MySQL++ User Manual

Kevin Atkinson
Sinisa Milivojevic
Monty Widenius
Warren Y oung
Copyright © 1998-2001, 2005 Kevin AtkinsonMySQL ABEducational Technology Resources
$Date: 2005-05-26 07:28:32 -0600 (Thu, 26 May 2005) $

Table of Contents

L g1 g0 s (01 To o TP PPPPP 2
1.1. A Brief History of MYSQL 4 ..oouniiiiiiiii e e e e e e e e e et e e et e e eaneeeees 2
1.2, 1f YOUHAVE QUESLIONS... ...ivtieitiiieiieiiee ittt et e et et e e e e e e e e e et e et e e e e s e e s e et e et aeataesnnns 2
2 Y = T P 3
2.1. The ConNECLION ODJECEuuuiiiii ettt et e e e et e e e e e e aaa s 3
2.2. THE QUENY ODJECE ...eetiieeiit ettt ettt e e e et e et et e e et ab e e e e naa s 3
2.3 RESUIT SELS ..ttt ettt e e e e e 3
B (o= o 1 o 4
I U (o - PRSPPI 5
3.1 RUNNING the EXAMPIES ..ot e et eeaa s 5
T I 1= = TS T ot 5
3.3. QUOLING 8N ESCADING ...cevviieiiii ettt 10
3.4. SpeCialiZed SQL SEIUCIUIES ... ceuiit ettt e e e e et et e et e e et e e et e e et e eaneeees 11
3.5. Handling SQL NUIIS . ..uniiicii e e e e e e e e e e e e eees 16
3.6. Which QUErY TYPEIO USE? ...iiiiiii et e e e e e e e e e e eees 17
3.7. Let's D0 SOMEthiNg USEFULccovuiiiiii e 17
A, TeMPIALE QUETTES ...ttt ettt e et e et e et et et eeaa s 21
4.1. Setting UP tEMPIEEE QUENTES ...cevueeeeii ettt et e e e e e s 22
4.2. Setting the parameters at eXeCULION Mc.ueiiii it 23
G T 1= T oo o 1= = 1 £ 23
N e g | o] 1 1o 1 = 1o T 24
R = g (o T o = 10 To 11 o T PSSP 24
5. SPecializetd SQL SLIUCLUIESiieiii ettt ettt et e e et e e e et e e e eean e e eenans 26
DL SOL_CIEALE ...ttt ettt et eeaans 26
5.2.Sgl_creat@ With COMPEIEceu ittt e e e e e e et eean e eees 26
5.3. sgl_create with Additional INItialiZErscouoiiiiiiiiiiii e 27
5.4. Additional Features of Specialized SQL StTUCLUIEScccuuiviiiiiiiiieii e 28
5.5. Harnessing SSQL S INEEINAIScuuuieeiiii ettt et eeaans 28
5.6. Alternate Creation MEtNOOScouuiiiieiee e e e e eees 31
5.7. EXPanding SSQLS MBCIOSceuuueiitiieeeeiie ettt ettt ettt e ettt e e e e e eni e e eenans 31
5.8. Extending the SSQLS MECANISMceuniiiiiii e eees 31
6. Using UnNicode With MYSQL 4+ ...uuiiiiiiii e e e e e e e e e e et e e et e e e eaaaas 33
6.1. A Short History Of UNICOOEu.iiiiieei e e e e e e e e e e eaes 33
L2220 U T o o [==" o 61 T G 33
LG U Ty oo L= o LY T 0 33
6.4. FOr MOre INfOrMELIONcueeie i et e et e eea e eees 34
A I o= 0 oo [PP PPP 35
7.1. GNU Lesser General PUDIIC LICENSEiiiiiiiieiiiii et 35

MySQL++ User Manual

1. Introduction

MySQL ++ is a powerful C++ wrapper for MySQL's C API. Its purpose is to make working with queries as easy as
working with STL containers.

The latest version of MySQL ++ can be found at the official web site.

Support for MySQL++ can be had on the mailing list. That page hosts the mailing list archives, and tells you how
you can subscribe.

1.1. A Brief History of MySQL++

MySQL ++ was created in 1998 by Kevin Atkinson. It started out MySQL -specific, but there were early effortsto try
and make it database-independent, and call it SQL++. Thisis where the old library name "sglplus’ came from. This
is also why the old versions prefixed some class names with "Mysgl" but not others: the others were supposed to be
the database-independent parts.

Then in 1999, Sinisa Milivojevic unofficialy took over maintenance of the library, releasing versions 1.0 and 1.1.
(All of Kevin's releases were pre-1.0 point releases.) Kevin gave over maintenance to Sinisa officially with 1.2, and
Sinisa went on to maintain the library through 1.7.9, released in mid-2001. Since Sinisais an employee of MySQL
AB, it seemsto be during this time that the dream of multiple-database compatibility died.

With version 1.7.9, MySQL ++ went into a period of stasis, lasting over three years. During this time, Sinisa ran the
MySQL++ mailing list and supported its users, but made no new releases. There were many patches submitted dur-
ing this period, some of which were ignored, others which were just put on the MySQL ++ web site for people to try.
A lot of these patches were mutually-incompatible, and not all of them gave a fully-functional copy of MySQL ++.
Most of them centered on GCC compatibility, because GCC 3 was created around this same time. The continual
tightening of the rules starting with GCC 3.0 exposed a lot of places in MySQL++ that used deprecated and non-
conforming facilities.

In early August of 2004, the current maintainer (Warren Y oung) got fed up with this situation and took over. He re-
leased 1.7.10 later that month.

1.2. If You Have Questions...

If you want to email someone to ask questions about this library, we greatly prefer that you send mail to the
MySQL++ mailing list. The mailing list is archived, so if you have questions, do a search to see if the question has
been asked before.

You may find people's individual email addresses in various files within the MySQL ++ distribution. Please do not
send mail to them unless you are sending something that is inherently personal. Questions that are about MySQL ++
usage may well be ignored if you send them to our personal email accounts. Those of us still active in MySQL++
development monitor the mailing list, so you aren't getting any extra "coverage" by sending messages to those ad-
dresses in addition to the mailing list.

MySQL++ User Manual

2. Overview

MySQL ++ has developed into a very complex and powerful library, with many different ways to accomplish the
same task. Unfortunately, this means that figuring out how to perform a simple task can be frustrating for new users.
In this section we will provide an overview of the most important user-facing components of the library.

The overall process for using MySQL ++ is similar to that of most other database access APIs:

1. Open the connection

2. Form and execute the query
3. lterate through the result set
4, Goto2:)

Thereis, however, alot of extrafunctionality along each step of the way.

2.1. The Connection Object

A Connection object manages the connection to the MySQL server. Y ou need at least one of these objects to do any-
thing. A Connection object can either create Query objects for you, or you can execute queries directly through the
Connection object. The separate Query object is the recommended way asit gives you far more power.

2.2. The Query Object

A Query object is the recommended way of building and executing queries. It is subclassed from
st d:: stringstreamwhich means you can write to it like any other C++ stream to form a query. The library in-
cludes stream manipulators that make it easy to generate syntactically-correct SQL.

You can also set up template queries with this class. Template queries work something like the C pri ntf () func-
tion: you set up afixed query string with tags inside that indicate where to insert the variable parts. If you have mul-
tiple queries that are structurally similar, you simply set up one template query, and use that in the various locations
of your program.

A third method for building queriesisto use Specialized SQL Structures (SSQLS). This feature presents your results
as a C++ data structure, instead of making you access the data through MySQL ++ intermediary classes. It aso re-
duces the amount of embedded SQL code your program needs.

2.3. Result Sets

The field data in a result set are stored in a specia st d: : st ri ng-like class called ColData. This class has conver-
sion operators that let you automatically convert these objects to any of the basic C data types. Additionaly,
MySQL ++ defines classes like DateTime, which you can initialize from a MySQL DATETI ME string. These auto-
matic conversions are protected against bad conversions, and can either set awarning flag or throw an exception, de-
pending on how you set the library up.

Asfor the result sets as awhole, MySQL ++ has a number of different ways of representing them:
Queries That Do Not Return Data
Not all SQL queries return data. An example is CREATE TABLE. For these types of queries, there is a special result

type that simply reports the state resulting from the query: whether the query was successful, how many rows it im-
pacted (if any), etc.

Queries

Queries

MySQL++ User Manual

That Return Data: Dynamic Method

The easiest way to retrieve data from MySQL uses a Result object, which includes one or more Row objects. Be-
cause these classes are st d: : vect or -like containers, you can treat the result set as a two-dimensional array. For
example, you can get the 5th item on the 2nd row by simply saying resul t [1] [4] . You can also access row ele-
ments by field name, likethis: resul t [2] . | ookup_by_name("price").

An alternate way of accessing your query results is through a ResUse object. This class acts more like an STL input
iterator than a container: you walk through your result set one item at a time, always going forward. Y ou can't seek
around in the result set, and you can't know how many results are in the set until you find the end. This method is
more efficient when there can be arbitrarily many results, which could pose a memory allocation problem with the
previous technique.

That Return Data: Static Method

The Specialized SQL Structures (SSQLS) feature method above defines C++ structures that match the table struc-
tures in your database schema.

We call it the "static" method because the table structure is fixed at compile time. Indeed, some schema changes re-
quire that you update your SSQL S definitions and recompile, or else the program could crash or throw "bad conver-
sion" exceptions when MySQL ++ tries to stuff the new data into an outdated data structure. (Not all changes require
a recompile. Adding a column to a table is safe, for instance, as the program will ignore the new column until you
update the SSQL S definition.)

The advantage of this method is that your program will require very little embedded SQL code. Y ou can simply ex-
ecute a query, and receive your results as C++ data structures, which can be accessed just as you would any other
structure. The results can be accessed through the Row object, or you can ask the library to dump the results into a
sequential or set-associative STL container for you. Consider this:

vect or <nystruct> v;

Query q = connection. query();
g << "SELECT * FROM nyt abl e";
g.storein(v);

for (vector<nmystruct>::iterator it = v.begin(); it = v.end(); ++v) {
cout << "Price: " << it->price << endl;
Isn't that slick?

2.4. Exceptions

By default, the library throws exceptions derived from st d: : except i on whenever it encounters an error. Y ou can
ask the library to set an error flag instead, if you like, but the exceptions carry more information. Not only do they
include a string member telling you why the exception was thrown, there are several exception types, so you can dis-
tinguish between different error typeswithin asinglet ry block.

MySQL++ User Manual

3. Tutorial

This tutoria is meant to give you ajump start in using MySQL++. While it is a very complicated and powerful lib-
rary, it's possible to make quite functional programs without tapping but a fraction of its power. This section will in-
troduce you to the most useful fraction.

Thistutorial assumes you know C++ fairly well, in particuler the Standard Template Library (STL) and exceptions.

3.1. Running the Examples

All of the examples are complete running programs. They may or may not be built for you aready, depending on
how you installed the library.

If you installed MySQL ++ from the source tarball on a Unixy system, the examples should have been built along
with the library. If not, simply go into the examples directory and type make.

If you installed the library via RPM, the examples are in the mysqgl++-devel RPM. After installing that, the examples
are in /usr/src/mysql ++/ exanpl es. To build them, go into that directory and type nake -f Make-
file.sinple.Seethefile/ usr/share/ doc/ nysql ++- devel */ READMVE. exanpl es for more details.

If you are on a Windows system, the build process for the library should have built the examples as well. Where the
programs are depends on which compiler you're using. There should be a README.* file in the distribution specif-
ic to your compiler with further instructions.

Once you have the examples building, you need to initialize the sample database by running the r eset db example.
The usage of resetdb is as follows:

resetdb [host [user [password [port]]]]

If you leave off host, localhost is assumed. If you leave off user, your current username is assumed. If you leave of
the password, it is assumed that you don't need one. And if you leave off the port, it will use the standard MySQL
port number.

The user you give resetdb needs to be an account with permission to create databases. Once the database is created
you can use any account that has full permission to the sample database mysql_cpp_data.

Y ou may aso haveto re-run resetdb after running some of the other examples, as they change the database.

3.2. The Basics

A simple example

The following example demonstrates how to open a connection, execute a simple query, and display the results. This
is examples/simplel.cpp:

#include "util.h"

#i ncl ude <nysql ++. h>

#i ncl ude <iostrean»
#i ncl ude <i omani p>

usi ng nanespace std;

int
mai n(int argc, char *argv[])

/1 Wap all MySQ.++ interactions in one big try block, so any
/1 errors are handl ed gracefully.

try {

MySQL++ User Manual

/1 Connect to the sanple database
mysql pp: : Connecti on con(nysql pp: : use_excepti ons);
if (!connect_to_db(argc, argv, con)) {
return 1;
}

/1l Create a query object that is bound to con.
nmysql pp: : Query query = con. query();

/1 Print out the stock table
print_stock_tabl e(query);

}

catch (nysql pp:: BadQuery& er) {
/1 handl e any connection or query errors that may come up
cerr << "Error: " << er.what() << endl;
return -1;

}
catch (mysql pp: : BadConversi on& er) {
/! handl e bad conversions

cerr << "Error: " << er.what() << "\"." << endl
<< "retrieved data size: " << er.retrieved
<< " actual data size: " << er.actual _size << endl
return -1;
catch (exception & er) {
cerr << "Error: " << er.what() << endl
return -1,
return O;

The example programs' utility module

If anything, the code above is "too" simple, because al it really does is drive some functions in examples/util.cpp.
Most of the examples link to this module, because it contains code that would otherwise have to be repeated in these
examples.

Here'sasimplified version of the utility module:

#include "util.h"

#i ncl ude <i ostreanr
#i ncl ude <i omani p>
#i ncl ude <stdlib. h>

usi ng nanespace std;

const char* kpcSanpl eDat abase = "nysql _cpp_data"

111 print_stock_header [/////111IIIIIE 000000 r i ri i iiriririrrnd
/1 Display a header suitable for use with print_stock_rows().

voi d
print _stock_header (i nt rows)

cout << "Records found: " << rows << endl << endl
cout.setf(ios::left);
cout << setw(21l) << "ltem <<

setw(10) << "Nunf <<

setw(10) << "Weight" <<

setw10) << "Price" <<

"Date" << endl << endl;

MySQL++ User Manual

[print_stock_row [///11L1ITE00TE0E0EEErr b irinrnnd
Print out a row of data fromthe stock table, in a format
conpatbile with the header printed out in the previous function.

voi d
print_stock_row(const char* item nysqlpp::longlong num double weight,
doubl e price, nysql pp::Date date)

/1 Qutput first colum, the itemstring.

cout << setw(20) << item<< ' ' <<
setw(9) << num<< ' ' <<
setw9) << weight << ' ' <<
setw9) << price << ' ' <<
date << endl
}
[11] print_stock_rows [////11II 000 ririririrrrd
/1 Print out a number of rows fromthe exanple 'stock' table.
voi d

print_stock_rows(nysql pp:: Result& res)
print_stock_header(res.size());
/1l Use the Result class's read-only random access iterator to wal k

/1 through the query results.
nysqgl pp: i Result::iterator i;

for (1 =res.begin(); i !=res.end(); ++i) {
/1 Convert the Result iterator into a Row object, for easier
/] access.

nysql pp: : Row row *i);

Notice that you can use either the colum index or name to
/1 retrieve the data. Al so notice that we do no explicit
/1 conversions to match print_stock _row)'s paraneter types:
/1 Row el ements are Col Data strings, so they auto-convert to
/1 any standard C++ type.
print_stock_rowmrow 0], row 1], row. | ookup_by_ name("weight"),
row 3], row4]);

}
}
{111 print_stock_table //// 11111 IIITEIEEETTEEIE T rrrigd
/1 Print the entire contents of the exanple 'stock' table.
voi d

print_stock_tabl e(nmysql pp:: Query& query)
{

/1 You nust reset the query object when re-using it.
query.reset();

/1 You can wite to the query object |ike you would any ostream
query << "select * from stock";

/1 Show the query string. |f you do this, you have to do it before
/1 you execute() or store() or use() it.
cout << "Query: " << query.preview) << endl;

/1 Execute the query and display the result set.
nysqgl pp: : Result res = query.store();
print_stock_rows(res);

111 connect_to_db /// /11111000 HEEEEEErn bbb bbb rrrrnng
/'l Establishes a connection to a MySQL dat abase server, optionally

/1 attaching to database kdb. This is basically a command-I|ine parser
/1 for the exanples, since the exanple prograns' argunents give us the
/1 information we need to establish the server connection.

MySQL++ User Manual

bool
connect _to_db(int argc, char *argv[], nysql pp:: Connecti on& con,
const char *kdb)

if (argc < 1)
cerr << "Bad argunment count: " << argc << '!' << endl;
return fal se;

if ((argc > 1) && (argv[1][0] =="-")) {
cout << "usage: " << argv[0] <<
" [host] [user] [password] [port]" << endl
cout << endl << "\tConnects to database ";
if (kdb) {
cout << '"' << kdb << " "'

el se {
cout << "server";

cout << on | ocal host using your user" << endl;
cout << "\tnane and no password by default." << endl << endl
return fal se;

}
if (!kdb)

kdb = kpcSanpl eDat abase
}

bool success = fal se
if (argc == 1) {
success = con. connect (kdb);

else if (argc == 2) {
success = con. connect (kdb, argv[1]);

else if (argc == 3) {
success = con. connect (kdb, argv[1], argv[2]);

else if (argc == 4) {
success = con. connect (kdb, argv[1], argv[2], argv[3]);
else if (argc >= 5)
success = con.real _connect(kdb, argv[1], argv[2], argv[3],
atoi (argv[4]));
}

if (!success) {
cerr << "Dat abase connection failed." << endl << endl;

return success;

The only simplication done to the code is to remove the Unicode conversion stuff. That is covered in alater chapter,
Using Unicode with MySQL ++.

Notes on exceptions
Aside from driving the connect _to_db() and print_stock_tabl e() functions in the utility module, the
simplel example mainly consists of exception handlers. This block of code will become familiar to you in the fol-
lowing examples, becauseit'sidentical for all of them.

A few notes about exceptions:

1. Exceptions are the default way for MySQL++ to signa errors, but some MySQL++ classes (Connection,

MySQL++ User Manual

Query, Result, ResUse, and Row) allow you to disable these exceptions. The methods vary, but some classes
constructors accept a flag to disable exceptions, some alow you to disable exceptions on a per-method-call
basis, and some let you turn them on and off for the object with a method call.

2. The state of the object's exception enabling flag is passed down to child objects. For example, if you create a
Connection object with exceptions disabled and then call its quer y() method to get a Query object, that object
will also have exceptions disabled.

3. The exception enabling flag is copied from object to object, so if you create a child object and then change the
flag in the parent, the child object's exception enabling state is not changed.

4. ColData will aways throw an exception when it is unable to do a requested conversion. A bad conversion is
defined as one where: a) not all the characters from the string have yet been processed, and b) the remaining
characters are something other than whitespace, zeros (0), or periods (.). This means that an exception is thrown
when “1.25" is converted into an int, but not when “"1.00" is converted into an int. In the latter case, MySQL ++
knows that it can safely throw away the fractional part.

5. An out-of-bounds subscript when accessing a MySQL ++ container may throw an exception. Whether it does or
not depends on whether the underlying STL container throws exceptions in this situation, so it's compiler-de-
pendent.

To see how the exceptions work, try creating an error. Some good things to try would be misspelling a table name or
trying to cast a floating-point column value to an int.

Getting info about the fields

The following example demonstrates how to get some basic information about the fields, including the name of the
field and the SQL type. Thisis examples/fieldinfl.cpp:

#i nclude "util.h"
#i ncl ude <nysql ++. h>

#i ncl ude <iostrean»
#i ncl ude <i omani p>

usi ng nanespace std;
usi ng nanespace nysql pp

int
nai n(int argc, char *argv[])

try {
Connecti on con(use_exceptions);

if (!connect_to_db(argc, argv, con)) {
return 1;

Query query = con. query();
query << "select * from stock";
cout << "Query: " << query.preview) << endl

Result res = query.store();)
cout << "Records Found: " << res.size() << endl << endl

cout << "Query Info:\n";
cout.setf(ios::left);

for (unsigned int i = 0; i < res.nanmes().size(); i++) {
cout << setw(2) << i
/1 this is the nane of the field
<< setw(15) << res.nanmes(i).c_str()
/1l this is the SQ identifier name

9

MySQL++ User Manual

/1 Result::types(unsigned int) returns a mysqgl_type_info which in many
/1 ways is |ike type_info except that it has additional sql type

/1 information in it. (with one of the nmethods being sql _name())

<< setwW(15) << res.types(i).sql_nane()

/1 this is the C++ identifier nane which nost closely resenbl es

/1 the sql name (its is inplenmentati on defined and often not very readabl ¢
<< setw(20) << res.types(i).nanme()

<< endl;

}

cout << endl;

if (res.types(0) == typeid(string)) {
/1l this is denonstrating how a nysql __type_info can be
/1 conmpared with a C++ type_info.
cout << "Field "item is of an SQ. type which nost
"closely resenbl es\nthe C++ string type\n";

}

if (res.types(1l) == typeid(longlong)) {
cout << "Field "num is of an SQ type which nost "
"closely resenbl es\nC++ long long int type\n";

else if (res.types(1l).base_type() == typeid(longlong)) {

/1 you have to be careful as if it can be null the actual

/1 type is Null <TYPE> not TYPE. So you should al ways use

/'l the base_type nethod to get at the underlying type.

/1 1f the type is not null than this base type woul d be

/1 the sane as its type.

cout << "Field 'num base type is of an SQL type which "

"nmost cl osel y\nresenbles the C++ long long int type\n";

}

}

catch (BadQuery& er) {
/1 Handl e any connection or query errors
cerr << "Error: " << er.what() << endl;
return -1;

}
catch (BadConversion& er) {
/! Handl e bad conversions

cerr << "BError: " << er.what() << "\"." << endl <<
"retrieved data size: " << er.retrieved <<
actual data size: " << er.actual _size << endl;
return -1;

catch (exception& er)
/1 Catch-all for any other standard C++ exceptions
cerr << "Error: " << er.what() << endl;
return -1,

return O;

3.3. Quoting and Escaping

SQL syntax often requires certain data to be quoted. Consider this query:

SELECT * FROM stock WHERE item = ' Hot dog Buns'

Because the string "Hotdog Buns' contains a space, it must be quoted. With MySQL ++, you don't have to add these
quote marks manually:

string s = "Hotdog Buns";
Query q = conn. query();
g << "SELECT * FROM stock WHERE item = " << quote_only << s;

10

MySQL++ User Manual

That code produces the same query string as in the previous example. We used the MySQL ++ quot e_onl y manip-
ulator, which causes single quotes to be added around the next item inserted into the stream. This works for various
string types, for any type of data that can be converted to MySQL ++'s Col Data type, and for Specialized SQL Struc-
tures. (The next section introduces the SSQL S feature.)

Quoting is pretty ssimple, but SQL syntax also often requires that certain characters be "escaped". Imagine if the
string in the previous example was "Frank's Brand Hotdog Buns' instead. The resulting query would be:

SELECT * FROM stock WHERE item = ' Frank's Brand Hot dog Buns'

That's not valid SQL syntax. The correct syntax is:

SELECT * FROM stock WHERE item = 'Frank''s Brand Hotdog Buns'

Asyou might expect, MySQL ++ provides that feature, too, through its ‘escape’ manipulator. But here, we want both
quoting and escaping. That brings us to the most widely useful manipulator:

string s = "Hotdogs' Buns";
Query q = conn. query();
g << "SELECT * FROM stock WHERE item = " << quote << s;

The regular quote manipulator both quotes strings, and escapes any characters that are special in SQL.

3.4. Specialized SQL Structures

Retrieving data

The next example introduces one of the most powerful features of MySQL ++: Specialized SQL Structures (SSQLYS).
Thisis examples/customl.cpp:

#i nclude "util.h"

#i ncl ude <nysql ++. h>
#i ncl ude <custom h>

#i ncl ude <i ostreanp
#i ncl ude <i omani p>
#i ncl ude <vector>

usi ng nanmespace std;
usi ng namespace nysql pp;

The following is calling a very conplex nacro which will create
"struct stock", which has the nenber vari abl es:

string item

I

I

I

I

I C

/1 Dat e sdate
I

/1 plus methods to help populate the class froma MySQL row

/1 anbng other things that I'Il get to in a |later exanple.

sql _create_5(stock,

, 5, /1 explained in the user nanual
string, item

| ongl ong, num
doubl e, wei ght,
doubl e, price,
Dat e, sdate)

int
mai n(int argc, char *argv[])

11

MySQL++ User Manual

Asyou can see, SSQL S is very powerful.

Adding data

try {
/!l Establish the connection to the database server

Connecti on con(use_exceptions);

if (!connect_to_|

return 1;

/! Retrieve the

db(argc, argv, con)) {

entire contents of the stock table, and store

/1 the data in a vector of 'stock' SSQ.S structures.
Query query = con. query();

query << "select * from stock";

vect or <st ock> res;

query.storein(res);

/1 Display the result set
print_stock _header(res.size());

vect or <st ock>: :

terator it;

for (it =res.begin(); it !'=res.end(); ++it) {

print_stock_

rowm(it->temc_str(), it->num it->weight,

it->price, it->sdate);

}

}
catch (BadQuery& er) {
/1 Handl e any connection or query errors

cerr << "Error:
return -1,

" << er.what () << endl

}
catch (BadConversion& er) {
/! Handl e bad conversions

cerr << "Error:

"retrieved data size

return -1;

act ual

" << er.what() << "\"." << endl <<
" << er.retrieved <<
<< er.actual _size << endl;

data si ze:

catch (exception& er) {
/1 Catch-all for any other standard C++ exceptions

}

retu

cerr << "Error:
return -1;

rn O;

" << er.what() << endl

SSQLS can also be used to add data to atable. Thisis examples/custom?2.cpp:

#i

#i
#i

#i
#i
#i

ncl ude

ncl ude
ncl ude

ncl ude
ncl ude
ncl ude

"util.h"

<nysql ++. h>
<cust om h>

<i ostrean»
<string>
<vect or >

usi ng nanespace std;
usi ng nanespace nysql pp

sql _create_5(stock,

string, item

| ongl ong, num
doubl e, wei ght,
doubl e, price

Dat e, sdate)

12

MySQL++ User Manual

int
mai n(int argc, char *argv[])

try {
/! Establish the connection to the database server.

Connection con(use_exceptions);
if (!connect_to_db(argc, argv, con)) {
return 1;

/1l Create and popul ate a stock object. W could al so have used
/1 the set() nmenber, which takes the sane paraneters as this

/'l constructor.

stock row("Hot Dogs", 100, 1.5, 1.75, "1998-09-25");

/! Formthe query to insert the rowinto the stock table.

Query query = con. query();
query.insert(row;

/1 Show the query about to be executed.
cout << "Query: " << query.preview) << endl;

/1 Execute the query. W use execute() because | NSERT doesn't
/1 return a result set.
query. execute();

/1l Print the new table.
print_stock_tabl e(query);

}

catch (BadQuery& er) ({
/1 Handl e any connection or query errors
cerr << "Error: " << er.what() << endl;
return -1;

}
catch (BadConversion& er) {
/! Handl e bad conversions

cerr << "BError: " << er.what() << "\"." << endl <<
"retrieved data size: " << er.retrieved <<
" actual data size: " << er.actual _size << endl;
return -1;

catch (exception& er)
/1l Catch-all for any other standard C++ exceptions
cerr << "Error: " << er.what() << endl;
return -1;

return O;

That's al thereistoit!

There is one subtlety: MySQL++ automatically quotes and escapes the data when building SQL queries using
SSQLS structures. It's efficient, too: MySQL++ is smart enough to apply quoting and escaping only for those data
typesthat actually require it.

Because this example modifies the sample database, you may want to run resetdb after running this program.

Modifying data

It almost as easy to modify datawith SSQLS. Thisis examples/custom3.cpp:

#i nclude "util.h"

#i ncl ude <nysql ++. h>
#i ncl ude <custom h>

13

MySQL++ User Manual

#i ncl ude <i ostreanr
#i ncl ude <string>
#i ncl ude <vector>

usi ng nanmespace std;
usi ng namespace nysql pp;

sql _create_5(stock,

int

1, 5,

string, item

I ongl ong, num
doubl e, wei ght,
doubl e, price,
Dat e, sdate)

nmai n(int argc, char *argv[])

try {

/1 Establish the connection to the database server.
Connecti on con(use_exceptions);
if (!connect_to_db(argc, argv, con)) {

return 1;

/1 Build a query to retrieve the stock itemthat has Uni code

/'l characters encoded in UTF-8 form

Query query = con.query();

query << "select * fromstock where item = \"Nirnberger Brats\"";

/'l Retrieve the row, throwi ng an exception if it fails.
Result res = query.store();
if (res.enpty()) {
t hrow BadQuery("UTF-8 bratwurst itemnot found in "
"table, run resetdb");

}

/1l Because there should only be one rowin the result set,

/1 there's no point in storing the result in an STL contai ner.
/1 W can store the first rowdirectly into a stock structure
/'l because one of an SSQ.S' s constructors takes a Row object.
stock row = res[0];

/1l Create a copy so that the replace query knows what the
/1 original values are.
stock orig_row = row,

/1 Change the stock object's itemto use only 7-bit ASCI |, and
/1 to deliberately be wi der than normal columm wi dths printed
/1 by print_stock_table().

row. I tem = "Nuerenberger Bratwurst";

/! Formthe query to replace the rowin the stock table.
query. update(orig_row, row);

/1 Show the query about to be executed.
cout << "Query: " << query.preview) << endl;

/1 Run the query with execute(), since UPDATE doesn't return a
/'l result set.
query. execute();

/!l Print the new table contents.
print_stock_tabl e(query);

E’:atch (BadQuery& er) {

/1 Handl e any connection or query errors
cerr << "Error: " << er.what() << endl;
return -1,

14

MySQL++ User Manual

catch (BadConversion& er) {
// Handl e bad conversions
cerr << "BError: " << er.what() << "\"." << endl <<
"retrieved data size: " << er.retrieved <<
" actual data size: " << er.actual _size << endl
return -1;

catch (exception& er) {
/1 Catch-all for any other standard C++ exceptions
cerr << "Error: " << er.what() << endl;
return -1,

return O;

When you run the example you will notice that in the WHERE clause only the ‘item'’ field is checked for. Thisis be-
cause SSQL S also a so less-than-comparable.

Don't forget to run resetdb after running the example.
Less-than-comparable

SSQLS structures can be sorted and stored in STL associative containers as demonstrated in the next example. This
is customd4.cpp:

#i ncl ude "util.h"

#i ncl ude <nysql ++. h>
#i ncl ude <custom h>

#i ncl ude <i ostreanp
#i ncl ude <i omani p>
#i ncl ude <string>
#i ncl ude <vector>

usi ng nanmespace std;
usi ng nanespace nysqgl pp

sql _creat e_5(stock,

This nunmber is used to nake a SSQS | ess-t han-conpar abl e.
When conparing two SSQS structures, the first N elenents are
conpared. |In this instance, we are saying that we only want
the first element ('item) to be used when conmparing two
stock structures.

~————
~—— — —

Each SSQLS structure includes a nunber of constructors. Some
of these are fixed in nature, but one of these will have this
nunber of argunents, one for each of the first N elenments in
the structure; it is an initialization ctor. Since Nis the
same as the nunber of structure elenents in this instance
that ctor will be able to fully initialize the structure. This
behavi or is not always wanted, however, so the macro all ows
you nmake the constructor take fewer paraneters, |eaving the
remai ning el enents uninitialized. An exanple of when this is
necessary i s when you have a structure containing only two

i nteger elements: one of the other ctors defined for SSQS
structures takes two ints, so the conpiler barfs if you pass
2 for this argunment. You would need to pass O here to get
that SSQLS structure to conpile

string, item

| ongl ong, num

doubl e, wei ght,

doubl e, price

Dat e, sdate)

~ e e e e e e e e e e
—~— e e e e e e e~ —

15

MySQL++ User Manual

mai n(int argc, char *argv[])

try {
// Establish the connection to the database server.

Connecti on con(use_exceptions);
if (!connect_to_db(argc, argv, con)) {
return 1;

}

/!l Retrieve all rows fromthe stock table and put themin an

/1l STL set. Notice that this works just as well as storing them
/1 in a vector, which we did in customl.cpp. It works because
/1 SSQS objects are | ess-than conparabl e.

Query query = con. query();

query << "select * from stock";

set <st ock> res;

query.storein(res);

/! Display the result set. Since it is an STL set and we set up

/1 the SSQS to conpare based on the itemcolum, the rows wll

/1 be sorted by item

print_stock_header(res. size());

set<stock>::iterator it;

cout . precision(3);

for (1t =res.begin(); it !=res.end(); ++it)
print_stock_rowit->itemc_str(), it->num it->weight,

it->price, it->sdate);

}
/1 Use set's find method to | ook up a stock item by item nane.
/1 This also uses the SSQLS conparison setup.
it = res.find(stock("Hotdog Buns"));
if (it '=res.end()) {

cout << endl << "Currently " << it->num <<

hot dog buns in stock." << endl;

el se {

cout << endl << "Sorry, no hotdog buns in stock." << endl;
}

}

catch (BadQuery& er) {
/1 Handl e any connection or query errors
cerr << "Error: " << er.what() << endl;
return -1;

}
catch (BadConversion& er) {
/! Handl e bad conversions

cerr << "Error: " << er.what() << "\"." << endl <<
"retrieved data size: " << er.retrieved <<
actual data size: " << er.actual _size << endl;
return -1,

catch (exception& er)
/1 Catch-all for any other standard C++ exceptions
cerr << "Error: " << er.what() << endl;
return -1;

return O;

3.5. Handling SQL Nulls

Thereis no equivalent of SQL's null in the standard C++ type system.

The primary distinction is one of type: in SQL, null is a column attribute, which affects whether that column can
hold a SQL null. This effectively doubles the number of typesin SQL. MySQL++ handles this the same way SQL
does: it provides the Null template to alow the creation of distinct "nullable" versions of existing C++ types. For

16

MySQL++ User Manual

each column type MySQL understands, the library instantiates this template for the closest C++ type. (See the top of
l'i b/type_info.cpp for thelist.)

Template instantiations are first-class types in the C++ language, on par with any other type. Y ou can use nullable
MySQL ++ types anywhere you'd use the plain version of that type, you can assign plain values to a nullable object
and vice versa, etc.

There's a secondary distinction between SQL null and anything available in the standard C++ type system: SQL null
is a distinct value, equal to nothing else. C++'s NULL is ambiguous, being equal to O in integer context, so
MySQL++ hasaglobal nul I object which which you can assign to any nullable object to get a SQL null.

By default, if you try to convert a SQL null to a plain C++ data type, MySQL++ will throw a BadNullConversion
exception to enforce this distinction. If you insert a SQL null into a C++ stream, you get "(NULL)". The NullisNull
"behavior" type encapsulates these two rules; it is the default for one of template Nul | 's parameters. To relax this
distinction, you can instantiate the Nul | template with a different behavior type: NullisZero or NullisBlank. Asyou
might guess from their names, SQL nulls using these behaviors get converted to 0 or ablank C string, respectively.

3.6. Which Query Type to Use?

There are three major ways to execute a query in MySQL++: Query:: execute(), Query::store(), and
Query: : use() . Which should you use, and why?

execut e() isfor queries that do not return data per se. For instance, CREATE | NDEX. You do get back some in-
formation from the MySQL server, which execut e() returnstoitscaller in a ResNSel object. In addition to the ob-
vious — a flag stating whether the query succeeded or not — this object also contains things like the number of
rows that the query affected. If you only need the success status, there's Quer y: : exec() , which just returns bool.

If your query does pull data from the database, the smplest option is st or e() . This returns a Result object, which
contains an in-memory copy of the result set. The nice thing about thisis that Resul t isa sequential container, like
st d: : vector, S0 you can iterate through it forwards and backwards, access elements with subscript notation, etc.
There are also the st or ei n() methods, which actually put the result set into an STL container of your choice. The
downside of these methods is that a sufficiently large result set will give your program memory problems.

For these large result sets, you should use the use() method instead. This returns a ResUse object, which is similar
to Result, but without all of the random-access features. This is because a "use" query tells the database server to
send the results back one row at atime, to be processed linearly. It's analogous to a C++ stream's input iterator, as
opposed to arandom-access iterator that a container like vector offers. By accepting this limitation, you can process
arbitrarily large result sets.

3.7. Let's Do Something Useful

These next few examples demonstrate just how powerful C++ can be, allowing you to do alot of work in few lines
of code without losing efficiency.

Since the code is meant to be re-used as-is, constants that can differ from one case to another have been grouped in
order to simplify editing. Also, all of these examples have full error checking code, showing off the power of
MySQL ++'s exception handling features.

Loading binary file in a BLOB column
Since MySQL 3.23, BLOB columns have been available, but their use is sometimes not straightforward. Besides

showing how easy it can be with MySQL ++, this example demonstrates several features of MySQL ++. The program
requires one command line parameter, which is afull path to the binary file. Thisis examples/load_file.cpp:

#i ncl ude <nysql ++. h>

#i ncl ude <sys/stat.h>

17

MySQL++ User Manual

#i ncl ude <fstreanp

#i ncl ude <errno. h>
#i ncl ude <stdlib. h>

usi ng
usi ng

const
const
const
const
const
const

int

nanespace std;
nanmespace mysql pp

char
char
char
char
char
char

MY_DATABASE[] = "telcent";
MY_TABLE[] = "fax":

MY_HOST[] = "l ocal host";
MY_USER[] = "root";
MY_PASSWORD[] = "";

MY_FIELD[] = "fax": // BLOB field

nmai n(int argc, char *argv[])

if (argc < 2) {
cerr << "Usage : load_file full_file_path" << endl << endl
return -1;

Connecti on con(use_exceptions);

try {
con. real _connect (MY_DATABASE, MY_HOST, MY_USER, MY_PASSWORD, 3306

0, 60, NULL);

Query query = con. query();
ostringstream strbuf;

ifstreamlIn(argv[1], ios::in

0s::binary);

struct stat for len;

if ((In.rdbuf())->is_open()) {
if (stat(argv[1l], & or_len) == -1)
return -1;
unsi gned int blen = for_len.st_size;
if (!blen)
return -1;
char *read_buffer = new char[blen];
In.read(read_buffer, blen);
string fill(read_buffer, blen);
strbuf << "INSERT INTO " << MY_TABLE << " (" << MY_FIELD <<
") VALUES(\"" << nysql pp::escape << fill << "\")" << ends;
query. exec(strbuf.str());
del ete[] read_buffer;
el se
cerr << "Your binary file " << argv[1l] <<
"could not be open, errno =" << errno
return O;

E:atch (BadQuery& er) {

/1 Handl e any connection or query errors
cerr << "Error: " << er.what() << " " << con.errnun() << endl
return -1;

}
catch (BadConversion& er) {

/! Handl e bad conversions
cerr << "Error: " << er.what() << "\"." << endl <<
"retrieved data size: " << er.retrieved <<

actual data size: << er.actual _size << endl

return -1;

catch (exception& er) {

/1 Catch-all for any other standard C++ exceptions
cerr << "Error: " << er.what() << endl
return -1;

18

MySQL++ User Manual

Notice that we used the escape manipulator when building the INSERT query above. Thisis because we're not us-
ing one of the MySQL ++ types that does automatic escaping and quoting.

Displaying images in HTML from BLOB column

This example is also a very short one, considering the function that it performs. Although all modern versions of
MySQL have a command that dumps data from aBLOB column to a binary file, this example shows how to do it in
your code instead, without requiring an temporary file on disk. Thisis examples/cgi_image.cpp:

#i ncl ude <nysql ++. h>

usi ng nanmespace std;
usi ng nanespace nysql pp;

#def i
#def i
#def i
#def i
#def i
#def i
#def i

int

ne
ne
ne
ne
ne
ne
ne

MY_DATABASE "tel cent”

MY_TABLE "fax"

MY_HOST "l ocal host ™

MY_USER "root"

MY_PASSWORD "

MY_FI ELD "fax" /1 BLOB field
MY_KEY "datet" /1 PRI MARY KEY

mai n(int argc, char *argv[])

if (argc < 2) {

}

cerr << "Usage : cgi_imge primry_key_value" << endl << endl;
return -1;

cout << "Content-type: inmge/jpeg" << endl;
Connection con(use_exceptions);
try {

con. real _connect (MY_DATABASE, MY_HOST, MY_USER, MY_PASSWORD, 3306,
0, 60, NULL);
Query query = con. query();
query << "SELECT " << MY_FIELD << " FROM " << MY_TABLE << " WHERE "
<< MY_KEY << " =" << argv[1];
ResUse res = query. use();
Row row = res.fetch_row();

long unsigned int *jj = res.fetch_lengths();
cout << "Content-length: " << *jj << endl << endl;
fwite(row. raw data(0), 1, *jj, stdout);
) return O;
catch (BadQuery& er) {
cerr << "Error: " << er.what() << " " << con.errnun() << endl;
return -1,
catch (exception& er)
cerr << "Error: " << er.what() << endl;
return -1,

DELETE or UPDATE from SELECT

MySQL's SELECT statement has more power to winnow out just the items of interest from the database than do
DELETE or UPDATE queries. Therefore, many people have wanted the ability to execute a SELECT statement that
in fact deletes or updates the rows matched, rather than returning them. This example implements that feature in just
afew lines of code. It is examples/updel.cpp:

#i ncl ude <nysql ++. h>

19

MySQL++ User Manual

#i ncl ude <string>

usi ng nanespace std;
usi ng namespace nysql pp;

#defi ne MY_DATABASE "tel cent”

#define MY_TABLE "nazivi"
#defi ne MY_HOST "l ocal host ™"
#defi ne MY_USER "root"
#defi ne MY_PASSWORD ""
#define MY_FI ELD "naziv"
#defi ne MY_QUERY "SELECT URL fromny_table as t1, nmy_table as t2 where tl.field =t2.field
int
nmai n()
Connecti on con(use_exceptions);
try {
ostringstream strbuf;
unsigned int i = 0;
con. real _connect (MYy_DATABASE, MY_HOST, My_USER, MY_PASSWORD, 3306,

0, 60, NULL);
Query query = con.query();
query << MY_QUERY;
ResUse res = query.use();
Row r ow;
strbuf << "delete from" << MY_TABLE << " where " << MY_FIELD <<
"in (";
/1 for UPDATE just replace the above DELETE FROM wi t h UPDATE st at enent
for (; row = res.fetch_row(); i++)
strbuf << rowf0] << ",";
if ('i)
return O;
string output(strbuf.str());
out put.erase(output.size() - 1, 1);
output +=")";
query. exec(out put);
/'l cout << output << endl;

}

catch (BadQuery& er) {
/1 Handl e any connection or query errors
cerr << "Error: " << er.what() << " " << con.errnun() << endl;
return -1;

}
catch (BadConversion& er) {
/1 Handl e bad conversi ons

cerr << "Error: " << er.what() << "\"." << endl

<< "retrieved data size: " << er.retrieved

<< " actual data size: " << er.actual _size << endl;
return -1,

catch (exception& er) {
/1l Catch-all for any other standard C++ exceptions
cerr << "Error: " << er.what() << endl;
return -1;

return O;

Notice that the row values used in the IN clause aren't escaped or quoted. This is because row elements are ColData
types, so they have automatic escaping and quoting, as appropriate to the type being inserted. If you want to disable
thisfeature, it's easily done: click the ColData link for the details.

Users of this example should beware that one more check is required in order to run this query safely: in some ex-
treme cases, the size of the query might grow larger than MySQL's maximum allowed packet size. This check
should be added.

20

MySQL++ User Manual

4. Template Queries

Another powerful feature of MySQL++ is being able to set up template queries. These are kind of like C's
printf() facility: you give MySQL++ a string containing the fixed parts of the query and placeholders for the
variable parts, and you can later substitute in values into those placeholders.

The following example demonstrates how to use this feature. This is the program you've run a few times now if
you've worked through all the examples, resetdb.cpp:

#include "util.h"

#i ncl ude <nysql ++. h>
#i ncl ude <i ostreanr

usi ng nanespace std;

int
mai n(int argc, char *argv[])

nmysql pp: : Connecti on con(nysql pp: : use_exceptions);
try {
if (!connect_to_db(argc, argv, con, "")) {
return 1;

catch (exception& er)
cerr << "Connection failed: " << er.what() << endl
return 1;

bool created = fal se

try {
con. sel ect _db(kpcSanpl eDat abase) ;

}
catch (nysql pp:: BadQuery &) {
/1 Couldn't switch to the sanpl e database, so assune that it
/1 doesn't exist and create it. |If that doesn't work, exit
/1 with an error.
if (con.create_db(kpcSanpl eDat abase)) {
cerr << "Failed to create sanpl e database: " <<
con.error() << endl;
return 1;

}
else if (!con.sel ect_db(kpcSanpl eDat abase)) {
cerr << "Failed to sel ect sanpl e database." << endl

return 1;
el se {
created = true
}
nysql pp: : Query query = con.query(); // create a new query object
try {

query. execute("drop table stock");

catch (mysql pp:: BadQuery& {
/1 ignore any errors

try {
/1 Send the query to create the table and execute it.
query << "create table stock (itemchar(20) not null, numbigint,"

<< "wei ght double, price double, sdate date)"
query. execute();

21

MySQL++ User Manual

/1l Set up the tenplate query to insert the data. The parse

/1 call tells the query object that this is a tenplate and

/1 not a literal query string.

query << "insert into %:table values (%q, %q, %, %3, %q)";
query. parse();

/1 This is setting the paranmeter naned table to stock.
query.def["tabl e"] = "stock";

/1 The | ast paraneter "table" is not specified here. Thus the
/1 default value for "table" is used, which is "stock". Also
/1 notice that the first rowis a UTF-8 encoded Uni code string!
/1 Al'l you have to do to store Unicode data in recent versions
/1 of MySQL is use UTF-8 encodi ng.

query. execut e(" Nirnberger Brats", 92, 1.5, 8.79, "2005-03-10");
query. execute("Pickle Relish", 87, 1.5, 1.75, "1998-09-04");
query. execute("Hot Mustard", 75, .95, .97, "1998-05-25");
query. execut e("Hotdog Buns", 65, 1.1, 1.1, "1998-04-23");

if (created) {
cout << "Created";

el se {
cout << "Reinitialized";

cout << " sanpl e database successfully." << endl;

}

catch (mysql pp:: BadQuery& er) {
/1 Handl e any connection or query errors
cerr << "Error: " << er.what() << endl;
return 1;

}
catch (mysql pp: : BadConversi on& er) {
/1 Handl e bad conver si ons

cerr << "BError: " << er.what() << "\"." << endl

<< "retrieved data size: " << er.retrieved

<< " actual data size: " << er.actual _size << endl;
return 1;

catch (exception& er)
/1l Catch-all for any other standard C++ exceptions
cerr << "Error: " << er.what() << endl;
return 1;

return O;

The line just before the call to query. parse() sets the template, and the parse call puts it into effect. From that
point on, you can re-use this query by calling any of several Query member functions that accept query template
parameters. In this example, wereusing Query: : execut e() .

Let'sdig into this feature alittle deeper.
4.1. Setting up template queries

To set up a template query, you simply insert it into the Query object, using numbered placeholders wherever you
want to be able to change the query. Then, you call the parse() function to tell the Query object that the query string
isatemplate query, and it needs to parseit:

query << "select (%:fieldl, 93:field2) from stock where
%.: wheref = 9%g0: what";
query. parse();

The format of the placeholder is:

22

MySQL++ User Manual

9% modi fier)##(: nanme) (:)

Where Modifier can be any one of the following:

% Print an actual "%"
" Don't quote or escape no matter what.
q This will quote and escape the item us-

ing the MySQL C APl function
mysgl_escape string() if it is a string
or char *, or another MySQL -specific
type that needs to be quoted.

Q Quote but don't escape based on the
same rules as for 'q. This can save a
bit of processing time if you know the
strings will never need quoting

r Always quote and escape even if itisa
number.

R Always quote but don't escape even if
it isanumber.

represents a number up to two digits. It is the order of parameters given to a SQL QueryParms object, starting
from O.

":name" isfor an optional name which aidsin filling SQL QueryParms. Name can contain any a pha-numeric charac-
ters or the underscore. If you add this, it must start with a letter. If thisis not the case, add a colon after the name. If

you need to represent an actual colon after the name, follow the name with two colons. The first one will end the
name and the second one won't be processed.

4.2. Setting the parameters at execution time

To specify the parameters when you want to execute a query simply use Query: :store(const SQ.String

&arnD, [..., const SQString &parntl]). Thistype of multiple overload also exists for Query: : use()
and Query: : execut e() . 'parmO' corresponds to the first parameter, etc. Y ou may specify up to 12 parameters. For
example:

Result res = query.store("Dinner Rolls", "itenm, "iten, "price")

with the template query provided above would produce:

select (item price) fromstock where item= "D nner Rolls"

The reason we didn't put the template parameters in numeric order...

select (%9:fieldl, %:field2) fromstock where %: wheref = %g3: what
...will become apparent shortly.
4.3. Using defaults
You can also set the parameters one at atime by means of class Query's public data member def. To change the val-

ues of the def, simply use the subscript operator. Y ou can refer to the parameters either by number or by name. The
following two examples have the same effect:

23

MySQL++ User Manual

query.def[0] = "Dinner Rolls";
query.def[1] = "itent;
query.def[2] = "itent;
query.def[3] = "price";

and
query.def["what"] = "Dinner Rolls";
query. def["wheref"] = "itent;
query. def["fi el d1"] = "itent;
query.def["field2"] = "price";

Once all the parameters are set simply execute as you would have executed the query before you knew about tem-
plate queries:

Result res = query.store()

4.4. Combining the two

Y ou can also combine the use of setting the parameters at execution time and setting them via the def object by call-
ing Query: :store() (oruse() or execute()) without passing the full nhumber of parameters that the template

supports:
query.def["fieldl"] = "itent;
query.def["field2"] = "price";
Result resl = query. store("Hanburger Buns", "itenl);
Result res2 = query.store(1.25, "price");
Would store the query:

select (item price) fromstock where item = "Hanburger Buns"

for resl and

select (item price) fromstock where price = 1.25

for res2.

Now you see why we ordered the placeholders in the template above as we did: we used positions 0 and 1 for the
ones we want to change frequently, and used 2 and 3 for the parameters that seldom change.

One thing to watch out for, however, is that Query: : st ore(const char* q) isalso defined for executing the
query g. Therefore, when you call Query: : store() (oruse(), or execut e()) with only oneitem and that item is
aconst char*, you need to explicitly convert it into a SQL String to get the right overload:

Result res = query.store(SQ.String("Hanmburger Buns"));

4.5. Error Handling

If for some reason you did not specify al the parameters when executing the query and the remaining parameters do
not have their values set via def, the query object will throw a SQL QueryNEParms object. If this happens, you can
get an explanation of what happened by checking the value of SQLQuer yNEPar ns: : st ri ng, like so:

"itenl;

query.def["fiel d1"]
ield2 "price";

query. def[" "]

24

MySQL++ User Manual

Result res = query.store(l.25);
Thiswould throw SQLQuer yNEPar s because the wheref is not specified.

In theory, this exception should never be thrown. If the exception is thrown it probably a logic error in your pro-
gram.

25

MySQL++ User Manual

5. Specialized SQL Structures

The Specialized SQL Structure (SSQLYS) feature lets you easily define C++ structures that match the form of your
SQL tables. Because of the extra functionality that this feature builds into these structures, MySQL ++ can populate
them automatically when retrieving data from the database; with queries returning many records, you can ask
MySQL++ to populate an STL container of your SSQLS records with the results. When updating the database,
MySQL++ can use SSQLS structures to match existing data, and it can insert SSQLS structures directly into the
database.

You define an SSQLS using one of several macros. (These are in the file custom.h, and in the file that it includes,
custom-macros.h.) There are a bunch of different macros, for different purposes. The following sections will discuss
each macro type separately, beginning with the easiest and most generally useful.

5.1. sql_create

Thisisthe most basic sort of SSQLS declaration:

sql _create_5(stock, 0, O,
string, item
int, num
doubl e, wei ght,
doubl e, price,
nysql pp: : Date, date)

This creates a C++ structure called 'stock’ containing five member variables, along with some constructors and other
member functions useful with MySQL ++.

One of the generated constructors takes a reference to a mysqlpp::Row object, allowing you to easily populate a vec-
tor of stockslike so:

vect or <stock> result;
query.storein(result);

That's al there is to it. The only requirements are that the table structure be compatible with the SSQL S's member
variables, and that the fields are in the same order.

The general format of this set of macrosis:

sqgl _create_#(NAME, KEYS, |N TPARVS, TYPE1l, |TEML, ... TYPE#, | TEMY)

Where # is the number of member variables, NAME is the name of the structure you wish to create, TYPEX is the
type name for amember variable, and ITEMx is that variable's name.

The KEY S and INITPARMS arguments can always be zero, to keep things ssmple. We will discuss what happens if
you use different values in the next few sections.

5.2. sql_create with Compare

SSQLS structures can aso have member functions that allow you to compare one structure to another. You simply
change the first O in the previous example (KEYS) to a higher value. If this number is N, then two structures are
considered equal if the first N members of each are equal.

For example:

sql _create_5(stock, 1, O,
string, item
int, num

26

MySQL++ User Manual

doubl e, wei ght,
doubl e, price
mysql pp: : Date, date)

Here we are saying that the 'item’ field is akind of key field: it is always unique between any two 'stock’ items, so if
two stock records have equal item values, they are the same stock item.

That change adds the following members to the SSQLS:

struct stock {

stock (const std::string &pl);

set (const std::string &pl);

bool operator == (const stock &other) const;
bool operator != (const stock &other) const;
bool operator > (const stock &other) const;
bool operator < (const stock &other) const;
bool operator >= (const stock &other) const;
bool operator <= (const stock &other) const;
int cnp (const stock &other) const;

int conpare (const stock &other) const;

}

int conpare (const stock &, const stock &y);

The global conpar e() function comparesx toy and returns<0if x <y, 0if x =y, and >0 if x >y. st ock: : cnp()
and st ock: : conpar e() arethesamething asconpare(*this, other).

The additional constructor initializes the key fields of the structure and leaves the other member variables undefined.
Thisisuseful for creating temporary objects to use for comparisonslikex <= st ock(" Hot dog") .

Because stock is now less-than-comparable you can store the query resultsin an STL associative container:

std::set<stock> result;
query.storein(result);

And you can now useit like any other set:

cout << result.|ower_bound(stock("Hanburger"))->item << endl;
Thiswill return the first item that begins with "Hamburger".

You can also useit will any STL algorithm that require the values to be less-than-comparable.

5.3. sql_create with Additional Initializers

If third parameter for this macro (INITPARMS) is honzero, the SSQL S will have two additional members functions
that make it easier to initialize the structure's data members. For example:

sql _create_5(stock, 1, 5,
string, item
int, num
doubl e, wei ght,
doubl e, price,
nysql pp: : Date, date)

will add these functions to the structure relative to that in the previous example:

struct stock {

éibck(const string& const int& const doubl e&,

27

MySQL++ User Manual

const doubl e&, const nysql pp:: Date&);
set (const string& const int& const doubl e&,
const doubl e&, const nysql pp:: Date&);

}

There is one trick with this; because each SSQLS has at least one other constructor besides the one defined by this
feature, not every logical value for INITPARMS results in working code. A simple example is setting KEY S and
INITPARMS to the same value: you get two identical constructor definitions, so the compiler refuses to compile the
code. If you are getting compiler errors having to do with duplicate definitions, try changing this value to zero.

5.4. Additional Features of Specialized SQL Structures

Up to this point, we haven't been using al of the features in the SSQL S structures we've been generating. We could
have used the sql _cr eat e_basi c_* macros instead, which would have worked just as well for what we've seen so
far, and the generated code would have been smaller.

Why isit worth ignoring the "basic" variants of these macros, then? Consider this:

query.insert(s);

This does exactly what you think it does: it inserts 's' into the database. This is possible because a standard SSQLS
has functions that the query object can call to get the list of fields and such, which it uses to build an insert query.
query: : updat e() and query::replace() aso rely on this SSQLS feature. A basic SSQLS lacks these func-
tions.

Another feature of standard SSQL Ses you might find a use for is changing the table name used in queries. By de-
fault, the table in the MySQL database is assumed to have the same name as the SSQL S structure type. But if thisis
inconvenient, you can globally change the table name used in queries like this:

stock::table() = "MyStockData";

5.5. Harnessing SSQLS Internals

Continuing the discussion in the previous section, there is a further set of methods that the non-"basic" versions of
the sql _cr eat e macros define for each SSQLS. These methods are mostly for use within the library, but some of
them are useful enough that you might want to harness them for your own ends. Here is some pseudocode showing
how the most useful of these methods would be defined for the st ock structure used in all the cust ont. cpp ex-
amples:

/1 Basic form

tenpl ate <cl ass Mani p>

stock_val ue_l i st <Mani p> value_list(cchar *d = ",",
Mani p m = nysql pp: : quote) const;

tenpl ate <class Mani p>
stock_field_list<Manip> field_list(cchar *d = ",",
Mani p m = nysql pp: : do_not hi ng) const;

templ ate <class Mani p> _
stock_equal _Ii st <Mani p> equal _list(cchar *d =", ",

cchar *e =" =", Manip m = nysql pp:: quote) const;

/1 Bool ean argunent form

tenpl ate <cl ass Mani p>

stock_cus_val ue_Il i st<Mani p> value_list([cchar *d, [Manip m]]
bool i1, bool i2 = false, ... , bool i5 = false) const;

/1 List form
tenpl ate <cl ass Mani p>
stock_cus_val ue_Il i st<Mani p> value_list([cchar *d, [Manip m]]

28

MySQL++ User Manual

Rather than try to learn what all of these methods do at once, let's ease into the subject. Consider this code:

stock_enumil, stock enumi2 = stock NULL, ...,
stock_enumi5 = stock_NULL) const;

/1l Vector form

tenpl ate <cl ass Mani p>

stock_cus_val ue_l i st <Mani p> value_list([cchar *d, [Manip m]]
vect or <bool > *i) const;

...Plus the obvious equivalents for field list() and equal list()

stock s("Dinner Rolls", 75, 0.95, 0.97, "1998-05-25");
cout << "Value list: " << s.coma_list() << endl;
cout << "Field list: " << s.field_list() << endl;
cout << "Equal list: " << s.equal _list() << endl;

That would produce something like:

Value list: 'Dinner Rolls',75,0.95,0.97,"'1998-05-25'
Field list: itemnumweight, price,date
Equal list:

item= "Dinner Rolls',num= 75,weight = 0.95, price = 0.97,date

' 1998- 05- 25’

That is, a"vaue ligt" isalist of data member values within a particular SSQL S instance, a"field list" isalist of the
fields (columns) within that SSQLS, and an "equal list" isalist in the form of an SQL equals clause.

Just knowing that much, it shouldn't surprise you to learn that Query: : i nsert () isimplemented more or less like

this:

*this << "INSERT INTO " << v.table() << " (" << v.field_ list() <<
") VALUES (" << v.value_list() << ")";

where 'v' isthe SSQL S you're asking the Query object to insert into the database.

Now let's look at a complete example, which uses one of the more complicated forms of equal _| i st (). This ex-
ample builds a query with fewer hard-coded strings than the most obvious technique requires, which makes it more
robust in the face of change. Here is examples/custom5.cpp:

#i nclude "util.h"

#i ncl ude <nysql ++. h>
#i ncl ude <custom h>

#i ncl ude <i ostreanp
#i ncl ude <i omani p>
#i ncl ude <vector>

usi ng nanmespace std;
usi ng namespace nysql pp;

sql _create_5(stock,
1, 5,
string, item
| ongl ong, num
doubl e, wei ght,
doubl e, price,
Dat e, sdate)

int
mai n(int argc, char *argv[])

29

MySQL++ User Manual

try {
Connecti on con(use_exceptions);

if (!connect_to_db(argc, argv, con)) {
return 1;

/1 Get all the rows in the stock table.
Query query = con. query();

query << "select * from stock";
vect or <st ock> res;

query.storein(res);

if (res.size() > 0) {
/1 Build a select query using the data fromthe first row
/1 returned by our previous query.
query.reset();
query << "select * fromstock where " <<
res[0].equal _list(" and ", stock_weight, stock_price);

/1 Display the finished query.
cout << "Custom query:\n" << query.preview) << endl;

}

return O;

}

catch (BadQuery& er) {
/1 Handl e any connection or query errors
cerr << "Error: " << er.what() << endl;
return -1,

}
catch (BadConversion& er) {
/! Handl e bad conversions

cerr << "BError: " << er.what() << "\"." << endl <<
"retrieved data size: " << er.retrieved <<
actual data size: " << er.actual _size << endl;
return -1;

catch (exception& er) {
/1 Catch-all for any other standard C++ exceptions
cerr << "Error: " << er.what() << endl;
return -1;

This example uses the list form of equal _I i st (). The arguments st ock_wei ght and st ock_pri ce are enum
values equal to the position of these columns within the st ock table. sqgl _cr eat e_x generates this enum for you
automatically.

The boolean argument form of that equal _| i st () call would look like this:

query << "select * fromstock where " <<
res[0].equal list(" and ", false, false, true, true, false);

It'salittle more verbose, asyou can see. And if you want to get really complicated, use the vector form:

vect or <bool > v(5, false);

v[stock_wei ght] = true;

v[stock_price] = true;

query << "select * fromstock where " <<
res[0].equal _list(" and ", v);

This form makes the most sense if you are building many other queries, and so can re-use that vector object.

30

MySQL++ User Manual

Many of these methods accept manipulators and custom delimiters. The defaults are suitable for building SQL quer-
ies, but if you're using these methods in a different context, you may need to override these defaults. For instance,
you could use these methods to dump datato atext file using different delimiters and quoting rules than SQL.

At this point, we've seen al the major aspects of the SSQL S feature. The final sections of this chapter look at some
of the peripheral aspects.

5.6. Alternate Creation Methods

If for some reason you want your SSQL S data members to have different names than used in the MySQL database,
you can do so likethis:

sql _create_c_nanes_5(stock, 1, 5,
string, item "itent,
int, num "quantity",
doubl e, wei ght, "weight",
doubl e, price, "price"
mysql pp: : Date, date, "shipment")

If you want your SSQL S to have its data members in a different order from those in the MySQL table, you can do it
like this:

sql _create_c_order_5(stock, 2, 5,
nysql pp: : Date, date, 5,
doubl e, price, 4,
string, item 1,
int, num 2,
doubl e, wei ght, 3)

Y ou can combine the custom names and custom ordering like this:
sql _create_conpl ete_5(stock, 2, 5,
nysql pp: : date, date, "shipment", 5,
doubl e, price, "price", 4,
string, Item "itent, 1,
int, num "quantity", 2,
doubl e, weight, "weight", 3)

All three of these macro types have "basic" variants that work the same way. Again, basic SSQL Ses lack the fea-
tures necessary for automatic insert, update and replace query creation.

5.7. Expanding SSQLS Macros

If you ever need to see the code that a given SSQL S declaration expands out to, use the utility doc/ ssql s-pretty,
like so:

ssql s-pretty < myprog.cpp || ess

This locates the first SSQLS declaration in that file and uses the C++ preprocessor to expand that macro. Y ou may
have to change the script to tell it where your MySQL ++ header files are.

5.8. Extending the SSQLS Mechanism

The SSQL S headers — custom.h and custom-macros.h — are automatically generated by the Perl script custom.pl.
Although it is possible to change this script to get additional functionality, it's usually better to do that through inher-
itance.

A regular user may find it helpful to change the the limit on the maximum number of SSQLS data members al-

31

MySQL++ User Manual

lowed. It's 25 out of the box. A smaller value may speed up compiletime, or you may require a higher value because
you have more complex tables than that. Simply change the nax_dat a_nmenber s variable at the top of custom.pl
and say 'make’. The limit for Visual C++ is 31, according to one report. There doesn't seem to be a practical limit
with GCC 3.3 at least: | set the limit to 100 and the only thing that happened is that custom-macros.h went from 1.3
MB to 18 MB and the build time for examples/custom.* got alot longer.

32

MySQL++ User Manual

6. Using Unicode with MySQL++
6.1. A Short History of Unicode

...with a focus on relevance to MySQL++

In the old days, computer operating systems only dealt with 8-bit character sets. This only gives you 256 possible
characters, but the modern Western languages have more than that by themselves. Add in all the other lanauges of
the world, plus the various symbols people use, and you have areal mess! Since no standards body held sway over
things like international character encoding in the early days of computing, many different character sets were in-
vented. These character sets weren't even standardized between operating systems, so heaven help you if you needed
to move localized Greek text on a Windows machine to a Russian Macintosh! The only way we got any internation-
al communication done at al was to build standards on the common 7-bit ASCII subset. Either people used approx-
imations like a plain "c" instead of the French "¢", or they invented things like HTML entities ("ç" in this
case) to encode these additional characters using only 7-bit ASCII.

Unicode solves this problem. It encodes every character in the world, using up to 4 bytes per character. The subset
covering the most economically valuable cases takes two bytes per character, so most Unicode-aware programs limit
themselves to this set, for efficiency.

Unfortunately, Unicode came about 20 years too late for Unix and C. Converting the Unix system call interface to
Unicode would break all existing programs. The 1SO lashed a wide character sidecar onto C in 1995, but in common
practice C is till tied to 8-bit characters.

As Unicode began to take off in the early 1990s, it became clear that some sort of accommodation with Unicode was
needed in legacy systems like Unix and C. During the development of the Plan 9 operating system (a kind of suc-
cessor to Unix) Ken Thompson invented the UTF-8 encoding. Since UTF-8 is a superset of 7-bit ASCII, many pro-
gramsthat deal in text actually get by okay without any explicit support for UTF-8.

The MySQL database server comes out of the Unix/C tradition, so it only supports 8-bit characters natively. UTF-8
data is compatible with C strings, so al versions of MySQL could store UTF-8 data, but sometimes the database ac-
tually needs to understand the data. When sorting, for instance. To support this, explicit UTF-8 support was added to
MySQL inversion 4.1.

Because MySQL ++ does not need to know anything about the flowing through it, it doesn't have explicit UTF-8
support. C++'s st d: : string stores UTF-8 data just fine. But, your program probably does care about the data
coming from MySQL++. The remainder of this chapter covers the choices you have for dealing with UTF-8 en-
coded Unicode data.

6.2. Unicode and Unix

Modern Unices support UTF-8 natively. Red Hat Linux, for instance, has had system-wide UTF-8 support since ver-
sion 8. This continues in the commercial and Fedoraforks of Red Hat Linux, of course.

On such a Unix, the terminal 1/0O code understands UTF-8 encoded data, so your program doesn't require any specia
code to correctly display a UTF-8 string. If you aren't sure whether your system supports UTF-8 natively, just run
the simplel example: if the first item has two high-ASCII characters in place of the "0" in "Nirnberger Brats', you
know it's not handling UTF-8.

If your Unix doesn't support UTF-8 natively, it likely doesn't support any form of Unicode at all, for the historical
reasons | gave above. Therefore, you will have to convert the UTF-8 data to the local 8-bit character set. The stand-
ard Unix function i conv() can help here. If your system doesn't have the i conv() facility, there is a free imple-
mentation available from the GNU Project. Another library you might check out is IBM's ICU. Thisis rather heavy-
weight, so if you just need basic conversions, i conv() should suffice.

6.3. Unicode and Win32

Each Win32 API function that takes a string actually has two two versions. One version supports only 1-byte "AN-

33

MySQL++ User Manual

SI" characters (a superset of ASCII), so they end in 'A'. Win32 aso supports the 2-byte subset of Unicode called
UCS-2. Some call these "wide" characters, so the other set of functionsend in 'W'. The MessageBox() API, for in-
stance, is actually a macro, not areal function. If you define the UNI CODE macro when building your program, the
MessageBox () macro evaluates to MessageBoxW) ; otherwise, to MessageBoxA() .

Since MySQL uses UTF-8 and Win32 uses UCS-2, you must convert data going between the Win32 APl and
MySQL++. Since there's no point in trying for portability — no other OS I'm aware of uses UCS-2 — you might as
well use native Win32 functions for doing this trandation. The following code is distilled from
utf8 to_win32_ansi() inexanpl es/ util.cpp:

void utf8_to_w n32_ansi (const char* utf8_ str, char* ansi_str, int ansi_|len)

wechar _t ucs2_buf[100];
static const int ub_chars = sizeof (ucs2_buf) / sizeof(ucs2_buf[0]);

Mul ti Byt eToW deChar (CP_UTF8, 0, utf8_str, -1, ucs2_buf, ub_chars);
CPI NFOEX cpi ;
Get CPI nf oEx(CP_CEMCP, 0, &cpi);
W deChar ToMul ti Byt e(cpi . CodePage, 0, ucs2_buf, -1,
ansi _str, ansi_len, 0, 0);

To seethisin action, uncomment "#def i ne USE_W N32_UCS2" at the top of util.cpp, build the example programs,
and run simplel in a console window (a.k.a. "DOS box"). The first item should be "Nurnberger Brats'. If not, see
the last paragraph in this section.

utf8_to_win32_ansi () convertsut f 8_str from UTF-8 to UCS-2, and from there to the local code page. "Wait-
aminnit," you shout! "I thought we were trying to get away from the problem of local code pages!" The console is
one of the few Win32 facilities that doesn't support UCS-2 by default. It can be put into UCS-2 mode, but that seems
like more work than we'd like to go to in a portable example program. Since the default code page in most versions
of Windows includesthe " " character used in the sample database, this conversion works out fine for our purposes.

If your program is using the GUI to display text, you don't need the second conversion. Prove this to yourself by
adding the following to ut f 8_t o_wi n32_ansi () after theMul ti Byt eToW deChar () call:

MessageBox(0, ucs2_buf, "UCS-2 version of Iten', MB_CK);

All of this assumes you're using Windows NT or one of its direct descendants: Windows 2000, Windows XP, Win-
dows 2003 Server, and someday "Longhorn". Windows 95/98/ME and Windows CE do not support UCS-2. They
still have the 'W' APIs for compatibility, but they just smash the data down to 8-bit and call the 'A’ version for you.

6.4. For More Information
The Unicode FAQs page has copious information on this complex topic.

When it comes to Unix and UTF-8 specific items, the UTF-8 and Unicode FAQ for Unix/Linux is a quicker way to
find basic information.

MySQL++ User Manual

7. Licensing

The primary copyright holders on MySQL++ are Kevin Atkinson (1998), MySQL AB (1999 through 2001) and
Educational Technology Resources, Inc. (2004 through the date of this writing).

MySQL ++ is released under the GNU Lesser General Public License (LGPL), reproduced below.

Thislicense basically states that you are free to use, distribute and modify these works, whether for personal or com-
mercial purposes, as long as you grant the same rights to those you distribute the works to, whether you changed
them or not. See the licenses below for full details.

7.1. GNU Lesser General Public License
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

[Thisis the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public Li-
cense, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU
General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the
softwareisfreefor al its users.

This license, the Lesser General Public License, applies to some specially designated software packages--typically
libraries--of the Free Software Foundation and other authors who decide to useit. You can useit too, but we suggest
you first think carefully about whether this license or the ordinary General Public License is the better strategy to
usein any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are de-
signed to make sure that you have the freedom to distribute copies of free software (and charge for this service if
you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces
of it in new free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to
surrender these rights. These restrictions trandate to certain responsibilities for you if you distribute copies of the
library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the
rights that we gave you. Y ou must make sure that they, too, receive or can get the source code. If you link other code
with the library, you must provide complete object files to the recipients, so that they can relink them with the lib-
rary after making changes to the library and recompiling it. And you must show them these terms so they know their
rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which
gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the
library is modified by someone else and passed on, the recipients should know that what they have is not the original
version, so that the original author's reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a
company cannot effectively restrict the users of afree program by obtaining a restrictive license from a patent hold-
er. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full

35

MySQL++ User Manual

freedom of use specified in thislicense.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This li-
cense, the GNU Lesser General Public License, appliesto certain designated libraries, and is quite different from the
ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries in-
to non-free programs.

When a program is linked with a library, whether statically or using a shared library, the combination of the two is
legally speaking a combined work, a derivative of the original library. The ordinary General Public License there-
fore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public Li-
cense permits more lax criteriafor linking other code with the library.

We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the
ordinary General Public License. It also provides other free software developers Less of an advantage over compet-
ing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many lib-
raries. However, the Lesser license provides advantagesin certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library,
so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A
more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is
little to gain by limiting the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number of people to use
a large body of free software. For example, permission to use the GNU C Library in non-free programs enables
many more people to use the whole GNU operating system, aswell asits variant, the GNU/Linux operating system.

Although the Lesser General Public Licenseis Less protective of the users freedom, it does ensure that the user of a
program that is linked with the Library has the freedom and the wherewithal to run that program using a modified
version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the differ-
ence between a "work based on the library" and a "work that uses the library". The former contains code derived
from the library, whereas the |atter must be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a notice placed by the
copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public
License (also called "this License"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with ap-
plication programs (which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been distributed under these terms. A
"work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a
work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightfor-
wardly into another language. (Hereinafter, trandlation is included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for making modifications to it. For a library, com-
plete source code means all the source code for all modules it contains, plus any associated interface definition files,
plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its
scope. The act of running a program using the Library is not restricted, and output from such a program is covered
only if its contents constitute a work based on the Library (independent of the use of the Library in atool for writing
it). Whether that is true depends on what the Library does and what the program that uses the Library does.

36

MySQL++ User Manual

1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any me-
dium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and
distribute a copy of this License along with the Library.

You may charge afee for the physical act of transferring a copy, and you may at your option offer warranty protec-
tion in exchange for afee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Lib-
rary, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also
meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed the files
and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third parties under the
terms of this License.

d) If afacility in the modified Library refers to a function or atable of data to be supplied by an
application program that uses the facility, other than as an argument passed when the facility isin-
voked, then you must make a good faith effort to ensure that, in the event an application does not
supply such function or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-
defined independent of the application. Therefore, Subsection 2d requires that any application-sup-
plied function or table used by this function must be optional: if the application does not supply it,
the sgquare root function must still compute square roots.)

These requirements apply to the modified work as awhole. If identifiable sections of that work are not derived from
the Library, and can be reasonably considered independent and separate works in themselves, then this License, and
its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the
terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every
part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather,
the intent is to exercise the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on
the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this
License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given
copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordin-
ary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the or-
dinary GNU Genera Public License has appeared, then you can specify that version instead if you wish.) Do not
make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public Li-
cense applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not alibrary.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or ex-
ecutable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corres-

37

MySQL++ User Manual

ponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent
access to copy the source code from the same place satisfies the requirement to distribute the source code, even
though third parties are not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by
being compiled or linked with it, is called a "work that uses the Library". Such awork, in isolation, is not a derivat-
ive work of the Library, and therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the
Library (because it contains portions of the Library), rather than a "work that uses the library”. The executable is
therefore covered by this License. Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for
the work may be a derivative work of the Library even though the source code is not. Whether this is true is espe-
cialy significant if the work can be linked without the Library, or if the work is itself a library. The threshold for
thisto be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and
small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether
itislegaly aderivative work. (Executables containing this object code plus portions of the Library will still fall un-
der Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms
of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly
with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the Lib-
rary to produce a work containing portions of the Library, and distribute that work under terms of your choice,
provided that the terms permit modification of the work for the customer's own use and reverse engineering for de-
bugging such modifications.

Y ou must give prominent notice with each copy of the work that the Library is used in it and that the Library and its
use are covered by this License. You must supply a copy of this License. If the work during execution displays
copyright notices, you must include the copyright notice for the Library among them, as well as areference directing
the user to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for the
Library including whatever changes were used in the work (which must be distributed under Sec-
tions 1 and 2 above); and, if the work is an executable linked with the Library, with the complete
machine-readable "work that uses the Library", as object code and/or source code, so that the user
can modify the Library and then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of definitions filesin the Library
will not necessarily be able to recompile the application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is
one that (1) uses at run time a copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2) will operate properly with a mod-
ified version of the library, if the user installs one, as long as the modified version is interface-
compatible with the version that the work was made with.

¢) Accompany the work with a written offer, valid for at least three years, to give the same user
the materials specified in Subsection 6a, above, for a charge no more than the cost of performing
this distribution.

d) If distribution of the work is made by offering access to copy from a designated place, offer
equivalent access to copy the above specified materials from the same place.

38

MySQL++ User Manual

€) Verify that the user has already received a copy of these materials or that you have aready sent
this user a copy.

For an executable, the required form of the "work that uses the Library" must include any data and utility programs
needed for reproducing the executable from it. However, as a specia exception, the materials to be distributed need
not include anything that is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself ac-
companies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not nor-
mally accompany the operating system. Such a contradiction means you cannot use both them and the Library to-
gether in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single library together with
other library facilities not covered by this License, and distribute such a combined library, provided that the separate
distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided
that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncom-
bined with any other library facilities. This must be distributed under the terms of the Sections
above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on
the Library, and explaining where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights, from
you under this License will not have their licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants you per-
mission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not
accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you in-
dicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modify-
ing the Library or works based onit.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a
license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and con-
ditions. Y ou may not impose any further restrictions on the recipients exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited
to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a con-
sequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free re-
distribution of the Library by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the
section is intended to apply, and the section as awhole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest
validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribu-
tion system which isimplemented by public license practices. Many people have made generous contributions to the
wide range of software distributed through that system in reliance on consistent application of that system; it isup to
the author/donor to decide if he or she is willing to distribute software through any other system and alicensee can-

39

MySQL++ User Manual

not impose that choice.
This section isintended to make thoroughly clear what is believed to be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Library under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser Genera Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to ad-
dress new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License
which appliesto it and "any later version”, you have the option of following the terms and conditions either of that
version or of any later version published by the Free Software Foundation. If the Library does not specify alicense
version number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incom-
patible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generaly.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY ISWITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIB-
RARY ASPERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPE-
CIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO
USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY
TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop anew library, and you want it to be of the greatest possible use to the public, we recommend making
it free software that everyone can redistribute and change. You can do so by permitting redistribution under these
terms (or, aternatively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at |east the "copyright” line and
apointer to where the full noticeis found.

<onelineto give the library's name and a brief idea of what it does.>

40

MySQL++ User Manual

Copyright © <year> <name of author>
This library is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU Lesser General Public License for more details.
Y ou should have received a copy of the GNU Lesser General Public License along with this lib-
rary; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright dis-
claimer" for the library, if necessary. Here is a sample; alter the names:

Y oyodyne, Inc., hereby disclaims all copyright interest in the library “Frob' (alibrary for tweaking
knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

Ty Coon, President of Vice

That's all thereistoit!

41

