
Alexandre Fayolle

Olivier Cayrol

Sylvain Thénault

Narval - Extension Programmer
Handbook

Narval - Extension Programmer Handbook
Alexandre Fayolle

Olivier Cayrol

Sylvain Thénault

Copyright 2000-2005 by Logilab

Copyright 2004-2005 by DoCoMo Euro-Labs GmbH

Legal Notice

Copyright © 2000-2005 by Logilab.

This material may be distributed only subject to the terms and conditions set forth in the Open Public-
ation License, v1.0 or later (the latest version is presently available at ht-
tp://www.opencontent.org/openpub/ [http://www.opencontent.org/openpub/]).

Distribution of substantively modified versions of this document is prohibited without the explicit per-
mission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form is prohibited un-
less prior permission is obtained from the copyright holder.

Abstract

Narval's kernel is able to manipulate plans that can perform almost any task, provided that the required
actions and transformations are available. The purpose of this document is to explain how actions and
transformations are written.

Revisions

Num. Date Author Remarks

$Revision:
1.4 $

$Date: 2001/10/16
12:59:35 $

$Author: alf $

Narval - Extension Programmer Handbook ii

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

http://www.opencontent.org/openpub/
http://www.opencontent.org/openpub/

Table of Content

Intended audience . 1

Introduction to narval extensions programming . 2

Chapter I - Interfaces, adapters and elements . 3

1. Writing a new interface and adapter . 3

2. Writing a new element . 4

3. Manipulating interfaces, adapters and elements . 5

Chapter II - Writing an action . 6

1. Writing a prototype . 6
1.1. The prototype DTD . 6
1.2. Examples . 7

2. Coding the action stub . 8
2.1. Prototype of a stub . 8
2.2. Retrieving inputs . 8
2.3. Processing . 9
2.4. Returning the results . 9

Chapter III - Building a module . 11

1. The Module concept . 11
1.1. Packing actions . 11
1.2. What makes a good candidate for an action? . 12
1.3. Considering a actions'module as a unit . 12

2. Testing strategies . 13
2.1. Checking the XML syntax . 13
2.2. Testing the actions individually . 13
2.3. The test framework . 13
2.4. The Big Game . 14

3. Releasing . 14
3.1. Documentation . 14
3.2. Licensing . 14

Chapter IV - Going further . 16

1. Multiple actions for a single function . 16

2. Modules considered as interfaces . 16

Narval - Extension Programmer Handbook iii

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Intended audience

This document is aimed at programmers who want to code modules for Narval. The preference lan-
guage for coding modules is Python, and some knowledge of the python programming language is as-
sumed. Having a previous experience in python programming and a good acquaintance with the python
standard library definitely helps. Narval represents the data it manipulates using python objects. Usually
those objects should be exportable/importable to/from XML.

Intended audience 1

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Introduction to narval extensions programming

Narval is a powerful system. Yet, left alone it is as dumb as a computer with only a bare bone operat-
ing system. Modules and actions provide means for Narval to interact with the Outside World Where It's
Cold. Actions can be very simple or very complex, they can do the processing themselves or act as inter-
faces to outside programs, enabling different proprietary pieces of software to talk to each other.

Why should you write modules? Well, basically, there are two families of reasons. The first one is that
you need to do something with Narval, and nothing exists yet to do it. This situation is likely to become
less frequent as time passes, but since Narval is still young it may be the case. So you have checked the
repositories, asked a few questions on the mailing lists, and it looks like you have found something miss-
ing. Well in that case, it is time to sharpen your Swiss army coding knife and confront yourself with writ-
ing the missing action. This book is here to help you, and so are the various mailing lists about Narval.

The second one is that you may have written a new program, and you think that the Narval system is
soooooo cool that you just have to write a module to interface your program with Narval, so that other
users may pilot your program through recipes. This book is here to help you in that case too.

Modules are used to extend narval with new interfaces, new elements and new actions. Interfaces and
elements are used to describe physical or logical objects that can be manipulated by the narval interpreter.
Actions are used to get a specific behaviour, optionaly using input elements and creating some others as
output.

In both cases, we thank you for contributing your efforts to the Narval user community.

Introduction to narval extensions programming 2

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Chapter I

Interfaces, adapters and elements

Everything in narval is based on what we call elements. Those elements are used to hold any informa-
tion but also to describe a desired behaviour of the agent, using elements such as actions and recipes, or to
control it, using elements such as start-plan, plans, etc... All of them are manipulated by the interpreter
and contained in it's memory.

Elements are actually python class instances, and so defined in python modules and (usually automat-
ically) registered to the interpreter. Also, for a greater flexibility, the concepts of interface and adapter are
used:

• an interface is an abstract definition of available attributes and methods that should define an ele-
ment to provide a logical set of data and services

• an element implements some interfaces by having the required attributes and methods. The im-
plemented interfaces are explicitly listed

• an adapter is glue component providing a way adapt an interface to another
Interfaces and adapters, as elements, are defined by classes in python modules and registered to the in-

terpreter.

1. Writing a new interface and adapter

Interfaces and adapter are usually defined in modules within the "interfaces" subpackage of narval. An
interface must inherit (possibly indirectly) from the narval.public.Interface class, while an adapter must
inherit (also possibly indirectly) from the narval.public.Adapter class.

Suppose we want to describe a URL element. This element should contains the URL address and an
optional attribute giving the encoding of the file locating at the address. We also want some methods to
access to the different part of the url address or to do some actions on it such as normalizing it.

This example is taken from the narval standard library. Notice that, by convention, all classes which
are actually interfaces have a name beginning with a capitalized I.

from narval.public import Interface
class IURL(Interface):

"""interface for url elements

:ivar address: the URL string
:ivar encoding: optional encoding of the file located at <address>
"""
def normalize(self):

"""return the expanded normalized url string"""
def protocol(self):

"""return the normalized url string"""
def path(self):

"""return the expanded normalized path string"""

You can notice 3 main points:

• the class inherits from Interface
• attribute are defined in the class'docstring (mainly because of a lack of the underlying interface

implementation)
• methods are defined using regular python methods but with only a docstring documenting the

method's aim as body

Chapter I
Interfaces, adapters and elements 3

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Example 1 - Defining an interface for URL object

An adapter is used to "transform" an object implementing an interface into another one implementing
another interface. They are usually defined in the same module as the source or/and target interface.

The standard library contains the IURL interface as defined above, but also a IOpen interface used to
describe "openable" object such as file. We can easily provide a way to open a URL element using an ad-
apter from IURL to IOpen.

This example is taken from the narval standard library. Notice that, by convention, all classes which
are actually adapters have a name using the pattern SourceInterfaceToTargetInterface.

from narval.public import Adapter, Interface
import urllib2
class IOpen(Interface):

"""open anything and return a file-like object
"""
def open(self):

"""return a readable file-like object"""
class IURLToIOpen(Adapter):

"""adapt IURL to IOpen"""
__sources__ = (IURL,)
__implements__ = (IOpen,)

def open(self):
"""return a file-like object from an IURL object"""
return urllib2.urlopen(self.original.normalize())

You can notice 4 main points:

• the class inherits from Adapter
• source interfaces (may be multiple) are listed using the __sources__ attribute
• target interfaces (may be multiple) are listed using the __implements__ attribute
• the adapted object is stored by the base class in the original attribute

Example 2 - Defining an adapter from IURL to IOpen

2. Writing a new element

As you've seen in the earlier sections, interfaces are used to describe some data and services, while ad-
apters are used to pass from an interface to another. But none of those classes defines concrete element
living in the narval's memory. To do so you have to define another class, called element in this document.

Elements are usually defined in modules within the "elements" subpackage of narval. Every narval
elements should implement an internal interface (allowing for instance automatic xml marshalling). To
ease things, narval provide a base class implementing this internal interface and other facilities to make
development of new elements easier, the ALElement class.

The best way is probably to start with an example. You can see below a simple element definition im-
plementing the IURL interface:

from narval.public import NO_NS, normalize_url
from narval.element import NSAttribute, ALElement
from narval.interfaces.base
class URLElement(ALElement):

"""IURL implementation"""
__implements__ = (IURL,)
__xml_element__ = (NO_NS, 'url')
address = NSAttribute(NO_NS, None, str, str)

Chapter I
Interfaces, adapters and elements 4

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

encoding = NSAttribute(NO_NS, None, str, str)
def raw_address(self):

return self.address

def normalize(self):
"""return the expanded normalized url string"""
return normalize_url(self.raw_address())[0]

def protocol(self):
"""return the normalized url string"""
return normalize_url(self.raw_address())[1][0] or 'file'

def path(self):
"""return the expanded normalized path string"""
return normalize_url(self.raw_address())[1][2]

You can notice here, well, many points:

• the class inherits from ALElement
• implements interfaces (may be multiple) are listed using the __implements__ attribute
• the __xml_element__ attribute is used to defined that this element will be serialized into the xml

"url" element, within an empty namespace (NO_NS)
• attributes are usually defined using the NSAttribute property, which allow automatic marshalling

of the attribute to and from xml. In the example for instance, we tell that the element have a "ad-
dress" attribute which is in an empty xml namespace, has None as default value, and is deserial-
izable and serializable using the same "str" function (a python builtin).

For more information you should take a look at the ALElement implementation and at existing ele-
ments in the standard library.

Example 3 - Defining an element class implementing IURL

3. Manipulating interfaces, adapters and elements

As interfaces and element classes are the base criteria to filter elements in prototypes, you need to
know a few things about how to manipulate them. Notice that every interfaces and element classes name
are available as identifier in the evaluation context of filter expressions.

The expression isinstance(elmt, AClass) will be evaluated to True if the element is an in-
stance of the AClass class (i.e. it's an instance of this class or of a children class).

The expression implements(elmt, IFace) will be evaluated to True if the element is an in-
stance of the a class implementing the IFace interface (i.e. it implements the IFace interface itself or a
children interface). Notice that implements doesn't consider adaptation, that means that even if an adapter
exists for an interface implemented by the element to the IFace interface, implements will be evaluated to
False unless the element explicitly implements IFace.

The expression IFace(elmt) will be evaluated to the element itself or to an adapted element if the
element implements explicitly IFace or if an adapter for an interface implemented by the element to the
IFace interface exists. In other cases, this will raise an error (and so in the context of filter expression
evaluation, the element will be skipped, which is the desired behaviour).

Chapter I
Interfaces, adapters and elements 5

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Chapter II

Writing an action

The action is the fundamental brick used by Narval to perform tasks. It is composed of two parts: an
XML prototype and a python stub, both of which appear in the same file. An action is included in a py-
thon module.

Since release 1.2, Narval use xml namespaces, and so action and prototype definition should belong to
a narval specific namespace: 'http://www.logilab.org/namespaces/Narval/1.2'. Usualy this namespace is
bound to the al prefix. This convention will be used in this document.

1. Writing a prototype

1.1. The prototype DTD

<!ELEMENT action (description*|input*|output*)> (1)
<!ATTLIST action name CDATA #REQUIRED> (2)
<!ATTLIST action func CDATA #REQUIRED> (3)
<!ELEMENT description (#PCDATA)> (4)
<!ATTLIST description lang CDATA #REQUIRED>
<!ELEMENT input (match*)> (5)
<!ATTLIST input optional (yes|no) "no"> (6)
<!ATTLIST input use (yes|no) "no"> (7)
<!ATTLIST input list (yes|no) "no"> (8)
<!ATTLIST input outdates (yes|no) "no"> (9)
<!ATTLIST input from_context (step|plan|parent_plan|memory) "step">
<!ATTLIST input to_context (step|plan|parent_plan|memory) "memory">
<!ATTLIST input id CDATA #IMPLIED> (10)
<!ELEMENT output (match*)> (11)
<!ATTLIST output optional (yes|no) "no"> (6)
<!ATTLIST output id CDATA #IMPLIED> (10)
<!ELEMENT match (#PCDATA)> (12)

(1) the action element is used as a container for the action prototype. It holds a number of input
and output child nodes.

(2) name is the name of the action. It is used to identify an action in a recipe. To avoid name clashes,
the name of the module is prepended and used as a namespace, so the name of an action needs only
to be unique within a given module.

(3) func is the name of the python function that implements the action stub. This function must be in
the same module. The name is often the name of the action prefixed with act_.

(4) description elements are used to provide useful information about the action. The lang at-
tribute is used to specify the language of the description. It is useful for graphical interfaces and
documentation generation which can use this for localization.

(5) the input element describes one input of the action. This description is a list of match elements
each of which contain an python expression. In order to be accepted for the input, an element must
match all these expressions.

(6) if optional is set to yes, then the lack of element matching the input or the output will not
cause an error.

(7) if use is set to yes this means that once an element has been passed as an input to the action, it
will be flagged as used and not be reused by the action in subsequent evaluations of a plan instanti-
ated from the same recipe

(8) if list is set to yes, several arguments matching the input can be passed to the action. This im-

Chapter II
Writing an action 6

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

plies that the function stub is coded accordingly.
(8) the from_context maybe used to control the memory area to use for the matching elements

lookup. This attribute defines the starting context: from the step, the plan, the parent_plan or the
memory.

(8) the to_context maybe used to control the memory area to use for the matching elements look-
up. This attribute defines the stoping context: to the step, the plan, the parent_plan or the memory.

(11) the output element describes one output of the action. This description is a list of match ele-
ments each of which contain an XPath. Narval considers that an action has failed if each output is
not matched exactly once by one different element output by the action (with the possible excep-
tion of optional outputs. all these XPaths.

(9) if outdates is set to yes, once an element has been passed as an input to the action, it will be
flagged as outdated, and not be reused by any action or transition in Narval. You can think of it as a
super use attribute, that affects all the recipes, and not just the recipe that instanciated the current
plan.

(10) The id attribute is used to provide a way for steps to alter the prototype of the action, by modify-
ing the attributes of the input, or by adding match nodes to the prototype. It's also used in the ac-
tion's stub to retreive arguments corresponding to a given input.

(12) A match contains an python expression that describes an aspect of the expected element. In this
expression, the elmt identifier is used to represent the element matched against the expression. No-
tice that as inputs are evaluated in the order of their definition in the xml, the identifier of previ-
ously matched inputs will be bind to the matched element(s) and so can be used to match interde-
pendant inputs.

1.2. Examples

Example 4 illustrates a minimal action: its takes no inputs, outputs nothing either. It could however,
depending on what is in the function stub, have an effect. For example, it could be used to increment a hit
counter on a web page. If no description is provided, it is not possible to tell what an action does, espe-
cially if the action name is not explicit.

<al:action name='NOP' func='act_NOP'/>

Example 4 - the NOP action prototype

Example 5 presents a typical action. A description is provided in English and in French. We notice
that both inputs have a 'use' attribute: this is because we do not want to reuse the same header over and
over again to produce an endless suite of identical mails. The match elements used in the prototype are
self explanatory.

<al:action name='make_mail' func='act_make_mail'>
<al:description lang='en'>Builds an email element given an element
implementing (or adaptable to) IEmailAddress and another one
implementing (without considering adaptation) IData.

and an email body</al:description>
<al:description lang='fr'>Construit un élément email à partir d'un élément

implémentant (ou adaptable) l'interface IEmailAdress (adresse
électronique) et d'un élément implémentant IData (corps du message)</al:description>

<al:input use='yes'>
<al:match>IEmailAdress(elmt)</al:match>

</al:input>
<al:input use='yes'>

<al:match>implements(elmt, IData)</al:match>
</al:input>
<al:output>

<al:match>IEmail(elmt)</al:match>
</al:output>

</al:action>

Chapter II
Writing an action 7

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

[1] Well, at least, this is what we believe. If there is a python hack that would do the trick, it's fine, but unless it is a very clean hack,
we do not intend to support it.

Example 5 - the make_mail action prototype

Example 6 shows a complex action: two out of the three input arguments are optional and the match
for the first argument is much more elaborated than those we have seen so far. If you are not yet familiar
with python, here is what it means: we are looking for a element implementing IHTTPRequest with at
least a non null url attribute and a, also non null, header attribute.

<al:action name='http_get_ext' func='http_get_ext_f'>
<al:description lang='en'>Fetches a page on the web using an optional proxy,

and optionally filtering spam out</al:description>
<al:description lang='fr'>Ramène une page depuis le Web, en passant par un

proxy (optionnel), et en supprimant le spam (optionnel)</al:description>
<al:input>

<al:match>IHTTPRequest(elmt).url and IHTTPRequest(elmt).header</al:match>
</al:input>
<al:input optional="yes">

<al:match>IProxy(elmt).type == 'http'</al:match>
</al:input>
<al:input optional="yes">

<al:match>ISpamPolicy(elmt)</al:match>
</al:input>
<al:output>

<al:match>IHTTPResponse(elmt)</al:match>
</al:output>

</al:action>'''

Example 6 - the http_get_ext action prototype

2. Coding the action stub

2.1. Prototype of a stub

An action stub is a python function. Methods will not work, because there is no way to pass the object
along with the call1. This function will be called passing one and only one argument, which will be a dic-
tionary with input identifiers as key and matched elements for the input as value.

2.2. Retrieving inputs

If an input has the list attribute set to "yes", the value associated to the input identifier in the dictionary
will be a list of matched elements. If not, it will be the matched element or None if the input is optional
and has no matched element..

It's so very easy to get elements associated to each input, as shown in the example below :

Given the following action prototype:

<al:action name='dance-boogie-woogie' function='act_dance_boogie_woogie'>
<al:input id='tempo'>

<al:match>elmt.tempo</al:match>
</al:input>
<al:input id='dancers' list='yes'>

Chapter II
Writing an action 8

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

<al:match>IDancer(elmt)</al:match>
</al:input>
<al:input id='song' optional='yes'>

<al:match>ISong(elmt)</al:match>
</al:input>

</al:action>

We would write the following code in the stub to bind the various input elements to python identifier:

def act_dance_boogie_woogie(inputs):
access to the tempo element and get the value of its tempo
attribute
tempo = inputs['tempo'].tempo
get dancer elements
as it's a non optional list, the dancers identifier will be
bound to a list with at least one dancer element
dancers = inputs['dancers']
get the song element
as it's a optional element, the song identifier will be bound to
the song element or to None if no such element was found
song = inputs['song']
do some stuff now

Example 7 - Retrieving inputs

2.3. Processing

Well basically, you can do anything you want here: create arbitrary elements, modify elements you got
as input, read and write files on hard disk, get a web page...

2.3.1. Writing to disk

Nothing prevents you from writing anywhere on the disk, apart from Operating System restrictions.

2.4. Returning the results

Obviously, once the processing is done, we want to return a result. Narval expects to get returned a
dictionary containing output elements. As for inputs, the output dictionary has output identifiers for keys
and associated elements for values. The same rules as for inputs apply (i.e. list or None value according to
the value of the list and optional attributes). Moreover you can omit entries for optional output without
element associated.

<al:action name='pastry' function='act_pastry'>
<al:output id='muffin'>

<al:match>isinstance(elmt, muffin)</al:match>
</al:output>

</al:action>

We could write the following code:

def act_pastry(arg)
no inputs to read

we choose the flavour of the muffin
from random import choice
flavour = choice(['pumpkin','raisin', 'blueberry'])
build the output
muffin_elmt = muffin(flavour=flavour)
return the result
return {'muffin': muffin_elmt}

Chapter II
Writing an action 9

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Example 8 - building the outputs

Chapter II
Writing an action 10

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Chapter III

Building a module

A naive way to define a module is saying that it is an action container. While this is true, there is also
much more to modules than that. For one, functions in a module should have something in common, so a
module is more something like an action library or a tool box. More generally, a module is a python file.
Within narval, modules are used (appart for the core itself) to defines actions, but also interfaces, adapters
and elements (Chapter I “Interfaces, adapters and elements”). Furthermore, Section 2 “Modules con-
sidered as interfaces” - Chapter IV will present yet another aspect of (more specifically actions') modules.

1. The Module concept

1.1. Packing actions

Building a new module is quite easy. In the python module where all the actions are declared, you
must have a global variable called MOD_XML that contains all the XML declaration for the module and
the actions. The usual way to do this is by initializing the variable at the beginning of the file and building
incrementally as function stubs are declared:

from narval.public import AL_NS
MOD_XML = "<module xmlns:al='%s'>" % AL_NS
##
Http Get Ext
##
def act_http_get_ext(args):

pass
function code intentionally skipped

MOD_XML = MOD_XML+'''
<al:action name='http_get_ext' func='act_http_get_ext'>

<al:input>
<al:match>IHTTPRequest(elmt).url and IHTTPRequest(elmt).header</al:match>

</al:input>
<al:input optional="yes">

<al:match>IProxy(elmt).type == 'http'</al:match>
</al:input>
<al:input optional="yes">

<al:match>ISpamPolicy(elmt)</al:match>
</al:input>
<al:output>

<al:match>IHTTPResponse(elmt)</al:match>
</al:output>

</al:action>'''
##
Write back to socket
##
def Write_back_to_socket_f(args) :

pass
function code intentionally skipped

MOD_XML=MOD_XML+'''
<al:action name='Write_back_to_socket' func='Write_back_to_socket_f'>
<al:description lang="en">Send back response to client</al:description>
<al:description lang="fr">Renvoie la réponse au client</al:description>
<al:input use="yes">
<al:match>IHTTPResponse(elmt)</al:match>

</al:input>
<al:input>
<al:match>isinstance(elmt, socket)</al:match>

</al:input>
</al:action>'''
MOD_XML=MOD_XML+'</module>'

Chapter III
Building a module 11

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

[2] and when we say Power, we mean Real Power, and not just surfing the web and downloading WaReZ and thinking we are now
31337 hackers. Computers are good because they can save time by doing boring stuff for you. Using a word processor is not a
progress over using a type machine if you have to open each of the 456 files in your directory to manually change the logo of
your company on the first page. Most people who use computers nowadays will have to do it that way, though. Narval should en-
able them to quickly write a recipe that will do this automatically.

[3] This is the case right now. It might be possible to build modules that would be stored in directories, with the MOD_XML variable
initialized in the __init__.py file. It has not been tested yet, but if it is possible, we shall provide support for this in a future
release

This makes it very easy to add new functions to a module, since you only have to add the code in the
file and add the action prototype to MOD_XML (MOD_XML is a special identifier that is used at ac-
tions'modules load time to extract available actions in the module, so you can't use it for another purpose
or use a different identifier to hold actions'prototypes definitions).

1.2. What makes a good candidate for an action?

Choosing what to put in an action is difficult. This is really the same challenge as designing a software
library. With Narval however, a new factor comes in play. Actions can be used in recipes. A typical re-
cipe should use from three to a dozen actions to perform its task, so actions should not have a too small
granularity. Actions are supposed to perform elementary tasks at the scale of the recipe, which itself is
very high level, so actions are already quite high level. A typical recipe will for instance manage an ad-
dress book, so the required actions for such a recipe would be adding or removing an address. Proposing
an action to read the address book from hard disk is too fine grained.

Note

Remark

As always, everything is a matter of context, there may be recipes which require reading files from
disk, and an action that does just that is provided in the standard distribution of Narval.

This means that something that can be a good candidate for an action in a module can be a bad one in
another module. Writing test recipes is a good way to tell if the actions in a module are too low-level: if
you get the impression that you are writing a program in a programing language like Python, Java or
Younameit, then you probably got it wrong. Narval's ultimate goal is to bring the Power of computers in
the hand of the average person in the street (well, to be honest we are still far away from that, so the "ulti-
mate"...)2, so using your actions to write a recipe should not become something like programming. When
you add a new action to a module, always ask yourself whether you would really like to have it in a re-
cipe. It is much better to share code between the implementation of action stubs than to add an action that
will have to be inserted in every recipe that uses actions from the module.

1.3. Considering a actions'module as a unit

Deciding to pack actions in modules is one thing, deciding how to pack them is another one. The lo-
gical decision is to group them around a common theme. Since all actions in a module share a common
file 3, this encourages sharing utility code between action stubs. In other words, all function within a mod-
ule file need not be action stubs. There can be any number of helper functions provided in a module to

Chapter III
Building a module 12

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

avoid code duplication in action stubs, and ease the coding of new actions.

Each module may want to deal with it's own set of elements and / or interface. Before introducing a
new element or interface, you should carefully consider existing ones and see if one of them would be
fine for what you need. If not so, you should write a python class for the element / interface (or event an
adapter).

2. Testing strategies

Before trying to test your module with Narval, you should perform some unitary testing, that will en-
able you to check that your module will behave as expected, or at least that it will not crash in a stupid
way when loaded. This section introduces some testing techniques that isolates the module from Narval
and thus make it easier to find some bugs. They especially enable the use of a python debugger and other
standard debugging methods, which are rather difficult to set up when Narval is running.

2.1. Checking the XML syntax

One of the first thing you want to check in a module is that the prototypes of the actions are syntactic-
ally correct, since this will prevent Narval from being able to load the module. This is done by adding a
python main function that will parse the string held by MOD_XML:

if __name__ == "__main__" :
print MOD_XML
from xml.dom.ext.reader import Sax2
doc=Sax2.FromXml(MOD_XML)
print doc.documentElement

Once this is done, you can run your module from the command line as you would for any other pro-
gram. This can bring up two kinds of errors:

• Python syntax errors, which you are presumably familiar with. These are beyond the scope of
this document

• XML syntax errors. The exception you will get will tell you where the error occurred. Common
errors include:

• missing '/' in the closing tag of an element;
• missing '/' before the '>' of an empty element;
• quoting mismatch in attributes;
• typos that cause an opened element not to be closed.

2.2. Testing the actions individually

Unfortunately, it is not possible to test all actions outside of Narval. If an action uses the socket for-
warder, for instance, it will not be possible to test it if nothing is listening on the socket forwarder port,
for instance. Similarly, if a group of actions are very tightly coupled, for instance if they share a common
object and behave differently according to some internal state of the object, testing will be difficult.

The proposed method for testing is to call the stub of the action by passing it elements as Narval
would do it. The outputs of the method can be retrieved and compared to what is expected, and thus the
action is validated.

2.3. The test framework

Chapter III
Building a module 13

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

For actions which can't be easily unittested, or to test how actions go together, or to test recipes, narval
comes with a test framework. The principe is simple: launch narval with a memory file describing a re-
cipe and starting it, make it stop when all plans are terminated, and then check the narval's memory after
execution. You've so to write the initial memory file and a memory validation file. You can get more in-
formation about this in the "narval testing how-to" document.

2.4. The Big Game

Well, obviously, when you created your actions, you had some precise idea about how they should be
used in recipes. The time has now come to write test recipes, and run them. The Recipe Coding Manual is
here to help you, and so is the Horn User Manual.

3. Releasing

Writing modules is a Good Thing. Making them available for everyone is a Better Thing. So now that
your module is coded and tested, now that you have sample recipes illustrating how to use your actions,
it's release time!

3.1. Documentation

Maybe you have so far coded for your eyes only. You know your code, how it works, and that's good.
However, maybe a bit of tidying would be welcome.

3.1.1. Documenting action prototypes

We have seen in Section 1.1 “The prototype DTD” - Chapter II that the description is optional. It
is strongly recommended that you should use it for every action you write. This is one of the three indica-
tions a recipe programmer will have about what your action does, the other two being the module name
and the action name. As the module and the action name are one or two words, this leaves only the de-
scription for something a bit more consistent. Keep in mind that due to screen space limitations, it is best
to keep the description string as a one-liner. Avoid if possible repeating what can be guessed by looking
at the XML prototype, and rather elaborate about the action that takes place to transform the inputs into
outputs.

3.1.2. Documenting stubs

The standard python documentation advices apply here. Use doc strings wherever applies, use com-
ments where needed. We believe at Logilab that it is worth spending a lot of time on the code so that it
can be understood without using too many comments. This includes using good variable names and good
function names, rewriting shaggy code again and again until it becomes clean, using standard Design Pat-
terns and naming the objects accordingly. We encourage you to do the same, for the benefit of everyone.

3.2. Licensing

We have chosen to release Narval under LGPL. We do not wish to impose anything on the developer
community about the modules they contribute, so you are free to distribute your modules under the li-
cense you wish. However, we encourage you to use a well known LGPL-compatible license. This will en-
able us to redistribute your modules in future Narval releases, and to make it available on our web site
without worrying about possible legal problems. Please include a license statement with the modules you

Chapter III
Building a module 14

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

release.

Chapter III
Building a module 15

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Chapter IV

Going further

1. Multiple actions for a single function

There is no obligation of having a one to one correspondence between actions and stubs. It is perfectly
acceptable to have a single stub that would behave differently according to the inputs is received. A typic-
al example would be an action that acts as a proxy to some outer program using the same interface
provided by the program. One could argue that it could be possible to have an single action with op-
tional inputs that would be associated with the stub. This is true, but would nevertheless not be a good
idea, because it would make recipes much less easy to read, whereas providing several actions with dis-
tinct and clear names can make things much easier to understand.

2. Modules considered as interfaces

Something great about modules is that they can behave as interfaces to programs, and as any OO pro-
grammer will tell you, Interfaces are Good Things. For instance, it is possible to identify the basic re-
quirements for a mail module. However, the implementation of the stubs depend on the underlying oper-
ating system: under Unix, mail is often read in /var/spool/mail or another system mailbox, whereas
Windows users generally use a POP3 or IMAP server. Yet, from an action point of view, they all receive
and send mails, sometimes with attached documents, and that's about it. Once the module interface has
been defined, it is possible to choose which implementation of the module should be installed on a given
system, and all the recipes will keep on working regardless of the implementation.

Chapter IV
Going further 16

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

	Intended audience
	Introduction to narval extensions programming
	Chapter I - Interfaces, adapters and elements
	1. Writing a new interface and adapter
	2. Writing a new element
	3. Manipulating interfaces, adapters and elements

	Chapter II - Writing an action
	1. Writing a prototype
	2. Coding the action stub

	Chapter III - Building a module
	1. The Module concept
	2. Testing strategies
	3. Releasing

	Chapter IV - Going further
	1. Multiple actions for a single function
	2. Modules considered as interfaces

