subset from a Compressed Non-tiled SDS 419
FIGURE 14r Example 4 x 12 Element Scientific Data Set 420
FIGURE 14s 2 x 8 Element Subset of the 4 x 12 Scientific DataSet 420
FIGURE 14t 4 x 12 Element Data Set with 2 x 2 Element Tiles 421
FIGURE 14u 5 200 x 300 Element Tiles Labelled A, B,C,DandE 422
FIGURE 15a The hdfimport Utility et e 434
FIGURE 15b Structure of the GIF and HDF files i 459

LOF-xviii 12/30/03

List of Examples

Introduction to HDF

HDF Fundamentals

Scientific Data Sets (SD API)

EXAMPLE 1. Creating an HDF file and an Empty SDS. 28
EXAMPLE 2. Writing to an SDS. 32
EXAMPLE 3. Writing a Slabof Datato an SDS. e 35
EXAMPLE 4. Altering Values within an SDS Array.ot e 38
EXAMPLE 5. Appending Data to an SDS Array with an Unlimited Dimension. 41
EXAMPLE 6. Compressing SDS Data. 47
EXAMPLE 7. Moving Data to the External File. i 53
EXAMPLE 8. Reading from an SDS. e 56
EXAMPLE 9. Reading Subsets of an SDS. 58
EXAMPLE 10.Getting Information about a Fileand an SDSs. 65
EXAMPLE 11.Locating an SDS by Its Name. i 69
EXAMPLE 12.Setting and Retrieving Dimension Information. 77
EXAMPLE 13.Distinguishing a Dimension Scale from a Data SetinaFile. 82
EXAMPLE 14.Setting Atributes.ttt e e e e 87
EXAMPLE 15.Reading AttribUtes.ottt e e e e 91
EXAMPLE 16.Calibrating Data. 104
EXAMPLE 17.Writing and Reading a Chunked SDS. 111
Vdatas (VS API)

EXAMPLE 1. AccessingaVdatainan HDF File 131
EXAMPLE 2. Creating and Storing One-field Vdatas Using VHstoredata and VHstoredatam 137
EXAMPLE 3. Writing a Vdata of Homogeneous Type ottt 147
EXAMPLE 4. Writing a Multi-field and Mixed-type Vdata with Packing 153
EXAMPLE 5. Reading a Vdata of Homogeneous Typeo, 160
EXAMPLE 6. Reading a Multi-field and Mixed-type Vdata with Packing 163
EXAMPLE 7. Locating a Vdata Containing Specified Field Names 168
EXAMPLE 8. Operations on Field and Vdata Attributes 176
EXAMPLE 9. Obtaining Vdata Information i 181
Vgroups (V API)

EXAMPLE 1. Creating HDF Files and VEroupsttt 198
EXAMPLE 2. Adding an SDS to a New VEIOUDottt et e 200
EXAMPLE 3. Adding Three Vdatas into a VEIOUDoott ittt i 203
EXAMPLE 4. Obtaining Information about Lone VEroupso.iiiinninennenan. 212
EXAMPLE 5. Operations on VEroup Atributesottt ettt e 219
EXAMPLE 6. Obtaining Information about the Contents of aVgroup 226
8-Bit Raster Images (DFRS8 API)

EXAMPLE 1. Writing an 8-Bit Raster Imagetoan HDFFile 237
EXAMPLE 2. Writing a Palette and an Image in RIS§ Format 239
EXAMPLE 3. Writing a Set of Compressed 8-Bit Raster Images 241
EXAMPLE 4. Compressing and Writing a 8-Bit RasterImage 242
EXAMPLE 5. Reading an 8-BitRaster Image i 246

December 30, 2003 LOE-xix

National Center for Supercomputing Applications List of Examples

24-bit Raster Images (DF24 API)

EXAMPLE 1. Writing a 24-Bit Raster Imagetoan HDF File 256
EXAMPLE 2. Writing 24-Bit Raster Images Using Scan-plane Interlacing 257
EXAMPLE 3. Compressing and Writing a 24-Bit Raster Image 259
EXAMPLE 4. Reading a 24-Bit Raster Image froman HDF File 262
General Raster Images (GR API)

EXAMPLE 1. Creating and WritingaRasterImage 273
EXAMPLE 2. Modifying an Existing Raster Image i .. 276
EXAMPLE 3. Reading a Raster Image. i 285
EXAMPLE 4. Obtaining File and Image Information. 293
EXAMPLE 5. Operations on File and Raster Image Attributes. 297
EXAMPLE 6. Obtaining File and Image Attribute. 302
EXAMPLE 7. Writing a Palette. e 310
EXAMPLE 8. Reading a Palette. i e e 313
EXAMPLE 9. Creating and Writing a Chunked RasterImage 320
Palettes (DFP API)

EXAMPLE 1. Writing aPalette 331
EXAMPLE 2. Reading a Palette e 333
Annotations (AN API)

EXAMPLE 1. Creating File and Data Annotationsc..ouueuniineenneneinnennennnn. 343
EXAMPLE 2. Reading File and Data Annotationsuutiitneneuneneneanenann 348
EXAMPLE 3. Obtaining Annotation Information i 355
Single-file Annotations (DFAN API)

EXAMPLE 1. Writing a File Label and a File Description 364
EXAMPLE 2. Writing an Object Label and Description to a Scientific DataSet 366
EXAMPLE 3. Reading a File Label and a File Description 369
EXAMPLE 4. Reading an Object Label and Description 372
EXAMPLE 5. Getting a List of Labels for All Scientific DataSets 375
Single-File Scientific Data Sets (DFSD API)

EXAMPLE 1. Creating and Writing to a DFSD Scientific DataSet 381
EXAMPLE 2. Reading from a DFSD Scientific DataSet.......... it 385
EXAMPLE 3. Assigning Predefined String AttributestoaFile 393
EXAMPLE 4. Reading a Data Set and its Attribute Record 395

Error Reporting
EXAMPLE 1. Writing Errors to a Console Window i, 403

HDF Performance Issues

HDF Command-line Utilities

LOT-xx December 30, 2003

Chapter

1

Introduction to HDF

1.1

1.2

Chapter Overview

This chapter provides a general description of HDF including its native object structures, applica-
tion programming interface, and accompanying command-line utilities. It also provides a short
discussion of HDF’s original purpose and philosophy, and concludes with a list of the platforms
that HDF has been ported to.

What is HDF?

The Hierarchical Data Format, or HDF, is a multiobject file format for sharing scientific data in
a distributed environment. HDF was created at the National Center for Supercomputing Applica-
tions to serve the needs of diverse groups of scientists working on projects in various fields. HDF
was designed to address many requirements for storing scientific data, including:

* Support for the types of data and metadata commonly used by scientists.
» Efficient storage of and access to large data sets.
* Platform independence.

* Extensibility for future enhancements and compatibility with other standard formats.

In this document, the term HDF data structures will be used to describe the primary constructs
HDF provides to store data. These constructs include raster image, palette, scientific data set,
annotation, vdata, and vgroup. They are illustrated in Figure 1a on page 2. Note that the construct
vgroup is designed for the purpose of grouping HDF data structures.

HDF files are self-describing. The term “self-description” means that, for each HDF data struc-
ture in a file, there is comprehensive information about the data and its location in the file. This
information is often referred to as metadata. Also, many types of data can be included within an
HDF file. For example, it is possible to store symbolic, numerical and graphical data within an
HDF file by using appropriate HDF data structures.

December 30, 2003 1-1

National Center for Supercomputing Applications

FIGURE la

HDF Data Structures

Raster Image I:- Palette

(8-bit, 24-bit and General
Raster)

Scientific Data Set
(Multidimensional array)

oo
=N

This HDF file contains one 33

41
example of each HDF data Annotation 6790 gg
type. 587 431 g

Vdata
(Table)

N\O — D W ~
B~
o
Lrleoeo
=EE
£.3

_
(==}
B
£

by

Vgroup
(Group of HDF data structures)

HDF can be viewed as several interactive levels. At its lowest level, HDF is a physical file format
for storing scientific data. At its highest level, HDF is a collection of utilities and applications for
manipulating, viewing, and analyzing data stored in HDF files. Between these levels, HDF is a
software library that provides high-level and low-level programming interfaces. It also includes
supporting software that make it easy to store, retrieve, visualize, analyze, and manage data in
HDF files. See Figure 1b on page 3 for an illustration of the interface levels.

The basic interface layer, or the low-level API, is reserved for software developers. It was
designed for direct file I/O of data streams, error handling, memory management, and physical
storage. It is a software toolkit for experienced HDF programmers who wish to make HDF do
something more than what is currently available through the higher-level interfaces. Low-level
routines are available only in C.

The HDF application programming interfaces, or APIs, include several independent sets of rou-
tines, with each set specifically designed to simplify the process of storing and accessing one type
of data. These interfaces are represented in Figure 1b as the second layer from the top. Although
each interface requires programming, all the low-level details can be ignored. In most cases, all
one must do is make the correct function call at the correct time, and the interface will take care of
the rest. Most HDF interface routines are available in both FORTRAN-77 and C. A complete list
of the high-level interfaces is provided in Section 1.4 on page 4.

1-2

December 30, 2003

HDF User’s Guide

FIGURE 1b

1.3

Three Levels of Interaction with the HDF File

General Applications

Utilities |7-| NCSA Applications |7-| Commercial Applications
Single-file APIs G ' Multifile APIs
Scientific 8-Bit 24-Bit eneral X Scientific
Data |7| Palette |7|Ann0tations|7] Raster |7| Raster |/— Raster |7| Vgroups V]Annotallons|7| Vdata |7] Data
[I I I I I 1 I 1 I T

i s U e U s e U e e U e

Low-level API (Routines starting with H)
HDF File
File Header |7-I Data Descriptor Block |7-I Data Elements

On the highest level, general applications, HDF includes various command-line utilities for
managing and viewing HDF files, several NCSA applications that support data visualization and
analysis, and a variety of third-party applications. The HDF utilities are included in the NCSA
HDF distribution.

Source code and documentation for the HDF libraries, as well as binaries for supported platforms,
is freely available but subject to the restrictions listed with the copyright notice at the beginning of
this guide. This material is available via NCSA’s anonymous FTP server ftp.ncsa.uiuc.edy, in
the directory /HDF/. (The HDF FTP server at http://hdf.ncsa.uiuc.edu mirrors this material
in the directory /pub/dist/HDF/.) Applications supported by NCSA, as well as applications con-
tributed by members of the worldwide HDF user community, are available on these servers.

Why Was HDF Created?

Scientists commonly generate and process data files on several different machines, use various
software packages to process files and share data files with others who use different machines and
software. Also, they may include different kinds of information within one particular file, or
within a group of files, and the mixture of these different kinds of information may vary from one
file to another. Files may be conceptually related but physically separated. For example, some
data may be dispersed among different files and some in program code. It is also possible that data
may be related only in the scientist’s conception of the data; no physical relationship may exist.

HDF addresses these problems by providing a general-purpose file structure that:

¢ Provides the mechanism for programs to obtain information about the data in a file from
within the file, rather than from another source.

* Lets the user store mixtures of data from different sources into a single file as well as store
the data and its related information in separate files, even when the files are processed by the
same application program.

» Standardizes the formats and descriptions of many types of commonly-used data sets, such
as raster images and multidimensional arrays.

* Encourages the use of a common data format by all machines and programs that produce
files containing specific data.

¢ Can be adapted to accommodate virtually any kind of data.

December 30, 2003 1-3

National Center for Supercomputing Applications

14

High-Level HDF APIs

HDF APIs are divided into two categories: multifile interfaces (new) and single-file interfaces
(old). The multifile interfaces are those that provide simultaneous access to several HDF files
from within an application, which is an important feature that the single-file interfaces do not sup-
port. It is recommended that the user explore the new interfaces and their features since they are
an improvement over the old interfaces. The old interfaces remain simply because of the need for
backward compatibility.

The HDF 1/O library consists of C and FORTRAN-77 routines for accessing objects and associ-
ated information. Although there is some overlap among object types, in most cases an API oper-
ates on data of only one type. Therefore, you need only familiarize yourself with the APIs specific
to your needs to access data in an HDF file.

The following lists include all of the currently available HDF interfaces and the data that each
interface supports.

The new multifile interfaces are:

SD API Stores, manages and retrieves multidimensional arrays of character or
numeric data, along with their dimensions and attributes, in more than one
file. It is described in Chapter 3, Scientific Data Sets (SD API).

VS API Stores, manages and retrieves multivariate data stored as records in a table.
It is described in Chapter 4, Vdatas (VS API).

V API Creates groups of any primary HDF data structures. It is described in Chap-
ter 5, Vgroups (V API).

GR API Stores, manages and retrieves raster images, their dimensions and palettes in

more than one file. It can also manipulate unattached palettes in more than
one file. It is described in Chapter 8, General Raster Images (GR API).

AN API Stores, manages and retrieves text used to describe a file or any of the data
structures contained in the file. This interface can operate on several files at
once. It is described in Chapter 10, Annotations (AN API).

The old single-file interfaces are:

DFRS API Stores, manages and retrieves 8-bit raster images, with their dimensions and
palettes in one file. It is described in Chapter 6, 8-Bit Raster Images (DFR8
API).

DF24 API Stores, manages and retrieves 24-bit images and their dimensions in one
file. It is described in Chapter 7, 24-bit Raster Images (DF24 API).

DFP API Stores and retrieves 8-bit palettes in one file. It is described in Chapter 9,
Palettes (DFP API).

DFAN API Stores, manages and retrieves text strings used to describe a file or any of

the data structures contained in the file. This interface only operates on one
file at a time. It is described in Chapter 11, Single-file Annotations (DFAN
API).

DFSD API Stores, manages and retrieves multidimensional arrays of integer or float-
ing-point data, along with their dimensions and attributes, in one file. It is
described in Chapter 12, Single-File Scientific Data Sets (DFSD API).

As these interfaces are the tools used to read and write HDF files, they are the primary focus of
this manual.

In every interface, various programming examples are provided to illustrate the use of the inter-
face routines. Both C and FORTRAN-77 versions are available. Their source code, in ASCII for-

December 30, 2003

HDF User’s Guide

1.5

1.6

mat, is located on the FTP servers mentioned in Section 1.2 on page 1 in the subdirectory samples/

Note that the goal of these examples is to illustrate the use of the interface routines; thus, for sim-
plicity, many assumptions have been made, such as the availability or the authentication of the
data. Based on these assumptions, these examples skip the verification of the returned status of
each function. In practice, it is strongly recommended that the user verify the returned value of
every function to ensure the reliability of the user application.

NCSA HDF Command-Line Utilities and Visualization Tools

HDF application software fall within the following three categories:
1. The FORTRAN-77 and C APIs described in Section 1.4 on page 4.
2. Scientific visualization and analysis tools that read and write HDF files.

3. Command-line utilities that operate directly on HDF files.

Scientific visualization and analysis software that can read and write HDF files is available. This
software includes NCSA-developed tools such as JHV (the Java-based HDF Viewer), user-devel-
oped software, and commercial packages. The use of HDF files guarantees the interoperability of
such tools. Some tools operate on raster images, others on color palettes. Some use images, others
color palettes, still others data and annotations, and so forth. HDF provides the range of data types
that these tools need, in a format that allows different tools with different data requirements to
operate on the same files without confusion.

The HDF command-line utilities are application programs that can be executed by entering them
at the command prompt, like UNIX commands. They perform common operations on HDF files
for which one would otherwise have to write a program. The HDF utilities are described in detail
in Chapter 15, HDF Command-line Utilities.

Primary HDF Platforms

The HDF library and utilities are maintained on a number of different machines and operating sys-
tems. Table 1A lists the primary machines and operating systems HDF is ported to.

TABLE 1A

Primary HDF Platforms

Machine Operating System
Sun Suné SunOS, Solaris

SGI Indy, PowerChallenge, Origin Irix

H/P HP9000 HPUX

SGI/Cray UNICOS

DEC Alpha Digital Unix, OpenVMS

DEC VAX OpenVMS

PC Solaris86, Linux, FreeBSD
PC Windows NT/95

Apple Power Macintosh MacOS

For a complete list of the machines, operating systems (with versions), C and FORTRAN-77 com-
pilers (also with versions), refer to the file named “INSTALL” in the root directory of the HDF
distribution.

December 30, 2003 1-5

National Center for Supercomputing Applications

1.7

HDF4 versus HDF5

Backward compatibility has always been an integral part of the design of HDF Versions 1, 2, 3,
and 4 and the HDF4 library can access files from all earlier versions. This manual describes
HDF4 and, to the extent appropriate, the earlier versions.

To take advantage of the capabilities of many of the more recent computing platforms and to meet
the requirements of science applications that require ever-larger data sets, HDF5 had to be a com-
pletely new product, with a new format and a new library. HDF5 is conceptually related to HDF4
but incompatible; it cannot directly read or work with HDF4 files or the HDF4 library. HDF5 soft-
ware and documentation are available at the following location:

http://hdf .ncsa.uiuc.edu/HDF5/

Both HDF4 and HDFS5 are supported by the HDF Group at NCSA. The HDF Group will continue
to maintain HDF4 as long as funds are available to do so. There are no plans to add any new fea-
tures to HDF4, but bugs are fixed and and the library is regularly built and tested on new operating
system versions.

The HDF Group strongly recommends using HDF5, especially if you are a new user and are not
constrained by existing applications to using HDF4. We also recommend that you consider
migrating existing applications from HDF4 to HDFS5 to take advantage of the improved features
and performance of HDF5. Information about converting from HDF4 to HDF5 and tools to facil-
itate that conversion are available at the following location:

http://hdf .ncsa.uiuc.edu/hdtohs/

See Section 15.19, “Working with Both HDF4 and HDF5 File Formats™ on page 457, for further
discussions of and links to some of these tools.

December 30, 2003

Chapter
2

HDF Fundamentals

2.1

2.2

Chapter Overview

This chapter provides necessary information for the creation and manipulation of HDF files. It
includes an overview of the HDF file format, basic operations on HDF files, and programming
language issues pertaining to the use of Fortran and ANSI C in HDF programming.

HDF File Format

An HDF file contains a file header, at least one data descriptor block, and zero or more data ele-
ments as depicted in Figure 2a.

FIGURE 2a

The Physical Layout of an HDF File Containing One Data Object

HDF File ——) HDF File Header | HDF File Header

Data Descriptor

Empty Data Descriptor
Py P Data Descriptor Block

Empty Data Descriptor
Data Object Py v

Empty Data Descriptor

I Data Element

The file header identifies the file as an HDF file. A data descriptor block contains a number of
data descriptors. A data descriptor and a data element together form a data object, which is the
basic conglomerate structure for encapsulating data in the HDF file. Each of these terms is
described in the following sections.

December 30, 2003 2-7

National Center for Supercomputing Applications

2.2.1 File Header

The first component of an HDF file is the file header, which takes up the first four bytes of the
HDF file. Specifically, it consists of four one-byte values that are ASCII representations of control
characters: the first is a control-N, the second is a control-C , the third is a control-S and the fourth
is a control-A (ANACASAA).

Note that, on some machines, the order of bytes in the file header might be swapped when the
header is written to an HDF file, causing these characters to be written in little-endian order. To
maintain the portability of HDF file header data when developing software for such machines, this
byte swapping must be counteracted by ensuring the characters are read and written in the desired
order.

2.2.2 Data Object

A data object is comprised of a data descriptor and a data element. The data descriptor consists of
information about the type, location, and size of the data element. The data element contains the
actual data. This organization of HDF data makes HDF files self-describing. Figure 2b shows two
examples of data objects.

FIGURE 2b

Two Data Objects

Data Descriptors Data Elements

rank and dimensions 2 90 by 100

data 63.2, 54.5, 12.3,

18.2, 103.6, -7.4,

2.2.2.1 Data Descriptor

All data descriptors are twelve bytes long and contain four fields, as depicted in Figure 2c. These
fields are: a 16-bit fag, a 16-bit reference number, a 32-bit data offset and a 32-bit data length.

FIGURE 2¢

The Contents of a Data Descriptor

Reference
Tag Number Offset Length

2 bytes 2 bytes 4 bytes 4 bytes

Tag

A tag is the data descriptor field that identifies the type of data stored in the corresponding data
element. A tag is a 16-bit unsigned integer between 1 and 65,535, and is associated with a mne-
monic name to promote ease to use and the readability of user programs.

2-8

December 30, 2003

HDF User’s Guide

If a data descriptor has no corresponding data element, the value of its tag is DFTAG NULL (or 0).

Tags are assigned by the HDF Group as part of the HDF specification. The following are the
ranges of tag values and their descriptions:

1 to 32,767 - Tags reserved for HDF Group use
32,768 to 64,999 - User-definable tags
65,000 to 65,535 - Tags reserved for expansion of the HDF specification

A list of commonly-used tags and their descriptions is included in Appendix A, NCSA HDF Tags,
of this document.

Reference Number

For each occurrence of a tag in an HDF file, a unique reference number is assigned by the library
with the tag in the data descriptor. A reference number is a 16-bit unsigned integer and can not be
changed during the life of the data object that the reference number specifies.

The combination of a tag and a reference number uniquely identifies the corresponding data
object in the file.

Reference numbers are not necessarily assigned consecutively, so it cannot be assumed that the
value of a reference number has any meaning beyond providing a way of distinguishing among
objects with the same tag. While application programmers may find it convenient to impart some
additional meaning to reference numbers in their code, it is emphasized that the HDF library will
not internally recognize any such meaning.

Data Offset and Length

The data offset field points to the location of the data element in the file by storing the number of
bytes from the beginning of the file to the beginning of the data element. The length field contains
the size of the data element in bytes. The data offset and the length are both 32-bit signed integers.
This results in a file-size limit of 2 gigabytes.

2.2.2.2 Data Elements

The data element is the raw data portion of a data object.

2.2.3 Data Descriptor Block

Data descriptors are physically stored in a linked list of blocks called data descriptor blocks. The
relationship between the data descriptor block to the other components of an HDF file is illus-
trated in Figure 2a on page 7. The individual components of a data descriptor block are depicted in
Figure 2d on page 10. Each data descriptor in a data descriptor block is assumed to be associated
with a data element unless it contains the tag DFTAG NULL (or 0),which indicates that there is no
associated data element. By default, a data descriptor block contains 16 (defined as DEF NDDS) data
descriptors. The user may reset this limit when creating the HDF file. Refer to Section 2.3.2 on
page 11 for more details.

In addition to data descriptors, each data descriptor block contains a data descriptor header. The
data descriptor header contains two fields: block size and next block. The block size field is a 16-
bit unsigned integer indicating the number of data descriptors in the data descriptor block. The
next block field is a 32-bit unsigned integer indicating the offset of the next data descriptor block,
if one exists. The last data descriptor header in the list contains a value of 0 in its next block field.

Figure 2d illustrates the layout of a data descriptor block.

December 30, 2003 2-9

National Center for Supercomputing Applications

FIGURE 2d

2.3

Data Descriptor Block

block size | next block | tag | ref | offset [length tag | ref |offset |length

data descriptor
<+ P —» 4— data descriptor —»> <+ cee —» 4 data descriptor —»

header

data descriptor block

A
v

2.2.4 Grouping Data Objects in an HDF File

Data objects containing related data in HDF files are usually grouped together by the library.
These groups of data objects are called data sets. The HDF user uses the application interface to
manipulate data sets in a file. As an example, an 8-bit raster image data set requires three objects:
a group object identifying the members of the set, an image object containing the image data, and
a dimension object indicating the size of the image.

Data objects are individually accessible even if they are included in a set, therefore data objects
can belong to more than one set and sets can be included in larger groups. For example, a palette
object included in one raster image set may also be a part of another raster image set if its tag and
reference number are included in a data descriptor within that second set.

Additional information about data objects, including the options available for storing them, can be
found in the HDF Specifications and Developer’s Guide v3.2 from the HDF WWW home page at
http://hdf .ncsa.uiuc.edu/.

Basic Operations on HDF Files Using the Multifile Interfaces

This section describes the basic file operations, some of which are required in working with HDF
files using the multifile interfaces. Except for the SD interface, all applications using other multi-
file interfaces must explicitly use the routines Hopen and Hclose to control accesses to the HDF
files. In an application using the HDF file format, the file is accessed via its identifier, referred to
as file identifier. The following subsections describe the file identifier and the basic file opera-
tions common to most multifile interfaces.

2.3.1 File Identifiers

The HDF programming model specifies that a data file is first explicitly created or opened by an
application, manipulated, then explicitly closed by the application. A file identifier is a unique
number that the HDF library assigns to an HDF file when creating or opening the file. The HDF
library creates the file identifier for an HDF file when given its file name, as represented in the
native file system. Interface routines use only the file identifier to access and manipulate the file.
When all operations on the file are complete, the file identifier must be discarded by explicitly
closing the file before terminating the application.

As every file is assigned its own identifier, the order in which files are accessed is very flexible.
For example, it is valid to open a file and obtain an identifier for it, then open a second file without
closing the first file or disposing of the first file identifier. The only requirement made by HDF is
that all file identifiers be individually discarded before the termination of the calling program.

File identifiers created by the routine of one HDF interface can be used by the routines of any
other interfaces, except SD’s.

2-10

December 30, 2003

HDF User’s Guide

2.3.2 Opening HDF Files: Hopen

The routine Hopen creates or opens an HDF data file, depending on the access mode specified,
and returns the file identifier that the HDF library has assigned to the file. The Hopen syntax is as
follows:

C: file id = Hopen(filename, access mode, num dds block);
FORTRAN: file id = hopen(filename, access mode, num dds block)

The Hopen parameters are defined in Table 2A and the following discussion.

TABLE 2A Hopen Parameter List
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTR AN-77) C FORTRAN-77

Hopen filename char * character*(*) File name

[int32] access_mode intn integer File access mode

(hopen) num_dds_block intl6 integer Number of data descriptors in a data descriptor block
The parameter filename is a character string representing the name of the HDF file to be
accessed.
The parameter access mode specifies how the file should be accessed. All the access modes are
listed in Table 2B. If the access mode is DFACC CREATE and the file already exists, the file will be
replaced by the new one. If the access mode is DFACC READ and the file does not exist, Hopen will
return FATL (or -1). If the access mode is DFACC WRITE and the file does not exist, a new file will
be created.
The parameter num dds block specifies the number of data descriptors in a block when the
access mode specified is create. If the access mode is not create, the value of num dds block is
ignored. The default number of data descriptors in a block is 16 (defined as DEF NDDS) data
descriptors. The user may specify 0 to keep the default or any non-negative integer to reset this
limit when creating the HDF file.
Note that, in the SD interface, SDstart is used to open files instead of Hopen. (Refer to Chapter 3,
Scientific Data Sets (SD API), of this document for more information on SDstart.)

TABLE 2B File Access Code Flags
File Access Flag Flag Value Description
DFACC_READ 1 Read access
DFACC_WRITE 2 Read and write access
DFACC_CREATE 4 Create with read and write access

2.3.3 Closing HDF Files: Hclose

The Hclose routine closes the file designated by the file identifier specified by the parameter
file id. The Hclose syntax is as follows:

C: status = Hclose(file id);

FORTRAN: status = hclose(file id)

December 30, 2003 2-11

National Center for Supercomputing Applications

Hclose returns a value of SUCCEED (or 0) if successful or FAIL (or -1) otherwise. The parameter
name and type are listed in Table 2C. Refer also to the HDF Reference Manual for additional
information regarding Hclose.

Note that Hclose is not used to close files in the SD interface. SDend is used for this purpose.
(Refer to Chapter 3, Scientific Data Sets (SD API), of this document for more information on
SDend.)

TABLE 2C Hclose Parameter List

Routine Name Parameter Type

[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77

Hclose
[intn] file_id int32 integer File identifier
(hclose)

2.3.4 Getting the HDF Library and File Versions: Hgetlibversion and
Hgetfileversion

Hgetlibversion returns the version of the HDF library currently being used, as well as additional
textual information regarding the library. The parameter names and data types are listed in Table
2D. Refer also to the HDF Reference Manual for additional information regarding Hgetlibver-
sion.

Hgetfileversion returns the version information of the HDF file specified by the parameter
file id, as well as additional textual information regarding the nature of the file. The parameter
names and data types are listed in Table 2D. Refer also to the HDF Reference Manual for addi-
tional information regarding Hgetfileversion.

The syntax of these routines is as follows:

C: status = Hgetlibversion(&major v, &minor v, &release, string);
status

Hgetfileversion(file id, &major v, &minor v,
&release, string);

FORTRAN: status = hglibver(major v, minor v, release, string)
status

hgfilver(file id, major v, minor v, release, string)

Both routines return a value of SUCCEED (or 0) if successful or FAIL (or -1) otherwise.

TABLE 2D Hgetlibversion and Hgetfileversion Parameter Lists
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
major_v uint32* integer Major version number
ngtl?bversion minor_v uint32* integer Minor version number
(hg[ll[illt)l:l]er) release uint32* integer Complete library version number
string char* character®(*) Additional information about the library version
file_id int32 integer File identifier
Hgetfileversion major_v uint32* integer Major version number
[intn] minor_v uint32* integer Minor version number
(hefilver) release uint32* integer Complete library version number
string char* character™®(*) Additional information about the library version

2-12 December 30, 2003

HDF User’s Guide

2.4 Determining whether a File Is an HDF File: Hishdf/hishdff
The Hishdf routine is used to determine whether the file filename is an HDF file. The Hishdf
syntax is as follows:
C: status = Hishdf(filename)
FORTRAN: status = hishdff (filename)
This routine returns a value of TRUE (or 1) if if the file is an HDF file or FALSE (or 0) otherwise.
TABLE 2E Hishdf/hishdff Parameter List
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) c FORTRAN-77
Hishdf
[intn] filename char* character™(*) Filename
(hishdff)
2.5 Programming Issues

This section introduces information relevant to the process of developing programs that use the
HDF library, such as the names of necessary header files, lists of common definitions and issues
concerning FORTRAN-77 and C programming.

2.5.1 Header File Information

The header file hdf.h must be included in every HDF application program written in C, except for
programs that call routines in the SD interface. The header file mfhdf.h must be included in all
programs that call SD interface routines.

Fortran programmers who use compilers that allow file inclusion can include the files hdf.inc
and dffunc.inc. If a Fortran compiler that does not support file inclusion is used, HDF library
definitions must be explicitly defined in the Fortran program as they are included in the header
files of the HDF library.

2.5.2 HDF Definitions

The HDF library provides several sets of definitions which can be used easily in the user applica-
tions. These sets include the definitions of the data types, the data type flags, and the limits that set
various maximum values. The definitions of the data types supported by HDF are located in the
hdf.h header file, and the data type flags are located in the hntdefs.h header file. Both are also
included in Table 2F on page 14, Table 2G on page 14, and Table 2H on page 15. HDF data types
are used for portability in the declaration of variables, and data type flags are used as parameters
in various HDF interface routines.

2.5.2.1 Standard HDF Data Types

The definitions of the fundamental data types are in Table 2F. Although DFNT FLOAT (or 5),
DFNT UCHAR (or 3), and DENT CHAR (or 4) have not been added to this table, they are also supported by
the HDF library for backward compatibility.

If the machine used is big-endian, using these data types will result in no byte-order conversion
being performed. If the machine used is little-endian, the library will convert the byte-order of the
variables to big-endian.

December 30, 2003 2-13

National Center for Supercomputing Applications

TABLE 2F Standard HDF Data Types and Flags
HDF Data Type Data Type Flag and Value Description
char8 DFNT CHAR8 (4) 8-bit character type
uchar8 DFNT UCHAR8 (3) 8-bit unsigned character type
int8 DFNT_INT8 (20) 8-bit integer type
uint8 DFNT UINT8 (21) 8-bit unsigned integer type
intl16 DFNT_INT16 (22) 16-bit integer type
uintlé DFNT _UINT16 (23) 16-bit unsigned integer type
int32 DFNT_INT32 (24) 32-bit integer type
uint32 DFNT UINT32 (25) 32-bit unsigned integer type
float32 DFNT_FLOAT32 (5) 32-bit floating-point type
float64 DFNT_FLOAT64 (6) 64-bit floating-point type
Fortran programmers should refer to Section 2.5.3 on page 16 for a discussion of the Fortran data
types.
2.5.2.2 Native Format Data Types
When a native format data type is specified, the corresponding numbers are stored in the HDF file
exactly as they appear in memory, without conversion. For example, on a Cray Y-MP, 8 bytes of
memory, or one Cray word, is used to store most integers. Therefore, an 8-bit signed integer, rep-
resented by the DFNT INT32 flag, on a Cray Y-MP uses 8 bytes of memory. Consequently, when
the data type DFNT NATIVE | DFNT INT32 (DENT NATIVE bytewise-ORed with DFNT INT32) is used
on a Cray Y-MP to specify the data type of an HDF SDS or vdata, each integer stored in the HDF
file is 8 bytes.
The method for constructing the data type flag for each native data type described in the previous
paragraph is used for any of the native data types: the DFNT NATTVE flag is bitwise-ORed with the
flag of the corresponding standard data type.
The definitions of the native format data types and the corresponding data type flags appear in
Table 2G.
TABLE 2G Native Format Data Type Definitions
HDF Data Type HDF Data Type Flag and Value Description
int8 DFNT NINT8 (4116) 8-bit native integer type
uint8 DFNT NUINT8 (4117) 8-bit native unsigned integer type
intl16 DFNT NINT16 (4118) 16-bit native integer type
uintlé DFNT_NUINT16 (4119) 16-bit native unsigned integer type
int32 DFNT_NINT32 (4120) 32-bit native integer type
uint32 DFNT NUINT32 (4121) 32-bit native unsigned integer type
float32 DFNT NFLOAT32 (4101) 32-bit native floating-point type
float64 DFNT_NFLOAT64 (4102) 64-bit native floating-point type
2.5.2.3 Little-Endian Data Types
HDF normally writes data in big-endian format, but provides a little-endian option forcing all data
written to disk to be written in little-endian format. This is primarily for users of Intel-based
machines who do not want to incur the cost of reordering data when writing to an HDF file. Note
2-14 December 30, 2003

HDF User’s Guide

that direct conversions are supported between little-endian and all other byte-order formats sup-
ported by HDF.

The method for constructing the data type flag for each little-endian data type is similar to the
method for constructing native format data type flags: the DFNT LITEND flag is bitwise-ORed with
the flag of the corresponding standard data type.

If the user is on a little-endian machine, using these data types will result in no conversion. If the
user is on a big-endian machine, the HDF library will perform big-to-little-endian conversion.

The definitions of the little-endian data types and the corresponding data type flags appear in
Table 2H.

TABLE 2H Little-Endian Format Data Type Definitions
HDF Data Type HDF Data Type Flag and Value Description

int8 DFNT LINT8 (16404) 8-bit little-endian integer type

uint8 DFNT LUINT8 (16405) 8-bit little-endian unsigned integer type

intl6 DFNT LINT16 (16406) 16-bit little-endian integer type

uintlé DFNT_LUINT16 (16407) 16-bit little-endian unsigned integer type

int32 DFNT LINT32 (16408) 32-bit little-endian integer type

uint32 DFNT_LUINT32 (16409) 32-bit little-endian unsigned integer type

float32 DFNT_LFLOAT32 (16389) 32-bit little-endian floating-point type

float64 DFNT LFLOAT64 (16390) 64-bit little-endian floating-point type
2.5.2.4 Tag Definitions
These definitions identify the object tags defined and used by the HDF interface library. The con-
cept of object tags is introduced in Section 2.2.2.1 on page 8, and a list of tags can be found in
Appendix A of this manual. Note that tags can also identify properties of data objects.
2.5.2.5 Limit Definitions
These definitions declare the maximum size of specific data object parameters, such as the maxi-
mum length of a vdata field or the maximum number of objects in a vgroup. They are located in
the header file hlimits.h. A selection of the most-commonly-used limit definitions appears in
Table 2I.

TABLE 21 Limit Definitions

Definition Name Definition Value Description
FIELDNAMELENMAX 128 Maximum length of a vdata field in bits - 16 characters
VSNAMELENMAX 64 Maximum length of a vdata name in bytes - 64 characters
VGNAMELENMAX 64 Maximum length of a vgroup name in bytes - 64 characters
VSFIELDMAX 256 Maximum number of fields per vdata (64 for Macintosh)
VDEFAULTBLKSIZE 4096 Default block size in a vdata
VDEFAULTNBLKS 32 Default number of blocks in a vdata
MAXNVELT 64 Maximum number of objects in a vgroup
MAX ORDER 65535 Maximum order of a vdata field
MAX FIELD SIZE 65535 Maximum length of a field
MAX NC DIMS 5000 Maximum number of dimensions per file
MAX NC ATTRS 3000 Maximum number of file or variable attributes
MAX NC VARS 5000 Maximum number of file attributes

December 30, 2003 2-15

National Center for Supercomputing Applications

MAX VAR DIMS 32 Maximum number of variable attributes

MAX NC NAME 256 Maximum length of a name - NC interface

MAX PATH LEN 1024 Maximum length of an external file name

MAX FILE 32 Maximum number of open files

MAX GROUPS 8 Maximum number of groups

MAX GR NAME 256 Maximum length of a name - GR interface

MAX VAR DIMS 32 Maximum number of dimensions per variable

MAX REF 65535 The largest number that will fit into a 16-bit word reference variable
MAX BLOCK SIZE 65536 Maximum size of blocks in linked blocks

2.5.3 FORTRAN-77 and C Language Issues

HDF provides both FORTRAN-77 and C versions of most of its interface routines. In order to
make the FORTRAN-77 and C versions of each routine as similar as possible, some compromises
have been made in the process of simplifying the interface for both programming languages.

FORTRAN-77-to-C Translation

Nearly all of the HDF library code is written in C. A FORTRAN-77 HDF interface routine trans-
lates all parameter data types to C data types, then calls the C routine that performs the functional-
ity of the interface routine. For example, d8aimg is the FORTRAN-77 equivalent for
DFR8addimage. Calls to either routine execute the same C code that adds an 8-bit raster image to
an HDF file. See Figure 2e.

FIGURE 2e

Use of a Function Call Converter to Route FORTRAN-77 HDF Calls to the C Library

Your Your

C FORTRAN-77 to C FORTRAN-77
Program Program

DFR8addimage w—- d8aimg to DFR8addimage ~m— d8aimg

Case Sensitivity

FORTRAN-77 identifiers generally are not case sensitive, whereas C identifiers are. Although all
of the FORTRAN-77 routines shown in this manual are written in lower case, FORTRAN-77 pro-
grams can generally call them using either upper- or lower-case letters without loss of meaning.

Name Length

Because some FORTRAN-77 compilers only interpret identifier names with seven or fewer char-
acters, the first seven characters of the FORTRAN-77 HDF routine names are unique.

Header Files

The inclusion of header files is not generally permitted by FORTRAN-77 compilers. However, it
is sometimes available as an option. On UNIX systems, for example, the macro processors m4 and
cpp let the compiler include and preprocess header files. If this capability is not available, the user
may have to copy the declarations, definitions, or values needed from the files dffunc.inc and
hdf.inc into the user application. If the capability is available, the files can be included in the For-
tran code. These two files reside in the include directory after the library is installed on the user’s
system.

2-16

December 30, 2003

HDF User’s Guide

Data Type Specifications

When mixing machines, compilers, and languages, it is difficult to maintain consistent data type
definitions. For instance, on some machines an integer is a 32-bit quantity and on others, a 16-bit
quantity. In addition, the differences between FORTRAN-77 and C lead to difficulties in describ-
ing the data types found in the argument lists of HDF routines. To maintain portability, the HDF
library expects assigned names for all data types used in HDF routines. See Table 2J.

TABLE 2]

Correspondence Between Fortran and HDF C Data Types

Data Type FORTRAN C
8-bit signed integer character*1 ** int8
8-bit unsigned integer character*1 uint8
16-bit signed integer integer*2 intl6
16-bit unsigned integer Not supported uintlé
32-bit signed integer integer*4 ** int32
32-bit unsigned integer Not supported uint32
32-bit floating point number real*4 ** float32
64-bit floating point number real*8 ** float64
Native signed integer integer intn
Native unsigned integer Not supported uintn
** if the compiler supports this data type

When using a FORTRAN-77 data type that is not supported, the general practice is to use another
data type of the same size. For example, an 8-bit signed integer can be used to store an 8-bit
unsigned integer variable.

String and Array Specifications

The following conventions are followed in the specification of arrays in this manual:

« character*(*) defines a string of an indefinite number of characters. It is the responsibility
of the calling program to allocate enough space to hold the data to be stored in the string.

« real x(*) means that x refers to an array of reals of indefinite size and of indefinite rank. It
is the responsibility of the calling program to allocate an actual array with the correct num-
ber of dimensions and dimension sizes.

+ <valid numeric data type> x means that x may have one of the numeric data types listed
in the Description column of Table 2J above.

- <valid data type> x means that x may have any of the data types listed in the Description
column of Table 2J above.

FORTRAN-77 and ANSI C

As much as possible, we have ensured that the HDF interface routines conform to the implemen-
tations of Fortran and C that are in most common use today, namely FORTRAN-77 and ANSI C.

As Fortran-90 is a superset of FORTRAN-77, HDF programs should compile and run correctly
when using a Fortran-90 compiler. However, an HDF library interface that makes full use of For-
tran-90 enhancements is being considered.

December 30, 2003 2-17

National Center for Supercomputing Applications

2-18 December 30, 2003

Chapter
3

Scientific Data Sets (SD API)

3.1 Chapter Overview

This chapter describes the scientific data model and the interface routines provided by HDF for
creating and accessing the data structures included in the model. This interface is known as the
SD interface or the SD APIL.

3.2 The Scientific Data Set Data Model

The scientific data set, or SDS, is a group of data structures used to store and describe multidi-
mensional arrays of scientific data. Refer to Figure 3a for a graphical overview of the SD data set.
Note that in this chapter the terms SDS, SD data set, and data set are used interchangeably; the
terms SDS array and array are also used interchangeably.

A scientific data set consists of required and optional components, which will be discussed in the
following subsections.

FIGURE 3a The Contents of a Scientific Data Set
SDS
/ Required Components Optional Components \
SDS Array
Predefined Attributes
Name | | [~~~ """
User-defined Attributes
Data Type
Dimension Scales
Dimensions

December 30, 2003 3-19

National Center for Supercomputing Applications

3.2.1 Required SDS Components

Every SDS must contain the following components: an SDS array, a name, a data type, and the
dimensions of the SDS, which are actually the dimensions of the SDS array.

SDS Array

An SDS array is a multidimensional data structure that serves as the core structure of an SDS.
This is the primary data component of the SDS model and can be compressed (refer to
Section 3.5.2 on page 45 for a description of SDS compression) and/or stored in external files
(refer the Section 3.5.3.3 on page 52 for a description of external SDS storage). Users of netCDF
should note that SDS arrays are conceptually equivalent to variables in the netCDF data model.

An SDS has an index and a reference number associated with it. The index is a non-negative inte-
ger that describes the relative position of the data set in the file. A valid index ranges from O to the
total number of data sets in the file minus 1. The reference number is a unique positive integer
assigned to the data set by the SD interface when the data set is created. Various SD interface rou-
tines can be used to obtain an SDS index or reference number depending on the available informa-
tion about the SDS. The index can also be determined if the sequence in which the data sets are
created in the file is known.

In the SD interface, an SDS identifier uniquely identifies a data set within the file. The identifier
is created by the SD interface access routines when a new SDS is created or an existing one is
selected. The identifier is then used by other SD interface routines to access the SDS until the
access to this SDS is terminated. For an existing data set, the index of the data set can be used to
obtain the identifier. Refer to Section 3.4.1 on page 26 for a description of the SD interface routine
that creates SDSs and assigns identifiers to them.

SDS Name

The name of an SDS can be provided by the calling program, or is set to "DataSet" by the HDF
library at the creation of the SDS. The name consists of case-sensitive alphanumeric characters, is
assigned only when the data set is created, and cannot be changed. SDS names do not have to be
unique within a file, but their uniqueness makes it easy to semantically distinguish among data
sets in the file.

Data Type

The data contained in an SDS array has a data type associated with it. The standard data types
supported by the SD interface include 32- and 64-bit floating-point numbers, 8-, 16- and 32-bit
signed integers, 8-, 16- and 32-bit unsigned integers, and 8-bit characters. The SD interface also
allows the creation of SD data sets consisting of data elements of non-standard lengths (1 to 32
bits). See Section 3.7.8 on page 71 for more information.

Dimensions

SDS dimensions specify the shape and size of an SDS array. The number of dimensions of an
array is referred to as the rank of the array. Each dimension has an index and an identifier
assigned to it. A dimension also has a size and may have a name associated with it.

A dimension identifier is a positive number uniquely assigned to the dimension by the library.
This dimension identifier can be retrieved via an SD interface routine. Refer to Section 3.8.1 on
page 73 for a description of how to obtain dimension identifiers.

1. netCDF-3 User’s Guide for C (June 5, 1997), Section 7, http://www.uni-
data.ucar.edu/packages/netcdf/guidec/.

3-20

December 30, 2003

HDF User’s Guide

A dimension index is a non-negative number that describes the ordinal location of a dimension
among others in a data set. In other words, when an SDS dimension is created, an index number is
associated with it and is one greater than the index associated with the last created dimension that
belongs to the same data set. The dimension index is convenient in a sequential search or when the
position of the dimension among other dimensions in the SDS is known.

Names can optionally be assigned to dimensions, however, dimension names are not treated in the
same way as SDS array names. For example, if a name assigned to a dimension was previously
assigned to another dimension the SD interface treats both dimensions as the same data compo-
nent and any changes made to one will be reflected in the other.

The size of a dimension is a positive integer. Also, one dimension of an SDS array can be assigned
the predefined size SD UNLIMITED (or 0). This dimension is referred to as an unlimited dimension,
which, as the name suggests, can grow to any length. Refer to Section 3.5.1.3 on page 40 for more
information on unlimited dimensions.

3.2.2 Optional SDS Components

There are three types of optional SDS components: user-defined attributes, predefined attributes,
and dimension scales. These optional components are only created when specifically requested
by the calling program.

Attributes describe the nature and/or the intended usage of the file, data set, or dimension they are
attached to. Attributes have a name and value which contains one or more data entries of the same
data type. Thus, in addition to name and value, the data type and number of values are specified
when the attribute is created.

User-Defined Attributes

User-defined attributes are defined by the calling program and contain auxiliary information
about a file, SDS array, or dimension. They are more fully described in Section 3.9 on page 85.

Predefined Attributes

Predefined attributes have reserved names and, in some cases, predefined data types and/or num-
ber of data entries. Predefined attributes are useful because they establish conventions that appli-
cations can depend on. They are further described in Section 3.10 on page 96.

Dimension Scales

A dimension scale is a sequence of numbers placed along a dimension to demarcate intervals
along it. Dimension scales are described in Section 3.8.4 on page 75.

3.2.3 Annotations and the SD Data Model

In the past, annotations were supported in the SD interface to allow the HDF user to attach
descriptive information (called metadata) to a data set. With the expansion of the SD interface to
include user-defined attributes, the use of annotations to describe metadata should be eliminated.
Metadata once stored as an annotation is now more conveniently stored as an attribute. However,
to ensure backward compatibility with scientific data sets and applications relying on annotations,
the AN annotation interface, described in Chapter 10, Annotations (AN API) can be used to anno-
tate SDSs.

There is no cross-compatibility between attributes and annotations; creating one does not auto-
matically create the other.

December 30, 2003 3-21

National Center for Supercomputing Applications

3.3

The SD Interface

The SD interface provides routines that store, retrieve, and manipulate scientific data using the
SDS data model. The SD interface supports simultaneous access to more than one SDS in more
than one HDF file. In addition, the SD interface is designed to support a general scientific data

model which is very similar to the netCDF data model developed by the Unidata Program Cen-

terl.

For those users who have been using the DFSD interface, the SD interface provide a model com-
patible with that supported by the DFSD interface. It is recommended that DFSD users apply the
SD model and interface to their applications since the DFSD interface is less flexible and less
powerful than the SD interface and will eventually be removed from the HDF library.

This section specifies the header file to be used with the SD interface and lists all available SD
interface routines, each of which is accompanied by its purpose and the section where the routine
is discussed.

3.3.1 Header and Include Files Used by the SD Interface

The “mfhdf.h” header file must be included in programs that invoke SD interface routines. FOR-
TRAN-77 users should refer to Section 2.5.3 on page 16.

3.3.2 SD Interface Routines

All C routines in the SD interface begin with the prefix "SD". The equivalent FORTRAN-77 rou-
tines use the prefix "sf". These routines are categorized as follows:

- Access routines initialize and terminate access to HDF files and data sets.
« Read and write routines read and write data sets.

General inquiry routines return information about the location, contents, and description of
the scientific data sets in an HDF file.

- Dimension routines access and define characteristics of dimensions within a data set.
- Dimension scale routines define and access dimension scales within a data set.

« User-defined attribute routines describe and access characteristics of an HDF file, data set
or dimension defined by the HDF user.

« Predefined attribute routines access previously-defined characteristics of an HDF file, data
set, or dimension.

« Compression routines compress SDS data.
Chunking/tiling routines manage chunked data sets.

« Miscellaneous routines provide other operations such as external file, n-bit data set, and
compatibility operations.

The SD routines are listed in the following table and are discussed in the following sections of this
document.

1. netCDF-3 User’s Guide for C (June 5, 1997), Section 2, http://www.uni-
data.ucar.edu/packages/netcdf/guidec/.

3-22

December 30, 2003

HDF User’s Guide

TABLE 3A

SD Interface Routines

Routine Name

Category Description and Reference
(o) FORTRAN-77
Opens the HDF file and initializes the SD interface (Section 3.4.1
SDstart sfstart
on page 26)
SDcreate sfcreate Creates a new data set (Section 3.4.1 on page 26)
Selects an existing SDS using its index (Section 3.4.1 on
Access SDselect sfselect
page 26)
SDendaccess sfendacc Terminates access to an SDS (Section 3.4.2 on page 27)
spend fond Terminates access to the SD interface and closes the file
en sfen
(Section 3.4.2 on page 27)
sfrdata/
SDreaddata Reads data from a data set (Section 3.6 on page 55)
sfrcdata
Read and Write
SDwritedata sfwdata/ Writes data to a data set (Section 3.5.1 on page 30)
sfwcdata
. . Retrieves information about the contents of a file (Section 3.7.1
SDfileinfo sffinfo
on page 63)
Sbgetinfo sfginfo Retrieves information about a data set (Section 3.7.2 on page 63)
Determines whether a scientific dataset (an SDS) is empty
SDcheckempty sfchempty
(Section 3.7.4 on page 64)
X i Returns the reference number of a data set (Section 3.7.7 on
SDhidtoref sfid2ref
page 68)
General
: Distinguishes data sets from dimension scales (Section 3.8.4.4 on
Inquiry SDiscoordvar sfiscvar g (
page 82)
. X Determines whether a data set is appendable (Section 3.5.1.4 on
SDhisrecord sfisrcrd
page 41)
X X Returns the index of a data set specified by its name
SDnametoindex sfn2index
(Section 3.7.5 on page 67)
, . Returns the index of a data set specified by its reference number
SDhreftoindex sfref2index N
(Section 3.7.6 on page 68)
sbdiminfo sfgdinfo Gets information about a dimension (Section 3.8.4.2 on page 75)
Dimensions SDgetdimid sfdimid Returns the identifier of a dimension (Section 3.8.1 on page 73)
SDsetdimname sfsdimname Associates a name with a dimension (Section 3.8.2 on page 73)
. Retrieves the scale values for a dimension (Section 3.8.4.3 on
SDgetdimscale sfgdscale
Dimension page 76)
Scales . Stores the scale values of a dimension (Section 3.8.4.1 on
SDsetdimscale sfsdscale
page 75)
SDattrinfo sfgainfo Gets information about an attribute (Section 3.9.2 on page 89)
. Returns the index of an attribute specified by its name
SDfindattr sffattr
(Section 3.9.2 on page 89)
User-defined
Attributes Sbreadattr sfrnatt/sfr- Reads the values of an attribute specified by its index
catt (Section 3.9.3 on page 90)
sfsnatt/sfs— Creates a new attribute and stores its values (Section 3.9.1 on
SDsetattr catt

page 86)

December 30, 2003

3-23

National Center for Supercomputing Applications

SDgetcal sfgcal Retrieves calibration information (Section 3.10.6.2 on page 104)
sbgetdatastrs sfadtstr Returns the predefined-attribute strings of a data set
9 g (Section 3.10.2.2 on page 98)
Sbgetdimstrs sfadmstr Returns the predefined-attribute strings of a dimension
1]
i g (Section 3.10.3.2 on page 99)
SDgetfillvalue sfgfill/ Reads the fill value if it exists (Section 3.10.5.2 on page 102)
g sfgcfill S StS -1Y-2.2 on pag
Sbaetrange sfgrange Retrieves the range of values in the specified data set
9 g grang (Section 3.10.4.2 on page 101)
spsetcal sfscal Defines the calibration information (Section 3.10.6.1 on
Predefined page 103)
Attributes
Sets predefined attributes of the specified data set
SDsetdatastrs sfsdtstr
(Section 3.10.2.1 on page 98)
. Sets predefined attributes of the specified dimension
SDsetdimstrs sfsdmstr
(Section 3.10.3.1 on page 99)
X sfsfill/ Defines the fill value for the specified data set (Section 3.10.5.1
sbhsetfillvalue
sfscfill on page 102)
, Sets the fill mode to be applied to all data sets in the specified file
SDsetfillmode sfsflmd B
(Section 3.10.5.3 on page 102)
Shsetrange sfsrange Defines the maximum and minimum values of the specified data
g g set (Section 3.10.4.1 on page 100)
Compresses a data set using a specified compression method
SDsetcompress sfscompress
(Section 3.5.2 on page 45)
. . . Defines the non-standard bit length of the data set data
Compression SDsetnbitdataset sfsnbit R
(Section 3.7.8 on page 71)
Shaetcompress sfgcompress Retrieves data set compression type and compression informa-
9 P geomp tion. (See the HDF Reference Manual)
X X Obtains information about a chunked data set (Section 3.11.5 on
SDgetchunkinfo sfgichnk
page 110)
SDreadchunk sfrchnk/ Reads data from a chunked data set (Section 3.11.4 on page 110)
sfrcchnk
Chunki -
un ing/ Makes a non-chunked data set a chunked data set (Section 3.11.1
Tiling SDsetchunk sfschnk
on page 105)
SDsetchunkcache sfcchnk Sets the size of the chunk cache (Section 3.11.2 on page 107)
SDwritechunk sfwehnk/ Writes data to a chunked data set (Section 3.11.3 on page 108)
sfwcchnk
X Sets the block size used for storing data sets with unlimited
SDsetblocksize sfsblsz . . .
dimension (Section 3.5.1.5 on page 41)
. Specifies that a data set is to be stored in an external file
SDsetexternalfile sfsextf
(Section 3.5.3.3 on page 52)
Miscellaneous
L X Determines the current compatibility mode of a dimension
SDisdimval_bwcomp sfisdmvc
- (Section 3.8.3.2 on page 74)
, Sets the future compatibility mode of a dimension
SDsetdimval_comp sfsdmve
(Section 3.8.3.1 on page 74)

3.3.3 Tags in the SD Interface

A complete list of SDS tags and their descriptions appears in Table D in Appendix A. Refer to
Section 2.2.2.1 on page 8 for a description of tags.

3-24 December 30, 2003

HDF User’s Guide

3.4

Programming Model for the SD Interface

This section describes the routines used to initialize the SD interface, create a new SDS or access
an existing one, terminate access to that SDS, and shut down the SD interface. Writing to existing
scientific data sets will be described in Section 3.5 on page 30.

To support multifile access, the SD interface relies on the calling program to initiate and terminate
access to files and data sets. The SD programming model for creating and accessing an SDS in an
HDF file is as follows:

1. Open a file and initialize the SD interface.

2. Create a new data set or open an existing one using its index.
3. Perform desired operations on this data set.

4. Terminate access to the data set.

5. Terminate access to the SD interface and close the file.
To access a single SDS in an HDF file, the calling program must contain the following calls:
C: sd id = SDstart(filename, access mode);

sds _id = SDcreate(sd id, sds name, data type, rank, dim sizes);
OR sds _id = SDselect(sd id, sds index);

<Optional operations>

status = SDendaccess(sds id);

status = SDend(sd_id);

FORTRAN: sd id = sfstart(filename, access mode)

sds id = sfcreate(sd id, sds name, data type, rank, dim sizes)
OR sds id = sfselect(sd id, sds index)

<Optional operations>

status = sfendacc(sds id)

status = sfend(sd id)

To access several files at the same time, a program must obtain a separate SD file identifier
(sd_id) for each file to be opened. Likewise, to access more than one SDS, a calling program
must obtain a separate SDS identifier (sds_id) for each SDS. For example, to open two SDSs
stored in two files a program would execute the following series of function calls.

C: sd id 1 = Shstart(filename 1, access mode);
sds id 1 = Shselect(sd id 1, sds index 1);
sd id 2 = SDstart(filename 2, access mode);
sds id 2 = Shselect(sd id 2, sds index 2);
<Optional operations>
status = SDendaccess(sds id 1);
status = SDend(sd id 1);
status = SDendaccess(sds id 2);
status = SDend(sd _id 2);

FORTRAN: sd id 1 = sfstart(filename 1, access mode)
sds_id 1 = sfselect(sd id 1, sds index 1)
sd id 2 = sfstart(filename 2, access mode)
sds_id 2 = sfselect(sd id 2, sds index 2)
<Optional operations>
status = sfendacc(sds id 1)

December 30, 2003 3-25

National Center for Supercomputing Applications

status = sfend(sd id 1)
status = sfendacc(sds_id 2)
status = sfend(sd id 2)

3.4.1 Establishing Access to Files and Data Sets: SDstart, SDcreate, and
SDselect

In the SD interface, SDstart is used to open files rather than Hopen. SDstart takes two argu-
ments, filename and access mode, and returns the SD interface identifier, sd_id. Note that the
SD interface identifier, sd _id, is not interchangeable with the file identifier, file id, created by
Hopen and used in other HDF APIs.

The argument filename is the name of an HDF or netCDF file.

The argument access mode specifies the type of access required for operations on the file. All the
valid values for access mode are listed in Table 3B. If the file does not exist, specifying DFACC READ
or DFACC WRITE will cause SDstart to return a FATL (or -1) . Specifying DFACC CREATE creates a new
file with read and write access. If DFACC CREATE is specified and the file already exists, the contents
of this file will be replaced.

TABLE 3B

File Access Code Flags

File Access Flag Flag Value Description

DFACC_READ | Read only access

DFACC_WRITE 2 Read and write access

DFACC_CREATE 4 Create with read and write access

The SD interface identifiers can be obtained and discarded in any order and all SD interface iden-
tifiers must be individually discarded, by SDend, before the termination of the calling program.

Although it is possible to open a file more than once, it is recommended that the appropriate
access mode be specified and SDstart called only once per file. Repeatedly calling SDstart on the
same file and with different access modes may cause unexpected results.

SDstart returns an SD identifier or a value of FATL (or -1). The parameters of SDstart are defined
in Table 3C on page 27.

SDcreate defines a new SDS using the arguments sd id, sds name, data type, rank, and
dim sizes and returns the data set identifier, sds_id.

The parameter sds_name is a character string containing the name to be assigned to the SDS. The
SD interface will generate a default name, "Data Set", for the SDS, if one is not provided, i.e.,
when the parameter sds_name is set to NULL in C, or an empty string in FORTRAN-77. The max-
imum length of an SDS name is 64 characters and, if sds_name contains more than 64 characters,
the name will be truncated before being assigned.

The parameter data type is a defined name, prefaced by DFNT, and specifies the type of the data
to be stored in the data set. The header file "hntdefs.h" contains the definitions of all valid data
types, which are described in Chapter 2, HDF Fundamentals, and listed in Table 2F on page 14.

The parameter rank is a positive integer specifying the number of dimensions of the SDS array.
The maximum rank of an SDS array is defined by MAX VAR DIMS (or 32), which is defined in the
header file "netcdf.h".

Each element of the one-dimensional array dim sizes specifies the length of the corresponding
dimension of the SDS array. The size of dim sizes must be the value of the parameter rank. To

3-26

December 30, 2003

HDF User’s Guide

create a data set with an unlimited dimension, assign the value of SD UNLIMITED (or 0) to
dim sizes[0] in C, and to dim sizes(rank) in FORTRAN-77. See the notes regarding the
potential performance impact of unlimited dimension data sets in Section 14.4.3, "Unlimited
Dimension Data Sets (SDSs and Vdatas) and Performance."

Once an SDS is created, you cannot change its name, data type, size, or shape. However, it is pos-
sible to modify the data set data or to create an empty data set and later add values. To add data or
modify an existing data set, use SDselect to get the data set identifier instead of SDcreate.

Note that the SD interface retains no definitions about the size, contents, or rank of an SDS from
one SDS to the next, or from one file to the next.

SDselect initiates access to an existing data set. The routine takes two arguments: sd id and
sds_index and returns the SDS identifier sds_id. The argument sd _id is the SD interface identi-
fier returned by SDstart, and sds_index is the position of the data set in the file. The argument
sds_index is zero-based, meaning that the index of first SDS in the file is 0.

Similar to SD interface identifiers, SDS identifiers can be obtained and discarded in any order as
long as they are discarded properly. Each SDS identifier must be individually disposed of, by
SDendaccess, before the disposal of the identifier of the interface in which the SDS is opened.

SDcreate and SDselect each returns an SDS identifier or a value of FATL (or -1). The parameters
of SDstart, SDcreate, and SDselect are further described in Table 3C.

3.4.2 Terminating Access to Files and Data Sets: SDendaccess and SDend

SDendaccess terminates access to the data set and disposes of the data set identifier sds_id. The
calling program must make one SDendaccess call for every SDselect or SDcreate call made dur-
ing its execution. Failing to call SDendaccess for each call to SDselect or SDcreate may result in
a loss of data.

SDend terminates access to the file and the SD interface and disposes of the file identifier sd_id.
The calling program must make one SDend call for every SDstart call made during its execution.
Failing to call SDend for each SDstart may result in a loss of data.

SDendaccess and SDend each returns either a value of SUCCEED (or 0) or FATL (or -1). The param-
eters of SDendaccess and SDend are further described in Table 3C.

TABLE 3C

SDstart, SDcreate, SDselect, SDendaccess, and SDend Parameter Lists

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
SDstart filename char * character*(*) Name of the HDF or netCDF file
[int32]
(sfstart) access_mode int32 integer Type of access
sd_id int32 integer SD interface identifier
SDereate sds_name char * character*(*) ASCII string containing the name of the data set
[int32] data_type int32 integer Data type of the data set
fi
(sfereate) rank int32 integer Number of dimensions in the array
dim_sizes int32[] integer(*) Array defining the size of each dimension
SDselect sd_id int32 integer SD interface identifier
[int32]
(sfselect) sds_index int32 integer Position of the data set within the file

December 30, 2003 3-27

National Center for Supercomputing Applications

SDendaccess
[intn] sds_id int32 integer Data set identifier
(sfendacc)

SDend
[intn] sd_id int32 integer SD interface identifier
(sfend)

EXAMPLE 1. Creating an HDF file and an Empty SDS.
This example illustrates the use of SDstart/sfstart, SDcreate/sfcreate, SDendaccess/sfendacc,
and SDend/sfend to create the HDF file named SDS.hdf, and an empty data set with the name
SDStemplate in the file.
Note that the Fortran program uses a transformed array to reflect the difference between C and
Fortran internal data storages. When the actual data is written to the data set, SDS.hdf will contain
the same data regardless of the language being used.
C:
#include "mfhdf.h"
#define FILE NAME "SDS.hdf"
#define SDS_NAME "SDStemplate"
#define X LENGTH 5
#define Y_LENGTH 16
#define RANK 2 /* Number of dimensions of the SDS */
main()
{
[Hxxkhkxxkkkkkkkxkkkxxkk**xx* Variable declaration **x**xxxkkkkkkkkkkkxhkkkkk/
int32 sd_id, sds_id; /* SD interface and data set identifiers */
int32 dim sizes[2]; /* sizes of the SDS dimensions */
intn status; /* status returned by some routines; has value
SUCCEED or FAIL */
[rrKkkkkxkkkkxkkkkxkxx* End of variable declaration **x*xxkkkkkkkkkkkkhkkkkk/
/*
* Create the file and initialize the SD interface.
*/
sd_id = SDstart (FILE NAME, DFACC_CREATE);
/*
* Define the dimensions of the array to be created.
*/
dim sizes[0] = Y LENGTH;
dim sizes[1] = X LENGTH;
/*
* Create the data set with the name defined in SDS_NAME. Note that
* DFNT INT32 indicates that the SDS data is of type int32. Refer to
* Table 2E for definitions of other types.
*/
sds_id = SDcreate (sd_id, SDS_NAME, DFNT INT32, RANK, dim sizes);
/*
* Terminate access to the data set.
*/
status = SDendaccess (sds_id);
/*
3-28 December 30, 2003

HDF User’s Guide

* Terminate access to the SD interface and close the file.
*/
status = SDend (sd_id);

}
FORTRAN:
program create SDS
implicit none
C
C Parameter declaration.
C
character*7 FILE NAME
character*11 SDS_NAME
integer X LENGTH, Y LENGTH, RANK
parameter (FILE_NAME = ’'SDS.hdf’,
+ SDS_NAME = ’'SDStemplate’,
+ X LENGTH = 5,
+ Y LENGTH = 16,
+ RANK = 2)
integer DFACC_CREATE, DFNT_ INT32
parameter (DFACC_CREATE = 4,
+ DFNT_INT32 = 24)
C
C Function declaration.
C
integer sfstart, sfcreate, sfendacc, sfend
C
C**** Variable declaration khkhkkkhkhkkhkhkkhkhkkhhkhhhkdhhhhkdhhkdhhhhkdhdhhkdkhkdhdkdkk,xkx
C
integer sd_id, sds_id, dim sizes(2)
integer status
C
C**** End of Variable declaration EEE RS S EE S E LSS SRR EEEEEEEEEEEEEEEES]
C
C
C Create the file and initialize the SD interface.
C
sd_id = sfstart(FILE _NAME, DFACC_CREATE)
C
C Define dimensions of the array to be created.
C
dim sizes(1l) = X LENGTH
dim sizes(2) = Y LENGTH
C
C Create the array with the name defined in SDS_NAME.
C Note that DFNT INT32 indicates that the SDS data is of type
C integer. Refer to Tables 2E and 2I for the definition of other types.
C
sds_id = sfcreate(sd_id, SDS_NAME, DFNT INT32, RANK,
. dim sizes)
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C

status = sfend(sd_id)

end

December 30, 2003 3-29

National Center for Supercomputing Applications

3.5

Writing Data to an SDS

An SDS can be written partially or entirely. Partial writing includes writing to a contiguous region
of the SDS and writing to selected locations in the SDS according to patterns defined by the user.
This section describes the routine SDwritedata and how it can write data to part of an SDS or to
an entire SDS. The section also illustrates the concepts of compressing SDSs and using external
files to store scientific data.

3.5.1 Writing Data to an SDS Array: SDwritedata

SDwritedata can completely or partially fill an SDS array or append data along the dimension
that is defined to be of unlimited length (see Section 3.5.1.3 on page 40 for a discussion of unlim-
ited-length dimensions). It can also skip a specified number of SDS array elements between write
operations along each dimension.

To write to an existing SDS, the calling program must contain the following sequence of routine
calls:

C: sds id = SDselect(sd id, sds index);
status = SDhwritedata(sds id, start, stride, edges, data);

FORTRAN: sds id = sfselect(sd id, sds index)
status = sfwdata(sds id, start, stride, edges, data)
OR status = sfwcdata(sds id, start, stride, edges, data)

To write to a new SDS, simply replace the call SDselect with the call SDcreate, which is
described in Section 3.4.1 on page 26.

SDwritedata takes five arguments: sds id, start, stride, edges, and data. The argument
sds_idis the data set identifier returned by SDcreate or SDselect.

Before proceeding with the description of the remaining arguments, an explanation of the term
hyperslab (or slab, as it will be used in this chapter) is in order. A slab is a group of SDS array ele-
ments that are stored in consecutive locations. It can be of any size and dimensionality as long as
it is a subset of the array, which means that a single array element and the entire array can both be
considered slabs. A slab is defined by the multidimensional coordinate of its initial vertex and the
lengths of each dimension.

Given this description of the slab concept, the usage of the remaining arguments should become
apparent. The argument start is a one-dimensional array specifying the location in the SDS array
at which the write operation will begin. The values of each element of the array start are relative
to 0 in both the C and FORTRAN-77 interfaces. The size of start must be the same as the num-
ber of dimensions in the SDS array. In addition, each value in start must be smaller than its cor-
responding SDS array dimension unless the dimension is unlimited. Violating any of these
conditions causes SDwritedata to return FATL.

The argument stride is a one-dimensional array specifying, for each dimension, the interval
between values to be written. For example, setting the first element of the array stride equal to 1
writes data to every location along the first dimension. Setting the first element of the array
stride to 2 writes data to every other location along the first dimension. Figure 3b illustrates this
example, where the shading elements are written and the white elements are skipped. If the argu-
ment stride is set to NULL in C (or either 0 or 1 in FORTRAN-77), SDwritedata operates as if
every element of stride contains a value of 1, and a contiguous write is performed. For better
performance, it is recommended that the value of stride be defined as NULL (i.e., 0 or 1 in FOR-
TRAN-77) rather than being set to 1.

3-30

December 30, 2003

HDF User’s Guide

The size of the array stride must be the same as the number of dimensions in the SDS array.
Also, each value in stride must be smaller than or equal to its corresponding SDS array dimen-
sion unless the dimension is unlimited. Violating any of these conditions causes SDwritedata to
return FATL.

FIGURE 3b

An Example of Access Pattern ("Strides")

stride[0] = 2

Array 0 1 2 3 4 5 6 N
Location

The argument edges is a one-dimensional array specifying the length of each dimension of the
slab to be written. If the slab has fewer dimensions than the SDS data set has, the size of edges
must still be equal to the number of dimensions in the SDS array and all the elements correspond-
ing to the additional dimensions must be set to 1.

Each value in the array edges must not be larger than the length of the corresponding dimension in
the SDS data set unless the dimension is unlimited. Attempting to write slabs larger than the size
of the SDS data set will result in an error condition.

In addition, the sum of each value in the array edges and the corresponding value in the start
array must be smaller than or equal to its corresponding SDS array dimension unless the dimen-
sion is unlimited. Violating any of these conditions causes SDwritedata to return FATL.

The parameter data contains the SDS data to be written. If the SDS array is smaller than the
buffer data, the amount of data written will be limited to the maximum size of the SDS array.

Be aware that the mapping between the dimensions of a slab and the order in which the slab val-
ues are stored in memory is different between C and FORTRAN-77. In C, the values are stored
with the assumption that the last dimension of the slab varies fastest (or "row-major order" stor-
age), but in FORTRAN-77 the first dimension varies fastest (or "column-major order" storage).
These storage order conventions can cause some confusion when data written by a C program is
read by a FORTRAN-77 program or vice versa.

There are two FORTRAN-77 versions of this routine: sfwdata and sfwcdata. The routine sfw-
data writes numeric scientific data and sfwcdata writes character scientific data.

SDwritedata returns either a value of SUCCEED (or 0) or FAIL (or -1). The parameters of this rou-
tine are described in Table 3D.

December 30, 2003 3-31

National Center for Supercomputing Applications

TABLE 3D SDwritedata Parameter List
Routine Name Parameter Type
[Return Type] Par t Description
(FORTRAN-77) C FORTRAN-77
sds_id int32 integer Data set identifier
. . Array containing the position at which the
%
start int32] integer(*) write will start for each dimension
Array specifying the interval between the
SDwritedata stride int32 [] integer(*) values that will be read along each dimen-
[intn] sion
:::Xﬁ:::/) Array containing the number of data ele-
edges int32 [] integer(*) ments that will be written along each dimen-
sion
<valid numeric data
data VOIDP type>(*)/ Buffer for the data to be written
character*(*)
3.5.1.1 Filling an Entire Array
Filling an array is a simple slab operation where the slab begins at the origin of the SDS array and
fills every location in the array. SDwritedata fills an entire SDS array with data when all elements
of the array start are set to 0, the argument stride is set equal to NULL in C or each element of
the array stride is set to 1 in both C and FORTRAN-77, and each element of the array edges is
equal to the length of each dimension.
EXAMPLE 2. Writing to an SDS.
This example illustrates the use of the routines SDselect/sfselect and SDwritedata/sfwrite to
select the first SDS in the file SDS.hdf created in Example 1 and to write actual data to it.
C:
#include "mfhdf.h"
#define FILE NAME "SDS.hdf"
#define X LENGTH 5
#define Y_LENGTH 16
main()
{
[rrkkkkkkkkkkkkkkkkkkkkk** Variable declaration **xxkxkkkkkkkkkkkkkkkhkkkkk /
int32 sd_id, sds_id, sds_index;
intn status;
int32 start[2], edges[2];
int32 data[Y LENGTH][X_ LENGTH];
int i, j;
[Hxxxhkxxkkkxkkkxx*kxx* End of variable declaration ***xx*kxxkkkxkkkkxkkkkkk/
/*
* Data set data initialization.
*/
for (j = 0; j < Y_LENGTH; j++) {
for (i = 0; i < X_LENGTH; i++)
data[j][i] = (1 + j) + 1;
}
/%
3-32 December 30, 2003

HDF User’s Guide

* Open the file and initialize the SD interface.
*/
sd_id = SDstart (FILE NAME, DFACC WRITE);

/*

* Attach to the first data set.

*/

sds_index = 0;

sds_id = SDselect (sd_id, sds_index);

/*

* Define the location and size of the data to be written to the data set.
*/

start[0] 0;

start[1l] = 0;

edges[0] = Y LENGTH;

edges[1] = X LENGTH;

/*

* Write the stored data to the data set. The third argument is set to NULL
* to specify contiguous data elements. The last argument must

* be explicitly cast to a generic pointer since SDwritedata is designed

* to write generic data.

*/

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)data);

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

}
FORTRAN:
program write data
implicit none
C
C Parameter declaration.
C
character*7 FILE_ NAME
character*11 SDS_NAME
integer X_LENGTH, Y_LENGTH, RANK
parameter (FILE_NAME = ’'SDS.hdf’,
+ SDS_NAME = ’‘SDStemplate’,
+ X _LENGTH = 5,
+ Y LENGTH = 16,
+ RANK = 2)
integer DFACC_WRITE, DFNT_ INT32
parameter (DFACC_WRITE = 2,
+ DFNT_INT32 = 24)
C
C Function declaration.
C
integer sfstart, sfselect, sfwdata, sfendacc, sfend
C

C**** Variable declaration ****xxkxkkkkkhhkhhhhhhhhhhhhhhhhrhhhrhhhhhhdx

C

December 30, 2003 3-33

National Center for Supercomputing Applications

integer sd_id, sds_id, sds_index, status
integer start(2), edges(2), stride(2)
integer i, j

integer data(X_LENGTH, Y LENGTH)

C
C**x*x% End of Variable declaration R R R SRR RS EEEEEEEEEEEEEEEEEEEE T
C
C
C Data set data initialization.
C

do 20 j = 1, Y LENGTH

do 10 i = 1, X LENGTH
data(i, j) =i+ 3j -1

10 continue
20 continue
C
C Open the file and initialize the SD interface.
C

sd_id = sfstart(FILE NAME, DFACC_WRITE)
C
C Attach to the first data set.
C

sds_index = 0

sds_id = sfselect(sd_id, sds_index)
C
C Define the location and size of the data to be written
C to the data set. Note that setting values of the array stride to 1
C specifies the contiguous writing of data.
C

start(l) = 0

start(2) = 0

edges(1l) = X LENGTH

edges(2) = Y_LENGTH

stride(l) =1

stride(2) =1
C
(¢ Write the stored data to the data set named in SDS_NAME.
C Note that the routine sfwdata is used instead of sfwcdata
C to write the numeric data.
C

status = sfwdata(sds_id, start, stride, edges, data)
C
C Terminate access to the data set.
C

status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C

status = sfend(sd_id)

end

3-34 December 30, 2003

HDF User’s Guide

3.5.1.2 Writing Slabs to an SDS Array

To allow preexisting data to be modified, the HDF library does not prevent SDwritedata from
overwriting one slab with another. As a result, the calling program is responsible for managing
any overlap when writing slabs. The HDF library will issue an error if a slab extends past the valid
boundaries of the SDS array. However, appending data along an unlimited dimension is allowed.

EXAMPLE 3.

Writing a Slab of Data to an SDS.

This example shows how to fill a 3-dimensional SDS array with data by writing series of 2-
dimensional slabs to it.

C:

#include "mfhdf.h"

#define FILE NAME "SLABS.hdf"
#define SDS_NAME "FilledBySlabs"
#define X_LENGTH 4

#define Y_LENGTH 5

#define Z_LENGTH 6

#define RANK 3

main()

{

[HRE KRk kKK kkkkkkkkkkkkkx*k*%% Variable declaration **x*kkxkkxkkkkkkkkkkkkkkkkx/

int32 sd_id, sds_id;

intn status;

int32 dim sizes[3], start[3], edges[3];
int32 data[Z LENGTH][Y LENGTH][X LENGTH];
int32 zx data[Z_LENGTH][X_LENGTH];

int i, 3, k;

JHRxkkKkkkxkkkkkkkkxk*x%** End of variable declaration ***xkxkxkkxkkkkkkkkkkkkkx/

/*
* Data initialization.
*/
for (k = 0; k < Z_LENGTH; k++)
for (j = 0; j < Y _LENGTH; j++)
for (i = 0; i < X_LENGTH; i++)
data[k][FI[i] = (L + 1) + (F + 1) + (k + 1);

/*

* Create the file and initialize the SD interface.
*/

sd_id = SDstart (FILE NAME, DFACC_CREATE);

/*

* Define dimensions of the array to be created.
*/

dim sizes[0] Z_LENGTH;

dim sizes[1] Y LENGTH;

dim sizes[2] = X _LENGTH;

/*
* Create the array with the name defined in SDS_NAME.
*/

sds_id = SDcreate (sd_id, SDS_NAME, DFNT INT32, RANK, dim sizes);

/*

December 30, 2003

3-35

National Center for Supercomputing Applications

parallel to the ZX plane.

the for loop.

/

edges[0] = Z LENGTH;

edges([1l] = 1;

edges[2] = X LENGTH;

start[0] = start[2] = 0;

for (j = 0; j < Y_LENGTH; j++)

* % ok Ok F F *

{
start[l] = J;
/*
* Initialize zx data buffer (data slab).
*/
for (k = 0; k < Z_LENGTH; k++)
{
for (i = 0; i < X_LENGTH; i++)
{
zx_data[k][1i] = datal[k][]j][1i];
}
}
/*

Set the parameters start and edges to write
a 6x4 element slab of data to the data set; note
that edges[1l] is set to 1 to define a 2-dimensional slab

start[1l] (slab position in the array) is initialized inside

* Write the data slab into the SDS array defined in SDS_NAME.
* Note that the 3rd parameter is NULL which indicates that consecutive

* slabs in the Y direction are written.

*/
status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)zx data);
}
/*
* Terminate access to the data set.
*/
status = SDendaccess (sds_id);
/*
* Terminate access to the SD interface and close the file.
*/
status = SDend (sd_id);
}
FORTRAN:
program write slab
implicit none
C
C Parameter declaration.
C

character*9 FILE_NAME
character*13 SDS_NAME

integer X_LENGTH, Y_LENGTH, Z_LENGTH, RANK
parameter (FILE_NAME = ’'SLABS.hdf’,
+ SDS_NAME = ‘FilledBySlabs’,
+ X_LENGTH = 4,
+ Y LENGTH = 5,
+ Z_LENGTH = 6,
+ RANK = 3)
integer DFACC_CREATE, DFNT_ INT32

parameter (DFACC_CREATE = 4,

3-36 December 30, 2003

HDF User’s Guide

C
C

C

C****

C

CHx*x

[eleNe]

10
20
30

Q

Q Q

aQ

e NN NN Ne!

(@]

DFNT_INT32 = 24)
Function declaration.

integer sfstart, sfcreate, sfwdata, sfendacc, sfend

Variable declaration ****xxxxkkkkkkkkkkkkhhkhkhhhkhhhrkhhhkrkkhkx

integer sd_id, sds_id

integer dim sizes(3), start(3), edges(3), stride(3)
integer i, j, k, status

integer data(X_LENGTH, Y LENGTH, Z_LENGTH)

integer xz_data(X_LENGTH, Z_LENGTH)

End of variable declaration **x#xx*xxkkkkkkkhkkkkhhkhhkkkhkhkkhkhk k%

Data initialization.

do 30 k = 1, Z LENGTH
do 20 j = 1, Y LENGTH
do 10 i = 1, X _LENGTH
data(i, j, k) =1+ 3j +k
continue
continue
continue

Create the file and initialize the SD interface.
sd_id = sfstart(FILE _NAME, DFACC_CREATE)

Define dimensions of the array to be created.

dim sizes(1l) = X LENGTH
dim sizes(2) = Y LENGTH
dim sizes(3) = Z_LENGTH

Create the data set with the name defined in SDS_NAME.

sds_id = sfcreate(sd_id, SDS_NAME, DFNT INT32, RANK,
dim sizes)

Set the parameters start and edges to write

a 4x6 element slab of data to the data set;

note that edges(2) is set to 1 to define a 2 dimensional slab
parallel to the XZ plane;

start(2) (slab position in the array) is initialized inside the
for loop.

edges(1l) = X LENGTH
edges(2) =1
edges(3) = Z_LENGTH
start(l) = 0
start(3) = 0
stride(l) =1
stride(2) =1
stride(3) =1

do 60 j = 1, Y LENGTH
start(2) j-1

Initialize the buffer xz data (data slab).

December 30, 2003 3-37

National Center for Supercomputing Applications

do 50 k = 1, Z_LENGTH
do 40 i = 1, X LENGTH
xz_data(i, k) = data(i, j, k)
40 continue
50 continue

C

C Write the data slab into SDS array defined in SDS_NAME.
C Note that the elements of array stride are set to 1 to
C
C

specify that the consecutive slabs in the Y direction are written.

status = sfwdata(sds_id, start, stride, edges, xz_data)

60 continue
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
status = sfend(sd_id)
end
EXAMPLE 4. Altering Values within an SDS Array.

This example demonstrates how the routine SDwritedata can be used to alter the values of the
elements in the 10th and 11th rows, at the 2nd column, in the SDS array created in the Example 1
and written in Example 2. FORTRAN-77 routine sfwdata is used to alter the elements in the 2nd
row, 10th and 11th columns, to reflect the difference between C and Fortran internal storage.

C:
#include "mfhdf.h"

#define FILE NAME "SDS.hdf"

main()

{

[HRE KRk kR kk kR KRk kkkkkkx*k%% Variable declaration **x*kkxkkkkkkkkkkkkkkkkkrx/

int32 sd_id, sds_id, sds_index;
intn status;

int32 start[2], edges[2];

int32 new data[2];

int i, 3;

[Hxxxhkxxkkkxkkkxx*kxx* End of variable declaration ***xx*kxxkkkxkkkkxxkkkkkk/
/%

* Open the file and initialize the SD interface with write access.

*/

sd_id = SDstart (FILE_NAME, DFACC_WRITE);

/*

* Select the first data set.

*/

sds_index = 0;

sds_id = SDselect (sd_id, sds_index);

/*
* Set up the start and edge parameters to write new element values
* into 10th row, 2nd column place, and 11lth row, 2nd column place.

3-38 December 30, 2003

HDF User’s Guide

*/

start[0] 9; /* starting at 10th row */
start[1l] = 1; /* starting at 2nd column */
edges[0] = 2; /* rows 10th and 11th */
edges[l] = 1; /* column 2nd only */

/*

* Initialize buffer with the new values to be written.
*/

new _data[0] = new data[l] = 1000;

/*

* Write the new values.

*/

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)new data);
/*

* Terminate access to the data set.

*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

}
FORTRAN:
program alter data
implicit none
C
C Parameter declaration.
C
character*7 FILE_NAME
integer DFACC_WRITE
parameter (FILE_NAME = ’'SDS.hdf’,
+ DFACC_WRITE = 2)
C
C Function declaration.
C
integer sfstart, sfselect, sfwdata, sfendacc, sfend
C
C**** Variable declaration khkhkkkhkhkkhkhkkhkkhkhkkhhkkhhkhkkhhhhkhkdhhkdhhhhkdhdhhkdhkdhhkdhkdxkx
C
integer sd_id, sds_id, sds_index
integer start(2), edges(2), stride(2)
integer status
integer new_data(2)
C
C**x*x% End of Variable declaration EEEEEE RS EE R EEEEEEEEEEEEEEEEEEEEE SR
C
C
C Open the file and initialize the SD interface.
C
sd_id = sfstart(FILE NAME, DFACC_WRITE)
C
C Select the first data set.
C

sds_index = 0
sds_id = sfselect(sd_id, sds_index)

December 30, 2003 3-39

National Center for Supercomputing Applications

C
C Initialize the start, edge, and stride parameters to write
C two elements into 2nd row, 10th column and 11lth column places.
C
C Specify 2nd row.
C
start(l) =1
C
C Specify 10th column.
C
start(2) =
edges(l) =1
C
C Two elements are written along 2nd row.
C
edges(2) = 2
stride(l) =1
stride(2) =1
C
C Initialize the new values to be written.
C
new _data(l) = 1000
new_data(2) = 1000
C
C Write the new values.
C
status = sfwdata(sds_id, start, stride, edges, new_data)
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C

status = sfend(sd_id)

end

3.5.1.3 Appending Data to an SDS Array along an Unlimited Dimension

An SDS array can be made appendable, however, only along one dimension. This dimension must
be specified as an appendable dimension when it is created.

In C, only the first element of the SDcreate parameter dim sizes (i.e., the dimension of the low-
est rank or the slowest-changing dimension) can be assigned the value SD UNLIMITED (or 0) to
make the first dimension unlimited. In FORTRAN-77, only the last dimension (i.e., the dimen-
sion of the highest rank or the slowest-changing dimension) can be unlimited. In other words, in
FORTRAN-77 dim sizes(rank) must be set to the value SD UNLIMITED to make the last dimen-
sion appendable.

To append data to a data set without overwriting previously-written data, the user must specify the
appropriate coordinates in the start parameter of the SDwritedata routine. For example, if 15
data elements have been written to an unlimited dimension, appending data to the array requires a
start coordinate of 15. Specifying a starting coordinate less than the current number of elements
written to the unlimited dimension will result in data being overwritten. In either case, all of the
coordinates in the array except the one corresponding to the unlimited dimension must be equal to
or less than the lengths of their corresponding dimensions.

Any time an unlimited dimension is appended to, the HDF library will automatically adjust the
dimension record to the new length. If the newly-appended data begins beyond the previous

3-40

December 30, 2003

HDF User’s Guide

length of the dimension, the locations between the old data and the beginning of the newly-
appended data are initialized to the assigned fill value if there is one defined by the user, or the
default fill value if none is defined. Refer to Section 3.10.5 on page 101 for a discussion of fill
value.

3.5.1.4 Determining whether an SDS Array is Appendable: SDisrecord

SDisrecord determines whether the data set identified by the parameter sds id is appendable,
which means that the slowest-changing dimension of the SDS array is declared unlimited when
the data set is created. The syntax of SDisrecord is as follows:

C: status = SDisrecord(sds id);
FORTRAN: status = sfisrcrd(sds id)

SDisrecord returns TRUE (or 1) when the data set specified by sds_id is appendable and FALSE (or
0) otherwise. The parameter of this routine is defined in Table 3E.

TABLE 3E SDisrecord Parameter List
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
SDisrecord
[int32] sds_id int32 integer Data set identifier
(sfisrerd)
3.5.1.5 Setting the Block Size: SDsetblocksize
SDsetblocksize sets the size of the blocks used for storing the data for unlimited dimension data
sets. This is used only when creating new data sets; it does not have any affect on existing data
sets. The syntax of this routine is as follows:
C: status = SDsetblocksize(sds id, block size);
FORTRAN: status = sfsblsz(sds id, block size)
SDsetblocksize must be called after SDcreate or SDselect and before SDwritedata. The parame-
ter block size should be set to a multiple of the desired buffer size.
SDsetblocksize returns a value of SUCCEED (or 0) or FATL (or -1). Its parameters are further
described in Table 3F.
TABLE 3F SDsetblocksize Parameter List
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
SDsetblocksize sds_id int32 integer Data set identifier
int;
(S[fl:b;ls]z) block_size int32 integer Block size
EXAMPLE 5. Appending Data to an SDS Array with an Unlimited Dimension.

This example creates a 10x10 SDS array with one unlimited dimension and writes data to it. The
file is reopened and the routine SDisrecord/sfisrcrd is used to determine whether the selected
SDS array is appendable. Then new data is appended, starting at the 11th row.

December 30, 2003 3-41

National Center for Supercomputing Applications

C:
#include "mfhdf.h"
#define FILE_NAME "SDSUNLIMITED.hdf"
#define SDS_NAME "AppendableData"
#define X_LENGTH 10
#define Y_LENGTH 10
#define RANK 2
main()
{

[rFxkkkkkkkkkkkkkkkkkkkk*** Variable declaration **xkxkkkkkkkkkkkkkkhkkkkkx/

int32 sd_id, sds_id, sds_index;

intn status;

int32 dim sizes[2];

int32 data[Y LENGTH][X LENGTH], append data[X LENGTH];
int32 start[2], edges[2];

int i, 3;

[xxkkkkkxkkkkkkxkxkxx* End of variable declaration ***kxxkxkkxkkkkkkkhkkkkkx/

/*
* Data initialization.
*/
for (j = 0; j < Y _LENGTH; j++)
{
for (i = 0; i < X LENGTH; i++)
data[j][i] = (L + 1) + (3 + 1);
}
/*
* Create the file and initialize the SD interface.
*/

sd_id = SDstart (FILE NAME, DFACC_CREATE);

/*

* Define dimensions of the array. Make the first dimension
* appendable by defining its length to be unlimited.

*/

dim sizes[0] = SD_UNLIMITED;

dim sizes[1] = X_LENGTH;

/*

* Create the array data set.

*/

sds_id = SDcreate (sd_id, SDS_NAME, DFNT INT32, RANK, dim sizes);

/*

* Define the location and the size of the data to be written
* to the data set.

*/

start[0] = start[1l] = 0;

edges[0] = Y LENGTH;

edges[1] = X LENGTH;

/*

* Write the data.

*/

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)data);

/*

3-42 December 30, 2003

HDF User’s Guide

* Terminate access to the array data set, terminate access
* to the SD interface, and close the file.

*/

status = SDendaccess (sds_id);

status = SDend (sd_id);

/*
* Store the array values to be appended to the data set.
*/
for (i = 0; i < X LENGTH; i++)
append_data[i] = 1000 + i;

/*

* Reopen the file and initialize the SD interface.
*/

sd_id = SDstart (FILE_NAME, DFACC_WRITE);

/*

* Select the first data set.

*/

sds_index = 0;

sds_id = SDselect (sd_id, sds_index);

/*

* Check if selected SDS is unlimited. If it is not, then terminate access
* to the SD interface and close the file.

*/

if (SDhisrecord (sds_id))

{

/*

* Define the location of the append to start at the first column
* of the 11th row of the data set and to stop at the end of the
* eleventh row.

*/

start[0] = Y LENGTH;

start[1l] 0;

edges[0] 1;

edges[1] X _LENGTH;

/*

* Append data to the data set.

*/

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)append data);
}

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

FORTRAN:

program append_sds
implicit none

C Parameter declaration.

December 30, 2003 3-43

National Center for Supercomputing Applications

C
character*16 FILE NAME
character*14 SDS_NAME
integer X_LENGTH, Y_LENGTH, RANK
parameter (FILE_NAME = 'SDSUNLIMITED.hdf’,
+ SDS_NAME = 'AppendableData’,
+ X_LENGTH = 10,
+ Y LENGTH = 10,
+ RANK = 2)
integer DFACC_CREATE, DFACC_WRITE, SD UNLIMITED,
+ DFNT_INT32
parameter (DFACC_CREATE = 4,
+ DFACC_WRITE = 2,
+ SD_UNLIMITED = O,
+ DFNT_ INT32 = 24)
C
C Function declaration.
C
integer sfstart, sfcreate, sfwdata, sfselect
integer sfendacc, sfend
C
C**** Varlable declaratlon EEEE S LSS S SRS EE LSRR R LR R EEEEEEEEEEEEE]
C
integer sd_id, sds_id, sds_index, status
integer dim sizes(2)
integer start(2), edges(2), stride(2)
integer i, j
integer data (X_LENGTH, Y LENGTH), append data(X_LENGTH)
C
C**x*x% End of Variable declaration R EE R R SRR RS SRR EEEEEEEEEEEEEEEEEE R
C
C
C Data initialization.
C
do 20 j = 1, Y LENGTH
do 10 i = 1, X LENGTH
data(i, j) =i + j
10 continue
20 continue
C
C Create the file and initialize the SD interface.
C
sd_id = sfstart(FILE_NAME, DFACC_CREATE)
C
C Define dimensions of the array. Make the
C last dimension appendable by defining its length as unlimited.
C
dim sizes(1l) = X LENGTH
dim sizes(2) = SD_UNLIMITED
C Create the array data set.
sds_id = sfcreate(sd_id, SDS_NAME, DFNT INT32, RANK,
. dim sizes)
C
C Define the location and the size of the data to be written
C to the data set. Note that the elements of array stride are
C set to 1 for contiguous writing.
C
start(l) = 0
start(2) = 0
edges(1l) = X LENGTH
edges(2) = Y_LENGTH

stride(l) =1

3-44 December 30, 2003

HDF User’s Guide

stride(2) =1

C
C Write the data.
C
status = sfwdata(sds_id, start, stride, edges, data)
C
C Terminate access to the data set, terminate access
C to the SD interface, and close the file.
C
status = sfendacc(sds_id)
status = sfend(sd_id)
C
C Store the array values to be appended to the data set.
C
do 30 i = 1, X LENGTH
append data(i) = 1000 + i - 1
30 continue
C
C Reopen the file and initialize the SD.
C
sd_id = sfstart(FILE NAME, DFACC_WRITE)
C
C Select the first data set.
C
sds_index = 0
sds_id = sfselect(sd_id, sds_index)
C
C Define the location of the append to start at the 11th
C column of the 1lst row and to stop at the end of the 10th row.
C
start(l) = 0
start(2) = Y_LENGTH
edges(1l) = X LENGTH
edges(2) =1
C
C Append the data to the data set.
C
status = sfwdata(sds_id, start, stride, edges, append data)
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C

status = sfend(sd_id)

end

3.5.2 Compressing SDS Data: SDsetcompress

The SDsetcompress routine compresses an existing data set or creates a new compressed data set.
It is a simplified interface to the HCcreate routine, and should be used instead of HCcreate
unless the user is familiar with the lower-level routines.
The compression algorithms currently supported by SDsetcompress are:

- Adaptive Huffman

« GZIP "deflation" (Lempel/Ziv-77 dictionary coder)

- Run-length encoding

December 30, 2003 3-45

National Center for Supercomputing Applications

In the future, the following algorithms may be included: Lempel/Ziv-78 dictionary coding, an
arithmetic coder, and a faster Huffman algorithm.

The syntax of the routine SDsetcompress is as follows:
C: status = SDsetcampress(sds_id, camp type, & info);

FORTRAN: status = sfscampress(sds id, camp type, carp prm)

The parameter comp type specifies the compression type definition and is set to COMP CODE RLE
(or 1) for run-length encoding (RLE), coMP CODE SKPHUFF (or 3) for Skipping Huffman,
COMP_CODE DEFIATE (or 4) for GZIP compression, or COMP_CODE NONE (or 0) for no compression.

Compression information is specified by the parameter ¢ _info in C, and by the parameter
comp prm in FORTRAN-77. The parameter ¢ _info is a pointer to a union structure of type
comp_info. (Refer to the SDsetcompress entry in the HDF Reference Manual for the description
of the comp_info structure.) If comp type is set to COMP CODE NONE or COMP CODE RILE, the param-
eters ¢_info and comp prm are not used; c¢_info can be set to NULL and comp prm can be unde-
fined. If comp type is set to COMP CODE SKPHUFF, then the structure skphuff in the union
comp_info in C (comp prm(1) in FORTRAN-77) must be provided with the size, in bytes, of the
data elements. If it is set to COMP_CODE DEFIATE, the deflate structure in the union comp info in C
(comp _prm(1) in FORTRAN-77) must be provided with the information about the compression
effort.

For example, to compress signed 16-bit integer data using the adaptive Huffman algorithm, the
following definition and SDsetcompress call are used.

C: carp_info c_info;
c_info.skphuff.skp size = sizeof(intl16);
status = SDsetcampress(sds_id, COMP_CODE SKPHUFF, &c_info);

FORTRAN: carp prm(1l) = 2
COMP_CODE_SKPHUFF = 3
status = sfscampress(sds id, COMP_CODE SKPHUFF, carp prm)

To compress a data set using the gzip deflation algorithm with the maximum effort specified, the
following definition and SDsetcompress call are used.

C: carp_info c_info;
c _info.deflate.level = 9;
status = SDsetcampress(sds_id, COMP_CODE DEFIATE, &c_info);

FORTRAN: carmp prm(1l) =9
COMP_CODE DEFIATE = 4
status = sfscampress(sds_id, COMP_CODE DEFIATE, camp prm)

SDsetcompress functionality is currently limited to the following:

- Write the compressed data, in its entirety, to the data set. The data set is built in-core then
written in a single write operation.

- Append to a compressed data set. The data of the data set is read into memory, appended
with data along the unlimited dimension, then compressed and written back to the data set.

The existing compression algorithms supported by HDF do not allow partial modification to a
compressed datastream. Overwriting the contents of existing data sets may be supported in the
future. Note also that SDsetcompress performs the compression of the data, not SDwritedata.

3-46

December 30, 2003

HDF User’s Guide

SDsetcompress returns a value of SUCCEED (or 0) or FAIL (or -1). The C version parameters are fur-
ther described in Table 3G and the FORTRAN-77 version parameters are further described in

Table 3H.

Note: Compressed data sets cannot be stored in external files (see Section 3.5.3). |

TABLE 3G SDsetcompress Parameter List
Routine Name . . Parameter Type .
[Return Type] Par = Description
SDsetcompress sds_id int32 Data set identifier
[intn] comp_type int32 Compression method
c_info comp_info* Pointer to compression information structure
TABLE 3H sfscompress Parameter List
Routine Name . . Parameter Type .
Par Description
FORTRAN-77
sds_id integer Data set identifier
sfscompress comp_type integer Compression method
comp_prm integer(*) Compression parameters array
EXAMPLE 6. Compressing SDS Data.

This example uses the routine SDsetcompress/sfscompress to compress SDS data with the GZIP
compression method. See comments in the program regarding the use of the Skipping Huffman or

RLE compression methods.

C:

#include "mfhdf.h"

#define
#define
#define
#define
#define

main()

{

FILE NAME
SDS_NAME
X_LENGTH
Y LENGTH
RANK

"SDScompressed.hdf"

"SDSgzip"

5
16
2

[rxkkkkkkkkkkkkkkkkkkkx*** Variable declaration **xkkxkkkkkkkkkkkkkkhkkkkkx/

int32
intn
int32

int32
int32
int

sd_id, sds_id, sds_index;

status;
comp_type;
comp_info c_info;

i, 3;

/* Compression flag */

/* Compression structure */
start[2], edges[2], dim sizes[2];
data[Y LENGTH][X_ LENGTH];

[rrkkkkkkkkkkkkkkxxxx*x End of variable declaration ***xxxxkxkxxkkkkkkkkkkkk*/

/*

* Buffer array data and define array dimensions.

*/
for (

{

j = 0; j < Y _LENGTH; j++)

December 30, 2003

3-47

National Center for Supercomputing Applications

for (i = 0; i < X_LENGTH; it++)

data[j1[i] = (i + j) + 1;
}
dim sizes[0] = Y LENGTH;
dim sizes[1] = X LENGTH;

/*

* Create the file and initialize the SD interface.
*/

Sd_id = SDstart (FILE NAME, DFACC_CREATE);

/*

* Create the data set with the name defined in SDS_NAME.

*/

sds_id = SDcreate (sd_id, SDS_NAME, DFNT INT32, RANK, dim sizes);

*

Ininitialize compression structure element and compression
flag for GZIP compression and call SDsetcompress.

To use the Skipping Huffman compression method, initialize
comp_type = COMP_CODE_SKPHUFF
c_info.skphuff.skp size = value

To use the RLE compression method, initialize
comp_type = COMP_CODE_RLE
No structure element needs to be initialized.

* 0% ok F F F kX F F F O

~

comp_type = COMP_CODE_DEFLATE;
c_info.deflate.level = 6;
status = SDsetcompress (sds_id, comp_ type, &c_info);

/*
* Define the location and size of the data set
* to be written to the file.

*/

start[0] = 0;
start[1l] = 0;
edges[0] = Y LENGTH;
edges[1l] = X LENGTH;
/*

* Write the stored data to the data set. The last argument

* must be explicitly cast to a generic pointer since SDwritedata
* is designed to write generic data.

*/

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)data);

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

3-48

December 30, 2003

HDF User’s Guide

FORTRAN:

(@]

e NN NN Ne!

C
CHx*x

C

CHx*x

el eNe]

10
20

Q

(@]

program write compressed data
implicit none

Parameter declaration.

character*17 FILE NAME
character*7 SDS_NAME
integer X_LENGTH, Y_LENGTH, RANK
parameter (FILE_NAME = ’'SDScompressed.hdf’,
SDS_NAME = ’SDSgzip’,
X_LENGTH = 5,
Y LENGTH 16,
RANK = 2)
integer DFACC_CREATE, DFNT_ INT32
parameter (DFACC_CREATE = 4,
+ DFNT_ INT32 = 24)

integer COMP_CODE_DEFLATE

parameter (COMP_CODE_DEFLATE = 4)

integer DEFLATE_LEVEL

parameter (DEFLATE LEVEL = 6)

To use Skipping Huffman compression method, declare
integer COMP_CODE_ SKPHUFF
parameter (COMP_CODE_SKPHUFF = 3)

To use RLE compression method, declare
integer COMP_CODE_RLE
parameter (COMP_CODE_RLE = 1)

+ 4+ + 4+

Function declaration.

integer sfstart, sfcreate, sfwdata, sfendacc, sfend,
+ sfscompress

Variable declaration ***xkxxxkkkkkrkkhkhkkhkkhkhhk Ak kkk kA XAk kAR KKk * %

integer sd_id, sds_id, status

integer start(2), edges(2), stride(2), dim sizes(2)
integer comp_type

integer comp prm(1)

integer data(X LENGTH, Y LENGTH)

integer i, j

End of variable declaration **x#xx*xxkkkkkkkhkkhkkhhkhhkkhhkhkk kb kk k%

Buffer array data and define array dimensions.

do 20 j = 1, Y LENGTH
do 10 i 1, X LENGTH
data(i, j) =i+ 3j -1
continue
continue
dim sizes(1l) = X LENGTH
dim sizes(2) = Y LENGTH

-~

Open the file and initialize the SD interface.
sd_id = sfstart(FILE _NAME, DFACC_CREATE)

Create the data set with the name SDS_NAME.

December 30,

2003 3-49

National Center for Supercomputing Applications

sds_id = sfcreate(sd_id, SDS _NAME, DFNT INT32, RANK, dim sizes)

C
C Initialize compression parameter (deflate level)
C and call sfscompress function
C For Skipping Huffman compression, comp prm(1l) should be set
C to skipping sizes value (skp_size).
C
comp type = COMP CODE DEFLATE
comp prm(l) = deflate level
status = sfscompress(sds_id, comp_ type, comp prm(1l))
C
C Define the location and size of the data that will be written to
C the data set.
C
start(l) = 0
start(2) = 0
edges(1l) = X LENGTH
edges(2) = Y LENGTH
stride(l) =1
stride(2) =1
C
C Write the stored data to the data set.
C
status = sfwdata(sds_id, start, stride, edges, data)
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C

status = sfend(sd_id)

end

3.5.3 External File Operations

The HDF library provides routines to store SDS arrays in an exfernal file that is separate from the
primary file containing the metadata for the array. Such an SDS array is called an external SDS
array. With external arrays, it is possible to link data sets in the same HDF file to multiple external
files or data sets in different HDF files to the same external file.

External arrays are functionally identical to arrays in the primary data file. The HDF library keeps
track of the beginning of the data set and adds data at the appropriate position in the external file.
When data is written or appended along a specified dimension, the HDF library writes along that
dimension in the external file and updates the appropriate dimension record in the primary file.

There are two methods for creating external SDS arrays. The user can create a new data set in an
external file or move data from an existing internal data set to an external file. In either case, only
the array values are stored externally, all metadata remains in the primary HDF file.

When an external array is created, a sufficient amount of space is reserved in the external file for
the entire data set. The data set will begin at the specified byte offset and extend the length of the
data set. The write operation will overwrite the target locations in the external file. The external
file may be of any format, provided the data types, byte ordering, and dimension ordering are sup-
ported by HDF. However, the primary file must be an HDF file.

3-50

December 30, 2003

HDF User’s Guide

Routines for manipulating external SDS arrays can only be used with HDF files. Unidata-format-
ted netCDF files are not supported by these routines.

Note: Compressed data sets (see Section 3.5.2) cannot be stored in external files.

3.5.3.1 Specifying the Directory Search Path of an External File: HXsetdir
There are three filesystem locations the HDF external file routines check when determining the
location of an external file. They are, in order of search precedence:

1. The directory path specified by the last call to the HXsetdir routine.

2. The directory path specified by the SHDFEXTDIR shell environment variable.

3. The file system locations searched by the standard open(3) routine.

The syntax of HXsetdir is as follows:
c: status = Hxsetdir(dir list);
FORTRAN: status = hxisdir(dir list, dir length)

HXSsetdir has one argument, a string specifying the directory list to be searched. This list can con-
sist of one directory name or a set of directory names separated by colons. The FORTRAN-77
version of this routine takes an additional argument, dir length, which specifies the length of
the directory list string.

If an error condition is encountered, HXsetdir leaves the directory search path unchanged. The
directory search path specified by HXsetdir remains in effect throughout the scope of the calling
program.

HXsetdir returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of HXsetdir are
described in Table 31 on page 52.

3.5.3.2 Specifying the Location of the Next External File to be Created: HXsetcreatedir

HXsetcreatedir specifies the directory location of the next external file to be created. It overrides
the directory location specified by SHDFEXTCREATEDIR and the locations searched by the
open(3) call in the same manner as HXsetdir. Specifically, the search precedence is:

1. The directory specified by the last call to the HXsetcreatedir routine.
2. The directory specified by the SHDFEXTCREATEDIR shell environment variable.
3. The locations searched by the standard open(3) routine.

The syntax of HXsetcreatedir is as follows:
C: status = HXsetcreatedir(dir);
FORTRAN: status = hxisodir(dir, dir length)

HXSsetcreatedir has one argument, the directory location of the next external file to be created.
The FORTRAN-77 version of this routine takes an additional argument, dir length, which spec-
ifies the length of the directory list string. If an error is encountered, the directory location is left
unchanged.

HXsetcreatedir returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of HXsetcre-
atedir are described in Table 31.

December 30, 2003 3-51

National Center for Supercomputing Applications

TABLE 31

HXSsetdir and HXsetcreatedir Parameter Lists

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77

HXsetdir dir_list char * character*(*) Directory list to be searched

[intn]
(hxisdir) dir_length Not applicable integer Length of the dir_list string

Directory location of the next external file to be cre-

HXsetcreatedir dir char * character*(¥)
ated

[intn]
(hxiscdir)

dir_length Not applicable integer Length of the dir string

3.5.3.3 Creating a Data Set with Data Stored in an External File: SDsetexternalfile

Creating a data set in an external file involves the following steps:
1. Create the data set.
2. Specify that an external data file is to be used.
3. Write data to the data set.

4. Terminate access to the data set.

To create a data set with data stored in an external file, the calling program must make the follow-
ing calls.

C: sds_id = SDcreate(sd id, name, data type, rank, dim sizes);
status = SDsetexternalfile(sds id, filename, offset);
status = SDwritedata(sds id, start, stride, edges, data);
status = SDendaccess(sds id);

FORTRAN: sds id = sfcreate(sd id, name, data type, rank, dim sizes)
status = sfsextf(sds id, filename, offset)

status = sfwdata(sds_id, start, stride, edges, data)
OR status = sfwcdata(sds id, start, stride, edges, data)

status = sfendacc(sds_id)

For a newly-created data set, SDsetexternalfile marks the SDS identified by sds_id as one whose
data is to be written to an external file. It does not actually write data to an external file; it marks
the data set as an external data set for all subsequent SDwritedata operations.

Note that data can only be moved once for any given data set, i.e., SDsetexternalfile can only be
called once after a data set has been created. It is the user’s responsibility to make sure that the
external data file is kept with the primary HDF file.

The parameter filename is the name of the external data file and offset is the number of bytes
from the beginning of the external file to the location where the first byte of data should be writ-
ten. If a file with the name specified by filename exists in the current directory search path, HDF
will access it as the external file. If the file does not exist, HDF will create one in the directory
named in the last call to HXsetcreatefile. If an absolute pathname is specified, the external file
will be created at the location specified by the pathname, overriding the location specified by the
last call to HXsetcreatefile. Use caution when writing to existing external or primary files since
the HDF library starts the write operation at the specified offset without determining whether data
is being overwritten.

Once the name of an external file is established, it cannot be changed without breaking the associ-
ation between the data set’s metadata and the data it describes.

3-52

December 30, 2003

HDF User’s Guide

SDsetexternalfile returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDsetex-
ternalfile are described in Table 3J.

TABLE 3] SDsetexternalfile Parameter List
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
sds_id int32 integer Data set identifier

SDsetexternalfile
[intn]
(sfsextf)

filename char * character*(*) Name of the file to contain the external data set

Offset in bytes from the beginning of the external file to

S int3 i
offset int32 Integer where the SDS data will be written

3.5.3.4 Moving Existing Data to an External File

Data can be moved from a primary file to an external file. The following steps perform this task:
1. Select the data set.
2. Specify the external data file.

3. Terminate access to the data set.

To move data set data to an external file, the calling program must make the following calls:

C: sds _id = SDselect(sd id, sds index);
status = SDsetexternalfile(sds id, filename, offset);
status = SDendaccess(sds id);

FORTRAN: sds id = sfselect(sd id, sds index)
status = sfsextf(sds id, filename, offset)
status = sfendacc(sds_id)

For an existing data set, SDsetexternalfile moves the data to the external file. Any data in the
external file that occupies the space reserved for the external array will be overwritten as a result
of this operation. Data of an existing data set in the primary file can only be moved to the external
file once. During the operation, the data is written to the external file as a contiguous stream
regardless of how it is stored in the primary file. Because data is moved as is, any unwritten loca-
tions in the data set are preserved in the external file. Subsequent read and write operations per-
formed on the data set will access the external file.

EXAMPLE 7. Moving Data to the External File.

This example illustrates the use of the routine SDsetexternalfile/sfsextf to move the SDS data
written in Example 2 to the external file.

C:
#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define EXT FILE NAME "ExternalSDS"
#define OFFSET 24

main()

{

[REEKKKKKKKKKK KRR KA KRR **%% Variable declaration ***kxkxxxkkkkkkkkkkkkkkkkdx /

int32 sd_id, sds_id, sds_index, offset;

December 30, 2003 3-53

National Center for Supercomputing Applications

intn status;
[xkkkxxkkkkkkkxxkkxx*x End of variable declaration ***xxkkkkkkkkkkxkhkhkkk/

/*

* Open the file and initialize the SD interface.
*/

sd_id = SDstart (FILE_NAME, DFACC_WRITE);

/*

* Select the first data set.

*/

sds_index = 0;

sds_id = SDselect (sd_id, sds_index);

/*

* Create a file with the name EXT FILE NAME and move the data set
* values into it, starting at byte location OFFSET.

*/

status = SDsetexternalfile (sds_id, EXT FILE NAME, OFFSET);

/*

* Terminate access to the data set, SD interface, and file.
*/

status = SDendaccess (sds_id);

status = SDend (sd_id);

}
FORTRAN:
program write extfile
implicit none
C
C Parameter declaration.
C
character*7 FILE_ NAME
character*11 EXT FILE NAME
integer OFFSET
integer DFACC_WRITE
parameter (FILE_NAME = ’SDS.hdf’,
+ EXT FILE NAME = 'ExternalsSDS’,
+ OFFSET = 24,
+ DFACC_WRITE = 2)
C
C Function declaration.
C
integer sfstart, sfselect, sfsextf, sfendacc, sfend
C
C**** variable declaration khkhkkkhkhkkhkhkkhkkhkhkkhhkkhhkhkkhhhhkhkdhkdhhhkhkdhkdhkhkdkhkdhhkkdxkx
C
integer sd_id, sds_id, sds_index, offset
integer status
C
C**** End of Variable declaration EEEE SRS SRS SRS RS EEEEEEEEEEEEEEEES]
C
C
C Open the HDF file and initialize the SD interface.
C
sd_id = sfstart(FILE NAME, DFACC_WRITE)
C
C Select the first data set.
C

3-54 December 30, 2003

HDF User’s Guide

3.6

sds_index = 0
sds_id = sfselect(sd_id, sds_index)

C
C Create a file with the name EXT FILE NAME and move the data set
C into it, starting at byte location OFFSET.
C
status = sfsextf(sds_id, EXT FILE_NAME, OFFSET)
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C

status = sfend(sd_id)

end

Reading Data from an SDS Array: SDreaddata

Data of an SDS array can be read as an entire array, a subset of the array, or a set of samples of the
array. SDS data is read from an external file in the same way that it is read from a primary file;
whether the SDS array is stored in an external file is transparent to the user. Reading data from an
SDS array involves the following steps:

1. Select the data set.
2. Define the portion of the data to be read.

3. Read data portion as defined.
To read data from an SDS array, the calling program must contain the following function calls:
C: sds id = SDselect(sd id, sds index);
status = SDreaddata(sds id, start, stride, edges, data);
FORTRAN: sds id = sfselect(sd id, sds index)
status = sfrdata(sds_id, start, stride, edges, data)
OR status = sfrcdata(sds_id, start, stride, edges, data)

Note that step 2 is not illustrated in the function call syntax; it is carried out by assigning values to
the parameters start, stride, and edges before the routine SDreaddata is called in step 3.

SDreaddata reads the data according to the definition specified by the parameters start, stride,
and edges and stores the data into the buffer provided, data. The argument sds_id is the SDS
identifier returned by SDcreate or SDselect. As with SDwritedata, the arguments start,
stride, and edges describe the starting location, the number of elements to skip after each read,
and the number of elements to be read, respectively, for each dimension. For additional informa-
tion on the parameters start, stride, and edges, refer to Section 3.5.1 on page 30.

There are two FORTRAN-77 versions of this routine: sfrdata reads numeric data and sfrcdata
reads character data.

SDreaddata returns a value of SUCCEED (or 0), including the situation when the data set does not
contain data, or FATL (or -1). The parameters of SDreaddata are further described in Table 3K.

December 30, 2003 3-55

National Center for Supercomputing Applications

TABLE 3K SDreaddata Parameter List
Routine Name Parameter Type
[Return Type] ..
Parameter Description
(FORTRAN- C FORTRAN-77
77)
sds_id int32 integer Data set identifier
. . Array containing the position at which the
ot *
start inc32(] integer(*) read will start for each dimension
SDreaddat Array containing the number of data loca-
rf:a ata stride int32[] integer(*) tions the current location is to be moved
Lintn] forward before the next read
(sfrdata/
sfredata)) . . « Array containing the number of data ele-
edges inc32(] integer(*) ments to be read along each dimension
<valid numeric data
data VOIDP type>(*)/ Buffer the data will be read into
character*(*)
EXAMPLE 8. Reading from an SDS.
This example uses the routine SDreaddata/sfrdata to read the data that has been written in
Example 2, modified in Example 4, and moved to the external file in the Example 7. Note that the
original file SDS.hdf that contains the SDS metadata and the external file ExternalSDS that con-
tains the SDS raw data should reside in the same directory. The fact that raw data is in the external
file is transparent to the user’s program.
C:
#include "mfhdf.h"
#define FILE NAME "SDS.hdf"
#define X_LENGTH 5
#define Y_LENGTH 16
main()
{
[Hxxxhkxxkkkkkkkkxkkkxxkk**xx* Variable declaration **x*kxxxkkkkkkkkkkkxkkkkkk/
int32 sd_id, sds_id, sds_index;
intn status;
int32 start[2], edges[2];
int32 data[Y LENGTH][X LENGTH];
int i, 3;
/********************* End of Variable declaration ***********************/
/%
* Open the file for reading and initialize the SD interface.
*/
sd_id = SDstart (FILE_NAME, DFACC_READ);
/*
* Select the first data set.
*/
sds_index = 0;
sds_id = SDselect (sd_id, sds_index);
/*
* Set elements of array start to 0, elements of array edges
* to SDS dimensions,and use NULL for the argument stride in SDreaddata
3-56 December 30, 2003

HDF User’s Guide

* to read the entire data.

*/

start[0] = 0;
start[1l] = 0;
edges[0] = Y LENGTH;

edges[1l] = X LENGTH;

/*

* Read entire data into data array.

*/

status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)data);

/*

* Print 10th row; the following numbers should be displayed.
*

* 10 1000 12 13 14

*/

for (j = 0; j < X LENGTH; j++) printf ("%d ", data[9][]]);
printf ("\n");

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

}
FORTRAN:
program read data
implicit none
C
C Parameter declaration.
C
character*7 FILE_ NAME
integer X_LENGTH, Y_LENGTH
parameter (FILE_NAME = ’'SDS.hdf’,
+ X LENGTH = 5,
+ Y LENGTH = 16)
integer DFACC_READ, DFNT INT32
parameter (DFACC_READ = 1,
+ DFNT_INT32 = 24)
C
C Function declaration.
C
integer sfstart, sfselect, sfrdata, sfendacc, sfend
C
C**** Variable declaration khkhkkkhkhkkhkhkkhkkhkhkkhhkkhhkhkkhhhhkhkdhkhkdhhhkhdhddhkdkhkdhhkkdxkx
C
integer sd_id, sds_id, sds_index, status
integer start(2), edges(2), stride(2)
integer data(X_ LENGTH, Y LENGTH)
integer j
C
C**x*x% End of Variable declaration IR EE R R SRR R EEEEEEEEEEEEEEEEEEEEEE L]
C
C
C Open the file and initialize the SD interface.

December 30, 2003 3-57

National Center for Supercomputing Applications

C
sd_id = sfstart(FILE NAME, DFACC READ)
C
C Select the first data set.
C
sds_index = 0
sds_id = sfselect(sd_id, sds_index)
C
C Set elements of the array start to 0, elements of the array edges to
C SDS dimensions, and elements of the array stride to 1 to read the
C entire data.
C
start(l) = 0
start(2) = 0
edges(1l) = X LENGTH
edges(2) = Y LENGTH
stride(l) =1
stride(2) =1
C
C Read entire data into data array. Note that sfrdata is used
C to read the numeric data.
C
status = sfrdata(sds_id, start, stride, edges, data)
C
C Print 10th column; the following numbers are displayed:
C
C 10 1000 12 13 14
C
write(*,*) (data(j,10), j = 1, X_LENGTH)
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
status = sfend(sd_id)
end
EXAMPLE 9. Reading Subsets of an SDS.

This example shows how parameters start, stride, and edges of the routine SDreadata/sfr-
data can be used to read three subsets of an SDS array.

C:

For the first subset, the program reads every 3rd element of the 2nd column starting at
the 4th row of the data set created in Example 2 and modified in Examples 4
and 7.

For the second subset the program reads the first 4 elements of the 10th row.

For the third subset, the program reads from the same data set every 6th element of
each column and 4th element of each row starting at 1st column, 3d row.

3-58 December 30, 2003

HDF User’s Guide

FORTRAN-77:

Fortran program reads transposed data to reflect the difference in C and Fortran inter-
nal storage.

#include "mfhdf.h"

#define FILE_NAME "SDS.hdf"
#define SUBI_LENGTH 5
#define SUB2_LENGTH 4
#define SUB3_LENGTH1 2
#define SUB3_LENGTH2 3

main()

{

[RE KRk k kR kkkkkkkkkkkkkxk*% Variable declaration **x*xkkxkkkkkkkkkkkkrkkkkkkx/

int32 sd_id, sds_id, sds_index;

intn status;

int32 start[2], edges[2], stride[2];

int32 subl_data[SUB1_LENGTH];

int32 sub2_data[SUB2_LENGTH];

int32 sub3_data[SUB3_LENGTH2][SUB3_LENGTH1];
int i, 3;

[xKkkkKkkkkkkkxk*kkkxxx%* End of variable declaration **x*xkxkkxkkkkkkkkkkkkks*x/

/*

* Open the file for reading and initialize the SD interface.
*/

sd_id = SDstart (FILE_NAME, DFACC_READ);

/*

* Select the first data set.

*/

sds_index = 0;

sds_id = SDselect (sd_id, sds_index);

/*

* Reading the first subset.

*

* Set elements of start, edges, and stride arrays to read
* every 3rd element in the 2nd column starting at 4th row.
*/

start[0] 3; /* 4th row */

start[1] 1; /* 2nd column */

edges[0] = SUB1l_LENGTH; /* SUBl_LENGTH elements are read along 2nd column*/

edges[1l] = 1;

stride[0] = 3; /* every 3rd element is read along 2nd column */
stride[l] = 1;

/*

* Read the data from the file into subl_data array.

*/

status = SDreaddata (sds_id, start, stride, edges, (VOIDP)subl data);

/*

* Print what we have just read; the following numbers should be displayed:
*

* 5 8 1000 14 17

*/

for (j = 0; j < SUBL1_LENGTH; j++) printf ("$d ", subl _data[j]);

printf ("\n");

December 30, 2003 3-59

National Center for Supercomputing Applications

/*

* Reading the second subset.

*

* Set elements of start and edges arrays to read
* first 4 elements of the 10th row.

*/

start[0] = 9; /* 10th row */

start[1l] = 0; /* 1lst column */

edges[0] = 1;

edges[1l] = SUB2_LENGTH; /* SUB2_LENGTH elements are read along 10th row */
/*

* Read data from the file into sub2_ data array. Note that the third
* parameter is set to NULL for contiguous reading.

*/

status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)sub2 data);

/*

* Print what we have just read; the following numbers should be displayed:
*

* 10 1000 12 13

*/

for (j = 0; j < SUB2_LENGTH; j++) printf ("%d ", sub2_data[]j]):

printf ("\n");

Reading the third subset.

Set elements of the arrays start, edges, and stride to read

every 6th element in the column and 4th element in the row

starting at 1lst column, 3d row.

/

start[0] = 2; /* 3d row */

start[1] 0; /* 1lst column */

edges[0] = SUB3_LENGTH2; /* SUB3_LENGTH2 elements are read along
each column */

edges[1l] = SUB3_LENGTH1l; /* SUB3_LENGTH1 elements are read along
each row */

stride[0] = 6; /* read every 6th element along each column */

E I I I I

stride[l] = 4; /* read every 4th element along each row */
/*

* Read the data from the file into sub3_data array.

*/

status = SDreaddata (sds_id, start, stride, edges, (VOIDP)sub3 data);

/*
* Print what we have just read; the following numbers should be displayed:
*

* 37

* 9 13
* 15 19
*/

for (j = 0; j < SUB3_LENGTH2; j++) {

for (i 0; i < SUB3_LENGTH1; i++) printf ("%d ", sub3 data[j][i]);
printf ("\n");

}

/*

* Terminate access to the data set.

*/

status = SDendaccess (sds_id);

3-60 December 30, 2003

HDF User’s Guide

/*
* Terminate access to the SD interface and close the file.
*/
status = SDend (sd_id);
}
FORTRAN:
program read_ subsets
implicit none
C
C Parameter declaration.
C
character*7 FILE_NAME
parameter (FILE_NAME = ’SDS.hdf’)
integer DFACC_READ, DFNT_ INT32
parameter (DFACC_READ = 1,
+ DFNT_ INT32 = 24)
integer SUB1_LENGTH, SUB2_LENGTH, SUB3_LENGTHI,
+ SUB3_LENGTH2
parameter (SUB1_LENGTH = 5,
+ SUB2_LENGTH = 4,
+ SUB3_LENGTH1 = 2,
+ SUB3_LENGTH2 = 3)
C
C Function declaration.
C
integer sfstart, sfselect, sfrdata, sfendacc, sfend
C
C**** Varlable declaratlon EEEE S EE LSS SRS SRS EEEEEEEEEEEEEEEEEEEE]
C
integer sd_id, sds_id, sds_index, status
integer start(2), edges(2), stride(2)
integer subl data(SUBl_LENGTH)
integer sub2_data(SUB2_LENGTH)
integer sub3_data(SUB3_LENGTH1,SUB3_ LENGTH2)
integer i, j
C
C**** End of Variable declaration EEE RS S E RS EEEE SRS EEEEEEEEEEEEEEEES]
C
C
C Open the file and initialize the SD interface.
C
sd_id = sfstart(FILE NAME, DFACC_READ)
C
C Select the first data set.
C
sds_index = 0
sds_id =sfselect(sd_id, sds_index)
C
C Reading the first subset.
C
C Set elements of start, stride, and edges arrays to read
C every 3d element in in the 2nd row starting in the 4th column.
C
start(l) =1
start(2) = 3
edges(l) =1
edges(2) = SUB1_LENGTH
stride(l) =1
stride(2) = 3
C

December 30,

2003 3-61

National Center for Supercomputing Applications

C Read the data from subl_data array.

Q

status = sfrdata(sds_id, start, stride, edges, subl data)

C
C Print what we have just read, the following numbers should be displayed:
C
C 5 8 1000 14 17
C
write(*,*) (subl_data(j), j = 1, SUBl_LENGTH)
C
C Reading the second subset.
C
C Set elements of start, stride, and edges arrays to read
C first 4 elements of 10th column.
C
start(l) = 0
start(2) = 9
edges(1l) = SUB2_LENGTH
edges(2) =1
stride(l) =1
stride(2) =1
C
C Read the data into sub2_data array.
C
status = sfrdata(sds_id, start, stride, edges, sub2_data)
C
C Print what we have just read; the following numbers should be displayed:
C
C 10 1000 12 13
C
write(*,*) (sub2 data(j), j = 1, SUB2_LENGTH)
C
C Reading the third subset.
C
C Set elements of start, stride and edges arrays to read
C every 6th element in the row and every 4th element in the column
C starting at 1lst row, 3rd column.
C
start(l) = 0
start(2) = 2
edges(1l) = SUB3_LENGTH1
edges(2) = SUB3_LENGTH2
stride(l) = 4
stride(2) = 6
C
C Read the data from the file into sub3_data array.
C
status = sfrdata(sds_id, start, stride, edges, sub3_data)
C
C Print what we have just read; the following numbers should be displayed:
C
C 3915
C 7 13 19
C
do 50 i = 1, SUB3_LENGTH1
write(*,*) (sub3 data(i,j), j = 1, SUB3_LENGTH2)
50 continue
C
C Terminate access to the data set.
C

3-62 December 30, 2003

HDF User’s Guide

3.7

status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.

(@]

status = sfend(sd_id)

end

Obtaining Information about SD Data Sets

The routines covered in this section provide methods for obtaining information about all scientific
data sets in a file, for identifying the data sets that meet certain criteria, and for obtaining informa-
tion about specific data sets.

SDfileinfo obtains the numbers of data sets and file attributes, set by SD interface routines, in a
file. SDgetinfo provides information about an individual SDS. To retrieve information about all
data sets in a file, a calling program can use SDfileinfo to determine the number of data sets, fol-
lowed by repeated calls to SDgetinfo to obtain the information about a particular data set.

SDnametoindex or SDreftoindex can be used to obtain the index of an SDS in a file knowing its
name or reference number, respectively. Refer to Section 3.2.1 on page 20 for a description of the
data set index and reference number. SDidtoref is used when the reference number of an SDS is
required by another routine and the SDS identifier is available.

These routines are described individually in the following subsections.

3.7.1 Obtaining Information about the Contents of a File: SDfileinfo

SDfileinfo determines the number of scientific data sets and the number of file attributes con-
tained in a file. This information is often useful in index validation or sequential searches. The
syntax of SDfileinfo is as follows:

C: status = SDfileinfo(sd id, &n datasets, &n file attrs);
FORTRAN: status = sffinfo(sd id, n datasets, n file attrs)

SDfileinfo stores the numbers of scientific data sets and file attributes in the parameters
n datasets and n file attrs, respectively. Note that the value returned by n datasets will
include the number of SDS arrays and the number of dimension scales. Refer to Section 3.8.4 on
page 75 and Section 3.8.4.4 on page 82 for the description of dimension scales and its association
with SDS arrays as well as how to distinguish between SDS arrays and dimension scales. The file
attributes are those that are created by SDsetattr for an SD interface identifier instead of an SDS
identifier. Refer to Section 3.9.1 on page 86 for the discussion of SDsetattr.

SDfileinfo returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDfileinfo are
specified in Table 3L on page 65.

3.7.2 Obtaining Information about a Specific SDS: SDgetinfo

SDgetinfo provides basic information about an SDS array. Often information about an SDS array
is needed before reading and working with the array. For instance, the rank, dimension sizes, and/
or data type of an array are needed to allocate the proper amount of memory to work with the
array. SDgetinfo takes an SDS identifier as input, and retrieves the name, rank, dimension sizes,
data type, and number of attributes for the corresponding SDS. The syntax of this routine is as fol-
lows:

December 30, 2003 3-63

National Center for Supercomputing Applications

C: status = SDgetinfo(sds id, sds name, &rank, dim sizes, &data type,
&n attrs);

FORTRAN: status = sfginfo(sds id, sds name, rank, dim sizes, data type,
n attrs)

SDgetinfo stores the name, rank, dimension sizes, data type, and number of attributes of the spec-
ified data set into the parameters sds name, rank, dim sizes, data type, and n_attrs, respec-
tively. The parameter sds name is a character string. Note that the name of the SDS is limited to
64 characters.

If the data set is created with an unlimited dimension, then in the C interface, the first element of
the dim sizes array (corresponding to the slowest-changing dimension) contains the number of
records in the unlimited dimension; in the FORTRAN-77 interface, the last element of the array
dim sizes (corresponding to the slowest-changing dimension) contains this information.

The parameter data_type contains any type that HDF supports for the scientific data. Refer to
Table 2F on page 14, for the list of supported data types and their corresponding defined values.
The parameter n_attrs only reflects the number of attributes assigned to the data set specified by
sds_id; file attributes are not included. Use SDfileinfo to get the number of file attributes.

SDgetinfo returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDgetinfo are
specified in Table 3L.

3.7.3 Obtaining Data Set Compression Information: SDgetcompress
SDgetcompress retrieves the compression information used to create or write an SDS data set.

The compression algorithms currently supported SDS data set compression are as follows:
+ Adaptive Huffman
« GZIP "deflation" (Lempel/Ziv-77 dictionary coder)

- Run-length encoding

SDgetcompress takes one input parameter, sds_id, a data set identifier, and two return parame-
ters, comp _type, identifying the type of compression used, and either ¢_info (in C) or comp prm
(in FORTRAN-77), containing further compression information.

The syntax of the routine SDsetcompress is as follows:
C: status = SDgetcampress(sds_id, camp type, ¢ info);

FORTRAN: status = sfgcampress(sds id, camp type, carp prm)

See Section 3.5.2, "Compressing SDS Data: SDsetcompress,” for a discussion of comp type,
c_info, ane comp prm, and a list of supported compression modes.

SDgetcompress returns a value of SUCCEED (or 0) or FAIL (or -1).

3.7.4 Determining whether an SDS is empty: SDcheckempty

SDcheckempty takes an SDS identifier, sds_id, as input, and returns a single parameter indicat-
ing whether the SDS is empty. The syntax of this routine is as follows:

C: status = SDgcheckempty(sds id, emptySDS);
FORTRAN: status = sfchempty(sds id, emptySDS)

The output parameter, emptysDS, indicates whether the SDS is empty or non-empty.

3-64

December 30, 2003

HDF User’s Guide

SDcheckempty returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDcheck-
empty are specified in Table 3L.

TABLE 3L SDfileinfo and SDgetinfo Parameter Lists
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
SDfileinfo sd_id int32 integer SD interface identifier
[intn] n_datasets int32 * integer Number of data sets in the file
(sffinfo) n_file_attrs int32 * integer Number of global attributes in the file
sds_id int32 integer Data set identifier
sds_name char* character*(*) Name of the data set
SDgetinfo rank int32 * integer Number of dimensions in the data set
(sk.lgnil:‘!o) dim_sizes int32 [] integer (*) Size of each dimension in the data set
data_type int32 * integer Data type of the data in the data set
n_attrs int32 * integer Number of attributes in the data set
sds_id int32 integer Data set identifier
SDget'compress comp_type comp_coder_t integer Type of compression
(ngc[:lllllrll)]I‘ESS) c_info comp_info N/A Pointer to compression information structure
comp_prm(1) N/A integer Compression parameter in array format
SDcheckempty sds_id int32 integer SDS identifier
[int32]
(sfchempty) emptySDS intn * integer SDS status indicator (empty, not empty)
EXAMPLE 10. Getting Information about a File and an SDSs.

This example illustrates the use of the routine SDfileinfo/sffinfo to obtain the number of data sets
in the file SDS.hdf and the routine SDgetinfo/sfginfo to retrieve the name, rank, dimension sizes,

data type and number of attributes of the selected data set.

C:

#include "mfhdf.h"

#define FILE_NAME

main(

{

"SDS.hdf"

JHRE KRk KKK kK R KKKk kR kkk k%% Variable declaration **x*kkxkkkkkkkkkkkkrkkkkkrx/

int32
intn
int32
int32
int32
char

int

sd_id, sds_id;

status;

n_datasets, n_file attrs, index;

dim sizes[MAX VAR DIMS];

rank, data_type, n_attrs;
name[MAX NC_NAME];

i;

[xKkkkkkkkkkkkkkkkx*x%* End of variable declaration **x*xkxkkkxkkkkkkkkkkks*x/

/*

* Open the file and initialize the SD interface.

*/

sd_id = SDstart (FILE_NAME, DFACC_READ);

/*

December 30, 2003

3-65

National Center for Supercomputing Applications

* Determine the number of data sets in the file and the number
* of file attributes.

*/

status = SDfileinfo (sd_id, &n_datasets, &n_file attrs);

/*
* Access every data set and print its name, rank, dimension sizes,
* data type, and number of attributes.

* The following information should be displayed:
*

name SDStemplate

rank = 2

dimension sizes are : 16 5
data type is 24

* number of attributes is 0
*/

for (index = 0; index < n_datasets; index++)

{

* F * F

sds_id = SDselect (sd_id, index);
status = SDgetinfo (sds_id, name, &rank, dim sizes,
&data_type, &n_attrs);

printf ("name = %s\n", name);

printf ("rank = %d\n", rank);

printf ("dimension sizes are : ");

for (i=0; i< rank; i++) printf ("%d ", dim sizes[i]);
printf ("\n");

printf ("data type is %d\n", data type);

printf ("number of attributes is %d\n", n_attrs);

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

FORTRAN:
program get data set info
implicit none

Q

Parameter declaration.

character*7 FILE_ NAME

parameter (FILE_NAME = ’'SDS.hdf’)
integer DFACC_READ, DFNT INT32
parameter (DFACC_READ = 1,
+ DFNT_INT32 = 24)

integer MAX_NC NAME, MAX VAR DIMS
parameter (MAX NC NAME = 256,
+ MAX VAR DIMS = 32)

(@]

Function declaration.

integer sfstart, sffinfo, sfselect, sfginfo
integer sfendacc, sfend

3-66 December 30, 2003

HDF User’s Guide

C

Chr*k*

C

CHx*x

[eleNe]

oo e Ne!

o000

Q

10

Q

C:

Variable declaration ***xxkkkkkkhkkhhhhhhhhhhhrhhhhhhhhhhhhrhhhr*

integer sd_id, sds_id

integer n_datasets, n_file attrs, index
integer status, n_attrs

integer rank, data type

integer dim sizes(MAX_VAR_DIMS)
character name *(MAX NC NAME)

integer i

End of variable declaration **x#xx*xxkkkkkkkhkkkkhhkhhkkkhkhkkhkhk k%

Open the file and initialize the SD interface.
sd_id = sfstart(FILE NAME, DFACC READ)

Determine the number of data sets in the file and the number of
file attributes.

status = sffinfo(sd_id, n datasets, n_file attrs)

Access every data set in the file and print its name, rank,
dimension sizes, data type, and number of attributes.
The following information should be displayed:

name = SDStemplate

rank = 2

dimension sizes are : 5 16
data type is 24

number of attributes is 0

do 10 index = 0, n_datasets - 1
sds_id = sfselect(sd_id, index)
status = sfginfo(sds_id, name, rank, dim sizes, data type,

n_attrs)
write(*,*) ‘"name = ", name(1l:15)
write(*,*) ‘"rank = ", rank
write(*,*) "dimension sizes are : ", (dim sizes(i), i=1, rank)
write(*,*) "data type is ", data_type
write(*,*) ‘"number of attributes is ", n_attrs

Terminate access to the current data set.

status = sfendacc(sds_id)
continue

Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

3.7.5 Locating an SDS by Name: SDnametoindex

SDnametoindex determines and returns the index of a data set in a file given the data set’s name.
The syntax of this routine is as follows:

sds_index = SDnametoindex(sd id, sds name);

December 30, 2003 3-67

National Center for Supercomputing Applications

FORTRAN: sds index = sfn2index(sd id, sds name)

The parameter sds_name is a character string with the maximum length of 64 characters. If more
than one data set has the name specified by sds _name, SDnametoindex will return the index of
the first data set. The index can then be used by SDselect to obtain an SDS identifier for the spec-
ified data set.

The SDnametoindex routine is case-sensitive to the name specified by sds name and does not
accept wildcards as part of that name. The name must exactly match the name of the SDS being
searched for.

SDnametoindex returns the index of a data set or FAIL (or -1). The parameters of SDnametoin-
dex are specified in Table 3M.

3.7.6 Locating an SDS by Reference Number: SDreftoindex

SDreftoindex determines and returns the index of a data set in a file given the data set’s reference
number. The syntax of this routine is as follows:

C: sds_index = SDreftoindex(sd id, ref);
FORTRAN: sds index = sfref2index(sd id, ref)

The reference number can be obtained using SDidtoref if the SDS identifier is available. Remem-
ber that reference numbers do not necessarily adhere to any ordering scheme.

SDreftoindex returns either the index of an SDS or FATL (or -1). The parameters of this routine
are specified in Table 3M.

3.7.7 Obtaining the Reference Number Assigned to the Specified SDS:
SDidtoref

SDidtoref returns the reference number of the data set identified by the parameter sds_id if the
data set is found, or FAIL (or -1) otherwise. The syntax of this routine is as follows:

C: sds ref = SDidtoref(sds id);
FORTRAN: sds ref = sfid2ref(sds id)

This reference number is often used by Vaddtagref to add the data set to a vgroup. Refer to Chap-
ter 5, Vgroups (V API), for more information.

The parameter of SDidtoref is specified in Table 3M.

TABLE 3M SDnametoindex, SDreftoindex, and SDidtoref Parameter Lists
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
SDnametoindex sd_id int32 integer SD interface identifier
[int32]
(sfn2index) sds_name char * character™®(*) Name of the data set
SDreftoindex sd_id int32 integer SD interface identifier
[int32]
(sfref2index) ref int32 integer Reference number of the specified data set
SDidtoref
[int32] sds_id int32 integer Data set identifier
(sfid2ref)
3-68 December 30, 2003

HDF User’s Guide

EXAMPLE 11. Locating an SDS by Its Name.

This example uses the routine SDnametoindex/sfn2index to locate the SDS with the specified
name and then reads the data from it.

C:

#include "mfhdf.h"

#define FILE NAME "SDS.hdf"
#define SDS_NAME "SDStemplate"
#define WRONG_NAME "WrongName"
#define X_LENGTH 5

#define Y_LENGTH 16

main()

{

[REk kKK KK KKK KK KRR KA X Rk *k**% Variable declaration **xkxxxxxkkkkkkkkkkkkkkkkkx/

int32 sd_id, sds_id, sds_index;
intn status;

int32 start[2], edges[2];

int32 data[Y LENGTH][X LENGTH];
int i, 3;

[HRxkkKkkkxkkkkkkkkkx**%* End of variable declaration ***xkxkxkkxkkkkkkkkkkkkkx/

/*

* Open the file for reading and initialize the SD interface.
*/

sd_id = SDstart (FILE_NAME, DFACC_READ);

/*

* Find index of the data set with the name specified in WRONG_NAME.

* Error condition occurs, since the data set with that name does not exist
* in the file.

*/

sds_index = SDnametoindex (sd_id, WRONG_NAME);

if (sds_index == FAIL)

printf ("Data set with the name \"WrongName\" does not exist\n");

/*

* Find index of the data set with the name specified in SDS_NAME and use
* the index to select the data set.

*/

sds_index = SDnametoindex (sd_id, SDS_NAME);

sds_id = SDselect (sd_id, sds_index);

/*

* Set elements of the array start to 0, elements of the array edges to

* SDS dimensions, and use NULL for stride argument in SDreaddata to read
* the entire data.

*/

start[0] = 0;
start[1l] = 0;
edges[0] = Y LENGTH;

edges[1l] = X LENGTH;

/*

* Read the entire data into the buffer named data.

*/

status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)data);

December 30, 2003 3-69

National Center for Supercomputing Applications

/*

* Print 10th row; the following numbers should be displayed:
*

* 10 1000 12 13 14

*/

for (j = 0; j < X _LENGTH; j++) printf ("%d ", data[9][]j]);
printf ("\n");

/*
* Terminate access to the data set.
*/
status = SDendaccess (sds_id);
/*
* Terminate access to the SD interface and close the file.
*/
status = SDend (sd_id);
}
FORTRAN:
program locate_ by name
implicit none
C
C Parameter declaration.
C
character*7 FILE_ NAME
character*11 SDS_NAME
character*9 WRONG_ NAME
integer X LENGTH, Y_ LENGTH
parameter (FILE_NAME = ’SDS.hdf’,
+ SDS_NAME = ’'SDStemplate’,
+ WRONG_NAME = ’'WrongName',
+ X_LENGTH = 5,
+ Y LENGTH = 16)
integer DFACC_READ, DFNT_ INT32
parameter (DFACC_READ = 1,
+ DFNT_INT32 = 24)
C
C Function declaration.
C
integer sfstart, sfn2index, sfselect, sfrdata, sfendacc, sfend
C
C**x*x% Variable declaration R R R R R SRR R SRR SRR EEEEEEEEEEEEEEEEEEEE SRR
C
integer sd_id, sds_id, sds_index, status
integer start(2), edges(2), stride(2)
integer data(X_LENGTH, Y LENGTH)
integer j
C
C**** End of Variable declaration EEEE SRS SRS SRS SRS RS EEEEEEEEEEESE S
C
C
C Open the file and initialize the SD interface.
C
sd_id = sfstart(FILE NAME, DFACC_READ)
C
(¢ Find index of the data set with the name specified in WRONG_NAME.
C Error condition occurs, since a data set with this name
C does not exist in the file.
C

sds_index = sfn2index(sd_id, WRONG_NAME)

3-70 December 30, 2003

HDF User’s Guide

if (sds_index .eq. -1) then
write(*,*) "Data set with the name ", WRONG_NAME,

+ " does not exist"

endif
C
C Find index of the data set with the name specified in SDS_ NAME
C and use the index to attach to the data set.
C

sds_index = sfn2index(sd_id, SDS_NAME)

sds_id = sfselect(sd_id, sds_index)
C
C Set elements of start array to 0, elements of edges array
C to SDS dimensions, and elements of stride array to 1 to read entire data.
C

start(l) = 0

start(2) = 0

edges(1l) = X LENGTH

edges(2) = Y LENGTH

stride(l) =1

stride(2) =1
C
C Read entire data into array named data.
C

status = sfrdata(sds_id, start, stride, edges, data)
C
C Print 10th column; the following numbers should be displayed:
C
C 10 1000 12 13 14
C

write(*,*) (data(j,10), j = 1, X LENGTH)
C
C Terminate access to the data set.
C

status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C

status = sfend(sd_id)

end

3.7.8 Creating SDS Arrays Containing Non-standard Length Data:
SDsetnbitdataset

Starting with version 4.0r1, HDF provides the routine SDsetnbitdataset, allowing the HDF user
to specify that a particular SDS array contains data of a non-standard length.

SDsetnbitdataset specifies that the data set identified by the parameter sds_id will contain data
of a non-standard length defined by the parameters start bit and bit len. Additional informa-
tion about the non-standard bit length decoding are specified in the parameters sign ext and
£ill one. The syntax of SDsetnbitdataset is as follows:

C: status = SDsetnbitdataset(sds id, start bit, bit len, sign ext,
fill one);

FORTRAN: status = sfsnbit(sds id, start bit, bit len, sign ext, fill one)

Any length between 1 and 32 bits can be specified. After SDsetnbitdataset has been called for an
SDS array, any read or write operations will convert between the new data length of the SDS array
and the data length of the read or write buffer.

December 30, 2003 3-71

National Center for Supercomputing Applications

Bit lengths of all data types are counted from the right of the bit field starting with 0. In a bit field
containing the values 01111011, bits 2 and 7 are set to 0 and all the other bits are set to 1.

The parameter start bit specifies the left-most position of the variable-length bit field to be
written. For example, in the bit field described in the preceding paragraph a parameter start bit
set to 4 would correspond to the fourth bit value of 1 from the right.

The parameter bit len specifies the number of bits of the variable-length bit field to be written.
This number includes the starting bit and the count proceeds toward the right end of the bit field -
toward the lower-bit numbers. For example, starting at bit 5 and writing 4 bits of the bit field
described in the preceding paragraph would result in the bit field 1110 being written to the data
set. This would correspond to a start bit value of 5and a bit len value of 4.

The parameter sign ext specifies whether to use the left-most bit of the variable-length bit field
to sign-extend to the left-most bit of the data set data. For example, if 9-bit signed integer data is
extracted from bits 17-25 and the bit in position 25 is 1, then when the data is read back from disk,
bits 26-31 will be set to 1. Otherwise bit 25 will be 0 and bits 26-31 will be set to 0. The sign ext
parameter can be set to TRUE (or 1) or FALSE (or 0); specify TRUE to sign-extend.

The parameter £i11 one specifies whether to fill the "background" bits with the value 1 or 0. This
parameter is also set to either TRUE (or 1) or FALSE (or 0).

The "background" bits of a non-standard length data set are the bits that fall outside of the non-
standard length bit field stored on disk. For example, if five bits of an unsigned 16-bit integer data
set located in bits 5 to 9 are written to disk with the parameter £ill one set to TRUE (or 1), then
when the data is reread into memory bits O to 4 and 10 to 15 would be set to 1. If the same 5-bit
data was written with a £i11 one value of FALSE (or 0), then bits O to 4 and 10 to 15 would be set
to 0.

The operation on £ill one is performed before the operation on sign ext. For example, using
the sign ext example above, bits 0 to 16 and 26 to 31 will first be set to the background bit value,
and then bits 26 to 31 will be set to 1 or 0 based on the value of the 25th bit.

SDsetnbitdataset returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters for SDsetnbit-
dataset are specified in Table 3N.

TABLE 3N SDsetnbitdataset Parameter List
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) (¢ FORTRAN-77
sds_id int32 integer Data set identifier
SDsetnbitdataset start_bit intn integer Leftmost bit of the field to be written
[intn] bit_len intn integer Length of the bit field to be written
(sfsnbit) R R . R s
sign_ext intn integer Sign-extend specifier
fill_one intn integer Background bit specifier
3.8 SDS Dimension and Dimension Scale Operations
The concept of dimensions is introduced in Section 3.2.1 on page 20. This section describes SD
interface routines which store and retrieve information on dimensions and dimension scales.
When a dimension scale is set for a dimension, the library stores the dimension and its associated
information as an SDS array. In the following discussion, we will refer to that array (recall
NetCDF) as a coordinate variable or dimension record. The section concludes with consideration
of related data sets and sharable dimensions.
3-72 December 30, 2003

HDF User’s Guide

3.8.1 Selecting a Dimension: SDgetdimid

SDS dimensions are uniquely identified by dimension identifiers, which are assigned when a
dimension is created. These dimension identifiers are used within a program to refer to a particu-
lar dimension, its scale, and its attributes. Before working with a dimension, a program must first
obtain a dimension identifier by calling the SDgetdimid routine as follows:

c: dim id = SDgetdimid(sds_id, dim index);
FORTRAN: dim id = sfdimid(sds id, dim index)

SDgetdimid takes two arguments, sds_id and dim index, and returns a dimension identifier,
dim id. The argument dim index is an integer from O to the number of dimensions minus 1. The
number of dimensions in a data set is specified at the time the data set is created. Specifying a
dimension index equal to or larger than the number of dimensions in the data set causes SDget-
dimid to return a value of FATL (or -1).

Unlike file and data set identifiers, dimension identifiers do not require explicit disposal. SDget-
dimid returns a dimension identifier or FATL (or -1). The parameters of SDgetdimid are specified
in Table 30 on page 73.

3.8.2 Naming a Dimension: SDsetdimname

SDsetdimname assigns a name to a dimension. If two dimensions have the same name, they will
be represented in the file by only one SDS. Therefore changes to one dimension will be reflected
in the other. Naming dimensions is optional but encouraged. Dimensions that are not explicitly
named by the user will have names generated by the HDF library. Use SDdiminfo to read existing
dimension names. The syntax of SDsetdimname is as follows:

C: status = SDsetdimname(dim id, dim name);
FORTRAN: status = sfsdmame(dim id, dim name)

The argument dim id in SDsetdimname is the dimension identifier returned by SDgetdimid.
The parameter dim name is a string of alphanumeric characters representing the name for the
selected dimension. An attempt to rename a dimension using SDsetdimname will cause the old
name to be deleted and a new one to be assigned.

Note that when naming dimensions the name of a particular dimension must be set before
attributes are assigned; once the attributes have been set, the name must not be changed. In other
words, SDsetdimname must only be called before any calls to SDsetdimscale (described in
Section 3.8.4.1 on page 75), SDsetattr (described in Section 3.9.1 on page 86) or SDsetdimstrs
(described in Section 3.10.2.1 on page 98).

SDsetdimname returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDsetdim-
name are described in Table 30.

TABLE 30

SDgetdimid and SDsetdimname Parameter Lists

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
SDgetdimid sds_id int32 integer Data set identifier
[int32]
(sfdimid) dim_index intn integer Dimension index
SDsetdimname dim_id int32 integer Dimension identifier
[intn]
(sfsdmname) dim_name char * character®(*) Dimension name

December 30, 2003 3-73

National Center for Supercomputing Applications

3.8.3 Old and New Dimension Implementations

Up to and including HDF version 4.0 betal, dimensions were vgroup objects (described in Chap-
ter 5, Vgroups (V API), containing a single field vdata (described in Chapter 4, Vdatas (VS API),
with a class name of Dimval0.0. The vdata had the same number of records as the size of the
dimension, which consisted of the values O, 1, 2, ... n - 1, where n is the size of the dimension.
These values were not strictly necessary. Consider the case of applications that create large one
dimensional data sets: the disk space taken by these unnecessary values nearly doubles the size of
the HDF file. To avoid these situations, a new representation of dimensions was implemented for
HDF version 4.0 beta 2 and later versions.

Dimensions are still vgroups in the new representation, but the vdata has only one record with a
value of <dimension size> and the class name of the vdata has been changed to Dimval0.1 to
distinguish it from the old version.

Between HDF versions 4.0 betal and 4.1, the old and new dimension representations were written
by default for each dimension created, and both representations were recognized by routines that
operate on dimensions. From HDF version 4.1 forward, SD interface routines recognize only the
new representation. Two compatibility mode routines, SDsetdimval_comp and
SDisdimval_bwcomp, are provided to allow HDF programs to distinguish between the two
dimension representations, or compatibility modes.

3.8.3.1 Setting the Future Compatibility Mode of a Dimension: SDsetdimval_comp

SDsetdimval_comp sets the compatibility mode for the dimension identified by the parameter
dim id. This operation determines whether the dimension will have the old and new representa-
tions or the new representation only. The syntax of SDsetdimval_comp is as follows:

C: status = SDsetdinmval camp(dim id, camp mode);
FORTRAN: status = sfsdmwc(dim id, camp mode)

The parameter comp mode specifies the compatibility mode. It can be set to either
SD DIMVAL BW COMP (or 1), which specifies compatible mode and that the old and new dimension
representations will be written to the file, or SD DIMVAL BW INCOMP (or 0), which specifies incom-
patible mode and that only the new dimension representation will be written to file. As of HDF
version 4.1rl, the default mode is backward-incompatible. Subsequent calls to
SDsetdimval_comp will override the settings established in previous calls to the routine.

Unlimited dimensions are always backward compatible. Therefore SDsetdimval_comp takes no
action when the dimension identified by dim id is unlimited.

SDsetdimval_comp returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of
SDsetdimval_comp are specified in Table 3P on page 75.

3.8.3.2 Determining the Current Compatibility Mode of a Dimension: SDisdimval_bwcomp

SDisdimval_bwcomp determines whether the specified dimension has the old and new represen-
tations or the new representation only. The syntax of SDisdimval_bwcomp is as follows:

C: carmp mode = SDisdinmval bwoarp(dim id);
FORTRAN: carp mode = sfisdmve(dim id)

SDisdimval_bwcomp returns one of the three values: SD DIMVAL Bi COMP (or 1),
SD DIMVAL BW INCOMP (or 0), and FAIL (or -1). The interpretation of SD DIMVAL BW COMP and
SD DIMVAL BW INCOMP are as that in the routine SDsetdimval_comp.

The parameters of SDisdimval_bwcomp are specified in Table 3P.

3-74

December 30, 2003

HDF User’s Guide

TABLE 3P

SDsetdimval_comp and SDisdimval_bwcomp Parameter Lists

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
SDsetdimval_comp dim_id int32 integer Dimension identifier
[intn]
(sfsdmve) comp_mode intn integer Compatibility mode

SDisdimval_bwcomp
[intn] dim_id int32 integer Dimension identifier
(sfisdmvc)

3.8.4 Dimension Scales

A dimension scale can be thought of as a series of numbers demarcating intervals along a dimen-
sion. One scale is assigned per dimension. Users of netCDF can think of them as analogous to
coordinate variables. In the SDS data model, each dimension scale is a one-dimensional array
with name and size equal to its assigned dimension name and size.

For example, if a dimension of length 6 named "depth" is assigned a dimension scale, its scale is a
one-dimensional array of length 6 and is also assigned the name "depth". The name of the dimen-
sion will also appear as the name of the dimension scale.

Recall that when dimension scale is assigned to a dimension, the dimension is implemented as an
SDS array with data being the data scale. Although dimension scales are conceptually different
from SDS arrays, they are implemented as SDS arrays by the SDS interface and are treated simi-
larly by the routines in the interface. For example, when the SDfileinfo routine returns the number
of data sets in a file, it includes dimension scales in that number. The SDiscoordvar routine
(described in Section 3.8.4.4 on page 82) distinguishes SDS data sets from dimension scales.

3.8.4.1 Writing Dimension Scales: SDsetdimscale

SDsetdimscale stores scale information for the dimension identified by the parameter dim id.
The syntax of this routine is as follows:

C: status = SDsetdimscale(dim id, n values, data type, data);
FORTRAN: status = sfsdscale(dim id, n values, data type, data)

The argument n values specifies the number of scale values along the specified dimension. For a
fixed size dimension, n values must be equal to the size of the dimension. The parameter
data type specifies the data type for the scale values and data is an array containing the scale
values.

SDsetdimscale returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of this routine
are specified in Table 3Q on page 76.

3.8.4.2 Obtaining Dimension Scale and Other Dimension Information: SDdiminfo

Before working with an existing dimension scale, it is often necessary to determine its characteris-
tics. For instance, to allocate the proper amount of memory for a scale requires knowledge of its
size and data type. SDdiminfo provides this basic information, as well as the name and the num-
ber of attributes for a specified dimension.

The syntax of this routine is as follows:

C: status = SDdiminfo(dim id, dim name, &dim size, &data type,
&n attrs);

December 30, 2003 3-75

National Center for Supercomputing Applications

FORTRAN: status = sfgdinfo(dim id, dim name, dim size, data type, n attrs)

SDdiminfo retrieves and stores the dimension’s name, size, data type, and number of attributes
into the parameters dim name, dim size, data type, and n_attrs, respectively.

The parameter dim name will contain the dimension name set by SDsetdimname or the default
dimension name, fakeDim[x], if SDsetdimname has not been called, where [x]| denotes the
dimension index. If the name is not desired, the parameter dim name can be set to NULL in C or an
empty string in FORTRAN-77.

An output value of O for the parameter dim size indicates that the dimension specified by the
parameter dim id is unlimited. Use SDgetinfo to get the number of elements of the unlimited
dimension.

If scale information is available for the specified dimension, i.e., SDsetdimscale has been called,
the parameter data type will contain the data type of the scale values; otherwise, data type will
contain 0.

SDdiminfo returns a value of SUCCEED (or 0) or FATL (or -1). The parameters of this routine are
specified in Table 3Q.

3.8.4.3 Reading Dimension Scales: SDgetdimscale

SDgetdimscale retrieves the scale values of a dimension. These values have previously been
stored by SDsetdimscale. The syntax of this routine is as follows:

C: status = SDgetdimscale(dim id, data);
FORTRAN: status = sfgdscale(dim id, data)

SDgetdimscale reads all the scale values and stores them in the buffer data which is assumed to
be sufficiently allocated to hold all the values. SDdiminfo should be used to determine whether the
scale has been set for the dimension and to obtain the data type and the number of scale values for
space allocation before calling SDgetdimscale. Refer to Section 3.8.4.2 on page 75 for a discus-
sion of SDdiminfo.

Note that it is not possible to read a subset of the scale values. SDgetdimscale returns all of the
scale values stored with the given dimension.

The fact that SDgetdimscale returns succeep should not be interpreted as meaning that scale val-
ues have been defined for the data set. This function should always be used with SDdiminfo,
which is used first to determine whether a scale has been set, the number of scale values, their data
type, etc. If SDdiminfo indicates that no scale values have been set, the values returned by
SDgetdimscale in data should be ignored.

SDgetdimscale returns a value of SUCCEED (or 0) or FAIL (or -1). The parameters of this routine
are specified in Table 3Q.

TABLE 3Q SDsetdimscale, SDdiminfo, and SDgetdimscale Parameter Lists

Routine Name Parameter Type

[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
dim_id int32 integer Dimension identifier
SDsetdimscale n_values int32 integer Number of scale values
[intn]
(sfsdscale) data_type int32 integer Data type to be set for the scale values
data VOIDP <valid data type>(*) Buffer containing the scale values to be set

3-76 December 30, 2003

HDF User’s Guide

dim_id int32 integer Dimension identifier
SDdiminf dim_name char * character®(*) Buffer for the dimension name
[intn] n_values int32 * integer Buffer for the dimension size
(stgdinfo) data_type int32 * integer Buffer for the scale data type
n_attrs int32 * integer Buffer for the attribute count
SDgetdimscale dim_id int32 integer Dimension identifier
(Sféglslzi]e) data VOIDP <valid data type>(*) Buffer for the scale values

EXAMPLE 12.

Setting and Retrieving Dimension Information.

This example illustrates the use of the routines SDgetdimid/sfdimid, SDsetdimname/sfsdm-
name, SDsetdimscale/sfsdscale, SDdiminfo/sfgdinfo, and SDgetdimscale/sfgdscale to set and
retrieve the dimensions names and dimension scales of the SDS created in Example 2 and modi-

fied in Examples

4 and 7.

C:

#include "mfhdf.h"

#define
#define
#define
#define
#define
#define
#define
#define

main()

{

FILE NAME
SDS_NAME
DIM NAME X
DIM NAME Y
NAME_LENGTH
X_LENGTH

Y LENGTH
RANK

"SDS.hdf"

"SDStemplate"
"X Axis"
"Y Axis"

6

5

16

2

[HRE KRk KKKk KR KKKk kR kkkkxk%% Variable declaration **x*xkkxkkkkkkkkkkkkkkkkkrx/

int32
intn
int32
int32
intlée
intlé
float
float
char
int

sd_id, sds_id, sds_index;

status;

dim index, dim_ id;
n_values, data type, n_attrs;

data_X[X_LENGTH];

data X out[X LENGTH];

64 data Y[Y LENGTH];

64 data Y out[Y LENGTH];
dim name[NAME_LENGTH];

i, j, nrow;

/* X dimension dimension scale */

/* Y dimension dimension scale */

[xEkkkKkkkkkkkkk*kkkx*x%* End of variable declaration ***x*xkxkxkkkkkkkkkkkkks*x/

/*

* Initialize dimension scales.

*/

for (i=0; i < X_LENGTH; i++) data X[i]
for (i=0; i < Y _LENGTH; i++) data_Y[i]

/*

I
ISy
oo
-

*
"
-

* Open the file and initialize SD interface.

*/

sd_id = SDstart (FILE_NAME, DFACC_WRITE);

/*

* Get the index of the data set specified in SDS_NAME.

December 30, 2003

3-77

National Center for Supercomputing Applications

*/

sds_index = SDnametoindex (sd_id, SDS_NAME);

/*

* Select the data set corresponding to the returned index.
*/

sds_id = SDselect (sd_id, sds_index);

/* For each dimension of the data set specified in SDS_NAME,

* get its dimension identifier and set dimension name

* and dimension scale. Note that data type of dimension scale

* can be different between dimensions and can be different from
* SDS data type.

*/
for (dim index = 0; dim index < RANK; dim index++)
{
/*
* Select the dimension at position dim index.
*/
dim_id = SDgetdimid (sds_id, dim index);
/*
* Assign name and dimension scale to selected dimension.
*/
switch (dim_index)
{

case 0: status = SDsetdimname (dim id, DIM NAME Y);
n_values = Y LENGTH;
status = SDsetdimscale (dim id,n_values,DFNT_FLOAT64, \
(VOIDP)data Y);
break;
case 1l: status = SDsetdimname (dim_id, DIM NAME_ X);
n_values = X LENGTH;
status = SDsetdimscale (dim id,n_values,DFNT INT16, \
(VOIDP)data_X);

break;
default: break;
}
/*

* Get and display info about the dimension and its scale values.
* The following information is displayed:

*

Information about 1 dimension:

dimension name is Y Axis

number of scale values is 16

dimension scale data type is float64

number of dimension attributes is 0

Scale values are :
0.000 0.100 0.200 0.300
0.400 0.500 0.600 0.700
0.800 0.900 1.000 1.100
1.200 1.300 1.400 1.500

Information about 2 dimension:
dimension name is X Axis

number of scale values is 5
dimension scale data type is intlé6
number of dimension attributes is 0

Scale values are :
01 2 3 4

* 0% X X X X X X X X X X X X X X X X X X

3-78

December 30, 2003

HDF User’s Guide

*/

status = SDdiminfo (dim id, dim name, &n values, &data_type, &n_attrs);

printf ("Information about %d dimension:\n", dim index+l);

printf ("dimension name is %s\n", dim name);

printf ("number of scale values is %d\n", n values);

if(data_type == DFNT FLOAT64)

printf ("dimension scale data type is float64\n");

if(data_type == DFNT_ INT16)

printf ("dimension scale data type is intl6\n");

printf ("number of dimension attributes is %d\n", n_attrs);

printf ("\n");

printf ("Scale values are :\n");

switch (dim_index)

{

case 0: status = SDgetdimscale (dim id, (VOIDP)data Y out);

nrow = 4;
for (i=0; i<n_values/nrow; i++)

{
for (j=0; j<nrow; j++)
printf (" %-6.3f", data Y out[i*nrow + Jj]);
printf ("\n");
}
break;

case 1: status = SDgetdimscale (dim id, (VOIDP)data X out);
for (i=0; i<n_values; i++) printf (" %d", data X out[i]);
break;
default: break;
}
printf ("\n");
} /*for dim index */

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

}
FORTRAN:
program dimension info
implicit none
C
C Parameter declaration.
C

character*7 FILE NAME
character*11 SDS_NAME
character*6 DIM NAME X
character*6 DIM NAME Y

integer X_LENGTH, Y_LENGTH, RANK

parameter (FILE_NAME = ’'SDS.hdf’,
+ SDS_NAME = ’'SDStemplate’,
+ DIM NAME X = ’'X_Axis’,
+ DIM NAME Y = 'Y Axis’,
+ X LENGTH = 5,

+ Y LENGTH = 16,
+ RANK = 2)

integer DFACC_WRITE, DFNT INT16, DFNT_ FLOAT64

December 30, 2003 3-79

National Center for Supercomputing Applications

parameter (DFACC_WRITE =2,
+ DFNT_INT16 = 22,
+ DFNT_ FLOAT64 = 6)
C
C Function declaration.
C
integer sfstart, sfn2index, sfdimid, sfgdinfo
integer sfsdscale, sfgdscale, sfsdmname, sfendacc
integer sfend, sfselect
C
C**x*x% Variable declaration R R R R R SRR RS SR RS EEEEEEEEEEEEEEEEEEEEE SRS
C
integer sd_id, sds_id, sds_index, status
integer dim index, dim id
integer n _values, n_attrs, data_ type
integer*2 data_X(X LENGTH)
integer*2 data_X out (X LENGTH)
real*8 data_Y(Y_LENGTH)
real*8 data_Y out(Y_LENGTH)
character*6 dim name
integer i
C
C**x*x% End of Variable declaration R R R R SRR RS EEEEEEEEEEEEEEEEEEEE R
C
C
C Initialize dimension scales.
C
do 10 i = 1, X LENGTH
data_X(i) =1 -1
10 continue
do 20 i = 1, Y LENGTH
data_Y(i) = 0.1 * (i - 1)
20 continue
C
C Open the file and initialize SD interface.
C
sd_id = sfstart(FILE NAME, DFACC_WRITE)
C
(¢ Get the index of the data set with the name specified in SDS_NAME.
C
sds_index = sfn2index(sd_id, SDS_NAME)
C
C Select the data set corresponding to the returned index.
C
sds_id = sfselect(sd_id, sds_index)
C
C For each dimension of the data set,
C get its dimension identifier and set dimension name
C and dimension scales. Note that data type of dimension scale can
C be different between dimensions and can be different from SDS data type.
C
do 30 dim index = 0, RANK - 1
C
¢ Select the dimension at position dim index.
C
dim id = sfdimid(sds_id, dim index)
C
C Assign name and dimension scale to the dimension.
C

if (dim index .eq. 0) then
status = sfsdmname(dim id, DIM NAME X)

3-80 December 30, 2003

HDF User’s Guide

e e NN NN NN N NN NN NN NN oo Ne o Ne!

Q

100

30

Q

n_values = X LENGTH

status = sfsdscale(dim id, n values, DFNT INT16, data_ X)
end if
if (dim_index .eq. 1) then

status = sfsdmname(dim id, DIM NAME Y)

n_values = Y LENGTH

status = sfsdscale(dim id, n_values, DFNT FLOAT64, data Y)
end if

Get and display information about dimension and its scale values.
The following information is displayed:

Information about 1 dimension :
dimension name is X Axis

number of scale values is 5
dimension scale data type is intl6

number of dimension attributes is 0
Scale values are:
0 1 2 3 4

Information about 2 dimension :
dimension name is Y Axis

number of scale values is 16
dimension scale data type is floaté64
number of dimension attributes is 0

Scale values are:

0.000 0.100 0.200 0.300
0.400 0.500 0.600 0.700
0.800 0.900 1.000 1.100
1.200 1.300 1.400 1.500

status = sfgdinfo(dim id, dim name, n_values, data type, n_attrs)

" "

write(*,*) "Information about ", dim index+1l," dimension :
write(*,*) "dimension name is ", dim name
write(*,*) "number of scale values is", n_values
if (data_type. eq. 22) then
write(*,*) "dimension scale data type is intl6"
endif
if (data_type. eq. 6) then
write(*,*) "dimension scale data type is float64"
endif
write(*,*) "number of dimension attributes is

, n_attrs

write(*,*) "Scale values are:"

if (dim index .eq. 0) then
status = sfgdscale(dim id, data_X_ out)
write(*,*) (data X out(i), i= 1, X_LENGTH)

endif

if (dim index .eq. 1) then
status = sfgdscale(dim_id, data_Y out)
write(*,100) (data Y out(i), i= 1, Y LENGTH)
format (4(1x,£10.3)/)

endif

continue

Terminate access to the data set.
status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.

December 30, 2003 3-81

National Center for Supercomputing Applications

status = sfend(sd_id)
end

3.8.4.4 Distinguishing SDS Arrays from Dimension Scales: SDiscoordvar

The HDF library stores SDS dimensions as data sets. HDF therefore provides the routine SDisco-
ordvar to determine whether a particular data set contains the data of an SDS or an SDS dimen-
sion with dimension scale or attribute assigned to it. The syntax of SDiscoordvar this routine is as
follows:

C: status = SDiscoordvar(sds_id);
FORTRAN: status = sfiscvar(sds_id)

If the data set, identified by the parameter sds_id, contains the dimension data, a subsequent call
to SDgetinfo will fill the specified arguments with information about a dimension, rather than a
data set.

SDiscoordvar returns TRUE (or 1) if the specified data set represents a dimension scale and FALSE
(or 0), otherwise. This routine is further defined in Table 3R.

TABLE 3R SDiscoordvar Parameter List
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
SDiscoordvar
[intn] sds_id int32 integer Data set identifier
(sfiscvar)
EXAMPLE 13. Distinguishing a Dimension Scale from a Data Set in a File.
This example illustrates the use of the routine SDiscoordvar/sfiscvar to determine whether the
selected SDS array is a data set or a dimension stored as an SDS array (coordinate variable) (see
discussion in Section 3.8.4) and displays the name of the data set or dimension.
C:
#include "mfhdf.h"
#define FILE NAME "SDS.hdf"
main()
{
[xhkkkkkkkkkkkkkkkkkkkk*** Variable declaration **xkkkkkkkkkkkkkkkkkkkkkkk/
int32 sd_id, sds_id, sds_index;
intn status;
int32 rank, data type, dim sizes[MAX VAR DIMS];
int32 n _datasets, n_file_attr, n_attrs;
char sds_name[MAX NC_NAME];
[HRxxhkkxkkkxkkkxxkkxx* End of variable declaration ***xxxkkxkkkkkkkkkkkkrkk/
/*
* Open the file and initialize the SD interface.
*/
sd_id = SDstart(FILE NAME, DFACC_READ);
3-82 December 30, 2003

HDF User’s Guide

/*

* Obtain information about the file.

*/

status = SDfileinfo(sd_id, &n_datasets, &n_file attr);

/* Get information about each SDS in the file.

* Check whether it is a coordinate variable, then display retrieved
* information.

* OQOutput displayed:

*

* SDS array with the name SDStemplate

* Coordinate variable with the name Y Axis
* Coordinate variable with the name X Axis
*

*/

for (sds_index=0; sds_index< n_datasets; sds_index++)
{

sds_id = SDselect (sd_id, sds_index);
status = SDgetinfo(sds_id, sds_name, &rank, dim sizes, &data type,

&n_attrs);

if (SDhiscoordvar(sds_id))

printf(" Coordinate variable with the name %s\n", sds_name);
else

printf(" SDS array with the name %s\n", sds_name);

/*

* Terminate access to the selected data set.
*/

status = SDendaccess(sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend(sd_id);

}
FORTRAN:

program sds_vrs_coordvar
implicit none

C

C Parameter declaration.

C
character*7 FILE NAME
parameter (FILE_NAME = ’'SDS.hdf’)
integer DFACC_READ, DFNT_ INT32
parameter (DFACC_READ = 1,

+ DFNT_INT32 = 24)
integer MAX VAR DIMS
parameter (MAX VAR DIMS = 32)

C

C Function declaration.

C
integer sfstart, sfselect, sfiscvar, sffinfo, sfginfo
integer sfendacc, sfend

C

C**** Variable declaration ****xxxkkkkkkhkhhhhhhhhhhhhhhhhrhhhrhhhhhhdx

C

integer sd_id, sds_id, sds_index, status
integer rank, data_ type
integer n_datasets, n _file attrs, n_attrs

December 30, 2003 3-83

National Center for Supercomputing Applications

integer dim sizes(MAX VAR _DIMS)
character*256 sds_name
C
C**** End of Variable declaration EEEE SRS SRS SRS SRS EEEEEEEEEEEEEESE]
C
C
C Open the file and initialize the SD interface.
C
sd_id = sfstart(FILE NAME, DFACC_READ)
C
C Obtain information about the file.
C
status = sffinfo(sd_id, n datasets, n_file attrs)
C
C Get information about each SDS in the file.
C Check whether it is a coordinate variable, then display retrieved
C information.
C Output displayed:
C
C SDS array with the name SDStemplate
C Coordinate variable with the name X Axis
C Coordinate variable with the name Y Axis
C
do 10 sds_index = 0, n_datasets-1
sds_id = sfselect(sd_id, sds_index)
status = sfginfo(sds_id, sds_name, rank, dim sizes,
+ data_type, n_attrs)
status = sfiscvar(sds_id)
if (status .eq. 1) then
write(*,*) "Coordinate variable with the name ",
+ sds_name(1:6)
else
write(*,*) "SDS array with the name ",
+ sds_name(1:11)
endif
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
10 continue
C
C Terminate access to the SD interface and close the file.
C

status = sfend(sd_id)
end

3.8.5 Related Data Sets

SD data sets with one or more dimensions with the same name and size are considered to be
related. Examples of related data sets are cross-sections from the same simulation, frames in an
animation, or images collected from the same apparatus. HDF attempts to preserve this relation-
ship by unifying their dimension scales and attributes. To understand how related data sets are
handled, it is necessary to understand what dimension records are and how they are created.

In the SD interface, dimension records are only created for dimensions of a unique name and size.
To illustrate this, consider a case where there are three scientific data sets, each representing a
unique variable, in an HDF file. (See Figure 3c.) The first two data sets have two dimensions each
and the third data set has three dimensions. There are a total of five dimensions in the file and the
name mapping between the data sets and the dimensions are shown in the figure. Note that if, for
example, the creation of a second dimension named "Altitude" is attempted and the size of the

3-84

December 30, 2003

HDF User’s Guide

dimension is different from the existing dimension named "Altitude", an error condition will be
generated.

As expected, assigning a dimension attribute to dimension 1 of either data set will create the
required dimension scale and assign the appropriate attribute. However, because related data sets
share dimension records, they also share dimension attributes. Therefore, it is impossible to assign
an attribute to a dimension without assigning the same attribute to all dimensions of identical
name and size, either within one data set or related data sets.

FIGURE 3¢

3.9

Dimension Records and Attributes Shared Between Related Data Sets
Data Set A

Data Set B Data Set C

Latitude | [Longitude]

Latitude Longitude Time Altitude

Dimensions

User-defined Attributes

User-defined attributes are defined by the calling program and contain auxiliary information
about a file, SDS array, or dimension. This auxiliary information is sometimes called metadata
because it is data about data. There are two ways to store metadata: as user-defined attributes or as
predefined attributes.

Attributes take the form label=value, where label is a character string containing MAX NC NAME
(or 256) or fewer characters and value contains one or more entries of the same data type as
defined at the time the attribute is created. Attributes can be attached to files, data sets, and dimen-
sions. These are referred to, respectively, as file attributes, data set attributes, and dimension
attributes:

« File attributes describe an entire file. They generally contain information pertinent to all
HDF data sets in the file and are sometimes referred to as global attributes.

« Data set attributes describe individual SDSs. Because their scope is limited to an individual
SDS, data set attributes are sometimes referred to as local attributes.

« Dimension attributes provide information applicable to an individual SDS dimension. It is
possible to assign a unit to one dimension in a data set without assigning a unit to the
remaining dimensions.

For each attribute, an attribute count is maintained that identifies the number of values in the
attribute. Each attribute has a unique attribute index, the value of which ranges from 0 to the total
number of attributes minus 1. The attribute index is used to locate an attribute in the object which
the attribute is attached to. Once the attribute is identified, its values and information can be
retrieved.

The data types permitted for attributes are the same as those allowed for SDS arrays. SDS arrays
with general attributes of the same name can have different data types. For example, the attribute
valid range specifying the valid range of data values for an array of 16-bit integers might be of

December 30, 2003 3-85

National Center for Supercomputing Applications

type 16-bit integer, whereas the attribute valid range for an array of 32-bit floats could be of
type 32-bit floating-point integer.

Attribute names follow the same rules as dimension names. Providing meaningful names for
attributes is important, however using standardized names may be necessary if generic applica-
tions and utility programs are to be used. For example, every variable assigned a unit should have
an attribute named "units" associated with it. Furthermore, if an HDF file is to be used with soft-
ware that recognizes "units" attributes, the values of the "units" attributes should be expressed in a
conventional form as a character string that can be interpreted by that software.

The SD interface uses the same functions to access all attributes regardless of the objects they are
assigned to. The difference between accessing a file, array, or dimension attribute lies in the use of
identifiers. File identifiers, SDS identifiers, and dimension identifiers are used to respectively
access file attributes, SDS attributes, and dimension attributes.

3.9.1 Creating or Writing User-defined Attributes: SDsetattr

SDsetattr creates or modifies an attribute for one of the objects: the file, the data set, or the
dimension. If the attribute with the specified name does not exist, SDsetattr creates a new one. If
the named attribute already exists, SDsetattr resets all the values that are different from those pro-
vided in its argument list. The syntax of this routine is as follows:

C: status = SDsetattr(dbj id, attr name, data type, n values, values);

FORTRAN: status

sfsnatt(obj_id, attr name, data type, n values, values)
OR status = sfscatt(obj_id, attr name, data type, n values, values)

The parameter obj_id is the identifier of the HDF data object to which the attribute is assigned
and can be a file identifier, SDS identifier, or dimension identifier. If obj_id specifies an SD
interface identifier (sd _id), a global attribute will be created which applies to all objects in the
file. If obj_id specifies a data set identifier (sds_id), an attribute will be attached only to the
specified data set. If obj_id specifies a dimension identifier (dim id), an attribute will be
attached only to the specified dimension.

The parameter attr_name is an ASCII character string containing the name of the attribute. It rep-
resents the label in the label = value equation and can be no more than MAX NC NAME (or 256)
characters. If this is set to the name of an existing attribute, the value portion of the attribute will
be overwritten. Do not use SDsetattr to assign a name to a dimension, use SDsetdimname
instead.

The arguments data type, n values, and values describe the right side of the label = value
equation. The argument values contains one or more values of the same data type. The argument
data type contains any HDF supported data type (see Table 2F on page 14). The parameter
n_values specifies the total number of values in the attribute.

There are two FORTRAN-77 versions of this routine: sfsnatt and sfscatt. The routine sfsnatt
writes numeric attribute data and sfscatt writes character attribute data.

SDsetattr returns a value of SUCCEED (or 0) or FATL (or -1). The parameters of SDsetattr are fur-
ther described in Table 3S on page 91.

3-86

December 30, 2003

HDF User’s Guide

EXAMPLE 14.

Setting Attributes.

This example shows how the routines SDsetattr/sfscatt/sfsnatt are used to set the attributes of the
file, data set, and data set dimension created in the Examples 2, 4, and 12.

C:

#include "mfhdf.h"

"SDS.hdf"
"File_contents"
"Valid_range"
"Dim metric"

#define FILE_NAME

#define FILE_ATTR NAME
#define SDS_ATTR_NAME
#define DIM ATTR_NAME

main()

{

[HRE KRk kKK kkkkkkkkkkkkkx* %% Variable declaration **x*kkxkkkkkkkkkkkkkkkkkkx/

int32 sd_id, sds_id, sds_index;
intn status;
int32 dim_id, dim index;
int32 n_values; /* number of values of the file, SDS or
dimension attribute */
char8 file values[] = "Storm track data";
/* values of the file attribute */
float32 sds_values[2] = {2., 10.};
/* values of the SDS attribute */
char8 dim values[] = "Seconds";

/* values of the dimension attribute */

[xFxkkkkkxkkkkkkxkxkxx* End of variable declaration ***kxxkxkkxkkkkkkkhkkkkkx/

/*

* Open the file and initialize the SD interface.

*/

sd_id = SDstart (FILE NAME, DFACC WRITE);

/*

* Set an attribute that describes the file contents.

*/

n_values = 16;

status = SDsetattr (sd_id, FILE ATTR NAME, DFNT CHAR8, n_values,
(VOIDP)file values);

/*

* Select the first data set.

*/

sds_index = 0;
sds_id = SDselect (sd_id, sds_index);

/*
* Assign attribute to the first SDS. Note that attribute values
* may have different data type than SDS data.

*/

n_values = 2;

status = SDsetattr (sds_id, SDS_ATTR NAME, DFNT FLOAT32, n_values,
(VOIDP)sds_values);

/*

* Get the the second dimension identifier of the SDS.

*/

dim index = 1;
dim id = SDgetdimid (sds_id, dim index);

December 30, 2003

3-87

National Center for Supercomputing Applications

/*

* Set an attribute of the dimension that specifies the dimension metric.

*/

n_values = 7;

status = SDsetattr (dim id, DIM ATTR NAME, DFNT CHAR8, n_values,
(VOIDP)dim values);

/*
* Terminate access to the data set.
*/
status = SDendaccess (sds_id);
/*
* Terminate access to the SD interface and close the file.
*/
status = SDend (sd_id);
}
FORTRAN:
program set attribs
implicit none
C
C Parameter declaration.
C
character*7 FILE_ NAME
character*13 FILE ATTR NAME
character*11l SDS_ATTR NAME
character*10 DIM ATTR NAME
parameter (FILE_NAME = ’'SDS.hdf’,

+ FILE ATTR NAME = 'File contents’,

+ SDS_ATTR NAME = ’Valid_range’,

+ DIM ATTR NAME = ’‘Dim metric’)
integer DFACC_WRITE, DFNT CHAR8, DFNT_FLOAT32
parameter (DFACC_WRITE = 2,

+ DFNT CHAR8 = 4,

+ DFNT_FLOAT32 = 5)

C
C Function declaration.
C
integer sfstart, sfscatt, sfsnatt, sfselect, sfdimid
integer sfendacc, sfend
C
C**x*x% Variable declaration R R R R R SRR R SRR SRR EEEEEEEEEEEEEEEEEEEE SRR
C
integer sd_id, sds_id, sds_index, status
integer dim id, dim index
integer n_values
character*16 file values
real sds_values(2)
character*7 dim values
file values = ’Storm track data’
sds_values(l) = 2.
sds_values(2) = 10.
dim values = ’Seconds’
C
C**** End of Variable declaration EEEE SRS SRS SR LSS SRR EEEEEEEEEEEEEEEES]
C
C
C Open the file and initialize the SD interface.
C

sd_id = sfstart(FILE NAME, DFACC_WRITE)

3-88 December 30, 2003

HDF User’s Guide

Q

QQ

QQ oo e Ne!

oo e Ne!

Q

aQ

Set an attribute that describes the file contents.

n _values = 16

status = sfscatt(sd_id, FILE ATTR NAME, DFNT CHAR8, n_values,
+ file values)

Select the first data set.

sds_index = 0
sds_id = sfselect(sd_id, sds_index)

Assign attribute to the first SDS. Note that attribute values
may have different data type than SDS data.

n_values = 2
status = sfsnatt(sds_id, SDS_ATTR_NAME, DFNT_ FLOAT32, n_values,
+ sds_values)

Get the identifier for the first dimension.

dim index = 0
dim id = sfdimid(sds_id, dim_ index)

Set an attribute to the dimension that specifies the
dimension metric.

n_values = 7

status = sfscatt(dim id, DIM ATTR NAME, DFNT CHAR8, n_values,
+ dim values)

Terminate access to the data set.

status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.

status = sfend(sd_id)

end

3.9.2 Querying User-defined Attributes: SDfindattr and SDattrinfo

Given a file, SDS, or dimension identifier and an attribute name, SDfindattr returns a valid
attribute index if the corresponding attribute exists. The attribute index can then be used to
retrieve information about the attribute or its values. Given a file, SDS, or dimension identifier
and a valid attribute index, SDattrinfo retrieves the information about the corresponding attribute

if it exists.

The syntax for SDfindattr and SDattrinfo are as follows:

C:

attr index = SDfindattr(cbj id, attr name);
status = Shattrinfo(obj id, attr index, attr name, &data type,
&n values);

FORTRAN: attr index = sffattr(obj_id, attr name)

status = sfgainfo(dbj id, attr index, attr name, data type,
n values)

December 30, 2003 3-89

National Center for Supercomputing Applications

SDfindattr returns the index of the attribute, which belongs to the object identified by the param-
eter obj_id, and whose name is specified by the parameter attr_name.

The parameter obj_id can be either an SD interface identifier (sd_id), a data set identifier
(sds_id), or a dimension identifier (dim id). SDfindattr is case-sensitive in searching for the
name specified by the parameter attr name and does not accept wildcards as part of that name.

SDattrinfo retrieves the attribute’s name, data type, and number of values into the parameters
attr name, data type, and n_values, respectively.

The parameter attr index specifies the relative position of the attribute within the specified
object. An attribute index may also be determined by either keeping track of the number and order
of attributes as they are written or dumping the contents of the file using the HDF dumping utility,
hdp, which is described in Chapter 15, HDF Command-line Utilities.

SDfindattr returns an attribute index or a value of FAIL (or -1). SDattrinfo returns a value of
SUCCEED (or 0) or FAIL (or -1). The parameters of SDfindattr and SDattrinfo are further
described in Table 3S on page 91.

3.9.3 Reading User-defined Attributes: SDreadattr

Given a file, SDS, or dimension identifier and an attribute index, SDreadattr reads the values of
an attribute that belongs to either a file, an SDS, or a dimension. The syntax of this routine is as
follows:

C: status = SDreadattr(obj id, attr index, values);

FORTRAN: status = sfrattr(odbj id, attr index, values)
OR status = sfrnatt(dbj id, attr index, values)
OR status = sfrcatt(dbj id, attr index, values)

SDreadattr stores the attribute values in the buffer values, which is assumed to be sufficiently
allocated. The size of the buffer must be at least n values*sizeof (data type) bytes long,
where n_values and data type are the number of attribute values and their type. The values of
n values and data type can be retrieved using SDattrinfo. Note that the size of the data type
must be determined at the local machine where the application is running. SDreadattr will also
read attributes and annotations created by the DFSD interface.

The parameter obj_id can be either an SD interface identifier (sd_id), a data set identifier
(sds_id), or a dimension identifier (dim id).

The parameter attr index specifies the relative position of the attribute within the specified
object. An attribute index may also be determined by either keeping track of the number and order
of attributes as they are written or dumping the contents of the file using the HDF dumping utility,
hdp, which is described in Chapter 15, HDF Command-line Utilities.

There are three FORTRAN-77 versions of this routine: sfrattr, sfrnatt, and sfrcatt. The routine
sfrattr reads data of all valid data types, sfrnatt reads numeric attribute data and sfrcatt reads
character attribute data.

SDreadattr returns a value of SUCCEED (or 0) or FATL (or -1). The parameters of SDreadattr are
further described in Table 3S.

3-90

December 30, 2003

HDF User’s Guide

TABLE 3S SDsetattr, SDfindattr, SDattrinfo, and SDreadattr Parameter Lists
Routine Name Parameter Type
[Return Type] Par t Description
(FORTRAN-77) C FORTRAN-77
sd_id, sds_id int32 integer SD interface, data set, or
or dim_id 8 dimension identifier
SDsetattr attr_name char * character*(*) Name of the attribute
[intn] data_type int32 integer Data type of the attribute
(sfsnatt/ n_values int32 integer Number of values in the attribute
sfscatt)
<valid numeric data
values VOIDP type>(*)/ Buffer containing the data to be written
character*(*)
SDfindattr sd_ldi SdS'_ld int32 integer SP 1nteffa<{e, daFa set, or
[int32] or dim_id dimension identifier
(sffattr) attr_name char * character*(*) Attribute name
sd_id, sds_id in32 integer SD interface, data set, or
or dim_id & dimension identifier
attr_index int32 integer Index of the attribute to be read
SD?“ln]nfo attr_name char * character*(*) Buffer for the name of the attribute
intn
(sfgainfo) data_type int32 integer Buffer 'for the data type of the values in
the attribute
. . Buffer for the total number of values in
n_values int32 * integer .
the attribute
sd_id, sds_id . . SD interface, data set, or dimension
or dim_id int32 nteger identifier
SDreadattr =
[intn] attr_index int32 integer Index of the attribute to be read
(srattr/ <valid data type>(*)/
sfrnatt/ <valid numeric data
sfrcatt) values VOIDP . Buffer for the attribute values
type>(*)/
character*(*)
EXAMPLE 15. Reading Attributes.

This example uses the routines SDfindattr/sffattr, SDattrinfo/sfgainfo, and SDreadattr/sfrattr
to find and read attributes of the file, data set, and data set dimension created in the Example 14.

C:
#include "mfhdf.h"

#define FILE NAME "SDS.hdf"
#define FILE_ATTR_NAME "File_contents"
#define SDS_ATTR NAME "Valid range"
#define DIM ATTR NAME "Dim metric"

main()

{

[HRE KRk KKk K R KKKk kR kkkkxk%% Variable declaration **xxkkxkkkkkkkkkkkkkkkkkkx/

int32 sd_id, sds_id, dim id;

intn status;

int32 attr index, data type, n_values;
char attr name[MAX NC_NAME];

int8 *file data;

int8 *dim data;

float32 *sds_data;

int i;

December 30, 2003

391

National Center for Supercomputing Applications

[FrrKkkkkkkkkkkkkkkxxxx*x End of variable declaration **xxxxkkkxxkkkkkkkkkkkk*/

/*

* Open the file and initialize SD interface.
*/

sd_id = SDstart (FILE_NAME, DFACC_READ);

/*

* Find the file attribute defined by FILE ATTR NAME.
*/

attr index = SDfindattr (sd_id, FILE ATTR NAME);

/*

* Get information about the file attribute. Note that the first

* parameter is an SD interface identifier.

*/

status = SDattrinfo (sd_id, attr index, attr name, &data type, &n_values);

/*

* Allocate a buffer to hold the attribute data.

*/

file data = (int8 *)malloc (n_values * sizeof (data_type));
/*

* Read the file attribute data.

*/

status = SDreadattr (sd_id, attr index, file data);
/*

* Print out file attribute value.

*/

printf ("File attribute value is : %s\n", file data);
/*

* Select the first data set.

*/

sds_id = SDselect (sd_id, 0);

/*

* Find the data set attribute defined by SDS_ATTR NAME. Note that the
* first parameter is a data set identifier.

*/

attr_index = SDfindattr (sds_id, SDS_ATTR_NAME);

/*

* Get information about the data set attribute.

*/

status = SDattrinfo (sds_id, attr index, attr name, &data type, &n_values);
/*

* Allocate a buffer to hold the data set attribute data.

*/

sds_data = (float32 *)malloc (n_values * sizeof (data_type));
/*

* Read the SDS attribute data.

*/

status = SDreadattr (sds_id, attr_index, sds_data);

/*

* Print out SDS attribute data type and values.

*/

3-92 December 30, 2003

HDF User’s Guide

if (data_type == DFNT FLOAT32)
printf ("SDS attribute data type is : float32\n");
printf ("SDS attribute values are : ");
for (i=0; i<n_values; i++) printf (" %£f", sds_data[i]);
printf ("\n");

/*

* Get the identifier for the second dimension of the SDS.
*/

dim_id = SDgetdimid (sds_id, 1);

/*

* Find dimension attribute defined by DIM ATTR NAME.

*/

attr index = SDfindattr (dim id, DIM ATTR NAME);

/*

* Get information about the dimension attribute.

*/

status = SDattrinfo (dim id, attr_index, attr_name, &data_type, &n_values);
/*

* Allocate a buffer to hold the dimension attribute data.
*/

dim data = (int8 *)malloc (n_values * sizeof (data type));
/*

* Read the dimension attribute data.

*/

status = SDreadattr (dim id, attr index, dim data);

/*

* Print out dimension attribute value.

*/

printf ("Dimensional attribute values is : %s\n", dim data);

/*

* Terminate access to the data set and to the SD interface and
* close the file.

*/

status SDendaccess (sds_id);

status = SDend (sd_id);

/*

* Free all buffers.
*/

free (dim data);
free (sds_data);
free (file data);

/* Output of this program is :

*

* File attribute value is : Storm track data

* SDS attribute data type is : float32

* SDS attribute values are : 2.000000 10.000000
* Dimensional attribute values is : Seconds

*/

December 30, 2003 3-93

National Center for Supercomputing Applications

FORTRAN:

program attr info
implicit none

C
C Parameter declaration.
C
character*7 FILE_NAME
character*13 FILE ATTR NAME
character*11 SDS_ATTR NAME
character*10 DIM ATTR NAME
parameter (FILE_NAME = ’'SDS.hdf’,
+ FILE_ATTR NAME = ’‘File_contents’,
+ SDS_ATTR NAME = 'Valid_range’,
+ DIM ATTR NAME = ’‘Dim metric’)
integer DFACC_READ, DFNT_FLOAT32
parameter (DFACC_READ =1,
+ DFNT_ FLOAT32 = 5)
C
C Function declaration.
C
integer sfstart, sffattr, sfgainfo, sfrattr, sfselect
integer sfdimid, sfendacc, sfend
C
C**** Variable declaration khkhkkkhkhkkhkhkhkkhkhkkhhkkhhhkkhhdhhkdhhkdhhhhkdhdhdhkdkhkdhddhdxx
C
integer sd_id, sds_id, dim id
integer attr index, data_type, n_values, status
real sds_data(2)
character*20 attr_ name
character*16 file data
character*7 dim data
integer i
C
C**x*x% End of Variable declaration IR EE R R SRR R SRR EEEEEEEEEEEEEEEEEE R
C
C
C Open the file and initialize SD interface.
C
sd_id = sfstart(FILE NAME, DFACC READ)
C
C Find the file attribute defined by FILE ATTR_NAME.
C Note that the first parameter is an SD interface identifier.
C
attr_index = sffattr(sd_id, FILE_ATTR_NAME)
C
C Get information about the file attribute.
C
status = sfgainfo(sd_id, attr index, attr name, data_type,
+ n_values)
C
C Read the file attribute data.
C
status = sfrattr(sd_id, attr_index, file data)
C
C Print file attribute value.
C
write(*,*) "File attribute value is : ", file data
C
C Select the first data set.
C

sds_id = sfselect(sd_id, 0)

3-94 December 30, 2003

HDF User’s Guide

C
(¢ Find the data set attribute defined by SDS_ATTR_NAME.
C Note that the first parameter is a data set identifier.
C
attr_index = sffattr(sds_id, SDS_ATTR NAME)
C
C Get information about the data set attribute.
C
status = sfgainfo(sds_id, attr_index, attr name, data type,
+ n_values)
C
C Read the SDS attribute data.
C
status = sfrattr(sds_id, attr index, sds_data)
C
C Print SDS attribute data type and values.
C
if (data_type .eq. DFNT FLOAT32) then
write(*,*) "SDS attribute data type is : float32 "
endif
write(*,*) "SDS attribute values are : "
write(*,*) (sds_data(i), i=1, n_values)
C
C Get the identifier for the first dimension of the SDS.
C
dim id = sfdimid(sds_id, 0)
C
(¢ Find the dimensional attribute defined by DIM ATTR NAME.
C Note that the first parameter is a dimension identifier.
C
attr index = sffattr(dim id, DIM ATTR_NAME)
C
C Get information about dimension attribute.
C
status = sfgainfo(dim id, attr_index, attr name, data type,
+ n_values)
C
C Read the dimension attribute data.
C
status = sfrattr(dim id, attr index, dim data)
C
C Print dimension attribute value.
C
write(*,*) "Dimensional attribute value is : ", dim data
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
status = sfend(sd_id)
C
C Output of this program is :
C
C
C File attribute value is : Storm track data
C SDS attribute data type is : float32
C SDS attribute values are :
[2.00000 10.00000
C Dimensional attribute value is : Seconds
C

December 30, 2003 3-95

National Center for Supercomputing Applications

end

3.10 Predefined Attributes

Predefined attributes use reserved names and in some cases predefined data type names. Pre-
defined attributes are categorized as follows:

Labels can be thought of as variable names. They are often used as keys in searches to find
a particular predefined attribute.

Upnits are a means of declaring the units pertinent to a specific discipline. A freely-available
library of routines is available to convert between character string and binary forms of unit
specifications and to perform useful operations on the binary forms. This library is used in
some netCDF applications and is recommended for use with HDF applications. For more
information, refer to the netCDF User’s Guide for C which can be obtained at
http://www.unidata.ucar.edu/packages/netcdf/guidec/.

Formats describe the format in which numeric values will be printed and/or displayed. The
recommended convention is to use standard FORTRAN-77 notation for describing the data
format. For example, "F7.2" means to display seven digits with two digits to the right of the
decimal point.

Coordinate systems contain information that should be used when interpreting or displaying
non

the data. For example, the text strings "cartesian", "polar" and "spherical" are recommended
coordinate system descriptions.

Ranges define the maximum and minimum values of a selected valid range. The range may
cover the entire data set, values outside the data set, or a subset of values within a data set.
Because the HDF library does not check or update the range attribute as data is added or
removed from the file, the calling program may assign any values deemed appropriate as
long as they are of the same data type as the SDS array.

Fill value is the value used to fill the areas between non-contiguous writes to SDS arrays.
For more information about fill values, refer to Section 3.10.5 on page 101.

Calibration stores scale and offset values used to create calibrated data in SDS arrays.
When data are calibrated, they are typically reduced from floats, double, or large integers
into 8-bit or 16-bit integers and "packed" into an appropriately sized array. After the scale
and offset values are applied, the packed array will return to its original form.

Predefined attributes are useful because they establish conventions that applications can depend
on and because they are understood by the HDF library without users having to define them. Pre-
defined attributes also ensure backward compatibility with earlier versions of the HDF library.
They can be assigned only to data sets and dimensions. Table 3T lists the predefined attributes and
the types of object each attribute can be assigned to.

TABLE 3T Predefined Attributes List
L1V Dfa;;eOb_]ect Attribute Category Attribute Name Description
SDS Array Label long_name Name of the array
or Unit units Units used for all dimensions and data
Dimension Format format Format for displaying dim scales and array values
3-96 December 30, 2003

HDF User’s Guide

Coordinate Sys-

fem cordsys Coordinate system used to interpret the SDS array
Range valid range Maximum and minimum values within a selected data
range
Fill Value __Fillvalue Value used to fill empty locations in an SDS array
SDS Array Only scale factor Value by which each array value is to be multiplied

scale_factor_err Error introduced by scaling SDS array data

Calibration add_offset Value to which each array value is to be added
add_offset_err Error introduced by offsetting the SDS array data
calibrated_nt Data type of the calibrated data

While the following netCDF naming conventions are not predefined in HDF, they are highly rec-
ommended to promote consistency of information-sharing among generic applications. Refer to
the netCDF User’s Guide for C for further information.

- missing_value: An attribute containing a value used to fill areas of an array not intended to
contain either valid data or a fill value. The scope of this attribute is local to the array. An
example of this would be a region where information is unavailable, as in a geographical
grid containing ocean data. The part of the grid where there is land might not have any data
associated with it and in such a case the missing value value could be supplied. The
missing value attribute is different from the Fillvalue attribute in that fill values are
intended to indicate data that was expected but did not appear, whereas missing values are
used to indicate data that were never expected.

- title: A global file attribute containing a description of the contents of a file.

- history: A global file attribute containing the name of a program and the arguments used to
derive the file. Well-behaved generic filters (programs that take HDF or netCDF files as
input and produce HDF or netCDF files as output) would be expected to automatically
append their name and the parameters with which they were invoked to the history attribute
of an input file.

3.10.1 Accessing Predefined Attributes

The SD interface provides two methods for accessing predefined attributes. The first method uses
the general attribute routines for user-defined attributes described in Section 3.9 on page 85; the
second employs routines specifically designed for each attribute and will be discussed in the fol-
lowing sections. Although the general attribute routines work well and are recommended in most
cases, the specialized attribute routines are sometimes easier to use, especially when reading or
writing related predefined attributes. This is true for two reasons. First, because predefined
attributes are guaranteed unique names, the attribute index is unnecessary. Second, attributes with
several components may be read as a group. For example, using the SD routine designed to read
the predefined calibration attribute returns all five components with a single call, rather than five
separate calls.

There is one exception: unlike predefined data set attributes, predefined dimension attributes
should be read or written using the specialized attribute routines only.

The predefined attribute parameters are described in Table 3U. Creating a predefined attribute
with parameters different from these will produce unpredictable results when the attribute is read
using the corresponding predefined-attribute routine.

December 30, 2003 3-97

National Center for Supercomputing Applications

TABLE 3U

Predefined Attribute Definitions

Category Attribute Name Data Type Number of Values Attribute Description

Label long_name DFNT_CHARS String length String

Unit units DFNT_CHARS String length String

Format format DFNT_CHARS String length String

Coordinate

System cordsys DFNT_CHARS String length String

Minimum and maximum values

Range valid_range <valid data type> 2 in 2-clement array

Fill Value _FillValue <valid data type> 1 Fill value

scale_factor DFNT_FLOAT64 1 Scale

scale_factor_err DFNT_FLOAT64 1 Scale error
Calibration add_offset DFNT_FLOAT64 1 Offset
add_offset_err DFNT_FLOAT64 1 Offset error

calibrated_nt DFNT_INT32 1 Data type

In addition to SDreadattr, SDfindattr and SDattrinfo are also valid general attribute routines to
use when reading a predefined attribute. SDattrinfo is always useful for determining the size of
an attribute whose value contains a string.

3.10.2SDS String Attributes

This section describes the predefined string attributes of the SDSs and the next section describes
those of the dimensions. Predefined string attributes of an SDS include the label, unit, format,
and coordinate system.

3.10.2.1 Writing String Attributes of an SDS: SDsetdatastrs

SDsetdatastrs assigns the predefined string attributes label, unit, format, and coordinate system
to an SDS array. The syntax of this routine is as follows:

C: status = SDsetdatastrs(sds id, label, unit, format, coord system);
FORTRAN: status = sfsdtstr(sds id, label, unit, format, coord system)

If you do not wish to set an attribute, set the corresponding parameter to NULL in C and an empty
string in FORTRAN-77. SDsetdatastrs returns a value of SUCCEED (or 0) or FAIL (or -1). Its argu-
ments are further described in Table 3V on page 99.

3.10.2.2 Reading String Attributes of an SDS: SDgetdatastrs

SDgetdatastrs reads the predefined string attributes label, unit, format, and coordinate system
from an SDS. These string attributes have previously been set by the routine SDsetdatastrs. The
syntax of SDgetdatastrs is as follows:

C: status = SDgetdatastrs(sds_id, label, unit, format, coord system,
len);

FORTRAN: status = sfgdtstr(sds id, label, unit, format, coord system, len)

SDgetdatastrs stores the predefined attributes into the parameters label, unit, format, and
coord _system, which are character string buffers. If a particular attribute has not been set by
SDsetdatastrs, the first character of the corresponding returned string will be NULL for C and 0 for
FORTRAN-77. Each string buffer is assumed to be at least len characters long, including the

3-98

December 30, 2003

HDF User’s Guide

space to hold the NULL termination character. If you do not wish to get a predefined attribute of this

SDS, set the corresponding parameter to NULL in C and an empty string in FORTRAN-77.

SDgetdatastrs returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further

described in Table 3V.

TABLE 3V

SDsetdatastrs and SDgetdatastrs Parameter Lists

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
sds_id int32 integer Data set identifier
label char * character®(*) Label for the data
SDse[ti::int]:«lstrs unit char * character®(*) Definition of the units
(sfsdtstr) format char * character*(*) Description of the data format
COOZdIHSySt char * character™(*) Description of the coordinate system
sds_id int32 integer Data set identifier
label char * character*(*) Buffer for the label
SDgetdatastrs unit char * character*(*) Buffer for the description of the units
[intn] format char * character*(*) Buffer for the description of the data format
(sfgdtstr)
cooredr;syst char * character*(*) Buffer for the description of the coordinate system
len intn integer Minimum length of the string buffers

3.10.3String Attributes of Dimensions

Predefined string attributes of a dimension include label, unit, and format. They adhere to the
same definitions as those of the label, unit, and format strings for SDS attributes.

3.10.3.1 Writing a String Attribute of a Dimension: SDsetdimstrs

SDsetdimstrs assigns the predefined string attributes label, unit, and format to an SDS dimension
and its scales. The syntax of this routine is as follows:

C: status = SDsetdimstrs(dim id, label, unit, format);
FORTRAN: status = sfsdmstr(dim id, label, unit, format)

The argument dim id is the dimension identifier, returned by SDgetdimid, and identifies the
dimension to which the attributes will be assigned. If you do not wish to set an attribute, set the
corresponding parameter to NULL in C and an empty string in FORTRAN-77.

SDsetdimstrs returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further
described in Table 3W.

3.10.3.2 Reading a String Attribute of a Dimension: SDgetdimstrs

SDgetdimstrs reads the predefined string attributes label, unit, and format from an SDS dimen-
sion. These string attributes have previously been set by the routine SDsetdimstrs. The syntax of
SDgetdimstrs is as follows:

C: status = SDgetdimstrs(dim id, label, unit, format, len);

FORTRAN: status = sfgdmstr(dim id, label, unit, format, len)

December 30, 2003 3-99

National Center for Supercomputing Applications

SDgetdimstrs stores the predefined attributes of the dimension into the arguments label, unit,
and format, which are character string buffers. If a particular attribute has not been set by SDset-
dimstrs, the first character of the corresponding returned string will be NULL for C and 0 for FOR-
TRAN-77. Each string buffer is assumed to be at least len characters long, including the space to
hold the NULL termination character. If you do not wish to get a predefined attribute of this dimen-
sion, set the corresponding parameter to NULL in C and an empty string in FORTRAN-77.

SDgetdimstrs returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further
described in Table 3W.

TABLE 3W SDsetdimstrs and SDgetdimstrs Parameter Lists
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
dim_id int32 integer Dimension identifier
SDsetdimstrs label char * character*(*) Label describing the specified dimension
[intn]
(sfsdmstr) unit char * character*(¥) Units to be used with the specified dimension
format char * character*(*) Format to use when displaying the scale values
dim_id int32 integer Dimension identifier
e label char * character*(*) Buffer for the dimension label
SDg s
[intn] unit char * character*(¥*) Buffer for the dimension unit
(sfgdmstr) format char * character®(*) Buffer for the dimension format
len intn integer Maximum length of the string attributes
3.10.4Range Attributes
The attribute range contains user-defined maximum and minimum values in a selected range.
Since the HDF library does not check or update the range attribute as data is added or removed
from the file, the calling program may assign any values deemed appropriate. Also, because the
maximum and minimum values are supposed to relate to the data set, it is assumed that they are of
the same data type as the data.
3.10.4.1 Writing a Range Attribute: SDsetrange
SDsetrange sets the maximum and minimum range values for the data set identified by sds_id to
the values provided by the parameters max and min. The syntax of the routine is as follows:
C: status = SDsetrange(sds id, max, min);
FORTRAN: status = sfsrange(sds id, max, min)
SDsetrange does not compute the maximum and minimum range values, it only stores the values
as given. As a result, the maximum and minimum range values may not always reflect the actual
maximum and minimum range values in the data set data. Recall that the type of max and min is
assumed to be the same as that of the data set data.
SDsetrange returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further described
in Table 3X.
3-100 December 30, 2003

HDF User’s Guide

3.10.4.2 Reading a Range Attribute: SDgetrange

SDgetrange reads the maximum and minimum valid values of a data set. The syntax of this rou-
tine is as follows:

C: status = SDgetrange(sds id, &max, &min);
FORTRAN: status = sfgrange(sds_id, max, min)

The maximum and minimum range values are stored in the parameters max and min, respectively,
and must have previously been set by SDsetrange. Recall that the type of max and min is assumed
to be the same as that of the data set data.

SDgetrange returns a value of SUCCEED (or 0) or FATL (or -1). Its parameters are further described
in Table 3X.

TABLE 3X

SDsetrange and SDgetrange Parameter Lists

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
SDsetrange sds_id int32 integer Data set identifier
[intn] max VOIDP <valid data type> Maximum value to be stored
(sfsrange) min VOIDP <valid data type> Minimum value to be stored
SDgetrange sds_id int32 integer Data set identifier
[intn] max VOIDP <valid data type> Buffer for the maximum value
(sfgrange) min VOIDP <valid data type> Buffer for the minimum value

3.10.5Fill Values and Fill Mode

A fill value is the value used to fill the spaces between non-contiguous writes to SDS arrays; it can
be set with SDsetfillvalue. If a fill value is set before writing data to an SDS, the entire array is
initialized to the specified fill value. By default, any location not subsequently overwritten with
SDS data will contain the fill value.

A fill value must be of the same data type as the array to which it is written. To avoid conversion
errors, use data-specific fill values instead of special architecture-specific values, such as infinity
and Not-a-Number or NaN.

A fill mode specifies whether the fill value is to be written to all the SDSs in the file; it can be set
with SDsetfillmode.

Writing fill values to an SDS can involve more I/O overhead than is necessary, particularly in sit-
uations where the data set is to be contiguously filled with data before any read operation is made.
In other words, writing fill values is only necessary when there is a possibility that the data set will
be read before all gaps between writes are filled with data, i.e., before all elements in the array
have been assigned values. Thus, for a file that has only data sets containing contiguous data, the
fill mode should be set to SD NOFILL (or 256). Avoiding unnecessary filling can substantially
increase the application performance.

For a non-contiguous data set, the array elements that have no actual data values must be filled
with a fill value before the data set is read. Thus, for a file that has a non-contiguous data set, the
fill mode should be set to SD FIIL (or 0) and a fill value will be written to the all data sets in the
file.

Note that, currently, SDsetfillmode specifies the fill mode of all data sets in the file. Thus, either
all data sets are in SD FIIL mode or all data sets are in SD NOFILL mode. However, when a spe-

December 30, 2003 3-101

National Center for Supercomputing Applications

cific SDS needs to be written with a fill value while others in the file do not, the following proce-
dure can be used: set the fill mode to SD FILL, write data to the data set requiring fill values, then
set the fill mode back to sD NOFIIL. This procedure will produce one data set with fill values
while the remaining data sets have no fill values.

3.10.5.1 Writing a Fill Value Attribute: SDsetfillvalue

SDsetfillvalue assigns a new value to the fill value attribute for an SDS array. The syntax of this
routine is as follows:

C: status = SDsetfillvalue(sds_id, fill val);
FORTRAN: status = sfsfill(sds id, fill val)
OR status = sfscfill(sds id, fill val)

The argument £ill val is the new fill value. It is recommended that you set the fill value before
writing data to an SDS array, as calling SDsetfillvalue after data is written to an SDS array only
changes the fill value attribute — it does not update the existing fill values.

There are two FORTRAN-77 versions of this routine: sfsfill and sfscfill. sfsfill writes numeric fill
value data and sfscfill writes character fill value data.

SDsetfillvalue returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further
described in Table 3Y on page 103.

3.10.5.2 Reading a Fill Value Attribute: SDgetfillvalue

SDgetfillvalue reads in the fill value of an SDS array as specified by a SDsetfillvalue call or its
equivalent. The syntax of this routine is as follows:

C: status = SDgetfillvalue(sds id, &fill val);
FORTRAN: status = sfgfill(sds id, fill val)
OR status = sfgcfill(sds id, fill val)

The fill value is stored in the argument £ill val which is previously allocated based on the data
type of the SDS data.

There are two FORTRAN-77 versions of this routine: sfgfill and sfgcfill. The sfgfill routine reads
numeric fill value data and sfgcfill reads character fill value data.

SDgetfillvalue returns a value of SUCCEED (or 0) if a fill value is retrieved successfully, or FATL (or
-1) otherwise, including when the fill value has not been set. The parameters of SDgetfillvalue
are further described in Table 3Y.

3.10.5.3 Setting the Fill Mode for all SDSs in the Specified File: SDsetfillmode

SDsetfillmode sets the fill mode for all data sets contained in the file identified by the parameter
sd_id. The syntax of SDsetfillmode is as follows:

C: old firode = SDsetfillmode(sd id, fill mode);
FORTRAN: old fiode = sfsflmd(sd id, fill mode)

The argument £i11 mode is the fill mode to be applied and can be set to either SO FIIL (or 0) or
SD NOFILL (or 256). SD FIIL specifies that fill values will be written to all SDSs in the specified
file by default. If SDsetfillmode is never called before SDsetfillvalue, SD FIIL is the default fill
mode. SD NOFILL specifies that, by default, fill values will not be written to all SDSs in the speci-

3-102

December 30, 2003

HDF User’s Guide

fied file. This can be overridden for a specific SDS by calling SDsetfillmode then writing data to
this data set before closing the file.

Note that whenever a file has been newly opened, or has been closed and then re-opened, the
default sp FIIL fill mode will be in effect until it is changed by a call to SDsetfillmode.

SDsetfillmode returns the fill mode value before it is reset or a value of FATL (or -1). The param-
eters of this routine are further described in Table 3Y.

TABLE 3Y

SDsetfillvalue, SDgetfillvalue, and SDsetfillmode Parameter Lists

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
SDsetfillvalue sds_id int32 integer Data set identifier
[intn] i .
(sfsfill/ fill_val VOIDP <valid numeric qaff type>/ Fill value to be set
sfscfill) character*(*)
SDgetfillvalue sds_id int32 integer Data set identifier
[intn] i d ,
(stgfill/ fill_val VOIDP <validnumenc datd Ype> g frer for the fill value
sfecfill) character™(*)
SDsetfillmode sd_id int32 integer SD interface identifier
[intn]
(sfsfimd) fill_mode intn integer Fill mode to be set

3.10.6Calibration Attributes

The calibration attributes are designed to store calibration information associated with data set
data. When data is calibrated, the values in an array can be represented using a smaller data type
than the original. For instance, an array containing data of type float could be stored as an array
containing data of type 8- or 16-bit integer. Note that neither function performs any operation on
the data set.

3.10.6.1 Setting Calibration Information: SDsetcal

SDsetcal stores the scale factor, offset, scale factor error, offset error, and the data type of the
uncalibrated data set for the specified data set. The syntax of this routine is as follows:

C: status = SDsetcal (sds id, cal, cal error, offset, off err,
data type);

FORTRAN: status = sfscal(sds id, cal, cal error, offset, off err, data type)

SDsetcal has six arguments; sds id, cal, cal error, offset, off err, and data type. The
argument cal represents a single value that when multiplied against every value in the calibrated
data array reproduces the original data array (assuming an offset of 0). The argument offset
represents a single value that when subtracted from every value in the calibrated array reproduces
the original data (assuming a cal of 1). The values of the calibrated data array relate to the values
of the original data array according to the following equation:

orig value = cal * (cal value - offset)
In addition to cal and offset, SDsetcal also includes the scale and offset errors. The argument

cal_err contains the potential error of the calibrated data due to scaling; offset err contains
the potential error for the calibrated data due to the offset.

SDsetcal returns a value of SUCCEED (or 0) or FAIL (or -1). Its parameters are further described in
Table 3Z.

December 30, 2003 3-103

National Center for Supercomputing Applications

3.10.6.2 Reading Calibrated Data: SDgetcal

SDgetcal reads calibration attributes for an SDS array as previously written by SDsetcal.

syntax of this routine is as follows:

C:

FORTRAN:

status = SDgetcal(sds id, &cal, &cal error, &offset, &offset err,

status = sfgcal(sds id, cal, cal error, offset, offset err,

&data type);

data type)

The

Because the HDF library does not actually apply calibration information to the data, SDgetcal can
be called anytime before or after the data is read. If a calibration record does not exist, SDgetcal
returns FATL. SDgetcal takes six arguments: sds id, cal, cal error, offset, offset err, and
data type. Refer to Section 3.10.6.1 for the description of these arguments.

SDgetcal returns a value of SUCCEED (or 0) or FATIL (or -1). The parameters of SDgetcal are

described in Table 3Z.
TABLE 3Z SDsetcal and SDgetcal Parameter Lists
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
sds_id int32 integer Data set identifier
cal float64 real*8 Calibration factor
SDsetcal cal_error float64 real*8 Calibration error
[intn]
(sfscal) offset float64 real*8 Uncalibrated offset
offset_err float64 real*8 Uncalibrated offset error
data_type int32 integer Data type of uncalibrated data
sds_id int32 integer Data set identifier
cal float64 * real*8 Calibration factor
SDgetcal cal_error float64 * real*8 Calibration error
[intn]
(sfgeal) offset float64 * real*8 Uncalibrated offset
offset_err float64 * real*8 Uncalibrated offset error
data_type int32 * integer Data type of uncalibrated data
EXAMPLE 16. Calibrating Data.
Suppose the values in the calibrated array cal val are the following integers:
cal val[6] = {2, 4, 5, 11, 26, 81}
By applying the calibration equation orig = cal * (cal val - offset) with cal = 0.50 and
offset = -2000.0, the calibrated array cal vall] returns to its original floating-point form:
original val[6] = {1001.0, 1002.0, 1002.5, 1005.5, 1013.0, 1040.5}
3-104 December 30, 2003

HDF User’s Guide

3.11 Chunked (or Tiled) Scientific Data Sets

NOTE: It is strongly encouraged that HDF users who wish to use the SD chunking routines first
read the section on SD chunking in Chapter 14, HDF Performance Issues. In that section the con-
cepts of chunking are explained, as well as their use in relation to HDF. As the ability to work with
chunked data has been added to HDF functionality for the purpose of addressing specific perfor-
mance-related issues, you should first have the necessary background knowledge to correctly
determine how chunking will positively or adversely affect your application.

This section will refer to both "tiled" and "chunked" SDSs as simply chunked SDSs, as tiled
SDSs are the two-dimensional case of chunked SDSs.

3.11.1Making an SDS a Chunked SDS: SDsetchunk

In HDF, an SDS must first be created as a generic SDS through the SDcreate routine, then
SDsetchunk is called to make that generic SDS a chunked SDS. Note that there are two restric-
tions that apply to chunked SDSs. The maximum number of chunks in a single HDF file is 65,535
and a chunked SDS cannot contain an unlimited dimension. SDsetchunk sets the chunk size and
the compression method for a data set. The syntax of SDsetchunk is as follows:

C: status = SDsetchunk(sds id, c def, flag);
FORTRAN: status = sfschnk(sds id, dim length, cawp type, camp prm)

The chunking information is provided in the parameters c_def and flag in C, and the parameters
comp_type and comp_prmin FORTRAN-77.

InC:

The parameter c_def has type HDF CHUNK DEF which is defined as follows:

typedef union hdf chunk def u {
int32 chunk lengths[MAX VAR DIMS];
struct {
int32 chunk lengths[MAX VAR DIMS];
int32 camp type;
carp_info cinfo;
} camp;
struct {
int32 chunk lengths[MAX VAR DIMS];
intn start bit;
intn bit len;
intn sign ext;
intn fill one;
} nbit;
} HDF_CHUNK DEF

Refer to the reference manual page for SDsetcompress for the definition of the structure
comp_info.

The parameter flag specifies the type of the data set, i.e., if the data set is chunked or chunked
and compressed with either RLE, Skipping Huffman, GZIP, or NBIT compression methods. Valid
values of flag are HDF CHUNK for a chunked data set, (HDF CHUNK | HDF CoMP) for a chunked data
set compressed with RLE, Skipping Huffman, and GZIP compression methods, and (EDF CHUNK |
HDF NBIT) for a chunked NBIT-compressed data set.

December 30, 2003 3-105

National Center for Supercomputing Applications

There are three pieces of chunking and compression information which should be specified:
chunking dimensions, compression type, and, if needed, compression parameters.

If the data set is chunked, i.e., flag value is HDF CHUNK then the elements of the array
chunk lengths in the union c_def (c_def.chunk lengths[]) have to be initialized to the chunk
dimension sizes.

If the data set is chunked and compressed using RLE, Skipping Huffman, or GZIP methods (i.e.,
flag value is set up to (HDF CHUNK | HDF COMP)), then the elements of the array chunk lengths
of the structure comp in the union ¢ _def (c_def.comp.chunk lengths[]) have to be initialized
to the chunk dimension sizes.

If the data set is chunked and NBIT compression is applied (i.e., flag values is set up to
(IDF CHUNK | HDF NBIT)), then the elements of the array chunk lengths of the structure nbit in
the union c def (c_def.nbit.chunk lengths[]) have to be initialized to the chunk dimension
sizes.

The values of HDF CHUNK, HDF COMP, and HDF NBIT are defined in the header file hproto.h

Compression types are passed in the field comp type of the structure cinfo, which is an element
of the structure comp in the union c def (c_def.comp.cinfo.comp type). Valid compression
types are: CoMP CODE RLE for RLE, c©ovp copE SKPHUFF for Skipping Huffman,
COMP_CODE DEFIATE for GZIP compression.

For Skipping Huffman and GZIP compression, parameters are passed in corresponding fields of
the structure cinfo. Specify skipping size for Skipping Huffman compression in the field
c_def.comp.cinfo.skphuff.skp size; this value cannot be less than 1. Specify deflate level
for GZIP compression in the field ¢ def.comp.cinfo.deflate level. Valid values of deflate
levels are integers from 0 to 9 inclusive.

NBIT compression parameters are specified in the fields start bit, bit len, sign ext, and
£ill one in the structure nbit of the union c_def.

In FORTRAN-77:
The dim length array specifies the chunk dimensions.
The comp_type parameter specifies the compression type. Valid compression types and their val-
ues are defined in the hdf.inc file, and are listed below.
COMP_CODE NONE (or 0) for uncompressed data
COMP_CODE RLE (or 1) for data compressed using the RLE compression algorithm
COMP_CODE NBIT (or 2) for data compressed using the NBIT compression algorithm

COMP_CODE _SKPHUFF (or 3) for data compressed using the Skipping Huffman compres-
sion algorithm

COMP_CODE DEFTATE (or 4) for data compressed using the GZIP compression algo-
rithm

The parameter comp prm(1) specifies the skipping size for the Skipping Huffman compression
method and the deflate level for the GZIP compression method.

For NBIT compression, the four elements of the array comp prm correspond to the four NBIT
compression parameters listed in the structure nbit. The array comp prm should be initialized as
follows:

comp prm(l) = value of start bit
comp_prm(2) = value of bit len

comp prm(3) = value of sign ext
comp_prm(4) = value of fill one

3-106

December 30, 2003

HDF User’s Guide

Refer to the description of the union HDF CHUNK DEF and of the routine SDsetnbitdataset for
NBIT compression parameter definitions.

SDsetchunk returns either a value of SUCCEED (or 0) or FAIL (or -1). Refer to Table 3AA and Table
3AB for the descriptions of the parameters of both versions.

TABLE 3AA SDsetchunk Parameter List
Routine Name . Parameter Type .
Par 1 Description
[Return Type] C
sds_id int32 Data set identifier
SDsetchunk R . .
[intn] c_def HDF_CHUNK_DEF Union containing information on how the chunks are to be defined
flag int32 Flag determining the behavior of the routine
TABLE 3AB sfschnk Parameter List
Routine Name . Parameter Type A
Par t Description
FORTRAN-77
sds_id integer Data set identifier
sfschnk dim_length integer(*) Sizes of the chunk dimensions
comp_type integer Compression type
comp_prm integer(*) Array containing information needed by the compression algorithm

3.11.2Setting the Maximum Number of Chunks in the Cache:
SDsetchunkcache

To maximize the performance of the HDF library routines when working with chunked SDSs, the
library maintains a separate area of memory specifically for cached data chunks. SDsetchunk-
cache sets the maximum number of chunks of the specified SDS that are cached into this segment
of memory. The syntax of SDsetchunkcache is as follows:

C: status = SDsetchunkcache(sds id, mexcache, flag);
FORTRAN: status = sfscchnk(sds id, maxcache, flag)

When the chunk cache has been filled, any additional chunks written to cache memory are cached
according to the Least-Recently-Used (LRU) algorithm. This means that the chunk that has
resided in the cache the longest without being reread or rewritten will be written over with the
new chunk.

By default, when a generic SDS is made a chunked SDS, the parameter maxcache is set to the
number of chunks along the fastest changing dimension. If needed, SDsetchunkcache can then be
called again to reset the size of the chunk cache.

Essentially, the value of maxcache cannot be set to a value less than the number of chunks cur-
rently cached. If the chunk cache is not full, then the size of the chunk cache is reset to the new
value of maxcache only if it is greater than the current number of chunks cached. If the chunk
cache has been completely filled with cached data, SDsetchunkcache has already been called,
and the value of the parameter maxcache in the current call to SDsetchunkcache is larger than the
value of maxcache in the last call to SDsetchunkcache, then the value of maxcache is reset to the
new value.

December 30, 2003 3-107

National Center for Supercomputing Applications

Currently the only allowed value of the parameter flag is 0, which designates default operation.
In the near future, the value HDF CACHEALL will be provided to specify that the entire SDS array is
to be cached.

SDsetchunkcache returns the maximum number of chunks that can be cached (the value of the
parameter maxcache) if successful and FATL (or -1) otherwise. The parameters of SDsetchunk-
cache are further described in Table 3AC.

TABLE 3AC

SDsetchunkcache Parameter List

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77

SDsetchunkcache sds_id int32 integer Data set identifier

[intn] maxcache int32 integer Maximum number of chunks to cache
(sfscchnk)

flag int32 integer Flag determining the default caching behavior

3.11.3Writing Data to Chunked SDSs: SDwritechunk and SDwritedata

Both SDwritedata and SDwritechunk can be used to write to a chunked SDS. Later in this chap-
ter, situations where SDwritechunk may be a more appropriate routine than SDwritedata will be
discussed, but, for the most part, both routines achieve the same results. SDwritedata is discussed
in Section 3.5.1 on page 30. The syntax of SDwritechunk is as follows:

C: status = SDwritechunk(sds id, origin, datap);
FORTRAN: status = sfwchnk(sds id, origin, datap)
OR status = sfwechnk(sds id, origin, datap)

The location of data in a chunked SDS can be specified in two ways. The first is the standard
method used in the routine SDwritedata that access both chunked and non-chunked SDSs; this
method refers to the starting location as an offset in elements from the origin of the SDS array
itself. The second method is used by the routine SDwritechunk that only access chunked SDSs;
this method refers to the origin of the chunk as an offset in chunks from the origin of the chunk
array itself. The parameter origin specifies this offset; it also may be considered as chunk’s coor-
dinates in the chunk array. Figure 3d on page 109 illustrates this method of chunk indexing in a 4-
by-4 element SDS array with 2-by-2 element chunks.

3-108

December 30, 2003

HDF User’s Guide

FIGURE 3d

Chunk Indexing as an Offset in Chunks

3 . .
I I

| |
2 =0y — |- —ap - —]

This chunk is in location (0, 0) \

| |
. | |
| |
| |

0 =00 — —[——an - —1

Y Dimension | |

v

X Dimension

SDwritechunk is used when an entire chunk is to be written and requires the chunk offset to be
known. SDwritedata is used when the write operation is to be done regardless of the chunking
scheme used in the SDS. Also, as SDwritechunk is written specifically for chunked SDSs and
does not have the overhead of the additional functionality supported by the SDwritedata routine,
it is much faster than SDwritedata. Note that attempting to use SDwritechunk for writing to a
non-chunked data set will return a FAIL (or -1).

The parameter datap must point to an array containing the entire chunk of data. In other words,
the size of the array must be the same as the chunk size of the SDS to be written to, or an error
condition will result.

There are two FORTRAN-77 versions of this routine: sfwchnk writes numeric data and sfwechnk
writes character data.

SDwritechunk returns either a value of SUCCEED (or 0) or FAIL (or -1). The parameters of
SDwritechunk are in Table 3AD. The parameters of SDwritedata are listed in Table 3D on page
32.

TABLE 3AD

SDwritechunk Parameter List

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
sds_id int32 integer Data set identifier
SDwr.lteChunk .. . § . Coordinates of the origin of the chunk to
[intn] origin int32 * integer b it
(sfwchnk/ e written
sfwechnk) datap VOIDP <va114 numeric data Buffer containing the data to be written
type>(*)/character®(*)

December 30, 2003 3-109

National Center for Supercomputing Applications

3.11.4Reading Data from Chunked SDSs: SDreadchunk and SDreaddata

As both SDwritedata and SDwritechunk can be used to write data to a chunked SDS, both
SDreaddata and SDreadchunk can be used to read data from a chunked SDS. SDreaddata is
discussed in Section 3.5.1 on page 30. The syntax of SDreadchunk is as follows:

C: status = SDreadchunk(sds id, origin, datap);
FORTRAN: status = sfrchnk(sds id, origin, datap)
OR status = sfrechnk(sds id, origin, datap)

SDreadchunk is used when an entire chunk of data is to be read. SDreaddata is used when the
read operation is to be done regardless of the chunking scheme used in the SDS. Also, SDread-
chunk is written specifically for chunked SDSs and does not have the overhead of the additional
functionality supported by the SDreaddata routine. Therefore, it is much faster than SDreaddata.
Note that SDreadchunk will return FATL (or -1) when an attempt is made to read from a non-
chunked data set.

As with SDwritechunk, the parameter origin specifies the coordinates of the chunk to be read,
and the parameter datap must point to an array containing enough space for an entire chunk of
data. In other words, the size of the array must be the same as or greater than the chunk size of the
SDS to be read, or an error condition will result.

There are two FORTRAN-77 versions of this routine: sfrchnk reads numeric data and sfrechnk
reads character data.

SDreadchunk returns either a value of SUCCEED (or 0) or FAIL (or -1). The parameters of SDread-
chunk are further described in Table 3AE. The parameters of SDreaddata are listed in Table 3K
on page 56.

TABLE 3AE SDreadchunk Parameter List
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
sds_id int32 integer Data set identifier
SDre?\dchunk origin (32 * integer(*) Coordinates of the origin of the chunk to
[intn] be read
(:frcll:nt; <valid numeric data
strechn datap VOIDP type>(*)/ Buffer for the returned chunk data
character*(*)
3.11.50btaining Information about a Chunked SDS: SDgetchunkinfo
SDgetchunkinfo is used to determine whether an SDS is chunked and how the chunk is defined.
The syntax of this routine is as follows:
C: status = SDgetchunkinfo(sds_id, c def, flag);
FORTRAN: status = sfgichnk(sds id, dim length, flag)
Currently, only information about chunk dimensions is retrieved into the corresponding structure
element c_def for each type of compression in C, and into the array dim length in Fortran. No
information on compression parameters is available in the structure comp of the union
HDF CHUNK DEF. For specific information on c_def, refer to Section 3.11.1 on page 105.
3-110 December 30, 2003

HDF User’s Guide

The value returned in the parameter f£lag indicates the data set type (i.e., whether the data set is
not chunked, chunked, or chunked and compressed).

If the data set is not chunked, the value of f£lag will be HDF NONE (or -1). If the data set is chunked,
the value of flag will be HDF CHUNK (or 0). If the data set is chunked and compressed with either
RLE, Skipping Huffman, or GZIP compression algorithm, then the value of flag will be
HDF CHUNK | HDF COMP (or 1). If the data set is chunked and compressed with NBIT compression,
then the value of flag will be HDF CHUNK | HDF NBIT (or 2).

If the chunk length for each dimension is not needed, NULL can be passed in as the value of the
parameter c¢_def in C.

SDgetchunkinfo returns either a value of SUCCEED (or 0) or FAIL (or -1). Refer to Table 3AF and
Table 3AG for the description of the parameters of both versions.

TABLE 3AF SDgetchunkinfo Parameter List
Routine Name . Parameter Type -
Par 1 Description
[Return Type] C
sds_id int32 Data set identifier
SDgetc}hunkmfo c_def HDF_CHUNK_DEF * Union structure containing information about the chunks in the
[intn] SDS
flag int32 * Flag determining the behavior of the routine
TABLE 3AG sfgichnk Parameter List
Routine Name Parameter Type A
Parameter Description
FORTRAN-77
sds_id integer Data set identifier
stgichnk dim_length integer(*) Sizes of the chunk dimensions
comp_type integer Compression type
EXAMPLE 17. Writing and Reading a Chunked SDS.

This example demonstrates the use of the routines SDsetchunk/sfschnk, SDwritedata/sfwdata,
SDwritechunk/sfwchnk, SDgetchunkinfo/sfgichnk, SDreaddata/sfrdata, and SDreadchunk/
sfrchnk to create a chunked data set, write data to it, get information about the data set, and read
the data back. Note that the Fortran example uses transpose data to reflect the difference between
C and Fortran internal storage.

C:
#include "mfhdf.h"

#define FILE_NAME "SDSchunked.hdf"
#define SDS_NAME "ChunkedData"
#define RANK 2

main()

{

[xkkkkkkkkkkkkkkkkkkkkxk*x* Variable declaration **xkxkkkkkkkkkkkkkkhkkkkkx/

int32 sd_id, sds_id, sds_index;
intn status;

int32 flag, maxcache, new maxcache;
int32 dim sizes[2], origin[2];

December 30, 2003 3-111

National Center for Supercomputing Applications

HDF_CHUNK_DEF c_def, c_def out; /* Chunking definitions */

int32 comp_flag, c_flags;
intlée all data[9]1[4];
int32 start[2], edges[2];
intle chunk out[3][2];
intlée row[2] = { 5, 5 };
intlé column[3] = { 4, 4, 4 };
intlé fill value = 0; /* Fill value */
int i,3;
/*
* Declare chunks data type and initialize some of them.
*/
intl6 chunkl[3][2] = 1, 1,
1, 1,
1, 11};
intl6 chunk2[3][2] = { 2, 2,
2, 2,
2, 2 };
intlé chunk3[3][2] = { 3, 3,
3, 3,
3, 3 };
intl6 chunk6[3][2] = { 6, 6,
6, 6,
6, 6 };

[HxFxkkkkkkkkkkkxkkkxxx*x End of variable declaration **xxxxxkkkkkkkkkkkkkkk*/
/*

* Define chunk’s dimensions.

*

* In this example we do not use compression.
* To use chunking with RLE, Skipping Huffman, and GZIP
* compression, initialize

*

* c_def.comp.chunk lengths[0] = 3;
* c_def.comp.chunk lengths[1l] = 2;
*

* To use chunking with NBIT, initialize

*

* c_def.nbit.chunk lengths[0] = 3;
* c_def.nbit.chunk lengths[1l] = 2;
*

*/

c_def.chunk lengths[0] = 3;

c_def.chunk lengths[1l] = 2;

/*

* Create the file and initialize SD interface.

*/

sd_id = SDstart (FILE_NAME, DFACC_CREATE);

/*

* Create 9x4 SDS.

*/

dim sizes[0] = 9;

dim sizes[1l] = 4;

sds_id = SDcreate (sd_id, SDS_NAME,DFNT INT16, RANK, dim sizes);

/*
* Fill the SDS array with the fill value.
*/

3-112 December 30, 2003

HDF User’s Guide

status = SDsetfillvalue (sds_id, (VOIDP)&fill value);

*

Create chunked SDS.
In this example we do not use compression (third
parameter of SDsetchunk is set to HDF_CHUNK).

To use RLE compresssion, set compression type and flag
c_def.comp.comp type = COMP_CODE_RLE;
comp flag = HDF_CHUNK | HDF COMP;

and skipping size skp_size
c_def.comp.comp type = COMP_CODE_SKPHUFF;
c_def.comp.cinfo.skphuff.skp size = value;

comp_flag = HDF_CHUNK | HDF _COMP;

To use GZIP compression, set compression type, flag and
deflate level

c_def.comp.comp type = COMP_CODE DEFLATE;
c_def.comp.cinfo.deflate.level = value;
comp_ flag = HDF_CHUNK | HDF COMP;

To use NBIT compression, set compression flag and
compression parameters

comp_flag = HDF_CHUNK | HDF NBIT;
c_def.nbit.start bit = valuel;

c _def.nbit.bit len = value2;
c_def.nbit.sign ext = value3;
c _def.nbit.fill one = value4;

* o0k ok Ok F kX F kX X F X

~

comp flag = HDF_CHUNK;
status = SDsetchunk (sds_id, c_def, comp flag);

/*

* Set chunk cache to hold maximum of 3 chunks.
*/

maxcache = 3;

flag = 0;

new_maxcache = SDsetchunkcache (sds_id, maxcache, flag);

/*
* Write chunks using SDwritechunk function.
* Chunks can be written in any order.

*/

/*

* Write the chunk with the coordinates (0,0).
*/

origin[0] = 0;

origin[l] = 0;

status = SDwritechunk (sds_id, origin, (VOIDP) chunkl);

/*

* Write the chunk with the coordinates (1,0).
*/

origin[0] = 1;

origin[l] = 0;

status = SDwritechunk (sds_id, origin, (VOIDP) chunk3);

To use Skipping Huffman compression, set compression type, flag

December 30, 2003

3-113

National Center for Supercomputing Applications

/*

* Write the chunk with the coordinates (0,1).
*/

origin[0] = 0;

origin[l] = 1;

status = SDwritechunk (sds_id, origin, (VOIDP) chunk2);

/*
* Write chunk with the coordinates (1,2) using
* SDwritedata function.

*/

start[0] = 6;
start[1l] = 2;
edges[0] = 3;
edges[1l] = 2;

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP) chunké6);

/*
* Fill second column in the chunk with the coordinates (1,1)
* using SDwritedata function.

*/
start[0] = 3;
start[1l] = 3;

edges[0] = 3;
edges([1l] = 1;
status = SDwritedata (sds_id, start, NULL, edges, (VOIDP) column);

/*
* Fill second row in the chunk with the coordinates (0,2)
* using SDwritedata function.

*/

start[0] = 7;
start[1l] = 0;
edges([0] = 1;
edges([1l] = 2;

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP) row);

/*

* Terminate access to the data set.

*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

/*

* Reopen the file and access the first data set.
*/

sd_id = SDstart (FILE_NAME, DFACC_READ);
sds_index = 0;
sds_id = SDselect (sd_id, sds_index);

/*

* Get information about the SDS. Only chunk lengths and compression
* flag can be returned. Compression information is not available if
* NBIT, Skipping Huffman, or GZIP compression is used.

*/
status = SDgetchunkinfo (sds_id, &c_def out, &c_flags);
if (c_flags == HDF_CHUNK)

printf(" SDS is chunked\nChunk’s dimensions %dx%d\n",

3-114 December 30, 2003

HDF User’s Guide

c_def out.
c_def out.

else if (c_flags ==
printf("SDS is
c_def

chunk_lengths[0],

chunk_lengths[1]);

(HDF_CHUNK | HDF_COMP))

chunked and compressed\nChunk’s dimensions %dx%d\n",
out.comp.chunk_lengths[0],

c_def:out.comp.chunk_lengths[1]);

else if (c_flags ==

(HDF_CHUNK | HDF_NBIT))

printf ("SDS is chunked (NBIT)\nChunk'’s dimensions %dx%d\n",
c_def out.nbit.chunk lengths[O0],
c_def out.nbit.chunk lengths[1]);

* Read the entire data set using SDreaddata function.

/*
*/
start[0] = 0;
start[1l] = 0;
edges[0] = 9;
edges([1l] = 4;

status = SDreaddata

/*
* Print out what we

(sds_id, start, NULL, edges, (VOIDP)all data);

have read.

* The following information should be displayed:

*

* SDS is chunked

* Chunk’s dimensions 3x2

i++) printf (" %d", all data[j][i]);

* Read chunk with the coordinates (2,0) and display it.

* 112
* 1122
* 1122
* 3304
* 3304
* 3304
* 0066
* 5566
* 0066
*/
for (j=0; j<9; j++)
{
for (i=0; i<4;
printf ("\n");
}
/*
*/
origin[0] = 2;
origin[l] = 0;

status = SDreadchunk (sds_id, origin, chunk out);
printf (" Chunk (2,0) \n");

for (j=0; j<3; j++)

i++) printf (" %d", chunk out[j][i]);

* Read chunk with the coordinates (1,1) and display it.

{
for (i=0; i<2;
printf ("\n");
}
/*
*/
origin[0] = 1;
origin[l] = 1;

status = SDreadchunk (sds_id, origin, chunk out);
printf (" Chunk (1,1) \n");

for (j=0; 3j<3; j++)

December 30, 2003

3-115

National Center for Supercomputing Applications

{
for (i=0; i<2; i++) printf (" %d", chunk out[j][i]);
printf ("\n");
}
/* The following information is displayed:
*
* Chunk (2,0)
* 00
* 55
* 00
* Chunk (1,1)
* 0 4
* 0 4
* 0 4
*/
/*
* Terminate access to the data set.
*/
status = SDendaccess (sds_id);
/*
* Terminate access to the SD interface and close the file.
*/
status = SDend (sd_id);
}
FORTRAN:
program chunk_examples
implicit none
C
C Parameter declaration.
C
character*14 FILE_ NAME
character*11 SDS_NAME
integer RANK
parameter (FILE_NAME = ’'SDSchunked.hdf’,
+ SDS_NAME = ’ChunkedData’,
+ RANK = 2)
integer DFACC_CREATE, DFACC_READ, DFNT_ INT16
parameter (DFACC_CREATE = 4,
+ DFACC READ =1,
+ DFNT_ INT16 = 22)
integer COMP_CODE_NONE
parameter (COMP_CODE_NONE = 0)
C
C This example does not use compression.
C
C To use RLE compression, declare:
C
(¢ integer COMP_CODE_RLE
c parameter (COMP_CODE RLE = 1)
C
C To use NBIT compression, declare:
C
[integer COMP_CODE_NBIT
C parameter (COMP_CODE_NBIT = 2)
C
C To use Skipping Huffman compression, declare:
C
C integer COMP_CODE_ SKPHUFF

3-116 December 30, 2003

HDF User’s Guide

C parameter (COMP_CODE_SKPHUFF = 3)
C
C To use GZIP compression, declare:
C
(¢ integer COMP_CODE_DEFLATE
c parameter (COMP_CODE DEFLATE = 4)
C
C
C Function declaration.
C
integer sfstart, sfcreate, sfendacc, sfend,
+ sfselect, sfsfill, sfschnk, sfwchnk,
+ sfrchnk, sfgichnk, sfwdata, sfrdata,
+ sfscchnk
C
C**** Varlable declaratlon EEE RS S EE S S SRS LSRR R EEEEEEEEEEEEEEEEEE]
C
integer sd_id, sds_id, sds_index, status
integer dim sizes(2), origin(2)
integer fill value, maxcache, new maxcache, flag
integer start(2), edges(2), stride(2)
integer*2 all data(4,9)
integer*2 row(3), column(2)
integer*2 chunk out(2,3)
integer*2 chunkl(2,3),
+ chunk2(2,3),
+ chunk3(2,3),
+ chunké6(2,3)
integer i, 3
C
C Compression flag and parameters.
C
integer comp type, comp flag, comp prm(4)
C
C Chunk’s dimensions.
C
integer dim length(2), dim length_out(2)
C
C Initialize four chunks
C
data chunkl /6%*1/
data chunk2 /6%2/
data chunk3 /6%*3/
data chunké6 /6*6/
C
C Initialize row and column arrays.
C
data row /3*4/
data column /2%5/
C
C**x*x% End of Variable declaration R R R R SRR R SRR EEEEEEEEEEEEEEEEEE R
C
C
C Define chunk’s dimensions.
C
dim length(l) = 2
dim length(2) = 3
C
C Create the file and initialize SD interface.
C
Sd_id = sfstart(FILE NAME, DFACC_CREATE)
C

December 30, 2003 3-117

National Center for Supercomputing Applications

C Create 4x9 SDS
C
dim sizes(1l) = 4
dim sizes(2) = 9
sds_id = sfcreate(sd_id, SDS_NAME, DFNT_ INT16,
+ RANK, dim sizes)
C
C Fill SDS array with the £fill value.

(@]

fill value = 0
status = sfsfill(sds_id, fill value)

Create chunked SDS.
In this example we do not use compression.

To use RLE compression, initialize comp_ type parameter
before the call to sfschnk function.
comp_type = COMP_CODE_RLE

To use NBIT, Skipping Huffman, or GZIP compression,
initialize comp prm array and comp type parameter
before call to sfschnk function

NBIT:
comp_prm(l) = value of(sign_ext)
comp prm(2) = value of(fill one)
comp_prm(3) = value of(start bit)
comp_prm(4) = value of(bit_len)
comp type = COMP_CODE NBIT

Skipping Huffman:
comp prm(1l) = value of(skp size)
comp_type = COMP_CODE_SKPHUFF

GZIP:
comp prm(l) = value of(deflate level)
comp type = COMP_CODE DEFLATE

cNeNecNe NN NN NN NN o NN NN NN oo NN NN NN e N

comp_type = COMP_CODE_ NONE
status = sfschnk(sds_id, dim length, comp type, comp prm)

C
C Set chunk cache to hold maximum 2 chunks.
C

flag = 0

maxcache = 2

new_maxcache = sfscchnk(sds_id, maxcache, flag)
C
C Write chunks using SDwritechunk function.
C Chunks can be written in any order.
C
C Write chunk with the coordinates (1,1).
C

origin(l) =1

origin(2) =1

status = sfwchnk(sds_id, origin, chunkl)
C
C Write chunk with the coordinates (1,2).
C

origin(l) =1
origin(2) = 2
status = sfwchnk(sds_id, origin, chunk3)

3-118 December 30, 2003

HDF User’s Guide

C
C Write chunk with the coordinates (2,1).
C
origin(l) = 2
origin(2) =1
status = sfwchnk(sds_id, origin, chunk2)
C
C Write chunk with the coordinates (2,3).
C
origin(l) = 2
origin(2) = 3
status = sfwchnk(sds_id, origin, chunké6)
C
C Fill second row in the chunk with the coordinates (2,2).
C
start(l) = 3
start(2) = 3
edges(l) =1
edges(2) = 3
stride(l) =1
stride(2) =1
status = sfwdata(sds_id, start, stride, edges, row)
C
C Fill second column in the chunk with the coordinates (1,3).
C
start(l) = 0
start(2) = 7
edges(l) = 2
edges(2) =1
stride(l) =1
stride(2) =1
status = sfwdata(sds_id, start, stride, edges, column)
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
C
C Terminate access to the SD interface and close the file.
C
status = sfend(sd_id)
C
C Reopen the file and access the first data set.
C
sd_id = sfstart(FILE NAME, DFACC READ)
sds_index = 0
sds_id = sfselect(sd_id, sds_index)
C
C Get information about the SDS.
C
status = sfgichnk(sds_id, dim length out, comp flag)
if (comp flag .eq. 0) then
write(*,*) 'SDS is chunked’
endif
if (comp flag .eq. 1) then
write(*,*) ’SDS is chunked and compressed’
endif
if (comp flag .eq. 2) then
write(*,*) 'SDS is chunked and NBIT compressed’
endif
write(*,*) ’‘Chunks dimensions are ', dim length out(1l),
+ ' x' ,dim length out(2)
C
C Read the whole SDS using sfrdata function and display

December 30, 2003 3-119

National Center for Supercomputing Applications

what we have read. The following information will be displayed:

SDS is chunked
Chunks dimensions are 2 x 3

NN R e
S O W Ww
S o WwWw
S O W w
o O ©O ©O
oo u !
o O ©O ©

cloNoNeo oo NN oS!
NN R
NN R

start(1l)
start(2)
edges (1)
edges(2)
stride(l) =1

stride(2) =1

status = sfrdata(sds_id, start, stride, edges, all data)

1]
o s O o

Q

Display the SDS.

write(*,*)
do 10 i = 1,4

write(*,*) (all_data(i,j), j=1,9)
continue

Jay
o

Read chunks with the coordinates (2,2) and (1,3) and display.
The following information will be shown:

Chunk (2,2)

oo

1]
N

origin(1l)
origin(2) = 2
status = sfrchnk(sds_id, origin, chunk out)
write(*,*)
write(*,*) ’‘Chunk (2,2)’
write(*,*)
do 20 i =1,2
write(*,*) (chunk out(i,j), j=1,3)
20 continue

origin(1) 1
origin(2) = 3
status = sfrchnk(sds_id, origin, chunk out)
write(*,*)
write(*,*) ’‘Chunk (1,3)’
write(*,*)
do 30 i = 1,2
write(*,*) (chunk out(i,j), j=1,3)
30 continue

aQ

Terminate access to the data set.

status = sfendacc(sds_id)

3-120 December 30, 2003

HDF User’s Guide

C Terminate access to the SD interface and close the file.

status = sfend(sd_id)
end

3.12 Ghost Areas

In cases where the size of the SDS array is not an even multiple of the chunk size, regions of
excess array space beyond the defined dimensions of the SDS will be created. Refer to the follow-
ing illustration.

FIGURE 3e

3.13

Array Locations Created Beyond the Defined Dimensions of an SDS

1600 ints —=

In a 1600 by 2000 integer chunked
SDS array with 500 by 500 integer
chunks, a 400 by 2000 integer area
of array locations beyond the
defined dimensions of the SDS

is created (shaded area). These
areas are called "ghost areas".

2000
ints

These "ghost areas" can be accessed only by SDreadchunk and SDwritechunk; they cannot be
accessed by either SDreaddata or SDwritedata. Therefore, storing data in these areas is not rec-
ommended. Future versions of the HDF library may not include the ability to write to these areas.

If the fill value has been set, the values in these array locations will be initialized to the fill value.
It is highly recommended that users set the fill value before writing to chunked SDSs so that gar-
bage values won’t be read from these locations.

netCDF

HDF supports the netCDF data model and interface developed at the Unidata Program Center
(UPC). Like HDF, netCDF is an interface to a library of data access programs that store and
retrieve data. The file format developed at the UPC to support netCDF uses XDR (eXternal Data
Representation), a non-proprietary external data representation developed by Sun Microsystems
for describing and encoding data. Full documentation on netCDF and the Unidata netCDF inter-
face is available at http://www.unidata.ucar.edu/packages/netcdf/.

The netCDF data model is interchangeable with the SDS data model in so far as it is possible to
use the netCDF calling interface to place an SDS into an HDF file and conversely the SDS inter-
face will read from an XDR-based netCDF file. Because the netCDF interface has not changed
and netCDF files stored in XDR format are readable, existing netCDF programs and data are still
usable, although programs will need to be relinked to the new library. However, there are impor-

December 30, 2003 3-121

National Center for Supercomputing Applications

tant conceptual differences between the HDF and the netCDF data model that must be understood
to effectively use HDF in working with netCDF data objects and to understand enhancements to
the interface that will be included in the future to make the two APIs much more similar.

In the HDF model, when a multidimensional SDS is created by SDcreate, HDF data objects are
also created that provide information about the individual dimensions — one for each dimension.
Each SDS contains within its internal structure the array data as well as pointers to these dimen-
sions. Each dimension is stored in a structure that is in the HDF file but separate from the SDS
array.

If more than one SDS have the same dimension sizes, they may share dimensions by pointing to
the same dimensions. This can be done in application programs by calling SDsetdimname to
assign the same dimension name to all dimensions that are shared by several SDSs. For example,
suppose you make the following sequence of calls for every SDS in a file:

dim id = SDgetdimid(sds _id, 0);
ret = SDsetdimname(dim id, "Lat");
dim id = SDgetdimid(sds _id, 1);
ret = SDsetdimame(dim id, "Long");

This will create a shared dimension named "Lat" that is associated with every SDS as the first
dimension and a dimension named "Long" as the second dimension.

This same result is obtained differently in netCDF. Note that a netCDF "variable" is roughly the
same as an HDF SDS. The netCDF interface requires application programs to define all dimen-
sions, using ncdimdef, before defining variables. Those defined dimensions are then used to
define variables in ncvardef. Each dimension is defined by a name and a size. All variables using
the same dimension will have the same dimension name and dimension size.

Although the HDF SDS interface will read from and write to existing XDR-based netCDF files,
HDF cannot be used to create XDR-based netCDF files.

There is currently no support for mixing HDF data objects that are not SDSs and netCDF data
objects. For example, a raster image can exist in the same HDF file as a netCDF data object, but
you must use one of the HDF raster image APIs to read the image and the HDF SD or netCDF
interface to read the netCDF data object. The other HDF APIs are currently being modified to
allow multifile access. Closer integration with the netCDF interface will probably be delayed until
the end of that project.

3.13.1HDF Interface vs. netCDF Interface

Existing netCDF applications can be used to read HDF files and existing HDF applications can be
used to read XDR-based netCDF files. To read an HDF file using a netCDF application, the appli-
cation must be recompiled using the HDF library. For example, recompiling the netCDF utility
ncdump with HDF creates a utility that can dump scientific data sets from both HDF and XDR-
based files. To read an XDR-based file using an HDF application, the application must be relinked
to the HDF library.

The current version of HDF contains several APIs that support essentially the same data model:
« The multifile SD interface.
The netCDF or NC interface.
« The single-file DFSD interface.
The multifile GR interface.

The first three models can create, read, and write SDSs in HDF files. Both the SD and NC inter-
faces can read from and write to XDR-based netCDF files, but they cannot create them. This

3-122

December 30, 2003

National Center for Supercomputing Applications

interoperability means that a single program may contain both SD and NC function calls and thus
transparently read and write scientific data sets to HDF or XDR-based files.

The SD interface is the only HDF interface capable of accessing the XDR-based netCDF file for-
mat. The DFSD interface cannot access XDR-based files and can only access SDS arrays, dimen-
sion scales, and predefined attributes. A summary of file interoperability among the three
interfaces is provided in Table 3AH.

TABLE 3AH Summary of HDF and XDR File Compatibility for the HDF and netCDF APIs
Files Created by Files Created by Files Written by
DFSD interface SD interface NC Interface
HDF I Nobrary | Tibrary
Accessed by DFSD Yes Yes Yes No
Accessed by SD Yes Yes Yes Yes
Accessed by NC Yes Yes Yes Yes
A summary of NC function calls and their SD equivalents is presented in Table 3Al.
TABLE 3AI NC Interface Routine Calls and their SD Equivalents
Routine Name SD L.
Purpose = RN Equivalent Description
nccreate NCCRE SDstart Creates a file
ncopen NCOPN SDstart Opens a file
ncredef NCREDF Not Applicable Sets open file into define mode
ncendef NCENDF Not Applicable Leaves define mode
Operations ncclose NCCLOS SDend Closes an open file
ncinquire NCINQ SDfileinfo Inquires about an open file
ncsync NCSNC Not Applicable Synchronizes a file to disk
ncabort NCABOR Not Applicable Backs out of recent definitions
ncsetfill NCSFIL Not Implemented Sets fill mode for writes
ncdimdef NCDDEF SDsetdimname Creates a dimension
nedimid NCDID Spgetdimid Returns a dimension identifier from its
Di i name
ncdiming NCDINQ sDdiminfo Inquires about a dimension
ncdimrename NCDREN Not Implemented Renames a dimension
ncvardef NCVDEF SDcreate Creates a variable
ncvarid NCVID zg::x;}:z:index and Returns a variable identifier from its name
ncvaring NCVINQ SDgetinfo Returns information about a variable
ncvarputl NCVPT1 Not Implemented Writes a single data value
Variables ncvargetl NCVGT1 Not Implemented Reads a single data value
ncvarput NCVPT SDwritedata Writes a hyperslab of values
ncvarget NCVGT/NCVGTC SDreaddata Reads a hyperslab of values
ncvarrename NCVREN Not Implemented Renames a variable
nctypelen NCTLEN DFKNTsize Returns the number of bytes for a data type
3-123 December 30, 2003

National Center for Supercomputing Applications

ncattput NCAPT/NCAPTC SDsetattr Creates an attribute

ncatting NCAINQ SDattrinfo Returns information about an attribute

ncattcopy NCACPY Not Implemented Copies attribute from one file to another
Attributes ncattget NCAGT/NCAGTC SDreadattr Returns attributes values

ncattname NCANAM SDattrinfo Returns name of attribute from its number

ncattrename NCAREN Not Implemented Renames an attribute

ncattdel NCADEL Not Implemented Deletes an attribute

3-124 December 30, 2003

Chapter

4

Vdatas (VS API)

4.1

4.2

Chapter Overview

This chapter describes the vdata data model, the Vdata interface (also called the VS interface or
the VS API), and the vdata programming model.

The Vdata Model

The HDF Vdata model provides a framework for storing customized tables, or vdatas, in HDF
files. The term “vdata” is an abbreviation of “vertex data”, alluding to the fact that the object was
first implemented in HDF to store the vertex and edge information of polygon sets. The vdata
design has since been generalized to apply to a broader variety of applications.

A vdata is like a table that consists of a collection of records whose values are stored in fixed-
length fields. All records have the same structure and all values in each field have the same data
type. Vdatas are uniquely identified by a rname, a class, and a series of individual field names.
(See Figure 4a.)

FIGURE 4a

Vdata Table Structure

General vdata =T VdataName
Class_1 = Class
, - Field Name
Field_l, Field_Z’ Field_3]
— 6.9 53 6.93
L 2.3 1.5 23.50
Records —
L 0.5 3.5 1.22
L 1.8 2.6 0.00

Fields * * *

A vdata name is a label typically assigned to describe the contents of a vdata. It often serves as a
search key to locate a vdata in a file. A vdata class further distinguishes a particular vdata by iden-
tifying the purpose or the use of its data. Finally, vdata field names are labels assigned to the
fields in the vdata.

December 30, 2003 4-125

National Center for Supercomputing Applications

4.2.1 Records and Fields

Each record in a vdata is composed of one or more fixed-length fields. Vdata records and fields
are identified by an index. The record and field indexes are zero-based and are separately incre-
mented by one for each additional record and field in the vdata.

Every field in a vdata is assigned a data type when the vdata is created. The data type of a field
may be any basic HDF data type: character, 8-bit, 16-bit, and 32-bit signed and unsigned integers,
and 32-bit and 64-bit floating point numbers. The maximum length of a vdata record is 65,535
bytes.

The Vdata model allows multiple entries per field as long as they have the same data type. The
number of entries or components in a field is called the order of the field.

The organizational structure of a vdata is often determined by the data types of its data set or sets.
For example, given a data set describing the location (“X,Y”’) and temperature (“Temp”) of points
in a plane, there are several ways to organize the data. (See Figure 4b.) If the “X”, “Y” and
“Temp” values are of the same data type, they could be stored as three single-component fields, as
a two-component “X,Y” field and a single-component “Temp” field, or as a three-component
“X,Y,Temp” field. Generally the “X,Y” data is stored in a single field, but HDF places no restric-
tions on the organization of field data and there are no significant HDF performance issues
involved in choosing one organizational regime over another.

FIGURE 4b Three Different Vdata Structures for Data of the Same Number Type
Simulation Data 1 Simulation Data 1 Simulation Data 1
2D_Temperature_Grid 2D_Temperature_Grid 2D_Temperature_Grid

X Y Temp X,Y Temp X, Y, Temp

2.30 1.50 23.50 230, 150 23.50 230, 1.50, 23.50

3.40 5.70 8.03 340, 570 8.03 3.40, 5.70, 8.03

0.50 3.50 1.22 050, 3.0 1.22 0.50, 3.50, 1.22

1.80 2.60 0.00 1.80, 2.60 0.00 1.80, 2.60, 0.00

3 Single-component Fields 1 Multl-'component Field O.f Order 2 1 Multi-component Field of Order .
1 Single-component Field
4.3 The Vdata Interface
The Vdata interface consists of routines that are used to store and retrieve information about vda-
tas and their contents.
4.3.1 Header Files Used by the Vdata Interface
The header file “hdf.h” must be included in programs that invoke Vdata interface routines.
4.3.2 Vdata Library Routines
Vdata routines begin with the prefixes “VS”, “VF”, “VSQ”, and “VH” in C, and “vsf”, “vf”,
“vsq”, and “vh” in FORTRAN-77. Vdata routines perform most general vdata operations, VF rou-
tines query information about vdata fields, and VSQ routines query information about specific
vdatas. VH routines are high-level procedures that write to single-field vdatas.
Vdata routines let you define, organize and manipulate vdatas. They are categorized as follows
and are listed in Table 4A by their categories:
4-126 December 30, 2003

HDF User’s Guide

* Access routines control access to files and vdatas. Data transfer to and from a vdata can
only occur after the access to the vdata has been initiated and before it is terminated. Some
Vgroup interface routines are included since they are used interchangeably between the
Vdata and Vgroup interfaces. Refer to Chapter 5, Vgroups (V API), for a description of the
Vgroup interface.

¢ Read and write routines store and retrieve the contents of and the information about a

vdata.

e File inquiry routines provide information about how vdatas are stored in a file. They are
useful for locating vdatas in the file.

¢ Vdata inquiry routines provide specific information about a given vdata, including the
vdata’s name, class, number of records, tag and reference number pairs, size, and interlace

mode.

 Field inquiry routines provide specific information about the fields in a given vdata, includ-
ing the field’s size, name, order, and type, and the number of fields in the vdata.

TABLE 4A

Vdata Interface Routines

Routine Names

Category Description
C FORTRAN-77
Initializes the Vdata and the Vgroup interfaces (Section 4.3.5 on
Vstart vistart
page 130)
Establishes access to a specified vdata (Section 4.3.5 on
VSattach vsfatch
page 130)
Access/Create
Terminates access to a specified vdata (Section 4.3.6 on
VSdetach vsfdtch
page 130)
Terminates access to the Vdata and the Vgroup interfaces
Vend viend .
(Section 4.3.6 on page 130)
vsfdefine vsffdef Defines a new vdata field (Section 4.5.1.2 on page 141)
Vsread vsfrd/vsfrde/ Reads one record from a vdata (Section 4.6.2 on page 158)
vsfread
Seeks to a specified record in a vdata (Section 4.5.2.1 on
VSseek vsfseek
page 144)
vsfsnat/vsfs— Sets the attribute of a vdata field or vdata (Section 4.8.2 on
VSsetattr
cat page 172)
VSsetclass vsfscls Assigns a class to a vdata (Section 4.5.1.1 on page 141)
. Specifies the vdata fields to be read or written (Section 4.5.1.3
Vssetfields vsfsfld .
on page 142 and Section 4.6.1 on page 158)
VSsetinterlace vsfsint Sets the interlace mode for a vdata (Section 4.5.1.4 on page 142)
VSsetname vsfsnam Assigns a name to a vdata (Section 4.5.1.1 on page 141)
Read and Write
Writes data to a vdata with a single-component field (Section 4.4
VHstoredata vhfsd/vhfscd
on page 135)
Writes data to a vdata with a multi-component field (Section 4.4
VHstoredatam vhfsdm/vhfscdm
on page 135)
vSgetblockinfo vsfgetblinfo Retrieves the block size and the number of blocks for a linked-
g g block Vdata element (see HDF Reference Manual)
. Sets linked-block Vdata element block size (see HDF Reference
VSsetblocksize vsfsetblsz
Manual)
VSsetnumblocks vsfsetnmbl Sets the number of blocks for a linked-block Vdata element (see
HDF Reference Manual)
vsfwrt/vsf-
VSwrite wrte/ Writes records to a vdata (Section 4.5.2.2 on page 145)
vsfwrit

December 30, 2003

4-127

National Center for Supercomputing Applications

Vdata
Inquiry

Retrieves information on a given attribute (Section 4.8.7 on

VSattrinfo vsfainf page 174)
Returns the number of records in the specified vdata
VSelts vsfelts .
(Section 4.9.4 on page 185)
. Locates a vdata given a list of field names (Section 4.7.4 on
vsfexist vsfex
page 168)
. . Returns the index of a vdata field given the field name
vsfindex vsffidx .
(Section 4.8.1 on page 171)
Returns the number of attributes of a vdata or vdata field
VSfnattrs vsffnas .
(Section 4.8.5 on page 173)
. Retrieves the index of an attribute given the attribute name
vSfindattr vsffdat .
(Section 4.8.6 on page 174)
Vsgetattr vsfgnat/vsfg- Retrieves the values of a given attribute (Section 4.8.3 on
cat page 172)
Returns the class name of the specified vdata (Section 4.9.4 on
VSgetclass vsfgcls
page 185)
VSqetfields vsfafld Retrieves all field names within the specified vdata
g g (Section 4.9.4 on page 185)
, . Retrieves the interlace mode of the specified vdata (Section 4.9.4
VSgetinterlace vsfgint
on page 185)
Retrieves the name of the specified vdata (Section 4.9.4 on
VSgetname vsfgnam
page 185)
. . X Returns information about the specified vdata (Section 4.9.1 on
VSinquire vsfing
page 180)
. . Determines whether the given vdata is an attribute (Section 4.8.8
VSisattr vsfisat
on page 175)
Returns the total number of vdata attributes (Section 4.8.4 on
VSnattrs vsfnats
page 173)
VSOuerycount vsqfnelt Returns the number of records in the specified vdata
Y d (Section 4.9.3 on page 184)
, Returns the field names of the specified vdata (Section 4.9.3 on
VSQueryfields vsqgfflds
page 184)
. X Returns the interlace mode of the specified vdata (Section 4.9.3
VSQueryinterlace vsqgfintr
on page 184)
Returns the name of the specified vdata (Section 4.9.3 on
VSQueryname vsgfname
page 184)
vso ‘ £ Retrieves the reference number of the specified vdata
ueryr I
eryre vsare (Section 4.9.3 on page 184)
Retrieves the tag of the specified vdata (Section 4.9.3 on
VSQuerytag vsgtag
page 184)
vSQueryvsize vsafsiz Retrieves the local size in bytes of the specified vdata record
Y d (Section 4.9.3 on page 184)
vsfsnat/vsfs— Sets the attribute of a vdata field or vdata (Section 4.8.2 on
VSsetattr
cat page 172)
. X Returns the size of the specified fields in a vdata (Section 4.9.4
VSsizeof vsfsiz

on page 185)

4-128

December 30, 2003

HDF User’s Guide

VPfieldesi ffosi Returns the field size, as stored in a file, of a specified field
1 1z siz
erdestze Ve (Section 4.9.5 on page 186)
VFfieldisize vEfisiz Returns the field size, as stored in memory, of a specified field
(Section 4.9.5 on page 186)
VFfieldname vEfname Returns the name of the specified field in the given vdata
Field (Section 4.9.5 on page 186)
Inquiry VPfieldord fford Returns the order of the specified field in the given vdata
1 I r rar
erdorde Ve (Section 4.9.5 on page 186)
VFEieldtype vEfLype Returns the data type for the specified field in the given vdata
P P (Section 4.9.5 on page 186)
VFnfields vEnflds Returns the total number of fields in the specified vdata
(Section 4.9.5 on page 186)
vSfind fend Searches for a vdata in a file given the vdata’s name
1n S ni
v (Section 4.7.3 on page 167)
File vsaetid vsfaid Returns the reference number of the next vdata in the file
Inquiry g g (Section 4.7.2 on page 167)
vSlone vsflone Returns the reference number of vdatas that are not linked with
any vgroups (Section 4.7.1 on page 166)

4.3.3 Identifying Vdatas in the Vdata Interface

The Vdata interface identifies vdatas in several ways. Before an existing vdata is accessible, it is
uniquely identified by its reference number. The reference number of a vdata can be obtained
from the name or the class of the vdata, or by sequentially traversing the file. The concept of ref-

erence number is discussed in Section 2.2.2.1 on page 8.

When a vdata is attached, it is assigned with an identifier, called vdata id, which is used by the
Vdata interface routines in accessing the vdata.

4.3.4 Programming Model for the Vdata Interface

The programming model for accessing vdatas is as follows:

1.
2.
3.
4.
5.
6.
7.

Open the file.
Initialize the Vdata interface.

Create a new vdata or open an existing one using its reference number.

Perform the desired operations on the vdata.
Terminate access to the vdata.

Terminate access to the Vdata interface.
Close the file.

To access a vdata, the calling program must contain the following calls, which are individually
explained in the following subsections:

file id = Hopen(filename, file access mode, mum dds block);

vdata id = VSattach(file id, vdata ref, vdata access mode);

C:
status = Vstart(file id);
<Optional operations>
status = VSdetach(vdata id);
status = Vend(file id);
status = Hclose(file id);
FORTRAN:

status = vfstart(file id)

vdata id = vsfatch(file id, vdata ref, vdata access mode)

file id = hopen(filename, file access mode, num dds block)

December 30, 2003

4-129

National Center for Supercomputing Applications

<Optional operations>
status = vsfdtch(vdata id)
status = vfend(file id)
status = hclose(file id)

4.3.5 Accessing Files and Vdatas: Vstart and VSattach

An HDF file must be opened by Hopen before it can be accessed using the Vdata interface.
Hopen is described in Chapter 2, HDF Fundamentals.

Vstart must be called for every file to be accessed. This routine initializes the internal vdata struc-
tures used by the Vdata interface. Vstart has only one argument, the file identifier (file id)
returned by Hopen, and returns either SUCCEED (or 0) or FAIL (or -1). Note that the Vstart routine
is used by both the Vdata and Vgroup interfaces.

VSattach initiates access to a vdata and must be called before any operations on the vdata may
occur. VSattach takes three arguments: file id, vdata ref, and vdata access mode, and
returns either a vdata identifier or FAIL (or -1).

The argument file id is the file identifier returned by Hopen and vdata ref is the reference
number that identifies the vdata to be accessed. Specifying vdata ref with a value of -1 will cre-
ate a new vdata; specifying vdata ref with a nonexistent reference number will return an error
code of FATL (or -1); and specifying vdata ref with a valid reference number will initiate access
to the corresponding vdata.

If an existing vdata’s reference number is unknown, it must be obtained prior to the VSattach
call. (Refer to Chapter 2, HDF Fundamentals, for a description of reference numbers.) The HDF
library provides two routines for this purpose, VSfind and VSgetid. VSfind can be used to obtain
the reference number of a vdata when the vdata’s name is known. VSgetid can be used to obtain
the reference number when only the location of the vdata within the file is known; this is often
discovered by sequentially traversing the file. These routines are discussed in Section 4.7.2 on
page 167 and Section 4.7.3 on page 167.

The argument vdata_access mode specifies the access mode (“r” for read-only access or “w” for
read and write access) for subsequent operations on the specified vdata. Although several HDF
user programs may simultaneously read from one vdata, only one write access is allowed at a
time. The “r” access mode may only be used with existing vdatas; the “w’ access mode is valid
with both new vdatas (vdata ref = -1) and existing vdatas.

Note that, although a vdata can be created without being written with data, either the routine
VSsetname or VSsetfields must be called in order for the vdata to exist in the file.

The parameters for Vstart and VSattach are further defined in Table 4B on page 131.

4.3.6 Terminating Access to Vdatas and Files: VSdetach and Vend

VSdetach terminates access to a vdata by updating pertinent information and freeing all memory
associated with the vdata and initialized by VSattach. Once access to the vdata is terminated, its
identifier becomes invalid and any attempt to access it will result in an error condition. VSdetach
takes only one argument, the vdata identifier that is returned by VSattach, and returns either Suc-
CEED (or 0) or FAIL (or -1).

Vend releases all internal data structures allocated by Vstart. Vend must be called once for each
call to Vstart and only after access to all vdatas have been terminated (i.e., all calls to VSdetach
have been made). Attempts to call Vdata interface routines after calling Vend will result in an
error condition. Vend takes one argument, the file identifier that is returned by Hopen, and returns

4-130

December 30, 2003

HDF User’s Guide

either SUCCEED (or 0) or FATL (or -1). Note that the Vend routine is used by both the Vdata and
Vgroup interfaces.

In summary, successfully terminating access to a vdata requires one VSdetach call for each call to
VSattach and one Vend call for each call to Vstart.

The parameters for VSdetach and Vend are further defined in Table 4B.

Heclose terminates access to a file and should only be called after all Vend calls have been made to
close the Vdata interface. Refer to Chapter 2, HDF Fundamentals, for a description of Hclose.

TABLE 4B Vstart, VSattach, VSdetach, and Vend Parameter Lists
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
Vstart
[intn] file_id int32 integer File identifier
(vfstart)
VSattach file_id int32 integer File identifier
[int32] vdata_ref int32 integer Reference number of the vdata
(vsfatch) vdata_access_mode char * character*1 Vdata access mode
VSdetach
[int32] vdata_id int32 integer Vdata identifier
(vsfdtch)
Vend
[intn] file_id int32 integer File identifier
(vfend)
EXAMPLE 1. Accessing a Vdata in an HDF File

This example illustrates the use of Hopen/hopen, Vstart/vfstart, VSattach/vsfatch, VSdetach/
vsfdtch, Vend/vfend, and Hclose/hclose to create and to access different vdatas from different
HDF files.

The program creates an HDF file, named "General_Vdatas.hdf", containing a vdata. The program
also creates a second HDF file, named "Two_Vdatas.hdf", containing two vdatas. Note that, in
this example, the program does not write data to these vdatas. Also note that before closing the
file, the access to its vdatas and its corresponding Vdata interface must be terminated. These
examples request information about a specific vdata.

C:
#include "hdf.h"
#define FILEl1l_NAME "General Vdatas.hdf"
#define FILE2_NAME "Two_Vdatas.hdf"
#define VDATA NAME "Vdata 1"
#define VDATA CLASS "Empty Vdatas"
main()
{

[rFxkkkkkkkkkkkkkkkkkkkx**x% Variable declaration **xkxkkkkkkkkkkkkkkhkkkkkx/

intn status_n; /* returned status for functions returning an intn */
int32 status_32, /* returned status for functions returning an int32 */
filel id, file2 id,
vdata_id, vdatal_id, vdata2_id,
vdata_ref = -1; /* ref number of a vdata, set to -1 to create */

December 30, 2003 4-131

National Center for Supercomputing Applications

[xFxkkkkkxkkkkkkxkxkkxx*x End of variable declaration ***xkxkkxkkkkkkkhkkkkkx/

/*

* Create the first HDF file.

*/

filel id = Hopen (FILEl NAME, DFACC_CREATE, 0);
/*

* Initialize the VS interface associated with the first HDF file.
*/

status_n = Vstart (filel id);

/*

* Create a vdata in the first HDF file.

*/

vdata id = vVSattach (filel id, vdata_ref, "w");
/*

* Assign a name to the vdata.

*/

status_32 = VSsetname (vdata_id, VDATA NAME);

/*
* Other operations on the vdata identified by vdata id can be carried
* out starting from this point.

*/

/*

* Create the second HDF file.

*/

file2 id = Hopen (FILE2 NAME, DFACC_CREATE, 0);
/*

* Initialize the VS interface associated with the second HDF file.
*/

status_n = Vstart (file2_ id);

/*

* Create the first vdata in the second HDF file.
*/

vdatal_id = VSattach (file2_id, vdata ref, "w");
/*

* Create the second vdata in the second HDF file.
*/

vdata2_id = VSattach (file2_ id, vdata_ref, "w");
/*

* Assign a class name to these vdatas.

*/

status_32 = VSsetclass (vdatal id, VDATA CLASS);
status_32 = VSsetclass (vdata2_id, VDATA CLASS);

/*

* Other operations on the vdatas identified by vdatal id and vdata2 id
* can be carried out starting from this point.

*/

/*

* Terminate access to the first vdata in the second HDF file.
*/

status_32 = VSdetach (vdatal_id);

4-132 December 30, 2003

HDF User’s Guide

/*

* Terminate access to the second vdata in the second HDF file.
*/

status_32 = VSdetach (vdata2_id);

/*
* From this point on, any operations on the vdatas identified by vdatal_ id
and vdata2_id are invalid but not on the vdata identified by vdata id.

*/
/*
* Terminate access to the VS interface associated with the second HDF file.
*/
status_n = Vend (file2_id);
/*
* Close the second HDF file.
*/
status_n = Hclose (file2_ id);
/*
* Terminate access to the vdata in the first HDF file.
*/
status_32 = VSdetach (vdata_id);
/*
* Terminate access to the VS interface associated with the first HDF file.
*/
status_n = Vend (filel _id);
/*
* Close the first HDF file.
*/
status_n = Hclose (filel_id);
}
FORTRAN:
program create vdatas
implicit none
C
C Parameter declaration
C
character*18 FILEl_ NAME
character*14 FILE2_ NAME
character*7 VDATA NAME
character*12 VDATA CLASS
C
parameter (FILEl NAME = ’'General Vdatas.hdf’,
+ FILE2_NAME = ’'Two_Vdatas.hdf’,
+ VDATA NAME = ’Vdata 1’,
+ VDATA CLASS = ’'Empty Vdatas’)
integer DFACC_CREATE
parameter (DFACC_CREATE = 4)
C
C Function declaration
C
integer hopen, hclose
integer vfstart, vsfatch, vsfsnam, vsfscls, vsfdtch, vfend
C
C**** Variable declaration R RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
C

December 30, 2003 4-133

National Center for Supercomputing Applications

integer status

integer filel id, file2 id

integer vdata_id, vdatal id, vdata2_id
integer vdata_ref

C
C**x*x% End of Variable declaration R R R SRR RS EEEEEEEEEEEEEEEEEEEE T
C
C
C Create the first HDF file.
C
filel id = hopen(FILEl NAME, DFACC CREATE, 0)
C
C Initialize the VS interface associated with the first HDF file.
C
status = vfstart(filel id)
C
C Create a vdata in the first HDF file.
C
vdata_ref = -1
vdata_id = vsfatch(filel id, vdata ref, 'w’)
C
C Assign a name to the vdata.
C
status = vsfsnam(vdata_ id, VDATA NAME)
C
C Other operations on the vdata identified by vdata_id can be carried out
C starting from this point.
C
C Create the second HDF file.
C
file2 id = hopen(FILE2 NAME, DFACC_CREATE, 0)
C
C Initialize the VS interface associated with the second HDF file.
C
status = vfstart(file2_id)
C
C Create the first vdata in the second HDF file.
C
vdatal id = vsfatch(file2 id, vdata_ref, 'w’)
C
C Create the second vdata in the second HDF file.
C
vdata2_id = vsfatch(file2 id, vdata_ref, 'w’)
C
C Assign a class name to these vdatas.
C
status = vsfscls(vdatal_id, VDATA_ CLASS)
status = vsfscls(vdata2_id, VDATA CLASS)
C
(¢ Other operations on the vdatas identified by vdatal id and vdata2_id
C can be carried out starting from this point.
C
C
C Terminate access to the first vdata in the second HDF file.
C
status = vsfdtch(vdatal_id)
C
C Terminate access to the second vdata in the second HDF file.
C
status = vsfdtch(vdata2_ id)
C
C Terminate access to the VS interface associated with the second HDF file.
C

4-134 December 30, 2003

HDF User’s Guide

4.4

status = vfend(file2_id)

C
C Close the second HDF file.
C
status = hclose(file2_ id)
C
C Terminate access to the vdata in the first HDF file.
C
status = vsfdtch(vdata id)
C
C terminate access to the VS interface associated with the first HDF file.
C
status = vfend(filel id)
C
C Close the first HDF file.
C

status = hclose(filel id)
end

Creating and Writing to Single-Field Vdatas: VHstoredata and
VHstoredatam

There are two methods of writing vdatas that contain one field per record. One requires the use of
several VS routines and the other involves the use of VHstoredata or VHstoredatam, two high-
level routines that encapsulate several VS routines into one.

The high-level VH routines are useful when writing one-field vdatas and complete information
about each vdata is available. If you cannot provide full information about a vdata, you must use
the VS routines described in the next section.

Figure 4c shows two examples of single-field vdatas. The fields can be single-component or multi-
component fields. With a multi-component field, they may contain one or more values of the same
data type.

FIGURE 4¢

Single- and Multi-component Vdatas

’,_ Vdata Name ————

A
Vdata Vdata
1 Class Name ™\
|4 N
Class X Class X
Vo Field Name —
|4 h)
Field 1 Field 1
comp_1 comp_1, comp_2
comp_1 comp_1, comp_2
Records Records
comp_1 comp_1, comp_2
comp_1 comp_1, comp_2
Vdata with Single-component Field Vdata with Multi-component Field

VHstoredata creates then writes a vdata with one single-component field. VHstoredatam creates
and writes a vdata with one multi-component field. In both cases the following steps are involved:

1. Open the file.

2. Initialize the Vdata interface.

December 30, 2003 4-135

National Center for Supercomputing Applications

3. Store (create then write to) the vdata.
4. Terminate access to the Vdata interface.
5. Close the file.

These steps correspond to the following sequence of function calls:

C: file id = Hopen(filename, file access mode, mum dds block);
status = Vstart(file id);

/* Either VHstoredata or VHstoredatam can be called here. */
vdata ref = VHstoredata(file id, fieldname, buf, n records,
data type, vdata name, vdata class);
OR vdata ref = VHstoredatam(file id, fieldname, buf, n records,
data type, vdata name, vdata class, order);

status = Vend(file id);
status = Hclose(file id);

FORTRAN: file id = hopen(filename, file access mode, num dds block)
status = vfstart(file id)

C Either vhfsd/vhfscd or vhfsdm/vhfscdm can be called here.
vdata ref = vhfsd(file id, fieldname, buf, n records, data type,
vdata name, vdata class)
OR vdata ref = vhfscd(file id, fieldname, buf, n records, data type,
vdata name, vdata class)

OR

vdata ref = vhfsdm(file id, fieldname, buf, n records, data type,
vdata name, vdata class, order)

OR vdata ref = vhfscdm(file id, fieldname, buf, n records, data type,
vdata name, vdata class, order)

status = vfend(file id)
status = hclose(file id)

The first seven parameters of VHstoredata and VHstoredatam are the same. The parameter
file id is the file identifier returned by Hopen. The parameter fieldname specifies the name of
the vdata field. The parameter buf contains the data to be stored into the vdata. In C, the data type
of the parameter buf is uint8; in FORTRAN-77, it is the data type of the data to be stored. The
parameters n records and data type contain the number of records in the vdata and the data
type of the vdata data. The parameters vdata name and vdata class specify the name and class
of the vdata. The parameter order of VHstoredatam specifies the order of the field. The maxi-
mum length of the vdata name is given by the VSNAMELENMAX (or 64) as defined in the header file
“hlimits.h”.

Note that these two routines do not overwrite existing vdatas but only create new ones before stor-
ing the data.

The FORTRAN-77 version of VHstoredata has two routines: vhfsd for numeric data and vhfsed
for character data; the FORTRAN-77 version of VHstoredatam has two routines: vhfsdm for
numeric data and vhfsedm for character data.

Both routines return the reference number of the newly-created vdata or FAIL (or -1) if the opera-
tion is unsuccessful. The parameters for VHstoredata and VHstoredatam are further described
in Table 4C.

4-136

December 30, 2003

HDF User’s Guide

TABLE 4C VHstoredata and VHstoredatam Parameter Lists
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
file_id int32 integer File identifier
fieldname char * character™®(*) String containing the name of the field
o <valid numeric data N .. .
VHstoredata buf uint8 types(*)/character*(*) Buffer containing the data to be stored
[int32]) - : -
(vhisd/vhfsed) n_records int32 integer Number of records to create in the vdata
data_type int32 integer Data type of the stored data
vdata_name char * character*(*) Name of the vdata
vdata_class char * character™(*) Class name of the vdata
file_id int32 integer File identifier
fieldname char * character®(¥) String containing the name of the field
buf uint8 * <vahi numeric data Buffer containing the data to be stored
VHstoredatam type>(*)/character*(*)
([311_8'2] , n_records int32 integer Number of records to create in the vdata
\/
vhfsedm) data_type int32 integer Data type of the stored data
vdata_name char * character*(*) Name of the vdata
vdata_class char * character™(*) Class name of the vdata
order int32 integer Number of field components
EXAMPLE 2. Creating and Storing One-field Vdatas Using VHstoredata and VHstoredatam

This example illustrates the use of VHstoredata/vhfscd and VHstoredatam/vhfsdm to create
single-field vdatas.

This example creates and writes two vdatas to the file "General_Vdatas.hdf". The first vdata is
named "First Vdata", contains 5 records, and belongs to a class named "5x1 Array". The second
vdata is named "Second Vdata", contains 6 records, and belongs to a class named "6x4 Array".
The field of the first vdata is a single-component field, i.e., order of 1, and named "Single-compo-
nent Field". The field of the second vdata has an order of 4 and is named "Multi-component
Field".

In these examples two vdatas are created. The first vdata has five records with one field of order 1
and is created from a 5 x 1 array in memory. The second vdata has six records with one field of
order 4 and is created from a 6 x 4 array in memory.
C:
#include "hdf.h"

#define FILE_NAME
#define CLASS1_NAME
#define CLASS2_NAME
#define VDATAl_NAME
#define VDATA2_ NAME
#define FIELD1_ NAME "Single-component Field"
#define FIELD2_NAME "Multi-component Field"
#define N _RECORDS_1 5 /* number of records the first vdata contains */
#define N_RECORDS_2 6 /* number of records the second vdata contains */
#define ORDER 2 4 /* order of the field in the second vdata */
/* Note that the order of the field in the first vdata is 1 */

"General Vdatas.hdf"
"5x1 Array"

"6x4 Array"

"First vdata"
"Second Vdata"

main()

December 30, 2003 4-137

National Center for Supercomputing Applications

[xhkkkkkkkkkkkkxkkkkkkx*k*x* Variable declaration **x*xkkkkkkkkkkkkkkkkkkkkx/

intn status_n; /* returned status for functions returning an intn */
int32 status_32; /* returned status for functions returning an int32 */
int32 file_id, vdatal_ref, vdata2 ref;

*
i Define an array to buffer the data of the first vdata.
*
ck/xars vdatal buf [N RECORDS 1] = {’V’, 'D’, 'A’, 'T’, 'A'};
/*

* Define an array to buffer the data of the second vdata.
*/
int32 vdata2 buf [N _RECORDS 2][ORDER 2]

{1, 2,
{3, 6,

{5, 10,

3, 4},
9, 123,
15, 20},

{2,
{4,
{6,

4,
8,
12,

6, 8},
12, 16},
18, 24}};

[rrKkkkkkkkkkkkkkkxxxxxx End of variable declaration **xxxkkxxkxkkkkkkkkkkk*/

/*

* Open the HDF file for writing.

*/

file id = Hopen (FILE NAME, DFACC WRITE, 0);

/*
* Initialize the VS interface.
*/

status_n

Vstart (file id);

/*

* Create the first vdata and populate it with data from the vdatal buf
* array. Note that the buffer vdatal buf is cast to (uint8 *) for the
* benefit of generic data type.

*/
vdatal_ref

VHstoredata (file_id, FIELD1 NAME, (uint8 *)vdatal buf,
N_RECORDS_1, DFNT_CHAR8, VDATAl NAME, CLASS1_NAME);

/*

* Create the second vdata and populate it with data from the vdata2 buf

* array.

*/

vdata2_ref = VHstoredatam (file id, FIELD2 NAME, (uint8 *)vdata2_ buf,
N_RECORDS_2, DFNT INT32, VDATA2 NAME, CLASS2 NAME, ORDER 2);

/*
* Terminate access to the VS interface and close the HDF file.
*/

status_n
status_32

Vend (file_id);
Hclose (file id);

FORTRAN:

Q

program create onefield vdatas
implicit none

Parameter declaration
character*18 FILE NAME

character*9 CLASS1_NAME
character*9 CLASS2_ NAME

4-138

December 30, 2003

HDF User’s Guide

CHx*x

C
CHx*x

C

C
C
C

aQQ

Q

Q

character*11
character*12
character*22
character*21

VDATA1l_NAME
VDATA2_NAME
FIELD1 NAME
FIELD2_ NAME

integer
integer

N_RECORDS_1
ORDER_2

, N_RECORDS_ 2

parameter (FILE_NAME 'General_Vdatas.hdf’,

+ CLASS1 NAME = '5x1 Array’,
+ CLASS2_NAME = '6x4 Array’,
+ VDATAl_NAME = 'First vdata’,
+ VDATA2_NAME = ’Second Vdata’,
+ FIELDl _NAME = ’Single-component Field’,
+ FIELD2 NAME = ‘Multi-component Field’)
parameter (N_RECORDS 1 = 5,
+ N_RECORDS_2 = 6,
+ ORDER_2 = 4)
integer DFACC_WRITE, DFNT CHAR8, DFNT_ INT32
parameter (DFACC_WRITE = 2,
+ DFNT CHAR8 = 4,
+ DFNT_ INT32 = 24
Function declaration
integer hopen, hclose
integer vfstart, vhfscd, vhfsdm, vfend

Variable declaration ***xkxxkkkkkkrkkhkkkhk Ak khk Ak kk kA Ak Ak kKRR Kk k%

integer status
integer file id
integer vdatal_ref, vdata2_ref

character vdatal_ buf(N_RECORDS_1)
integer vdata2_ buf (ORDER 2, N_RECORDS 2)
data vdatal buf /'v’,’'D’,'A’,'T’','A’/

data vdata2 buf / 1, 2, 3, 4,
+ 2, 4, 6, 8,
+ 3, 6, 9, 12,
+ 4, 8, 12, 16,
+ 5, 10, 15, 20,
+ 6, 12, 18, 24/

End of variable declaration **x#xx*xxkkkkkkkhkkhkkhhkhhkkhhkhkk kb kk k%

Open the HDF file for writing.
file id = hopen(FILE NAME, DFACC WRITE, 0)

Initialize the VS interface.

status vistart(file id)

Create the first vdata and populate it with data from vdatal buf array.

vdatal_ref
+

vhfscd(file_id, FIELD1_NAME, vdatal_buf, N _RECORDS_1,
DFNT_ CHAR8, VDATAl NAME, CLASS1_ NAME)

Create the second vdata and populate it with data from vdata2 buf array.

vdata2_ref = vhfsdm(file id, FIELD2 NAME, vdata2 buf, N_RECORDS_ 2,

December 30,

2003 4-139

National Center for Supercomputing Applications

4.5

+ DFNT_INT32, VDATA2 NAME, CLASS2_NAME,
+ ORDER_2)
C
C Terminate access to the VS interface and close the HDF file.
C

status = vfend(file id)
status = hclose(file_ id)
end

Writing to Multi-Field Vdatas

There are several steps involved in creating general vdatas with more than one field: define the
vdata, define the fields of the vdata, and write the vdata to the file. These steps are usually exe-
cuted within a single program, although it is also possible to define an empty vdata in anticipation
of writing data to it at a later time.

4.5.1 Creating Vdatas

Creating an empty vdata involves the following steps:
1. Open afile.
2. Initialize the Vdata interface.
3. Create the new vdata.
4. Assign a vdata name. (optional)
5. Assign a vdata class. (optional)
6. Define the fields.
7. Initialize fields for writing.
8. Set the interlace mode.
9. Dispose of the vdata identifier.
10. Terminate access to the Vdata interface.
11. Close the file.

Like the high-level VH interface, the Vdata interface does not retain default settings from one
operation to the next or from one file to the next. Each time a vdata is created, its definitions must
be explicitly reset.

To create a multi-field vdata, the calling program must contain the following:

C: file id = Hopen(filename, file access mode, mum dds block);
status = Vstart(file id);
vdata id = VSattach(file id, -1, vdata access mode);
status = VSsetname(vdata id, vdata name);
status = VSsetclass(vdata id, vdata class);
status = VSfdefine(vdata id, fieldnamel, data typel, orderl);
status = VSfdefine(vdata id, fieldnameN, data typeN, orderN);
status = VSsetfields(vdata id, fieldname list);
status = VSsetinterlace(vdata id, interlace mode);
status = VSdetach(vdata id);
status = Vend(file id);
status = Hclose(file id);

4-140

December 30, 2003

HDF User’s Guide

FORTRAN: file id = hopen(filename, file access mode, mum dds block)
status = vfstart(file id)
vdata id = vsfatch(file id, -1, vdata access mode)
status = vsfsnam(vdata id, vdata name)
status = vsfscls(vdata id, vdata class)
status = vsffdef(vdata id, fieldnamel, data typel, orderl)
status = vsffdef(vdata id, fieldnameN, data typeN, orderN)
status = vsfsfld(vdata id, fieldname list)
status = vsfsint(vdata id, interlace mode)
status = vsfdtch(vdata id)
status = vfend(file id)
status = hclose(file id)

In the routines that follow, vdata_id is the vdata identifier returned by VSattach.

4.5.1.1 Assigning a Vdata Name and Class: VSsetname and VSsetclass

VSsetname assigns a name to a vdata. If not explicitly named by a call to VSsetname, the name
of the vdata is set by default to NULL. A name may be assigned and reassigned at any time after the
vdata is created. The parameter vdata name contains the name to be assigned to the vdata.

VSsetclass assigns a class to a vdata. If VSsetclass is not called, the vdata’s class is set by default
to NULL. As with the vdata name, the class may be assigned and reassigned any time after the vdata
is created. The parameter vdata_class contains the class name to be assigned to the vdata.

VSsetname and VSsetclass return either SUCCEED (or 0) or FAIL (or -1). The parameters for these
routines are further defined in Table 4E on page 143.

4.5.1.2 Defining a Field within a Vdata: VSfdefine

VSfdefine defines a field within a newly-created vdata. Each VSfdefine call assigns the name
contained in the argument fieldname, the data type contained in the argument data type, and
the order contained in the argument order to one new field. Once data is written to a vdata, the
name, data type and order of the field may not be modified or deleted.

The Vdata interface also provides certain predefined fields. A predefined field has a specific
name, data type, and order, so there is no need to call VSfdefine to define a predefined field.
Some applications may require the use of predefined fields in vdatas. Available predefined fields
are discussed in Table 4D.

Note that VSfdefine does not allocate memory for the field, but simply introduces the field. The
field definition must be completed by VSsetfields, which is discussed in Section 4.5.1.3 on
page 142.

VSfdefine returns either SUCCEED (or 0) or FAIL (or -1). The parameters for VSfdefine are further
described in Table 4E on page 143.

TABLE 4D Predefined Data Types and Field Names for Vdata Fields
Coordinate Point Field Names Normal Component Field Names
Data Type
x-coordinate y-coordinate z-coordinate X-component y-component z-component
float PX PY PZ NX NY NZ
integer IX 1Y 1Z None None None
December 30, 2003 4-141

National Center for Supercomputing Applications

4.5.1.3 Initializing the Fields for Write Access: VSsetfields

VSsetfields initializes read and write access to the fields in a vdata. It must be called prior to read
or write operations. Initializing for read access is discussed in Section 4.6.1 on page 158. For writ-
ing, VSsetfields specifies the fields to be written and the order in which they are to be placed.

The parameter fieldname list is a comma-separated list of the field names, with no white space
included. The fields can be either the predefined fields or the fields that have been previously
introduced by VSfdefine. VSfdefine allows a user to declare a field, along with its data type and
order, but VSsetfields finalizes the definition by allowing the user to select the fields that are to be
included in the vdata. Thus, any fields created by VSfdefine that are not in the parameter
fieldname list of VSsetfields will be ignored. This feature was originally intended for interac-
tive-mode users. The combined width of the fields in the parameter fieldname list is also the
length of the record and must be less than MAX FIEID SIZE (or 65535). An attempt to create a
larger record will cause VSsetfields to return FATL (or -1).

VSsetfields returns either SUCCEED (or 0) or FAIL (or -1). The parameters for VSsetfields are fur-
ther defined in Table 4E on page 143.

4.5.1.4 Specifying the Interlace Mode: VSsetinterlace

The Vdata interface supports two types of interlacing: file interlacing and buffer interlacing. File
interlacing determines how data is stored in a file and buffer interlacing determines how data is
stored in memory. The Vdata interface can write data from a buffer to a file in an interlaced or
non-interlaced manner. It can also read data from a file in an interlaced or non-interlaced manner.

The VSread and VSwrite routines set the buffer’s interlace mode. The VSwrite routine will be
discussed in Section 4.5.2.2 on page 145 and the VSread routine will be discussed in
Section 4.6.2 on page 158.

VSsetinterlace sets the file interlacing mode for a vdata. Setting the parameter interlace mode
to FULL INTERIACE (or 0) fills the vdata by record, whereas specifying NO INTERIACE (or 1) fills
the vdata by field. (See Figure 4d.) For multi-component fields, all components are treated as a
single field.

As with file interlacing, the default buffer interlace mode is FULL INTERIACE because it is more
efficient to write complete records than it is to write fields if the file and buffer interlace modes
are the same, although both require the same amount of disk space.

In Figure 4d, the illustrated vdata has four fields and three records.

FIGURE 4d Interlaced and Non-Interlaced Vdata Contents
Vdata Vdata
Mixed_Data_Type Mixed_Data_Type
Temp Height Speed Ident Temp 1.11 2.22 3.33
111 1 1111 A Height 1 2 3
2.22 2 2222 B Speed 1111 2222 3333
3.33 3 3333 C Ident A B C
Interlacing Mode: FULL_INTERLACE Interlacing Mode: NO_INTERLACE
VSsetinterlace can only be used for operations on new vdatas as the interlacing cannot be
changed once the data has been written to a vdata. Records in a fully interlaced vdata can be writ-
ten record-by-record and, thus, can be appended; however, all records in a non-interlaced vdata
must be written at the same time.
4-142 December 30, 2003

HDF User’s Guide

VSsetinterlace returns either SUCCEED (or 0) or FAIL (or -1). The parameters for VSsetinterlace
are further described in Table 4E.

TABLE 4E VSsetname, VSsetclass, VSfdefine, VSsetfields, and VSsetinterlace Parameter Lists
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
VSsetname vdata_id int32 integer Vdata identifier
[int32]
(vsfsnam) vdata_name char * character*(*) Vdata name
VSsetclass vdata_id int32 integer Vdata identifier
[int32]
(vsfsels) vdata_class char * character*(*) Vdata name
vdata_id int32 integer Vdata identifier
VSfdefine fieldname char * character™(*) Name of the field to be defined
[intn]
(vsftdef) data_type int32 integer Type of the field data
order int32 integer Order of the new field
VSsetfields vdata_id int32 integer Vdata identifier
[intn]
(vsfsfld) fieldname_list char * character®(*) Names of the vdata fields to be accessed
VSsetinterlace vdata_id int32 integer Vdata identifier
[intn]
(vsfsint) interlace_mode int32 integer Interlace mode

4.5.2 Writing Data to Vdatas

This section describes the vdata writing operation (VSwrite), random access to vdata (VSseek),
and packing and unpacking mechanisms that allow storing vdata fields of different data types
(VSfpack).
Writing to a vdata requires the following steps:

1. Open afile.

2. Initialize the Vdata interface.

3. Initialize fields for writing.

4. Initiate access to the vdata.

5. Seek to the target record.

6. Write the data.

7. Dispose of the vdata identifier.

8. Terminate access to the Vdata interface.

9. Close the file.

These steps correspond to the following sequence of function calls:

C: file id = Hopen(filename, file access mode, mum dds block);
status = Vstart(file id);
vdata id = VSattach(file id, vdata ref, vdata access mode);
status = VSsetfields(vdata id, fieldname list);
record pos = VSseek(vdata id, record index);
mum of recs = VSwrite(vdata id, databuf, n records, interlace mode);
status = VSdetach(vdata id);
status = Vend(file id);
status = Hclose(file id);

December 30, 2003 4-143

National Center for Supercomputing Applications

FORTRAN: file id = hopen(filename, file access mode, mum dds block)
status = vfstart(file id)
vdata id = vsfatch(file id, wvdata ref, vdata access mode)
status = vsfsfld(vdata id, fieldname list);
record pos = vsfseek(vdata id, record index);

mm of recs = vsfuwrt(vdata id, databuf, n records, interlace mode)
OR mm of recs = vsfwrtc(vdata id, databuf, n records, interlace mode)
OR mm of recs = vsfwrit(vdata id, databuf, n records, interlace mode)

status = vsfdtch(vdata id)
status = vfend(file id)
status = hclose(file id)

4.5.2.1 Resetting the Current Position within Vdatas: VSseek

VSseek provides a mechanism for random access to fully-interlaced vdatas. Random-access for
non-interlaced vdatas is not available. The parameter record index is the position of the record
to be written. The position of the first record in a vdata is specified by record index = 0. Any
vdata operation will be performed on this record by default; vdata operations on other records
require that VSseek be called first to specify the target record.

Note that VSseek has been designed for the purpose of overwriting data, not appending data. That
means VSseek puts the current record pointer at the beginning of the sought record and the subse-
quent write will overwrite the record. To append data to a vdata, the current record pointer must be
put at the end of the last record. Thus, you must seek to the last record then read this record so that
the current record pointer will be put at the end of the record. A write operation will now start at
the end of the last record in the vdata. Figure 4e illustrates a situation where VSseek can be mis-
used while attempting to append data to the vdata and how VSread is called to correctly place the
record pointer at the end of the vdata for appending.

Note that, because the record location numbering starts at 0, the record location and the value of
the parameter record index are off by 1. For example, reading the fourth record in the buffer
requires record index to be set to 3.

See the notes regarding the potential performance impact of appendable data sets in Section
14.4.3, "Unlimited Dimension Data Sets (SDSs and Vdatas) and Performance."

4-144

December 30, 2003

HDF User’s Guide

FIGURE 4e

Setting the Record Pointer to the End of a Vdata

Using: VSseek(vdata_id, 4); Seeks to the end of
the vdata - an_error

condition for VSseek. \
—————————————————————— >

Vdata Record 1 Vdata Record 2 Vdata Record 3 Vdata Record 4
Record
Location -
Seeks to the end of
the vdata and buffers
Using: VSseek(vdata_id, 3); the fourth record.
VSread(vdata_id, buffer, 1, FULL_INTERLACE);
\ \
———————————————— »> >
Vdata Record 1 Vdata Record 2 Vdata Record 3 Vdata Record 4
Records
Read - 0

In this illustration, the vdata to which we plan to append data contains 4 records. Using VSseek to
seek to the end of the fourth record by setting the parameter record index to 4 results in an error
condition. Setting the parameter record index to 3 places the current record pointer at the begin-
ning of the fourth record. We then use VSread to read the contents of the fourth record into a
buffer; this moves the current record pointer to the end of the fourth record. The contents of the
buffer can then be discarded and a write operation can be called to append data to the end of the
vdata.

VSseek returns the sought record location or FATL (or -1). Its parameters are further defined in
Table 4F.

4.5.2.2 Writing to a Vdata: VSwrite

VSwrite writes buffered data to a specified vdata. The parameter databuf is a buffer containing
the records to be stored in the vdata. The parameter n_records specifies the number of records to
be stored.

Recall that the file interlacing is set by VSsetinterlace when the vdata is created, and the buffer
interlacing is specified by the parameter interlace mode in the call to VSwrite when data is
written to the file. The array databuf is assumed to be organized in memory as specified by
interlace mode. Setting interlace mode to FULL INTERIACE (or 0) indicates that the array in
memory is organized by record, whereas to NO INTERIACE (or 1) indicates that the array is orga-
nized by field. (See Figure 4f.) VSwrite will write interlaced or non-interlaced data to a vdata in a
file: interlaced data in the buffer can be written to the vdata in the file as non-interlaced data and
vice versa. If the data is to be stored with an interlace mode different from that of the buffer,
VSsetinterlace (described in Section 4.5.1.4 on page 142) must be called prior to VSwrite. Multi-
ple write operations can only be used on fully-interlaced vdatas in the file.

December 30, 2003 4-145

National Center for Supercomputing Applications

FIGURE 4f

Writing Interlaced or Non-interlaced Buffers into Interlaced or Non-interlaced Vdatas

[1t [1| man JA] 222 [2] 22 [B] 333 |3] 3333 [C]

Buffer Interlacing: FULL_INTERLACE

111 2.22 333 [1[2]3] un 22.22 3333 [A[B]C]

Buffer Interlacing: NO_INTERLACE

Complex vdata Complex vdata

Mixed_Data_Type Mixed_Data_Type

Temp Height Speed Ident Temp 1.11 2.22 3.33
1.11 1 11.11 A Height 1 2 3
2.22 2 22.22 B Speed 11.11 22.22 33.33
3.33 3 33.33 C Ident A B C

Interlacing Mode: FULL_INTERLACE Interlacing Mode: NO_INTERLACE

The data in the array databuf is assumed to contain the exact amount of data in the order needed
to fill the fields defined in the last call to VSsetfields. Because VSwrite writes the contents of
databuf contiguously to the vdata, any “padding” due to record alignment must be removed
before attempting to write from databuf to the vdata. For more information on alignment padding
see Section 4.5.2.4 on page 151.

It should be remembered that VSwrite writes whole records, not individual fields. If a modifica-
tion to one field within a previously-written record is needed, the contents of the record must first
be preserved by reading it to a buffer with VSread, which will be described in Section 4.6.2 on
page 158; the record must then be updated in the buffer and written back to the file with VSwrite.

To store a vdata to the file after being created, either VSsetname, VSsetfields, or VSwrite must
be called before VSdetach for the vdata. If VSwrite is not called, the vdata created will be empty.

The FORTRAN-77 version of VSwrite has three routines: vsfwrt is for buffered numeric data,
vsfwrtc is for buffered character data and vsfwrit is for generic packed data.

VSwrite returns the total number of records written or FATL (or -1). Its parameters are further
defined in Table 4F.

TABLE 4F

VSseek and VSwrite Parameter Lists

Routine Name Parameter Type

[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77

VSseek vdata_id int32 integer Vdata identifier

[int32]
(vsfseek) record_index int32 integer Index of the record to seek to

vdata_id int32 integer Vdata identifier

VSwrite databuf uint8* <valid numeric data type>(*) / Buffer containing data to be written
(et [lrtlltSZtJ o character®(*) / integer
vsfwrt/vsfwrtc,

vsfwrit) n_records int32 integer Number of records to be written

interlace_mode int32 integer Interlace mode of the buffered data

4-146

December 30, 2003

HDF User’s Guide

EXAMPLE 3.

Writing a Vdata of Homogeneous Type

This example illustrates the use of VSfdefine/vsffdef, VSsetname/vsfsnam, VSsetclass/vsfscls,
VSsetfields/vsfsfld, and VSwrite/vsfwrt to create and write a three-field vdata to the file
"General_Vdatas.hdf". Although the fields have data of the same type, they have different orders.

To clarify the illustration, let us assume that the vdata is used to contain the data of some particles
collected from an experiment. Each record of the data includes the position of a particle, its
weight, and the minimum and maximum temperature the particle can endure. The vdata is named
"Solid Particle", contains 10 records, and belongs to a class, named "Particle Data". The fields of
the vdata include "Position", "Mass", and "Temperature". The field "Position" has an order of 3
for the x, y, and z values representing the position of a particle. The field "Mass" has an order of 1.
The field "Temperature" has an order of 2 for the minimum and maximum temperature. The pro-
gram creates the vdata, sets its name and class name, defines its fields, and then writes the data to
it.

C:
#include "hdf.h"
#define FILE_NAME "General Vdatas.hdf"
#define N_RECORDS 10 /* number of records the vdata contains */
#define ORDER 1 3 /* order of first field */
#define ORDER 2 1 /* order of second field */
#define ORDER 3 2 /* order of third field */
#define CLASS NAME "Particle Data"
#define VDATA NAME "Solid Particle"
#define FIELD1 NAME "Position" /* contains x, y, z values */
#define FIELD2_NAME "Mass" /* contains weight values */
#define FIELD3 NAME "Temperature" /* contains min and max values */

#define FIELDNAME LIST "Position,Mass,Temperature" /* No spaces b/w names */

/* number of values per record */
#define N_VALS PER REC (ORDER_1 + ORDER 2 + ORDER_3)

main()

{

[rEk kKK KK KKK KKK KRR A XAk *k**% Variable declaration ****xxx*xxkkkkkkkkkkkkkkkkkx/

intn status_n; /* returned status for functions returning an intn */
int32 status_32, /* returned status for functions returning an int32 */
file id, vdata_id,
vdata_ref = -1, /* ref number of a vdata, set to -1 to create */
num_of_records; /* number of records actually written to vdata */
intl6 rec_num; /* current record number */

float32 data buf[N_RECORDS][N_VALS_PER REC]; /* buffer for vdata values */
[xFxkkkkkxkkkkkkxkxkxxx*x End of variable declaration ***xkxkkxkkkkkkkkkkkkkx/

/*

* Open the HDF file for writing.

*/

file id = Hopen (FILE_NAME, DFACC_WRITE, 0);

/%
* Initialize the VS interface.
*/

status_n = Vstart (file_id);

/*
* Create a new vdata.

December 30, 2003 4-147

National Center for Supercomputing Applications

*/

vdata_id = VSattach (file_id, vdata_ref, "w");
/*

* Set name and class name of the vdata.

*/

status_32 = VSsetname (vdata_id, VDATA NAME);
status_32 = VSsetclass (vdata_id, CLASS NAME);

/*

* Introduce each field’s name, data type, and order. This is the first
* part in defining a field.

*/

status_n = VSfdefine (vdata_id, FIELDl_NAME, DFNT_ FLOAT32, ORDER 1);
status_n = VSfdefine (vdata id, FIELD2 NAME, DFNT FLOAT32, ORDER 2);
status_n = VSfdefine (vdata_id, FIELD3_NAME, DFNT FLOAT32, ORDER 3);

/*

* Finalize the definition of the fields.

*/

status n = VSsetfields (vdata_id, FIELDNAME LIST);

/*

* Buffer the data by the record for fully interlaced mode. Note that the
* first three elements contain the three values of the first field, the

* fourth element contains the value of the second field, and the last two
* elements contain the two values of the third field.

*/
for (rec_num = 0; rec_num < N_RECORDS; rec_num++)
{
data _buf[rec num][0] = 1.0 * rec_num;
data_buf[rec num][1] = 2.0 * rec_ num;
data buf[rec num][2] = 3.0 * rec_num;
data buf[rec num][3] = 0.1 + rec_num;
data_buf[rec_num][4] = 0.0;
data buf[rec num][5] = 65.0;
}
/*
* Write the data from data buf to the vdata with full interlacing mode.
*/

num_of records = VSwrite (vdata id, (uint8 *)data buf, N_RECORDS,
FULL_INTERLACE);

/*
* Terminate access to the vdata and to the VS interface, then close
* the HDF file.

*/
status_32 = VSdetach (vdata_id);
status_ n = Vend (file_id);
status_32 = Hclose (file id);
}
FORTRAN:
program write to vdata
implicit none
C
C Parameter declaration
C

character*18 FILE NAME
character*13 CLASS_NAME
character*14 VDATA NAME

4-148 December 30, 2003

HDF User’s Guide

character*8 FIELD1 NAME
character*4 FIELD2_NAME
character*11 FIELD3_ NAME
character*27 FIELDNAME LIST

integer N_RECORDS
integer ORDER 1, ORDER 2, ORDER 3
integer N_VALS PER REC
C
parameter (FILE_NAME = ’'General Vdatas.hdf’,

+ CLASS_NAME = 'Particle Data’,

+ VDATA NAME = ’Solid Particle’,

+ FIELD1 NAME = 'Position’,

+ FIELD2_ NAME = 'Mass’,

+ FIELD3_NAME = 'Temperature’,

+ FIELDNAME LIST = ’‘Position,Mass,Temperature’)
parameter (N_RECORDS = 10,

+ ORDER 1 = 3,

+ ORDER 2 =1,

+ ORDER 3 = 2,

+ N _VALS PER REC = ORDER 1 + ORDER 2 + ORDER 3)
integer DFACC_WRITE, DFNT FLOAT32, FULL_INTERLACE
parameter (DFACC_WRITE = 2,

+ DFNT_ FLOAT32 =5,

+ FULL INTERLACE = 0)

C
C Function declaration
C
integer hopen, hclose
integer vfstart, vsfatch, vsfsnam, vsfscls, vsffdef, vsfsfld,
+ vsfwrt, vsfdtch, vfend
C
C**** Varlable declaratlon EEEE S S EE S SRS LSS EEEEEEEEEEEEEEEEEEEE]
C
integer status
integer file_id, vdata_ id
integer vdata_ref, rec_num, num of records
real data_buf (N _VALS PER REC, N RECORDS)
C
C**** End of Variable declaration khkkhkkkhkhkkhkhkkkhhkkhkhkhkkhkhkkhhkhhkhkdhkdhhkdkhkdhkhkkk,xkx
C
C
C Open the HDF file for writing.
C
file id = hopen(FILE_NAME, DFACC_WRITE, 0)
C
C Initialize the VS interface.
C
status = vfstart(file_id)
C
C Create a new vdata.
C
vdata_ref = -1
vdata_id = vsfatch(file id, vdata ref, 'w’)
C
C Set name and class name of the vdata.
C
status = vsfsnam(vdata_id, VDATA NAME)
status = vsfscls(vdata_id, CLASS_NAME)
C
C Introduce each field’s name, data type, and order. This is the
C first part in defining a field.

December 30, 2003 4-149

National Center for Supercomputing Applications

C
status = vsffdef(vdata id, FIELDl NAME, DFNT FLOAT32, ORDER 1)
status = vsffdef(vdata id, FIELD2 NAME, DFNT FLOAT32, ORDER 2)
status = vsffdef(vdata id, FIELD3_NAME, DFNT FLOAT32, ORDER_3)
C
C Finalize the definition of the fields.
C
status = vsfsfld(vdata id, FIELDNAME LIST)
C
C Buffer the data by the record for fully interlaced mode. Note that the
C first three elements contain the three values of the first field,
C the forth element contains the value of the second field, and the last two
C elements contain the two values of the third field.
C
do 10 rec_num = 1, N_RECORDS
data_buf(l, rec_num) = 1.0 * rec_num
data_buf(2, rec_num) = 2.0 * rec_num
data buf(3, rec_num) = 3.0 * rec num
data_buf(4, rec_num) = 0.1 + rec_num
data_buf(5, rec_num) = 0.0
data buf(6, rec_num) = 65.0
10 continue
C
C Write the data from data buf to the vdata with the full interlacing mode.
C
num of records = vsfwrt(vdata_id, data_buf, N_RECORDS,
+ FULL_INTERLACE)
C
C Terminate access to the vdata and to the VS interface, and
C close the HDF file.
C

status vsfdtch(vdata_id)
status = vfend(file id)
status = hclose(file_ id)
end

4.5.2.3 Setting Up Linked Block Vdatas: VSsetblocksize and VSsetnumblocks

Unless otherwise specified, Vdata data sets stored in linked blocks employ a default size and num-
ber of linked blocks, as set in HDF APPENDABLE BIOCK IEN and HDF APPENDABIE BIOCK NUM,
respectively. VSsetblocksize and VSsetnumblocks provide a mechanism for managing these val-
ues when the defaults are not appropriate.

VSsetblocksize and VSsetnumblocks can be called to change the default linked block settings.
The parameter vdata id identifies the Vdata. The size of blocks is specified in bytes in
block size and number of blocks in num blocks.

VSsetblocksize and VSsetnumblocks must be called before any data is written to a Vdata; once a
linked block element has been created, neither the block size nor the number blocks can be
changed. Further note that VSsetblocksize sets the block size only for blocks following the first
block.

See the notes regarding the potential performance impact of block size in Section 14.4.2, "Tuning
Linked Block Size to Enhance Performance."

VSsetblocksize and VSsetnumblocks both return SUCCESS (or 0) upon successful completion or
FATL (or -1). Their parameters are further defined in Table 4G.

4-150

December 30, 2003

HDF User’s Guide

TABLE 4G

VSsetblocksize and VSsetnumblocks Parameter Lists

Routine Name Parameter Type

[Return Type] Parameter Description
(FORT