loglab

Narval - Jabber how-to

Edition: Version 2 - 2004-12-15 Sylvain Thénault

logllab

Narval - Jabber how-to

Narval - Jabber how-to
Sylvain Thénault

Edition: Version 2 - 2004-12-15

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

logllab

Narval - Jabber how-to

Table of Content

Chapter | - TheJabber protocol handler,
Chapter 11 - The default Jabber processing mechanisminNarval

Chapter 111 -Howtohandleanewcommand

1. Creatingthe " begp reCipe v v v i i e e e e e e

2. Making an "active" recipeusingit
Modifying theail rulesfile
Testingthechat command
Modifying the memory file to handle thiscommand permanently
6. Configuring commands access right using the <bot-configuration> element

o~ w

Chapter 1V - Some other configuration possibilitiesfor existingcommands.
1. Baseconfiguration e e
2. Logging control e
3. Knowledgemanagement e e

Chapter V - Goingfurther

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

logllab G 1

hi
The Jabber protocol handler

Chapter |
The Jabber protocol handler

The Jabber protocol is handled in Narval by a component called a protocol handler. A protocol hand-
ler is an object with a particular interface providing away to dynamically plug into the Narval interpreter
some support for different (usually network) communication protocols. When it receives a message, a
protocol handler will format that message into a narval memory element and start a recipe using this ele-
ment asitsinitial context.

A protocol handler is activated by a particular element, its activator. To activate the Jabber protocol
handler, you'll have to put in your memory file (usually SNARVAL _HOM E/data/memory.xml, where
NARVAL_HOME is by default the .narval directory in your home directory) an element like the follow-

ing:

<j abber - activat or host="j abber.| ogil ab. org" port="5222"
user ="narval " password="narval " resource="narvabber"
regi ster="yes" verbose="yes"

Notice that by default on standard distribution, the memory file include the custom.xml file with a
jabber activator element inside it that you only have to adapt to your settings.

Of course, you'll have to change some attributes to suit your needs. Here is the description of the dif-
ferent possible attribute on the Jabber's activator:

user
the Jabber user's name

password
the Jabber user's password
resource
the Jabber resource (default to narvabber)

host
the Jabber server host name (default to localhost)

port
the Jabber server port (default to 5222)

register
indicates whether the agent should try to auto-register to the server if necessary, i.e. if the narval's
account isn't existing and should be created ('yes' or 'no', default to 'no')

verbose
indicates whether the handler should log some additional information about information it receives
and thingsit isdoing ('yes or 'no’, default to 'no’)

recipe
the full name of the recipe (<cookbook>.<recipe>) used to handle incoming queries

So you should at least change the user and password attributes, and also probably the host attribute,
unless you're usually using Logilab's Jabber server (which isfor private use). Only the user, password and
recipe attributes are required, others will take a default value if not specified.

The following sections explains how to get an extensible chat bot using Narval's actions and recipes,
and how to control / extend it. Of course, you can also create your own recipe for your specific needs!

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

logllab

Chapter 11

Chapter 11
The default Jabber processing mechanismin Narval 2

The default Jabber processing mechanism in

Narval

The chat bot is currently built using the following principle:

a recipe, 'bots.handle-commands' is handling incoming messages (that is the target of the "re-
cipe' attribute on the Jabber activator), and produces some command elements according to an
ail [http:/Amww.logilab.org/projects/ail] rules file (by default SNARVAL _HOME/data/chatbot.ail, see
Modifying the ail rules file section for description of the syntax used there) and to the bot-
configuration element which is handling right access to the existing commands (see Configuring
commands access right using the <bot-configuration> element section)

a set of plans are activated on Narval's startup by adding several <al:start-plan> elements to the
memory file. A plan is an active execution of a recipe. These plans are particular for they are
written to indefinitely wait for a specific type of element to be produced. When such an element
is produced, the plan is resumed to process it. As it holds a restart tag, another instance of the
same recipe is created when the plan reaches its end. In the case of the chat bot, we usually have
one active plan per possible command element. Currently most of the chat bot command hand-
ling recipes are in the active-commands cookbook.

the Jabber protocol handler is waiting for the production of message or presence element with a
type == 'outgoing', and automatically send them to the Jabber server when they are produced.

The main advantages of this architecture are the following :

you have a set of simple recipes instead of a giant one
you don't have to edit the handler's recipe to add new functionnalities
you can have multiple recipes handling a single command

if you do not want to use a command, you just have to remove the corresponding start-plan ele-
ment

The main drawback is that to handle a new command, you usually have to change / add stuff in mul-
tiple places, as explained in the section below.

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

http://www.logilab.org/projects/ail

I!JN!’ IiEllJ} Chapter 111 s

How to handle a new command

Chapter 111
How to handle a new command

Let us say we want to add a new command to the chat bot, "beep". When it receives this in a Jabber
message, your assistant should run the "beep" command on the host where it runs ("beep” is a Unix com-
mand ringing your computer'sinternal bell).

1. Creating the "beep" recipe

It is very simple to create the recipe since we have an action which is able to run arbitrary command
on the system, Basic.command. We mainly have to wrap it in arecipe and to tell it to run the "beep" com-
mand. So let us edit a file with your personna recipes, say $NARVAL_HOME/recipes/myrecipes.xml
(you can change the name of the cookbook file, but its place should be SNARVAL HOME/recipes so it
will be automatically loaded on Narval's startup).

We end with the following content :

<?xm version="1.0" encodi ng="1 SO 8859- 1" ?>
<al : cookbook xm ns:al ="http://ww | ogil ab. org/ nanespaces/ Narval /1. 2" >
<al : reci pe nanme="beep" >
<al :step id="1" type="action" target="Basic.comuand">
<al : ar gunent s>
<dat a>beep</ dat a>
</ al : ar gunent s>
</ al : st ep>
</ al : reci pe>

We have a recipe named beep, made of a single step which target is the Basic.command action. If we
take alook at this action's prototype in the documentation, we can see that it takes a <data> element con-
taining the command to run as input. In the above case, since the element is a constant, it can be given us-
ing the <al:arguments> child element of the step definition.

Y ou can test this recipe by adding thislinein your memory file:

If you aready have a narval running with an active narval-start-plan, you can tell it to start the myre-
cipe.beep plan by sending it ajabber message saying "start-plan myrecipe.beep”.

In the first case, your agent should make your system beep at some point of its startup, in the second
case, it should make your system beep when you tell him to start your recipe.

2. Making an "active" recipe using it

We now have a recipe doing what we wanted, and we would like to make an active recipe from it, re-
acting to a "beep" command that should be produced in some conditions defined in the next section. To
make a plan wait indefinitly for an element, you have to add a condition on a transition matching the de-
sired element. So we end with the following recipe in our myrecipe cookbook:

<al : reci pe nanme="active-beep" restart="yes">

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

I_og Iab Chapter 111 .

How to handle a new command

<al :step id="1" type="action" target="Basic.nop"/>
<al :step id="2" type="recipe" target="nmnyrecipes. beep"/>
<al:transition id="t0">
<al:in idref="s1"/>
<al :out idref="s2"/>
<al : condi ti on use="yes">
<al : mat ch>l Conmand(el nt). name == 'beep' </al : mat ch>
</ al : condi tion>
</al:transition>

We have afirst step doing nothing (nop stands here for "no operation™) and then a transition to a step
running the recipe created in the previous section. On this transition, we have a condition telling that we
are waiting for an element implementing the ICommand interface, and that the name attribute of this com-
mand element should have the "beep" value. The restart attribute is set to "yes' so that the plan is auto-
matically restarted when it ends.

3. Modifying the ail rules file

The following step is to modify the rules file to produce this command element on some user input. To
do so we can add the following linesto it:

\ s*RI NG| BOP| SONNE\ s* >> BEEP

There are two types of rules in the ail syntax, rewrite rules and command (final) rules. A rule is
defined by two parts separated by a:: for command rules, or a>> for rewrite rules. The left-hand side is
always aregular expression used to match some input or rewritten text, and the right-hand side is either:

» (for rewrite rules) a string used to rewrite the input, which can contain string substitution taken
from the input text using the usual regular expression syntax (i.e. "1" will be replaced by the
content of the first group of the regular expression in the left part of the rule)

e (for command rules) a command definition, made of a function name and some optiona argu-
ments, separated by spaces (please note we are not talking about the same commands as the one
we have been describing so far). In Narval, you have three functions available:

* ignore: take no arguments and do nothing

» random: take arbitrary list of arguments and do create a command element with name ==
'response’ and as argument one of the input argument choosen randomly

e command: create a command element whose name is the first argument and following ar-
guments are included as the command element's arguments
The command definition can also use string substitutions as rewrites do.

It is to be noticed that regular expressions are compiled so that they are case insensitive. When pro-
cessing some input text, the algorithm is:
1. takerulesin order until aleft-hand side regular expression is found that matches the input text
2. depending on the type of the matching rule:

(rewrite rule) rewite the text using the right-hand side of the rule
and
go back to 1) with the rewritten text as input

¢ (command rule) call the command function using given arguments and stop there
3. if no rule matches, raise an error.

So in our case, we have added:

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

I_og Iab Chapter 111 .

How to handle a new command

» arewriterule so that "RING", "BOP" and "SONNE" with any space before or after get rewritten
to "BEEP"

» acommand rule so that "BEEP" as input produce a command element with 'beep' as name

4. Testing the chat command

We are almost done ! Let us suppose that you have your agent already running. The first thing to do to
activate our new command is to start the active plan handling it, by sending the following message to the

agent:

Now, you should be able to make your agent ring your computer's bell by just typing for instance
"beep" or "ring" in its Jabber window.

5. Modifying the memory file to handle this command per-
manently

Now that everything works fine, you just have to add the following element to your memory file:

By doing so, this recipe will be automatically started on the next startup.

One point we've not seen yet is how to control who has access to which command. Thisis explained in
the next section.

6. Configuring commands access right using the
<bot-configuration> element

The problem is that you don't want anyone to be able to give arbitrary command to your assistant. That
is not a big deal for our "beep” command, but it may be for other command, such as "shutdown” for ex-
ample which stops the agent.

An important attribute of the bot configuration element is myuser. This attribute should indicates to the
agent the Jabber id of its master. The default command policy (i.e. access to commands with no explicit
access right defined) depends on this attribute: * if it is defined, only this user has access to the command
* if it is not defined, all users have access to the command

Explicit access rights are defined using <access-right> children elements on the bot configuration. For
instance:

<bot - configurati on nyuser="syt">
<l - -

Conmands access rights, given to explicit Jabber user id or to a group
usi ng one of the follow ng special keywords:

all (everybody)

nmyuser (user of the agent, defined on the bot-configuration el enent)
agents (narval agents) NOT YET | MPLEMENTED

peopl e (non narval agents) NOT YET | MPLEMENTED

*

* ok

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

I_og Iab Chapter 111

How to handle a new command 6

You can specify multiple ids separarated by commas. Comrands wi th no
access right defined default to "nyuser” if it is defined, else to "all".
-->

<access-right conmand="shut down" >nyuser </ access-ri ght >

<access-ri ght command="response">al | </ access-ri ght >

<access-right command="kb_add_user _i nf 0">al | </ access-ri ght >

<access-right command="kb_add_stnt " >myuser, gi znp</access-right>

With the previous bot configuration element in my memory file, | have:
* restricted access to the shutdown command to the agent's master, whose Jabber identifier is"syt"
(i.e. the value of the "myuser" attribute)
» given accessto any user for the "response” and "kb_add_user_info" commands

* restricted access to the "kb_add _stmt" command to both the agent's master and the user with the
"gizmo" Jabber id.

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

I_og Iab Chapter IV .

Some other configuration possibilities for existing commands

Chapter 1V
Some other configuration possibilities for ex-
Isting commands

Y ou can use the following to configure some parts of the chat bot or handled commands.

1. Base configuration

The following element allows for arbitrary location for the ail rulesfile:

<ur| address="fil e: $NARVAL_ HOVE/ dat a/ chat bot . ai | "

2. Logging control

Several parameters influence the logging behviour when observing forum:

» the min_threshold and max_threshold attributes of the <bot-configuration> element are used to
control the note-taking categorization : when it tries to categorize a sentence, the bot will get a
confidence level between 0 and 1 (O means "ignore", 1 means "log"). If this level is lesser than
the min_treshold, the sentence will be ignored. If it is greater than the max_treshold, the sen-
tence will be logged. In between, it will ask for feedback.

* thefollowing elements:
<ur| address="fil e: $NARVAL_HOVE/ dat a/ bot _| 0g"

type: name="uri : menory: di scussi on-| og- base" encodi ng="i so-8859-1"/>
<url address="fil e: $NARVAL HOWE/ dat a/ bot | ear ned_dat a"

are defining a directory where log files (one for each discussion) and the learned data file will be
located

3. Knowledge management

Depending on your knowledge base backend (currently there is one using Pylog
[http://christophe.delord.freefr/en/pylog/] @nd another one using Redland [hitp://ibrdf.org/], yOou may have to use the fol-
lowing elements to locate either the Pylog file (using a Prolog [http://gprolog.inriafr/] Syntax) or the Redland
file (using XML/RDF [http://www.logilab.org/projects/ail] Syntax). Note that both could be used in parallel as they
have different capabilities.

<url address="file: $NARVAL_HOVE/ dat a/ kb. pl "
type: name="uri: menory: kb"/ >
<url address="fil e: $SNARVAL HOVE/ dat a/ rdf store. rdf"

Finally the following is giving the address of your personal FOAF [http://www.foaf-project.org/] file:

<ur| address="fil e: $NARVAL_HOVE/ dat a/ f oaf . rdf "

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

http://christophe.delord.free.fr/en/pylog/
http://librdf.org/
http://gprolog.inria.fr/
http://www.logilab.org/projects/ail
http://www.foaf-project.org/

I-og Iab Chapter V o

Going further

Chapter V

Going further

To go further with Narval, you should read the narval user [http://www.logilab.org/projectsinarval /doc/user_manual]
and developper [http:/iwww.logilab.org/projects/inarval/doc/devel opper_manual] Manuals. Y ou can also join the ai-projects
[http:/Avww.logilab.org/imailinglists/ai_projects] mailing-list in order to discuss with users and devel opers.

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

http://www.logilab.org/projects/narval/doc/user_manual
http://www.logilab.org/projects/narval/doc/developper_manual
http://www.logilab.org/mailinglists/ai_projects

	Chapter I - The Jabber protocol handler
	Chapter II - The default Jabber processing mechanism in Narval
	Chapter III - How to handle a new command
	1. Creating the "beep" recipe
	2. Making an "active" recipe using it
	3. Modifying the ail rules file
	4. Testing the chat command
	5. Modifying the memory file to handle this command permanently
	6. Configuring commands access right using the <bot-configuration> element

	Chapter IV - Some other configuration possibilities for existing commands
	1. Base configuration
	2. Logging control
	3. Knowledge management

	Chapter V - Going further

