Contents

1 Classes
1.1 poly.formalsum — formal sum

1.1.1 FormalSumContainerInterface — interface class
1.1.1.1 construct _with default — copy-constructing
1.1.1.2 iterterms — iterator of terms
1.1.1.3 itercoefficients — iterator of coefficients.
1.1.1.4 iterbases — iterator of bases
1.1.1.5 terms —listof terms
1.1.1.6 coefficients — list of coefficients
1.1.1.7 bases —listof bases
1.1.1.8 terms map —list of terms
1.1.1.9 coeflicients map — list of coefficients
1.1.1.10 bases map — listof bases

1.1.2 DictFormalSum — formal sum implemented with dictionary

1.1.3 ListFormalSum - formal sum implemented with list

Y O U UL UL U i s s b e o N

Chapter 1

Classes

1.1 poly.formalsum — formal sum

e Classes

— tFormalSumContainerInterface
— DictFormalSum

— tListFormalSum

The formal sum is mathematically a finite sum of terms, A term consists of
two parts: coefficient and base. All coefficients in a formal sum are in a common
ring, while bases are arbitrary.

Two formal sums can be added in the following way. If there are terms with
common base, they are fused into a new term with the same base and coefficients
added.

A coefficient can be looked up from the base. If the specified base does not
appear in the formal sum, it is null.

We refer the following for convenience as terminit:

terminit :
terminit means one of types to initialize dict. The dictionary constructed
from it will be considered as a mapping from bases to coefficients.

Note for beginner You may need USE only DictFormalSum, but may
have to READ the description of FormalSumContainerInterface because
interface (all method names and their semantics) is defined in it.

http://docs.python.org/library/stdtypes#dict

1.1.1 FormalSumContainerInterface — interface class

Initialize (Constructor)

Since the interface is an abstract class, do not instantiate.

The interface defines what “formal sum” is. Derived classes must provide the
following operations and methods.

Operations
operator explanation
f+g addition
f-g subtraction
-f negation
+f new copy
f * a, a * f | multiplication by scalar a
f == equality
fl=g inequality
f [b] get coeflicient corresponding to a base b
b in f return whether base b is in £
len(f) number of terms
hash(f) hash

Methods

1.1.1.1 construct with default — copy-constructing

construct with default(self, maindata: terminit) — FormalSumContainerInterface
Create a new formal sum of the same class with self, with given only the

maindata and use copy of self’s data if necessary.

1.1.1.2 iterterms — iterator of terms
iterterms(self) — iterator
Return an iterator of the terms.

Each term yielded from iterators is a (base, coefficient) pair.

1.1.1.3 itercoefficients — iterator of coefficients

itercoefficients(self) — iterator

Return an iterator of the coefficients.

1.1.1.4 iterbases — iterator of bases

iterbases(self) — iterator

Return an iterator of the bases.

1.1.1.5 terms — list of terms
terms(self) — list
Return a list of the terms.

Each term in returned lists is a (base, coefficient) pair.

1.1.1.6 coefficients — list of coefficients

coefficients(self) — list

Return a list of the coefficients.

1.1.1.7 Dbases — list of bases

bases(self) — list

Return a list of the bases.

1.1.1.8 terms map — list of terms

terms_map(self, func: function) — FormalSumContainerInterface
Map on terms, i.e., create a new formal sum by applying func to each term.
func has to accept two parameters base and coefficient, then return a new

term pair.

1.1.1.9 coefficients map — list of coefficients

coefficients map(self) — FormalSumContainerInterface

Map on coefficients, i.e., create a new formal sum by applying func to each
coefficient.

func has to accept one parameters coefficient, then return a new coeffi-
cient.

1.1.1.10 bases map — list of bases

bases map(self) — FormalSumContainerInterface
Map on bases, i.e., create a new formal sum by applying func to each base.

func has to accept one parameters base, then return a new base.

1.1.2 DictFormalSum — formal sum implemented with dic-
tionary

A formal sum implementation based on dict.

This class inherits FormalSumContainerInterface. All methods of the
interface are implemented.

Initialize (Constructor)

DictFormalSum/(args: terminit, defaultvalue: RingElement—None)
— DictFormalSum

See terminit for type of args. It makes a mapping from bases to coefficients.
The optional argument defaultvalue is the default value for __getitem__,
i.e., if there is no term with the specified base, a look up attempt returns the
defaultvalue. It is, thus, an element of the ring to which other coefficients belong.

1.1.3 ListFormalSum — formal sum implemented with list
A formal sum implementation based on list.

This class inherits FormalSumContainerInterface. All methods of the
interface are implemented.

Initialize (Constructor)

ListFormalSum(args: terminit, defaultvalue: RingElement=None)
— ListFormalSum

See terminit for type of args. It makes a mapping from bases to coefficients.
The optional argument defaultvalue is the default value for __getitem__,
i.e., if there is no term with the specified base, a look up attempt returns the
defaultvalue. It is, thus, an element of the ring to which other coefficients belong.

Bibliography

	1 Classes
	1.1 poly.formalsum – formal sum
	1.1.1 FormalSumContainerInterface – interface class
	1.1.1.1 construct_with_default – copy-constructing
	1.1.1.2 iterterms – iterator of terms
	1.1.1.3 itercoefficients – iterator of coefficients
	1.1.1.4 iterbases – iterator of bases
	1.1.1.5 terms – list of terms
	1.1.1.6 coefficients – list of coefficients
	1.1.1.7 bases – list of bases
	1.1.1.8 terms_map – list of terms
	1.1.1.9 coefficients_map – list of coefficients
	1.1.1.10 bases_map – list of bases

	1.1.2 DictFormalSum – formal sum implemented with dictionary
	1.1.3 ListFormalSum – formal sum implemented with list

