
Olivier Cayrol

Alexandre Fayolle

Sylvain Thénault

Narval Technical Manual

Narval Technical Manual
Olivier Cayrol

Alexandre Fayolle

Sylvain Thénault

Copyright 2000-2005 by Logilab

Copyright 2004-2005 by DoCoMo Euro-Labs GmbH

Legal Notice

Copyright © 2000-2005 by Logilab.

This material may be distributed only subject to the terms and conditions set forth in the Open Public-
ation License, v1.0 or later (the latest version is presently available at ht-
tp://www.opencontent.org/openpub/ [http://www.opencontent.org/openpub/]).

Distribution of substantively modified versions of this document is prohibited without the explicit per-
mission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form is prohibited un-
less prior permission is obtained from the copyright holder.

Abstract

Narval is both a language and an interpreter for this language. The language is well suited for writing
intelligent personal assistants. This document presents its internal architecture and its coding philosophy.
Reading this document is advised to all people wanting to study Narval source code, or just to understand
how it works.

Revisions

Num. Date Author Remarks

$Revision:
1.4 $

$Date: 2001/10/16
10:18:25 $

$Author: alf $

Narval Technical Manual ii

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

http://www.opencontent.org/openpub/
http://www.opencontent.org/openpub/

Table of Content

Warning . 1

Chapter I - Narval Operation . 2

1. Elements, interfaces and adapters . 2

2. The memory: notion of context nesting . 2

3. Difference between recipes and plans . 3
3.1. Introduction to recipes . 3
3.2. Plan execution . 3

4. Running a step . 4
4.1. General behaviour . 4
4.2. Special behaviour: the foreach attribute . 4

5. Running an action or a transition . 5
5.1. Prototype of an action . 5
5.2. Getting inputs before running an action . 10
5.3. Executing the action and fetching the outputs . 11
5.4. Handling action generated errors . 11
5.5. Further execution of the plan . 11

6. Evaluating transitions . 11
6.1. Conditions in a transition . 12
6.2. Behaviour of transition . 13
6.3. Used and consulted elements . 14
6.4. Context of a transition . 14
6.5. Priorities . 14
6.6. Using elements to evaluate transitions . 14
6.7. Further execution of the plan . 14

7. Element selection and condition evaluation . 15

Chapter II - Chosen representations and used techniques . 16

1. Description of the various elements . 16
1.1. Description of a recipe . 16
1.2. Description of a plan . 19
1.3. Notion of module. Description of the actions. 20
1.4. Description of transform elements . 21

2. Memory structure . 21
2.1. Internal structure of the memory . 21
2.2. Memory initialization . 21

3. Conditions expression and elements selection . 22

4. Evaluation of the fireability of a transition . 22

Chapter III - Known Bugs . 23

Narval Technical Manual iii

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Chapter IV - Conclusion . 24

Glossary . 25

Narval Technical Manual iv

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Warning

This document presents with great details how Narval works. It is expected that the reader has under-
stood the purpose of the application, and some global knowledge of the functionalities. It is strongly ad-
vised to read the User Manual first.

Warning 1

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Chapter I

Narval Operation

1. Elements, interfaces and adapters

Everything in narval is based on what we call elements. Those elements are used to hold any informa-
tion but also to describe a desired behaviour of the agent, using elements such as actions and recipes, or
to control it, using elements such as start-plan, plans, etc... All of them are manipulated by the interpreter
and contained in it's memory.

Elements are actually python class instances, and so defined in python modules and (usually automat-
ically) registered to the interpreter. Also, for a greater flexibility, the concepts of interface and adapter are
used:

•••Interfaces and adapters, as elements, are defined by classes in python modules and registered to the in-
terpreter.

2. The memory: notion of context nesting

Narval has a memory in which it stores elements that it handles. In the memory, elements are grouped
according to the plans that use them. It is thus possible to define a context for each plan (see Figure 1).

Figure 1 - Narval's memory

The context of a plan is the set of elements handled by the plan, i.e. all the elements created or used by
the steps of the plan or that triggered the transitions of the plan. The memory holds everything handled by
Narval, that is, all the contents of the contexts, as well as general interest elements, such as plans, recipes

Chapter I
Narval Operation 2

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

or, as shown in the example (see Figure 1), a mailbox element which represents the mail box used by
Narval. Since it is meant to be shared by several plans, this element is held in the memory, and in no spe-
cific context. When a plan is run from within another plan, its context is nested within its parent's context.
This is the case in the example shown in Figure 1) with plan Plan 1.1 having a context nested in plan
Plan 1's.

During plan execution, elements are dynamically added to the different contexts (see element Ele-
ment 3 in Figure 1). Elements in memory that have not been used after a given amount of time may be
automatically removed so that the memory size will not grow too much.

3. Difference between recipes and plans

3.1. Introduction to recipes

A recipe is a specification of a sequence of steps and transitions necessary to complete a given task.
Recipes represent everything a Narval can do. A recipe is described with steps and transitions but cannot
be executed. This requires the instantiation of a plan.

Recipes are elements stored in Narval's memory.

When a plan is built from a recipe (see Figure 2), Narval creates a new plan element in memory,
which has all the data required for the execution to the steps and transitions found in the recipe.

Figure 2 - Building a plan from a recipe

3.2. Plan execution

When executing a plan, Narval starts with the first step (see Section 4 “Running a step” - Chapter I).
After that, the outgoing transitions of this step are evaluated, and if one can be fired, Narval runs the des-
tination steps of the transition, and so on. Executing a plan is much like walking through a graph.

In the next example, Figure 3, after having run the action (label 1), Narval evaluates the transitions
(label 2) and only fires one of them to select the next action (label 3).

Chapter I
Narval Operation 3

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Figure 3 - Plan execution

4. Running a step

Two kinds of steps can exist in a recipe, depending on the target, which can be a recipe or an action.

4.1. General behaviour

If the step's target is a recipe, Narval creates a new plan from this recipe and executes it within the
context of the parent plan (the context of the new plan is consequently nested within the current plan's).

When the target is an action or transformation, Narval simply runs the target (see Section 5 “Running
an action or a transition” - Chapter I).

4.2. Special behaviour: the foreach attribute

The foreach attribute can only be set on steps whose target is an action. It specifies that the action
must be run for each element matching a given input (the foreach attribute gives the input identifier). In
the example presented on Figure 4), the Send_greetings action takes an email address element as an
input with Email_Ad as identifier (those addresses are stored in Email_Ad elements), and creates an
new year greetings email (stored in an Email type element). The step representing this action has a
foreach attribute set to Email_Ad as the desired input identifier. The action will thus be parallelized for
each email found in memory (in the example, three times). In the end, the action will have created three
Email elements.

Chapter I
Narval Operation 4

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Figure 4 - Foreach attribute in a step

5. Running an action or a transition

Note

Remark

Unless explicitely noted, all that is said about actions is also true for transitions in this section. In order
to make the text more readable, we shall only speak of actions.

5.1. Prototype of an action

Actions used by Narval provide a prototype. In other words, they describe the elements they require in
order to execute correctly and the elements that they produce when the execution was successful. For in-
stance, the Catch_new action which gets new emails in a mail box, specifies that it needs a mailbox
element as an input, and that it produces email elements as outputs.

Each action input describes an element type that is required by the action. For each input, it is possible
to specify additional properties.

5.1.1. Used and consulted inputs

An input may be marked as used by an action using the use attribute. When an action uses an input, an
element matching the input can only be passed once as an input to the action. This is generally the expec-
ted behaviour for an action that transforms an element into another element. On the opposite, if the ele-
ment is not marked as used, it can be used over and over by plans instantiated from the same recipe. In
this case the element is said to be consulted.

If we consider Figure 5, action catch_new has a mailbox element as an input, and this input is

Chapter I
Narval Operation 5

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

consulted. When two plans issued from the same recipe are run (labels 1 and 2), the same mailbox ele-
ment can be used both times. This is obviously the expected behaviour since we always want to fetch
emails in the same mailbox.

Figure 5 - Action with a consulted input

On the other hand, in Figure 6, action Acknowl_mail which acknowledges reception of mails takes
Email elements as inputs, and uses them. As a consequence if, during the first execution (label 1), the
Email element number 1 is processed, it is not processed again on the second execution (label 2), and
element number 2 which was not there on the first time is processed. Once again, this is the expected be-
haviour, since we want to acknowledge each mail only once, but we also wish to keep them in memory so
that they can be passed to other plans.

Figure 6 - Action with used inputs

5.1.2. Outdated inputs

There are times where it is necessary to make sure that an element will never be reused after having
been passed by an action. This is called outdating the element, and is achieved by specifying an outdates
attribute on the input with the value of 'yes'. This is like using the use attribute, except that no other action
or transtion will ever be able to use the element.

A common use for this is emulating global variables in Narval: if an action outputs an element of the
same type as the outdated input, the effect will as if the new element replaced the original one.

Chapter I
Narval Operation 6

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

5.1.3. Single element or list of elements

In most cases, an action input is supposed to match only one element at run time. However, it is some-
times necessary to specify that an input can be matched by an unknown number of elements. For instance,
in Figure 7, action Send_greetings2 takes a list of email addresses (Email_Ad elements) as an in-
put, in order to send to all the persons in the list a new year greetings email. Please note that this action
creates a single email regardless of the number of Email_Ad elements. This is quite different from the
foreach attribute in a step: in Figure 4, the Send_greetings action step had created one Email for
each Email_Ad.

For each input, the list attribute specifies whether a single element or a list of elements must be used.

Figure 7 - Action with a list of elements input

5.1.4. Optional and mandatory inputs

It is also possible for an action to take optional inputs. Optional inputs are not required for the execu-
tion of the step, so if a matching element is not found for the step, this will not prevent the step from ex-
ecuting properly. This is not the case for mandatory inputs (by default if not specified otherwise), and if
no element can be found that matches a mandatory input, the action will not be executed and the plan will
be ended with an error.

In the example of Figure 8, action Send_greetings3 has an optional Signature input. If no
Signature element is present in memory, the action will be run anyway.

Chapter I
Narval Operation 7

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Figure 8 - Action optional input

5.1.5. Arguments of an action

It is also possible to specify arguments for an action explicitly in a recipe. As for elements in memory,
an argument is an element that can be used by an action when it is run. The main difference is that the ele-
ment is statically specified in the recipe instead of having been created dynamically at run time. If the ar-
gument does not match any input, it is not used.

In the example of Figure 9, action Send_greetings4 accepts a Text element containing the
greeting to be sent in the email. The step has an argument providing this element explicitly. This provides
a facility for using a generic action that is specialized when the recipe is written. For instance, in this ex-
ample, the same action can be used to send greetings in English or in French.

Chapter I
Narval Operation 8

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Figure 9 - Step with an argument

5.1.6. Constraining the prototype in the Step

It is possible to constrain the prototype of an action in the step, using the id attribute provided by the
action's inputs prototype. The description of the elements can be precised by adding match statements,
and some attributes of the input can be overriden, depending on the value of the attribute in the action
prototype, as shown in the table below.

attribute value in action overridable in step

optional yes yes

no no

list yes yes

no no

use yes no

no yes

outdates yes no

no yes

Chapter I
Narval Operation 9

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Table 1 - attribute precedence

This is a very powerful feature, that can be used, for instance, to provide template actions, which can
operate on different types of argument. Which kind of argument precisely is specified in the recipe as the
action is embedded in a step.

5.2. Getting inputs before running an action

When Narval is about to run an action step, it first gathers all the elements potentially acceptable by
the action's inputs. Then the elements are assigned to each input according to a number of priorities: ex-
plicit arguments to the step have higher priority than elements that have validated the incoming transition,
which have a higher priority than elements produced by an input step of that transition, which have a
higher priority than elements in the context of the plan and so on with all the nested contexts up to the
memory itself. This ordering enables to privilege elements that are close to the step.

Rank Element origin

1 action argument and step context

2 elements having validated a condition of the transition that has lead to the step.

3 elements produced by an incoming step of that transition

4 context of the step's plan (elements in memory belonging to the context of that plan)

5 context of the caller plan (this can be iterated)

6 global memory

Table 2 - Priorities given to elements according to their origin when assigning action inputs

The from_context and to_context attributes of an input can be used to control the memory area (from
the parent step to the whole memory) from which elements will selected for the input. For instance, if you
set from_context to "plan", the elements lookup will start from the step's plan, skipping step 1 to 3 of the
above table. In the same way, if you set to_context to "plan", the elements lookup will stop to the step's
plan, skipping step 5 and 6. Available values for those attributes are "step", "plan", "parent_plan" and
"memory"

Keep in mind that a given element can be assigned to only one input.

If the input can be a list of elements, the list is built with elements having the same priority, for in-
stance only elements having validated the transition leading to the step, or only elements coming from the
context of the plan. It is therefore impossible to build a list with elements coming, for example, from the
context of the action, from the transition and the context of the plan. The list with the higher priority is
used.

If the step has a foreach attribute (see Section 4.2 “Special behaviour: the foreach attribute” - Chapter
I) on a given element type, Narval tries to assign all the matching elements to a single input. If this is not
possible, Narval stops the execution of the plan and produces an error element (see below).

If after input assignment one of the mandatory inputs is unmatched, Narval stops the plan execution
and produces an error element in memory. This element describes the error (which plan was running,
which action was being prepared and which input was missing). This is of course not the case for optional
inputs.

Chapter I
Narval Operation 10

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

5.3. Executing the action and fetching the outputs

After having checked that all inputs are available, Narval launches the action using the selected ele-
ments as an arguments. The execution of the action can, of course, use several external programs. When
the execution is over, Narval checks that the elements returned match the expected outputs described in
the action prototype. If an unexpected element is found or if one output is matched by several elements
Narval terminates the plan and creates an error element in memory. This element describes the running
plan and step, and which output caused the problem.

5.4. Handling action generated errors

Errors can occur during action execution, for instance a file that the action is supposed to read can be
missing. However, we sometimes wish to handle such situations within the plan, and avoid aborting the
execution. This is possible if the action produces an error element itself. In that case, Narval checks for
the existence of specific transition dedicated to error handling (see Section 6.2 “Behaviour of transition” -
Chapter I). If such a transition is found in the step's outgoing transitions, and its conditions are matched, it
is fired immediately and the execution goes on. Otherwise, the plan is aborted as described above.

5.5. Further execution of the plan

The elements produced as outputs by the step are submitted to following transitions, so that their con-
ditions can be evaluated.

6. Evaluating transitions

In a plan, the transitions control the execution flow. Figure 10 shows a recipe with several transitions.
Some have only one incoming step, and only one outgoing step, others have several incoming steps or
several outgoing steps, or both. In order for a transition with several incoming steps to be fired, all the
steps must have been successfully executed. When a transition has several outgoing steps, the execution
of all the steps is parallelized.

Chapter I
Narval Operation 11

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Figure 10 - General presentation of transitions in a recipe

6.1. Conditions in a transition

Each transition can bear one or more conditions allowing to choose which transition will be fired, and
thus what will be the execution path of the plan, according to the elements produced by the steps that
where formerly executed, and the content of the global memory.

A condition checks the presence in memory of an element having a number of specificities. It becomes
true, thus giving a chance to the transition to be fired, only if such an element exists. On Figure 11, one of
the transitions checks the existence of an element of type Elt1 and the other one checks for an element
of type Elt2. Since there is only an Elt1 element in memory, only the former transition can be fired,
and its outgoing steps will be executed. If two transitions can be fired at the same time, the transition with
the highest priority is fired (see Section 6.5 “Priorities” - Chapter I). In case of a tie, the behaviour is un-
specified. Such a situation can be avoided by choosing carefully the conditions of the transitions and by
assigning different priorities to transitions that may be simultaneously fireable.

Chapter I
Narval Operation 12

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Figure 11 - Handling of a transition's conditions by Narval

A transition can have several conditions. Each condition checks for the existence of a different ele-
ment. Therefore, a transition with three conditions can be fired only if its three conditions are matched by
three different elements.

6.2. Behaviour of transition

The incoming links of a transition can optionally be flagged as error handling links.

Normally this flag is not set. In this case, the transition can be fired only if the step connected to this
link has been successfully executed and all the conditions of the transition are satisfied.

If one of the input links is flagged as error handling, the transition can be fired only if the step connec-
ted to this link has produced an error element during its execution, and, of course, if all the conditions
of the transition are matched.

In Figure 12, on the left panel, an action has generated an Error element (see Section 5.4 “Handling
action generated errors” - Chapter I). This causes the transition on the error handling link to be activated,
regardless of other transitions. On the left panel, since no error has occurred in the step, the normal link is
activated, and the other transition is evaluated.

Figure 12 - Transition behaviour (standard or error handling)

Chapter I
Narval Operation 13

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

6.3. Used and consulted elements

Just as for action inputs (see Section 5.1.1 “Used and consulted inputs” - Chapter I), it is possible to
specify that a condition will 'use' its matching element, so that the same element will not be able to match
a condition of the transition more than once. For instance, if the first transition of a plan can be fired if an
email element is available, and this element is used by the condition, the plan will be run only once for
each email.

6.4. Context of a transition

Just as for steps (see Section 5.2 “Getting inputs before running an action” - Chapter I), it is possible
to specify a context for a transition condition. This forces Narval to look for elements in a given memory
area, either the global memory or the context of the running plan, and to use these elements first to match
the condition. (see Section 6.6 “Using elements to evaluate transitions” - Chapter I).

6.5. Priorities

When several conditions are available after a step, a priority can be set on these transitions, so that
Narval can break ties when selecting which transition to fire (the one with the highest priority is used).
This enables having a default condition that will be fired if no other transition can be fired, or to solve
situations where several transitions could be fired simultaneously.

6.6. Using elements to evaluate transitions

When Narval must evaluate a transition, it first gathers all the elements that match each condition.
Then it assigns an element to each condition, using the same algorithm as for action input assignment (see
Section 5.2 “Getting inputs before running an action” - Chapter I). This privileges the elements that are
closer to the transition.

Assignment order Element location

1 transition context

2 elements produced by incoming steps

3 current plan memory context

4 context of caller plans

5 global memory

Table 3 - Selection order for element condition assignment in transitions

An element can be assigned to at most one condition. If after condition assignment, a condition is still
not matched, the transition is not fireable. If no transition in the plan is fireable, execution of the plan is
suspended until another plan adds a new element in the memory that makes a transition fireable, and thus
enables the plan execution to be resumed.

6.7. Further execution of the plan

When a transition is fired, Narval prepares the outgoing steps for execution and sends them the ele-

Chapter I
Narval Operation 14

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

ments having matched the transition conditions.

7. Element selection and condition evaluation

When an action is executed, Narval checks that the input elements given to the action and the output
elements produced by the action match the action prototype. To evaluate a transition, Narval looks in
memory for elements matching the description given in the condition. Similarly, to build the context of a
step or of a transition, or to implement the foreach evaluation of a step, Narval selects elements in
memory. In all cases, the same matching algorithm is used: only elements having at least the required pat-
terns are eligible. For instance, the transition leading to an email forwarding action step lets through only
mails sent by M. Dupont, without considering the email subject or body. This is done by writing a condi-
tion saying that we want an email element having the sender="M. Dupont" property. Each condi-
tion can specify several properties of an element and several conditions specify different elements. This is
a very powerful tool to specify constraints pertaining to the execution flow of the steps, by restraining the
prototype of the actions.

Chapter I
Narval Operation 15

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Chapter II

Chosen representations and used techniques

Narval uses numerous techniques lying on the XML data description language and the Python pro-
gramming language. The following sections will describe Narval majors implementation choices.

1. Description of the various elements

1.1. Description of a recipe

A recipe is described using an XML tree. This tree contains a root node (the cookbook node) and be-
low several child nodes. Each node can have attributes. The recipe XML tree is described below. A real
recipe might, of course, have several step nodes and several transition nodes. Node ordering is un-
important.

recipe

Recipes can appear as a top level element in Narval's memory. When serialized, they are usually stored in cookbook Nodes (this is only a
convention though).

Content model

step+,transition*

A recipe may consist of a single step element, which will be both the start and end step. In most cases, more than one steps will be used,
and these steps will be connected by transition elements. The order of the child nodes is not important.

Attributes

group Mandatory. The name of the recipe group. This relates the recipe to a cookbook, and thus provides a namespace for
the recipe, in which we are sure that no other recipe will have the same name.

name Mandatory. The name of the recipe itself. When used as the target of a step or a start plan command, the recipe will
be refered to as 'group.name'.

restart Optional, defaults to 'no'. Should be 'yes' if plans instanciated from this recipe should restart after the end step has
been completed.

decay Optional. Gives the number of seconds after which plans instantiated from this recipe will be forgotten

Table 4 - Description of recipe nodes

step

Steps encapsulate the behavioural units in a recipe, which can be actions, transformations or other recipes.

Content model

arguments?,input*,output*

Comments: a basic step is empty. If the target is an action or a transformation, explicit arguments can be provided in an argument node; the

Chapter II
Chosen representations and used techniques 16

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Content model

context child node can be used to specify the context in which the arguments will be fetched; input and output nodes can be used to
provide restrictions to the prototype of the action or transformation. The order of the child nodes is not important.

Attributes

id Mandatory. The identifier of the step. Must be unique within a recipe

type Mandatory. The type of the target of the step. Must be one of 'recipe', 'action'

target Mandatory. The name of the target of the step, generally of the form 'group.name'.

foreach Optional. See Section 4.2 “Special behaviour: the foreach attribute” - Chapter I for more information

Table 5 - Description of step nodes

transition

Transitions are used to control the execution flow in the recipe. They can express conditional execution, or synchronization

Content model

in+,out+,condition,time?,context?

Attributes

id Mandatory. The identifier of the transition. Must be unique within a recipe

priority Optional, defaults to 0. Used to break ties when determining which transition should be fired: the one with the highest
priority is used.

state This attribute is only valid for transitions in plan elements. It specifies the current state of the transition. Possible
values are wait-step, wait-time, wait-condition, fireable, fired, fail, impossible

Table 6 - Description of transition nodes

condition

A condition is a set of match nodes, that should all be matched by the same element in order for the condition to be true.

Content model

match+

Attributes

use optional, defaults to no. Possible value are yes, no. If use is yes, then an element will only be able to match the condi-
tion once.

from_context Optional. The context from which elements lookup should start.

to_context Optional. The context where elements lookup should stop.

Table 7 - Description of condition nodes

Chapter II
Chosen representations and used techniques 17

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

match

a match describes a number of elements using an python expression

Content model

#PCDATA

The python expression describing the matched elements. Elements for which the expresion evaluates to true, a non empty list of nodes, a non
empty string or a non zero numeric value are matching elements. The expression should use the special elmt identifier, which represent the
element currently being tested (actually the expression is ran against avery matchable element).

Table 8 - Description of match nodes

time

Content model

EMPTY

Attributes

seconds min = 0 max = 59

minutes min = 0 max = 59

hours min = 0 max = 23

monthdays min = 1 max = 31

months min = 1 max = 12

years min = -10000 max = 10000

yeardays min = 1 max = 366

weekdays min = 0 max = 6 (0 is monday)

Table 9 - Description of time nodes

in

an in node has a reference to a step in a plan or recipe.

Content model

EMPTY

Attributes

idref Mandatory. The identifier of the step.

Table 10 - Description of in nodes

Chapter II
Chosen representations and used techniques 18

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

out

an out node has a reference to a step in a plan or recipe.

Content model

EMPTY

Attributes

idref Mandatory. The identifier of the step.

Table 11 - Description of out nodes

Recipes are specified in XML files stored on the disk. When starting Narval, these files are read and
recipes are stored in the memory.

1.2. Description of a plan

A plan looks like a recipe. It is also described as an XML tree. Plans have additional attributes allow-
ing plan execution control. The plan tree is described below.

plan

Plans can appear as a top level element in Narval's memory. Plans are instances of recipes, that Narval is able to run.

Content model

step+,transition*,elements

The steps and transitions are initially copied from the recipe from which the plan was instanciated. The elements node is used to store ref-
erences to the elements used by the plan, which make up the context of the plan. Only Narval can create plans.

Attributes

recipename Mandatory. The name of the recipe from which the plan was instanciated.

start_step Mandatory. The value of this attribute should be the id of the start step of the plan

end_step Mandatory. The value of this attribute should be the id of the final step of the plan

restart Optional, defaults to 'no'. Should be 'yes' if the plan should restart after the end step has been completed.

decay Optional. Gives the amount of time after which the will be forgotten

eid Optional. Element identifier in Narval's memory.

parent_plan Optional. The eid of the plan of in which the current plan is embedded as a step.

parent_step Optional. The id of the step of which the current plan is the target.

state Specifies the current state of the plan. Possible values are ready, running, failed, end, failed-end, done

Table 12 - Description of plan nodes

Chapter II
Chosen representations and used techniques 19

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Plans don't have to be specified in XML files as Narval builds them in memory from the recipes.
However, Narval can save the content of its memory in a file. Therefore, plans might appear in this file.

1.3. Notion of module. Description of the actions.

Actions are grouped in modules. A module is a Python file containing the actions code. In this file,
there is also an XML tree describing all the actions of the module and their prototype (i.e. their inputs and
their outputs). This tree is described below.

module

Content model

action*

Attributes

name Optional. The name of the module. If provided, must be the name of the python file (without the .py extention)

version Optional.

Table 13 - Description of module nodes

action

Content model

description*,input*,output*

The input and output nodes are the prototype of the action.

Attributes

name Mandatory. The name of the action.

group Optional. If provided, must be the name of module

func Mandatory. The name of the python function implementing the action

eid Optional. Element identifier in Narval's memory. This is an internal attribute that should not be set when writing a
module

Table 14 - Description of action nodes

description

Content model

#PCDATA

Chapter II
Chosen representations and used techniques 20

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Attributes

lang Mandatory. The iso notation for the language of the description

Table 15 - Description of description nodes

When Narval executes a plan and has to run an action, it firstly gets the action name in the plan XML
tree. This name is compound of the module name followed by the action name (for example,
Email.catch_new refers to the catch_new action of the Email module). Narval loads the corres-
ponding module and runs the Python function associated with the action (in previous example, Narval
loads Email.py Python module).

The behaviour of the modules is further described in the modules programmer handbook.

1.4. Description of transform elements

Transforms in Narval conform to the XSLT specification. In order to be processed by Narval, tough,
they must include some information about their prototype in a prototype node, which has to be a child of
the root node of the transformation. Since this node is not in the XSLT namespace, it will be ignored by
the tranformation engine.

prototype

Content model

description*,input*,output*

Table 16 - Description of prototype nodes

More information is available in the Module Programmer Handbook.

2. Memory structure

2.1. Internal structure of the memory

Narval memory is a simple set of elements, that should be exportable as an XML tree. The various ele-
ments are attached to the root node (memory). Each element in the memory has got an id number called
eid.

2.2. Memory initialization

When Narval starts, it fills its memory using the $NARVAL_HOME/data/memory.xml. This XML
file contains a tree representing the initial memory. It might contain general data such as the user's name,
the user's email address, his electronic mailbox, etc.

This file may also contains start-plan elements permitting recipes instantiation and plans starting
when initializing Narval.

Chapter II
Chosen representations and used techniques 21

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

During its initialization, Narval loads the recipes in its memory. The recipes are described in XML
files located in the $NARVAL_HOME/recipes/ or in the $NARVAL_SHARE/recipes/ directories.

3. Conditions expression and elements selection

As described above, the elements selection and the conditions evaluation are computed thanks to an
unique matching algorithm. Such as algorithm searches the memory for elements corresponding to a pat-
tern. Each pattern is described in a match node (in the actions prototypes). Inserting several nodes al-
lows the description of several patterns and, thus, the selection of elements of different kinds. Inside the
match node, the pattern definition is expressed using the Python language.

For instance, a condition waiting for an email element whose subject is Hi there is expressed as
follow: IEmail(elmt).subject == "Hi there". As Python syntax is very powerful, condi-
tions might be much more complicated.

4. Evaluation of the fireability of a transition

When Narval evaluates the transitions of a plan in order to know which ones are fireable and to decide
which one will be fired, it first classifies the transitions in three groups: the transitions that are impossible
to fire, the undetermined transitions and the potentially fireable transitions.

The impossible-to-fire transitions are the ones with an input step that has failed or has already been
used by a previous evaluation (step in the failed state or the history state). A transition flagged as
error handling that has a correctly executed input step or a transition not flagged as error handling that has
a failed input step are also impossible to fired.

The undetermined transitions are the ones with an input step being still executed (which does not al-
low knowing the result of the step).

The potentially fireable transitions are the other ones. The conditions of each of these transitions must
be checked in order to know if it can be fired.

If all the transitions of a currently executed plan are impossible to fire, the plan fails and an error
element is set in the memory. If a transition flagged as error handling is potentially fireable but can't be
fired because of unsatisfied conditions, the plan also fails. In the other cases, the plan execution contin-
ues. Further execution can be immediate thanks to a potentially-fireable transition having all its condi-
tions satisfied, or postponed as the plan waits for its undetermined transition to become impossible or po-
tentially fireable, or for its potentially fireable transitions to have their conditions satisfied.

Whatever could be the state of the other transitions, as a transition is fireable, it is fired.

Chapter II
Chosen representations and used techniques 22

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Chapter III

Known Bugs

A web page covering the known bugs of Narval should be available very soon now, if it is not already
there.

Chapter III
Known Bugs 23

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Chapter IV

Conclusion

This documentation provides a skipping through of Narval code, exposing the main notions, describ-
ing the software and explaining major design choices. The interested reader should read now the source
code of Narval, that is carefully commented, allowing the understanding of its exact detailed behaviour.

Chapter IV
Conclusion 24

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Glossary

Narval

Action
Conceptually elementary transformation that Narval can do with elements.

Arguments
Set of fixed elements used by an action.

Element
Generic representation of an object: all entities manipulated by Narval are Ele-
ments. It may be an action, an email, a Web page, a plan or a recipe. Tech-
nicaly, elements are applicative computing entity found in memory.

Error handling
See transition

Memory
Storage place of the elements in which they can be accessed by the actions.

Context
The context of a plan is the set of elements handled by the plan, i.e. all the ele-
ments created or used by the steps of the plan or that triggered the transitions of
the plan.

Plan
Instance of a recipe allowing its execution.

Recipe
Sequence of steps linked by transitions, describing a functionality of Narval.

Repetition
See step

Step
Basic brick of a recipe that can be either an action or an other recipe.

A step can have a repetition behaviour: it is then executed in parallel as much as
necessary in order to compute the element set on which the repetition is done
(the step is said to have a repetition behaviour on these elements type).

Transition
Link between a set of origin steps and a set of destination steps, that can have a
condition on elements found in memory. Each of the input can be flagged as er-
ror handling. If not set, the step linked with this input must be correctly ex-
ecuted to have the transition fireable. If set, the step linked with this input must
generate an error element to have the transition fireable.

Glossary 25

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

Computing Languages used in Narval

Python
Programming language. See http://www.python.org/ [http://www.python.org/].

eXtensible Markup Language (XML)
Data tagging language defined by the W3C. See http://www.w3c.org/XML/
[http://www.w3c.org/XML/].

Glossary 26

All rights reserved to Logilab. Any reproduction of this document without prior written authorisation, is prohibited.

http://www.python.org/
http://www.w3c.org/XML/

	Warning
	Chapter I - Narval Operation
	1. Elements, interfaces and adapters
	2. The memory: notion of context nesting
	3. Difference between recipes and plans
	4. Running a step
	5. Running an action or a transition
	6. Evaluating transitions
	7. Element selection and condition evaluation

	Chapter II - Chosen representations and used techniques
	1. Description of the various elements
	2. Memory structure
	3. Conditions expression and elements selection
	4. Evaluation of the fireability of a transition

	Chapter III - Known Bugs
	Chapter IV - Conclusion
	Glossary

