
ASCII-Hex, ASCII-85 and reverse ASCII-85
encoding

Dipl.-Ing. D. Krause

February 17, 2009

1

Contents
1 Overview 3

2 ASCII-Hex encoding 4
2.1 Encoding . 4
2.2 Decoding . 4

3 ASCII-85 encoding 5
3.1 Encoding . 5
3.2 Decoding . 6

3.2.1 Complete groups . 6
3.2.2 Incomplete groups . 6

4 Reverse ASCII-85 encoding 8
4.1 Encoding . 8
4.2 Decoding . 9

4.2.1 Complete groups . 9
4.2.2 Incomplete groups . 9

5 Summary 11

2

1 Overview
Binary data is encoded as ASCII text for multiple reasons, i. e.:

• A human readable form is needed to compare binary data against other bi-
nary data.
A typical example is file integrity verification where a message digest of a
downloaded archive is compared against the message digest published by
the original author of the archive.

• Some networking protocols can handle 7-bit ASCII text only.
An example are old printers connected to terminals.

For binary-to-ASCII encoding we require:

• Encoding and decoding must be unique transformations (this means after
encoding and decoding we want to have exactly the original data).

• The encoded text must contain characters in the range 0x21 ≤ c ≤ 0x7F
only (7-bit characters without Ctrl-A. . . Ctrl-Z).

• The encoded text must not contain whitespaces, it must be exactly one text
string.

3

2 ASCII-Hex encoding

2.1 Encoding
Each byte is splitted into 2 half-bytes (sometimes referred to as “nibbles”) con-
sisting of 4 bits each. Each half-byte is represented by the hexadecimal character
corresponding to the numeric value.
The byte 0x1F for example is encoded as the text “1F” or “1f”. The most signifi-
cant half-byte is printed first.

2.2 Decoding
The text is splitted into pairs of two hexadecimal characters, each pair represents
one byte of the binary data. The numeric values corresponding to the hexademial
characters are merged to build the byte. In the example the text “1F” is splitted
into the hexadecimal characters “1” and “F”, the corresponding numeric values
are 0x01 and 0x0F. Merging the half-bytes results in 0x1F.

4

3 ASCII-85 encoding

3.1 Encoding
The input is grouped into DWORDs (group of 4 bytes a, b, c and d). The first byte
is used as the most significant byte, the fourth byte is the least significant byte in
the DWORD.

z = a ·2563 +b ·2562 + c ·2561 +d ·2560

The base-85 representation of z is calculated

z = e ·854 + f ·853 +g ·852 +h ·851 + i ·850

The encoded characters for the DWORD are build as (char)(33+e), (char)(33+ f),
(char)(33+g), (char)(33+h) and (char)(33+ i).
If the last 4-byte group is incomplete the encoded data contains

• (char)(33+ e), (char)(33+ f), (char)(33+g), (char)(33+h) for three input
bytes,

• (char)(33+ e), (char)(33+ f), (char)(33+g) for two input bytes or

• (char)(33+ e), (char)(33+ f) for one input byte.

5

3.2 Decoding
3.2.1 Complete groups of 5 encoded characters

For a complete group of 4 binary bytes (5 encoded characters) we can retrieve e,
f , g, h and i and calculate z as

z = z′ = e ·854 + f ·853 +g ·852 +h ·851 + i ·850

= a ·2563 +b ·2562 + c ·2561 +d ·2560

The decoded bytes can be retrieved from the DWORD z, starting with the most
significant byte.

3.2.2 Incomplete groups

If the last group is incomplete and contains

• e and f (1 binary byte / 2 encoded characters),

• e, f and g (2 binary bytes / 3 encoded characters) or

• e, f , g and h only (3 binary bytes / 4 encoded characters)

the coefficients

• g, h and i,

• h and i or

• i

are unknown.
Instead of

z = a ·2563 +b ·2562 + c ·2561 +d ·2560

= e ·854 + f ·853 +g ·852 +h ·851 + i ·850

we can only calculate

z′ = a′ ·2563 +b′ ·2562 + c′ ·2561 +d′ ·2560

=


e ·854 + f ·853 +g ·852 +h ·851 for 3 binary bytes

e ·854 + f ·853 +g ·852 for 2 binary bytes

e ·854 + f ·853 for 1 binary byte

6

If the skipped coefficients are not 0 we have

z′ < z

For a group of 3 binary bytes only i is omitted, we have

z− z′ ≤ 84 < 255

After calculating a′, b′, c′ and d′ we can find z:

z = a ·2563 +b ·2562 + c ·2561

=

{
a′ ·2563 +b′ ·2562 + c′ ·2561 if d′ = 0

a′ ·2563 +b′ ·2562 + c′ ·2561 +256 otherwise

For a group of 2 binary bytes h and i are skipped, we have

z− z′ ≤ 84 ·85+84 < 255 ·256+255

After calculating a′, b′, c′ and d′ we can find z:

z = a ·2563 +b ·2562

=

{
a′ ·2563 +b′ ·2562 if c′ = 0∧d′ = 0

a′ ·2563 +b′ ·2562 +2562 otherwise

For one single binary byte g, h and i are omitted, we have

z− z′ ≤ 84 ·852 +84 ·85+84 < 255 ·2562 +255 ·256+255

After calculating a′, b′, c′ and d′ we can find z:

z = a ·2563

=

{
a′ ·2563 if b′ = 0∧ c′ = 0∧d′ = 0

a′ ·2563 +2563 otherwise

7

4 Reverse ASCII-85 encoding

4.1 Encoding
The input is grouped into DWORDs (group of 4 bytes d, c, b and a). The first input
byte is used as the least significant byte, the fourth byte is the most significant
byte in the DWORD.

z = a ·2563 +b ·2562 + c ·2561 +d ·2560

The base-85 representation of z is calculated

z = e ·854 + f ·853 +g ·852 +h ·851 + i ·850

The encoded characters for the DWORD are build as (char)(33+ i), (char)(33+h),
(char)(33+g), (char)(33+ f) and (char)(33+ e).
If the last 4-byte group is incomplete the encoded data contains

• (char)(33 + i), (char)(33 + h), (char)(33 + g), (char)(33 + f) for three input
bytes,

• (char)(33+ i), (char)(33+h), (char)(33+g) for two input bytes or

• (char)(33+ i), (char)(33+h) for one input byte.

8

4.2 Decoding
4.2.1 Complete groups of 5 encoded characters

For a complete group of 4 binary bytes (5 encoded characters) we can retrieve e,
f , g, h and i and calculate z as

z = z′ = e ·854 + f ·853 +g ·852 +h ·851 + i ·850

= a ·2563 +b ·2562 + c ·2561 +d ·2560

The decoded bytes can be retrieved from the DWORD z, starting with the least
significant byte.

4.2.2 Incomplete groups

If the last group is incomplete and contains

• h and i (1 binary byte / 2 encoded characters)

• g, h and i (2 binary bytes / 3 encoded characters) or

• f , g, h and i (3 binary bytes / 4 encoded characters)

we know the skipped coefficients are zero

• e = f = g = 0 (1 binary byte)

• e = f = 0 (2 binary bytes)

• e = 0 (3 binary bytes)

If we calculate

z′ =


h ·851 + i ·850 (1 binary byte)

g ·852 +h ·851 + i ·850 (2 binary bytes)

f ·853 +g ·852 +h ·851 + i ·850 (3 binary bytes)

we know

z = z′

9

and

d = d′ 1, 2 or 3 binary bytes

c = c′ 2 or 3 binary bytes

b = b′ 3 binary bytes

We do not have to take care of different cases.

10

5 Summary
The ASCII-Hex encoding is an easy-to-understand encoding. The relation be-
tween the number of original bytes lo and the number of encoded bytes le is

le = 2 · lo

The ASCII-85 encoding is described in the PostScript and PDF file format
reference. Encoding and decoding is more complicated than ASCII-Hex encoding
but output is smaller.

le = 1.25 · lo
The reverse ASCII-85 encoding produces output of the same length as the

original ASCII-85 encoding. As the skipped coefficients for an incomplete final
group are known to be zero the decoding routine is a little bit simpler than the
decoding routine of the ASCII-85 encoding.

le = 1.25 · lo

11

	Contents
	Overview
	ASCII-Hex encoding
	Encoding
	Decoding

	ASCII-85 encoding
	Encoding
	Decoding
	Complete groups
	Incomplete groups

	Reverse ASCII-85 encoding
	Encoding
	Decoding
	Complete groups
	Incomplete groups

	Summary

