
Contents

1 Classes 3
1.1 elliptic – elliptic class object . 3

1.1.1 †ECGeneric – generic elliptic curve class 4
1.1.1.1 simple – simplify the curve coefficient 6
1.1.1.2 changeCurve – change the curve by coordinate

change . 6
1.1.1.3 changePoint – change coordinate of point on the

curve . 6
1.1.1.4 coordinateY – Y-coordinate from X-coordinate . 6
1.1.1.5 whetherOn – Check point is on curve 7
1.1.1.6 add – Point addition on the curve 7
1.1.1.7 sub – Point subtraction on the curve 7
1.1.1.8 mul – Scalar point multiplication on the curve . 7
1.1.1.9 divPoly – division polynomial 7

1.1.2 ECoverQ – elliptic curve over rational field 8
1.1.2.1 point – obtain random point on curve 9

1.1.3 ECoverGF – elliptic curve over finite field 10
1.1.3.1 point – find random point on curve 11
1.1.3.2 naive – Frobenius trace by naive method 11
1.1.3.3 Shanks_Mestre – Frobenius trace by Shanks and

Mestre method 11
1.1.3.4 Schoof – Frobenius trace by Schoof’s method . . 11
1.1.3.5 trace – Frobenius trace 12
1.1.3.6 order – order of group of rational points on the

curve . 12
1.1.3.7 pointorder – order of point on the curve 12
1.1.3.8 TatePairing – Tate Pairing 13
1.1.3.9 TatePairing_Extend – Tate Pairing with final

exponentiation 13
1.1.3.10 WeilPairing – Weil Pairing 13
1.1.3.11 BSGS – point order by Baby-Step and Giant-Step 13
1.1.3.12 DLP_BSGS – solve Discrete Logarithm Prob-

lem by Baby-Step and Giant-Step 14
1.1.3.13 structure – structure of group of rational points 14

1

1.1.3.14 issupersingular – check supersingular curve . . . 14
1.1.4 EC(function) . 16

2

Chapter 1

Classes

1.1 elliptic – elliptic class object
• Classes

– ECGeneric

– ECoverQ

– ECoverGF

• Functions

– EC

This module using following type:

weierstrassform :
weierstrassform is a list (a1, a2, a3, a4, a6) or (a4, a6), it represents E :
y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6 or E : y2 = x3 + a4x + a6,
respectively.

infpoint :
infpoint is the list [0], which represents infinite point on the elliptic curve.

point :
point is two-dimensional coordinate list [x, y] or infpoint.

3

1.1.1 †ECGeneric – generic elliptic curve class

Initialize (Constructor)

ECGeneric(coefficient: weierstrassform, basefield: Field=None)
→ ECGeneric

Create an elliptic curve object.

The class is for the definition of elliptic curves over general fields. Instead of
using this class directly, we recommend that you call EC.
†The class precomputes the following values.

• shorter form: y2 = b2x
3 + b4x

2 + b6x+ b8

• shortest form: y2 = x3 + c4x+ c6

• discriminant

• j-invariant

All elements of coefficient must be in basefield.
See weierstrassform for more information about coefficient. If discriminant
of self equals 0, it raises ValueError.

Attributes

basefield :
It expresses the field which each coordinate of all points in self is on. (This
means not only self is defined over basefield.)

ch :
It expresses the characteristic of basefield.

infpoint :
It expresses infinity point (i.e. [0]).

a1, a2, a3, a4, a6 :
It expresses the coefficients a1, a2, a3, a4, a6.

b2, b4, b6, b8 :
It expresses the coefficients b2, b4, b6, b8.

c4, c6 :
It expresses the coefficients c4, c6.

disc :
It expresses the discriminant of self.

4

j :
It expresses the j-invariant of self.

coefficient :
It expresses the weierstrassform of self.

5

Methods

1.1.1.1 simple – simplify the curve coefficient

simple(self) → ECGeneric

Return elliptic curve corresponding to the short Weierstrass form of self by
changing the coordinates.

1.1.1.2 changeCurve – change the curve by coordinate change

changeCurve(self, V: list) → ECGeneric

Return elliptic curve corresponding to the curve obtained by some coordinate
change x = u2x′ + r, y = u3y′ + su2x′ + t.

For u ̸= 0, the coordinate change gives some curve which is basefield-
isomorphic to self.

V must be a list of the form [u, r, s, t], where u, r, s, t are in basefield.

1.1.1.3 changePoint – change coordinate of point on the curve

changePoint(self, P: point, V: list) → point

Return the point corresponding to the point obtained by the coordinate
change x′ = (x− r)u−2, y′ = (y − s(x− r) + t)u−3.

Note that the inverse coordinate change is x = u2x′+r, y = u3y′+su2x′+t.See
changeCurve.

V must be a list of the form [u, r, s, t], where u, r, s, t are in basefield.u must
be non-zero.

1.1.1.4 coordinateY – Y-coordinate from X-coordinate

coordinateY(self, x: FieldElement) → FieldElement / False

Return Y-coordinate of the point on self whose X-coordinate is x.

The output would be one Y-coordinate (if a coordinate is found). If such a
Y-coordinate does not exist, it returns False.

6

1.1.1.5 whetherOn – Check point is on curve

whetherOn(self, P: point) → bool

Check whether the point P is on self or not.

1.1.1.6 add – Point addition on the curve

add(self, P: point, Q: point) → point

Return the sum of the point P and Q on self.

1.1.1.7 sub – Point subtraction on the curve

sub(self, P: point, Q: point) → point

Return the subtraction of the point P from Q on self.

1.1.1.8 mul – Scalar point multiplication on the curve

mul(self, k: integer, P: point) → point

Return the scalar multiplication of the point P by a scalar k on self.

1.1.1.9 divPoly – division polynomial

divPoly(self, m: integer=None) → FieldPolynomial/(f: list, H: integer)

Return the division polynomial.

If m is odd, this method returns the usual division polynomial. If m is even,
return the quotient of the usual division polynomial by 2y + a1x+ a3.
†If m is not specified (i.e. m=None), then return (f, H). H is the least prime sat-
isfying

∏
2≤l≤H, l:prime l > 4

√
q, where q is the order of basefield. f is the list

of k-division polynomials up to k ≤ H. These are used for Schoof’s algorithm.

7

1.1.2 ECoverQ – elliptic curve over rational field
The class is for elliptic curves over the rational field Q (RationalField in
nzmath.rational).
The class is a subclass of ECGeneric.

Initialize (Constructor)

ECoverQ(coefficient: weierstrassform) → ECoverQ

Create elliptic curve over the rational field.

All elements of coefficient must be integer or Rational.
See weierstrassform for more information about coefficient.

Examples

>>> E = elliptic.ECoverQ([ratinal.Rational(1, 2), 3])

>>> print E.disc

-3896/1

>>> print E.j

1728/487

8

Methods

1.1.2.1 point – obtain random point on curve

point(self, limit: integer=1000) → point

Return a random point on self.

limit expresses the time of trying to choose points. If failed, raise ValueError.
†Because it is difficult to search the rational point over the rational field, it might
raise error with high frequency.

Examples

>>> print E.changeCurve([1, 2, 3, 4])

y ** 2 + 6/1 * x * y + 8/1 * y = x ** 3 - 3/1 * x ** 2 - 23/2 * x - 4/1

>>> E.divPoly(3)

FieldPolynomial([(0, Rational(-1, 4)), (1, Rational(36, 1)), (2, Rational(3, 1)

), (4, Rational(3, 1))], RationalField())

9

1.1.3 ECoverGF – elliptic curve over finite field
The class is for elliptic curves over a finite field, denoted by Fq (FiniteField
and its subclasses in nzmath).
The class is a subclass of ECGeneric.

Initialize (Constructor)

ECoverGF(coefficient: weierstrassform, basefield: FiniteField)
→ ECoverGF

Create elliptic curve over a finite field.

All elements of coefficient must be in basefield. basefield should be an in-
stance of FiniteField.
See weierstrassform for more information about coefficient.

Examples

>>> E = elliptic.ECoverGF([2, 5], finitefield.FinitePrimeField(11))

>>> print E.j

7 in F_11

>>> E.whetherOn([8, 4])

True

>>> E.add([3, 4], [9, 9])

[FinitePrimeFieldElement(0, 11), FinitePrimeFieldElement(4, 11)]

>>> E.mul(5, [9, 9])

[FinitePrimeFieldElement(0, 11)]

10

Methods

1.1.3.1 point – find random point on curve

point(self) → point

Return a random point on self.

This method uses a probabilistic algorithm.

1.1.3.2 naive – Frobenius trace by naive method

naive(self) → integer

Return Frobenius trace t by a naive method.

†The function counts up the Legendre symbols of all rational points on self.
Frobenius trace of the curve is t such that #E(Fq) = q + 1− t, where #E(Fq)
stands for the number of points on self over self.basefield Fq.

The characteristic of self.basefield must not be 2 nor 3.

1.1.3.3 Shanks_Mestre – Frobenius trace by Shanks and Mestre
method

Shanks_Mestre(self) → integer

Return Frobenius trace t by Shanks and Mestre method.

†This uses the method proposed by Shanks and Mestre. †See Algorithm 7.5.3
of [1] for more information about the algorithm.
Frobenius trace of the curve is t such that #E(Fq) = q + 1− t, where #E(Fq)
stands for the number of points on self over self.basefield Fq.

self.basefield must be an instance of FinitePrimeField.

1.1.3.4 Schoof – Frobenius trace by Schoof’s method

Schoof(self) → integer

Return Frobenius trace t by Schoof’s method.

†This uses the method proposed by Schoof.

11

Frobenius trace of the curve is t such that #E(Fq) = q + 1− t, where #E(Fq)
stands for the number of points on self over self.basefield Fq.

1.1.3.5 trace – Frobenius trace

trace(self, r: integer=None) → integer

Return Frobenius trace t.

Frobenius trace of the curve is t such that #E(Fq) = q+1− t, where #E(Fq)
stands for the number of points on self over self.basefield Fq.
If positive r given, it returns qr + 1−#E(Fqr).
†The method selects algorithms by investigating self.ch when self.basefield
is an instance of FinitePrimeField. If ch<1000, the method uses naive.
If 104 < ch < 1030, the method uses Shanks_Mestre. Otherwise, it uses
Schoof.

The parameter r must be positive integer.

1.1.3.6 order – order of group of rational points on the curve

order(self, r: integer=None) → integer

Return order #E(Fq) = q + 1− t.

If positive r given, this computes #E(Fq
r) instead.

†On the computation of Frobenius trace t, the method calls trace.

The parameter r must be positive integer.

1.1.3.7 pointorder – order of point on the curve

pointorder(self, P: point, ord_factor: list=None) → integer

Return order of a point P.

†The method uses factorization of order.
If ord_factor is given, computation of factorizing the order of self is omitted
and it applies ord_factor instead.

12

1.1.3.8 TatePairing – Tate Pairing

TatePairing(self, m: integer, P: point, Q: point) → FiniteFieldElement

Return Tate-Lichetenbaum pairing ⟨P, Q⟩m.

†The method uses Miller’s algorithm.
The image of the Tate pairing is F∗

q/F∗
q
m, but the method returns an element of

Fq, so the value is not uniquely defined. If uniqueness is needed, use TatePair-
ing_Extend.

The point P has to be a m-torsion point (i.e. mP =[0]). Also, the number m

must divide order.

1.1.3.9 TatePairing_Extend – Tate Pairing with final exponentia-
tion

TatePairing_Extend(self, m: integer, P: point, Q: point)
→ FiniteFieldElement

Return Tate Pairing with final exponentiation, i.e. ⟨P, Q⟩m
(q−1)/m.

†The method calls TatePairing.

The point P has to be a m-torsion point (i.e. mP =[0]). Also the number m

must divide order.
The output is in the group generated by m-th root of unity in F∗

q .

1.1.3.10 WeilPairing – Weil Pairing

WeilPairing(self, m: integer, P: point, Q: point) → FiniteFieldElement

Return Weil pairing em(P, Q).

†The method uses Miller’s algorithm.

The points P and Q has to be a m-torsion point (i.e. mP = mQ =[0]). Also,
the number m must divide order.

The output is in the group generated by m-th root of unity in F∗
q .

1.1.3.11 BSGS – point order by Baby-Step and Giant-Step

BSGS(self, P: point) → integer

Return order of point P by Baby-Step and Giant-Step method.

13

†See [2] for more information about the algorithm.

1.1.3.12 DLP_BSGS – solve Discrete Logarithm Problem by Baby-
Step and Giant-Step

DLP_BSGS(self, n: integer, P: point, Q: point) → m: integer

Return m such that Q = mP by Baby-Step and Giant-Step method.

The points P and Q has to be a n-torsion point (i.e. nP = nQ =[0]). Also,
the number n must divide order.
The output m is an integer.

1.1.3.13 structure – structure of group of rational points

structure(self) → structure: tuple

Return the group structure of self.

The structure of E(Fq) is represented as Z/dZ × Z/nZ. The method uses
WeilPairing.

The output structure is a tuple of positive two integers (d, n). d divides n.

1.1.3.14 issupersingular – check supersingular curve

structure(self) → bool

Check whether self is a supersingular curve or not.

Examples

>>> E=nzmath.elliptic.ECoverGF([2, 5], nzmath.finitefield.FinitePrimeField(11))

>>> E.whetherOn([0, 4])

True

>>> print E.coordinateY(3)

4 in F_11

>>> E.trace()

2

>>> E.order()

10

14

>>> E.pointorder([3, 4])

10L

>>> E.TatePairing(10, [3, 4], [9, 9])

FinitePrimeFieldElement(3, 11)

>>> E.DLP_BSGS(10, [3, 4], [9, 9])

6

15

1.1.4 EC(function)

EC(coefficient: weierstrassform, basefield: Field)
→ ECGeneric

Create an elliptic curve object.

All elements of coefficient must be in basefield.
basefield must be RationalField or FiniteField or their subclasses. See also
weierstrassform for coefficient.

16

Bibliography

[1] Richard Crandall and Carl Pomerance. Prime Numbers. Springer, 1st.
edition, 2001.

[2] Lawrence C. Washington. Elliptic Curves: Number Theory and Cryptogra-
phy. DISCRETE MATHEMATICS AND ITS APPLICATIONS. CRC Press,
1st. edition, 2003.

17

	1 Classes
	1.1 elliptic – elliptic class object
	1.1.1 ECGeneric – generic elliptic curve class
	1.1.1.1 simple – simplify the curve coefficient
	1.1.1.2 changeCurve – change the curve by coordinate change
	1.1.1.3 changePoint – change coordinate of point on the curve
	1.1.1.4 coordinateY – Y-coordinate from X-coordinate
	1.1.1.5 whetherOn – Check point is on curve
	1.1.1.6 add – Point addition on the curve
	1.1.1.7 sub – Point subtraction on the curve
	1.1.1.8 mul – Scalar point multiplication on the curve
	1.1.1.9 divPoly – division polynomial

	1.1.2 ECoverQ – elliptic curve over rational field
	1.1.2.1 point – obtain random point on curve

	1.1.3 ECoverGF – elliptic curve over finite field
	1.1.3.1 point – find random point on curve
	1.1.3.2 naive – Frobenius trace by naive method
	1.1.3.3 Shanks_Mestre – Frobenius trace by Shanks and Mestre method
	1.1.3.4 Schoof – Frobenius trace by Schoof's method
	1.1.3.5 trace – Frobenius trace
	1.1.3.6 order – order of group of rational points on the curve
	1.1.3.7 pointorder – order of point on the curve
	1.1.3.8 TatePairing – Tate Pairing
	1.1.3.9 TatePairing_Extend – Tate Pairing with final exponentiation
	1.1.3.10 WeilPairing – Weil Pairing
	1.1.3.11 BSGS – point order by Baby-Step and Giant-Step
	1.1.3.12 DLP_BSGS – solve Discrete Logarithm Problem by Baby-Step and Giant-Step
	1.1.3.13 structure – structure of group of rational points
	1.1.3.14 issupersingular – check supersingular curve

	1.1.4 EC(function)

