It comes in the night and sucks the essence from your computers.

Kern Sibbald

July 27, 2008
This manual documents Bacula version 2.4.2 (26 July 2008)

Copyright (©)1999-2007, Free Software Foundation Europe e.V.

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License,
Version 1.2 published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU Free
Documentation License”.

Contents

‘1 What is Bacula?‘

‘1.1 Who Needs Bacula?‘

‘1.2 Bacula Components or Services . .

1.3 Bacula Configuration

‘1.4 Conventions Used in this Document

‘1.5 Quick Start

1.6 Terminology

‘1.7 What Baculais Not

‘1.8 Interactions Between the Bacula Services‘

‘2 The Current State of Bacula

‘2.1 What is ImplementedJ

2.2 Advantages Over Other Backup Programs

‘2.3 Current Implementation Restrictior@

2.4 Design Limitations or Restrictions

‘3 System Requirements‘

‘4 Supported Operating Systems

12

12

15

15

18

19

20

23

25

ii

CONTENTS

5 Supported Tape Drives 27
5.1 Don't see your drive? L. L 28
5.2 Unsupported Tape Driveso .. 29
5.3 FreeBSD Users Be Awarelllot .. 29
5.4 Supported Autochangeﬁ 29
5.5 Tape Specificationsot 29

6 Getting Started with Bacula 31
6.1 Understanding Jobs and Scheduleso 31
6.2 Understanding Pools, Volumes and Labels 32
6.3 Setting Up Bacula Configuration Files 33

6.3.1 Configuring the Console Program 33
6.3.2 Configuring the Monitor ProgramJ 34
6.3.3 Configuring the File daemon 35
6.3.4 Configuring the Director 35
6.3.5 Configuring the Storage daemorl 36
6.4 Testing your Configuration Files 37
‘6.5 Testing Compatibility with Your Tape DriveJ 37
6.6 Get Rid of the /lib/tls Directory 38
6.7 Running Baculal. oL 0oL 38
6.8 Log ROLALION « « o o o e e e e 38
6.9 Log Watch oo 38
6.10 Disaster ReCOVOIY o o oo oo 39

7 Installing Baculd 41

7.1 Source Release Files oo v v i 41

CONTENTS iii

7.2 Upgrading Bacula, 42

7.3 Releases Numbering 43
7.4 Dependency Packages 45

7.5 Supported Operating Systems 47
7.6 Building Bacula from Source 47
7.7 What Database to Use? oo v 52
‘7.8 Quick Start 52
7.9 Configure Options‘ 53
7.10 Recommended Options for Most Systems 63

TA1 Red HAt « . o o o oo oo 64
702 SOIATIS « o o o o e e e 65
713 FreeBSD . . . o oo 66
714 Win32 . oo 67
7.15 One File Configure Scripto 67
7.16 Installing Bacula] 67
7.17 Building a File Daemon or Client| 68

7.18 Auto Starting the Daemons 68
7.19 Other Make NOteS . . . o oo oo oo 69
7.20 Installing Tray MODIEOT + « « o e e e e e 71
7.20.1 GNOME oo 71

7202 KDE 71

7.20.3 Other window MANAZETS . .« « . v v e e e 72

7.21 Modifying the Bacula Configuration Files 72

‘8 Critical Items to Implement Before Production 73

‘8.1 Critical Items 73

iv CONTENTS

8.2 Recommended Ttems oo 75
9 A Brief Tutorial 7
9.1 Before Running Bacula. . . oo 78
9.2 Starting the Database oo oot 78
9.3 Starting the DACIONS .« « « o v o oo e 79
9.4 Using the Director to Query and Start Jobs 79
9.5 RunningaJobo oo, 81
9.6 Restoring Your FileS . . oo 87
9.7 Quitting the Console ProgramJ 90
9.8 Adding a Second Client 90
9.9 When The Tape Fills . « .« o o o oo 93
9.10 Other Useful Console Commands 95
9.11 Debug Daemon Output oo oovee e 96

9.12 Patience When Starting Daemons or Mounting Blank Tapesl .97

9.13 Difficulties Connecting from the FD to the SD 97
9.14 Daemon Command Line Options 98
9.15 Creating a Pool .« o 99
‘9.16 Labeling Your Volumes 100
9.17 Labeling Volumes with the Console Program 100

10 Customizing the Configuration Files 103

‘10.1 Character Sets 104
‘10.2 Resource Directive Format‘ 105
‘10.2.1 Comments‘ 106

10.2.2 Upper and Lower Case and Spaces 106

CONTENTS v

10.2.3 Including other Configuration FilesJ 106
10.2.4 Recognized Primitive Data Types. 107

10.3 Resource TYPES - . « v o o voe e e e 109
10.4 Names, Passwords and Authorization 109
10.5 Detailed Information for each Daemon 111
11 Configuring the Director 113
11.1 Director Resource TYPES . . « o v o oo oo et 113
11.2 The Director ReSource oo 114
11.3 The Job ReSOUTCE . « « v v v v oo e e 118
11.4 The JobDefs ReSOUrce o v v oo 140
11.5 The Schedule ReSOUICE . « .« « v o oo 140
11.6 Technical Notes on Schedules 145
11.7 The FileSet ReSOUICe . .« « « o o v oo 145
11.8 FileSet Examples o o oo 163
11.9 Backing up Raw Partitions ooue e 168
11.10Excluding Files and Directories 168
11.11Windows FileSets 169
11.12Testing Your FileSet 172
11.13The Client ReSOUICe . . . « o o v oo e e 173
11.14The Storage ReSOUrce oo oo 175
11.15The Pool RESOUICE . « « « o o v oo oo e 178
11.15.1The Scratch Pool 188
11.16The Catalog Resource 188
11.17The Messages Resourceo oL 190

‘11.18The Console Resource 190

vi CONTENTS

11.19The Counter Resource 192
11.20Example Director Configuration File 193
12 Client /File daemon Configuration 197
12.1 The Client ReSOUICE . . . o o v v e e et 197
12.2 The Director ReSOUICe o oo oot 201
12.3 The Message RESOUICE o o o oo oot 202
12.4 Example Client Configuration File 202
13 Storage Daemon Configuration 205
13.1 Storage Resource 206
13.2 Director RESOUICE . . .« o o o v oo e e e 208
13.3 Device RESOUICE . . .« o o o oo e e 209
13.4 Edit Codes for Mount and Unmount Directives 222
13.5 Devices that require a mount (DVD) 222
14 Autochanger Resource 225
141 Capabilities o o oo 9227
14.2 Messages Resource 227
14.3 Sample Storage Daemon Configuration File 227
15 Messages Resource 231
16 Console Configuration 237
160 General 237
‘16.2 The Director Resource 237
16.3 The ConsoleFont Resourceo oo vv v 238

‘16.4 The Console Resource‘ 239

CONTENTS

16.5 Console Commands

‘16.6 Sample Console Configuration File

17 Monitor Configuration

‘17.1 The Monitor ResourceJ

‘17.2 The Director Resourcé

‘17.3 The Client Resource

‘17.4 The Storage Resource

‘17.5 Tray Monitor Securit%

‘17.6 Sample Tray Monitor configuration

‘17.6.1 Sample File daemon’s Director record.‘

‘17.6.2 Sample Storage daemon’s Director record.‘

‘17.6.3 Sample Director’s Console record.‘

‘18 Bacula Console‘

‘18.1 Console Configuration

18.2 Running the Console Program

18.3 Stopping the Console Program

18.4 Alphabetic List of Console Keywordsl

18.5 Alphabetic List of Console Commands

18.6 Special dot Commands

18.7 Special At (@) Commands

18.8 Running the Console from a Shell Script‘

18.9 Adding Volumes to a Pool . o oo

‘19 The Restore Command‘

19.1 General

vii

242

242

245

245

246

247

247

248

249

249

250

250

251

252

252

253

253

256

274

275

276

277

279

viii CONTENTS

19.2 The Restore Command 280
19.3 Selecting Files by Filenameo 287
19.4 Command Line Argumen@ 289
19.5 Using File Relocation 291
19.5.1 Introduction 291
19.5.2 RegexWhere format oo 292
19.6 Restoring Directory Attributes 292
19.7 Restoring on WIRAOWS « « o o o oo e 293
19.8 Restoring Files Can Be Slow . . . « o v v oo oot 294
19.9 Problems Restoring Files oo 294
‘19.10Restore Errors 296
19.11Example Restore Job Resourceo oo oo .. 296
19.12F1ile Selection Commands 297
‘19.13Rest0ring When Things Go Wronﬁ 299
20 GUI Programs 307
20.1 List of GUI Programs 307
20.2 BIMACEMEN .« o« o e 312
‘20.2.1 bimagemgr installationJ 312
20.2.2 bimagemgr usageo oe e e e 314

21 Catalog Maintenance 319
21.1 Setting Retention Periods 319
21.2 Compacting Your MySQL Database 321
21.3 Repairing Your MySQL Database 322

21.4 MySQL Table is Full oo 323

CONTENTS

‘21.5 MySQL Server Has Gone AW&V{

21.6 Repairing Your PostgreSQL Database

21.7 Database Performance Issues
21.8 Performance Issues Indexes

21.8.1 PostgreSQL Indexes

‘21.8.2 MySQL Indexes . .

21.8.3 SQLite Indexes . . .

21.9 Compacting Your PostgreSQL Database

‘21.10C0m0actinfz Your SQLite Databasé

‘21.11Mi£{ratin£{ from SQLite to MySQL or PostEEreSQL‘

‘21.12Backing Up Your Bacula Database

‘21.13Securitv Considerations‘ .

21.14Backing Up Third Party Databases

‘21.15Database Size

22 Automatic Volume Recycling

22.1 Automatic Pruning

22.2 Pruning Directives

22.3 Recycling AlgorithmJ Ce

‘22.4 Recycle Status

22.5 Making Bacula Use a Single Tape

‘22.6 Daily, Weekly, Monthly Tape Usage Examplé

22.7 Automatic Pruning and Recycling Example

22.8 Manually Recycling Volumes

‘23 Basic Volume Management

ix

324

324

324

325

325

326

326

327

328

328

328

330

331

331

335

337

337

340

342

344

344

346

348

351

X CONTENTS

23.1 Key Concepts and Resource Records 351
23.1.1 Pool Options to Limit the Volume Usage 352

23.1.2 Automatic Volume Labeling 354

23.1.3 Restricting the Number of Volumes and Recycling . . 355

23.2 Concurrent Disk JObS . .« . o oo 356
233 AN Example . . . o oo 357
23.4 Backing up to Multiple Disks 360
23.5 Considerations for Multiple Clients 362
24 DVD Volumes 367
24.1 DVD Specific SD Directiveso oo 368
24.2 Edit Codes for DVD Directives oo oo ... 369
24.3 DVD Specific Director Directives 370
24.4 Other PointS . .« o v v oo 370
25 Automated Disk Backup 373
25.1 The Problem 373
25.2 The Solution| 373
25.3 Overall DesignJ 374
2531 Full Pool 375

25.3.2 Differential Pool 376

‘25.3.3 Incremental Poo]J 376

25.4 The Actual Conf Files o v v e 377
26 Migration 383
26.1 Migration Job Resource Directives 385

126.2 Migration Pool Resource Directives 387

CONTENTS xi

26.3 Important Migration Considerations 388
26.4 Example Migration Jobs 390
27 Backup Strategies 393
27.1 Simple One Tape Backup 393
2711 Advantages 393

27.1.2 Disadvantages. 394

27.1.3 Practical Details oo oo 394

27.2 Manually Changing Tapes 394
27.3 Daily Tape Rotation oo oo 395
27.3.1 Advantages 395

27.3.2 Disadvantages.o o 396

27.3.3 Practical Details oo o 396

28 Autochanger Support 403
28.1 Knowing What SCSI Devices You Have 405
28.2 Example SCTiPtS . .« o v v e e 406
98.3 SIOLS . . . o 406
‘28.4 Multiple Devicesl 407
28.5 Device Configuration Records 407
29 Autochanger Resource 411
29.1 An Example Configuration File 413
29.2 A Multi-drive Example Configuration F fle .o 413
29.3 Specifying Slots When Labelingo oot 414
29.4 Changing Cartridges‘ 415

‘29.5 Dealing with Multiple Magazines‘ 416

xii CONTENTS

29.6 Simulating Barcodes in your Autochanger 417
29.7 The Full Form of the Update Slots Command 417
29.8 FreeBSD ISSUES o 418
29.9 Testing Autochanger and Adapting mtx-changer script 419
29.10Using the Autochanger 421
29.11Barcode SUPPOTt . . . o o o oo 423
29.12Bacula Autochanger Interface oo oo 423
30 Supported Autochangers 425
31 Data Spoolind 429
31.1 Data Spooling DIrectives o v o 430
31.2 I MAJOR WARNING Il 430
313 Other Points 431
32 Python Scripting 433
32.1 Python ConﬁgurationJ 433
32.2 Bacula EVents . . . o o oo v 434
32.3 Python Objects 434
32.4 Python Console Commando 439
32.5 Debugging Python Scripts 440
32.6 Python Example 440
33 ANSI and IBM Tape Labels 443
33.1 Director Pool Directive o v oo v i 443
33.2 Storage Daemon Device Directiveso 444

‘34 Bacula Frequently Asked Questions‘ 445

CONTENTS xiii

341 What is Bacula? 445
34.2 Does Bacula support Windows?o oot 445
34.3 What language is Bacula written in? 446
34.4 On what machines does Bacula run? 446
34.5 Is Bacula Stable? 446
34.6 Im Getting Authorization Errors. What is Going On? . . . 447

34.7 Bacula Runs Fine but Cannot Access a Client on a Different Machine. Why? 449

34.8 My Catalog is Full of Test Runs, How Can I Start Over? . . . 449

34.9 1 Run a Restore Job and Bacula Hangs. What do I do? . . . 450

‘34.101 Cannot Get My Windows Client to Start Automatically? . 450

‘34.11My Windows Client Immediately Dies When I Start It 451

‘34.12My backups are not working on my Windows Client. What should I do7451

34.13Al1 my Jobs are scheduled for the same time. Will this cause problems?452

‘34.14Can Bacula Backup My System To Files instead of TaDe?‘ .. 452

34.15Can I use a dummy device to test the backup? 452

‘34.16Can Bacula Backup and Restore Files Bigger than 2 Gigabytes?453

34.17T want to stopajob. oo 453

‘34.211 want an Incremental but Bacula runs it as a Full backup. Why?7454

34.22Do you really handle unlimited path lengths? 455

‘34.23What Is the Really Unique Feature of Bacula? 455

‘34.24How can I force one job to run after another? 456

34.251 Am Not Getting Email Notification, What Can I Do? ... 456

xiv CONTENTS

‘34.26MV retention periods don’t work 456

‘34.27Whv aren’t my files compressed? 457

34.28Incremental backups are not working 458
34.291 am waiting forever for a backup of an offsite machiné 458
34.30SSH hangs forever after starting Bacula 459

34.317m confused by retention periodsl 459
34.32MaxVolumeSize is ignoredo 460
34.331 get a Connection refused when connecting to my Client . . 460
‘34.34L0ng running jobs die with Pipe Erroﬂ 461
34.35How do I tell the Job which Volume to use? 461
34.36Password generation 462
35 Tips and Suggestions‘ 463
35.1 Upgrading Bacula Versions 463
35.2 Getting Notified of Job Completion 464
35.3 Getting Email Notification to Worki. . o oo 465
35.4 Getting Notified that Bacula is Running 466
35.5 Maintaining a Valid Bootstrap File 468
35.6 Rejected Volumes After a Crash 470
35.7 Security Considerations 473
35.8 Creating Holiday Schedules 474
35.9 Automatic Labeling Using Your Autochanger 474
‘35.10Backing Up Portables Using DHCP 475
‘35.11Going on VAcationot 476
35.12Exclude Files on Windows Regardless of Case 477

‘35.13Executing Scripts on a Remote Machine 477

CONTENTS XV

35.14Recycling All Your Volumes 478
35.15Backing up ACLs on ext3 or XFS filesystems 479
35.16Total Automation of Bacula Tape Handling 479
35.17Running Concurrent Jobgl 480
36 Volume Utility Tools 483
36.1 Specifying the Configuration File 483
36.2 Specifying a Device Name For a Tape 483
36.3 Specifying a Device Name For a File 484
‘36.4 Specifying Volumes 484
36.5 BIS . .o 485
36.5.1 Listing JODS . o« o ot 486
36.5.2 Listing Blocks 487
36.6 bextract 488
36.6.1 Extracting with Include or Exclude Lists 489
36.6.2 Extracting With a Bootstrap File. 490
36.6.3 Extracting From Multiple Volumes 490
36.7 bSCAD 491
36.7.1 Using bscan to Compare a Volume to an existing Catalog494
36.7.2 Using bscan to Recreate a Catalog from a Volume . . 494
36.7.3 Using bscan to Correct the Volume File Count 496
36.7.4 AFter DSCALL . « « o o v ot 497
36.8 DCOPY + + « o o e 497
36.8.1 bcopy Command Options 497
36.9 BEAPE .« « . o e 498

36.9.1 Using btape to Verify your Tape Drive 498

xvi CONTENTS

36.9.2 btape Commands 499
36.100ther PrOgrams o oo oo 500
............................... 500
36.12dbcheck Lo 502
B6.13DICEEX « « o o e 505
B6.0dbwild 505
36.15testfind L 506

37 Testing Your Tape Drive With Bacula 509
37.1 Get Your Tape Drive Workiné 509

‘37.1.1 Problems When no Tape in Drive‘ 511

37.1.2 Specifying the Configuration File 512

37.1.3 Specifying a Device Name For a Tapé 512

37.1.4 Specifying a Device Name For a File 513
B7.2 DEADE . o e 513

37.2.1 Using btape to Verify your Tape Drive 514

37.2.2 Linux SCSI Trickso 515
37.3 Tips for Resolving Problems o oo oot 518

37.3.1 Bacula Saves But Cannot Restore Files 518

37.3.2 Bacula Cannot Open the Device 519

37.3.3 Incorrect File Numbeﬂ 520

37.3.4 Incorrect Number of Blocks or Positioning Errorﬁ ... 520

37.3.5 Ensuring that the Tape Modes Are Properly Set — Linux Only521

‘37.3.6 Tape Hardware Compression and Blocking Sizei 523

‘37.3.7 Tape Modes on FreeBSD‘ 525

37.3.8 Finding your Tape Drives and Autochangers on FreeBSD527

CONTENTS xvii

37.3.9 Using the OnStream driver on Linux Systems 527

37.4 Hardware Compression on EXB-8900 . . . o . o 528
37.4.1 Using btape to Simulate Filling a Tapé 528

37.5 Recovering Files Written With Fixed Block Sizes 529
37.6 Tape Blocking Modeso vvv i 529
37.7 Details of Tape Modes 530
37.8 Autochanger EITOrS oo 532
37.9 Syslog Errors 532
38 What To Do When Bacula Crashes (Kaboom)‘ 533
381 Traceback 533
38.2 Testing The Traceback . . . o oo 534
38.3 Getting A Traceback On Other Systems 535
38.4 Manually Running Bacula Under The Debugger 536
385 Getting Debug Output from Baculd 537
39 The Windows Version of Baculd 539
39.1 Win32 Installation 540
39.2 Post Win32 Installation 543
39.3 Uninstalling Baculaon Wind2 543
39.4 Dealing with Win32 Problems oo 543
39.5 Windows Compatibility Considerations 546
39.6 Volume Shadow Copy SEIviCE . . e 549
39.7 VSS Problems 551
39.8 Windows Firewalls 551

39.9 Windows Port Usagé 551

xviil CONTENTS

‘39. 10Windows Disaster Recovery 552

‘39.11Windows Restore Problem§ 552

39.12Windows Ownership and Permissions Problems 553
39.13Manually resetting the PermissiongJ 554
39.14Backing Up the WinNT/XP /2K System State 557

39.15Considerations for Filename Speciﬁcationsl 557
39.16Win32 Specific File daemon Command Line 558
‘39.17Shutting down Windows Systenﬁ 558
‘40 Disaster Recovery Using BaculaJ 559
401 General 559
‘40.2 Important Considerations 559
40.3 Steps to Take Before Disaster Strikes 560

40.4 Bare Metal Recovery on Linux with a Bacula Rescue CD . . 560

40.5 Requirements 562
40.6 Directories 563
40.7 Preparation for a Bare Metal Recovery 563
40.8 Creating a Bacula Rescue CDROM 563
40.9 Putting Multiple Systems on Your Rescue Disk 567
40.10Restoring a Client System oo oo 569
40.11Boot with your Bacula Rescue CDROM 569
40.12ReStoring a Servero e 575
‘40.13Linux Problems or Bugsj 576
40.14Bare Metal Recovery using a LiveCD . . . o oo 577
40.15FreeBSD Bare Metal Recovery‘ 578

40.16Solaris Bare Metal Recovery 580

CONTENTS

‘40.17Preparing Solaris Before a Disasteﬂ

‘40.18Bugs and Other Considerations

40.19Disaster Recovery of Win32 Systems‘

‘40.200vvnership and Permissions on Win32 Svstem§

40.21 Alternate Disaster Recovery Suggestion for Win32 Systems

‘40.22Rest0ring to a Running SystemJ

‘40.23Additional Resources‘

41 Bacula TLS — Communications EncryptionJ

41.1 TLS Configuration Directives

41.2 Creating a Self-signed Certificate

41.3 Getting a CA Signed Certificate

41.4 Example TLS Configuration Files

‘42 Data Encrvptionj

‘42.1 Building Bacula with Encryption Support

42.2 Encryption Technical Details

‘42.3 Decrypting with a Master Kev‘

42.4 Generating Private/Public Encryption Key§

42.5 Example Data Encryption Configuration

‘43 Bacula Security Issues

43.1 Backward Compatibility L.

43.2 Configuring and Testing TCP Wrappers

43.3 Running as non-root

‘44 Dealing with Firewalls‘

Xix

580

581

581

582

. 583

o84

584

585

586

587

588

588

593

594

994

595

596

596

597

598

599

601

605

XX CONTENTS

44.1 Technical Details L. 605
44.2 A Concrete Example . . . o . oo v i 606
44.2.1 The Bacula Configuration Files for the Above 608

44.2.2 How Does It Work? 610

‘44.2.3 Important Noté 611

4424 Firewall Problems 611

45 Using Bacula to Improve Computer Security 613
45.1 The Details oo 614
45.2 Running the Verify 615
45.3 What To Do When Differences Are Found 617
45.4 A Verify Configuration Examplé 618
46 Bacula RPM Packaging FAQ‘ 621
.............................. 621
46.2 Build OPHONS . . « o o o oo 625
46.3 RPM Install Problems 627
47 The Bootstrap File 629
‘47.1 Bootstrap File Format 629
47.2 Automatic Generation of Bootstrap Files 634
47.3 Bootstrap for bSCano 635
47.4 A Final Bootstrap Example o000 635
48 Installing and Configuring MySQL‘ 637
48.1 Installing and Configuring MySQL — PhaseI 637

48.2 Installing and Configuring MySQL — Phase IT 639

CONTENTS

48.3 Re-initializing the Catalog Database
48.4 Linking Bacula with MySQL)
48.5 Installing MySQL from RPMs
48.6 Upgrading MySQL

49 Installing and Configuring PostgreSQL
49.1 Installing PostgreSQL
49.2 Configuring PostgreSQL . . . o . oo
49.3 Re-initializing the Catalog Databasé
49.4 Installing PostgreSQL from RPMs

‘49.5 Converting from MySQL to PostgreSQL

49.6 Upgrading PostgreSQL
49.7 CreditS o

50 Installing and Configuring SQLité
50.1 Installing and Configuring SQLite — Phase I
50.2 Installing and Configuring SQLite — Phase Il

50.3 Linking Bacula with SQLiteJ

50.4 Testing SQLAtE . . o v v v e

50.5 Re-initializing the Catalog Database

‘50.6 Internal Bacula Database

51 Bacula Copyright, Trademark, and Licenses

51.3 LGPL

‘51.4 Public DomainJ

xx1

640

641

642

642

643

643

644

648

648

649

651

651

653

653

654

655

655

655

657

659

xxii CONTENTS

515 Trademark 660
51.6 Fiduciary License Agreement 660
517 Disclaimer 661
52 GNU Free Documentation License 663
‘52.1 Table of ContentsJ 673
52.2 GNU GENERAL PUBLIC LICENSE 673
52.3 Preamble 673
52.4 TERMS AND CONDITIONS 674
52.5 How to Apply These Terms to Your New Programs‘ 679
52.6 Table of Contents oo oo 682
52.7 GNU LESSER GENERAL PUBLIC LICENSE 682
52.8 Preambleo 683
52.9 TERMS AND CONDITIONS oot 685
‘52.10H0w to Apply These Terms to Your New Libraries‘ 692
53 Bacula Projects 695
697
54.1 Bacula Bugs. 700
‘55 Variable Expansion 701
55.1 General Functionalityo 701
55.2 Bacula Variables 702
55.3 Full SYNtax . . . oo ovoooe e 703
55.4 Semantics e e 704

‘55.5 Examples‘ 705

CONTENTS xxiii

56 Using Stunnel to Encrypt Communications 707
56.1 Communications Ports Used 707
56.2 Encryption 708
56.3 APicturd 708
56.4 Certificates 709
56.5 Securing the Data Channel 709
56.6 Data Channel ConﬁgurationJ 710
56.7 Stunnel Configuration for the Data Channel 710
56.8 Starting and Testing the Data EncryptionJ 712
56.9 Encrypting the Control Channel 712
56.10Control Channel Configuration 713
56.11Stunnel Configuration for the Control Channel 713
‘56.12Starting and Testing the Control Channel 714
‘56.13Using stunnel to Encrypt to a Second Client 715
‘56.14Creating a Self-signed Certificate 716
‘56.15Getting a CA Signed Certificate 717

‘56.16Using ssh to Secure the Communications 717

xxiv CONTENTS

List of Figures

Bacula Applicationso oo 2
Bactla ObJects o oot e 6
Interactions between Bacula Services 12
Bacula Tray Monitor L o 34
Bacula Objects . . . o v v ve e 103
Bacula CD Image Manager 314
Bacula CD Image Burn Progress Window 315
Bacula CD Image Burn ReSultS « o oo e e 316
'Win32 Client Setup Wizard o o oo 540
'Win32 Installation Type o 541
'Win32 Component Selection Dialog 541
Win32 Confgure o oo 541
g
'Win32 Install Progressl 542
'Win32 Client Setup Completed 542

XXV

xxvi LIST OF FIGURES

List of Tables

Supported Tape DIives o o oo 28
‘Dependency Packages‘ 46
ReSource TYPES « . « o o v oo e e e e 109
‘Autochangers Known to Work with Bacula 425
‘WinNT /2K /XP Restore Portability Status 548
‘SQLite vs MySQL Database ComparisonJ 657

XXVil

Chapter 1

What is Bacula?

Bacula is a set of computer programs that permits the system administrator
to manage backup, recovery, and verification of computer data across a
network of computers of different kinds. Bacula can also run entirely upon
a single computer and can backup to various types of media, including tape
and disk.

In technical terms, it is a network Client/Server based backup program.
Bacula is relatively easy to use and efficient, while offering many advanced
storage management features that make it easy to find and recover lost or
damaged files. Due to its modular design, Bacula is scalable from small
single computer systems to systems consisting of hundreds of computers
located over a large network.

1.1 Who Needs Bacula?

If you are currently using a program such as tar, dump, or bru to backup
your computer data, and you would like a network solution, more flexibility,
or catalog services, Bacula will most likely provide the additional features
you want. However, if you are new to Unix systems or do not have offsetting
experience with a sophisticated backup package, the Bacula project does not
recommend using Bacula as it is much more difficult to setup and use than
tar or dump.

If you want Bacula to behave like the above mentioned simple programs and
write over any tape that you put in the drive, then you will find working
with Bacula difficult. Bacula is designed to protect your data following the
rules you specify, and this means reusing a tape only as the last resort. It is

2 CHAPTER 1. WHAT IS BACULA?

possible to ”force” Bacula to write over any tape in the drive, but it is easier
and more efficient to use a simpler program for that kind of operation.

If you are running Amanda and would like a backup program that can
write to multiple volumes (i.e. is not limited by your tape drive capacity),
Bacula can most likely fill your needs. In addition, quite a number of Bacula
users report that Bacula is simpler to setup and use than other equivalent
programs.

If you are currently using a sophisticated commercial package such as Legato
Networker. ARCservelT, Arkeia, or PerfectBackup+, you may be interested
in Bacula, which provides many of the same features and is free software
available under the GNU Version 2 software license.

1.2 Bacula Components or Services

Bacula is made up of the following five major components or services: Di-
rector, Console, File, Storage, and Monitor services.

1.2. BACULA COMPONENTS OR SERVICES 3

Admin workstation

mySQL, SOLLite or
postgresql database

XN & Windows araphical interfoce Storage of catalogue.

to contrel backup and
Admin workstation Backup server
-~ S

Bacula director daemon
Background application which runs
schadules, authenticates conrections
and controls backup operafions,

Bacula storage daemon

054, ":'w"; ::;;Hﬁnm Background application which
h'a‘“ql Iﬁlu Fer dale Source writes backup to disk, tape, CD, #tc,
Bac UIa application Note that these applications may actually run on
fewer machines than shown here. You could run
interactions averything on one machine if you only wanted to

back up a local disk to a ocal tape or disk.

Port numbers are the defaults and can be changed.

(thanks to Aristedes Maniatis for this graphic and the one below)

Bacula Director

The Bacula Director service is the program that supervises all the backup,
restore, verify and archive operations. The system administrator uses the
Bacula Director to schedule backups and to recover files. For more details see
the Director Services Daemon Design Document in the Bacula Developer’s
Guide. The Director runs as a daemon (or service) in the background.

4 CHAPTER 1. WHAT IS BACULA?

Bacula Console

The Bacula Console service is the program that allows the administrator or
user to communicate with the Bacula Director Currently, the Bacula Console
is available in three versions: text-based console interface, GNOME-based
interface, and a wxWidgets graphical interface. The first and simplest is to
run the Console program in a shell window (i.e. TTY interface). Most sys-
tem administrators will find this completely adequate. The second version
is a GNOME GUI interface that is far from complete, but quite functional
as it has most the capabilities of the shell Console. The third version is a
wxWidgets GUI with an interactive file restore. It also has most of the ca-
pabilities of the shell console, allows command completion with tabulation,
and gives you instant help about the command you are typing. For more
details see the Bacula Console Design Document.

Bacula File

The Bacula File service (also known as the Client program) is the software
program that is installed on the machine to be backed up. It is specific to
the operating system on which it runs and is responsible for providing the
file attributes and data when requested by the Director. The File services
are also responsible for the file system dependent part of restoring the file
attributes and data during a recovery operation. For more details see the File
Services Daemon Design Document in the Bacula Developer’s Guide. This
program runs as a daemon on the machine to be backed up. In addition
to Unix/Linux File daemons, there is a Windows File daemon (normally
distributed in binary format). The Windows File daemon runs on current
Windows versions (NT, 2000, XP, 2003, and possibly Me and 98).

Bacula Storage

The Bacula Storage services consist of the software programs that perform
the storage and recovery of the file attributes and data to the physical backup
media or volumes. In other words, the Storage daemon is responsible for
reading and writing your tapes (or other storage media, e.g. files). For more
details see the Storage Services Daemon Design Document in the Bacula
Developer’s Guide. The Storage services runs as a daemon on the machine
that has the backup device (usually a tape drive).

1.2. BACULA COMPONENTS OR SERVICES 5

Catalog

The Catalog services are comprised of the software programs responsible for
maintaining the file indexes and volume databases for all files backed up.
The Catalog services permit the system administrator or user to quickly
locate and restore any desired file. The Catalog services sets Bacula apart
from simple backup programs like tar and bru, because the catalog maintains
a record of all Volumes used, all Jobs run, and all Files saved, permitting
efficient restoration and Volume management. Bacula currently supports
three different databases, MySQL, PostgreSQL, and SQLite, one of which
must be chosen when building Bacula.

The three SQL databases currently supported (MySQL, PostgreSQL or
SQLite) provide quite a number of features, including rapid indexing, arbi-
trary queries, and security. Although the Bacula project plans to support
other major SQL databases, the current Bacula implementation interfaces
only to MySQL, PostgreSQL and SQLite. For the technical and porting
details see the Catalog Services Design Document in the developer’s docu-
mented.

The packages for MySQL and PostgreSQL are available for several operat-
ing systems. Alternatively, installing from the source is quite easy, see the
' Installing and Configuring MySQL chapter of this document for the details.
For more information on MySQL, please see: www.mysql.com. Or see the
' Installing and Configuring PostgreSQL chapter of this document for the de-
tails. For more information on PostgreSQL, please see: www.postgresql.org.

Configuring and building SQLite is even easier. For the details of configuring
SQLite, please see the | Installing and Configuring SQLite chapter of this
document.

Bacula Monitor

A Bacula Monitor service is the program that allows the administrator or
user to watch current status of Bacula Directors, Bacula File Daemons and
Bacula Storage Daemons. Currently, only a GTK+ version is available,
which works with GNOME, KDE, or any window manager that supports
the FreeDesktop.org system tray standard.

To perform a successful save or restore, the following four daemons must be
configured and running: the Director daemon, the File daemon, the Storage
daemon, and the Catalog service (MySQL, PostgreSQL or SQLite).

http://www.mysql.com
http://www.postgresql.org

CHAPTER 1.

1.3 Bacula Configuration

WHAT IS BACULA?

In order for Bacula to understand your system, what clients you want backed
up and how, you must create a number of configuration files containing
resources (or objects). The following presents an overall picture of this:

Storage
A pointer to tha

backup device

(tape drive or
disk storage).

stores the catalogue
(index to contents
of backup).

_ Joh
Definition of one
FileSet from a single
Cilent backed up
according to a
Schedule to a Pool
of tapes/liles on &
Storage device.

Pool
Collgction of tapes or
disk files which make

up the storages. You
may have multiple
pools in different
rotations.

Director
Authentication
detalls tor the

director allowed to
control this daemon,

Schedule
Delinition of when
this job will run and

Fitisatull or
incremental bachup.

FlleSet
Def nitions of paths

M to the files you want

to backup, with
rules to exclude
zartain files.

Storage
One storage record
for general setup.

Simplified Bacula
object definitions

Director
Authentication
details for the

director allowad to
control this daesmon.

Characteristics of
the storage device
{tape driver or dish).

1.4. CONVENTIONS USED IN THIS DOCUMENT 7

1.4 Conventions Used in this Document

Bacula is in a state of evolution, and as a consequence, this manual will not
always agree with the code. If an item in this manual is preceded by an
asterisk (*), it indicates that the particular feature is not implemented. If it
is preceded by a plus sign (+), it indicates that the feature may be partially
implemented.

If you are reading this manual as supplied in a released version of the soft-
ware, the above paragraph holds true. If you are reading the online version
of the manual, www.bacula.org, please bear in mind that this version de-
scribes the current version in development (in the CVS) that may contain
features not in the released version. Just the same, it generally lags behind
the code a bit.

1.5 Quick Start

To get Bacula up and running quickly, the author recommends that you first
scan the Terminology section below, then quickly review the next chapter en-
titled [The Current State of Bacula, then the |Getting Started with Bacula,
which will give you a quick overview of getting Bacula running. Af-
ter which, you should proceed to the chapter on Installing Bacula, then
How to Configure Bacula, and finally the chapter on| Running Bacula.

1.6 Terminology

Administrator The person or persons responsible for administrating the
Bacula system.

Backup The term Backup refers to a Bacula Job that saves files.

Bootstrap File The bootstrap file is an ASCII file containing a compact
form of commands that allow Bacula or the stand-alone file extraction
utility (bextract) to restore the contents of one or more Volumes, for
example, the current state of a system just backed up. With a boot-
strap file, Bacula can restore your system without a Catalog. You can
create a bootstrap file from a Catalog to extract any file or files you
wish.

Catalog The Catalog is used to store summary information about the Jobs,
Clients, and Files that were backed up and on what Volume or Vol-

http://www.bacula.org

8 CHAPTER 1. WHAT IS BACULA?

umes. The information saved in the Catalog permits the administrator
or user to determine what jobs were run, their status as well as the
important characteristics of each file that was backed up, and most
importantly, it permits you to choose what files to restore. The Cat-
alog is an online resource, but does not contain the data for the files
backed up. Most of the information stored in the catalog is also stored
on the backup volumes (i.e. tapes). Of course, the tapes will also have
a copy of the file data in addition to the File Attributes (see below).

The catalog feature is one part of Bacula that distinguishes it from
simple backup and archive programs such as dump and tar.

Client In Bacula’s terminology, the word Client refers to the machine being
backed up, and it is synonymous with the File services or File daemon,
and quite often, it is referred to it as the FD. A Client is defined in a
configuration file resource.

Console The program that interfaces to the Director allowing the user or
system administrator to control Bacula.

Daemon Unix terminology for a program that is always present in the
background to carry out a designated task. On Windows systems, as
well as some Unix systems, daemons are called Services.

Directive The term directive is used to refer to a statement or a record
within a Resource in a configuration file that defines one specific set-
ting. For example, the Name directive defines the name of the Re-
source.

Director The main Bacula server daemon that schedules and directs all
Bacula operations. Occasionally, the project refers to the Director as
DIR.

Differential A backup that includes all files changed since the last Full
save started. Note, other backup programs may define this differently.

File Attributes The File Attributes are all the information necessary
about a file to identify it and all its properties such as size, creation
date, modification date, permissions, etc. Normally, the attributes are
handled entirely by Bacula so that the user never needs to be con-
cerned about them. The attributes do not include the file’s data.

File Daemon The daemon running on the client computer to be backed
up. This is also referred to as the File services, and sometimes as the
Client services or the FD.

FileSet A FileSet is a Resource contained in a configuration file that de-
fines the files to be backed up. It consists of a list of included

1.6. TERMINOLOGY 9

files or directories, a list of excluded files, and how the file is to be
stored (compression, encryption, signatures). For more details, see the
FileSet Resource definition in the Director chapter of this document.

Incremental A backup that includes all files changed since the last Full,
Differential, or Incremental backup started. It is normally specified on
the Level directive within the Job resource definition, or in a Schedule
resource.

Job A Bacula Job is a configuration resource that defines the work that Bac-
ula must perform to backup or restore a particular Client. It consists
of the Type (backup, restore, verify, etc), the Level (full, incremen-
tal,...), the FileSet, and Storage the files are to be backed up (Storage
device, Media Pool). For more details, see theJob Resource definition|
in the Director chapter of this document.

Monitor The program that interfaces to all the daemons allowing the user
or system administrator to monitor Bacula status.

Resource A resource is a part of a configuration file that defines a specific
unit of information that is available to Bacula. It consists of several
directives (individual configuration statements). For example, the Job
resource defines all the properties of a specific Job: name, schedule,
Volume pool, backup type, backup level, ...

Restore A restore is a configuration resource that describes the operation
of recovering a file from backup media. It is the inverse of a save,
except that in most cases, a restore will normally have a small set of
files to restore, while normally a Save backs up all the files on the
system. Of course, after a disk crash, Bacula can be called upon to do
a full Restore of all files that were on the system.

Schedule A Schedule is a configuration resource that defines when the
Bacula Job will be scheduled for execution. To use the Schedule, the
Job resource will refer to the name of the Schedule. For more details,
see the [Schedule Resource definition in the Director chapter of this
document.

Service This is a program that remains permanently in memory awaiting
instructions. In Unix environments, services are also known as dae-
mons.

Storage Coordinates The information returned from the Storage Services
that uniquely locates a file on a backup medium. It consists of two
parts: one part pertains to each file saved, and the other part pertains
to the whole Job. Normally, this information is saved in the Catalog

10 CHAPTER 1. WHAT IS BACULA?

so that the user doesn’t need specific knowledge of the Storage Coordi-
nates. The Storage Coordinates include the File Attributes (see above)
plus the unique location of the information on the backup Volume.

Storage Daemon The Storage daemon, sometimes referred to as the SD,
is the code that writes the attributes and data to a storage Volume
(usually a tape or disk).

Session Normally refers to the internal conversation between the File dae-
mon and the Storage daemon. The File daemon opens a session with
the Storage daemon to save a FileSet or to restore it. A session has a
one-to-one correspondence to a Bacula Job (see above).

Verify A verify is a job that compares the current file attributes to the
attributes that have previously been stored in the Bacula Catalog.
This feature can be used for detecting changes to critical system files
similar to what a file integrity checker like Tripwire does. One of the
major advantages of using Bacula to do this is that on the machine
you want protected such as a server, you can run just the File daemon,
and the Director, Storage daemon, and Catalog reside on a different
machine. As a consequence, if your server is ever compromised, it is
unlikely that your verification database will be tampered with.

Verify can also be used to check that the most recent Job data written
to a Volume agrees with what is stored in the Catalog (i.e. it compares
the file attributes), *or it can check the Volume contents against the
original files on disk.

*Archive An Archive operation is done after a Save, and it consists of
removing the Volumes on which data is saved from active use. These
Volumes are marked as Archived, and may no longer be used to save
files. All the files contained on an Archived Volume are removed from
the Catalog. NOT YET IMPLEMENTED.

Retention Period There are various kinds of retention periods that Bac-
ula recognizes. The most important are the File Retention Period,
Job Retention Period, and the Volume Retention Period. Each of
these retention periods applies to the time that specific records will be
kept in the Catalog database. This should not be confused with the
time that the data saved to a Volume is valid.

The File Retention Period determines the time that File records are
kept in the catalog database. This period is important for two reasons:
the first is that as long as File records remain in the database, you
can "browse” the database with a console program and restore any
individual file. Once the File records are removed or pruned from
the database, the individual files of a backup job can no longer be

1.6. TERMINOLOGY 11

”browsed”. The second reason for carefully choosing the File Retention
Period is because the volume of the database File records use the most
storage space in the database. As a consequence, you must ensure that
regular ”pruning” of the database file records is done to keep your
database from growing too large. (See the Console prune command
for more details on this subject).

The Job Retention Period is the length of time that Job records will
be kept in the database. Note, all the File records are tied to the Job
that saved those files. The File records can be purged leaving the Job
records. In this case, information will be available about the jobs that
ran, but not the details of the files that were backed up. Normally,
when a Job record is purged, all its File records will also be purged.

The Volume Retention Period is the minimum of time that a Volume
will be kept before it is reused. Bacula will normally never overwrite
a Volume that contains the only backup copy of a file. Under ideal
conditions, the Catalog would retain entries for all files backed up
for all current Volumes. Once a Volume is overwritten, the files that
were backed up on that Volume are automatically removed from the
Catalog. However, if there is a very large pool of Volumes or a Volume
is never overwritten, the Catalog database may become enormous. To
keep the Catalog to a manageable size, the backup information should
be removed from the Catalog after the defined File Retention Period.
Bacula provides the mechanisms for the catalog to be automatically
pruned according to the retention periods defined.

Scan A Scan operation causes the contents of a Volume or a series of Vol-
umes to be scanned. These Volumes with the information on which
files they contain are restored to the Bacula Catalog. Once the infor-
mation is restored to the Catalog, the files contained on those Volumes
may be easily restored. This function is particularly useful if cer-
tain Volumes or Jobs have exceeded their retention period and have
been pruned or purged from the Catalog. Scanning data from Vol-
umes into the Catalog is done by using the bscan program. See the
bscan section of the Bacula Utilities Chapter of this manual for more
details.

Volume A Volume is an archive unit, normally a tape or a named disk
file where Bacula stores the data from one or more backup jobs. All
Bacula Volumes have a software label written to the Volume by Bacula
so that it identifies what Volume it is really reading. (Normally there
should be no confusion with disk files, but with tapes, it is easy to
mount the wrong one.)

12 CHAPTER 1. WHAT IS BACULA?

1.7 What Bacula is Not

Bacula is a backup, restore and verification program and is not a complete
disaster recovery system in itself, but it can be a key part of one if you
plan carefully and follow the instructions included in the| Disaster Recovery|
Chapter of this manual.

With proper planning, as mentioned in the Disaster Recovery chapter, Bac-
ula can be a central component of your disaster recovery system. For ex-
ample, if you have created an emergency boot disk, a Bacula Rescue disk to
save the current partitioning information of your hard disk, and maintain
a complete Bacula backup, it is possible to completely recover your system
from ”bare metal” that is starting from an empty disk.

If you have used the WriteBootstrap record in your job or some other
means to save a valid bootstrap file, you will be able to use it to extract the
necessary files (without using the catalog or manually searching for the files
to restore).

1.8 Interactions Between the Bacula Services

The following block diagram shows the typical interactions between the Bac-
ula Services for a backup job. Each block represents in general a separate
process (normally a daemon). In general, the Director oversees the flow of
information. It also maintains the Catalog.

1.8. INTERACTIONS BETWEEN THE BACULA SERVICES

Physical Media

13

14

CHAPTER 1.

WHAT IS BACULA?

Chapter 2

The Current State of Bacula

In other words, what is and what is not currently implemented and func-
tional.

2.1 What is Implemented

e Job Control

— Network backup/restore with centralized Director.
— Internal scheduler for automatic|Job|execution.
— Scheduling of multiple Jobs at the same time.

— You may run one Job at a time or multiple simultaneous Jobs
(sometimes called multiplexing).

— Job sequencing using priorities.

— [Console interface to the Director allowing complete control. A
shell, Qt4 GUI, GNOME GUI and wxWidgets GUI versions of the
Console program are available. Note, the Qt4 GUI program called
the Bacula Administration tool or bat, offers many additional
features over the shell program.

e Security

— Verification of files previously cataloged, permitting a Tripwire
like capability (system break-in detection).

— CRAM-MD5 password authentication between each component
(daemon).

15

CHAPTER 2. THE CURRENT STATE OF BACULA

— Configurable TLS (SSL) communications encryption between
each component.

— Configurable Data (on Volume) encryption on a Client by Client
basis.

— Computation of MD5 or SHA1 signatures of the file data if re-
quested.

e Restore Features

— Restore of one or more files selected interactively either for the
current backup or a backup prior to a specified time and date.

— Restore of a complete system starting from bare metal. This
is mostly automated for Linux systems and partially automated
for Solaris. See |Disaster Recovery Using Baculal This is also
reported to work on Win2K/XP systems.

— Listing and Restoration of files using stand-alone bls and bex-
tract tool programs. Among other things, this permits extrac-
tion of files when Bacula and/or the catalog are not available.
Note, the recommended way to restore files is using the restore
command in the Console. These programs are designed for use
as a last resort.

— Ability to restore the catalog database rapidly by using bootstrap
files (previously saved).

— Ability to recreate the catalog database by scanning backup Vol-
umes using the bscan program.

e SQL Catalog

— Catalog database facility for remembering Volumes, Pools, Jobs,
and Files backed up.

— Support for MySQL, PostgreSQL, and SQLite Catalog databases.

— User extensible queries to the MySQL, PostgreSQL and SQLite
databases.

e Advanced Volume and Pool Management
— Labeled Volumes, preventing accidental overwriting (at least by

Bacula).

— Any number of Jobs and Clients can be backed up to a single
Volume. That is, you can backup and restore Linux, Unix, Sun,
and Windows machines to the same Volume.

— Multi-volume saves. When a Volume is full, Bacula automati-
cally requests the next Volume and continues the backup.

2.1. WHAT IS IMPLEMENTED 17

Pool and Volume library management providing Volume flexibil-
ity (e.g. monthly, weekly, daily Volume sets, Volume sets segre-
gated by Client, ...).

Machine independent Volume data format. Linux, Solaris, and
Windows clients can all be backed up to the same Volume if
desired.

The Volume data format is upwards compatible so that old Vol-
umes can always be read.

A flexible message handler including routing of messages from
any daemon back to the Director and automatic email reporting.

Data spooling to disk during backup with subsequent write to
tape from the spooled disk files. This prevents tape ”shoe shine”
during Incremental/Differential backups.

e Advanced Support for most Storage Devices

Autochanger support using a simple shell interface that can in-
terface to virtually any autoloader program. A script for mtx is
provided.

Support for autochanger barcodes — automatic tape labeling from
barcodes.

Automatic support for multiple autochanger magazines either us-
ing barcodes or by reading the tapes.

Support for multiple drive autochangers.
Raw device backup/restore. Restore must be to the same device.

All Volume blocks (approximately 64K bytes) contain a data
checksum.

Migration support — move data from one Pool to another or one
Volume to another.

Supports writing to DVD.

e Multi-Operating System Support

Programmed to handle arbitrarily long filenames and messages.

GZIP compression on a file by file basis done by the Client pro-
gram if requested before network transit.

Saves and restores POSIX ACLs on most OSes if enabled.

Access control lists for Consoles that permit restricting user ac-
cess to only their data.

Support for save/restore of files larger than 2GB.
Support for 64 bit machines, e.g. amd64, Sparc.

18 CHAPTER 2. THE CURRENT STATE OF BACULA

— Support ANSI and IBM tape labels.

— Support for Unicode filenames (e.g. Chinese) on Win32 machines
on version 1.37.28 and greater.

— Consistent backup of open files on Win32 systems (WinXP,
Win2003, and Vista) but not Win2000, using Volume Shadow
Copy (VSS).

— Support for path/filename lengths of up to 64K on Win32 ma-
chines (unlimited on Unix/Linux machines).

e Miscellaneous

— Multi-threaded implementation.

— A comprehensive and extensible (configuration file| for each dae-
mon.

2.2 Advantages Over Other Backup Programs

e Since there is a client for each machine, you can backup and restore
clients of any type ensuring that all attributes of files are properly
saved and restored.

e It is also possible to backup clients without any client software by
using NFS or Samba. However, if possible, we recommend running a
Client File daemon on each machine to be backed up.

e Bacula handles multi-volume backups.

e A full comprehensive SQL standard database of all files backed up.
This permits online viewing of files saved on any particular Volume.

e Automatic pruning of the database (removal of old records) thus sim-
plifying database administration.

e Any SQL database engine can be used making Bacula very flexible.
Drivers currently exist for MySQL, PostgreSQL, and SQLite.

e The modular but integrated design makes Bacula very scalable.

e Since Bacula uses client file servers, any database or other application
can be properly shutdown by Bacula using the native tools of the
system, backed up, then restarted (all within a Bacula Job).

e Bacula has a built-in Job scheduler.

2.3. CURRENT IMPLEMENTATION RESTRICTIONS 19

e The Volume format is documented and there are simple C programs
to read/write it.

e Bacula uses well defined (IANA registered) TCP/IP ports — no rpcs,
no shared memory.

e Bacula installation and configuration is relatively simple compared to
other comparable products.

e According to one user Bacula is as fast as the big major commercial
applications.

e According to another user Bacula is four times as fast as another
commercial application, probably because that application stores its
catalog information in a large number of individual files rather than
an SQL database as Bacula does.

e Aside from several GUI administrative interfaces, Bacula has a com-
prehensive shell administrative interface, which allows the administra-
tor to use tools such as ssh to administrate any part of Bacula from
anywhere (even from home).

e Bacula has a Rescue CD for Linux systems with the following features:
— You build it on your own system from scratch with one simple
command: make — well, then make burn.

— It uses your kernel

— It captures your current disk parameters and builds scripts that
allow you to automatically repartition a disk and format it to put
it back to what you had before.

— It has a script that will restart your networking (with the right
IP address)

— It has a script to automatically mount your hard disks.
— It has a full Bacula FD statically linked
— You can easily add additional data/programs, ... to the disk.

2.3 Current Implementation Restrictions

e If you have over 4 billion file entries stored in your database, the
database Fileld is likely to overflow. This is a monster database, but
still possible. Bacula’s Fileld fields have been modified so that they
can be upgraded from 32 to 64 bits in version 1.39 or later, but you
must manually do so.

20

24

CHAPTER 2. THE CURRENT STATE OF BACULA

Files deleted after a Full save will be included in a restoration. This is
typical for most similar backup programs (we have a project to correct
this).

Bacula’s Differential and Incremental backups are based on time
stamps. Consequently, if you move files into an existing directory
or move a whole directory into the backup fileset after a Full backup,
those files will probably not be backed up by an Incremental save
because they will have old dates. You must explicitly update the
date/time stamp on all moved files (we have a project to correct this).

File System Modules (configurable routines for saving/restoring spe-
cial files) are not yet implemented. However, this feature is easily
implemented using RunScripts.

Bacula supports doing backups and restores to multiple devices of dif-
ferent media type and multiple Storage daemons. However, if you have
backed up a job to multiple storage devices, Bacula can do a restore
from only one device, which means that you will need to manually edit
the bootstrap file to split it into two restores if you split the backup
across storage devices. This restriction has been removed in version
2.2.0 and later, but it is not yet fully tested.

Bacula cannot restore two different jobs in the same restore if those
jobs were run simultaneously, unless you had data spooling turned
on and the spool file held the full contents of both jobs. In other
terms, Bacula cannot restore two jobs in the same restore if the jobs’
data blocks were intermixed on the backup medium. This poses no
restrictions for normal backup jobs even if they are run simultaneously.

Bacula can generally restore any backup made from a client to any
other client. However, if the architecture is significantly different (i.e.
32 bit architecture to 64 bit or Win32 to Unix), some restrictions
may apply (e.g. Solaris door files do not exist on other Unix/Linux
machines; there are reports that Zlib compression written with 64 bit
machines does not always read correctly on a 32 bit machine).

Design Limitations or Restrictions

Names (resource names, Volume names, and such) defined in Bacula
configuration files are limited to a fixed number of characters. Cur-
rently the limit is defined as 127 characters. Note, this does not apply
to filenames, which may be arbitrarily long.

2.4. DESIGN LIMITATIONS OR RESTRICTIONS 21

e Command line input to some of the stand alone tools — e.g. btape,
bconsole is restricted to several hundred characters maximum.

22

CHAPTER 2. THE CURRENT STATE OF BACULA

Chapter 3

System Requirements

e Bacula has been compiled and run on OpenSuSE Linux, FreeBSD,
and Solaris systems.

o [t requires GNU C++ version 2.95 or higher to compile. You can try
with other compilers and older versions, but you are on your own. We
have successfully compiled and used Bacula using GNU C++ version
4.1.3. Note, in general GNU C++ is a separate package (e.g. RPM)
from GNU C, so you need them both loaded. On Red Hat systems,
the C4++ compiler is part of the gee-c++ rpm package.

e There are certain third party packages that Bacula may need. Except
for MySQL and PostgreSQL, they can all be found in the depkgs and
depkgs1 releases. However, most current Linux and FreeBSD systems
provide these as system packages.

e The minimum versions for each of the databases supported by Bacula
are:

— MySQL 4.1
— PostgreSQL 7.4
— SQLite 2.8.16 or SQLite 3

e If you want to build the Win32 binaries, please see the
README.mingw32 file in the src/win32 directory. We cross-compile
the Win32 release on Linux. We provide documentation on building
the Win32 version, but due to the complexity, you are pretty much on
your own if you want to build it yourself.

e Bacula requires a good implementation of pthreads to work. This is
not the case on some of the BSD systems.

23

24

CHAPTER 3. SYSTEM REQUIREMENTS

The source code has been written with portability in mind and is
mostly POSIX compatible. Thus porting to any POSIX compatible
operating system should be relatively easy.

The GNOME Console program is developed and tested under GNOME
2.x. GNOME 1.4 is no longer supported.

The wxWidgets Console program is developed and tested with the lat-
est stable ANSI or Unicode version of wxWidgets (2.6.1). It works fine
with the Windows and GTK+-2.x version of wxWidgets, and should
also work on other platforms supported by wxWidgets.

The Tray Monitor program is developed for GTK+-2.x. It needs
GNOME less or equal to 2.2, KDE greater or equal to 3.1 or any
window manager supporting the | FreeDesktop system tray standard|

If you want to enable command line editing and history, you will need
to have /usr/include/termcap.h and either the termcap or the ncurses
library loaded (libtermcap-devel or ncurses-devel).

If you want to use DVD as backup medium, you will need to download
the [dvd-+rw-tools 5.21.4.10.8, apply the patch that is in the patches
directory of the main source tree to make these tools compatible with
Bacula, then compile and install them. There is also a patch for
dvd+rw-tools version 6.1, and we hope that the patch is integrated
into a later version. Do not use the dvd+rw-tools provided by your
distribution, unless you are sure it contains the patch. dvd+rw-tools
without the patch will not work with Bacula. DVD media is not recom-
mended for serious or important backups because of its low reliability.

Chapter 4

Supported Operating
Systems

Linux systems (built and tested on CentOS 5).

Most flavors of Linux (Gentoo, Red Hat, Fedora, Mandriva, Debian,
OpenSuSE, Ubuntu, Kubuntu, ...).

Solaris various versions.

FreeBSD (tape driver supported in 1.30 — for FreeBSD older than
version 5.0, please see some important considerations in the
' Tape Modes on FreeBSD section of the Tape Testing chapter of this
manual.)

Windows (Win98/Me, WinNT /2K /XP, Vista) Client (File daemon)

binaries.

The Windows servers (Director and Storage daemon) are available in
the binary Client installer. The are reported to work in many cases.
However they are NOT supported.

MacOS X/Darwin (see http://fink.sourceforge.net/ for obtaining the
packages)

OpenBSD Client (File daemon).

Irix Client (File daemon).

Tru64

Bacula is said to work on other systems (AIX, BSDI, HPUX, NetBSD,
...) but we do not have first hand knowledge of these systems.

25

http://fink.sourceforge.net/

26

CHAPTER 4. SUPPORTED OPERATING SYSTEMS

e RHat 7.2 AS2, AS3, AS4, RHELS5, Fedora Core 2,3,4,5,6,7 SuSE SLES

7,8,9,10,10.1,10.2,10.3 and Debian Woody and Sarge Linux on S/390
and Linux on zSeries.

See the Porting chapter of the Bacula Developer’s Guide for informa-
tion on porting to other systems.

If you have a older Red Hat Linux system running the 2.4.x kernel and
you have the directory /lib/tls installed on your system (normally by
default), bacula will NOT run. This is the new pthreads library and it
is defective. You must remove this directory prior to running Bacula,
or you can simply change the name to /lib/tls-broken) then you must
reboot your machine (one of the few times Linux must be rebooted).
If you are not able to remove/rename /lib/tls, an alternative is to set
the environment variable "LD_ASSUME_KERNEL=2.4.19” prior to
executing Bacula. For this option, you do not need to reboot, and all
programs other than Bacula will continue to use /lib/tls.

The above mentioned /lib/tls problem does not occur with Linux 2.6
kernels.

Chapter 5

Supported Tape Drives

Yes, Bacula supports your tape drive. Bacula does not directly access hard-
ware. If the tape drive is accessible from your operating system, then it
should just work with Bacula. If you can access your tape drive from the
command line, then so can Bacula.

Bacula uses standard operating system calls (read, write, ioctl) to interface
to tape drives. As a consequence, it relies on having a correctly written OS
tape driver. Bacula is known to work perfectly well with SCSI tape drivers
on FreeBSD, Linux, Solaris, and Windows machines, and it may work on
other *nix machines, but we have not tested it. Recently there are many
new drives that use IDE, ATAPI, or SATA interfaces rather than SCSI. On
Linux the OnStream drive, which uses the OSST driver is one such example,
and it is known to work with Bacula. In addition a number of such tape
drives (i.e. OS drivers) seem to work on Windows systems. However, non-
SCSI tape drives (other than the OnStream) that use ide-scis, ide-tape, or
other non-scsi drivers do not function correctly with Bacula (or any other
demanding tape application) as of today (April 2007). If you have purchased
a non-SCSI tape drive for use with Bacula on Linux, there is a good chance
that it will not work. We are working with the kernel developers to rectify
this situation, but it will not be resolved in the near future.

Even if your drive is on the list below, please check the Tape Testing Chapter|
of this manual for procedures that you can use to verify if your tape drive
will work with Bacula. If your drive is in fixed block mode, it may appear
to work with Bacula until you attempt to do a restore and Bacula wants
to position the tape. You can be sure only by following the procedures
suggested above and testing.

It is very difficult to supply a list of supported tape drives, or drives that

27

28 CHAPTER 5. SUPPORTED TAPE DRIVES

are known to work with Bacula because of limited feedback (so if you use
Bacula on a different drive, please let us know). Based on user feedback,
the following drives are known to work with Bacula. A dash in a column

means unknown:

0OSs Man. Media Model
- ADIC DLT Adic Scalar 100 DLT
- ADIC DLT Adic Fastor 22 DLT
FreeBSD 5.4-RELEASE-pl | Certance LTO AdicCertance CL400 LTO Ultriun
amd64
- - DDS Compaq DDS 2,3,4
SuSE 8.1 Pro Compaq AIT Compaq AIT 35 LVD
- Exabyte - Exabyte drives less than 10 years
- Exabyte - Exabyte VXA drives
- HP Travan 4 Colorado T4000S
- HP DLT HP DLT drives
- HP LTO HP LTO Ultrium drives
- IBM 77 3480, 3480XL, 3490, 3490E, 3580
3590 drives
FreeBSD 4.10 RELEASE HP DAT HP StorageWorks DAT72i
- Overland LTO LoaderXpress LTO
- Overland - Neo2000
- OnStream | - OnStream drives (see below)
FreeBSD 4.11-Release Quantum | SDLT SDLT320
- Quantum | DLT DLT-8000
Linux Seagate DDS-4 Scorpio 40
FreeBSD 4.9 STABLE Seagate DDS-4 STA2401LW
FreeBSD 5.2.1 pthreads | Seagate AIT-1 STA1701W
patched RELEASE
Linux Sony DDS-2,34 | -
Linux Tandberg | - Tandbert MLR3
FreeBSD Tandberg | - Tandberg SLR6
Solaris Tandberg | - Tandberg SLR75

5.1 Don’t see your drive?

If you do not see your tape drive listed above, go back and read the first
few paragraphs of this page. The list above contains only the hardware that
people have reported. If your OS can see the hardware, so can Bacula.

There is a list of [supported autochangers in the Supported Autochangers

5.2. UNSUPPORTED TAPE DRIVES 29

chapter of this document, where you will find other tape drives that work
with Bacula.

5.2 Unsupported Tape Drives

Previously OnStream IDE-SCSI tape drives did not work with Bacula. As
of Bacula version 1.33 and the osst kernel driver version 0.9.14 or later, they
now work. Please see the testing chapter as you must set a fixed block size.

QIC tapes are known to have a number of particularities (fixed block size,
and one EOF rather than two to terminate the tape). As a consequence,
you will need to take a lot of care in configuring them to make them work
correctly with Bacula.

5.3 FreeBSD Users Be Aware!!!

Unless you have patched the pthreads library on FreeBSD 4.11 systems,
you will lose data when Bacula spans tapes. This is because the unpatched
pthreads library fails to return a warning status to Bacula that the end of
the tape is near. This problem is fixed in FreeBSD systems released after
4.11. Please see the Tape Testing Chapter of this manual for important
information on how to configure your tape drive for compatibility with Bac-
ula.

5.4 Supported Autochangers

For information on supported autochangers, please see the
‘Autochangers Known to Work with Bacula| section of the Supported
Autochangers chapter of this manual.

5.5 Tape Specifications

If you want to know what tape drive to buy that will work with Bacula, we
really cannot tell you. However, we can say that if you are going to buy
a drive, you should try to avoid DDS drives. The technology is rather old
and DDS tape drives need frequent cleaning. DLT drives are generally much
better (newer technology) and do not need frequent cleaning.

30 CHAPTER 5. SUPPORTED TAPE DRIVES

Below, you will find a table of DLT and LTO tape specifications that will give
you some idea of the capacity and speed of modern tapes. The capacities
that are listed are the native tape capacity without compression. All modern
drives have hardware compression, and manufacturers often list compressed
capacity using a compression ration of 2:1. The actual compression ratio
will depend mostly on the data you have to backup, but I find that 1.5:1 is
a much more reasonable number (i.e. multiply the value shown in the table
by 1.5 to get a rough average of what you will probably see). The transfer
rates are rounded to the nearest GB/hr. All values are provided by various
manufacturers.

The Media Type is what is designated by the manufacturers and you are not
required to use (but you may) the same name in your Bacula conf resources.

Media Type Drive Type | Media Capacity | Transfer Rate
DDS-1 DAT 2 GB 7?7 GB/hr
DDS-2 DAT 4 GB 7?7 GB/hr
DDS-3 DAT 12 GB 5.4 GB/hr

Travan 40 Travan 20 GB 7?7 GB/hr
DDS-4 DAT 20 GB 11 GB/hr
VXA-1 Exabyte 33 GB 11 GB/hr
DAT-72 DAT 36 GB 13 GB/hr
DLT IV DLT8000 40 GB 22 GB/hr
VXA-2 Exabyte 80 GB 22 GB/hr

Half-high Ultrium 1 LTO 1 100 GB 27 GB/hr

Ultrium 1 LTO 1 100 GB 54 GB/hr

Super DLT 1 SDLT 220 110 GB 40 GB/hr
VXA-3 Exabyte 160 GB 43 GB/hr

Super DLT I SDLT 320 160 GB 58 GB/hr

Ultrium 2 LTO 2 200 GB 108 GB/hr

Super DLT II SDLT 600 300 GB 127 GB/hr
VXA-4 Exabyte 320 GB 86 GB/hr

Ultrium 3 LTO 3 400 GB 216 GB/hr

Chapter 6

Getting Started with Bacula

If you are like me, you want to get Bacula running immediately to get a feel
for it, then later you want to go back and read about all the details. This
chapter attempts to accomplish just that: get you going quickly without all
the details. If you want to skip the section on Pools, Volumes and Labels,
you can always come back to it, but please read to the end of this chapter,
and in particular follow the instructions for testing your tape drive.

We assume that you have managed to build and install Bacula, if not,
you might want to first look at the |System Requirements| then at the
‘Compiling and Installing Bacula chapter of this manual.

6.1 Understanding Jobs and Schedules

In order to make Bacula as flexible as possible, the directions given to Bacula
are specified in several pieces. The main instruction is the job resource,
which defines a job. A backup job generally consists of a FileSet, a Client,
a Schedule for one or several levels or times of backups, a Pool, as well as
additional instructions. Another way of looking at it is the FileSet is what
to backup; the Client is who to backup; the Schedule defines when, and the
Pool defines where (i.e. what Volume).

Typically one FileSet/Client combination will have one corresponding job.
Most of the directives, such as FileSets, Pools, Schedules, can be mixed and
matched among the jobs. So you might have two different Job definitions
(resources) backing up different servers using the same Schedule, the same
Fileset (backing up the same directories on two machines) and maybe even
the same Pools. The Schedule will define what type of backup will run

31

32 CHAPTER 6. GETTING STARTED WITH BACULA

when (e.g. Full on Monday, incremental the rest of the week), and when
more than one job uses the same schedule, the job priority determines which
actually runs first. If you have a lot of jobs, you might want to use JobDefs,
where you can set defaults for the jobs, which can then be changed in the
job resource, but this saves rewriting the identical parameters for each job.
In addition to the FileSets you want to back up, you should also have a job
that backs up your catalog.

Finally, be aware that in addition to the backup jobs there are restore, verify,
and admin jobs, which have different requirements.

6.2 Understanding Pools, Volumes and Labels

If you have been using a program such as tar to backup your system, Pools,
Volumes, and labeling may be a bit confusing at first. A Volume is a sin-
gle physical tape (or possibly a single file) on which Bacula will write your
backup data. Pools group together Volumes so that a backup is not re-
stricted to the length of a single Volume (tape). Consequently, rather than
explicitly naming Volumes in your Job, you specify a Pool, and Bacula will
select the next appendable Volume from the Pool and request you to mount
it.

Although the basic Pool options are specified in the Director’s Pool resource,
the real Pool is maintained in the Bacula Catalog. It contains information
taken from the Pool resource (bacula-dir.conf) as well as information on all
the Volumes that have been added to the Pool. Adding Volumes to a Pool is
usually done manually with the Console program using the label command.

For each Volume, Bacula maintains a fair amount of catalog information
such as the first write date/time, the last write date/time, the number of
files on the Volume, the number of bytes on the Volume, the number of
Mounts, etc.

Before Bacula will read or write a Volume, the physical Volume must have
a Bacula software label so that Bacula can be sure the correct Volume is
mounted. This is usually done using the label command in the Console
program.

The steps for creating a Pool, adding Volumes to it, and writing software
labels to the Volumes, may seem tedious at first, but in fact, they are quite
simple to do, and they allow you to use multiple Volumes (rather than
being limited to the size of a single tape). Pools also give you significant
flexibility in your backup process. For example, you can have a ”Daily”

6.3. SETTING UP BACULA CONFIGURATION FILES 33

Pool of Volumes for Incremental backups and a ”Weekly” Pool of Volumes
for Full backups. By specifying the appropriate Pool in the daily and weekly
backup Jobs, you thereby insure that no daily Job ever writes to a Volume
in the Weekly Pool and vice versa, and Bacula will tell you what tape is
needed and when.

For more on Pools, see the [Pool Resourcel section of the Director Configu-
ration chapter, or simply read on, and we will come back to this subject
later.

6.3 Setting Up Bacula Configuration Files

After running the appropriate ./configure command and doing a make,
and a make install, if this is the first time you are running Bacula, you
must create valid configuration files for the Director, the File daemon, the
Storage daemon, and the Console programs. If you have followed our recom-
mendations, default configuration files as well as the daemon binaries will
be located in your installation directory. In any case, the binaries are found
in the directory you specified on the --sbindir option to the ./configure
command, and the configuration files are found in the directory you specified
on the --sysconfdir option.

When initially setting up Bacula you will need to invest a bit of time in
modifying the default configuration files to suit your environment. This
may entail starting and stopping Bacula a number of times until you get
everything right. Please do not despair. Once you have created your con-
figuration files, you will rarely need to change them nor will you stop and
start Bacula very often. Most of the work will simply be in changing the
tape when it is full.

6.3.1 Configuring the Console Program

The Console program is used by the administrator to interact with the Di-
rector and to manually start/stop Jobs or to obtain Job status information.

The Console configuration file is found in the directory specified on the
--sysconfdir option that you specified on the ./configure command and
by default is named bconsole.conf.

If you choose to build the GNOME console with the --enable-gnome
option, you also find a default configuration file for it, named bgnome-
console.conf.

34 CHAPTER 6. GETTING STARTED WITH BACULA

The same applies to the wxWidgets console, which is build with the
--enable-bwx-console option, and the name of the default configuration
file is, in this case, bwx-console.conf.

Normally, for first time users, no change is needed to these files. Reasonable
defaults are set.

Further details are in the Console configuration chapter.

6.3.2 Configuring the Monitor Program

The Monitor program is typically an icon in the system tray. However,
once the icon is expanded into a full window, the administrator or user can
obtain status information about the Director or the backup status on the
local workstation or any other Bacula daemon that is configured.

R Bacula tray monitor.

= ==y Current job: No current job.

O HeadMan [@IR) Last job: Job status: Terminated (0 errar)
. —— Current joh: No cument jab.

) Rufus (FO) [Ew Last job: Job status: Terminated (0 error)

Current job: No cument job.

=
®){MainSDISD) Last job: Job status: Terminated (0 error)

Main3D Version: 1.35.8 (08 October 2004) iB86-redhat-linux-gnu redhat Enterprise 3.0
Daemon started 09-Oct-04 23:59, 42 Jobs run since started.

Rurning Jobs:

Mo Jobs running.

Terminated Jobs:

JubId Lewvel Files Byles SLalus Firlgtiod it

E489 Incr 215 123,201,315 DK 15-0ct-04 01:18 Rufus

£490 Diff 2,58% 44,040,312 0K 15-0ct-04 01:23 Tibs

6491 Incr 0 0 0K 15-0ct-04 01:24 Minou

B492 Full 1 177,034,657 0OK 15-0ct-04 01:26 CatalogBackup
6493 Diff 28,703 1,919,915,120 OK 16-0ct-04 01:18 HMatou

6494 Incr 1,485 743,464,387 OK 16-0ct-04 01:27 Polymatou
£495 Incr 3,896 294,031,312 0K 16-0ct-04 01:32 Rufus

6496 Incr 5 528,723 OK 16-0ct-04 01:35 Tibs

£497 Incr [} 0 0K 16=0ct=04 01:36 Minou

6498 Full 1 180,824,403 OK 16-Oct-04 01:37 CatalogBackup

Device status:

Device "/dev/nst0” is mounted with Volume "DLT-140ct04”
Total Bytes=7,030,732,607 Blocks=108,996 Bytes/block=64,504
Fositioned at File=30 Block=0

Datla spuuling: 0 aulive jubs, 0 byles; 35 Lolal jubs, 1,922,568 ,746 max byles/ jub.
Attr spooling: O active jobs, 0 bytes; 35 total jobs, 7,538,641 max bytes.

Refresh interval in seconds: |5 5 | Fb Refresh now | ® Close

The image shows a tray-monitor configured for three daemons. By clicking
on the radio buttons in the upper left corner of the image, you can see the
status for each of the daemons. The image shows the status for the Storage
daemon (MainSD) that is currently selected.

6.3. SETTING UP BACULA CONFIGURATION FILES 35

The Monitor configuration file is found in the directory specified on the
--sysconfdir option that you specified on the ./configure command and
by default is named tray-monitor.conf. Normally, for first time users, you
just need to change the permission of this file to allow non-root users to run
the Monitor, as this application must run as the same user as the graphical
environment (don’t forget to allow non-root users to execute bacula-tray-
monitor). This is not a security problem as long as you use the default
settings.

More information is in the Monitor configuration| chapter.

6.3.3 Configuring the File daemon

The File daemon is a program that runs on each (Client) machine. At the
request of the Director, finds the files to be backed up and sends them (their
data) to the Storage daemon.

The File daemon configuration file is found in the directory specified on
the --sysconfdir option that you specified on the ./configure command.
By default, the File daemon’s configuration file is named bacula-fd.conf.
Normally, for first time users, no change is needed to this file. Reasonable
defaults are set. However, if you are going to back up more than one ma-
chine, you will need to install the File daemon with a unique configuration
file on each machine to be backed up. The information about each File
daemon must appear in the Director’s configuration file.

Further details are in the File daemon configuration chapter.

6.3.4 Configuring the Director

The Director is the central control program for all the other daemons. It
schedules and monitors all jobs to be backed up.

The Director configuration file is found in the directory specified on the
--sysconfdir option that you specified on the ./configure command. Nor-
mally the Director’s configuration file is named bacula-dir.conf.

In general, the only change you must make is modify the FileSet resource
so that the Include configuration directive contains at least one line with
a valid name of a directory (or file) to be saved.

If you do not have a DLT tape drive, you will probably want to edit the
Storage resource to contain names that are more representative of your ac-

36 CHAPTER 6. GETTING STARTED WITH BACULA

tual storage device. You can always use the existing names as you are free to
arbitrarily assign them, but they must agree with the corresponding names
in the Storage daemon’s configuration file.

You may also want to change the email address for notification from the
default root to your email address.

Finally, if you have multiple systems to be backed up, you will need a sepa-
rate File daemon or Client specification for each system, specifying its name,
address, and password. We have found that giving your daemons the same
name as your system but post fixed with -fd helps a lot in debugging. That
is, if your system name is foobaz, you would give the File daemon the name
foobaz-fd. For the Director, you should use foobaz-dir, and for the stor-
age daemon, you might use foobaz-sd. Each of your Bacula components
must have a unique name. If you make them all the same, aside from the
fact that you will not know what daemon is sending what message, if they
share the same working directory, the daemons temporary file names will
not be unique, and you will get many strange failures.

More information is in the|Director configuration| chapter.

6.3.5 Configuring the Storage daemon

The Storage daemon is responsible, at the Director’s request, for accepting
data from a File daemon and placing it on Storage media, or in the case of
a restore request, to find the data and send it to the File daemon.

The Storage daemon’s configuration file is found in the directory specified on
the ——sysconfdir option that you specified on the ./configure command.
By default, the Storage daemon’s file is named bacula-sd.conf. Edit this
file to contain the correct Archive device names for any tape devices that
you have. If the configuration process properly detected your system, they
will already be correctly set. These Storage resource name and Media Type
must be the same as the corresponding ones in the Director’s configuration
file bacula-dir.conf. If you want to backup to a file instead of a tape,
the Archive device must point to a directory in which the Volumes will be
created as files when you label the Volume.

Further information is in the|Storage daemon configuration| chapter.

6.4. TESTING YOUR CONFIGURATION FILES 37

6.4 Testing your Configuration Files

You can test if your configuration file is syntactically correct by running
the appropriate daemon with the -t option. The daemon will process the
configuration file and print any error messages then terminate. For example,
assuming you have installed your binaries and configuration files in the same
directory.

cd <installation-directory>

./bacula-dir -t -c bacula-dir.conf

./bacula-fd -t -c bacula-fd.conf

./bacula-sd -t -c bacula-sd.conf

./bconsole -t -c bconsole.conf

./bgnome-console -t -c bgnome-console.conf

./bux-console -t -c bwx-console.conf

./bat -t -c bat.conf

su <normal user> -c "./bacula-tray-monitor -t -c tray-monitor.conf"

will test the configuration files of each of the main programs. If the config-
uration file is OK, the program will terminate without printing anything.
Please note that, depending on the configure options you choose, some, or
even all, of the three last commands will not be available on your system.
If you have installed the binaries in traditional Unix locations rather than a
single file, you will need to modify the above commands appropriately (no
./ in front of the command name, and a path in front of the conf file name).

6.5 Testing Compatibility with Your Tape Drive

Before spending a lot of time on Bacula only to find that it doesn’t work
with your tape drive, please read thebtape — Testing Your Tape Drive|chap-
ter of this manual. If you have a modern standard SCSI tape drive on a
Linux or Solaris, most likely it will work, but better test than be sorry.
For FreeBSD (and probably other xBSD flavors), reading the above men-
tioned tape testing chapter is a must. Also, for FreeBSD, please see
The FreeBSD Diary|for a detailed description on how to make Bacula work
on your system. In addition, users of FreeBSD prior to 4.9-STABLE dated
Mon Dec 29 15:18:01 2003 UTC who plan to use tape devices, please see
the file platforms/freebsd/pthreads-fix.txt in the main Bacula direc-
tory concerning important information concerning compatibility of Bacula

and your system.

38 CHAPTER 6. GETTING STARTED WITH BACULA

6.6 Get Rid of the /lib/tls Directory

The new pthreads library /lib/tls installed by default on recent Red Hat
systems running Linux kernel 2.4.x is defective. You must remove it or
rename it, then reboot your system before running Bacula otherwise after a
week or so of running, Bacula will either block for long periods or deadlock
entirely. You may want to use the loader environment variable override
rather than removing /lib/tls. Please see | Supported Operating Systems|
for more information on this problem.

This problem does not occur on systems running Linux 2.6.x kernels.

6.7 Running Bacula

Probably the most important part of running Bacula is being able to restore
files. If you haven’t tried recovering files at least once, when you actually
have to do it, you will be under a lot more pressure, and prone to make
errors, than if you had already tried it once.

To get a good idea how to use Bacula in a short time, we strongly recom-
mend that you follow the example in the Running Bacula Chapter| of this
manual where you will get detailed instructions on how to run Bacula.

6.8 Log Rotation

If you use the default bacula-dir.conf or some variation of it, you will note
that it logs all the Bacula output to a file. To avoid that this file grows
without limit, we recommend that you copy the file logrotate from the
scripts/logrotate to /etc/logrotate.d/bacula. This will cause the log
file to be rotated once a month and kept for a maximum of five months. You
may want to edit this file to change the default log rotation preferences.

6.9 Log Watch

Some systems such as Red Hat and Fedora run the logwatch program every
night, which does an analysis of your log file and sends an email report.
If you wish to include the output from your Bacula jobs in that report,
please look in the scripts/logwatch directory. The README file in that

6.10. DISASTER RECOVERY 39

directory gives a brief explanation on how to install it and what kind of
output to expect.

6.10 Disaster Recovery

If you intend to use Bacula as a disaster recovery tool rather than sim-
ply a program to restore lost or damaged files, you will want to read the
Disaster Recovery Using Bacula Chapter|of this manual.

In any case, you are strongly urged to carefully test restoring some files that
you have saved rather than wait until disaster strikes. This way, you will be
prepared.

40

CHAPTER 6. GETTING STARTED WITH BACULA

Chapter 7

Installing Bacula

In general, you will need the Bacula source release, and if you want to run a
Windows client, you will need the Bacula Windows binary release. However,
Bacula needs certain third party packages (such as MySQL, PostgreSQL,
or SQLite to build and run properly depending on the options you specify.
Normally, MySQL and PostgreSQL are packages that can be installed on
your distribution. However, if you do not have them, to simplify your task,
we have combined a number of these packages into three depkgs releases
(Dependency Packages). This can vastly simplify your life by providing you
with all the necessary packages rather than requiring you to find them on
the Web, load them, and install them.

7.1 Source Release Files

Beginning with Bacula 1.38.0, the source code has been broken into four
separate tar files each corresponding to a different module in the Bacula
SVN. The released files are:

bacula-2.0.3.tar.gz This is the primary source code release for Bacula.
On each release the version number (2.0.3) will be updated.

bacula-docs-2.0.3.tar.gz This file contains a copy of the docs directory
with the documents prebuild. English HTML directory, single HTML
file, and pdf file. The French and German translations are in progress,
but are not built.

bacula-gui-2.0.3.tar.gz This file contains the non-core GUI programs.
Currently, it contains bacula-web, a PHP program for producing man-

41

42 CHAPTER 7. INSTALLING BACULA

agement viewing of your Bacula job status in a browser; and bim-
agemgr a browser program for burning CDROM images with Bacula
Volumes.

bacula-rescue-2.0.0.tar.gz This is the Bacula Rescue CDROM code.
Note, the version number of this package is not tied to the Bacula
release version, so it will be different. Using this code, you can burn
a CDROM with your system configuration and containing a stati-
cally linked version of the File daemon. This can permit you to easily
repartition and reformat your hard disks and reload your system with
Bacula in the case of a hard disk failure.

Note, this package evolves slower than the Bacula source code, so there
may not always be a new release of the rescue package when making
minor updates to the Bacula code. For example, when releasing Bacula
version 2.0.3, the rescue package may still be at version 2.0.0 if there
were no updates.

winbacula-2.0.3.exe This file is the 32 bit Windows installer for installing
the Windows client (File daemon) on a Windows machine. This client
will also run on 64 bit Windows machines. Beginning with Bacula
version 1.39.20, this executable will also optionally load the Win32
Director and the Win32 Storage daemon.

7.2 Upgrading Bacula

If you are upgrading from one Bacula version to another, you should first
carefully read the ReleaseNotes of all major versions between your current
version and the version to which you are upgrading. If the Bacula catalog
database has been upgraded (as it is almost every major release), you will
either need to reinitialize your database starting from scratch (not normally
a good idea), or save an ASCII copy of your database, then proceed to
upgrade it. If you are upgrading two major versions (e.g. 1.36 to 2.0) then
life will be more complicated because you must do two database upgrades.
See below for more on this.

Upgrading the catalog is normally done after Bacula is build and installed
by:

cd <installed-scripts-dir> (default /etc/bacula)
./update_bacula_tables

7.3. RELEASES NUMBERING 43

This update script can also be find in the Bacula source src/cats directory.

If there are several database upgrades between your version and the version
to which you are upgrading, you will need to apply each database upgrade
script. For your convenience, you can find all the old upgrade scripts in the
upgradedb directory of the source code. You will need to edit the scripts
to correspond to your system configuration. The final upgrade script, if any,
can be applied as noted above.

If you are upgrading from one major version to another, you will need to
replace all your components at the same time as generally the inter-daemon
protocol will change. However, within any particular release (e.g. version
1.32.x) unless there is an oversight or bug, the daemon protocol will not
change. If this is confusing, simply read the ReleaseNotes very carefully as
they will note if all daemons must be upgraded at the same time.

Finally, please note that in general it is not necessary to do a make unin-
stall before doing an upgrade providing you are careful not to change the
installation directories. In fact, if you do so, you will most likely delete all
your conf files, which could be disastrous. The normal procedure during an
upgrade is simply:

./configure (your options)
make
make install

In general none of your existing .conf or .sql files will be overwritten, and
you must do both the make and make install commands, a make install
without the preceding make will not work.

For additional information on upgrading, please see the
Upgrading Bacula Versions in the Tips chapter of this manual.

7.3 Releases Numbering

Every Bacula release whether beta or production has a different number
as well as the date of the release build. The numbering system follows
traditional Open Source conventions in that it is of the form.

major.minor.release

For example:

44 CHAPTER 7. INSTALLING BACULA

1.38.11

where each component (major, minor, patch) is a number. The major num-
ber is currently 1 and normally does not change very frequently. The minor
number starts at 0 and increases each for each production release by 2 (i.e.
it is always an even number for a production release), and the patch number
is starts at zero each time the minor number changes. The patch number is
increased each time a bug fix (or fixes) is released to production.

So, as of this date (10 September 2006), the current production Bacula
release is version 1.38.11. If there are bug fixes, the next release will be
1.38.12 (i.e. the patch number has increased by one).

For all patch releases where the minor version number does not change, the
database and all the daemons will be compatible. That means that you
can safely run a 1.38.0 Director with a 1.38.11 Client. Of course, in this
case, the Director may have bugs that are not fixed. Generally, within a
minor release (some minor releases are not so minor), all patch numbers are
officially released to production. This means that while the current Bacula
version is 1.38.11, versions 1.38.0, 1.38.1, ... 1.38.10 have all been previously
released.

When the minor number is odd, it indicates that the package is under de-
velopment and thus may not be stable. For example, while the current
production release of Bacula is currently 1.38.11, the current development
version is 1.39.22. All patch versions of the development code are available
in the SVN (source repository). However, not all patch versions of the de-
velopment code (odd minor version) are officially released. When they are
released, they are released as beta versions (see below for a definition of
what beta means for Bacula releases).

In general when the minor number increases from one production release
to the next (i.e. 1.38.x to 1.40.0), the catalog database must be upgraded,
the Director and Storage daemon must always be on the same minor release
number, and often (not always), the Clients must also be on the same minor
release. As often as possible, we attempt to make new releases that are
downwards compatible with prior clients, but this is not always possible.
You must check the release notes. In general, you will have fewer problems
if you always run all the components on the same minor version number (i.e.
all either 1.38.x or 1.40.x but not mixed).

7.4. DEPENDENCY PACKAGES 45

Beta Releases

Towards the end of the development cycle, which typically runs one year
from a major release to another, there will be several beta releases of the
development code prior to a production release. As noted above, beta ver-
sions always have odd minor version numbers (e.g 1.37.x or 1.39.x). The
purpose of the beta releases is to allow early adopter users to test the new
code. Beta releases are made with the following considerations:

e The code passes the regression testing on FreeBSD, Linux, and Solaris
machines.

e There are no known major bugs, or on the rare occasion that there
are, they will be documented or already in the bugs database.

e Some of the new code/features may not yet be tested.

e Bugs are expected to be found, especially in the new code before the
final production release.

e The code will have been run in production in at least one small site
(mine).

e The Win32 client will have been run in production at least one night
at that small site.

e The documentation in the manual is unlikely to be complete especially
for the new features, and the Release Notes may not be fully organized.

e Beta code is not generally recommended for everyone, but rather for
early adopters.

7.4 Dependency Packages

As discussed above, we have combined a number of third party packages that
Bacula might need into the depkgs release. You can, of course, get the latest
packages from the original authors or from your operating system supplier.
The locations of where we obtained the packages are in the README file
in each package. However, be aware that the packages in the depkgs files
have been tested by us for compatibility with Bacula.

Typically, a dependency package will be named depkgs-
ddMMMyy.tar.gz where dd is the day we release it, MMM is the

46 CHAPTER 7. INSTALLING BACULA

abbreviated month (e.g. Jan), and yy is the year. An actual example is:
depkgs-07Apr02.tar.gz. To install and build this package (if needed),
you do the following:

1. Create a bacula directory, into which you will place both the Bacula
source as well as the dependency package.

2. Detar the depkgs into the bacula directory.
3. cd bacula/depkgs

4. make

Although the exact composition of the dependency packages may change
from time to time, the current makeup is the following:

3rd Party Package | depkgs | depkgs-qt
SQLite X

SQLite3 X

mtx X

qt4 X

qwt X

Note, some of these packages are quite large, so that building them can be
a bit time consuming. The above instructions will build all the packages
contained in the directory. However, when building Bacula, it will take only
those pieces that it actually needs.

Alternatively, you can make just the packages that are needed. For example,

cd bacula/depkgs
make sqlite

will configure and build only the SQLite package.

You should build the packages that you will require in depkgs a prior to
configuring and building Bacula, since Bacula will need them during the
build process.

For more information on the depkgs-qt package, please read the INSTALL
file in the main directory of that package. If you are going to build Qt4 using
depkgs-qt, you must source the qt4-paths file included in the package prior
to building Bacula. Please read the INSTALL file for more details.

7.5. SUPPORTED OPERATING SYSTEMS 47

Even if you do not use SQLite, you might find it worthwhile to build mtx
because the tapeinfo program that comes with it can often provide you
with valuable information about your SCSI tape drive (e.g. compression,
min/max block sizes, ...). Note, most distros provide mtx as part of their
release.

The depkgsl package is depreciated and previously contained readline,
which should be available on all operating systems.

The depkgs-win32 package is deprecated and no longer used in Bac-
ula version 1.39.x and later. It was previously used to build the na-
tive Win32 client program, but this program is now built on Linux
systems using cross-compiling. All the tools and third party libraries
are automatically downloaded by executing the appropriate scripts. See
src/win32/README.mingw32 for more details.

7.5 Supported Operating Systems

Please see the | Supported Operating Systems section of the QuickStart
chapter of this manual.

7.6 Building Bacula from Source

The basic installation is rather simple.

1. Install and build any depkgs as noted above. This should be unnec-
essary on most modern Operating Systems.

2. Configure and install MySQL or PostgreSQL (if de-
sired). Installing and Configuring MySQL Phase I or
Installing and Configuring PostgreSQL Phase I. If you are in-
stalling from rpms, and are using MySQL, please be sure to install
mysql-devel, so that the MySQL header files are available while
compiling Bacula. In addition, the MySQL client library mysqlclient
requires the gzip compression library libz.a or libz.so. If you are
using rpm packages, these libraries are in the libz-devel package. On
Debian systems, you will need to load the zliblg-dev package. If
you are not using rpms or debs, you will need to find the appropriate
package for your system.

Note, if you already have a running MySQL or PostgreSQL on your
system, you can skip this phase provided that you have built the thread

48

CHAPTER 7. INSTALLING BACULA

safe libraries. And you have already installed the additional rpms
noted above.

SQLite is not supported on Solaris. This is because it frequently fails
with bus errors. However SQLite3 may work.

. Detar the Bacula source code preferably into the bacula directory

discussed above.

. cd to the directory containing the source code.

. ./configure (with appropriate options as described below). Any path

names you specify as options on the ./configure command line must
be absolute paths and not relative.

. Check the output of ./configure very carefully, especially the Install

binaries and Install config directories. If they are not correct, please
rerun ./configure until they are. The output from ./configure is stored
in config.out and can be re-displayed at any time without rerunning
the ./configure by doing cat config.out.

. If after running ./configure once, you decide to change options and

re-run it, that is perfectly fine, but before re-running it, you should
run:

make distclean

so that you are sure to start from scratch and not have a mixture
of the two options. This is because ./configure caches much of the
information. The make distclean is also critical if you move the
source directory from one machine to another. If the make distclean
fails, just ignore it and continue on.

. make If you get errors while linking in the Storage daemon directory

(src/stored), it is probably because you have not loaded the static
libraries on your system. I noticed this problem on a Solaris system.
To correct it, make sure that you have not added --enable-static-
tools to the ./configure command.

If you skip this step (make) and proceed immediately to the make
install you are making two serious errors: 1. your install will fail
because Bacula requires a make before a make install. 2. you are
depriving yourself of the chance to make sure there are no errors before
beginning to write files to your system directories.

. make install Please be sure you have done a make before entering

this command, and that everything has properly compiled and linked
without errors.

7.6. BUILDING BACULA FROM SOURCE 49

10.

11.

12.

13.

14.

15.

16.

If you are new to Bacula, we strongly recommend that you skip the
next step and use the default configuration files, then run the exam-
ple program in the next chapter, then come back and modify your
configuration files to suit your particular needs.

Customize the configuration files for each of the three daemons (Di-
rectory, File, Storage) and for the Console program. For the details
of how to do this, please see Setting Up Bacula Configuration Files|in
the Configuration chapter of this manual. We recommend that you
start by modifying the default configuration files supplied, making the
minimum changes necessary. Complete customization can be done af-
ter you have Bacula up and running. Please take care when modifying
passwords, which were randomly generated, and the Names as the
passwords and names must agree between the configuration files for
security reasons.

Create the Bacula MySQL database and tables (if us-
ing MySQL) Installing and Configuring MySQL Phase I
or create the Bacula PostgreSQL database and tables
Configuring PostgreSQL II or alternatively if you are using SQLite
Installing and Configuring SQLite Phase II.

Start Bacula (./bacula start) Note. the next chapter shows you how
to do this in detail.

Interface with Bacula using the Console program

For the previous two items, please follow the instructions in the
Running Bacula chapter of this manual, where you will run a simple
backup and do a restore. Do this before you make heavy modifications
to the configuration files so that you are sure that Bacula works and
are familiar with it. After that changing the conf files will be easier.

If after installing Bacula, you decide to "move it”, that is to install it
in a different set of directories, proceed as follows:

make uninstall

make distclean

./configure (your-new-options)
make

make install

If all goes well, the ./configure will correctly determine which operating
system you are running and configure the source code appropriately. Cur-
rently, FreeBSD, Linux (Red Hat), and Solaris are supported. The Bacula

50 CHAPTER 7. INSTALLING BACULA

client (File daemon) is reported to work with MacOS X 10.3 is if readline
support is not enabled (default) when building the client.

If you install Bacula on more than one system, and they are identical, you
can simply transfer the source tree to that other system and do a ”"make
install”. However, if there are differences in the libraries or OS versions,
or you wish to install on a different OS, you should start from the original
compress tar file. If you do transfer the source tree, and you have previously
done a ./configure command, you MUST do:

make distclean

prior to doing your new ./configure. This is because the GNU autoconf
tools cache the configuration, and if you re-use a configuration for a Linux
machine on a Solaris, you can be sure your build will fail. To avoid this, as
mentioned above, either start from the tar file, or do a ”"make distclean”.

In general, you will probably want to supply a more complicated configure
statement to ensure that the modules you want are built and that everything
is placed into the correct directories.

For example, on Fedora, Red Hat, or SuSE one could use the following:

CFLAGS="-g -Wall" \
./configure \

--sbindir=$HOME/bacula/bin \
--sysconfdir=$HOME/bacula/bin \
--with-pid-dir=$HOME/bacula/bin/working \
--with-subsys-dir=$HOME/bacula/bin/working \
--with-mysql \
--with-working-dir=$HOME/bacula/bin/working \
--with-dump-email=$USER

Note, the advantage of using the above configuration to start is that every-
thing will be put into a single directory, which you can later delete once you
have run the examples in the next chapter and learned how Bacula works.
In addition, the above can be installed and run as non-root.

For the developer’s convenience, I have added a defaultconfig script to the
examples directory. This script contains the statements that you would
normally use, and each developer/user may modify them to suit his needs.
You should find additional useful examples in this directory as well.

The --enable-conio or --enable-readline options are useful because they
provide a command line history and editing capability for the Console pro-
gram. If you have included either option in the build, either the termcap

7.6. BUILDING BACULA FROM SOURCE 51

or the ncurses package will be needed to link. On most systems, including
Red Hat and SuSE, you should include the ncurses package. If Bacula’s
configure process finds the ncurses libraries, it will use those rather than
the termcap library. On some systems, such as SuSE, the termcap library
is not in the standard library directory. As a consequence, the option may
be disabled or you may get an error message such as:

/usr/lib/gcc-1ib/i586-suse-1linux/3.3.1/.../1d:
cannot find -ltermcap
collect2: 1d returned 1 exit status

while building the Bacula Console. In that case, you will need to set the
LDFLAGS environment variable prior to building.

export LDFLAGS="-L/usr/lib/termcap"

The same library requirements apply if you wish to use the readline sub-
routines for command line editing and history or if you are using a MySQL
library that requires encryption. If you need encryption, you can either
export the appropriate additional library options as shown above or, alter-
natively, you can include them directly on the ./configure line as in:

LDFLAGS="-1ss1l -lcyrpto" \
./configure <your-options>

On some systems such as Mandriva, readline tends to gobble up prompts,
which makes it totally useless. If this happens to you, use the disable option,
or if you are using version 1.33 and above try using ——enable-conio to use
a built-in readline replacement. You will still need either the termcap or
the ncurses library, but it is unlikely that the conio package will gobble up
prompts.

readline is no longer supported after version 1.34. The code within Bacula
remains, so it should be usable, and if users submit patches for it, we will
be happy to apply them. However, due to the fact that each version of
readline seems to be incompatible with previous versions, and that there are
significant differences between systems, we can no longer afford to support
it.

52 CHAPTER 7. INSTALLING BACULA

7.7 What Database to Use?

Before building Bacula you need to decide if you want to use SQLite,
MySQL, or PostgreSQL. If you are not already running MySQL or Post-
greSQL, you might want to start by testing with SQLite (not supported
on Solaris). This will greatly simplify the setup for you because SQLite
is compiled into Bacula an requires no administration. It performs well
and is suitable for small to medium sized installations (maximum 10-20
machines). However, we should note that a number of users have had unex-
plained database corruption with SQLite. For that reason, we recommend
that you install either MySQL or PostgreSQL for production work.

If you wish to use MySQL as the Bacula catalog, please see the
Installing and Configuring MySQL chapter of this manual. You will need to
install MySQL prior to continuing with the configuration of Bacula. MySQL
is a high quality database that is very efficient and is suitable for any sized
installation. It is slightly more complicated than SQLite to setup and ad-
minister because it has a number of sophisticated features such as userids
and passwords. It runs as a separate process, is truly professional and can
manage a database of any size.

If you wish to use PostgreSQL as the Bacula catalog, please see the
Installing and Configuring PostgreSQL chapter of this manual. You will
need to install PostgreSQL prior to continuing with the configuration of
Bacula. PostgreSQL is very similar to MySQL, though it tends to be slightly
more SQLI2 compliant and has many more advanced features such as trans-
actions, stored procedures, and the such. It requires a certain knowledge to
install and maintain.

If you wish to wuse SQLite as the Bacula catalog, please see
Installing and Configuring SQLite chapter of this manual. SQLite is not
supported on Solaris.

7.8 Quick Start

There are a number of options and important considerations given below
that you can skip for the moment if you have not had any problems building
Bacula with a simplified configuration as shown above.

If the ./configure process is unable to find specific libraries (e.g. libintl,
you should ensure that the appropriate package is installed on your system.
Alternatively, if the package is installed in a non-standard location (as far

7.9. CONFIGURE OPTIONS 53

as Bacula is concerned), then there is generally an option listed below (or
listed with ”./configure --help” that will permit you to specify the directory
that should be searched. In other cases, there are options that will permit
you to disable to feature (e.g. --disable-nls).

If you want to dive right into it, we recommend you skip to the next chapter,
and run the example program. It will teach you a lot about Bacula and as
an example can be installed into a single directory (for easy removal) and
run as non-root. If you have any problems or when you want to do a real
installation, come back to this chapter and read the details presented below.

7.9 Configure Options

The following command line options are available for configure to customize
your installation.

--sbindir=<binary-path> Defines where the Bacula binary (executable)
files will be placed during a make install command.

--sysconfdir=<config-path> Defines where the Bacula configuration
files should be placed during a make install command.

--mandir=<path> Note, as of Bacula version 1.39.14, the meaning of
any path specified on this option is change from prior versions. It
now specifies the top level man directory. Previously the mandir spec-
ified the full path to where you wanted the man files installed. The
man files will be installed in gzip’ed format under mandir/manl and
mandir/man8 as appropriate. For the install to succeed you must have
gzip installed on your system.

By default, Bacula will install the Unix man pages in
Jusr/share/man/manl and /usr/share/man/man8. If you wish
the man page to be installed in a different location, use this option to
specify the path. Note, the main HTML and PDF Bacula documents
are in a separate tar file that is not part of the source distribution.

--datadir=<path> If you translate Bacula or parts of Bacula into a
different language you may specify the location of the po files using
the --datadir option. You must manually install any po files as Bacula
does not (yet) automatically do so.

--disable-ipv6

--enable-smartalloc This enables the inclusion of the Smartalloc or-
phaned buffer detection code. This option is highly recommended.

o4

CHAPTER 7. INSTALLING BACULA

Because we never build without this option, you may experience prob-
lems if it is not enabled. In this case, simply re-enable the option.
We strongly recommend keeping this option enabled as it helps detect
memory leaks. This configuration parameter is used while building
Bacula

--enable-bat If you have Qt4 ;= 4.2 installed on your computer includ-

ing the libqt4 and libqt4-devel (libqt4-dev on Debian) libraries, and
you want to use the Bacula Administration Tool (bat) GUI Console
interface to Bacula, you must specify this option. Doing so will build
everything in the src/qt-console directory. The build with enable-
bat will work only with a full Bacula build (i.e. it will not work with
a client-only build). In addition to the Qt4 libraries, linking bat re-
quires the qwt package installed on your system. Please see the next
configure option (with-qwt) for how to build the qwt package.

Qt4 is available on OpenSUSE 10.2, CentOS 5, Fedora, and Debian.
If it is not available on your system, you can download the depkgs-
qt package from the Bacula Source Forge download area and build it
and the qwt package, both of which are needed to build bat. See the
INSTALL file in that package for more details. In particular to use
the Qt4 built by depkgs-qt you bf must source the file qt4-paths.

--with-qwt=<path> To build bat, you need the qwt graphics package

installed on your system. The path specified must be an absolute path
and not relative.

The qwt package is available for download from the qwt project on
Source Forge. If you wish, you may build and install it on your system
(by default in /usr/lib). If you have done so, you would specify:

--with-quwt=/usr/1ib/qut-5.0.2

Alternatively, you can download the Bacula depkgs package (currently
version 11Jul07) and build it, then assuming that you have put it into
a directory named bacula, you would specify:

--with-quwt=$HOME/bacula/depkgs/qut

Some packages such as Debian do not adhere to the standard of naming
the library libqwt.a or libqwt.so, and you will either need to manually
add a soft link to the name they use or use the depkgs version, which
handles the naming correctly.

--enable-batch-insert This option enables batch inserts of the attribute

records (default) in the catalog database, which is much faster (10

7.9. CONFIGURE OPTIONS 55

times or more) than without this option for large numbers of files.
However, this option will automatically be disabled if your SQL li-
braries are not thread safe. If you find that batch mode is not enabled
on your Bacula installation, then your database most likely does not
support threads.

SQLite2 is not thread safe. Batch insert cannot be enabled when using
SQLite2

On most systems, MySQL, PostgreSQL and SQLite3 are thread safe.

To verify that your PostgreSQL is thread safe, you can try this (change
the path to point to your particular installed libpq.a; these commands
were issued on FreeBSD 6.2):

$ nm /usr/local/lib/libpq.a | grep PQputCopyData
00001b08 T PQputCopyData
$ nm /usr/local/lib/libpq.a | grep mutex

U pthread_mutex_lock

U pthread_mutex_unlock

U pthread_mutex_init

U pthread_mutex_lock

U pthread_mutex_unlock

The above example shows a libpq that contains the required function
PQputCopyData and is thread enabled (i.e. the pthread mutex™ en-
tries). If you do not see PQputCopyData, your version of PostgreSQL
is too old to allow batch insert. If you do not see the mutex entries,
then thread support has not been enabled. Our tests indicate you usu-
ally need to change the configuration options and recompile/reinstall
the PostgreSQL client software to get thread support.

Bacula always links to the thread safe MySQL libraries.

As a default, Bacula runs SQLite3 with PRAGMA syn-
chronous=O0FF because it improves performance by more than 30
times. However, it increases the possibility of a corrupted database.
If you want more security, please modify src/version.h appropriately
(it should be obvious when you look at the file).

Running with Batch Insert turned on is recommended because it can
significantly improve attribute insertion times. However, it does put
a significantly larger part of the work on your SQL engine, so you
may need to pay more attention to tuning it. In particular, Batch
Insert can require large temporary table space, and consequently, the
default location (often /tmp) may run out of space causing errors. For
MySQL, the location is set in my.conf with ”"tmpdir”. You may also

o6 CHAPTER 7. INSTALLING BACULA

want to increase the memory available to your SQL engine to further
improve performance during Batch Inserts.

--enable-gnome If you have GNOME installed on your computer in-
cluding the GNOME development libraries, and you want to use the
GNOME GUI Console interface to Bacula, you must specify this op-
tion. Doing so will build everything in the src/gnome2-console di-
rectory.

--enable-bwx-console If you have wxWidgets installed on your com-
puter and you want to use the wxWidgets GUI Console interface to
Bacula, you must specify this option. Doing so will build everything in
the src/wx-console directory. This could also be useful to users who
want a GUI Console and don’t want to install GNOME, as wxWidgets
can work with GTK+, Motif or even X11 libraries.

--enable-tray-monitor If you have GTK installed on your computer,
you run a graphical environment or a window manager compatible
with the FreeDesktop system tray standard (like KDE and GNOME)
and you want to use a GUI to monitor Bacula daemons, you must
specify this option. Doing so will build everything in the src/tray-
monitor directory. Note, due to restrictions on what can be linked
with GPLed code, we were forced to remove the egg code that dealt
with the tray icons and replace it by calls to the GTK+ API, and
unfortunately, the tray icon API necessary was not implemented until
GTK version 2.10 or later.

--enable-static-tools This option causes the linker to link the Storage
daemon utility tools (bls, bextract, and bscan) statically. This per-
mits using them without having the shared libraries loaded. If you
have problems linking in the src/stored directory, make sure you
have not enabled this option, or explicitly disable static linking by
adding --disable-static-tools.

--enable-static-fd This option causes the make process to build a static-
bacula-fd in addition to the standard File daemon. This static version
will include statically linked libraries and is required for the Bare Metal
recovery. This option is largely superseded by using make static-
bacula-fd from with in the src/filed directory. Also, the --enable-
client-only option described below is useful for just building a client
so that all the other parts of the program are not compiled.

When linking a static binary, the linker needs the static versions of all
the libraries that are used, so frequently users will experience linking
errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The

7.9.

CONFIGURE OPTIONS 57

second thing to do is the make sure you do not specify --openssl or
--with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you
will need to load additional static libraries.

--enable-static-sd This option causes the make process to build a static-

bacula-sd in addition to the standard Storage daemon. This static
version will include statically linked libraries and could be useful dur-
ing a Bare Metal recovery.

When linking a static binary, the linker needs the static versions of all
the libraries that are used, so frequently users will experience linking
errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The
second thing to do is the make sure you do not specify --openssl or
--with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you
will need to load additional static libraries.

--enable-static-dir This option causes the make process to build a static-

bacula-dir in addition to the standard Director. This static version
will include statically linked libraries and could be useful during a Bare
Metal recovery.

When linking a static binary, the linker needs the static versions of all
the libraries that are used, so frequently users will experience linking
errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The
second thing to do is the make sure you do not specify --openssl or
--with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you
will need to load additional static libraries.

--enable-static-cons This option causes the make process to build a

static-console and a static-gnome-console in addition to the stan-
dard console. This static version will include statically linked libraries
and could be useful during a Bare Metal recovery.

When linking a static binary, the linker needs the static versions of all
the libraries that are used, so frequently users will experience linking
errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The
second thing to do is the make sure you do not specify --openssl or
--with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you
will need to load additional static libraries.

o8 CHAPTER 7. INSTALLING BACULA

--enable-client-only This option causes the make process to build only
the File daemon and the libraries that it needs. None of the other
daemons, storage tools, nor the console will be built. Likewise a make
install will then only install the File daemon. To cause all daemons to
be built, you will need to do a configuration without this option. This
option greatly facilitates building a Client on a client only machine.

When linking a static binary, the linker needs the static versions of all
the libraries that are used, so frequently users will experience linking
errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The
second thing to do is the make sure you do not specify --openssl or
--with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you
will need to load additional static libraries.

--enable-build-dird This option causes the make process to build the
Director and the Director’s tools. By default, this option is on, but
you may turn it off by using --disable-build-dird to prevent the
Director from being built.

--enable-build-stored This option causes the make process to build the
Storage daemon. By default, this option is on, but you may turn it
off by using --disable-build-stored to prevent the Storage daemon
from being built.

--enable-largefile This option (default) causes Bacula to be built with 64
bit file address support if it is available on your system. This permits
Bacula to read and write files greater than 2 GBytes in size. You
may disable this feature and revert to 32 bit file addresses by using
--disable-largefile.

--disable-nls By default, Bacula uses the GNU Native Language Support
(NLS) libraries. On some machines, these libraries may not be present
or may not function correctly (especially on non-Linux implementa-
tions). In such cases, you may specify --disable-nls to disable use of
those libraries. In such a case, Bacula will revert to using English.

--disable-ipv6 By default, Bacula enables IPv6 protocol. On some sys-
tems, the files for IPv6 may exist, but the functionality could be turned
off in the kernel. In that case, in order to correctly build Bacula, you
will explicitly need to use this option so that Bacula does not attempt
to reference OS function calls that do not exist.

--with-sqlite=<sqlite-path> This enables use of the SQLite version
2.8.x database. The sqlite-path is not normally specified as Bac-
ula looks for the necessary components in a standard location (dep-

7.9. CONFIGURE OPTIONS 59

kgs/sqlite). See Installing and Configuring SQLite| chapter of this
manual for more details. SQLite is not supported on Solaris.

See the note below under the --with-postgresql item.

--with-sqlite3=<sqlite3-path> This enables use of the SQLite version
3.x database. The sqlite3-path is not normally specified as Bac-
ula looks for the necessary components in a standard location (dep-
kgs/sqlite3). See Installing and Configuring SQLite chapter of this
manual for more details. SQLite3 is not supported on Solaris.

--with-mysql=<mysql-path> This enables building of the Catalog ser-
vices for Bacula. It assumes that MySQL is running on your sys-
tem, and expects it to be installed in the mysql-path that you
specify. Normally, if MySQL is installed in a standard system lo-
cation, you can simply use --with-mysql with no path specification.
If you do use this option, please proceed to installing MySQL in the
Installing and Configuring MySQL|chapter before proceeding with the
configuration.

See the note below under the --with-postgresql item.

--with-postgresql=<path> This provides an explicit path to the Post-
greSQL libraries if Bacula cannot find it by default. Normally to build
with PostgreSQL, you would simply use --with-postgresql.

Note, for Bacula to be configured properly, you must specify one of the
four database options supported. That is: --with-sqlite, --with-sqlite3,
--with-mysql, or --with-postgresql, otherwise the ./configure will fail.

--with-openssl=<path> This configuration option is necessary if you
want to enable TLS (ssl), which encrypts the communications within
Bacula or if you want to use File Daemon PKI data encryp-
tion. Normally, the path specification is not necessary since the
configuration searches for the OpenSSL libraries in standard sys-
tem locations. Enabling OpenSSL in Bacula permits secure com-
munications between the daemons and/or data encryption in the
File daemon. For more information on using TLS, please see the
Bacula TLS — Communications Encryption chapter of this manual.
For more information on using PKI data encryption, please see the
Bacula PKI — Data Encryption chapter of this manual.

--with-python=<path> This option enables Bacula support for Python.
If no path is supplied, configure will search the standard library loca-
tions for Python 2.2, 2.3, 2.4, or 2.5. If it cannot find the library, you
will need to supply a path to your Python library directory. Please
see the Python chapter for the details of using Python scripting.

60 CHAPTER 7. INSTALLING BACULA

--with-libintl-prefix=<DIR> This option may be used to tell Bacula to
search DIR/include and DIR/lib for the libintl headers and libraries
needed for Native Language Support (NLS).

--enable-conio Tells Bacula to enable building the small, light weight
readline replacement routine. It is generally much easier to configure
than readline, although, like readline, it needs either the termcap or
ncurses library.

--with-readline=<readline-path> Tells Bacula where readline is in-
stalled. Normally, Bacula will find readline if it is in a standard library.
If it is not found and no --with-readline is specified, readline will be
disabled. This option affects the Bacula build. Readline provides the
Console program with a command line history and editing capabil-
ity and is no longer supported, so you are on your own if you have
problems.

--enable-readline Tells Bacula to enable readline support. It is normally
disabled due to the large number of configuration problems and the
fact that the package seems to change in incompatible ways from ver-
sion to version.

--with-tcp-wrappers=<path> This specifies that you want TCP wrap-
pers (man hosts_access(5)) compiled in. The path is optional since
Bacula will normally find the libraries in the standard locations. This
option affects the Bacula build. In specifying your restrictions in the
/etc/hosts.allow or /etc/hosts.deny files, do not use the twist
option (hosts_options(5)) or the Bacula process will be terminated.
Note, when setting up your /etc/hosts.allow or /etc/hosts.deny,
you must identify the Bacula daemon in question with the name you
give it in your conf file rather than the name of the executable.

For more information on configuring and testing TCP wrappers, please
see the [Configuring and Testing TCP Wrappers| section in the Secu-
rity Chapter.

On SuSE, the libwrappers libraries needed to link Bacula are con-
tained in the tcpd-devel package. On Red Hat, the package is named
tcp_wrappers.

--with-archivedir=<path> The directory used for disk-based backups.
Default value is /tmp. This parameter sets the default values in the
bacula-dir.conf and bacula-sd.conf configuration files. For example, it
sets the Where directive for the default restore job and the Archive
Device directive for the FileStorage device.

This option is designed primarily for use in regression testing. Most
users can safely ignore this option.

7.9. CONFIGURE OPTIONS 61

--with-working-dir=<working-directory-path> This option is
mandatory and specifies a directory into which Bacula may safely
place files that will remain between Bacula executions. For example,
if the internal database is used, Bacula will keep those files in this
directory. This option is only used to modify the daemon configura-
tion files. You may also accomplish the same thing by directly editing
them later. The working directory is not automatically created by the
install process, so you must ensure that it exists before using Bacula
for the first time.

--with-base-port=<port=number> In order to run, Bacula needs
three TCP/IP ports (one for the Bacula Console, one for the Storage
daemon, and one for the File daemon). The --with-baseport option
will automatically assign three ports beginning at the base port ad-
dress specified. You may also change the port number in the resulting
configuration files. However, you need to take care that the numbers
correspond correctly in each of the three daemon configuration files.
The default base port is 9101, which assigns ports 9101 through 9103.
These ports (9101, 9102, and 9103) have been officially assigned to
Bacula by IANA. This option is only used to modify the daemon con-
figuration files. You may also accomplish the same thing by directly
editing them later.

--with-dump-email=<email-address> This option specifies the email
address where any core dumps should be set. This option is normally
only used by developers.

--with-pid-dir=<PATH> This specifies where Bacula should place the
process id file during execution. The default is: /var/run. This
directory is not created by the install process, so you must ensure that
it exists before using Bacula the first time.

--with-subsys-dir=<PATH> This specifies where Bacula should place
the subsystem lock file during execution. The default is
/var/run/subsys. Please make sure that you do not specify the
same directory for this directory and for the sbindir directory. This
directory is used only within the autostart scripts. The subsys direc-
tory is not created by the Bacula install, so you must be sure to create
it before using Bacula.

--with-dir-password=<Password> This option allows you to specify
the password used to access the Director (normally from the Console
program). If it is not specified, configure will automatically create a
random password.

62 CHAPTER 7. INSTALLING BACULA

--with-fd-password=<Password> This option allows you to specify
the password used to access the File daemon (normally called from
the Director). If it is not specified, configure will automatically create
a random password.

--with-sd-password=<Password> This option allows you to specify
the password used to access the Storage daemon (normally called from
the Director). If it is not specified, configure will automatically create
a random password.

--with-dir-user=<User> This option allows you to specify the Userid
used to run the Director. The Director must be started as root, but
doesn’t need to run as root, and after doing preliminary initializations,
it can ”drop” to the Userld specified on this option. If you specify
this option, you must create the User prior to running make install,
because the working directory owner will be set to User.

--with-dir-group=<Group> This option allows you to specify the
Groupld used to run the Director. The Director must be started as
root, but doesn’t need to run as root, and after doing preliminary
initializations, it can ”drop” to the Groupld specified on this option.
If you specify this option, you must create the Group prior to run-
ning make install, because the working directory group will be set to
Group.

--with-sd-user=<User> This option allows you to specify the Userid
used to run the Storage daemon. The Storage daemon must be started
as root, but doesn’t need to run as root, and after doing preliminary
initializations, it can ”drop” to the Userld specified on this option. If
you use this option, you will need to take care that the Storage daemon
has access to all the devices (tape drives, ...) that it needs.

--with-sd-group=<Group> This option allows you to specify the
Groupld used to run the Storage daemon. The Storage daemon must
be started as root, but doesn’t need to run as root, and after doing
preliminary initializations, it can ”drop” to the Groupld specified on
this option.

--with-fd-user=<User> This option allows you to specify the Userid
used to run the File daemon. The File daemon must be started as
root, and in most cases, it needs to run as root, so this option is used
only in very special cases, after doing preliminary initializations, it can
”drop” to the Userld specified on this option.

--with-fd-group=<Group> This option allows you to specify the
Groupld used to run the File daemon. The File daemon must be

7.10. RECOMMENDED OPTIONS FOR MOST SYSTEMS 63

started as root, and in most cases, it must be run as root, however,
after doing preliminary initializations, it can ”drop” to the Groupld
specified on this option.

--with-mon-dir-password=<Password> This option allows you to
specify the password used to access the Directory from the monitor. If
it is not specified, configure will automatically create a random pass-
word.

--with-mon-fd-password=<Password> This option allows you to
specify the password used to access the File daemon from the Moni-
tor. If it is not specified, configure will automatically create a random
password.

--with-mon-sd-password=<Password> This option allows you to
specify the password used to access the Storage daemon from the Mon-
itor. If it is not specified, configure will automatically create a random
password.

--with-db-name=<database-name> This option allows you to specify
the database name to be used in the conf files. The default is bacula.

--with-db-user=<database-user> This option allows you to specify
the database user name to be used in the conf files. The default is
bacula.

Note, many other options are presented when you do a ./configure --help,
but they are not implemented.

7.10 Recommended Options for Most Systems

For most systems, we recommend starting with the following options:

./configure \
--enable-smartalloc \
--sbindir=$HOME/bacula/bin \
—--sysconfdir=$HOME/bacula/bin \
--with-pid-dir=$HOME/bacula/bin/working \
--with-subsys-dir=$HOME/bacula/bin/working \
--with-mysql=$HOME/mysql \
--with-working-dir=$HOME/bacula/working

If you want to install Bacula in an installation directory rather than run
it out of the build directory (as developers will do most of the time), you

64 CHAPTER 7. INSTALLING BACULA

should also include the —-sbindir and --sysconfdir options with appropriate
paths. Neither are necessary if you do not use "make install” as is the case
for most development work. The install process will create the sbindir and
sysconfdir if they do not exist, but it will not automatically create the pid-
dir, subsys-dir, or working-dir, so you must ensure that they exist before
running Bacula for the first time.

7.11 Red Hat

Using SQLite:

CFLAGS="-g -Wall" ./configure \
--sbindir=$HOME/bacula/bin \
--sysconfdir=$HOME/bacula/bin \
--enable-smartalloc \
--with-sqlite=$HOME/bacula/depkgs/sqlite \
--with-working-dir=$HOME/bacula/working \
--with-pid-dir=$HOME/bacula/bin/working \
--with-subsys-dir=$HOME/bacula/bin/working \
--enable-bat \
--with-quwt=$HOME/bacula/depkgs/qut \
--enable-conio

or

CFLAGS="-g -Wall" ./configure \
--sbindir=$HOME/bacula/bin \
--sysconfdir=$HOME/bacula/bin \
--enable-smartalloc \
--with-mysql=$HOME/mysql \
--with-working-dir=$HOME/bacula/working
--with-pid-dir=$HOME/bacula/bin/working \
--with-subsys-dir=$HOME/bacula/bin/working
--enable-gnome \

--enable-conio

or finally, a completely traditional Red Hat Linux install:

CFLAGS="-g -Wall" ./configure \
—-prefix=/usr \
--sbindir=/usr/sbin \
--sysconfdir=/etc/bacula \

7.12. SOLARIS 65

--with-scriptdir=/etc/bacula \
--enable-smartalloc \

--enable-bat \
--with-qwt=$HOME/bacula/depkgs/qwt \
--with-mysql \
--with-working-dir=/var/bacula \
--with-pid-dir=/var/run \
--enable-conio

Note, Bacula assumes that /var/bacula, /var/run, and /var/lock/subsys
exist so it will not automatically create them during the install process.

7.12 Solaris

To build Bacula from source, you will need the following installed on your
system (they are not by default): libiconv, gce 3.3.2, stde++, libgee (for
stde++ and gce_s libraries), make 3.8 or later.

You will probably also need to: Add /usr/local/bin to PATH and Add
Jusr/ccs/bin to PATH for ar.

It is possible to build Bacula on Solaris with the Solaris compiler, but we
recommend using GNU C++ if possible.

A typical configuration command might look like:

#!/bin/sh

CFLAGS="-g" ./configure \
--sbindir=$HOME/bacula/bin \
--sysconfdir=$HOME/bacula/bin \
--with-mysql=$HOME/mysql \
--enable-smartalloc \
--with-pid-dir=$HOME/bacula/bin/working \
--with-subsys-dir=$HOME/bacula/bin/working \
--with-working-dir=$HOME/bacula/working

As mentioned above, the install process will create the sbindir and sysconfdir
if they do not exist, but it will not automatically create the pid-dir, subsys-
dir, or working-dir, so you must ensure that they exist before running Bacula
for the first time.

Note, you may need to install the following packages to build Bacula from
source:

SUNWbinutils,

66 CHAPTER 7. INSTALLING BACULA

SUNWarc,
SUNWhea,
SUNWGcc,
SUNWGnutls
SUNWGnutls-devel
SUNWGmake
SUNWgccruntime
SUNWlibgcrypt
SUNWz1lib
SUNWzlibs
SUNWbinutilsS
SUNWGmakeS
SUNW1ibm

export
PATH=/usr/bin::/usr/ccs/bin:/etc:/usr/openwin/bin: /usr/local/bin: /usr/sfw/bin:/opt/sfw/bin: /usr/

If you have installed special software not normally in the Solaris libraries,
such as OpenSSL, or the packages shown above, then you may need to add
/usr/sfw/1ib to the library search path. Probably the simplest way to do
so is to run:

setenv LDFLAGS "-L/usr/sfw/lib -R/usr/sfw/1ib"

Prior to running the ./configure command.

Alternatively, you can set the LD_LIBARY_PATH and/or the
LD_RUN_PATH environment variables appropriately.

It is also possible to use the crle program to set the library search path.
However, this should be used with caution.

7.13 FreeBSD

Please see: The FreeBSD Diary for a detailed description on how to make
Bacula work on your system. In addition, users of FreeBSD prior to 4.9-
STABLE dated Mon Dec 29 15:18:01 2003 UTC who plan to use tape de-
vices, please see the Tape Testing Chapter| of this manual for important
information on how to configure your tape drive for compatibility with Bac-
ula.

If you are using Bacula with MySQL, you should take care to compile
MySQL with FreeBSD native threads rather than LinuxThreads, since Bac-
ula is normally built with FreeBSD native threads rather than LinuxTreads.
Mixing the two will probably not work.

http://www.freebsddiary.org/bacula.php

7.14. WIN32 67

7.14 Win32

To install the binary Win32 version of the File daemon please see the
‘Win32 Installation Chapter|in this document.

7.15 One File Configure Script

The following script could be used if you want to put everything in a single
file:

#!/bin/sh
CFLAGS="-g -Wall" \
./configure \

--sbindir=$HOME/bacula/bin \
--sysconfdir=$HOME/bacula/bin \
—--mandir=$HOME/bacula/bin \
--enable-smartalloc \
--enable-gnome \
--enable-bat \
--with-qwt=$HOME/bacula/depkgs/qwt \
--enable-bwx-console \
--enable-tray-monitor \
--with-pid-dir=$HOME/bacula/bin/working \
--with-subsys-dir=$HOME/bacula/bin/working \
--with-mysql \
--with-working-dir=$HOME/bacula/bin/working \
--with-dump-email=$USER@your-site.com \
—--with-job-email=$USER@your-site.com \
--with-smtp-host=mail.your-site.com

exit O

You may also want to put the following entries in your /etc/services file
as it will make viewing the connections made by Bacula easier to recognize
(i.e. netstat -a):

bacula-dir 9101/tcp
bacula-fd 9102/tcp
bacula-sd 9103/tcp

7.16 Installing Bacula

Before setting up your configuration files, you will want to install Bacula in
its final location. Simply enter:

68 CHAPTER 7. INSTALLING BACULA

make install

If you have previously installed Bacula, the old binaries will be overwritten,
but the old configuration files will remain unchanged, and the "new” config-
uration files will be appended with a .new. Generally if you have previously
installed and run Bacula you will want to discard or ignore the configuration
files with the appended .new.

7.17 Building a File Daemon or Client

If you run the Director and the Storage daemon on one machine and you
wish to back up another machine, you must have a copy of the File daemon
for that machine. If the machine and the Operating System are identical,
you can simply copy the Bacula File daemon binary file bacula-fd as well
as its configuration file bacula-fd.conf then modify the name and password
in the conf file to be unique. Be sure to make corresponding additions to
the Director’s configuration file (bacula-dir.conf).

If the architecture or the OS level are different, you will need to build a File
daemon on the Client machine. To do so, you can use the same . /configure
command as you did for your main program, starting either from a fresh copy
of the source tree, or using make distclean before the ./configure.

Since the File daemon does not access the Catalog database, you can remove
the ——with-mysql or ——with-sqlite options, then add --enable-client-
only. This will compile only the necessary libraries and the client programs
and thus avoids the necessity of installing one or another of those database
programs to build the File daemon. With the above option, you simply
enter make and just the client will be built.

7.18 Auto Starting the Daemons

If you wish the daemons to be automatically started and stopped when
your system is booted (a good idea), one more step is necessary. First,
the ./configure process must recognize your system — that is it must be a
supported platform and not unknown, then you must install the platform
dependent files by doing:

(become root)
make install-autostart

7.19. OTHER MAKE NOTES 69

Please note, that the auto-start feature is implemented only on systems
that we officially support (currently, FreeBSD, Red Hat/Fedora Linux, and
Solaris), and has only been fully tested on Fedora Linux.

The make install-autostart will cause the appropriate startup scripts
to be installed with the necessary symbolic links. On Red Hat/Fedora
Linux systems, these scripts reside in /etc/rc.d/init.d/bacula-dir

/etc/rc.d/init.d /bacula-fd, and /etc/rc.d/init.d /bacula-sd. However
the exact location depends on what operating system you are using.

If you only wish to install the File daemon, you may do so with:

make install-autostart-fd

7.19 Other Make Notes

To simply build a new executable in any directory, enter:

make

To clean out all the objects and binaries (including the files named 1, 2, or
3, which are development temporary files), enter:

make clean

To really clean out everything for distribution, enter:

make distclean

note, this cleans out the Makefiles and is normally done from the top level
directory to prepare for distribution of the source. To recover from this
state, you must redo the ./configure in the top level directory, since all the
Makefiles will be deleted.

To add a new file in a subdirectory, edit the Makefile.in in that directory,
then simply do a make. In most cases, the make will rebuild the Makefile
from the new Makefile.in. In some case, you may need to issue the make
a second time. In extreme cases, cd to the top level directory and enter:
make Makefiles.

To add dependencies:

70 CHAPTER 7. INSTALLING BACULA

make depend

The make depend appends the header file dependencies for each of the
object files to Makefile and Makefile.in. This command should be done in
each directory where you change the dependencies. Normally, it only needs
to be run when you add or delete source or header files. make depend is
normally automatically invoked during the configuration process.

To install:

make install

This not normally done if you are developing Bacula, but is used if you are
going to run it to backup your system.

After doing a make install the following files will be installed on your
system (more or less). The exact files and location (directory) for each file
depends on your ./configure command (e.g. bgnome-console and bgnome-
console.conf are not installed if you do not configure GNOME. Also, if you
are using SQLite instead of MySQL, some of the files will be different).

NOTE: it is quite probable that this list is out of date. But it is a starting
point.

bacula

bacula-dir
bacula-dir.conf
bacula-fd
bacula-fd.conf
bacula-sd
bacula-sd.conf
bacula-tray-monitor
tray-monitor.conf
bextract

bls

bscan

btape

btraceback
btraceback.gdb
bconsole
bconsole.conf
create_mysql_database
dbcheck
delete_catalog_backup
drop_bacula_tables
drop_mysql_tables
bgnome-console

7.20. INSTALLING TRAY MONITOR 71

bgnome-console.conf
make_bacula_tables
make_catalog_backup
make_mysql_tables
mtx-changer
query.sql

bsmtp

startmysql
stopmysql
bwx-console
bwx-console.conf

9 man pages

7.20 Installing Tray Monitor

The Tray Monitor is already installed if you used the --enable-tray-
monitor configure option and ran make install.

As you don’t run your graphical environment as root (if you do, you should
change that bad habit), don’t forget to allow your user to read tray-
monitor.conf, and to execute bacula-tray-monitor (this is not a security
issue).

Then log into your graphical environment (KDE, GNOME or something
else), run bacula-tray-monitor as your user, and see if a cassette icon ap-
pears somewhere on the screen, usually on the task bar. If it doesn’t, follow
the instructions below related to your environment or window manager.

7.20.1 GNOME

System tray, or notification area if you use the GNOME terminology, has
been supported in GNOME since version 2.2. To activate it, right-click on
one of your panels, open the menu Add to this Panel, then Utility and
finally click on Notification Area.

7.20.2 KDE

System tray has been supported in KDE since version 3.1. To activate it,
right-click on one of your panels, open the menu Add, then Applet and
finally click on System Tray.

72 CHAPTER 7. INSTALLING BACULA
7.20.3 Other window managers

Read the documentation to know if the Freedesktop system tray standard
is supported by your window manager, and if applicable, how to activate it.

7.21 Modifying the Bacula Configuration Files

See the chapter Configuring Bacula in this manual for instructions on how
to set Bacula configuration files.

Chapter 8

Critical Items to Implement
Before Production

We recommend you take your time before implementing a production a
Bacula backup system since Bacula is a rather complex program, and if you
make a mistake, you may suddenly find that you cannot restore your files
in case of a disaster. This is especially true if you have not previously used
a major backup product.

If you follow the instructions in this chapter, you will have covered most of
the major problems that can occur. It goes without saying that if you ever
find that we have left out an important point, please inform us, so that we
can document it to the benefit of everyone.

8.1 Critical Items

The following assumes that you have installed Bacula, you more or less un-
derstand it, you have at least worked through the tutorial or have equivalent
experience, and that you have set up a basic production configuration. If
you haven’t done the above, please do so and then come back here. The
following is a sort of checklist that points with perhaps a brief explanation
of why you should do it. In most cases, you will find the details elsewhere
in the manual. The order is more or less the order you would use in setting
up a production system (if you already are in production, use the checklist
anyway).

e Test your tape drive for compatibility with Bacula by using the test

73

TACHAPTER 8. CRITICAL ITEMS TO IMPLEMENT BEFORE PRODUCTION

command in the btape| program.

e Better than doing the above is to walk through the nine steps in the
Tape Testing chapter of the manual. It may take you a bit of time,
but it will eliminate surprises.

e Test the end of tape handling of your tape drive by using the fill
command in the btape| program.

e If you are using a Linux 2.4 kernel, make sure that /lib/tls is disabled.
Bacula does not work with this library. See the second point under
' Supported Operating Systems.|

e Do at least one restore of files. If you backup multiple OS types
(Linux, Solaris, HP, MacOS, FreeBSD, Win32, ...), restore files from
each system type. The|Restoring Files chapter shows you how.

e Write a bootstrap file to a separate system for each backup job. The
Write Bootstrap directive is described in the Director Configuration|
chapter of the manual, and more details are available in the
Bootstrap File chapter. Also, the default bacula-dir.conf comes with
a Write Bootstrap directive defined. This allows you to recover the
state of your system as of the last backup.

e Backup your -catalog. An example of this is found in
the default bacula-dir.conf file. The backup script is in-
stalled by default and should handle any database, though
you may want to make your own local modifications. See
also/Backing Up Your Bacula Database - Security Considerations |for
more information.

e Write a bootstrap file for the catalog. An example of this is found
in the default bacula-dir.conf file. This will allow you to quickly re-
store your catalog in the event it is wiped out — otherwise it is many
excruciating hours of work.

e Make a copy of the bacula-dir.conf, bacula-sd.conf, and bacula-fd.conf
files that you are using on your server. Put it in a safe place (on
another machine) as these files can be difficult to reconstruct if your
server dies.

e Make a Bacula Rescue CDROM! See the
Disaster Recovery Using a Bacula Rescue CDROM]| chapter. It is
trivial to make such a CDROM, and it can make system recovery in
the event of a lost hard disk infinitely easier.

8.2. RECOMMENDED ITEMS 75

e Bacula assumes all filenames are in UTF-8 format. This is impor-
tant when saving the filenames to the catalog. For Win32 machine,
Bacula will automatically convert from Unicode to UTF-8, but on
Unix, Linux, *BSD, and MacOS X machines, you must explicitly en-
sure that your locale is set properly. Typically this means that the bf
LANG environment variable must end in .UTF-8. An full example
is en_US.UTF-8. The exact syntax may vary a bit from OS to OS,
and exactly how you define it will also vary.

On most modern Win32 machines, you can edit the conf files with
notebook and choose output encoding UTF-8.

8.2 Recommended Items

Although these items may not be critical, they are recommended and will
help you avoid problems.

e Read the Quick Start Guide to Bacula

e After installing and experimenting with Bacula, read and work care-
fully through the examples in the|Tutorial chapter of this manual.

e Learn what each of the Bacula Utility Programs| does.

e Set up reasonable retention periods so that your catalog does not grow
to be too big. See the following three chapters:
Recycling your Volumes|
Basic Volume Management,
Using Pools to Manage Volumes|

e Perform a bare metal recovery using the Bacula Rescue CDROM. See
the [Disaster Recovery Using a Bacula Rescue CDROM] chapter.

If you absolutely must implement a system where you write a different tape
each night and take it offsite in the morning. We recommend that you do
several things:

e Write a bootstrap file of your backed up data and a bootstrap file of
your catalog backup to a floppy disk or a CDROM, and take that with
the tape. If this is not possible, try to write those files to another
computer or offsite computer, or send them as email to a friend. If
none of that is possible, at least print the bootstrap files and take that
offsite with the tape. Having the bootstrap files will make recovery
much easier.

T6CHAPTER 8. CRITICAL ITEMS TO IMPLEMENT BEFORE PRODUCTION

e It is better not to force Bacula to load a particular tape each day.
Instead, let Bacula choose the tape. If you need to know what tape
to mount, you can print a list of recycled and appendable tapes daily,
and select any tape from that list. Bacula may propose a particular
tape for use that it considers optimal, but it will accept any valid tape
from the correct pool.

Chapter 9

A Brief Tutorial

This chapter will guide you through running Bacula. To do so, we assume
you have installed Bacula, possibly in a single file as shown in the previous
chapter, in which case, you can run Bacula as non-root for these tests.
However, we assume that you have not changed the .conf files. If you have
modified the .conf files, please go back and uninstall Bacula, then reinstall
it, but do not make any changes. The examples in this chapter use the
default configuration files, and will write the volumes to disk in your /tmp
directory, in addition, the data backed up will be the source directory where
you built Bacula. As a consequence, you can run all the Bacula daemons
for these tests as non-root. Please note, in production, your File daemon(s)
must run as root. See the Security chapter for more information on this
subject.

The general flow of running Bacula is:

1. cd <install-directory>

2. Start the Database (if using MySQL or PostgreSQL)

3. Start the Daemons with ./bacula start

4. Start the Console program to interact with the Director

5. Run a job

6. When the Volume fills, unmount the Volume, if it is a tape, label a
new one, and continue running. In this chapter, we will write only to

disk files so you won’t need to worry about tapes for the moment.

7

78 CHAPTER 9. A BRIEF TUTORIAL

7. Test recovering some files from the Volume just written to ensure the
backup is good and that you know how to recover. Better test before
disaster strikes

8. Add a second client.

Each of these steps is described in more detail below.

9.1 Before Running Bacula

Before running Bacula for the first time in production, we recommend that
you run the test command in the btape program as described in the
Utility Program Chapter of this manual. This will help ensure that Bac-
ula functions correctly with your tape drive. If you have a modern HP,
Sony, or Quantum DDS or DLT tape drive running on Linux or Solaris, you
can probably skip this test as Bacula is well tested with these drives and
systems. For all other cases, you are strongly encouraged to run the test
before continuing. btape also has a fill command that attempts to dupli-
cate what Bacula does when filling a tape and writing on the next tape.
You should consider trying this command as well, but be forewarned, it can
take hours (about four hours on my drive) to fill a large capacity tape.

9.2 Starting the Database

If you are using MySQL or PostgreSQL as the Bacula database, you should
start it before you attempt to run a job to avoid getting error messages from
Bacula when it starts. The scripts startmysql and stopmysql are what I
(Kern) use to start and stop my local MySQL. Note, if you are using SQLite,
you will not want to use startmysql or stopmysql. If you are running this
in production, you will probably want to find some way to automatically
start MySQL or PostgreSQL after each system reboot.

If you are using SQLite (i.e. you specified the -—with-sqlite=xxx option on
the ./configure command, you need do nothing. SQLite is automatically
started by Bacula.

9.3. STARTING THE DAEMONS 79

9.3 Starting the Daemons

Assuming you have built from source or have installed the rpms, to start
the three daemons, from your installation directory, simply enter:

./bacula start

The bacula script starts the Storage daemon, the File daemon, and the
Director daemon, which all normally run as daemons in the background.
If you are using the autostart feature of Bacula, your daemons will either
be automatically started on reboot, or you can control them individually
with the files bacula-dir, bacula-fd, and bacula-sd, which are usually
located in /etc/init.d, though the actual location is system dependent.
Some distributions may do this differently.

Note, on Windows, currently only the File daemon is ported, and it must
be started differently. Please see the Windows Version of Bacula Chapter
of this manual.

The rpm packages configure the daemons to run as user=root and
group=Dbacula. The rpm installation also creates the group bacula if it does
not exist on the system. Any users that you add to the group bacula will
have access to files created by the daemons. To disable or alter this behavior
edit the daemon startup scripts:

/etc/bacula/bacula

/etc/init.d /bacula-dir

/etc/init.d /bacula-sd

/etc/init.d /bacula-fd
and then restart as noted above.

The [installation chapter|of this manual explains how you can install scripts
that will automatically restart the daemons when the system starts.

9.4 Using the Director to Query and Start Jobs

To communicate with the director and to query the state of Bacula or run
jobs, from the top level directory, simply enter:

80 CHAPTER 9. A BRIEF TUTORIAL

./bconsole

Alternatively to running the command line console, if you have Qt4 installed
and used the --enable-bat on the configure command, you may use the
Bacula Administration Tool (bat):

./bat
Which has a graphical interface, and many more features than bconsole.

Two other possibilities are to run the GNOME console bgnome-console
or the wxWidgets program bwx-console.

For simplicity, here we will describe only the ./bconsole program. Most of
what is described here applies equally well to ./bat, ./bgnome-console,
and to bwx-console.

The ./bconsole runs the Bacula Console program, which connects to the
Director daemon. Since Bacula is a network program, you can run the
Console program anywhere on your network. Most frequently, however, one
runs it on the same machine as the Director. Normally, the Console program
will print something similar to the following;:

[kern@polymatou bin]$./bconsole

Connecting to Director lpmatou:9101

1000 OK: HeadMan Version: 2.1.8 (14 May 2007)
*

the asterisk is the console command prompt.

Type help to see a list of available commands:

*help
Command Description
add add media to a pool
autodisplay autodisplay [on|off] -- console messages
automount automount [on|off] -- after label
cancel cancel [<jobid=nnn> | <job=name>] -- cancel a job
create create DB Pool from resource
delete delete [pool=<pool-name> | media volume=<volume-name>]
disable disable <job=name> -- disable a job
enable enable <job=name> -- enable a job
estimate performs FileSet estimate, listing gives full listing
exit exit = quit
gui gui [on|off] -- non-interactive gui mode
help print this command

list list [pools | jobs | jobtotals | media <pool=pool-name> |

9.5. RUNNING A JOB 81

files <jobid=nn>]; from catalog

label label a tape

1list full or long list like list command

memory print current memory usage

messages messages

mount mount <storage-name>

prune prune expired records from catalog

purge purge records from catalog

python python control commands

quit quit

query query catalog

restore restore files

relabel relabel a tape

release release <storage-name>

reload reload conf file

run run <job-name>

status status [storage | client]=<name>

setdebug sets debug level

setip sets new client address -- if authorized
show show (resource records) [jobs | pools | ... | alll
sqlquery use SQL to query catalog

time print current time

trace turn on/off trace to file

unmount unmount <storage-name>

umount umount <storage-name> for old-time Unix guys
update update Volume, Pool or slots

use use catalog xXxx

var does variable expansion

version print Director version

wait wait until no jobs are running [<jobname=name> | <jobid=nnn> | <ujobid=complete_name>]

Details of the console program’s commands are explained in the
Console Chapter of this manual.

9.5 Running a Job

At this point, we assume you have done the following:

Configured Bacula with ./configure --your-options

Built Bacula using make

Installed Bacula using make install

e Have created your database with, for example, ./cre-
ate_sqlite_database

82

CHAPTER 9. A BRIEF TUTORIAL

Have created the Bacula database tables with,
./make_bacula_tables

Have possibly edited your bacula-dir.conf file to personalize it a bit.
BE CAREFUL! if you change the Director’s name or password, you
will need to make similar modifications in the other .conf files. For the
moment it is probably better to make no changes.

You have started Bacula with ./bacula start

You have invoked the Console program with ./bconsole

Furthermore, we assume for the moment you are using the default configu-
ration files.

At this point, enter the following command:

show filesets

and you should get something similar to:

FileSet: name=Full Set

M
/home/kern/bacula/regress/build

/proc
/tmp
/.journal
/.fsck

ZHEHMEMEM=E H=E 0

FileSet: name=Catalog

0M

N

I /home/kern/bacula/regress/working/bacula.sql
N

This is a pre-defined FileSet that will backup the Bacula source directory.
The actual directory names printed should correspond to your system con-
figuration. For testing purposes, we have chosen a directory of moderate size
(about 40 Megabytes) and complexity without being too big. The FileSet
Catalog is used for backing up Bacula’s catalog and is not of interest to
us for the moment. The I entries are the files or directories that will be
included in the backup and the E are those that will be excluded, and the
O entries are the options specified for the FileSet. You can change what is

9.5. RUNNING A JOB 83

backed up by editing bacula-dir.conf and changing the File = line in the
FileSet resource.

Now is the time to run your first backup job. We are going to backup your
Bacula source directory to a File Volume in your /tmp directory just to
show you how easy it is. Now enter:

status dir

and you should get the following output:

rufus-dir Version: 1.30 (28 April 2003)

Daemon started 28-Apr-2003 14:03, O Jobs run.
Console connected at 28-Apr-2003 14:03

No jobs are running.

Level Type Scheduled Name

Incremental Backup 29-Apr-2003 01:05 Clientl
Full Backup 29-Apr-2003 01:10 BackupCatalog

where the times and the Director’s name will be different according to your
setup. This shows that an Incremental job is scheduled to run for the Job
Client1 at 1:05am and that at 1:10, a BackupCatalog is scheduled to run.
Note, you should probably change the name Client1 to be the name of your
machine, if not, when you add additional clients, it will be very confusing.
For my real machine, I use Rufus rather than Clientl as in this example.

Now enter:

status client

and you should get something like:

The defined Client resources are:

1: rufus-fd
Item 1 selected automatically.
Connecting to Client rufus-fd at rufus:8102
rufus-fd Version: 1.30 (28 April 2003)
Daemon started 28-Apr-2003 14:03, O Jobs run.
Director connected at: 28-Apr-2003 14:14
No jobs running.

84 CHAPTER 9. A BRIEF TUTORIAL

In this case, the client is named rufus-fd your name will be different, but the
line beginning with rufus-fd Version ... is printed by your File daemon,
SO we are now sure it is up and running.

Finally do the same for your Storage daemon with:

status storage

and you should get:

The defined Storage resources are:
1: File
Item 1 selected automatically.
Connecting to Storage daemon File at rufus:8103
rufus-sd Version: 1.30 (28 April 2003)
Daemon started 28-Apr-2003 14:03, O Jobs run.
Device /tmp is not open.
No jobs running.

You will notice that the default Storage daemon device is named File and
that it will use device /tmp, which is not currently open.

Now, let’s actually run a job with:

run

you should get the following output:

Using default Catalog name=MyCatalog DB=bacula
A job name must be specified.
The defined Job resources are:
1: Client1l
2: BackupCatalog
3: RestoreFiles
Select Job resource (1-3):

Here, Bacula has listed the three different Jobs that you can run, and you
should choose number 1 and type enter, at which point you will get:

Run Backup job
JobName: Clientl
FileSet: Full Set

9.5. RUNNING A JOB 85

Level: Incremental

Client: rufus-fd

Storage: File

Pool: Default

When: 2003-04-28 14:18:57
0K to run? (yes/mod/no):

At this point, take some time to look carefully at what is printed and under-
stand it. It is asking you if it is OK to run a job named Client1 with FileSet
Full Set (we listed above) as an Incremental job on your Client (your client
name will be different), and to use Storage File and Pool Default, and
finally, it wants to run it now (the current time should be displayed by your
console).

Here we have the choice to run (yes), to modify one or more of the above
parameters (mod), or to not run the job (no). Please enter yes, at which
point you should immediately get the command prompt (an asterisk). If you
wait a few seconds, then enter the command messages you will get back
something like:

28-Apr-2003 14:22 rufus-dir: Last FULL backup time not found. Doing
FULL backup.

28-Apr-2003 14:22 rufus-dir: Start Backup JobId 1,
Job=Client1.2003-04-28_14.22.33

28-Apr-2003 14:22 rufus-sd: Job Client1.2003-04-28_14.22.33 waiting.
Cannot find any appendable volumes.

Please use the "label" command to create a new Volume for:

Storage: FileStorage
Media type: File
Pool: Default

The first message, indicates that no previous Full backup was done, so Bac-
ula is upgrading our Incremental job to a Full backup (this is normal). The
second message indicates that the job started with Jobld 1., and the third
message tells us that Bacula cannot find any Volumes in the Pool for writing
the output. This is normal because we have not yet created (labeled) any
Volumes. Bacula indicates to you all the details of the volume it needs.

At this point, the job is BLOCKED waiting for a Volume. You can check
this if you want by doing a status dir. In order to continue, we must create
a Volume that Bacula can write on. We do so with:

label

and Bacula will print:

86 CHAPTER 9. A BRIEF TUTORIAL

The defined Storage resources are:
1: File

Item 1 selected automatically.

Enter new Volume name:

at which point, you should enter some name beginning with a letter and
containing only letters and numbers (period, hyphen, and underscore) are
also permitted. For example, enter TestVolume001, and you should get
back:

Defined Pools:

1: Default
Item 1 selected automatically.
Connecting to Storage daemon File at rufus:8103 ...
Sending label command for Volume "TestVolume0OO1" Slot O ...
3000 OK label. Volume=TestVolumeOOl Device=/tmp
Catalog record for Volume "TestVolumeOO2", Slot O
Requesting mount FileStorage ...
3001 OK mount. Device=/tmp

successfully created.

Finally, enter messages and you should get something like:

28-Apr-2003 14:30 rufus-sd: Wrote label to prelabeled Volume
"TestVolume001" on device /tmp
28-Apr-2003 14:30 rufus-dir: Bacula 1.30 (28Apr03): 28-Apr-2003 14:30

JobId:

Job:

FileSet:

Backup Level:
Client:

Start time:

End time:

Files Written:

Bytes Written:

Rate:

Software Compression:
Volume names(s):
Volume Session Id:
Volume Session Time:
Last Volume Bytes:

FD termination status:
SD termination status:

Termination:

1
Client1.2003-04-28_14.22.33
Full Set

Full

rufus-fd
28-Apr-2003 14:22
28-Apr-2003 14:30
1,444

38,988,877

81.2 KB/s

None
TestVolume001

1

1051531381
39,072,359

0K

0K

Backup OK

28-Apr-2003 14:30 rufus-dir: Begin pruning Jobs.

28-Apr-2003 14:30 rufus-dir:
28-Apr-2003 14:30 rufus-dir:
28-Apr-2003 14:30 rufus-dir:
28-Apr-2003 14:30 rufus-dir:

No Jobs found to prune.
Begin pruning Files.

No Files found to prune.
End auto prune.

9.6. RESTORING YOUR FILES 87

If you don’t see the output immediately, you can keep entering messages
until the job terminates, or you can enter, autodisplay on and your mes-
sages will automatically be displayed as soon as they are ready.

If you do an 1s -1 of your /tmp directory, you will see that you have the
following item:

“IW-r——--- 1 kern kern 390721563 Apr 28 14:30 TestVolume0OO1

This is the file Volume that you just wrote and it contains all the data of
the job just run. If you run additional jobs, they will be appended to this
Volume unless you specify otherwise.

You might ask yourself if you have to label all the Volumes that Bacula is
going to use. The answer for disk Volumes, like the one we used, is no. It
is possible to have Bacula automatically label volumes. For tape Volumes,
you will most likely have to label each of the Volumes you want to use.

If you would like to stop here, you can simply enter quit in the Console
program, and you can stop Bacula with ./bacula stop. To clean up, simply
delete the file /tmp/TestVolume001, and you should also re-initialize
your database using:

./drop_bacula_tables
./make_bacula_tables

Please note that this will erase all information about the previous jobs that
have run, and that you might want to do it now while testing but that
normally you will not want to re-initialize your database.

If you would like to try restoring the files that you just backed up, read the
following section.

9.6 Restoring Your Files

If you have run the default configuration and the save of the Bacula source
code as demonstrated above, you can restore the backed up files in the
Console program by entering:

restore all

88 CHAPTER 9. A BRIEF TUTORIAL

where you will get:

First you select one or more JobIds that contain files
to be restored. You will be presented several methods
of specifying the JobIds. Then you will be allowed to
select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:
1: List last 20 Jobs run

List Jobs where a given File is saved

Enter list of comma separated JobIds to select

Enter SQL list command

Select the most recent backup for a client

Select backup for a client before a specified time

Enter a list of files to restore

Enter a list of files to restore before a specified time

Find the Joblds of the most recent backup for a client

: Find the Joblds for a backup for a client before a specified time
11: Enter a list of directories to restore for found JobIds
12: Cancel

Select item: (1-12):

© 00 N O WN

[
o

As you can see, there are a number of options, but for the current demon-
stration, please enter 5 to do a restore of the last backup you did, and you
will get the following output:

Defined Clients:
1: rufus-fd
Item 1 selected automatically.
The defined FileSet resources are:
1: 1 Full Set 2003-04-28 14:22:33
Item 1 selected automatically.

e e e e e +
| JobId | Level | JobFiles | StartTime | VolumeName |
B e e B e o +
| 1 | F | 1444 | 2003-04-28 14:22:33 | TestVolume002 |
+-- + + e e +

You have selected the following JobId: 1
Building directory tree for JobId 1
1 Job inserted into the tree and marked for extractionm.
The defined Storage resources are:
1: File
Item 1 selected automatically.
You are now entering file selection mode where you add and
remove files to be restored. All files are initially added.
Enter "done" to leave this mode.
cwd is: /

$

where I have truncated the listing on the right side to make it more read-
able. As you can see by starting at the top of the listing, Bacula knows what

9.6. RESTORING YOUR FILES 89

client you have, and since there was only one, it selected it automatically,
likewise for the FileSet. Then Bacula produced a listing containing all the
jobs that form the current backup, in this case, there is only one, and the
Storage daemon was also automatically chosen. Bacula then took all the
files that were in Job number 1 and entered them into a directory tree
(a sort of in memory representation of your filesystem). At this point, you
can use the cd and Is ro dir commands to walk up and down the direc-
tory tree and view what files will be restored. For example, if I enter cd
/home/kern/bacula/bacula-1.30 and then enter dir I will get a listing
of all the files in the Bacula source directory. On your system, the path will
be somewhat different. For more information on this, please refer to the
Restore Command Chapter|of this manual for more details.

To exit this mode, simply enter:

done

and you will get the following output:

Bootstrap records written to
/home/kern/bacula/testbin/working/restore.bsr
The restore job will require the following Volumes:

TestVolume001
1444 files selected to restore.
Run Restore job

JobName: RestoreFiles

Bootstrap: /home/kern/bacula/testbin/working/restore.bsr
Where: /tmp/bacula-restores

Replace: always

FileSet: Full Set

Backup Client: rufus-fd
Restore Client: rufus-fd

Storage: File
JoblId: *None*
When: 2005-04-28 14:53:54

0K to run? (yes/mod/no):

If you answer yes your files will be restored to /tmp/bacula-restores.
If you want to restore the files to their original locations, you must use the
mod option and explicitly set Where: to nothing (or to /). We recommend
you go ahead and answer yes and after a brief moment, enter messages,
at which point you should get a listing of all the files that were restored as
well as a summary of the job that looks similar to this:

28-Apr-2005 14:56 rufus-dir: Bacula 2.1.8 (08May07): 08-May-2007 14:56:06

90 CHAPTER 9. A BRIEF TUTORIAL

Build 0S: i686-pc-linux-gnu suse 10.2
JobId: 2

Job: RestoreFiles.2007-05-08_14.56.06
Restore Client: rufus-fd

Start time: 08-May-2007 14:56

End time: 08-May-2007 14:56

Files Restored: 1,444

Bytes Restored: 38,816,381

Rate: 9704.1 KB/s

FD Errors: 0

FD termination status: OK

SD termination status: OK

Termination: Restore OK

08-May-2007 14:56 rufus-dir: Begin pruning Jobs.
08-May-2007 14:56 rufus-dir: No Jobs found to prune.
08-May-2007 14:56 rufus-dir: Begin pruning Files.
08-May-2007 14:56 rufus-dir: No Files found to prune.
08-May-2007 14:56 rufus-dir: End auto prune.

After exiting the Console program, you can examine the files in
/tmp/bacula-restores, which will contain a small directory tree with all
the files. Be sure to clean up at the end with:

rm -rf /tmp/bacula-restore

9.7 Quitting the Console Program

Simply enter the command quit.

9.8 Adding a Second Client

If you have gotten the example shown above to work on your system, you
may be ready to add a second Client (File daemon). That is you have a
second machine that you would like backed up. The only part you need in-
stalled on the other machine is the binary bacula-fd (or bacula-fd.exe for
Windows) and its configuration file bacula-fd.conf. You can start with the
same bacula-fd.conf file that you are currently using and make one minor
modification to it to create the conf file for your second client. Change the
File daemon name from whatever was configured, rufus-fd in the example
above, but your system will have a different name. The best is to change it
to the name of your second machine. For example:

9.8. ADDING A SECOND CLIENT 91

#
"Global" File daemon configuration specifications
#
FileDaemon { # this is me
Name = rufus-fd
FDport = 9102 # where we listen for the director

WorkingDirectory = /home/kern/bacula/working
Pid Directory = /var/run

would become:

#

"Global" File daemon configuration specifications
#
FileDaemon { # this is me
Name = matou-fd
FDport = 9102 # where we listen for the director

WorkingDirectory = /home/kern/bacula/working
Pid Directory = /var/run

where I show just a portion of the file and have changed rufus-fd to matou-
fd. The names you use are your choice. For the moment, I recommend you
change nothing else. Later, you will want to change the password.

Now you should install that change on your second machine. Then you need
to make some additions to your Director’s configuration file to define the
new File daemon or Client. Starting from our original example which should
be installed on your system, you should add the following lines (essentially
copies of the existing data but with the names changed) to your Director’s
configuration file bacula-dir.conf.

#
Define the main nightly save backup job
By default, this job will back up to disk in /tmp
Job {

Name = "Matou"

Type = Backup

Client = matou-fd

FileSet = "Full Set"

Schedule = "WeeklyCycle"

Storage = File

Messages = Standard

Pool = Default

92 CHAPTER 9. A BRIEF TUTORIAL

Write Bootstrap = "/home/kern/bacula/working/matou.bsr"
}
Client (File Services) to backup
Client {

Name = matou-fd
Address = matou
FDPort = 9102
Catalog = MyCatalog

Password = "xxxxx" # password for

File Retention = 30d # 30 days

Job Retention = 180d # six months

AutoPrune = yes # Prune expired Jobs/Files

Then make sure that the Address parameter in the Storage resource is set
to the fully qualified domain name and not to something like ”localhost”.
The address specified is sent to the File daemon (client) and it must be a
fully qualified domain name. If you pass something like "localhost” it will
not resolve correctly and will result in a time out when the File daemon fails
to connect to the Storage daemon.

That is all that is necessary. I copied the existing resource to create a
second Job (Matou) to backup the second client (matou-fd). It has the
name Matou, the Client is named matou-fd, and the bootstrap file name
is changed, but everything else is the same. This means that Matou will be
backed up on the same schedule using the same set of tapes. You may want
to change that later, but for now, let’s keep it simple.

The second change was to add a new Client resource that defines matou-fd
and has the correct address matou, but in real life, you may need a fully
qualified domain name or an IP address. I also kept the password the same
(shown as xxxxx for the example).

At this point, if you stop Bacula and restart it, and start the Client on
the other machine, everything will be ready, and the prompts that you saw
above will now include the second machine.

To make this a real production installation, you will possibly want to use
different Pool, or a different schedule. It is up to you to customize. In any
case, you should change the password in both the Director’s file and the
Client’s file for additional security.

For some important tips on changing names and passwords, and a diagram
of what names and passwords must match, please see [Authorization Errors
in the FAQ chapter of this manual.

9.9. WHEN THE TAPE FILLS 93

9.9 When The Tape Fills

If you have scheduled your job, typically nightly, there will come a time
when the tape fills up and Bacula cannot continue. In this case, Bacula
will send you a message similar to the following:

rufus-sd: block.c:337 === Write error errno=28: ERR=No space left
on device

This indicates that Bacula got a write error because the tape is full. Bacula
will then search the Pool specified for your Job looking for an appendable
volume. In the best of all cases, you will have properly set your Reten-
tion Periods and you will have all your tapes marked to be Recycled, and
Bacula will automatically recycle the tapes in your pool requesting and
overwriting old Volumes. For more information on recycling, please see the
Recycling chapter] of this manual. If you find that your Volumes were not
properly recycled (usually because of a configuration error), please see the
Manually Recycling Volumes section of the Recycling chapter.

If like me, you have a very large set of Volumes and you label them with the
date the Volume was first writing, or you have not set up your Retention
periods, Bacula will not find a tape in the pool, and it will send you a
message similar to the following:

rufus-sd: Job kernsave.2002-09-19.10:50:48 waiting. Cannot find any
appendable volumes.
Please use the "label" command to create a new Volume for:

Storage: SDT-10000
Media type: DDS-4
Pool: Default

Until you create a new Volume, this message will be repeated an hour later,
then two hours later, and so on doubling the interval each time up to a
maximum interval of one day.

The obvious question at this point is: What do I do now?

The answer is simple: first, using the Console program, close the tape drive
using the unmount command. If you only have a single drive, it will be
automatically selected, otherwise, make sure you release the one specified
on the message (in this case STD-10000).

Next, you remove the tape from the drive and insert a new blank tape. Note,
on some older tape drives, you may need to write an end of file mark (mt

94 CHAPTER 9. A BRIEF TUTORIAL

-f /dev/nst0 weof) to prevent the drive from running away when Bacula
attempts to read the label.

Finally, you use the label command in the Console to write a label to the
new Volume. The label command will contact the Storage daemon to write
the software label, if it is successful, it will add the new Volume to the Pool,
then issue a mount command to the Storage daemon. See the previous
sections of this chapter for more details on labeling tapes.

The result is that Bacula will continue the previous Job writing the backup
to the new Volume.

If you have a Pool of volumes and Bacula is cycling through them, instead
of the above message ” Cannot find any appendable volumes.”, Bacula may
ask you to mount a specific volume. In that case, you should attempt to
do just that. If you do not have the volume any more (for any of a number
of reasons), you can simply mount another volume from the same Pool,
providing it is appendable, and Bacula will use it. You can use the list
volumes command in the console program to determine which volumes are
appendable and which are not.

If like me, you have your Volume retention periods set correctly, but you
have no more free Volumes, you can relabel and reuse a Volume as follows:

e Do a list volumes in the Console and select the oldest Volume for
relabeling.

e If you have setup your Retention periods correctly, the Volume should
have VolStatus Purged.

o If the VolStatus is not set to Purged, you will need to purge the
database of Jobs that are written on that Volume. Do so by using the
command purge jobs volume in the Console. If you have multiple
Pools, you will be prompted for the Pool then enter the VolumeName
(or Mediald) when requested.

e Then simply use the relabel command to relabel the Volume.

To manually relabel the Volume use the following additional steps:

e To delete the Volume from the catalog use the delete volume com-
mand in the Console and select the VolumeName (or Mediald) to be
deleted.

e Use the unmount command in the Console to unmount the old tape.

9.10. OTHER USEFUL CONSOLE COMMANDS 95

e Physically relabel the old Volume that you deleted so that it can be
reused.

e Insert the old Volume in the tape drive.

e From a command line do: mt -f /dev/st0 rewind and mt -f
/dev/st0 weof, where you need to use the proper tape drive name
for your system in place of /dev/st0.

e Use the label command in the Console to write a new Bacula label
on your tape.

e Use the mount command in the Console if it is not automatically
done, so that Bacula starts using your newly labeled tape.

9.10 Other Useful Console Commands

status dir Print a status of all running jobs and jobs scheduled in the next
24 hours.

status The console program will prompt you to select a daemon type, then
will request the daemon’s status.

status jobid=nn Print a status of Jobld nn if it is running. The Storage
daemon is contacted and requested to print a current status of the job
as well.

list pools List the pools defined in the Catalog (normally only Default is
used).

list media Lists all the media defined in the Catalog.

list jobs Lists all jobs in the Catalog that have run.

list jobid=nn Lists Jobld nn from the Catalog.

list jobtotals Lists totals for all jobs in the Catalog.

list files jobid=nn List the files that were saved for Jobld nn.

list jobmedia List the media information for each Job run.
messages Prints any messages that have been directed to the console.

unmount storage=storage-name Unmounts the drive associated with
the storage device with the name storage-name if the drive is not
currently being used. This command is used if you wish Bacula to free
the drive so that you can use it to label a tape.

96 CHAPTER 9. A BRIEF TUTORIAL

mount storage=storage-name Causes the drive associated with the
storage device to be mounted again. When Bacula reaches the end
of a volume and requests you to mount a new volume, you must issue
this command after you have placed the new volume in the drive. In
effect, it is the signal needed by Bacula to know to start reading or
writing the new volume.

quit Exit or quit the console program.

Most of the commands given above, with the exception of list, will prompt
you for the necessary arguments if you simply enter the command name.

9.11 Debug Daemon Output

If you want debug output from the daemons as they are running, start the
daemons from the install directory as follows:

./bacula start -d100

This can be particularly helpful if your daemons do not start correctly,
because direct daemon output to the console is normally directed to the
NULL device, but with the debug level greater than zero, the output will
be sent to the starting terminal.

To stop the three daemons, enter the following from the install directory:

./bacula stop

The execution of bacula stop may complain about pids not found. This is
OK, especially if one of the daemons has died, which is very rare.

To do a full system save, each File daemon must be running as root so that
it will have permission to access all the files. None of the other daemons
require root privileges. However, the Storage daemon must be able to open
the tape drives. On many systems, only root can access the tape drives.
Either run the Storage daemon as root, or change the permissions on the
tape devices to permit non-root access. MySQL and PostgreSQL can be
installed and run with any userid; root privilege is not necessary.

9.12. PATIENCE WHEN STARTING DAEMONS OR MOUNTING BLANK TAPES97

9.12 Patience When Starting Daemons or Mount-
ing Blank Tapes

When you start the Bacula daemons, the Storage daemon attempts to open
all defined storage devices and verify the currently mounted Volume (if con-
figured). Until all the storage devices are verified, the Storage daemon will
not accept connections from the Console program. If a tape was previously
used, it will be rewound, and on some devices this can take several minutes.
As a consequence, you may need to have a bit of patience when first con-
tacting the Storage daemon after starting the daemons. If you can see your
tape drive, once the lights stop flashing, the drive will be ready to be used.

The same considerations apply if you have just mounted a blank tape in
a drive such as an HP DLT. It can take a minute or two before the drive
properly recognizes that the tape is blank. If you attempt to mount the tape
with the Console program during this recognition period, it is quite possible
that you will hang your SCSI driver (at least on my Red Hat Linux system).
As a consequence, you are again urged to have patience when inserting blank
tapes. Let the device settle down before attempting to access it.

9.13 Difficulties Connecting from the FD to the
SD

If you are having difficulties getting one or more of your File daemons to
connect to the Storage daemon, it is most likely because you have not used
a fully qualified domain name on the Address directive in the Director’s
Storage resource. That is the resolver on the File daemon’s machine (not
on the Director’s) must be able to resolve the name you supply into an
IP address. An example of an address that is guaranteed not to work:
localhost. An example that may work: megalon. An example that is
more likely to work: magalon.mydomain.com. On Win32 if you don’t
have a good resolver (often true on older Win98 systems), you might try
using an IP address in place of a name.

If your address is correct, then make sure that no other program is using
the port 9103 on the Storage daemon’s machine. The Bacula port number
are authorized by IANA, and should not be used by other programs, but
apparently some HP printers do use these port numbers. A netstat -a on
the Storage daemon’s machine can determine who is using the 9103 port
(used for FD to SD communications in Bacula).

98 CHAPTER 9. A BRIEF TUTORIAL

9.14 Daemon Command Line Options

Each of the three daemons (Director, File, Storage) accepts a small set of
options on the command line. In general, each of the daemons as well as
the Console program accepts the following options:

-c <file> Define the file to use as a configuration file. The default is the
daemon name followed by .confi.e. bacula-dir.conf for the Director,
bacula-fd.conf for the File daemon, and bacula-sd for the Storage
daemon.

-d nn Set the debug level to nn. Higher levels of debug cause more infor-
mation to be displayed on STDOUT concerning what the daemon is
doing.

-f Run the daemon in the foreground. This option is needed to run the
daemon under the debugger.

-s Do not trap signals. This option is needed to run the daemon under the
debugger.

-t Read the configuration file and print any error messages, then immedi-
ately exit. Useful for syntax testing of new configuration files.

-v Be more verbose or more complete in printing error and informational
messages. Recommended.

-7 Print the version and list of options.
The Director has the following additional Director specific option:

-r <job> Run the named job immediately. This is for debugging and
should not be used.

The File daemon has the following File daemon specific option:

-i Assume that the daemon is called from inetd or xinetd. In this case, the
daemon assumes that a connection has already been made and that it
is passed as STDIN. After the connection terminates the daemon will
exit.

The Storage daemon has no Storage daemon specific options.

The Console program has no console specific options.

9.15. CREATING A POOL 99

9.15 Creating a Pool

Creating the Pool is automatically done when Bacula starts, so if you un-
derstand Pools, you can skip to the next section.

When you run a job, one of the things that Bacula must know is what
Volumes to use to backup the FileSet. Instead of specifying a Volume (tape)
directly, you specify which Pool of Volumes you want Bacula to consult when
it wants a tape for writing backups. Bacula will select the first available
Volume from the Pool that is appropriate for the Storage device you have
specified for the Job being run. When a volume has filled up with data,
Bacula will change its VolStatus from Append to Full, and then Bacula
will use the next volume and so on. If no appendable Volume exists in the
Pool, the Director will attempt to recycle an old Volume, if there are still no
appendable Volumes available, Bacula will send a message requesting the
operator to create an appropriate Volume.

Bacula keeps track of the Pool name, the volumes contained in the Pool,
and a number of attributes of each of those Volumes.

When Bacula starts, it ensures that all Pool resource definitions have been
recorded in the catalog. You can verify this by entering:

list pools
to the console program, which should print something like the following:

*1list pools
Using default Catalog name=MySQL DB=bacula

+- + + —m—— +- Fmmmm +
| PoolId | Name | NumVols | MaxVols | PoolType | LabelFormat |
o + e o e fommm +
| 1 | Default | 3 | 0 | Backup | * |
| 2 | File | 12 | 12 | Backup | File I
o o pom— o S o +

If you attempt to create the same Pool name a second time, Bacula will
print:

Error: Pool Default already exists.
Once created, you may use the {\bf update} command to
modify many of the values in the Pool record.

100 CHAPTER 9. A BRIEF TUTORIAL

9.16 Labeling Your Volumes

Bacula requires that each Volume contains a software label. There are sev-
eral strategies for labeling volumes. The one I use is to label them as they
are needed by Bacula using the console program. That is when Bacula
needs a new Volume, and it does not find one in the catalog, it will send
me an email message requesting that I add Volumes to the Pool. T then
use the label command in the Console program to label a new Volume and
to define it in the Pool database, after which Bacula will begin writing on
the new Volume. Alternatively, I can use the Console relabel command to
relabel a Volume that is no longer used providing it has VolStatus Purged.

Another strategy is to label a set of volumes at the start, then use them as
Bacula requests them. This is most often done if you are cycling through
a set of tapes, for example using an autochanger. For more details on recy-
cling, please see the/Automatic Volume Recycling chapter of this manual.

If you run a Bacula job, and you have no labeled tapes in the Pool, Bacula
will inform you, and you can create them ”on-the-fly” so to speak. In my
case, I label my tapes with the date, for example: DLT-18 April02. See
below for the details of using the label command.

9.17 Labeling Volumes with the Console Program

Labeling volumes is normally done by using the console program.

1. ./bconsole

2. label

If Bacula complains that you cannot label the tape because it is already
labeled, simply unmount the tape using the unmount command in the
console, then physically mount a blank tape and re-issue the label com-
mand.

Since the physical storage media is different for each device, the label com-
mand will provide you with a list of the defined Storage resources such as
the following:

The defined Storage resources are:
1: File

9.17. LABELING VOLUMES WITH THE CONSOLE PROGRAM 101

2: 8mmDrive
3: DLTDrive
4: SDT-10000
Select Storage resource (1-4):

At this point, you should have a blank tape in the drive corresponding to
the Storage resource that you select.

It will then ask you for the Volume name.

Enter new Volume name:

If Bacula complains:

Media record for Volume xxxx already exists.

It means that the volume name xxxx that you entered already exists in the
Media database. You can list all the defined Media (Volumes) with the list
media command. Note, the LastWritten column has been truncated for
proper printing.

R e e R o o +-———- /") ————————— +o———- +
| VolumeName | MediaTypl VolStat| VolBytes | LastWri | VolReten |
R e e e +- + + T +
DLTV0o10002	DLT8000	Purged	56,128,042,217	2001-10	31,536,000
DLT-070ct2001	DLT8000	Full	56,172,030,586	2001-11	31,536,000
DLT-08Nov2001	DLT8000	Full	55,691,684,216	2001-12	31,536,000
DLT-01Dec2001	DLT8000	Full	55,162,215,866	2001-12	31,536,000
DLT-28Dec2001	DLT8000	Full	57,888,007,042	2002-01	31,536,000
DLT-20Jan2002	DLT8000	Full	57,003,507,308	2002-02	31,536,000
DLT-16Feb2002	DLT8000	Full	55,772,630,824	2002-03	31,536,000
DLT-12Mar2002	DLT8000	Full	50,666,320,453	1970-01	31,536,000
DLT-27Mar2002	DLT8000	Full	57,592,952,309	2002-04	31,536,000
DLT-15Apr2002	DLT8000	Full	57,190,864,185	2002-05	31,536,000
DLT-04May2002	DLT8000	Full	60,486,677,724	2002-05	31,536,000
DLT-26May02	DLT8000	Append	1,336,699,620	2002-05	31,536,000
Fom e Fom————— Fom Fom +————= A +————= +

Once Bacula has verified that the volume does not already exist, it will
prompt you for the name of the Pool in which the Volume (tape) is to be
created. If there is only one Pool (Default), it will be automatically selected.

If the tape is successfully labeled, a Volume record will also be created in the
Pool. That is the Volume name and all its other attributes will appear when

102 CHAPTER 9. A BRIEF TUTORIAL

you list the Pool. In addition, that Volume will be available for backup if
the MediaType matches what is requested by the Storage daemon.

When you labeled the tape, you answered very few questions about it —
principally the Volume name, and perhaps the Slot. However, a Volume
record in the catalog database (internally known as a Media record) contains
quite a few attributes. Most of these attributes will be filled in from the
default values that were defined in the Pool (i.e. the Pool holds most of the
default attributes used when creating a Volume).

It is also possible to add media to the pool without physically labeling the
Volumes. This can be done with the add command. For more information,
please see the Console Chapter of this manual.

Chapter 10

Customizing the
Configuration Files

When each of the Bacula programs starts, it reads a configuration file speci-
fied on the command line or the default bacula-dir.conf, bacula-fd.conf,
bacula-sd.conf, or console.conf for the Director daemon, the File dae-
mon, the Storage daemon, and the Console program respectively.

Each service (Director, Client, Storage, Console) has its own configuration
file containing a set of Resource definitions. These resources are very similar
from one service to another, but may contain different directives (records)
depending on the service. For example, in the Director’s resource file, the
Director resource defines the name of the Director, a number of global
Director parameters and his password. In the File daemon configuration
file, the Director resource specifies which Directors are permitted to use
the File daemon.

Before running Bacula for the first time, you must customize the configura-
tion files for each daemon. Default configuration files will have been created
by the installation process, but you will need to modify them to correspond
to your system. An overall view of the resources can be seen in the following:

103

104

Storage
A pointer to the
backup device
(tape drive or
disk storage).

stores the cataloque
(index to contents
of backup).

Client
One client record
tor general setup.

_ dah
Definition af ane

| FileSet from a single
Cllent backed up

according to a

Schedule to a Pool

of tapes/liles on a
Storage device.

Pool
Collection of tapes or
disk files which make

up the storage. You
may have multiple
pools in different
rotations.

Director

Authentication
delails tor the
director allowed to

1 incremental backup.

CHAPTER 10. CUSTOMIZING THE CONFIGURATION FILES

Schedule
Detinition of when
this job will run and

Fitisatull or

FlleSet
Def nitions of paths

A tothe files you want

to backup, with
rules to exclude
zartain files.

Simplified Bacula
object definitions

 Storage
One storage record
for general setup.

Director
Authentication
details for the
director allowsd to
control this daemon.

Characteristics of
the storage device
(tape driver or disk).

(thanks to Aristides Maniatis for the above graphic)

10.1 Character Sets

Bacula is designed to handle most character sets of the world, US ASCII,
German, French, Chinese, ... However, it does this by encoding everything in
UTF-8, and it expects all configuration files (including those read on Win32
machines) to be in UTF-8 format. UTF-8 is typically the default on Linux

10.2. RESOURCE DIRECTIVE FORMAT 105

machines, but not on all Unix machines, nor on Windows, so you must take
some care to ensure that your locale is set properly before starting Bacula.

To ensure that Bacula configuration files can be correctly read including
foreign characters the bf LANG environment variable must end in .UTF-8.
An full example is en_US.UTF-8. The exact syntax may vary a bit from
OS to OS, and exactly how you define it will also vary. On most newer
Win32 machines, you can use notepad to edit the conf files, then choose
output encoding UTF-8.

Bacula assumes that all filenames are in UTF-8 format on Linux and Unix
machines. On Win32 they are in Unicode (UTF-16), and will be automati-
cally converted to UTF-8 format.

10.2 Resource Directive Format

Although, you won’t need to know the details of all the directives a basic
knowledge of Bacula resource directives is essential. Each directive contained
within the resource (within the braces) is composed of a keyword followed
by an equal sign (=) followed by one or more values. The keywords must be
one of the known Bacula resource record keywords, and it may be composed
of upper or lower case characters and spaces.

Each resource definition MUST contain a Name directive, and may option-
ally contain a Description directive. The Name directive is used to uniquely
identify the resource. The Description directive is (will be) used during
display of the Resource to provide easier human recognition. For example:

Director {
Name = "MyDir"
Description = "Main Bacula Director"
WorkingDirectory = "$HOME/bacula/bin/working"
}

Defines the Director resource with the name ”MyDir” and a working direc-
tory SHOME /bacula/bin/working. In general, if you want spaces in a name
to the right of the first equal sign (=), you must enclose that name within
double quotes. Otherwise quotes are not generally necessary because once
defined, quoted strings and unquoted strings are all equal.

106 CHAPTER 10. CUSTOMIZING THE CONFIGURATION FILES

10.2.1 Comments

When reading the configuration file, blank lines are ignored and everything
after a hash sign (#) until the end of the line is taken to be a comment.
A semicolon (;) is a logical end of line, and anything after the semicolon is
considered as the next statement. If a statement appears on a line by itself,
a semicolon is not necessary to terminate it, so generally in the examples in
this manual, you will not see many semicolons.

10.2.2 Upper and Lower Case and Spaces

Case (upper/lower) and spaces are totally ignored in the resource directive
keywords (the part before the equal sign).

Within the keyword (i.e. before the equal sign), spaces are not significant.
Thus the keywords: name, Name, and N a m e are all identical.

Spaces after the equal sign and before the first character of the value are
ignored.

In general, spaces within a value are significant (not ignored), and if the
value is a name, you must enclose the name in double quotes for the spaces
to be accepted. Names may contain up to 127 characters. Currently, a name
may contain any ASCII character. Within a quoted string, any character
following a backslash (\) is taken as itself (handy for inserting backslashes
and double quotes (7)).

Please note, however, that Bacula resource names as well as certain other
names (e.g. Volume names) must contain only letters (including ISO ac-
cented letters), numbers, and a few special characters (space, underscore,
...). All other characters and punctuation are invalid.

10.2.3 Including other Configuration Files

If you wish to break your configuration file into smaller pieces, you can do
so by including other files using the syntax @filename where filename is
the full path and filename of another file. The @filename specification can
be given anywhere a primitive token would appear.

10.2. RESOURCE DIRECTIVE FORMAT 107
10.2.4 Recognized Primitive Data Types

When parsing the resource directives, Bacula classifies the data according
to the types listed below. The first time you read this, it may appear a bit
overwhelming, but in reality, it is all pretty logical and straightforward.

name A keyword or name consisting of alphanumeric characters, including
the hyphen, underscore, and dollar characters. The first character of a
name must be a letter. A name has a maximum length currently set
to 127 bytes. Typically keywords appear on the left side of an equal
(i.e. they are Bacula keywords — i.e. Resource names or directive
names). Keywords may not be quoted.

name-string A name-string is similar to a name, except that the name
may be quoted and can thus contain additional characters including
spaces. Name strings are limited to 127 characters in length. Name
strings are typically used on the right side of an equal (i.e. they are
values to be associated with a keyword).

string A quoted string containing virtually any character including spaces,
or a non-quoted string. A string may be of any length. Strings are
typically values that correspond to filenames, directories, or system
command names. A backslash (\) turns the next character into itself,
so to include a double quote in a string, you precede the double quote
with a backslash. Likewise to include a backslash.

directory A directory is either a quoted or non-quoted string. A directory
will be passed to your standard shell for expansion when it is scanned.
Thus constructs such as $HOME are interpreted to be their correct
values.

password This is a Bacula password and it is stored internally in MD5
hashed format.

integer A 32 bit integer value. It may be positive or negative.
positive integer A 32 bit positive integer value.

long integer A 64 bit integer value. Typically these are values such as
bytes that can exceed 4 billion and thus require a 64 bit value.

yes—no Either a yes or a no.

size A size specified as bytes. Typically, this is a floating point scientific
input format followed by an optional modifier. The floating point
input is stored as a 64 bit integer value. If a modifier is present, it

108 CHAPTER 10. CUSTOMIZING THE CONFIGURATION FILES

must immediately follow the value with no intervening spaces. The
following modifiers are permitted:

k 1,024 (kilobytes)

kb 1,000 (kilobytes)

m 1,048,576 (megabytes)
mb 1,000,000 (megabytes)
g 1,073,741,824 (gigabytes)
gb 1,000,000,000 (gigabytes)

time A time or duration specified in seconds. The time is stored internally
as a 64 bit integer value, but it is specified in two parts: a number part
and a modifier part. The number can be an integer or a floating point
number. If it is entered in floating point notation, it will be rounded
to the nearest integer. The modifier is mandatory and follows the
number part, either with or without intervening spaces. The following
modifiers are permitted:

seconds seconds

minutes minutes (60 seconds)

hours hours (3600 seconds)

days days (3600*24 seconds)

weeks weeks (3600%24*7 seconds)
months months (3600*24*30 seconds)
quarters quarters (3600%*24*91 seconds)
years years (3600%24*365 seconds)

Any abbreviation of these modifiers is also permitted (i.e. seconds
may be specified as sec or s). A specification of m will be taken as
months.

The specification of a time may have as many number/modifier parts
as you wish. For example:

1 week 2 days 3 hours 10 mins
1 month 2 days 30 sec

are valid date specifications.

10.4. NAMES, PASSWORDS AND AUTHORIZATION 109

10.3 Resource Types

The following table lists all current Bacula resource types. It shows what
resources must be defined for each service (daemon). The default config-
uration files will already contain at least one example of each permitted
resource, so you need not worry about creating all these kinds of resources
from scratch.

Resource Director | Client | Storage | Console
Autochanger | No No Yes No
Catalog Yes No No No
Client Yes Yes No No
Console Yes No No Yes
Device No No Yes No
Director Yes Yes Yes Yes
FileSet Yes No No No
Job Yes No No No
JobDefs Yes No No No
Message Yes Yes Yes No
Pool Yes No No No
Schedule Yes No No No
Storage Yes No Yes No

10.4 Names, Passwords and Authorization

In order for one daemon to contact another daemon, it must authorize itself
with a password. In most cases, the password corresponds to a particular
name, so both the name and the password must match to be authorized.
Passwords are plain text, any text. They are not generated by any special
process; just use random text.

The default configuration files are automatically defined for correct autho-
rization with random passwords. If you add to or modify these files, you
will need to take care to keep them consistent.

Here is sort of a picture of what names/passwords in which files/Resources
must match up:

110 CHAPTER 10. CUSTOMIZING THE CONFIGURATION FILES

CONSOLE
bconsole conf
| JDpirector {
DIRECTOR P
bacula-dir conf g gy Passvord = o
1
Ditﬂc‘_;@_t { /
Name = fw-dir 1
e STORAGE
! bacula-sd conf
Storage { :
Hame = fw-sd N Device {
Dewvice = DDS-2 Name = DDS-2
MediaType = DDS-2\, - MediaType = DD3S-2
Address = fu-s3d =5
Password = abc s }
e 5 "“-a* Director {
} e, ' llaue = fu-dir
A Password = abc
Client { }
Hame = fw-fd
Password = def
e .\ FILE DEAMON
} T CLIENT
S\ | bacula-fd.conf

\\\Abirectur {
Name = fw-dir
* Password = def

9

In the left column, you will find the Director, Storage, and Client resources,
with their names and passwords — these are all in bacula-dir.conf. In the
right column are where the corresponding values should be found in the
Console, Storage daemon (SD), and File daemon (FD) configuration files.

Please note that the Address, fd-sd, that appears in the Storage resource
of the Director, preceded with and asterisk in the above example, is passed
to the File daemon in symbolic form. The File daemon then resolves it to
an IP address. For this reason, you must use either an IP address or a fully
qualified name. A name such as localhost, not being a fully qualified name,
will resolve in the File daemon to the localhost of the File daemon, which is
most likely not what is desired. The password used for the File daemon to
authorize with the Storage daemon is a temporary password unique to each
Job created by the daemons and is not specified in any .conf file.

10.5. DETAILED INFORMATION FOR EACH DAEMON 111

10.5 Detailed Information for each Daemon

The details of each Resource and the directives permitted therein are de-
scribed in the following chapters.

The following configuration files must be defined:

e [Console — to define the resources for the Console program (user inter-
face to the Director). It defines which Directors are available so that
you may interact with them.

e [Director|- to define the resources necessary for the Director. You define
all the Clients and Storage daemons that you use in this configuration
file.

e [Client — to define the resources for each client to be backed up. That
is, you will have a separate Client resource file on each machine that
runs a File daemon.

. — to define the resources to be used by each Storage daemon.
Normally, you will have a single Storage daemon that controls your
tape drive or tape drives. However, if you have tape drives on several
machines, you will have at least one Storage daemon per machine.

112 CHAPTER 10. CUSTOMIZING THE CONFIGURATION FILES

Chapter 11

Configuring the Director

Of all the configuration files needed to run Bacula, the Director’s is the
most complicated, and the one that you will need to modify the most often
as you add clients or modify the FileSets.

For a general discussion of configuration files and resources including the

data types recognized by Bacula. Please see the Configuration| chapter of

this manual.

11.1 Director Resource Types

Director resource type may be one of the following;:

Job, JobDefs, Client, Storage, Catalog, Schedule, FileSet, Pool, Director, or
Messages. We present them here in the most logical order for defining them:

Note, everything revolves around a job and is tied to a job in one way or
another.

e [Director|— to define the Director’s name and its access password used
for authenticating the Console program. Only a single Director re-
source definition may appear in the Director’s configuration file. If
you have either /dev/random or bc on your machine, Bacula will
generate a random password during the configuration process, other-
wise it will be left blank.

e |Job — to define the backup/restore Jobs and to tie together the Client,
FileSet and Schedule resources to be used for each Job. Normally, you

113

114 CHAPTER 11. CONFIGURING THE DIRECTOR

will Jobs of different names corresponding to each client (i.e. one Job
per client, but a different one with a different name for each client).

e |JobDefs — optional resource for providing defaults for Job resources.

o |Schedule — to define when a Job is to be automatically run by Bacula’s
internal scheduler. You may have any number of Schedules, but each
job will reference only one.

o [FileSet — to define the set of files to be backed up for each Client. You
may have any number of FileSets but each Job will reference only one.

e (Client — to define what Client is to be backed up. You will generally
have multiple Client definitions. Each Job will reference only a single
client.

e Storage — to define on what physical device the Volumes should be
mounted. You may have one or more Storage definitions.

e [Pool — to define the pool of Volumes that can be used for a particular
Job. Most people use a single default Pool. However, if you have a
large number of clients or volumes, you may want to have multiple
Pools. Pools allow you to restrict a Job (or a Client) to use only a
particular set of Volumes.

e Catalog — to define in what database to keep the list of files and the
Volume names where they are backed up. Most people only use a
single catalog. However, if you want to scale the Director to many
clients, multiple catalogs can be helpful. Multiple catalogs require a
bit more management because in general you must know what catalog
contains what data. Currently, all Pools are defined in each catalog.
This restriction will be removed in a later release.

e Messages — to define where error and information messages are to be
sent or logged. You may define multiple different message resources
and hence direct particular classes of messages to different users or
locations (files, ...).

11.2 The Director Resource

The Director resource defines the attributes of the Directors running on
the network. In the current implementation, there is only a single Director
resource, but the final design will contain multiple Directors to maintain
index and media database redundancy.

11.2. THE DIRECTOR RESOURCE 115

Director Start of the Director resource. One and only one director resource
must be supplied.

Name = <name> The director name used by the system administrator.
This directive is required.

Description = <text> The text field contains a description of the Direc-
tor that will be displayed in the graphical user interface. This directive
is optional.

Password = <UA-password> Specifies the password that must be sup-
plied for the default Bacula Console to be authorized. The same pass-
word must appear in the Director resource of the Console configura-
tion file. For added security, the password is never passed across the
network but instead a challenge response hash code created with the
password. This directive is required. If you have either /dev/random
or bc on your machine, Bacula will generate a random password dur-
ing the configuration process, otherwise it will be left blank and you
must manually supply it.

The password is plain text. It is not generated through any special
process but as noted above, it is better to use random text for security
reasons.

Messages = <Messages-resource-name> The messages resource spec-
ifies where to deliver Director messages that are not associated with a
specific Job. Most messages are specific to a job and will be directed
to the Messages resource specified by the job. However, there are a
few messages that can occur when no job is running. This directive is
required.

Working Directory = <Directory> This directive is mandatory and
specifies a directory in which the Director may put its status files.
This directory should be used only by Bacula but may be shared by
other Bacula daemons. However, please note, if this directory is shared
with other Bacula daemons (the File daemon and Storage daemon),
you must ensure that the Name given to each daemon is unique so
that the temporary filenames used do not collide. By default the
Bacula configure process creates unique daemon names by postfixing
them with -dir, -fd, and -sd. Standard shell expansion of the Direc-
tory is done when the configuration file is read so that values such as
$HOME will be properly expanded. This directive is required. The
working directory specified must already exist and be readable and
writable by the Bacula daemon referencing it.

If you have specified a Director user and/or a Director group on your
./configure line with --with-dir-user and/or --with-dir-group the

116 CHAPTER 11. CONFIGURING THE DIRECTOR

Working Directory owner and group will be set to those values.

Pid Directory = <Directory> This directive is mandatory and speci-
fies a directory in which the Director may put its process Id file. The
process Id file is used to shutdown Bacula and to prevent multiple
copies of Bacula from running simultaneously. Standard shell expan-
sion of the Directory is done when the configuration file is read so
that values such as SHOME will be properly expanded.

The PID directory specified must already exist and be readable and
writable by the Bacula daemon referencing it

Typically on Linux systems, you will set this to: /var/run. If you
are not installing Bacula in the system directories, you can use the
Working Directory as defined above. This directive is required.

Scripts Directory = <Directory> This directive is optional and, if de-
fined, specifies a directory in which the Director will look for the
Python startup script DirStartup.py. This directory may be shared
by other Bacula daemons. Standard shell expansion of the directory is
done when the configuration file is read so that values such as SHOME
will be properly expanded.

QueryFile = <Path> This directive is mandatory and specifies a direc-
tory and file in which the Director can find the canned SQL statements
for the Query command of the Console. Standard shell expansion of
the Path is done when the configuration file is read so that values such
as SHOME will be properly expanded. This directive is required.

Heartbeat Interval = <time-interval> This directive is optional and
if specified will cause the Director to set a keepalive interval (heart-
beat) in seconds on each of the sockets it opens for the Client resource.
This value will override any specified at the Director level. It is im-
plemented only on systems (Linux, ...) that provide the setsockopt
TCP_KEEPIDLE function. The default value is zero, which means no
change is made to the socket.

Maximum Concurrent Jobs = <number> where <number> is the
maximum number of total Director Jobs that should run concurrently.
The default is set to 1, but you may set it to a larger number.

Please note that the Volume format becomes much more complicated
with multiple simultaneous jobs, consequently, restores can take much
longer if Bacula must sort through interleaved volume blocks from
multiple simultaneous jobs. This can be avoided by having each si-
multaneously running job write to a different volume or by using data
spooling, which will first spool the data to disk simultaneously, then
write each spool file to the volume in sequence.

11.2. THE DIRECTOR RESOURCE 117

There may also still be some cases where directives such as Max-
imum Volume Jobs are not properly synchronized with multiple
simultaneous jobs (subtle timing issues can arise), so careful testing is
recommended.

At the current time, there is no configuration parameter set to limit
the number of console connections. A maximum of five simultaneous
console connections are permitted.

FD Connect Timeout = <time> where time is the time that the Di-
rector should continue attempting to contact the File daemon to start
a job, and after which the Director will cancel the job. The default is
30 minutes.

SD Connect Timeout = <time> where time is the time that the Di-
rector should continue attempting to contact the Storage daemon to
start a job, and after which the Director will cancel the job. The
default is 30 minutes.

DirAddresses = <IP-address-specification> Specify the ports and
addresses on which the Director daemon will listen for Bacula Console
connections. Probably the simplest way to explain this is to show an
example:

DirAddresses = {
ip = { addr = 1.2.3.4; port = 1205;}

ipvd = {
addr = 1.2.3.4; port = http;}
ipve = {
addr = 1.2.3.4;
port = 1205;
}
ip = {
addr = 1.2.3.4
port = 1205
}
ip = { addr = 1.2.3.4 }

ip = { addr = 201:220:222::2 }
ip = {

addr = bluedot.thun.net
¥

where ip, ip4, ip6, addr, and port are all keywords. Note, that the
address can be specified as either a dotted quadruple, or IPv6 colon
notation, or as a symbolic name (only in the ip specification). Also,
port can be specified as a number or as the mnemonic value from the
/etc/services file. If a port is not specified, the default will be used. If
an ip section is specified, the resolution can be made either by IPv4 or

118 CHAPTER 11. CONFIGURING THE DIRECTOR

IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted,
and likewise with ip6.

Please note that if you use the DirAddresses directive, you must not
use either a DirPort or a DirAddress directive in the same resource.

DirPort = <port-number> Specify the port (a positive integer) on
which the Director daemon will listen for Bacula Console connections.
This same port number must be specified in the Director resource of
the Console configuration file. The default is 9101, so normally this
directive need not be specified. This directive should not be used if
you specify DirAddresses (N.B. plural) directive.

DirAddress = <IP-Address> This directive is optional, but if it is spec-
ified, it will cause the Director server (for the Console program) to bind
to the specified IP-Address, which is either a domain name or an IP
address specified as a dotted quadruple in string or quoted string for-
mat. If this directive is not specified, the Director will bind to any
available address (the default). Note, unlike the DirAddresses specifi-
cation noted above, this directive only permits a single address to be
specified. This directive should not be used if you specify a DirAd-
dresses (N.B. plural) directive.

The following is an example of a valid Director resource definition:

Director {
Name = HeadMan
WorkingDirectory = "$HOME/bacula/bin/working"
Password = UA_password
PidDirectory = "$HOME/bacula/bin/working"
QueryFile = "$HOME/bacula/bin/query.sql"
Messages = Standard

11.3 The Job Resource

The Job resource defines a Job (Backup, Restore, ...) that Bacula must
perform. Each Job resource definition contains the name of a Client and a
FileSet to backup, the Schedule for the Job, where the data are to be stored,
and what media Pool can be used. In effect, each Job resource must specify
What, Where, How, and When or FileSet, Storage, Backup/Restore/Level,
and Schedule respectively. Note, the FileSet must be specified for a restore
job for historical reasons, but it is no longer used.

11.3. THE JOB RESOURCE 119

Only a single type (Backup, Restore, ...) can be specified for any job. If
you want to backup multiple FileSets on the same Client or multiple Clients,
you must define a Job for each one.

Note, you define only a single Job to do the Full, Differential, and Incremen-
tal backups since the different backup levels are tied together by a unique
Job name. Normally, you will have only one Job per Client, but if a client
has a really huge number of files (more than several million), you might
want to split it into to Jobs each with a different FileSet covering only part
of the total files.

Job Start of the Job resource. At least one Job resource is required.

Name = <name> The Job name. This name can be specified on the
Run command in the console program to start a job. If the name
contains spaces, it must be specified between quotes. It is generally
a good idea to give your job the same name as the Client that it will
backup. This permits easy identification of jobs.

When the job actually runs, the unique Job Name will consist of the
name you specify here followed by the date and time the job was
scheduled for execution. This directive is required.

Enabled = <yes—mno> This directive allows you to enable or disable au-
tomatic execution via the scheduler of a Job.

Type = <job-type> The Type directive specifies the Job type, which
may be one of the following: Backup, Restore, Verify, or Admin.
This directive is required. Within a particular Job Type, there are
also Levels as discussed in the next item.

Backup Run a backup Job. Normally you will have at least one
Backup job for each client you want to save. Normally, unless
you turn off cataloging, most all the important statistics and
data concerning files backed up will be placed in the catalog.

Restore Run a restore Job. Normally, you will specify only one Re-
store job which acts as a sort of prototype that you will modify
using the console program in order to perform restores. Although
certain basic information from a Restore job is saved in the cat-
alog, it is very minimal compared to the information stored for a
Backup job — for example, no File database entries are generated
since no Files are saved.

Restore jobs cannot be automatically started by the scheduler
as is the case for Backup, Verify and Admin jobs. To restore files,
you must use the restore command in the console.

120 CHAPTER 11. CONFIGURING THE DIRECTOR

Verify Run a verify Job. In general, verify jobs permit you to com-
pare the contents of the catalog to the file system, or to what
was backed up. In addition, to verifying that a tape that was
written can be read, you can also use verify as a sort of tripwire
intrusion detection.

Admin Run an admin Job. An Admin job can be used to periodi-
cally run catalog pruning, if you do not want to do it at the end
of each Backup Job. Although an Admin job is recorded in the
catalog, very little data is saved.

Level = <job-level> The Level directive specifies the default Job level to
be run. Each different Job Type (Backup, Restore, ...) has a different
set of Levels that can be specified. The Level is normally overrid-
den by a different value that is specified in the Schedule resource.
This directive is not required, but must be specified either by a Level
directive or as an override specified in the Schedule resource.

For a Backup Job, the Level may be one of the following:

Full When the Level is set to Full all files in the FileSet whether or
not they have changed will be backed up.

Incremental When the Level is set to Incremental all files speci-
fied in the FileSet that have changed since the last successful
backup of the the same Job using the same FileSet and Client,
will be backed up. If the Director cannot find a previous valid
Full backup then the job will be upgraded into a Full backup.
When the Director looks for a valid backup record in the catalog
database, it looks for a previous Job with:

e The same Job name.

e The same Client name.

e The same FileSet (any change to the definition of the FileSet
such as adding or deleting a file in the Include or Exclude
sections constitutes a different FileSet.

e The Job was a Full, Differential, or Incremental backup.

e The Job terminated normally (i.e. did not fail or was not
canceled).

If all the above conditions do not hold, the Director will up-
grade the Incremental to a Full save. Otherwise, the Incremental
backup will be performed as requested.

The File daemon (Client) decides which files to backup for an
Incremental backup by comparing start time of the prior Job
(Full, Differential, or Incremental) against the time each file was
last "modified” (st_mtime) and the time its attributes were last

11.3. THE JOB RESOURCE 121

”changed” (st_ctime). If the file was modified or its attributes
changed on or after this start time, it will then be backed up.

Some virus scanning software may change st_ctime while doing
the scan. For example, if the virus scanning program attempts
to reset the access time (st_atime), which Bacula does not use,
it will cause st_ctime to change and hence Bacula will backup
the file during an Incremental or Differential backup. In the case
of Sophos virus scanning, you can prevent it from resetting the
access time (st_atime) and hence changing st_ctime by using the
--no-reset-atime option. For other software, please see their
manual.

When Bacula does an Incremental backup, all modified files that
are still on the system are backed up. However, any file that
has been deleted since the last Full backup remains in the Bacula
catalog, which means that if between a Full save and the time you
do a restore, some files are deleted, those deleted files will also be
restored. The deleted files will no longer appear in the catalog
after doing another Full save. However, to remove deleted files
from the catalog during an Incremental backup is quite a time
consuming process and not currently implemented in Bacula.

In addition, if you move a directory rather than copy it, the files
in it do not have their modification time (st_mtime) or their at-
tribute change time (st_ctime) changed. As a consequence, those
files will probably not be backed up by an Incremental or Dif-
ferential backup which depend solely on these time stamps. If
you move a directory, and wish it to be properly backed up, it is
generally preferable to copy it, then delete the original.

Differential When the Level is set to Differential all files specified
in the FileSet that have changed since the last successful Full
backup of the same Job will be backed up. If the Director cannot
find a valid previous Full backup for the same Job, FileSet, and
Client, backup, then the Differential job will be upgraded into
a Full backup. When the Director looks for a valid Full backup
record in the catalog database, it looks for a previous Job with:

e The same Job name.

e The same Client name.

e The same FileSet (any change to the definition of the FileSet
such as adding or deleting a file in the Include or Exclude
sections constitutes a different FileSet.

e The Job was a FULL backup.

e The Job terminated normally (i.e. did not fail or was not
canceled).

122

CHAPTER 11. CONFIGURING THE DIRECTOR

If all the above conditions do not hold, the Director will upgrade
the Differential to a Full save. Otherwise, the Differential backup
will be performed as requested.

The File daemon (Client) decides which files to backup for a
differential backup by comparing the start time of the prior
Full backup Job against the time each file was last ”modi-
fied” (st-mtime) and the time its attributes were last ”changed”
(st_ctime). If the file was modified or its attributes were changed
on or after this start time, it will then be backed up. The start
time used is displayed after the Since on the Job report. In
rare cases, using the start time of the prior backup may cause
some files to be backed up twice, but it ensures that no change is
missed. As with the Incremental option, you should ensure that
the clocks on your server and client are synchronized or as close
as possible to avoid the possibility of a file being skipped. Note,
on versions 1.33 or greater Bacula automatically makes the nec-
essary adjustments to the time between the server and the client
so that the times Bacula uses are synchronized.

When Bacula does a Differential backup, all modified files that
are still on the system are backed up. However, any file that has
been deleted since the last Full backup remains in the Bacula
catalog, which means that if between a Full save and the time
you do a restore, some files are deleted, those deleted files will
also be restored. The deleted files will no longer appear in the
catalog after doing another Full save. However, to remove deleted
files from the catalog during a Differential backup is quite a time
consuming process and not currently implemented in Bacula. It
is, however, a planned future feature.

As noted above, if you move a directory rather than copy it, the
files in it do not have their modification time (st_mtime) or their
attribute change time (st_ctime) changed. As a consequence,
those files will probably not be backed up by an Incremental or
Differential backup which depend solely on these time stamps. If
you move a directory, and wish it to be properly backed up, it is
generally preferable to copy it, then delete the original. Alterna-
tively, you can move the directory, then use the touch program
to update the timestamps.

Every once and a while, someone asks why we need Differential
backups as long as Incremental backups pickup all changed files.
There are possibly many answers to this question, but the one
that is the most important for me is that a Differential backup
effectively merges all the Incremental and Differential backups
since the last Full backup into a single Differential backup. This

11.3. THE JOB RESOURCE 123

has two effects: 1. It gives some redundancy since the old back-
ups could be used if the merged backup cannot be read. 2. More
importantly, it reduces the number of Volumes that are needed
to do a restore effectively eliminating the need to read all the vol-
umes on which the preceding Incremental and Differential back-
ups since the last Full are done.

For a Restore Job, no level needs to be specified.

For a Verify Job, the Level may be one of the following;:

InitCatalog does a scan of the specified FileSet and stores the file
attributes in the Catalog database. Since no file data is saved,
you might ask why you would want to do this. It turns out to
be a very simple and easy way to have a Tripwire like feature
using Bacula. In other words, it allows you to save the state of a
set of files defined by the FileSet and later check to see if those
files have been modified or deleted and if any new files have been
added. This can be used to detect system intrusion. Typically
you would specify a FileSet that contains the set of system files
that should not change (e.g. /sbin, /boot, /lib, /bin, ...). Nor-
mally, you run the InitCatalog level verify one time when your
system is first setup, and then once again after each modification
(upgrade) to your system. Thereafter, when your want to check
the state of your system files, you use a Verify level = Catalog.
This compares the results of your InitCatalog with the current
state of the files.

Catalog Compares the current state of the files against the state pre-
viously saved during an InitCatalog. Any discrepancies are re-
ported. The items reported are determined by the verify options
specified on the Include directive in the specified FileSet (see
the FileSet resource below for more details). Typically this com-
mand will be run once a day (or night) to check for any changes
to your system files.

Please note! If you run two Verify Catalog jobs on the same client
at the same time, the results will certainly be incorrect. This
is because Verify Catalog modifies the Catalog database while
running in order to track new files.

VolumeToCatalog This level causes Bacula to read the file attribute
data written to the Volume from the last Job. The file attribute
data are compared to the values saved in the Catalog database
and any differences are reported. This is similar to the Cata-
log level except that instead of comparing the disk file attributes

124 CHAPTER 11. CONFIGURING THE DIRECTOR

to the catalog database, the attribute data written to the Vol-
ume is read and compared to the catalog database. Although
the attribute data including the signatures (MD5 or SHA1) are
compared, the actual file data is not compared (it is not in the
catalog).

Please note! If you run two Verify VolumeToCatalog jobs on
the same client at the same time, the results will certainly be
incorrect. This is because the Verify VolumeToCatalog modifies
the Catalog database while running.

DiskToCatalog This level causes Bacula to read the files as they
currently are on disk, and to compare the current file attributes
with the attributes saved in the catalog from the last backup for
the job specified on the VerifyJob directive. This level differs
from the Catalog level described above by the fact that it doesn’t
compare against a previous Verify job but against a previous
backup. When you run this level, you must supply the verify
options on your Include statements. Those options determine
what attribute fields are compared.

This command can be very useful if you have disk problems be-
cause it will compare the current state of your disk against the
last successful backup, which may be several jobs.

Note, the current implementation (1.32c) does not identify files
that have been deleted.

Verify Job = <Job-Resource-Name> If you run a verify job without
this directive, the last job run will be compared with the catalog,
which means that you must immediately follow a backup by a verify
command. If you specify a Verify Job Bacula will find the last job
with that name that ran. This permits you to run all your backups,
then run Verify jobs on those that you wish to be verified (most often
a VolumeToCatalog) so that the tape just written is re-read.

JobDefs = <JobDefs-Resource-Name> If a JobDefs-Resource-Name
is specified, all the values contained in the named JobDefs resource
will be used as the defaults for the current Job. Any value that you
explicitly define in the current Job resource, will override any defaults
specified in the JobDefs resource. The use of this directive permits
writing much more compact Job resources where the bulk of the di-
rectives are defined in one or more JobDefs. This is particularly useful
if you have many similar Jobs but with minor variations such as dif-
ferent Clients. A simple example of the use of JobDefs is provided in
the default bacula-dir.conf file.

11.3. THE JOB RESOURCE 125

Bootstrap = <bootstrap-file> The Bootstrap directive specifies a boot-
strap file that, if provided, will be used during Restore Jobs and is
ignored in other Job types. The bootstrap file contains the list of
tapes to be used in a restore Job as well as which files are to be re-
stored. Specification of this directive is optional, and if specified, it is
used only for a restore job. In addition, when running a Restore job
from the console, this value can be changed.

If you use the Restore command in the Console program, to start a
restore job, the bootstrap file will be created automatically from the
files you select to be restored.

For additional details of the bootstrap file, please see
Restoring Files with the Bootstrap File| chapter of this manual.

Write Bootstrap = <bootstrap-file-specification> The writeboot-
strap directive specifies a file name where Bacula will write a boot-
strap file for each Backup job run. This directive applies only to
Backup Jobs. If the Backup job is a Full save, Bacula will erase
any current contents of the specified file before writing the bootstrap
records. If the Job is an Incremental or Differential save, Bacula will
append the current bootstrap record to the end of the file.

Using this feature, permits you to constantly have a bootstrap file
that can recover the current state of your system. Normally, the file
specified should be a mounted drive on another machine, so that if
your hard disk is lost, you will immediately have a bootstrap record
available. Alternatively, you should copy the bootstrap file to another
machine after it is updated. Note, it is a good idea to write a separate
bootstrap file for each Job backed up including the job that backs up
your catalog database.

If the bootstrap-file-specification begins with a vertical bar (—),
Bacula will use the specification as the name of a program to which it
will pipe the bootstrap record. It could for example be a shell script
that emails you the bootstrap record.

On versions 1.39.22 or greater, before opening the file or executing
the specified command, Bacula performs|character substitution like in
RunScript directive. To automatically manage your bootstrap files,
you can use this in your JobDefs resources:

JobDefs {
Write Bootstrap = "Yic_%n.bsr"

}

For more details on using this file, please see the chapter entitled
The Bootstrap File of this manual.

126 CHAPTER 11. CONFIGURING THE DIRECTOR

Client = <client-resource-name> The Client directive specifies the
Client (File daemon) that will be used in the current Job. Only a
single Client may be specified in any one Job. The Client runs on the
machine to be backed up, and sends the requested files to the Storage
daemon for backup, or receives them when restoring. For additional
details, see the Client Resource section| of this chapter. This directive
is required.

FileSet = <FileSet-resource-name> The FileSet directive specifies the
FileSet that will be used in the current Job. The FileSet specifies which
directories (or files) are to be backed up, and what options to use (e.g.
compression, ...). Only a single FileSet resource may be specified in
any one Job. For additional details, see the FileSet Resource section
of this chapter. This directive is required.

Messages = <messages-resource-name> The Messages directive de-
fines what Messages resource should be used for this job, and thus
how and where the various messages are to be delivered. For example,
you can direct some messages to a log file, and others can be sent by
email. For additional details, see the Messages Resource| Chapter of
this manual. This directive is required.

Pool = <pool-resource-name> The Pool directive defines the pool of
Volumes where your data can be backed up. Many Bacula installa-
tions will use only the Default pool. However, if you want to spec-
ify a different set of Volumes for different Clients or different Jobs,
you will probably want to use Pools. For additional details, see the
Pool Resource section| of this chapter. This directive is required.

Full Backup Pool = <pool-resource-name> The Full Backup Pool
specifies a Pool to be used for Full backups. It will override any Pool
specification during a Full backup. This directive is optional.

Differential Backup Pool = <pool-resource-name> The Differential
Backup Pool specifies a Pool to be used for Differential backups. It
will override any Pool specification during a Differential backup. This
directive is optional.

Incremental Backup Pool = <pool-resource-name> The Incremen-
tal Backup Pool specifies a Pool to be used for Incremental backups.
It will override any Pool specification during an Incremental backup.
This directive is optional.

Schedule = <schedule-name> The Schedule directive defines what
schedule is to be used for the Job. The schedule in turn determines
when the Job will be automatically started and what Job level (i.e.

11.3. THE JOB RESOURCE 127

Full, Incremental, ...) is to be run. This directive is optional, and
if left out, the Job can only be started manually using the Console
program. Although you may specify only a single Schedule resource
for any one job, the Schedule resource may contain multiple Run
directives, which allow you to run the Job at many different times,
and each run directive permits overriding the default Job Level Pool,
Storage, and Messages resources. This gives considerable flexibility in
what can be done with a single Job. For additional details, see the
Schedule Resource Chapter|of this manual.

Storage = <storage-resource-name> The Storage directive defines the
name of the storage services where you want to backup the FileSet
data. For additional details, see the Storage Resource Chapter of this
manual. The Storage resource may also be specified in the Job’s Pool
resource, in which case the value in the Pool resource overrides any
value in the Job. This Storage resource definition is not required by
either the Job resource or in the Pool, but it must be specified in one
or the other, if not an error will result.

Max Start Delay = <time> The time specifies the maximum delay be-
tween the scheduled time and the actual start time for the Job. For
example, a job can be scheduled to run at 1:00am, but because other
jobs are running, it may wait to run. If the delay is set to 3600 (one
hour) and the job has not begun to run by 2:00am, the job will be can-
celed. This can be useful, for example, to prevent jobs from running
during day time hours. The default is 0 which indicates no limit.

Max Run Time = <time> The time specifies the maximum allowed
time that a job may run, counted from when the job starts, (not
necessarily the same as when the job was scheduled). This directive is
implemented in version 1.33 and later.

Max Wait Time = <time> The time specifies the maximum allowed
time that a job may block waiting for a resource (such as waiting
for a tape to be mounted, or waiting for the storage or file daemons
to perform their duties), counted from the when the job starts, (not
necessarily the same as when the job was scheduled). This directive is
implemented only in version 1.33 and later.

Incremental Max Wait Time = <time> The time specifies the maxi-
mum allowed time that an Incremental backup job may block waiting
for a resource (such as waiting for a tape to be mounted, or waiting for
the storage or file daemons to perform their duties), counted from the
when the job starts, (not necessarily the same as when the job was
scheduled). Please note that if there is a Max Wait Time it may
also be applied to the job.

128 CHAPTER 11. CONFIGURING THE DIRECTOR

Differential Max Wait Time = <time> The time specifies the maxi-
mum allowed time that a Differential backup job may block waiting
for a resource (such as waiting for a tape to be mounted, or waiting for
the storage or file daemons to perform their duties), counted from the
when the job starts, (not necessarily the same as when the job was
scheduled). Please note that if there is a Max Wait Time it may
also be applied to the job.

Prefer Mounted Volumes = <yes—mno> If the Prefer Mounted Vol-
umes directive is set to yes (default yes), the Storage daemon is re-
quested to select either an Autochanger or a drive with a valid Volume
already mounted in preference to a drive that is not ready. This means
that all jobs will attempt to append to the same Volume (providing
the Volume is appropriate — right Pool, ... for that job). If no drive
with a suitable Volume is available, it will select the first available
drive. Note, any Volume that has been requested to be mounted, will
be considered valid as a mounted volume by another job. This if mul-
tiple jobs start at the same time and they all prefer mounted volumes,
the first job will request the mount, and the other jobs will use the
same volume.

If the directive is set to no, the Storage daemon will prefer finding
an unused drive, otherwise, each job started will append to the same
Volume (assuming the Pool is the same for all jobs). Setting Prefer
Mounted Volumes to no can be useful for those sites with multiple
drive autochangers that prefer to maximize backup throughput at the
expense of using additional drives and Volumes. This means that the
job will prefer to use an unused drive rather than use a drive that is
already in use.

Prune Jobs = <yes—mno> Normally, pruning of Jobs from the Catalog
is specified on a Client by Client basis in the Client resource with
the AutoPrune directive. If this directive is specified (not normally)
and the value is yes, it will override the value specified in the Client
resource. The default is no.

Prune Files = <yes—mno> Normally, pruning of Files from the Catalog
is specified on a Client by Client basis in the Client resource with
the AutoPrune directive. If this directive is specified (not normally)
and the value is yes, it will override the value specified in the Client
resource. The default is no.

Prune Volumes = <yes—no> Normally, pruning of Volumes from the
Catalog is specified on a Client by Client basis in the Client resource
with the AutoPrune directive. If this directive is specified (not nor-

11.3. THE JOB RESOURCE 129

mally) and the value is yes, it will override the value specified in the
Client resource. The default is no.

RunScript {<body-of-runscript>} This directive is implemented in
version 1.39.22 and later. The RunScript directive behaves like a re-
source in that it requires opening and closing braces around a number
of directives that make up the body of the runscript.

The specified Command (see below for details) is run as an external
program prior or after the current Job. This is optional.

You can use following options may be specified in the body of the

runscript:
Options Value Default | Information
Runs On Success Yes/No Yes Run command if JobStatus is successful
Runs On Failure Yes/No No Run command if JobStatus isn’t successft
Runs On Client Yes/No Yes Run command on client
Runs When Before—After—Always | Never | When run commands
Fail Job On Error Yes/No Yes Fail job if script returns something differe
Command Path to your script

Any output sent by the command to standard output will be included
in the Bacula job report. The command string must be a valid program
name or name of a shell script.

In addition, the command string is parsed then fed to the OS, which
means that the path will be searched to execute your specified com-
mand, but there is no shell interpretation, as a consequence, if you
invoke complicated commands or want any shell features such as redi-
rection or piping, you must call a shell script and do it inside that
script.

Before submitting the specified command to the operating system,
Bacula performs character substitution of the following characters:

Wh =%

%c = Client’s name
%d = Director’s name
%e = Job Exit Status
%i = Jobld

%j = Unique Job id
%1 = Job Level

%n = Job name

%s = Since time

%t = Job type (Backup, ...)
%v = Volume name

130

CHAPTER 11. CONFIGURING THE DIRECTOR

The Job Exit Status code %e edits the following values:

e OK
e Frror
Fatal Error

Canceled

e Differences

e Unknown term code

Thus if you edit it on a command line, you will need to enclose it

within some sort of quotes.

You can use these following shortcuts:

Keyword RunsOnSuccess | RunsOnFailure | FailJobOnError | Runs On

Run Before Job Yes Nc

Run After Job Yes No No

Run After Failed Job No Yes Nc

Client Run Before Job Yes Yes

Client Run After Job Yes No Yes
Examples:

RunScript {
RunsWhen = Before
FailJobOnError = No
Command = "/etc/init.d/apache stop"

RunScript {
RunsWhen = After
RunsOnFailure = yes
Command = "/etc/init.d/apache start"

}

Special Windows Considerations

In addition, for a Windows client on version 1.33 and above, please
take note that you must ensure a correct path to your script. The
script or program can be a .com, .exe or a .bat file. If you just put the
program name in then Bacula will search using the same rules that
cmd.exe uses (current directory, Bacula bin directory, and PATH). It
will even try the different extensions in the same order as cmd.exe.
The command can be anything that cmd.exe or command.com will

recognize as an executable file.

11.3. THE JOB RESOURCE 131

However, if you have slashes in the program name then Bacula figures
you are fully specifying the name, so you must also explicitly add the
three character extension.

The command is run in a Win32 environment, so Unix like commands
will not work unless you have installed and properly configured Cygwin
in addition to and separately from Bacula.

The System %Path% will be searched for the command. (under the
environment variable dialog you have have both System Environment
and User Environment, we believe that only the System environment
will be available to bacula-fd, if it is running as a service.)

System environment variables can be referenced with %var% and used
as either part of the command name or arguments.

So if you have a script in the Bacula
bin directory then the following lines should work fine:

Client Run Before Job = systemstate

or

Client Run Before Job = systemstate.bat
or

Client Run Before Job = "systemstate"
or

Client Run Before Job "systemstate.bat"

or
ClientRunBeforeJob = "\"C:/Program Files/Bacula/systemstate.bat\""

The outer set of quotes is removed when the configuration file is parsed.
You need to escape the inner quotes so that they are there when the
code that parses the command line for execution runs so it can tell
what the program name is.

ClientRunBeforeJob = "\"C:/Program Files/Software
Vendor/Executable\" /argl /arg2 \"foo bar\""

The special characters
&<>0e" |

will need to be quoted, if they are part of a filename or argument.

If someone is logged in, a blank ”command” window running the com-
mands will be present during the execution of the command.

Some Suggestions from Phil Stracchino for running on Win32 machines
with the native Win32 File daemon:

132

CHAPTER 11. CONFIGURING THE DIRECTOR

1. You might want the ClientRunBeforeJob directive to specify a
.bat file which runs the actual client-side commands, rather than
trying to run (for example) regedit /e directly.

2. The batch file should explicitly ’exit 0’ on successful completion.

3. The path to the batch file should be specified in Unix form:
ClientRunBeforeJob = ”c:/bacula/bin/systemstate.bat”
rather than DOS/Windows form:

ClientRunBeforeJob =
”c:\bacula\bin\systemstate.bat” INCORRECT

For Win32, please note that there are certain limitations:
ClientRunBeforeJob = ”C:/Program Files/Bacula/bin/pre-exec.bat”

Lines like the above do not work because there are limitations of
cmd.exe that is used to execute the command. Bacula prefixes the
string you supply with cmmd.exe /c . To test that your command
works you should type cmmd /¢ ”C:/Program Files/test.exe” at a
cmd prompt and see what happens. Once the command is correct in-
sert a backslash (\) before each double quote (”), and then put quotes
around the whole thing when putting it in the director’s .conf file. You
either need to have only one set of quotes or else use the short name
and don’t put quotes around the command path.

Below is the output from cmd’s help as it relates to the command line
passed to the /c option.

If /C or /K is specified, then the remainder of the command line after
the switch is processed as a command line, where the following logic
is used to process quote (”) characters:

1. If all of the following conditions are met, then quote characters
on the command line are preserved:

e 10 /S switch.

e exactly two quote characters.

e no special characters between the two quote characters,
where special is one of:
&<>0e" |

e there are one or more whitespace characters between the the
two quote characters.

e the string between the two quote characters is the name of
an executable file.

2. Otherwise, old behavior is to see if the first character is a quote
character and if so, strip the leading character and remove the
last quote character on the command line, preserving any text
after the last quote character.

11.3. THE JOB RESOURCE 133

The following example of the use of the Client Run Before Job directive
was submitted by a user:

You could write a shell script to back up a DB2 database to a FIFO.
The shell script is:

#!/bin/sh
===== backupdb.sh
DIR=/u01/mercuryd

mkfifo $DIR/dbpipe
db2 BACKUP DATABASE mercuryd TO $DIR/dbpipe WITHOUT PROMPTING &
sleep 1

The following line in the Job resource in the bacula-dir.conf file:

Client Run Before Job = "su - mercuryd -c \"/uOl/mercuryd/backupdb.sh ’%t’
7%1;\nn

When the job is run, you will get messages from the output of the
script stating that the backup has started. Even though the command
being run is backgrounded with &, the job will block until the ”db2
BACKUP DATABASE” command, thus the backup stalls.

To remedy this situation, the ”db2 BACKUP DATABASE” line should
be changed to the following:

db2 BACKUP DATABASE mercuryd TO $DIR/dbpipe WITHOUT PROMPTING > $DIR/backup.log
2>41 < /dev/null &

It is important to redirect the input and outputs of a backgrounded
command to /dev/null to prevent the script from blocking.

Run Before Job = <command> The specified command is run as an
external program prior to running the current Job. This directive is
not required, but if it is defined, and if the exit code of the program
run is non-zero, the current Bacula job will be canceled.

Run Before Job = "echo test"

it’s equivalent to :

RunScript {

Command = "echo test"
RunsOnClient = No
RunsWhen = Before

}

134

Run

Run

CHAPTER 11. CONFIGURING THE DIRECTOR

Lutz Kittler has pointed out that using the RunBeforeJob directive
can be a simple way to modify your schedules during a holiday. For
example, suppose that you normally do Full backups on Fridays, but
Thursday and Friday are holidays. To avoid having to change tapes
between Thursday and Friday when no one is in the office, you can
create a RunBeforeJob that returns a non-zero status on Thursday
and zero on all other days. That way, the Thursday job will not run,
and on Friday the tape you inserted on Wednesday before leaving will
be used.

After Job = <command> The specified command is run as an
external program if the current job terminates normally (without error
or without being canceled). This directive is not required. If the
exit code of the program run is non-zero, Bacula will print a warning
message. Before submitting the specified command to the operating
system, Bacula performs character substitution as described above for
the RunScript directive.

An example of the use of this directive is given in the Tips Chapter of
this manual.

See the Run After Failed Job if you want to run a script after the
job has terminated with any non-normal status.

After Failed Job = <command> The specified command is run
as an external program after the current job terminates with any error
status. This directive is not required. The command string must be a
valid program name or name of a shell script. If the exit code of the
program run is non-zero, Bacula will print a warning message. Before
submitting the specified command to the operating system, Bacula
performs character substitution as described above for the RunScript
directive. Note, if you wish that your script will run regardless of the
exit status of the Job, you can use this :

RunScript {
Command = "echo test"
RunsWhen = After
RunsOnFailure
RunsOnClient
RunsOnSuccess

yes
no
yes # default, you can drop this line

An example of the use of this directive is given in the Tips Chapter of
this manual.

11.3. THE JOB RESOURCE 135

Client Run Before Job = <command> This directive is the same as
Run Before Job except that the program is run on the client ma-
chine. The same restrictions apply to Unix systems as noted above for
the RunScript.

Client Run After Job = <command> The specified command is run
on the client machine as soon as data spooling is complete in order to
allow restarting applications on the client as soon as possible. .

Note, please see the notes above in RunScript concerning Windows
clients.

Rerun Failed Levels = <yes—mno> If this directive is set to yes (de-
fault no), and Bacula detects that a previous job at a higher level (i.e.
Full or Differential) has failed, the current job level will be upgraded
to the higher level. This is particularly useful for Laptops where they
may often be unreachable, and if a prior Full save has failed, you wish
the very next backup to be a Full save rather than whatever level it is
started as.

There are several points that must be taken into account when using
this directive: first, a failed job is defined as one that has not ter-
minated normally, which includes any running job of the same name
(you need to ensure that two jobs of the same name do not run si-
multaneously); secondly, the Ignore FileSet Changes directive is
not considered when checking for failed levels, which means that any
FileSet change will trigger a rerun.

Spool Data = <yes—mno> If this directive is set to yes (default no), the
Storage daemon will be requested to spool the data for this Job to
disk rather than write it directly to tape. Once all the data arrives or
the spool files’ maximum sizes are reached, the data will be despooled
and written to tape. Spooling data prevents tape shoe-shine (start
and stop) during Incremental saves. If you are writing to a disk file
using this option will probably just slow down the backup jobs.

NOTE: When this directive is set to yes, Spool Attributes is also
automatically set to yes.

Spool Attributes = <yes—mno> The default is set to no, which means
that the File attributes are sent by the Storage daemon to the Director
as they are stored on tape. However, if you want to avoid the possi-
bility that database updates will slow down writing to the tape, you
may want to set the value to yes, in which case the Storage daemon
will buffer the File attributes and Storage coordinates to a temporary
file in the Working Directory, then when writing the Job data to the
tape is completed, the attributes and storage coordinates will be sent
to the Director.

136 CHAPTER 11. CONFIGURING THE DIRECTOR

NOTE: When Spool Data is set to yes, Spool Attributes is also auto-
matically set to yes.

Where = <directory> This directive applies only to a Restore job and
specifies a prefix to the directory name of all files being restored. This
permits files to be restored in a different location from which they were
saved. If Where is not specified or is set to backslash (/), the files will
be restored to their original location. By default, we have set Where
in the example configuration files to be /tmp/bacula-restores. This
is to prevent accidental overwriting of your files.

Add Prefix = <directory> This directive applies only to a Restore job
and specifies a prefix to the directory name of all files being restored.
This will use [File Relocation| feature implemented in Bacula 2.1.8 or
later.

Add Suffix = <extention> This directive applies only to a Restore job
and specifies a suffix to all files being restored. This will use
File Relocation| feature implemented in Bacula 2.1.8 or later.

Using Add Suffix=.old, /etc/passwd will be restored to
/etc/passwsd.old

Strip Prefix = <directory> This directive applies only to a Restore job
and specifies a prefix to remove from the directory name of all files
being restored. This will use the[File Relocation feature implemented
in Bacula 2.1.8 or later.

Using Strip Prefix=/etc, /etc/passwd will be restored to /passwd

Under Windows, if you want to restore c:/files to d:/files, you
can use :

Strip Prefix = c:
Add Prefix = d:

RegexWhere = <expressions> This directive applies only to a Restore
job and specifies a regex filename manipulation of all files being re-
stored. This will use [File Relocation| feature implemented in Bacula
2.1.8 or later.

For more informations about how use this option, see

Replace = <replace-option> This directive applies only to a Restore
job and specifies what happens when Bacula wants to restore a file
or directory that already exists. You have the following options for
replace-option:

11.3. THE JOB RESOURCE 137

always when the file to be restored already exists, it is deleted and
then replaced by the copy that was backed up.

ifnewer if the backed up file (on tape) is newer than the existing file,
the existing file is deleted and replaced by the back up.

ifolder if the backed up file (on tape) is older than the existing file,
the existing file is deleted and replaced by the back up.

never if the backed up file already exists, Bacula skips restoring this
file.

Prefix Links=<yes—mno> If a Where path prefix is specified for a re-
covery job, apply it to absolute links as well. The default is No. When
set to Yes then while restoring files to an alternate directory, any ab-
solute soft links will also be modified to point to the new alternate
directory. Normally this is what is desired —i.e. everything is self con-
sistent. However, if you wish to later move the files to their original
locations, all files linked with absolute names will be broken.

Maximum Concurrent Jobs = <number> where <number> is the
maximum number of Jobs from the current Job resource that can
run concurrently. Note, this directive limits only Jobs with the same
name as the resource in which it appears. Any other restrictions on
the maximum concurrent jobs such as in the Director, Client, or Stor-
age resources will also apply in addition to the limit specified here.
The default is set to 1, but you may set it to a larger number. We
strongly recommend that you read the WARNING documented under
' Maximum Concurrent Jobs in the Director’s resource.

Reschedule On Error = <yes—mno> If this directive is enabled, and
the job terminates in error, the job will be rescheduled as determined
by the Reschedule Interval and Reschedule Times directives. If
you cancel the job, it will not be rescheduled. The default is no (i.e.
the job will not be rescheduled).

This specification can be useful for portables, laptops, or other ma-
chines that are not always connected to the network or switched on.

Reschedule Interval = <time-specification> If you have specified
Reschedule On Error = yes and the job terminates in error,
it will be rescheduled after the interval of time specified by time-
specification. See [the time specification formats| in the Configure
chapter for details of time specifications. If no interval is specified,
the job will not be rescheduled on error.

Reschedule Times = <count> This directive specifies the maximum
number of times to reschedule the job. If it is set to zero (the de-
fault) the job will be rescheduled an indefinite number of times.

138 CHAPTER 11. CONFIGURING THE DIRECTOR

Run = <job-name> The Run directive (not to be confused with the Run
option in a Schedule) allows you to start other jobs or to clone jobs.
By using the cloning keywords (see below), you can backup the same
data (or almost the same data) to two or more drives at the same
time. The job-name is normally the same name as the current Job
resource (thus creating a clone). However, it may be any Job name,
so one job may start other related jobs.

The part after the equal sign must be enclosed in double quotes, and
can contain any string or set of options (overrides) that you can spec-
ify when entering the Run command from the console. For example
storage=DDS-4 In addition, there are two special keywords
that permit you to clone the current job. They are level=%l and
since=%s. The %l in the level keyword permits entering the actual
level of the current job and the %s in the since keyword permits putting
the same time for comparison as used on the current job. Note, in the
case of the since keyword, the %s must be enclosed in double quotes,
and thus they must be preceded by a backslash since they are already
inside quotes. For example:

run = "Nightly-backup level=}l since=\"%s\" storage=DDS-4"

A cloned job will not start additional clones, so it is not possible to
recurse.

Please note that all cloned jobs, as specified in the Run directives are
submitted for running before the original job is run (while it is being
initialized). This means that any clone job will actually start before
the original job, and may even block the original job from starting
until the original job finishes unless you allow multiple simultaneous
jobs. Even if you set a lower priority on the clone job, if no other jobs
are running, it will start before the original job.

If you are trying to prioritize jobs by using the clone feature (Run
directive), you will find it much easier to do using a RunScript resource,
or a RunBeforeJob directive.

Priority = <number> This directive permits you to control the order in
which your jobs will be run by specifying a positive non-zero number.
The higher the number, the lower the job priority. Assuming you
are not running concurrent jobs, all queued jobs of priority 1 will run
before queued jobs of priority 2 and so on, regardless of the original
scheduling order.

The priority only affects waiting jobs that are queued to run, not jobs
that are already running. If one or more jobs of priority 2 are already

11.3. THE JOB RESOURCE 139

running, and a new job is scheduled with priority 1, the currently
running priority 2 jobs must complete before the priority 1 job is run.

The default priority is 10.

If you want to run concurrent jobs you should keep these points in
mind:

e See/Running Concurrent Jobs/on how to setup concurrent jobs.

e Bacula concurrently runs jobs of only one priority at a time. It
will not simultaneously run a priority 1 and a priority 2 job.

e If Bacula is running a priority 2 job and a new priority 1 job is
scheduled, it will wait until the running priority 2 job terminates
even if the Maximum Concurrent Jobs settings would otherwise
allow two jobs to run simultaneously.

e Suppose that bacula is running a priority 2 job and a new priority
1 job is scheduled and queued waiting for the running priority 2
job to terminate. If you then start a second priority 2 job, the
waiting priority 1 job will prevent the new priority 2 job from
running concurrently with the running priority 2 job. That is:
as long as there is a higher priority job waiting to run, no new
lower priority jobs will start even if the Maximum Concurrent
Jobs settings would normally allow them to run. This ensures
that higher priority jobs will be run as soon as possible.

If you have several jobs of different priority, it may not best to start
them at exactly the same time, because Bacula must examine them
one at a time. If by Bacula starts a lower priority job first, then it will
run before your high priority jobs. If you experience this problem, you
may avoid it by starting any higher priority jobs a few seconds before
lower priority ones. This insures that Bacula will examine the jobs in
the correct order, and that your priority scheme will be respected.

Write Part After Job = <yes—mno> This directive is only imple-
mented in version 1.37 and later. If this directive is set to yes (default
no), a new part file will be created after the job is finished.

It should be set to yes when writing to devices that require mount
(for example DVD), so you are sure that the current part, containing
this job’s data, is written to the device, and that no data is left in
the temporary file on the hard disk. However, on some media, like
DVD+R and DVD-R, a lot of space (about 10Mb) is lost every time
a part is written. So, if you run several jobs each after another, you
could set this directive to no for all jobs, except the last one, to avoid
wasting too much space, but to ensure that the data is written to the
medium when all jobs are finished.

140 CHAPTER 11. CONFIGURING THE DIRECTOR

This directive is ignored with tape and FIFO devices.

The following is an example of a valid Job resource definition:

Job {
Name = "Minou"
Type = Backup
Level = Incremental # default

Client = Minou
FileSet="Minou Full Set"
Storage = DLTDrive

Pool = Default

Schedule = "MinouWeeklyCycle"
Messages = Standard

11.4 The JobDefs Resource

The JobDefs resource permits all the same directives that can appear in a
Job resource. However, a JobDefs resource does not create a Job, rather it
can be referenced within a Job to provide defaults for that Job. This permits
you to concisely define several nearly identical Jobs, each one referencing a
JobDefs resource which contains the defaults. Only the changes from the
defaults need to be mentioned in each Job.

11.5 The Schedule Resource

The Schedule resource provides a means of automatically scheduling a Job as
well as the ability to override the default Level, Pool, Storage and Messages
resources. If a Schedule resource is not referenced in a Job, the Job can only
be run manually. In general, you specify an action to be taken and when.

Schedule Start of the Schedule directives. No Schedule resource is re-
quired, but you will need at least one if you want Jobs to be automat-
ically started.

Name = <name> The name of the schedule being defined. The Name
directive is required.

Run = <Job-overrides> <Date-time-specification> The Run direc-
tive defines when a Job is to be run, and what overrides if any to apply.

11.5. THE SCHEDULE RESOURCE 141

You may specify multiple run directives within a Schedule resource.
If you do, they will all be applied (i.e. multiple schedules). If you have
two Run directives that start at the same time, two Jobs will start at
the same time (well, within one second of each other).

The Job-overrides permit overriding the Level, the Storage, the Mes-
sages, and the Pool specifications provided in the Job resource. In
addition, the FullPool, the IncrementalPool, and the DifferentialPool
specifications permit overriding the Pool specification according to
what backup Job Level is in effect.

By the use of overrides, you may customize a particular Job. For
example, you may specify a Messages override for your Incremental
backups that outputs messages to a log file, but for your weekly or
monthly Full backups, you may send the output by email by using a
different Messages override.

Job-overrides are specified as: keyword=value where the keyword
is Level, Storage, Messages, Pool, FullPool, DifferentialPool, or In-
crementalPool, and the value is as defined on the respective directive
formats for the Job resource. You may specify multiple Job-overrides
on one Run directive by separating them with one or more spaces or
by separating them with a trailing comma. For example:

Level=Full is all files in the FileSet whether or not they have
changed.

Level=Incremental is all files that have changed since the last
backup.

Pool=Weekly specifies to use the Pool named Weekly.

Storage=DLT Drive specifies to use DLT _Drive for the storage
device.

Messages=Verbose specifies to use the Verbose message resource
for the Job.

FullPool=Full specifies to use the Pool named Full if the job is a
full backup, or is upgraded from another type to a full backup.

DifferentialPool=Differential specifies to use the Pool named Dif-
ferential if the job is a differential backup.

IncrementalPool=Incremental specifies to use the Pool named
Incremental if the job is an incremental backup.

SpoolData=yes—mno tells Bacula to request the Storage daemon to
spool data to a disk file before writing it to the Volume (normally
a tape). Thus the data is written in large blocks to the Volume
rather than small blocks. This directive is particularly useful
when running multiple simultaneous backups to tape. It prevents

142

CHAPTER 11. CONFIGURING THE DIRECTOR

interleaving of the job data and reduces or eliminates tape drive
stop and start commonly known as ”shoe-shine”.

SpoolSize=bytes where the bytes specify the maximum spool size for
this job. The default is take from Device Maximum Spool Size
limit. This directive is available only in Bacula version 2.3.5 or
later.

WritePartAfterJob=yes—mno tells Bacula to request the Storage
daemon to write the current part file to the device when the job is
finished (seeWrite Part After Job directive in the Job resource).
Please note, this directive is implemented only in version 1.37 and
later. The default is yes. We strongly recommend that you keep
this set to yes otherwise, when the last job has finished one part
will remain in the spool file and restore may or may not work.

Date-time-specification determines when the Job is to be run. The
specification is a repetition, and as a default Bacula is set to run a
job at the beginning of the hour of every hour of every day of every
week of every month of every year. This is not normally what you
want, so you must specify or limit when you want the job to run. Any
specification given is assumed to be repetitive in nature and will serve
to override or limit the default repetition. This is done by specifying
masks or times for the hour, day of the month, day of the week, week
of the month, week of the year, and month when you want the job to
run. By specifying one or more of the above, you can define a schedule
to repeat at almost any frequency you want.

Basically, you must supply a month, day, hour, and minute the Job
is to be run. Of these four items to be specified, day is special in that
you may either specify a day of the month such as 1, 2, ... 31, or you
may specify a day of the week such as Monday, Tuesday, ... Sunday.
Finally, you may also specify a week qualifier to restrict the schedule
to the first, second, third, fourth, or fifth week of the month.

For example, if you specify only a day of the week, such as Tuesday
the Job will be run every hour of every Tuesday of every Month. That
is the month and hour remain set to the defaults of every month and
all hours.

Note, by default with no other specification, your job will run at the
beginning of every hour. If you wish your job to run more than once
in any given hour, you will need to specify multiple run specifications
each with a different minute.

The date/time to run the Job can be specified in the following way in
pseudo-BNF:

<void-keyword> = on

11.5. THE SCHEDULE RESOURCE 143
<at-keyword> = at
<week-keyword> = 1st | 2nd | 3rd | 4th | 5th | first |
second | third | fourth | fifth

sun | mon | tue | wed | thu | fri | sat |
sunday | monday | tuesday | wednesday |
thursday | friday | saturday
<week-of-year-keyword> = w00 | w01l | . w2 | wb3
<month-keyword> = jan | feb | mar | apr | may | jun | jul |
aug | sep | oct | nov | dec | january |

<wday-keyword> =

february | | december
<daily-keyword> = daily
<weekly-keyword> = weekly
<monthly-keyword> = monthly
<hourly-keyword> = hourly
<digit> =11213141l516l7181910
<number> = <digit> | <digit><number>
<12hour> =01l11]2] 12
<hour> =0l 121 ...23
<minute> =01l 11]2] . 59
<day> =112 .31
<time> = <hour>:<minute> |

<12hour>:<minute>am |
<12hour>:<minute>pm

<time-spec>

<date-keyword>
<day-range>
<month-range>
<wday-range>
<range>

<date>
<date-spec>
<day-spec>

<day-spec>

<month-spec>

<at-keyword> <time> |
<hourly-keyword>
<void-keyword> <weekly-keyword>

= <day>-<day>
= <month-keyword>-<month-keyword>

<wday-keyword>-<wday-keyword>

<day-range> | <month-range> |
<wday-range>

<date-keyword> | <day> | <range>

= <date> | <date-spec>

<day> | <wday-keyword> |
<day-range> | <wday-range> |
<daily-keyword>

<day> | <wday-keyword> |

<day> | <wday-range> |
<week-keyword> <wday-keyword> |
<week-keyword> <wday-range>
<month-keyword> | <month-range> |
<monthly-keyword>

<date-time-spec> = <month-spec> <day-spec> <time-spec>

Note, the Week of Year specification wnn follows the ISO standard definition
of the week of the year, where Week 1 is the week in which the first Thursday
of the year occurs, or alternatively, the week which contains the 4th of
January. Weeks are numbered w01 to w53. w00 for Bacula is the week that
precedes the first ISO week (i.e. has the first few days of the year if any
occur before Thursday). w00 is not defined by the ISO specification. A week
starts with Monday and ends with Sunday.

144 CHAPTER 11. CONFIGURING THE DIRECTOR

According to the NIST (US National Institute of Standards and Technol-
ogy), 12am and 12pm are ambiguous and can be defined to anything. How-
ever, 12:0lam is the same as 00:01 and 12:01pm is the same as 12:01, so
Bacula defines 12am as 00:00 (midnight) and 12pm as 12:00 (noon). You
can avoid this abiguity (confusion) by using 24 hour time specifications (i.e.
no am/pm). This is the definition in Bacula version 2.0.3 and later.

An example schedule resource that is named WeeklyCycle and runs a
job with level full each Sunday at 2:05am and an incremental job Monday
through Saturday at 2:05am is:

Schedule {
Name = "WeeklyCycle"
Run = Level=Full sun at 2:05
Run = Level=Incremental mon-sat at 2:05

}

An example of a possible monthly cycle is as follows:

Schedule {
Name = "MonthlyCycle"

Run = Level=Full Pool=Monthly 1st sun at 2:05
Run = Level=Differential 2nd-5th sun at 2:05
Run = Level=Incremental Pool=Daily mon-sat at 2:05

}

The first of every month:

Schedule {
Name = "First"
Run = Level=Full on 1 at 2:05
Run = Level=Incremental on 2-31 at 2:05

}

Every 10 minutes:

Schedule {

Name = "TenMinutes"

Run = Level=Full hourly at 0:05
Run = Level=Full hourly at 0:15
Run = Level=Full hourly at 0:25
Run = Level=Full hourly at 0:35
Run = Level=Full hourly at 0:45
Run = Level=Full hourly at 0:55

11.6. TECHNICAL NOTES ON SCHEDULES 145

11.6 Technical Notes on Schedules

Internally Bacula keeps a schedule as a bit mask. There are six masks and
a minute field to each schedule. The masks are hour, day of the month
(mday), month, day of the week (wday), week of the month (wom), and
week of the year (woy). The schedule is initialized to have the bits of each
of these masks set, which means that at the beginning of every hour, the
job will run. When you specify a month for the first time, the mask will be
cleared and the bit corresponding to your selected month will be selected.
If you specify a second month, the bit corresponding to it will also be added
to the mask. Thus when Bacula checks the masks to see if the bits are
set corresponding to the current time, your job will run only in the two
months you have set. Likewise, if you set a time (hour), the hour mask will
be cleared, and the hour you specify will be set in the bit mask and the
minutes will be stored in the minute field.

For any schedule you have defined, you can see how these bits are set by
doing a show schedules command in the Console program. Please note
that the bit mask is zero based, and Sunday is the first day of the week (bit
Z€ro).

11.7 The FileSet Resource

The FileSet resource defines what files are to be included or excluded in a
backup job. A FileSet resource is required for each backup Job. It consists
of a list of files or directories to be included, a list of files or directories to be
excluded and the various backup options such as compression, encryption,
and signatures that are to be applied to each file.

Any change to the list of the included files will cause Bacula to automatically
create a new FileSet (defined by the name and an MD5 checksum of the
Include/Exclude contents). Each time a new FileSet is created, Bacula will
ensure that the next backup is always a Full save.

Bacula is designed to handle most character sets of the world, US ASCII,
German, French, Chinese, ... However, it does this by encoding everything
in UTF-8, and it expects all configuration files (including those read on
Win32 machines) to be in UTF-8 format. UTF-8 is typically the default
on Linux machines, but not on all Unix machines, nor on Windows, so you
must take some care to ensure that your locale is set properly before starting

146 CHAPTER 11. CONFIGURING THE DIRECTOR

Bacula. On most modern Win32 machines, you can edit the conf files with
notebook and choose output encoding UTF-8.

To ensure that Bacula configuration files can be correctly read including
foreign characters the bf LANG environment variable must end in .UTF-8.
An full example is en_US.UTF-8. The exact syntax may vary a bit from
OS to OS, and exactly how you define it will also vary.

Bacula assumes that all filenames are in UTF-8 format on Linux and Unix
machines. On Win32 they are in Unicode (UTF-16), and will be automati-
cally converted to UTF-8 format.

FileSet Start of the FileSet resource. One FileSet resource must be defined
for each Backup job.

Name = <name> The name of the FileSet resource. This directive is
required.

Ignore FileSet Changes = <yes—no> Normally, if you modify the
FileSet Include or Exclude lists, the next backup will be forced to
a Full so that Bacula can guarantee that any additions or deletions
are properly saved.

We strongly recommend against setting this directive to yes, since
doing so may cause you to have an incomplete set of backups.

If this directive is set to yes, any changes you make to the FileSet In-
clude or Exclude lists, will not force a Full during subsequent backups.

The default is no, in which case, if you change the Include or Exclude,
Bacula will force a Full backup to ensure that everything is properly
backed up.

Enable VSS = <yes—mno> If this directive is set to yes the File daemon
will be notified that the user wants to use a Volume Shadow Copy
Service (VSS) backup for this job. The default is yes. This directive
is effective only for VSS enabled Win32 File daemons. It permits a
consistent copy of open files to be made for cooperating writer appli-
cations, and for applications that are not VSS away, Bacula can at
least copy open files. For more information, please see the Windows|
chapter of this manual.

Include { Options {<file-options>} ...; <file-list> }
Options { <file-options> }

Exclude { <file-list> }

11.7. THE FILESET RESOURCE 147

The Include resource must contain a list of directories and/or files to be
processed in the backup job. Normally, all files found in all subdirectories
of any directory in the Include File list will be backed up. Note, see below
for the definition of <file-list>. The Include resource may also contain one
or more Options resources that specify options such as compression to be
applied to all or any subset of the files found when processing the file-list
for backup. Please see below for more details concerning Options resources.

There can be any number of Include resources within the FileSet, each
having its own list of directories or files to be backed up and the backup
options defined by one or more Options resources. The file-list consists
of one file or directory name per line. Directory names should be specified
without a trailing slash with Unix path notation.

Windows users, please take note to specify directories (even c:/...) in Unix
path notation. If you use Windows conventions, you will most likely not be
able to restore your files due to the fact that the Windows path separator
was defined as an escape character long before Windows existed, and Bacula
adheres to that convention (i.e.

means the next character appears as itself).

You should always specify a full path for every directory and file that you
list in the FileSet. In addition, on Windows machines, you should always
prefix the directory or filename with the drive specification in lower case
(e.g. c:/xxx) using Unix directory name separators (forward slash).

Bacula’s default for processing directories is to recursively descend in the
directory saving all files and subdirectories. Bacula will not by default cross
filesystems (or mount points in Unix parlance). This means that if you spec-
ify the root partition (e.g. /), Bacula will save only the root partition and
not any of the other mounted filesystems. Similarly on Windows systems,
you must explicitly specify each of the drives you want saved (e.g. c:/ and
d:/ ...). In addition, at least for Windows systems, you will most likely
want to enclose each specification within double quotes particularly if the
directory (or file) name contains spaces. The df command on Unix systems
will show you which mount points you must specify to save everything. See
below for an example.

Take special care not to include a directory twice or Bacula will backup the
same files two times wasting a lot of space on your archive device. Including
a directory twice is very easy to do. For example:

Include {
File = /
File = /usr

148 CHAPTER 11. CONFIGURING THE DIRECTOR

Options { compression=GZIP }
}

on a Unix system where /usr is a subdirectory (rather than a mounted
filesystem) will cause /usr to be backed up twice. In this case, on Bacula
versions prior to 1.32f-5-09Mar04 due to a bug, you will not be able to
restore hard linked files that were backed up twice.

If you have used Bacula prior to version 1.36.3, you will note three things
in the new FileSet syntax:

1. There is no equal sign (=) after the Include and before the opening
brace ({). The same is true for the Exclude.

2. Each directory (or filename) to be included or excluded is preceded by
a File =. Previously they were simply listed on separate lines.

3. The options that previously appeared on the Include line now must be
specified within their own Options resource.

4. The Exclude resource does not accept Options.

5. When using wild-cards or regular expressions, directory names are
always terminated with a slash (/) and filenames have no trailing slash.

The Options resource is optional, but when specified, it will contain a list
of keyword=value options to be applied to the file-list. See below for the
definition of file-list. Multiple Options resources may be specified one after
another. As the files are found in the specified directories, the Options will
applied to the filenames to determine if and how the file should be backed up.
The wildcard and regular expression pattern matching parts of the Options
resources are checked in the order they are specified in the FileSet until the
first one that matches. Once one matches, the compression and other flags
within the Options specification will apply to the pattern matched.

A key point is that in the absence of an Option or no other Option is
matched, every file is accepted for backing up. This means that if you
want to exclude something, you must explicitly specify an Option with an
exclude = yes and some pattern matching.

Once Bacula determines that the Options resource matches the file under
consideration, that file will be saved without looking at any other Options
resources that may be present. This means that any wild cards must appear
before an Options resource without wild cards.

11.7. THE FILESET RESOURCE 149

If for some reason, Bacula checks all the Options resources to a file under
consideration for backup, but there are no matches (generally because of
wild cards that don’t match), Bacula as a default will then backup the file.
This is quite logical if you consider the case of no Options clause is specified,
where you want everything to be backed up, and it is important to keep in
mind when excluding as mentioned above.

However, one additional point is that in the case that no match was found,
Bacula will use the options found in the last Options resource. As a con-
sequence, if you want a particular set of "default” options, you should put
them in an Options resource after any other Options.

It is a good idea to put all your wild-card and regex expressions inside double
quotes to prevent conf file scanning problems.

This is perhaps a bit overwhelming, so there are a number of examples
included below to illustrate how this works.

The directives within an Options resource may be one of the following:

compression=GZIP All files saved will be software compressed using the
GNU ZIP compression format. The compression is done on a file by
file basis by the File daemon. If there is a problem reading the tape
in a single record of a file, it will at most affect that file and none of
the other files on the tape. Normally this option is not needed if you
have a modern tape drive as the drive will do its own compression. In
fact, if you specify software compression at the same time you have
hardware compression turned on, your files may actually take more
space on the volume.

Software compression is very important if you are writing your Vol-
umes to a file, and it can also be helpful if you have a fast computer
but a slow network, otherwise it is generally better to rely your tape
drive’s hardware compression. As noted above, it is not generally a
good idea to do both software and hardware compression.

Specifying GZIP uses the default compression level 6 (i.e. GZIP
is identical to GZIP6). If you want a different compression level (1
through 9), you can specify it by appending the level number with
no intervening spaces to GZIP. Thus compression=GZIP1 would
give minimum compression but the fastest algorithm, and compres-
sion=GZIP9 would give the highest level of compression, but requires
more computation. According to the GZIP documentation, compres-
sion levels greater than six generally give very little extra compression
and are rather CPU intensive.

150 CHAPTER 11. CONFIGURING THE DIRECTOR

signature=SHA1 An SHA1 signature will be computed for all The SHA1
algorithm is purported to be some what slower than the MD5 algo-
rithm, but at the same time is significantly better from a cryptographic
point of view (i.e. much fewer collisions, much lower probability of be-
ing hacked.) It adds four more bytes than the MD5 signature. We
strongly recommend that either this option or MD5 be specified as a
default for all files. Note, only one of the two options MD5 or SHA1
can be computed for any file.

signature=MDJ5 An MD5 signature will be computed for all files saved.
Adding this option generates about 5% extra overhead for each file
saved. In addition to the additional CPU time, the MD5 signature
adds 16 more bytes per file to your catalog. We strongly recommend
that this option or the SHA1 option be specified as a default for all
files.

verify=<options> The options letters specified are used when running
a Verify Level=Catalog as well as the DiskToCatalog level job.
The options letters may be any combination of the following;:

i compare the inodes

p compare the permission bits

n compare the number of links

u compare the user id

g compare the group id

s compare the size

a compare the access time

m compare the modification time (st_mtime)
¢ compare the change time (st_ctime)
d report file size decreases

5 compare the MD5 signature

1 compare the SHA1 signature

A useful set of general options on the Level=Catalog or
Level=DiskToCatalog verify is pins5 i.e. compare permission bits,
inodes, number of links, size, and MDb5 changes.

onefs=yes—mno If set to yes (the default), Bacula will remain on a single
file system. That is it will not backup file systems that are mounted
on a subdirectory. If you are using a *nix system, you may not even
be aware that there are several different filesystems as they are often
automatically mounted by the OS (e.g. /dev, /net, /sys, /proc, ...).

11.7. THE FILESET RESOURCE 151

With Bacula 1.38.0 or later, it will inform you when it decides not to
traverse into another filesystem. This can be very useful if you forgot
to backup a particular partition. An example of the informational
message in the job report is:

rufus-fd: /misc is a different filesystem. Will not descend from / into /misc

rufus-fd: /net is a different filesystem. Will not descend from / into /net

rufus-fd: /var/lib/nfs/rpc_pipefs is a different filesystem. Will not descend from /var/lib/nfs into
rufus-fd: /selinux is a different filesystem. Will not descend from / into /selinux

rufus-fd: /sys is a different filesystem. Will not descend from / into /sys

rufus-fd: /dev is a different filesystem. Will not descend from / into /dev

rufus-fd: /home is a different filesystem. Will not descend from / into /home

Note: in previous versions of Bacula, the above message was of the
form:

Filesystem change prohibited. Will not descend into /misc

If you wish to backup multiple filesystems, you can explicitly list each
filesystem you want saved. Otherwise, if you set the onefs option to
no, Bacula will backup all mounted file systems (i.e. traverse mount
points) that are found within the FileSet. Thus if you have NFS or
Samba file systems mounted on a directory listed in your FileSet, they
will also be backed up. Normally, it is preferable to set onefs=yes
and to explicitly name each filesystem you want backed up. Explicitly
naming the filesystems you want backed up avoids the possibility of
getting into a infinite loop recursing filesystems. Another possibility
is to use onefs=no and to set fstype=ext2, See the example
below for more details.

If you think that Bacula should be backing up a particular directory
and it is not, and you have onefs=no set, before you complain, please
do:

stat /
stat <filesystem>

where you replace filesystem with the one in question. If the Device:
number is different for / and for your filesystem, then they are on
different filesystems. E.g.

stat /

File: ¢/’

Size: 4096 Blocks: 16 I0 Block: 4096 directory
Device: 302h/770d Inode: 2 Links: 26

Access: (0755/drwxr-xr-x) Uid: (o/ root) Gid: (o/ root)
Access: 2005-11-10 12:28:01.000000000 +0100

152 CHAPTER 11. CONFIGURING THE DIRECTOR

Modify: 2005-09-27 17:52:32.000000000 +0200
Change: 2005-09-27 17:52:32.000000000 +0200

stat /net

File: /home’

Size: 4096 Blocks: 16 I0 Block: 4096 directory
Device: 308h/776d Inode: 2 Links: 7

Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (o/ root)
Access: 2005-11-10 12:28:02.000000000 +0100
Modify: 2005-11-06 12:36:48.000000000 +0100
Change: 2005-11-06 12:36:48.000000000 +0100

Also be aware that even if you include /home in your list of files to
backup, as you most likely should, you will get the informational mes-
sage that ” /home is a different filesystem” when Bacula is processing
the / directory. This message does not indicate an error. This message
means that while examining the File = referred to in the second part
of the message, Bacula will not descend into the directory mentioned
in the first part of the message. However, it is possible that the sep-
arate filesystem will be backed up despite the message. For example,
consider the following FileSet:

File
File

/

/var

where /var is a separate filesystem. In this example, you will get a
message saying that Bacula will not decend from / into /var. But
it is important to realise that Bacula will descend into /var from the
second File directive shown above. In effect, the warning is bogus, but
it is supplied to alert you to possible omissions from your FileSet. In
this example, /var will be backed up. If you changed the FileSet such
that it did not specify /var, then /var will not be backed up.

portable=yes—mno If set to yes (default is no), the Bacula File daemon
will backup Win32 files in a portable format, but not all Win32 file
attributes will be saved and restored. By default, this option is set
to no, which means that on Win32 systems, the data will be backed
up using Windows API calls and on WinNT/2K/XP, all the security
and ownership attributes will be properly backed up (and restored).
However this format is not portable to other systems — e.g. Unix,
Win95/98/Me. When backing up Unix systems, this option is ignored,
and unless you have a specific need to have portable backups, we
recommend accept the default (no) so that the maximum information
concerning your files is saved.

recurse=yes—no If set to yes (the default), Bacula will recurse (or de-
scend) into all subdirectories found unless the directory is explicitly

11.7. THE FILESET RESOURCE 153

excluded using an exclude definition. If you set recurse=no, Bacula
will save the subdirectory entries, but not descend into the subdirec-
tories, and thus will not save the files or directories contained in the
subdirectories. Normally, you will want the default (yes).

sparse=yes—no Enable special code that checks for sparse files such as
created by ndbm. The default is no, so no checks are made for sparse
files. You may specify sparse=yes even on files that are not sparse
file. No harm will be done, but there will be a small additional over-
head to check for buffers of all zero, and a small additional amount of
space on the output archive will be used to save the seek address of
each non-zero record read.

Restrictions: Bacula reads files in 32K buffers. If the whole buffer
is zero, it will be treated as a sparse block and not written to tape.
However, if any part of the buffer is non-zero, the whole buffer will
be written to tape, possibly including some disk sectors (generally
4098 bytes) that are all zero. As a consequence, Bacula’s detection of
sparse blocks is in 32K increments rather than the system block size.
If anyone considers this to be a real problem, please send in a request
for change with the reason.

If you are not familiar with sparse files, an example is say a file where
you wrote 512 bytes at address zero, then 512 bytes at address 1 mil-
lion. The operating system will allocate only two blocks, and the
empty space or hole will have nothing allocated. However, when you
read the sparse file and read the addresses where nothing was written,
the OS will return all zeros as if the space were allocated, and if you
backup such a file, a lot of space will be used to write zeros to the
volume. Worse yet, when you restore the file, all the previously empty
space will now be allocated using much more disk space. By turning
on the sparse option, Bacula will specifically look for empty space in
the file, and any empty space will not be written to the Volume, nor
will it be restored. The price to pay for this is that Bacula must search
each block it reads before writing it. On a slow system, this may be
important. If you suspect you have sparse files, you should benchmark
the difference or set sparse for only those files that are really sparse.

readfifo=yes—mno If enabled, tells the Client to read the data on a backup
and write the data on a restore to any FIFO (pipe) that is explicitly
mentioned in the FileSet. In this case, you must have a program al-
ready running that writes into the FIFO for a backup or reads from
the FIFO on a restore. This can be accomplished with the RunBe-
foreJob directive. If this is not the case, Bacula will hang indefinitely
on reading/writing the FIFO. When this is not enabled (default), the
Client simply saves the directory entry for the FIFO.

154 CHAPTER 11. CONFIGURING THE DIRECTOR

Unfortunately, when Bacula runs a RunBeforeJob, it waits until that
script terminates, and if the script accesses the FIFO to write into
the it, the Bacula job will block and everything will stall. However,
Vladimir Stavrinov as supplied tip that allows this feature to work
correctly. He simply adds the following to the beginning of the Run-
BeforeJob script:

exec > /dev/null

noatime=yes—mno If enabled, and if your Operating System supports the
O_NOATIME file open flag, Bacula will open all files to be backed up
with this option. It makes it possible to read a file without updating
the inode atime (and also without the inode ctime update which hap-
pens if you try to set the atime back to its previous value). It also
prevents a race condition when two programs are reading the same
file, but only one does not want to change the atime. It’s most useful
for backup programs and file integrity checkers (and bacula can fit on
both categories).

This option is particularly useful for sites where users are sensitive to
their MailBox file access time. It replaces both the keepatime option
without the inconveniences of that option (see below).

If your Operating System does not support this option, it will be
silently ignored by Bacula.

mtimeonly=yes—no If enabled, tells the Client that the selection of files
during Incremental and Differential backups should based only on the
st_mtime value in the stat() packet. The default is no which means
that the selection of files to be backed up will be based on both the
st_mtime and the st_ctime values. In general, it is not recommended
to use this option.

keepatime=yes—mno The default is no. When enabled, Bacula will reset
the st_atime (access time) field of files that it backs up to their value
prior to the backup. This option is not generally recommended as there
are very few programs that use st_atime, and the backup overhead is
increased because of the additional system call necessary to reset the
times. However, for some files, such as mailboxes, when Bacula backs
up the file, the user will notice that someone (Bacula) has accessed the
file. In this, case keepatime can be useful. (I'm not sure this works on
Win32).

Note, if you use this feature, when Bacula resets the access time, the
change time (st_ctime) will automatically be modified by the system,
so on the next incremental job, the file will be backed up even if it has

11.7. THE FILESET RESOURCE 155

not changed. As a consequence, you will probably also want to use
mtimeonly = yes as well as keepatime (thanks to Rudolf Cejka for
this tip).

checkfilechanges=yes—no On versions 2.0.4 or greater, if enabled, the
Client will checks size, age of each file after their backup to see if they
have changed during backup. If time or size mismatch, an error will
raise.

zog-fd: Client1.2007-03-31_09.46.21 Error: /tmp/test mtime changed during backup.

In general, it is recommended to use this option.

hardlinks=yes—no When enabled (default), this directive will cause hard
links to be backed up. However, the File daemon keeps track of hard
linked files and will backup the data only once. The process of keeping
track of the hard links can be quite expensive if you have lots of them
(tens of thousands or more). This doesn’t occur on normal Unix sys-
tems, but if you use a program like BackupPC, it can create hundreds
of thousands, or even millions of hard links. Backups become very
long and the File daemon will consume a lot of CPU power checking
hard links. In such a case, set hardlinks=no and hard links will not
be backed up. Note, using this option will most likely backup more
data and on a restore the file system will not be restored identically
to the original.

wild=<string> Specifies a wild-card string to be applied to the filenames
and directory names. Note, if Exclude is not enabled, the wild-card
will select which files are to be included. If Exclude=yes is specified,
the wild-card will select which files are to be excluded. Multiple wild-
card directives may be specified, and they will be applied in turn until
the first one that matches. Note, if you exclude a directory, no files or
directories below it will be matched.

You may want to test your expressions prior to running your backup
by using the bwild program. Please see the chapter of this
manual for more. You can also test your full FileSet definition by
using the command in the Console chapter of this manual. It
is recommended to enclose the string in double quotes.

wilddir=<string> Specifies a wild-card string to be applied to directory
names only. No filenames will be matched by this directive. Note,
if Exclude is not enabled, the wild-card will select directories to be
included. If Exclude=yes is specified, the wild-card will select which
directories are to be excluded. Multiple wild-card directives may be
specified, and they will be applied in turn until the first one that

156 CHAPTER 11. CONFIGURING THE DIRECTOR

matches. Note, if you exclude a directory, no files or directories below
it will be matched.

It is recommended to enclose the string in double quotes.

You may want to test your expressions prior to running your backup
by using the bwild program. Please see the [Utilities chapter of this
manual for more. You can also test your full FileSet definition by
using the estimatel command in the Console chapter of this manual.
An example of excluding with the WildDir option on Win32 machines
is presented below.

wildfile=<string> Specifies a wild-card string to be applied to non-
directories. That is no directory entries will be matched by this di-
rective. However, note that the match is done against the full path
and filename, so your wild-card string must take into account that file-
names are preceded by the full path. If Exclude is not enabled, the
wild-card will select which files are to be included. If Exclude=yes is
specified, the wild-card will select which files are to be excluded. Mul-
tiple wild-card directives may be specified, and they will be applied in
turn until the first one that matches.

It is recommended to enclose the string in double quotes.

You may want to test your expressions prior to running your backup
by using the bwild program. Please see the |Utilities chapter of this
manual for more. You can also test your full FileSet definition by
using the estimatel command in the Console chapter of this manual.
An example of excluding with the WildFile option on Win32 machines
is presented below.

regex=<string> Specifies a POSIX extended regular expression to be ap-
plied to the filenames and directory names, which include the full path.
If Exclude is not enabled, the regex will select which files are to be
included. If Exclude=yes is specified, the regex will select which files
are to be excluded. Multiple regex directives may be specified within
an Options resource, and they will be applied in turn until the first one
that matches. Note, if you exclude a directory, no files or directories
below it will be matched.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and in
addition, regular expressions are complicated, so you may want to test
your expressions prior to running your backup by using the bregex
program. Please see the [Utilities chapter of this manual for more.
You can also test your full FileSet definition by using the
command in the Console chapter of this manual.

11.7. THE FILESET RESOURCE 157

regexfile=<string> Specifies a POSIX extended regular expression to be
applied to non-directories. No directories will be matched by this di-
rective. However, note that the match is done against the full path and
filename, so your regex string must take into account that filenames
are preceded by the full path. If Exclude is not enabled, the regex
will select which files are to be included. If Exclude=yes is specified,
the regex will select which files are to be excluded. Multiple regex
directives may be specified, and they will be applied in turn until the
first one that matches.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and
in addition, regular expressions are complicated, so you may want to
test your expressions prior to running your backup by using the bregex
program. Please see the Utilities chapter of this manual for more.

regexdir=<string> Specifies a POSIX extended regular expression to be
applied to directory names only. No filenames will be matched by this
directive. Note, if Exclude is not enabled, the regex will select direc-
tories files are to be included. If Exclude=yes is specified, the regex
will select which files are to be excluded. Multiple regex directives
may be specified, and they will be applied in turn until the first one
that matches. Note, if you exclude a directory, no files or directories
below it will be matched.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and
in addition, regular expressions are complicated, so you may want to
test your expressions prior to running your backup by using the bregex
program. Please see the Utilities chapter of this manual for more.

exclude=yes—mno The default is no. When enabled, any files matched
within the Options will be excluded from the backup.

aclsupport=yes—mno The default is no. If this option is set to yes, and
you have the POSIX libacl installed on your system, Bacula will
backup the file and directory UNIX Access Control Lists (ACL) as
defined in IEEE Std 1003.1e draft 17 and "POSIX.1e” (abandoned).
This feature is available on UNIX only and depends on the ACL li-
brary. Bacula is automatically compiled with ACL support if the
libacl library is installed on your system (shown in config.out). While
restoring the files Bacula will try to restore the ACLs, if there is no
ACL support available on the system, Bacula restores the files and
directories but not the ACL information. Please note, if you backup
an EXT3 or XFS filesystem with ACLs, then you restore them to a

158 CHAPTER 11. CONFIGURING THE DIRECTOR

different filesystem (perhaps reiserfs) that does not have ACLs, the
ACLs will be ignored.

ignore case=yes—mno The default is no. On Windows systems, you will
almost surely want to set this to yes. When this directive is set to
yes all the case of character will be ignored in wild-card and regex
comparisons. That is an uppercase A will match a lowercase a.

fstype=filesystem-type This option allows you to select files and direc-
tories by the filesystem type. The permitted filesystem-type names
are:

ext2, jfs, ntfs, proc, reiserfs, xfs, usbdevfs, sysfs, smbfs, is09660. For
ext3 systems, use ext2.

You may have multiple Fstype directives, and thus permit matching
of multiple filesystem types within a single Options resource. If the
type specified on the fstype directive does not match the filesystem
for a particular directive, that directory will not be backed up. This
directive can be used to prevent backing up non-local filesystems. Nor-
mally, when you use this directive, you would also set onefs=no so
that Bacula will traverse filesystems.

This option is not implemented in Win32 systems.

hfsplussupport=yes—mno This option allows you to turn on support for
Mac OSX HFS plus finder information.

strippath=<integer> This option will cause integer paths to be stripped
from the front of the full path/filename being backed up. This can be
useful if you are migrating data from another vendor or if you have
taken a snapshot into some subdirectory. This directive can cause your
filenames to be overlayed with regular backup data, so should be used
only by experts and with great care.

<file-list> is a list of directory and/or filename names specified with a File
= directive. To include names containing spaces, enclose the name between
double-quotes. Wild-cards are not interpreted in file-lists. They can only
be specified in Options resources.

There are a number of special cases when specifying directories and files in
a file-list. They are:

e Any name preceded by an at-sign (@) is assumed to be the name of
a file, which contains a list of files each preceded by a "File =”. The
named file is read once when the configuration file is parsed during the

11.7. THE FILESET RESOURCE 159

Director startup. Note, that the file is read on the Director’s machine
and not on the Client’s. In fact, the @filename can appear anywhere
within the conf file where a token would be read, and the contents of
the named file will be logically inserted in the place of the @filename.
What must be in the file depends on the location the @filename is
specified in the conf file. For example:

Include {
Options { compression=GZIP }
@/home/files/my-files

}

e Any name beginning with a vertical bar (—) is assumed to be the
name of a program. This program will be executed on the Direc-
tor’s machine at the time the Job starts (not when the Director reads
the configuration file), and any output from that program will be
assumed to be a list of files or directories, one per line, to be in-
cluded. Before submitting the specified command bacula will performe
character substitution.

This allows you to have a job that, for example, includes all the local
partitions even if you change the partitioning by adding a disk. The
examples below show you how to do this. However, please note two
things:

1. if you want the local filesystems, you probably should be using
the new fstype directive, which was added in version 1.36.3 and set
onefs=no.

2. the exact syntax of the command needed in the examples below is
very system dependent. For example, on recent Linux systems, you
may need to add the -P option, on FreeBSD systems, the options will
be different as well.

In general, you will need to prefix your command or commands with
a sh -c so that they are invoked by a shell. This will not be the case
if you are invoking a script as in the second example below. Also, you
must take care to escape (precede with a \) wild-cards, shell character,
and to ensure that any spaces in your command are escaped as well.
If you use a single quotes () within a double quote (”), Bacula will
treat everything between the single quotes as one field so it will not be
necessary to escape the spaces. In general, getting all the quotes and
escapes correct is a real pain as you can see by the next example. As
a consequence, it is often easier to put everything in a file and simply
use the file name within Bacula. In that case the sh -c will not be
necessary providing the first line of the file is #!/bin/sh.

As an example:

160

CHAPTER 11. CONFIGURING THE DIRECTOR

Include {
Options { signature = SHA1 }
File = "|sh -c ’df -1 | grep \""/dev/hd[ab]\" | grep -v \".*/tmp\" \

| awk \"{print \\$6}\"’"
}

will produce a list of all the local partitions on a Red Hat Linux system.
Note, the above line was split, but should normally be written on one
line. Quoting is a real problem because you must quote for Bacula
which consists of preceding every \ and every ” with a \, and you
must also quote for the shell command. In the end, it is probably
easier just to execute a small file with:

Include {
Options {
signature=MD5

}
File = "|my_partitions"

}

where my_partitions has:

#!/bin/sh
df -1 | grep ""/dev/hd[abl" | grep -v ".*/tmp" \
| awk "{print \$6}"

If the vertical bar (—) in front of my_partitions is preceded by a back-
slash as in \—, the program will be executed on the Client’s machine
instead of on the Director’s machine. Please note that if the filename
is given within quotes, you will need to use two slashes. An example,
provided by John Donagher, that backs up all the local UFS partitions
on a remote system is:

FileSet {
Name = "All local partitions"
Include {
Options { signature=SHA1l; onefs=yes; }
File = "\\|bash -c \"df -k1F ufs | tail +2 | awk ’{print \$6}°\""
}
}

The above requires two backslash characters after the double quote
(one preserves the next one). If you are a Linux user, just change the
ufs to ext3 (or your preferred filesystem type), and you will be in
business.

If you know what filesystems you have mounted on your system, e.g.
for Red Hat Linux normally only ext2 and ext3, you can backup all
local filesystems using something like:

11.7. THE FILESET RESOURCE 161

Include {
Options { signature = SHAl; onfs=no; fstype=ext2 }
File = /

1

e Any file-list item preceded by a less-than sign (<) will be taken to be
a file. This file will be read on the Director’s machine (see below for
doing it on the Client machine) at the time the Job starts, and the
data will be assumed to be a list of directories or files, one per line, to
be included. The names should start in column 1 and should not be
quoted even if they contain spaces. This feature allows you to modify
the external file and change what will be saved without stopping and
restarting Bacula as would be necessary if using the @ modifier noted
above. For example:

Include {

Options { signature = SHA1 }

File = "</home/files/local-filelist"
}

If you precede the less-than sign (<) with a backslash as in \<, the
file-list will be read on the Client machine instead of on the Director’s
machine. Please note that if the filename is given within quotes, you
will need to use two slashes.

Include {

Options { signature = SHA1 }

File = "\\</home/xxx/filelist-on-client"
}

e If you explicitly specify a block device such as /dev/hdal, then Bac-
ula (starting with version 1.28) will assume that this is a raw partition
to be backed up. In this case, you are strongly urged to specify a
sparse=yes include option, otherwise, you will save the whole parti-
tion rather than just the actual data that the partition contains. For
example:

Include {
Options { signature=MD5; sparse=yes }
File = /dev/hd6

}

will backup the data in device /dev/hd6.

Ludovic Strappazon has pointed out that this feature can be used
to backup a full Microsoft Windows disk. Simply boot into the sys-
tem using a Linux Rescue disk, then load a statically linked Bacula

162

CHAPTER 11. CONFIGURING THE DIRECTOR

as described in the | Disaster Recovery Using Bacula chapter of this
manual. Then save the whole disk partition. In the case of a disaster,
you can then restore the desired partition by again booting with the
rescue disk and doing a restore of the partition.

If you explicitly specify a FIFO device name (created with mkfifo),
and you add the option readfifo=yes as an option, Bacula will read
the FIFO and back its data up to the Volume. For example:

Include {
Options {
signature=SHA1
readfifo=yes

}
File = /home/abc/fifo
}

if /home/abc/fifo is a fifo device, Bacula will open the fifo, read it,
and store all data thus obtained on the Volume. Please note, you must
have a process on the system that is writing into the fifo, or Bacula
will hang, and after one minute of waiting, Bacula will give up and go
on to the next file. The data read can be anything since Bacula treats
it as a stream.

This feature can be an excellent way to do a "hot” backup of a very
large database. You can use the RunBeforeJob to create the fifo and
to start a program that dynamically reads your database and writes
it to the fifo. Bacula will then write it to the Volume. Be sure to read
the readfifo section that gives a tip to ensure that the RunBeforeJob
does not block Bacula.

During the restore operation, the inverse is true, after Bacula creates
the fifo if there was any data stored with it (no need to explicitly list
it or add any options), that data will be written back to the fifo. As a
consequence, if any such FIFOs exist in the fileset to be restored, you
must ensure that there is a reader program or Bacula will block, and
after one minute, Bacula will time out the write to the fifo and move
on to the next file.

A file-list may not contain wild-cards. Use directives in the Options
resource if you wish to specify wild-cards or regular expression match-
ing.

11.8. FILESET EXAMPLES 163

11.8 FileSet Examples

The following is an example of a valid FileSet resource definition. Note, the
first Include pulls in the contents of the file /etc/backup.list when Bacula
is started (i.e. the @), and that file must have each filename to be backed
up preceded by a File = and on a separate line.

FileSet {
Name = "Full Set"
Include {

Options {
Compression=GZIP
signature=SHA1
Sparse = yes

}

@/etc/backup.list

}
Include {
Options {
wildfile = "*.o"
wildfile = "*.exe"
Exclude = yes
}
File
File

/root/myfile
/usr/lib/another_file

In the above example, all the files contained in /etc/backup.list will be
compressed with GZIP compression, an SHA1 signature will be computed
on the file’s contents (its data), and sparse file handling will apply.

The two directories /root/myfile and /usr/lib/another_file will also be saved
without any options, but all files in those directories with the extensions .o
and .exe will be excluded.

Let’s say that you now want to exclude the directory /tmp. The simplest
way to do so is to add an exclude directive that lists /tmp. The example
above would then become:

FileSet {
Name = "Full Set"
Include {

Options {
Compression=GZIP
signature=SHA1
Sparse = yes

164 CHAPTER 11. CONFIGURING THE DIRECTOR

}
@/etc/backup.list
}
Include {
Options {
wildfile = "*.o0"
wildfile = "*.exe"
Exclude = yes
}
File = /root/myfile
File = /usr/lib/another_file
}
Exclude {
File = /tmp
}

You can add wild-cards to the File directives listed in the Exclude directory,
but you need to take care because if you exclude a directory, it and all files
and directories below it will also be excluded.

Now lets take a slight variation on the above and suppose you want to save
all your whole filesystem except /tmp. The problem that comes up is that
Bacula will not normally cross from one filesystem to another. Doing a df
command, you get the following output:

[kern@rufus k]$ df

Filesystem 1k-blocks Used Available Use’, Mounted on
/dev/hdab 5044156 439232 4348692 10% /

/dev/hdal 62193 4935 54047 9% /boot

/dev/hda9 20161172 5524660 13612372 29% /home

/dev/hda2 62217 6843 52161 12% /rescue
/dev/hda8 5044156 42548 4745376 1% /tmp

/dev/hda6 5044156 2613132 2174792 55% /usr

none 127708 0 127708 0% /dev/shm
//minimatou/c$ 14099200 9895424 4203776 71% /mnt/mmatou
lmatou:/ 1554264 215884 1258056 15% /mnt/matou
lmatou:/home 2478140 1589952 760072 68% /mnt/matou/home
lmatou:/usr 1981000 1199960 678628 647, /mnt/matou/usr
lpmatou:/ 995116 484112 459596 527 /mnt/pmatou
lpmatou: /home 19222656 2787880 15458228 167, /mnt/pmatou/home
lpmatou: /usr 2478140 2038764 311260 877, /mnt/pmatou/usr
deuter:/ 4806936 97684 4465064 3} /mnt/deuter
deuter:/home 4806904 280100 4282620 7% /mnt/deuter/home

deuter:/files 44133352 27652876 14238608 67% /mnt/deuter/files

And we see that there are a number of separate filesystems (/ /boot /home
/rescue /tmp and /usr not to mention mounted systems). If you specify only
/ in your Include list, Bacula will only save the Filesystem /dev/hda5. To

11.8. FILESET EXAMPLES 165

save all filesystems except /tmp with out including any of the Samba or
NF'S mounted systems, and explicitly excluding a /tmp, /proc, .journal, and
.autofsck, which you will not want to be saved and restored, you can use the
following:

FileSet {
Name = Include_example
Include {
Options {
wilddir = /proc
wilddir = /tmp

wildfile = "/.journal"
wildfile = "/.autofsck"
exclude = yes

}

File = /

File = /boot

File = /home

File = /rescue

File = /usr

Since /tmp is on its own filesystem and it was not explicitly named in the
Include list, it is not really needed in the exclude list. It is better to list it
in the Exclude list for clarity, and in case the disks are changed so that it is
no longer in its own partition.

Now, lets assume you only want to backup .Z and .gz files and nothing
else. This is a bit trickier because Bacula by default will select everything
to backup, so we must exclude everything but .Z and .gz files. If we take
the first example above and make the obvious modifications to it, we might
come up with a FileSet that looks like this:

FileSet {
Name = "Full Set"
Include { trrrrirrennd
Options { This
wildfile = "*.Z" example
wildfile = "*.gz" doesn’t
work
} ENARNARNRRY:
File = /myfile
}
}

The *.Z and *.gz files will indeed be backed up, but all other files that are
not matched by the Options directives will automatically be backed up too

166 CHAPTER 11. CONFIGURING THE DIRECTOR

(i.e. that is the default rule).

To accomplish what we want, we must explicitly exclude all other files. We
do this with the following:

FileSet {
Name = "Full Set"
Include {

Options {
wildfile
wildfile

}

Options {
Exclude = yes
RegexFile = ".x"

}

File = /myfile

4l

”*-gz“

The "trick” here was to add a RegexFile expression that matches all files. It
does not match directory names, so all directories in /myfile will be backed
up (the directory entry) and any *.Z and *.gz files contained in them. If you
know that certain directories do not contain any *.Z or *.gz files and you do
not want the directory entries backed up, you will need to explicitly exclude
those directories. Backing up a directory entries is not very expensive.

Bacula uses the system regex library and some of them are different on
different OSes. The above has been reported not to work on FreeBSD. This
can be tested by using the estimate job=job-name listing command in
the console and adapting the RegexFile expression appropriately. In a future
version of Bacula, we will supply our own Regex code to avoid such system
dependencies.

Please be aware that allowing Bacula to traverse or change file systems can
be very dangerous. For example, with the following:

FileSet {
Name = "Bad example"
Include {
Options { onefs=no }
File = /mnt/matou
}
}

you will be backing up an NFS mounted partition (/mnt /matou), and since
onefs is set to no, Bacula will traverse file systems. Now if /mnt/matou

11.8. FILESET EXAMPLES 167

has the current machine’s file systems mounted, as is often the case, you will
get yourself into a recursive loop and the backup will never end.

As a final example, let’s say that you have only one or two subdirectories
of /home that you want to backup. For example, you want to backup only
subdirectories beginning with the letter a and the letter b —i.e. /home/a*
and /home/b*. Now, you might first try:

FileSet {
Name = "Full Set"
Include {
Options {
wilddir = "/home/ax"
wilddir "/home/b*"

}
File = /home

The problem is that the above will include everything in /home. To get
things to work correctly, you need to start with the idea of exclusion instead
of inclusion. So, you could simply exclude all directories except the two you
want to use:

FileSet {
Name = "Full Set"
Include {
Options {
RegexDir = "~ /home/[c-z]"
exclude = yes
}
File = /home

And assuming that all subdirectories start with a lowercase letter, this would
work.

An alternative would be to include the two subdirectories desired and ex-
clude everything else:

FileSet {
Name = "Full Set"
Include {
Options {
wilddir = "/home/ax"
wilddir = "/home/bx*"
}
Options {
RegexDir = ".*"

168 CHAPTER 11. CONFIGURING THE DIRECTOR

exclude = yes

}
File = /home

11.9 Backing up Raw Partitions

The following FileSet definition will backup a raw partition:

FileSet {
Name = "RawPartition"
Include {
Options { sparse=yes }
File = /dev/hda2
}
}

While backing up and restoring a raw partition, you should ensure that
no other process including the system is writing to that partition. As a
precaution, you are strongly urged to ensure that the raw partition is not
mounted or is mounted read-only. If necessary, this can be done using the
RunBeforeJob directive.

11.10 Excluding Files and Directories

You may also include full filenames or directory names in addition to using
wild-cards and Exclude=yes in the Options resource as specified above by
simply including the files to be excluded in an Exclude resource within the
FileSet. For example:

FileSet {
Name = Exclusion_example
Include {
Options {
Signature = SHA1
}
File = /
File = /boot
File = /home
File = /rescue
File = /usr

11.11. WINDOWS FILESETS 169
Exclude {
File = /proc
File = /tmp
File = .journal
File = .autofsck
}
}

11.11 Windows FileSets

If you are entering Windows file names, the directory path may be preceded
by the drive and a colon (as in c:). However, the path separators must be
specified in Unix convention (i.e. forward slash (/)). If you wish to include
a quote in a file name, precede the quote with a backslash (\). For example
you might use the following for a Windows machine to backup the "My
Documents” directory:

FileSet {
Name = "Windows Set"
Include {
Options {
WildFile = "*.obj"
WildFile = "*.exe"
exclude = yes
}
File = "c:/My Documents"

For exclude lists to work correctly on Windows, you must observe the fol-

lowing rules:

e Filenames are case sensitive, so you must use the correct case.

e To 2 exclude a directory, you must not have a trailing slash on the
directory name.

e 12 f you have spaces in your filename, you must enclose the entire name
in double-quote characters (7). Trying to use a backslash before the
space will not work.

e If you are using the old Exclude syntax (noted below), you may not
specify a drive letter in the exclude. The new syntax noted above
should work fine including driver letters.

170 CHAPTER 11. CONFIGURING THE DIRECTOR

Thanks to Thiago Lima for summarizing the above items for us. If you
are having difficulties getting includes or excludes to work, you might want
to try using the estimate job=xxx listing command documented in the
‘Console chapter]of this manual.

On Win32 systems, if you move a directory or file or rename a file into
the set of files being backed up, and a Full backup has already been made,
Bacula will not know there are new files to be saved during an Incremental
or Differential backup (blame Microsoft, not me). To avoid this problem,
please copy any new directory or files into the backup area. If you do not
have enough disk to copy the directory or files, move them, but then initiate
a Full backup.

A Windows Example FileSet The following example was contributed
by Russell Howe. Please note that for presentation purposes, the lines be-
ginning with Data and Internet have been wrapped and should included on
the previous line with one space.

This is my Windows 2000 fileset:
FileSet {
Name = "Windows 2000"
Include {
Options {
signature = MD5
Exclude = yes
IgnoreCase = yes
Exclude Mozilla-based programs’ file caches
WildDir = "[A-Z]:/Documents and Settings/*/Application
Data/*/Profiles/*/*/Cache"
WildDir = "[A-Z]:/Documents and Settings/*/Application
Data/*/Profiles/*/*/Cache.Trash"
WildDir = "[A-Z]:/Documents and Settings/*/Application
Data/*/Profiles/*/*/ImapMail"

Exclude user’s registry files - they’re always in use anyway.

WildFile = "[A-Z]:/Documents and Settings/*/Local Settings/Application
Data/Microsoft/Windows/usrclass.*"
WildFile = "[A-Z]:/Documents and Settings/*/ntuser.*"

Exclude directories full of lots and lots of useless little files

WildDir = "[A-Z]:/Documents and Settings/*/Cookies"

WildDir = "[A-Z]:/Documents and Settings/*/Recent"

WildDir = "[A-Z]:/Documents and Settings/*/Local Settings/History"

WildDir = "[A-Z]:/Documents and Settings/*/Local Settings/Temp"

WildDir = "[A-Z]:/Documents and Settings/*/Local Settings/Temporary
Internet Files"

These are always open and unable to be backed up
WildFile = "[A-Z]:/Documents and Settings/All Users/Application

11.11. WINDOWS FILESETS 171

Data/Microsoft/Network/Downloader/qmgr [01] .dat"

Some random bits of Windows we want to ignore
WildFile = "[A-Z]:/WINNT/security/logs/scepol.log"
WildDir = "[A-Z]:/WINNT/system32/config"

WildDir = "[A-Z]:/WINNT/msdownld.tmp"

WildDir = "[A-Z]:/WINNT/Internet Logs"

WildDir = "[A-Z]:/WINNT/$Nt*Uninstall*"

WildDir = "[A-Z]:/WINNT/sysvol"

WildFile = "[A-Z]:/WINNT/cluster/CLUSDB"

WildFile = "[A-Z]:/WINNT/cluster/CLUSDB.LOG"
WildFile = "[A-Z]:/WINNT/NTDS/edb.log"

WildFile = "[A-Z]:/WINNT/NTDS/ntds.dit"

WildFile = "[A-Z]:/WINNT/NTDS/temp.edb"

WildFile = "[A-Z]:/WINNT/ntfrs/jet/log/edb.log"
WildFile = "[A-Z]:/WINNT/ntfrs/jet/ntfrs.jdb"
WildFile = "[A-Z]:/WINNT/ntfrs/jet/temp/tmp.edb"
WildFile = "[A-Z]:/WINNT/system32/CPL.CFG"
WildFile = "[A-Z]:/WINNT/system32/dhcp/dhcp.mdb"
WildFile = "[A-Z]:/WINNT/system32/dhcp/j50.1log"
WildFile = "[A-Z]:/WINNT/system32/dhcp/tmp.edb"
WildFile = "[A-Z]:/WINNT/system32/LServer/edb.log"
WildFile = "[A-Z]:/WINNT/system32/LServer/TLSLic.edb"
WildFile = "[A-Z]:/WINNT/system32/LServer/tmp.edb"
WildFile = "[A-Z]:/WINNT/system32/wins/j50.log"
WildFile = "[A-Z]:/WINNT/system32/wins/wins.mdb"
WildFile = "[A-Z]:/WINNT/system32/wins/winstmp.mdb"

Temporary directories & files
WildDir = "[A-Z]:/WINNT/Temp"
WildDir = "[A-Z]:/temp"
WildFile = "*.tmp"

WildDir = "[A-Z]:/tmp"

WildDir = "[A-Z]:/var/tmp"

Recycle bins
WildDir = "[A-Z]:/RECYCLER"

Swap files
WildFile = "[A-Z]:/pagefile.sys"

These are programs and are easier to reinstall than restore from
backup

WildDir = "[A-Z]:/cygwin"

WildDir = "[A-Z]:/Program Files/Grisoft"

WildDir = "[A-Z]:/Program Files/Java"

WildDir = "[A-Z]:/Program Files/Java Web Start"
WildDir = "[A-Z]:/Program Files/JavaSoft"

WildDir = "[A-Z]:/Program Files/Microsoft Office"
WildDir = "[A-Z]:/Program Files/Mozilla Firefox"
WildDir = "[A-Z]:/Program Files/Mozilla Thunderbird"
WildDir = "[A-Z]:/Program Files/mozilla.org"

WildDir = "[A-Z]:/Program Files/OpenOfficex"

172 CHAPTER 11. CONFIGURING THE DIRECTOR

Our Win2k boxen all have C: and D: as the main hard drives.
File "c:/"
File "D:/"

}

}

Note, the three line of the above Exclude were split to fit on the document
page, they should be written on a single line in real use.

Windows NTFS Naming Considerations NTFS filenames containing
Unicode characters should now be supported as of version 1.37.30 or later.

11.12 Testing Your FileSet

If you wish to get an idea of what your FileSet will really backup or if your
exclusion rules will work correctly, you can test it by using the estimate
command in the Console program. See the lestimate in the Console chapter
of this manual.

As an example, suppose you add the following test FileSet:

FileSet {
Name = Test
Include {
File = /home/xxx/test
Options {
regex = ".*\.c$"
}
}
}

You could then add some test files to the directory /home/xxx/test and
use the following command in the console:

estimate job=<any-job-name> listing client=<desired-client> fileset=Test

to give you a listing of all files that match.

11.13. THE CLIENT RESOURCE 173

11.13 The Client Resource

The Client resource defines the attributes of the Clients that are served by
this Director; that is the machines that are to be backed up. You will need
one Client resource definition for each machine to be backed up.

Client (or FileDaemon) Start of the Client directives.

Name = <name> The client name which will be used in the Job resource
directive or in the console run command. This directive is required.

Address = <address> Where the address is a host name, a fully qualified
domain name, or a network address in dotted quad notation for a
Bacula File server daemon. This directive is required.

FD Port = <port-number> Where the port is a port number at which
the Bacula File server daemon can be contacted. The default is 9102.

Catalog = <Catalog-resource-name> This specifies the name of the
catalog resource to be used for this Client. This directive is required.

Password = <password> This is the password to be used when estab-
lishing a connection with the File services, so the Client configuration
file on the machine to be backed up must have the same password
defined for this Director. This directive is required. If you have either
/dev/random bc on your machine, Bacula will generate a random
password during the configuration process, otherwise it will be left
blank.

The password is plain text. It is not generated through any special
process, but it is preferable for security reasons to make the text ran-
dom.

File Retention = <time-period-specification> The File Retention di-
rective defines the length of time that Bacula will keep File records in
the Catalog database after the End time of the Job corresponding to
the File records. When this time period expires, and if AutoPrune is
set to yes Bacula will prune (remove) File records that are older than
the specified File Retention period. Note, this affects only records in
the catalog database. It does not affect your archive backups.

File records may actually be retained for a shorter period than you
specify on this directive if you specify either a shorter Job Reten-
tion or a shorter Volume Retention period. The shortest retention
period of the three takes precedence. The time may be expressed in
seconds, minutes, hours, days, weeks, months, quarters, or years. See

174 CHAPTER 11. CONFIGURING THE DIRECTOR

the| Configuration chapter|of this manual for additional details of time
specification.

The default is 60 days.

Job Retention = <time-period-specification> The Job Retention di-
rective defines the length of time that Bacula will keep Job records in
the Catalog database after the Job End time. When this time period
expires, and if AutoPrune is set to yes Bacula will prune (remove)
Job records that are older than the specified File Retention period.
As with the other retention periods, this affects only records in the
catalog and not data in your archive backup.

If a Job record is selected for pruning, all associated File and JobMedia
records will also be pruned regardless of the File Retention period set.
As a consequence, you normally will set the File retention period to
be less than the Job retention period. The Job retention period can
actually be less than the value you specify here if you set the Volume
Retention directive in the Pool resource to a smaller duration. This
is because the Job retention period and the Volume retention period
are independently applied, so the smaller of the two takes precedence.

The Job retention period is specified as seconds, minutes, hours, days,
weeks, months, quarters, or years. See the | Configuration chapter| of
this manual for additional details of time specification.

The default is 180 days.

AutoPrune = <yes—mno> If AutoPrune is set to yes (default), Bacula
(version 1.20 or greater) will automatically apply the File retention
period and the Job retention period for the Client at the end of the
Job. If you set AutoPrune = no, pruning will not be done, and your
Catalog will grow in size each time you run a Job. Pruning affects only
information in the catalog and not data stored in the backup archives
(on Volumes).

Maximum Concurrent Jobs = <number> where <number> is the
maximum number of Jobs with the current Client that can run con-
currently. Note, this directive limits only Jobs for Clients with the
same name as the resource in which it appears. Any other restrictions
on the maximum concurrent jobs such as in the Director, Job, or Stor-
age resources will also apply in addition to any limit specified here.
The default is set to 1, but you may set it to a larger number. We
strongly recommend that you read the WARNING documented under
' Maximum Concurrent Jobs in the Director’s resource.

Priority = <number> The number specifies the priority of this client
relative to other clients that the Director is processing simultaneously.

11.14. THE STORAGE RESOURCE 175

The priority can range from 1 to 1000. The clients are ordered such
that the smaller number priorities are performed first (not currently
implemented).

The following is an example of a valid Client resource definition:

Client {
Name = Minimatou
FDAddress = minimatou
Catalog = MySQL
Password = very_good

11.14 The Storage Resource

The Storage resource defines which Storage daemons are available for use
by the Director.

Storage Start of the Storage resources. At least one storage resource must
be specified.

Name = <name> The name of the storage resource. This name appears
on the Storage directive specified in the Job resource and is required.

Address = <address> Where the address is a host name, a fully qual-
ified domain name, or an IP address. Please note that the
<address> as specified here will be transmitted to the File daemon
who will then use it to contact the Storage daemon. Hence, it is not,
a good idea to use localhost as the name but rather a fully qualified
machine name or an IP address. This directive is required.

SD Port = <port> Where port is the port to use to contact the storage
daemon for information and to start jobs. This same port number must
appear in the Storage resource of the Storage daemon’s configuration
file. The default is 9103.

Password = <password> This is the password to be used when estab-
lishing a connection with the Storage services. This same password
also must appear in the Director resource of the Storage daemon’s
configuration file. This directive is required. If you have either
/dev/random bc on your machine, Bacula will generate a random
password during the configuration process, otherwise it will be left
blank.

176 CHAPTER 11. CONFIGURING THE DIRECTOR

The password is plain text. It is not generated through any special
process, but it is preferable for security reasons to use random text.

Device = <device-name> This directive specifies the Storage daemon’s
name of the device resource to be used for the storage. If you are
using an Autochanger, the name specified here should be the name of
the Storage daemon’s Autochanger resource rather than the name of
an individual device. This name is not the physical device name, but
the logical device name as defined on the Name directive contained in
the Device or the Autochanger resource definition of the Storage
daemon configuration file. You can specify any name you would like
(even the device name if you prefer) up to a maximum of 127 charac-
ters in length. The physical device name associated with this device
is specified in the Storage daemon configuration file (as Archive
Device). Please take care not to define two different Storage resource
directives in the Director that point to the same Device in the Stor-
age daemon. Doing so may cause the Storage daemon to block (or
hang) attempting to open the same device that is already open. This
directive is required.

Media Type = <MediaType> This directive specifies the Media Type
to be used to store the data. This is an arbitrary string of characters
up to 127 maximum that you define. It can be anything you want.
However, it is best to make it descriptive of the storage media (e.g.
File, DAT, "HP DLT8000”, 8mm, ...). In addition, it is essential
that you make the Media Type specification unique for each storage
media type. If you have two DDS-4 drives that have incompatible
formats, or if you have a DDS-4 drive and a DDS-4 autochanger, you
almost certainly should specify different Media Types. During a
restore, assuming a DDS-4 Media Type is associated with the Job,
Bacula can decide to use any Storage daemon that supports Media
Type DDS-4 and on any drive that supports it.

If you are writing to disk Volumes, you must make doubly sure that
each Device resource defined in the Storage daemon (and hence in the
Director’s conf file) has a unique media type. Otherwise for Bacula
versions 1.38 and older, your restores may not work because Bacula
will assume that you can mount any Media Type with the same name
on any Device associated with that Media Type. This is possible with
tape drives, but with disk drives, unless you are very clever you cannot
mount a Volume in any directory — this can be done by creating an
appropriate soft link.

Currently Bacula permits only a single Media Type per Storage and
Device definition. Consequently, if you have a drive that supports
more than one Media Type, you can give a unique string to Volumes

11.14. THE STORAGE RESOURCE 177

with different intrinsic Media Type (Media Type = DDS-3-4 for DDS-
3 and DDS-4 types), but then those volumes will only be mounted on
drives indicated with the dual type (DDS-3-4).

If you want to tie Bacula to using a single Storage daemon or drive, you
must specify a unique Media Type for that drive. This is an important
point that should be carefully understood. Note, this applies equally to
Disk Volumes. If you define more than one disk Device resource in your
Storage daemon’s conf file, the Volumes on those two devices are in fact
incompatible because one can not be mounted on the other device since
they are found in different directories. For this reason, you probably
should use two different Media Types for your two disk Devices (even
though you might think of them as both being File types). You can
find more on this subject in the Basic Volume Management chapter of
this manual.

The MediaType specified in the Director’s Storage resource, must
correspond to the Media Type specified in the Device resource of
the Storage daemon configuration file. This directive is required,
and it is used by the Director and the Storage daemon to ensure that
a Volume automatically selected from the Pool corresponds to the
physical device. If a Storage daemon handles multiple devices (e.g.
will write to various file Volumes on different partitions), this directive
allows you to specify exactly which device.

As mentioned above, the value specified in the Director’s Storage re-
source must agree with the value specified in the Device resource in the
Storage daemon’s configuration file. It is also an additional check
so that you don’t try to write data for a DLT onto an 8mm device.

Autochanger = <yes—mno> If you specify yes for this command (the de-
fault is no), when you use the label command or the add command
to create a new Volume, Bacula will also request the Autochanger
Slot number. This simplifies creating database entries for Volumes in
an autochanger. If you forget to specify the Slot, the autochanger will
not be used. However, you may modify the Slot associated with a
Volume at any time by using the update volume or update slots
command in the console program. When autochanger is enabled,
the algorithm used by Bacula to search for available volumes will be
modified to consider only Volumes that are known to be in the au-
tochanger’s magazine. If no in changer volume is found, Bacula will
attempt recycling, pruning, ..., and if still no volume is found, Bac-
ula will search for any volume whether or not in the magazine. By
privileging in changer volumes, this procedure minimizes operator in-
tervention. The default is no.

For the autochanger to be used, you must also specify Autochanger

178 CHAPTER 11. CONFIGURING THE DIRECTOR

= yes in the[Device Resource in the Storage daemon’s configuration
file as well as other important Storage daemon configuration informa-
tion. Please consult the Using Autochangers| manual of this chapter
for the details of using autochangers.

Maximum Concurrent Jobs = <number> where <number> is the
maximum number of Jobs with the current Storage resource that can
run concurrently. Note, this directive limits only Jobs for Jobs using
this Storage daemon. Any other restrictions on the maximum concur-
rent jobs such as in the Director, Job, or Client resources will also apply
in addition to any limit specified here. The default is set to 1, but you
may set it to a larger number. However, if you set the Storage dae-
mon’s number of concurrent jobs greater than one, we recommend that
you read the waring documented under Maximum Concurrent Jobs|in
the Director’s resource or simply turn data spooling on as documented

in the Data Spooling chapter of this manual.

Heartbeat Interval = <time-interval> This directive is optional and if
specified will cause the Director to set a keepalive interval (heartbeat)
in seconds on each of the sockets it opens for the Storage resource.
This value will override any specified at the Director level. It is im-
plemented only on systems (Linux, ...) that provide the setsockopt
TCP_KEEPIDLE function. The default value is zero, which means no
change is made to the socket.

The following is an example of a valid Storage resource definition:

Definition of tape storage device

Storage {
Name = DLTDrive
Address = lpmatou
Password = storage_password # password for Storage daemon
Device = "HP DLT 80" # same as Device in Storage daemon
Media Type = DLT8000 # same as MediaType in Storage daemon

11.15 The Pool Resource

The Pool resource defines the set of storage Volumes (tapes or files) to be
used by Bacula to write the data. By configuring different Pools, you can
determine which set of Volumes (media) receives the backup data. This
permits, for example, to store all full backup data on one set of Volumes
and all incremental backups on another set of Volumes. Alternatively, you

11.15. THE POOL RESOURCE 179

could assign a different set of Volumes to each machine that you backup.
This is most easily done by defining multiple Pools.

Another important aspect of a Pool is that it contains the default attributes
(Maximum Jobs, Retention Period, Recycle flag, ...) that will be given to a
Volume when it is created. This avoids the need for you to answer a large
number of questions when labeling a new Volume. Each of these attributes
can later be changed on a Volume by Volume basis using the update com-
mand in the console program. Note that you must explicitly specify which
Pool Bacula is to use with each Job. Bacula will not automatically search
for the correct Pool.

Most often in Bacula installations all backups for all machines (Clients) go
to a single set of Volumes. In this case, you will probably only use the
Default Pool. If your backup strategy calls for you to mount a different
tape each day, you will probably want to define a separate Pool for each
day. For more information on this subject, please see the Backup Strategies|
chapter of this manual.

To use a Pool, there are three distinct steps. First the Pool must be defined
in the Director’s configuration file. Then the Pool must be written to the
Catalog database. This is done automatically by the Director each time
that it starts, or alternatively can be done using the create command in the
console program. Finally, if you change the Pool definition in the Director’s
configuration file and restart Bacula, the pool will be updated alternatively
you can use the update pool console command to refresh the database
image. It is this database image rather than the Director’s resource image
that is used for the default Volume attributes. Note, for the pool to be
automatically created or updated, it must be explicitly referenced by a Job
resource.

Next the physical media must be labeled. The labeling can either be done
with the label command in the console program or using the btape pro-
gram. The preferred method is to use the label command in the console
program.

Finally, you must add Volume names (and their attributes) to the Pool. For
Volumes to be used by Bacula they must be of the same Media Type as
the archive device specified for the job (i.e. if you are going to back up to a
DLT device, the Pool must have DLT volumes defined since 8mm volumes
cannot be mounted on a DLT drive). The Media Type has particular
importance if you are backing up to files. When running a Job, you must
explicitly specify which Pool to use. Bacula will then automatically select
the next Volume to use from the Pool, but it will ensure that the Media
Type of any Volume selected from the Pool is identical to that required by

180 CHAPTER 11. CONFIGURING THE DIRECTOR

the Storage resource you have specified for the Job.

If you use the label command in the console program to label the Volumes,
they will automatically be added to the Pool, so this last step is not normally
required.

It is also possible to add Volumes to the database without explicitly labeling
the physical volume. This is done with the add console command.

As previously mentioned, each time Bacula starts, it scans all the Pools
associated with each Catalog, and if the database record does not already
exist, it will be created from the Pool Resource definition. Bacula probably
should do an update pool if you change the Pool definition, but currently,
you must do this manually using the update pool command in the Console
program.

The Pool Resource defined in the Director’s configuration file (bacula-
dir.conf) may contain the following directives:

Pool Start of the Pool resource. There must be at least one Pool resource
defined.

Name = <name> The name of the pool. For most applications, you will
use the default pool name Default. This directive is required.

Maximum Volumes = <number> This directive specifies the maxi-
mum number of volumes (tapes or files) contained in the pool. This
directive is optional, if omitted or set to zero, any number of volumes
will be permitted. In general, this directive is useful for Autochangers
where there is a fixed number of Volumes, or for File storage where
you wish to ensure that the backups made to disk files do not become
too numerous or consume too much space.

Pool Type = <type> This directive defines the pool type, which corre-
sponds to the type of Job being run. It is required and may be one of
the following:

Backup

* Archive
*Cloned
*Migration
*Copy

*Save

Note, only Backup is current implemented.

11.15. THE POOL RESOURCE 181

Storage = <storage-resource-name> The Storage directive defines the
name of the storage services where you want to backup the FileSet
data. For additional details, see the Storage Resource Chapter of this
manual. The Storage resource may also be specified in the Job re-
source, but the value, if any, in the Pool resource overrides any value
in the Job. This Storage resource definition is not required by either
the Job resource or in the Pool, but it must be specified in one or the
other. If not configuration error will result.

Use Volume Once = <yes—no> This directive if set to yes specifies
that each volume is to be used only once. This is most useful when
the Media is a file and you want a new file for each backup that is done.
The default is no (i.e. use volume any number of times). This directive
will most likely be phased out (deprecated), so you are recommended
to use Maximum Volume Jobs = 1 instead.

The value defined by this directive in the bacula-dir.conf file is the
default value used when a Volume is created. Once the volume is
created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing
Volume you must use the update command in the Console.

Please see the notes below under Mlaximum Volume Jobs concern-
ing using this directive with multiple simultaneous jobs.

Maximum Volume Jobs = <positive-integer> This directive speci-
fies the maximum number of Jobs that can be written to the Volume.
If you specify zero (the default), there is no limit. Otherwise, when
the number of Jobs backed up to the Volume equals positive-integer
the Volume will be marked Used. When the Volume is marked Used
it can no longer be used for appending Jobs, much like the Full status
but it can be recycled if recycling is enabled, and thus used again. By
setting MaximumVolumeJobs to one, you get the same effect as
setting UseVolumeOnce = yes.

The value defined by this directive in the bacula-dir.conf file is the
default value used when a Volume is created. Once the volume is
created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing
Volume you must use the update command in the Console.

If you are running multiple simultaneous jobs, this directive may not
work correctly because when a drive is reserved for a job, this directive
is not taken into account, so multiple jobs may try to start writing
to the Volume. At some point, when the Media record is updated,
multiple simultaneous jobs may fail since the Volume can no longer be
written.

182 CHAPTER 11. CONFIGURING THE DIRECTOR

Maximum Volume Files = <positive-integer> This directive speci-
fies the maximum number of files that can be written to the Volume.
If you specify zero (the default), there is no limit. Otherwise, when
the number of files written to the Volume equals positive-integer the
Volume will be marked Used. When the Volume is marked Used it
can no longer be used for appending Jobs, much like the Full status
but it can be recycled if recycling is enabled and thus used again. This
value is checked and the Used status is set only at the end of a job
that writes to the particular volume.

The value defined by this directive in the bacula-dir.conf file is the
default value used when a Volume is created. Once the volume is
created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing
Volume you must use the update command in the Console.

Maximum Volume Bytes = <size> This directive specifies the maxi-
mum number of bytes that can be written to the Volume. If you
specify zero (the default), there is no limit except the physical size of
the Volume. Otherwise, when the number of bytes written to the Vol-
ume equals size the Volume will be marked Used. When the Volume
is marked Used it can no longer be used for appending Jobs, much like
the Full status but it can be recycled if recycling is enabled, and thus
the Volume can be re-used after recycling. This value is checked and
the Used status set while the job is writing to the particular volume.

This directive is particularly useful for restricting the size of disk vol-
umes, and will work correctly even in the case of multiple simultaneous
jobs writing to the volume.

The value defined by this directive in the bacula-dir.conf file is the
default value used when a Volume is created. Once the volume is
created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing
Volume you must use the update command in the Console.

Volume Use Duration = <time-period-specification> The Volume
Use Duration directive defines the time period that the Volume can
be written beginning from the time of first data write to the Volume.
If the time-period specified is zero (the default), the Volume can be
written indefinitely. Otherwise, the next time a job runs that wants
to access this Volume, and the time period from the first write to the
volume (the first Job written) exceeds the time-period-specification,
the Volume will be marked Used, which means that no more Jobs
can be appended to the Volume, but it may be recycled if recycling is
enabled. Using the command status dir applies algorithms similar to
running jobs, so during such a command, the Volume status may also

11.15. THE POOL RESOURCE 183

be changed. Once the Volume is recycled, it will be available for use
again.

You might use this directive, for example, if you have a Volume used
for Incremental backups, and Volumes used for Weekly Full backups.
Once the Full backup is done, you will want to use a different In-
cremental Volume. This can be accomplished by setting the Volume
Use Duration for the Incremental Volume to six days. L.e. it will be
used for the 6 days following a Full save, then a different Incremental
volume will be used. Be careful about setting the duration to short
periods such as 23 hours, or you might experience problems of Bac-
ula waiting for a tape over the weekend only to complete the backups
Monday morning when an operator mounts a new tape.

The use duration is checked and the Used status is set only at the
end of a job that writes to the particular volume, which means that
even though the use duration may have expired, the catalog entry will
not be updated until the next job that uses this volume is run. This
directive is not intended to be used to limit volume sizes and will not
work correctly (i.e. will fail jobs) if the use duration expires while
multiple simultaneous jobs are writing to the volume.

Please note that the value defined by this directive in the bacula-
dir.conf file is the default value used when a Volume is created. Once
the volume is created, changing the value in the bacula-dir.conf file
will not change what is stored for the Volume. To change the value
for an existing Volume you must use the update volume| command
in the Console.

Catalog Files = <yes—mno> This directive defines whether or not you
want the names of the files that were saved to be put into the catalog.
The default is yes. The advantage of specifying Catalog Files =
No is that you will have a significantly smaller Catalog database. The
disadvantage is that you will not be able to produce a Catalog listing
of the files backed up for each Job (this is often called Browsing). Also,
without the File entries in the catalog, you will not be able to use the
Console restore command nor any other command that references
File entries.

AutoPrune = <yes—mno> If AutoPrune is set to yes (default), Bacula
(version 1.20 or greater) will automatically apply the Volume Reten-
tion period when new Volume is needed and no appendable Volumes
exist in the Pool. Volume pruning causes expired Jobs (older than
the Volume Retention period) to be deleted from the Catalog and
permits possible recycling of the Volume.

184 CHAPTER 11. CONFIGURING THE DIRECTOR

Volume Retention = <time-period-specification> The Volume Re-
tention directive defines the length of time that Bacula will keep
records associated with the Volume in the Catalog database after the
End time of each Job written to the Volume. When this time period
expires, and if AutoPrune is set to yes Bacula may prune (remove)
Job records that are older than the specified Volume Retention period
if it is necessary to free up a Volume. Recycling will not occur until
it is absolutely necessary to free up a volume (i.e. no other writable
volume exists). All File records associated with pruned Jobs are also
pruned. The time may be specified as seconds, minutes, hours, days,
weeks, months, quarters, or years. The Volume Retention is applied
independently of the Job Retention and the File Retention peri-
ods defined in the Client resource. This means that all the retentions
periods are applied in turn and that the shorter period is the one that
effectively takes precedence. Note, that when the Volume Retention
period has been reached, and it is necessary to obtain a new volume,
Bacula will prune both the Job and the File records. This pruning
could also occur during a status dir command because it uses similar
algorithms for finding the next available Volume.

It is important to know that when the Volume Retention period ex-
pires, Bacula does not automatically recycle a Volume. It attempts
to keep the Volume data intact as long as possible before over writing
the Volume.

By defining multiple Pools with different Volume Retention periods,
you may effectively have a set of tapes that is recycled weekly, another
Pool of tapes that is recycled monthly and so on. However, one must
keep in mind that if your Volume Retention period is too short, it
may prune the last valid Full backup, and hence until the next Full
backup is done, you will not have a complete backup of your system,
and in addition, the next Incremental or Differential backup will be
promoted to a Full backup. As a consequence, the minimum Volume
Retention period should be at twice the interval of your Full backups.
This means that if you do a Full backup once a month, the minimum
Volume retention period should be two months.

The default Volume retention period is 365 days, and either the default
or the value defined by this directive in the bacula-dir.conf file is the
default value used when a Volume is created. Omnce the volume is
created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing
Volume you must use the update command in the Console.

RecyclePool = <pool-resource-name> On versions 2.1.4 or greater,
this directive defines to which pool the Volume will be placed (moved)

11.15. THE POOL RESOURCE 185

when it is recycled. Without this directive, a Volume will remain in
the same pool when it is recycled. With this directive, it can be moved
automatically to any existing pool during a recycle. This directive is
probably most useful when defined in the Scratch pool, so that vol-
umes will be recycled back into the Scratch pool. For more on the see
the Scratch Pool section of this manual.

Although this directive is called RecyclePool, the Volume in question
is actually moved from its current pool to the one you specify on this
directive when Bacula prunes the Volume and discovers that there are
no records left in the catalog and hence marks it as Purged.

Recycle = <yes—mno> This directive specifies whether or not Purged
Volumes may be recycled. If it is set to yes (default) and Bacula
needs a volume but finds none that are appendable, it will search for
and recycle (reuse) Purged Volumes (i.e. volumes with all the Jobs and
Files expired and thus deleted from the Catalog). If the Volume is re-
cycled, all previous data written to that Volume will be overwritten.
If Recycle is set to no, the Volume will not be recycled, and hence,
the data will remain valid. If you want to reuse (re-write) the Volume,
and the recycle flag is no (0 in the catalog), you may manually set the
recycle flag (update command) for a Volume to be reused.

Please note that the value defined by this directive in the bacula-
dir.conf file is the default value used when a Volume is created. Once
the volume is created, changing the value in the bacula-dir.conf file will
not change what is stored for the Volume. To change the value for an
existing Volume you must use the update command in the Console.

When all Job and File records have been pruned or purged from the
catalog for a particular Volume, if that Volume is marked as Append,
Full, Used, or Error, it will then be marked as Purged. Only Volumes
marked as Purged will be considered to be converted to the Recycled
state if the Recycle directive is set to yes.

Recycle Oldest Volume = <yes—mno> This directive instructs the Di-
rector to search for the oldest used Volume in the Pool when another
Volume is requested by the Storage daemon and none are available.
The catalog is then pruned respecting the retention periods of all
Files and Jobs written to this Volume. If all Jobs are pruned (i.e. the
volume is Purged), then the Volume is recycled and will be used as
the next Volume to be written. This directive respects any Job, File,
or Volume retention periods that you may have specified, and as such
it is much better to use this directive than the Purge Oldest Volume.

This directive can be useful if you have a fixed number of Volumes in
the Pool and you want to cycle through them and you have specified

186 CHAPTER 11. CONFIGURING THE DIRECTOR

the correct retention periods.

However, if you use this directive and have only one Volume in the
Pool, you will immediately recycle your Volume if you fill it and Bacula
needs another one. Thus your backup will be totally invalid. Please
use this directive with care. The default is no.

Recycle Current Volume = <yes—mno> If Bacula needs a new Vol-
ume, this directive instructs Bacula to Prune the volume respecting
the Job and File retention periods. If all Jobs are pruned (i.e. the
volume is Purged), then the Volume is recycled and will be used as
the next Volume to be written. This directive respects any Job, File,
or Volume retention periods that you may have specified, and thus it is
much better to use it rather than the Purge Oldest Volume directive.

This directive can be useful if you have: a fixed number of Volumes
in the Pool, you want to cycle through them, and you have specified
retention periods that prune Volumes before you have cycled through
the Volume in the Pool.

However, if you use this directive and have only one Volume in the
Pool, you will immediately recycle your Volume if you fill it and Bacula
needs another one. Thus your backup will be totally invalid. Please
use this directive with care. The default is no.

Purge Oldest Volume = <yes—mno> This directive instructs the Direc-
tor to search for the oldest used Volume in the Pool when another Vol-
ume is requested by the Storage daemon and none are available. The
catalog is then purged irrespective of retention periods of all Files and
Jobs written to this Volume. The Volume is then recycled and will be
used as the next Volume to be written. This directive overrides any
Job, File, or Volume retention periods that you may have specified.

This directive can be useful if you have a fixed number of Volumes in
the Pool and you want to cycle through them and reusing the oldest
one when all Volumes are full, but you don’t want to worry about
setting proper retention periods. However, by using this option you
risk losing valuable data.

Please be aware that Purge Oldest Volume disregards all retention
periods. If you have only a single Volume defined and you turn this
variable on, that Volume will always be immediately overwritten when
it fills! So at a minimum, ensure that you have a decent number of
Volumes in your Pool before running any jobs. If you want retention
periods to apply do not use this directive. To specify a retention
period, use the Volume Retention directive (see above).

We highly recommend against using this directive, because it is sure
that some day, Bacula will recycle a Volume that contains current

11.15. THE POOL RESOURCE 187

data. The default is no.

Cleaning Prefix = <string> This directive defines a prefix string, which
if it matches the beginning of a Volume name during labeling of a Vol-
ume, the Volume will be defined with the VolStatus set to Cleaning
and thus Bacula will never attempt to use this tape. This is primarily
for use with autochangers that accept barcodes where the convention
is that barcodes beginning with CLN are treated as cleaning tapes.

Label Format = <format> This directive specifies the format of the la-
bels contained in this pool. The format directive is used as a sort
of template to create new Volume names during automatic Volume
labeling.

The format should be specified in double quotes, and consists of let-
ters, numbers and the special characters hyphen (-), underscore (_),
colon (:), and period (.), which are the legal characters for a Volume
name. The format should be enclosed in double quotes ().

In addition, the format may contain a number of variable expansion
characters which will be expanded by a complex algorithm allowing
you to create Volume names of many different formats. In all cases,
the expansion process must resolve to the set of characters noted above
that are legal Volume names. Generally, these variable expansion char-
acters begin with a dollar sign (8$) or a left bracket ([). If you specify
variable expansion characters, you should always enclose the format
with double quote characters (). For more details on variable expan-
sion, please see the Variable Expansion Chapter of this manual.

If no variable expansion characters are found in the string, the Volume
name will be formed from the format string appended with the num-
ber of volumes in the pool plus one, which will be edited as four digits
with leading zeros. For example, with a Label Format = ”File-”,
the first volumes will be named File-0001, File-0002, ...

With the exception of Job specific variables, you can test your La-
belFormat by using the the Console Chapter of this

manual.

In almost all cases, you should enclose the format specification (part
after the equal sign) in double quotes. Please note that this directive
is deprecated and is replaced in version 1.37 and greater with a Python
script for creating volume names.

In order for a Pool to be used during a Backup Job, the Pool must have at
least one Volume associated with it. Volumes are created for a Pool using
the label or the add commands in the Bacula Console, program. In ad-
dition to adding Volumes to the Pool (i.e. putting the Volume names in the

188 CHAPTER 11. CONFIGURING THE DIRECTOR

Catalog database), the physical Volume must be labeled with a valid Bacula
software volume label before Bacula will accept the Volume. This will be
automatically done if you use the label command. Bacula can automati-
cally label Volumes if instructed to do so, but this feature is not yet fully
implemented.

The following is an example of a valid Pool resource definition:

Pool {
Name = Default
Pool Type = Backup

}

11.15.1 The Scratch Pool

In general, you can give your Pools any name you wish, but there is one
important restriction: the Pool named Scratch, if it exists behaves like
a scratch pool of Volumes in that when Bacula needs a new Volume for
writing and it cannot find one, it will look in the Scratch pool, and if it finds
an available Volume, it will move it out of the Scratch pool into the Pool
currently being used by the job.

11.16 The Catalog Resource

The Catalog Resource defines what catalog to use for the current job. Cur-
rently, Bacula can only handle a single database server (SQLite, MySQL,
PostgreSQL) that is defined when configuring Bacula. However, there may
be as many Catalogs (databases) defined as you wish. For example, you
may want each Client to have its own Catalog database, or you may want
backup jobs to use one database and verify or restore jobs to use another
database.

Since SQLite is compiled in, it always runs on the same machine as the Direc-
tor and the database must be directly accessible (mounted) from the Direc-
tor. However, since both MySQL and PostgreSQL are networked databases,
they may reside either on the same machine as the Director or on a different
machine on the network. See below for more details.

Catalog Start of the Catalog resource. At least one Catalog resource must
be defined.

11.16. THE CATALOG RESOURCE 189

Name = <name> The name of the Catalog. No necessary relation to
the database server name. This name will be specified in the Client
resource directive indicating that all catalog data for that Client is
maintained in this Catalog. This directive is required.

password = <password> This specifies the password to use when log-
ging into the database. This directive is required.

DB Name = <name> This specifies the name of the database. If you
use multiple catalogs (databases), you specify which one here. If you
are using an external database server rather than the internal one, you
must specify a name that is known to the server (i.e. you explicitly
created the Bacula tables using this name. This directive is required.

user = <user> This specifies what user name to use to log into the
database. This directive is required.

DB Socket = <socket-name> This is the name of a socket to use on the
local host to connect to the database. This directive is used only by
MySQL and is ignored by SQLite. Normally, if neither DB Socket
or DB Address are specified, MySQL will use the default socket. If
the DB Socket is specified, the MySQL server must reside on the same
machine as the Director.

DB Address = <address> This is the host address of the database
server. Normally, you would specify this instead of DB Socket if
the database server is on another machine. In that case, you will
also specify DB Port. This directive is used only by MySQL and
PostgreSQL and is ignored by SQLite if provided. This directive is
optional.

DB Port = <port> This defines the port to be used in conjunction with
DB Address to access the database if it is on another machine. This
directive is used only by MySQL and PostgreSQL and is ignored by
SQLite if provided. This directive is optional.

the different

The following is an example of a valid Catalog resource definition:

Catalog
{
Name = SQLite
dbname = bacula;
user = bacula;
password = "" # no password = no security

190 CHAPTER 11. CONFIGURING THE DIRECTOR

or for a Catalog on another machine:

Catalog
{
Name = MySQL
dbname = bacula
user = bacula
password = ""
DB Address = remote.acme.com
DB Port = 1234

11.17 The Messages Resource

For the details of the Messages Resource, please see the
Messages Resource Chapter|of this manual.

11.18 The Console Resource

As of Bacula version 1.33 and higher, there are three different kinds of con-
soles, which the administrator or user can use to interact with the Director.
These three kinds of consoles comprise three different security levels.

e The first console type is an anonymous or default console, which has
full privileges. There is no console resource necessary for this type since
the password is specified in the Director’s resource and consequently
such consoles do not have a name as defined on a Name = directive.
This is the kind of console that was initially implemented in versions
prior to 1.33 and remains valid. Typically you would use it only for
administrators.

e The second type of console, and new to version 1.33 and higher is a
"named” console defined within a Console resource in both the Direc-
tor’s configuration file and in the Console’s configuration file. Both
the names and the passwords in these two entries must match much
as is the case for Client programs.

This second type of console begins with absolutely no privileges except
those explicitly specified in the Director’s Console resource. Thus you
can have multiple Consoles with different names and passwords, sort
of like multiple users, each with different privileges. As a default, these
consoles can do absolutely nothing — no commands whatsoever. You

11.18. THE CONSOLE RESOURCE 191

give them privileges or rather access to commands and resources by
specifying access control lists in the Director’s Console resource. The
ACLs are specified by a directive followed by a list of access names.
Examples of this are shown below.

e The third type of console is similar to the above mentioned one in that
it requires a Console resource definition in both the Director and the
Console. In addition, if the console name, provided on the Name =
directive, is the same as a Client name, that console is permitted to use
the SetIP command to change the Address directive in the Director’s
client resource to the IP address of the Console. This permits portables
or other machines using DHCP (non-fixed IP addresses) to ”notify”
the Director of their current IP address.

The Console resource is optional and need not be specified. The following
directives are permitted within the Director’s configuration resource:

Name = <name> The name of the console. This name must match the
name specified in the Console’s configuration resource (much as is the
case with Client definitions).

Password = <password> Specifies the password that must be supplied
for a named Bacula Console to be authorized. The same password
must appear in the Console resource of the Console configuration
file. For added security, the password is never actually passed across
the network but rather a challenge response hash code created with the
password. This directive is required. If you have either /dev/random
bc on your machine, Bacula will generate a random password during
the configuration process, otherwise it will be left blank.

The password is plain text. It is not generated through any special
process. However, it is preferable for security reasons to choose random
text.

JobACL = <name-list> This directive is used to specify a list of Job
resource names that can be accessed by the console. Without this
directive, the console cannot access any of the Director’s Job resources.
Multiple Job resource names may be specified by separating them
with commas, and/or by specifying multiple JobACL directives. For
example, the directive may be specified as:

JobACL = kernsave, "Backup client 1", "Backup client 2"
JobACL "RestoreFiles"

192 CHAPTER 11. CONFIGURING THE DIRECTOR

With the above specification, the console can access the Director’s
resources for the four jobs named on the JobACL directives, but for
no others.

Client ACL = <name-list> This directive is used to specify a list of
Client resource names that can be accessed by the console.

StorageACL = <name-list> This directive is used to specify a list of
Storage resource names that can be accessed by the console.

ScheduleACL = <name-list> This directive is used to specify a list of
Schedule resource names that can be accessed by the console.

PoolACL = <name-list> This directive is used to specify a list of Pool
resource names that can be accessed by the console.

FileSet ACL = <name-list> This directive is used to specify a list of
FileSet resource names that can be accessed by the console.

CatalogACL = <name-list> This directive is used to specify a list of
Catalog resource names that can be accessed by the console.

CommandACL = <name-list> This directive is used to specify a list of
of console commands that can be executed by the console.

WhereACL = <string> This directive permits you to specify where a
restricted console can restore files. If this directive is not specified, only
the default restore location is permitted (normally /tmp/bacula-
restores. If *all* is specified any path the user enters will be accepted
(not very secure), any other value specified (there may be multiple
WhereACL directives) will restrict the user to use that path. For
example, on a Unix system, if you specify ”/”, the file will be restored
to the original location. This directive is untested.

Aside from Director resource names and console command names, the special
keyword *all* can be specified in any of the above access control lists.
When this keyword is present, any resource or command name (which ever
is appropriate) will be accepted. For an example configuration file, please
see the [Console Configuration| chapter of this manual.

11.19 The Counter Resource

The Counter Resource defines a counter variable that can be accessed by
variable expansion used for creating Volume labels with the LabelFormat
directive. See the LabelFormat| directive in this chapter for more details.

11.20. EXAMPLE DIRECTOR CONFIGURATION FILE 193

Counter Start of the Counter resource. Counter directives are optional.

Name = <name> The name of the Counter. This is the name you will
use in the variable expansion to reference the counter value.

Minimum = <integer> This specifies the minimum value that the
counter can have. It also becomes the default. If not supplied, zero is
assumed.

Maximum = <integer> This is the maximum value value that the
counter can have. If not specified or set to zero, the counter can
have a maximum value of 2,147,483,648 (2 to the 31 power). When
the counter is incremented past this value, it is reset to the Minimum.

*WrapCounter = <counter-name> If this value is specified, when the
counter is incremented past the maximum and thus reset to the min-
imum, the counter specified on the WrapCounter is incremented.
(This is not currently implemented).

Catalog = <catalog-name> If this directive is specified, the counter and
its values will be saved in the specified catalog. If this directive is not
present, the counter will be redefined each time that Bacula is started.

11.20 Example Director Configuration File

An example Director configuration file might be the following;:

Default Bacula Director Configuration file

The only thing that MUST be changed is to add one or more
file or directory names in the Include directive of the
FileSet resource.

For Bacula release 1.15 (5 March 2002) -- redhat
You might also want to change the default email address

from root to your address. See the "mail" and "operator"
directives in the Messages resource.

O # # H# # # H# H # # # #* # #

irector { # define myself

Name = rufus-dir

QueryFile = "/home/kern/bacula/bin/query.sql"
WorkingDirectory = "/home/kern/bacula/bin/working"
PidDirectory = "/home/kern/bacula/bin/working"

Password = "XkSfzu/Cf/wX4L8Zh4G4/yhCbpLcz3YVdmVoQvU3EyF/"

194 CHAPTER 11. CONFIGURING THE DIRECTOR

Define the backup Job

Job {
Name = "NightlySave"
Type = Backup
Level = Incremental # default
Client=rufus-fd
FileSet="Full Set"
Schedule = "WeeklyCycle"
Storage = DLTDrive
Messages = Standard
Pool = Default

}

Job {
Name = "Restore"
Type = Restore
Client=rufus-fd
FileSet="Full Set"
Where = /tmp/bacula-restores
Storage = DLTDrive
Messages = Standard
Pool = Default

}
List of files to be backed up
FileSet {
Name = "Full Set"
Include {
Options { signature=SHA1}
#
Put your list of files here, one per line or include an
external list with:
#
@file-name
#
Note: / backs up everything
File = /
}
Exclude {}
}
When to do the backups
Schedule {

Name = "WeeklyCycle"
Run = level=Full sun at 2:05
Run = level=Incremental mon-sat at 2:05
}
Client (File Services) to backup
Client {
Name = rufus-fd
Address = rufus
Catalog = MyCatalog
Password = "MQk61Vinz4GG2hdIZk1dsKE/LxMZGo6znMHiD7t7vzF+"
File Retention = 60d # sixty day file retention
Job Retention = 1y # 1 year Job retention
AutoPrune = yes # Auto apply retention periods

11.20. EXAMPLE DIRECTOR CONFIGURATION FILE

}
Definition of DLT tape storage device
Storage {
Name = DLTDrive
Address = rufus
Password = "jMeWZvfikUHvt3kzKVVPpQOccmV6emPnF2cPYFdhLApQ"

Device = "HP DLT 80" # same as Device in Storage daemon
Media Type = DLT8000 # same as MediaType in Storage daemon
}
Definition for a DLT autochanger device
Storage {

Name = Autochanger
Address = rufus
Password = "jMeWZvfikUHvt3kzKVVPpQOccmV6emPnF2cPYFdhLApPQ"

Device = "Autochanger" # same as Device in Storage daemon
Media Type = DLT-8000 # Different from DLTDrive
Autochanger = yes

}

Definition of DDS tape storage device

Storage {

Name = SDT-10000
Address = rufus
Password = "jMeWZvfikUHvt3kzKVVPpQOccmV6emPnF2cPYFdhLApQ"

Device = SDT-10000 # same as Device in Storage daemon
Media Type = DDS-4 # same as MediaType in Storage daemon
}
Definition of 8mm tape storage device
Storage {
Name = "8mmDrive"

Address = rufus
Password = "jMeWZvfikUHvt3kzKVVPpQOccmV6emPnF2cPYFdhLApPQ"

Device = "Exabyte 8mm"

MediaType = "8mm"
}
Definition of file storage device
Storage {

Name = File
Address = rufus
Password = "jMeWZvfikUHvt3kzKVVPpQOccmV6emPnF2cPYFdhLApQ"
Device = FileStorage
Media Type = File
}
Generic catalog service
Catalog {
Name = MyCatalog
dbname = bacula; user = bacula; password = ""
}
Reasonable message delivery -- send most everything to
the email address and to the comnsole
Messages {
Name = Standard
mail = root@localhost = all, !skipped, !terminate
operator = root@localhost = mount
console = all, !skipped, !saved

195

196 CHAPTER 11. CONFIGURING THE DIRECTOR

Default pool definition
Pool {
Name = Default
Pool Type = Backup
AutoPrune = yes
Recycle = yes
}
#
Restricted console used by tray-monitor to get the status of the director
#
Console {
Name = Monitor
Password = "GNOuRo7PTUm1lMbqrJ2Gri1pOfkOHQJTxwnFyE4WSST3MWZseR"
CommandACL = status, .status

}

Chapter 12

Client /File daemon
Configuration

The Client (or File Daemon) Configuration is one of the simpler ones to
specify. Generally, other than changing the Client name so that error mes-
sages are easily identified, you will not need to modify the default Client
configuration file.

For a general discussion of configuration file and resources including the
data types recognized by Bacula, please see the |Configuration chapter of
this manual. The following Client Resource definitions must be defined:

e [Client — to define what Clients are to be backed up.

e Director|— to define the Director’s name and its access password.

e Messages — to define where error and information messages are to be
sent.

12.1 The Client Resource

The Client Resource (or FileDaemon) resource defines the name of the Client
(as used by the Director) as well as the port on which the Client listens for
Director connections.

Client (or FileDaemon) Start of the Client records. There must be one
and only one Client resource in the configuration file, since it defines
the properties of the current client program.

197

198 CHAPTER 12. CLIENT/FILE DAEMON CONFIGURATION

Name = <name> The client name that must be used by the Director
when connecting. Generally, it is a good idea to use a name related to
the machine so that error messages can be easily identified if you have
multiple Clients. This directive is required.

Working Directory = <Directory> This directive is mandatory and
specifies a directory in which the File daemon may put its status files.
This directory should be used only by Bacula, but may be shared
by other Bacula daemons provided the daemon names on the Name
definition are unique for each daemon. This directive is required.

On Win32 systems, in some circumstances you may need to specify a
drive letter in the specified working directory path. Also, please be
sure that this directory is writable by the SYSTEM user otherwise
restores may fail (the bootstrap file that is transferred to the File
daemon from the Director is temporarily put in this directory before
being passed to the Storage daemon).

Pid Directory = <Directory> This directive is mandatory and speci-
fies a directory in which the Director may put its process Id file files.
The process Id file is used to shutdown Bacula and to prevent multiple
copies of Bacula from running simultaneously. This record is required.
Standard shell expansion of the Directory is done when the config-
uration file is read so that values such as $SHOME will be properly
expanded.

Typically on Linux systems, you will set this to: /var/run. If you
are not installing Bacula in the system directories, you can use the
Working Directory as defined above.

Heartbeat Interval = <time-interval> This record defines an interval
of time. For each heartbeat that the File daemon receives from the
Storage daemon, it will forward it to the Director. In addition, if no
heartbeat has been received from the Storage daemon and thus for-
warded the File daemon will send a heartbeat signal to the Director
and to the Storage daemon to keep the channels active. The default
interval is zero which disables the heartbeat. This feature is partic-
ularly useful if you have a router such as 3Com that does not follow
Internet standards and times out a valid connection after a short du-
ration despite the fact that keepalive is set. This usually results in a
broken pipe error message.

If you continue getting broken pipe error messages despite using the
Heartbeat Interval, and you are using Windows, you should consider
upgrading your ethernet driver. This is a known problem with NVidia
NForce 3 drivers (4.4.2 17/05/2004), or try the following workaround
suggested by Thomas Simmons for Win32 machines:

12.1. THE CLIENT RESOURCE 199

Browse to: Start > Control Panel > Network Connections

Right click the connection for the nvidia adapter and select properties.
Under the General tab, click ” Configure...”. Under the Advanced tab
set ”Checksum Offload” to disabled and click OK to save the change.

Lack of communications, or communications that get interrupted can
also be caused by Linux firewalls where you have a rule that throttles
connections or traffic.

Maximum Concurrent Jobs = <number> where <number> is the
maximum number of Jobs that should run concurrently. The default
is set to 2, but you may set it to a larger number. Each contact from
the Director (e.g. status request, job start request) is considered as a
Job, so if you want to be able to do a status request in the console
at the same time as a Job is running, you will need to set this value
greater than 1.

FDAddresses = <IP-address-specification> Specify the ports and
addresses on which the File daemon listens for Director connections.
Probably the simplest way to explain is to show an example:

FDAddresses = {
ip = { addr = 1.2.3.4; port = 1205; }

ipvd = {
addr = 1.2.3.4; port = http; }
ipvé = {
addr = 1.2.3.4;
port = 1205;
}
ip = {
addr = 1.2.3.4
port = 1205
¥
ip = { addr = 1.2.3.4 }
ip = {
addr = 201:220:222::2
}
ip = {
addr = bluedot.thun.net
}

where ip, ip4, ip6, addr, and port are all keywords. Note, that the
address can be specified as either a dotted quadruple, or IPv6 colon
notation, or as a symbolic name (only in the ip specification). Also,
port can be specified as a number or as the mnemonic value from the
/etc/services file. If a port is not specified, the default will be used. If
an ip section is specified, the resolution can be made either by IPv4 or

200 CHAPTER 12. CLIENT/FILE DAEMON CONFIGURATION

IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted,
and likewise with ip6.

FDPort = <port-number> This specifies the port number on which the
Client listens for Director connections. It must agree with the FDPort
specified in the Client resource of the Director’s configuration file. The
default is 9102.

FDAddress = <IP-Address> This record is optional, and if it is spec-
ified, it will cause the File daemon server (for Director connections)
to bind to the specified IP-Address, which is either a domain name
or an IP address specified as a dotted quadruple. If this record is
not specified, the File daemon will bind to any available address (the
default).

SDConnectTimeout = <time-interval> This record defines an inter-
val of time that the File daemon will try to connect to the Storage
daemon. The default is 30 minutes. If no connection is made in the
specified time interval, the File daemon cancels the Job.

Maximum Network Buffer Size = <bytes> where <bytes> specifies
the initial network buffer size to use with the File daemon. This size
will be adjusted down if it is too large until it is accepted by the OS.
Please use care in setting this value since if it is too large, it will be
trimmed by 512 bytes until the OS is happy, which may require a large
number of system calls. The default value is 65,536 bytes.

Note, on certain Windows machines, there are reports that the trans-
fer rates are very slow and this seems to be related to the default
65,536 size. On systems where the transfer rates seem abnormally
slow compared to other systems, you might try setting the Maximum
Network Buffer Size to 32,768 in both the File daemon and in the
Storage daemon.

Heartbeat Interval = <time-interval> This directive is optional and if
specified will cause the File daemon to set a keepalive interval (heart-
beat) in seconds on each of the sockets to communicate with the Stor-
age daemon. It is implemented only on systems (Linux, ...) that pro-
vide the setsockopt TCP_KEEPIDLE function. The default value is
zero, which means no change is made to the socket.

PKI Encryption See the|Data Encryption|chapter of this manual.

PKI Signatures See the|Data Encryption| chapter of this manual.

PKI Keypair See the Data Encryption chapter of this manual.

PKI Master Key See the Data Encryption chapter of this manual.

12.2. THE DIRECTOR RESOURCE 201

The following is an example of a valid Client resource definition:

Client { # this is me
Name = rufus-fd
WorkingDirectory = $HOME/bacula/bin/working
Pid Directory = $HOME/bacula/bin/working

}

12.2 The Director Resource

The Director resource defines the name and password of the Directors that
are permitted to contact this Client.

Director Start of the Director records. There may be any number of Di-
rector resources in the Client configuration file. Each one specifies a
Director that is allowed to connect to this Client.

Name = <name> The name of the Director that may contact this Client.
This name must be the same as the name specified on the Director re-
source in the Director’s configuration file. Note, the case (upper/lower)
of the characters in the name are significant (i.e. S is not the same as
s). This directive is required.

Password = <password> Specifies the password that must be supplied
for a Director to be authorized. This password must be the same as the
password specified in the Client resource in the Director’s configuration
file. This directive is required.

Monitor = <yes—mno> If Monitor is set to no (default), this director will
have full access to this Client. If Monitor is set to yes, this director
will only be able to fetch the current status of this Client.

Please note that if this director is being used by a Monitor, we highly
recommend to set this directive to yes to avoid serious security prob-
lems.

Thus multiple Directors may be authorized to use this Client’s services.
Each Director will have a different name, and normally a different password
as well.

The following is an example of a valid Director resource definition:

202 CHAPTER 12. CLIENT/FILE DAEMON CONFIGURATION

List Directors who are permitted to contact the File daemon
#
Director {
Name = HeadMan
Password = very_good # password HeadMan must supply
}
Director {
Name = Worker
Password = not_as_good
Monitor = Yes

}

12.3 The Message Resource

Please see the [Messages Resource Chapter of this manual for the details of
the Messages Resource.

There must be at least one Message resource in the Client configuration file.

12.4 Example Client Configuration File

An example File Daemon configuration file might be the following:

Default Bacula File Daemon Configuration file
For Bacula release 1.35.2 (16 August 2004) -- gentoo 1.4.16
There is not much to change here except perhaps to

set the Director’s name and File daemon’s name
to something more appropriate for your site.

List Directors who are permitted to contact this File daemon

H OH H O H H O H HE R

Director {
Name = rufus-dir
Password = "/LqPRkX++saVyQE7w7mmiFg/qxYclkufww6FEyY/47jU"
}
#
Restricted Director, used by tray-monitor to get the
status of the file daemon
#
Director {
Name = rufus-mon
Password = "FYpq4yyI1ly562EMS35bA0JOQCOM2L3t5cZ0bxT3X0xgxppTn"

12.4. EXAMPLE CLIENT CONFIGURATION FILE

Monitor = yes
}
#
"Global" File daemon configuration specifications
#
FileDaemon { # this is me
Name = rufus-fd
WorkingDirectory = $HOME/bacula/bin/working
Pid Directory = $HOME/bacula/bin/working
}
Send all messages except skipped files back to Director
Messages {
Name = Standard
director = rufus-dir = all, !skipped

}

203

204 CHAPTER 12. CLIENT/FILE DAEMON CONFIGURATION

Chapter 13

Storage Daemon
Configuration

The Storage Daemon configuration file has relatively few resource defini-
tions. However, due to the great variation in backup media and system
capabilities, the storage daemon must be highly configurable. As a conse-
quence, there are quite a large number of directives in the Device Resource
definition that allow you to define all the characteristics of your Storage
device (normally a tape drive). Fortunately, with modern storage devices,
the defaults are sufficient, and very few directives are actually needed.

Examples of Device resource directives that are known to work for
a number of common tape drives can be found in the <bacula-
src>/examples/devices directory, and most will also be listed here.

For a general discussion of configuration file and resources including the
data types recognized by Bacula, please see the |Configuration chapter of
this manual. The following Storage Resource definitions must be defined:

. — to define the name of the Storage daemon.

e |Director|— to define the Director’s name and his access password.

. — to define the characteristics of your storage device (tape
drive).

e Messages — to define where error and information messages are to be
sent.

205

206 CHAPTER 13. STORAGE DAEMON CONFIGURATION

13.1 Storage Resource

In general, the properties specified under the Storage resource define global
properties of the Storage daemon. Each Storage daemon configuration file
must have one and only one Storage resource definition.

Name = <Storage-Daemon-Name> Specifies the Name of the Storage
daemon. This directive is required.

Working Directory = <Directory> This directive is mandatory and
specifies a directory in which the Storage daemon may put its sta-
tus files. This directory should be used only by Bacula, but may be
shared by other Bacula daemons provided the names given to each
daemon are unique. This directive is required

Pid Directory = <Directory> This directive is mandatory and speci-
fies a directory in which the Director may put its process Id file files.
The process Id file is used to shutdown Bacula and to prevent mul-
tiple copies of Bacula from running simultaneously. This directive is
required. Standard shell expansion of the Directory is done when
the configuration file is read so that values such as $SHOME will be
properly expanded.

Typically on Linux systems, you will set this to: /var/run. If you
are not installing Bacula in the system directories, you can use the
Working Directory as defined above.

Heartbeat Interval = <time-interval> This directive defines an inter-
val of time in seconds. When the Storage daemon is waiting for the
operator to mount a tape, each time interval, it will send a heartbeat
signal to the File daemon. The default interval is zero which disables
the heartbeat. This feature is particularly useful if you have a router
such as 3Com that does not follow Internet standards and times out an
valid connection after a short duration despite the fact that keepalive
is set. This usually results in a broken pipe error message.

Client Connect Wait = <time-interval> This directive defines an in-
terval of time in seconds that the Storage daemon will wait for a Client
(the File daemon) to connect. The default is 30 seconds. Be aware that
the longer the Storage daemon waits for a Client, the more resources
will be tied up.

Maximum Concurrent Jobs = <number> where <number> is the
maximum number of Jobs that should run concurrently. The default
is set to 10, but you may set it to a larger number. Each contact from

13.1. STORAGE RESOURCE 207

the Director (e.g. status request, job start request) is considered as
a Job, so if you want to be able to do a status request in the con-
sole at the same time as a Job is running, you will need to set this
value greater than 1. To run simultaneous Jobs, you will need to set a
number of other directives in the Director’s configuration file. Which
ones you set depend on what you want, but you will almost certainly
need to set the Maximum Concurrent Jobs in the Storage resource
in the Director’s configuration file and possibly those in the Job and
Client resources.

SDAddresses = <IP-address-specification> Specify the ports and ad-
dresses on which the Storage daemon will listen for Director connec-
tions. Normally, the default is sufficient and you do not need to specify
this directive. Probably the simplest way to explain how this directive
works is to show an example:

SDAddresses = { ip = {

addr = 1.2.3.4; port = 1205; }
ipvd = {
addr = 1.2.3.4; port = http; }
ipv6 = {
addr = 1.2.3.4;
port = 1205;
}
ip = {
addr = 1.2.3.4
port = 1205
}
ip = {
addr = 1.2.3.4
}
ip = {
addr = 201:220:222::2
}
ip = {
addr = bluedot.thun.net
¥

}

where ip, ip4, ip6, addr, and port are all keywords. Note, that the
address can be specified as either a dotted quadruple, or IPv6 colon
notation, or as a symbolic name (only in the ip specification). Also,
port can be specified as a number or as the mnemonic value from the
/etc/services file. If a port is not specified, the default will be used. If
an ip section is specified, the resolution can be made either by IPv4 or
IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted,
and likewise with ip6.

Using this directive, you can replace both the SDPort and SDAddress
directives shown below.

208 CHAPTER 13. STORAGE DAEMON CONFIGURATION

SDPort = <port-number> Specifies port number on which the Storage
daemon listens for Director connections. The default is 9103.

SDAddress = <IP-Address> This directive is optional, and if it is spec-
ified, it will cause the Storage daemon server (for Director and File
daemon connections) to bind to the specified IP-Address, which is
either a domain name or an IP address specified as a dotted quadruple.
If this directive is not specified, the Storage daemon will bind to any
available address (the default).

The following is a typical Storage daemon Storage definition.

#
"Global" Storage daemon configuration specifications appear
under the Storage resource.
#
Storage {
Name = "Storage daemon"
Address = localhost
WorkingDirectory = ""/bacula/working"
Pid Directory = "~/bacula/working"

13.2 Director Resource

The Director resource specifies the Name of the Director which is permitted
to use the services of the Storage daemon. There may be multiple Director
resources. The Director Name and Password must match the corresponding
values in the Director’s configuration file.

Name = <Director-Name> Specifies the Name of the Director allowed
to connect to the Storage daemon. This directive is required.

Password = <Director-password> Specifies the password that must be
supplied by the above named Director. This directive is required.

Monitor = <yes—mno> If Monitor is set to no (default), this director will
have full access to this Storage daemon. If Monitor is set to yes, this
director will only be able to fetch the current status of this Storage
daemon.

Please note that if this director is being used by a Monitor, we highly
recommend to set this directive to yes to avoid serious security prob-
lems.

13.3. DEVICE RESOURCE 209

The following is an example of a valid Director resource definition:

Director {

}

Name = MainDirector
Password = my_secret_password

13.3 Device Resource

The Device Resource specifies the details of each device (normally a tape
drive) that can be used by the Storage daemon. There may be multiple
Device resources for a single Storage daemon. In general, the properties
specified within the Device resource are specific to the Device.

Name = Dewvice-Name Specifies the Name that the Director will use when

asking to backup or restore to or from to this device. This is the logical
Device name, and may be any string up to 127 characters in length.
It is generally a good idea to make it correspond to the English name
of the backup device. The physical name of the device is specified on
the Archive Device directive described below. The name you specify
here is also used in your Director’s conf file on the Device directive in
its Storage resource.

Archive Device = name-string The specified name-string gives the sys-

tem file name of the storage device managed by this storage daemon.
This will usually be the device file name of a removable storage device
(tape drive), for example ” /dev/nst0” or ” /dev/rmt/Ombn”. For
a DVD-writer, it will be for example /dev/hdc. It may also be a
directory name if you are archiving to disk storage. In this case, you
must supply the full absolute path to the directory. When specifying
a tape device, it is preferable that the ”"non-rewind” variant of the
device file name be given. In addition, on systems such as Sun, which
have multiple tape access methods, you must be sure to specify to use
Berkeley I/O conventions with the device. The b in the Solaris (Sun)
archive specification /dev/rmt/0Ombn is what is needed in this case.
Bacula does not support SysV tape drive behavior.

As noted above, normally the Archive Device is the name of a tape
drive, but you may also specify an absolute path to an existing direc-
tory. If the Device is a directory Bacula will write to file storage in the
specified directory, and the filename used will be the Volume name as

210

CHAPTER 13. STORAGE DAEMON CONFIGURATION

specified in the Catalog. If you want to write into more than one direc-
tory (i.e. to spread the load to different disk drives), you will need to
define two Device resources, each containing an Archive Device with
a different directory. In addition to a tape device name or a directory
name, Bacula will accept the name of a FIFO. A FIFO is a special
kind of file that connects two programs via kernel memory. If a FIFO
device is specified for a backup operation, you must have a program
that reads what Bacula writes into the FIFO. When the Storage dae-
mon starts the job, it will wait for MaximumOpenWait seconds for
the read program to start reading, and then time it out and terminate
the job. As a consequence, it is best to start the read program at the
beginning of the job perhaps with the RunBeforeJob directive. For
this kind of device, you never want to specify AlwaysOpen, because
you want the Storage daemon to open it only when a job starts, so
you must explicitly set it to No. Since a FIFO is a one way device,
Bacula will not attempt to read a label of a FIFO device, but will
simply write on it. To create a FIFO Volume in the catalog, use the
add command rather than the label command to avoid attempting
to write a label.

Device {
Name = FifoStorage
Media Type = Fifo
Device Type = Fifo
Archive Device = /tmp/fifo
LabelMedia = yes
Random Access = no
AutomaticMount no
RemovableMedia = no
MaximumOpenWait = 60
AlwaysOpen = no

During a restore operation, if the Archive Device is a FIFO, Bacula will
attempt to read from the FIFO, so you must have an external program
that writes into the FIFO. Bacula will wait MaximumOpenWait
seconds for the program to begin writing and will then time it out and
terminate the job. As noted above, you may use the RunBeforeJob
to start the writer program at the beginning of the job.

The Archive Device directive is required.

Device Type = type-specification The Device Type specification allows

you to explicitly tell Bacula what kind of device you are defining.
It the type-specification may be one of the following:

File Tells Bacula that the device is a file. It may either be a file

13.3. DEVICE RESOURCE 211

defined on fixed medium or a removable filesystem such as USB.
All files must be random access devices.

Tape The device is a tape device and thus is sequential access. Tape
devices are controlled using ioctl() calls.

Fifo The device is a first-in-first out sequential access read-only or
write-only device.

DVD The device is a DVD. DVDs are sequential access for writing,
but random access for reading.

The Device Type directive is not required, and if not specified, Bacula
will attempt to guess what kind of device has been specified using the
Archive Device specification supplied. There are several advantages to
explicitly specifying the Device Type. First, on some systems, block
and character devices have the same type, which means that on those
systems, Bacula is unlikely to be able to correctly guess that a device is
a DVD. Secondly, if you explicitly specify the Device Type, the mount
point need not be defined until the device is opened. This is the case
with most removable devices such as USB that are mounted by the
HAL daemon. If the Device Type is not explicitly specified, then the
mount point must exist when the Storage daemon starts.

This directive was implemented in Bacula version 1.38.6.

Media Type = name-string The specified name-string names the type
of media supported by this device, for example, "DLT7000”. Media
type names are arbitrary in that you set them to anything you want,
but they must be known to the volume database to keep track of which
storage daemons can read which volumes. In general, each different
storage type should have a unique Media Type associated with it. The
same name-string must appear in the appropriate Storage resource
definition in the Director’s configuration file.

Even though the names you assign are arbitrary (i.e. you choose the
name you want), you should take care in specifying them because
the Media Type is used to determine which storage device Bacula
will select during restore. Thus you should probably use the same
Media Type specification for all drives where the Media can be freely
interchanged. This is not generally an issue if you have a single Storage
daemon, but it is with multiple Storage daemons, especially if they
have incompatible media.

For example, if you specify a Media Type of "DDS-4” then during
the restore, Bacula will be able to choose any Storage Daemon that
handles "DDS-4”. If you have an autochanger, you might want to
name the Media Type in a way that is unique to the autochanger,
unless you wish to possibly use the Volumes in other drives. You

212

CHAPTER 13. STORAGE DAEMON CONFIGURATION

should also ensure to have unique Media Type names if the Media is
not compatible between drives. This specification is required for all
devices.

In addition, if you are using disk storage, each Device resource will
generally have a different mount point or directory. In order for Bacula
to select the correct Device resource, each one must have a unique
Media Type.

Autochanger = Yes—No If Yes, this device belongs to an automatic tape

changer, and you must specify an Autochanger resource that points
to the Device resources. You must also specify a Changer Device.
If the Autochanger directive is set to No (default), the volume must
be manually changed. You should also have an identical directive to
the [Storage resource in the Director’s configuration file so that when
labeling tapes you are prompted for the slot.

Changer Device = name-string The specified name-string must be the

generic SCSI device name of the autochanger that corresponds to the
normal read/write Archive Device specified in the Device resource.
This generic SCSI device name should be specified if you have an au-
tochanger or if you have a standard tape drive and want to use the
Alert Command (see below). For example, on Linux systems, for
an Archive Device name of /dev/nst0, you would specify /dev/sg0
for the Changer Device name. Depending on your exact configura-
tion, and the number of autochangers or the type of autochanger,
what you specify here can vary. This directive is optional. See the
' Using Autochangers chapter of this manual for more details of using
this and the following autochanger directives.

Changer Command = name-string The name-string specifies an exter-

nal program to be called that will automatically change volumes as
required by Bacula. Normally, this directive will be specified only in
the AutoChanger resource, which is then used for all devices. How-
ever, you may also specify the different Changer Command in each
Device resource. Most frequently, you will specify the Bacula supplied
mtx-changer script as follows:

Changer Command = "/path/mtx-changer Y%c %o %S %a %d"

and you will install the mtx on your system (found in the depkgs
release). An example of this command is in the default bacula-sd.conf
file. For more details on the substitution characters that may be speci-
fied to configure your autochanger please see the Autochangers chapter
of this manual. For FreeBSD users, you might want to see one of the
several chio scripts in examples/autochangers.

13.3. DEVICE RESOURCE 213

Alert Command = name-string The name-string specifies an external
program to be called at the completion of each Job after the device is
released. The purpose of this command is to check for Tape Alerts,
which are present when something is wrong with your tape drive (at
least for most modern tape drives). The same substitution characters
that may be specified in the Changer Command may also be used in
this string. For more information, please see the/Autochangers chapter
of this manual.

Note, it is not necessary to have an autochanger to use this command.
The example below uses the tapeinfo program that comes with the
mtx package, but it can be used on any tape drive. However, you will
need to specify a Changer Device directive in your Device resource
(see above) so that the generic SCSI device name can be edited into
the command (with the %c).

An example of the use of this command to print Tape Alerts in the
Job report is:

Alert Command = "sh -c ’tapeinfo -f %c | grep TapeAlert’"

and an example output when there is a problem could be:

bacula-sd Alert: TapeAlert[32]: Interface: Problem with SCSI interface
between tape drive and initiator.

Drive Index = number The Drive Index that you specify is passed to
the mtx-changer script and is thus passed to the mtx program. By
default, the Drive Index is zero, so if you have only one drive in your
autochanger, everything will work normally. However, if you have
multiple drives, you must specify multiple Bacula Device resources
(one for each drive). The first Device should have the Drive Index set
to 0, and the second Device Resource should contain a Drive Index
set to 1, and so on. This will then permit you to use two or more
drives in your autochanger. As of Bacula version 1.38.0, using the
Autochanger resource, Bacula will automatically ensure that only
one drive at a time uses the autochanger script, so you no longer need
locking scripts as in the past — the default mtx-changer script works
for any number of drives.

Autoselect = Yes—No If this directive is set to yes (default), and the
Device belongs to an autochanger, then when the Autochanger is ref-
erenced by the Director, this device can automatically be selected. If
this directive is set to no, then the Device can only be referenced by

214 CHAPTER 13. STORAGE DAEMON CONFIGURATION

directly using the Device name in the Director. This is useful for re-
serving a drive for something special such as a high priority backup or
restore operations.

Maximum Changer Wait = t¢ime This directive specifies the maximum
time in seconds for Bacula to wait for an autochanger to change the
volume. If this time is exceeded, Bacula will invalidate the Volume slot
number stored in the catalog and try again. If no additional changer
volumes exist, Bacula will ask the operator to intervene. The default
is b minutes.

Maximum Rewind Wait = time This directive specifies the maximum
time in seconds for Bacula to wait for a rewind before timing out. If
this time is exceeded, Bacula will cancel the job. The default is 5
minutes.

Maximum Open Wait = time This directive specifies the maximum
time in seconds for Bacula to wait for a open before timing out. If
this time is exceeded, Bacula will cancel the job. The default is 5
minutes.

Always Open = Yes—No If Yes (default), Bacula will always keep the
device open unless specifically unmounted by the Console program.
This permits Bacula to ensure that the tape drive is always available,
and properly positioned. If you set AlwaysOpen to no Bacula will
only open the drive when necessary, and at the end of the Job if no
other Jobs are using the drive, it will be freed. The next time Bacula
wants to append to a tape on a drive that was freed, Bacula will
rewind the tape and position it to the end. To avoid unnecessary tape
positioning and to minimize unnecessary operator intervention, it is
highly recommended that Always Open = yes. This also ensures
that the drive is available when Bacula needs it.

If you have Always Open = yes (recommended) and you want to
use the drive for something else, simply use the unmount command
in the Console program to release the drive. However, don’t forget to
remount the drive with mount when the drive is available or the next
Bacula job will block.

For File storage, this directive is ignored. For a FIFO storage device,
you must set this to No.

Please note that if you set this directive to No Bacula will release
the tape drive between each job, and thus the next job will rewind
the tape and position it to the end of the data. This can be a very
time consuming operation. In addition, with this directive set to no,
certain multiple drive autochanger operations will fail. We strongly
recommend to keep Always Open set to Yes

13.3. DEVICE RESOURCE 215

Volume Poll Interval = t¢ime If the time specified on this directive is
non-zero, after asking the operator to mount a new volume Bacula
will periodically poll (or read) the drive at the specified interval to see
if a new volume has been mounted. If the time interval is zero (the de-
fault), no polling will occur. This directive can be useful if you want to
avoid operator intervention via the console. Instead, the operator can
simply remove the old volume and insert the requested one, and Bac-
ula on the next poll will recognize the new tape and continue. Please
be aware that if you set this interval too small, you may excessively
wear your tape drive if the old tape remains in the drive, since Bacula
will read it on each poll. This can be avoided by ejecting the tape
using the Offline On Unmount and the Close on Poll directives.
However, if you are using a Linux 2.6 kernel or other OSes such as
FreeBSD or Solaris, the Offline On Unmount will leave the drive with
no tape, and Bacula will not be able to properly open the drive and
may fail the job. For more information on this problem, please see the
description of Offline On Unmount in the Tape Testing chapter.

Close on Poll= Yes—No If Yes, Bacula close the device (equivalent to an
unmount except no mount is required) and reopen it at each poll. Nor-
mally this is not too useful unless you have the Offline on Unmount
directive set, in which case the drive will be taken offline preventing
wear on the tape during any future polling. Once the operator inserts
a new tape, Bacula will recognize the drive on the next poll and au-
tomatically continue with the backup. Please see above more more
details.

Maximum Open Wait = #ime This directive specifies the maximum
amount of time in seconds that Bacula will wait for a device that
is busy. The default is 5 minutes. If the device cannot be obtained,
the current Job will be terminated in error. Bacula will re-attempt to
open the drive the next time a Job starts that needs the the drive.

Removable media = Yes—No If Yes, this device supports removable
media (for example, tapes or CDs). If No, media cannot be removed
(for example, an intermediate backup area on a hard disk). If Re-
movable media is enabled on a File device (as opposed to a tape)
the Storage daemon will assume that device may be something like a
USB device that can be removed or a simply a removable harddisk.
When attempting to open such a device, if the Volume is not found
(for File devices, the Volume name is the same as the Filename), then
the Storage daemon will search the entire device looking for likely Vol-
ume names, and for each one found, it will ask the Director if the
Volume can be used. If so, the Storage daemon will use the first such
Volume found. Thus it acts somewhat like a tape drive — if the correct

216 CHAPTER 13. STORAGE DAEMON CONFIGURATION

Volume is not found, it looks at what actually is found, and if it is an
appendable Volume, it will use it.

If the removable medium is not automatically mounted (e.g. udev),
then you might consider using additional Storage daemon device direc-
tives such as Requires Mount, Mount Point, Mount Command,
and Unmount Command, all of which can be used in conjunction
with Removable Media.

Random access = Yes—No If Yes, the archive device is assumed to be
a random access medium which supports the lseek (or lseek64 if
Largefile is enabled during configuration) facility. This should be set
to Yes for all file systems such as DVD, USB, and fixed files. It should

be set to No for non-random access devices such as tapes and named
pipes.

Requires Mount = Yes—No When this directive is enabled, the Storage
daemon will submit a Mount Command before attempting to open
the device. You must set this directive to yes for DVD-writers and
removable file systems such as USB devices that are not automatically
mounted by the operating system when plugged in or opened by Bac-
ula. It should be set to no for all other devices such as tapes and fixed
filesystems. It should also be set to no for any removable device that
is automatically mounted by the operating system when opened (e.g.
USB devices mounted by udev or hotplug). This directive indicates
if the device requires to be mounted using the Mount Command.
To be able to write a DVD, the following directives must also be de-
fined: Mount Point, Mount Command, Unmount Command
and Write Part Command.

Mount Point = directory Directory where the device can be mounted.
This directive is used only for devices that have Requires Mount
enabled such as DVD or USB file devices.

Mount Command = name-string This directive specifies the command
that must be executed to mount devices such as DVDs and many
USB devices. For DVDs, the device is written directly, but the mount
command is necessary in order to determine the free space left on
the DVD. Before the command is executed, %a is replaced with the
Archive Device, and %m with the Mount Point.

Most frequently, for a DVD, you will define it as follows:

Mount Command = "/bin/mount -t is09660 -o ro %a %m"

However, if you have defined a mount point in /etc/fstab, you might
be able to use a mount command such as:

13.3. DEVICE RESOURCE 217

Mount Command = "/bin/mount /media/dvd"

See the [Edit Codes|section below for more details of the editing codes
that can be used in this directive.

Unmount Command = name-string This directive specifies the com-
mand that must be executed to unmount devices such as DVDs and
many USB devices. Before the command is executed, %a is replaced
with the Archive Device, and %m with the Mount Point.

Most frequently, you will define it as follows:

Unmount Command = "/bin/umount %m"

See the |[Edit Codes/section below for more details of the editing codes
that can be used in this directive.

Minimum block size = size-in-bytes On most modern tape drives, you
will not need or want to specify this directive, and if you do so, it will
be to make Bacula use fixed block sizes. This statement applies only
to non-random access devices (e.g. tape drives). Blocks written by the
storage daemon to a non-random archive device will never be smaller
than the given size-in-bytes. The Storage daemon will attempt to
efficiently fill blocks with data received from active sessions but will,
if necessary, add padding to a block to achieve the required minimum
size.

To force the block size to be fixed, as is the case for some non-random
access devices (tape drives), set the Minimum block size and the
Maximum block size to the same value (zero included). The default
is that both the minimum and maximum block size are zero and the
default block size is 64,512 bytes.

For example, suppose you want a fixed block size of 100K bytes, then
you would specify:

100K
100K

Minimum block size
Maximum block size

Please note that if you specify a fixed block size as shown above, the
tape drive must either be in variable block size mode, or if it is in fixed
block size mode, the block size (generally defined by mt) must be
identical to the size specified in Bacula — otherwise when you attempt
to re-read your Volumes, you will get an error.

If you want the block size to be variable but with a 64K minimum and
200K maximum (and default as well), you would specify:

218

CHAPTER 13. STORAGE DAEMON CONFIGURATION

Minimum block size = 64K
Maximum blocksize = 200K

Maximum block size = size-in-bytes On most modern tape drives, you

will not need to specify this directive. If you do so, it will most likely be
to use fixed block sizes (see Minimum block size above). The Storage
daemon will always attempt to write blocks of the specified size-in-
bytes to the archive device. As a consequence, this statement specifies
both the default block size and the maximum block size. The size
written never exceed the given size-in-bytes. If adding data to a
block would cause it to exceed the given maximum size, the block will
be written to the archive device, and the new data will begin a new
block.

If no value is specified or zero is specified, the Storage daemon will use
a default block size of 64,512 bytes (126 * 512).

Hardware End of Medium = Yes—No If No, the archive device is not

Fast

required to support end of medium ioctl request, and the storage dae-
mon will use the forward space file function to find the end of the
recorded data. If Yes, the archive device must support the ioctl
MTEQM call, which will position the tape to the end of the recorded
data. In addition, your SCSI driver must keep track of the file num-
ber on the tape and report it back correctly by the MTIOCGET
ioctl. Note, some SCSI drivers will correctly forward space to the end
of the recorded data, but they do not keep track of the file number.
On Linux machines, the SCSI driver has a fast-eod option, which if
set will cause the driver to lose track of the file number. You should
ensure that this option is always turned off using the mt program.

Default setting for Hardware End of Medium is Yes. This function is
used before appending to a tape to ensure that no previously written
data is lost. We recommend if you have a non-standard or unusual
tape drive that you use the btape program to test your drive to see
whether or not it supports this function. All modern (after 1998) tape
drives support this feature.

Forward Space File = Yes—No If No, the archive device is not re-
quired to support keeping track of the file number (MTIOCGET
ioctl) during forward space file. If Yes, the archive device must sup-
port the ioctl MTFSF call, which virtually all drivers support, but in
addition, your SCSI driver must keep track of the file number on the
tape and report it back correctly by the MTIOCGET ioctl. Note,
some SCSI drivers will correctly forward space, but they do not keep

13.3.

DEVICE RESOURCE 219

track of the file number or more seriously, they do not report end of
medium.

Default setting for Fast Forward Space File is Yes.

Use MTIOCGET = Yes—No If No, the operating system is not re-

BSF

quired to support keeping track of the file number and reporting it
in the (MTIOCGET ioctl). The default is Yes. If you must set
this to No, Bacula will do the proper file position determination, but
it is very unfortunate because it means that tape movement is very
inefficient. Fortunately, this operation system deficiency seems to be
the case only on a few *BSD systems. Operating systems known to
work correctly are Solaris, Linux and FreeBSD.

at EOM = Yes—No If No, the default, no special action is taken
by Bacula with the End of Medium (end of tape) is reached because
the tape will be positioned after the last EOF tape mark, and Bacula
can append to the tape as desired. However, on some systems, such
as FreeBSD, when Bacula reads the End of Medium (end of tape), the
tape will be positioned after the second EOF tape mark (two successive
EOF marks indicated End of Medium). If Bacula appends from that
point, all the appended data will be lost. The solution for such systems
is to specify BSF at EOM which causes Bacula to backspace over
the second EOF mark. Determination of whether or not you need this
directive is done using the test command in the btape program.

TWO EOF = Yes—No If Yes, Bacula will write two end of file marks

when terminating a tape — i.e. after the last job or at the end of the
medium. If No, the default, Bacula will only write one end of file to
terminate the tape.

Backward Space Record = Yes—No If Yes, the archive device supports

the MTBSR ioctl to backspace records. If No, this call is not used
and the device must be rewound and advanced forward to the desired
position. Default is Yes for non random-access devices. This function
if enabled is used at the end of a Volume after writing the end of file
and any ANSI/IBM labels to determine whether or not the last block
was written correctly. If you turn this function off, the test will not
be done. This causes no harm as the re-read process is precautionary
rather than required.

Backward Space File = Yes—DNo If Yes, the archive device supports the

MTBSF and MTBSF ioctls to backspace over an end of file mark
and to the start of a file. If No, these calls are not used and the
device must be rewound and advanced forward to the desired position.
Default is Yes for non random-access devices.

220 CHAPTER 13. STORAGE DAEMON CONFIGURATION

Forward Space Record = Yes—No If Yes, the archive device must sup-
port the MTFSR . ioctl to forward space over records. If No, data
must be read in order to advance the position on the device. Default
is Yes for non random-access devices.

Forward Space File = Yes—No If Yes, the archive device must support
the MTFSF ioctl to forward space by file marks. If No, data must be
read to advance the position on the device. Default is Yes for non
random-access devices.

Offline On Unmount = Yes—No The default for this directive is No. If
Yes the archive device must support the MTOFFL ioctl to rewind and
take the volume offline. In this case, Bacula will issue the offline (eject)
request before closing the device during the unmount command. If
No Bacula will not attempt to offline the device before unmounting it.
After an offline is issued, the cassette will be ejected thus requiring
operator intervention to continue, and on some systems require an
explicit load command to be issued (mt -f /dev/xxx load) before the
system will recognize the tape. If you are using an autochanger, some
devices require an offline to be issued prior to changing the volume.
However, most devices do not and may get very confused.

If you are using a Linux 2.6 kernel or other OSes such as FreeBSD or
Solaris, the Offline On Unmount will leave the drive with no tape,
and Bacula will not be able to properly open the drive and may
fail the job. For more information on this problem, please see the
description of Offline On Unmount|in the Tape Testing chapter.

Maximum Volume Size = size No more than size bytes will be writ-
ten onto a given volume on the archive device. This directive is used
mainly in testing Bacula to simulate a small Volume. It can also be
useful if you wish to limit the size of a File Volume to say less than
2GB of data. In some rare cases of really antiquated tape drives that
do not properly indicate when the end of a tape is reached during
writing (though I have read about such drives, I have never person-
ally encountered one). Please note, this directive is deprecated (being
phased out) in favor of the Maximum Volume Bytes defined in the
Director’s configuration file.

Maximum File Size = size No more than size bytes will be written into
a given logical file on the volume. Once this size is reached, an end of
file mark is written on the volume and subsequent data are written into
the next file. Breaking long sequences of data blocks with file marks
permits quicker positioning to the start of a given stream of data and
can improve recovery from read errors on the volume. The default is
one Gigabyte. This directive creates EOF marks only on tape media.

13.3. DEVICE RESOURCE 221

However, regardless of the medium type (tape, disk, DVD, ...) each
time a the Maximum File Size is exceeded, a record is put into the
catalog database that permits seeking to that position on the medium
for restore operations. If you set this to a small value (e.g. 1MB), you
will generate lots of database records (JobMedia) and may significantly
increase CPU/disk overhead.

Note, this directive does not limit the size of Volumes that Bacula
will create regardless of whether they are tape or disk volumes. It
changes only the number of EOF marks on a tape and the number
of block positioning records (see below) that are generated. If you
want to limit the size of all Volumes for a particular device, use the
Maximum Volume Size directive (above), or use the Maximum
Volume Bytes directive in the Director’s Pool resource, which does
the same thing but on a Pool (Volume) basis.

Block Positioning = yes—no This directive tells Bacula not to use block
positioning when doing restores. Turning this directive off can cause
Bacula to be extremely slow when restoring files. You might use this
directive if you wrote your tapes with Bacula in variable block mode
(the default), but your drive was in fixed block mode. The default is
yes.

Maximum Network Buffer Size = bytes where bytes specifies the ini-
tial network buffer size to use with the File daemon. This size will be
adjusted down if it is too large until it is accepted by the OS. Please
use care in setting this value since if it is too large, it will be trimmed
by 512 bytes until the OS is happy, which may require a large number
of system calls. The default value is 32,768 bytes.

The default size was chosen to be relatively large but not too big in the
case that you are transmitting data over Internet. It is clear that on a
high speed local network, you can increase this number and improve
performance. For example, some users have found that if you use a
value of 65,536 bytes they get five to ten times the throughput. Larger
values for most users don’t seem to improve performance. If you are
interested in improving your backup speeds, this is definitely a place
to experiment. You will probably also want to make the corresponding
change in each of your File daemons conf files.

Maximum Spool Size = bytes where the bytes specify the maximum
spool size for all jobs that are running. The default is no limit.

Maximum Job Spool Size = bytes where the bytes specify the maxi-
mum spool size for any one job that is running. The default is no
limit. This directive is implemented only in version 1.37 and later.

222 CHAPTER 13. STORAGE DAEMON CONFIGURATION

Spool Directory = directory specifies the name of the directory to be
used to store the spool files for this device. This directory is also used
to store temporary part files when writing to a device that requires
mount (DVD). The default is to use the working directory.

Maximum Part Size = bytes This is the maximum size of a volume part
file. The default is no limit. This directive is implemented only in
version 1.37 and later.

If the device requires mount, it is transferred to the device when this
size is reached. In this case, you must take care to have enough disk
space left in the spool directory.

Otherwise, it is left on the hard disk.
It is ignored for tape and FIFO devices.

13.4 Edit Codes for Mount and Unmount Direc-
tives

Before submitting the Mount Command, Unmount Command, Write
Part Command, or Free Space Command directives to the operating
system, Bacula performs character substitution of the following characters:

W=

%a = Archive device name

%e = erase (set if cannot mount and first part)
%n = part number

/m = mount point

%v = last part name (i.e. filename)

13.5 Devices that require a mount (DVD)

All the directives in this section are implemented only in Bacula version 1.37
and later and hence are available in version 1.38.6.

As of version 1.39.5, the directives ”Requires Mount”, ”Mount Point”,
"Mount Command”, and ” Unmount Command” apply to removable filesys-
tems such as USB in addition to DVD.

Requires Mount = Yes—No You must set this directive to yes for DVD-
writers, and to no for all other devices (tapes/files). This directive

13.5. DEVICES THAT REQUIRE A MOUNT (DVD) 223

indicates if the device requires to be mounted to be read, and if it
must be written in a special way. If it set, Mount Point, Mount
Command, Unmount Command and Write Part Command
directives must also be defined.

Mount Point = directory Directory where the device can be mounted.

Mount Command = name-string Command that must be executed to
mount the device. Before the command is executed, %a is replaced
with the Archive Device, and %m with the Mount Point.

Most frequently, you will define it as follows:

Mount Command = "/bin/mount -t is09660 -o ro %a %m"

Unmount Command = name-string Command that must be executed
to unmount the device. Before the command is executed, %a is re-
placed with the Archive Device, and %m with the Mount Point.

Most frequently, you will define it as follows:

Unmount Command = "/bin/umount %m"

Write Part Command = name-string Command that must be executed
to write a part to the device. Before the command is executed, %a is
replaced with the Archive Device, %m with the Mount Point, %e is
replaced with 1 if we are writing the first part, and with 0 otherwise,
and %v with the current part filename.

For a DVD, you will most frequently specify the Bacula supplied dvd-
handler script as follows:

Write Part Command = "/path/dvd-handler %a write %e %v"

Where /path is the path to your scripts install directory, and dvd-
handler is the Bacula supplied script file. This command will already
be present, but commented out, in the default bacula-sd.conf file. To
use it, simply remove the comment (#) symbol.

Free Space Command = name-string Command that must be executed
to check how much free space is left on the device. Before the com-
mand is executed,%a is replaced with the Archive Device, %m with
the Mount Point, %e is replaced with 1 if we are writing the first part,
and with 0 otherwise, and %v with the current part filename.

For a DVD, you will most frequently specify the Bacula supplied dvd-
handler script as follows:

224

CHAPTER 13. STORAGE DAEMON CONFIGURATION
Free Space Command = "/path/dvd-handler %a free"

Where /path is the path to your scripts install directory, and dvd-
handler is the Bacula supplied script file. If you want to specify your
own command, please look at the code of dvd-handler to see what out-
put Bacula expects from this command. This command will already
be present, but commented out, in the default bacula-sd.conf file. To
use it, simply remove the comment (#) symbol.

If you do not set it, Bacula will expect there is always free space on
the device.

Chapter 14

Autochanger Resource

The Autochanger resource supports single or multiple drive autochangers by
grouping one or more Device resources into one unit called an autochanger in
Bacula (often referred to as a "tape library” by autochanger manufacturers).

If you have an Autochanger, and you want it to function correctly, you must
have an Autochanger resource in your Storage conf file, and your Direc-
tor’s Storage directives that want to use an Autochanger must refer to the
Autochanger resource name. In previous versions of Bacula, the Director’s
Storage directives referred directly to Device resources that were autochang-
ers. In version 1.38.0 and later, referring directly to Device resources will
not work for Autochangers.

Name = <Autochanger-Name> Specifies the Name of the Au-
tochanger. This name is used in the Director’s Storage definition to
refer to the autochanger. This directive is required.

Device = <Device-namel, device-name2, ...> Specifies the names of
the Device resource or resources that correspond to the autochanger
drive. If you have a multiple drive autochanger, you must specify
multiple Device names, each one referring to a separate Device resource
that contains a Drive Index specification that corresponds to the drive
number base zero. You may specify multiple device names on a single
line separated by commas, and/or you may specify multiple Device
directives. This directive is required.

Changer Device = name-string The specified name-string gives the
system file name of the autochanger device name. If specified in this
resource, the Changer Device name is not needed in the Device re-
source. If it is specified in the Device resource (see above), it will take

225

226 CHAPTER 14. AUTOCHANGER RESOURCE

precedence over one specified in the Autochanger resource.

Changer Command = name-string The name-string specifies an exter-
nal program to be called that will automatically change volumes as
required by Bacula. Most frequently, you will specify the Bacula sup-
plied mtx-changer script as follows. If it is specified here, it need
not be specified in the Device resource. If it is also specified in the
Device resource, it will take precedence over the one specified in the
Autochanger resource.

The following is an example of a valid Autochanger resource definition:

Autochanger {

Name = "DDS-4-changer"

Device = DDS-4-1, DDS-4-2, DDS-4-3

Changer Device = /dev/sg0

Changer Command = "/etc/bacula/mtx-changer %c %o %S %a %d"
}
Device {

Name = "DDS-4-1"

Drive Index = 0

Autochanger = yes

}

Device {
Name = "DDS-4-2"
Drive Index = 1
Autochanger = yes

Device {
Name = "DDS-4-3"
Drive Index = 2

Autochanger = yes
Autoselect = no

Please note that it is important to include the Autochanger = yes di-
rective in each Device definition that belongs to an Autochanger. A device
definition should not belong to more than one Autochanger resource. Also,
your Device directive in the Storage resource of the Director’s conf file should
have the Autochanger’s resource name rather than a name of one of the De-
vices.

If you have a drive that physically belongs to an Autochanger but you don’t
want to have it automatically used when Bacula references the Autochanger
for backups, for example, you want to reserve it for restores, you can add
the directive:

14.1. CAPABILITIES 227

Autoselect = no

to the Device resource for that drive. In that case, Bacula will not auto-
matically select that drive when accessing the Autochanger. You can, still
use the drive by referencing it by the Device name directly rather than the
Autochanger name. An example of such a definition is shown above for the
Device DDS-4-3, which will not be selected when the name DDS-4-changer
is used in a Storage definition, but will be used if DDS-4-3 is used.

14.1 Capabilities

Label media = Yes—No If Yes, permits this device to automatically la-
bel blank media without an explicit operator command. It does so by
using an internal algorithm as defined on the Label Format record in
each Pool resource. If this is No as by default, Bacula will label tapes
only by specific operator command (label in the Console) or when the
tape has been recycled. The automatic labeling feature is most useful
when writing to disk rather than tape volumes.

Automatic mount = Yes—No If Yes (the default), permits the daemon
to examine the device to determine if it contains a Bacula labeled
volume. This is done initially when the daemon is started, and then
at the beginning of each job. This directive is particularly important
if you have set Always Open = no because it permits Bacula to
attempt to read the device before asking the system operator to mount
a tape. However, please note that the tape must be mounted before
the job begins.

14.2 Messages Resource

For a description of the Messages Resource, please see the
Messages Resource Chapter of this manual.

14.3 Sample Storage Daemon Configuration File

A example Storage Daemon configuration file might be the following:

228 CHAPTER 14. AUTOCHANGER RESOURCE

Default Bacula Storage Daemon Configuration file
For Bacula release 1.37.2 (07 July 2005) -- gentoo 1.4.16

You may need to change the name of your tape drive
on the "Archive Device" directive in the Device
resource. If you change the Name and/or the
"Media Type" in the Device resource, please ensure
that bacula-dir.conf has corresponding changes.

H OH B H H R H HE R

Storage { # definition of myself
Name = rufus-sd
Address = rufus
WorkingDirectory = "$HOME/bacula/bin/working"
Pid Directory = "$HOME/bacula/bin/working"
Maximum Concurrent Jobs = 20
}
#
List Directors who are permitted to contact Storage daemon
#
Director {
Name = rufus-dir
Password = "ZF9Ctf5PQoWCPkmR3s4atCBOusUPg+vWWyIlo2VS5ti6k"
¥
#
Restricted Director, used by tray-monitor to get the
status of the storage daemon
#
Director {
Name = rufus-mon
Password = "9usxgc307dMbe7jbD16vOPX1hD64UVasIDDODH2WAujcDsc6"
Monitor = yes
¥
#
Devices supported by this Storage daemon
To connect, the Director’s bacula-dir.conf must have the
same Name and MediaType.
#
Autochanger {
Name = Autochanger
Device = Drive-1
Device = Drive-2
Changer Command = "/home/kern/bacula/bin/mtx-changer %c %o %S %a %d"
Changer Device = /dev/sg0

Device {
Name = Drive-1 #
Drive Index = 0
Media Type = DLT-8000
Archive Device = /dev/nstO
AutomaticMount = yes; # when device opened, read it
AlwaysOpen = yes;
RemovableMedia = yes;

14.3. SAMPLE STORAGE DAEMON CONFIGURATION FILE

}

RandomAccess = no;
AutoChanger = yes
Alert Command =

Device {

}

Name = Drive-2
Drive Index = 1
Media Type = DLT-8000
Archive Device = /dev/nstl
AutomaticMount = yes;
AlwaysOpen = yes;
RemovableMedia = yes;
RandomAccess = no;
AutoChanger = yes

Alert Command =

Device {

Name = "HP DLT 80"

Media Type = DLT8000
Archive Device = /dev/nstO
AutomaticMount = yes;
AlwaysOpen = yes;
RemovableMedia = yes;

}

#Device {

Name = SDT-7000

Media Type = DDS-2

Archive Device = /dev/nst0O
AutomaticMount = yes;
AlwaysOpen = yes;

RemovableMedia = yes;
#}

#Device {

Name = Floppy

Media Type = Floppy

Archive Device = /mnt/floppy
RemovableMedia = yes;
Random Access = Yes;
AutomaticMount = yes;
AlwaysOpen = no;

#}

#Device {

Name = FileStorage

Media Type = File

Archive Device = /tmp
LabelMedia = yes;

Random Access = Yes;
AutomaticMount = yes;
RemovableMedia = no;
AlwaysOpen = no;

#}

#Device {

"sh -c ’tapeinfo -f Yc |grep TapeAlert|cat’"

when device opened, read it

"sh -c ’tapeinfo -f Yc |grep TapeAlert|cat’"

when device opened, read it

when device opened, read it

when device opened, read it

229

lets Bacula label unlabeled media

when device opened, read it

230 CHAPTER 14. AUTOCHANGER RESOURCE

Name = "NEC ND-1300A"

Media Type = DVD

Archive Device = /dev/hda

LabelMedia = yes; # lets Bacula label unlabeled media
Random Access = Yes;

AutomaticMount = yes; # when device opened, read it
RemovableMedia = yes;

AlwaysOpen = no;

MaximumPartSize = 800M;

RequiresMount = yes;

MountPoint = /mnt/cdrom;

MountCommand = "/bin/mount -t is09660 -o ro %a %m";

UnmountCommand = "/bin/umount %m";

SpoolDirectory = /tmp/backup;

WritePartCommand = "/etc/bacula/dvd-handler %a write %e %v"

FreeSpaceCommand = "/etc/bacula/dvd-handler %a free"

#}

#

A very old Exabyte with no end of media detection
#

#Device {

Name = "Exabyte 8mm"

Media Type = "Smm"

Archive Device = /dev/nst0O

Hardware end of medium = No;

AutomaticMount = yes; # when device opened, read it
AlwaysOpen = Yes;

RemovableMedia = yes;

#}

#

Send all messages to the Director,
mount messages also are sent to the email address
#
Messages {
Name = Standard
director = rufus-dir = all
operator = root = mount

}

Chapter 15

Messages Resource

The Messages resource defines how messages are to be handled and destina-
tions to which they should be sent.

Even though each daemon has a full message handler, within the File daemon
and the Storage daemon, you will normally choose to send all the appropriate
messages back to the Director. This permits all the messages associated
with a single Job to be combined in the Director and sent as a single email
message to the user, or logged together in a single file.

Each message that Bacula generates (i.e. that each daemon generates) has
an associated type such as INFO, WARNING, ERROR, FATAL, etc. Using
the message resource, you can specify which message types you wish to see
and where they should be sent. In addition, a message may be sent to
multiple destinations. For example, you may want all error messages both
logged as well as sent to you in an email. By defining multiple messages
resources, you can have different message handling for each type of Job (e.g.
Full backups versus Incremental backups).

In general, messages are attached to a Job and are included in the Job report.
There are some rare cases, where this is not possible, e.g. when no job is
running, or if a communications error occurs between a daemon and the
director. In those cases, the message may remain in the system, and should
be flushed at the end of the next Job. However, since such messages are not
attached to a Job, any that are mailed will be sent to /usr/lib/sendmail.
On some systems, such as FreeBSD, if your sendmail is in a different place,
you may want to link it to the the above location.

The records contained in a Messages resource consist of a destination spec-
ification followed by a list of message-types in the format:

231

232 CHAPTER 15. MESSAGES RESOURCE

destination = message-typel, message-type2, message-type3, ...

or for those destinations that need and address specification (e.g. email):

destination = address = message-typel, message-type2, message-type3, ...
Where destination is one of a predefined set of keywords that define
where the message is to be sent (stdout, file, ...), message-type is
one of a predefined set of keywords that define the type of message
generated by Bacula (ERROR, WARNING, FATAL, ...), and
address varies according to the destination keyword, but is typically
an email address or a filename.

The following are the list of the possible record definitions that can be used
in a message resource.

Messages Start of the Messages records.

Name = <name> The name of the Messages resource. The name you
specify here will be used to tie this Messages resource to a Job and/or
to the daemon.

MailCommand = <command> In the absence of this resource, Bacula
will send all mail using the following command:
mail -s "Bacula Message” <recipients>

In many cases, depending on your machine, this command may not
work. Using the MailCommand, you can specify exactly how to send
the mail. During the processing of the command, normally specified
as a quoted string, the following substitutions will be used:

o %% =%

e %c = Client’s name

e %d = Director’s name

e %e = Job Exit code (OK, Error, ...)
e %i=JobId

e %j = Unique Job name

e %l = Job level

e %n = Job name

e %r = Recipients

233

e %t = Job type (e.g. Backup, ...)

The following is the command I (Kern) use. Note, the whole command
should appear on a single line in the configuration file rather than split
as is done here for presentation:

mailcommand = ”/home/kern/bacula/bin/bsmtp -h
mail.example.com -f \”\(Bacula\) %r\” -s \”Bacula:

%t %e of %c %1\” %r”

Note, the bsmtp program is provided as part of
Bacula. For additional details, please see the
' bsmtp — Customizing Your Email Messages section of the Bac-
ula Utility Programs chapter of this manual. Please test any
mailcommand that you use to ensure that your bsmtp gateway
accepts the addressing form that you use. Certain programs such as
Exim can be very selective as to what forms are permitted particularly
in the from part.

OperatorCommand = <command> This resource specification is sim-
ilar to the MailCommand except that it is used for Operator mes-
sages. The substitutions performed for the MailCommand are also
done for this command. Normally, you will set this command to the
same value as specified for the MailCommand.

<destination> = <message-typel>, <message-type2>, ... Where
destination may be one of the following:

stdout Send the message to standard output.
stderr Send the message to standard error.

console Send the message to the console (Bacula Console). These
messages are held until the console program connects to the Di-
rector.

<destination> = <address> = <message-typel>, <message-
type2>, ...

Where address depends on the destination.

The destination may be one of the following:

director Send the message to the Director whose name is given in the
address field. Note, in the current implementation, the Director
Name is ignored, and the message is sent to the Director that
started the Job.

file Send the message to the filename given in the address field. If
the file already exists, it will be overwritten.

234 CHAPTER 15. MESSAGES RESOURCE

append Append the message to the filename given in the address
field. If the file already exists, it will be appended to. If the file
does not exist, it will be created.

syslog Send the message to the system log (syslog) using the facil-
ity specified in the address field. Note, for the moment, the
address field is ignored and the message is always sent to the

LOG_DAEMON facility with level LOG_ERR. See man 3 sys-
log for more details. Example:

syslog = all, !skipped

mail Send the message to the email addresses that are given as a
comma separated list in the address field. Mail messages are
grouped together during a job and then sent as a single email
message when the job terminates. The advantage of this destina-
tion is that you are notified about every Job that runs. However,
if you backup five or ten machines every night, the volume of
email messages can be important. Some users use filter programs
such as procmail to automatically file this email based on the
Job termination code (see mailcommand).

mail on error Send the message to the email addresses that are given
as a comma separated list in the address field if the Job termi-
nates with an error condition. MailOnError messages are grouped
together during a job and then sent as a single email message
when the job terminates. This destination differs from the mail
destination in that if the Job terminates normally, the message
is totally discarded (for this destination). If the Job terminates
in error, it is emailed. By using other destinations such as ap-
pend you can ensure that even if the Job terminates normally,
the output information is saved.

mail on success Send the message to the email addresses that are
given as a comma separated list in the address field if the Job
terminates normally (no error condition). MailOnSuccess mes-
sages are grouped together during a job and then sent as a single
email message when the job terminates. This destination differs
from the mail destination in that if the Job terminates abnor-
mally, the message is totally discarded (for this destination). If
the Job terminates in normally, it is emailed.

operator Send the message to the email addresses that are specified
as a comma separated list in the address field. This is similar to
mail above, except that each message is sent as received. Thus
there is one email per message. This is most useful for mount
messages (see below).

console Send the message to the Bacula console.

235

stdout Send the message to the standard output (normally not used).

stderr Send the message to the standard error output (normally not
used).

catalog Send the message to the Catalog database. The message will
be written to the table named Log and a timestamp field will
also be added. This permits Job Reports and other messages
to be recorded in the Catalog so that they can be accessed by
reporting software. Bacula will prune the Log records associated
with a Job when the Job records are pruned. Otherwise, Bacula
never uses these records internally, so this destination is only used
for special purpose programs (e.g. bweb).

For any destination, the message-type field is a comma separated
list of the following types or classes of messages:

info General information messages.

warning Warning messages. Generally this is some unusual condition
but not expected to be serious.

error Non-fatal error messages. The job continues running. Any error
message should be investigated as it means that something went
wrong.

fatal Fatal error messages. Fatal errors cause the job to terminate.
terminate Message generated when the daemon shuts down.

notsaved Files not saved because of some error. Usually because the
file cannot be accessed (i.e. it does not exist or is not mounted).

skipped Files that were skipped because of a user supplied option
such as an incremental backup or a file that matches an exclu-
sion pattern. This is not considered an error condition such as
the files listed for the notsaved type because the configuration
file explicitly requests these types of files to be skipped. For ex-
ample, any unchanged file during an incremental backup, or any
subdirectory if the no recursion option is specified.

mount Volume mount or intervention requests from the Storage dae-
mon. These requests require a specific operator intervention for
the job to continue.

restored The lIs style listing generated for each file restored is sent
to this message class.

all All message types.

security Security info/warning messages principally from unautho-
rized connection attempts.

alert Alert messages. These are messages generated by tape alerts.

236 CHAPTER 15. MESSAGES RESOURCE

volmgmt Volume management messages. Currently there are no vol-
ume mangement messages generated.

The following is an example of a valid Messages resource definition, where
all messages except files explicitly skipped or daemon termination messages
are sent by email to enforcement@sec.com. In addition all mount messages
are sent to the operator (i.e. emailed to enforcement@sec.com). Finally all
messages other than explicitly skipped files and files saved are sent to the
console:

Messages {
Name = Standard
mail = enforcement@sec.com = all, !skipped, !terminate
operator = enforcement@sec.com = mount
console = all, !skipped, !saved

With the exception of the email address (changed to avoid junk mail from
robot’s), an example Director’s Messages resource is as follows. Note, the
mailcommand and operatorcommand are on a single line — they had to
be split for this manual:

Messages {

Name = Standard

mailcommand = "bacula/bin/bsmtp -h mail.example.com \
-f \"\(Bacula\) %r\" -s \"Bacula: %t %e of %c %L\" %r"

operatorcommand = "bacula/bin/bsmtp -h mail.example.com \
-f \"\(Bacula\) %r\" -s \"Bacula: Intervention needed \

for %j\" %"
MailOnError = security@example.com = all, !skipped, \
!terminate

append = "bacula/bin/log" = all, !skipped, !terminate

operator = security@example.com = mount

console = all, !skipped, !saved

Chapter 16

Console Configuration

16.1 General

The Console configuration file is the simplest of all the configuration files,
and in general, you should not need to change it except for the password.
It simply contains the information necessary to contact the Director or Di-
rectors.

For a general discussion of the syntax of configuration files and their re-
sources including the data types recognized by Bacula, please see the

Configuration chapter of this manual.

The following Console Resource definition must be defined:

16.2 The Director Resource

The Director resource defines the attributes of the Director running on the
network. You may have multiple Director resource specifications in a single
Console configuration file. If you have more than one, you will be prompted
to choose one when you start the Console program.

Director Start of the Director directives.

Name = <name> The director name used to select among different Di-
rectors, otherwise, this name is not used.

DIRPort = <port-number> Specify the port to use to connect to the
Director. This value will most likely already be set to the value you

237

238 CHAPTER 16. CONSOLE CONFIGURATION

specified on the --with-base-port option of the ./configure com-
mand. This port must be identical to the DIRport specified in the
Director resource of the |Director’s configuration file. The default is
9101 so this directive is not normally specified.

Address = <address> Where the address is a host name, a fully qualified
domain name, or a network address used to connect to the Director.

Password = <password> Where the password is the password needed
for the Director to accept the Console connection. This password
must be identical to the Password specified in the Director resource
of the Director’s configuration|file. This directive is required.

An actual example might be:

Director {
Name = HeadMan
address = rufus.cats.com
password = xyzlerploit

}

16.3 The ConsoleFont Resource

The ConsoleFont resource is available only in the GNOME version of the
console. It permits you to define the font that you want used to display in
the main listing window.

ConsoleFont Start of the ConsoleFont directives.
Name = <name> The name of the font.

Font = <Pango Font Name> The string value given here defines the
desired font. It is specified in the Pango format. For example, the
default specification is:

Font = "LucidaTypewriter 9"

Thanks to Phil Stracchino for providing the code for this feature.

An different example might be:

ConsoleFont {
Name = Default
Font "Monospace 10"

}

16.4. THE CONSOLE RESOURCE 239

16.4 The Console Resource

As of Bacula version 1.33 and higher, there are three different kinds of con-
soles, which the administrator or user can use to interact with the Director.
These three kinds of consoles comprise three different security levels.

e The first console type is an anonymous or default console, which
has full privileges. There is no console resource necessary for this type
since the password is specified in the Director resource. This is the
kind of console that was initially implemented in versions prior to 1.33
and remains valid. Typically you would use it only for administrators.

e The second type of console, and new to version 1.33 and higher is a
"named” or "restricted” console defined within a Console resource in
both the Director’s configuration file and in the Console’s configuration
file. Both the names and the passwords in these two entries must
match much as is the case for Client programs.

This second type of console begins with absolutely no privileges except
those explicitly specified in the Director’s Console resource. Note, the
definition of what these restricted consoles can do is determined by
the Director’s conf file.

Thus you may define within the Director’s conf file multiple Consoles
with different names and passwords, sort of like multiple users, each
with different privileges. As a default, these consoles can do absolutely
nothing — no commands what so ever. You give them privileges or
rather access to commands and resources by specifying access control
lists in the Director’s Console resource. This gives the administrator
fine grained control over what particular consoles (or users) can do.

e The third type of console is similar to the above mentioned restricted
console in that it requires a Console resource definition in both the
Director and the Console. In addition, if the console name, provided
on the Name = directive, is the same as a Client name, the user of
that console is permitted to use the SetIP command to change the
Address directive in the Director’s client resource to the IP address of
the Console. This permits portables or other machines using DHCP
(non-fixed IP addresses) to "notify” the Director of their current IP
address.

The Console resource is optional and need not be specified. However, if it is
specified, you can use ACLs (Access Control Lists) in the Director’s configu-
ration file to restrict the particular console (or user) to see only information
pertaining to his jobs or client machine.

240 CHAPTER 16. CONSOLE CONFIGURATION

You may specify as many Console resources in the console’s conf file. If you
do so, generally the first Console resource will be used. However, if you have
multiple Director resources (i.e. you want to connect to different directors),
you can bind one of your Console resources to a particular Director resource,
and thus when you choose a particular Director, the appropriate Console
configuration resource will be used. See the ”Director” directive in the
Console resource described below for more information.

Note, the Console resource is optional, but can be useful for restricted con-
soles as noted above.

Console Start of the Console resource.

Name = <name> The Console name used to allow a restricted console to
change its IP address using the SetIP command. The SetIP command
must also be defined in the Director’s conf CommandACL list.

Password = <password> If this password is supplied, then the password
specified in the Director resource of you Console conf will be ignored.
See below for more details.

Director = <director-resource-name> If this directive is specified,
this Console resource will be used by bconsole when that particular
director is selected when first starting bconsole. l.e. it binds a par-
ticular console resource with its name and password to a particular
director.

Heartbeat Interval = <time-interval> This directive is optional and if
specified will cause the Console to set a keepalive interval (heartbeat)
in seconds on each of the sockets to communicate with the Director.
It is implemented only on systems (Linux, ...) that provide the set-
sockopt TCP_KEEPIDLE function. The default value is zero, which
means no change is made to the socket.

The following configuration files were supplied by Phil Stracchino. For ex-
ample, if we define the following in the user’s beonsole.conf file (or perhaps
the bwx-console.conf file):

Director {
Name = MyDirector
DIRport = 9101
Address = myserver
Password = "XXXXXXXXXXX" # no, really. this is not obfuscation.

16.4. THE CONSOLE RESOURCE 241

Console {
Name = restricted-user
Password = "UntrustedUser"
}

Where the Password in the Director section is deliberately incorrect, and
the Console resource is given a name, in this case restricted-user. Then

in the Director’s bacula-dir.conf file (not directly accessible by the user), we
define:

Console {
Name = restricted-user
Password = "UntrustedUser"

JobACL = "Restricted Client Save"
ClientACL = restricted-client

StorageACL = main-storage

ScheduleACL = *all*

PoolACL = *all*

FileSetACL = "Restricted Client’s FileSet"
CatalogACL = DefaultCatalog

CommandACL = run

the user logging into the Director from his Console will get logged in as
restricted-user, and he will only be able to see or access a Job with the
name Restricted Client Save a Client with the name restricted-client,
a Storage device main-storage, any Schedule or Pool, a FileSet named
Restricted Client’s FileSet, a Catalog named DefaultCatalog, and the
only command he can use in the Console is the run command. In other
words, this user is rather limited in what he can see and do with Bacula.

The following is an example of a bconsole conf file that can access several
Directors and has different Consoles depending on the director:

Director {

Name = MyDirector

DIRport = 9101

Address = myserver

Password = "XXXXXXXXXXX" # no, really. this is not obfuscation.
}

Director {
Name = SecondDirector
DIRport = 9101
Address = secondserver
Password = "XXXXXXXXXXX" # no, really. this is not obfuscation.

242 CHAPTER 16. CONSOLE CONFIGURATION

Console {
Name = restricted-user
Password = "UntrustedUser"
Director = MyDirector

Console {
Name = restricted-user
Password = "A different UntrustedUser"
Director = SecondDirector

The second Director referenced at ”secondserver” might look like the follow-
ing:

Console {
Name = restricted-user
Password = "A different UntrustedUser"

JobACL = "Restricted Client Save"
ClientACL = restricted-client

StorageACL = second-storage

ScheduleACL = *allx

PoolACL = *allx

FileSetACL = "Restricted Client’s FileSet"
CatalogACL = RestrictedCatalog

CommandACL = run, restore

WhereACL = "/"

16.5 Console Commands

For more details on running the console and its commands, please see the
Bacula Console| chapter of this manual.

16.6 Sample Console Configuration File

An example Console configuration file might be the following:

#

Bacula Console Configuration File
#

Director {

16.6. SAMPLE CONSOLE CONFIGURATION FILE 243

Name = HeadMan
address = "my_machine.my_domain.com"
Password = Console_password

}

244 CHAPTER 16. CONSOLE CONFIGURATION

Chapter 17

Monitor Configuration

The Monitor configuration file is a stripped down version of the Director
configuration file, mixed with a Console configuration file. It simply con-
tains the information necessary to contact Directors, Clients, and Storage
daemons you want to monitor.

For a general discussion of configuration file and resources including the
data types recognized by Bacula, please see the |Configuration chapter of
this manual.

The following Monitor Resource definition must be defined:

e [Monitor — to define the Monitor’s name used to connect to all the
daemons and the password used to connect to the Directors. Note,
you must not define more than one Monitor resource in the Monitor
configuration file.

e At least one/Client,|Storage|or Director resource, to define the daemons
to monitor.

17.1 The Monitor Resource

The Monitor resource defines the attributes of the Monitor running on the
network. The parameters you define here must be configured as a Director
resource in Clients and Storages configuration files, and as a Console resource
in Directors configuration files.

Monitor Start of the Monitor records.

245

246 CHAPTER 17. MONITOR CONFIGURATION

Name = <name> Specify the Director name used to connect to Client
and Storage, and the Console name used to connect to Director. This
record is required.

Password = <password> Where the password is the password needed
for Directors to accept the Console connection. This password must
be identical to the Password specified in the Console resource of
the Director’s configuration|file. This record is required if you wish to
monitor Directors.

Refresh Interval = <time> Specifies the time to wait between status
requests to each daemon. It can’t be set to less than 1 second, or more
than 10 minutes, and the default value is 5 seconds.

17.2 The Director Resource

The Director resource defines the attributes of the Directors that are moni-
tored by this Monitor.

As you are not permitted to define a Password in this resource, to avoid
obtaining full Director privileges, you must create a Console resource in the
Director’s configuration file, using the Console Name and Password defined
in the Monitor resource. To avoid security problems, you should configure
this Console resource to allow access to no other daemons, and permit the
use of only two commands: status and .status (see below for an example).

You may have multiple Director resource specifications in a single Monitor
configuration file.

Director Start of the Director records.

Name = <name> The Director name used to identify the Director in the
list of monitored daemons. It is not required to be the same as the one
defined in the Director’s configuration file. This record is required.

DIRPort = <port-number> Specify the port to use to connect to the
Director. This value will most likely already be set to the value you
specified on the --with-base-port option of the ./configure com-
mand. This port must be identical to the DIRport specified in the
Director resource of the|Director’s configuration file. The default is
9101 so this record is not normally specified.

Address = <address> Where the address is a host name, a fully qualified
domain name, or a network address used to connect to the Director.
This record is required.

17.3. THE CLIENT RESOURCE 247

17.3 The Client Resource

The Client resource defines the attributes of the Clients that are monitored
by this Monitor.

You must create a Director resource in the Client’s configuration/ file, us-
ing the Director Name defined in the Monitor resource. To avoid security
problems, you should set the Monitor directive to Yes in this Director

resource.

You may have multiple Director resource specifications in a single Monitor
configuration file.

Client (or FileDaemon) Start of the Client records.

Name = <name> The Client name used to identify the Director in the
list of monitored daemons. It is not required to be the same as the
one defined in the Client’s configuration file. This record is required.

Address = <address> Where the address is a host name, a fully qualified
domain name, or a network address in dotted quad notation for a
Bacula File daemon. This record is required.

FD Port = <port-number> Where the port is a port number at which
the Bacula File daemon can be contacted. The default is 9102.

Password = <password> This is the password to be used when estab-
lishing a connection with the File services, so the Client configuration
file on the machine to be backed up must have the same password
defined for this Director. This record is required.

17.4 The Storage Resource

The Storage resource defines the attributes of the Storages that are moni-
tored by this Monitor.

You must create a Director resource in the|Storage’s configuration file, us-
ing the Director Name defined in the Monitor resource. To avoid security
problems, you should set the Monitor directive to Yes in this Director
resource.

You may have multiple Director resource specifications in a single Monitor
configuration file.

248 CHAPTER 17. MONITOR CONFIGURATION
Storage Start of the Storage records.

Name = <name> The Storage name used to identify the Director in the
list of monitored daemons. It is not required to be the same as the
one defined in the Storage’s configuration file. This record is required.

Address = <address> Where the address is a host name, a fully qualified
domain name, or a network address in dotted quad notation for a
Bacula Storage daemon. This record is required.

SD Port = <port> Where port is the port to use to contact the storage
daemon for information and to start jobs. This same port number must
appear in the Storage resource of the Storage daemon’s configuration
file. The default is 9103.

Password = <password> This is the password to be used when estab-
lishing a connection with the Storage services. This same password
also must appear in the Director resource of the Storage daemon’s
configuration file. This record is required.

17.5 Tray Monitor Security

There is no security problem in relaxing the permissions on tray-
monitor.conf as long as FD, SD and DIR are configured properly, so the
passwords contained in this file only gives access to the status of the dae-
mons. It could be a security problem if you consider the status information
as potentially dangerous (I don’t think it is the case).

Concerning Director’s configuration:

In tray-monitor.conf, the password in the Monitor resource must point to
a restricted console in bacula-dir.conf (see the documentation). So, if you
use this password with bconsole, you’ll only have access to the status of the
director (commands status and .status). It could be a security problem if
there is a bug in the ACL code of the director.

Concerning File and Storage Daemons’ configuration:

In tray-monitor.conf, the Name in the Monitor resource must point to a
Director resource in bacula-fd /sd.conf, with the Monitor directive set to Yes
(once again, see the documentation). It could be a security problem if there
is a bug in the code which check if a command is valid for a Monitor (this
is very unlikely as the code is pretty simple).

17.6. SAMPLE TRAY MONITOR CONFIGURATION

17.6 Sample Tray Monitor configuration

An example Tray Monitor configuration file might be the following:

#
Bacula Tray Monitor Configuration File
#
Monitor {
Name = rufus-mon # password for Directors

Password = "GNOuRo7PTUm1MbqrJ2Gri1pO0fkOHQJTxwnFyE4WSST3MWZseR"
RefreshInterval = 10 seconds

}

Client {
Name = rufus-fd
Address = rufus
FDPort = 9102 # password for FileDaemon
Password = "FYpq4yyIly562EMS35bA0JOQCOM2L3t5cZ0bxT3XQxgxppTn"
}
Storage {
Name = rufus-sd
Address = rufus
SDPort = 9103 # password for StorageDaemon
Password = "9usxgc307dMbe7jbD16vOPX1hD64UVasIDDODH2WAujcDsc6"
}
Director {
Name = rufus-dir
DIRport = 9101
address = rufus

}

17.6.1 Sample File daemon’s Director record.

Click here to see the full example.

#

Restricted Director, used by tray-monitor to get the

status of the file daemon

#

Director {
Name = rufus-mon
Password = "FYpq4yyI1ly562EMS35bA0JOQCOM2L3t5cZ0bxT3XQxgxppTn"
Monitor = yes

}

249

250 CHAPTER 17. MONITOR CONFIGURATION

17.6.2 Sample Storage daemon’s Director record.

Click [here to see the full example.|

#

Restricted Director, used by tray-monitor to get the

status of the storage daemon

#

Director {
Name = rufus-mon
Password = "9usxgc307dMbe7 jbD16vOPX1hD64UVasIDDODH2WAujcDsc6"
Monitor = yes

}

17.6.3 Sample Director’s Console record.

Click here to see the full example.|

#
Restricted console used by tray-monitor to get the status of the director
#
Console {
Name = Monitor
Password = "GNOuRo7PTUm1MbqrJ2Gri1pOfkOHQJTxwnFyE4WSST3MWZseR"
CommandACL = status, .status

}

Chapter 18

Bacula Console

The Bacula Console (sometimes called the User Agent) is a program that
allows the user or the System Administrator, to interact with the Bacula
Director daemon while the daemon is running.

The current Bacula Console comes in two versions: a shell interface (TTY
style), and a GNOME GUI interface. Both permit the administrator or
authorized users to interact with Bacula. You can determine the status of
a particular job, examine the contents of the Catalog as well as perform
certain tape manipulations with the Console program.

In addition, there is a bwx-console built with wxWidgets that allows a
graphic restore of files. As of version 1.34.1 it is in an early stage of de-
velopment, but it already is quite useful. Unfortunately, it has not been
enhanced for some time now.

Since the Console program interacts with the Director through the network,
your Console and Director programs do not necessarily need to run on the
same machine.

In fact, a certain minimal knowledge of the Console program is needed in
order for Bacula to be able to write on more than one tape, because when
Bacula requests a new tape, it waits until the user, via the Console program,
indicates that the new tape is mounted.

251

252 CHAPTER 18. BACULA CONSOLE

18.1 Console Configuration

When the Console starts, it reads a standard Bacula configuration file named
bconsole.conf or bgnome-console.conf in the case of the GNOME Con-
sole version. This file allows default configuration of the Console, and
at the current time, the only Resource Record defined is the Director re-
source, which gives the Console the name and address of the Director. For
more information on configuration of the Console program, please see the
‘Console Configuration File Chapter of this document.

18.2 Running the Console Program
The console program can be run with the following options:

Usage: bconsole [-s] [-c config_file] [-d debug_levell
-c <file> set configuration file to file

-dnn set debug level to nn

-n no conio

-s no signals

-t test - read configuration and exit
-7 print this message.

After launching the Console program (bconsole), it will prompt you for the
next command with an asterisk (*). (Note, in the GNOME version, the
prompt is not present; you simply enter the commands you want in the
command text box at the bottom of the screen.) Generally, for all com-
mands, you can simply enter the command name and the Console program
will prompt you for the necessary arguments. Alternatively, in most cases,
you may enter the command followed by arguments. The general format is:

<command> <keywordl>[=<argument1>] <keyword2>[=<argument2>] ...

where command is one of the commands listed below; keyword is one of
the keywords listed below (usually followed by an argument); and argument
is the value. The command may be abbreviated to the shortest unique
form. If two commands have the same starting letters, the one that will be
selected is the one that appears first in the help listing. If you want the
second command, simply spell out the full command. None of the keywords
following the command may be abbreviated.

For example:

18.3. STOPPING THE CONSOLE PROGRAM 253

list files jobid=23
will list all files saved for Jobld 23. Or:

show pools

will display all the Pool resource records.

The maximum command line length is limited to 511 characters, so if you
are scripting the console, you may need to take some care to limit the line
length.

18.3 Stopping the Console Program

Normally, you simply enter quit or exit and the Console program will ter-
minate. However, it waits until the Director acknowledges the command. If
the Director is already doing a lengthy command (e.g. prune), it may take
some time. If you want to immediately terminate the Console program,
enter the .quit command.

There is currently no way to interrupt a Console command once issued (i.e.
Ctrl-C does not work). However, if you are at a prompt that is asking you to
select one of several possibilities and you would like to abort the command,
you can enter a period (.), and in most cases, you will either be returned
to the main command prompt or if appropriate the previous prompt (in the
case of nested prompts). In a few places such as where it is asking for a
Volume name, the period will be taken to be the Volume name. In that
case, you will most likely be able to cancel at the next prompt.

18.4 Alphabetic List of Console Keywords

Unless otherwise specified, each of the following keywords takes an argument,
which is specified after the keyword following an equal sign. For example:

jobid=536

Please note, this list is incomplete as it is currently in the process of being
created and is not currently totally in alphabetic order ...

254 CHAPTER 18. BACULA CONSOLE
restart Permitted on the python command, and causes the Python inter-
preter to be restarted. Takes no argument.

all Permitted on the status and show commands to specify all components
or resources respectively.

allfrompool Permitted on the update command to specify that all Volumes
in the pool (specified on the command line) should be updated.

allfrompools Permitted on the update command to specify that all Vol-
umes in all pools should be updated.

before Used in the restore command.
bootstrap Used in the restore command.

catalog Allowed in the use command to specify the catalog name to be
used.

catalogs Used in the show command. Takes no arguments.

client — fd

clients Used in the show, list, and llist commands. Takes no arguments.
counters Used in the show command. Takes no arguments.

current Used in the restore command. Takes no argument.

days Used to define the number of days the ”list nextvol” command should
consider when looking for jobs to be run. The days keyword can also be
used on the ”status dir” command so that it will display jobs scheduled
for the number of days you want.

devices Used in the show command. Takes no arguments.
dir — director
directors Used in the show command. Takes no arguments.

directory Used in the restore command. Its argument specifies the direc-
tory to be restored.

enabled This keyword can appear on the update volume as well as the
update slots commands, and can allows one of the following argu-
ments: yes, true, no, false, archived, 0, 1, 2. Where 0 corresponds to
no or false, 1 corresponds to yes or true, and 2 corresponds to archived.
Archived volumes will not be used, nor will the Media record in the
catalog be pruned. Volumes that are not enabled, will not be used for
backup or restore.

18.4. ALPHABETIC LIST OF CONSOLE KEYWORDS

done Used in the restore command. Takes no argument.

file Used in the restore command.

files Used in the list and 1list commands. Takes no arguments.
fileset

filesets Used in the show command. Takes no arguments.

help Used in the show command. Takes no arguments.

jobs Used in the show, list and llist commands. Takes no arguments.

jobmedia Used in the list and llist commands. Takes no arguments.

jobtotals Used in the list and llist commands. Takes no arguments.

255

jobid The Jobld is the numeric jobid that is printed in the Job Report

output. It is the index of the database record for the given job. While
it is unique for all the existing Job records in the catalog database,
the same Jobld can be reused once a Job is removed from the cata-
log. Probably you will refer specific Jobs that ran using their numeric
Jobld.

job — jobname The Job or Jobname keyword refers to the name you

level

specified in the Job resource, and hence it refers to any number of
Jobs that ran. It is typically useful if you want to list all jobs of a
particular name.

listing Permitted on the estimate command. Takes no argument.

limit

messages Used in the show command. Takes no arguments.

media Used in the list and llist commands. Takes no arguments.

nextvol — nextvolume Used in the list and llist commands. Takes no

arguments.

on Takes no keyword.

off Takes no keyword.

pool

pools Used in the show, list, and llist commands. Takes no arguments.

256 CHAPTER 18. BACULA CONSOLE

select Used in the restore command. Takes no argument.
storages Used in the show command. Takes no arguments.
schedules Used in the show command. Takes no arguments.
sd — store — storage

ujobid The ujobid is a unique job identification that is printed in the Job
Report output. At the current time, it consists of the Job name (from
the Name directive for the job) appended with the date and time the
job was run. This keyword is useful if you want to completely identify
the Job instance run.

volume
volumes Used in the list and 1list commands. Takes no arguments.
where Used in the restore command.

yes Used in the restore command. Takes no argument.

18.5 Alphabetic List of Console Commands
The following commands are currently implemented:

add [pool=<pool-name> storage=<storage> jobid=<Jobld>]

This command is used to add Volumes to an existing Pool. That is,
it creates the Volume name in the catalog and inserts into the Pool
in the catalog, but does not attempt to access the physical Volume.
Once added, Bacula expects that Volume to exist and to be labeled.
This command is not normally used since Bacula will automatically
do the equivalent when Volumes are labeled. However, there may be
times when you have removed a Volume from the catalog and want to
later add it back.

Normally, the label command is used rather than this command be-
cause the label command labels the physical media (tape, disk, DVD,
...) and does the equivalent of the add command. The add command
affects only the Catalog and not the physical media (data on Volumes).
The physical media must exist and be labeled before use (usually with
the label command). This command can, however, be useful if you
wish to add a number of Volumes to the Pool that will be physically
labeled at a later time. It can also be useful if you are importing a

18.5. ALPHABETIC LIST OF CONSOLE COMMANDS 257

tape from another site. Please see the label command below for the
list of legal characters in a Volume name.

autodisplay on/off This command accepts on or off as an argument, and
turns auto-display of messages on or off respectively. The default for
the console program is off, which means that you will be notified when
there are console messages pending, but they will not automatically be
displayed. The default for the bgnome-console program is on, which
means that messages will be displayed when they are received (usually
within five seconds of them being generated).

When autodisplay is turned off, you must explicitly retrieve the mes-
sages with the messages command. When autodisplay is turned on,
the messages will be displayed on the console as they are received.

automount on/off This command accepts on or off as the argument, and
turns auto-mounting of the Volume after a label command on or off
respectively. The default is on. If automount is turned off, you must
explicitly mount tape Volumes after a label command to use it.

cancel [jobid=<number> job=<job-name> ujobid=<unique-jobid>]
This command is used to cancel a job and accepts jobid=nnn or
job=xxx as an argument where nnn is replaced by the Jobld and
xxx is replaced by the job name. If you do not specify a keyword,
the Console program will prompt you with the names of all the active
jobs allowing you to choose one.

Once a Job is marked to be canceled, it may take a bit of time (gener-
ally within a minute) before it actually terminates, depending on what
operations it is doing.

create [pool=<pool-name>] This command is not normally used as the
Pool records are automatically created by the Director when it starts
based on what it finds in the conf file. If needed, this command can
be to create a Pool record in the database using the Pool resource
record defined in the Director’s configuration file. So in a sense, this
command simply transfers the information from the Pool resource in
the configuration file into the Catalog. Normally this command is done
automatically for you when the Director starts providing the Pool is
referenced within a Job resource. If you use this command on an
existing Pool, it will automatically update the Catalog to have the
same information as the Pool resource. After creating a Pool, you will
most likely use the label command to label one or more volumes and
add their names to the Media database.

When starting a Job, if Bacula determines that there is no Pool record
in the database, but there is a Pool resource of the appropriate name,

258 CHAPTER 18. BACULA CONSOLE

it will create it for you. If you want the Pool record to appear in
the database immediately, simply use this command to force it to be
created.

delete [volume=<vol-name> pool=<pool-name> job jobid=<id>]
The delete command is used to delete a Volume, Pool or Job record
from the Catalog as well as all associated catalog Volume records that
were created. This command operates only on the Catalog database
and has no effect on the actual data written to a Volume. This
command can be dangerous and we strongly recommend that you do
not use it unless you know what you are doing.

If the keyword Volume appears on the command line, the named
Volume will be deleted from the catalog, if the keyword Pool appears
on the command line, a Pool will be deleted, and if the keyword Job
appears on the command line, a Job and all its associated records (File
and JobMedia) will be deleted from the catalog. The full form of this
command is:

delete pool=<pool-name>

or

delete volume=>volume-name> pool=>pool-name> or
delete JobId=>job-id> JobId=>job-id2> ... or
delete Job Jobld=n,m,o-r,t ...

The first form deletes a Pool record from the catalog database. The
second form deletes a Volume record from the specified pool in the
catalog database. The third form deletes the specified Job record from
the catalog database. The last form deletes Jobld records for Joblds
n, m, o, p, q, r, and t. Where each one of the n,m,... is, of course, a
number. That is a ”delete jobid” accepts lists and ranges of jobids.

disable job<job-name> This command permits you to disable a Job for
automatic scheduling. The job may have been previously enabled
with the Job resource Enabled directive or using the console enable
command. The next time the Director is restarted or the conf file is
reloaded, the Enable/Disable state will be set to the value in the Job
resource (default enabled) as defined in the bacula-dir.conf file.

18.5. ALPHABETIC LIST OF CONSOLE COMMANDS 259

enable job<job-name> This command permits you to enable a Job for
automatic scheduling. The job may have been previously disabled
with the Job resource Enabled directive or using the console disable
command. The next time the Director is restarted or the conf file is
reloaded, the Enable/Disable state will be set to the value in the Job
resource (default enabled) as defined in the bacula-dir.conf file.

estimate Using this command, you can get an idea how many files will
be backed up, or if you are unsure about your Include statements in
your FileSet, you can test them without doing an actual backup. The
default is to assume a Full backup. However, you can override this
by specifying a level=Incremental or level=Differential on the
command line. A Job name must be specified or you will be prompted
for one, and optionally a Client and FileSet may be specified on the
command line. It then contacts the client which computes the number
of files and bytes that would be backed up. Please note that this is an
estimate calculated from the number of blocks in the file rather than
by reading the actual bytes. As such, the estimated backup size will
generally be larger than an actual backup.

Optionally you may specify the keyword listing in which case, all the
files to be backed up will be listed. Note, it could take quite some time
to display them if the backup is large. The full form is:

estimate job=<job-name> listing client=<client-name>
fileset=<fileset—name> level=<level-name>

Specification of the job is sufficient, but you can also override the
client, fileset and/or level by specifying them on the estimate command
line.

As an example, you might do:

Qoutput /tmp/listing
estimate job=NightlySave listing level=Incremental
Qoutput

which will do a full listing of all files to be backed up for the
Job NightlySave during an Incremental save and put it in the file
/tmp/listing. Note, the byte estimate provided by this command is
based on the file size contained in the directory item. This can give
wildly incorrect estimates of the actual storage used if there are sparse
files on your systems. Sparse files are often found on 64 bit systems
for certain system files. The size that is returned is the size Bacula
will backup if the sparse option is not specified in the FileSet. There
is currently no way to get an estimate of the real file size that would
be found should the sparse option be enabled.

260 CHAPTER 18. BACULA CONSOLE

help This command displays the list of commands available.

label This command is used to label physical volumes. The full form of
this command is:

label storage=>storage-name> volume=>volume-name>
slot=>slot>

If you leave out any part, you will be prompted for it. The media
type is automatically taken from the Storage resource definition that
you supply. Once the necessary information is obtained, the Console
program contacts the specified Storage daemon and requests that the
Volume be labeled. If the Volume labeling is successful, the Console
program will create a Volume record in the appropriate Pool.

The Volume name is restricted to letters, numbers, and the special
characters hyphen (-), underscore (_), colon (:), and period (.). All
other characters including a space are invalid. This restriction is to
ensure good readability of Volume names to reduce operator errors.

Please note, when labeling a blank tape, Bacula will get read I/0
error when it attempts to ensure that the tape is not already labeled.
If you wish to avoid getting these messages, please write an EOF mark
on your tape before attempting to label it:

mt rewind
mt weof

The label command can fail for a number of reasons:

1. The Volume name you specify is already in the Volume database.

2. The Storage daemon has a tape or other Volume already mounted
on the device, in which case you must unmount the device, insert
a blank tape, then do the label command.

3. The Volume in the device is already a Bacula labeled Volume.
(Bacula will never relabel a Bacula labeled Volume unless it is
recycled and you use the relabel command).

4. There is no Volume in the drive.

There are two ways to relabel a volume that already has a Bacula
label. The brute force method is to write an end of file mark on the
tape using the system mt program, something like the following:

mt -f /dev/st0 rewind
mt -f /dev/st0 weof

18.5. ALPHABETIC LIST OF CONSOLE COMMANDS 261

For a disk volume, you would manually delete the Volume.

Then you use the label command to add a new label. However, this
could leave traces of the old volume in the catalog.

The preferable method to relabel a Volume is to first purge the vol-
ume, either automatically, or explicitly with the purge command,
then use the relabel command described below.

If your autochanger has barcode labels, you can label all the Volumes
in your autochanger one after another by using the label barcodes
command. For each tape in the changer containing a barcode, Bacula
will mount the tape and then label it with the same name as the
barcode. An appropriate Media record will also be created in the
catalog. Any barcode that begins with the same characters as specified
on the ” CleaningPrefix=xxx" directive in the Director’s Pool resource,
will be treated as a cleaning tape, and will not be labeled. However, an
entry for the cleaning tape will be created in the catalog. For example
with:

Pool {
Name ...
Cleaning Prefix = "CLN"

}

Any slot containing a barcode of CLNxxxx will be treated as a cleaning
tape and will not be mounted. Note, the full form of the command is:

label storage=xxx pool=yyy slots=1-5,10 barcodes

list The list command lists the requested contents of the Catalog. The
various fields of each record are listed on a single line. The various
forms of the list command are:

list jobs

list jobid=<id> (list jobid id)

list ujobid<unique job name> (list job with unique name)
list job=<job-name> (list all jobs with "job-name")
list jobname=<job-name> (same as above)

In the above, you can add "limit=nn" to limit the output to
nn jobs.

list jobmedia

262

CHAPTER 18. BACULA CONSOLE

list jobmedia jobid=<id>

list jobmedia job=<job-name>
list files jobid=<id>

list files job=<job-name>
list pools

list clients

list jobtotals

list volumes

list volumes jobid=<id>

list volumes pool=<pool-name>
list volumes job=<job-name>
list volume=<volume-name>
list nextvolume job=<job-name>
list nextvol job=<job-name>

list nextvol job=<job-name> days=nnn

What most of the above commands do should be more or less obvious.
In general if you do not specify all the command line arguments, the
command will prompt you for what is needed.

The list nextvol command will print the Volume name to be used by
the specified job. You should be aware that exactly what Volume will
be used depends on a lot of factors including the time and what a prior
job will do. It may fill a tape that is not full when you issue this com-
mand. As a consequence, this command will give you a good estimate
of what Volume will be used but not a definitive answer. In addition,
this command may have certain side effect because it runs through the
same algorithm as a job, which means it may automatically purge or
recycle a Volume. By default, the job specified must run within the
next two days or no volume will be found. You can, however, use the
days=nnn specification to specify up to 50 days. For example, if on
Friday, you want to see what Volume will be needed on Monday, for
job MyJob, you would use list nextvol job=MyJob days=3.

If you wish to add specialized commands that list the contents of the
catalog, you can do so by adding them to the query.sql file. However,

18.5. ALPHABETIC LIST OF CONSOLE COMMANDS 263

this takes some knowledge of programming SQL. Please see the query
command below for additional information. See below for listing the
full contents of a catalog record with the 1llist command.

As an example, the command list pools might produce the following

output:

o +- + + —— + ———+
| PoId | Name | NumVols | MaxVols | PoolType | LabelFormat |
et = i pom——— o b — +
| 1 | Default | 0 | 0 | Backup | * |
| 2 | Recycle | 0 | 8 | Backup | File |
et = b pom——— o b — +

As mentioned above, the list command lists what is in the database.
Some things are put into the database immediately when Bacula starts
up, but in general, most things are put in only when they are first used,
which is the case for a Client as with Job records, etc.

Bacula should create a client record in the database the first time you
run a job for that client. Doing a status will not cause a database
record to be created. The client database record will be created
whether or not the job fails, but it must at least start. When the
Client is actually contacted, additional info from the client will be
added to the client record (a ”uname -a” output).

If you want to see what Client resources you have available in your
conf file, you use the Console command show clients.

llist The llist or ”long list” command takes all the same arguments that
the list command described above does. The difference is that the llist
command list the full contents of each database record selected. It
does so by listing the various fields of the record vertically, with one
field per line. It is possible to produce a very large number of output
lines with this command.

If instead of the list pools as in the example above, you enter llist
pools you might get the following output:

PoolId:

Name:

NumVols:

MaxVols:

UseOnce:

UseCatalog:

AcceptAnyVolume:

VolRetention: 1,296,000

VolUseDuration: 86,400

MaxVolJobs: 0O
MaxVolBytes: O

efault

R 2 O O O U~

264 CHAPTER 18. BACULA CONSOLE
AutoPrune: 0
Recycle: 1
PoolType: Backup
LabelFormat: *
PoollId: 2
Name: Recycle
NumVols: O
MaxVols: 8
UseOnce: 0
UseCatalog: 1
AcceptAnyVolume: 1
VolRetention: 3,600
VolUseDuration: 3,600
MaxVolJobs: 1
MaxVolBytes: O
AutoPrune: 0O
Recycle: 1
PoolType: Backup
LabelFormat: File

messages This command causes any pending console messages to be im-
mediately displayed.

mount The mount command is used to get Bacula to read a volume on

a physical device. It is a way to tell Bacula that you have mounted
a tape and that Bacula should examine the tape. This command is
normally used only after there was no Volume in a drive and Bacula
requests you to mount a new Volume or when you have specifically
unmounted a Volume with the unmount console command, which
causes Bacula to close the drive. If you have an autoloader, the mount
command will not cause Bacula to operate the autoloader unless you
specify a slot and possibly a drive. The various forms of the mount
command are:

mount storage=<storage-name> [slot=<num> | [drive=<num>]
mount [jobid=<id> — job=<job-name> |

If you have specified Automatic Mount = yes in the Storage dae-
mon’s Device resource, under most circumstances, Bacula will auto-
matically access the Volume unless you have explicitly unmounted it
in the Console program.

python The python command takes a single argument restart:

python restart

This causes the Python interpreter in the Director to be reinitialized.
This can be helpful for testing because once the Director starts and
the Python interpreter is initialized, there is no other way to make it

18.5. ALPHABETIC LIST OF CONSOLE COMMANDS 265

accept any changes to the startup script DirStartUp.py. For more
details on Python scripting, please see the Python Scripting| chapter
of this manual.

prune The Prune command allows you to safely remove expired database
records from Jobs and Volumes. This command works only on the
Catalog database and does not affect data written to Volumes. In all
cases, the Prune command applies a retention period to the specified
records. You can Prune expired File entries from Job records; you can
Prune expired Job records from the database, and you can Prune both
expired Job and File records from specified Volumes.

prune files—jobs—volume client=<client-name> volume=<volume-
name>

For a Volume to be pruned, the VolStatus must be Full, Used, or
Append, otherwise the pruning will not take place.

purge The Purge command will delete associated Catalog database records
from Jobs and Volumes without considering the retention period.
Purge works only on the Catalog database and does not affect data
written to Volumes. This command can be dangerous because you can
delete catalog records associated with current backups of files, and we
recommend that you do not use it unless you know what you are doing.
The permitted forms of purge are:

purge files jobid=<jobid>—job=<job-name>—client=<client-
name>

purge jobs client=<client-name> (of all jobs)
purge volume—volume=<vol-name> (of all jobs)

For the purge command to work on Volume Catalog database records
the VolStatus must be Append, Full, Used, or Error.

The actual data written to the Volume will be unaffected by this com-
mand.

relabel This command is used to label physical volumes. The full form of
this command is:

relabel storage=<storage-name> oldvolume=<old-volume-name>
volume=<newvolume-name>

If you leave out any part, you will be prompted for it. In order for the
Volume (old-volume-name) to be relabeled, it must be in the catalog,
and the volume status must be marked Purged or Recycle. This
happens automatically as a result of applying retention periods, or
you may explicitly purge the volume using the purge command.

266 CHAPTER 18. BACULA CONSOLE

Once the volume is physically relabeled, the old data previously writ-
ten on the Volume is lost and cannot be recovered.

release This command is used to cause the Storage daemon to rewind (re-
lease) the current tape in the drive, and to re-read the Volume label
the next time the tape is used.

release storage=<storage-name>

After a release command, the device is still kept open by Bacula (unless
Always Open is set to No in the Storage Daemon’s configuration) so it
cannot be used by another program. However, with some tape drives,
the operator can remove the current tape and to insert a different one,
and when the next Job starts, Bacula will know to re-read the tape
label to find out what tape is mounted. If you want to be able to use
the drive with another program (e.g. mt), you must use the unmount
command to cause Bacula to completely release (close) the device.

reload The reload command causes the Director to re-read its configuration
file and apply the new values. The new values will take effect imme-
diately for all new jobs. However, if you change schedules, be aware
that the scheduler pre-schedules jobs up to two hours in advance, so
any changes that are to take place during the next two hours may be
delayed. Jobs that have already been scheduled to run (i.e. surpassed
their requested start time) will continue with the old values. New jobs
will use the new values. Each time you issue a reload command while
jobs are running, the prior config values will queued until all jobs that
were running before issuing the reload terminate, at which time the
old config values will be released from memory. The Directory per-
mits keeping up to ten prior set of configurations before it will refuse
a reload command. Once at least one old set of config values has been
released it will again accept new reload commands.

While it is possible to reload the Director’s configuration on the fly,
even while jobs are executing, this is a complex operation and not
without side effects. Accordingly, if you have to reload the Director’s
configuration while Bacula is running, it is advisable to restart the
Director at the next convenient opportunity.

restore The restore command allows you to select one or more Jobs (Jo-
blds) to be restored using various methods. Once the Joblds are se-
lected, the File records for those Jobs are placed in an internal Bacula
directory tree, and the restore enters a file selection mode that allows
you to interactively walk up and down the file tree selecting individual
files to be restored. This mode is somewhat similar to the standard
Unix restore program’s interactive file selection mode.

18.5. ALPHABETIC LIST OF CONSOLE COMMANDS 267

restore storage=<storage-name> client=<backup-client-name>
where=<path> pool=<pool-name> fileset=<fileset-name>
restoreclient=<restore-client-name> select current all done

Where current, if specified, tells the restore command to automati-
cally select a restore to the most current backup. If not specified, you
will be prompted. The all specification tells the restore command to
restore all files. If it is not specified, you will be prompted for the
files to restore. For details of the restore command, please see the
Restore Chapter|of this manual.

The client keyword initially specifies the client from which the backup
was made and the client to which the restore will be make. However,
if the restoreclient keyword is specified, then the restore is written to
that client.

run This command allows you to schedule jobs to be run immediately. The
full form of the command is:

run job=<job-name> client=<client-name> fileset=<FileSet-name>
level=<level-keyword> storage=<storage-name> where=<directory-
prefix> when=<universal-time-specification> yes

Any information that is needed but not specified will be listed for
selection, and before starting the job, you will be prompted to accept,
reject, or modify the parameters of the job to be run, unless you have
specified yes, in which case the job will be immediately sent to the
scheduler.

On my system, when I enter a run command, I get the following
prompt:

A job name must be specified.

The defined Job resources are:
1: Matou

Polymatou

Rufus

Minimatou

Minou

PmatouVerify

MatouVerify

RufusVerify

Watchdog

Select Job resource (1-9):

© 00N O WN

If T then select number 5, I am prompted with:

Run Backup job
JobName: Minou

268

CHAPTER 18. BACULA CONSOLE

FileSet: Minou Full Set

Level: Incremental

Client: Minou

Storage: DLTDrive

Pool: Default

When: 2003-04-23 17:08:18

0K to run? (yes/mod/no):

If I now enter yes, the Job will be run. If I enter mod, I will be
presented with the following prompt.

Parameters to modify:
1: Level
Storage
Job
FileSet
Client
When
7: Pool
Select parameter to modify (1-7):

OO WN

If you wish to start a job at a later time, you can do so by setting the
When time. Use the mod option and select When (no. 6). Then
enter the desired start time in YYYY-MM-DD HH:MM:SS format.

setdebug This command is used to set the debug level in each daemon.

The form of this command is:

setdebug level=nn [trace=0/1 client=<client-name> — dir — director
— storage=<storage-name> — all]

If trace=1 is set, then tracing will be enabled, and the daemon will
be placed in trace mode, which means that all debug output as set
by the debug level will be directed to the file bacula.trace in the
current directory of the daemon. Normally, tracing is needed only for
Win32 clients where the debug output cannot be written to a terminal
or redirected to a file. When tracing, each debug output message is
appended to the trace file. You must explicitly delete the file when
you are done.

show The show command will list the Director’s resource records as de-

fined in the Director’s configuration file (normally bacula-dir.conf).
This command is used mainly for debugging purposes by developers.
The following keywords are accepted on the show command line: cata-
logs, clients, counters, devices