
Twitter client for R

Jeff Gentry

July 8, 2013

1 Introduction

Twitter is a popular service that allows users to broadcast short messages
(’tweets’) for others to read. These can be used to communicate wtih friends, to
display headlines, for restaurants to list daily specials, and more. The twitteR
package is intended to provide access to the Twitter API within R. Users can
make access large amounts of Twitter data for data mining and other tasks.

This package is intended to be combined with the ROAuth package as as of
March 2013 the Twitter API requires the use of OAuth authentication.

2 Some Initial Notes

2.1 Support mailing list

While this package doesn’t generate a huge volume of emails to me, I have found
that the same questions tends to come up repeatedly (often when something has
been broken!). I also field requests for advice on practical application of this
package which is an area that I’m far from expert at. I’ve set up a mailing list
to better manage emails from users as this way, with the idea being that there’ll
now be a searchable archive and perhaps other users might be able to chime in.
The URL for this mailing list is http://lists.hexdump.org/listinfo.cgi/
twitter-users-hexdump.org

2.2 Notes on API coverage

The ultimate goal is to provide full coverage of the Twitter API, although this is
not currently the case. Aspects of the API will be added over time, although if
there are particular places that you find missing, please contact me. Please take
a look at Twitter’s documentation on the 1.1 API for more information on what
is possible. For most actions, twitteR either supports the options presented
there or provides a superset of that functionality (via processing in R). The
API documentation is available at https://dev.twitter.com/docs/api/1.1.

I’ve long neglected Twitter’s streaming API and someone else has picked up
my slack with the streamR package.

1

3 Authentication with OAuth

As of March 2013 OAuth authentication is required for all Twitter transactions.
You will need to follow these instructions to continue.

OAuth is an authentication mechanism gaining popularity which allows ap-
plications to provide client functionality to a web service without granting an
end user’s credentials to the client itself. This causes a few wrinkles for cases
like ours, where we’re accessing Twitter programatically. The ROAuth package
can be used to get around this issue.

The first step is to create a Twitter application for yourself. Go to https:
//twitter.com/apps/new and log in. After filling in the basic info, go to the
“Settings” tab and select ”Read, Write and Access direct messages”. Make sure
to click on the save button after doing this. In the “Details” tab, take note of
your consumer key and consumer secret.

In your R session, you’ll want to do the following:

> cred = getTwitterOAuth(YOURKEY, YOURSECRET)

During this process, you’ll be prompted with another URL, go to that URL
with your browser and you’ll be asked to approve the connection for this appli-
cation. Once you do this, you’ll be presented with a PIN, enter that into your
R session. Your object is now verified.

To use this token in future sessions, save cred to a file, and from there you
can use load in another session and call registerTwitterOAuth:

> registerTwitterOAuth(cred)

4 Getting Started

This document is intended to demonstrate basic techniques rather than an ex-
haustive tour of the functionality. For more in depth examples I recommend
exploring the mailing list or StackOverflow. I’ve also included some links to
examples of twitteR being used in the real word at the end.

> library(twitteR)

[1] TRUE

5 Exploring Twitter

5.1 Searching Twitter

The searchTwitter function can be used to search for tweets that match a
desired term. Example searches are such things as hashtags, basic boolean logic
such as AND and OR. The n argument can be used to specify the number of
tweets to return, defaulting to 25.

2

> sea <- searchTwitter('#twitter', n=50)

> sea[1:5]

[[1]]
[1] "Terianmay: @eonline yes please explain the controversy of people putting #everything on #twitter #guilty"

[[2]]
[1] "dvega82: Wow. Can't believe I spelled it like that #Twitter #ifeeldumb"

[[3]]
[1] "razvanhosu7: #Twitter off"

[[4]]
[1] "eduarcortes07: Esta nueva actualizacin de #Twitter parece buena..."

[[5]]
[1] "JaniceMorse: RT @TweetSmarter: #OMG! Illiterate #Twitter Users Are Driving English Language Evolution, Says Study http://t.co/YvVFo5BT8D"

5.2 Looking at users

To take a closer look at a Twitter user (including yourself!), run the command
getUser. This will only work correctly with users who have their profiles public,
or if you’re authenticated and granted access. You can also see things such as a
user’s followers, who they follow, retweets, and more.

> crantastic <- getUser('crantastic')

> crantastic$getFriends(n=5)

$`703506830`
[1] "ELEMENTARYStaff"

$`1132315826`
[1] "pack"

$`143922679`
[1] "RobThomas"

$`22898904`
[1] "vanderjames"

$`538761714`
[1] "KseniaSolo"

> crantastic$getFavorites(n=5)

[[1]]
[1] "SmashKarenC: Don't get me wrong, I think it's great that Ivy sleeps with her directors and gets all nude onstage but that's just not me. I'm from Iowa."

3

[[2]]
[1] "EmWatson: Who here actually thinks I would do 50 Shades of Grey as a movie? Like really. For real. In real life."

[[3]]
[1] "AnnaKendrick47: I can't believe they cut the scene where I walk away from that explosion in slow motion without flinching! Dammit!!"

[[4]]
[1] "kevwilliamson: Who will Elena end up with? We're so not there yet -- but if you must know. Elena chooses Pacey."

[[5]]
[1] "ChristieKeith: @AliAdler Yeah, we get #invisiblescissoring to go with the #invisiblesweetladykisses. We just want equal representation. #brittana"

5.3 Trends

Twitter keeps track of topics that are popular at any given point of time, and
allows one to extract that data. The getTrends function is used to pull current
trend information from a given location, which is specified using a WOEID (see
http://developer.yahoo.com/geo/geoplanet/). Luckily there are two other
functions to help you identify WOEIDs that you might be interested in. The
availableTrendLocations function will return a data.frame with a location
in each row and the woeid giving that location’s WOEID. Similarly the clos-
estTrendLocations function is passed a latitude and longitude and will return
the same style data.frame.

> availTrends = availableTrendLocations()

> head(availTrends)

name country woeid
1 Worldwide 1
2 Winnipeg Canada 2972
3 Ottawa Canada 3369
4 Quebec Canada 3444
5 Montreal Canada 3534
6 Toronto Canada 4118

> closeTrends = closestTrendLocations(-42.8, -71.1)

> head(closeTrends)

name country woeid
1 Concepcion Chile 349860

> trends = getTrends(2367105)

> head(trends)

name url
1 #MazziMaz http://twitter.com/search?q=%23MazziMaz

4

2 #perksofdatingme http://twitter.com/search?q=%23perksofdatingme
3 #consofdatingme http://twitter.com/search?q=%23consofdatingme
4 #mentionperfection http://twitter.com/search?q=%23mentionperfection
5 #TheWorstFeeling http://twitter.com/search?q=%23TheWorstFeeling
6 Love & Hip Hop http://twitter.com/search?q=%22Love+%26+Hip+Hop%22

query woeid
1 %23MazziMaz 2367105
2 %23perksofdatingme 2367105
3 %23consofdatingme 2367105
4 %23mentionperfection 2367105
5 %23TheWorstFeeling 2367105
6 %22Love+%26+Hip+Hop%22 2367105

5.4 Timelines

A Twitter timeline is simply a stream of tweets. We support two timelines,
the user timeline and the home timeline. The former provides the most recent
tweets of a specified user while the latter is used to display your own most recent
tweets. These both return a list of status objects.

To look at a particular user’s timeline that user must either have a public
account or you must have access to their account. You can either pass in the
user’s name or an object of class user (more on this later). For this example,
let’s use the user cranatic.

> cranTweets <- userTimeline('cranatic')

> cranTweets[1:5]

[[1]]
[1] "cranatic: Update: Bchron, BoolNet, caribou, CePa, fmri, HTSCluster, isa2, lessR, lgcp, spatstat. http://t.co/skyrajMA #rstats"

[[2]]
[1] "cranatic: New: extrafont, extrafontdb, Rttf2pt1, x12GUI. http://t.co/skyrajMA #rstats"

[[3]]
[1] "cranatic: Update: drc, RcmdrPlugin.survival, rrcov, spls. http://t.co/eEoXNifB #rstats"

[[4]]
[1] "cranatic: New: hzar. http://t.co/eEoXNifB #rstats"

[[5]]
[1] "cranatic: Update: directlabels, forensim, gdata, gWidgetstcltk, gWidgetsWWW, harvestr, rrlda, Rz, Sim.DiffProc, ... http://t.co/9JEe7K91 #rstats"

By default this command returns the 20 most recent tweet. As with most
(but not all) of the functions, it also provides a mechanism to retrieve an arbi-
trarily large number of tweets up to limits set by the Twitter API, which vary
based on the specific type of request. (warning: At least as of now there is

5

no protection from overloading the API rate limit so be reasonable with your
requests).

> cranTweetsLarge <- userTimeline('cranatic', n=100)

> length(cranTweetsLarge)

[1] 100

The homeTimeline function works nearly identically except you do not pass
in a user, it uses your own timeline.

5.5 A simple example

Just a quick example of how one can interact with actual data. Here we will
pull the most recent results from the public timeline and see the clients that
were used to post those statuses. We can look at a pie chart to get a sense for
the most common clients.

Note that sources which are not the standard web interface will be presented
as an anchored URL string (<A>...). There are more efficient means to
rip out the anchor string than how it is done below, but this is a bit more robust
for the purposes of this vignette due to issues with character encoding, locales,
etc.

> r_tweets <- searchTwitter("#rstats", n=300)

> sources <- sapply(r_tweets, function(x) x$getStatusSource())

> sources <- gsub("", "", sources)

> sources <- strsplit(sources, ">")

> sources <- sapply(sources, function(x) ifelse(length(x) > 1, x[2], x[1]))

> source_table = table(sources)

> pie(source_table[source_table > 10])

6

Buffer

HootSuite

Tweet ButtonTweetDeck

Twitter for Android

Twitter for iPad

Twitter for iPhone

twitterfeed web

5.6 Conversion to data.frames

There are times when it is convenient to display the object lists as an data.frame
structure. To do this, every class has a reference method toDataFrame as well as
a corresponding S4 method as.data.frame that works in the traditional sense.
Converting a single object will typically not be particularly useful by itself but
there is a convenience method to convert an entire list, twListToDF which takes
a list of objects from a single twitteR class:

> df <- twListToDF(r_tweets)

> head(df)

text
1 RT @quantlabs: Is Microsoft #Office #Excel or #Rstats or Matlab most popular for predictive models in #quant #trading? | http://t.co/lo3Tco
2 Is Microsoft #Office #Excel or #Rstats or Matlab most popular for predictive models in #quant #trading? | http://t.co/lo3TcoDjye
3 RT @reichlab: really cool. RT @benjaminlind: R on the Cloud is now at #rstats version 3.0.1, has a graphics window ... http://t.co/ME22BIaT
4 RT @simplystats: Use R! 2014 to be hosted by UCLA Statistics #rstats
5 NBA (Charlotte Bobcats) seeking #RStats nerds:\n\nhttp://t.co/kYxoMNpaQ5
6 RT @simplystats: Use R! 2014 to be hosted by UCLA Statistics #rstats
favorited favoriteCount replyToSN created truncated replyToSID

1 FALSE 0 <NA> 2013-07-08 23:13:33 FALSE <NA>
2 FALSE 0 <NA> 2013-07-08 22:25:32 FALSE <NA>

7

3 FALSE 0 <NA> 2013-07-08 22:23:33 FALSE <NA>
4 FALSE 0 <NA> 2013-07-08 22:22:57 FALSE <NA>
5 FALSE 1 <NA> 2013-07-08 22:13:03 FALSE <NA>
6 FALSE 0 <NA> 2013-07-08 22:09:36 FALSE <NA>

id replyToUID
1 354377745855291393 <NA>
2 354365664967929857 <NA>
3 354365161680797698 <NA>
4 354365014070673409 <NA>
5 354362520615665665 <NA>
6 354361654286360576 <NA>

statusSource
1 RoundTeam
2 HootSuite
3 Twitter for iPhone
4 Twitter for iPhone
5 web
6 Tweetbot for iOS

screenName retweetCount isRetweet retweeted longitude latitude
1 infor3x 1 TRUE FALSE <NA> <NA>
2 quantlabs 1 FALSE FALSE <NA> <NA>
3 yannabraham 3 TRUE FALSE <NA> <NA>
4 yannabraham 8 TRUE FALSE <NA> <NA>
5 M_T_Patterson 0 FALSE FALSE <NA> <NA>
6 PotardDechaine 8 TRUE FALSE <NA> <NA>

6 Examples Of twitteR In The Wild

I’ve found some examples around the web of people using this package for various
purposes, hopefully some of these can give you good ideas on how to do things.
Unfortunately I didn’t give the package the most easily searched name! If you
know of a good example please let me know.

� Jeffrey Breen’s sentiment analysis example: http://www.inside-r.org/
howto/mining-twitter-airline-consumer-sentiment

� Mapping your followers: http://simplystatistics.org/2011/12/21/
an-r-function-to-map-your-twitter-followers/

� Yangchao Zhao’s book on data mining w/ R http://www.amazon.com/
Data-Mining-Examples-Case-Studies/dp/0123969638

� Gary Miner et al’s book on data mining http://www.amazon.com/Practical-Statistical-Analysis-Non-structured-Applications/
dp/012386979X

� Mining Twitter with R https://sites.google.com/site/miningtwitter/
home

8

� Organization or conversation in Twitter: A case study of chatterboxing
https://www.asis.org/asist2012/proceedings/Submissions/185.pdf

7 Session Information

The version number of R and packages loaded for generating the vignette were:

R version 3.0.0 (2013-04-03)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:
[1] C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] twitteR_1.1.7 rjson_0.2.12 ROAuth_0.9.3 digest_0.6.3 RCurl_1.95-4.1
[6] bitops_1.0-5

loaded via a namespace (and not attached):
[1] tools_3.0.0

9

