
Contents

1 Classes 2
1.1 poly.univar – univariate polynomial 2

1.1.1 PolynomialInterface – base class for all univariate polyno-
mials . 3
1.1.1.1 differentiate – formal differentiation 4
1.1.1.2 downshift_degree – decreased degree polynomial 4
1.1.1.3 upshift_degree – increased degree polynomial . 4
1.1.1.4 ring_mul – multiplication in the ring 4
1.1.1.5 scalar_mul – multiplication with a scalar 4
1.1.1.6 term_mul – multiplication with a term 4
1.1.1.7 square – multiplication with itself 5

1.1.2 BasicPolynomial – basic implementation of polynomial . . 5
1.1.3 SortedPolynomial – polynomial keeping terms sorted . . . 5

1.1.3.1 degree – degree 6
1.1.3.2 leading_coefficient – the leading coefficient . . . 6
1.1.3.3 leading_term – the leading term 6
1.1.3.4 †ring_mul_karatsuba – the leading term 6

1

Chapter 1

Classes

1.1 poly.univar – univariate polynomial
• Classes

– †PolynomialInterface

– †BasicPolynomial

– SortedPolynomial

This poly.univar using following type:

polynomial :
polynomial is an instance of some descendant class of PolynomialInter-
face in this context.

2

1.1.1 PolynomialInterface – base class for all univariate
polynomials

Initialize (Constructor)

Since the interface is an abstract class, do not instantiate.
The class is derived from FormalSumContainerInterface.

Operations

operator explanation
f * g multiplication1

f ** i powering

3

Methods

1.1.1.1 differentiate – formal differentiation

differentiate(self) → polynomial

Return the formal differentiation of this polynomial.

1.1.1.2 downshift_degree – decreased degree polynomial

downshift_degree(self, slide: integer) → polynomial

Return the polynomial obtained by shifting downward all terms with degrees
of slide.

Be careful that if the least degree term has the degree less than slide then
the result is not mathematically a polynomial. Even in such a case, the method
does not raise an exception.

†f.downshift_degree(slide) is equivalent to f.upshift_degree(-slide).

1.1.1.3 upshift_degree – increased degree polynomial

upshift_degree(self, slide: integer) → polynomial

Return the polynomial obtained by shifting upward all terms with degrees of
slide.
†f.upshift_degree(slide) is equivalent to f.term_mul((slide, 1)).

1.1.1.4 ring_mul – multiplication in the ring

ring_mul(self, other: polynomial) → polynomial

Return the result of multiplication with the other polynomial.

1.1.1.5 scalar_mul – multiplication with a scalar

scalar_mul(self, scale: scalar) → polynomial

Return the result of multiplication by scalar scale.

1.1.1.6 term_mul – multiplication with a term

term_mul(self, term: term) → polynomial

Return the result of multiplication with the given term. The term can be given
as a tuple (degree, coeff) or as a polynomial.

4

1.1.1.7 square – multiplication with itself

square(self) → polynomial
Return the square of this polynomial.

1.1.2 BasicPolynomial – basic implementation of polyno-
mial

Basic polynomial data type. There are no concept such as variable name and
ring.

Initialize (Constructor)

BasicPolynomial(coefficients: terminit, **keywords: dict)
→ BasicPolynomial

This class inherits and implements PolynomialInterface.
The type of the coefficients is terminit.

1.1.3 SortedPolynomial – polynomial keeping terms sorted

Initialize (Constructor)

SortedPolynomial(coefficients: terminit, _sorted: bool=False,
**keywords: dict)

→ SortedPolynomial
The class is derived from PolynomialInterface.

The type of the coefficients is terminit. Optionally _sorted can be True if
the coefficients is an already sorted list of terms.

5

Methods

1.1.3.1 degree – degree

degree(self) → integer

Return the degree of this polynomial. If the polynomial is the zero polynomial,
the degree is −1.

1.1.3.2 leading_coefficient – the leading coefficient

leading_coefficient(self) → object

Return the coefficient of highest degree term.

1.1.3.3 leading_term – the leading term

leading_term(self) → tuple

Return the leading term as a tuple (degree, coefficient).

1.1.3.4 †ring_mul_karatsuba – the leading term

ring_mul_karatsuba(self, other: polynomial) → polynomial

Multiplication of two polynomials in the same ring. Computation is carried
out by Karatsuba method.

This may run faster when degree is higher than 100 or so. It is off by default,
if you need to use this, do by yourself.

6

Bibliography

7

	1 Classes
	1.1 poly.univar – univariate polynomial
	1.1.1 PolynomialInterface – base class for all univariate polynomials
	1.1.1.1 differentiate – formal differentiation
	1.1.1.2 downshift_degree – decreased degree polynomial
	1.1.1.3 upshift_degree – increased degree polynomial
	1.1.1.4 ring_mul – multiplication in the ring
	1.1.1.5 scalar_mul – multiplication with a scalar
	1.1.1.6 term_mul – multiplication with a term
	1.1.1.7 square – multiplication with itself

	1.1.2 BasicPolynomial – basic implementation of polynomial
	1.1.3 SortedPolynomial – polynomial keeping terms sorted
	1.1.3.1 degree – degree
	1.1.3.2 leading_coefficient – the leading coefficient
	1.1.3.3 leading_term – the leading term
	1.1.3.4 ring_mul_karatsuba – the leading term

