
Menus and Linking

$Revision: 1.8 $

by Jeff Turner

1. Introduction

This document describes Forrest's internal URI space; how it is managed with site.xml,
how menus are generated, and how various link schemes (site:, ext:) work. An overview of
the implementation is also provided.

2. site.xml

site.xml is what we'd call a 'site map' if Cocoon hadn't already claimed that term.
site.xml is a loosely structured XML file, acting as a map of the site's contents. It
provides a unique identifier (an XPath address) for 'nodes' of information in the website. A
'node' of site information can be:

• A category of information, like 'the user guide'. A category may correspond to a
directory, but that is not required.

• A specific page, e.g. 'the FAQ page'
• A specific section in a page, e.g. "the 'general' section of the FAQ page" (identified by

id="general" attribute)

In addition to providing fine-grained addressing of site info, site.xml allows metadata to
be associated with each node, with attributes or child elements. Most commonly, a label
attribute is used to provide a text description of the node.

There are currently two applications of site.xml

Menu generation
site.xml is used to generate the menus for the HTML website.
Indirect linking
site.xml provides a basic aliasing mechanism for linking, e.g. one can write
<link href="site:changes"> from anywhere in the site, and link to the 'changes'
information node (translated to changes.html). More on this below.

Here is a sample site.xml, a stripped-down version from Forrest's own website:

Page 1
Copyright © 2002-2003 The Apache Software Foundation. All rights reserved.

http://xml.apache.org/forrest/

<?xml version="1.0"?>
<site label="Forrest" href="" tab="home"
xmlns="http://apache.org/forrest/linkmap/1.0">

<about label="About">
<index label="Index" href="index.html"/>
<license label="License" href="license.html"/>
<your-project label="Using Forrest" href="your-project.html">
<new_content_type href="#adding_new_content_type"/>

</your-project>
<linking label="Linking" href="linking.html"/>
<changes label="Changes" href="changes.html"/>
<todo label="Todo" href="todo.html"/>
<live-sites label="Live sites" href="live-sites.html"/>

</about>

<community label="Community" href="community/" tab="community">
<index label="About" href="index.html"/>
<howto-samples label="How-To Samples" href="howto/" tab="howto">
<overview label="Overview" href="index.html"/>
<single-page label="Single Page" href="v10/howto-v10.html"/>
<xmlform label="Multi-Page" href="xmlform/">
<intro label="Intro" href="howto-xmlform.html"/>
<step1 label="Step 1" href="step1.html"/>
<step2 label="Step 2" href="step2.html"/>

</xmlform>
</howto-samples>

</community>

<references label="References">
<gump label="Apache Gump" href="http://jakarta.apache.org/gump/"/>
<cocoon label="Apache Cocoon" href="http://xml.apache.org/cocoon/"/>

</references>

<external-refs>
<mail-archive href="http://marc.theaimsgroup.com"/>
<xml.apache.org href="http://xml.apache.org/">
<cocoon href="cocoon/">
<ml href="mail-lists.html"/>
<actions href="userdocs/concepts/actions.html"/>

</cocoon>
<forrest href="forrest/"/>
<xindice href="xindice/"/>
<fop href="fop/"/>

</xml.apache.org>

<mail>
<semantic-linking href="http://marc.theaimsgroup.com/?l=forrest-dev
&m=103097808318773&w=2"/>

</mail>
<cool-uris href="www.w3.org/Provider/Style/URI.html"/>
<uri-rfc href="http://zvon.org/tmRFC/RFC2396/Output/index.html"/>

</external-refs>

Menus and Linking

Page 2
Copyright © 2002-2003 The Apache Software Foundation. All rights reserved.

</site>

As you can see, things are pretty free-form. The rules are as follows:

• The root element must be 'site', and normal content should be in the namespace
http://apache.org/forrest/linkmap/1.0. Feel free to mix in your own
content (RDF, dublin core, etc) under new namespaces

• Element names are used as identifiers. The foo in site:foo must therefore be a valid
NMTOKEN.

• Elements with href attributes can be used as identifiers in site: URIs
• Relative href attribute contents are 'accumulated' by prepending hrefs from ancestor

nodes
• Elements without label attributes (and their children) are not displayed in the menu.
• Elements below external-refs are mapped to the ext: scheme. so

ext:cocoon/ml becomes
http://xml.apache.org/cocoon/mail-lists.html

3. Generating Menus

Two files are used to define a site's tabs and menu; site.xml and tabs.xml. Both files
are located in src/documentation/content/xdocs/.

Assume that our tabs.xml looked as follows:

<tabs ...>
<tab id="home" label="Home" dir=""/>
<tab id="community" label="Community" dir="community"/>
<tab id="howto" label="How-Tos" dir="community/howto"/>

</tabs>

Using the site.xml listed above, we would get these menus:

Menu generated from site.xml

Community menu generated from site.xml

Howto menu generated from site.xml

3.1. Selecting menu entries

Forrest decides which menu entries to display by examining the tab attributes in
site.xml. All site.xml entries with a tab equal to that of the current page are put in
the menu.

Menus and Linking

Page 3
Copyright © 2002-2003 The Apache Software Foundation. All rights reserved.

Consider our site.xml example:

<site label="Forrest" href="" tab="home"
xmlns="http://apache.org/forrest/linkmap/1.0">

<about label="About">
<index label="Index" href="index.html"/>
<license label="License" href="license.html"/>
<your-project label="Using Forrest" href="your-project.html">
<new_content_type href="#adding_new_content_type"/>

</your-project>
<linking label="Linking" href="linking.html"/>
....

</about>

<community label="Community" href="community/" tab="community">
<index label="About" href="index.html"/>
<howto-samples label="How-To Samples" href="howto/" tab="howto">
<overview label="Overview" href="index.html"/>
<single-page label="Single Page" href="v10/howto-v10.html"/>
<xmlform label="Multi-Page" href="xmlform/">
<intro label="Intro" href="howto-xmlform.html"/>
<step1 label="Step 1" href="step1.html"/>

...

Every site.xml node can potentially have a tab attribute. If unspecified, nodes inherit the
tab of their parent. Thus everything in the <about> section has an implicit tab="home".

Note:
You can see this by viewing your site's abs-menulinks pipeline in a browser.

Say that the user is viewing the linking.html page. The <linking> node has an implicit
tab value of home. Forrest will select all nodes with tab="home", and put them in the menu.

3.2. Alternative menu selection mechanisms.

The tab attribute-based scheme for selecting a menu's entries is not the only one, although it
is the most flexible. Here we describe a few alternatives.

3.2.1. Directory-based selection

In this scheme, each tab corresponds to a directory within the site. All content below that
directory is included in the menu.

Directory-based site menu

community/ directory menu

Menus and Linking

Page 4
Copyright © 2002-2003 The Apache Software Foundation. All rights reserved.

abs-menulinks

community/howto/ directory menu

To use this scheme:

• Edit forrest.properties and set project.menu-scheme=directories
• Remove the id attributes from tabs.xml entries.

3.2.2. Specifying menus with book.xml

Historically, menus in Forrest have been generated from a book.xml file, one per directory.
This mechanism is still available, and if a book.xml is found, it will be used in preference
to the site.xml-generated menu. book.xml files can use site: URIs to ease the
maintenance burden that led to book.xml's obsolescence. In general, however, we
recommend that users avoid book.xml.

3.3. Selecting the current tab

The tab selection algorithm is quite simple: the tab with the id matching that of the current
site.xml node is "selected".

4. Linking systems

4.1. Direct linking

In earlier versions of Forrest (and in similar systems), there has been only one URI space:
that of the generated site. If index.xml wants to link to todo.xml then index.xml
would use

<link href="todo.html">to-do list<link>

The theoretical problem with this is that the content producer should not know or care how
Forrest is going to render the source. A URI should only identify a resource, not specify it's
type [mail ref] [cool URIs]. In fact, as Forrest typically renders to multiple output formats
(HTML and PDF), links in one of them (here, the PDF) are likely to break.

4.2. Indirect linking

Forrest's solution is simple: instead of <link href="todo.html">, write <link
href="site:todo">, where:

site
is a URI 'scheme'; a namespace that restricts the syntax and semantics of the

Menus and Linking

Page 5
Copyright © 2002-2003 The Apache Software Foundation. All rights reserved.

http://marc.theaimsgroup.com/?l=forrest-dev&m=103097808318773&w=2
http://www.w3.org/Provider/Style/URI.html

rest of the URI [rfc2396]. The semantics of 'site' are "this identifier locates
something in the site's XML sources".
todo
identifies the content in todo.xml, by reference to a 'node' of content declared
in site.xml.

We call this indirect, or semantic linking because instead of linking to a physical
representation (todo.html), we've linked to the 'idea' of "the todo file". It doesn't matter where
it physically lives; that will be sorted out by Forrest.

4.2.1. Resolving site: URIs

How exactly does site:todo get resolved? A full answer is provided in the
implementation section. Essentially, the todo part has /site// prepended, and /@href
appended, to form string /site//todo/@href. This is then used as an XPath expression
in site.xml identifying the string replacement, in this case todo.html.

Thus by modifying the XPath prefix and suffix, just about any XML format can be
accommodated.

Note:
Actually, the XPath is applied to XML generated dynamically from site.xml. The generated XML has @href's fully
expanded ('absolutized') and ..'s added ('relativized') as needed.

Notice that the '//' allows us any degree of specificity when linking. In the sample
site.xml above, both site:new_content_type and
site:about/your-project/new_content_type identify the same node. It is up
to you to decide how specific to make links. One nice benefit of link 'ambiguity' is that
site.xml can be reorganized without breaking links. For example, 'new_content_type'
currently identifies a node in 'your-project'. By leaving that fact unspecified in
site:new_content_type, we are free to make 'new_content_type' its own XML file, or
a node in another file, in another category.

4.2.2. ext: URIs: linking to external URLs

The ext: scheme was created partly to demonstrate the ease with which new schemes can
be defined, and partly for practical use. ext: URIs identify nodes in site.xml below the
<external-refs> node. By convention, nodes here link to URLs outside the website, and are
not listed in the menu generated from site.xml.

Here is a site.xml snippet illustrating external-refs:

Menus and Linking

Page 6
Copyright © 2002-2003 The Apache Software Foundation. All rights reserved.

http://zvon.org/tmRFC/RFC2396/Output/index.html

<site>
...
<external-refs>
<mail-archive href="http://marc.theaimsgroup.com"/>
<xml.apache.org href="http://xml.apache.org/">
<cocoon href="cocoon/">
<ml href="mail-lists.html"/>
<actions href="userdocs/concepts/actions.html"/>

</cocoon>
</xml.apache.org>
<forrest href="forrest/"/>
<xindice href="xindice/"/>
<fop href="fop/"/>

...
</external-refs>

</site>

As an example, <link href="ext:cocoon/ml"> generates the link
http://xml.apache.org/cocoon/mail-lists.html

The general rules of site.xml and site: linking apply. Specifically, the @href
aggregation makes defining large numbers of related URLs easy.

4.2.3. Theory: source URIs

site: URIs like site:todo are examples of source URIs, in contrast to the more usual
foo.html-style URIs, which we here call destination URIs. This introduces an important
concept: that the source URI space exists and is independent of that of the generated site.
Furthermore, URIs (ie, links) are first-class objects, on par with XML documents, in that just
as XML content is transformed, so are the links. Within the source URI space, we can have
all sorts of interesting schemes (person:, mail:, google:, java:, etc). These will all be
translated into plain old http: or relative URIs in the destination URI space, just like exotic
XML source formats are translated into plain old HTML in the output.

4.2.4. Future schemes

So far, site: and ext: schemes are defined. To give you some ideas on other things we'd
like to implement (and we'd welcome help implementing), here are a few possibilities.

Scheme Example 'From' Example 'To' Description

java java:org.apache.proj.SomeClass../../apidocs/org/apache/proj/SomeClass.htmlLinks to documentation
for a Java class
(typically generated by
javadoc).

mail mail::<Message-Id> http://marc.theaimsgroup.com?t=12345678Links to an email,

Menus and Linking

Page 7
Copyright © 2002-2003 The Apache Software Foundation. All rights reserved.

http://cocoon.apache.org/2.1/mail-lists.html

identified by its
Message-Id header.
Any mail archive
website could be used.

search search:<searchterm> http://www.google.com/search?q=searchtermLink to set of results
from a search engine

person person:JT,
person:JT/blog etc

mailto:jefft<at>apache.org,
http://www.webweavertech.com/jefft/weblog/,
etc:

A person: scheme
could be used, say, to
insert an automatically
obfuscated email
address, or link to a
URI in some way
associated with that
person.

There are even more possibilities in specific environments. In an intranet, a project:XYZ
scheme could identify company project pages. In a project like Apache Ant, each Task could
be identified with task:<taskname>, eg task:pathconvert.

5. Concept

The site: scheme and associated ideas for site.xml were originally described in the
'linkmap' RT email to the forrest-dev list (RT means 'random thought'; a Cocoon invention).
Only section 2 has been implemented, and there is still significant work required to
implement the full system described. In particular, there is much scope for automating the
creation of site.xml (section 4). However, what is currently implemented gains most of
the advantages of the system.

6. Implementation

Full details on the implementation of link rewriting and menu generation are available in the
Sitemap Reference

Menus and Linking

Page 8
Copyright © 2002-2003 The Apache Software Foundation. All rights reserved.

http://ant.apache.org/
http://marc.theaimsgroup.com/?l=forrest-dev&m=103444028129281&w=2
http://marc.theaimsgroup.com/?l=forrest-dev&m=103444028129281&w=2
http://xml.apache.org/forrest/sitemap-ref.html#linkrewriting_impl
http://xml.apache.org/forrest/sitemap-ref.html#menu_generation_impl
http://xml.apache.org/forrest/sitemap-ref.html

	1 Introduction
	2 site.xml
	3 Generating Menus
	3.1 Selecting menu entries
	3.2 Alternative menu selection mechanisms.
	3.2.1 Directory-based selection
	3.2.2 Specifying menus with book.xml

	3.3 Selecting the current tab

	4 Linking systems
	4.1 Direct linking
	4.2 Indirect linking
	4.2.1 Resolving site: URIs
	4.2.2 ext: URIs: linking to external URLs
	4.2.3 Theory: source URIs
	4.2.4 Future schemes

	5 Concept
	6 Implementation

