next up previous contents
Next: About this document ... Up: CalculiX CrunchiX USER'S MANUAL Previous: swing   Contents

Bibliography

1
ABAQUS Theory Manual. Hibbitt, Karlsson & Sorensen, Inc., 1080 Main Street, Pawtucket, RI 02860-4847, U.S.A. (1997).

2
Ashcraft, C., Grimes, R.G., Pierce, D.J., and Wah, D.K., The User Manual for SPOOLES, Release 2.0: An object oriented software library for solving sparse linear systems of equations. Boeing Shared Services Group, P.O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124 U.S.A. (1998).

3
Ashcraft, C. and Wah, D.K., The Reference Manual for SPOOLES, Release 2.0: An object oriented software library for solving sparse linear systems of equations. Boeing Shared Services Group, P.O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124 U.S.A. (1998).

4
Barlow, J., Optimal stress locations in finite element models. Int. J. Num. Meth. Engng. 10 , 243-251 (1976).

5
Beatty, M.F., Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues - with examples. Appl. Mech. Rev. 40(12) , 1699-1734 (1987).

6
Belytschko, T., Liu, W.K. and Moran, B., Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons, New York (2001).

7
Ciarlet, P.G., Mathematical Elasticity, Volume I: Three-dimensional Elasticty. North Holland, New York (1988).

8
Eringen, A.C., Mechanics of Continua. Robert E. Krieger Publishing Company, Huntington, New York (1980).

9
Holzapfel, G.A., Gasser, T.C. and Ogden, R.W., A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models. J. Elasticity 61, 1-48 (2000).

10
Hughes, T.J.R., The Finite Element Method. Dover Publications Inc., Mineola, New York (2000).

11
Lapidus, L. and Pinder, G.F., Numerical solution of partial differential equations in science and engineering. John Wiley & Sons, New York (1982).

12
Lehoucq, R.B., Sorensen, D.C. and Yang, C., ARPACK Users' Guide, Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. (1998).

13
Liew, K.M. and Lim, C.W., A higher-order theory for vibration of doubly curved shallow shells. Journal of Applied Mechanics 63 , 587-593 (1996).

14
Luenberger, D.G., Linear and nonlinear programming. Addison-Wesley Publishing Company, Reading, Massachusetts (1984).

15
Marsden, J.E. and Hughes, T.J.R., Mathematical foundations of elasticity. Dover Publications Inc, New York (1993).

16
Meirovitch, L., Analytical Methods in Vibrations. The MacMillan Company, Collier MacMillan Limited, London (1967).

17
Méric, L., Poubanne, P. and Cailletaud, G., Single Crystal Modeling for Structural Calculations: Part 1 - Model Presentation. Journal of Engineering Materials and Technology 113 , 162-170 (1991).

18
Méric and Cailletaud, G., Single Crystal Modeling for Structural Calculations: Part 2 - Finite Element Implementation. Journal of Engineering Materials and Technology 113 , 171-182 (1991).

19
Miranda, I., Ferencz, R.M. and Hughes, T.J.R., An improved implicit-explicit time integration method for structural dynamics. Earthquake Engineering and Structural Dynamics 18 , 643-653 (1989).

20
Rank, E., Ruecker, M. Private Communication . TU Munich (2000).

21
Schwarz, H.R., FORTRAN-Programme zur Methode der finiten Elemente . Teubner (1981).

22
Simo, J.C. and Hughes, T.J.R., Computational Inelasticity . Springer, New York (1997).

23
Simo, J.C. and Taylor, R.L., Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Computer Methods in Applied Mechanics and Engineering. 85 , 273-310 (1991).

24
Simo, J.C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Computer Methods in Applied Mechanics and Engineering. 66 , 199-219 (1988).

25
Simo, J.C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part II: computational aspects. Computer Methods in Applied Mechanics and Engineering. 68 , 1-31 (1988).

26
Washizu, K., Some considerations on a naturally curved and twisted slender beam. Journal of Mathematics and Physics 43 , 111-116.

27
Zienkiewicz, O.C. and Taylor, R.L., The finite element method.McGraw-Hill Book Company (1989).



Guido Dhondt 2003-08-06