
Yodl 3.00.0

Frank B. Brokken (f.b.brokken�rug.nl)

initially by Karel Kubat

Center for Information Te
hnology, University of Groningen

1996-NOW

Abstra
t

Yodl is a pa
kage implementing a pre-do
ument language and tools to pro
ess it.

The idea of Yodl is that you write up a do
ument in a pre-language, then use the

tools (e.g. yodl2html) to
onvert it to some �nal do
ument language. Current

onverters are for HTML, man, LaTeX, a poor-man's text
onverter and an experi-

mental XML
onverter. Main do
ument types are `arti
le', `report', `book', `letter'

and `manpage'. The Yodl do
ument language is designed to be easy to use and

extensible.

Contents

1 Introdu
tion 14

1.1 From 1.xx to 2.00: what's new? . 15

1.2 Why use Yodl? . 18

1.3 Copying Yodl . 19

2 Yodl User Guide 20

2.1 Using the yodl program . 20

2.2 The Yodl grammar . 23

2.2.1 Language elements . 24

2.2.2 Line
ontinuation . 28

2.2.3 The +identi�er sequen
e . 29

2.2.4 Preventing ma
ros from being expanded 29

2.3 Chara
ter tables . 30

2.3.1 De�ning a translation table 30

2.3.2 Using a translation table . 32

2.3.3 Pushing and popping
hara
ter tables 32

2.4 Sending literal text to the output . 32

2.5 Counters . 33

2.5.1 Creating a
ounter . 34

2.5.2 Using
ounters . 34

3 All builtin fun
tions 36

3.1 Yodl's builtin
ommands . 36

3.1.1 ADDTOCOUNTER . 36

3.1.2 ADDTOSYMBOL . 37

2

3.1.3 ATEXIT . 37

3.1.4 CHAR . 38

3.1.5 CHDIR . 38

3.1.6 COMMENT . 39

3.1.7 COUNTERVALUE . 39

3.1.8 DECWSLEVEL . 39

3.1.9 DEFINECHARTABLE . 40

3.1.10 DEFINECOUNTER . 41

3.1.11 DEFINEMACRO . 41

3.1.12 DEFINESYMBOL . 46

3.1.13 DELETECHARTABLE . 46

3.1.14 DELETECOUNTER . 46

3.1.15 DELETEMACRO . 47

3.1.16 DELETENOUSERMACRO 47

3.1.17 DELETESYMBOL . 47

3.1.18 DUMMY . 47

3.1.19 ENDDEF . 48

3.1.20 ERROR . 48

3.1.21 EVAL . 48

3.1.22 FILENAME . 50

3.1.23 FPUTS . 50

3.1.24 IFBUILTIN . 50

3.1.25 IFCHARTABLE . 51

3.1.26 IFDEF . 51

3.1.27 IFEMPTY . 52

3.1.28 IFEQUAL . 53

3.1.29 IFGREATER . 54

3.1.30 IFMACRO . 54

3.1.31 IFSMALLER . 55

3.1.32 IFSTREQUAL . 56

3.1.33 IFSTRSUB . 56

3

3.1.34 IFSYMBOL . 57

3.1.35 IFZERO . 57

3.1.36 INCLUDEFILE . 58

3.1.37 INCLUDELIT, INCLUDELITERAL 59

3.1.38 INCWSLEVEL . 59

3.1.39 INTERNALINDEX . 59

3.1.40 NEWCOUNTER . 60

3.1.41 NOEXPAND . 60

3.1.42 NOEXPANDINCLUDE . 61

3.1.43 NOEXPANDPATHINCLUDE 62

3.1.44 NOTRANS . 63

3.1.45 NOUSERMACRO . 64

3.1.46 OUTBASE . 64

3.1.47 OUTDIR . 64

3.1.48 OUTFILENAME . 65

3.1.49 PARAGRAPH . 65

3.1.50 PIPETHROUGH . 66

3.1.51 POPCHARTABLE . 66

3.1.52 POPCOUNTER . 67

3.1.53 POPMACRO . 67

3.1.54 POPSYMBOL . 67

3.1.55 POPWSLEVEL . 68

3.1.56 PUSHCHARTABLE . 68

3.1.57 PUSHCOUNTER . 68

3.1.58 PUSHMACRO . 69

3.1.59 PUSHSYMBOL . 69

3.1.60 PUSHWSLEVEL . 70

3.1.61 RENAMEMACRO . 70

3.1.62 SETCOUNTER . 71

3.1.63 SETSYMBOL . 71

3.1.64 STARTDEF . 71

4

3.1.65 SUBST . 71

3.1.66 SYMBOLVALUE . 72

3.1.67 SYSTEM . 73

3.1.68 TYPEOUT . 73

3.1.69 UNDEFINEMACRO . 74

3.1.70 UPPERCASE . 74

3.1.71 USECHARTABLE . 74

3.1.72 USECOUNTER . 74

3.1.73 VERBOSITY . 75

3.1.74 WARNING . 76

3.1.75 WRITEOUT . 76

4 Ma
ros and Do
ument types 77

4.1 General stru
ture of a Yodl do
ument 78

4.1.1 Do
ument types . 79

4.1.2 The manpage do
ument type 80

4.2 Prede�ned ma
ros . 83

4.2.1 abstra
t(text) . 84

4.2.2 addntosymbol(symbol)(n)(text) 84

4.2.3 a�liation(site) . 84

4.2.4 AfourEnlarged() . 84

4.2.5 appendix() . 84

4.2.6 arti
le(title)(author)(date) . 84

4.2.7 bf(text) . 84

4.2.8 bind(text) . 84

4.2.9 book(title)(author)(date) . 85

4.2.10
ell(
ontents) . 85

4.2.11
ells(nColumns)(
ontents) . 85

4.2.12
ellsline(from)(
ount) . 85

4.2.13
enter(text) . 85

4.2.14
hapter(title) . 85

4.2.15
index() . 85

5

4.2.16
ite(1) . 86

4.2.17
learpage() . 86

4.2.18
ode(text) . 86

4.2.19
olumnline(from)(to) . 86

4.2.20 def(ma
roname)(nrofargs)(rede�nition) 86

4.2.21 des
ription(list) . 86

4.2.22 dit(itemname) . 86

4.2.23 eit() . 87

4.2.24 ellipsis() . 87

4.2.25 em(text) . 87

4.2.26 email(address) . 87

4.2.27 end
enter() . 87

4.2.28 enddit() . 87

4.2.29 endeit() . 87

4.2.30 endit() . 87

4.2.31 endmenu() . 87

4.2.32 endtable() . 87

4.2.33 enumerate(list) . 88

4.2.34 enumeration(list) . 88

4.2.35 euro() . 88

4.2.36 �g(label) . 88

4.2.37 �gure(�le)(
aption)(label) . 88

4.2.38 �le(text) . 88

4.2.39 �ndex() . 88

4.2.40 footnote(text) . 88

4.2.41 gagma
rowarning(name name ...) 89

4.2.42 geta�lstring() . 89

4.2.43 getauthorstring() . 89

4.2.44 get
hapterstring() . 89

4.2.45 getdatestring() . 89

4.2.46 get�gurestring() . 89

6

4.2.47 getpartstring() . 89

4.2.48 gettitlestring() . 89

4.2.49 getto
string() . 90

4.2.50 htmlbodyopt(option)(value) 90

4.2.51 html
ommand(
md) . 90

4.2.52 htmlheadopt(option) . 90

4.2.53 htmlnew�le() . 90

4.2.54 htmlstylesheet(url) . 90

4.2.55 htmltag(tagname)(start) . 90

4.2.56 ifnewparagraph(truelist)(falselist) 91

4.2.57 in
lude�le(�le) . 91

4.2.58 in
ludeverbatim(�le) . 91

4.2.59 it() . 91

4.2.60 itemization(list) . 91

4.2.61 itemize(list) . 92

4.2.62 kindex() . 92

4.2.63 label(labelname) . 92

4.2.64 langle() . 92

4.2.65 languagedut
h() . 92

4.2.66 languageenglish() . 92

4.2.67 languageportugese() . 92

4.2.68 LaTeX() . 92

4.2.69 latexaddlayout(arg) . 92

4.2.70 latex
ommand(
md) . 93

4.2.71 latexdo
ument
lass(
lass) . 93

4.2.72 latexlayout
mds(NOTRANSs) 93

4.2.73 latexoptions(options) . 93

4.2.74 latexpa
kage(options)(name) 93

4.2.75 l
hapter(label)(title) . 93

4.2.76 letter(language)(date)(subje
t)(opening)(salutation)(author) 93

4.2.77 letteraddenda(type)(value) 94

7

4.2.78 letteradmin(yourdate)(yourref) 94

4.2.79 letterfootitem(name)(value) 94

4.2.80 letterreplyto(name)(address)(zip
ity) 94

4.2.81 letterto(element) . 94

4.2.82 link(des
ription)(labelname) 94

4.2.83 lref(des
ription)(labelname) 94

4.2.84 lse
t(label)(title) . 95

4.2.85 lsubse
t(label)(title) . 95

4.2.86 lsubsubse
t(label)(title) . 95

4.2.87 lsubsubsubse
t(label)(title) 95

4.2.88 lurl(lo
ator) . 95

4.2.89 mailto(address) . 95

4.2.90 makeindex() . 95

4.2.91 man
ommand(
md) . 95

4.2.92 manpage(title)(se
tion)(date)(sour
e)(manual) 95

4.2.93 manpageauthor() . 96

4.2.94 manpagebugs() . 96

4.2.95 manpagedes
ription() . 96

4.2.96 manpagediagnosti
s() . 96

4.2.97 manpage�les() . 96

4.2.98 manpagename(name)(short des
ription) 96

4.2.99 manpageoptions() . 96

4.2.100manpagese
tion(SECTIONNAME) 96

4.2.101manpageseealso() . 97

4.2.102manpagesynopsis() . 97

4.2.103mbox() . 97

4.2.104menu(list) . 97

4.2.105metaC(text) . 97

4.2.106metaCOMMENT(text) . 97

4.2.107mit() . 97

4.2.108ms
ommand(
md) . 97

8

4.2.109n
hapter(title) . 97

4.2.110nemail(name)(address) . 98

4.2.111nl() . 98

4.2.112node(previous)(this)(next)(up) 98

4.2.113nodepre�x(text) . 98

4.2.114nodepre�x(text) . 98

4.2.115nodetext(text) . 98

4.2.116nop(text) . 98

4.2.117nosloppyhfuzz() . 99

4.2.118notableof
ontents() . 99

4.2.119notitle
learpage() . 99

4.2.120noto

learpage() . 99

4.2.121notransin
lude(�lename) . 99

4.2.122noxlatin() . 99

4.2.123nparagraph(title) . 100

4.2.124npart(title) . 100

4.2.125nse
t(title) . 100

4.2.126nsubse
t(title) . 100

4.2.127nsubsubse
t(title) . 100

4.2.128nsubsubse
t(title) . 100

4.2.129paragraph(title) . 100

4.2.130part(title) . 100

4.2.131pindex() . 100

4.2.132plainhtml(title) . 101

4.2.133printindex() . 101

4.2.134quote(text) . 101

4.2.135rangle() . 101

4.2.136redef(nrofargs)(rede�nition) 101

4.2.137rede�nema
ro(nrofargs)(rede�nition) 101

4.2.138ref(labelname) . 101

4.2.139report(title)(author)(date) . 101

9

4.2.140ro�
md(dot
md)(sameline)(se
ondline)(thirdline) 102

4.2.141row(
ontents) . 102

4.2.142rowline() . 102

4.2.143s
(text) . 102

4.2.144se
t(title) . 102

4.2.145seta�lstring(name) . 102

4.2.146setauthorstring(name) . 103

4.2.147set
hapterstring(name) . 103

4.2.148setdatestring(name) . 103

4.2.149set�gureext(name) . 103

4.2.150set�gurestring(name) . 103

4.2.151sethtml�gureext(ext) . 103

4.2.152setin
ludepath(name) . 103

4.2.153setlanguage(name) . 104

4.2.154setlatexalign(alignment) . 104

4.2.155setlatex�gureext(ext) . 104

4.2.156setlatexverb
har(
har) . 104

4.2.157setmanalign(alignment) . 104

4.2.158setpartstring(name) . 104

4.2.159setro�tab(x) . 105

4.2.160setro�tableoptions(optionlist) 105

4.2.161settitlestring(name) . 105

4.2.162setto
string(name) . 105

4.2.163sgml
ommand(
md) . 105

4.2.164sgmltag(tag)(ono�) . 105

4.2.165sloppyhfuzz(points) . 106

4.2.166standardlayout() . 106

4.2.167start
enter() . 106

4.2.168startdit() . 106

4.2.169starteit() . 106

4.2.170startit() . 106

10

4.2.171startmenu() . 106

4.2.172starttable() . 106

4.2.173subs(text) . 106

4.2.174subse
t(title) . 107

4.2.175subsubse
t(title) . 107

4.2.176subsubsubse
t(title) . 107

4.2.177sups(text) . 107

4.2.178table(nColumns)(alignment)(Contents) 107

4.2.179t
ell(text) . 107

4.2.180tely
ommand(
md) . 107

4.2.181TeX() . 107

4.2.182texinfo
ommand(
md) . 108

4.2.183tindex() . 108

4.2.184title
learpage() . 108

4.2.185to

learpage() . 108

4.2.186tt(text) . 108

4.2.187txt
ommand(
md) . 108

4.2.188url(des
ription)(lo
ator) . 108

4.2.189verb(text) . 109

4.2.190verbin
lude(�lename) . 109

4.2.191verbpipe(
ommand)(text) . 109

4.2.192vindex() . 109

4.2.193whenhtml(text) . 109

4.2.194whenlatex(text) . 109

4.2.195whenman(text) . 109

4.2.196whenms(text) . 110

4.2.197whensgml(text) . 110

4.2.198whentely(text) . 110

4.2.199whentexinfo(text) . 110

4.2.200whentxt(text) . 110

4.2.201whenxml(text) . 110

11

4.2.202xit(itemname) . 110

4.2.203xml
ommand(
md) . 110

4.2.204xmlmenu(order)(title)(menulist) 111

4.2.205xmlnew�le() . 111

4.2.206xmlsetdo
umentbase(name) 111

4.2.207xmltag(tag)(ono�) . 111

4.3 Conversion-related topi
s . 111

4.3.1 A

ents . 111

4.3.2 Conversion-type spe
i�
 literal
ommands 111

4.3.3 Figures . 114

4.3.4 Fonts and sizes . 115

4.3.5 Labels, links, referen
es and URLs 116

4.3.6 Lists and environments . 119

4.3.7 Se
tioning . 122

4.3.8 Typesetting modi�ers . 123

4.3.9 Mis
ellaneous
ommands . 125

4.4 Lo
ations of the ma
ros . 126

5 Conversions and
onvertors 128

5.1 Conversion s
ript invo
ations . 128

5.2 The HTML
onverter . 129

5.3 The LaTeX
onverter . 130

5.4 The man
onverter . 131

5.5 The txt
onverter . 131

5.6 The experimental XML
onverter . 132

5.7 The Yodl Post-pro
essor `yodlpost' 132

5.8 The support program `yodlverbinsert' 133

5.8.1 Example . 134

6 Te
hni
al information 136

6.1 Obtaining Yodl . 136

6.1.1 Installing Yodl . 136

12

6.2 Organization of the software . 138

6.2.1 Subdire
tories and their meanings 138

6.3 Yodl's
omponent interrelations and
omponent setup 140

6.4 The token-produ
er `lexer_lex()' . 144

6.5 The Parser's Finite State Automaton 146

6.6 Adding a new ma
ro . 148

6.7 The Yodl post-pro
essor . 149

13

Chapter 1

Introdu
tion

Yodl stands for `Your Own Do
ument Language' (originally: Yet Oneother Do
ument

Language) and is basi
ally a pre-pro
essor to
onvert do
ument �les in a spe
ial

ma
ro language (the Yodl language) to any output format. The Yodl language is

not a `�nal' language, in the sense that it
an be viewed or printed dire
tly. Rather,

a do
ument in the Yodl language is a `pre-do
ument', that is
onverted with some

ma
ro pa
kage to an output format, to be further pro
essed.

Yodl was designed in 1996 by Karel Kubat when he needed a good do
ument

prepro
essor to
onvert output to either LaTeX (for printing) or to HTML for

publishing via a WWW site. Although SGML does this too, he wanted something

that is used `intuitively' and with greater ease. This is re�e
ted in the syntax of

the Yodl language, in the available ma
ros of the Yodl ma
ro pa
kage, and very

probably also in other aspe
ts of Yodl. However, Yodl is designed to
onvert to

any output format; so it is possible to write a ma
ro pa
kage that
onverts Yodl

do
uments to, say, the man format for manual pages.

Some highlights of Yodl:

• Yodl allows the in
lusion of �les. This makes it easier to split up a do
ument

into `logi
al' parts, ea
h kept in a separate �le. Thus, a `main do
ument' �le

an in
lude all the sub-parts. (Imagine that you're the editor of a journal.

Authors are likely to send in their submissions in separate �les; in
lusion
an

then be very handy!)

• Files whi
h are in
luded are sear
hed for either `as-is', or in a given `system-

wide in
lude' dire
tory, similar to the workings of the C prepro
essor. There-

fore, it is possible to
reate a set of in
lude �les holding ma
ros, and to pla
e

them into one ma
ro dire
tory. (See also
hapter 4, where a ma
ro pa
kage

that is distributed with Yodl is des
ribed.)

• For all the handled �les (either stated on the
ommandline or in
luded), Yodl

supplies an extension if none is present. The default extension is .yo, but
an

be de�ned to anything in the
ompilation of the Yodl program.

• Yodl supports
onditional parsing of its input,
ontrolled by de�ned symbols.

This resembles the #ifdef / #else / #endif prepro
essor ma
ros of the C

language. Yodl also supports other if
lauses, e.g., to test for the presen
e of

an argument to a ma
ro.

14

• Yodl o�ers hooks to de�ne
ounters, to modify them, and to use them in a

do
ument. Thereby Yodl o�ers the possibility for automati
 numbering of

e.g., se
tions. Of
ourse, some do
ument languages (e.g., LaTeX) o�er this

too; but some don't. When
onverting a Yodl do
ument to, say, HTML, this

feature is very handy.

• Yodl is designed to be easy to use: Yodl uses `normal'
hara
ters to identify

ommands in the text, instead of insisting weird-looking tags or es
ape
har-

a
ters. Editing a do
ument in the Yodl ma
ro language is designed to be as

easy as possible.

• Similar to other do
ument languages, Yodl supports `
hara
ter
onversion

tables' whi
h de�ne how a
hara
ter should appear in the output.

This do
ument �rst des
ribes Yodl from the point of the user: how
an ma
ros be

de�ned, how is the program used et
.. Next, my own ma
ro pa
kage is presented and

the ma
ros therein des
ribed. Finally, this do
ument holds te
hni
al information

about the installation and the inner workings of Yodl.

1.1 From 1.xx to 2.00: what's new?

Compared to earlier versions, Yodl Version 2.00 is a
omplete rebuilt, and o�ers

many new features.

• Changed Yodl's name expansion. From `Yet Oneother Do
ument Language'

to:

Your Own Do
ument Language

• The following
ommands are now obsolete and should/must be avoided. Al-

ternatives are always o�ered.

ENDDEF DECWSLEVEL should be used;

INCLUDELIT NOEXPANDINCLUDE should be used;

NEWCOUNTER DEFINECOUNTER should be used;

STARTDEF INCWSLEVEL should be used;

UNDEFINEMACRO DELETEMACRO should be used;

WRITEOUT FPUTS should be used;

• Several new
ommands were implemented:

ADDTOSYMBOL adds text to a symbol's value;

DEFINESYMBOLVALUE de�nes a symbol and its initial value;

DELETECOUNTER opposite from NEWCOUNTER: removes an existing

ounter;

IFBUILTIN
he
ks whether the argument is a builtin ma
ro;

IFCOUNTER
he
ks whether the argument is a de�ned
ounter;

IFEQUAL
he
ks whether two numeri
al values are equal;

IFGREATER
he
ks whether the �rst numeri
al value ex
eeds the se
ond

numeri
al value;

15

IFMACRO
he
ks whether the argument is a de�ned ma
ro;

IFSMALLER
he
ks whether the �rst numeri
al value is smaller than the

se
ond numeri
al value;

IFSYMBOL
he
ks whether the argument is a de�ned symbol;

PATHINCLUDELIT in
ludes literaly a �le found in the XXin
ludepath

path;

POPCOUNTER pops a previously pushed
ountervalue;

POPMACRO pops a previously pushed ma
rode�nition;

POPSYMBOL pops a previously pushed symbolvalue;

PUSHCOUNTER pushes the
urrent value of a
ounter, initilaizes the

a
tive
ounter to 0;

PUSHCOUNTERVALUE pushes the
urrent value of a
ounter, initilaizes

the a
tive
ounter to any value;

PUSHMACRO pushes the
urrent de�nition of a ma
ro, a
tivates a lo
al

rede�nition;

PUSHSYMBOL pushes the
urrent value of a symbol, initializing the a
tive

value to an empty string;

SETSYMBOL assigns a new value to a symbol;

SYMBOLVALUE returns the value of a symbol as text.

• Several ma
ros were depre
ated. Alternatives are suggested in the `man yo-

dlma
ros' manpage:

� enddit();

� endeit();

� endit();

� endmenu();

� endtable();

� enumerate(list);

� itemize(list);

� menu(list);

� mit();

� node(previous)(this)(next)(up);

� start
enter();

� startdit();

� starteit();

� startit();

� startmenu();

� starttable(nColumns)(LaTexAllignment);

• XXin
ludePath: Symbol installed by Yodl itself, but modi�able by the user:

It holds the value of the
urrent :-separated list of dire
tories that are vis-

ited (sequentially) by the INCLUDEFILE
ommand. XXin
ludePath may

ontain $HOME, whi
h will be repla
ed by the user's home dire
tory if the

`home' or `HOME' environment variable is de�ned. It may also
ontain

t($STD_INCLUDE), whi
h will be repla
ed by the
ompilation de�ned stan-

dard in
lude path. The standard in
ludepath may be overruled by either (in

16

that order) the
ommand line swit
h -I or the tt(Yodl)_INCLUDE_PATH envi-

ronment variable. By default, the
urrent dire
tory is added to the standard

in
lude path. When -I or tt(Yodl)_INCLUDE_PATH is used, the
urrent di-

re
tory must be mentioned expli
itly. The individual dire
tories need not be

terminated by a /-
hara
ter. In the distributed .deb ar
hive, the standard

dire
tory is de�ned as the
urrent working dire
tory and /usr/share/yodl,

in that order.

• Initial blank lines in the generated do
ument are suppressed by default.

• Command line argument -D also allows the assignment of an initial value to

a symbol

• Command line argument -P is now -p, the previously de�ned -p argument is

now -n (�max-nested-�les), de�ning the maximum number of nested �les yodl

will pro
ess.

• Command line argument -r (�max-repla
ements) de�nes the maximum num-

ber of ma
ro and/or subst repla
ements a

epted between
onse
utive
har-

a
ters read from s.

• All assignents to
ounters (SETCOUNTER, ADDTOCOUNTER, et
.) not

only a

ept numeri
al arguments, but also
ounter names.

• Rewrote several awkwardly
oded ma
ros, using the new SYMBOL and COUNTER

fa
ilities

• Added experimental, very limited, xml support to help me generating xml for

the horrible `webplatform' of the university of Groningen. But at least Yodl

now o�ers xml support as well.

• The default extension for �gures in the HTML and XML
onversions is now

.jpg rather than .gif. The sethtmlfigureext() ma
ro
an be used the

hange the default �gure extension.

• There is no limit to the number of
onversion-options that
an be spe
i�ed:

ma
ros like htmlbodyopt() and latexoption()
an be spe
i�ed as often as

required resulting in one
on
atenated spe
i�
ation.

• Upgraded most of the do
umentation.

• Separated yodl-ma
ro �les for the various formats. While this might not

stri
tly be ne
essary, I feel this is better than using big fat generi
 ma
ro

de�nition �les whi
h are bloated with `, ' ma
ros. I introdu
ed a generi

frame, mentioning the ma
ros that must at least be de�ned by the individual

formats.

• Internally, the software was VASTLY reorganized. I feel that generally pro-

grams written in C don't bene�t from approa
hes that have be
ome quite

natural for C++ programmers. I had the
hoi
e to either rewrite Yodl to

a C++ program or to reprogram Yodl in the line of C++, but still using

C. I opted for the latter. So, now the sr
 se
tion
ontains `obje
t-like' fun
-

tion families, like `
ountermap_...()' handling all
ounte-related operations,

`textve
tor_...()', handling all text-ve
tor like operations, and other. Other

fun
tions reveived minor modi�
ations. E.g., xreallo
() now requires you to

spe
ify both the number of elements and the size of the elements. By doing

so, it is sheer impossible to overlook the fa
t that you have to spe
ify the size

of the elements, thus preventing the allo
ation of
hars when, e.g., ints are

required.

17

• An old in
onvenien
e was removed: line number
ounting is now using natural

numbers, starting at 1, rather than line indi
es, starting at 0.

• My old �i

e.rug.nl e-mail address has been
hanged into my
urrent e-mail

address:

"Frank B. Brokken" <f.b.brokken�rug.nl>

• The post pro
essing is now performed by the program `yodlpost'. This pro-

gram again used Design Patterns originally developed for obje
t oriented
on-

texts, resulting in an program that is easy to maintain. modify and expand.

• The post-pro
essor doesn't use .tt(Yodl)TAGSTART. and .YODTAGEND. any-

more.

• The basi

onversion formats now supported are html, latex, man, and text.

Xml support is experimental, other formats are no longer supported, mainly

be
ause my personal unfamiliarity with the format (texinfo), or be
ause the

format appears to be somewhat obsolete (sgml).

• Added a Yodl do
ument type `letter', indended to be used with the `brief.
ls'

LaTeX do
ument
lass

• Yodl 2.00
onverts do
uments mu
h faster than earlier versions.

1.2 Why use Yodl?

Yodl is not a word pro
essor, not even an editor. At �rst glan
e you might say,

yeah, why should I learn Your Own Do
ument Language? The answer is exa
tly

that: be
ause it
an be Your own do
ument language!

First of all, Yodl may lower the threshold of new users to start writing do
uments.

An example of an ex
ellent, though not very user-friendly do
ument language is

L

A

T

E

X. Typing all the ba
kslash and
urly bra
e
hara
ters in L

A

T

E

X and remember-

ing that an asterisk must be typed as $*$ may be hard at �rst. In su
h situations,

a properly
on�gured Yodl ma
ro set removes these obsta
les and thereby helps

novi
es. Yodl is designed to be easy to learn. As the Yodl pa
kage is growing, so

is the manual. The ease of `learning Yodl' may thus somewhat diminish, but just

keep in mind: as long as you need just plain texts, Yodl does OK. If you want

more fun
tionality, e.g., the
omposition of manual pages for Unix, dig into the

do
umentation.

Se
ond, Yodl permits to
reate more than one ma
ro set, de�ning the same
om-

mands, but leading to di�erent output a
tions. Thereby, the same input �le
an be

onverted to several output formats, depending on the loaded ma
ro set. In this,

Yodl is a `general front' do
ument language, whi
h
onverts a Yodl do
ument to a

spe
ialized language for further pro
essing. This was of
ourse one of my reasons

to write Yodl: I needed a good
onverter for either LaTeX or HTML.

Third, Yodl always allows an `es
ape route' to the output format. Most situations

an be handled with Yodl ma
ros, but sure enough, some users will want spe
ial

a
tions for a given output format. A typi
al example for the ne
essity of su
h an

es
ape route is the typesetting of mathemati
al formulas. Say you want to use Yodl

for a do
ument that is
onverted either to LaTeX (being a very good mathemati
al

18

typesetter) or to HTML (a very poor mathemati
al typesetter). An approa
h might

be to de
ide inside the do
ument how to typeset a mathemati
al formula. Yodl

provides
onditional
ommand pro
essing to a

omplish this. The de
ision would

be based on the output format: for LaTeX, you'd typeset the formula using all

the fa
ilities that LaTeX o�ers, and for HTML you'd use poor-mans typesetting.

Typi
ally, other pre-pro
essors for do
uments don't allow su
h es
ape routes. Well,

Yodl does.

1.3 Copying Yodl

Yodl is free software; it is distributed under the terms of the GNU General Publi

Li
en
e. For details, please refer to the �le COPYING.

The original author and brainfather of Yodl Karel Kubat<karel�e-tunity.nl>

would very mu
h like to to hear from you, if you use Yodl in a
ommer
ial setting

(beats me why).

Also, he likes to re
eive post
ards, preferably from far-away pla
es (i take it that's

from outside, or near the edges of, Europe).

His snailmail address:

Karel Kubat

...

Zwolle

The Netherlands

19

Chapter 2

Yodl User Guide

This se
tion des
ribes the yodl program from the point of a meta-user, one who is

interested in how ma
ro �les work, or one who wants to write a new
onverter. If

you're just interested in using Yodl with the pre-existing
onverters and ma
ro �les,

skip this
hapter and
ontinue with the ma
ro pa
kage des
ription (
hapter 4).

The Yodl program the main
onverter of the Yodl pa
kage. The basi
 usage of

the yodl program, yodl's built-in ma
ros, and the syntax of the Yodl language is

des
ribed here.

2.1 Using the yodl program

Yodl reads one or more input �les, interprets the
ommands therein, and writes one

output �le. The program is started as:

yodl options input�le [input�le...℄

In this spe
i�
ation, the options are optional. Most options have `long variants'

also, whi
h are mentioned in the following list. In this list, -x, �optionname are

two alternate ways to spe
ify option x. If -x takes an argument, it may be spe
i�ed

immediately following the -x, but separating blanks may also be used. Options

not taking arguments
an be
ombined (e.g., -a -b -
 may be
ombined to -ab
).

Arguments spe
i�ed with long options should be separated from the long option

using a =
hara
ter.

The following options are
urrently available:

• -D, �define=NAME[=VALUE℄: De�nes name as a symbol. This option is a
ts

like DEFINESYMBOL(NAME)(). If =VALUE is added, NAME is initialized to VALUE

(identi
ally to DEFINESYMBOL(NAME)(VALUE)).

• -d, �definema
ro=NAME=EXPANSION: De�nes NAME as ma
ro expanding to

EXPANSION

• -h, �help: usage information is written to the standard error stream, de-

s
ribing all of Yodl's options.

20

• -i, �index[=file℄: `�le' is the name of the index �le. By default <outputbase>.idx

is used. No default when output is written to stdout. The index �le is pro-

essed by Yodl's post-pro
essor, yodlpost.

• -I, �in
lude=DIR: This de�nes the system-wide in
lude dire
tory where

Yodl sear
hes for its input �les. E.g. a statement to in
lude a given �le,

like:

INCLUDEFILE(latex)

will
ause Yodl to sear
h for the �le latex in the
urrent dire
tory, and when

that fails, in the system-wide in
lude dire
tory. The system-wide in
lude

dire
tory is typi
ally the pla
e where the maintainer of a system stores ma
ro-

�les for Yodl. This sear
hing pro
ess applies to �les that are in
luded inside

a do
ument but also applies to �lenames on the
ommand line when invoking

the Yodl program.

The name of the in
luded �le (latex in the above example) is the bare name,

the Yodl program will supply a default extension (.yo), if ne
essary.

The -I option overrules Yodl's built-in name for the system-wide in
lude

dire
tory. The built-in name is de�ned when
ompiling Yodl, and is, e.g.,

/usr/share/yodl. Furthermore, the de�nition may
ontain $HOME, whi
h

will be repla
ed by the user's home dire
tory if the `home' or `HOME' en-

vironment variable is de�ned. It may also
ontain $STD_INCLUDE, whi
h

will be repla
ed by the
ompilation de�ned standard in
lude path. The stan-

dard in
ludepath may be overruled by either (in that order) the
ommand

line swit
h -I or the tt(Yodl)_INCLUDE_PATH environment variable. By de-

fault, the
urrent dire
tory is added to the standard in
lude path. Hewver,

when -I or tt(Yodl)_INCLUDE_PATH is used, the
urrent dire
tory must be

mentioned expli
itly. The individual dire
tories need not be terminated by a

/-
hara
ter. In distributed .deb ar
hives, the standard dire
tory is de�ned as

/usr/share/yodl (pre�xed by the
urrent working dire
tory).

• -k, �keep-ws: Sin
e Yodl version 2.00 blanks at the begin and end of lines

are ignored, even without a trailing \, when the `white spa
e level' is non-zero.

Earlier versions kept these blanks. The lega
y handling of white spa
e at end

of lines
an by obtained using the -k �ag. Note that white spa
e are always

kept when using verbatim
opying, and when the white-spa
e level is zero.

• -l, �live-data=HOW: This option
ontrols the poli
y for exe
uting SYSTEM

or PIPETHROUGH
ommands; HOW being none (0) by default. The HOW

argument
an have the following values:

� none or 0: (the default): No ma
ros
alling system programs are allowed.

�
onfirm or 1: The ma
ros
an be exe
uted, but only after user
on�r-

mation is obtained. The ma
ros in question are shown while the Yodl

do
ument is pro
essed, and the user must either a

ept or reje
t the
all.

� report or 2: The ma
ros are exe
uted, but what is
alled is shown during

the Yodl run (if the WARNING message level is a
tive).

� ok or 3: The ma
ros are exe
uted, and not shown during the run. Be

areful when using �live-data ok. It should be used only when a do
-

ument is
learly `unharmful'.

21

• -m, �messages=SET: Set the so-
alled `message level' to a
ombination of the

SET a
deinw. The letters of this set have the following meanings:

� a: alert. When an alert-error o

urs, Yodl terminates. Here Yodl re-

quests something of the system (like a get_
wd()), but the system fails.

�
:
riti
al. When a
riti
al error o

urs, Yodl terminates. The message

itself
an be suppressed, but exiting
an't. A
riti
al
ondition is, e.g.,

the omission of an open parenthesis at a lo
ation where a parameter list

should appear, or a non-existing �le in an INCLUDEFILE spe
i�
ation (as

this �le should be parsed). A non-existing �le with a NOEXPANDINCLUDE

spe
i�
ation is a plain (non-
riti
al) error.

� d: debug. Probably too mu
h info, like getting information about ea
h

hara
ter that was read by Yodl.

� e: error. An error (like doubly de�ned symbols). Error messages will

not stop the parsing of the input (up to a maximum number of errors),

but no output is generated.

� i: info. Not as detailed as `debug', but still very mu
h info, like infor-

mation about media swit
hes.

� n: noti
e. Information about, e.g.,
alls to the builtin fun
tion
alls.

� w: warning. Something you should know about, but probably not a�e
t-

ing Yodl's proper fun
tioning

Non-
on�gurable is the handling of an emergen
y message. These messages

an't be suppressed, but shouldn't happen, as they point to some internal er-

ror. It would be appre
iated to re
eive information

1

about these messages

if they ever o

ur.

• -n, �max-nested-files=NR: This option
auses Yodl to abort when the num-

ber of nested input �les ex
eeds NR, whi
h is 20 by default. Ex
eeding this

number usually means a
ir
ular de�nition somewhere in the do
ument. This

is the
ase when, a �le a.yo in
ludes b.yo, while b.yo in
ludes a.yo et
..

It does not prevent re
ursive ma
ro- or subst-repla
ements. For that the -r

(�max-repla
ements) option is available.

• -o, �output=FILE: This option
auses Yodl to write its output to FILE. By

default, the output goes to the standard output stream. E.g., you
an use Yodl

to read a �le input and to write to output with the following two
ommands:

yodl input > output

yodl -ooutput input

The di�eren
e being that in the latter
ase an index �le is generated, but not

in the former
ase. Noti
e that writing an index �le
an be for
ed when the

�index option is spe
i�ed.

• -p, �preload=CMD: This option `pre-loads' the string
md. It a
ts as though

md was the �rst
ommand in the �rst input �le that is pro
essed by Yodl.

More than one �preload=CMD options may be present on the
ommand line.

Ea
h of the
ommands is then pro
essed in turn, before reading any �le.

1

mailto:f.b.brokken�rug.nl

22

• -r, �max-repla
ements=NR: This option
auses Yodl to abort when the num-

ber of ma
ro
alls or subst-repla
ements ex
eeds NR * 10,000. By default,

NR equals 1. Setting �max-repla
ements=0 implies that no ma
ro- or subst-

repla
ement
he
ks are performed.

• -t, �tra
e: This option enables tra
ing: while parsing, Yodl writes its out-

put to the standard error stream. As is the
ase with the -k option, this

option is de�ned for debugging purposes only.

• -V, �version. This option will show Yodl's a
tual version.

• -v, �verbose: This option in
reases Yodl's `verbosity level' and may o

ur

more than on
e. By default yodl will show alerting,
riti
al, emergen
y and

error messages. Ea
h �verbose option will add a next message level. In order,

warning, noti
e, info and debug messages will be added to this set. It is also

possible to suppress messages. The VERBOSITY builtin
an be used for that.

• -W, �warranty. This option will show a warranty dis
laimer and a
opyright

noti
e.

• -w, �warn: The presen
e of this option
aused Yodl to warn when, e.g.,

symbols are rede�ned.

The input�le elements on the
ommand line spe
ify whi
h �les Yodl should pro
ess.

All names are supplied with an extension

2

. The �les are then sear
hed for in the

dire
tories mentioned in the in
lude-path. Files may also be spe
i�ed using absolute

pathnames.

Note that all �lenames on the
ommand line are input �les. To de�ne an output

�le, either use the �output option or redire
t the output.

2.2 The Yodl grammar

The grammar whi
h is used by Yodl mixes `real' text that should appear on the

output with markups :
ommands for Yodl. The markups must follow a
ertain

grammar, whi
h is des
ribed in this se
tion. Yodl therefore falls in the
ategory of

`markup languages', in
ontrast to `WYSIWYG'-programs. As a
onsequen
e, Yodl

promotes
on
ept-oriented writing.

Basi
ally, Yodl only does `something spe
ial' when it en
ounters the name of a

builtin fun
tion or the name of a user-de�ned ma
ro, followed by a parameter list.

Sometimes a fun
tion or ma
ro requires multiple arguments, whi
h must then be

spe
i�ed in sequen
e. All required parameter lists, however, must be spe
i�ed within

the same input �le. It is not allowed to split the a
tivation of a builtin fun
tion or

ma
ro over multiple input �les. Plain text, on the other hand, may be split over

multiple �les.

In this se
tion the elements of Yodl's grammar are brie�y dis
ussed.

2

this extension is de�ned in the installation of Yodl and is usually .yo

23

2.2.1 Language elements

At the lowest level, Yodl's lexi
al s
anner returns small pie
es of information to

its parser. These pie
es of information are
alled tokens, and
onsist of elements

like a blank spa
e, a non-blank
hara
ter, or an end-of-ile �ag. These tokens are at

too small an aggregation level to be useful for the
urrent user-guide, so here we

on
entrate our dis
ussion on the next aggregation level:
ompound elements and

on
eptual elements.

Compound elements relate to the basi
 tokens as words in a senten
e to the individ-

ual letters of the words. These
ompound elements are identi�ers, names, numbers

and parameter lists.

Con
eptual elements are found at the next higher aggregation levels: builtin fun
-

tions are the buildin blo
ks for all of Yodl's fun
tionality, symbols and
ounters

are Yodl's variables, and (user de�ned) ma
ros extend Yodl's fun
tionality beyond

those of the basi
 builtin fun
tions.

In the
oming se
tions these basi
 and
on
eptual elements are dis
ussed in greater

detail.

Identi�ers and Names

Identi�ers are names that
an have a spe
ial meaning in the Yodl language. E.g., the

sequen
e INCLUDEFILE is an identi�er: when followed by a �lename in parentheses,

Yodl will take some spe
ial a
tion (in this
ase, read the �le as a Yodl-sour
e �le).

Identi�ers may
onsist of upper
ase or lower
ase
hara
ters. No other
hara
ters

may appear in them.

In parti
ular, note that this diverts from the well known de�nition for identi�ers

used in most programming languages: identi�ers may not
ontain unders
ores, nor

digits. Yodl, therefore, won't a

ept identi�ers like run4 or under_s
ore.

Names are sequen
es of
hara
ters, not
ontaining white spa
e
hara
ters. (i.e., any

series of
hara
ters not
ontaining spa
es, tabs or newlines). Names are allowed with

ertain builtin fun
tions, liek the INCLUDEFILE fun
tion, expe
ting the name of a

�le as its argument.

Numbers

Numbers
onsist of digits and an optional minus sign. They are most often used for

so-
alled
ounters. In some
ontexts (e.g. with the builtin fun
tion VERBOSITY

3.1.73, hexade
imal numbers are allowed. Hexade
imal numbers have 16 `digits':

the familiar 0-9, but also a-f (or A-F), representing the de
imal values 10 until 15,

respe
tively. Hexade
imal values are usually pre�xed by 0x, for example 0x4e.

In other
ontexts (in parti
ular, with
hara
ter tables 2.3), o
tal numbers or
har-

a
ter
onstants are allowed too.

An o
tal number only
onsists of the digits 0-7. In Yodl, o
tal values must
onsist

of three digits, and must be pre
eded by a ba
kslash.

Chara
ter
onstants may very well be
onsidered numeri
al values. Chara
ter
on-

24

stants
onsist of a
hara
ter value between single quotes, for example 'a'.

Refer to se
tion 2.3 for more detailed information about the use of o
tal values and

hara
ter
onstants.

Yodl has no
on
ept of �oating point values nor does it have fa
ilities for performing

�oating point arithmeti
.

Parameter lists

Parameter lists
ontain arguments to Yodl builtin fun
tions or user-de�ned ma
ros.

Ea
h parameter list
ontains exa
tly one argument, and must be en
losed by paren-

theses.

A parameter list is re
ognized as su
h when en
ountered immediately following the

name of a builtin fun
tion or user-de�ned ma
ro. Some fun
tions or ma
ros expe
t

multiple arguments. In those
ases, the required number of arguments must be

provided, possibly separated from ea
h other by white-spa
e only.

For example, the following shows how to
all the builtin fun
tion DEFINECOUNTER,

expe
ting two arguments:

DEFINECOUNTER(MyCounter)()

DEFINECOUNTER(MyCounter) ()

DEFINECOUNTER(MyCounter)(12)

Yodl re
ognizes the arguments to a ma
ro as parameter lists, i.e., delimited by (

and). As long as the numbers of opening and
losing parentheses mat
h, Yodl

will
orre
tly re
ognize the list. E.g., given a hypotheti
al ma
ro somema
ro, the

following
ode sample shows the ma
ro followed by one parameter list:

somema
ro(Here is a
hunk of text.)

somema
ro(Here is a some (more) text.)

A problem arises when the number of parentheses is unbalan
ed: i.e., when the

parameter list
onsists of more opening than
losing parentheses or vi
e versa To

handle su
h situations, Yodl o�ers a `literal-
hara
ter' me
hanism (see the CHAR

ma
ro in 3.1.4) and a `global substitution' me
hanism (see the SUBST ma
ro in

3.1.65). For example, to send the text

here's a ")"
losing parenthesis

as an argument to our hypotheti
al ma
ro somema
ro, the following
an be used:

COMMENT(-- Alternative 1: using CHAR --)

somema
ro(here's a "CHAR(41)"
losing parenthesis)

25

COMMENT(-- Alternative 2: using SUBST --)

SUBST(
losepar)(CHAR(41))

somema
ro(here's a "
losepar"
losing parenthesis)

Both methods have disadvantages: the CHAR method requires you to remember that

an ASCII 41 is a
losing parenthesis. The SUBST method de�nes a string
losepar

that is always expanded to a
losing parenthesis, wherever it may o

ur in the text.

But whatever method is used, it should be
lear by now that unbalan
ed parameter

lists
an be handled by Yodl. Also, remember that unbalan
ed parenthesis pairs

are only relevant in argument lists. Yodl handles parentheses in normal text as

ordinary
hara
ters.

Builtin fun
tions

The building blo
ks of Yodl's fun
tionality are its builtin fun
tions. Builtin fun
-

tions exists to manipulate all of Yodl's builtin types (
hara
ter tables,
ounters,

ma
ros and symbols) and to do basi
 bookkeeping and �ow-
ontrol: it is possible to

test values of
ounters and symbols, to in
lude other input �les, to generate warning

and error messages, and to start
hild- or subpro
esses. Ea
h builtin fun
tion is

des
ribed in a separate subse
tion of se
tion BUILTIN 3.1.

Chara
ter translation tables

Chara
ter translation tables exist to perform
onversion spe
i�
 transformations.

For example, in html, the \'e is written as &ea
ute;, but in LaTeX it's written

as \'e. Rather than using a potentially long if-else ladder to determine how to set

a parti
ular
hara
ter, a
hara
ter translation table
an be used. The
hara
ter

translation table of a parti
ular
onversion is then a
tivated only for that type of

onversion.

Chara
ter table translations are used very late during the pro
essing of Yodl's input

s: it is the output generator that handles the
hara
ter translations. Consequently,

ma
ros or builtin fun
tion
alls that might appear in a
hara
ter's rede�nition in a

hara
ter table will not be expanded. In pra
ti
e this never is a point of
on
ern.

In se
tion 2.3 the use of
hara
ter translation tables is dis
ussed in detail.

Counters

Some do
ument languages (notably LaTeX) automati
ally pre�x numbers when

typesetting se
tions, subse
tions, tables, �gures et
.. Other do
ument languages

(e.g. html) don't.

Therefore, a ma
ro pa
kage that
onverts a Yodl do
ument to LaTeX doesn't need

to provide the numbering of se
tions et
.. However, if you do want the numbering

and if you want to
onvert do
uments to, say, html, then you must take
are of the

numbering yourself.

Counters exist to make this possible. Counters
an be in
remented,
an be given a

parti
ular value,
an be given a new value temporarily and
an be removed. They

26

always
ontain integral values, whi
h may be negative.

Se
tion 2.5 des
ribes the use of
ounters in more detail.

Ma
ros

Ma
ros are
omparable to builtin fun
tions, but they
an be de�ned in Yodl input

�les. Ma
ros add fun
tionality to Yodl ex
eeding the basi
 fun
tionality of the

builtin fun
tions. Ma
ros
an have arguments, and they are used in exa
tly the

same way as builtin fun
tions are used.

When Yodl en
ounters a ma
ro, it a
ts as follows:

• Its arguments are obtained, by reading its argument lists. These arguments

are not interpreted in any way. They are simply removed from the input, and

stored for further pro
essing;

• Referen
es to arguments in the ma
ro's de�nition (using the ARG# notation,

where # is the sequen
e number of a parti
ular argument) are repla
ed by the

literal text of the
orresponding ma
ro's arguments.

• The thus modi�ed de�nition text is now pushed ba
k into the input stream,

to be pro
essed by Yodl's lexi
al s
anner.

De�ning ma
ros is des
ribed in se
tion 3.1.11. Ma
ros may be de�ned, deleted,

renamed, and temporarily given other de�nitions.

Nouserma
ros

When Yodl is started using the -w �ag on the
ommand line, then warnings are

generated when Yodl en
ounters a possible ma
ro name, followed by a parameter

list, without �nding a ma
ro by that name. Yodl then prints something like
annot

expand possible user ma
ro.

Examples of su
h sequen
es are, The ne
essary file(s) are here, or see the

manual page for sed(1). The
andidate ma
ros are file and sed, as these names

ould very well have been `valid' user ma
ros followed by their parameter list.

A nouserma
ro
an be de�ned to suppress these warnings, by informing Yodl that

file and sed aren't ma
ros. Nouserma
ros may be de�ned and unde�ned. See

se
tions 3.1.45 and 3.1.16 for details).

Symbols

Yodl symbols
ontain text. They were introdu
ed to allow the �exible expansion

of text, the length and/or
ontent of whi
h
annot be determined in advan
e. In

parti
ular, symbols are useful to store a series of LaTeX do
ument options, or a

series of html body options. In earlier versions of Yodl
omplex and
onfusing
on-

stru
tions using nested de�nitions of ma
ros were used for this. These ma
ros were

not only
onfusingly
omplex, but they also su�ered from a hard-
oded maximum.

Symbols solve these drawba
ks, and now that they are available, they are used for

all natural situations in whi
h an initially unknown pie
e of text must be stored.

27

National language spe
i�
 strings are another useful area in whi
h symbols
an be

used. The symbol CONTENTSHEADING
an be set to the name of the
ontents heading

(e.g., Contents in English, Inhoud in Dut
h, Contenido in Spanish, and ma
ros
an

simply insert the value of the symbol CONTENTSHEADING at the appropriate lo
ation.

Symbols
an be de�ned 3.1.12, removed 3.1.17, (temporarily 3.1.59 or permanently

3.1.63) be given another value; pushed symbol values
an be restored 3.1.54 at a

later point. Of
ourse, their values
an also be inserted 3.1.66 into Yodl's output

�le.

2.2.2 Line
ontinuation

To make the typing of input easier, Yodl allows you to end a line with a ba
kslash

hara
ter \and to
ontinue it on the next line. That way you
an split long lines to

�t your s
reen. When pro
essing its input, Yodl will treat these lines as one long

line, and will of
ourse ignore the \
hara
ter. This feature only works when the

\
hara
ter is the last one on the line (no spa
es may follow).

When the line following the one with the \
hara
ter has leading spa
es, then these

are omitted. This allows you to `indent' a �le as you wish, while the spa
e
hara
ters

of the indentation are ignored by the Yodl program.

A trivial example is the following:

Grandpa and\

grandma are sitting on the sofa.

Due to the o

urren
e of the \
hara
ter in the sequen
e and\, Yodl will
ombine

the lines to

Grandpa andgrandma are sitting on the sofa.

Note that the spa
es before grandma are ignored, sin
e this is the se
ond line fol-

lowing a \
hara
ter.

If you do want one or more spa
es while joining lines with \, put the spa
es before

the \
hara
ter.

Summarizing:

• A Line ending in a ba
kslash
hara
ter is merged with the next line.

• This only happens if the \
hara
ter is the last
hara
ter of the line, no spa
es

may appear behind the \.

• When merging lines, Yodl ignores leading spa
es of the se
ond line.

The question is of
ourse, how do you a

omplish that a line really ends with a \,

when you do not want Yodl to merge it with the following line? In su
h a
ase,

28

type a spa
e
hara
ter following your \: Yodl won't
ombine the lines. Or set the

\
hara
ter as CHAR(\) or CHAR(92) (see se
tion 3.1.4 for the CHAR ma
ro).

When Yodl pro
esses input �les, and the white-spa
e level ex
eeds zero (see se
tion

3.1.38), then all lines are pro
essed as if they terminated by a \. This behavior was

implemented �rst with Yodl version 2.00. It
an be suppressed using Yodl's -k �ag.

2.2.3 The +identi�er sequen
e

There may be situations in whi
h you must type a ma
ro name right after a sequen
e

of
hara
ters, while Yodl should re
ognize this. Imagine that someone wrote a great

ma
ro footnote for you

3

, to typeset footnotes. If you'd type in a do
ument:

The C Programming Languagefootnote(as defined by

Kernighan and Rit
hie) ...

then of
ourse Yodl would fail to see the start of a ma
ro in the sequen
e Languagefootnote.

You
ould say

The C Programming Language footnote(as defined by

Kernighan and Rit
hie) ...

but that would introdu
e a spa
e between Language and the footnote. Probably

you don't want that, sin
e spa
es between a word and a footnote number look awful

and be
ause of the fa
t that the footnote number might be typeset on the following

line.

For these spe
ial situations, Yodl re
ognizes the +identifier sequen
e as the start

of a ma
ro, while the + sign is e�e
tively ignored. In the above example you
ould

therefore use

The C Programming Language+footnote(as defined by

Kernighan and Rit
hie) ...

The +identifier re
ognition only works when the identi�er following the + sign is

a ma
ro. In all other situations, a + is just a plus-sign.

(The +identifier sequen
e furthermore plays an important role in ma
ro pa
k-

ages. If you're interested, see the �le shared.yo whi
h is by default installed to

/usr/lo
al/lib/yodl.)

2.2.4 Preventing ma
ros from being expanded

One more feature of the Yodl language remains to be des
ribed. In the previous

se
tion it was des
ribed how a ma
ro may be
alled immediately following alphabet-

i
al
hara
ters. What about the opposite situation where we do not want a ma
ro

to be expanded in a parti
ular situation? The NOUSERMACRO builtin
ommand (
f.

se
tion 3.1.45) may be used to suppress the interpretation of a
hara
ter sequen
e

3

someone did, in fa
t, see the next
hapter

29

(e.g., file(...)) as a ma
ro, but what if a ma
ro should not be expanded in the

o

asional situation? For this
ase various solutions are available:

• First, the tt(...) and verb(...) ma
ros may be used to suppress ma
ro

expansion. These ma
ros will also temporarily
hange the typesetting font,

though.

• Se
ond, NOEXPAND() builtin
ommand may be used: the ma
ro name may be

passed to NOEXPAND(), immediately followed by the `argument list':

Like this: NOEXPAND(NOEXPAND)(hello world)

• Third, the nop() ma
ro may be used to separate a ma
ro name from its

argument list:

Like this: NOEXPAND+nop()(hello world)

2.3 Chara
ter tables

The Yodl language provides a way to de�ne
hara
ter translation tables, to a
tivate

them, and to dea
tivate them. A
hara
ter translation table de�nes how a
hara
ter

in the input will appear in the output.

There are two main reasons for the need of
hara
ter translation tables. First,

a do
ument language be
omes mu
h easier to use when you
an type an asterisk

as * instead of $*$ or \verb/*/ (these are sequen
es from the LaTeX do
ument

language). Hen
e, a me
hanism that expands a * in the input to to \verb/*/ on

the output, saves the users a lot of typing.

Se
ond, for
ing users to type weird sequen
es won't work if you're planning on

onverting the same Yodl do
ument to a di�erent output format. If the user types

\verb/*/ in the input to typeset an asterisk in the output, how should he or she

arrive at a single * in the output in another output format?

The solution is of
ourse to de�ne the translation for an input
hara
ter like * given

the output format.

2.3.1 De�ning a translation table

The built-in ma
ro DEFINECHARTABLE de�nes a
hara
ter translation table. It takes

two parameter lists: the name of the table and the
hara
ter translations. Hen
e,

ea
h table is de�ned by its own name.

As an example of a table,
onsider the following fragment. It de�nes a table that

translates the upper
ase
hara
ters A to E to their lower
ase equivalents:

DEFINECHARTABLE(tolower)(

'A' = "a"

'B' = "b"

'C' = "
"

'D' = "d"

'E' = "e"

)

30

Ea
h DEFINECHARTABLE statementmust have a non-empty se
ond parameter. "Empty"

hara
ter tables
annot be de�ned, though one non-translation table is built-in.

The syntaxis of the se
ond parameter list is as follows:

• On separate lines, input
hara
ters are mapped to a sequen
e to appear on

the output.

• Per line, the input
hara
ter is spe
i�ed as '
',
 being any
hara
ter. Es
ape-

sequen
es from the C programming language
an be used in this spe
i�
ation;

Yodl supports the sequen
es \a (alert), \b (beep), \f (formfeed), \n (newline),

\r (
arriage return), \t (tab), and \v (verti
al tab). O
tal and hexade
imal

onstants may also be used. E.g.,
hara
ter Y may also be spe
i�ed using the

o
tal value \131 or the hexade
imal value \x59. Any other
hara
ter following

a \de�nes itself: \\ represents a single ba
kslash
hara
ter.

• Following the
hara
ter spe
i�
ation, a = must appear.

• Following that, a sequen
e of one or more
hara
ters appears, en
losed in

double quotes, de�ning the translation. Again, es
ape sequen
es
an be used,

as in:

'\n' = "End of line\n"

Su
h a mapping adds the text End of line to ea
h line, sin
e ea
h newline

hara
ter in the input is repla
ed by the text End of line, followed by the

newline itself.

Starting with Yodl 2.14.0 o
tal and hexade
imal
onstants may also be used

within the double quoted string. E.g.,
hara
ter Y may also be spe
i�ed using

the o
tal value \131 or the hexade
imal value \x59. As an example where

the o
tal/hexade
imal values may be useful
onsider the pro
essing of a man-

page. The
hara
ter representations for the literal double quote (") in troff is

\(dq\&. However, sin
e (
annot be written literally in the
hara
ter transla-

tion table sin
e that would result in unbalan
ed parentheses while pro
essing

the
hara
ter table's de�nition. Also, CHAR(40)
annot be used, sin
e
hara
-

ter table
onversiond are performed by the output generator, whi
h is
alled

after the ma
ro expansions have been performed. This it would result in the

literal text CHAR((40)) appearing in the manual page.

Using the o
tal
hara
ter representation in the
hartable spe
i�
ation for the

"
hara
ter appearing in man-page the problem
an now be solved. The a
tual

spe
i�
ation used is:

'"' = "\\\050dq\\&"

Translations whi
h are not spe
i�ed in the table are left to the default, whi
h is to

output the
hara
ter as-is.

Note that the
hara
ter table translation is something that the yodl program does

as one of its last a
tions, just before sending text to the output �le. The expansion

text is not further pro
essed by yodl, ex
ept for the
onversion of C-type es
ape

sequen
es to ordinary
hara
ters. The expansion text should therefore not be pro-

te
ted by, e.g., NOTRANS (unless of
ourse you want some
hara
ter to generate the

text NOTRANS on the output).

31

2.3.2 Using a translation table

A de�ned translation table is a
tivated by the ma
ro USECHARTABLE. This ma
ro

takes one parameter list, whi
h may be:

• empty, in whi
h
ase the default mapping is restored,

• a name of a previously de�ned
hara
ter table.

The default mapping, sele
ted when an empty parameter list is given, means that

Yodl enters its `zero translation state', meaning no
hara
ter translation at all.

2.3.3 Pushing and popping
hara
ter tables

Besides the previously des
ribed ma
ro USECHARTABLE(), Yodl has one other me
h-

anism of a
tivating and dea
tivating
hara
ter translation tables. This me
hanism

uses a sta
k, and hen
e, the related ma
ros are appropriately named PUSHCHARTABLE()

and POPCHARTABLE().

• PUSHCHARTABLE(name) pushes the
urrently a
tive translation table onto a

sta
k, and a
tivates the table identi�ed by name. The argument may be

emtpy; in that
ase, the zero-translation table is a
tivated (analogously to

USECHARTABLE()).

• POPCHARTABLE() a
tivates the translation table that was last pushed. There

is no argument to this ma
ro.

Using the push/pop me
hanism is handy when a table must be temporarily a
ti-

vated, but when it is not known whi
h table exa
ty is a
tive prior to the temporary

a
tivation. E.g., imagine that you need to use a
hara
ter table
alled listing to

typeset a listing, but that you do not know the
urrent table. The pushing and

popping me
hanism is then used as follows:

COMMENT(First, we save the
urrent table on the sta
k and

we a
tivate our "listing" table.)

PUSHCHARTABLE(listing)

COMMENT(Now the text is question is typeset.)

...

COMMENT(The previously a
tive table is re-a
tivated, whatever its name.)

POPCHARTABLE()

2.4 Sending literal text to the output

The Yodl program has three built-in ma
ros to send literal text to the output �le.

The ma
ros are listed in the above se
tion 3.1 and are furthermore des
ribed here.

32

• The CHAR ma
ro takes one argument: the ASCII number of a
hara
ter or

the
hara
ter itself. The
hara
ter is sent to the output �le without being

translated with the
urrently a
tive
hara
ter translation table.

• The NOTRANS ma
ro takes one argument: the text in question. The text is

neither parsed (i.e., ma
ros in it are not expanded), nor translated with the

urrent
hara
ter translation table.

The NOTRANS ma
ro is
on
eptually like a series of CHAR ma
ros.

• The NOEXPAND ma
ro takes one argument: the text in question. The text is

not parsed, but it is translated with the
urrent
hara
ter translation table.

To illustrate the need for the distin
tion between NOTRANS and NOEXPAND,
onsider

the following. The HTML
onverter (des
ribed in
hapter 4) must be able to send

HTML
ommands to the output �le, but must also be able to send literal text (e.g.,

a sour
e �le listing). The HTML
ommands of
ourse must be neither translated

with any
hara
ter table, nor must they be expanded in regard to ma
ros. In

ontrast, a sour
e �le listing must be subje
t to
hara
ter translations: the &, < and

>
hara
ters
an
ause di�
ulties. Two possible ma
ros for a HTML
onverter are:

COMMENT(--- html
ommand(
md) sends its argument as a HTML
ommand

to the output ---)

DEFINEMACRO(html
ommand)(1)(NOTRANS(ARG1))

COMMENT(--- verb(listing) sends the listing to the output ---)

DEFINECHARTABLE(list)(

'&' = "&"

'<' = "<"

'>' = ">"

)

DEFINEMACRO(verb)(1)(

USECHARTABLE(list)

NOTRANS(<listing>)

NOEXPAND(ARG1)

NOTRANS(</listing>)

USECHARTABLE(standard)

)

In this example it is assumed that a
hara
ter translation table standard exists,

de�ning the `normal' translations. This table is re-a
tivated in the verb ma
ro.

2.5 Counters

Some do
ument languages (notably LaTeX) automati
ally pre�x numbers when

typesetting se
tions, subse
tions, tables, �gures et
.. Other do
ument languages

(e.g. HTML) unfortunately don't.

Therefore, a ma
ro pa
kage that
onverts a Yodl do
ument to LaTeX doesn't need

to provide the numbering of se
tions et
.. However, if you do want the numbering

33

and if you want to
onvert do
uments to, say, HTML, then you must take
are of

the numbering yourself.

This se
tion des
ribes the
ounters in Yodl: how to
reate
ounters, how to use

them, et
..

2.5.1 Creating a
ounter

Before a
ounter
an be used, it must be
reated with the fun
tion DEFINECOUNTER

or PUSHCOUNTER. These fun
tions expe
ts two parameter lists: the name of the

ounter and an optional value.

The
ounter's value, named number below, may be set as follows:

• If left unspe
i�ed, the
ounter is set to 0;

• number may be a postive or negative integral value;

• number may be the name of an existing
ounter, in whi
h
ase that
ounter's

value is used.

For example, let's say that our ma
ro pa
kage should provide two se
tioning
om-

mands: se
tion and subse
tion. The se
tions should be numbered 0, 1, 2, et
.,

and the subse
tions 1.1, 1.2, 1.3 et
.. Hen
e we'd need two
ounters:

DEFINECOUNTER(se
t
ounter)()

DEFINECOUNTER(subse
t
ounter)(1)

The fun
tion NEWCOUNTER, as de�ned in earlier releases of Yodl, is still available,

but is depre
ated.

2.5.2 Using
ounters

The builtin fun
tion COUNTERVALUE(some
ounter) expands to the value of some
ounter.

E.g., if the
urrent value is 2, then the value 2 is inserted into the output obje
t.

It is an error to use COUNTERVALUE on a non-existing
ounter or on a
ounter not

having a de�ned value (see below).

Yodl has several fun
tions to modify and/or to set the values of
ounters. The

ounter's value, named number below, may be set as follows:

• If left unspe
i�ed, the
ounter is set to 0;

• number may be a postive or negative integral value;

• number may be the name of an existing
ounter, in whi
h
ase that
ounter's

value is used.

34

The fun
tions modifying values of
ounters are:

• POPCOUNTER(some
ounter): This fun
tion pops the most re
ently pushed

value o� the
ounter's sta
k, assigning it to some
ounter. An error o
-

urs when some
ounter doesn't exist. If the
ounter was never pushed,

it will still exist following POPCOUNTER, but its value is unde�ned: using

COUNTERVALUE(some
ounter) in that
ase generates an error.

• PUSHCOUNTER(some
ounter)(number): This fun
tion pushes the
urrent value

of the
ounter some
ounter on the
ounter's sta
k, making number its new

value. number may be left unspe
i�ed, in whi
h
ase the
ounter will be set

to 0. When some
ounter doesn't exist yet, it is
reated with an initial value

of number.

• SETCOUNTER(some
ounter)(number): This fun
tion sets the value of some
ounter

to the value of number. The se
ond parameter list must be an integer number

(i.e.,
onsisting of the
hara
ters 0 to 9, optionally pre�xed by a - sign). The

fun
tion does not expand to anything; i.e., it does not write to the output �le.

• ADDTOCOUNTER(some
ounter)(number): This fun
tion adds the value of number

to some
ounter. The number may be negative.

• USECOUNTER(some
ounter): This fun
tion �rst in
reases the value of some
ounter

by 1, and then writes the value of the
ounter to the output �le.

This fun
tion is parti
ularly useful in
ombination with DEFINECOUNTER: sin
e

DEFINECOUNTER initializes a
ounter to zero, USECOUNTER
an be used to in-

rease the value and to output it. The �rst time that USECOUNTER is used

on a new
ounter, the number 1 appears on the output �le. The next time,

number 2 appears on the output �le et
..

Given the numbering requirements of the hypotheti
al
ommands se
tion and

subse
tion (see the previous se
tion), we
an now
omplete the de�nitions:

DEFINECOUNTER(se
t
ounter)

DEFINECOUNTER(subse
t
ounter)

DEFINEMACRO(se
tion)(1)(\

SETCOUNTER(subse
t
ounter)(0)\

USECOUNTER(se
t
ounter) ARG1)

DEFINEMACRO(subse
tion)(1)(\

COUNTERVALUE(se
t
ounter).USECOUNTER(subse
t
ounter) ARG1)

35

Chapter 3

All builtin fun
tions

3.1 Yodl's builtin
ommands

As mentioned previously, Yodl's input
onsists of text and of
ommands. Yodl sup-

ports a number of built-in
ommands whi
h may either be used in a Yodl do
ument,

or whi
h
an be used to
reate a ma
ro pa
kage.

Don't despair if you �nd that the des
ription of this se
tion is too te
hni
al. Exa
tly

for this reason, Yodl supports the ma
ro pa
kages to make the life of a do
umen-

tation writer easier. E.g., see
hapter 4 that des
ribes a ma
ro pa
kage for Yodl.

Most built-in fun
tions and ma
ros expand the information they re
eive the way

they re
eive the information. I.e., the information itself is only evaluated by the

time it is eventually inserted into an output medium (usually a �le). However, some

builtin fun
tions will evaluate their argument(s) on
e the argument is pro
essed.

They are:

• The ERROR() built-in fun
tion (see se
tion 3.1.20);

• The EVAL() built-in fun
tion (see se
tion 3.1.21);

• The FPUTS() built-in fun
tion (see se
tion 3.1.23);

• The INTERNALINDEX() built-in fun
tion (see se
tion 3.1.39);

• The TYPEOUT() built-in fun
tion (see se
tion 3.1.68);

• The UPPERCASE() built-in fun
tion (see se
tion 3.1.70);

• The WARNING() built-in fun
tion (see se
tion 3.1.74);

All other built-in fun
tions will not evaluate their arguments. See the mentioned

fun
tions for details, and in parti
ular EVAL() for a des
ription of this evaluation

pro
ess.

3.1.1 ADDTOCOUNTER

The ADDTOCOUNTER fun
tion adds a given value to a
ounter. It expe
ts two param-

eter lists: the
ounter name, and the value to add. The
ounter must be previously

36

reated with DEFINECOUNTER.

The value to add
an be negative; in that
ase, a value is of
ourse subtra
ted from

the
ounter.

See further se
tion 2.5.

3.1.2 ADDTOSYMBOL

Sin
e Yodl version 2.00 symbols
an be manipulated. To add text to an existing

symbol the builtin ADDTOSYMBOL is available. It expe
ts two parameter lists: the

symbol's name, and the text to add to the symbol. The symbol must have been

reated earlier using DEFINECOUNTER (see se
tion 3.1.10). The ma
ro's se
ond

argument is not evaluated while ADDTOSYMBOL is pro
essed. Therefore, it is easy to

add the text of another symbol or the expansion of a ma
ro to a symbol value. E.g.,

ADDTOSYMBOL(one)(SYMBOLVALUE(two)XXnl())

This will add the text of symbol two, followed by a new line, to the
ontents of

symbol one only when symbol one is evaluated, not when ADDTOSYMBOL is evaluated.

Example:

ADDTOSYMBOL(LOCATION)(this is appended to LOCATION)

3.1.3 ATEXIT

ATEXIT takes one parameter list as argument. The text of the parameter list is

appended to the output �le. Note that this text is subje
t to
hara
ter table trans-

lations et
..

An example using this fun
tion is the following. A do
ument in the LaTeX type-

setting language requires \end{do
ument} to o

ur at the end of the do
ument. To

automati
ally append this string to the output �le, the following spe
i�
ation
an

be used:

ATEXIT(NOEXPAND(\end{do
ument}))

Several ATEXIT lists
an be de�ned. They are appended to the output �le in the

reverse order of spe
i�
ation; i.e., the �rst ATEXIT list is appended to the output

�le last. That means that in general the ATEXIT text should be spe
i�ed when a

`mat
hing' starting
ommand is sent to the output �le; as in:

37

COMMENT(Start the LaTeX do
ument.)

NOEXPAND(\begin{do
ument})

COMMENT(Ensure its proper ending.)

ATEXIT(NOEXPAND(\end{do
ument}))

3.1.4 CHAR

The
ommand CHAR takes one argument, a number or a
hara
ter, and outputs its

orresponding ASCII
hara
ter to the �nal output �le. This
ommand is built for

`emergen
y situations', where you need to typeset a
hara
ter despite the fa
t that

it may be rede�ned in the
urrent
hara
ter table (for a dis
ussion of
hara
ter

tables, see 2.3). Also, the CHAR fun
tion
an be used to
ir
umvent Yodl's way of

mat
hing parentheses in a parameter list.

The following arguments may be spe
i�ed with CHAR (attempted in this order):

• A de
imal number indi
ating the number of the
hara
ter in the as
ii-table

(for example CHAR(41));

• A plain, single
hara
ter (for example CHAR(#)).

So, when you're sure that you want to send a printable
hara
ter that is not a
losing

parenthesis to the output �le, you
an use the form CHAR(
),
 being the
hara
ter

(as in, CHAR(;)). To send a non-printable
hara
ter or a
losing parenthesis to the

output �le, look up the ASCII number of the
hara
ter, and supply that number as

argument to the CHAR
ommand.

Example: The following two statements send an A to the output �le.

CHAR(65)

CHAR(A)

The following statement sends a
losing parenthesis:

CHAR(41)

Another way to send a string to the output �le without expansion by
hara
ter

tables or by ma
ro interpretation, is by using the fun
tion NOTRANS (see se
tion

3.1.44). If you want to send a string to the output without ma
ro interpretation,

but with
hara
ter table translation, use NOEXPAND (see se
tion 3.1.41).

3.1.5 CHDIR

The
ommand CHDIR takes one argument, a dire
tory to
hange to. This
ommand

is implemented to simplify the working with in
ludefile (see in
ludefile in

yodlma
ros(7)). As a demonstration,
onsider the following fragment:

38

in
ludefile(subdir/onefile)

in
ludefile(subdir/anotherfile)

in
ludefile(subdir/yetanotherfile)

This fragment
an be
hanged to:

CHDIR(subdir)

in
ludefile(onefile)

in
ludefile(anotherfile)

in
ludefile(yetanotherfile)

CHDIR(..)

The
urrent dire
tory, as given to CHDIR, only a�e
ts how in
ludefile will sear
h

for its �les.

Note that this example assumes that the
urrent working dire
tory is a member of

Yodl's in
lude-path spe
i�
ation (
f., Yodl's �in
lude option).

3.1.6 COMMENT

The COMMENT fun
tion takes one parameter list. The text in the list is treated as

omment. I.e., it is ignored. The text is not
opied to the �nal output �le.

3.1.7 COUNTERVALUE

COUNTERVALUE expands to the value of a
ounter. Its single parameter list must

ontain the name of a
ounter. The
ounter must have been
reated earlier using

the builtin DEFINECOUNTER.

Example:

The
ounter has value COUNTERVALUE(MYCOUNTER).

See also se
tion 2.5.

3.1.8 DECWSLEVEL

DECWSLEVEL requires one (empty) parameter list. It redu
es the
urrent white-

spa
e level. The white-spa
e level typi
ally is used in �les that only de�ne Yodl

ma
ros. When no output should be generated while pro
essing these �les, the white-

spa
e level
an be used to
he
k for this. If the white-spa
e level ex
eeds zero, a

warning will be generated if the �le produ
es non-whitespa
e output. The builtin

fun
tion DECWSLEVEL is used to redu
e the whitespa
e level following a previous
all

of INCWSLEVEL.

39

On
e the white spa
e level ex
eeds zero, no output will be generated. White spa
e,

therefore will e�e
tively be ignored. The white spa
e level
annot be redu
ed to

negative values. A warning is issued if that would have happened if it were allowed.

Example:

INCWSLEVEL()

DEFINESYMBOL(....)

DEFINEMACRO(...)(...)(...)

DECWSLEVEL()

Without the INCWSLEVEL and DECWSLEVEL,
alls, the above de�nition would generate

four empty lines to the output stream.

The INCWSLEVEL and DECWSLEVEL
alls may be nested. The best approa
h is to

put an INCWSLEVEL at the �rst line of a ma
ro-de�ning Yodl-�le, and a mat
hing

DECWSLEVEL
all at the very last line.

3.1.9 DEFINECHARTABLE

DEFINECHARTABLE is used to de�ne a
hara
ter translation table. The fun
tion

expe
ts two parameterlists,
ontaining the name of the
hara
ter table and
hara
ter

table translations on separate lines. These
hara
ter table translations are of the

form

hara
ter = quoted-string

Here,
hara
ter is always a value within single quotes. It may be a single
hara
ter,

an o
tal
hara
ter value or a hexade
imal
hara
ter value. The single
hara
ter may

be pre�xed by a \-
hara
ter (e.g., '\\'). The o
tal
hara
ter value must start with

a ba
kslash, followed by three o
tal digits (e.g., '\045'. The hexade
imal
har-

a
ter value starts with 0x, followed by two hexade
imal
hara
ters. E.g., '0xbe'.

The double quoted string may
ontain anything (but the string must be on one

line), possibly
ontaining es
ape-sequen
es as well: in the double quoted string the

standard C es
ape sequen
es \a (alert), \b (beep), \f (formfeed), \n (newline), \r

(
arriage return), \t (tab), and \v (verti
al tab) are re
ognized and automati
ally

onverted to their spe
ial meanings. Starting with Yodl 2.14.0 o
tal and hexade
i-

mal
onstants may also be used. E.g.,
hara
ter Y may also be spe
i�ed using the

o
tal value \131 or the hexade
imal value \x59. Any other
hara
ter following a

de�nes itself: \\ represents a single ba
kslash
hara
ter.

Example:

DEFINECHARTABLE(demotable)(

'&' = "&"

'\\' = "\\ba
kslash"

'\045' = "o
t(45)"

40

'0xa4' = "hex(a4)"

)

The builtin fun
tion DEFINECHARTABLE does not a
tivate the table. The table is

merely de�ned. To a
tivate the
hara
ter translation table, use USECHARTABLE. The

dis
ussion of
hara
ter tables is postponed to se
tion 2.3.

3.1.10 DEFINECOUNTER

DEFINECOUNTER
reates a new
ounter, to be subsequently used by, e.g, the USECOUNTER

fun
tion. DEFINECOUNTER expe
ts two parameter list: the name of the
ounter to

reate and an optional initial value. By default the
ounter will be initialized to

zero.

Examples:

DEFINECOUNTER(YEAR)(1950)

DEFINECOUNTER(NTIMES)()

See also se
tion 2.5.

3.1.11 DEFINEMACRO

DEFINEMACRO is used to de�ne new ma
ros. This fun
tion requires three parameter

lists:

• An identi�er, being the name of the ma
ro to de�ne. This identi�er may only

onsist of upper
ase or lower
ase
hara
ters. Note that it
an not
ontain

numbers, nor unders
ore
hara
ters.

• A number, stating the number of arguments that the ma
ro will require on
e

used. The number must be in the range 0 to 61.

• The text that the ma
ro will expand to, on
e used. This text may
ontain the

strings ARGx, x being 1, 2, et
.. At these pla
es the arguments to the ma
ro

will be pasted in. The numbers that identify the arguments are 1 to 9, then A

to Z and �nally a to z. This gives a range of 61 expandable arguments, whi
h

is enough for all real-life appli
ations.

For example, the following fragment de�nes a ma
ro bookref, whi
h
an be used

to typeset a referen
e to a book. It requires three arguments; say, an author, a title

and the name of a publisher:

DEFINEMACRO(bookref)(3)(

Author(s): ARG1

Book title: ARG2

41

Published by: ARG3

)

Su
h a ma
ro
ould be used as follows:

bookref(Sobotta/Be
her)

(Atlas der Anatomie des Mens
hen)

(Urban und S
hwarzenberg, Berlin, 1972)

When
alled, it would produ
e the following output:

Author(s): Sobotta/Be
her

Book title: Atlas der Anatomie des Mens
hen

Published by: Urban und S
hwarzenberg, Berlin, 1972

While applying a ma
ro, the three parameter lists are pasted to the pla
es where

ARG1, ARG2 et
. o

ur in the de�nition.

Note the following when de�ning new ma
ros:

• The parameter list
ontaining the name of the new ma
ro, (bookref) in the

above example, must o

ur right after DEFINEMACRO. No spa
es are allowed

in between. Spa
e
hara
ters and newlines may however o

ur following this

�rst parameter list.

This behavior of the yodl program is similar to the usage of the de�ned ma
ro:

the author information must, en
losed in parentheses, follow right after the

bookref identi�er. I implemented this feature to improve the distinguishing

between ma
ros and real text. E.g., a ma
ro me might be de�ned, but the

text

I like me (but so do you)

still is simple text; the ma
ro me only is a
tivated when a parenthesis imme-

diately follows it.

• Be
areful when pla
ing newlines or spa
es in the de�nition of a new ma
ro.

E.g., the de�nition, as given:

DEFINEMACRO(bookref)(3)(

Author(s): ARG1

Book title: ARG2

Published by: ARG3

)

42

introdu
es extra newlines at the beginning and ending of the ma
ro, whi
h will

be
opied to the output ea
h time the ma
ro is used. The extra newline o

urs,

of
ourse, right before the sequen
e Author(s): and following the evaluation

of ARG3. A simple ba
kslash
hara
ter at the end of the DEFINEMACRO line

would prevent the insertion of extra newline
hara
ters:

DEFINEMACRO(bookref)(3)(\

Author(s): ARG1

Book title: ARG2

Published by: ARG3

)

• Note that when a ma
ro is used whi
h requires no arguments at all, one empty

parameter list still must be spe
i�ed. E.g., my ma
ro pa
kage (see
hapter

4) de�nes a ma
ro it that starts a bullet item in a list. The ma
ro takes no

arguments, but still must be typed as it().

This behavior is
onsistent: it helps distinguish whi
h identi�ers are ma
ros

and whi
h are simple text.

• Ma
ro arguments may evaluate to text. When a \is appended to the ma
ro-

argument, or in the default input handling within a non-zero white-spa
e

level (see se
tion 3.1.38) this may invalidate a subsequent ma
ro
all. E.g.,

the ma
ro

DEFINEMACRO(oops)(1)(

ARG1

XXnl()

)

will, when
alled as oops(hello world), produ
e the output:

hello worldXXnl()

To prevent this gluing to arguments to subsequent ma
ros, a single + should

be prepended to the ma
ro
all:

DEFINEMACRO(oops)(1)(

ARG1

+XXnl()

)

See also se
tion 2.2.3 obout the `+identi�er'-sequen
e.

• Note the preferred layout of ma
ro de�nitions and ma
ro
alls. Adhere to this

form, to prevent drowning in too many parentheses. In parti
ular:

� Put all elements of the ma
ro de�nition on one line, ex
ept for the ma
ro-

expansion itself. Ea
h expansion element should be on a line by itself.

43

� When
alling ma
ros put the ma
ro parameter lists underneath ea
h

other. If the ma
rolists themselves
ontain ma
ro-
alls, put ea
h
all

again on a line of its own, indenting one tab-position beyond the lo
ation

of the opening parenthesis of the argument.

� No
ontinnuation ba
kslashes are required between parameter lists. So,

do not use them there to prevent unne
essary
lutter.

� With
omplex
alls, indent just the arguments, and put the parentheses

in their required of logi
al lo
ations.

Example of a
omplex
all:

omplex(

first(

ARG1

)(

ARG2

+XXnl()

)

ARG3

+nop()

ARG4

+XXnl()

)

• Ma
ro expansion pro
eeds as follows:

� The parameter lists are read from the input

� The
ontents of the parameters then repla
e their ARGx referen
es in

the ma
ro's de�nition (in some ex
eptional
ases,
learly indi
ated as

su
h when appli
able, the arguments will themselves be evaluated �rst,

and then these evaluated arguments are used as repla
ements for their

orresponding ARGx referen
es).

� The now modi�ed ma
ro is read by Yodl's lexi
al s
anner. This may

result in yet another ma
ro expansion, whi
h will then be evaluated

re
ursively.

� Eventually, all expansion is
ompleted (well, should
omplete, sin
e Yodl

doesn't test for eternal re
ursion) and s
anning of the input
ontinues

beyond the original ma
ro
all.

For example, assume we have the following two ma
ros:

DEFINEMACRO(First)(1)(

Hello ARG1

+XXnl()

)

DEFINEMACRO(Se
ond)(1)(

First(ARG1)

First(ARG1)

)

44

and the following
all is issued:

Se
ond(Yodl)

then the following will happen:

� Se
ond(Yodl) is read as en
ountered.

� ARG1 in Se
ond is repla
ed by Yodl, and the resulting ma
ro body is sent

to the lexi
al s
anner for evaluation: It will see:

First(Yodl)First(Yodl)

� The �rst
all to First() is now evaluated. This will put (after repla
ing

ARG1 by Yodl) the following on the s
anner's input:

Hello Yodl+XXnl()First(Yodl)

� Hello Yodl
ontains no ma
ro
all, so it is written to the output stream.

Remains:

+XXnl()First(Yodl)

� Assume XXnl() merely
ontains a newline (represented by \n, here), so

+XXnl() is now repla
ed by \n. This results in the following input for

the lexi
al s
anner:

\nFirst(Yodl)

� The \n is now written to the output stream, and the s
anner sees:

First(Yodl)

� The se
ond
all to First() is now evaluated. This will put the following

on the s
anner's input:

Hello Yodl+XXnl()

� Hello Yodl is written to the output stream. Remains:

+XXnl()

� +XXnl() is now repla
ed by \n. The lexi
al s
anner sees:

\n

� The newline is printed and we're done.

45

3.1.12 DEFINESYMBOL

NOTE: this fun
tion has
hanged at the release of Yodl 2.00. It now

expe
ts two parameter lists, rather than one

DEFINESYMBOL expe
ts two arguments. An identi�er, whi
h is the name of the

symbol to de�ne, and the textual value of the symbol. If the se
ond argument is

empty, the symbol is de�ned, but has an empty value.

The earlier interpretation of a Yodl symbol as a logi
al �ag
an still be used, but

allowing it to obtain textual values greatly simpli�es various Yodl ma
ros.

Example:

DEFINESYMBOL(Yodl)(Your own do
ument language)

DEFINESYMBOL(Options)()

3.1.13 DELETECHARTABLE

DELETECHARTABLE removes a de�nition of a
hara
ter table that was de�ned by

DEFINECHARTABLE. This fun
tion expe
ts one argument: the name of the
hara
ter

table remove.

It's an error to attempt to delete a
hara
ter table that is
urrently in use or to

attempt to delete a non-existing
hara
ter table.

Example:

DELETECHARTABLE(mytable)

3.1.14 DELETECOUNTER

DELETECOUNTER removes a de�nition of a
ounter that was de�ned by DEFINECOUNTER.

This fun
tion expe
ts one argument: the name of the
ounter to remove.

If the
ounter does not exist, a warning is issued. It is not
onsidered an error to

try to delete a
ounter that has not been de�ned earlier.

Example:

DELETECOUNTER(my
ounter)

46

3.1.15 DELETEMACRO

DELETEMACRO removes a de�nition of a ma
ro that was de�ned by DEFINEMACRO.

This fun
tion takes one argument: the ma
ro name to remove.

There is no error
ondition (ex
ept for syntax errors): when no ma
ro with a mat
h-

ing name was previously de�ned, no a
tion is taken.

For example, the safe way to de�ne a ma
ro is by �rst unde�ning it. This ensures

that possible previous de�nitions are removed �rst:

Example:

DELETEMACRO(myma
ro)

3.1.16 DELETENOUSERMACRO

DELETENOUSERMACRO removes a `nouserma
ro' de�nition. The fun
tion expe
ts

one argument: the name of the `nouserma
ro' identi�er to be removed from the

nouserma
ro-set.

There is no error
ondition (ex
ept for syntax errors): when the identi�er wasn't

stored as a `nouserma
ro' no a
tion is taken.

Example:

DELETENOUSERMACRO(myma
ro)

3.1.17 DELETESYMBOL

DELETESYMBOL removes the de�nition of a symbol variable. It expe
ts one parameter

list, holding the name of the variable to deleted.

This ma
ro has no error
ondition (ex
ept for syntax errors): the symbol in question

may be previously de�ned, but that is not ne
essary.

Example:

DELETESYMBOL(Options)

3.1.18 DUMMY

This fun
tion is obsolete. It does nothing, and may be removed in future versions

of Yodl.

47

3.1.19 ENDDEF

ENDDEF is obsolete, and should be repla
ed by DECWSLEVEL. It may be removed in

future versions of Yodl.

3.1.20 ERROR

The ERROR fun
tion takes one argument: text to display to the standard error

stream. The
urrent input �le and line number are also displayed. After displaying

the text, the yodl program aborts with an exit status of 1.

The text passed to the fun
tion is expanded �rst. See the example.

The ERROR fun
tion is an example of a fun
tion that evaluates its parameter list

itself.

This
ommand
an be used, e.g., in a ma
ro pa
kage when an in
orre
t ma
ro is

expanded. In my ma
ro pa
kage (see
hapter 4) the ERROR fun
tion is used when the

se
tioning
ommand
hapter() is used in an arti
le do
ument (in the pa
kage,

hapter's are only available in books or reports).

An analogous builtin fun
tion is WARNING, whi
h also prints a message but does not

exit (see se
tion 3.1.74).

Example: In the following
all, COUNTERVALUE(NTRIES) is repla
ed by its a
tual

value:

ERROR(Stopping after COUNTERVALUE(NTRIES) attempts)

3.1.21 EVAL

The EVAL fun
tion takes one argument: the text to be evaluated. This fun
tion

allows you to perform an indire
t evaluation of Yodl
ommands. Assume that there

is a symbol varnam
ontaining the name of a
ounter variable, then the following

will display the value of the
ounter, in
rementing it �rst:

EVAL(NOTRANS(USECOUNTER)(SYMBOLVALUE(varnam)))

The a
tions of the EVAL fun
tion
an be des
ribed as follows:

• First, the NOTRANS(USECOUNTER) is evaluated, produ
ing USECOUNTER.

• Next, the open parentheses is pro
essed, produ
ing the open parenthesis itself

• Then, SYMBOLVALUE(varnam) is evaluated, produ
ing the name of a
ounter,

e.g. `
ounter'.

• Eventually the
losing parentheis is pro
essed, produ
ing the
losing paren-

thesis itself.

48

• All this results in the text

USECOUNTER(
ounter)

• This text is now presented to Yodl's lexi
al s
anner, resulting in in
rementing

the
ounter, and displaying its in
remented value.

It should be realized that ma
ro arguments themselves are usually not evaluated.

So, a
onstru
tion like

USECOUNTER(EVAL(SYMBOLVALUE(varnam)))

will fail, sin
e EVAL(SYMBOLVALUE(varnam)) is not a legal name for a
ounter: the

EVAL()
all is used here as an argument, whi
h is not expanded. The distin
tion

is subtle, and is
aused by the fa
t that builtin fun
tions re
eive unpro
essed argu-

ments, and may impose
ertain requirements on them (like USECOUNTER requiring

the name of a
ounter).

Summarizing: EVAL a
ts as follows:

• Its argument is presented to Yodl's lexi
al s
anner

• The output produ
ed by the pro
essing of the argument is then inserted into

the input stream in lieu of the original EVAL
all.

Mosy built-in fun
tions will not evaluate their arguments. In fa
t, only ERROR,

EVAL, FPUTS, INTERNALINDEX, TYPEOUT, UPPERCASE and WARNING() will evalu-

ate their arguments.

Postponing evaluations allows you to write:

DEFINESYMBOL(later)(SYMBOLVALUE(earlier))

Eventually, and not when later is de�ned, a statement like

SYMBOLVALUE(later)

will produ
e the value of earlier at the moment SYMBOLVALUE(later) is pro
essed.

This is, in all its
omplex
onsequen
es, what would be expe
ted in most
ases. It

allows us to write general ma
ros produ
ing output that is only evaluated when the

text of symbols and values of arguments be
ome eventually, rather than when the

ma
ro is de�ned, available.

De
isions like these invariably result in questions like `what if I have to keep original

values in some situation?' In those situations EVAL() must be used. The following

49

example shows the de�nition of three symbols: one re
eives an initial value, two will

return one's a
tual value when two's value is displayed, three will, using EVAL(),

store one's initial value. The example also shows yet another way to suppress ma
ro

alls. It uses the ma
ro nop() whi
h is de�ned in the all standard
onversion types.

DEFINESYMBOL(one)(This is one, before)

DEFINESYMBOL(two)(SYMBOLVALUE(one))

EVAL(DEFINESYMBOL+nop()(three)(SYMBOLVALUE(one)))

SETSYMBOL(one)(this is one, after)

SYMBOLVALUE(two)

SYMBOLVALUE(three)

3.1.22 FILENAME

The fun
tion FILENAME() produ
es an absolute path to the
urrently pro
essed Yodl

�le. This is not ne
essarily the
anoni
al path name, as it may
ontain
urrent-

and parent-path dire
tories.

3.1.23 FPUTS

The fun
tion FPUTS expe
ts two arguments: the �rst argment is information to

be appended to a �le, whose name is given as the se
ond argument. The �rst

argument is pro
essed by Yodl before it is appended to the requested �lename, so

it may
ontain ma
ro
alls.

For example, the following statement will append a
ountervalue to the mentioned

�le:

FPUTS(There have been COUNTERVALUE(attempts) attempts)(/tmp/logfile)

The se
ond argument (name of the �le) is not evaluated, but is used as re
eived.

3.1.24 IFBUILTIN

The IFBUILTIN fun
tion tests whether its �rst argument is the name of a builtin

fun
tion. If so, the se
ond parameter list is evaluated, else, the third parameter list

is evaluated. All three parameter lists (the variable, the true-list and the false-list)

must be present; though the true-list and/or the false-list may be empty parameter

lists.

Example:

IFBUILTIN(IFBUILTIN)(\

`BUILTIN' is a builtin - fun
tion

50

)(\

`BUILTIN' is NOT a builtin - fun
tion

)

Please note the preferred layout: The �rst argument immediately follows the fun
-

tion name, then the se
ond argument (the true list) is indented, as is the false

list. The layout
losely follows the preferred layout of if-else statements of many

programming languages.

3.1.25 IFCHARTABLE

The IFCHARTABLE fun
tion tests whether its �rst argument is the name of a
har-

a
ter table. The
hara
ter table needs not be a
tive. If the name is the name of

a
hara
ter table, the se
ond parameter list is evaluated, else, the third parameter

list is evaluated. All three parameter lists (the name, the true list and the false list)

must be present; though the true list and/or the false list may be empty parameter

lists.

Example:

IFCHARTABLE(standard)(\

`standard' is a
hara
ter tablebuiltin - fun
tion

)(\

`standard' is NOT a
hara
ter tablebuiltin - fun
tion

)

Please note the preferred layout: The �rst argument immediately follows the fun
-

tion name, then the se
ond argument (the true list) is indented, as is the false

list. The layout
losely follows the preferred layout of if-else statements of many

programming languages.

3.1.26 IFDEF

The IFDEF fun
tion tests for the de�nition status of the argument in its �rst pa-

rameter list. If it is a de�ned entity, the se
ond parameter list is evaluated, else, the

third parameter list is evaluated. All three parameter lists (the entity, the true list

and the false list) must be present; though the true list and/or the false list may be

empty parameter lists.

The true list is evaluated if the �rst argument is the name of:

• a built-in fun
tion, or

• a
hara
ter table, or

• a
ounter, or

• a no-user-ma
ro symbol, or

51

• a symbol, or

• a user-de�ned ma
ro, or

Example:

IFDEF(someName)(\

`someName' is a defined entity

)(\

`someName is not defined.

)

Please note the preferred layout: The �rst argument immediately follows the fun
-

tion name, then the se
ond argument (the true list) is indented, as is the false

list. The layout
losely follows the preferred layout of if-else statements of many

programming languages.

3.1.27 IFEMPTY

IFEMPTY expe
ts three arguments: a symbol, a true-list and a false-list. IFEMPTY

evaluates to the true-list if the symbol is an empty string; otherwise, it evaluates to

the false-list.

The fun
tion does not further evaluate its argument. Its use is primarily to test

whether a ma
ro has re
eived an argument or not. If the intent is to
he
k whether

a symbol's value is empty or not, IFSTREQUAL 3.1.32 should be used, where the

�rst argument is the name of a symbol, and the se
ond argument is empty.

Example:

IFEMPTY(something)(\

`something' is empty...

)(\

`something' is not an empty string

)

In the same way, IFEMPTY
an be used to test whether an argument expands to a

non-empty string. A more elaborate example follows below. Say you want to de�ne

a bookref ma
ro to typeset information about an author, a book title and about

the publisher. The publisher information may be absent, the ma
ro then typesets

unknown:

\

DEFINEMACRO(bookref)(3)(\

Author(s): ARG1

Title: ARG2

Published by: \

52

IFEMPTY(ARG3)

(\

Unknown\

)(\

ARG3\

)

)

Using the ma
ro, as in:

\

bookref(Helmut Leonhardt)

(Histologie, Zytologie und Mi
roanatomie des Mens
hen)

()

would now result in the text Unknown behind the Published by: line.

Please note the preferred layout: The �rst argument immediately follows the fun
-

tion name, then the se
ond argument (the true list) is indented, as is the false

list. The layout
losely follows the preferred layout of if-else statements of many

programming languages.

3.1.28 IFEQUAL

IFEQUAL expe
ts four argument lists. It tests whether its �rst argument is equal to

its se
ond argument. If so, the third parameter list is evaluated, else, the fourth

parameter list is evaluated. All four argument lists must be present, though all
an

be empty lists.

The �rst two arguments of IFEQUAL should be integral numeri
al arguments. In

order to determine whether the �rst two arguments are equal, their values are

determined:

• If the argument starts with an integral numeri
al value, that value is the value

of the argument.

• If the argument is the name of a
ounter, the
ounter's value is the value of

the argument

• If the values of the �rst two arguments van be determined a

ordingly, their

equality will determine whether the true list (when the values are equal) or

the false list (when the values are unequal) will be evaluated.

• Otherwise, IFEQUAL will evaluate the false list.

Example:

IFEQUAL(0)()(\

0 and an empty string are equal

53

)(\

0 and an empty string are not equal

)

Please note the preferred layout: The �rst argument immediately follows the fun
-

tion name, then the se
ond argument (the true list) is indented, as is the false

list. The layout
losely follows the preferred layout of if-else statements of many

programming languages.

3.1.29 IFGREATER

IFGREATER expe
ts four argument lists. It tests whether its �rst argument is greater

to its se
ond argument. If so, the third parameter list is evaluated, else, the fourth

parameter list is evaluated. All four argument lists must be present, though all
an

be empty lists.

The �rst two arguments of IFGREATER should be integral numeri
al arguments.

In order to determine whether the �rst two arguments are equal, their values are

determined:

• If the argument starts with an integral numeri
al value, that value is the value

of the argument.

• If the argument is the name of a
ounter, the
ounter's value is the value of

the argument

• If the values of the �rst two arguments van be determined a

ordingly, their

order relation will determine whether the true list (when the �rst value is

greater than the se
ond value) or the false list (when the �rst value is smaller

or equal than the se
ond value) will be evaluated.

• Otherwise, IFGREATER will evaluate the false list.

Example:

IFGREATER(
ounter)(5)(\

ounter ex
eeds the value 5

)(\

ounter does not ex
eeds the value 5, or
ounter is no Yodl-
ounter.

)

Please note the preferred layout: The �rst argument immediately follows the fun
-

tion name, then the se
ond argument (the true list) is indented, as is the false

list. The layout
losely follows the preferred layout of if-else statements of many

programming languages.

3.1.30 IFMACRO

The IFMACRO fun
tion tests whether its �rst argument is the name of a ma
ro. If

the name is the name of a ma
ro, the se
ond parameter list is evaluated, else, the

54

third parameter list is evaluated. All three parameter lists (the name, the true list

and the false list) must be present; though the true list and/or the false list may be

empty parameter lists.

Example:

IFMACRO(nested)(\

`nested' is the name of a ma
ro

)(\

There is no ma
ro named `nested'

)

Please note the preferred layout: The �rst argument immediately follows the fun
-

tion name, then the se
ond argument (the true list) is indented, as is the false

list. The layout
losely follows the preferred layout of if-else statements of many

programming languages.

3.1.31 IFSMALLER

IFSMALLER expe
ts four argument lists. It tests whether its �rst argument is smaller

to its se
ond argument. If so, the third parameter list is evaluated, else, the fourth

parameter list is evaluated. All four argument lists must be present, though all
an

be empty lists.

The �rst two arguments of IFSMALLER should be integral numeri
al arguments.

In order to determine whether the �rst two arguments are equal, their values are

determined:

• If the argument starts with an integral numeri
al value, that value is the value

of the argument.

• If the argument is the name of a
ounter, the
ounter's value is the value of

the argument

• If the values of the �rst two arguments van be determined a

ordingly, their

order relation will determine whether the true list (when the �rst value is

smaller than the se
ond value) or the false list (when the �rst value is greater

than or equal to the se
ond value) will be evaluated.

• Otherwise, IFSMALLER will evaluate the false list.

Example:

IFSMALLER(
ounter)(5)(\

ounter is smaller than the value 5, or
ounter is no Yodl-
ounter

)(\

ounter ex
eeds the value 5

)

55

Please note the preferred layout: The �rst argument immediately follows the fun
-

tion name, then the se
ond argument (the true list) is indented, as is the false

list. The layout
losely follows the preferred layout of if-else statements of many

programming languages.

3.1.32 IFSTREQUAL

IFSTREQUAL tests for the equality of two strings. It expe
ts four arguments: two

strings to mat
h, a true list and a false list. The true list is only evaluated when

the
ontents of the two string arguments exa
tly mat
h.

The �rst two arguments of IFSTREQUAL are partially evaluated:

• If the argument is the name of a symbol, the symbol's value is the value of

the argument

• Otherwise, the argument itself is used.

In the degenerate
ase where the string to be
ompared is a
tually the name of a

SYMBOL, use a temporary SYMBOL variable
ontaining the name of that symbol, and

ompare it to whatever you want to
ompare it with. Alternatively, write a blank

spa
e behind the arguments, sin
e the arguments are then interpreted `as is'. In

pra
ti
e, the need for these
onstru
tions seem to arise seldomly, however.

Example:

IFSTREQUAL(MYSYMBOL)(Hello world)(

The symbol `MYSYMBOL' holds the value `Hello world'

)(

The symbol `MYSYMBOL' doesn't hold the value `Hello world'

)

3.1.33 IFSTRSUB

IFSTRSUB tests whether a string is a sub-string of another string. It a
ts similar to

IFSTREQUAL, but it tests whether the se
ond string is part of the �rst one.

The �rst two arguments of IFSTREQULA are partially evaluated:

• If the argument is the name of a symbol, the symbol's value is the value of

the argument

• Otherwise, the argument itself is used.

In the degenerate
ase where the string to be
ompared is a
tually the name of a

SYMBOL, use a temporary SYMBOL variable
ontaining the name of that symbol, and

ompare it to whatever you want to
ompare it with. Alternatively, write a blank

spa
e behind the arguments, sin
e the arguments are then interpreted `as is'. In

pra
ti
e, the need for these
onstru
tions seem to arise seldomly, however.

56

Example:

IFSTRSUB(haysta
k)(needle)(

`needle' was found in `haysta
k'

)(

`needle' was not found in `haysta
k'

)

Note that both `haysta
k' and `needle' may be the names of symbols. If they are,

their
ontents are is
ompared, rather than the literal names `haysta
k' and `needle'

3.1.34 IFSYMBOL

The IFSYMBOL fun
tion tests whether its �rst argument is the name of a symbol. If

it is the name of a symbol, the se
ond parameter list is evaluated, else, the third

parameter list is evaluated. All three parameter lists (the name, the true list and

the false list) must be present; though the true list and/or the false list may be

empty parameter lists.

Example:

IFSYMBOL(nested)(\

`nested' is the name of a symbol

)(\

There is no symbol named `nested'

)

Please note the preferred layout: The �rst argument immediately follows the fun
-

tion name, then the se
ond argument (the true list) is indented, as is the false

list. The layout
losely follows the preferred layout of if-else statements of many

programming languages.

3.1.35 IFZERO

IFZERO expe
ts three parameter lists. The �rst argument de�nes whether the whole

fun
tion expands to the true list or to the false list.

The �rst argument of IFZERO should be an integral numeri
al value. Its value is

determined as follows:

• If the argument starts with an integral numeri
al value, that value is the value

of the argument.

• If the argument is the name of a
ounter, the
ounter's value is the value of

the argument

• Otherwise, IFZERO will evaluate the false list.

57

Note that, starting with Yodl version 2.00 the �rst argument is not evaluated any

further. So, COUNTERVALUE(some
ounter) will always be evaluated as 0. If the

value of a
ounter is required, simply provide its name as the �rst argument of the

IFZERO fun
tion.

Example:

DEFINEMACRO(environment)(2)(\

IFZERO(ARG2)(\

NOEXPAND(\end{ARG1})\

)(\

NOEXPAND(\begin{ARG1})\

)\

)

Su
h a ma
ro may be used as follows:

environment(
enter)(1)

Now
omes
entered text.

environment(
enter)(0)

whi
h would of
ourse lead to \begin and \end{
enter}. The numeri
 se
ond

argument is used here as a on/o� swit
h.

3.1.36 INCLUDEFILE

INCLUDEFILE takes one argument, a �lename. The �le is pro
essed by Yodl. If a �le

should be inserted without pro
essing the builtin fun
tion NOEXPANDINCLUDE

3.1.42 or NOEXPANDPATHINCLUDE 3.1.43 should be used.

The yodl program supplies, when ne
essary, an extension to the �lename. The

supplied extension is .yo, unless de�ned otherwise during the
ompilation of the

program.

Furthermore, Yodl tries to lo
ate the �le in the Yodl's in
lude path (whi
h may be

set using the �in
lude option). The a
tual value of the in
lude path is shown in

the usage information, displayed when Yodl is started without arguments.

NOTE: Starting with Yodl version 3.00.0 Yodl's default �le in
lusion behavior has

hanged. The
urrent working dire
tory no longer remains �xed at the dire
tory in

whi
h Yodl is
alled, but is volatile,
hanging to the dire
tory in whi
h a yodl-�le is

lo
ated. This has the advantage that Yodl's �le in
lusion behavior now mat
hes the

wayC's #in
lude dire
tive operates; it has the disadvantage that it may break some

urrent do
uments. Conversion, however is simple and
an be avoided altogether if

Yodl's -L (�lega
y-in
lude) option is used.

Example:

58

INCLUDEFILE(latex)

will try to in
lude the �le latex or latex.yo from the
urrent in
lude parth. When

the �le is not found, Yodl aborts.

3.1.37 INCLUDELIT, INCLUDELITERAL

INCLUDELIT and INCLUDELITERAL are obsolete. NOEXPANDINCLUDE 3.1.42 or

NOEXPANDPATHINCLUDE 3.1.43 should be used instead.

3.1.38 INCWSLEVEL

INCWSLEVEL requires one (empty) parameter list. It in
reases the
urrent white-

spa
e level. The white-spa
e level typi
ally is used in �les that only de�ne Yodl

ma
ros. When no output should be generated while pro
essing these �les, the white-

spa
e level
an be used to
he
k for this. If the white-spa
e level ex
eeds zero, a

warning will be generated if the �le produ
es non-whitespa
e output. The builtin

fun
tion DECWSLEVEL is used to redu
e the whitespa
e level following a previous
all

of INCWSLEVEL.

On
e the white spa
e level ex
eeds zero, no output will be generated. White spa
e,

therefore will e�e
tively be ignored. The white spa
e level
annot be redu
ed to

negative values. A warning is issued if that would have happened if it were allowed.

Example:

INCWSLEVEL()

DEFINESYMBOL(....)

DEFINEMACRO(...)(...)(...)

DECWSLEVEL()

Without the INCWSLEVEL and DECWSLEVEL,
alls, the above de�nition would generate

four empty lines to the output stream.

The INCWSLEVEL and DECWSLEVEL
alls may be nested. The best approa
h is to

put an INCWSLEVEL at the �rst line of a ma
ro-de�ning Yodl-�le, and a mat
hing

DECWSLEVEL
all at the very last line.

3.1.39 INTERNALINDEX

INTERNALINDEX expe
ts one argument list. The argument list is evaluated and

written to the index �le.

The index �le is de�ned sin
e Yodl version 2.00, and
ontains the �xup information

whi
h was previously written to Yodl's output as the .tt(Yodl)TAGSTART. ...

.tt(Yodl)TAGEND. sequen
e.

59

The index �le allows for greated pro
essing speed, at the expense of an additional

�le. The asso
iated yodlpost postpro
essing program will read and pro
ess the

index �le, and will �xup the
orresponding yodl-output a

ordingly.

The index �le is not
reated when output is written to the standard output name,

sin
e Yodl is unable to request the system for the
urrent �le o�set.

The entries of the index �le always �t on one line. INTERNALINDEXwill alter newline

hara
ters in its argument into single blank spa
es. Ea
h line starts with the
urrent

o�set of Yodl's output �le, thus indi
ating the exa
t lo
ation where a �xup is

requested. An example of a produ
ed �xup line
ould be

3004 ref MACROPACKAGE

indi
ating that at o�set 3004 in the produ
ed output �le a referen
e to the label

MACROPACKAGE is requested. Assuming a html
onversion, The postpro
essor will

thereupon write something like

4.3.2.

into the a
tual output �le while pro
essing Yodl's output up to o�set lo
ation 3004.

Consequently, produ
ing Yodl-output normally
onsists of two steps:

• First, Yodl itself is started, produ
ing, e.g., out.idx (the index �le) and

out.yodl (Yodl's raw output).

• Then, Yodl's post-pro
essor pro
esses out.idx and out.yodl, produ
ing one

or more �nal output �les, in whi
h the elements of the index �le have been

properly handled. This may result in multiple output �le, like report.html,

report01.html, report02.html et
.

3.1.40 NEWCOUNTER

NEWCOUNTER is obsolete. DEFINECOUNTER 3.1.10 should be used instead.

3.1.41 NOEXPAND

NOEXPAND is used to send text to the �nal output �le without being expanded by

Yodl (the other methods are the CHAR ma
ro, see se
tion 3.1.4, and the NOTRANS

ma
ro, see se
tion 3.1.44). NOEXPAND takes one parameter list, the text in question.

Whatever o

urs in the argument is not subje
t to parsing or expansion by Yodl,

but is simply
opied to the output �le (ex
ept for CHAR fun
tions in the argument,

whi
h are expanded. If CHAR-expansion is not required either NOTRANS 3.1.44

an be used).

Furthermore, the
ontents of the parameter list are also subje
t to
hara
ter table

translations, using the
urrently a
tive table. This should
ome as no surprise.

60

Ignoring
hara
ter tables would make both the pro
essing of CHAR
alls and the

NOTRANS fun
tion super�uous.

So, the following situations are re
ognized:

support
hartables

and CHAR

Ma
ro expansion yes no

Yes (standard) Push
hartable

(standard)

Pop
hartable

No NOEXPAND NOTRANS

E.g., let's assume that you need to write in your do
ument the following text:

INCLUDEFILE(something or the other)

IFDEF(onething)(

...

)(

....

)

NOEXPAND(whatever)

The way to a

omplish this is by pre�xing the text by NOEXPAND followed by an

open parenthesis, and by post�xing it by a
losing parenthesis. Otherwise, the text

would be expanded by Yodl while pro
essing it (and would lead to syntax errors,

sin
e the text isn't
orre
t in the sen
e of the Yodl language).

For this fun
tion, keep the following
aveats in mind:

• There is only one thing that a NOEXPAND
annot prote
t from expansion: an

ARGx in a ma
ro de�nition. The argument spe
i�er is always pro
essed. E.g.,

after

DEFINEMACRO(thatsit)(1)(

That is --> NOEXPAND(ARG1) <-- it!

)

thatsit(after all)

the ARG1 inside the NOEXPAND statement is repla
ed with after all.

• The NOEXPAND fun
tion must, as all fun
tions, be followed by a parameter list.

The parentheses of the list must therefore be `balan
ed'. For unbalan
ed lists,

use CHAR(40) to set an open parenthesis, or CHAR(41) to typeset a
losing

parenthesis.

3.1.42 NOEXPANDINCLUDE

NOEXPANDINCLUDE takes one argument, a �lename. The �le is in
luded.

61

The �lename is uses as spe
i�ed. The in
lude path is not used when lo
ating this

�le.

NOTE: Starting with Yodl version 3.00.0 Yodl's default �le in
lusion behavior has

hanged. The
urrent working dire
tory no longer remains �xed at the dire
tory in

whi
h Yodl is
alled, but is volatile,
hanging to the dire
tory in whi
h a yodl-�le is

lo
ated. This has the advantage that Yodl's �le in
lusion behavior now mat
hes the

wayC's #in
lude dire
tive operates; it has the disadvantage that it may break some

urrent do
uments. Conversion, however is simple and
an be avoided altogether if

Yodl's -L (�lega
y-in
lude) option is used.

The argument to NOEXPANDINCLUDE is partially evaluated:

• If the argument is the name of a symbol, the symbol's value is the value of

the argument

• Otherwise, the argument itself is used.

The thus obtained �le name is not further evaluated: in parti
ular, it will not be

subje
t to
hara
ter translations.

The
ontents of the �le are in
luded literally, not subje
t to ma
ro expansion.

Chara
ter translations are performed, though. If
hara
ter translations are not ap-

propriate, PUSHCHARTABLE
an be used to suppress
hara
ter table translations

temporarily.

The purpose of NOEXPANDINCLUDE is to in
lude sour
e
ode literally in the

do
ument, as in:

NOEXPANDINCLUDE(literal.
)

The fun
tion NOEXPANDPATHINCLUDE
an be used to insert a �le whi
h is

lo
ated in one of the dire
tories spe
i�ed in Yodl's in
lude path.

3.1.43 NOEXPANDPATHINCLUDE

NOEXPANDPATHINCLUDE takes one argument, a �lename. The �le is in
luded. The

�le is sear
hed for in the dire
tories spe
i�ed in Yodl's in
ludepath.

NOTE: Starting with Yodl version 3.00.0 Yodl's default �le in
lusion behavior has

hanged. The
urrent working dire
tory no longer remains �xed at the dire
tory in

whi
h Yodl is
alled, but is volatile,
hanging to the dire
tory in whi
h a yodl-�le is

lo
ated. This has the advantage that Yodl's �le in
lusion behavior now mat
hes the

wayC's #in
lude dire
tive operates; it has the disadvantage that it may break some

urrent do
uments. Conversion, however is simple and
an be avoided altogether if

Yodl's -L (�lega
y-in
lude) option is used.

The argument to NOEXPANDPATHINCLUDE is partially evaluated:

• If the argument is the name of a symbol, the symbol's value is the value of

the argument

62

• Otherwise, the argument itself is used.

The thus obtained �le name is not further evaluated: in parti
ular, it will not be

subje
t to
hara
ter translations.

Like the NOEXPANDINCLUDE fun
tion, the
ontents of the �le are in
luded literally,

not subje
t to ma
ro expansion. Chara
ter translations are performed, though. If

hara
ter translations are not appropriate, PUSHCHARTABLE 3.1.56
an be used

to suppress
hara
ter table translations temporarily.

The purpose of NOEXPANDPATHINCLUDE is to in
lude sour
e
ode as de�ned

in a ma
ro pa
kage literally into the do
ument, as in:

NOEXPANDPATHINCLUDE(rug-menubegin.xml)

3.1.44 NOTRANS

NOTRANS
opies its one argument literally to the output �le, without expanding

ma
ros in it and without translating the
hara
ters with the
urrent translation

table. The NOTRANS fun
tion is typi
ally used to send
ommands for the output

format to the output �le.

For example,
onsider the following
ode fragment:

COMMENT(--- Define
hara
ter translations for \, { and } in LaTeX. ---)

DEFINECHARTABLE(standard)(

'\\' = "$\\ba
kslash$"

'{' = "\\verb+{+"

'}' = "\\verb+}+"

)

COMMENT(--- A
tivate the translation table. ---)

USECHARTABLE(standard)

COMMENT(--- Now two tests: ---)

NOEXPAND(\input{epsf.tex})

NOTRANS(\input{epsf.tex})

NOEXPAND will send

$\ba
kslash$input\verb+{+epsf.tex\verb+}+

sin
e the
hara
ters in its argument are translated with the standard translation

table. In
ontrast, NOTRANS will send \input{epsf.tex}.

63

The parameter list of NOTRANS must be balan
ed with respe
t to its parentheses.

When using an unbalan
ed set of parentheses, use CHAR(40) to send a literal (, or

CHAR(41) to send a).

The NOEXPAND des
ription summarizes all
ombinations of
hara
ter translations

and/or ma
ro expansion, and how they are handled and realized by Yodl.

3.1.45 NOUSERMACRO

NOUSERMACRO
ontrols yodl's warnings in the following way: When Yodl is started

with the -w �ag on the
ommand line, then warnings are generated when Yodl

en
ounters a possible ma
ro name, followed by a parameter list, without �nding a

ma
ro by that name. Yodl then prints something like
annot expand possible

user ma
ro.

Examples of su
h sequen
es are, The ne
essary file(s) are in /usr/lo
al/lib/yodl,

or see the manual page for sed(1). The
andidate ma
ros are file and sed;

these names
ould just as well be `valid' user ma
ros followed by their parameter

list.

When a
orresponding NOUSERMACRO statement appears before yodl en
ounters the

andidate ma
ros, no warning is generated. A fragment might therefore be:

NOUSERMACRO(file sed)

The ne
essary file(s) are in ...

See the manual page for sed(1).

The NOUSERMACRO a

epts one or more names in its argument, separated by white

spa
e,
ommas,
olons, or semi-
olons.

3.1.46 OUTBASE

OUTBASE inserts the
urrent basename of the output �le into the output �le. The

basename is the name of the �le of whi
h the dire
tory
omponents and extension

were stripped.

If the output �le is the standard output �le, - is inserted.

3.1.47 OUTDIR

OUTDIR inserts the
urrent path name of the output �le into the output �le. The

path name is a, not ne
essarily absolute, designator of the dire
tory in whi
h the

output �le is lo
ated. If the output �le is indi
ated as, e.g., -o out, then OUTDIR

simply inserts a dot.

If the output �le is the standard output �le, a dot is inserted too.

64

3.1.48 OUTFILENAME

OUTFILENAME inserts the
urrent �lename of the output �le into the output �le. The

�lename is the name of the �le of whi
h the dire
tory
omponents were stripped.

If the output �le is the standard output �le, - is inserted.

3.1.49 PARAGRAPH

PARAGRAPH isn't really a builtin fun
tion, but as it is handled espe
ially by Yodl,

it is des
ribed here nonetheless. Starting with Yodl 2.00 PARAGRAPH operates as

follows:

If the ma
ro is not de�ned, new paragraphs, de�ned as series of
onse
utive empty

lines written to the output stream, are not handled di�erent from any other series

of
hara
ters sent to the output stream. I.e., they are inserted into that stream.

However, if the ma
ro has been de�ned, Yodl will
all it whenever a new paragraph

(de�ned as a series of at least two blank lines) was re
ognized.

The empty lines that were a
tually re
ognized may be obtained inside the PARAGRAPH

ma
ro from the XXparagraph symbol, if this symbol has been be de�ned by that

time. If de�ned, it will
ontain the white spa
e that
aused Yodl to
all the

PARAGRAPH ma
ro.

Note that, in order to inspe
t XXparagraph it must have been de�ned �rst. Yodl

itself will not de�ne this symbol itself.

The PARAGRAPH ma
ro should be de�ned as a ma
ro not expe
ting arguments. The

ma
ro is thus given a
han
e to pro
ess the paragraph in a way that's �tting for

the parti
ular
onversion type. If the PARAGRAPH ma
ro produ
es series of empty

lines itself, then those empty lines will not
ause Yodl to a
tivate PARAGRAPH. So,

Yodl itself will not re
ursively
all PARAGRAPH, although the ma
ro
ould
all itself

re
ursively. Of
ourse, su
h re
ursive a
tiv
ation of PARAGRAPH is then the sole

responsibility of the ma
ro's author, and not Yodl's.

Some do
ument languages do not need paragraph starts; e.g., LaTeX handles its

own paragraphs. Other do
ument languages do need it: typi
ally, PARAGRAPH is

then de�ned in a ma
ro �le to trigger some spe
ial a
tion. E.g., a HTML
onverter

might de�ne a paragraph as:

DEFINEMACRO(PARAGRAPH)(0)(

XXnl()

NOTRANS(<p>)

)

A sytem like xml has more stri
t requirements. Paragraphs here must be opened

and
losed using pairs of <p> and </p> tags. In those
ases an auxiliary
ounter

an be used to indi
ate whether there is an open paragraph or not. The PARAGRAPH

ma
ro
ould
he
k for this as follows, assuming the availability of a
ounter XXp:

65

DEFINEMACRO(PARAGRAPH)(0)(

XXnl()

IFZERO(XXp)(

)(

NOTRANS(</p>)

)

NOTRANS(<p>)

SETCOUNTER(XXp)(1)

)

Note that the above fragment exempli�es an approa
h, not ne
essarily the imple-

mentation of the PARAGRAPH ma
ro for an xml-
onvertor.

3.1.50 PIPETHROUGH

The builtin fun
tion PIPETHROUGH is, besides SYSTEM, the se
ond fun
tion with

whi
h a Yodl do
ument
an a�e
t its environment. Therefore, the danger of `live

data' exists whi
h is also des
ribed in the se
tion about SYSTEM (see se
tion 3.1.67).

Nevertheless, PIPETHROUGH
an be very useful. It is intended to use external pro-

grams to a

omplish spe
ial features. The idea is that an external
ommand is

started, to whi
h a blo
k of text from within a Yodl do
ument is `piped'. The

output of that
hild program is piped ba
k into the Yodl do
ument; hen
e, a blo
k

of text is `piped through' an external program. Whatever is re
eived again in the

Yodl run, is further pro
essed.

The PIPETHROUGH fun
tion takes two arguments:

• the
ommand to run, and

• the text to send to that
ommand.

Fun
tionally, the o

urren
e of the PIPETHROUGH fun
tion and of its two arguments

is repla
ed by whatever the
hild program produ
es on its standard output.

An example might be the in
lusion of the
urrent date, as in:

The
urrent date is:

PIPETHROUGH(date)()

In this example the
ommand is date and the text to send to that program is empty.

The main purpose of this fun
tion is to provide a way by whi
h external programs

an be used to
reate, e.g., tables or �gures for a given output format. Further

releases of Yodl may
ontain su
h dedi
ated programs for the output formats.

3.1.51 POPCHARTABLE

Chara
ter tables whi
h are pushed onto the table sta
k using PUSHCHARTABLE()

are restored (popped) using POPCHARTABLE(). For a des
ription of this me
hanism

please refer to se
tion 2.3.3.

66

3.1.52 POPCOUNTER

POPCOUNTER is used to remove the topmost
ounter from the
ounter sta
k. The

values of
ounters may be pushed on a sta
k using PUSHCOUNTER 3.1.57. To re-

move the topmost element of a
ounter's sta
k POPCOUNTER is available. POPCOUNTER

expe
ts one argument: the name of the
ounter to pop. The previously pushed value

then be
omes the new value of the
ounter. A
ounter's value may be popped after

de�ning it, whereafter the sta
k will be empty, but the
ounter will still be de�ned.

In that
ase, using the
ounter's value is
onsidered an error.

Examples:

DEFINECOUNTER(YEAR)(1950)

POPCOUNTER(YEAR)

COMMENT(YEAR now has an undefined value)

See also se
tion 2.5.

3.1.53 POPMACRO

POPMACRO is used to remove the a
tual ma
ro de�nition, restoring a previously

pushed de�nition. The values of ma
ros may be pushed on a sta
k using PUSHMACRO.

To remove the topmost element of a ma
ro's sta
k POPMACRO is available. POPMACRO

expe
ts one argument: the name of the ma
ro to pop. The previously pushed value

then be
omes the new value of the ma
ro.

A ma
ro's value may be popped after de�ning it, whereafter the sta
k will be empty,

but the ma
ro will still be de�ned. In that
ase, using the ma
ro is
onsidered an

error.

Example:

DEFINEMACRO(Hello)(1)(Hello, ARG1, this is a ma
ro definition)

Hello(Karel)

PUSHMACRO(Hello)(1)(Hello, ARG1, this is the new definition)

Hello(Karel)

POPMACRO(Hello)

Hello(Karel)

COMMENT(The third a
tivation of Hello() produ
es the same output

as the first a
tivation)

3.1.54 POPSYMBOL

POPSYMBOL is used to remove the topmost symbol from the symbol sta
k. The values

of symbols may be pushed on a sta
k using PUSHSYMBOL 3.1.59. To remove the

topmost element of a symbol's sta
k POPSYMBOL is available.

67

POPSYMBOL expe
ts one argument: the name of the symbol to pop. The previously

pushed value then be
omes the new value of the symbol. A symbol's value may be

popped after de�ning it, whereafter the sta
k will be empty, but the symbol will

still be de�ned. In that
ase, using the symbol's value is
onsidered an error.

Example:

DEFINESYMBOL(YEAR)(This happened in 1950)

POPSYMBOL(YEAR)

COMMENT(YEAR now has an undefined value)

3.1.55 POPWSLEVEL

POPWSLEVEL is used to remove the topmost wslevel from the wslevel sta
k. The

values of wslevels may be pushed on a sta
k using PUSHWSLEVEL 3.1.60. See

also se
tion DECWSLEVEL 3.1.8

To remove the topmost element of a wslevel's sta
k POPWSLEVEL is available. POPWSLEVEL

expe
ts one argument: the name of the wslevel to pop. The previously pushed value

then be
omes the new value of the wslevel. A wslevel's value may be popped after

de�ning it, whereafter the sta
k will be empty, but the wslevel will still be de�ned.

In that
ase, using the wslevel's value is
onsidered an error.

Example:

COMMENT(Assume WS level is zero)

PUSHWSLEVEL(1)

COMMENT(WS level now equals 1)

POPWSLEVEL()

COMMENT(WS level now equals 0 again)

3.1.56 PUSHCHARTABLE

On
e a
hara
ter table has been de�ned, it
an be pushed onto a sta
k using

PUSHCHARTABLE. The pushed
hartable may be popped later. PUSHCHARTABLE is

des
ribed in more detail in se
tion 2.3.3.

3.1.57 PUSHCOUNTER

PUSHCOUNTER is used to start another lifetime for a
ounter, pushing its
urrent

value on a sta
k. A sta
k is available for ea
h individual
ounter.

PUSHCOUNTER expe
ts two arguments: the name of the
ounter to push and its new

value after pushing. When the se
ond argument is an empty parameter list, the

68

new value will be zero. The new value may be spe
i�ed as a numeri
al value, or as

the name of an existing
ounter. Spe
ify the name of the
ounter twi
e to merely

push its value, without modifying its
urrent value.

Examples:

DEFINECOUNTER(YEAR)(1950)

PUSHCOUNTER(YEAR)(1962)

COMMENT(YEAR now has the value 1962, and a pushed value of 1950)

See also se
tion 2.5.

3.1.58 PUSHMACRO

PUSHMACRO is used to start another lifetime for a ma
ro, pushing its
urrent de�ni-

tion on a sta
k. A sta
k is available for ea
h individual ma
ro.

PUSHMACRO expe
ts three arguments: the name of the ma
ro to push, the number of

its arguments after pushing (whi
h may be di�erent from the number of arguments

interpreted by the pushed ma
ro) and its new de�nition.

So, PUSHMACRO is used exa
tly like DEFINEMACRO, but will rede�ne a
urrent ma
ro

(or de�ne a new ma
ro if no ma
ro was de�ned by the name spe
i�ed as its �rst

argument.

Example:

DEFINEMACRO(Hello)(1)(Hello, ARG1, this is a ma
ro definition)

Hello(Karel)

PUSHMACRO(Hello)(1)(Hello, ARG1, this is the new definition)

Hello(Karel)

POPMACRO(Hello)

Hello(Karel)

COMMENT(The third a
tivation of Hello() produ
es the same output

as the first a
tivation)

3.1.59 PUSHSYMBOL

PUSHSYMBOL is used to start another lifetime for a symbol, pushing its
urrent value

on a sta
k. A sta
k is available for ea
h individual symbol.

PUSHSYMBOL expe
ts two arguments: the name of the symbol to push and its new

value after pushing. When the se
ond argument is an empty parameter list, the

new value will be zero. The new value may be spe
i�ed as a numeri
al value, or as

the name of an existing symbol. Spe
ify the name of the symbol twi
e to merely

push its value, without modifying its
urrent value.

Examples:

69

DEFINESYMBOL(YEAR)(This happened in 1950)

PUSHSYMBOL(YEAR)(This happended in 1962)

COMMENT(YEAR now has the value `This happended in 1962' and a

pushed value of `This happened in 1950')

3.1.60 PUSHWSLEVEL

PUSHWSLEVEL is used to start another lifetime of the white-spa
e level pushing the

level's
urrent value on a sta
k. See also se
tion INCWSLEVEL 3.1.38

PUSHWSLEVEL expe
ts one argument, the new value of the white-spa
e level. This

value may be spe
i�ed as a numeri
al value or as the name of a
ounter. The

argument may be empty, in whi
h the new value will be zero.

Example:

COMMENT(Assume WS level is zero)

PUSHWSLEVEL(1)

COMMENT(WS level now equals 1)

POPWSLEVEL()

COMMENT(WS level now equals 0 again)

3.1.61 RENAMEMACRO

RENAMEMACRO takes two arguments: the name of a built-in ma
ro (su
h as INCLUDEFILE)

and its new name.

E.g., after

RENAMEMACRO(INCLUDEFILE)(in
lude)

a �le must be in
luded by in
lude(file). INCLUDEFILE
an no longer be used

for this: following the RENAMEMACRO a
tion, the old name
an no longer be used; it

be
omes an unde�ned symbol.

If you want to make an alias for a built-in
ommand, do it with DEFINEMACRO. E.g.,

after:

DEFINEMACRO(in
lude)(1)(INCLUDEFILE(ARG1))

both INCLUDEFILE and in
lude
an be used to in
lude a �le.

70

3.1.62 SETCOUNTER

SETCOUNTER expe
ts two parameter lists: the name of a
ounter, and a numeri

value or the name of another
ounter.

The
orresponding
ounter (whi
h must be previously
reated with NEWCOUNTER) is

set to, respe
tively, the numeri
 value or the value of the other
ounter.

See also se
tion 2.5.

3.1.63 SETSYMBOL

SETSYMBOL expe
ts two parameter lists: the name of a symbol, and the text to

assign to the named symbol.

3.1.64 STARTDEF

STARTDEF is obsolete. Instead, INCWSLEVEL 3.1.38 should be used.

3.1.65 SUBST

SUBST is a general-purpose substitution me
hanism for strings in the input. SUBST

takes two arguments: a sear
h string and a substitution string. E.g., after

SUBST(VERSION)(1.00)

Yodl will transorm all o

urren
es of VERSION in its input into 1.00.

SUBST is also useful in situations where multi-
hara
ter sequen
es should be
on-

verted to a

ent
hara
ters. E.g., a L

A

T

E

X
onverter might de�ne:

SUBST('e)(NOTRANS(\'{e}))

Ea
h 'e in the input will then be
onverted to +latex
ommand(\'{e}).

SUBST may be useed in
ombination with the
ommand line �ag -P, as in a invo
a-

tion

yodl2html -P'SUBST(VERSION)(1.00)' myfile.yo

Another useful substitution might be:

71

SUBST(_OP_)(CHAR(40))

SUBST(_CP_)(CHAR(41))

whi
h de�nes an opening parenthesis (_OP_) and a
losing parenthesis (_CP_) as

mapped to the CHAR fun
tion. The strings _OP_ and _CP_ might then be used to

produ
e unbalan
ed parameter lists.

Note that:

• The �rst argument of the SUBST
ommand, the sear
h string, is taken literally.

Yodl does not expand it; the string must be literally mat
hed in the input.

• The se
ond argument, the repla
ement, is further pro
essed by Yodl. Prote
t

this text by NOTRANS or NOEXPAND where appropriate.

Substitutions o

ur extremely early while Yodl pro
esses its input �les. In order to

pro
esss its input �les, Yodl takes the following basi
 steps:

1. It requests input from its lexi
al s
anner (so-
alled tokens)

2. Its parser pro
esses the tokens produ
ed by the lexi
al s
anner

3. Its parser may send text to an output `obje
t', whi
h will eventually appear

in the output �le generated by Yodl.

Yodl will perform all ma
ro substitutions in step 2, and all
hara
ter table
onver-

sions in step 3. However, the lexi
al s
anner has a

ess to the SUBST de�nitions: as

soon as its lexi
al analyzer dete
ts a series of
hara
ters mat
hing the de�ning se-

quen
e of a SUBST de�nition, it will repla
e that de�ning sequen
e by its de�nition.

That de�nition is then again read by the lexi
al s
anner. Of
ourse, this de�nition

may, in turn,
ontain de�ning sequen
es of other SUBST de�nitions: these will then

be repla
ed by their de�nitions as well. This implies:

• Cir
ular de�nitions may
ause the lexi
al s
anner to get stu
k in a repla
ement

loop. It is the responsibility of the author de�ning SUBST de�nitions to make

sure that this doesn't happen.

• Neither the parser, nor the output obje
t ever sees the SUBST de�ning
har-

a
ter sequen
es: they will only see their de�nitions.

3.1.66 SYMBOLVALUE

SYMBOLVALUE expands to the value of a symbol. Its single parameter list must

ontain the name of a symbol. The symbol must have been
reated earlier using

the builtin DEFINESYMBOL.

Example:

The symbol has value SYMBOLVALUE(MYSYMBOL).

72

3.1.67 SYSTEM

SYSTEM takes one argument: a
ommand to exe
ute. The
ommand is run via

the standard C fun
tion system. The presen
e of this fun
tion in the Yodl lan-

guage introdu
es the danger of live data. Imagine someone sending you a do
ument

ontaining

SYSTEM(rm *)

To avoid su
h malevolent side e�e
ts, Yodl has a �ag -l to de�ne the `live data

poli
y'. By default, -l0 is implied whi
h suppresses the SYSTEM fun
tion and the

related PIPETHROUGH fun
tion. See also se
tion 2.3.2.

Despite the potential danger, SYSTEM
an be useful in many ways. E.g., you might

want to log when someone pro
esses your do
ument, as in:

SYSTEM(e
ho Do
ument pro
essed! | mail myself�my.host)

Note that SYSTEM merely performs an system-related task. It's a pro
ess that is

separated from the Yodl pro
ess itself. One of the
onsequen
es of this is that

any output generated by SYSTEM will not normally appear into Yodl's output �le.

If the output of a subpro
ess should be inserted into Yodl's output �le, either

use PIPETHROUGH 3.1.50, or insert a temporary �le as shown in the following

example:

SYSTEM(date > datefile)

The
urrent date is:

INCLUDEFILE(datefile)

SYSTEM(rm datefile)

3.1.68 TYPEOUT

TYPEOUT requires one parameter list. The text of the list is sent to the standard error

stream, followed by a newline. This feature
an be handy to show, e.g., messages

su
h as version numbers in ma
ro pa
kage �les.

Example: The following ma
ro in
ludes a �le and writes to the s
reen that this �le

is
urrently pro
essed.

DEFINEMACRO(in
ludefile)(1)(

TYPEOUT(About to pro
ess do
ument: ARG1)

INCLUDEFILE(ARG1)

)

73

3.1.69 UNDEFINEMACRO

UNDEFINEMACRO is depre
ated. Use DELETEMACRO 3.1.15 instead.

3.1.70 UPPERCASE

UPPERCASE
onverts a string or a part of it to upper
ase. It has two arguments:

• The string to
onvert;

• A length, indi
ating how many
hara
ters (starting from the beginning of the

string) should be
onverted.

The length indi
ator
an be smaller than one or larger than the length of the string;

in that
ase, the whole string is
onvertered.

Example:

UPPERCASE(hello world)(1)

UPPERCASE(hello world)(5)

UPPERCASE(hello world)(0)

This
ode sample expands to:

Hello world

HELLO world

HELLO WORLD

3.1.71 USECHARTABLE

USECHARTABLE takes one parameter list: the name of a translation table to a
tivate.

The table must previously have been de�ned using DEFINECHARTABLE. See se
tion

2.3 for a des
ription of
hara
ter translation tables.

Alternatively, the name may be empty in whi
h
ase the default
hara
ter mapping

is restored.

3.1.72 USECOUNTER

USECOUNTER is a
ombination of ADDTOCOUNTER and COUNTERVALUE. It expe
ts one

parameter list: the name of an de�ned
ounter (see DEFINECOUNTER 3.1.10).

The
ounter is �rst in
remented by 1. Then the fun
tion expands to the
ounter's

value.

See also se
tion 2.5.

74

3.1.73 VERBOSITY

VERBOSITY expe
ts two arguments, and may be used to
hange the verbosity level

inside Yodl �les. The fun
tion may be used pro�tably for debugging purposes, to

debug the expansion of a ma
ro or the pro
essing of a Yodl input �le.

The �rst argument indi
ates the pro
esing mode of the se
ond argument, and it

may be:

• Empty, in whi
h
ase the message-level is set to the value spe
i�ed in the

se
ond argument;

• +, in whi
h
ase the value spe
i�ed in the se
ond argument augments the

urrent message level;

• -, in whi
h
ase the value spe
i�ed in the se
ond argument augments is re-

moved from the
urrent message level

The se
ond argument spe
i�es one or more, separated by blanks, message level

names or it may be set to a hexade
imal value (starting with 0x), using hexade
imal

values to represent message levels. Also, NONE may be used, to spe
ify no message

level, or ALL
an be used to spe
ify all message levels.

The following message levels are de�ned:

• ALERT (0x40). When an alert-error o

urs, Yodl terminates. Here Yodl

requests something of the system (like a get_
wd()), but the system fails.

• CRITICAL (0x20). When a
riti
al error o

urs, Yodl terminates. The mes-

sage itself
an be suppressed, but exiting
an't. A
riti
al
ondition is, e.g., the

omission of an open parenthesis at a lo
ation where a parameter list should

appear, or a non-existing �le in an INCLUDEFILE spe
i�
ation (as this �le

should be parsed). A non-existing �le with a NOEXPANDINCLUDE spe
i�
ation

is a plain (non-
riti
al) error.

• DEBUG (0x01). Probably too mu
h info, like getting information about ea
h

hara
ter that was read by Yodl.

• ERROR (0x10). An error (like doubly de�ned symbols). Error messages will

not stop the parsing of the input (up to a maximum number of errors), but

no output is generated.

• INFO (0x02). Not as detailed as `debug', but still very mu
h info, like infor-

mation about media swit
hes.

• NOTICE (0x04). Information about, e.g.,
alls to the builtin fun
tion
alls.

• WARNING (0x08). Something you should know about, but probably not

a�e
ting Yodl's proper fun
tioning

There also exists a level EMERG (0x80) whi
h
annot be suppressed.

The value 0x00 represents NONE, the value 0xff represents ALL.

75

When spe
ifying multiple message levels using the hexade
imal form, their hexade
-

imal values should be binary-or-ed: adding them is ok, as long as you don't spe
ify

ALL:

VERBOSITY()(0x06)

COMMENT(this spe
ifies `INFO' and `NOTICE')

When spe
ifying message levels by their names, the names may be trun
ated at a

unique point. However, the message level names are interpreted
ase sensitively, so

INF for INFO is re
ognized as su
h, but info for INFO isn't. The following examples

all spe
ify verbosity levels INFO and NOTICE:

VERBOSITY()(I N)

VERBOSITY()(N I)

VERBOSITY()(NOT IN)

VERBOSITY()(INFO NOTICE)

3.1.74 WARNING

WARNING takes one argument: text to display as a warning. The yodl programmakes

sure that before showing the text, the
urrent �le and line number are printed. Other

than this, WARNING works just as TYPEOUT (see se
tion 3.1.68).

Note that an analogous fun
tion ERROR exists, whi
h prints a message and then

terminates the program (see se
tion 3.1.20).

3.1.75 WRITEOUT

WRITEOUT is depre
ated, use FPUTS 3.1.23 instead.

76

Chapter 4

Ma
ros and Do
ument types

The ma
ro pa
kage distributed with Yodl is des
ribed in this
hapter. The ma
ro

pa
kage
onsists of a number of de�nition �les, whi
h
onvert a Yodl do
ument that

follows a
ertain syntax to an output format. The main output formats,
urrently

supported, are:

• HTML;

• LaTeX (plain LaTeX, no latex2e);

• The groff `man' format whi
h is used for man pages;

• The groff `ms' format whi
h is more expressive;

• Basi
, plain text

The following
onversion format is in an experimental stage:

• XML, as used by the University of Groningen's so-
alled `webplatform'.

Currently dis
ontinued
onversion formats are:

• SGML, although the basi
 ma
ros are available. SGML
an probably be

rea
tivated fairly qui
kly. Conta
t the maintainer if support for SGML should

be reinstated

• texinfo, mainly due to the fa
t that the
urrent maintainer doesn't know what

the required post-pro
essing a
tions are.

• tely, sin
e this
onversion format is unknown to the
urrent maintainer.

Other formats may be available, but maybe in an unstable state. Conta
t the the

maintainer if you have a new format to add, or want to reanimate formates that

were previously available.

77

4.1 General stru
ture of a Yodl do
ument

This se
tion des
ribes the general format of a Yodl do
ument.

First of all, a Yodl do
ument needs a preamble. This part of the do
ument must be

at the top, and must de�ne the modi�ers and the do
ument type. Modi�ers, when

present, must appear �rst.

Modi�ers are often spe
i�
 for a parti
ular target do
ument type (e.g., latexoptions

or mailto), but may also have a general nature (e.g., affiliation or abstra
t).

All modi�ers are used to modify parameters of do
ument types. Therefore, they

must be spe
i�ed before the do
ument type is de�ned.

All modi�ers are listed in se
tion 4.3.8. In general, you should use as many modi�ers

as appropriate. E.g., you should de�ne a mailto even when you're not planning

to
onvert your do
ument to HTML. The reason is twofold: �rst, you might later

de
ide that a HTML version isn't a bad idea after all. Se
ond, later versions of the

onverters might use mailto even for non-HTML output formats.

Following the modi�ers, the do
ument type is de�ned. The do
ument type is either

arti
le, report, book, plainhtml or manpage. Ex
ept for the manpage do
ument

type, whi
h is a highly spe
ialized do
ument type, des
ribed in se
tion 4.1.2, the

following rules apply:

A de
ision about the do
ument type to use should be based on its
omplexity. If

the do
ument's organization be
omes too
omplex, it is probably a good idea to use

a do
ument type supporting a more
omplex organization. E.g., a
omplex arti
le

might be written as an a

essible report,
ombining related se
tions into
hapters.

Similarly, the stru
ture of a report having 30
hapters might improve when it's re-

organized as a book having parts. To o�er a rule of thumb: a do
ument should have

no more than approximately ten top-level se
tions, and ea
h top-level se
tioning

should have no more than approximately ten subse
tions, et
..

The do
ument type in�uen
es the way Yodl formats the output. An arti
le (or

plainhtml) results in one output �le. E.g., one �nal do
ument when
onverting to

HTML. If your arti
le is way too long, then the loading of the HTML do
ument

will also take mu
h time. When
onverting to HTML, Yodl splits reports and

books into �les ea
h holding a
hapter. These
an be a

essed through the table

of
ontents. So, the do
ument length
an also be relevant when you
ontemplate

swit
hing to a report or book.

Do
uments using spe
ial ma
ros, must have de�ned these ma
ros before they are

used. An appropriate lo
ation for these ma
ros is immediately beyond the pream-

ble. E.g., see the �le Do
umentation/manual/manual.yo distributed with the Yodl

pa
kage. This is the main �le of this manual, showing the preferred organization of

Yodl �les.

To answer yes-but-what-if oriented minds, here are two results of the wrong order

of text, preamble and modi�ers:

• If you put text before the preamble, i.e., before stating the do
ument type,

han
es are that Yodl will happily translate the �le, but subsequent states will

probably fail. E.g., the <html> tag would
ome too late in a HTML
onversion,

ausing the HTML browser to be
ome
onfused. Or, the \do
umentstyle

de�nition would be seen too late by the LaTeX typesetter.

78

• If you put modi�ers, su
h as latexoptions, beyond the do
ument type, then

the modi�ers will have no e�e
t; though Yodl won't
omplain either. The

reason for this is the de�nition of su
h modi�ers will be seen following the

stage where they are needed..

4.1.1 Do
ument types

As distributed, Yodl supports four do
ument types: arti
le, report, book and the

manual page. Note that do
ument types have nothing in
ommon with output

formats; a book
an be
onverted to ea
h of the output formats, and a manual

page
an be
onverted to a .dvi �le. Nevertheless, some formats are parti
ularly

usefule for some do
ument types. A book
onverted to the man output format to be

pro
essed later with groff won't look too good. Its looks would greatly improve

when the do
ument would be
onverted to ASCII using the ms output format.

Following the preamble and the de�nition of spe
ialized ma
ros symbols and
oun-

ters, do
uments start by spe
ifying the do
ument type. The available ma
ros are:

• arti
le(title)(author)(date): The arti
le do
ument type should be

used for short do
uments. Its arguments spe
ify the do
ument's title, author

and date.

In arti
les, the title page is numbered and the table of
ontents is on the title

page. The se
tioning
ommands se
t, subse
t et
. are available.

• report(title)(author)(date): The report do
ument type di�ers from an

arti
le in that it has a separate unnumbered title page, a table of
ontents

on a page of its own, and it supports the se
tioning
ommand
hapter in

addition to the ones supported by arti
les. A report should be used �r

larger do
uments.

• book(title)(author)(date): The book type is for even larger do
uments.

In addition to the se
tioning
ommands supported by report it supports the

se
tioning
ommand part.

• plainhtml(title): This do
ument type is typi
ally used in HTML output.

It's implemented for situations where you only need to
reate a HTML �le,

but want to use Yodl to help you by providing useful ma
ros. This do
ument

type is similar to arti
le, but does not require you to spe
ify author and

date arguments (In fa
t, you
an emulate plainhtml by using an arti
le,

using empty author and date arguments).

• manpage(title)(se
tion)(date)(sour
e)(manual): The manpage do
u-

ment type should only be used to write Unix-style manual pages. It uses

its own se
tioning
ommands to re�e
t the ne
essary se
tions in a manual

page. This do
ument format is des
ribed separately in 4.1.2.

These ma
ros provide, globally, three fun
tions: First, the ma
ros generate any

ommands that need to appear before `real' text is sent to the output �le. E.g.,

the LaTeX output needs a \do
umentstyle preamble, HTML output needs <html>

and <body> tags.

Se
ond, the ma
ros de�ne appropriate do
ument-dependent settings. E.g., the La-

TeX
onverter de�nes the title, author and date using \title et
..

79

Third, the a
tual do
ument is started. E.g., for LaTeX this means a \begin{type},

followed by the appropriate
ommands to generate a the do
ument title and the

table of
ontents. The title setting in the above ma
ros de�nes the do
ument title

whi
h always appears on the front page of the do
ument. For HTML output, this

is also the title of the HTML �le (or �les), as appearing in the HTML <title> tag.

The fa
t that the ma
ros de�ning the do
ument type perform many fun
tions means

that on
e the ma
ro is started, nothing `extra'
an be inserted between, e.g., the

generated title and the table of
ontents. Sometimes this is not what you'd like;

as is the
ase with an abstra
t. Yodl therefore uses modi�ers, appearing before

the do
ument type ma
ros, to insert information between the various elements of a

do
ument de�nition.

4.1.2 The manpage do
ument type

The manpage do
ument type was implemented to simplify the
onstru
tion of Unix-

style manual pages. A manpage do
ument must be organized as follows:

1. The manual page itself is de�ned, using the ma
ro

manpage(short title)

(se
tion)

(date)

(sour
e)

(manual)

Its arguments are:

Short title: This should be the program name or something similar; i.e.,

whatever the manpage is des
ribing.

Se
tion: A number, stating the manpage se
tion. The Linux man (7) page

re
ognizes the following manpage se
tions:

• Se
tion 1 is for
ommands, like ls;

• Se
tion 2 is for system
alls, like fork();

• Se
tion 3 is for library
alls, like strdup();

• Se
tion 4 is for spe
ial �les (like devi
es);

• Se
tion 5 is for �le formats, (like syslog.
onf);

• Se
tion 6 is for games;

• Se
tion 7 is for ma
ro pa
kages and
onventions;

• Se
tion 8 is for system management
ommands;

• Se
tion 9 is for other types of manpages, su
h as kernel
ommands.

Date: The date of release.

Sour
e: The pa
kage where the manpage belongs to.

Manual: The manual to whi
h the pa
kage belongs.

The arguments of the manpage ma
ro de�ne, e.g., the headers and footers of

the manual page. The date, sour
e and manual arguments
an be empty.

80

2. The subje
t of the manpage is de�ned using

manpagename(name)(short des
ription)

The name argument should be a short name (e.g., the program name), and

the short des
ription should state the fun
tion. The des
riptive argument

is used by, e.g., the whatis database.

3. The synopsis starts after:

manpagesynopsis()

Following this, an abbreviated usage information is presented. This informa-

tion should show, e.g., the possible program �ags and required arguments;

but no more.

4. The des
ription is given after:

manpagedes
ription()

This is followed by some des
riptive text. The des
riptive text
an e.g. show

what the program (fun
tion, �le, game, et
.) is supposed to do.

5. Options are expe
ted after:

manpageoptions()

The options are typi
ally a des
riptive list of possible �ags and their meaning.

This se
tion lists the information of the synopsis, but also gives an in-depth

des
ription. The manpageoptions() se
tion is optional.

6. Ne
essary �les are listed after:

manpagefiles()

7. The `see also' entry is de�ned by:

manpageseealso()

This is then followed by a list of related manual pages. Here, use the format

bf(topi
)(se
tionnr), e.g., Yodl(1).

81

8. Diagnosti
s are des
ribed after:

manpagediagnosti
s()

Diagnosti
s
an state, e.g., what error messages are produ
ed by the program

and what the
ure is.

9. Known bugs should be mentioned after:

manpagebugs()

This se
tion is optional.

10. Finally, the author is stated after:

manpageauthor()

The manpage do
ument type requires you to follow the above order of
ommands

stri
tly and to state all the ne
essary se
tions (and optionally, to state the not

required se
tions but in their proper sequen
e). Furthermore, se
tioning
ommands

that are available in other do
ument types (se
t, subse
t et
.) are not allowed

in a manpage. You
an however insert other se
tions in the manual page with the

ma
ro manpagese
tion. This ma
ro takes one argument: the title of the extra

se
tion. It is suggested that you type the se
tion name in upper
ase, to
onform

to the standard.

As an example, the manual page for the yodl program follows (the a
tual manual

page may di�er):

manpage(yodl)

(1)

(1996)

(The Yodl Pa
kage)

(Yet oneOther Do
ument Language)

manpagename(yodl)(main Yodl
onvertor)

manpagesynopsis()

tt(Yodl) [-DNAME℄ [-IDIR℄ [-oFILE℄ [-PCMD℄ [-pPASS℄ [-t℄ [-v℄ [-w℄ [-h℄

[-?℄ inputfile [inputfile...℄

manpagedes
ription()

This manual page des
ribes the tt(Yodl) program, the main
onverter of the

Yodl pa
kage. This program is used by the bf(yodl2....) shell s
ripts,

e.g., bf(yodl2tex) or bf(yodl2html).

manpageoptions()

82

des
ription(

dit(-DNAME) Defines symbol em(NAME).

dit(-IDIR) Overrules the standard in
lude dire
tory (default

em(/usr/lo
al/lib/yodl)) with em(DIR).

dit(-oFILE) Spe
ifies em(FILE) as the output file (default is stdout).

dit(-PCMD) `Preloads'
ommand em(CMD), as if em(CMD) was the first line

of the input.

dit(-pPASS) Defines em(PASS) as the maximum number of `passes'; when this

number is ex
eeded, tt(Yodl) aborts.

dit(-t) Enables tra
ing mode. Useful for debugging.

dit(-v) Raises the verbosity mode. Useful for debugging.

dit(-w) Enables warning. When enabled, tt(Yodl) will warn when it sees

in
onsisten
ies.

dit(-h, -?) Shows usage information.

dit(inputfile) File to pro
ess, use em(-) to instru
t tt(Yodl) to read

from stdin.

)

manpagefiles()

The tt(Yodl) program requires no files, but `normal' usage of the Yodl pa
kage

requires ma
ro files installed (usually in bf(/usr/lo
al/share/yodl)). The

files in this dire
tory are in
luded by the
onverters bf(yodl2txt) et
..

manpageseealso()

bf(yodl2tex), bf(yodl2html), bf(yodl2man), et
..

manpagediagnosti
s()

Warnings and errors of tt(Yodl) are too many to enumerate, but all errors

are printed to em(stderr) after whi
h tt(Yodl) exits with a non-zero

status.

manpagebugs()

There may be bugs in the tt(Yodl) program, but that's not very likely.

More likely you'll en
ounter bugs or omissions in the ma
ro pa
kage

itself.

manpageauthor()

Karel Kubat

4.2 Prede�ned ma
ros

This se
tion des
ribes all ma
ros de�ned by default. Altering or removing these

ma
ros may produ
e unexpe
ted results when
onverting Yodl do
uments to other

formats. Furthermore, these ma
ros often depend on ma
ros or other symbols

de�ned for internal use.

Many prede�ned ma
ros depend on symbols start with XX. Therefore, it is strongly

advised not to start any lo
ally de�ned symbol with XX as doing so, or unde�ning

existing symbols starting with XX, may also produ
e unexpe
ted results.

Here are the default ma
ros, alphabeti
ally ordered:

83

4.2.1 abstra
t(text)

De�nes an abstra
t for an arti
le or report do
ument. Abstra
ts are not imple-

mented for books or manpages. Must appear before starting the do
ument with

the arti
le or report ma
ro.

4.2.2 addntosymbol(symbol)(n)(text)

Adds text n times to symbol. The value n may also be the name of a de�ned

ounter (whi
h itself will not be modi�ed).

4.2.3 a�liation(site)

De�nes an a�liation, to appear in the do
ument titlepage below the author �eld.

Must appear before starting the do
ument with arti
le, report or book. The

a�liation is only printed when the author �eld is not empty.

4.2.4 AfourEnlarged()

Enlarges the usable height of A4 paper by 2
m.: the top margin is redu
ed by 2

m. This ma
ro should be
alled in the preamble. The ma
ro is available only for

L

A

T

E

X
onversions.

4.2.5 appendix()

Starts appendi
es

4.2.6 arti
le(title)(author)(date)

Starts an arti
le. The top-level se
tioning
ommand is (n)se
t. In HTML
onver-

sions only one output �le is written.

4.2.7 bf(text)

Sets text in boldfa
e.

4.2.8 bind(text)

Generate a binding
hara
ter after text.

84

4.2.9 book(title)(author)(date)

Starts a book do
ument. The top-level se
tioning
ommand is (n)
hapter, (n)part

being optional. In HTML output �les are
reated for ea
h
hapter.

4.2.10
ell(
ontents)

Sets a table
ell, i.e., one element in a row. With the man/ms
onverters multiple

blanks between
ell() ma
ro
alls are merged into a single blank
hara
ter.

4.2.11
ells(nColumns)(
ontents)

Set a table
ell over nColumns
olumns. In html, L

A

T

E

X and xml formats the in-

formation in the
ombined
ells will be
entered. With man/ms
onversions the

ells() ma
ro simply
alls the
ell() ma
ro, but here the setmanalign()ma
ro

an be used to determine the alignment of multiple
ells.

4.2.12
ellsline(from)(
ount)

Sets a horizontal line starting at
olumn number from over
ount
olumns in a row.

If from is less then the number of
olumns already added to a row then it is ignored.

This ma
ro must be embedded in a row ma
ro de�ning a table row. To put a line

a
ross the table's full width use rowline. To set horizontal lines a
ross
olumns 1

until 2 and
olumns 4 until 5 table of a table use:

row(
ellsline(1)(2)
ellsline(4)(2))

Combining
ellsline and
ell or
ells
alls in one row produ
es unde�ned re-

sults.

4.2.13
enter(text)

Sets text
entered, when the output format permits. Use nl() in the text to break

lines.

4.2.14
hapter(title)

Starts a new
hapter in books or reports.

4.2.15
index()

Generate an index entry for index
.

85

4.2.16
ite(1)

Sets a
itation or quotation

4.2.17
learpage()

Starts a new page, when the output format permits. Under HTML a horizontal line

is drawn.

4.2.18
ode(text)

Sets text in
ode font, and prevents it from being expanded. For unbalan
ed

parameter lists, use CHAR(40) to get (and CHAR(41) to get).

4.2.19
olumnline(from)(to)

Sets a horizontal line over some
olumns in a row. Note that
olumnline de�nes

a row by itself,
onsisting of just a horizontal line spanning some of its
olumns,

rather than the table's full width, like rowline. The two arguments represent

olumn numbers. It is the responsibility of the author to make sure that the from

and to values are sensible. I.e.,

1 <= from <= to <= n
olumns

Note: this ma
ro
annot be used if multiple lines must be set in one row. In those

ases the ma
ro
olsline should be used.

4.2.20 def(ma
roname)(nrofargs)(rede�nition)

De�nes ma
roname as a ma
ro, having nrofargs arguments, and expanding to

redefinition. This ma
ro is a shorthand for DEFINEMACRO. An error o

urs when

the ma
ro is already de�ned. Use redef() to un
onditionally de�ne or rede�ne a

ma
ro.

4.2.21 des
ription(list)

Sets list as a des
ription list. Use dit(item) to indi
ate items in the list.

4.2.22 dit(itemname)

Starts an item named itemname in a des
riptive list. The list is either en
losed by

startdit() and enddit(), or is an argument to des
ription().

86

4.2.23 eit()

Indi
ates an item in an enumerated list. The eit() ma
ro should be an argument

in enumerate().

4.2.24 ellipsis()

Sets ellipsis (...).

4.2.25 em(text)

Sets text as emphasized, usually itali
s.

4.2.26 email(address)

In HTML, this ma
ro sets the address in a lo
ator. In

other output formats, the address is sent to the output. The email ma
ro is a

spe
ial
ase of url.

4.2.27 end
enter()

DEPRECATED. Use
enter().

4.2.28 enddit()

DEPRECATED. Use des
ription().

4.2.29 endeit()

DEPRECATED. Use enumeration().

4.2.30 endit()

DEPRECATED. Use itemization().

4.2.31 endmenu()

DEPRECATED. Use menu().

4.2.32 endtable()

DEPRECATED. Use table().

87

4.2.33 enumerate(list)

DEPRECATED. Use enumeration().

4.2.34 enumeration(list)

enumeration() starts an enumerated list. Use eit() in the list to indi
ate items

in the list.

4.2.35 euro()

Sets the euro
urren
y symbol in latex, html, (and possibly sgml and xml). In all

other
onversions EUR whi
h is the o�
ial textual abbreviation (
f. http://e
.europa.eu/euro/entry.html)

is written. Note that L

A

T

E

X may require latexpa
kage()(eurosym).

4.2.36 �g(label)

This ma
ro is a shorthand for figure ref(label) and just makes the typing

shorter, as in see fig(s
hemati
) for .. See getfigurestring()and setfigurestring()

for the figure text.

4.2.37 �gure(�le)(
aption)(label)

Sets the pi
ture in file as a �gure in the
urrent do
ument, using the des
riptive

text
aption. The label is de�ned as a pla
eholder for the �gure number and

an be used in a
orresponding ref statement. Note that the file must be the

�lename without extension: By default, Yodl will supply .gif when in HTML

mode, or .ps when in LaTeX mode. Figures in other modes may not (yet) haven

been implemented.

4.2.38 �le(text)

Sets text as �lename, usually boldfa
e.

4.2.39 �ndex()

Generate an index entry for index f.

4.2.40 footnote(text)

Sets text as a footnote, or in parentheses when the output format does not allow

footnotes.

88

4.2.41 gagma
rowarning(name name ...)

Prevents the yodl program from printing
annot expand possible user ma
ro. E.g.,

if you have in your do
ument the file(s) are .. then you might want to put

before that: gagma
rowarning(file). Calls NOUSERMACRO.

4.2.42 geta�lstring()

Expands to the string that de�nes the name of A�liation Information, by default

AFFILIATION INFORMATION. Can be rede�ned for national language support

by setaffilstring(). Currently, it is relevant only for txt.

4.2.43 getauthorstring()

Expands to the string that de�nes the name of Author Information, by default

AUTHOR INFORMATION. Can be rede�ned for national language support by

setauthorstring(). Currently, it is relevant only for txt.

4.2.44 get
hapterstring()

Expands to the string that de�nes a `
hapter' entry, by default Chapter. Can be

rede�ned for national language support by set
hapterstring().

4.2.45 getdatestring()

Expands to the string that de�nes the name of Date Information, by default DATE

INFORMATION. Can be rede�ned for national language support by setdatestring().

Currently, it is relevant only for txt.

4.2.46 get�gurestring()

Returns the string that de�nes a `�gure' text, in
aptions or in the fig() ma
ro.

The string
an be rede�ned using the setfiguretext() ma
ro.

4.2.47 getpartstring()

Expands to the string that de�nes a `part' entry, by default Part. Can be rede�ned

for national language support by setpartstring().

4.2.48 gettitlestring()

Expands to the string that de�nes the name of Title Information, by default TITLE

INFORMATION. Can be rede�ned for national language support by settitlestring().

Currently, it is relevant only for txt.

89

4.2.49 getto
string()

Expands to the string that de�nes the name of the table of
ontents, by default Table

of Contents. Can be rede�ned for national language support by setto
string().

4.2.50 htmlbodyopt(option)(value)

Adds option="value" to the options of the <body ...> tag in HTML �les. Useful

options are, e.g., fg
olor and bg
olor, whose values are expressed as #rrggbb,

where rr are two hexade
imal digits of the red
omponent, gg two hexade
imal

digits of the green
omponent, and bb two hexade
imal digits of the blue
omponent.

4.2.51 html
ommand(
md)

Writes
md to the output when
onverting to html. The
md is not further expanded

by Yodl.

4.2.52 htmlheadopt(option)

Adds the literal text option to the
urrent information in the head se
tion of an

HTML do
ument. Option may (or: should)
ontain plain html text. A
om-

monly o

urring head option is link, de�ning, e.g., a style sheet. Sin
e that op-

tion is frequently used, it has re
eived a dedi
ated ma
ro: htmlstylesheet. Like

htmlbodyopt this ma
ro should be pla
ed in the do
ument's preamble.

4.2.53 htmlnew�le()

In HTML output, starts a new �le. All other formats are not a�e
ted. Note that

you must take your own provisions to a

ess the new �le; say via links. Also, it's safe

to start a new �le just befoore opening a new se
tion, sin
e se
tions are a

essible

from the
li
kable table of
ontents. The HTML
onverter normally only starts new

�les prior to a
hapter de�nition.

4.2.54 htmlstylesheet(url)

Adds a <link rel="stylesheet" type="text/
ss" ...> element to the head

se
tion of an HTML do
ument, using url in its href �eld. The argument url

is not expanded, and should be plain HTML text, without surrounding quotes.

The ma
ro htmlheadopt
an also be used to put information in the head-se
tion

of an HTML do
ument, but htmlheadopt is of a mu
h more general nature. Like

htmlbodyopt this ma
ro should be pla
ed in the do
ument's preamble.

4.2.55 htmltag(tagname)(start)

Sets tagname as a HTML tag, en
losed by < and >. When start is zero, the

tagname is pre�xed with /.

90

4.2.56 ifnewparagraph(truelist)(falselist)

The ma
ro ifnewparagraph should be
alled from the PARAGRAPHma
ro, if de�ned.

It will insert truelist if a new paragraph is inserted, otherwise falselist is

inserted (e.g., following two
onse
utive
alls of PARAGRAPH). This ma
ro
an be

used to prevent the output of multiple blank lines.

4.2.57 in
lude�le(�le)

In
ludes file. The default extension .yo is supplied if ne
essary.

NOTE: Starting with Yodl version 3.00.0 Yodl's default �le in
lusion behavior has

hanged. The
urrent working dire
tory no longer remains �xed at the dire
tory in

whi
h Yodl is
alled, but is volatile,
hanging to the dire
tory in whi
h a yodl-�le is

lo
ated. This has the advantage that Yodl's �le in
lusion behavior now mat
hes the

wayC's #in
lude dire
tive operates; it has the disadvantage that it may break some

urrent do
uments. Conversion, however is simple but
an be avoided altogether if

Yodl's -L (�lega
y-in
lude) option is used.

Furthermore, the in
ludefile ma
ro no longer de�nes a label. To de�ne a label

just before the �le's in
lusion use lin
ludefile.

4.2.58 in
ludeverbatim(�le)

In
lude file into the output. No pro
essing is done, file should be in preformatted

form, e.g.:

whenhtml(in
ludeverbatim(foo.html))

NOTE: Starting with Yodl version 3.00.0 Yodl's default �le in
lusion behavior has

hanged. The
urrent working dire
tory no longer remains �xed at the dire
tory in

whi
h Yodl is
alled, but is volatile,
hanging to the dire
tory in whi
h a yodl-�le is

lo
ated. This has the advantage that Yodl's �le in
lusion behavior now mat
hes the

wayC's #in
lude dire
tive operates; it has the disadvantage that it may break some

urrent do
uments. Conversion, however is simple but
an be avoided altogether if

Yodl's -L (�lega
y-in
lude) option is used.

4.2.59 it()

Indi
ates an item in an itemized list. The list is either surrounded by startit()

and endit(), or it is an argument to itemize().

4.2.60 itemization(list)

Sets list as an itemizationd list. Use it() to indi
ate items in the list.

91

4.2.61 itemize(list)

DEPRECATED. Use itemization().

4.2.62 kindex()

Generate an index entry for index k.

4.2.63 label(labelname)

De�nes labelname as an an
hor for a link
ommand, or to stand for the last

numbering of a se
tion or �gure in a ref
ommand.

4.2.64 langle()

Chara
ter <

4.2.65 languagedut
h()

De�nes the Dut
h-language spe
i�
 headers. A
tive this ma
ro via setlanguage(dut
h).

4.2.66 languageenglish()

De�nes the English-language spe
i�
 headers. A
tive this ma
ro via setlanguage(english).

4.2.67 languageportugese()

De�nes the Portugese-language spe
i�
 headers. A
tive this ma
ro via setlanguage(portugese).

4.2.68 LaTeX()

The LaTeX symbol.

4.2.69 latexaddlayout(arg)

This ma
ro is provided to add Yodl-interpreted text to your own LaTeX layout

ommands. The
ommand is terminated with an end-of-line. See also the ma
ro

latexlayout
mds()

92

4.2.70 latex
ommand(
md)

Writes
md plus a white spa
e to the output when
onverting to LaTeX. The
md is

not further expanded by Yodl.

4.2.71 latexdo
ument
lass(
lass)

For
es the LaTeX \do
ument
lass{...} setting to
lass. Normally the
lass is

de�ned by the ma
ros arti
le, report or book. This ma
ro is an es
ape route

in
ase you need to spe
ify your own do
ument
lass for LaTeX. This option is a

modi�er and must appear before the arti
le, report or book ma
ros.

4.2.72 latexlayout
mds(NOTRANSs)

This ma
ro is provided in
ase you want to put your own LaTeX layout
ommands

into LaTeX output. The NOTRANSs are pasted right after the \do
ument
lass

stanza. The default is, of
ourse, no lo
al LaTeX
ommands. Note that this

ma
ro does not overrule my favorite LaTeX layout. Use nosloppyhfuzz() and

standardlayout() to disable my favorite LaTeX layout.

4.2.73 latexoptions(options)

Set latex options: do
ument
lass[options℄. This
ommand must appear before

the do
ument type is stated by arti
le, report, et
..

4.2.74 latexpa
kage(options)(name)

In
lude latex pa
kage(s), a useful pa
kage is, e.g., epsf. This
ommand must

appear before the do
ument type is stated by arti
le, report, et
..

4.2.75 l
hapter(label)(title)

Starts a new
hapter in books or reports, setting a label at the beginning of the

hapter.

4.2.76 letter(language)(date)(subje
t)(opening)(salutation)(author)

Starts a letter written in the indi
ated language. The date of the letter is set to

`date', the subje
t of the letter will be `subje
t'. The letter starts with `opening'.

It is based on the `letter.
ls' do
ument
lass de�nition. The ma
ro is available for

L

A

T

E

X only. Preamble
ommand suggestions:

• latexoptions(11pt)

• a4enlarged()

93

• letterreplyto(name)(address)(postal
ode/
ity)

• letterfootitem(phone)(number), maybe e-mail too.

• letteradmin(yourdate)(yourref)

• letterto(addressitem). Use a separate letterto()ma
ro
all for ea
h new

line of the address.

4.2.77 letteraddenda(type)(value)

Adds an addendum at the end of a letter. `type' should be `bijlagen', `

' or `ps'.

4.2.78 letteradmin(yourdate)(yourref)

Puts `yourletterfrom' and `yourreferen
e' elements in the letter. If left empty, two

dashes are inserted.

4.2.79 letterfootitem(name)(value)

Puts a footer at the bottom of letter-pages. Up to three will usually �t. L

A

T

E

X only.

4.2.80 letterreplyto(name)(address)(zip
ity)

De�nes the `reply to' address in L

A

T

E

X or txt-letters.

4.2.81 letterto(element)

Adds `element' as an additional line to the address in L

A

T

E

X letters.

4.2.82 link(des
ription)(labelname)

In HTML output a
li
kable link with the text des
ription is
reated that points

to the pla
e where labelname is de�ned using the label ma
ro. Using link is

similar to url, ex
ept that a hyperlink is set pointing to a lo
ation in the same

do
ument. For output formats other than HTML, only the des
ription appears.

4.2.83 lref(des
ription)(labelname)

This ma
ro is a
ombination of the ref and link ma
ros. In HTML output a

li
kable link with the text des
ription and the label value is
reated that points

to the pla
e where labelname is de�ned using the labelma
ro. For output formats

other than HTML, only the des
ription and the label value appears.

94

4.2.84 lse
t(label)(title)

Starts a new se
tion, setting a label at the beginning of the se
tion.

4.2.85 lsubse
t(label)(title)

Starts a new subse
tion. Other se
tioning
ommands are subsubse
t and subsubsubse
t.

A label is added just before the subse
tion.

4.2.86 lsubsubse
t(label)(title)

Starts a sub-subse
tion, a label is added just before the se
tion

4.2.87 lsubsubsubse
t(label)(title)

Starts a sub-sub-sub se
tion. This level of se
tioning is not numbered, in
ontrast

to `higher' se
tionings. A label is added just before the subsubsube
tion.

4.2.88 lurl(lo
ator)

An url des
ribed by its Lo
ator. For small urls with readable addresses.

4.2.89 mailto(address)

De�nes the default mailto address for HTML output. Must appear before the

do
ument type is stated by arti
le, report, et
..

4.2.90 makeindex()

Make index for latex.

4.2.91 man
ommand(
md)

Writes
md to the output when
onverting to man. The
md is not further expanded

by Yodl.

4.2.92 manpage(title)(se
tion)(date)(sour
e)(manual)

Starts a manual page do
ument. The se
tion argument must be a number, stating

to whi
h se
tion the manpage belongs to. Most often used are
ommands (1), �le for-

mats (5) and ma
ro pa
kages (7). The se
tioning
ommands in a manpage are not

(n)se
t et
., but manpage...(). The �rst se
tion must be the manpagename, the

95

last se
tionmust be the manpageauthor. The standard manpage for se
tion 1
on-

tains the following se
tions (in the given order): manpagename, manpagesynopsis,

manpagedes
ription, manpageoptions, manpagefiles, manpageseealso, manpagediagnosti
s,

manpagebugs, manpageauthor. Optional extra se
tions
an be added with manpagese
tion.

Standard manpageframes for several manpagese
tions are provided in /usr/lo
al/share/yodl/manframes.

4.2.93 manpageauthor()

Starts the AUTHOR entry in a manpage do
ument. Must be the last se
tion of a

manpage.

4.2.94 manpagebugs()

Starts the BUGS entry in a manpage do
ument.

4.2.95 manpagedes
ription()

Starts the DESCRIPTION entry in a manpage do
ument.

4.2.96 manpagediagnosti
s()

Starts the DIAGNOSTICS entry in a manpage do
ument.

4.2.97 manpage�les()

Starts the FILES entry in a manpage do
ument.

4.2.98 manpagename(name)(short des
ription)

Starts the NAME entry in a manpage do
ument. The short des
ription is used by,

e.g., the whatis database.

4.2.99 manpageoptions()

Starts the OPTIONS entry in a manpage do
ument.

4.2.100 manpagese
tion(SECTIONNAME)

Inserts a non-required se
tion named SECTIONNAME in a manpage do
ument. This

ma
ro
an be used to augment `standard' manual pages with extra se
tions, e.g.,

EXAMPLES. Note that the name of the extra se
tion should appear in upper

ase, whi
h is
onsistent with the normal typesetting of manual pages.

96

4.2.101 manpageseealso()

Starts the SEE ALSO entry in a manpage do
ument.

4.2.102 manpagesynopsis()

Starts the SYNOPSIS entry in a manpage do
ument.

4.2.103 mbox()

Unbreakable box in L

A

T

E

X. Other formats may have di�erent opitions on our un-

breakable boxex.

4.2.104 menu(list)

DEPRECATED.

4.2.105 metaC(text)

Put a line
omment in the output.

4.2.106 metaCOMMENT(text)

Write format-spe
i�

omment to the output.

4.2.107 mit()

DEPRECATED.

4.2.108 ms
ommand(
md)

Writes
md to the output when
onverting to ms. The
md is not further expanded

by Yodl.

4.2.109 n
hapter(title)

Starts a
hapter (in a book or report) without generating a number before the title

and without pla
ing an entry for the
hapter in the table of
ontents.

97

4.2.110 nemail(name)(address)

Named email. A more
onsistent naming for url, lurl, email and nemail would be

ni
e.

4.2.111 nl()

For
es a newline; i.e., breaks the
urrent line in two.

4.2.112 node(previous)(this)(next)(up)

DEPRECATED De�nes a node with name this, and links to nodes previous,

next and (up), for the node
ommand.

4.2.113 nodepre�x(text)

Prepend text to node names, e.g.

nodeprefix(LilyPond) se
t(Overview)

Currently used in texinfo des
riptions only.

4.2.114 nodepre�x(text)

Prepend text to node names, e.g.

nodeprefix(LilyPond) se
t(Overview)

Currently used in texinfo des
riptions only.

4.2.115 nodetext(text)

Use text as des
ription for the next node, e.g.

nodetext(The GNU Musi
 Typesetter)
hapter(LilyPond)

Currently used in texinfo des
riptions only.

4.2.116 nop(text)

Expand to text, to avoid spa
es before ma
ros e.g.: a

2
. Although a+sups(2) should

have the same e�e
t.

98

4.2.117 nosloppyhfuzz()

By default, LaTeX output
ontains
ommands that
ause it to shut up about hboxes

that are less than 4pt overfull. When nosloppyhfuzz() appears before stating the

do
ument type, LaTeX
omplaints are `vanilla'.

4.2.118 notableof
ontents()

Prevents the generation of a table of
ontents. This is default in, e.g., manpage and

plainhtml do
uments. When present, this option must appear before stating the

do
ument type with arti
le, report et
..

4.2.119 notitle
learpage()

Prevents the generation of a
learpage() instru
tion after the typesetting of title

information. This instru
tion is default in all non arti
le do
uments. When

present, must appear before stating the do
ument type with arti
le, book or

report.

4.2.120 noto

learpage()

With the L

A

T

E

X
onvertor, no
learpage() instru
tion is inserted immediately

beyond the do
ument's table of
ontents. The
learpage() instru
tion is default

in all but the arti
le do
ument type. When present, must appear before stating

the do
ument type with arti
le, book or report. With other
onvertors than the

L

A

T

E

X
onvertor, it is ignored.)

4.2.121 notransin
lude(�lename)

Reads �lename and inserts it literally in the text not subje
t to ma
ro expansion

or
hara
ter translation. No information is written either before or after the �le's

ontents, not even a newline.

NOTE: Starting with Yodl version 3.00.0 Yodl's default �le in
lusion behavior has

hanged. The
urrent working dire
tory no longer remains �xed at the dire
tory in

whi
h Yodl is
alled, but is volatile,
hanging to the dire
tory in whi
h a yodl-�le is

lo
ated. This has the advantage that Yodl's �le in
lusion behavior now mat
hes the

wayC's #in
lude dire
tive operates; it has the disadvantage that it may break some

urrent do
uments. Conversion, however is simple but
an be avoided altogether if

Yodl's -L (�lega
y-in
lude) option is used.

4.2.122 noxlatin()

When used in the preamble, the LaTeX
onverter disables the in
lusion of the �le

xlatin1.tex. Normally this �le gets in
luded in the LateX output �les to ensure

the
onversion of high ASCII
hara
ters (like é) to LaTeX-understandable
odes.

(The �le xlatin1.tex
omes with the Yodl distribution.)

99

4.2.123 nparagraph(title)

Starts a non-numbered paragraph (duh,
orresponds to subparagraph in latex).

4.2.124 npart(title)

Starts a part in a book do
ument, but without numbering it and without entering

the title of the part in the table of
ontents.

4.2.125 nse
t(title)

Starts a se
tion, but does not generate a number before the title nor an entry in

the table of
ontents. Further se
tioning
ommands are nsubse
t, nsubsubse
t

and nsubsubsubse
t.

4.2.126 nsubse
t(title)

Starts a non-numbered subse
tion.

4.2.127 nsubsubse
t(title)

Starts a non-numbered sub-sub se
tion.

4.2.128 nsubsubse
t(title)

Starts a non-numbered sub-subse
tion.

4.2.129 paragraph(title)

Starts a parapgraph. This level of se
tioning is not numbered, in
ontrast to `higher'

se
tionings (duh,
orresponds to subparagraph in latex).

4.2.130 part(title)

Starts a new part in a book do
ument.

4.2.131 pindex()

Generate an index entry for index p.

100

4.2.132 plainhtml(title)

Starts a do
ument for only a plain HTML
onversion. Not available in other output

formats. Similar to arti
le, ex
ept that an author- and date �eld are not needed.

4.2.133 printindex()

Make index for texinfo (?).

4.2.134 quote(text)

Sets the text as a quotation. Usually, the text is indented, depending on the output

format.

4.2.135 rangle()

Inserts the right angle
hara
ter (>).

4.2.136 redef(nrofargs)(rede�nition)

De�nes ma
ro ma
ro to expand to redefinition. Similar to def, but any pre-

existing de�nition is overruled. Use ARGx in the rede�nition part to indi
ate where

the arguments should be pasted. E.g., ARG1 pla
es the �rst argument, ARG2 the

se
ond argument, et
...

4.2.137 rede�nema
ro(nrofargs)(rede�nition)

De�nes ma
ro ma
ro to expand to redefinition. Similar to def, but any pre-

existing de�nition is overruled. Use ARGx in the rede�nition part to indi
ate where

the arguments should be pasted. E.g., ARG1 pla
es the �rst argument, ARG2 the

se
ond argument, et
... This
ommands is a
tually
alling redef().

4.2.138 ref(labelname)

Sets the referen
e for labelname. Use label to de�ne a label.

4.2.139 report(title)(author)(date)

Starts a report type do
ument. The top-level se
tioning
ommand in a report is

hapter.

101

4.2.140 ro�
md(dot
md)(sameline)(se
ondline)(thirdline)

Sets a t/nro�
ommand that starts with a dot, on its own line. The arguments are:

dot
md - the
ommand itself, e.g., .IP; sameline - when not empty, set following

the dot
md on the same line; se
ondline - when not empty, set on the next line;

thirdline - when not empty, set on the third line. Note that dot
md and thirdline

are not further expanded by Yodl, the other arguments are.

4.2.141 row(
ontents)

The argument
ontents may
ontain a man-page alignment spe
i�
ation (only one

spe
i�
ation
an be entered per row), using setmanalign(). If omitted, the stan-

dard alignment is used. Furthermore it
ontains the
ontents of the elements of

the row, using
ell() or
ells() ma
ros. If
ells() is used, setmanalign()

should have been used too. In this ma
ro
all only the
ell(),
ells() and

setmanalign() ma
ros should be
alled. Any other ma
ro
all may produ
e unex-

pe
ted results.

The rowma
ro de�nes a
ounter XX
ellnr that
an be inspe
ted and is in
remented

by prede�ned ma
ros adding
olumns to a row. The
ounter is initially 0. Prede�ned

ma
ros adding
olumns to a row add the number of
olumns they add to the row

inserting the
ontents of those
olumns. These ma
ros rely on the
orre
t value

of this
ounter and any user-de�ned ma
ros adding
olumns to table rows should

orre
tly update XX
ellnr.

4.2.142 rowline()

Sets a horizontal line over the full width of the table. See also
olumnline(). Use

rowline() instead of a row() ma
ro
all to obtain a horizontal line-separator.

4.2.143 s
(text)

Set text in small
aps (or tt).

4.2.144 se
t(title)

Starts a new se
tion.

4.2.145 seta�lstring(name)

De�nes name as the `a�liation information' string, by default AFFILIATION IN-

FORMATION. E.g., after setaffilstring(AFILIACION), Yodl outputs this Span-

ish string to des
ribe the a�liation information. Currently, it is relevant only for

txt.

102

4.2.146 setauthorstring(name)

De�nes name as the `Author information' string, by default AUTHOR INFORMA-

TION. E.g., after setauthorstring(AUTOR), Yodl outputs this portuguese string

to des
ribe the author information. Currently, it is relevant only for txt.

4.2.147 set
hapterstring(name)

De�nes name as the `
hapter' string, by default Chapter. E.g., after set
hapterstring(Hoofdstuk),

Yodl gains some measure of national language support for Dut
h. Note that LaTeX

support has its own NLS, this ma
ro doesn't a�e
t the way LaTeX output looks.

4.2.148 setdatestring(name)

De�nes name as the `date information' string, by default DATE INFORMATION.

E.g., after setdatestring(DATA), Yodl outputs this portuguese string to des
ribe

the date information. Currently, it is relevant only for txt.

4.2.149 set�gureext(name)

De�nes the name as the `�gure' extension. The extension should in
lude the period,

if used. E.g., use set�gureext(.ps) if the extensions of the �gure-images should end

in .ps

4.2.150 set�gurestring(name)

De�nes the name as the `�gure' text, used e.g. in �gure
aptions. E.g., after

setfigurestring(Figuur), Yodl uses Dut
h names for �gures.

4.2.151 sethtml�gureext(ext)

De�nes the �lename extension for HTML �gures, defaults to .jpg. Note that a

leading dot must be in
luded in ext. The new extension takes e�e
t starting with

the following usage of the figure ma
ro. It is only a
tive in html, but otherwise

a
ts identi
ally as set�gureext().

4.2.152 setin
ludepath(name)

Sets a new value of the in
lude-path spe
i�
ation used when opening .yo �les. A

warning is issued when the path spe
i�
ation does not in
lude a .: element. Note

that the lo
al dire
tory may still be an element of the new in
lude path, as the

lo
al dire
tory may be the only or the last element of the spe
i�
ation. For these

eventualities the new path spe
i�
ation is not
he
ked.

103

4.2.153 setlanguage(name)

Installs the headers spe
i�
 to a language. The argument must be the name of

a language, whose headers have been set by a
orresponding languageXXX()
all.

For example: languagedut
h(). The language ma
ros should set the names of the

headers of the following elements: table of
ontents, a�liation, author,
hapter,

date, �gure, part and title

4.2.154 setlatexalign(alignment)

This ma
ro de�nes the table alignment used when setting tables in L

A

T

E

X. Use as

many l (for left-alignment), r (for right alignment), and
 (for
entered-alignment)

hara
ters as there are
olumns in the table. See also table()

4.2.155 setlatex�gureext(ext)

De�nes the �lename extension for en
apsulated PostS
ript �gures in LaTeX, de-

faults to .ps. The dot must be in
luded in t new extension ext. The new extension

takes e�e
t starting with a following usage of the figure ma
ro. It is only a
tive

in L

A

T

E

X, but otherwise a
ts identi
ally as set�gureext().

4.2.156 setlatexverb
har(
har)

Set the
har used to quote L

A

T

E

X \verb sequen
es

4.2.157 setmanalign(alignment)

This ma
ro de�nes the table alignment used when setting tables used in man-pages

(see tbl(1)). Use as many l (for left-alignment), r (for right alignment), and
 (for

entered-alignment)
hara
ters as there are
olumns in the table. Furthermore, s

an be used to indi
ate that the
olumn to its left is
ombined (spans into) the

urrent
olumn. Use this spe
i�
ation when
ells spanning multiple
olumns are

de�ned. Ea
h row in a table whi
h must be
onvertable to a manpage may
ontain

a separate setmanalign()
all. Note that neither rowline nor
olumnline requires

setmanalign() spe
i�
ations, as these ma
ros de�ne rows by themselves. It is the

responsibility of the author to ensure that the number of alignment
hara
ters is

equal to the number of
olumns of the table.

4.2.158 setpartstring(name)

De�nes name as the `part' string, by default Part. E.g., after setpartstring(Teil),

Yodl identi�es parts in the German way. Note that LaTeX output does its own

national language support; this ma
ro doesn't a�e
t the way LaTeX output looks.

104

4.2.159 setro�tab(x)

Sets the
hara
ter separating items in a line of input data of a roff (manpage)

table. By default it is set to ~. This separator is used internally, and needs only

be
hanged (into some unique
hara
ter) if the table elements themselves
ontain ~

hara
ters.

4.2.160 setro�tableoptions(optionlist)

Set the options for tbl table, default: none. Multiple options should be separated

by blanks, by default no option is used. From the tbl(1) manpage, the following

options are sele
ted for
onsideration:

•
enter Centers the table (default is left-justi�ed)

• expand Makes the table as wide as the
urrent line length

• box En
loses the table in a box

• allbox En
loses ea
h item of the table in a box

Note that starting with Yodl V 2.00 no default option is used anymore. See also

setrofftab() whi
h is used to set the
hara
ter separating items in a line of input

data.

4.2.161 settitlestring(name)

De�nes name as the `title information' string, by default TITLE INFORMATION.

E.g., after settitlestring(TITEL), Yodl outputs this Dut
h string to des
ribe the

title information. Currently, it is relevant only for txt.

4.2.162 setto
string(name)

De�nes name as the `table of
ontents' string, by default Table of Contents. E.g.,

after setto
string(Inhalt), Yodl identi�es the table of
ontents in the German

way. Note that LaTeX output does its own national language support; this ma
ro

doesn't a�e
t the way LaTeX output looks.

4.2.163 sgml
ommand(
md)

Writes
md to the output when
onverting to sgml. The
md is not further expanded

by Yodl.

4.2.164 sgmltag(tag)(ono�)

Similar to htmltag, but used in the SGML
onverter.

105

4.2.165 sloppyhfuzz(points)

By default, LaTeX output
ontains
ommands that
ause it to shut up about hboxes

that are less than 4pt overfull. When sloppyhfuzz() appears before stating the

do
ument type, LaTeX
omplaints o

ur only if hboxes are overfull by more than

points.

4.2.166 standardlayout()

Enables the default LaTeX layout. When this ma
ro is absent, then the �rst lines of

paragraphs are not indented and the spa
e between paragraphs is somewhat larger.

The standardlayout() dire
tive must appear before stating the do
ument type

as arti
le, report, et
..

4.2.167 start
enter()

DEPRECATED.
enter() should be used.

4.2.168 startdit()

DEPRECATED. Use des
ription().

4.2.169 starteit()

DEPRECATED. Use enumeration().

4.2.170 startit()

DEPRECATED. Use itemization().

4.2.171 startmenu()

DEPRECATED. Use menu().

4.2.172 starttable()

DEPRECATED. Use table().

4.2.173 subs(text)

Sets text in subs
ript in supporting formats

106

4.2.174 subse
t(title)

Starts a new subse
tion. Other se
tioning
ommands are subsubse
t and subsubsubse
t.

4.2.175 subsubse
t(title)

Starts a sub-subse
tion.

4.2.176 subsubsubse
t(title)

Starts a sub-sub-sub-subse
tion. This level of se
tioning is not numbered, in
on-

trast to `higher' se
tionings.

4.2.177 sups(text)

Sets text in supers
ript in supporting formats

4.2.178 table(nColumns)(alignment)(Contents)

The table()-ma
ro de�nes a table. Its �rst argument spe
i�es the number of

olumns in the table. Its se
ond argument spe
i�es the (standard) alignment of the

information within the
ells as used by L

A

T

E

X or man/ms. Use l for left-alignment,

 for
entered-alignment and r for right alignment. Its third argument de�nes the

ontents of the table whi
h are the rows, ea
h
ontaining
olumn-spe
i�
ations and

optionally man/ms alignment de�nitions for this row.

See also the spe
ialized setmanalign() ma
ro.

4.2.179 t
ell(text)

Ro� helper to set a table text
ell, i.e., a paragraph. For L

A

T

E

X spe
ial table format-

ting p{} should be used.

4.2.180 tely
ommand(
md)

Writes
md to the output when
onverting to tely. The
md is not further expanded

by Yodl.

4.2.181 TeX()

The TeX symbol.

107

4.2.182 texinfo
ommand(
md)

Writes
md to the output when
onverting to texinfo. The
md is not further ex-

panded by Yodl.

4.2.183 tindex()

Generate an index entry for index t.

4.2.184 title
learpage()

For
es the generation of a
learpage() dire
tive following the title of a do
u-

ment. This is already the default in books and reports, but
an be overruled with

notitle
learpage(). When present, must appear in the preamble; i.e., before the

do
ument type is stated with arti
le, book or report.

4.2.185 to

learpage()

With the L

A

T

E

X
onvertor, a
learpage() dire
tive if inserted, immediately fol-

lowing the do
ument's table of
ontents. This is already the default in all but the

arti
le do
ument type, but it
an be overruled by noto

learpage(). When

present, it must appear in the preamble; i.e., before the do
ument type is stated

with arti
le, book or report. With other
onvertors than the L

A

T

E

X
onvertor, it

is ignored.

4.2.186 tt(text)

Sets text in teletype font, and prevents it from being expanded. For unbalan
ed

parameter lists, use CHAR(40) to get (and CHAR(41) to get).

4.2.187 txt
ommand(
md)

Writes
md to the output when
onverting to txt. The
md is not further expanded

by Yodl.

4.2.188 url(des
ription)(lo
ator)

In LaTeX do
uments the des
ription is sent to the output. For HTML, a link

is
reated with the des
riptive text des
ription and pointing to lo
ator. The

lo
ator should be the full URL, in
luding servi
e; e.g, http://www.i

e.rug.nl,

but ex
luding the double quotes that are ne
essary in plain HTML. Use the ma
ro

link to
reate links within the same do
ument. For other formats, something like

des
ription [lo
ator℄ will appear.

108

4.2.189 verb(text)

Sets text in verbatim mode: not subje
t to ma
ro expansion or
hara
ter table

expansion. The text appears literally on the output, usually in a teletype font (that

depends on the output format). This ma
ro is for larger
hunks, e.g., listings. For

unbalan
ed parameter lists, use CHAR(40) to get (and CHAR(41) to get).

4.2.190 verbin
lude(�lename)

Reads �lename and inserts it literally in the text, set in verbatim mode. not sub-

je
t to ma
ro expansion.The text appears literally on the output, usually in a tele-

type font (that depends on the output format). This ma
ro is an alternative to

verb(...), when the text to set in verbatim mode is better kept in a separate �le.

NOTE: Starting with Yodl version 3.00.0 Yodl's default �le in
lusion behavior has

hanged. The
urrent working dire
tory no longer remains �xed at the dire
tory in

whi
h Yodl is
alled, but is volatile,
hanging to the dire
tory in whi
h a yodl-�le is

lo
ated. This has the advantage that Yodl's �le in
lusion behavior now mat
hes the

wayC's #in
lude dire
tive operates; it has the disadvantage that it may break some

urrent do
uments. Conversion, however is simple but
an be avoided altogether if

Yodl's -L (�lega
y-in
lude) option is used.

4.2.191 verbpipe(
ommand)(text)

Pipe text through
ommand, but don't expand the output.

4.2.192 vindex()

Generate an index entry for index v.

4.2.193 whenhtml(text)

Sends text to the output when in HTML
onversion mode. The text is further

expanded if ne
essary.

4.2.194 whenlatex(text)

Sends text to the output when in LATEX
onversion mode. The text is further

expanded if ne
essary.

4.2.195 whenman(text)

Sends text to the output when in MAN
onversion mode. The text is further

expanded if ne
essary.

109

4.2.196 whenms(text)

Sends text to the output when in MS
onversion mode. The text is further ex-

panded if ne
essary.

4.2.197 whensgml(text)

Sends text to the output when in SGML
onversion mode. The text is further

expanded if ne
essary.

4.2.198 whentely(text)

Sends text to the output when in TELY
onversion mode. The text is further

expanded if ne
essary.

4.2.199 whentexinfo(text)

Sends text to the output when in TEXINFO
onversion mode. The text is further

expanded if ne
essary.

4.2.200 whentxt(text)

Sends text to the output when in TXT
onversion mode. The text is further

expanded if ne
essary.

4.2.201 whenxml(text)

Sends text to the output when in XML
onversion mode. The text is further

expanded if ne
essary.

4.2.202 xit(itemname)

Starts an xml menu item where the �le to whi
h the menu refers to is the argument

of the xit() ma
ro. It should be used as argument to xmlmenu(), whi
h has a 3rd

argument: the default path pre�xed to the xit() elements.

This ma
ro is only available within the xml-
onversion mode. The argument must

be a full �lename, in
luding .xml extension, if appli
able.

No .xml extension indi
ates a subdire
tory,
ontaining another sub-menu.

4.2.203 xml
ommand(
md)

Writes
md to the output when
onverting to xml. The
md is not further expanded

by Yodl.

110

4.2.204 xmlmenu(order)(title)(menulist)

Starts an xmlmenu. Use itemization() to de�ne the items. Only available in xml

onversion. The menutitle appears in the menu as the heading of the menu. The

menulist is a series of xit() elements,
ontaining the name of the �le to whi
h the

menu refers as their argument (in
luding a �nal /). Pre�xed to evert every xit()-

element is the value of XXdo
umentbase.

Order is the the `order' of the menu. If omitted, no order is de�ned.

4.2.205 xmlnew�le()

In XML output, starts a new �le. All other formats are not a�e
ted. Note that you

must take your own provisions to a

ess the new �le; say via links. Also, it's safe

to start a new �le just befoore opening a new se
tion, sin
e se
tions are a

essible

from the
li
kable table of
ontents. The XML
onverter normally only starts new

�les prior to a
hapter de�nition.

4.2.206 xmlsetdo
umentbase(name)

De�nes name as the XML do
ument base. No default. Only interpreted with xml

onversions. It is used with the �gure and xmlmenu ma
ros.

4.2.207 xmltag(tag)(ono�)

Similar to htmltag, but used in the XML
onverter.

4.3 Conversion-related topi
s

4.3.1 A

ents

4.3.2 Conversion-type spe
i�
 literal
ommands

A

ording to the format of the output �le, the ma
ro pa
kage de�nes a given symbol:

• latex when the output format is LaTeX,

• html when the output format is HTML,

• man when the output format is gro� in
onjun
tion with the man ma
ro pa
k-

age,

• ms when the output format is gro� with the ms pa
kage,

• sgml when the output format is SGML,

• txt when the output format is plain ASCII.

• xml when the output format is XML.

111

The de�ned symbol
an be tested in a do
ument to determine the
onversion type.

Furthermore, the pa
kage de�nes the following ma
ros to send literal text (
om-

mands in the output format) to the output �le:

• latex
ommand(
md): sends the LaTeX
ommand
md when in LaTeX
onver-

sion mode. The
md is not further expanded.

• html
ommand(
md): sends the HTML
ommand
md when in HTML
onver-

sion mode. The
md is not further expanded.

• htmltag(tag)(onoff): sends <tag> to the output when onoff is nonzero, or

sends </tag> when onoff is zero. Only a
tive in HTML
onversions.

• man
ommand(
md): sends
md to the output when in man
onversion mode.

The
md is not further expanded.

• ms
ommand(
md): sends
md to the output when in ms
onversion mode. The

md is not further expanded.

• roff
md(dot
md)(trailer)(se
ondline)(thirdline): sends a
ommand

to the output when in man or ms
onversion mode. The dot
md is the typi
al

groff
ommand that starts with a dot. All other arguments may be empty,

but when given are interpreted as follows. The trailer follows the dot
md

on the same line. The se
ondline is sent on a separate line following the

dot
md and trailer. The thirdline is sent after that. Of the four argu-

ments, dot
md and thirdline are not subje
t to further expansion. All other

arguments are further expanded if ne
essary.

The roff
mdma
ro illustrates the
omplexity of dot-
ommands for the divers

groff ma
ro pa
kages. E.g., a se
tion title for the man pa
kage should look

as

.SH "Se
tion Title"

while the same
ommand for the ms ma
ro pa
kage must be sent as

.SH

Se
tion Title

.PP

The roff
md ma
ro
an be used to send these
ommands to the output �le

as follows:

COMMENT(For the man output format:)

roff
md(.SH)("Se
tion Title")()()

COMMENT(For the ms output format:)

roff
md(.SH)()(Se
tion Title)(.PP)()

112

• sgml
ommand(
md): sends the SGML
ommand
md when in SGML
onver-

sion mode. The
md is not further expanded.

• sgmltag(tag)(onoff): sends <tag> when onoff is nonzero, or sends </tag>

when onoff is zero. Only a
tive in SGML
onversions.

• txt
ommand(
md): implemented for
ompatibility reasons, though a `
om-

mand' in plain ASCII output doesn't make mu
h sense. The usefulness of

this ma
ro is rather in the fa
t that it only produ
es output when in ASCII

onversion mode.

The above
ommands
an be used to qui
kly implement a ma
ro. E.g., the ma
ro

pa
kage implements the it ma
ro (whi
h starts an item in a list) as:

DEFINEMACRO(it)(0)(

latex
ommand(\item)

html
ommand()

....

)

Depending on the output format, it() will lead to one of the above expansions.

The above des
ribed format
ommand()ma
ros are implemented to send not further

expanded strings (i.e.,
ommands) to the output. The ma
ro pa
kage also imple-

ments whenformat() ma
ros to send any text, whi
h is then subje
t to further

expansion. These when...() ma
ros are:

• whenlatex(text): sends text when in LaTeX
onversion mode,

• whenhtml(text): sends text when in HTML
onversion mode,

• whenman(text): sends text when in man
onversion mode,

• whenms(text): sends text when in ms
onversion mode,

• whentxt(text): sends text when in ASCII
onversion mode,

• whensgml(text): sends text when in SGML
onversion mode.

On
e again, note that the di�eren
e between the whenformat() ma
ros and the

format
ommand() ma
ros is, that the former will expand their argument while the

latter will not. As an example,
onsider the following
ode fragment:

You are now reading

whenlatex(a LaTeX-generated

footnote(LaTeX is a great

do
ument language!)

do
ument)

whenhtml(a HTML do
ument via your

favorite browser)

113

The whenformat() ma
ros are used here to make sure that the arguments to the

ma
ros are further expanded; this makes sure that the footnote ma
ro in the

whenlatex blo
k gets treated as a footnote.

4.3.3 Figures

Figures in format-independent do
uments are a problem. You
annot avoid
onta
t

with the �nal format (HTML, LaTeX or whatever) if you want to in
lude �gures in

a text.

Yodl approa
hes �gures as follows:

• Figures
an only be in
luded in LaTeX, HTML and XML do
uments.

• For LaTeX, you must prepare a pi
ture in an external �le that is in
luded

in the do
ument as en en
apsulated PostS
ript �le. In
identally, that means

that epsf must be stated as one of the LaTeX styles using the latexoptions

ma
ro. The default, however,
an be modi�ed using the setlatexfigureext()

ma
ro.

The �le in question is stated in Yodl without an extension. Yodl provides a

default extension, .ps.

• For HTML and XML, you must prepare a pi
ture in an external �le that is

pla
ed in the do
ument using the <img sr
=...> tag. The �le must have the

default extension (.jpg) or the extension spe
i�ed with the sethtmlfigureext()

ma
ro.

• All other output formats do not in
lude pi
tures in the do
ument, but typeset

something like insert �gure .. here.

The ma
ro to in
lude a �gure is
alled, appropriately, figure. It takes three argu-

ments:

• The �rst argument is the �lename. This name may in
lude dire
tories, but

may not in
lude the �lename extension. The reason for this is, that Yodl

supplies the
orre
t extension on
e the output format is known.

• The se
ond argument is the �gure title, or the
aption. Yodl pre�xes this

aption with the text Figure xx:, where xx is a number.

• The last argument is a label, whi
h Yodl de�nes as a pla
eholder for the �gure

number.

For example, you might draw a pi
ture or s
an a photo and put it in a .jpg �le, for

usage with HTML do
uments. The
onversion to PostS
ript
ould be automated,

e.g., using a Yodl ma
ro:

SYSTEM(xpmtoppm pi
ture.xpm | pnmtops > pi
ture.ps)

See se
tion 3.1.67 for details about using the SYSTEM ma
ro.

114

After this, you would be reasonably safe that the pi
ture is available for both HTML

and LaTeX output. The pi
ture would be typeset in a �gure using:

figure(pi
ture)

(A photo of me.)

(photo)

Note how the �rst argument, the �lename, does not
ontain an extension. The third

argument, whi
h is a label,
an be used in, e.g.,

See figure ref(photo) for a photograph showing me.

Yodl has a several auxiliary ma
ros, whi
h are:

• fig(label): This ma
ro is a shorthand for getfigurestring() ref(label).

It just makes typing shorter, and is used as e.g.: See fig(photo) for a

photograph. Note that the string figure that is generated by this ma
ro

an be (re)de�ned, see below.

• setfigurestring(name): This ma
ro is similar to set
hapterstring et
..

It de�nes the string that is used to identify a �gure, and is (appropriately)

figure by default. The ma
ro getfigurestring() expands to the string in

question. See also se
tion 4.3.6 for a dis
ussion of national language support.

• sethtmlfigureext(.new): This ma
ro rede�nes the �lename extension for

HTML
onversions from .gif to .new. Note that you must in
lude a leading

dot in the rede�nition.

The new extension is used in the �rst following figure statement.

• sethtmlfigurealign(align): This rede�nes the alignment of �gures in HTML,

whi
h is default bottom. Che
k your HTML handbook for possible options;

top and
enter should be fairly standard.

• setlatexfigureext(.new): Rede�nes the extension from .ps to .new.

4.3.4 Fonts and sizes

Yodl's standard ma
ro pa
kage supports the following ma
ros to
hange fonts:

• bf(text): sets text in boldfa
e.

• em(text): sets text emphasized, usually in itali
s.

• tt(text): sets text in teletype.

Furthermore, the tt()ma
ro will not expand ma
ros o

urring inside its argument.

That means that you
an safely write:

115

In Yodl, you
an use tt(in
ludefile(somefile)) to in
lude a file

in your do
ument.

The tt() ma
ro should not be used for long listings of verbatim text; use verb()

to set
ode samples et
..

Yodl's standard ma
ro pa
kage has no
ommands to
hange font sizes, as the size is

hanged internally when appropriate (e.g., in se
tion titles), nor is there a default

ma
ro to de�ne other font-families.

4.3.5 Labels, links, referen
es and URLs

Referen
es su
h as see ... for more information are very
ommon in do
uments.

Yodl supports three me
hanisms to a

omplish su
h referen
es:

Labels and referen
es: Labels
an be de�ned in a do
ument as a pla
eholder

for the last number used in a se
tioning
ommand. At other points in the

do
ument, referen
es to those labels are used. The referen
e expands to the

number, as in see se
tion 1.3.

This me
hanism is available in all output formats. Furthermore, the numeri

referen
e (1.3 in the example of the previous paragraph) is in HTML a
li
kable

referen
e that leads to the mentioned se
tion.

Labels and links: This me
hanism
an be used to set links in a do
ument without

using the number of a se
tioning
ommand, as in see the introdu
tion for more

information, with the introdu
tion being a
li
kable link to some label.

This me
hanism of
ourse only leads to a
li
kable link in HTML: in other

formats the text see the et
. is just typeset as is.

URLs: Universal Resour
e Lo
ators (URLs) are used to
reate links to other

HTML do
uments or servi
es, like HTML's method. The URLs

of
ourse only result in
li
kable links in HTML output; in other output for-

mats only some des
riptive text appears.

The above me
hanism is implemented by the following ma
ros:

• The ma
ro label(name) de�nes a label named name. The name of the label

an be used in a ref or link ma
ro.

• The ma
ro ref(name) sets a referen
e to the label named name. The text of

the referen
e is the number of the last se
tioning
ommand that was a
tive

during the
reation of the label. When using referen
es it is therefore impor-

tant to de�ne the
orresponding labels right after a se
tioning
ommand, as

in

se
tion(How to install my program) label(howtoinstall)

This se
tion des
ribes...

...

See se
tion ref(howtoinstall) for installation instru
tions.

116

The ma
ro ref(howtoinstall) expands to the number of the se
tion named

How to install my program.

• The ma
ro link(des
ription)(name) always expands to the des
ription.

In HTML output, a
li
kable link is
reated pointing to a label
alled name.

For example:

label(megahard)

COMMENT(sigh...)

The Jodel pa
kage isn't shareware, it isn't

beggarware, it isn't freeware, it's

bf(megahard-ware).

...

Who wants a link(pi
osoft)(megahard)?

This
ode fragment would always set the text pi
osoft, but under HTML a

li
kable link would appear pointing to link(the text)(megahard).

• The ma
ro url(des
ription)(lo
ation)always expands to the des
ription,

but
reates a hyperlink pointing to lo
ation in HTML. For example,

Take a look at my

url(homepage)(http://www.somwhere.nl/karel/karel.html).

The text homepage

1

always appears, but only in HTML it is a link. (Note

that the double quotes, whi
h are ne
essary in HTML around the lo
ation,

are not required by Yodl.) To use a di�erent font in the des
ription part,

surrond it inside the url parameter list, as in:

The Yodl pa
kage
an be obtained at the site tt(ftp.rug.nl) in the

dire
tory url(tt(/
ontrib/frank/software/yodl))

(ftp://ftp.rug.nl/
ontrib/frank/software/yodl).

• The ma
ro email(address) is a spe
ial
ase of url: under HTML, the

address appears as a
li
kable link in slanted font to mail address. For

example:

I
an be rea
hed at

email(f.b.brokken�rug.nl).

I
an be rea
hed at f.b.brokken�rug.nl<f.b.brokken�rug.nl>.

Always keep in mind that the name of a label must be exa
tly identi
al in

both the label ma
ro and in the ref or link ma
ro. Other than that, the

name is irrelevant.

1

http://www.somwhere.nl/karel/karel.html

117

Furthermore, note that lin
ludefile is yet another ma
ro de�ning a label:

it in
ludes a �le and automati
ally
reates a label just before the in
luded

�le's text. That means that a Yodl �le like:

hapter(Introdu
tion)

se
t(Wel
ome)

lin
ludefile(WELCOME)(wel
ome)

hapter(Te
hni
al information)

lin
ludefile(TECHINFO)(te
hinfo)

reates two labels: WELCOME and TECHINFO.

Here are some �nal thoughts about using labels and referen
es:

• Don't put `weird'
hara
ters in label names. Generally, don't use spa
es and

tabs.

• The name of the label is always only an internal symbol; it does not appear

in the output. Therefore,
onstru
tions su
h as the following are not
orre
t:

ref(em(labelname))

The reason for the in
orre
tness is, what internal name should em(labelname)

generate? Here probably an attempt is made to set a referen
e in itali
s. The

right
onstru
tion is of
ourse to set whatever ref() returns in itali
s, as in:

em(ref(labelname))

• The label ma
ro should not appear nested inside another ma
ro. There is

no stri
t reason for this as far as Yodl is
on
erned; however, the pro
essors

of Yodl's output might go haywire. E.g., beware of the
onstru
tion

se
tion(Introdu
tion label(intro))

The right form being

se
tion(Introdu
tion)label(intro)

(linking to intro will usually not show Introdu
tion), or:

label(intro)se
tion(Introdu
tion)

(linking to intro will usually show Introdu
tion), or:

118

4.3.6 Lists and environments

Yodl's default ma
ros support the following lists and environments:

By default, the following lists are available:

Des
ription lists: A des
ription list
onsists of a list of elements, where ea
h

element starts with a short (usually bold fa
ed) des
ription. The des
ription

list is generated by the des
ription() ma
ro. The elements of the list start

with dit(). The dit() ma
ro expe
ts a short des
ription of the item.

Example:

A des
ription list:

des
ription(

dit(First this:) One item.

dit(Then this:) Another item.

)

Enumeraton lists: An enumeration list
onsist of sequentially numbered elements.

The list is generated by the enumeration() ma
ro. Its elements start with

the eit() ma
ro.

Example:

An enumerated list:

enumeration(

eit() One item.

eit() Another item.

)

Itemized lists: An itemized lists
onsists of indented items, usually pre
eded by

a bullet.

An itemized list is produ
ed by the itemization() ma
ro, whi
h has one

argument: the items themselves. These items must start with it().

Example:

An itemized list:

itemization(

it() One item.

it() Another item.

)

Spe
ialized environments are:

Centered text: Centering text may not be available in all output formats. When

unavailable, the text is typeset left-�ushed.

119

Centered text is generated by the
enter() ma
ro. Line brakes within
en-

tered text may be obtained using the nl() ma
ro.

Example:

enter(

Centered text. nl()

Another line of
entered text.

)

Verbatim text: Verbatim text appears on the output exa
tly in the same layout

as it is in the input �le. Typesetting text in verbatim mode is useful for, e.g.,

sour
e �les. Depending on the output format, the font of the verbatim text is

hanged to a teletype font.

The text must either be inside the verb() ma
ro. For example:

verb(

This is totally verbatim text.

It is not further pro
essed by Yodl.

)

The verbatim text is of
ourse not subje
t to ma
ro expansion by Yodl. Note,

however, that SUBST transformations will take pla
e, as these substitutions

take pla
e during the lexi
al s
anning phase of Yodl's input, and are not part

of the ma
ro-expansion pro
ess. See also se
tion 3.1.65.

Furthermore, if a
hara
ter translation table has been de�ned, the argu-

ment of the verb() ma
ro will also be subje
t to
hara
ter table transfor-

mations. By temporarily suppressing the a
tive
hara
ter table (see se
tion

PUSHCHARTABLE 3.1.56) this
an be prevented.

Quotations: Quotations are usually indented with respe
t to their surrounding

text. It is for the author to de
ided whether the quoted text should be typeset

normally, or that it should be bold-fa
ed or emphasized. To insert a quotation

use the quote() ma
ro:

Shakespeare on
e wrote:

quote(

``To be or not to be, that's the question''

)

National language support

Yodl in
ludes rudimentary national language support (NLS), in the sense that it

allows you to rede�ne the strings identifying
hapters or parts, or the strings iden-

tifying �gures. E.g., a
ommand
hapter(Introdu
tion) will by default result in

the text Chapter 1: Introdu
tion.

120

Using the set
hapterstring(text) ma
ro, the Chapter text
an be rede�ned.

E.g., in a Dut
h text you might put

set
hapterstring(Hoofdstuk)

somewhere near the beginning of your do
ument. Similar to set
hapterstring, a

ma
ro get
hapterstring exists returning the text identifying
hapters. (Internally,

get
hapterstring is of
ourse used to a
tually set the text). To rede�ne the text

to identify a part, use setpartstring(text); to rede�ne the text to identify a

�gure, use setfigurestring(text).

The set....string ma
ros only in�uen
e how Yodl names
hapters or parts in

HTML, man, ms or txt output. LaTeX output is not a�e
ted, sin
e LaTeX does its

own NLS. Usually, NLS is present for LaTeX as a `style �le' named, e.g., dut
h.sty.

Therefore, if you want a Dut
h do
ument, you need to:

• put latexpa
kage(dut
h)(babel)in the preamble of the do
ument. This

ensures that LaTeX uses Dut
h abbreviation rules.

• rede�ne the
hapter and part names for non-LaTeX output, using:

setlanguage(dut
h)

• Finally, you should probably type your text in Dut
h.

The setlanguage()ma
ro expe
ts one argument: the name of the language that is

used. See se
tion 4.2 for details about this ma
ro. The setlanguage() ma
ro

rede�nes the language-dependent se
tion (and other) headers, and depends on

the availability of the
orresponding language<name>() ma
ro, where <name> is

the name of the language (by
onvention <name> states the english name of the

language). Currently, languagedut
h(), languageenglish() (the default), and

languageportugese() are available. It's easy to expand this little set with ma
ros

for other languages. The setlanguage()ma
ro merely requires the spe
i�
ation of

the language. For example:

setlanguage(english)

This ma
ro installs the following defaults (
orresponding translations should be

de�ned for other languages):

setto
string(Table of Contents)

setaffilstring(Affiliation)

setauthorstring(Author)

set
hapterstring(Chapter)

setdatestring(Date)

121

setfigurestring(Figure)

setpartstring(Part)

settitlestring(Title)

Pagebreaks after the title and table of
ontents

Yodl inserts page-breaks in a limited number of
ases:

• A pagebreak is generated after the title information in book and report do
-

uments.

• A pagebreak is generated after a table of
ontents in all do
uments.

So, when a do
ument has both title information and a table of
ontents then what-

ever follows next will normally be starting on a separate page. Furthermore, if

the do
ument is a book or a report, the title and table of
ontents will also be

separated by a pagebreak.

This behavior
an be modi�ed using the (no)title
learpage()and (no)to

learpage()

dire
tives, further des
ribed in se
tion 4.3.8.

4.3.7 Se
tioning

This se
tion des
ribes the se
tioning
ommands for arti
les, reports, books and

for plainhtml. The do
ument type manpage de�nes its own se
tioning
ommands

(
f. se
tion 4.1.2:

• part(title): Starts a new part. Only available in book do
uments.

•
hapter(title): Starts a new
hapter. Only available in book or report

do
uments.

• se
t(title): Starts a se
tion.

• subse
t(title): A subse
tion.

• subsubse
t(title): A sub-subse
tion.

• subsubsubse
t(title): An even smaller se
tioning
ommand.

These ma
ros generate entries in the table of
ontents and use numbering, whi
h

means that ea
h se
tion is pre�xed with a number (1, 1.1, 1.2, and so on). The

ma
ros are also available with an n pre�x (npart, n
hapter, nse
t et
.) whi
h

generate neither entries in the table of
ontents nor numbers. The n-versions
an be

used in, e.g., an arti
le where the se
tioning
ommands should show their
aptions,

but not any numbers generated by default.

Se
tioning should always start at the top level se
tions of the available do
ument:

hapter for reports, se
t for arti
les, et
.. If you start a do
ument with a lower

se
tioning
ommand (e.g., when you start an arti
le with a subse
t), the number-

ing of se
tions may go haywire. The only ex
eption to this rule is the part of a

book do
ument: parts are optional, in books,
hapters may be the top se
tioning

122

ommands. Summarizing, books or reports should start with
hapter. Arti
les

should start with se
tions.

The se
tioning
ommands have a further fun
tion: when label statements appear

after the se
tioning
ommand, then a label name is used as a pla
eholder for the

last generated number. This is further des
ribed in se
tion 4.3.5.

4.3.8 Typesetting modi�ers

This se
tion lists various ma
ros that
an be used to modify the looks of your

do
ument. When used, these ma
ros must appear before stating the do
ument

type with arti
le, report, book, manpage or plainhtml.

• abstra
t(text): This ma
ro is relevant for all output formats. The text

is added to the do
ument after the title, author and date information, but

before the table of
ontents. The abstra
t is usually set as a quote, in itali
s

font (though this depends on the output format). Abstra
ts are supported

in arti
les and reports, but not in other do
ument types. I.e., if you need

introdu
tory text in a book, you should start with a non-numbered
hapter

that holds this text.

• affiliation(site): This ma
ro is relevant for arti
le, report and book

do
uments. It de�nes the a�liation of the author. The site information

appears in the title, below the author's name.

• htmlbodyopt(option)(value): This ma
ro adds option="value" to the

<body> tag that will be generated for HTML output. The HTML
onverter

generates <body> tags ea
h time that a new �le is started; i.e., at the top

of the do
ument and at ea
h
hapter-�le. Di�erent HTML browsers support

di�erent <body> tag options, but useful ones may be e.g.:

htmlbodyopt(fg
olor)(#000000)

htmlbodyopt(bg
olor)(#FFFFFF)

This de�nes the foreground
olor as pure white (red/green/blue all 0) and the

ba
kground
olor as bla
k (red/green/blue all hexade
imal FF, or 255). An-

other useful option may be htmlbodyopt(ba
kground) (some.gif), de�ning

some.gif as the page ba
kground.

See the do
umentation on HTML for more information.

Note that value is automati
ally surrounded by double quotes when this

ma
ro is used. They should not be used by authors using this ma
ro.

• latexdo
ument
lass(
lass): This ma
ro for
es the \do
ument
lass{...}

setting in LaTeX output to
lass.

• latexlayout
mds(
ommands): This ma
ro
an be used to spe
ify your own

LaTeX layout
ommands. When present, the
ommands are pla
ed in LaTeX

output following the \do
ument
lass de�nition.

• latexoptions(options): This ma
ro is only relevant for LaTeX output for-

mats, it is not expanded in other formats. The options are used in LaTeX's

\do
ument
lass de�nition; e.g., a useful option might be dina4. Multiple

options should be separate by
ommas, a

ording to the LaTeX
onvention.

123

• latexpa
kage(options)(name): This ma
ro is only relevant for LaTeX out-

put formats, it is not expanded in other formats. Ea
h pa
kage should have

its own latexpa
kage() statement. If there are no options, the options

argument should remain empty. Here is an example using this ma
ro:

latexpa
kage(dut
h)(babel)

• mailto(email): The mailtoma
ro is only expanded in HTML do
uments, it

is ignored in other formats. It de�nes where mail about the do
ument should

be sent to.

• nosloppyhfuzz(): By default, the LaTeX output
ontains the text

\hfuzz=4pt

whi
h is pla
ed there by the ma
ro pa
kage. This suppresses overfull hbox

warnings of LaTeX when the overfull-ness is less than 4pt. Use nosloppyhfuzz()

to get the standard LaTeX warnings about overfull hboxes.

• notableof
ontents(): As the name suggests, this ma
ro suppresses the gen-

eration of the table of
ontents. For HTML that means that no
li
kable index

of se
tions appears after the do
ument title.

The table of
ontents is by default suppressed in plainhtml and manpage

do
uments.

• notitle
learpage(): Normally, Yodl inserts a
learpage() dire
tive after

typesetting title information in book or report do
uments, but not in arti
le

do
uments. Use notitle
learpage to suppress this dire
tive.

• noto

learpage() (no table-of-
ontents
lear-page): In all do
ument types,

Yodl inserts a
learpage() dire
tive following the table of
ontents. Use

noto

learpage() to suppress that.

• noxlatin(): The LaTeX output
ontains by default the
ommand to in
lude

the �le xlatin1.tex, distributed with Yodl. This �le maps Latin-1
hara
ters

to LaTeX-understandable
odes and makes sure that you
an type
hara
ters

su
h as ü, and still make them pro
essable by LaTeX. If you don't want this,

put noxlatin() in the preamble.

• standardlayout(): This is another LaTeX option. Use standardlayout()

to get `vanilla' LaTeX layout, possibly indenting paragraphs and using fairly

limited verti
al spa
ing between paragraphs. This ma
ro is ignored for other

onversion types.

• title
learpage(): For
es the insertion of a
learpage() dire
tive after the

title information has been typeset. This behavior is the default in book and

report do
uments. See also notitle
learpage().

• to

learpage(): For
es the insertion of a
learpage() dire
tive following

the table of
ontents. This behavior is default in all do
ument types; the

ma
ro is provided for
onsisten
y reasons with (no)title
learpage().

Note again: these modi�ers must appear before the do
ument type de�nition.

124

4.3.9 Mis
ellaneous
ommands

The following is a list of
ommands that don't fall in one of the above
ategories.

•
learpage(): This ma
ro starts a new page in LaTeX. For HTML, a hori-

zontal rule is shown. (Note that the ma
ro pa
kage sometimes inserts new

pages by itself; e.g., following a table of
ontents. See also se
tion 4.3.8 for a

dis
ussion of (no)title
learpage() and (no)to

learpage().)

• def(ma
ro)(nrofarguments)(definition): This de�nes a new ma
ro ma
ro

having nrofarguments arguments, and expanding to definition. The mark-

ers ARGx, where x is 1, 2, et
.,
an be used in the definition part to indi-

ate where arguments should be pasted in. This ma
ro is a shorthand for

DEFINEMACRO, see se
tion 3.1.11.

• footnote(text): This ma
ro sets text as a footnote when the output format

allows it. When not, the text is set in parentheses.

• gagma
rowarning(name name ...): This ma
ro suppresses yodl's warnings

annot expand possible user ma
ro name, where name is a
andidate ma
ro

name. gagma
rowarning is a synonym for NOUSERMACRO, des
ribed in se
tion

3.1.45.

E.g., if your do
ument
ontains "as for manpages, see sed(1), tr(1) and

awk(1)", and if you get tired of warnings about possible user ma
ros sed, tr

and awk, try the following:

gagma
rowarning(sed tr awk)

...

As for manpages, see sed(1), tr(1) and awk(1).

• htmlnewfile(): Starts a new sub�le in HTML output. This stanza is also

automati
ally generated when the HTML
onverter en
ounters a
hapter

dire
tive. Using htmlnewfile, the output
an be split at any point. However

make sure that the sub�le is still rea
hable; e.g., by
reating a
li
kable link

with label and ref, or label and link.

• in
ludefile(file): In
ludes file and de�nes a label (see the labelma
ro)

with the same name. Furthermore, a message about the in
lusion is shown

on the s
reen. The file is sear
hed for relative to the dire
tory of the �le in

whi
h the in
ludefilema
ro was used (or relative to the dire
tory where the

yodl run was started when the �lega
y-in
lude or -L option was provided)

and also in the system-wide in
lude dire
tory. The default extension .yo is

supplied if ne
essary.

The lin
ludefile ma
ro is handy in the following situation:

hapter(Introdu
tion)

lin
ludefile(INTRO)(intro)

This fragment starts a
hapter and in
ludes a �le. Here the label name (INTRO)

an also be used to refer to the
hapter as the lin
ludefile stanza appears

immediately following the
orresponding se
tioning
ommand.

125

• nl(): For
es a new line. Some output formats may produ
e an error upon

the usage of nl() in `unexpe
ted' pla
es; e.g., LaTeX won't allow new lines in

the footnote text (as de�ned in the footnote ma
ro). Using nl() in running

text should however be ok. Example:

This line is nl()

broken in two.

• redefinema
ro(ma
ro)(nrofargs)(redef): This
ommand (re)de�nes a ma
ro,

expe
ting nrofargs arguments, to redef. If a previous de�nition of the ma
ro

existed, it is overruled. Example:

redefinema
ro(
learpage)(0)(\

em(---New page starts here---))

Use ARGx in the redef part to indi
ate where all arguments should o

ur, as

in the following imaginary ma
ro to typeset a literature referen
e:

redefinema
ro(litref)(3)(

Title: bf(ARG1) nl()

Author(s): em(ARG2) nl()

Published by: ARG3

)

...

litref(Java in a Nutshell)

(David Flanagan)

(O'Reilly & Asso
iates, In
.)

The redefinema
ro statement also has a shorthand
alled redef.

4.4 Lo
ations of the ma
ros

The �les de�ning the ma
ros are by default installed to the dire
tory /usr/lo
al/share/yodl

during Yodl's installation pro
ess (Note that this diverts from an earlier default:

/usr/lo
al/lib/yodl; furthermore, some systems or some distributions may use

other lo
ations).

The �les in this dire
tory are organized as follows:

• The �les that should be read for a parti
ular
onversion are named after

their
onversion, e.g., latex.yo and html.yo. These �les must be pro
essed

by Yodl before your do
ument
an be
onverted a

ordingly. The provided

yodl2... s
ripts take
are of that automati
ally.

• All support
ounters, symbols and ma
ros are de�ned in �les named std.<
onversion>.yo,

e.g., std.html.yo, std.latex.yo. These �les may be modi�ed without no-

ti
e, and are an essential part of the Yodl ma
ros. They should not be modi�ed

by hand, as they are
reated by the ma
ro generating pro
ess.

126

• The prede�ned
hara
ter tables are found in �les names
hartables/<
onversion>.yo.

The (binary) Yodl pa
kage
ontains the following programs and support �les:

• The yodl program itself, whi
h generates
onverted do
ument(s);

• The yodlpost postpro
essor, whi
h performs �xups for
onversion formats.

Using yodlpost is required for formats whose do
uments
annot be
reated

in one pass by yodl itself;

• Auxiliary s
ripts su
h as yodl2tex, yodl2html;

• The ma
ros and
hara
ter tables for the various
onversion types;

• The raw ma
ros and the ma
ro-generating s
ripts;

• The do
umentation (html and manual pages)

The sour
e Yodl pa
kage
ontains all the sour
es �les, installation guides,
hange-

logs et
., that are required to
ompile the binary programs. Those who want to

ompile Yodl themselves, must have a C
ompiler (preferably the Gnu C
ompiler)

available, and preferably the i
make program maintenan
e utility. Basi
 support

for make is provided as well.

127

Chapter 5

Conversions and
onvertors

Ea
h ma
ro pa
kage handling a
onversion from Yodl to a given output format has

its pe
ularities. Although the various ma
ro pa
kages are very similar, they do show

some di�eren
es, due to the unique
hara
teristi
s of the output formats. Normally,

these di�eren
es should not
ause di�
ulties in performing the
onversion(s). In

this
hapter the
onversion of a Yodl do
ument is
overed. The
urrently supported

do
ument types are dis
ussed. Furthermore, in this
hapter the new post pro
essor

yodlpost is des
ribed as well as a little support program: yodlverbinsert.

5.1 Conversion s
ript invo
ations

Yodl is distributed with s
ripts named yodl2latex, yodl2html and other yodl2...

drivers. Invo
ations like

yodl2latex file

auses Yodl to pro
ess file.yo and to write output to file.latex. The extension

of the input �le, .yo, is the default Yodl extension; the extension of the output �le,

.latex, is given by the name of the shell s
ript. Analogously, yodl2html writes to

a �le having the extension .html.

The
onversion s
ripts auto-load the ma
ro �le appropriate for the
onversion:

latex.yo for LaTeX
onversions, html.yo for HTML
onversions, et
.. The ma
ro

�les are in Yodl's standard in
lude dire
tory (whi
h is mentioned in Yodl's usage

information when Yodl is started without arguments). If the in
lude dire
tory is

altered in su
h a way that it doesn't
ontain a path to the default dire
tory any-

more, then Yodl won't be able to auto-load the
onversion spe
i�
 ma
ro �les,

produ
ing unexpe
ted results. This
an be prevented by spe
ifying the literal text

$STD_INCLUDE in a user-de�ned path setting.

When the
onversion s
ripts themselves are started without arguments, usage in-

formation is shown about the
onversion s
ripts.

Depending on the
onversion type, the following output is produ
ed:

128

• For LaTeX
onversions, one output �le with the extension .latex is written.

• For HTML
onversions, several �les may be written; one �le per
hapter of

the original do
ument. When the do
ument is not se
tioned by
hapters, only

one output �le is produ
ed.

The `main' output �le always has the name of the input �le but with extension

.html. This �le holds the do
ument title and the table of
ontents. When

more than one output �les are
reated, then they are named name01.html,

name02.html et
., where name is the original name of the input �le. E.g., a

do
ument prog.yo might lead to prog.html, prog01.html et
..

• For man
onversions, one output �le with the extension .man is written.

• For text
onversions, the
onverter is named yodl2txt and one output �le

with the extension .txt is
reated.

• For XML
onversions, the
onverter is named yodl2xml and output �les are

produ
ed
omparably to the way they are produ
ed with the html
onversion:

one �le per
hapter if
hapters are used, otherwise one single output �le, having

the extension(s) .xml.

The `se
ond-phase' s
ripts, distributed with earlier versions of Yodl, are no longer

part of Yodl's distribution, as they do not relate dire
tly to Yodl's a
tions. They

may remain useful, though, as leftovers from earlier distributions.

5.2 The HTML
onverter

HTML doesn't support automati
 se
tion numbering or resolving of label/referen
e

pairs. The
onverter takes
are of this. Other target languages (e.g., XML, text)

su�er from the same problems.

Dire
t
ommands to HTML

Similar to the L

A

T

E

X
onverter, you
an use either NOTRANS or html
ommand to

send HTML
ommands to the output. Or, sin
e the only `di�
ult'
hara
ters are

probably only < and >, you
an also resort to CHAR for these two
hara
ters.

Furthermore, the HTML
onverter de�nes the ma
ro htmltag, expe
ting two argu-

ments: the tag to set, and an `on/o�' swit
h. E.g., htmltag(b)(1) sets while

htmltag(b)(0) sets .

E.g., the following
ode sends a HTML
ommand <hr> to the output �le when in

HTML mode:

COMMENT(-- alternative 1, using html
ommand --)

html
ommand(<hr>)

COMMENT(-- alternative 2, using NOTRANS --)

IFDEF(html)(

NOTRANS(<hr>)

)()

129

COMMENT(-- alternative 3, using CHAR --)

IFDEF(html)(

CHAR(<)hrCHAR(>)

)()

COMMENT(-- alternative 4, using htmltag --)

htmltag(hr)(1)

Se
tion numbering

The HTML
onverter numbers its own se
tions. This is handled internally. How-

ever, the
urrent
onverter only
an number se
tions as starting at 1, and outputs

the numbers in arabi
 numerals (you
an't number with A, B, et
..).

5.3 The LaTeX
onverter

The L

A

T

E

X
onverter is, from Yodl's viewpoint, an easy one: sin
e L

A

T

E

X supports

wide fun
tionality, a Yodl do
ument is basi
ally just re-mapped to L

A

T

E

X
ommands.

No post-pro
essing by yodlpost is required.

Dire
t
ommands to LaTeX

To send L

A

T

E

X
ommands dire
tly to the output, use the latex
ommand() ma
ro

(see se
tion 4.3.2), or use NOTRANS (see se
tion 3.1.44). The advantage of the

latex
ommand ma
ro is that it only outputs its argument when in L

A

T

E

X mode.

The following two
ode fragments both output \pagestyle{plain} when in L

A

T

E

X

mode:

COMMENT(-- First alternative: --)

latex
ommand(\pagestyle{plain})

COMMENT(-- Se
ond alternative: --)

IFDEF(latex)(

NOTRANS(\pagestyle{plain})

)()

Verbatim text

The Yodl ma
ro pa
kage de�nes two ma
ros that generate verbatim text (e.g., sour
e

ode listings). These ma
ros are verb() and tt().

verb The verb() ma
ro and is meant for longer listings (whole �les); as in:

130

verb(

#in
lude <stdio.h>

int main (int arg
,
har **argv)

{

printf ("Hello World!\n");

return 0;

}

)

The verb() ma
ro will generate \begin{verbatim} and \end{verbatim}

when used in L

A

T

E

X
onversion mode. That means that (in that situation)

the verb ma
ro has only one
aveat: you
annot put \end{verbatim} into it.

tt The tt() ma
ro also inserts verbatim text. It is used for short in-line strings

(e.g, **argv). The L

A

T

E

X
onverter doesn't a
tually use a verbatim mode,

but sets the
hara
ters in teletype font.

5.4 The man
onverter

Manual pages
an be
onstru
ted using the spe
ial yodl2man
onverter. This
on-

verter assumes that the manual page has been designed using the manpage()ma
ro.

Yodl (and thus the yodl2man
onverter, when
onerting man-pages, will skip all

leading white spa
e on lines. Paragraphs are supported, though. An empty line

separates paragraphs.

Dire
t
ommands to man

Either NOTRANS or man
ommand
an be used to send man
ommands to the output.

E.g., the following
ode sends a MAN
ommand <hr> to the output �le when in

MAN mode:

COMMENT(-- alternative 1, using man
ommand --)

man
ommand(<hr>)

COMMENT(-- alternative 2, using NOTRANS --)

IFDEF(man)(

NOTRANS(<hr>)

)()

5.5 The txt
onverter

Plain text do
uments
an be
onstru
ted using the yodl2txt
onverter. This
on-

verter will resolve all referen
es into the do
ument itself, so postpro
essing is re-

quired.

131

Dire
t
ommands to txt

Either NOTRANS or txt
ommand
an be used to send txt
ommands to the output.

E.g., the following
ode sends a TXT
ommand <hr> to the output �le when in

TXT mode:

COMMENT(-- alternative 1, using txt
ommand --)

txt
ommand(<hr>)

COMMENT(-- alternative 2, using NOTRANS --)

IFDEF(txt)(

NOTRANS(<hr>)

)()

5.6 The experimental XML
onverter

The XML
onverter is experimental. It was added to Yodl to allow me to write

do
uments for the horrible `webplatform' of the university of Groningen. The XML

support �les (lo
ated in the xml dire
tory in the standard ma
ro's dire
tory)
learly

re�e
t this target. Although experimental, they were kept be
ause the XML ma
ros

support interesting
onstru
tions allowing Yodl to handle
losing tags somewhat

more stri
t than required for HTML.

5.7 The Yodl Post-pro
essor `yodlpost'

Following the
onversion of a Yodl text, most target-languages require an additional

operation,
alled `post-pro
essing'. Post-pro
essing is required for various reasons:

to split the output in separate �les (HTML, XML); to �xup the lo
ations of labels,

that are referred to earlier than the labels are de�ned (virtually all target language

ex
ept LaTeX); tables of
ontents are available only after the
onversion, but will

have to be inserted at the beginning of the do
ument; et
. et
..

Starting with Yodl V. 2.00 there is only one post-pro
essor, handling all the
onver-

sions for all target languages. Program maintenan
e of just one program is
ertainly

easier than maintenan
e of as many programs as there are target-languages, at the

expense of only a slightly larger program: after all, the one post-pro
essor
on-

tains the
onversion pro
edures for all target languages. It turns out that this is a

very minimal drawba
k. See se
tion 6.7 for the te
hni
al details of post-pro
essor

program maintenan
e.

The post-pro
essor that is distributed sin
e YodlV. 2.00 does not use the .tt(Yodl)TAGSTART.

and .tt(Yodl)TAGEND. tags anymore. Instead, the
onversion pro
ess produ
es a

index �le in whi
h
omparable information is written. The advantage of using an

index �le is that the postpro
essor doesn't have to parse the output �le generated

by Yodl twi
e (on
e to determine the tags, on
e to pro
ess the tags), whi
h by

itself a

elerates the
onversion pro
ess; and (albeit of a somewhat limited pra
-

ti
al importan
e) that the tags are no longer reserved words : authors may put

.tt(Yodl)TAGSTART. and .tt(Yodl)TAGEND. into their texts as often as they want.

132

Authors should be aware of some
aveats with respe
t to some target languages:

man- and ms-
onversions all dots are
onverted by the a
tive
hara
ter
on-

version table to \&.. Commands in these languages always start with a dot as

the �rst
hara
ter on a line. In order to insert these
ommands the roff
md()

(see se
tion MACROLIST) should be used.

plain text
onversions As stated before, the ASCII
onverter basi
ally only strips

ma
ronames from its input. This
onverter is so basi
, that it should only be

used as a last resort, when no other target language is available for the job.

With the plain text
onverer, the layout of the input �le is very important, as

the output is basi
ally the same as the input. The only ex
eption to this rule

are multiple empty lines, whi
h normally are
onsumed by the post-pro
essor,

to be repla
ed by one single empty line.

sgml
onversions the SGML
onverter was implemented for histori
 reasons. It

is by no means
omplete, and
an at best be
onsidered an `initial starting

point'. Currently, the SGML
onverter only supports the arti
le do
ument

type, having se
t as its top-level se
tioning
ommand.

xml
onversions The XML
onverter was implemented to allow me (Frank) to

produ
e XML text as de�ned by the so-
alled `webplatform' of the University

of Groningen. A
ompletely pathologi
al implementation of XML,
rippling

its users to the level of the `double
li
k brigade'. Well, so be it. The net

result of this is that Yodl now o�ers some sort of XML
onversion, whi
h will

surely require modi�
ations in the near future. Mu
h XML handling is based

on frame-�les whi
h are literally inserted into the
onverted text. Hopefully

that will be useful when
onstru
ting XML
onversions for other environments

than the `webplatform'.

5.8 The support program `yodlverbinsert'

The program yodlverbinsert is a simple C support program that
an be used to

generate verb()-se
tions in Yodl �les from se
tions of existing �les. The �les from

whi
h se
tions are in
luded are usually C or Cpp sour
e �les, a

epting either //

or /*-style
omment.

Yodlverbinsert o�ers the possibility to indent both the initial verb-statement and

the inserted �le
ontents. Furthermore, an additional empty line may be inserted

before the �rst line that is a
tually inserted. The program is invoked a

ording to

the following synopsis:

yodlverbinsert [OPTIONS℄ marker file

The arguments have the following meanings;

• marker

The argument marker must start in file's �rst
olumn en must either start

as a standard C or C++
omment: // or /* must be used. Following that,

the remainder of the argument is used as a label, e.g., //label, /*LABEL*/.

The label may
ontain non-alpha
hara
ters as well. Ex
ept for the �rst two

133

hara
ters and their lo
ations no spe
ial restri
tions imposed upon the label

texts. A labeled se
tion ends at the next //= (when the label started with

//) or at the next /**/ (when the label started with /*). Like the labels, the

end-markers must also start in the �le's �rst
olumn.

• file

The argument file must be an existing �le. Yodlverbinsert was designed

with C or C++ sour
es in minde, from whi
h labeled se
tions must be in-

serted into a Yodl do
ument, but file
ould also refer to another type of

(text) �le.

The default values of options are listed below, with ea
h of the options between

square bra
kets. The defaults were
hosen so that yodlverbinsert performs the

behavior of an earlier version of this program, whi
h was not distributed with Yodl.

• -N

Do not write a newline immediately following verb-statement's open-parenthesis.

By default it is written,
ausing an additional line to be inserted before the

�rst line that's a
tually inserted from a �le.

• -s spa
es [0℄

start ea
h line that is written into the verb-se
tion with spa
es additional

blanks.

• -S spa
es [8℄

pre�x the verb of the verb-se
tion by spa
es additional blanks.

• -t tabs [0℄

start ea
h line that is written into the verb-se
tion with tabs additional tab

hara
ters. If both -s and -t are spe
i�ed, the tabs are inserted �rst.

• -T tabs [0℄

pre�x the verb of the verb-se
tion by tabs additional tab
hara
ters. If both

-S and -T are spe
i�ed, the tabs are inserted �rst.

Yodlverbinsert writes its sele
ted se
tion to its standard output stream.

5.8.1 Example

Assume the �le demo
ontains the following text:

pre
eding text

//one

one 1

//=

/*two*/

two

134

/**/

trailing text

Then the following
ommands write the shown output to the program's standard

output:

• verbin
lude //one demo

verb(

one 1

)

• verbin
lude -N //one demo

verb(one 1

)

• verbin
lude -s4 '/*two*/' demo

verb(

two

)

To
all yodlverbinsert from a Yodl do
ument, use PIPETHROUGH. E.g.,

PIPETHROUGH(yodlverbinsert //one demo)

Alternatively, de�ne a simple ma
ro like the ma
ro verbinsert:

DEFINEMACRO(verbinsert)(2)(PIPETHROUGH(yodlverbinsert //ARG1 ARG2)()\

)

whi
h may be a useful ma
ro if all or most of your labeled se
tions start with //,

and if yodlverbinsert's arguments don't vary mu
h. Variants to this ma
ro
an

easily be
on
eived of.

Note, however, that by default the PIPETHROUGH built-in will not be exe
uted. Be

sure to
all yodl using the �live-data option, e.g., yodl -l3

135

Chapter 6

Te
hni
al information

This
hapter
onsists of various se
tions. The �rst se
tion des
ribes Yodl from

the point of view of the systems administrator. Issues su
h as the installation

of the pa
kage are addressed here. The se
ond se
tion des
ribes Yodl's te
hni
al

implementation in some detail. Apart from the do
umentation about Yodl given

here, mu
h
an be found in the individual sour
e �les. However, se
tion 6.2 des
ribes

`the broad pi
ture'. Having read se
tion 6.2, it should be relatively easy to determine

what happens where inside the Yodl program and the yodl-post post pro
essor.

6.1 Obtaining Yodl

Yodl and the distributed ma
ro pa
kage
an be obtained at the ftp site ftp.rug.nl

1

in the dire
tory
ontrib/frank/software/linux/yodl

2

.

The pa
kage is found in various yodl-X.Y.Z �les, where X is the highest version

number. This is a gzipped ar
hive
ontaining all sour
es, do
umentation and ma
ro

�les. In the yodl dire
tory ar
hives having the .deb extension
an also be found:

these are Debian

3

�les,
ontaining all information that is required to install binary

versions using Debian's dpkg �install
ommand.

6.1.1 Installing Yodl

The binary pa
kage, distributed in yodl-X.Y.Z_a.b.
.deb
an be installed using

dpkg -install yodl-X.Y.Z. It will install:

• Yodl's binaries in /usr/bin;

• Yodl's ma
ros in /usr/share/yodl

• Yodl's do
umentation in /usr/share/do
/yodl;

• Yodl's manpages in /usr/share/man/man{1,7};

1

ftp://ftp.rug.nl/

2

ftp://ftp.rug.nl/
ontrib/frank/software/linux/yodl

3

http://www.debian.org

136

Lo
al installations, not using the Debian installation pro
ess,
an be obtained using

the provided i
make build-s
ript see below. An alternative is to use make.

If a lo
al installation is preferred or required, unpa
k the �le yodl-X.Y.Z.tar.gz.

Next,
hdir to the dire
tory yodl-X.Y.Z, and optionally tweak the �le
onfig to

your needs. Next, issue the
ommand:

build pa
kage

Followed by

build install /usr

or

build install /usr/lo
al

The installation pro
ess will install the binaries, manual pages, other do
umentation

and ma
ro �les under the indi
ated dire
tory. For ea
h part of the Yodl pa
kage

a separate build s
ript is available (repse
tively in the sr
, ma
ros, man and

manual subdire
tories under the
ommon .../yodl-root where the main build

s
ript is found). Ea
h of these build s
ripts
an be
alled using build install xxx

as well, allowing you to store Yodl's various parts in
ompletely di�erent dire
tories.

However, by far the easiest way to install a binary distribution is to use the Debian

dpkg �install yodl*.deb
ommand. Dpkg will install the various parts a

ording

to Debian's
onventions under usr/.

Installation from sour
e requires you to have the following programs installed on

your system:

• A C
ompiler and run-time environment. A POSIX-
ompliant
ompiler, li-

braries and set of header �les should work without problems. The GNU g

ompiler 3.3.4 and higher should work �awlessly.

• I
make: I
make is part of the standard Debian distribution, and
an also be

obtained from ftp://ftp.rug.nl/

4

.

• Standard tools, like sed, grep, perl, et
..

• /bin/sh: a POSIX-
ompliant shell interpreter. The GNU shell interpreter

bash
an be used instead.

4

ftp://ftp.rug.nl/
ontrib/frank/software/linux/i
make

137

6.2 Organization of the software

This se
tion des
ribes the organization of the sour
e �les. Its
ontents are not

ne
essarily relevant for the binary distribution. The se
tion is probably most useful

to those readers who want to be able to extend or who want to do maintenan
e

on Yodl's sour
es, or who want simply to understand what's happening inside the

Yodl program.

Mu
h of the do
umentation is provided in the individual sour
e �les themselves.

This se
tion, however, should o�er the `broad pi
ture', allowing you to understand

the logi
 behind Yodl relatively fast.

6.2.1 Subdire
tories and their meanings

After unpa
king Yodl's sour
e ar
hive, the following dire
tories are available:

• yodl: the root-dire
tory of the Yodl tree. All sour
es and program mainte-

nan
e s
ripts are found in or below this dire
tory.

• debian: an auxiliary dire
tory
ontaining all �les and dire
tories required to

reate a new Debian distribution.

• debian/tmp: a temporary dire
tory used by the Debian installation pro
ess

to store the �les belonging to a parti
ular .deb distribution.

• yodl/ma
ros: This dire
tory
ontains all the ma
ro de�nitions of the standard

ma
ro pa
kage. It
ontains the following subdire
tories:

� yodl/ma
ros/in: This dire
tory
ontains generi
 ma
ro �les. These

ma
ro �les
ontain the words �STD_INCLUDE�, whi
h will be repla
ed by

the standard in
lude dire
tory used in a parti
ular distribution.

� yodl/ma
ros/rawma
ros: This dire
tory
ontains the raw ma
ro de�-

nition �les themselves. One �le per raw ma
ro. A raw ma
ro
ontains

the implementations of that ma
ro for all supported
onversion types,

and has the extension .raw. Furthermore, this dire
tory
ontains some

support s
ripts:
reate, separator.pl, startdo
.pl.

� yodl/ma
ros/yodl: this is the dire
tory to
ontain Yodl's standard

ma
ros. The (re
ursive)
ontents of this dire
tory will eventual be
opied

by the installation pro
edure to the .../share/yodl dire
tory, whi
h

will then be
ome Yodl's standard in
lude dire
tory.

� yodl/ma
ros/yodl/
hartables: This dire
tory
ontains
hara
ter-translation

tables for various target languages.

� yodl/ma
ros/yodl/xml: This dire
tory
ontains the XML frame �les,

used to
onvert Yodl do
uments to XML, as implemented by the `web-

platform' of the University of Groningen. All these frame �les have the

extensions .xml.

• yodl/man: The raw sour
e �les of all man-pages: manpages of the Yodl

program itself, of the yodl post-pro
essor, of the
onversion s
ripts, of the

builtin-fun
tions, of the standard ma
ros and of Yodl's manpage and letter

do
ument types. These raw sour
e �les have the extensions .in, indi
ating

138

that they may
ontain �STD_INCLUDE� words, whi
h will be repla
ed by the

eventually used standard in
lude path.

� yodl/man/1: The destination for Yodl's manual pages in se
tion 1 (pro-

grams).

� yodl/man/7: The destination for Yodl's manual pages in se
tion 7 (ma
ro

pa
kages and
onventions).

• yodl/manual: The sour
e �les of the
omplete Yodl manual, as well as the

dire
tories for the various
onverted formats. The s
ript build, found in this

dire
tory,
onstru
ts the manual in the subdire
tories:

� yodl/manual/html: the HTML-
onverted manual;

� yodl/manual/latex: the L

A

T

E

X-version of the manual;

� yodl/manual/pdf: the pdf-version of the manual;

� yodl/manual/ps: the PostS
ript-version of the manual;

� yodl/manual/txt: the plain text-version of the manual;

• yodl/manual/yo: The sour
e �les of the
omplete The Yodl do
ument �les

themselves are lo
ated in subdire
tories of this dire
tory. They are:

� yodl/manual/yo/
onverters

� yodl/manual/yo/intro

� yodl/manual/yo/ma
ros

� yodl/manual/yo/te
hni
al

� yodl/manual/userguide (and various subdire
tories)

• yodl/s
ripts: support s
ripts used by the building pro
ess:
onfigrepla
ements

repla
es �XXX� words by their a
tual values as found in yodl/sr
/
onfig.h;

yodl2whatever.in is the generi
 yodl-
onverter,
alling ma
ros spe
i�
 for a

parti
ular
onversion type. This generi

onverter will be installed in .../bin/,

together with spe
i�

onverters, installed as soft-links to this generi

on-

verter.

• yodl/sr
: This dire
tory
ontains the sour
e-�les of theC programs Yodl and

yodl-post, as well as all auxiliary dire
tories
ontaining sour
es of the (logi-

al)
omponents of these programs. Most of these
omponents are like C++

lasses in that they de�ne a building blo
k of the Yodl and/or yodl-post

program. Their organization, intera
tion and relationship is des
ribed below.

They are:

� yodl/sr
/args: the
omponent handling the
ommand-line arguments;

� yodl/sr
/builtin: the
omponent handling Yodl's builtin fun
tions;

� yodl/sr
/
hartab: the
omponent handling Yodl's
hara
ter table type;

� yodl/sr
/
ounter: the
omponent handling Yodl's
ounter type;

� yodl/sr
/file: the
omponent handling all �le operations (lo
ating,

opening, et
.);

� yodl/sr
/hashitem: key/value
ombinations stored in Yodl's hashtable;

� yodl/sr
/hashmap: Yodl's hashtable;

� yodl/sr
/lexer: Yodl's lexi
al s
anner: this
omponent
onsumes the

.yo �le, and produ
es a
ontinuous stream of tokens to be handled by

another
omponent: the parser.

139

� yodl/sr
/lines: the
omponent storing lines of text, used by yodl-post.

� yodl/sr
/ma
ro: the
omponent handling Yodl's ma
ro type;

� yodl/sr
/message: the
omponent handling all messages (warnings, er-

rors, verbosity settings, et
.).

� yodl/sr
/new: the
omponent handling all memory allo
ations (ex
ept

for dupli
ating strings, whi
h is handled by the root-
omponent).

� yodl/sr
/ostream: the
omponent handling all Yodl's output to its

output-�le (Yodl may also output to strings, whi
h is not handled by the

ostream
omponent).

� yodl/sr
/parser: the
omponent handling the tokens produ
ed by the

lexer-
omponent. This
omponent governs all a
tions to be taken during

a
onversion. Its a
tions all derive from its fun
tion parser_pro
ess().

� yodl/sr
/postqueue: the
omponent handling the postpro
essing re-

quired by most
onversions.

� yodl/sr
/pro
ess: the
omponent handling the exe
ution of
hild- or

system-pro
esses.

� yodl/sr
/queue: the
omponent allowing the lexi
al s
anner to queue

its input, awaiting further pro
essing.

� yodl/sr
/root: the
omponent de�ning some basi
 typedefs and enu-

merations, as well as the new_str() fun
tion dupli
ating a string, and

the out_of_memory() fun
tion handling memory allo
ation failures.

� yodl/sr
/sta
k: the
omponent implementing a sta
k data stru
ture.

� yodl/sr
/string: the
omponent implementing a text-storage data

stru
ture and its fun
tionality.

� yodl/sr
/subst: the
omponent handling Yodl's SUBST de�nitions;

� yodl/sr
/symbol: the
omponent handling Yodl's symbol type;

� yodl/sr
/yodl: the sour
es of the Yodl program itself. This dire
-

tory also
ontains the implementations of all builtin fun
tions, whose

�lenames all start with gram_ (E.g., gramaddto
ounter.
).

� yodl/sr
/yodlpost: the sour
es of the yodl-post program.

The s
ript build, found in this dire
tory,
onstru
ts the programs Yodl and

yodl-post in the subdire
tory:

� yodl/sr
/bin

6.3 Yodl's
omponent interrelations and
omponent

setup

Yodl's
omponents show a stri
t hierar
hi
al ordering. This allows the testing

and development of
omponents pla
ed nearer to the
omponent's tree without

onsidering anything that's pla
ed farther away.

The following pie
e of `as
ii-art' shows the relationships for the Yodl program. The

root of the tree starts at the top, at the root
omponent. The tree
an be read

from the top to the bottom, where ea
h horizontal line starts a level of
omponents

mentioned immediately below it, and ea
h verti
al route through the �gure a series

140

of
omponents whose fun
tioning depend on at least the
omponents mentioned

earlier.

However, a more natural way to look at it is to start somewhere in the tree, and

see what's envountered going up. Doing so, all
omponents that are required are

visited. On
e the �gure shows a

|

--- | ---

|

onstru
tion. This means that the horizontal line is not related to the verti
al

dependen
y
rossing (but not tou
hing) it.

root

|

message

|

new

|

+-------+---+-------+

| | |

string queue sta
k

| | |

+-------+-------+ | hashitem

| | | | |

| args subst | hashmap

| | | | |

| | +-------+ +---+-------+

| | | | |

| | | symbol +---+----+-------+-------+

| | | | | | | |

| +-------+------ | ------+
hartab
ounter ma
ro builtin

| | | | | | |

| file | +---+----+-------+-------+

| | | |

| +---+---+ |

| | |

| +---+---+ |

| | | |

pro
ess lexer ostream |

| | | |

| +-------+-------+-----------+

| |

| parser

| |

+-------------------------------+

|

(yodl)

141

A similar, albeit mu
h simpler, tree
an be drawn for yodl-pst. Here is the orga-

nization of the
omponents for the yodl-post program:

root

|

message

|

new

|

+-----+---+---+

| | |

| | |

lines string hashitem

| | |

| args hashmap

| | |

| +-------+

| |

| file

| |

+-----+

|

postqueue

|

yodl2html-post

The sour
e �les of ea
h
omponent are organized as follows:

• All the �les of a
omponent are stored in a dire
tory, named after the
ompo-

nent. For example, the
ounter
omponent is found in the dire
tory

yodl/sr
/
ounter

ontaining all the (sour
e) �les that de�ne that
omponent.

• Ea
h fun
tion is stored in a �le of its own inside its
omponent-dire
tory.

For example, the fun
tion
ounter_value() is de�ned in the sour
e �le

ountervalue.
.

• The �le names are identi
al to the names of the fun
tions, ex
ept for the fa
t

that only lower
ase letters are used for the �le names, and that the �le names

never use unders
ore
hara
ters.

• The .h header �les de
lare the fun
tions that
an be used by other
ompo-

nents. These fun
tions are
omparable to C++'s publi
 members. Further-

more, these .h �les de�ne all stru
ts and typedefs that are required for other

omponents to use a parti
ular
omponent. For example, the
omponent.h

header �le may
ontain

142

#ifndef _INCLUDED_COUNTER_H_

#define _INCLUDED_COUNTER_H_

#in
lude "../root/root.h"

#in
lude "../hashmap/hashmap.h"

void
ounter_add(HashItem *item, int add); /* err if no
ounter */

bool
ounter_has_value(int *valuePtr, HashItem *item);

Result
ounter_insert(HashMap *symtab,
har
onst *key, int value);

void
ounter_set(HashItem *item, int value); /* err if no
ounter */

har
onst *
ounter_text(HashItem *item); /* returns stati
 buffer */

int
ounter_value(HashItem *item); /* err if no sta
k/item */

#endif

• All fun
tions de
lared in .h �le start with the name of the
omponent, and

often
ontain an initial pointer to some stru
t
ontaining the essential �elds

that are asso
iated with that parti
ular
omponent. For example, most
ounter_

fun
tions have a HashItem * as their �rst argument, as a HashItem is nor-

mally used to store the details about a
ounter.

• The modi�er
onst is used with pointers to indi
ate that the information

pointed to by the pointer is `owned' by the provider of that information. With

parameters it indi
ates that the
aller owns the information, and the fun
tion

will not modify the provided info; with return types it indi
ates that the fun
-

tion `owns' the returned information, whi
h therefore may not be modi�ed (or

freed) by the
aller of that fun
tion (e.g.,
har
onst *
ounter_text). The

absen
e of
onst in
ombination with pointers indi
ates that the information

pointed to by the pointer
ould, in prin
iple, be modi�ed by the
ode re
eiving

the pointer value.

• Most
omponents also show a .ih �le, a so-
alled internal header �le. The

internal header de
lares `internal support fun
tions', not to be used by other

parts of the software, and de�nes internal typedefs. Sin
e they are an essential

ingredient of the
omponent, all these internal headers start to in
lude the

omponent's .h �le, followed by the de
larations of the `private' fun
tions.

All these private fun
tions start with abbreviated
omponent names, like
o_

in the
ase of
ounters. Here is a possible implementation of the
ounter.ih

internal header �le:

#in
lude "
ounter.h"

#in
lude <stdio.h>

#in
lude "../sta
k/sta
k.h"

#in
lude "../message/message.h"

#in
lude "../new/new.h"

Sta
k *
o_
onstru
t(int value);

Sta
k *
o_sp(HashItem *item, bool errOnFailure);

• The
ombination of .h and .ih �les de�ne the dependen
ies of the
omponent

in the
omponent hierar
hy. As
an be seen,
ounter depends on sta
k,

143

message, new, hashmap and root. The a
tual dependen
y listing may be a

bit more
omplex, as some .h �les themselves depend on other .h �les. This

is
learly visible in the
ounter.h �le. The
lass hierar
hy given earlier shows

the �nal
omponent dependen
ies.

• A .h �le of a
omponent X will never in
lude a .ih �le of
omponent Y, but

only the .h �les of other
omponents.

6.4 The token-produ
er `lexer_lex()'

Tokens are produ
ed by the lexi
al s
anner. The fun
tion lexer_lex() produ
es

the next token, whi
h is always an element of the following set:

TOKEN_UNKNOWN, /* should never be returned */

TOKEN_SYMBOL,

TOKEN_TEXT,

TOKEN_PLAINCHAR, /* formerly: any
har */

TOKEN_OPENPAR,

TOKEN_CLOSEPAR,

TOKEN_PLUS, /* it's semanti
s what we do with a +, not */

/* something for the lexer to worry about */

TOKEN_SPACE, /* Blanks should be at the end */

TOKEN_NEWLINE,

TOKEN_EOR, /* end of re
ord: ends pushed strings */

TOKEN_EOF, /* at the end of nested evaluations/eof */

In parti
ular note the existen
e of a TOKEN_EOR token: this token indi
ates the end

of a pie
e of text, a string, inserted into the input stream by the parser 's a
tions,

when it
alls lexer_push_str(). Su
h a situation o

urs in parti
ular when a

ma
ro is evaluated: having read a ma
ro, and repla
ing its parameters ARG1, ARG2,

... ARGn by their respe
tive argumentes, the resulting string is pushed ba
k into

the input stream by lexer_push_str(). This happens, e.g., inside the fun
tion

p_expand_ma
ro(). An ex
erpt from this fun
tion shows this
all:

void p_expand_ma
ro(register Parser *pp, register HashItem *item)

{

...

if (arg
) /* ma
ro with arguments */

p_ma
ro_args(pp, &expansion, arg
);

...

lexer_push_str(&pp->d_lexer, string_str(&expansion));

...

}

144

The parser repeatedly
alls the lexer's fun
tion lexer_lex(). This happens most

dramati
ally inside the fun
tion p_parse(), de�ned by a mere single statement:

void p_parse(register Parser *pp)

{

while ((*pp->d_handler[lexer_lex(&pp->d_lexer)℄)(pp))

;

}

Here, in a loop
ontinuing until the handler indi
ates that the loop should terminate,

lexer_lex() is
alled to produ
e the next token. The �nite state automaton (FSA)

implemented here is des
ribed in more detail in se
tion 6.5.

Apart from here, lexer_lex() is
alled from four other lo
ations inside the parser

omponent:

• parser_parlist() repeatedly
alls lexer_lex() to obtain all the tokens as-

so
iated with a parameter list;

• p_handle_default_newline() repeatedly
alls lexer_lex() to obtain all the

tokens until all
onse
utive spa
es and newlines are read. This is one of the

handlers of the parser FSA 6.5;

• p_no_user_ma
ro()
alls lexer_lex() to determine whether a `no user ma
ro'

has been dete
ted;

• p_plus_series()
alls lexer_lex() to determine whether a +symbol has

been en
ountered.

So, lexer_lex() is the parser's `window to the outside world'. The lexer_lex()

fun
tion, however, is a fairly
omplex animal:

• lexer_lex(): returns next token. It
alls l_lex() to retrieve the next
har-

a
ter from the info waiting to be read;

• l_lex():
alls l_next
har() to obtain the next token, and appends all

har-tokens to the lexer's mat
hed text bu�er. Potential
ompound symbols

(words, numbers) are
ombined by l_
ompound() and are then returned as

TOKEN_PLAINCHAR or as a
ompound token like TOKEN_IDENT;

• l_next
har():
alls l_get() to get the next
hara
ter, and handles es
ape

hars, in
luding \at eoln;

• l_get(): if there are no media left, EOF is returned. If there are media left,

then l_subst_get() will retrieve the next
hara
ter, handling possible SUBST

de�nitions. At the end of the
urrent input bu�er (memory bu�er or �le)

l_pop() attempts to rea
tivate the previous bu�er. If this su

eeds, EOR is

returned, otherwise EOF is returned. So, the lexer is not able to swit
h between

truly nested media, as in EVAL()
alls, but is able to swit
h between nested

bu�ers resulting from repla
ing ma
ro
alls by their de�nitions;

• l_subst_get():
alls l_media_get() to get the next
har from the media.

The next
har is passed to subst_�nd() whi
h is a FSA trying to mat
h the

145

longest SUBST. This may be done repeatedly, and eventually subst_text()

will either return a substitution text, or the next plain
hara
ter. A substitu-

tion text is pushed onto the lexer's media bu�er. The next
hara
ter returned

is then the next one to appear at the lexer's media bu�er;

• l_media_get(): If the
urrent a
tive sour
e of information is a �le, it returns

the next
hara
ter from that �le or EOF if no su
h
har is available anymore.

If the
urrent a
tive sour
e is a memory bu�er then the next
har from the

bu�er is returned. If the bu�er is empty EOF is returned. The media bu�er is

a
ir
ular, self-expanding Queue.

6.5 The Parser's Finite State Automaton

The parsing of the input �les is performed by the fun
tion parser_pro
ess(),

whi
h is
alled by Yodl's main() fun
tion.

This pro
essor will push all �les that were spe
i�ed on the input in reverse order on

the input sta
k, and will then
all the support fun
tion p_parse() to pro
ess ea
h

of them in turn.

p_parse() is an very short fun
tion: it
ontains one while statement, repeatedly

alling a handler appropriate with the next token returned by the lexi
al s
anner.

Therefore, the parser
an be
onsidered as a table driven �nite state automaton

(FSA).

The table itself is initialized in parser/psetuphandlerset.
, by the fun
tion p_setup_handlerSet().

It �lls the two dimensional array ps_handlerSet with the address of the fun
-

tion that must be
alled for ea
h
ombination of parser-state (as de�ned in the

HANDLER_SET_ELEMENTS enum) in parser/parser.h and token that may be pro-

du
ed by the lexi
al s
anner (as de�ned in the LEXER_TOKEN enum in lexer/lexer.h).

Depending on the situation the parser en
ounters, it may point its pointer d_handler

to a parti
ular row in this table. Sin
e the rows represent the parser's states, states

an be swit
hed easily by reassigning this pointer. This happens all the time. For ex-

ample, when in parsernameparlist.
 a name must be retrieved from a parameter

list, it
alls parser_parlist(pp, COLLECT_SET), whi
h fun
tion will temporarily

swit
h the parser's state to COLLECT_SET, returning the parameter list's
ontents.

to its
aller.

The fun
tions whose addresses are stored in the various
olumn-elements of the array

ps_handlerSet are
alled handler. Most handlers are named p_handle_<state>_<lextoken>(),

where <state> is the name of the asso
iated parser state, and <lextoken> is the

name of the appropriate lexi
al s
anner token. For example, p_handle_default_symbol()

is the handler that was designed for the situation where the parser is in its initial,

or default, state, and the lexi
al s
anner returns a TOKEN_SYMBOL token. Some han-

dlers have more generi
 names, like p_handle_unknown(), whi
h is some sort of

emergengy exit,
alled when the parser doesn't know what to do with the re
eived

lexi
al s
anner token (a situation whi
h should, of
ourse, not happen).

In versin 2.00, the following handler fun
tions are available:

• p_handle_insert(Parser *pp): insert mat
hed text

• p_handle_default_eof(Parser *pp): return false

146

• p_handle_default_newline(Parser *pp): series of \n's

• p_handle_default_plus(Parser *pp): handle + series

• p_handle_default_symbol(Parser *pp): handle all symbols

• p_handle_ignore(Parser *pp): ignores token

• p_handle_ignore_
losepar(Parser *pp): handle openpar

• p_handle_ignore_openpar(Parser *pp): handle openpar

• p_handle_noexpand_plus(Parser *pp): handle + series

• p_handle_noexpand_symbol(Parser *pp): handle exe
uted symbols in NO-

EXPAND

• p_handle_parlist_
losepar(Parser *pp): handle
losepar

• p_handle_parlist_openpar(Parser *pp): handle openpar

• p_handle_skipws_unget(Parser *pp): unget re
eived text

• p_handle_unexpe
ted_eof(Parser *pp): EMERG exit

• p_handle_unknown(Parser *pp): emergen
y exit

The parser has the following states:

COLLECT_SET retrieves parameter lists as they are en
ountered on the in-

put. The parameter list is not pro
essed in any way, and will omit the

surrounding parentheses. So, when entering this state (e.g., in the fun
tion

parser_parlist()), a parameter list is
ompletely
onsumed, but only its

ontents (and not its surrounding parentheses) be
ome available. In fa
t,

when entering a state, p_parse()
an be
alled again to pro
ess the infor-

mation in this state. Eventually a state will en
ounter some stopping sig-

nal (e.g., a non-nested
lose parenthesis in the
olle
t-state will result in

p_handle_parlist_
losepar() to return false, thus terminating p_parse()),

terminating that parti
ular state. The fun
tion parser_parlist() shows this

pro
ess in further detail.

DEFAULT_SET In this state ma
ros, builtins et
. are pro
essed. For most of

the tokens that
an be returned by the lexi
al s
anner p_handle_insert() is

alled.

• When re
eiving EOF it will try to swit
h to the next �le on the sta
k

(or stop),

• When re
eiving a symbol, it will either handle them as plain symbols or

as ma
ros,

• When re
eiving newlines they will be handled (maybe merging them by

alling a paragraph handler (if de�ned)),

• Series of +
hara
ters will be handled

• All other tokens will be inserted into the
urrent output medium (whi
h

may be a �le, but it may also be a memory bu�er).

IGNORE_SET In this state a parameter list is
ompletely skipped. This state

is used, for example, when pro
essing COMMENT().

147

NOEXPAND_SET The
ontents of a parameter list is not expanded, but CHAR

builtins are pro
essed. In Yodl version 2.00 there is only one situation wher

this state (and its
ompanion state NOTRANS_SET) is a
tively used: Yodl's

fun
tion gram_NOEXPAND() uses these states to retrieve the
ontents of a no-

expanded or no-transed parameter list.

NOTRANS_SET When the parser is in this state, a parameter list will be in-

serted using the
urrently a
tive insertion fun
tion (inserting to �le or mem-

ory) It is identi
al to the NOEXPAND_SET state, but the
hara
ter trans-

lation table is not used in the NOTRANS_STATE, whereas it is used in the

NOEXPAND_STATE.

SKIPWS_SET In this state all white-spa
e
hara
ters are
onsumed. The lexi
al

s
anner will only return the next non-whitespa
e
hara
ter. This state is used,

e.g., to skip the white spa
e between multiple parameter lists when they are

de�ned for ma
ros.

6.6 Adding a new ma
ro

With the advent of Yodl V 2.00, raw ma
ros �les are introdu
ed. A raw ma
ro �le

de�nes one ma
ro, and all of its
onversions. The raw ma
ro �les must be organized

as follows:

<STARTDOC>

ma
ro(name(arg1)(arg2)(et
))

(

Des
ription of the ma
ro `name', having arguments `arg1', `arg2',

`et
', ea
h argument is given its own parameter list. The names of the

arguments in this des
ription should be
hosen in su
h a way that they

suggest their fun
tion or purpose. All ma
ro des
riptions starting

with tt(<STARTDOC>) will be in
luded in both the `man yodlma
ros'

manpage and the des
ription of the ma
ro in the user guide. If this is

not
onsidered appropriate (e.g., tt(XX...()) ma
ros are not des
ribed

in these do
uments) then use tt(<COMMENT>) rather than

tt(<STARTDOC>).

)

<>

DEFINEMACRO(name)(#)(

statements of ma
ro `name' expe
ting `#' arguments used by all

onversions. This se
tion is optional

<html>

statements that should be exe
uted by the HTML
onvertor

<man ms>

statements that should be exe
uted by two
onverters. In this
ase,

the `man' and `ms'
onverters

<else>

statements that should be exe
uted by all
onverters not expli
itly

mentioned above

<>

statements of ma
ro `name' expe
ting `#' arguments used by all

148

onversions, having pro
essed their spe
ifi
 statements.

This se
tion is also optional

)

When setting up these ma
ro de�nitions, the <> tags must appear with the initial

do
umentation se
tion. It must also appear when at least one spe
i�

onvertor tag

is used. For a ma
ro whi
h is
onverter independent, the ma
ro de�nition doesn't

ontain these pointed-arrow tags.

When writing standard Yodlma
ros, ea
h ma
ro should be stored in a �le `name'.raw,

where `name' is the lower-
ase name of the ma
ro. This �le should then be kept

in the ma
ros/rawma
ros dire
tory. The ma
ros/build std
all will then add the

ma
ro (�ltering only the required statements per
onversion) to ea
h of the standard

onversion formats.

If the ma
ro requires a
ounter or symbol,
onsider de�ning the
ounter or symbol in,

respe
tively, �
ounters and �symbols. Furthermore,
onsider pushing and popping

these `variables', rather than plain assigning them, to allow other ma
ros to use the

variables as well. A
ase in point is the
ounter XXone whi
h was added to the set

of
ounters representing a lo
al
ounter. Ma
ros may always push XXone and pop

Xxone, but should never reassign XXone before its value has been pushed. For Yodl

version 2.00 only XXone was required, but other lo
al
ounters might be
onsidered

useful in the future. In that
ase, XXtwo, XXthree et
. will be used. For lo
al

symbold XXs pre�xes will be used: XXsone, XXstwo, et
.

6.7 The Yodl post-pro
essor

With Yodl version 2.00 the old-style post-pro
essor has
eased to exist. Also, the

.tt(Yodl)TAGSTART. and .tt(Yodl)TAGEND. symbols no longer appear in yodl's

output.

Instead, a system using an index �le was adopted. When
onverting information,

yodl will produ
e an output �le and an asso
iated index �le. The index �le de�nes

o�sets in the output �le up to where
ertain a
tions are to be performed. Ea
h line

in the index �le
ontains the required information of one dire
tive for yodlpost.

For example:

0 set extension man

53 ignorews

2112 verb on

2166 verb off

80007 ignorews

80065
opy

80065 mandone

Entries
an be written into the index �le using the INTERNALINDEX builtin fun
-

tion. This fun
tion has one argument: the information following the o�set where

it is
alled. So, there will be a INTERNALINDEX(set extension man) in the ma
ro

de�nitions for this parti
ular
onversion (obviously it is a man
onversion. The

149

parti
ular INTERNALINDEX
all is found in the standard man.yo ma
ro de�nition

�le).

When yodlma
ros is
alled, it pro
esses the dire
tives on the idx �le in two steps:

• First, it reads all dire
tives, and
onstru
ts a queue of a
tions to perform.

During this phase it will solve all referen
es to, e.g., labels de�ned in the s

pro
essed by yodl. This queue is
onstru
ted by a PostQueue obje
t, during

its
onstru
tion phase.

Postpro
essing is realized by a template-method design pattern-like
onstru
-

tion in C.

The algorithm pro
eeds as follows:

Ea
h element of the index �le is read, and its keyword (the word following

the o�fset) is determined. Then the '
onstru
t' fun
tion asso
iated with that

keyword is
alled. The `
onstru
t' fun
tions return pointers to HashItem

elements, whi
h arepro
essed by storing them either into the the symbol table

or into the work-queue. The
onstru
t fun
tions
an use all PostQueue, New,

Message String Args and File fun
tions. Whi
h fun
tion is a
tually
alled

is determined in the �le yodlpost/data.
, where the array Task tast[℄ is

initialized. Task stru
ts have three elements:

�
har
onst *d_key points to the name of the keyword that will trigger

the
orresponding Task stru
t;

� HashItem *(*d_
onstru
tor)(
har
onst *key,
har *rest) points

to the fun
tion that will be
alled when the task stru
t is
reated.

� void (*d_handler)(long offset, HashItem *item) points to the fun
-

tion that will be
alled when the queue is pro
essed.

• Then, when all
ommands are available, the queued
ommands are pro
essed.

For this, the appropriate 'handle' fun
tions are
alled.

For example, when the INTERNALINDEX(htmllabel ...) is spe
i�ed, the fun
tion

onstru
t_label() is
alled. This fun
tion re
eives a line line

432 label Overview

meaning that this label has been de�ned in o�set 432 in the �le generated by yodl.

The
onstru
t_label() fun
tion will now:

• Store the
urrent se
tion number, the �le
ount and the se
tionnumber in a

HashItem.

• Store the hashitem inside its hash-table.

Then, when the queue is pro
essed, a referen
e to this label may be en
oun-

tered. This is signalled by an INTERNALINDEX(ref Overview)
all. In this
ase

the
onstru
t_ref() fun
tion doesn't have to do mu
h. Here it is the handler

that's doing all the work:

• First it looks up the label in the symbol table. The label should be there, as a

result of the earlier
onstru
tion of the symbol table during the postqueue_
onstru
t()

all.

150

• Then it
opies the �le written by yodl up to the o�set mentioned in the the

ref
ommand.

• Then (sin
e we're talking about an html-spe
i�
 referen
e) the appropriate

<a href=...
ommand is inserted into the
urrent output �le.

When referen
es are solved in text-�les, the INTERNALINDEX(txtref ...)
om-

mand is used. Here,
onstru
t_ref()
an still be used, but a spe
i�
 handle_txt_ref()

fun
tion is required.

New postpro
essing labels
an be
onstru
ted easily:

• Add an element to the array Task task[℄ in sr
/yodlpost/data.
. For

example, add a line like:

{"verb",
onstru
t_verb, handle_verb},

• De
lare the fun
tions in yodlpost.h:

HashItem *
onstru
t_verb(
har
onst *key,
har *rest);

void handle_verb(long offset, HashItem *item);

• The
onstru
t_verb() fun
tion re
eives the key (e.g., verb) and any infor-

mation that may be available beyond the key as a trimmed line (not beginning

or ending in white spa
e). The
onstru
t fun
tion should return a pointer to

a hashitem, whi
h
an be
onstru
ted by hashitem_
onstru
t(). This fun
-

tion should be
alled with the following arguments:

� VOIDPTR;

� a pointer to some text to be stored as the hashitem's key (use an empty

string if nothing needs to be stored in a hashtable);

� A pointer to the information asso
iated with the key (use 0 if no infor-

mation is used; use (void *)intValue to store an int value. Note that

this is not (void *)&intValue: it is the value of the variable that is

interpreted as a pointer here).

� The fun
tion that will handle the destru
tion of the value-information.

Use free if some information was a
tually allo
ated and must be freed.

E.g.,

hashitem_
onstru
t(VOIDPTR, "", new_str(rest), free);

Use root_nop if no allo
ation took pla
e. E.g.,

hashitem_
onstru
t(VOIDPTR, "", (void *)s_lastLabelNr, root_nop);

151

Often the
onstru
tor doesn't have to do anything at all. In that
ase, initialize

the Task element with the existing
onstru
t_nop fun
tion. E.g.,

{"drainws",
onstru
t_nop, handle_drain_ws},

• The handle_verb() fun
tion is
alled when the �le produ
ed by yodl is pro-

essed by postqueue_pro
ess(). This happens immediately after postqueue_
onstru
t().

The handler is
alled with two arguments:

� Its �rst argument is the o�set where the INTERNALINDEX
all was gener-

ated. The handler should make sure that yodl's output �le is pro
essed

up to this o�set. Not any further. If a simple
opy is required the

fun
tion file_
opy2offset() is available. E.g.,

file_
opy2offset(global.d_out, postqueue_istream(), offset);

Note its arguments: the output and input �le pointers are available

through, respe
tively, global.d_out and postqueue_istream().

� Its se
ond argument is a pointer to the hashitem stru
t originally
reated

by the mat
hing
onstru
t...() fun
tion. The handler should not free

the information it re
eives. The fun
tion postqueue_pro
ess() takes

are of that.

Examples of a
tual
onstru
t...() and handle...() fun
tions
an be found

in sr
/yodlpost.

152

