
Ejabberd Installation and Operation Guide

Alexey Shchepin
mailto:alexey@sevcom.net

xmpp:aleksey@jabber.ru

April 18, 2005

1

mailto:alexey@sevcom.net
xmpp:aleksey@jabber.ru


Contents

1



1 Introduction

ejabberd is a Free and Open Source fault-tolerant distributed Jabber server. It is written mostly
in Erlang.

The main features of ejabberd are:

• Works on most of popular platforms: *nix (tested on Linux, FreeBSD and NetBSD) and
Win32

• Distributed: You can run ejabberd on a cluster of machines to let all of them serve one
Jabber domain.

• Fault-tolerance: You can setup an ejabberd cluster so that all the information required for
a properly working service will be stored permanently on more than one node. This means
that if one of the nodes crashes, then the others will continue working without disruption.
You can also add or replace nodes “on the fly”.

• Support for virtual hosting

• Built-in Multi-User Chat1 service

• Built-in IRC transport

• Built-in Publish-Subscribe2 service

• Built-in Jabber Users Directory service based on users vCards

• Built-in web-based administration interface

• Built-in HTTP Polling3 service

• SSL support

• Support for LDAP authentication

• Ability to interface with external components (JIT, MSN-t, Yahoo-t, etc.)

• Migration from jabberd14 is possible

• Mostly XMPP-compliant

• Support for JEP-00304 (Service Discovery).

• Support for JEP-00395 (Statistics Gathering).

• Support for xml:lang

The misfeatures of ejabberd are:

• No support for authentication and STARTTLS in S2S connections

• Access rules can be defined only for global conext, not for specific virtual host
1http://www.jabber.org/jeps/jep-0045.html
2http://www.jabber.org/jeps/jep-0060.html
3http://www.jabber.org/jeps/jep-0025.html
4http://www.jabber.org/jeps/jep-0030.html
5http://www.jabber.org/jeps/jep-0039.html

2

http://www.jabber.org/jeps/jep-0045.html
http://www.jabber.org/jeps/jep-0060.html
http://www.jabber.org/jeps/jep-0025.html
http://www.jabber.org/jeps/jep-0030.html
http://www.jabber.org/jeps/jep-0039.html


2 Installation from Source

2.1 Installation Requirements

2.1.1 Unix

To compile ejabberd, you will need the following packages:

• GNU Make;

• GCC;

• libexpat 1.95 or later;

• Erlang/OTP R8B or later;

• OpenSSL 0.9.6 or later (optional).

2.1.2 Windows

To compile ejabberd in MS Windows environment, you will need the following packages:

• MS Visual C++ 6.0 Compiler

• Erlang/OTP R10B-1a6

• Expat 1.95.77

• Iconv 1.9.18 (optional)

• Shining Light OpenSSL9 (to enable SSL connections)

2.2 Obtaining

Stable ejabberd release can be obtained at http://www.jabberstudio.org/projects/ejabberd/releases/.

The latest alpha version can be retrieved from CVS.

export CVSROOT=:pserver:anonymous@jabberstudio.org:/home/cvs
cvs login
<press Enter when asked for a password>
cvs -z3 co ejabberd

6http://erlang.org/download/otpwin32R10B − 1a.exe
7http://prdownloads.sourceforge.net/expat/expat win32bin 1 95 7.exe?download
8http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.9.1.tar.gz
9http://www.slproweb.com/products/Win32OpenSSL.html

3

http://www.jabberstudio.org/projects/ejabberd/releases/
http://erlang.org/download/otp_win32_R10B-1a.exe
http://prdownloads.sourceforge.net/expat/expat_win32bin_1_95_7.exe?download
http://ftp.gnu.org/pub/gnu/libiconv/libiconv-1.9.1.tar.gz
http://www.slproweb.com/products/Win32OpenSSL.html


2.3 Compilation

2.3.1 Unix

./configure
make
su
make install

This will install ejabberd to /var/lib/ejabberd directory, ejabberd.cfg to /etc/ejabberd
directory and create /var/log/ejabberd directory for log files.

2.3.2 Windows

• Install Erlang emulator (for example, into C:\Program Files\erl5.3).

• Install Expat library into C:\Program Files\Expat-1.95.7 directory.

Copy file C:\Program Files\Expat-1.95.7\Libs\libexpat.dll to your Windows sys-
tem directory (for example, C:\WINNT or C:\WINNT\System32)

• Build and install Iconv library into C:\Program Files\iconv-1.9.1 directory.

Copy file C:\Program Files\iconv-1.9.1\bin\iconv.dll to your Windows system di-
rectory.

Note: Instead of copying libexpat.dll and iconv.dll to Windows directory, you can add direc-
tories C:\Program Files\Expat-1.95.7\Libs and C:\Program Files\iconv-1.9.1\bin
to PATH environment variable.

• Being in ejabberd\src directory run:

configure.bat
nmake -f Makefile.win32

• Edit file ejabberd\src\ejabberd.cfg and run

werl -s ejabberd -name ejabberd

2.4 Starting

To start ejabberd, use the following command:

erl -pa /var/lib/ejabberd/ebin -name ejabberd -s ejabberd

or

erl -pa /var/lib/ejabberd/ebin -sname ejabberd -s ejabberd

4



In the latter case Erlang node will be identified using only first part of host name, i. e. other
Erlang nodes outside this domain can’t contact this node.

Note that when using above command ejabberd will search for config file in current directory
and will use current directory for storing user database and logging.

To specify path to config file, log files and Mnesia database directory, you may use the following
command:

erl -pa /var/lib/ejabberd/ebin \
-sname ejabberd \
-s ejabberd \
-ejabberd config \"/etc/ejabberd/ejabberd.cfg\" \

log_path \"/var/log/ejabberd/ejabberd.log\" \
-sasl sasl_error_logger \{file,\"/var/log/ejabberd/sasl.log\"\} \
-mnesia dir \"/var/lib/ejabberd/spool\"

You can find other useful options in Erlang manual page (erl -man erl).

To use more than 1024 connections, you should set environment variable ERL_MAX_PORTS:

export ERL_MAX_PORTS=32000

Note that with this value ejabberd will use more memory (approximately 6MB more).

To reduce memory usage, you may set environment variable ERL_FULLSWEEP_AFTER:

export ERL_FULLSWEEP_AFTER=0

But in this case ejabberd can start to work slower.

3 Configuration

3.1 Initial Configuration

The configuration file is initially loaded the first time ejabberd is executed, when it is parsed
and stored in a database. Subsequently the configuration is loaded from the database and any
commands in the configuration file are appended to the entries in the database. The configuration
file consists of a sequence of Erlang terms. Parts of lines after ‘%’ sign are ignored. Each term
is tuple, where first element is name of option, and other are option values. E. g. if this file does
not contain a “host” definition, then old value stored in the database will be used.

To override old values stored in the database the following lines can be added in config:

override_global.
override_local.
override_acls.

5



With this lines old global or local options or ACLs will be removed before adding new ones.

3.1.1 Host Names

Option hosts defines a list of Jabber domains that ejabberd serves. E. g. to serve example.org
and example.com domains add the following line in the config:

{hosts, ["example.org", "example.com"]}.

Option host defines one Jabber domain that ejabberd serves. E. g. to serve only example.org
domain add the following line in the config:

{host, "example.org"}.

It have the same effect as

{hosts, ["example.org"]}.

3.1.2 Default Language

Option language defines default language of ejabberd messages, sent to users. Default value is
"en". In order to take effect there must be a translation file <language>.msg in ejabberd msgs
directory. E. g. to use Russian as default language add the following line in the config:

{language, "ru"}.

3.1.3 Access Rules

Access control in ejabberd is performed via Access Control Lists (ACL). The declarations of
ACL in config file have following syntax:

{acl, <aclname>, {<acltype>, ...}}.

<acltype> can be one of following:

all Matches all JIDs. Example:

{acl, all, all}.

{user, <username>} Matches user with name <username> at the first virtual host. Example:

{acl, admin, {user, "aleksey"}}.

6



{user, <username>, <server>} Matches user with JID <username>@<server> and any re-
source. Example:

{acl, admin, {user, "aleksey", "jabber.ru"}}.

{server, <server>} Matches any JID from server <server>. Example:

{acl, jabberorg, {server, "jabber.org"}}.

{user regexp, <regexp>} Matches local user with name that matches <regexp> at the first
virtual host. Example:

{acl, tests, {user, "^test[0-9]*$"}}.

{user regexp, <regexp>, <server>} Matches user with name that matches <regexp> and
from server <server>. Example:

{acl, tests, {user, "^test", "localhost"}}.

{server regexp, <regexp>} Matches any JID from server that matches <regexp>. Example:

{acl, icq, {server, "^icq\\."}}.

{node regexp, <user regexp>, <server regexp>} Matches user with name that matches <user regexp>
and from server that matches <server regexp>. Example:

{acl, aleksey, {node_regexp, "^aleksey$", "^jabber.(ru|org)$"}}.

{user glob, <glob>}

{user glob, <glob>, <server>}

{server glob, <glob>}

{node glob, <user glob>, <server glob>} This is same as above, but uses shell glob patterns
instead of regexp. These patterns can have following special characters:

* matches any string including the null string.

? matches any single character.

[...] matches any of the enclosed characters. Character ranges are specified by a pair
of characters separated by a ‘-’. If the first character after ‘[’ is a ‘!’, then any
character not enclosed is matched.

The following ACLs are pre-defined:

all Matches all JIDs.

none Matches none JIDs.

An entry allowing or denying access to different services would look similar to this:

7



{access, <accessname>, [{allow, <aclname>},
{deny, <aclname>},
...
]}.

When a JID is checked to have access to <accessname>, the server sequentially checks if this
JID mathes one of the ACLs that are second elements in each tuple in list. If it is matched, then
the first element of matched tuple is returned else “deny” is returned.

Example:

{access, configure, [{allow, admin}]}.
{access, something, [{deny, badmans},

{allow, all}]}.

Following access rules pre-defined:

all Always returns “allow”

none Always returns “deny”

3.1.4 Shapers Configuration

With shapers is possible to bound connection traffic. The declarations of shapers in config file
have following syntax:

{shaper, <shapername>, <kind>}.

Currently implemented only one kind of shaper: maxrate. It have following syntax:

{maxrate, <rate>}

where <rate> means maximum allowed incomig rate in bytes/second. E. g. to define shaper with
name “normal” and maximum allowed rate 1000 bytes/s, add following line in config:

{shaper, normal, {maxrate, 1000}}.

3.1.5 Listened Sockets

Option listen defines list of listened sockets and what services runned on them. Each element
of list is a tuple with following elements:

• Port number;

8



• Module that serves this port;

• Options to this module.

Currently these modules are implemented:

ejabberd c2s This module serves C2S connections.

The following options are defined:

{access, <access rule>} This option defines access of users to this C2S port. Default
value is “all”.

{shaper, <access rule>} This option is like previous, but use shapers instead of “allow”
and “deny”. Default value is “none”.

{ip, IPAddress} This option specifies which network interface to listen on. For example
{ip, {192, 168, 1, 1}}.

inet6 Set up the socket for IPv6.

starttls This option specifies that STARTTLS extension is available on connections to
this port. You should also set “certfile” option.

tls This option specifies that traffic on this port will be encrypted using SSL immediately
after connecting. You should also set “certfile” option.

ssl This option specifies that traffic on this port will be encrypted using SSL. You should
also set “certfile” option. It is recommended to use tls option instead.

{certfile, Path} Path to a file containing the SSL certificate.

ejabberd s2s in This module serves incoming S2S connections.

ejabberd service This module serves connections from Jabber services (i. e. that use the jabber:component:accept
namespace).

The following additional options are defined for ejabberd service (options access, shaper,
ip, inet6 are still valid):

{host, Hostname, [HostOptions]} This option defines hostname of connected service
and allows to specify additional options, e. g. {password, Secret}.

{hosts, [Hostnames], [HostOptions]} The same as above, but allows to specify several
hostnames.

ejabberd http This module serves incoming HTTP connections.

The following options are defined:

http poll This option enables HTTP Polling10 support. It is available then at http://server:port/http-poll/.

web admin This option enables web-based interface for ejabberd administration which is
available at http://server:port/admin/, login and password should be equal to
username and password of one of registered users who have permission defined in
“configure” access rule.

For example, the following configuration defines that:
10http://www.jabber.org/jeps/jep-0025.html

9

http://www.jabber.org/jeps/jep-0025.html


• C2S connections are listened on port 5222 and 5223 (SSL) and denied for user “bad”

• S2S connections are listened on port 5269

• HTTP connections are listened on port 5280 and administration interface and HTTP
Polling support are enabled

• All users except admins have traffic limit 1000 B/s

• AIM transport aim.example.org is connected to port 5233 with password “aimsecret”

• JIT transports icq.example.org and sms.example.org are connected to port 5234 with
password “jitsecret”

• MSN transport msn.example.org is connected to port 5235 with password “msnsecret”

• Yahoo! transport yahoo.example.org is connected to port 5236 with password “yahoosecret”

• Gadu-Gadu transport gg.example.org is connected to port 5237 with password “ggsecret”

• ILE service ile.example.org is connected to port 5238 with password “ilesecret”

{acl, blocked, {user, "bad"}}.
{access, c2s, [{deny, blocked},

{allow, all}]}.
{shaper, normal, {maxrate, 1000}}.
{access, c2s_shaper, [{none, admin},

{normal, all}]}.
{listen,
[{5222, ejabberd_c2s, [{access, c2s}, {shaper, c2s_shaper}]},
{5223, ejabberd_c2s, [{access, c2s},

ssl, {certfile, "/path/to/ssl.pem"}]},
{5269, ejabberd_s2s_in, []},
{5280, ejabberd_http, [http_poll, web_admin]},
{5233, ejabberd_service, [{host, "aim.example.org",

[{password, "aimsecret"}]}]},
{5234, ejabberd_service, [{hosts, ["icq.example.org", "sms.example.org"],

[{password, "jitsecret"}]}]},
{5235, ejabberd_service, [{host, "msn.example.org",

[{password, "msnsecret"}]}]},
{5236, ejabberd_service, [{host, "yahoo.example.org",

[{password, "yahoosecret"}]}]},
{5237, ejabberd_service, [{host, "gg.example.org",

[{password, "ggsecret"}]}]},
{5238, ejabberd_service, [{host, "ile.example.org",

[{password, "ilesecret"}]}]}
]
}.

Note, that for jabberd14- or wpjabberd-based services you have to make the transports log and
do XDB by themselves:

10



<!--
You have to add elogger and rlogger entries here when using ejabberd.
In this case the transport will do the logging.

-->

<log id=’logger’>
<host/>
<logtype/>
<format>%d: [%t] (%h): %s</format>
<file>/var/log/jabber/service.log</file>

</log>

<!--
Some Jabber server implementations do not provide
XDB services (for example jabberd 2.0 and ejabberd).
xdb_file_so is loaded in to handle all XDB requests.

-->

<xdb id="xdb">
<host/>
<load>
<!-- this is a lib of wpjabber or jabberd -->
<xdb_file>/usr/lib/jabber/xdb_file.so</xdb_file>
</load>

<xdb_file xmlns="jabber:config:xdb_file">
<spool><jabberd:cmdline flag=’s’>/var/spool/jabber</jabberd:cmdline></spool>

</xdb_file>
</xdb>

3.1.6 Modules

Option modules defines the list of modules that will be loaded after ejabberd startup. Each list
element is a tuple where first element is a name of a module and second is list of options to this
module. See section ?? for detailed information on each module.

Example:

{modules,
[{mod_register, []},
{mod_roster, []},
{mod_privacy, []},
{mod_configure, []},
{mod_disco, []},
{mod_stats, []},
{mod_vcard, []},
{mod_offline, []},
{mod_announce, [{access, announce}]},
{mod_echo, [{host, "echo.localhost"}]},

11



{mod_private, []},
{mod_irc, []},
{mod_muc, []},
{mod_pubsub, []},
{mod_time, [{iqdisc, no_queue}]},
{mod_last, []},
{mod_version, []}

]}.

3.2 Online Configuration and Monitoring

3.2.1 Web-based Administration Interface

To perform online reconfiguration of ejabberd you need to enable ejabberd http listener with
option web admin (see section ??). After that you can open URL http://server:port/admin/
with you favorite web-browser and enter username and password of an ejabberd user with
administrator rights. E. g. with such config:

...
{host, "example.org"}.
...
{listen,
[...
{5280, ejabberd_http, [web_admin]},
...

]
}.

you should enter URL http://example.org:5280/admin/. After authentication you should see
something like in figure ??. Here you can edit access restrictions, manage users, create backup
files, manage DB, enable/disable listened ports, and view statistics.

3.2.2 ejabberdctl tool

It is possible to do some administration operations using ejabberdctl command-line tool. You
can check available options running this command without arguments:

% ejabberdctl
Usage: ejabberdctl node command

Available commands:
stop stop ejabberd
restart restart ejabberd
reopen-log reopen log file
register user password register a user

12



Figure 1: Web-administration top page

unregister user unregister a user
backup file store a database backup in file
restore file restore a database backup from file
install-fallback file install a database fallback from file
dump file dump a database in a text file
load file restore a database from a text file
registered-users list all registered users

Example:
ejabberdctl ejabberd@host restart

4 Clustering

4.1 How it works

A Jabber domain is served by one or more ejabberd nodes. These nodes can be runned on
different machines that are connected via a network. They all must have the ability to connect
to port 4369 of all another nodes, and must have the same magic cookie (see Erlang/OTP
documentation, in other words the file ~ejabberd/.erlang.cookie must be the same on all
nodes). This is needed because all nodes exchange information about connected users, S2S
connections, registered services, etc. . .

Each ejabberd node have following modules:

• router;

13



• local router.

• session manager;

• S2S manager;

4.1.1 Router

This module is the main router of Jabber packets on each node. It routes them based on their
destinations domains. It uses a global routing table. A domain of packet destination is searched
in the routing table, and if it is found, then the packet is routed to appropriate process. If no,
then it is sent to the S2S manager.

4.1.2 Local Router

This module routes packets which have a destination domain equal to this server name. If
destination JID has a non-empty user part, then it is routed to the session manager, else it is
processed depending on its content.

4.1.3 Session Manager

This module routes packets to local users. It searches to what user resource a packet must be
sent via a presence table. Then packet is either routed to appropriate C2S process, or stored in
offline storage, or bounced back.

4.1.4 S2S Manager

This module routes packets to other Jabber servers. First, it checks if an opened S2S connection
from the domain of the packet source to the domain of packet destination is existing. If it is
existing, then the S2S manager routes the packet to the process serving this connection, else a
new connection is opened.

4.2 How to setup ejabberd cluster

Suppose you already setuped ejabberd on one of machines (first), and you need to setup another
one to make ejabberd cluster. Then do following steps:

1. Copy ~ejabberd/.erlang.cookie file from first to second.

(alt) You can also add “-cookie content_of_.erlang.cookie” option to all “erl” com-
mands below.

2. On second run under ‘ejabberd’ user in a directory where ejabberd will work later the
following command:

14



erl -sname ejabberd \
-mnesia extra_db_nodes "[’ejabberd@first’]" \
-s mnesia

This will start mnesia serving same DB as ejabberd@first. You can check this running
“mnesia:info().” command. You should see a lot of remote tables and a line like the
following:

running db nodes = [ejabberd@first, ejabberd@second]

3. Now run the following in the same “erl” session:

mnesia:change_table_copy_type(schema, node(), disc_copies).

This will create local disc storage for DB.

(alt) Change storage type of ‘scheme’ table to “RAM and disc copy” on second node via
web interface.

4. Now you can add replicas of various tables to this node with “mnesia:add_table_copy” or
“mnesia:change_table_copy_type” as above (just replace “schema” with another table
name and “disc_copies” can be replaced with “ram_copies” or “disc_only_copies”).

What tables to replicate is very depend on your needs, you can get some hints from
“mnesia:info().” command, by looking at size of tables and default storage type for
each table on ’first’.

Replicating of table makes lookup in this table faster on this node, but writing will be
slower. And of course if machine with one of replicas is down, other replicas will be used.

Also section “5.3 Table Fragmentation” here11 can be useful.

(alt) Same as in previous item, but for other tables.

5. Run “init:stop().” or just “q().” to exit from erlang shell. This probably can take
some time if mnesia is not yet transfer and process all data it needed from first.

6. Now run ejabberd on second with almost the same config as on first (you probably don’t
need to duplicate “acl” and “access” options — they will be taken from first, and
mod_muc and mod_irc should be enabled only on one machine in cluster).

You can repeat these steps for other machines supposed to serve this domain.

A Built-in Modules

A.1 Common Options

The following options are used by many modules, so they are described in separate section.
11http://www.erlang.se/doc/doc-5.4/lib/mnesia-4.2/doc/html/index.html

15

http://www.erlang.se/doc/doc-5.4/lib/mnesia-4.2/doc/html/index.html


A.1.1 iqdisc

Many modules define handlers for processing IQ queries of different namespaces to this server or
to user (e. g. to example.org or to user@example.org). This option defines processing discipline
of these queries. Possible values are:

no queue All queries of namespace with this processing discipline processed immediately. This
also means that no other packets can be processed until finished this. Hence this discipline
is not recommended if processing of query can take relatively long time.

one queue In this case created separate queue for processing of IQ queries of namespace with
this discipline, and processing of this queue is done in parallel with processing of other
packets. This discipline is most recommended.

parallel In this case for all packets with this discipline spawned separate Erlang process, so all
these packets processed in parallel. Although spawning of Erlang process have relatively
low cost, this can broke server normal work, because Erlang emulator have limit on number
of processes (32000 by default).

Example:

{modules,
[
...
{mod_time, [{iqdisc, no_queue}]},
...

]}.

A.1.2 host

This option explicitly defines hostname for the module which acts as a service.

Example:

{modules,
[
...
{mod_echo, [{host, "echo.example.org"}]},
...

]}.

A.1.3 hosts

This option explicitly defines a list of hostnames for the module which acts as a service.

Example:

16



{modules,
[
...
{mod_echo, [{hosts, ["echo.example.org", "echo.example.com"]}]},
...

]}.

A.2 mod announce

This module adds support for broadcast announce messages and MOTD. When the module is
loaded, it handles messages sent to the following JID’s (suppose that main server has address
example.org):

example.org/announce/all Message is sent to all registered users at example.org. If the user
is online and connected to several resources, only resource with the highest priority will
receive the message. If the registered user is not connected, the message will be stored
offline (if oflline storage is available).

example.org/announce/online Message is sent to all connected users at example.org. If the
user is online and connected to several resources, all resources will receive the message.

example.org/announce/all-hosts/online Message is sent to all connected users at every vir-
tual host. If the user is online and connected to several resources, all resources will receive
the message.

example.org/announce/motd Message is set as MOTD (Message of the Day) and is sent to
users at example.org as they login. In addition the message is sent to all connected users
(similar to announce/online resource).

example.org/announce/motd/update Message is set as MOTD (Message of the Day) and is
sent to users at example.org as they login. The message is not sent to all connected users.

example.org/announce/motd/delete Any message sent to this JID removes existing MOTD.

Options:

access Specifies who is allowed to send announce messages and set MOTD (default value is
none).

Example:

% Only admins can send announcement messages:
{access, announce, [{allow, admin}]}.

{modules,
[
...
{mod_announce, [{access, announce}]},
...

]}.

17



A.3 mod configure

Options:

iqdisc ejabberd:config IQ queries processing discipline (see ??).

A.4 mod disco

This module adds support for JEP-003012 (Service Discovery).

Options:

iqdisc http://jabber.org/protocol/disco#items and http://jabber.org/protocol/disco#info
IQ queries processing discipline (see ??).

extra domains List of domains that will be added to server items reply

Example:

{modules,
[
...
{mod_disco, [{extra_domains, ["jit.example.com",

"etc.example.com"]}]},
...

]}.

A.5 mod echo

This module acts as a service and simply returns to sender any Jabber packet. Module may be
useful for debugging.

Options:

host Defines hostname of the service (see ??).

hosts Defines hostnames of the service (see ??). If neither host nor hosts are not present, then
prefix echo. is added to all ejabberd hostnames.

12http://www.jabber.org/jeps/jep-0030.html

18

http://www.jabber.org/jeps/jep-0030.html


A.6 mod irc

This module implements IRC transport.

Options:

host Defines hostname of the service (see ??).

hosts Defines hostnames of the service (see ??). If neither host nor hosts are not present, then
prefix irc. is added to all ejabberd hostnames.

access Specifies who is allowed to use IRC transport (default value is all).

Example:

{modules,
[
...
{mod_irc, [{access, all}]},
...

]}.

A.7 mod last

This module adds support for JEP-001213 (Last Activity)

Options:

iqdisc jabber:iq:last IQ queries processing discipline (see ??).

A.8 mod muc

This module implements JEP-004514 (Multi-User Chat) service.

Options:

host Defines hostname of the service (see ??).

hosts Defines hostnames of the service (see ??). If neither host nor hosts are not present, then
prefix conference. is added to all ejabberd hostnames.

access Specifies who is allowed to use MUC service (default value is all).

access create Specifies who is allowed to create new rooms at MUC service (default value is
all).

13http://www.jabber.org/jeps/jep-0012.html
14http://www.jabber.org/jeps/jep-0045.html

19

http://www.jabber.org/jeps/jep-0012.html
http://www.jabber.org/jeps/jep-0045.html


access admin Specifies who is allowed to administrate MUC service (default value is none, which
means that only creator may administer her room).

Example:

% Define admin ACL
{acl, admin, {user, "admin"}}

% Define MUC admin access rule
{access, muc_admin, [{allow, admin}]}

{modules,
[
...
{mod_muc, [{access, all},

{access_create, all},
{access_admin, muc_admin}]},

...
]}.

A.9 mod offline

This module implements offline message storage.

A.10 mod privacy

This module implements Privacy Rules as defined in XMPP IM (see http://www.jabber.org/ietf/).

Options:

iqdisc jabber:iq:privacy IQ queries processing discipline (see ??).

A.11 mod private

This module adds support of JEP-004915 (Private XML Storage).

Options:

iqdisc jabber:iq:private IQ queries processing discipline (see ??).

15http://www.jabber.org/jeps/jep-0049.html

20

http://www.jabber.org/ietf/
http://www.jabber.org/jeps/jep-0049.html


A.12 mod pubsub

This module implements JEP-006016 (Publish-Subscribe Service).

Options:

host Defines hostname of the service (see ??).

hosts Defines hostnames of the service (see ??). If neither host nor hosts are not present, then
prefix pubsub. is added to all ejabberd hostnames.

served hosts Specifies which hosts are served by the service. If absent then only main ejabberd
host is served.

Example:

{modules,
[
...
{mod_pubsub, [{served_hosts, ["example.com",

"example.org"]}]}
...

]}.

A.13 mod register

This module adds support for JEP-007717 (In-Band Registration).

Options:

access Specifies rule to restrict registration. If this rule returns “deny” on requested user name,
then registration is not allowed for it. (default value is all, which means no restrictions).

iqdisc jabber:iq:register IQ queries processing discipline (see ??).

Example:

% Deny registration for users with too short name
{acl, shortname, {user_glob, "?"}}.
{acl, shortname, {user_glob, "??"}}.
% Another variant: {acl, shortname, {user_regexp, "^..?$"}}.

{access, register, [{deny, shortname},
{allow, all}]}.

16http://www.jabber.org/jeps/jep-0060.html
17http://www.jabber.org/jeps/jep-0077.html

21

http://www.jabber.org/jeps/jep-0060.html
http://www.jabber.org/jeps/jep-0077.html


{modules,
[
...
{mod_register, [{access, register}]},
...

]}.

A.14 mod roster

This module implements roster management.

Options:

iqdisc jabber:iq:roster IQ queries processing discipline (see ??).

A.15 mod service log

This module adds support for logging of user packets via any jabber service. These packets
encapsulated in ¡route/¿ element and sended to specified services.

Options:

loggers Specifies a list of services which will receive users packets.

Example:

{modules,
[
...
{mod_service_log, [{loggers, ["bandersnatch.example.com"]}]},
...

]}.

A.16 mod stats

This module adds support for JEP-003918 (Statistics Gathering).

Options:

iqdisc http://jabber.org/protocol/stats IQ queries processing discipline (see ??).

18http://www.jabber.org/jeps/jep-0039.html

22

http://www.jabber.org/jeps/jep-0039.html


A.17 mod time

This module answers UTC time on jabber:iq:time queries.

Options:

iqdisc jabber:iq:time IQ queries processing discipline (see ??).

A.18 mod vcard

This module implements simple Jabber User Directory (based on user vCards) and answers
server vCard on vcard-temp queries.

Options:

host Defines hostname of the service (see ??).

hosts Defines hostnames of the service (see ??). If neither host nor hosts are not present, then
prefix vjud. is added to all ejabberd hostnames.

iqdisc vcard-temp IQ queries processing discipline (see ??).

search Specifies whether search is enabled (value is true, default) or disabled (value is false)
by the service. If search is set to false, option host is ignored and service does not
appear in Jabber Discovery items.

matches Limits the number of reported search results. If value is set to infinity then all search
results are reported. Default value is 30.

allow return all Specifies whether search with empty input fields can return all known users.
Default is false.

search all hosts If set in true then search returns matched items at all virtual hosts. Other-
wise only current host items are returned. Default is true.

Example:

{modules,
[
...
{mod_vcard, [{search, true},

{matches, 20},
{allow_return_all, true},
{search_all_hosts, false}]}

...
]}.

23



A.19 mod version

This module answers ejabberd version on jabber:iq:version queries.

Options:

iqdisc jabber:iq:version IQ queries processing discipline (see ??).

B I18n/L10n

All built-in modules support xml:lang attribute inside IQ queries. E. g. on figure ?? showed the
reply on the following query:

<iq id=’5’
to=’e.localhost’
type=’get’
xml:lang=’ru’>

<query xmlns=’http://jabber.org/protocol/disco#items’/>
</iq>

Figure 2: Discovery result when xml:lang=’ru’

Also web-interface supports Accept-Language HTTP header (see figure ??, compare it with
figure ??)

24



Figure 3: Web-administration top page with HTTP header “Accept-Language: ru|’’

25


	Introduction
	Installation from Source
	Installation Requirements
	Unix
	Windows

	Obtaining
	Compilation
	Unix
	Windows

	Starting

	Configuration
	Initial Configuration
	Host Names
	Default Language
	Access Rules
	Shapers Configuration
	Listened Sockets
	Modules

	Online Configuration and Monitoring
	Web-based Administration Interface
	ejabberdctl tool


	Clustering
	How it works
	Router
	Local Router
	Session Manager
	S2S Manager

	How to setup ejabberd cluster

	Built-in Modules
	Common Options
	iqdisc
	host
	hosts

	mod_announce
	mod_configure
	mod_disco
	mod_echo
	mod_irc
	mod_last
	mod_muc
	mod_offline
	mod_privacy
	mod_private
	mod_pubsub
	mod_register
	mod_roster
	mod_service_log
	mod_stats
	mod_time
	mod_vcard
	mod_version

	I18n/L10n

