
Contents

1 Classes 2
1.1 poly.hensel – Hensel lift . 2

1.1.1 HenselLiftPair – Hensel lift for a pair 3
1.1.1.1 lift – lift one step 4
1.1.1.2 lift_factors – lift a1 and a2 4
1.1.1.3 lift_ladder – lift u1 and u2 4

1.1.2 HenselLiftMulti – Hensel lift for multiple polynomials . . 4
1.1.2.1 lift – lift one step 6
1.1.2.2 lift_factors – lift factors 6
1.1.2.3 lift_ladder – lift u1 and u2 6

1.1.3 HenselLiftSimultaneously 7
1.1.3.1 lift – lift one step 8
1.1.3.2 first_lift – the first step 8
1.1.3.3 general_lift – next step 8

1.1.4 lift_upto – main function 8

1

Chapter 1

Classes

1.1 poly.hensel – Hensel lift
• Classes

– †HenselLiftPair

– †HenselLiftMulti

– †HenselLiftSimultaneously

• Functions

– lift_upto

In this module document, polynomial means integer polynomial.

2

1.1.1 HenselLiftPair – Hensel lift for a pair

Initialize (Constructor)

HenselLiftPair(f: polynomial, a1: polynomial, a2: polynomial, u1: poly-
nomial, u2: polynomial, p: integer, q: integer=p)

→ HenselLiftPair

This object keeps integer polynomial pair which will be lifted by Hensel’s
lemma.

The argument should satisfy the following preconditions:

• f, a1 and a2 are monic

• f == a1*a2 (mod q)

• a1*u1 + a2*u2 == 1 (mod p)

• p divides q and both are positive

from_factors(f: polynomial, a1: polynomial, a2: polynomial, p: inte-
ger)

→ HenselLiftPair

This is a class method to create and return an instance of HenselLiftPair.
You do not have to precompute u1 and u2 for the default constructor; they will
be prepared for you from other arguments.

The argument should satisfy the following preconditions:

• f, a1 and a2 are monic

• f == a1*a2 (mod p)

• p is prime

Attributes

point :
factors a1 and a2 as a list.

3

Methods

1.1.1.1 lift – lift one step

lift(self) →

Lift polynomials by so-called the quadratic method.

1.1.1.2 lift_factors – lift a1 and a2

lift_factors(self) →

Update factors by lifted integer coefficient polynomials Ai’s:

• f == A1 * A2 (mod p * q)

• Ai == ai (mod q) (i = 1, 2)

Moreover, q is updated to p * q.
†The preconditions which should be automatically satisfied:

• f == a1*a2 (mod q)

• a1*u1 + a2*u2 == 1 (mod p)

• p divides q

1.1.1.3 lift_ladder – lift u1 and u2

lift_ladder(self) →

Update u1 and u2 with U1 and U2:

• a1*U1 + a2*U2 == 1 (mod p**2)

• Ui == ui (mod p) (i = 1, 2)

Then, update p to p**2.
†The preconditions which should be automatically satisfied:

• a1*u1 + a2*u2 == 1 (mod p)

1.1.2 HenselLiftMulti – Hensel lift for multiple polynomi-
als

Initialize (Constructor)

HenselLiftMulti(f: polynomial, factors: list, ladder: tuple, p: integer,
q: integer=p)

→ HenselLiftMulti

4

This object keeps integer polynomial factors which will be lifted by Hensel’s
lemma. If the number of factors is just two, then you should use HenselLift-
Pair.
factors is a list of polynomials; we refer those polynomials as a1, a2, . . .

ladder is a tuple of two lists sis and tis, both lists consist polynomials. We
refer polynomials in sis as s1, s2, . . ., and those in tis as t1, t2, . . . Moreover,
we define bi as the product of aj’s for i < j. The argument should satisfy
the following preconditions:

• f and all of factors are monic

• f == a1*...*ar (mod q)

• ai*si + bi*ti == 1 (mod p) (i = 1, 2, . . . , r)

• p divides q and both are positive

from_factors(f: polynomial, factors: list, p: integer)
→ HenselLiftMulti

This is a class method to create and return an instance of HenselLiftMulti.
You do not have to precompute ladder for the default constructor; they will be
prepared for you from other arguments.

The argument should satisfy the following preconditions:

• f and all of factors are monic

• f == a1*...*ar (mod q)

• p is prime

Attributes

point :
factors ais as a list.

5

Methods

1.1.2.1 lift – lift one step

lift(self) →

Lift polynomials by so-called the quadratic method.

1.1.2.2 lift_factors – lift factors

lift_factors(self) →

Update factors by lifted integer coefficient polynomials Ais:

• f == A1*...*Ar (mod p * q)

• Ai == ai (mod q) (i = 1, . . . , r)

Moreover, q is updated to p * q.
†The preconditions which should be automatically satisfied:

• f == a1*...*ar (mod q)

• ai*si + bi*ti == 1 (mod p) (i = 1, . . . , r)

• p divides q

1.1.2.3 lift_ladder – lift u1 and u2

lift_ladder(self) →

Update sis and tis with Sis and Tis:

• a1*Si + bi*Ti == 1 (mod p**2)

• Si == si (mod p) (i = 1, . . . , r)

• Ti == ti (mod p) (i = 1, . . . , r)

Then, update p to p**2.
†The preconditions which should be automatically satisfied:

• ai*si + bi*ti == 1 (mod p) (i = 1, . . . , r)

6

1.1.3 HenselLiftSimultaneously
The method explained in [1].
†Keep these invariants:

• ais, pi and gis are monic

• f == g1*...*gr (mod p)

• f == d0 + d1*p + d2*p**2 +...+ dk*p**k

• hi == g(i+1)*...*gr

• 1 == gi*si + hi*ti (mod p) (i = 1, . . . , r)

• deg(si) < deg(hi), deg(ti) < deg(gi) (i = 1, . . . , r)

• p divides q

• f == l1*...*lr (mod q/p)

• f == a1*...*ar (mod q)

• ui == ai*yi + bi*zi (mod p) (i = 1, . . . , r)

Initialize (Constructor)

HenselLiftSimultaneously(target: polynomial, factors: list, cofactors:
list, bases: list, p: integer)

→ HenselLiftSimultaneously

This object keeps integer polynomial factors which will be lifted by Hensel’s
lemma.

f = target, gi in factors, his in cofactors and sis and tis are in bases.
from_factors(target: polynomial, factors: list, p: integer, ubound: in-
teger=sys.maxint)

→ HenselLiftSimultaneously

This is a class method to create and return an instance of HenselLiftSimultaneously,
whose factors are lifted by HenselLiftMulti upto ubound if it is smaller than
sys.maxint, or upto sys.maxint otherwise. You do not have to precompute
auxiliary polynomials for the default constructor; they will be prepared for you
from other arguments.

f = target, gis in factors.

7

http://docs.python.org/library/sys#maxint

Methods

1.1.3.1 lift – lift one step

lift(self) →

The lift. You should call this method only.

1.1.3.2 first_lift – the first step

first_lift(self) →

Start lifting.
f == l1*l2*...*lr (mod p**2)

Initialize dis, uis, yis and zis. Update ais, bis. Then, update q with p**2.

1.1.3.3 general_lift – next step

general_lift(self) →

Continue lifting.
f == a1*a2*...*ar (mod p*q)

Initialize ais, ubis, yis and zis. Then, update q with p*q.

1.1.4 lift_upto – main function

lift_upto(self, target: polynomial, factors: list, p: integer, bound: in-
teger)

→ tuple

Hensel lift factors mod p of target upto bound and return factors mod q

and the q itself.
These preconditions should be satisfied:

• target is monic.

• target == product(factors) mod p

The result (factors, q) satisfies the following postconditions:

• there exist k s.t. q == p**k >= bound and

• target == product(factors) mod q

8

Bibliography

[1] G. E. Collins and M. J. Encarnación. Improved techniques for factoring
univariate polynomials. Journal of Symbolic Computation, Vol. 21, pp. 313–
327, 1996.

9

	1 Classes
	1.1 poly.hensel – Hensel lift
	1.1.1 HenselLiftPair – Hensel lift for a pair
	1.1.1.1 lift – lift one step
	1.1.1.2 lift_factors – lift a1 and a2
	1.1.1.3 lift_ladder – lift u1 and u2

	1.1.2 HenselLiftMulti – Hensel lift for multiple polynomials
	1.1.2.1 lift – lift one step
	1.1.2.2 lift_factors – lift factors
	1.1.2.3 lift_ladder – lift u1 and u2

	1.1.3 HenselLiftSimultaneously
	1.1.3.1 lift – lift one step
	1.1.3.2 first_lift – the first step
	1.1.3.3 general_lift – next step

	1.1.4 lift_upto – main function

