
Alexandria Manual
draft version

Alexandria software and associated documentation are in the public domain:
Authors dedicate this work to public domain, for the benefit of the public at
large and to the detriment of the authors’ heirs and successors. Authors intends
this dedication to be an overt act of relinquishment in perpetuity of all present
and future rights under copyright law, whether vested or contingent, in the
work. Authors understands that such relinquishment of all rights includes the
relinquishment of all rights to enforce (by lawsuit or otherwise) those copyrights
in the work.
Authors recognize that, once placed in the public domain, the work may be
freely reproduced, distributed, transmitted, used, modified, built upon, or oth-
erwise exploited by anyone for any purpose, commercial or non-commercial, and
in any way, including by methods that have not yet been invented or conceived.
In those legislations where public domain dedications are not recognized or
possible, Alexandria is distributed under the following terms and conditions:
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

i

Table of Contents

0.1 Hash Table Utilities . 1
0.2 Higher Order Functions . 1
0.3 List Manipulation . 2
0.4 Sequence Manipulation . 3
0.5 Macro Writing Utilities . 5
0.6 Symbol Utilities . 5
0.7 Array Utilities . 6
0.8 Type Designator Manipulation . 6
0.9 Mathematical Utilities . 6

1

0.1 Hash Table Utilities

[Function]alexandria:copy-hash-table table &key test size rehash-size
rehash-threshold

Returns a shallow copy of hash table table, with the same keys and values as the
table. The copy has the same properties as the original, unless overridden by the
keyword arguments.

[Function]alexandria:maphash-keys function table
Like maphash, but calls function with each key in the hash table table.

[Function]alexandria:maphash-values function table
Like maphash, but calls function with each value in the hash table table.

[Function]alexandria:hash-table-keys table
Returns a list containing the keys of hash table table.

[Function]alexandria:hash-table-values table
Returns a list containing the values of hash table table.

[Function]alexandria:hash-table-alist table
Returns an association list containing the keys and values of hash table table.

[Function]alexandria:hash-table-plist table
Returns a property list containing the keys and values of hash table table.

[Function]alexandria:alist-hash-table alist &rest hash-table-initargs
Returns a hash table containing the keys and values of the association list alist.
Hash table is initialized using the hash-table-initargs.

[Function]alexandria:plist-hash-table plist &rest hash-table-initargs
Returns a hash table containing the keys and values of the property list plist. Hash
table is initialized using the hash-table-initargs.

0.2 Higher Order Functions

[Function]alexandria:disjoin predicate &rest more-predicates
Returns a function that applies each of predicate and more-predicate functions in
turn to its arguments, returning the primary value of the first predicate that returns
true, without calling the remaining predicates. If none of the predicates returns true,
nil is returned.

[Function]alexandria:conjoin predicate &rest more-predicates
Returns a function that applies each of predicate and more-predicate functions in
turn to its arguments, returning nil if any of the predicates returns false, without
calling the remaining predicated. If none of the predicates returns false, returns the
primary value of the last predicate.

2

[Function]alexandria:compose function &rest more-functions
Returns a function composed of function and more-functions that applies its ar-
guments to to each in turn, starting from the rightmost of more-functions, and then
calling the next one with the primary value of the last.

[Function]alexandria:multiple-value-compose function &rest more-functions
Returns a function composed of function and more-functions that applies its ar-
guments to to each in turn, starting from the rightmost of more-functions, and then
calling the next one with all the return values of the last.

[Function]alexandria:curry function &rest arguments
Returns a function that applies arguments and the arguments it is called with to
function.

[Function]alexandria:rcurry function &rest arguments
Returns a function that applies the arguments it is called with and arguments to
function.

0.3 List Manipulation

[Type]alexandria:proper-list
Type designator for proper lists. Implemented as a satisfies type, hence not rec-
ommended for performance intensive use. Main usefullness as a type designator of
the expexted type in a type-error.

[Type]alexandria:circular-list
Type designator for circular lists. Implemented as a satisfies type, so not recom-
mended for performance intensive use. Main usefullness as the expected-type desig-
nator of a type-error.

[Macro]alexandria:appendf g1 &rest lists &environment g0
Modify-macro for append. Appends lists to the place designated by the first argu-
ment.

[Function]alexandria:circular-list &rest elements
Creates a circular list of elements.

[Function]alexandria:circular-list-p object
Returns true if object is a circular list, nil otherwise.

[Function]alexandria:circular-tree-p object
Returns true if object is a circular tree, nil otherwise.

[Function]alexandria:proper-list-p object
Returns true if object is a proper list.

3

[Function]alexandria:lastcar list
Returns the last element of list. Signals a type-error if list is not a proper list.

[Function]alexandria:make-circular-list length &key initial-element
Creates a circular list of length with the given initial-element.

[Function]alexandria:ensure-list list
If list is a list, it is returned. Otherwise returns the list designated by list.

[Function]alexandria:sans plist &rest keys
Returns a propery-list with same keys and values as plist, except that keys in the
list designated by keys and values corresponding to them are removed. The returned
property-list may share structure with the plist, but plist is not destructively
modified.

[Function]alexandria:mappend function &rest lists
Applies function to respective element(s) of each list, appending all the all the
result list to a single list. function must return a list.

[Function]alexandria:map-product function list &rest more-lists
Returns a list containing the results of calling function with one argument from
list, and one from each of more-lists for each combination of arguments. In other
words, returns the product of list and more-lists using function.

Example:

(map-product ’list ’(1 2) ’(3 4) ’(5 6)) => ((1 3 5) (1 3 6) (1 4 5) (1 4 6)
(2 3 5) (2 3 6) (2 4 5) (2 4 6))

[Function]alexandria:set-equal list1 list2 &key test key
Returns true if every element of LIST1 matches some element of LIST2 and every
element of LIST2 matches some element of LIST1. Otherwise returns false.

[Function]alexandria:setp object &key test key
Returns true if object is a list that denotes a set, nil otherwise. A list denotes a set
if each element of the list is unique under key and test.

[Function]alexandria:flatten tree
Traverses the tree in order, collecting non-null leaves into a list.

0.4 Sequence Manipulation

[Type]alexandria:proper-sequence
Type designator for proper sequences, that is proper lists and sequences that are not
lists.

4

[Macro]alexandria:deletef g134 item &rest remove-keywords &environment
g133

Modify-macro for delete. Sets place designated by the first argument to the result
of calling delete with item, place, and the remove-keywords.

[Macro]alexandria:removef g114 item &rest remove-keywords &environment
g113

Modify-macro for remove. Sets place designated by the first argument to the result
of calling remove with item, place, and the remove-keywords.

[Function]alexandria:rotate sequence &optional n
Returns a sequence of the same type as sequence, with the elements of sequence
rotated by n: n elements are moved from the end of the sequence to the front if n is
positive, and -n elements moved from the front to the end if n is negative. sequence
must be a proper sequence. n must be an integer, defaulting to 1. If absolute value of
n is greater then the length of the sequence, the results are identical to calling rotate
with (* (SIGNUM N) (MOD n (LENGTH SEQUENCE))). The original sequence
may be destructively altered, and result sequence may share structure with it.

[Function]alexandria:suffle sequence &key start end
Returns a radom permutation of sequence bounded by start and end. Permuted
sequence may share storage with the original one. Signals an error if sequence is not
a proper sequence.

[Function]alexandria:random-elt sequence &key start end
Returns a random element from sequence bounded by start and end. Signals an
error if the sequence is not a proper sequence.

[Function]alexandria:emptyp sequence
Returns true if sequence is an empty sequence. Signals an error if sequence is not a
sequence

[Function]alexandria:sequence-of-length-p sequence length
Return true if sequence is a sequence of length length. Signals an error if sequence
is not a sequence. Returns false for circular lists.

[Function]alexandria:copy-sequence type sequence
Returns a fresh sequence of type, which has the same elements as sequence.

[Function]alexandria:first-elt sequence
Returns the first element of sequence. Signals a type-error if sequence is not a
sequence, or is an empty sequence.

[Function]alexandria:last-elt sequence
Returns the last element of sequence. Signals a type-error if sequence is not a proper
sequence, or is an empty sequence.

5

[Function]alexandria:starts-with object sequence
Returns true if sequence is a sequence whose first element is eql to object. Returns
nil if the sequence is not a sequence or is an empty sequence.

[Function]alexandria:ends-with object sequence
Returns true if sequence is a sequence whose last element is eql to object. Returns
nil if the sequence is not a sequence or is an empty sequence. Signals an error if
sequence is an improper list.

0.5 Macro Writing Utilities

[Macro]alexandria:with-unique-names names &body forms
Binds each variable named by names to a unique symbol.

[Macro]alexandria:once-only names &body forms
Evaluates forms with names rebound to temporary variables, ensuring that each is
evaluated only once.

Example: (defmacro cons1 (x) (once-only (x) ‘(cons ,x ,x))) (let ((y 0)) (cons1 (incf
y))) => (1 . 1)

0.6 Symbol Utilities

[Function]alexandria:ensure-symbol name &optional package
Returns a symbol with name designated by name, accessible in package designated by
package. If symbol is not already accessible in package, it is interned there.

Example: (ENSURE-SYMBOL :cons :CL) => cl:cons

[Function]alexandria:format-symbol package control &rest arguments
Constructs a string by applying arguments to control as if by format, and then
creates a symbol named by that string. If package is nil, returns an uninterned
symbol, if package is t, returns a symbol interned in the current package, and other-
wise returns a symbol interned in the package designated by package.

[Function]alexandria:make-keyword name
Interns the string designated by name in the keyword package.

[Function]alexandria:make-gensym-list length &optional x
Returns a list of length gensyms, each generated with a call to gensym using (if
provided) as the argument.

6

0.7 Array Utilities

[Type]alexandria:array-index
Type designator for an array of length: an integer between 0 (inclusive) and length
(exclusive). length defaults to array-dimension-limit.

[Function]alexandria:copy-array array &key element-type fill-pointer adjustable
Returns an undisplaced copy of array, with same fill-pointer and adjustability (if
any) as the original, unless overridden by the keyword arguments.

0.8 Type Designator Manipulation

[Function]alexandria:of-type type
Returns a function of one argument, which returns true when its argument is of type.

[Function]alexandria:type= type1 type2
Returns a primary value of t is TYPE1 and TYPE2 are the same type, and a sec-
ondary value that is true is the type equality could be reliably determined: primary
value of nil and secondary value of t indicates that the types are not equivalent.

0.9 Mathematical Utilities

[Macro]alexandria:maxf g172 &rest numbers &environment g171
Modify-macro for max. Sets place designated by the first argument to the maximum
of its original value and numbers.

[Macro]alexandria:minf g192 &rest numbers &environment g191
Modify-macro for min. Sets place designated by the first argument to the minimum
of its original value and numbers.

[Function]alexandria:clamp number min max
Clamps the number into [MIN, MAX] range. Returns min if number lesser then min
and max if number is greater then max, otherwise returns number.

[Function]alexandria:lerp v a b
Returns the result of linear interpolation between A and b, using the interpolation
coefficient v.

[Function]alexandria:gaussian-random &optional min max
Returns two gaussian random double floats as the primary and secondary value,
optionally constrained by min and max. Gaussian random numbers form a standard
normal distribution around 0.0d0.

[Function]alexandria:iota n &key start step
Return a list of n numbers, starting from start (with numeric contagion from step
applied), each consequtive number being the sum of the previous one and step. start
defaults to 0 and step to 0.
Examples:

7

(iota 4) => (0 1 2 3 4)
(iota 3 :start 1 :step 1.0) => (1.0 2.0 3.0)
(iota 3 :start -1 :step -1/2) => (-1 -3/2 -2)

[Function]alexandria:mean sample
Returns the mean of sample. sample must be a sequence of numbers.

[Function]alexandria:median sample
Returns median of sample. sample must be a sequence of real numbers.

[Function]alexandria:variance sample &key biased
Variance of sample. Returns the biased variance if biased is true (the default), and
the unbiased estimator of variance if biased is false. sample must be a sequence of
numbers.

[Function]alexandria:standard-deviation sample &key biased
Standard deviation of sample. Returns the biased standard deviation if biased is true
(the default), and the square root of the unbiased estimator for variance if biased
is false (which is not the same as the unbiased estimator for standard deviation).
sample must be a sequence of numbers.

	Hash Table Utilities
	Higher Order Functions
	List Manipulation
	Sequence Manipulation
	Macro Writing Utilities
	Symbol Utilities
	Array Utilities
	Type Designator Manipulation
	Mathematical Utilities

