
University of Cambridge Computing Service

Specification of the Exim Mail Transfer Agent

by

Philip Hazel

University Computing Service
New Museums Site
Pembroke Street
Cambridge CB2 3QH
United Kingdom

phone: +44 1223 334600
fax: +44 1223 334679
email: ph10@cus.cam.ac.uk

Edition for Exim 4.10, July 2002

Copyright  University of Cambridge 2002

 Contents

1. Introduction 1
1.1 Exim documentation 1
1.2 Web site and mailing list 2
1.3 Bug reports 2
1.4 Where to find the Exim distribution 2
1.5 Contributed material 3
1.6 Limitations 3
1.7 Run time configuration 4
1.8 Calling interface 4
1.9 Terminology 4

2. Incorporated code 6

3. How Exim receives and delivers mail 8
3.1 Overall philosophy 8
3.2 Policy control 8
3.3 Message identification 8
3.4 Receiving mail 9
3.5 Handling an incoming message 9
3.6 Life of a message 10
3.7 Processing an address for delivery 10
3.8 Running an individual router 12
3.9 Router pre-conditions 13
3.10 Delivery in detail 13

 3.11 Retry mechanism 14
3.12 Temporary delivery failure 15
3.13 Permanent delivery failure 15
3.14 Failures to deliver bounce messages 15

4. Building and installing Exim 16
4.1 Unpacking 16
4.2 Multiple machine architectures and operating systems 16
4.3 DBM libraries 16
4.4 Pre-building configuration 17
4.5 Including TLS/SSL encryption support 18
4.6 Use of tcpwrappers 18
4.7 Including support for IPv6 18
4.8 The building process 18
4.9 Overriding build-time options for Exim 19
4.10 OS-specific header files 20

 4.11 Overriding build-time options for the monitor 20
4.12 Installing Exim binaries and scripts 21
4.13 Installing info documentation 22
4.14 Setting up the spool directory 22
4.15 Testing 22
4.16 Replacing another MTA with Exim 23
4.17 Upgrading Exim 23
4.18 Stopping Exim on Solaris 23

5. The Exim command line 24
5.1 Setting options by program name 24
5.2 Trusted and admin users 24
5.3 Command line options 25

6. The Exim run time configuration file 40
6.1 Alternate configuration files 40

[i]

6.2 Configuration file format 40
6.3 File inclusions in the configuration file 41
6.4 Macros in the configuration file 41
6.5 Common option syntax 42
6.6 Integer 42
6.7 Octal integer 43
6.8 Fixed point number 43
6.9 Time interval 43
6.10 String 43

 6.11 Expanded strings 43
6.12 User and group names 44
6.13 List construction 44
6.14 Format of driver configurations 44

7. The default configuration file 46
7.1 Main configuration settings 46
7.2 ACL configuration 48
7.3 Router configuration 50
7.4 Transport configuration 52
7.5 Default retry rule 52
7.6 Rewriting configuration 53
7.7 Authenticators configuration 53

8. Regular expressions 54
8.1 Testing regular expressions 54

9. File and database lookups 55
9.1 Single-key lookup types 55
9.2 Query-style lookup types 56
9.3 Temporary errors in lookups 57
9.4 Default values in single-key lookups 57
9.5 Partial matching in single-key lookups 57
9.6 Lookup caching 58
9.7 Quoting lookup data 58
9.8 More about dnsdb 58
9.9 More about LDAP 59
9.10 Format of LDAP queries 59

 9.11 LDAP authentication and control information 60
9.12 Format of data returned by LDAP 60
9.13 More about NIS+ 61
9.14 More about MySQL, PostgreSQL, and Oracle 62

10. Domain, Host, Address, and Local Part lists 63
10.1 Expansion of lists 63
10.2 Negated items in lists 63
10.3 File names in lists 63
10.4 An lsearch file is not an out-of-line list 64
10.5 Named lists 64
10.6 Domain lists 65
10.7 Host lists 67
10.8 Special host list patterns 67
10.9 Host list patterns that match by IP address 67
10.10 Host list patterns that match by host name 69

 10.11 Mixing wildcarded host names and addresses in host lists 70
10.12 Address lists 70
10.13 Case of letters in address lists 72
10.14 Local part lists 72

11. String expansions 73
 11.1 Literal text in expanded strings 73

[ii]

 11.2 Character escape sequences in expanded strings 73
 11.3 Testing string expansions 73
 11.4 Expansion items 73
 11.5 Expansion operators 77
 11.6 Expansion conditions 80
 11.7 Combining expansion conditions 83
 11.8 Expansion variables 84

12. Embedded Perl 92

13. Main configuration 94

14. Generic options for routers 119

15. The accept router 128

16. The dnslookup router 129

17. The ipliteral router 131

18. The iplookup router 132

19. The manualroute router 134
19.1 Private options for manualroute 134
19.2 Routing rules in route_list 135
19.3 Routing rules in route_data 136
19.4 Host list format 136
19.5 Options format 136
19.6 Manualroute examples 136

20. The queryprogram router 139

21. The redirect router 141
21.1 Redirection data 141
21.2 Forward files and address verification 141
21.3 Interpreting redirection data 142
21.4 Items in a non-filter redirection list 142
21.5 Redirecting to a local mailbox 142
21.6 Special items in redirection lists 143
21.7 Duplicate addresses 144
21.8 Repeated redirection expansion 144
21.9 Errors in redirection lists 145
21.10 Private options for the redirect router 145

22. Environment for running local transports 151
22.1 Uids and gids 151
22.2 Current and home directories 151
22.3 Expansion variables derived from the address 151

23. Generic options for transports 152

24. Address batching in local transports 156

25. The appendfile transport 158
25.1 Private options for appendfile 158
25.2 Operational details for appending 164
25.3 Operational details for delivery to a new file 166

26. The autoreply transport 168
26.1 Private options for autoreply 168

27. The lmtp transport 171

28. The pipe transport 172
28.1 Returned status and data 172
28.2 How the command is run 172

[iii]

28.3 Environment variables 173
28.4 Private options for pipe 174
28.5 Using an external local delivery agent 177

29. The smtp transport 179
29.1 Multiple messages on a single connection 179
29.2 Use of the $host variable 179
29.3 Private options for smtp 179

30. Address rewriting 185
30.1 Testing the rewriting rules that apply on input 186
30.2 Rewriting rules 186
30.3 Rewriting patterns 187
30.4 Rewriting replacements 187
30.5 Rewriting flags 187
30.6 Flags specifying which headers and envelope addresses to rewrite 188
30.7 The SMTP-time rewriting flag 188
30.8 Flags controlling the rewriting process 188
30.9 Rewriting examples 189

31. Retry configuration 190
31.1 Retry rules 190
31.2 Retry rules for specific errors 191
31.3 Retry rule parameters 191
31.4 Retry rule examples 192
31.5 Timeout of retry data 192
31.6 Long-term failures 193
31.7 Ultimate address timeout 193

32. SMTP authentication 194
32.1 Generic options for authenticators 195
32.2 Authentication on an Exim server 196
32.3 Testing server authentication 196
32.4 Authenticated senders 197
32.5 Authentication by an Exim client 197

33. The plaintext authenticator 198
33.1 Using plaintext in a server 198
33.2 The PLAIN authentication mechanism 198
33.3 The LOGIN authentication mechanism 199
33.4 Support for different kinds of authentication 199
33.5 Using plaintext in a client 200

34. The cram_md5 authenticator 201
34.1 Using cram_md5 as a server 201
34.2 Using cram_md5 as a client 201

35. The spa authenticator 202
35.1 Using spa as a client 202

36. Encrypted SMTP connections using TLS/SSL 203
36.1 Configuring an Exim server to use TLS 203
36.2 Requesting and verifying client certificates 204
36.3 Configuring an Exim client to use TLS 205
36.4 Multiple messages on the same encrypted TCP/IP connection 205
36.5 Certificates and all that 206
36.6 Certificate chains 206
36.7 Self-signed certificates 206

37. Access control lists 207
37.1 ACL return codes 207
37.2 Unset ACL options 207

[iv]

37.3 Data for message ACLs 208
37.4 Data for non-message ACLs 208
37.5 Use of the ACL selection options 208
37.6 Format of an ACL 209
37.7 Condition and modifier processing 210
37.8 ACL modifiers 210
37.9 ACL conditions 211
37.10 Address verification 215

 37.11 Sender address verification reporting 216
37.12 Redirection while verifying 216
37.13 Using an ACL to control relaying 216

38. Adding a local scan function to Exim 218
38.1 API for local_scan() 218
38.2 Available Exim variables 219
38.3 Structure of header lines 220
38.4 Structure of recipient items 220
38.5 Available Exim functions 221

39. System-wide message filtering 223
39.1 Specifying a system filter 223
39.2 Testing a system filter 223
39.3 Contents of a system filter 223
39.4 Additional variable for system filters 224
39.5 Freeze and fail commands for system filters 224
39.6 Adding and removing headers in a system filter 224
39.7 Setting an errors address in a system filter 225
39.8 Per-address filtering 225

40. Customizing bounce and warning messages 226
40.1 Customizing bounce messages 226
40.2 Customizing warning messages 227

41. Some common configuration requirements 228
41.1 Sending mail to a smart host 228
41.2 Using Exim to handle mailing lists 228
41.3 Syntax errors in mailing lists 228
41.4 Re-expansion of mailing lists 229
41.5 Closed mailing lists 229
41.6 Virtual domains 230
41.7 Multiple user mailboxes 231
41.8 Simplified vacation processing 231
41.9 Taking copies of mail 232
41.10 Intermittently connected hosts 232

 41.11 Exim on the upstream server host 232
41.12 Exim on the intermittently connected client host 233

42. SMTP processing 234
42.1 Outgoing SMTP and LMTP over TCP/IP 234
42.2 Errors in outgoing SMTP 235
42.3 Variable Envelope Return Paths (VERP) 236
42.4 Incoming SMTP messages over TCP/IP 237
42.5 The VRFY and EXPN commands 238
42.6 The ETRN command 238
42.7 Incoming local SMTP 239
42.8 Outgoing batched SMTP 239
42.9 Incoming batched SMTP 240

43. Message processing 241
43.1 Unqualified addresses 241
43.2 The UUCP From line 241

[v]

43.3 Resent- header lines 241
43.4 The Bcc: header line 242
43.5 The Date: header line 242
43.6 The Delivery-date: header line 242
43.7 The Envelope-to: header line 242
43.8 The From: header line 242
43.9 The Message-id: header line 243
43.10 The Received: header line 243

 43.11 The Return-path: header line 243
43.12 The Sender: header line 243
43.13 Adding and removing header lines 243
43.14 Constructed addresses 243
43.15 Case of local parts 244
43.16 Dots in local parts 244
43.17 Rewriting addresses 244

44. Log files 246
44.1 Where the logs are written 246
44.2 Logging to local files 247
44.3 Logging to syslog 247
44.4 Log line flags 248
44.5 Logging message reception 248
44.6 Logging deliveries 249
44.7 Discarded deliveries 249
44.8 Deferred deliveries 250
44.9 Delivery failures 250
44.10 Fake deliveries 250

 44.11 Completion 250
44.12 Summary of Fields in Log Lines 250
44.13 Other log entries 251
44.14 Reducing or increasing what is logged 251
44.15 Message log 254

45. Exim utilities 255
45.1 Finding out what Exim processes are doing (exiwhat) 255
45.2 Summarising the queue (exiqsumm) 255
45.3 Extracting specific information from the log (exigrep) 256
45.4 Cycling log files (exicyclog) 256
45.5 Mail statistics (eximstats) 256
45.6 Checking access policy (exim_checkaccess) 258
45.7 Making DBM files (exim_dbmbuild) 259
45.8 Finding individual retry times (exinext) 259
45.9 Hints database maintenance (exim_dumpdb, exim_fixdb, exim_tidydb) 260
45.10 Mailbox maintenance (exim_lock) 261

46. The Exim monitor 263
46.1 Running the monitor 263
46.2 The stripcharts 263
46.3 Main action buttons 264
46.4 The log display 264
46.5 The queue display 265
46.6 The queue menu 265

47. Security considerations 268
47.1 Root privilege 268
47.2 Running Exim without privilege 269
47.3 Delivering to local files 270
47.4 IPv4 source routing 270
47.5 The VRFY, EXPN, and ETRN commands in SMTP 270
47.6 Privileged users 270

[vi]

47.7 Spool files 271
47.8 Use of argv[0] 271
47.9 Use of %f formatting 271
47.10 Embedded Exim path 271

 47.11 Use of sprintf() 271
47.12 Use of debug_printf() and log_write() 271
47.13 Use of strcat() and strcpy() 271

48. Format of spool files 272

49. Adding new drivers or lookup types 275

Index 277

[vii]

1. Introduction

If I have seen further it is by standing on the shoulders of giants. (Isaac Newton)

Exim is a mail transfer agent (MTA) for hosts that are running Unix or Unix-like operating systems. It
was designed on the assumption that it would be run on hosts that are permanently connected to the
Internet. However, it can be used on intermittently connected hosts with suitable configuration
adjustments.

Configuration files currently exist for the following operating systems: AIX, BSD/OS (aka BSDI),
Darwin (Mac OS X), DGUX, FreeBSD, GNU/Hurd, GNU/Linux, HI-OSF (Hitachi), HP-UX, IRIX,
MIPS RISCOS, NetBSD, OpenBSD, QNX, SCO, SCO SVR4.2 (aka UNIX-SV), Solaris (aka
SunOS5), SunOS4, Tru64-Unix (formerly Digital UNIX, formerly DEC-OSF1), Ultrix, and Unixware.
However, code is not available for determining system load averages under Ultrix.

There are also configuration files for compiling Exim in the Cygwin environment that can be installed
on systems running Windows. However, this document does not contain any information about running
Exim in the Cygwin environment.

The terms and conditions for the use and distribution of Exim are contained in the file NOTICE. Exim
is distributed under the terms of the GNU General Public Licence, a copy of which may be found in
the file LICENCE.

The use, supply or promotion of Exim for the purpose of sending bulk, unsolicited electronic mail is
incompatible with the basic aims of the program, which revolve around the free provision of a service
that enhances the quality of personal communications. The author of Exim regards indiscriminate
mass-mailing as an antisocial, irresponsible abuse of the Internet.

Exim owes a great deal to Smail 3 and its author, Ron Karr. Without the experience of running and
working on the Smail 3 code, I could never have contemplated starting to write a new MTA. Many of
the ideas and user interfaces were originally taken from Smail 3, though the actual code of Exim is
entirely new, and has developed far beyond the initial concept.

Many people, both in Cambridge and around the world, have contributed to the development and the
testing of Exim, and to porting it to various operating systems. I am grateful to them all.

1.1 Exim documentation
This edition of the Exim specification applies to version 4.10 of Exim. Substantive changes from the
4.00 edition are marked by bars in the right-hand margin in the PostScript, PDF, and plain text
versions of the document, and by green text in the HTML version, as shown by this paragraph.
Changes are not marked in the Texinfo version, because Texinfo doesn’t support change bars. Minor
corrections and rewordings are not marked.

This document is very much a reference manual; it is not a tutorial. The reader is expected to have
some familiarity with the SMTP mail transfer protocol and with general Unix system administration.
Although there are some discussions and examples in places, the information is mostly organized in a
way that makes it easy to look up, rather than in a natural order for sequential reading. Furthermore,
the manual aims to cover every aspect of Exim in detail, including a number of rarely-used, special-
purpose features that are unlikely to be of very wide interest.

An ‘easier’ discussion of Exim which provides more in-depth explanatory, introductory, and tutorial
material can be found in Exim, The Mail Transport Agent, published by O’Reilly (ISBN
0-596-00098-7). This book also contains a chapter that gives a general introduction to SMTP and
Internet mail. Inevitably, however, the book is unlikely to be fully up-to-date with the latest release of
Exim. In particular, the first edition of the book covers Exim 3, and many things have changed in
Exim 4. It is hoped that the book will catch up in due course.

Exim 4.10 [1] introduction (1)

As the program develops, there may be features in later versions that have not yet made it into this
document, which is updated only when the most significant digit of the fractional part of the version
number changes. However, specifications of new features that are not yet in this manual are placed in
the file doc/NewStuff in the Exim distribution. All changes to the program (whether new features, bug
fixes, or other kinds of change) are noted briefly in the file called doc/ChangeLog.

This specification itself is available as an ASCII file in doc/spec.txt so that it can easily be searched
with a text editor. Other files in the doc directory are:

OptionLists.txt list of all options in alphabetical order
dbm.discuss.txt discussion about DBM libraries
exim.8 a man page of Exim’s command line options

 filter.txt specification of the filter language
 pcre.txt specification of the PCRE regular expression library
 pcretest.txt specification of the PCRE testing program

Exim3.upgrade upgrade notes from release 2 to release 3
Exim4.upgrade upgrade notes from release 3 to release 4

The main specification and the specification of the filtering language are also available in other formats
(HTML, PostScript, PDF, and Texinfo). Section 1.4 below tells you how to get hold of these.

1.2 Web site and mailing list
There is a web site at http://www.exim.org by courtesy of Energis Squared, formerly Planet Online
Ltd, who are situated in the UK. The site is mirrored in the USA and a number of other countries;
links to the mirrors are listed on the home page. The web site contains the Exim distribution, and you
can also find the documentation and the FAQ online there, as well as other relevant material.

Energis Squared also provide resources for the following mailing lists:

exim-users@exim.org general discussion list
 exim-announce@exim.org moderated, low volume announcements list
 pop-imap@exim.org discussion of POP/IMAP issues

You can subscribe to these lists, change your existing subscriptions, and view or search the archives
via the mailing lists link on the Exim home page. The exim-users mailing list is also forwarded to
http://www.egroups.com/list/exim-users, which is another archiving system with searching
capabilities.

1.3 Bug reports
Reports of obvious bugs should be emailed to bugs@exim.org. However, if you are unsure whether
some behaviour is a bug or not, the best thing to do is to post a message to the exim-users mailing list
and have it discussed.

1.4 Where to find the Exim distribution
The master ftp site for the Exim distribution is

ftp://ftp.csx.cam.ac.uk/pub/software/email/exim

Within that directory there are subdirectories called exim3 (for previous Exim 3 distributions), exim4
(for the latest Exim 4 distributions), and Testing for occasional testing versions. Those mirror sites that
I know about are listed in the file

ftp://ftp.csx.cam.ac.uk/pub/software/email/exim/Mirrors

In the exim4 subdirectory, the current release can always be found in files called

exim-n.nn.tar.gz
 exim-n.nn.tar.bz2

Exim 4.10 [2] introduction (1)

where n.nn is the highest such version number in the directory. The two files contain identical data; the
only difference is the type of compression. The .bz2 file is usually a lot smaller than the .gz file. When
there is only a small amount of change from one release to the next, a patch file may be provided,
with a final component name of the form

exim-patch-n.nn-m.mm.gz

For each released version, the log of changes is made separately available in the directory

ftp://ftp.csx.cam.ac.uk/pub/software/email/exim/ChangeLogs

so that it is possible to find out what has changed without having to download the entire distribution.

The main distribution contains ASCII versions of this specification and other documentation; other
formats of the documents are available in separate files inside the exim4 directory:

exim-html-n.nn.tar.gz
 exim-pdf-n.nn.tar.gz
 exim-postscript-n.nn.tar.gz
 exim-texinfo-n.nn.tar.gz

These tar files contain only the doc directory, not the complete distribution, and are also available in
.bz2 as well as .gz forms.

The FAQ is available for downloading in two different formats from

ftp://ftp.csx.cam.ac.uk/pub/software/email/exim/exim4/FAQ.txt.gz
 ftp://ftp.csx.cam.ac.uk/pub/software/email/exim/exim4/FAQ.html.tar.gz

The first is a single ASCII file which can be searched with a text editor. The second is a directory of
HTML files. The HTML version of the FAQ is also included in the HTML documentation tarbundle.

1.5 Contributed material
At the ftp site, there is a directory called

ftp://ftp.csx.cam.ac.uk/pub/software/email/exim/exim4/Contrib/

which contains miscellaneous files contributed to the Exim community by Exim users. There is also a
collection of contributed configuration examples in

ftp://ftp.csx.cam.ac.uk/pub/software/email/exim/exim4/config.samples.tar.gz

1.6 Limitations

• Exim is designed for use as an Internet MTA, and therefore handles addresses in RFC 2822
domain format only. It cannot handle UUCP ‘bang paths’, though simple two-component bang
paths can be converted by a straightforward rewriting configuration. This restriction does not
prevent Exim from being interfaced to UUCP as a transport mechanism, provided that domain
addresses are used.

• Exim insists that every address it handles has a domain attached. For incoming local messages,
domainless addresses are automatically qualified with a configured domain value. Configuration
options specify from which remote systems unqualified addresses are acceptable. These are then
qualified on arrival.

• The only external transport currently implemented is an SMTP transport over a TCP/IP network
(using sockets, including support for IPv6). However, a pipe transport is available, and there are
facilities for writing messages to files and pipes, optionally in batched SMTP format; these
facilities can be used to send messages to some other transport mechanism such as UUCP,
provided it can handle domain-style addresses. Batched SMTP input is also catered for.

• Exim is not designed for storing mail for dial-in hosts. When the volumes of such mail are large,
it is better to get the messages ‘delivered’ into files (that is, off Exim’s queue) and subsequently
passed on to the dial-in hosts by other means.

Exim 4.10 [3] introduction (1)

1.7 Run time configuration
Exim’s run time configuration is held in a single text file which is divided into a number of sections.
The entries in this file consist of keywords and values, in the style of Smail 3 configuration files. A
default configuration file which is suitable for simple online installations is provided in the distri-
bution, and is described in chapter 7 below.

1.8 Calling interface
Like many MTAs, Exim has adopted the Sendmail command line interface so that it can be a straight
replacement for /usr/lib/sendmail or /usr/sbin/sendmail when sending mail, but you do not need to
know anything about Sendmail in order to run Exim. For actions other than sending messages,
Sendmail-compatible options also exist, but those that produce output (for example, -bp, which lists
the messages on the queue) do so in Exim’s own format. There are also some additional options that
are compatible with Smail 3, and some further options that are new to Exim. Chapter 5 documents all
Exim’s command line options.

Control of messages on the queue can be done via certain privileged command line options. There is
also an optional monitor program called eximon, which displays current information in an X window,
and contains a menu interface to Exim’s command line administration options.

1.9 Terminology
The body of a message is the actual data that the sender wants to transmit. It is the last part of a
message, and is separated from the header (see below) by a blank line.

When a message cannot be delivered, it is normally returned to the sender in a delivery failure
message. The term bounce is commonly used for this action, and the error reports are often called
bounce messages. This is a convenient shorthand for ‘delivery failure error report’. Such messages
have an empty sender address in the message’s envelope (see below) to ensure that they cannot
themselves give rise to further bounce messages.

The term default appears frequently in this manual. It is used to qualify a value which is used in the
absence of any setting in the configuration. It may also qualify an action which is taken unless a
configuration setting specifies otherwise.

The term defer is used when the delivery of a message to a specific destination cannot immediately
take place for some reason (a remote host may be down, or a user ’s local mailbox may be full). Such
deliveries are deferred until a later time.

The word domain is sometimes used to mean all but the first component of a host’s name. It is not
used in that sense here, where it normally refers to the part of an email address following the @ sign.

A message in transit has an associated envelope, as well as a header and a body. The envelope
contains a sender address (to which bounce messages should be delivered), and any number of
recipient addresses. References to the sender or the recipients of a message usually mean the addresses
in the envelope. An MTA uses these addresses for delivery, and for returning bounce messages, not the
addresses that appear in the header lines.

The header of a message is the first part of a message’s text, consisting of a number of lines, each of
which has a name such as From:, To:, Subject:, etc. Long header lines can be split over several text
lines by indenting the continuations. The header is separated from the body by a blank line.

The term local part, which is taken from RFC 2822, is used to refer to that part of an email address
that precedes the @ sign. The part that follows the @ sign is called the domain or mail domain.

The terms local delivery and remote delivery are used to distinguish delivery to a file or a pipe on the
local host from delivery by SMTP over TCP/IP to a remote host.

Return path is another name that is used for the sender address in a message’s envelope.

Exim 4.10 [4] introduction (1)

The term queue is used to refer to the set of messages awaiting delivery, because this term is in
widespread use in the context of MTAs. However, in Exim’s case the reality is more like a pool than a
queue, because there is normally no ordering of waiting messages.

The term queue-runner is used to describe a process that scans the queue and attempts to deliver those
messages whose retry times have come. This term is used by other MTAs, and also relates to the
command runq, but in Exim the waiting messages are normally processed in an unpredictable order.

The term spool directory is used for a directory in which Exim keeps the messages on its queue – that
is, those that it is in the process of delivering. This should not be confused with the directory in which
local mailboxes are stored, which is called a ‘spool directory’ by some people. In the Exim documen-
tation, ‘spool’ is always used in the first sense.

Exim 4.10 [5] introduction (1)

2. Incorporated code

A number of pieces of external code are included in the Exim distribution.

• Regular expressions are supported in the main Exim program and in the Exim monitor using the
freely-distributable PCRE library, copyright  2002 University of Cambridge. The source is
distributed in the directory src/pcre. However, this is a cut-down version of PCRE. If you want
to use the PCRE library in other programs, you should obtain and install the full version from

 ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre.

• Support for the cdb (Constant DataBase) lookup method is provided by code contributed by
Nigel Metheringham of Planet Online Ltd. which contains the following statements:

Copyright  1998 Nigel Metheringham, Planet Online Ltd

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free

Software Foundation; either version 2 of the License, or (at your option) any later version.

This code implements Dan Bernstein’s Constant DataBase (cdb) spec. Information, the spec and sample code for cdb can be obtained from

 http://www.pobox.com/~djb/cdb.html. This implementation borrows some code from Dan Bernstein’s implementation (which has

no license restrictions applied to it).

The implementation is completely contained within the code of Exim. It does not link against an
external cdb library.

• Support for Microsoft’s Secure Password Authentication is provided by code contributed by Marc
Prud’hommeaux. This includes code taken from the Samba project, which is released under the
Gnu GPL.

• Support for calling the Cyrus pwcheck daemon is provided by code taken from the Cyrus-SASL
library and adapted by Alexander S. Sabourenkov. The permission notice appears below, in
accordance with the conditions expressed therein.

Copyright  2001 Carnegie Mellon University. All rights reserved.

Redistribution and use in source and binary forms, with or without modifi cation, are permitted provided that the following conditions are me t:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documen-

tation and/or other materials provided with the distribution.

3. The name “Carnegie Mellon University” must not be used to endorse or promote products derived from this software without prior written

permission. For permission or any other legal details, please contact

Office of Technology Transfer

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3890

(412) 268-4387, fax: (412) 268-73 95

tech-transfer@andrew.cmu.edu

4. Redistributions of any form whatsoever must retain the following acknowledgment:

This product includes software developed by Computing Services at Carnegie Mellon University

(http://www.cmu.edu/computing/).

Exim 4.10 [6] incorporated code (2)

CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE FOR ANY

SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR

PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

• The Exim Monitor program, which is an X-Window application, includes modified versions of
the Athena StripChart and TextPop widgets. This code is copyright by DEC and MIT, and their
permission notice appears below, in accordance with the conditions expressed therein.

Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the Massachusetts Institute of Technology, Cambridge,

 Massachusetts.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the

above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that

the names of Digital or MIT not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF

 MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL

DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF

 CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE

OF THIS SOFTWARE.

Exim 4.10 [7] incorporated code (2)

3. How Exim receives and delivers mail

3.1 Overall philosophy
Exim is designed to work efficiently on systems that are permanently connected to the Internet and are
handling a general mix of mail. In such circumstances, most messages can be delivered immediately.
Consequently, Exim does not maintain independent queues of messages for specific domains or hosts,
though it does try to send several messages in a single SMTP connection after a host has been down,
and it also maintains per-host retry information.

3.2 Policy control
Policy controls are now an important feature of MTAs that are connected to the Internet. Perhaps their
most important job is to stop MTAs being abused as ‘open relays’ by misguided individuals who send
out vast amounts of unsolicited junk, and want to disguise its source. Exim provides flexible facilities
for specifying policy controls on incoming mail:

• Exim 4 (unlike previous versions of Exim) implements policy controls on incoming SMTP mail
by means of Access Control Lists (ACLs). Each list is a series of statements that may either grant
or deny access. They are used at two places in the SMTP dialogue while receiving a message:
after each RCPT command, and at the very end of the message. The sysadmin can specify
conditions for accepting or rejecting individual recipients or the entire message (see chapter 37).
Denial of access results in an SMTP error code.

• When a message has been received, either from a remote host or from the local host, but before
the final acknowledgement has been sent, a locally supplied C function can be run to inspect the
message and decide whether to accept it or not (see chapter 38). If the message is accepted, the
list of recipients can be modified by the function.

• After a message has been accepted, a further checking mechanism is available in the form of the
system filter (see chapter 39). This runs at the start of every delivery process.

3.3 Message identification
Every message handled by Exim is given a message id which is sixteen characters long. It is divided
into three parts, separated by hyphens, for example 16VDhn-0001bo-00. Each part is a sequence of
letters and digits, normally representing a number in base 62. However, in the Darwin operating
system (Mac OS X) and when Exim is compiled to run under Cygwin, base 36 is used instead,
because the names of files in those systems are not case-sensitive.

• The first six characters are the time the message was received, as a number in seconds – the
normal Unix way of representing a time of day. If the clock goes backwards (due to resetting) in
a process that is receiving more than one message, the later time is retained.

• After the first hyphen, the next six characters are the id of the process that received the message.

• The final two characters, after the second hyphen, are used to ensure uniqueness of the id. There
are two different formats:

(a) If the localhost_number option is not set, uniqueness is required only within the local host.
This portion of the id is 00 except when a process receives more than one message in a
single second, when the number is incremented for each additional message.

(b) If the localhost_number option is set, uniqueness among a set of hosts is required. This
portion of the id is set to the base 62 encoding of

<sequence number> * 256 + <host number>

where <sequence number> is the count of messages received by the current process within
the current second. As the maximum value of the host number is 255, this allows for a
maximum value of 14 for the sequence number. If this limit is reached, a delay of one

Exim 4.10 [8] receiving & delivering mail (3)

second is imposed before reading the next message, in order to allow the clock to tick and
the sequence number to get reset.

3.4 Receiving mail
The only way Exim can receive mail from a remote host is using SMTP over TCP/IP, in which case
the sender and recipient addresses are tranferred using SMTP commands. However, from a locally
running process (such as a user ’s MUA), there are several possibilities:

• If the process runs Exim with the -bm option, the message is read non-interactively (usually via a
pipe), with the recipients taken from the command line, or from the body of the message if -t is
also used.

• If the process runs Exim with the -bS option, the message is also read non-interactively, but in
this case the recipients are listed at the start of the message in a series of SMTP RCPT commands,
terminated by a DATA command. This is so-called ‘batch SMTP’ format.

• If the process runs Exim with the -bs option, the message is read interactively, using the SMTP
protocol. A two-way pipe is normally used for passing data between the local process and the
Exim process.

• A local process may also make a TCP/IP call to the host’s loopback address (127.0.0.1) or any
other of its IP addresses. Exim does not treat the loopback address specially. It treats all such
connections in the same way as connections from other hosts.

In the three cases that do not involve TCP/IP, the sender address is constructed from the login name of
the user that called Exim and a default qualification domain (which can be set by the qualify_domain
configuration option). For local or batch SMTP, a sender address that is passed using the SMTP MAIL

command is ignored. However, the system administrator may allow certain users to specify a different
sender address unconditionally, or all users to specify certain forms of different sender address. The -f
option or the SMTP MAIL command is used to specify these different addresses. See section 5.2 for
details of trusted users, and the untrusted_set_sender option for a way of allowing untrusted users to
change sender addresses.

Messages received by either of the non-interactive mechanisms are always accepted, provided they are
syntactically valid. However, when a message is being received using the SMTP protocol (either over
TCP/IP, or interacting with a local process), policy controls can be applied at the time of reception,
and the message can be rejected if it does not accord with local policy.

Exim can be configured not to start a delivery process when a message is received; this can be
unconditional, or depend on the number of incoming SMTP connections or the system load. In these
situations, new messages wait on the queue until a queue-runner process picks them up. However, in
standard configurations under normal conditions, delivery is started as soon as a message is received.

3.5 Handling an incoming message
When Exim accepts a message, it writes two files in its spool directory. The first contains the envelope
information, the current status of the message, and the headers, and the second contains the body of
the message. The names of the two spool files consist of the message id, followed by -H for the file
containing the envelope and headers, and -D for the data file.

By default all these message files are held in a single directory called input inside the general Exim
spool directory. Some operating systems do not perform very well if the number of files in a directory
gets very large; to improve performance in such cases, the split_spool_directory option can be used.
This causes Exim to split up the input files into 62 sub-directories whose names are single letters or
digits.

The envelope information consists of the address of the message’s sender and the address(es) of the
recipient(s). This information is entirely separate from any addresses contained in the headers. The
status of the message includes a list of recipients who have already received the message. The format
of the first spool file is described in chapter 48.

Exim 4.10 [9] receiving & delivering mail (3)

Address rewriting that is specified in the rewrite section of the configuration (see chapter 30) is done
once and for all on incoming addresses, both in the header and the envelope, at the time the message
is accepted. If during the course of delivery additional addresses are generated (for example, via
aliasing), these new addresses get rewritten as soon as they are generated. At the time a message is
actually delivered (transported) further rewriting can take place; because this is a transport option, it
can be different for different forms of delivery. It is also possible to specify the addition or removal of
certain header lines at the time the message is delivered (see chapters 14 and 23).

3.6 Life of a message
A message remains in the spool directory until it is completely delivered to its recipients or to an error
address, or until it is deleted by an administrator or by the user who originally created it. In cases
when delivery cannot proceed – for example, when a message can neither be delivered to its recipients
nor returned to its sender, the message is marked ‘frozen’ on the spool, and no more deliveries are
attempted.

An administrator can ‘thaw’ such messages when the problem has been corrected, and can also freeze
individual messages by hand if necessary. In addition, an administrator can force a delivery error,
causing a bounce message to be sent.

There is an option called auto_thaw, which can be used to cause Exim to retry frozen messages after
a certain time. When this is set, no message will remain on the queue for ever, because the delivery
timeout will eventually be reached. Delivery failure reports that reach this timeout are discarded. There
is also an option called timeout_frozen_after, which simply discards frozen messages after a certain
time.

While Exim is working on a message, it writes information about each delivery attempt to the main
log file. The includes successful, unsuccessful, and delayed deliveries for each recipient (see chapter
44). The log lines are also written to a separate message log file for each message. These logs are
solely for the benefit of the administrator, and are normally deleted along with the spool files when
processing of a message is complete.

All the information Exim itself needs to set up a delivery is kept in the first spool file with the headers.
When a successful delivery occurs, the address is immediately written at the end of a journal file,
whose name is the message id followed by -J. At the end of a delivery run, if there are some
addresses left to be tried again later, the first spool file (the -H file) is updated to indicate which these
are, and the journal file is then deleted. Updating the spool file is done by writing a new file and
renaming it, to minimize the possibility of data loss.

Should the system or the program crash after a successful delivery but before the spool file has been
updated, the journal is left lying around. The next time Exim attempts to deliver the message, it reads
the journal file and updates the spool file before proceeding. This minimizes the chances of double
deliveries caused by crashes.

3.7 Processing an address for delivery
The main delivery processing elements of Exim are called routers and transports, and collectively
these are known as drivers. Code for a number of them is provided in the source distribution, and
compile-time options specify which ones are included in the binary. Run time options specify which
ones are actually used for delivering messages.

A router is a driver that operates on an address, either determining how its delivery should happen, by
routing it to a specific transport, or converting the address into one or more new addresses (for
example, via an alias file). A router may also explicitly choose to fail an address, causing it to be
bounced.

A transport is a driver that transmits a copy of the message from Exim’s spool to some destination.
There are two kinds of transport: for a local transport, the destination is a file or a pipe on the local
host, whereas for a remote transport the destination is some other host. A message is passed to a

Exim 4.10 [10] receiving & delivering mail (3)

specific transport as a result of successful routing. If a message has several recipients, it may be passed
to a number of different transports.

An address is processed by passing it to each configured router in turn, subject to certain pre-
conditions, until one accepts it or specifies that it should be bounced. We’ll describe this process in
more detail shortly. As a simple example, the diagram below illustrates how each recipient address in a
message is processed in a small configuration of three routers that are configured in various ways.

address

first router
conditions ok?

 yes run
first router

fail

address bounces

accept

queue for
transport

second router
conditions ok?

 yes run
second router

redirect

 new addresses

 decline fail address
bounces

third router
conditions ok?

 yes run
third router accept

queue for
transport

 decline

no more routers
address bounces

Routing an address

To make this a more concrete example, we’ll describe it in terms of some actual routers, but
remember, this is only an example. You can configure Exim’s routers in many different ways, and
there may be any number of routers in a configuration.

The first router in a configuration is often one that handles addresses in domains that are not
recognized specially by the local host. These are typically addresses for arbitrary domains on the
Internet. A pre-condition is set up which looks for the special domains known to the host (for
example, its own domain name), and the router is run for addresses that do not match. Typically, this
is a router that looks up domains in the DNS in order to find the hosts to which this address routes. If
it succeeds, the address is queued for a suitable SMTP transport; it it does not succeed, the router is
configured to fail the address.

Exim 4.10 [11] receiving & delivering mail (3)

In the example, the second and third routers can only be run for domains that are special to the local
host, for which the pre-condition for the first router is not met. The second router does redirection –
also known as aliasing and forwarding. When it generates one or more new addresses from the
original, each of them is routed independently from the start. Otherwise, the router may cause an
address to fail, or it may simply decline to handle the address, in which case it is passed on to the next
router.

The final router in many configurations is one that checks to see if the address belongs to a local
mailbox. The pre-condition may involve a check to see if the local part is the name of a login account,
or it may look up the local part in a file or a database. If its pre-condition is not met, or if the router
declines, we have reached the end of the routers. When this happens, the address is bounced.

3.8 Running an individual router

As explained in the example above, a number of conditions are checked before running a router. If any
of these pre-conditions are not met, the router is skipped, and the address is passed to the next router.
Sometimes you want to fail a delivery when some conditions are met but others are not, instead of
passing the address on for further routing. You can do this by having a second router that explicitly
fails the delivery when the relevant conditions are met.

When all the conditions on a router are met, the router is run. What happens next depends on the
outcome, which is one of the following:

• accept: The router accepts the address, and either queues it for a transport, or generates one or
more ‘child’ addresses. Processing the original address ceases, unless the unseen option is set on
the router. This option can be used to set up multiple deliveries with different routing (for
example, for keeping archive copies of messages). When unseen is set, the address is passed to
the next router. Normally, however, an accept return marks the end of routing.

If child addresses are generated, Exim checks to see whether they are duplicates of any existing
recipient addresses. During this check, local parts are treated as case-sensitive. Duplicate
addresses are discarded. Each of the remaining child addresses is then processed independently,
starting with the first router by default. It is possible to change this by setting the redirect_router
option to specify which router to start at for child addresses. Unlike pass_router (see below) the
router specified by redirect_router may be anywhere in the router configuration.

• pass: The router recognizes the address, but cannot handle it itself. It requests that the address be
passed to another router. By default the address is passed to the next router, but this can be
changed by setting the pass_router option. However, (unlike redirect_router) the named router
must be below the current router (to avoid loops).

• decline: The router declines to accept the address because it does not recognize it at all. By
default, the address is passed to the next router, but this can be prevented by setting the no_more
option. When no_more is set, all the remaining routers are skipped.

• fail: The router determines that the address should fail, and queues it for the generation of a
bounce message. There is no further processing of the original address unless unseen is set on
the router.

• defer: The router cannot handle the address at the present time. (A database may be offline, or a
DNS lookup may have timed out.) No further processing of the address happens in this delivery
attempt. It is tried again next time the message is considered for delivery.

• error: There is some error in the router (for example, a syntax error in its configuration). The
action is as for defer.

If an address reaches the end of the routers without having been accepted by any of them, it is
bounced as unrouteable.

Exim 4.10 [12] receiving & delivering mail (3)

3.9 Router pre-conditions
The pre-conditions that are tested for each router are listed below, in the order in which they are
tested. The individual configuration options are described in more detail in chapter 14.

• The local_part_prefix and local_part_suffix options can specify that the local parts handled by
the router must have certain prefixes or suffixes. These conditions are tested first. When they are
met, the prefix and/or suffix is removed from the local part before further processing, including
the evaluation of any other conditions.

• Certain routers can be designated for use only when verifying an address, as opposed to routing it
for delivery, and similarly, certain routers can be designated for use only when not verifying. (See
the verify_only and verify options).

• Certain routers can be explicitly skipped when running the routers to check an address given in
the SMTP EXPN command (see the expn option).

• If the domains option is set, the domain of the address must be in the set of domains that it
defines.

• If the local_parts option is set, the local part of the address must be in the set of local parts that
it defines. If local_part_prefix and/or local_part_suffix is in use, the prefix and/or suffix is
removed from the local part before this check. If you want to do pre-condition tests on local parts
that include affixes, you can do so by using a condition option (see below) that uses the variables

 $local_part, $local_part_prefix, and $local_part_suffix as necessary.

• If the check_local_user option is set, the local part must be the name of an account on the local
host.

• If the senders option is set, the envelope sender address must be in the set of addresses that it
defines.

• If the require_files option is set, the existence or non-existence of specified files is tested.

• If the condition option is set, it is evaluated and tested. This option uses an expanded string to
allow you to set up your own custom pre-conditions. Expanded strings are described in chap-
ter 11.

Note that require_files comes near the end of the list, so you cannot use it to check for the existence
of a file in which to lookup up a domain, local part, or sender. However, as these options are all
expanded, you can use the exists expansion condition to make such tests within each condition. The
require_files option is intended for checking files that the router may be going to use internally, or
which are needed by a specific transport (for example, .procmailrc).

3.10 Delivery in detail
When a message is to be delivered, the sequence of events is roughly as follows:

• If a system-wide filter file is specified, the message is passed to it. The filter may add recipients
to the message, replace the recipients, discard the message, cause a new message to be generated,
or cause the message delivery to fail. The format of the filter file is the same as for user filter
files, described in the separate document entitled Exim’s interface to mail filtering. Some
additional features are available in system filters – see chapter 39 for details. Note that a message
is passed to the system filter only once per delivery attempt, however many recipients it has.

 However, if there are several delivery attempts because one or more addresses could not be
immediately delivered, the system filter is run each time. The filter condition first_delivery can
be used to detect this.

• Each recipient address is offered to each configured router in turn, subject to its pre-conditions,
until one is able to handle it. If no router can handle the address, that is, if they all decline, the
address is failed. Because routers can be targeted at particular domains, several locally handled
domains can be processed entirely independently of each other.

Exim 4.10 [13] receiving & delivering mail (3)

• A router that accepts an address may set up a local or a remote transport for it. However, the
transport is not run at this time. Instead, the address is placed on a queue for the particular
transport, to be run later. Alternatively, the router may generate one or more new addresses
(typically from alias, forward, or filter files). New addresses are fed back into this process from
the top, but in order to avoid loops, a router ignores any address which has an identically-named
ancestor that was processed by itself.

• When all the routing has been done, addresses that have been successfully handled are passed to
their assigned transports. When local transports are doing real local deliveries, they handle only
one address at a time, but if a local transport is being used as a pseudo-remote transport (for
example, to collect batched SMTP messages for transmission by some other means) multiple
addresses can be handled. Remote transports can always handle more than one address at a time,
but can be configured not to do so, or to restrict multiple addresses to the same domain.

• Each local delivery runs in a separate process under a non-privileged uid, and they are run in
sequence. Remote deliveries also run in separate processes, normally under a uid that is private to
Exim (‘the Exim user’), but in this case, several remote deliveries can be run in parallel. The
maximum number of simultaneous remote deliveries for any one message is set by the

 remote_max_parallel option.

• When it encounters a local delivery during a queue run, Exim checks its retry database to see if
there has been a previous temporary delivery failure for the address before running the local
transport. If there was a previous failure, Exim does not attempt a new delivery until the retry
time for the address is reached. However, this happens only for delivery attempts that are part of
a queue run. Local deliveries are always attempted when delivery immediately follows message
reception, even if retry times are set for them. This makes for better behaviour if one particular
message is causing problems (for example, causing quota overflow, or provoking an error in a
filter file).

• Remote transports do their own retry handling, since an address may be deliverable to one of a
number of hosts, each of which may have a different retry time. If there have been previous
temporary failures and no host has reached its retry time, no delivery is attempted, whether in a
queue run or not. See chapter 31 for details of retry strategies.

• If there were any permanent errors, a bounce message is returned to an appropriate address (the
sender in the common case), with details of the error for each failing address. Exim can be
configured to send copies of bounce messages to other addresses.

• If one or more addresses suffered a temporary failure, the message is left on the queue, to be
tried again later. Delivery is said to be deferred.

• When all the recipient addresses have either been delivered or bounced, handling of the message
is complete. The spool files and message log are deleted, though the message log can optionally
be preserved if required.

3.11 Retry mechanism
Exim’s mechanism for retrying messages that fail to get delivered at the first attempt is the queue-
runner process. You must either run an Exim daemon that uses the -q option with a time interval to
start queue-runners at regular intervals, or use some other means (such as cron) to start them. If you
do not arrange for queue-runners to be run, messages that fail at the first attempt will remain on your
queue for ever. A queue-runner process works it way through the queue, one message at a time, trying
each delivery that has passed its retry time.

Exim uses a set of configured rules to determine when next to retry the failing address (see chapter
31). These rules also specify when Exim should give up trying to deliver to the address, at which point
it generates a bounce message. If no retry rules are set for a particular host, address, and error
combination, no retries are attempted, and temporary errors are treated as permanent.

Exim 4.10 [14] receiving & delivering mail (3)

3.12 Temporary delivery failure
There are many reasons why a message may not be immediately deliverable to a particular address.
Failure to connect to a remote machine (because it, or the connection to it, is down) is one of the most
common. Temporary failures may be detected during routing as well as during the transport stage of
delivery. Local deliveries may be delayed if NFS files are unavailable, or if a mailbox is on a file
system where the user is over quota. Exim can be configured to impose its own quotas on local
mailboxes; where system quotas are set they will also apply.

If a host is unreachable for a period of time, a number of messages may be waiting for it by the time it
recovers, and sending them in a single SMTP connection is clearly beneficial. Whenever a delivery to
a remote host is deferred, Exim makes a note in its hints database, and whenever a successful SMTP
delivery has happened, it looks to see if any other messages are waiting for the same host. If any are
found, they are sent over the same SMTP connection, subject to a configuration limit as to the
maximum number in any one connection.

3.13 Permanent delivery failure
When a message cannot be delivered to some or all of its intended recipients, a bounce message is
generated. Temporary delivery failures turn into permanent errors when their timeout expires. All the
addresses that fail in a given delivery attempt are listed in a single message. If the original message
has many recipients, it is possible for some addresses to fail in one delivery attempt and others to fail
subsequently, giving rise to more than one bounce message. The wording of bounce messages can be
customized by the administrator. See chapter 40 for details.

Bounce messages contain an X-Failed-Recipients: header line which lists the failed addresses, for the
benefit of programs that try to analyse such messages automatically.

A bounce message is normally sent to the sender of the original message, as obtained from the
message’s envelope. For incoming SMTP messages, this is the address given in the MAIL command.
However, when an address is expanded via a forward or alias file, an alternative address can be
specified for delivery failures of the generated addresses. For a mailing list expansion (see section
41.2) it is common to direct bounce messages to the manager of the list.

3.14 Failures to deliver bounce messages
If a bounce message (either locally generated or received from a remote host) itself suffers a
permanent delivery failure, the message is left on the queue, but it is frozen, awaiting the attention of
an administrator. There are options which can be used to make Exim discard such failed messages, or
to keep them for only a short time (see timeout_frozen_after and ignore_bounce_errors_after).

Exim 4.10 [15] receiving & delivering mail (3)

4. Building and installing Exim

4.1 Unpacking
Exim is distributed as a gzipped or bzipped tar file which, when upacked, creates a directory with the
name of the current release (for example, exim-4.10) into which the following files are placed:

CHANGES contains a reference to where changes are documented
LICENCE the GNU General Public Licence
Makefile top-level make file
NOTICE conditions for the use of Exim
README list of files, directories and simple build instructions

Other files whose names begin with README may also be present. The following subdirectories are
created:

Local an empty directory for local configuration files
OS OS-specific files
doc documentation files
exim_monitor source files for the Exim monitor
scripts scripts used in the build process

 src remaining source files
util independent utilities

The main utility programs are contained in the src directory, and are built with the Exim binary. The
util directory contains a few optional scripts that may be useful to some sites.

4.2 Multiple machine architectures and operating systems
The building process for Exim is arranged to make it easy to build binaries for a number of different
architectures and operating systems from the same set of source files. Compilation does not take place
in the src directory. Instead, a build directory is created for each architecture and operating system.
Symbolic links to the sources are installed in this directory, which is where the actual building takes
place.

In most cases, Exim can discover the machine architecture and operating system for itself, but the
defaults can be overridden if necessary.

4.3 DBM libraries
Even if you do not use any DBM files in your configuration, Exim still needs a DBM library in order
to operate, because it uses indexed files for its hints database. Unfortunately, there are a number of
DBM libraries in existence, and different operating systems often have different ones installed.

If you are using Solaris, IRIX, one of the modern BSD systems, or a modern Linux distribution, the
DBM configuration should happen automatically, and you may be able to ignore this section.
Otherwise, you may have to learn more than you would like about DBM libraries from what follows.

Licensed versions of Unix normally contain a library of DBM functions operating via the ndbm
interface, and this is what Exim expects by default. Free versions of Unix seem to vary in what they
contain as standard. In particular, some early versions of Linux have no default DBM library, and
different distributors have chosen to bundle different libraries with their packaged versions. However,
the more recent releases seem to have standardised on the Berkeley DB library.

Different DBM libraries have different conventions for naming the files they use. When a program
opens a file called dbmfile, there are four possibilities:

(1) A traditional ndbm implementation, such as that supplied as part of Solaris 2, operates on two
files called dbmfile.dir and dbmfile.pag.

Exim 4.10 [16] building/installing (4)

(2) The GNU library, gdbm, operates on a single file. If used via its ndbm compatibility interface it
makes two different hard links to it with names dbmfile.dir and dbmfile.pag, but if used via its
native interface, the file name is used unmodified.

(3) The Berkeley DB package, if called via its ndbm compatibility interface, operates on a single file
called dbmfile.db, but otherwise looks to the programmer exactly the same as the traditional
ndbm implementation.

(4) If the Berkeley package is used in its native mode, it operates on a single file called dbmfile; the
programmer ’s interface is somewhat different to the traditional ndbm interface.

(5) Yet another DBM library, called tdb, has become available from

http://download.sourceforge.net/tdb

It has its own interface, and also operates on a single file.

Exim and its utilities can be compiled to use any of these interfaces. In order to use the Berkeley DB
package in native mode, it is necessary to set USE_DB in an appropriate configuration file. Similarly, for
gdbm you set USE_GDBM, and for tdb you set USE_TDB. By default, the build-time configuration sets
none of these, thereby assuming an interface of type (1). However, some operating system configur-
ation files (those for the BSD OS and Linux) assume type (4) by setting USE_DB as their default, and
the configuration files for Cygwin set USE_GDBM.

As well as setting USE_DB, USE_GDBM, or USE_TDB it may also be necessary to set DBMLIB, to cause
inclusion of the appropriate library, as in one of these lines:

DBMLIB = -ldb
DBMLIB = -ltdb

To complicate things further, there are several very different versions of the Berkeley DB package.
Version 1.85 was stable for a very long time, releases 2.x and 3.x were current for a while, but the
latest versions are now numbered 4.x. Maintenance of some of the earlier releases has ceased. All
versions of Berkeley DB can be obtained from

http://www.sleepycat.com/

Exim should compile and work with any of the DB releases. There is further detailed discussion about
the various DBM libraries in the file doc/dbm.discuss.txt in the Exim distribution.

4.4 Pre-building configuration
Before building Exim, a local configuration file that specifies options independent of any operating
system has to be created with the name Local/Makefile. A template for this file is supplied as the file
src/EDITME, and it contains full descriptions of all the option settings therein. If you are building
Exim for the first time, the simplest thing to do is to copy src/EDITME to Local/Makefile, then read
it and edit it appropriately.

There are three settings that you must supply, because Exim will not build without them. They are the
location of the run time configuration file (CONFIGURE_FILE), the directory in which Exim binaries will
be installed (BIN_DIRECTORY), and the identity of the Exim user (EXIM_USER and maybe EXIM_GROUP as
well).

There are a few other parameters that can be specified either at build time or at run time to enable the
same binary to be used on a number of different machines. However, if the locations of Exim’s spool
directory and log file directory (if not within the spool directory) are fixed, it is recommended that you
specify them in Local/Makefile instead of at run time, so that errors detected early in Exim’s
execution (such as a malformed configuration file) can be logged.

If you are going to build the Exim monitor, a similar configuration process is required. The file
exim_monitor/EDITME must be edited appropriately for your installation and saved under the name
Local/eximon.conf. If you are happy with the default settings described in exim_monitor/EDITME,
Local/eximon.conf can be empty, but it must exist.

Exim 4.10 [17] building/installing (4)

This is all the configuration that is needed in straightforward cases for known operating systems.
However, the building process is set up so that it is easy to override options that are set by default or
by operating-system-specific configuration files, for example to change the name of the C compiler,
which defaults to gcc. See section 4.9 below for details of how to do this.

4.5 Including TLS/SSL encryption support
Exim can be built to support encrypted SMTP connections, using the STARTTLS command (RFC 2487).
Before you can do this, you must install the OpenSSL library, which Exim uses for this purpose. There
is no cryptographic code in Exim itself for implementing SSL. Once OpenSSL is installed, you can set

SUPPORT_TLS=yes
TLS_LIBS=-lssl -lcrypto

in Local/Makefile. You may also need to specify the locations of the OpenSSL library and include
files. For example:

SUPPORT_TLS=yes
TLS_LIBS=-L/usr/local/openssl/lib -lssl -lcrypto

 TLS_INCLUDE=-I/usr/local/openssl/include/

You do not need to set TLS_INCLUDE if the relevant directory is already specified in INCLUDE.

4.6 Use of tcpwrappers
Exim can be linked with the tcpwrappers library in order to check incoming SMTP calls using the
tcpwrappers control files. This may be a convenient alternative to Exim’s own checking facilities for
installations that are already making use of tcpwrappers for other purposes. To do this, you should set
USE_TCP_WRAPPERS in Local/Makefile, arrange for the file tcpd.h to be available at compile time, and
also ensure that the library libwrap.a is available at link time, typically by including -lwrap in
EXTRALIBS_EXIM. For example, if tcpwrappers is installed in /usr/local, you might have

USE_TCP_WRAPPERS=yes
CFLAGS=-O -I/usr/local/include
EXTRALIBS_EXIM=-L/usr/local/lib -lwrap

in Local/Makefile. The name to use in the tcpwrappers control files is ‘exim’. For example, the line

exim : LOCAL 192.168.0. .friendly.domain.example

in your /etc/hosts.allow file allows connections from the local host, from the subnet 192.168.0.0/24,
and from all hosts in friendly.domain.example. All other connections are denied. Consult the
tcpwrappers documentation for further details.

4.7 Including support for IPv6
Exim contains code for use on systems that have IPv6 support. Setting HAVE_IPV6=YES in
Local/Makefile causes the IPv6 code to be included; it may also be necessary to set IPV6_INCLUDE and
IPV6_LIBS on systems where the IPv6 support is not fully integrated into the normal include and library
files.

IPv6 is still changing rapidly. Two different types of DNS record for handling IPv6 addresses have
been defined. AAAA records are already in use, and are currently seen as the ‘mainstream’, but
another record type called A6 is being argued about. Its status is currently ‘experimental’. Exim has
support for A6 records, but this is included only if you set SUPPORT_A6=YES in Local/Makefile.

4.8 The building process
Once Local/Makefile (and Local/eximon.conf, if required) have been created, run make at the top
level. It determines the architecture and operating system types, and creates a build directory if one
does not exist. For example, on a Sun system running Solaris 8, the directory build-SunOS5-5.8-sparc
is created. Symbolic links to relevant source files are installed in the build directory.

Exim 4.10 [18] building/installing (4)

If this is the first time make has been run, it calls a script which builds a make file inside the build
directory, using the configuration files from the Local directory. The new make file is then passed to
another instance of make which does the real work, building a number of utility scripts, and then
compiling and linking the binaries for the Exim monitor (if configured), a number of utility programs,
and finally Exim itself. The command make makefile can be used to force a rebuild of the make file in
the build directory, should this ever be necessary.

If you have problems building Exim, check for any comments there may be in the README file
concerning your operating system, and also take a look at the FAQ, where some common problems are
covered.

4.9 Overriding build-time options for Exim
The main make file that is created at the beginning of the building process consists of the concat-
enation of a number of files which set configuration values, followed by a fixed set of make
instructions. If a value is set more than once, the last setting overrides any previous ones. This
provides a convenient way of overriding defaults. The files that are concatenated are, in order:

OS/Makefile-Default
 OS/Makefile-<ostype>
 Local/Makefile
 Local/Makefile-<ostype>
 Local/Makefile-<archtype>
 Local/Makefile-<ostype>-<archtype>
 OS/Makefile-Base

where <ostype> is the operating system type and <archtype> is the architecture type. Local/Makefile
is required to exist, and the building process fails if it is absent. The other three Local files are
optional, and are often not needed.

The values used for <ostype> and <archtype> are obtained from scripts called scripts/os-type and
scripts/arch-type respectively. If either of the environment variables EXIM_OSTYPE or EXIM_ARCHTYPE is
set, their values are used, thereby providing a means of forcing particular settings. Otherwise, the
scripts try to get values from the uname command. If this fails, the shell variables OSTYPE and
ARCHTYPE are inspected. A number of ad hoc transformations are then applied, to produce the standard
names that Exim expects. You can run these scripts directly from the shell in order to find out what
values are being used on your system.

OS/Makefile-Default contains comments about the variables that are set therein. Some (but not all)
are mentioned below. If there is something that needs changing, review the contents of this file and the
contents of the make file for your operating system (OS/Makefile-<ostype>) to see what the default
values are.

If you need to change any of the values that are set in OS/Makefile-Default or in
OS/Makefile-<ostype>, or to add any new definitions, do so by putting the new values in an
appropriate Local file. For example, to specify that the C compiler is called cc rather than gcc when
compiling in the OSF1 operating system, and that it is to be to be called with the flag -std1, create a
file called Local/Makefile-OSF1 containing the lines

CC=cc
 CFLAGS=-std1

This makes it easy to transfer your configuration settings to new versions of Exim simply by copying
the contents of the Local directory.

Exim contains support for doing LDAP, NIS, NIS+, and other kinds of file lookup, but not all systems
have these components installed, so the default is not to include the relevant code in the binary. All the
different kinds of file and database lookup that Exim supports are implemented as separate code
modules which are included only if the relevant compile-time options are set. In the case of LDAP,
NIS, and NIS+, the settings for Local/Makefile are:

Exim 4.10 [19] building/installing (4)

 LOOKUP_LDAP=yes
 LOOKUP_NIS=yes
 LOOKUP_NISPLUS=yes

and similar settings apply to the other lookup types. They are all listed in src/EDITME. In most cases
the relevant include files and interface libraries need to be installed before compiling Exim. However,
in the case of cdb, which is included in the binary only if

LOOKUP_CDB=yes

is set, the code is entirely contained within Exim, and no external include files or libraries are required.
When a lookup type is not included in the binary, attempts to configure Exim to use it cause run time
configuration errors.

Exim can be linked with an embedded Perl interpreter, allowing Perl subroutines to be called during
string expansion. To enable this facility,

EXIM_PERL=perl.o

must be defined in Local/Makefile. Details of this facility are given in chapter 12.

The location of the X11 libraries is something that varies a lot between operating systems, and of
course there are different versions of X11 to cope with. Exim itself makes no use of X11, but if you
are compiling the Exim monitor, the X11 libraries must be available. The following three variables are
set in OS/Makefile-Default:

X11=/usr/X11R6
XINCLUDE=-I$(X11)/include
XLFLAGS=-L$(X11)/lib

These are overridden in some of the operating-system configuration files. For example, in
OS/Makefile-SunOS5 there is

X11=/usr/openwin
 XINCLUDE=-I$(X11)/include

XLFLAGS=-L$(X11)/lib -R$(X11)/lib

If you need to override the default setting for your operating system, place a definition of all three of
these variables into your Local/Makefile-<ostype> file.

If you need to add any extra libraries to the link steps, these can be put in a variable called EXTRALIBS,
which appears in all the link commands, but by default is not defined. In contrast, EXTRALIBS_EXIM is
used only on the command for linking the main Exim binary, and not for any associated utilities.
There is also DBMLIB, which appears in the link commands for binaries that use DBM functions (see
also section 4.3). Finally, there is EXTRALIBS_EXIMON, which appears only in the link step for the Exim
monitor binary, and which can be used, for example, to include additional X11 libraries.

The make file copes with rebuilding Exim correctly if any of the configuration files are edited.
However, if an optional configuration file is deleted, it is necessary to touch the associated non-
optional file (that is, Local/Makefile or Local/eximon.conf) before rebuilding.

4.10 OS-specific header files
The OS directory contains a number of files with names of the form os.h-<ostype>. These are system-
specific C header files that should not normally need to be changed. There is a list of macro settings
that are recognized in the file OS/os.configuring, which should be consulted if you are porting Exim
to a new operating system.

4.11 Overriding build-time options for the monitor
A similar process is used for overriding things when building the Exim monitor, where the files that
are involved are

Exim 4.10 [20] building/installing (4)

 OS/eximon.conf-Default
 OS/eximon.conf-<ostype>

Local/eximon.conf
 Local/eximon.conf-<ostype>
 Local/eximon.conf-<archtype>
 Local/eximon.conf-<ostype>-<archtype>

As with Exim itself, the final three files need not exist, and in this case the OS/eximon.conf-<ostype>
file is also optional. The default values in OS/eximon.conf-Default can be overridden dynamically by
setting environment variables of the same name, preceded by EXIMON_. For example, setting
EXIMON_LOG_DEPTH in the environment overrides the value of LOG_DEPTH at run time.

4.12 Installing Exim binaries and scripts
The command make install runs the exim_install script with no arguments. The script copies binaries
and utility scripts into the directory whose name is specified by the BIN_DIRECTORY setting in
Local/Makefile. Files are copied only if they are newer than the file they are going to replace. You
must run make install as root so that it can set up the Exim binary as owned by root and with the
setuid bit set.

Running make install does not copy the Exim 4 conversion script convert4r4, or the pcretest test
program. You will probably run the first of these only once (if you are upgrading from Exim 3), and
the second isn’t really part of Exim. None of the documentation files in the doc directory are copied,
except for the info files when you have set INFO_DIRECTORY, as described in section 4.13 below.

The binary is required to be owned by root and have the setuid bit set, for normal configurations. If
you want to see what the make install will do before running it for real, you can run the install script
yourself, and use the -n option (for which root is not needed). You must run the script from within the
build directory. For example, from the top-level Exim directory you could use this command:

(cd build-SunOS5-5.5.1-sparc; ../scripts/exim_install -n)

In some special cases (for example, if a host is doing no local deliveries) it may be possible to run
Exim without making the binary setuid root (see chapter 47 for details).

For the utility programs, old versions are renamed by adding the suffix .O to their names. The Exim
binary itself, however, is handled differently. It is installed under a name that includes the version
number and the compile number, for example exim-4.00-1. The script then arranges for a symbolic
link called exim to point to the binary. If you are updating a previous version of Exim, the script takes
care to ensure that the name exim is never absent from the directory (as seen by other processes).

The scripts/exim_install script can be run independently with arguments specifying which files are to
be copied, from within a build directory. For example,

(cd build-SunOS5-sparc; ../scripts/exim_install exim)

installs just the main binary file.

Exim’s run time configuration file is named by the CONFIGURE_FILE setting in Local/Makefile. If this
file does not exist, the default configuration file src/configure.default is copied there by the instal-
lation script. If a run time configuration file already exists, it is left alone. The default configuration
uses the local host’s name as the only local domain, and is set up to do local deliveries into the shared
directory /var/mail, running as the local user. Aliases in /etc/aliases and .forward files in users’ home
directories are supported, but no NIS or NIS+ support is configured. Domains other than the name of
the local host are routed using the DNS, with delivery over SMTP.

If /etc/aliases does not exist, the installation script creates it, and outputs a comment to the user. The
created file contains no aliases, but it does contain comments about the aliases a site should normally
have. This file has traditionally been where mail aliases are kept. However, some operating systems are
now using /etc/mail/aliases. You should check if yours is one of these, and change Exim’s configur-
ation if necessary.

Exim 4.10 [21] building/installing (4)

4.13 Installing info documentation
Not all systems use the GNU info system for documentation, and for this reason, the Texinfo source of
Exim’s documentation is not included in the main distribution. Instead it is available separately from
the ftp site (see section 1.4).

If you have defined INFO_DIRECTORY in Local/Makefile and the Texinfo source of the documentation is
found in the source tree, running make install automatically builds the info files and installs them.

4.14 Setting up the spool directory
When it starts up, Exim tries to create its spool directory if it does not exist. The Exim uid and gid are
used for the owner and group of the spool directory. Sub-directories are automatically created in the
spool directory as necessary.

4.15 Testing
Having installed Exim, you can check that the run time configuration file is syntactically valid by
running the following command, which assumes that the Exim binary directory is within your PATH

environment variable:

exim -bV

If there are any errors in the configuration file, Exim outputs error messages. Otherwise it just outputs
the version number and build date. Some simple routing tests can be done by using the address testing
option. For example,

exim -bt <local username>

should verify that it recognizes a local mailbox, and

exim -bt <remote address>

a remote one. Then try getting it to deliver mail, both locally and remotely. This can be done by
passing messages directly to Exim, without going through a user agent. For example:

exim -v postmaster@your.domain.example
From: user@your.domain.example
To: postmaster@your.domain.example
Subject: Testing Exim

This is a test message.
 ^D

The -v option causes Exim to output some verification of what it is doing. In this case you should see
copies of three log lines, one for the message’s arrival, one for its delivery, and one containing
‘Completed’.

If you encounter problems, look at Exim’s log files (mainlog and paniclog) to see if there is any
relevant information there. Another source of information is running Exim with debugging turned on,
by specifying the -d option. If a message is stuck on Exim’s spool, you can force a delivery with
debugging turned on by a command of the form

exim -d -M <message-id>

You must be root or an ‘admin user’ in order to do this. The -d option produces rather a lot of output,
but you can cut this down to specific areas. For example, if you use -d-all+route only the debugging
information relevant to routing is included. (See the -d option in chapter 5 for more details.)

One specific problem that has shown up on some sites is the inability to do local deliveries into a
shared mailbox directory, because it does not have the ‘sticky bit’ set on it. By default, Exim tries to
create a lock file before writing to a mailbox file, and if it cannot create the lock file, the delivery is
deferred. You can get round this either by setting the ‘sticky bit’ on the directory, or by setting a
specific group for local deliveries and allowing that group to create files in the directory (see the
comments above the local_delivery transport in the default configuration file). Another approach is to

Exim 4.10 [22] building/installing (4)

configure Exim not to use lock files, but just to rely on fcntl() locking instead. However, you should do
this only if all user agents also use fcntl() locking. For further discussion of locking issues, see
chapter 25.

One thing that cannot be tested on a system that is already running an MTA is the receipt of incoming
SMTP mail on the standard SMTP port. However, the -oX option can be used to run an Exim daemon
that listens on some other port, or inetd can be used to do this. The -bh option and the
exim_checkaccess utility can be used to check out policy controls on incoming SMTP mail.

Testing a new version on a system that is already running Exim can most easily be done by building a
binary with a different CONFIGURE_FILE setting. From within the run time configuration, all other file
and directory names that Exim uses can be altered, in order to keep it entirely clear of the production
version.

4.16 Replacing another MTA with Exim
Building and installing Exim for the first time does not of itself put it in general use. The name by
which the system’s MTA is called by mail user agents is either /usr/sbin/sendmail, or
/usr/lib/sendmail (depending on the operating system), and it is necessary to make this name point to
the exim binary in order to get the user agents to pass messages to Exim. This is normally done by
renaming any existing file and making /usr/sbin/sendmail or /usr/lib/sendmail a symbolic link to the
exim binary. It is a good idea to remove any setuid privilege and executable status from the old MTA.
It is then necessary to stop and restart the mailer daemon, if one is running.

You should consider what to tell your users about the change of MTA. Exim may have different
capabilities to what was previously running, and there are various operational differences such as the
text of messages produced by command line options and in bounce messages. If you allow your users
to make use of Exim’s filtering capabilities, you should make the document entitled Exim’s interface to
mail filtering available to them.

4.17 Upgrading Exim
If you are already running Exim on your host, building and installing a new version automatically
makes it available to MUAs, or any other programs that call the MTA directly. However, if you are
running an Exim daemon, you do need to send it a HUP signal, to make it re-exec itself, and thereby
pick up the new binary. You do not need to stop processing mail in order to install a new version of
Exim.

4.18 Stopping Exim on Solaris
The standard command for stopping the mailer daemon on Solaris is

/etc/init.d/sendmail stop

If /usr/lib/sendmail has been turned into a symbolic link, this script fails to stop Exim because it uses
the command ps -e and greps the output for the text ‘sendmail’; this is not present because the actual
program name (that is, ‘exim’) is given by the ps command with these options. A solution is to replace
the line that finds the process id with something like

pid=‘cat /var/spool/exim/exim-daemon.pid‘

to obtain the daemon’s pid directly from the file that Exim saves it in.

Exim 4.10 [23] building/installing (4)

5. The Exim command line

Exim’s command line takes the standard Unix form of a sequence of options, each starting with a
hyphen character, followed by a number of arguments. The options are compatible with the main
options of Sendmail, and there are also some additional options, some of which are compatible with
Smail 3. Certain combinations of options do not make sense, and provoke an error if used. The form
of the arguments depends on which options are set.

5.1 Setting options by program name
If Exim is called under the name mailq, it behaves as if the option -bp were present before any other
options. This is for compatibility with some systems that contain a command of that name in one of
the standard libraries, symbolically linked to /usr/sbin/sendmail or /usr/lib/sendmail.

If Exim is called under the name rsmtp it behaves as if the option -bS were present before any other
options, for compatibility with Smail. The -bS option is used for reading in a number of messages in
batched SMTP format.

If Exim is called under the name rmail it behaves as if the -i and -oee options were present before any
other options, for compatibility with Smail. The name rmail is used as an interface by some UUCP
systems.

If Exim is called under the name runq it behaves as if the option -q were present before any other
options, for compatibility with Smail. The -q option causes a single queue-runner process to be started.

If Exim is called under the name newaliases it behaves as if the option -bi were present before any
other options, for compatibility with Sendmail. This option is used for rebuilding Sendmail’s alias file.
Exim does not have the concept of a single alias file, but can be configured to run a given command if
called with the -bi option.

5.2 Trusted and admin users
Some Exim options are available only to trusted users and others are available only to admin users. In
the description below, the phrases ‘Exim user’ and ‘Exim group’ mean the user and group defined by
EXIM_USER and EXIM_GROUP in Local/Makefile or set by the exim_user and exim_group options. These
do not necessarily have to use the name ‘exim’.

• The trusted users are root, the Exim user, any user listed in the trusted_users configuration
option, and any user whose current group or any supplementary group is one of those listed in
the trusted_groups configuration option. Note that the Exim group is not automatically trusted.

Trusted users are always permitted to use the -f option or a leading ‘From ’ line to specify the
envelope sender of a message that is passed to Exim through the local interface (see the -bm and
-f options below). See the untrusted_set_sender option for a way of permitting non-trusted users
to set envelope senders. For a trusted user, there is never any check on the contents of the From:
header line, and a Sender: line is never added. Furthermore, any existing Sender: line in
incoming local (non-TCP/IP) messages is not removed.

Trusted users may also specify a host name, host address, interface address, protocol name, ident
value, and authentication data when submitting a message locally. Thus, they are able to insert
messages into Exim’s queue locally that have the characteristics of messages received from a
remote host. Untrusted users may in some circumstances use -f, but can never set the other
values that are available to trusted users.

• The admin users are root, the Exim user, and any user that is a member of the Exim group or of
any group listed in the admin_groups configuration option. The current group does not have to
be one of these groups.

Exim 4.10 [24] command line (5)

Admin users are permitted to list the queue, and to carry out certain operations on messages, for
example, to force delivery failures. It is also necessary to be an admin user in order to see the
full information provided by the Exim monitor, and full debugging output.

By default, the use of the -M, -q, -R, and -S options to cause Exim to attempt delivery of
messages on its queue is restricted to admin users. However, this restriction can be relaxed by
setting the prod_requires_admin option false (that is, specifying no_prod_requires_admin).

Similarly, the use of the -bp option to list all the messages in the queue is restricted to admin
users unless queue_list_requires_admin is set false.

5.3 Command line options
The command options are described in alphabetical order below.

-- This is a pseudo-option whose only purpose is to terminate the options and therefore to cause
subsequent command line items to be treated as arguments rather than options, even if they
begin with hyphens.

--help This option just causes Exim to output a few sentences stating what it is.

-B<type>
This is a Sendmail option for selecting 7 or 8 bit processing. Exim is entirely 8-bit clean; it
ignores this option.

-bd This option runs Exim as a daemon, awaiting incoming SMTP connections. Usually the -bd
option is combined with the -q<time> option, to specify that the daemon should also initiate
periodic queue runs.

The -bd option can be used only by an admin user. If either of the -d (debugging) or -v
(verifying) options are set, the daemon does not disconnect from the controlling terminal.
When running this way, it can be stopped by pressing ctrl-C.

By default, Exim listens for incoming connections to the standard SMTP port on all the host’s
interfaces. The port can be varied by means of the daemon_smtp_port option. The daemon
can also be restricted to specific interfaces by setting the local_interfaces option in the
configuration file. This option is also able to specify a different port for each interface it lists,
making it possible to listen on multiple ports. The -oX command line option can be used to
override local_interfaces.

When a listening daemon is started without the use of -oX (that is, without overriding the
normal configuration), it writes its process id to a file called exim-daemon.pid in Exim’s
spool directory. This location can be overridden by setting PID_FILE_PATH in Local/Makefile.
The file is written while Exim is still running as root.

When -oX is used on the command to start a listening daemon, the process id is not written to
the normal pid file path. However, -oP can be used to specify a path on the command line if a
pid file is required.

The SIGHUP signal can be used to cause the daemon to re-exec itself. This should be done
whenever Exim’ s configuration file, or any file that is incorporated into it by means of the
.include facility, is changed, and also whenever a new version of Exim is installed. It is not
necessary to do this when other files that are referenced from the configuration (for example,
alias files) are changed, because these are reread each time they are used.

-bdf This option has the same effect as -bd except that it never disconnects from the controlling
terminal, even when no debugging is specified.

-be Run Exim in expansion testing mode. Exim discards its root privilege, to prevent ordinary
users from using this mode to read otherwise inaccessible files. If no arguments are given,
Exim runs interactively, prompting for lines of data. Long expressions can be split over
several lines by using backslash continuations. Each argument or data line is passed through
the string expansion mechanism, and the result is output. Variable values from the configur-

Exim 4.10 [25] command line (5)

ation file (for example, $qualify_domain) are available, but no message-specific values (such
as $domain) are set, because no message is being processed.

-bF <filename>
This option is the same as -bf except that it assumes that the filter being tested is a system

 filter. The additional commands that are available only in system filters are recognized.

-bf <filename>
This option runs Exim in filter testing mode; the file is the filter file to be tested, and a test
message must be supplied on the standard input. If there are no message-dependent tests in
the filter, an empty file can be supplied. If a system filter file is being tested, -bF should be
used instead of -bf. If the test file does not begin with the special line

Exim filter

then it is taken to be a normal .forward file, and is tested for validity under that interpret-
ation. The result of this command, provided no errors are detected, is a list of the actions that
Exim would try to take if presented with the message for real. More details of filter testing
are given in the separate document entitled Exim’s interface to mail filtering.

When testing a filter file, the envelope sender can be set by the -f option, or by a ‘From ’ line
at the start of the test message. Various parameters that would normally be taken from the
envelope recipient address of the message can be set by means of additional command line
options. These are:

-bfd <domain> default is the qualify domain
-bfl <local_part> default is the logged in user
-bfp <local_part_prefix> default is null
-bfs <local_part_suffix> default is null

The local part should always be set to the incoming address with any prefix or suffix stripped,
because that is how it appears to the filter when a message is actually being delivered.

-bh <IP address>
This option runs a fake SMTP session as if from the given IP address, using the standard
input and output. The IP address may include a port number at the end, after a full stop. For
example:

exim -bh 10.9.8.7.1234
exim -bh fe80::a00:20ff:fe86:a061.5678

Comments as to what is going on are written to the standard error file. These include lines
beginning with ‘LOG’ for anything that would have been logged. This facility is for testing
configuration options for blocking hosts and/or senders and for checking on relaying control.

Warning: You cannot test features of the configuration that rely on ident (RFC 1413)
callouts, because these are not done when testing using -bh.

Messages supplied during the testing session are discarded, and nothing is written to any of
the real log files. There may be pauses when DNS (and other) lookups are taking place, and
of course these may time out. The -oMi option can be used to specify a specific IP interface
and port if this is important.

The exim_checkaccess utility is a ‘packaged’ version of -bh whose output just states whether
a given recipient address from a given host is acceptable or not. See section 45.6.

-bi Sendmail interprets the -bi option as a request to rebuild its alias file. Exim does not have the
concept of a single alias file, and so it cannot mimic this behaviour. However, calls to
/usr/lib/sendmail with the -bi option tend to appear in various scripts such as NIS make files,
so the option must be recognized.

If -bi is encountered, the command specified by the bi_command configuration option is run,
under the uid and gid of the caller of Exim. If the -oA option is used, its value is passed to
the command as an argument. The command set by bi_command may not contain arguments.

Exim 4.10 [26] command line (5)

The command can use the exim_dbmbuild utility, or some other means, to rebuild alias files if
this is required. If the bi_command option is not set, calling Exim with -bi is a no-op.

-bm This option runs an Exim receiving process which accepts an incoming, locally-generated
message on the current input. The recipients are given as the command arguments (except
when -t is also present – see below). Each argument can be a comma-separated list of RFC
2822 addresses. This is the default option for selecting the overall action of an Exim call; it is
assumed if no other conflicting option is present. The return code is zero if the message is
successfully accepted. Otherwise, the action is controlled by the -oex option setting – see

 below.

The format of the message must be as defined in RFC 2822, except that, for compatibility
with Sendmail and Smail, a line in one of the forms

From sender Fri Jan 5 12:55 GMT 1997
From sender Fri, 5 Jan 97 12:55:01

(with the weekday optional, and possibly with additional text after the date) is permitted to
appear at the start of the message. There appears to be no authoritative specification of the
format of this line. Exim recognizes it by matching against the regular expression defined by
the uucp_from_pattern option, which can be changed if necessary. The specified sender is
treated as if it were given as the argument to the -f option, but if a -f option is also present,
its argument is used in preference to the address taken from the message. The caller of Exim
must be a trusted user for the sender of a message to be set in this way.

-bP If this option is given with no arguments, it causes the values of all Exim’s main configur-
ation options to be written to the standard output. The values of one or more specific options
can be requested by giving their names as arguments, for example:

exim -bP qualify_domain hold_domains

However, any option setting that is preceded by the word ‘hide’ in the configuration file is not
shown in full, except to an admin user. For other users, output such as

mysql_servers = <value not displayable>

is used. If configure_file is given as an argument, the name of the run time configuration file
is output. If log_file_path or pid_file_path are given, the names of the directories where log
files and daemon pid files are written are output, respectively. If these values are unset, log
files are written in a sub-directory of the spool directory called log, and the pid file is written
directly into the spool directory.

If -bP is followed by a name preceded by +, for example,

exim -bP +local_domains

it searches for a matching named list of any type (domain, host, address, or local part) and
outputs what it finds.

If one of the words router, transport, or authenticator is given, followed by the name of an
appropriate driver instance, the option settings for that driver are output. For example:

exim -bP transport local_delivery

The generic driver options are output first, followed by the driver ’s private options. A list of
the names of drivers of a particular type can be obtained by using one of the words

 router_list, transport_list, or authenticator_list, and a complete list of all drivers with their
option settings can be obtained by using routers, transports, or authenticators.

-bp This option requests a listing of the contents of the mail queue on the standard output. If the
-bp option is followed by a list of message ids, just those messages are listed. By default, this
option can be used only by an admin user. However, the queue_list_requires_admin option
can be set false to allow any user to see the queue.

Each message on the queue is displayed as in the following example:

Exim 4.10 [27] command line (5)

25m 2.9K 0t5C6f-0000c8-00 <alice@wonderland.fict.example>
red.king@looking-glass.fict.example

 <other addresses>

The first line contains the length of time the message has been on the queue (in this case 25
minutes), the size of the message (2.9K), the unique local identifier for the message, and the
message sender, as contained in the envelope. For bounce messages, the sender address is

 empty, and appears as ‘<>’. If the message was submitted locally by an untrusted user who
overrode the default sender address, the user ’s login name is shown in parentheses before the
sender address. If the message is frozen (attempts to deliver it are suspended) then the text

 ‘*** frozen ***’ is displayed at the end of this line.

The recipients of the message (taken from the envelope, not the headers) are displayed on
subsequent lines. Those addresses to which the message has already been delivered are
marked with the letter D. If an original address gets expanded into several addresses via an
alias or forward file, the original is displayed with a D only when deliveries for all of its child
addresses are complete.

-bpa This option operates like -bp, but in addition it shows delivered addresses that were generated
from the original top level address(es) in each message by alias or forwarding operations.
These addresses are flagged with ‘+D’ instead of just ‘D’.

-bpc This option counts the number of messages on the queue, and writes the total to the standard
output. It is restricted to admin users, unless queue_list_requires_admin is set false.

-bpr This option operates like -bp, but the output is not sorted into chronological order of message
arrival. This can speed it up when there are lots of messages on the queue, and is particularly
useful if the output is going to be post-processed in a way that doesn’t need the sorting.

-bpra This option is a combination of -bpr and -bpa.

-bpru This option is a combination of -bpr and -bpu.

-bpu This option operates like -bp but shows only undelivered top-level addresses for each mess-
age displayed. Addresses generated by aliasing or forwarding are not shown, unless the
message was deferred after processing by a router with the one_time option set.

-brt This option is for testing retry rules, and it must be followed by up to three arguments. It
causes Exim to look for a retry rule that matches the values and to write it to the standard
output. For example:

exim -brt bach.comp.mus.example
Retry rule: *.comp.mus.example F,2h,15m; F,4d,30m;

See chapter 31 for a description of Exim’s retry rules. The first argument, which is required,
can be a complete address in the form local_part@domain, or it can be just a domain name.
The second argument is an optional second domain name; if no retry rule is found for the first

 argument, the second is tried. This ties in with Exim’s behaviour when looking for retry rules
for remote hosts – if no rule is found that matches the host, one that matches the mail domain
is sought. The final argument is the name of a specific delivery error, as used in setting up
retry rules, for example ‘quota_3d’.

-brw This option is for testing address rewriting rules, and it must be followed by a single
 argument, consisting of either a local part without a domain, or a complete address with a

fully qualified domain. Exim outputs how this address would be rewritten for each possible
place it might appear. See chapter 30 for further details.

-bS This option is used for batched SMTP input, which is an alternative interface for non-
interactive local message submission. Exim reads SMTP commands on the standard input, but
generates no responses. If any error is encountered, reports are written to the standard output
and error streams, and Exim gives up immediately. The return code is 0 if no error was
detected; it is 1 if one or more messages were accepted before the error was detected;
otherwise it is 2.

Exim 4.10 [28] command line (5)

If the caller is trusted, or untrusted_set_sender is set, the senders in the SMTP MAIL

commands are believed; otherwise the sender is always the caller of Exim. The SMTP
commands HELO and EHLO act as RSET; VRFY, EXPN, ETRN, and HELP act as NOOP; QUIT quits.
More details of input using batched SMTP are given in section 42.9.

-bs This option causes Exim to accept one or more messages by reading SMTP commands on the
standard input, and producing SMTP replies on the standard output. SMTP policy controls, as
defined in ACLs (see chapter 37) are applied. Some user agents use this interface as a way of
passing locally-generated messages to the MTA. The option is also used to run Exim from

 inetd, as an alternative to using a listening daemon, in which case the standard input is the
connected socket. Exim can distinguish the two cases by checking whether the standard input
is a TCP/IP socket.

If the caller of Exim is trusted, or untrusted_set_sender is set, the senders of messages are
taken from the SMTP MAIL commands. Otherwise the content of these commands is ignored
and the sender is set up as the calling user.

-bt This option runs Exim in address testing mode, in which each argument is taken as an address
to be tested for deliverability. The results are written to the standard output. If no arguments
are given, Exim runs in an interactive manner, prompting with a right angle bracket for
addresses to be tested. Each address is handled as if it were the recipient address of a message
(compare the -bv option). It is passed to the routers and the result is written to the standard
output. The return code is 2 if any address failed outright; it is 1 if no address failed outright
but at least one could not be resolved for some reason. Return code 0 is given only when all
addresses succeed.

Warning: -bt can only do relatively simple testing. If any of the routers in the configuration
makes any tests on the sender address of a message, you can use the -f option to set an
appropriate sender when running -bt tests. Without it, the sender is assumed to be the calling
user at the default qualifying domain. However, if you have set up (for example) routers
whose behaviour depends on the contents of an incoming message, you cannot test those
conditions using -bt. The -N option provides a possible way of doing such tests.

-bV This option causes Exim to write the current version number, compilation number, and
compilation date of the exim binary to the standard output.

-bv This option runs Exim in address verification mode, in which each argument is taken as an
address to be verified. During normal operation, verification happens mostly as a consequence
processing a verify condition in an ACL (see chapter 37). If you want to test an entire ACL,
see the -bh option.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be verified. Verification differs from address testing (the -bt option)
in that routers that have no_verify set are skipped, and if the address is accepted by a router
that has fail_verify set, verification fails. The address is verified as a recipient if -bv is used;
to test verification for a sender address, -bvs should be used.

If the -v option is not set, the output consists of a single line for each address, stating whether
it was verified or not, and giving a reason in the latter case. Otherwise, more details are given
of how the address has been handled, and in the case of address redirection, all the generated
addresses are also considered. Without -v, generating more than one address by redirection
causes verification to end sucessfully.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at
least one could not be resolved for some reason. Return code 0 is given only when all
addresses succeed.

If any of the routers in the configuration makes any tests on the sender address of a message,
you should use the -f option to set an appropriate sender when running -bv tests. Without it,
the sender is assumed to be the calling user at the default qualifying domain.

Exim 4.10 [29] command line (5)

-bvs This option acts like -bv, but verifies the address as a sender rather than a recipient address.
This affects any rewriting and qualification that might happen.

-C <filename>
This option causes Exim to read the run time configuration from the given file instead of from
the file specified by the CONFIGURE_FILE compile-time setting. When this option is used by a
caller other than root or the Exim user, and the file name given is different from the
compiled-in name, Exim gives up its root privilege immediately, and runs with the real and

 effective uid and gid set to those of the caller.

The facility is useful for ensuring that configuration files are syntactically correct, but cannot
be used for test deliveries, unless the caller is privileged, or unless it’s an exotic configuration
that does not require privilege. No check is made on the owner or group of the file specified
by this option.

-D<macro>=<value>
This option can be used to override macro definitions in the configuration file (see section
6.4). However, like -C, if it is used by an unprivileged caller, it causes Exim to give up its
root privilege. This option may be repeated up to 10 times on a command line.

-d<debug options>
This option causes debugging information to be written to the standard error file. It is
restricted to admin users because debugging output may show database queries that contain
password information. Also, the details of users’ filter files should be protected. When -d is
used, -v is assumed. If -d is given on its own, a lot of standard debugging data is output. This
can be reduced, or increased to include some more rarely needed information, by following -d
with a string made up of names preceded by plus or minus characters. These add or remove
sets of debugging data, respectively. For example, -d+filter adds filter debugging, whereas -d-
all+filter selects only filter debugging. The available debugging categories are:

acl ACL interpretation
auth authenticators
deliver general delivery logic
dns DNS lookups (see also resolver)
dnsbl DNS black list (aka RBL) code
exec arguments for execv() calls
filter filter handling
hints_lookup hints data lookups
host_lookup all types of name-to-IP address handling
ident ident lookup
interface lists of local interfaces
lists matching things in lists
load system load checks
lookup general lookup code and all lookups
memory memory handling
process_info setting info for the process log
queue_run queue runs
receive general message reception logic
resolver turn on the DNS resolver ’s debugging output
retry retry handling
rewrite address rewriting
route address routing
tls TLS logic
transport transports
uid changes of uid/gid and looking up uid/gid
verify address verification logic

all all of the above, and also -v

Exim 4.10 [30] command line (5)

The default (-d with no argument) omits filter, interface, load, memory, and
 resolver. Unfortunately, debugging output from the DNS resolver is written to stdout

rather than stderr.

If the debug_print option is set in any driver, it produces output whenever any debugging is
selected, or if -v is used.

-dropcr
The RFCs that define Internet mail apply only to messages in transit between hosts. They
specify that lines of text should be terminated by the two-character sequence CR, LF. When a
message is within a host system, the software that processes it may use any method it likes
for terminating lines. The natural assumption is to use the host’s normal convention. Most
software on Unix-like systems uses a single LF character, which is the Unix standard.

When a non-SMTP message is passed to Exim via its command line, LF termination is
assumed. Any CR characters in the message, wherever they appear, are treated as data

 characters.

Unfortunately, not all software writers take the same view. At least one MUA (dtmail)
terminates each line with CR, LF, and the Cyrus message store behaves in the same way.
There is also some UUCP software which does this. To support these callers, Exim has the

 -dropcr option, which causes it to discard a CR character if it immediately precedes an LF.
Any other CR characters are treated as data. For example, a sequence such as CR, CR, LF is
treated as one data CR, followed by the end of the line. The drop_cr configuration file option
can be used to force -dropcr for all non-SMTP input.

-E This option specifies that an incoming message is a locally-generated delivery failure report.
It is used internally by Exim when handling delivery failures and is not intended for external
use. Its only effect is to stop Exim generating certain messages to the postmaster, as otherwise
message cascades could occur in some situations. As part of the same option, a message id
may follow the characters -E. If it does, the log entry for the receipt of the new message
contains the id, following ‘R=’, as a cross-reference.

-ex There are a number of Sendmail options starting with -oe which seem to be called by various
programs without the leading o in the option. For example, the vacation program uses -eq.
Exim treats all options of the form -ex as synonymous with the corresponding -oex options.

-F <string>
This option sets the sender ’s full name for use when a locally-generated message is being
accepted. In the absence of this option, the user ’s gecos entry from the password data is used.
As users are generally permitted to alter their gecos entries, no security considerations are
involved. White space between -F and the <string> is optional.

-f <address>
This option sets the address of the envelope sender of a locally-generated message (also
known as the return path). The option can normally be used only by a trusted user, but
untrusted_set_sender can be set to allow untrusted users to use it. In the absence of -f, or if
the caller is not allowed to use it, the sender of a local message is set to the caller ’s login
name at the default qualify domain.

The use of -f is not restricted when testing a filter file with -bf or when testing or verifying
addresses using the -bt or -bv options. There is also no restriction of the use of the special
setting -f <> to send a message with an empty sender; such a message can never provoke a
bounce.

Allowing untrusted users to change the sender address does not of itself make it possible to
send anonymous mail. Exim still checks that the From: header refers to the local user, and if
it does not, it adds a Sender: header, though this can be overridden by setting

 no_local_from_check.

White space between -f and the <address> is optional (that is, they can be given as two
arguments or one combined argument). The sender of a locally-generated message can also be

Exim 4.10 [31] command line (5)

set (when permitted) by an initial ‘From ’ line in the message – see the description of -bm
above – but if -f is also present, it overrides ‘From ’.

-G This is a Sendmail option which is ignored by Exim.

-h <number>
This option is accepted for compatibility with Sendmail, but at present has no effect. (In
Sendmail it overrides the ‘hop count’ obtained by counting Received: headers.)

-i This option, which has the same effect as -oi, specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. I can find no documentation for this option in
Solaris 2.4 Sendmail, but the mailx command in Solaris 2.4 uses it.

-M <message id> <message id> ...
This option requests Exim to run a delivery attempt on each message in turn. If any of the
messages are frozen, they are automatically thawed before the delivery attempt. The settings
of queue_domains, queue_smtp_domains, and hold_domains are ignored. Retry hints for
any of the addresses are overridden – Exim tries to deliver even if the normal retry time has
not yet been reached. This option requires the caller to be an admin user. However, there is an
option called prod_requires_admin which can be set false to relax this restriction (and also
the same requirement for the -q, -R, and -S options).

-Mar <message id> <address> <address> ...
This option requests Exim to add the addresses to the list of recipients of the message (‘ar ’
for ‘add recipients’). The first argument must be a message id, and the remaining ones must
be email addresses. However, if the message is active (in the middle of a delivery attempt), it
is not altered. This option can be used only by an admin user.

-MC <transport> <hostname> <sequence number> <message id>
This option is not intended for use by external callers. It is used internally by Exim to invoke
another instance of itself to deliver a waiting message using an existing SMTP channel, which
is passed as the standard input. Details are given in chapter 42. This must be the final option,
and the caller must be root or the Exim user in order to use it.

-MCA This option is not intended for use by external callers. It is used internally by Exim in
conjunction with the -MC option. It signifies that the connection to the remote host has been
authenticated.

-MCP This option is not intended for use by external callers. It is used internally by Exim in
conjunction with the -MC option. It signifies that the server to which Exim is connected
supports pipelining.

-MCQ <process id> <pipe fd>
This option is not intended for use by external callers. It is used internally by Exim in
conjunction with the -MC option when the original delivery was started by a queue runner. It
passes on the process id of the queue runner, together with the file descriptor number of an
open pipe. Closure of the pipe signals the final completion of the sequence of processes that
are passing messages through the same SMTP channel.

-MCS This option is not intended for use by external callers. It is used internally by Exim in
conjunction with the -MC option, and passes on the fact that the SMTP SIZE option should be
used on messages delivered down the existing channel.

-MCT This option is not intended for use by external callers. It is used internally by Exim in
conjunction with the -MC option, and passes on the fact that the host to which Exim is
connected supports TLS encryption.

-Mc <message id> <message id> ...
This option requests Exim to run a delivery attempt on each message in turn, but unlike the
-M option, it does check for retry hints, and respects any that are found. This option is not
very useful to external callers. It is provided mainly for internal use by Exim when it needs to
re-invoke itself in order to regain root privilege for a delivery (see chapter 47). However, -Mc

Exim 4.10 [32] command line (5)

can be useful when testing, in order to run a delivery that respects retry times and other
options such as hold_domains that are overridden when -M is used. Such a delivery does not
count as a queue run. If you want to run a specific delivery as if in a queue run, you should
use -q with a message id argument. A distinction between queue run deliveries and other
deliveries is made in one or two places.

-Mes <message id> <address>
This option requests Exim to change the sender address in the message to the given address,
which must be a fully qualified address or ‘<>’ (‘es’ for ‘edit sender’). There must be exactly
two arguments. The first argument must be a message id, and the second one an email
address. However, if the message is active (in the middle of a delivery attempt), its status is
not altered. This option can be used only by an admin user.

-Mf <message id> <message id> ...
This option requests Exim to mark each listed message as ‘frozen’. This prevents any delivery
attempts taking place until the message is ‘thawed’, either manually or as a result of the
auto_thaw configuration option. However, if any of the messages are active (in the middle of
a delivery attempt), their status is not altered. This option can be used only by an admin user.

-Mg <message id> <message id> ...
This option requests Exim to give up trying to deliver the listed messages, including any that
are frozen. A delivery error message is sent, containing the text ‘cancelled by administrator ’.

 However, if any of the messages are active, their status is not altered. This option can be used
only by an admin user.

-Mmad <message id> <message id> ...
This option requests Exim to mark all the recipient addresses in the messages as already
delivered (‘mad’ for ‘mark all delivered’). However, if any message is active (in the middle
of a delivery attempt), its status is not altered. This option can be used only by an admin user.

-Mmd <message id> <address> <address> ...
This option requests Exim to mark the given addresses as already delivered (‘md’ for ‘mark
delivered’). The first argument must be a message id, and the remaining ones must be email
addresses. These are matched to recipient addresses in the message in a case-sensitive manner.
If the message is active (in the middle of a delivery attempt), its status is not altered. This
option can be used only by an admin user.

-Mrm <message id> <message id> ...
This option requests Exim to remove the given messages from the queue. No bounce
messages are sent; each message is simply forgotten. However, if any of the messages are
active, their status is not altered. This option can be used only by an admin user or by the
user who originally caused the message to be placed on the queue.

-Mt <message id> <message id> ...
This option requests Exim to ‘thaw’ any of the listed messages that are ‘frozen’, so that
delivery attempts can resume. However, if any of the messages are active, their status is not
altered. This option can be used only by an admin user.

-Mvb <message id>
This option causes the contents of the message body (-D) spool file to be written to the
standard output. This option can be used only by an admin user.

-Mvh <message id>
This option causes the contents of the message headers (-H) spool file to be written to the
standard output. This option can be used only by an admin user.

-Mvl <message id>
This option causes the contents of the message log spool file to be written to the standard
output. This option can be used only by an admin user.

-m This is apparently a synonym for -om that is accepted by Sendmail, so Exim treats it that
way too.

Exim 4.10 [33] command line (5)

-N This is a debugging option that inhibits delivery of a message at the transport level. It implies
 -v. Exim goes through many of the motions of delivery – it just doesn’t actually transport the

message, but instead behaves as if it had successfully done so. However, it does not make any
updates to the retry database, and the log entries for deliveries are flagged with ‘*>’ rather
than ‘=>’.

Because -N discards any message to which it applies, only root or the Exim user are allowed
to use it with -bd, -q, -R or -M. In other words, an ordinary user can use it only when
supplying an incoming message to which it will apply. Although transportation never fails
when -N is set, an address may be deferred because of a configuration problem on a transport,
or a routing problem. Once -N has been used for a delivery attempt, it sticks to the message,
and applies to any subsequent delivery attempts that may happen for that message.

-n This option is interpreted by Sendmail to mean ‘no aliasing’. It is ignored by Exim.

-oA <file name>
This option is used by Sendmail in conjunction with -bi to specify an alternative alias file
name. Exim handles -bi differently; see the description above.

-oB <n>
This is a debugging option which limits the maximum number of messages that can be
delivered down one SMTP connection, overriding the value set in any smtp transport. If <n>
is omitted, the limit is set to 1.

-odb This option applies to all modes in which Exim accepts incoming messages, including the
listening daemon. It requests ‘background’ delivery of such messages, which means that the
accepting process automatically starts delivery process for each message received, but does
not wait for the delivery process to complete. This is the default action if none of the -od
options are present. It overrides a setting of queue_only in the configuration file.

-odf This option requests ‘foreground’ (synchronous) delivery when Exim has accepted a locally-
generated message. (For the daemon it is exactly the same as -odb.) A delivery process is
automatically started to deliver the message, and Exim waits for it to complete before

 proceeding.

-odi This option is synonymous with -odf. It is provided for compatibility with Sendmail.

-odq This option applies to all modes in which Exim accepts incoming messages, including the
listening daemon. It specifies that the accepting process should not automatically start a
delivery process for each message received. Messages are placed on the queue, and remain
there until a subsequent queue-runner process encounters them. The queue_only configuration
option has the same effect. This option overrides any setting of queue_smtp_domains or
-odqs.

-odqs This option is a hybrid between -odb and -odq. A background delivery process is started for
each incoming message, the addresses are routed, and local deliveries are done in the normal

 way. However, if any SMTP deliveries are required, they are not done at this time, so the
message remains on the queue until a subsequent queue-runner process encounters it. Because
routing was done, Exim knows which messages are waiting for which hosts, and so a number
of messages for the same host can be sent in a single SMTP connection. The
queue_smtp_domains configuration option has the same effect for specific domains. See also
the -qq option.

-oee If an error is detected while a non-SMTP message is being received (for example, a mal-
formed address), the error is reported to the sender in a mail message. Provided this error
message is successfully sent, the Exim receiving process exits with a return code of zero. If
not, the return code is 2 if the problem is that the original message has no recipients, or 1 any
other error. This is the default -oex option if Exim is called as rmail.

Exim 4.10 [34] command line (5)

-oem This is the same as -oee, except that Exim always exits with a non-zero return code, whether
or not the error message was successfully sent. This is the default -oex option, unless Exim is
called as rmail.

-oep If an error is detected while a non-SMTP message is being received, the error is reported by
writing a message to the standard error file (stderr). The return code is 1 for all errors.

-oeq This option is supported for compatibility with Sendmail, but has the same effect as -oep.

-oew This option is supported for compatibility with Sendmail, but has the same effect as -oem.

-oi This option, which has the same effect as -i, specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. This is the default if Exim is called as rmail.

-oitrue This option is treated as synonymous with -oi.

-oMa <host address>
A number of options starting with -oM can be used to set values associated with remote hosts
on locally-submitted messages (that is, messages not received over TCP/IP). These options
can be used by any caller in conjunction with the -bh, -bf, -bF, -bt, or -bv testing options. In
other circumstances, they are ignored unless the caller is trusted.

The -oMa option sets the sender host address. This may include a port number at the end,
after a full stop (period). For example:

exim -bs -oMa 10.9.8.7.1234

An alternative syntax is to enclose the IP address in square brackets, followed by a colon and
the port number:

exim -bs -oMa [10.9.8.7]:1234

-oMaa <name>
See -oMa above for general remarks about the -oM options. The -oMaa option sets the value
of $sender_host_authenticated (the authenticator name). See chapter 32 for a discussion of
SMTP authentication.

-oMai <string>
See -oMa above for general remarks about the -oM options. The -oMai option sets the
authenticated id value. It overrides the default value (the caller ’s login id) for messages from
local sources. See chapter 32 for a discussion of authenticated ids.

-oMas <address>
See -oMa above for general remarks about the -oM options. The -oMas option sets the
authenticated sender value. It overrides the sender address that is created from the caller ’s
login id for messages from local sources. See chapter 32 for a discussion of authenticated
senders.

-oMi <interface address>
See -oMa above for general remarks about the -oM options. The -oMi option sets the IP
interface address value. A port number may be included, using the same syntax as for -oMa.

-oMr <protocol name>
See -oMa above for general remarks about the -oM options. The -oMr option sets the
received protocol value. However, this applies only when -bs is not used. For interactive
SMTP input, the protocol is determined by whether EHLO or HELO is used, and is always either
‘local-esmtp’ or ‘local-smtp’. For -bS (batch SMTP) however, the protocol can be set by
-oMr.

-oMs <host name>
See -oMa above for general remarks about the -oM options. The -oMs option sets the sender
host name.

Exim 4.10 [35] command line (5)

-oMt <ident string>
See -oMa above for general remarks about the -oM options. The -oMt option sets the sender
ident value. The default setting for local callers is the login id of the calling process.

-om In Sendmail, this option means ‘me too’, indicating that the sender of a message should
receive a copy of the message if the sender appears in an alias expansion. Exim always does
this, so the option does nothing.

-oo This option is ignored. In Sendmail it specifies ‘old style headers’, whatever that means.

-oP <path>
This option is useful only in conjunction with -bd or -q with a time value. The option
specifies the file to which the process id of the daemon is written. When -oX is used with
-bd, or when -q with a time is used without -bd, this is the only way of causing Exim to
write a pid file, because in those cases, the normal pid file is not used.

-or <time>
This option sets a timeout value for incoming non-SMTP messages. If it is not set, Exim will
wait forever for the standard input. The value can also be set by the receive_timeout option.
The format used for specifying times is described in section 6.9.

-os <time>
This option sets a timeout value for incoming SMTP messages. The timeout applies to each
SMTP command and block of data. The value can also be set by the smtp_receive_timeout
option; it defaults to 5 minutes. The format used for specifying times is described in
section 6.9.

-ov This option has exactly the same effect as -v.

-oX <number or string>
This option is relevant only when the -bd option is also given. If it is followed by a single

 number, it specifies the default TCP port for the listening daemon, overriding
 daemon_smtp_port. If local_interfaces is set, and specifies ports as well as IP addresses,

-oX followed by a single number has no effect, because it changes only the default port.

An alternate form for -oX is to follow it with a list of interfaces (and optionally ports) on
which the daemon is to listen. In this case, the data is in the same format as the value of
local_interfaces, and it overrides that option.

-pd This option applies when an embedded Perl interpreter is linked with Exim (see chapter 12).
It overrides the setting of the perl_at_start option, forcing the starting of the interpreter to be
delayed until it is needed.

-ps This option applies when an embedded Perl interpreter is linked with Exim (see chapter 12).
It overrides the setting of the perl_at_start option, forcing the starting of the interpreter to
occur as soon as Exim is started.

-q This option is normally restricted to admin users. However, there is a configuration option
called prod_requires_admin which can be set false to relax this restriction (and also the
same requirement for the -M, -R, and -S options).

The -q option starts one queue-runner process. This scans the queue of waiting messages, and
runs a delivery process for each one in turn. It waits for each delivery process to finish before
starting the next one. A delivery process may not actually do any deliveries if the retry times
for the addresses have not been reached. Use -qf (see below) if you want to override this. If
the delivery process spawns other processes to deliver other messages down passed SMTP
connections, the queue runner waits for these to finish before proceeding.

When all the queued messages have been considered, the original queue-runner process
terminates. In other words, a single pass is made over the waiting mail, one message at a
time. Use -q with a time (see below) if you want this to be repeated periodically.

Exim 4.10 [36] command line (5)

Exim processes the waiting messages in an unpredictable order. It isn’t very random, but it is
likely to be different each time, which is all that matters. If one particular message screws up
a remote MTA, other messages to the same MTA have a chance of getting through if they get
tried first.

It is possible to cause the messages to be processed in lexical message id order, which is
essentially the order in which they arrived, by setting the queue_run_in_order option, but
this is not recommended for normal use.

-q<qflags>
The -q option may be followed by one or more flag letters that change its behaviour. They are
all optional, but if more than one is present, they must appear in the correct order. Each flag
is described in a separate item below.

-qq... An option starting with -qq requests a two-stage queue run. In the first stage, the queue is
scanned as if the queue_smtp_domains option matched every domain. Addresses are routed,
local deliveries happen, but no remote transports are run. The hints database that remembers
which messages are waiting for specific hosts is updated, as if delivery to those hosts had
been deferred. After this is complete, a second, normal queue scan happens, with routing and
delivery taking place as normal. Messages that are routed to the same host should mostly be
delivered down a single SMTP connection because of the hints that were set up during the
first queue scan. This option may be useful for hosts that are connected to the Internet

 intermittently.

-q[q]i...
If the i flag is present, the queue-runner runs delivery processes only for those messages that

 haven’t previously been tried. (i stands for ‘initial delivery’.) This can be helpful if you are
putting messages on the queue using -odq and want a queue runner just to process the new

 messages.

-q[q][i]f...
If one f flag is present, a delivery attempt is forced for each non-frozen message, whereas
without f only those non-frozen addresses that have passed their retry times are tried.

-q[q][i]ff...
If ff is present, a delivery attempt is forced for every message, whether frozen or not.

-q[q][i][f[f]]l
The l (the letter ‘ell’) flag specifies that only local deliveries are to be done. If a message
requires any remote deliveries, it remains on the queue for later delivery.

-q<qflags> <start id> <end id>
When scanning the queue, Exim can be made to skip over messages whose ids are lexically
less than a given value by following the -q option with a starting message id. For example:

exim -q 0t5C6f-0000c8-00

Messages that arrived earlier than 0t5C6f-0000c8-00 are not inspected. If a second
message id is given, messages whose ids are lexically greater than it are also skipped. If the
same id is given twice, for example,

exim -q 0t5C6f-0000c8-00 0t5C6f-0000c8-00

just one delivery process is started, for that message. This differs from -M in that retry data is
respected, and it also differs from -Mc in that it counts as a delivery from a queue run. Note
that the selection mechanism does not affect the order in which the messages are scanned.
There are also other ways of selecting specific sets of messages for delivery in a queue run –
see -R and -S.

-q<qflags><time>
When a time value is present, the -q option causes Exim to run as a daemon, starting a queue-
runner process at intervals specified by the given time value (whose format is described in
section 6.9). This form of the -q option is commonly combined with the -bd option, in which

Exim 4.10 [37] command line (5)

case a single daemon process handles both functions. A common way of starting up a
combined daemon at system boot time is to use a command such as

/usr/exim/bin/exim -bd -q30m

Such a daemon listens for incoming SMTP calls, and also fires up a queue-runner process
every 30 minutes.

When a daemon is started by -q with a time value, but without -db, no pid file is written
unless one is explicitly requested by the -oP option.

-qR<rsflags> <string>
This option is synonymous with -R. It is provided for Sendmail compatibility.

-qS<rsflags> <string>
This option is synonymous with -S.

-R<rsflags> <string>
The <rsflags> may be empty, in which case the white space before the string is optional,
unless the string is f, ff, r, rf, or rff, which are the possible values for <rsflags>. White space
is required if <rsflags> is not empty.

This option is similar to -q with no time value, that is, it causes Exim to perform a single
queue run, except that, when scanning the messages on the queue, Exim processes only those
that have at least one undelivered recipient address containing the given string, which is
checked in a case-independent way. If the <rsflags> start with r, <string> is interpreted as a
regular expression; otherwise it is a literal string.

Once a message is selected, all its addresses are processed. For the first selected message,
Exim overrides any retry information and forces a delivery attempt for each undelivered
address. This means that if delivery of any address in the first message is successful, any
existing retry information is deleted, and so delivery attempts for that address in subsequently
selected messages (which are processed without forcing) will run. However, if delivery of any
address does not succeed, the retry information is updated, and in subsequently selected
messages, the failing address will be skipped.

If the <rsflags> contain f or ff, the delivery forcing applies to all selected messages, not just
the first; frozen messages are included when ff is present.

The -R option makes it straightforward to initiate delivery of all messages to a given domain
after a host has been down for some time. When the SMTP command ETRN is permitted (see
the smtp_etrn_hosts option), its default effect is to run Exim with the -R option, but it can
be configured to run an arbitrary command instead.

-r This is a documented (for Sendmail) obsolete alternative name for -f.

-S<rsflags> <string>
This option acts like -R except that it checks the string against each message’s sender instead
of against the recipients. If -R is also set, both conditions must be met for a message to be
selected. If either of the options has f or ff in its flags, the associated action is taken.

-t When Exim is receiving a locally-generated, non-SMTP message on its standard input, the -t
option causes the recipients of the message to be obtained from the To:, Cc:, and Bcc: header
lines in the message instead of from the command arguments. The addresses are extracted
before any rewriting takes place.

If the command has any arguments, they specify addresses to which the message is not to be
delivered. That is, the argument addresses are removed from the recipients list obtained from
the headers. This is compatible with Smail 3 and in accordance with the documented behav-
iour of several versions of Sendmail, as described in man pages on a number of operating
systems (e.g. Solaris 8, IRIX 6.5, HP-UX 11). However, some versions of Sendmail add

 argument addresses to those obtained from the headers, and the O’Reilly Sendmail book

Exim 4.10 [38] command line (5)

documents it that way. Exim can be made to add argument addresses instead of subtracting
them by setting the option extract_addresses_remove_arguments false.

If a Bcc: header line is present, it is removed from the message unless there is no To: or Cc:,
in which case a Bcc: line with no data is created. This is necessary for conformity with the
original RFC 822 standard; the requirement has been removed in RFC 2822, but that is still
very new.

If there are any Resent- headers in the message, an error is generated, and Exim gives up.
RFC 2822 talks about different sets of Resent- headers (when a message is resent several
times), and it is not at all clear how -t should operate in this situation. Experiments with
Sendmail have shown that it amalgamates multiple sets of Resent- headers when -t is used.
This does not seem to be in the spirit of RFC 2822.

-tls-on-connect
This option is available when Exim is compiled with TLS support. It makes it possible to
support legacy clients that do not support the STARTTLS command, but instead expect to start
up a TLS session as soon as a connection to the server is established. These clients use a
special port (usually called the ‘ssmtp’ port) instead of the normal SMTP port 25. The -tls-
on-connect option can be used to run Exim in this way from inetd, and it can also be used to
run a special daemon that operates in this manner (use -oX to specify the port). However,
although it is possible to run one daemon that listens on several ports, it is not possible to
have some of them operate one way and some the other. With only a few clients that need the
legacy support, a convenient approach is to use a daemon for normal SMTP (with or without
STARTTLS) and inetd with -tls-on-connect for the legacy clients.

-U Sendmail uses this option for ‘initial message submission’, and its documentation states that
in future releases, it may complain about syntactically invalid messages rather than fixing
them when this flag is not set. Exim ignores this option.

-v This option causes Exim to write information to the standard error stream, describing what it
is doing. In particular, it shows the log lines for receiving and delivering a message, and if an
SMTP connection is made, the SMTP dialogue is shown. Some of the log lines shown may
not actually be written to the log if the setting of log_selector discards them. Any relevant
selectors are shown with each log line. If none are shown, the logging is unconditional.

-x AIX uses -x for a private purpose (‘mail from a local mail program has National Language
Support extended characters in the body of the mail item’). It sets -x when calling the MTA
from its mail command. Exim ignores this option.

Exim 4.10 [39] command line (5)

6. The Exim run time configuration file

Exim uses a single run time configuration file which is read whenever an Exim binary is executed. The
name of the file is compiled into the binary for security reasons, and is specified by the CONFIGURE_FILE

compilation option. The run time configuration file must be owned by root or by the user that is
specified at compile time by the EXIM_USER option, and it must not be world-writeable or group-
writeable, unless its group is the one specified at compile time by the EXIM_GROUP option.

A default configuration file, which will work correctly in simple situations, is provided in the file
src/configure.default. The installation process copies this into CONFIGURE_FILE if there is no previously-
existing configuration file. Chapter 7 is a ‘walk-through’ discussion of this configuration.

If a syntax error is detected while reading the configuration file, Exim writes a message on the
standard error, and exits with a non-zero return code. The message is also written to the panic log.

6.1 Alternate configuration files
A one-off alternate configuration file can be specified by the -C command line option, but if this
option is used, Exim immediately gives up its root privilege, unless called by root or the Exim user. -C
is useful mainly for checking the syntax of configuration files before installing them. No owner or
group checks are done on a configuration file specified by -C.

One-off changes to a configuration file can be specified by the -D command line option, which defines
and overrides values for macros used inside the file. However, like -C, the use of this option by a non-
privileged user causes Exim to discard its root privilege.

Some sites may wish to use the same Exim binary on different machines that share a file system, but
to use different configuration files on each machine. If CONFIGURE_FILE_USE_NODE is defined in
Local/Makefile, Exim first looks for a file whose name is the configuration file name followed by a
dot and the machine’s node name, as obtained from the uname() function. If this file does not exist, the
standard name is tried.

In some esoteric situations different versions of Exim may be run under different effective uids and the
CONFIGURE_FILE_USE_EUID is defined to help with this. See the comments in src/EDITME for details.

6.2 Configuration file format
Exim’s configuration file is divided into a number of different parts. General option settings must
always appear at the start of the file. The other parts are all optional, and may appear in any order.
Each part other than the first is introduced by the word ‘begin’ followed by the name of the part. The
optional parts are:

• ACL: Access control lists for controlling incoming SMTP mail.

• authenticators: Configuration settings for the authenticator drivers. These are concerned with the
SMTP AUTH command (see chapter 32).

• routers: Configuration settings for the router drivers. Routers process addresses and determine
how the message is to be delivered.

• transports: Configuration settings for the transport drivers. Transports define mechanisms for
copying messages to destinations.

• retry: Retry rules, for use when a message cannot be immediately delivered.

• rewrite: Global address rewriting rules, for use when a message arrives and when new addresses
are generated during delivery.

Blank lines in the file, and lines starting with a # character (ignoring leading white space) are treated
as comments and are ignored. Note: a # character other than at the beginning of a line is not treated
specially, and does not introduce a comment.

Exim 4.10 [40] configuration file (6)

Any non-comment line can be continued by ending it with a backslash. Trailing white space after the
backslash is ignored, and leading white space at the start of continuation lines is also ignored.
Comment lines may appear in the middle of a sequence of continuation lines.

A convenient way to create a configuration file is to start from the default, which is supplied in
src/configure.default, and add, delete, or change settings as required.

The ACLs, retry rules, and rewriting rules have their own syntax which is described in chapters 37,
31, and 30, respectively. The other parts of the configuration file have some syntactic items in
common, and these are described below, from section 6.5 onwards. Before that, the simple include and
macro facilities are introduced.

6.3 File inclusions in the configuration file

You can include other files inside Exim’s run time configuration file by using this syntax:

.include <file name>

on a line by itself. Double quotes round the file name are optional. Includes may be nested to any
depth, but remember that Exim reads its configuration file often, so it is a good idea to keep them to a
minimum.

If you change an included file, you must HUP the daemon, because an included file is read only when
the configuration itself is read.

The processing of inclusions happens early, at a physical line level, so, like comment lines, an
inclusion can be used in the middle of an option setting, for example:

hosts_lookup = a.b.c \
.include /some/file

Include processing happens before macro processing. Its effect is to process the lines of the file as if
they occurred inline where the inclusion appears.

6.4 Macros in the configuration file

If a line in the main part of the configuration (that is, before the first ‘begin’ line) begins with an upper
case letter, it is taken as a macro definition, and must be of the form

<name> = <rest of line>

The name must consist of letters, digits, and underscores, and need not all be in upper case, though
that is recommended. The rest of the line, including any continuations, is the replacement text, and has
leading and trailing white space removed. Quotes are not removed. The replacement text can never
end with a backslash character, but this doesn’t seem to be a serious limitation.

Once a macro is defined, all subsequent lines in the file (and any included files) are scanned for the
macro name; if there are several macros, the line is scanned for each in turn, in the order in which
they are defined. The replacement text is not re-scanned for the current macro, though it will be for
subsequently defined macros. For this reason, a macro name may not contain the name of a previously
defined macro as a substring. You could, for example, define

ABCD_XYZ = <<something>>
ABCD = <<something else>>

but putting the definitions in the opposite order would provoke a configuration error.

If a line consists solely of a macro name, and the expansion of the macro is empty, the line is ignored.
Also, a macro at the start of a line may turn the line into a comment line. Because continuations are
processed before macros, this applies to the logical line, including any continuations. This is different
to effect of a literal # character, which applies only to the physical line it is in.

Exim 4.10 [41] configuration file (6)

As an example of macro usage, consider a configuration where aliases are looked up in a MySQL
database. It helps to keep the file less cluttered if long strings such as SQL statements are defined
separately as macros, for example:

ALIAS_QUERY = select mailbox from user where \
login=${quote_mysql:$local_part};

This can then be used in a redirect router setting like this:

data = ${lookup mysql{ALIAS_QUERY}}

In earlier versions of Exim macros were sometimes used for domain, host, or address lists. In Exim 4
these are handled better by named lists – see section 10.5.

Macros in the configuration file can be overridden by the -D command line option, but Exim
immediately gives up its root privilege when -D is used, unless called by root or the Exim user.

6.5 Common option syntax

For the main set of options and for driver options, each setting is on a line by itself, and starts with a
name consisting of lower-case letters and underscores. Many options require a data value, and in these
cases the name must be followed by an equals sign (with optional white space) and then the value. For
example:

qualify_domain = mydomain.example.com

Some option settings may contain sensitive data, for example, passwords for accessing databases. To
stop non-admin users from using the -bP command line option to read their values, you can precede
them with the word ‘hide’. For example:

hide mysql_servers = localhost/users/admin/secret-password

For non-admin users, such options are displayed like this:

mysql_servers = <value not displayable>

If ‘hide’ is used on a driver option, it hides the value of that option on all instances of the same driver.

Options whose type is given as boolean are on/off switches that are not always followed by a data
value. If the option name is specified on its own without data, the switch is turned on; if it is preceded
by ‘no_’ or ‘not_’ the switch is turned off. However, boolean options may be followed by an equals
sign and one of the words ‘true’, ‘false’, ‘yes’, or ‘no’. For example:

queue_only
queue_only = true
no_queue_only
queue_only = false

The types of data that are used by non-boolean options are described in the following sections.

6.6 Integer

If an integer data item starts with the characters ‘0x’, the remainder of it is interpreted as a
hexadecimal number. Otherwise, it is treated as octal if it starts with the digit 0, and decimal if not. If
an integer value is followed by the letter K, it is multiplied by 1024; if it is followed by the letter M, it
is multiplied by 1024x1024.

When the values of integer option settings are output, values which are an exact multiple of 1024 or
1024x1024 are printed using the letters K and M. The printing style is independent of the actual input
format that was used.

Exim 4.10 [42] configuration file (6)

6.7 Octal integer
The value of an option specified as an octal integer is always interpreted in octal, whether or not it
starts with the digit zero. Such options are always output in octal.

6.8 Fixed point number
A fixed point number consists of a decimal integer, optionally followed by a decimal point and up to
three further digits.

6.9 Time interval
A time interval is specified as a sequence of numbers, each followed by one of the following letters,
with no intervening white space:

s seconds
m minutes
h hours
d days
w weeks

For example, ‘3h50m’ specifies 3 hours and 50 minutes. The values of time intervals are output in the
same format.

6.10 String
If a string data item does not start with a double-quote character, it is taken as consisting of the
remainder of the line plus any continuation lines, starting at the first character after any leading white
space, with trailing white space characters removed, and with no interpretation of the characters in the
string. Because Exim removes comment lines (those beginning with #) at an early stage, they can
appear in the middle of a multi-line string. The following settings are therefore equivalent:

trusted_users = uucp:mail

trusted_users = uucp:\
This comment line is ignored
mail

If a string does start with a double-quote, it must end with a closing double-quote, and any backslash
characters other than those used for line continuation are interpreted as escape characters, as follows:

\\ single backslash
\n newline
\r carriage return
\t tab

 \<octal digits> up to 3 octal digits specify one character
 \x<hex digits> up to 2 hexadecimal digits specify one character

If a backslash is followed by some other character, including a double-quote character, that character
replaces the pair.

Quoting is necessary only if you want to make use of the backslash escapes to insert special
characters, or if you need to specify a value with leading or trailing spaces. These cases are rare, so
quoting is almost never needed in current versions of Exim. In versions of Exim before 3.14, quoting
was required in order to continue lines, so you may come across older configuration files and examples
that apparently quote unnecessarily.

6.11 Expanded strings
Some strings in the configuration file are subjected to string expansion, by which means various parts
of the string may be changed according to the circumstances (see chapter 11). The input syntax for
such strings is as just described; in particular, the handling of backslashes in quoted strings is done as

Exim 4.10 [43] configuration file (6)

part of the input process, before expansion takes place. However, backslash is also an escape character
for the expander, so any backslashes that are required for that reason must be doubled if they are
within a quoted configuration string.

6.12 User and group names
User and group names are specified as strings, using the syntax described above, but the strings are
interpreted specially. A user or group name must either consist entirely of digits, or be a name that can
be looked up using the getpwnam() or getgrnam() function, as appropriate.

6.13 List construction
Some configuration settings accept a colon-separated list of items. In these cases, the entire list is
treated as a single string as far as the input syntax is concerned. The trusted_users setting in section
6.10 above is an example. If a colon is actually needed in an item in a list, it must be entered as two
colons. Leading and trailing white space on each item in a list is ignored. This makes it possible to
include items that start with a colon, and in particular, certain forms of IPv6 address. For example,
the list

local_interfaces = 127.0.0.1 : ::::1

contains two IP addresses, the IPv4 address 127.0.0.1 and the IPv6 address ::1. IPv6 addresses are
going to become more and more common as the new protocol gets more widely deployed. Doubling
their colons is an unwelcome chore, so a mechanism was introduced to allow the separator character to
be changed. If a list begins with a left angle bracket, followed by any punctuation character, that
character is used instead of colon as the list separator. For example, the list above can be rewritten to
use a semicolon separator like this:

local_interfaces = <; 127.0.0.1 ; ::1

This facility applies to all lists, with the exception of the list in log_file_path. It is recommended that
the use of non-colon separators be confined to circumstances where they really are needed.

6.14 Format of driver configurations
Three parts of Exim’s run time configuration file contain option settings for different kinds of driver:
routers, transports, and authenticators. Each driver is defined in the configuration file by a sequence of
lines like this:

<instance name>:
 <option>
 ...
 <option>

The order in which routers are defined is important, because addresses are passed to individual routers
one by one, in order. The order in which transports are defined does not matter at all. The order in
which authenticators are defined is used only when Exim, as a client, is searching them to find one
which matches an authentication mechanism offered by the server.

Within a driver definition, there are two kinds of option: generic and private. The generic options are
those that apply to all drivers of the same type (that is, all routers, all transports or all authenticators).
There is always at least one generic option setting, called driver, which specifies which particular
driver is being used. The private options are special for each driver, and none need appear because
they all have default values.

The options may appear in any order, except that the driver option must precede any private options,
since these depend on the particular driver. For this reason, it is recommended that driver always be
the first option.

Each instance of a driver is given an identifying instance name name for reference in logging and
elsewhere. The name can be any sequence of letters, digits, and underscores (starting with a letter) and
must be unique among drivers of the same type. A router and a transport (for example) can each have

Exim 4.10 [44] configuration file (6)

the same name, but no two router instances can have the same name. The name of a driver instance
should not be confused with the name of the underlying driver. For example, the configuration lines

remote_smtp:
driver = smtp

create an instance of the smtp transport driver whose name is remote_smtp. The same driver code can
be used more than once, with different instance names and different option settings each time. A
second instance of the smtp transport, with different options, might be defined thus:

special_smtp:
driver = smtp
port = 1234
command_timeout = 10s

The names remote_smtp and special_smtp are used to reference these transport instances from
routers, and these names appear in log lines.

Comment lines may be present in the middle of driver specifications. The full list of option settings for
any particular driver instance, including all the defaults, can be extracted by making use of the -bP
command line option.

Exim 4.10 [45] configuration file (6)

7. The default configuration file

The default configuration file supplied with Exim as src/configure.default is sufficient for a host with
simple mail requirements. As an introduction to the way Exim is configured, this chapter ‘walks
through’ the default configuration, giving brief explanations of the settings. Detailed descriptions of the
options are given in subsequent chapters. The default configuration file itself contains extensive
comments about ways you might want to modify the initial settings. However, note that there are
many options that are not mentioned at all in the default configuration.

7.1 Main configuration settings
The main (global) configuration option settings must always come first in the file. The first thing you’ll
see in the file, after some initial comments, is the line

primary_hostname =

This is a commented-out setting of the primary_hostname option. Exim needs to know the official,
fully qualified name of your host, and this is where you can specify it. However, in most cases you do
not need to set this option. When it is unset, Exim uses the uname() system function to obtain the host
name.

The first three non-comment configuration lines are as follows:

domainlist local_domains = @
domainlist relay_to_domains =
hostlist relay_from_hosts = 127.0.0.1

These are not, in fact, option settings. They are definitions of two named domain lists and one named
host list. Exim allows you to give names to lists of domains, hosts, and email addresses, in order to
make it easier to manage the configuration file (see section 10.5).

The first line defines a domain list called local_domains; this is used later in the configuration to
identify domains that are to be delivered on the local host. There is in fact just one item in this list, the
string ‘@’. This is a special form of entry which means ‘the name of the local host’. Thus, if the local
host is called a.host.example, mail to any.user@a.host.example is expected to be delivered locally.
Because the local host’s name is referenced indirectly, the same configuration file can be used on
different hosts.

The second line defines a domain list called relay_to_domains, but the list itself is empty. Later in the
configuration we will come to the part that controls mail relaying through the local host; it allows
relaying to any domains in this list. By default, therefore, no relaying on the basis of a mail domain is
permitted.

The third line defines a host list called relay_from_hosts. This list is used later in the configuration to
permit relaying from any host or IP address that matches the list. The default contains just the IP
address of the IPv4 loopback interface, which means that processes on the local host are able to submit
mail for relaying by sending it over TCP/IP to that interface. No other hosts are permitted to submit
messages for relaying.

Just to be sure there’s no misunderstanding: at this point in the configuration we aren’t actually setting
up any controls. We are just defining some domains and hosts that will be used in the controls that are
specified later.

The next configuration line is a genuine option setting:

acl_smtp_rcpt = acl_check_rcpt

This option specifies an Access Control List (ACL) which is to be used during an incoming SMTP
session for every recipient of a message. The name of the list is acl_check_rcpt, and we will come to
its definition below, in the ACL section of the configuration. ACLs control which recipients are

Exim 4.10 [46] default configuration (7)

accepted for an incoming message – if a configuration does not provide an ACL to check recipients,
no SMTP mail can be accepted.

Two commented-out options settings are next:

qualify_domain =
qualify_recipient =

The first of these specifies a domain that Exim uses when it constructs a complete email address from
a local login name. This is often needed when Exim receives a message from a local process. If you
do not set qualify_domain, the value of primary_hostname is used. If you set both of these options,
you can have different qualification domains for sender and recipient addresses. If you set only the first
one, it is used in both cases.

The following line must be uncommented if you want Exim to recognize addresses of the form
user@[10.11.12.13] that is, with a ‘domain literal’ (an IP address) instead of a named domain.

allow_domain_literals

The RFCs still require this form, but it makes little sense to permit mail to be sent to specific hosts by
their IP address in the modern Internet. This ancient format has been used by those seeking to abuse
hosts by using them for unwanted relaying.

The next configuration line is a kind of trigger guard:

never_users = root

It specifies that no local delivery must ever be run as the root user. The normal convention is to set up
root as an alias for the system administrator. This setting is a guard against slips in the configuration.

When a remote host connects to Exim in order to send mail, the only information Exim has about the
host’s identity is its IP address. The next configuration line,

host_lookup = *

specifies that Exim should do a reverse DNS lookup on all incoming connections, in order to get the
true host name. This improves the quality of the logging information, but if you feel it is too
expensive, you can remove it entirely, or restrict the lookup to hosts on ‘nearby’ networks.

The next two lines are concerned with ident callbacks, as defined by RFC 1413 (hence their names):

rfc1413_hosts = *
rfc1413_query_timeout = 30s

These settings cause Exim to make ident callbacks for all incoming SMTP calls. You can limit the
hosts to which these calls are made, or change the timeout that is used. If you set the timeout to zero,
all ident calls are disabled. Although they are cheap and can provide useful information for tracing
problem messages, some hosts and firewalls have problems with them. This can result in a timeout
instead of an immediate refused connection, leading to delays on starting up an incoming SMTP
session.

When Exim receives messages over SMTP connections, it expects all addresses to be fully qualified
with a domain, as required by the SMTP definition. However, if you are running a server to which
simple clients submit messages, you may find that they send unqualified addresses. The two com-
mented-out options:

sender_unqualified_hosts =
recipient_unqualified_hosts =

show how you can specify hosts that are permitted to send unqualified sender and recipient addresses,
respectively.

The percent_hack_domains option is also commented out:

percent_hack_domains =

Exim 4.10 [47] default configuration (7)

It provides a list of domains for which the ‘percent hack’ is to operate. This is an almost obsolete form
of explicit email routing. If you do not know anything about it, you can safely ignore this topic.

The last two settings in the main part of the default configuration are concerned with messages that
have been ‘frozen’ on Exim’s queue. When a message is frozen, Exim no longer continues to try to
deliver it. Freezing occurs when a bounce message encounters a permanent failure because the sender
address of the original message that caused the bounce is invalid, so the bounce cannot be delivered.
This is probably the most common case, but there are also other conditions that cause freezing, and
frozen messages are not always bounce messages.

ignore_bounce_errors_after = 2d
timeout_frozen_after = 7d

The first of these options specifies that failing bounce messages are to be discarded after 2 days on the
queue. The second specifies that any frozen message (whether a bounce message or not) is to be timed
out (and discarded) after a week. In this configuration, the first setting ensures that no failing bounce
message ever lasts a week.

7.2 ACL configuration
In the default configuration, the ACL section follows the main configuration. It starts with the line

begin acl

and it contains the definition of one ACL called acl_check_rcpt that was referenced in the setting of
acl_smtp_rcpt above. This ACL is used for every RCPT command in an incoming SMTP message.
Each RCPT command specifies one of the message’s recipients. The ACL statements are considered in
order, until the recipient address is either accepted or rejected. The RCPT command is then accepted or
rejected, according to the result of the ACL processing.

acl_check_rcpt:

This line, consisting of a name terminated by a colon, marks the start of the ACL, and names it.

accept hosts = :

This ACL statement accepts the recipient if the sending host matches the list. But what does that
strange list mean? It doesn’t actually contain any host names or IP addresses. The presence of the
colon puts an empty item in the list; Exim matches this only if the incoming message didn’t come
from a remote host. The colon is important. Without it, the list itself is empty, and can never match
anything.

What this statement is doing is to accept unconditionally all recipients in messages that are submitted
by SMTP from local processes using the standard input and output (that is, not using TCP/IP). A
number of MUAs operate in this manner.

deny local_parts = ^.*[@%!/|]

This statement uses a regular expression to reject addresses with local parts that contain any of the
characters ‘@’, ‘%’, ‘!’, ‘/’ or ‘|’. Although these characters are entirely legal in local parts (in the
case of ‘@’ only if correctly quoted), they do not normally occur in Internet mail addresses.

The first three have in the past been associated with explicitly routed addresses (percent is still
sometimes used – see the percent_hack_domains option). Addresses containing these characters are
regularly tried by spammers in an attempt to bypass relaying restrictions, and also by open relay
testing programs. Unless you really need them it is safest to reject these characters at this early stage.
Slash is included in the list to avoid problems in local parts that are used to construct file names.
Vertical bar is included because of its use as a pipe symbol in shell commands.

This configuration is heavy-handed in rejecting these characters for all messages it accepts from
remote hosts. This is a deliberate policy of being as safe as possible. By moving the test elsewhere in
the ACL, you can relax the restriction so that, for example, it applies only to addresses in your local
domains.

Exim 4.10 [48] default configuration (7)

accept local_parts = postmaster
domains = +local_domains

This statement, which has two conditions, accepts an incoming address if the local part is postmaster
and the domain is one of those listed in the local_domains domain list. The ‘+’ character is used to
indicate a reference to a named list. In this configuration, there is just one domain in local_domains,
but in general there may be many.

The presence of this statement means that mail to postmaster is never blocked by any of the
subsequent tests. This can be helpful while sorting out problems in cases where the subsequent tests
are incorrectly denying access.

require verify = sender

This statement requires the sender address to be verified before any subsequent ACL statement can be
used. If verification fails, the incoming recipient address is refused. Verification consists of trying to
route the address, to see if a message could be delivered to it. In the case of remote addresses, basic
verification checks only the domain, but callouts can be used for more verification if required. Section
37.10 discusses the details of address verification.

deny message = rejected because $sender_host_address is \
in a black list at $dnslist_domain\n\
$dnslist_text
dnslists = black.list.example
#
warn message = X-Warning: $sender_host_address is \
in a black list at $dnslist_domain
log_message = found in $dnslist_domain
dnslists = black.list.example

These commented-out lines are examples of how you could configure Exim to check sending hosts
against a DNS black list. The first statement rejects messages from blacklisted hosts, whereas the
second merely inserts a warning header line.

accept domains = +local_domains
endpass
message = unknown user
verify = recipient

This statement accepts the incoming recipient address if its domain is one of the local domains, but
only if the address can be verified. Verification of local addresses normally checks both the local part
and the domain. The endpass line needs some explanation: if the condition above endpass fails, that
is, if the address is not in a local domain, control is passed to the next ACL statement. However, if the
condition below endpass fails, that is, if a recipient in a local domain cannot be verified, access is
denied and the recipient is rejected. The message modifier provides a customized error message for the
failure.

accept domains = +relay_to_domains
endpass
message = unrouteable address
verify = recipient

This statement accepts the incoming recipient address if its domain is one of the domains for which
this host is a relay, but again, only if the address can be verified.

accept hosts = +relay_from_hosts

Control reaches this statement only if the recipient’s domain is neither a local domain, nor a relay
domain. The statement accepts the address if the message is coming from one of the hosts that are
defined as being allowed to relay through this host. Recipient verification is omitted here, because in
many cases the clients are dumb MUAs that do not cope well with SMTP error responses. If you are
actually relaying out from MTAs, you should probably add recipient verification here.

Exim 4.10 [49] default configuration (7)

accept authenticated = *

Control reaches here for attempts to relay to arbitrary domains from arbitrary hosts. The statement
accepts the address only if the client host has authenticated itself. The default configuration does not
define any authenticators, which means that no client can in fact authenticate. You will need to add
authenticator definitions if you want to make use of this ACL statement.

deny message = relay not permitted

The final statement denies access, giving a specific error message. Reaching the end of the ACL also
causes access to be denied, but with the generic message ‘administrative prohibition’.

7.3 Router configuration

The router configuration comes next in the default configuration, introduced by the line

begin routers

Routers are the configuration modules in Exim that make decisions about where to send messages. An
address is passed to each router in turn, until it is either accepted, or failed. This means that the order
in which you define the routers matters. Each router is fully described in its own chapter later in this
manual. Here we give only brief overviews.

domain_literal:
driver = ipliteral
transport = remote_smtp

This router is commented out because the vast majority of sites do not want to support domain literal
addresses (those of the form user@[10.9.8.7]). If you uncomment this router, you will also need to
uncomment the setting of allow_domain_literals in the main part of the configuration.

dnslookup:
driver = dnslookup
domains = ! +local_domains
transport = remote_smtp
ignore_target_hosts = 127.0.0.0/8

 no_more

The first router handles addresses that do not involve any local domains. This is specified by the line

domains = ! +local_domains

The domains option lists the domains to which this router applies, but the exclamation mark is a
negation sign, so the router is used only for domains that are not in the domain list called
local_domains (which was defined at the start of the configuration). The plus sign before
local_domains indicates that it is referring to a named list. Addresses in other domains are passed on
to the following routers.

The name of the router driver is dnslookup. This is a router which routes addresses by looking up
their domains in the DNS in order to obtain a list of hosts to which the address is routed. If the router
succeeds, the address is queued for the remote_smtp transport, as specified by the transport option. If
the router does not find the domain in the DNS, no further routers are tried because of the no_more
setting, so the address fails and is bounced.

The ignore_target_hosts option specifies a list of IP addresses that are to be entirely ignored. This
option is present because a number of cases have been encountered where MX records in the DNS
point to host names which have IP addresses in the 127 subnet (typically 127.0.0.1). Completely
ignoring these addresses causes Exim to fail to route the address, so it bounces. Otherwise, Exim
would log a routing problem, and continue to try to deliver the message periodically until the address
timed out.

Exim 4.10 [50] default configuration (7)

 system_aliases:
driver = redirect
allow_fail

 allow_defer
data = ${lookup{$local_part}lsearch{/etc/aliases}}

user = exim
file_transport = address_file
pipe_transport = address_pipe

Control reaches this (and subsequent routes) only for addresses in the local domains. This router
checks to see whether the local part is defined as an alias in the /etc/aliases file, and if so, redirects it
according to the data that it looks up from that file. If no data is found for the local part, the value of
the data option is empty, causing the address to be passed to the next router.

userforward:
driver = redirect
check_local_user
file = $home/.forward
no_verify
no_expn

 check_ancestor
allow_filter
file_transport = address_file
pipe_transport = address_pipe
reply_transport = address_reply

This is the most complicated router in the default configuration. It is another redirection router, but this
time it is looking for forwarding data set up by individual users. The check_local_user setting means
that the first thing it does is to check that the local part of the address is the login name of a local user.
If it is not, the router is skipped. When a local user is found, the file called .forward in the user ’s
home directory is consulted. If it does not exist, or is empty, the router declines. Otherwise, the
contents of .forward are interpreted as redirection data.

Traditional .forward files contain just a list of addresses, pipes, or files. Exim supports this by default.
However, if allow_filter is set (it is commented out by default), the contents of the file are interpreted
as a set of Exim filtering instructions, provided the file begins with ‘#Exim filter’. User filtering is
discussed in the separate document entitled Exim’s interface to mail filtering.

The no_verify and no_expn options mean that this router is skipped when verifying addresses, or
when running as a consequence of an SMTP EXPN command. The setting of check_ancestor prevents
the router from generating a new address that is the same as any previous address that was redirected.
(This works round a problem concerning a bad interaction between aliasing and forwarding – see
section 21.5).

The final three option settings specify the transports that are to be used when forwarding generates a
direct delivery to a file, or to a pipe, or sets up an auto-reply, respectively. For example, if a .forward
file contains

a.nother@elsewhere.example, /home/spqr/archive

the delivery to /home/spqr/archive is done by running the address_file transport.

localuser:
driver = accept
check_local_user
transport = local_delivery

The final router sets up delivery into local mailboxes, provided that the local part is the name of a
local login, by accepting the address and queuing it for the local_delivery transport. Otherwise, we
have reached the end of the routers, so the address is bounced.

Exim 4.10 [51] default configuration (7)

7.4 Transport configuration
Transports define mechanisms for actually delivering messages. They operate only when referenced
from routers, so the order in which they are defined does not matter. The transports section of the
configuration starts with

begin transports

One remote transport, and four local transports are defined.

remote_smtp:
driver = smtp

This transport is used for delivering messages over SMTP connections. All its options are defaulted.
The list of remote hosts comes from the router.

local_delivery:
driver = appendfile
file = /var/mail/$local_part

 delivery_date_add
envelope_to_add
return_path_add

group = mail
mode = 0660

This appendfile transport is used for local delivery to user mailboxes in traditional BSD mailbox
format. By default it runs under the uid and gid of the local user, which requires the sticky bit to be
set on the /var/mail directory. Some systems use the alternative approach of running mail deliveries
under a particular group instead of using the sticky bit. The commented options show how this can be
done.

Exim adds three headers to the message as it delivers it: Delivery-date:, Envelope-to: and Return-
path:. This action is requested by the three similarly-named options above.

address_pipe:
driver = pipe
return_output

This transport is used for handling deliveries to pipes that are generated by redirection (aliasing or
users’ .forward files). The return_output option specifies that any output generated by the pipe is to
be returned to the sender.

address_file:
driver = appendfile
delivery_date_add
envelope_to_add

 return_path_add

This transport is used for handling deliveries to files that are generated by redirection. The name of the
file is not specified in this instance of appendfile, because it comes from the redirect router.

address_reply:
driver = autoreply

This transport is used for handling automatic replies generated by users’ filter files.

7.5 Default retry rule
The retry section of the configuration file contains rules which affect the way Exim retries deliveries
that cannot be completed at the first attempt. It is introduced by the line

begin retry

In the default configuration, there is just one rule, which applies to all errors:

Exim 4.10 [52] default configuration (7)

* * F,2h,15m; G,16h,1h,1.5; F,4d,6h

This causes any temporarily failing address to be retried every 15 minutes for 2 hours, then at intervals
starting at one hour and increasing by a factor of 1.5 until 16 hours have passed, then every 6 hours up
to 4 days. If an address is not delivered after 4 days of failure, it is bounced.

7.6 Rewriting configuration
The rewriting section of the configuration, introduced by

begin rewrite

contains rules for rewriting addresses in messages as they arrive. There are no rewriting rules in the
default configuration file.

7.7 Authenticators configuration
The authenticators section of the configuration, introduced by

begin authenticators

defines mechanisms for the use of the SMTP AUTH command. No authenticators are specified in the
default configuration file.

Exim 4.10 [53] default configuration (7)

8. Regular expressions

Exim supports the use of regular expressions in many of its options. It uses the PCRE regular
expression library; this provides regular expression matching that is compatible with Perl 5. The
syntax and semantics of regular expressions is discussed in many Perl reference books, and also in
Jeffrey Friedl’s Mastering Regular Expressions (O’Reilly, ISBN 1-56592-257-3).

The documentation for PCRE is included in plain text in the file doc/pcre.txt in the Exim distribution,
and is also available in the HTML tarbundle of Exim documentation. The description of the regular
expression syntax and semantics starts with the section entitled Regular Expression Details. This
information is also included as an appendix to the O’Reilly book on Exim. It describes in detail the
features of the regular expressions that PCRE supports, so no further description is included here. The
PCRE functions are called from Exim using the default option settings (that is, with no PCRE options
set), except that the PCRE_CASELESS option is set when the matching is required to be case-insensitive.

8.1 Testing regular expressions
A program called pcretest forms part of the PCRE distribution and is built with PCRE during the
process of building Exim. It is primarily intended for testing PCRE itself, but it can also be used for
experimenting with regular expressions. After building Exim, the binary can be found in the build
directory (it is not installed anywhere automatically). There is documentation of various options in
doc/pcretest.txt, but for simple testing, none are needed. This is the output of a sample run of
pcretest:

re> /^([^@]+)@.+\.(ac|edu)\.(?!kr)[a-z]{2}$/
data> x@y.ac.uk
0: x@y.ac.uk
1: x
2: ac
data> x@y.ac.kr
No match
data> x@y.edu.com
No match
data> x@y.edu.co
0: x@y.edu.co
1: x
2: edu

Input typed by the user is shown in bold face. After the ‘re>’ prompt, a regular expression enclosed in
delimiters is expected. If this compiles without error, ‘data>’ prompts are given for strings against
which the expression is matched. An empty data line causes a new regular expression to be read. If the
match is successful, the captured substring values (that is, what would be in the variables $0, $1, $2,
etc.) are shown. The above example tests for an email address whose domain ends with either ‘ac’ or
‘edu’ followed by a two-character top-level domain that is not ‘kr ’. The local part is captured in $1
and the ‘ac’ or ‘edu’ in $2.

Exim 4.10 [54] regular expressions (8)

9. File and database lookups

Exim can be configured to look up data in files or databases as it processes messages. Two different
kinds of syntax are used:

(1) A string that is to be expanded may contain explicit lookup requests, which can cause parts of
the string to be replaced by data which is looked up. String expansions are described in
chapter 11.

(2) Lists of domains, hosts, and email addresses can contain lookup requests as a way of avoiding
excessively long linear lists. In this case, the data that is returned by the lookup is often (but not
always) discarded; whether the lookup succeeds or fails is what really counts. These kinds of list
are described in chapter 10.

This chapter describes the different lookup types that are available, and which can be used in either of
the above circumstances. Two different styles of data lookup are implemented:

• The single-key style requires the specification of a file in which to look, and a single key to
search for. The lookup type determines how the file is searched.

• The query style accepts a generalized database query.

The code for each lookup type is in a separate source file which is included in the binary of Exim only
if the corresponding compile-time option is set. The default settings in src/EDITME are:

LOOKUP_DBM=yes
LOOKUP_LSEARCH=yes

which means that only linear searching and DBM lookups are included by default. For some types of
lookup, you need to install appropriate libraries and header files before building Exim.

9.1 Single-key lookup types
The following single-key lookup types are implemented:

• cdb: The given file is searched as a Constant DataBase file, using the key string without the
terminating binary zero. The cdb format is designed for indexed files that are read frequently and
never updated, except by total re-creation. As such, it is particulary suitable for large files
containing aliases or other indexed data referenced by an MTA. Information about cdb can be
found in several places:

http://www.pobox.com/~djb/cdb.html
ftp://ftp.corpit.ru/pub/tinycdb/

 http://packages.debian.org/stable/utils/freecdb.html

A cdb distribution is not needed in order to build Exim with cdb support, because the code for
reading cdb files is included directly in Exim itself. However, no means of building or testing cdb
files is provided with Exim, so you need to obtain a cdb distribution in order to do this.

• dbm: Calls to DBM library functions are used to extract data from the given DBM file by
looking up the record with the given key. The terminating binary zero is included in the key that
is passed to the DBM library. See section 4.3 for a discussion of DBM libraries. For all versions
of Berkeley DB, Exim uses the DB_HASH style of database when building DBM files using the
exim_dbmbuild utility. However, when using Berkeley DB versions 3 or 4, it opens existing
databases for reading with the DB_UNKNOWN option. This enables it to handle any of the types of
database that the library supports, and can be useful for accessing DBM files created by other
applications. (For earlier DB versions, DB_HASH is always used.)

• dbmnz: This is the same as dbm, except that the terminating binary zero is not included in the
key that is passed to the DBM library. You may need this if you want to look up data in files that
are created by or shared with some other application that does not use terminating zeros. For

Exim 4.10 [55] file/database lookups (9)

example, you need to use dbmnz rather than dbm if you want to authenticate incoming SMTP
calls using the passwords from Courier ’s /etc/userdbshadow.dat file. Exim’s utility program for
creating DBM files (exim_dbmbuild) includes the zeros by default, but has an option to omit
them (see section 45.7).

• dsearch: The given file must be a directory, which is searched for a file whose name is the key.
The key may not contain any forward slash characters. The result of a successful lookup is the
name of the file. An example of how this lookup can be used to support virtual domains is given
in section 41.6.

• lsearch: The given file is a text file which is searched linearly for a line beginning with the key,
terminated by a colon or white space or the end of the line. The first occurrence that is found in
the file is used. White space between the key and the colon is permitted. The remainder of the
line, with leading and trailing white space removed, is the data. This can be continued onto
subsequent lines by starting them with any amount of white space, but only a single space
character is included in the data at such a junction. If the data begins with a colon, the key must
be terminated by a colon, for example:

baduser: :fail:

Empty lines and lines beginning with # are ignored, even if they occur in the middle of an item.
This is the traditional textual format of alias files. Note that the keys in an lsearch file are literal
strings. There is no wildcarding of any kind.

• nis: The given file is the name of a NIS map, and a NIS lookup is done with the given key,
excluding the terminating binary zero. There is a variant called nis0 which does include the
terminating binary zero in the key. This is reportedly needed for Sun-style alias files. Exim does
not recognize NIS aliases; the full map names must be used.

9.2 Query-style lookup types
The following query-style lookup types are implemented:

• dnsdb: This does a DNS search for a record whose domain name is the supplied query. The
resulting data is the contents of the record. See section 9.8 below.

• ldap: This does an LDAP lookup using a query in the form of a URL, and returns attributes from
a single entry. There is a variant called ldapm which permits values from multiple entries to be
returned. A third variant called ldapdn returns the Distinguished Name of a single entry instead
of any attribute values. See section 9.9 below.

• mysql: The format of the query is an SQL statement that is passed to a MySQL database. See
section 9.14 below.

• nisplus: This does a NIS+ lookup using a query that can specify the name of the field to be
returned. See section 9.13 below.

• oracle: The format of the query is an SQL statement that is passed to an Oracle database. See
section 9.14 below.

• pgsql: The format of the query is an SQL statement that is passed to a PostgreSQL database. See
section 9.14 below.

• testdb: This is a lookup type which is for use in debugging Exim. It is not likely to be useful in
normal operation.

• whoson: Whoson (http://whoson.sourceforge.net) is a proposed Internet protocol that allows
Internet server programs to check whether a particular (dynamically allocated) IP address is
currently allocated to a known (trusted) user and, optionally, to obtain the identity of the said

 user. In Exim, this can be used to implement ‘POP before SMTP’ checking using ACL state-
ments such as

require condition = \
${lookup whoson {$sender_host_address}{yes}{no}}

Exim 4.10 [56] file/database lookups (9)

The query consists of a single IP address. The value returned is the name of the authenticated
 user.

9.3 Temporary errors in lookups
Lookup functions can return temporary error codes if the lookup cannot be completed. For example, a
NIS or LDAP database might be unavailable. For this reason, it is not advisable to use a lookup that
might do this for critical options such as a list of local domains.

When a lookup cannot be completed in a router or transport, delivery of the message (to the relevant
address) is deferred, as for any other temporary error. In other circumstances Exim may assume the
lookup has failed, or may give up altogether.

9.4 Default values in single-key lookups
In this context, a ‘default value’ is a value specified by the administrator that is to be used if a lookup
fails.

If ‘*’ is added to a single-key lookup type (for example, lsearch*) and the initial lookup fails, the key
‘*’ is looked up in the file to provide a default value. See also the section on partial matching below.

Alternatively, if ‘*@’ is added to a single-key lookup type (for example dbm*@) then, if the initial
lookup fails and the key contains an @ character, a second lookup is done with everything before the
last @ replaced by *. This makes it possible to provide per-domain defaults in alias files that include
the domains in the keys. If the second lookup fails (or doesn’t take place because there is no @ in the
key), ‘*’ is looked up.

9.5 Partial matching in single-key lookups
The normal operation of a single-key lookup is to search the file for an exact match with the given
key. However, in a number of situations where domains are being looked up, it is useful to be able to
do partial matching. In this case, information in the file that has a key starting with ‘*.’ is matched by
any domain that ends with the components that follow the full stop. For example, if a key in a DBM
file is

*.dates.fict.example

then when partial matching is enabled this is matched by (amongst others) 2001.dates.fict.example and
1984.dates.fict.example. It is also matched by dates.fict.example, if that does not appear as a separate
key in the file.

Partial matching is implemented by doing a series of separate lookups using keys constructed by
modifying the original subject key. This means that it can be used with any of the single-key lookup
types, provided that the special partial-matching keys beginning with ‘*.’ are included in the data file.
Keys in the file that do not begin with ‘*.’ are matched only by unmodified subject keys when partial
matching is in use.

Partial matching is requested by adding the string ‘partial-’ to the front of the name of a single-key
lookup type, for example, partial-dbm. When this is done, the subject key is first looked up
unmodified; if that fails, ‘*.’ is added at the start of the subject key, and it is looked up again. If that
fails, further lookups are tried with dot-separated components removed from the start of the subject
key, one-by-one, and ‘*.’ added on the front of what remains.

A minimum number of two non-* components are required. This can be adjusted by including a
number before the hyphen in the search type. For example, partial3-lsearch specifies a minimum of
three non-* components in the modified keys. Omitting the number is equivalent to ‘partial2-’. If the
subject key is 2250.dates.fict.example then the following keys are looked up when the minimum
number of non-* components is two:

Exim 4.10 [57] file/database lookups (9)

 2250.dates.fict.example
*.2250.dates.fict.example
*.dates.fict.example
*.fict.example

As soon as one key in the sequence is successfully looked up, the lookup finishes. If ‘partial0-’ is
used, the original key gets shortened right down to the null string, and the final lookup is for ‘*’ on its
own.

If the search type ends in ‘*’ or ‘*@’ (see section 9.4 above), the search for an ultimate default that
this implies happens after all partial lookups have failed. If ‘partial0-’ is specified, adding ‘*’ to the
search type has no effect, because the ‘*’ key is already included in the sequence of partial lookups.

The use of ‘*’ in lookup partial matching differs from its use as a wildcard in domain lists and the
like. Partial matching works only in terms of dot-separated components; a key such as
*fict.example in a database file is useless, because the asterisk in a partial matching subject key
is always followed by a dot.

9.6 Lookup caching
Exim caches the most recent lookup result on a per-file basis for single-key lookup types, and keeps
the relevant files open. In some types of configuration this can lead to many files being kept open for
messages with many recipients. To avoid hitting the operating system limit on the number of simulta-
neously open files, Exim closes the least recently used file when it needs to open more files than its
own internal limit, which can be changed via the lookup_open_max option.

For query-style lookups, a single data cache per lookup type is kept. The files are closed and the
caches flushed at strategic points during delivery – for example, after all routing is complete.

9.7 Quoting lookup data
When data from an incoming message is included in a query-style lookup, there is the possibility of
special characters in the data messing up the syntax of the query. For example, a NIS+ query that
contains

[name=$local_part]

will be broken if the local part happens to contain a closing square bracket. For NIS+, data can be
enclosed in double quotes like this:

[name="$local_part"]

but this still leaves the problem of a double quote in the data. The rule for NIS+ is that double quotes
must be doubled. Other lookup types have different rules, and to cope with the differing requirements,
an expansion operator of the following form is provided:

${quote_<lookup-type>:<string>}

For example, the safest way to write the NIS+ query is

[name="${quote_nisplus:$local_part}"]

See chapter 11 for full coverage of string expansions. The quote operator can be used for all lookup
types, but has no effect for single-key lookups, since no quoting is ever needed in their key strings.

9.8 More about dnsdb
The dnsdb lookup type uses the DNS as its database. A query consists of a record type and a domain
name, separated by an equals sign. For example, an expansion string could contain:

${lookup dnsdb{mx=a.b.example}{$value}fail}

The supported record types are A, CNAME, MX, NS, PTR, and TXT, and, when Exim is compiled
with IPv6 support, AAAA (and A6 if that is also configured). If no type is given, TXT is assumed.

Exim 4.10 [58] file/database lookups (9)

When the type is PTR, the address should be given as normal; it gets converted to the necessary
inverted format internally. For example:

${lookup dnsdb{ptr=192.168.4.5}{$value}fail}

For MX records, both the preference value and the host name are returned, separated by a space. If
multiple records are found (or, for A6 lookups, if a single record leads to multiple addresses), the data
is returned as a concatenation, separated by newlines. The order, of course, depends on the DNS
resolver.

9.9 More about LDAP
The original LDAP implementation came from the University of Michigan; this has become ‘Open
LDAP’, and there are now two different releases. Another implementation comes from Netscape, and
Solaris 7 and subsequent releases contain inbuilt LDAP support. Unfortunately, though these are all
compatible at the lookup function level, their error handling is different. For this reason it is necessary
to set a compile-time variable when building Exim with LDAP, to indicate which LDAP library is in
use. One of the following should appear in your Local/Makefile:

LDAP_LIB_TYPE=UMICHIGAN
LDAP_LIB_TYPE=OPENLDAP1
LDAP_LIB_TYPE=OPENLDAP2
LDAP_LIB_TYPE=NETSCAPE
LDAP_LIB_TYPE=SOLARIS

If LDAP_LIB_TYPE is not set, Exim assumes OPENLDAP1, which has the same interface as the
University of Michigan version.

There are three LDAP lookup types, which behave slightly differently in the way they handle the
results of a query:

• ldap requires the result to contain just one entry; if there are more, it gives an error.

• ldapdn also requires the result to contain just one entry, but it is the Distinguished Name that is
returned rather than any attribute values.

• ldapm permits the result to contain more than one entry; the attributes from all of them are
 returned.

For ldap and ldapm, if a query finds only entries with no attributes, Exim behaves as if the entry did
not exist, and the lookup fails. The format of the data returned by a successful lookup is described in
the next section. First we explain how LDAP queries are coded.

9.10 Format of LDAP queries
An LDAP query takes the form of a URL as defined in RFC 2255. For example, in the configuration
of a redirect router one might have this setting:

data = ${lookup ldap \
{ldap:///cn=$local_part,o=University%20of%20Cambridge,\

 c=UK?mailbox?base?}}

The URL may begin with ldap or ldaps if your LDAP library supports secure (encrypted) LDAP
connections. The second of these ensures that an encrypted TLS connection is used.

Two levels of quoting are required in LDAP queries, the first for LDAP itself and the second because
the LDAP query is represented as a URL. The quote_ldap expansion operator implements the
following rules:

• For LDAP quoting, the characters #,+"\<>;*() have to be preceded by a backslash. (In fact, only
some of these need to be quoted in Distinguished Names, and others in LDAP filters, but it does
no harm to have a single quoting rule for all of them.)

Exim 4.10 [59] file/database lookups (9)

• For URL quoting, all characters except alphanumerics and !$’()*+-._ are replaced by %xx where
xx is the hexadecimal character code. Note that backslash has to be quoted in a URL, so
characters that are escaped for LDAP end up preceded by %5C in the final encoding.

The example above does not specify an LDAP server. A server can be specified in a query by starting
it with

ldap://<hostname>:<port>/...

If the port (and preceding colon) are omitted, the standard LDAP port (389) is used. When no server is
specified in a query, a list of default servers is taken from the ldap_default_servers configuration
option. This supplies a colon-separated list of servers which are tried in turn until one successfully
handles a query, or there is a serious error. Successful handling either returns the requested data, or
indicates that it does not exist. Serious errors are syntactical, or multiple values when only a single
value is expected. Errors which cause the next server to be tried are connection failures, bind failures,
and timeouts.

For each server name in the list, a port number can be given. The standard way of specifing a host and
port is to use a colon separator (RFC 1738). Because ldap_default_servers is a colon-separated list,
such colons have to be doubled. For example

ldap_default_servers = ldap1.example.com::145:ldap2.example.com

If ldap_default_servers is unset, a URL with no server name is passed to the LDAP library with no
server name, and the library’s default (normally the local host) is used.

9.11 LDAP authentication and control information
The LDAP URL syntax provides no way of passing authentication and other control information to the
server. To make this possible, the URL in an LDAP query may be preceded by any number of
‘<name>=<value>’ settings, separated by spaces. If a value contains spaces it must be enclosed in
double quotes, and when double quotes are used, backslash is interpreted in the usual way inside them.
The following names are recognized:

USER set the DN, for authenticating the LDAP bind
PASS set the password, likewise
SIZE set the limit for the number of entries returned
TIME set the maximum waiting time for a query

The values may be given in any order. The default is no time limit, and no limit on the number of
entries returned. Here is an example of an LDAP query in an Exim lookup which uses some of these
values. This is a single line, folded for ease of reading:

${lookup ldap
{user="cn=manager,o=University of Cambridge,c=UK" pass=secret

 ldap:///o=University%20of%20Cambridge,c=UK?sn?sub?(cn=foo)}
 {$value}fail}

The encoding of spaces as %20 is a URL thing which should not be done for any of the auxiliary data.
Exim configuration settings that include lookups which contain password information should be
preceded by ‘hide’ to prevent non-admin users from using the -bP option to see their values.

The LDAP authentication mechanism can be used to check passwords as part of SMTP authentication.
See the ldapauth expansion string condition in chapter 11.

9.12 Format of data returned by LDAP
The ldapdn lookup type returns the Distinguished Name from a single entry as a sequence of values,
for example

cn=manager, o=University of Cambridge, c=UK

Exim 4.10 [60] file/database lookups (9)

The ldap lookup type generates an error if more than one entry matches the search filter, whereas
ldapm permits this case, and inserts a newline in the result between the data from different entries. It
is possible for multiple values to be returned for both ldap and ldapm, but in the former case you
know that whatever values are returned all came from a single entry in the directory.

In the common case where you specify a single attribute in your LDAP query, the result is not quoted,
and does not contain the attribute name. If the attribute has multiple values, they are separated by
commas.

If you specify multiple attributes, the result contains space-separated, quoted strings, each preceded by
the attribute name and an equals sign. Within the quotes, the quote character, backslash, and newline
are escaped with backslashes, and commas are used to separate multiple values for the attribute. Apart
from the escaping, the string within quotes takes the same form as the output when a single attribute is
requested. Specifying no attributes is the same as specifying all of an entry’s attributes.

Here are some examples of the output format. The first line of each pair is an LDAP query, and the
second is the data that is returned. The attribute called attr1 has two values, whereas attr2 has only
one value:

ldap:///o=base?attr1?sub?(uid=fred)
value1.1, value1.2

ldap:///o=base?attr2?sub?(uid=fred)
value two

ldap:///o=base?attr1,attr2?sub?(uid=fred)
attr1="value1.1, value1.2" attr2="value two"

ldap:///o=base??sub?(uid=fred)
objectClass="top" attr1="value1.1, value1.2" attr2="value two"

The extract operator in string expansions can be used to pick out individual fields from data that
consists of key=value pairs. You can make use of Exim’s -be option to run expansion tests and thereby
check the results of LDAP lookups.

9.13 More about NIS+

NIS+ queries consist of a NIS+ indexed name followed by an optional colon and field name. If this is
given, the result of a successful query is the contents of the named field; otherwise the result consists
of a concatenation of field-name=field-value pairs, separated by spaces. Empty values and values
containing spaces are quoted. For example, the query

[name=mg1456],passwd.org_dir

might return the string

name=mg1456 passwd="" uid=999 gid=999 gcos="Martin Guerre"
home=/home/mg1456 shell=/bin/bash shadow=""

(split over two lines here to fit on the page), whereas

[name=mg1456],passwd.org_dir:gcos

would just return

Martin Guerre

with no quotes. A NIS+ lookup fails if NIS+ returns more than one table entry for the given indexed
key. The effect of the quote_nisplus expansion operator is to double any quote characters within the
text.

Exim 4.10 [61] file/database lookups (9)

9.14 More about MySQL, PostgreSQL, and Oracle

If any MySQL, PostgreSQL, or Oracle lookups are used, the mysql_servers, pgsql_servers, or
oracle_servers option (as appropriate) must be set to a colon-separated list of server information. Each
item in the list is a slash-separated list of four items: host name, database name, user name, and
password. In the case of Oracle, the host name field is used for the ‘service name’, and the database
name field is not used and should be empty. For example:

hide oracle_servers = oracle.plc.example//ph10/abcdwxyz

Because password data is sensitive, you should always precede the setting with ‘hide’, to prevent non-
admin users from obtaining the setting via the -bP option. Here is an example where two MySQL
servers are listed:

hide mysql_servers = localhost/users/root/secret:\
 otherhost/users/root/othersecret

For MySQL and PostgreSQL, a host may be specified as <name>:<port> but because this is a colon-
separated list, the colon has to be doubled.

For MySQL, an empty host name, or the use of ‘localhost’, causes a connection to the server on the
local host by means of a Unix domain socket. An alternate socket can be specified in parentheses. The
full syntax of each item in mysql_servers is:

<hostname>::<port>(<socket name>)/<database>/<user>/<password>

Any of the three sub-parts of the first field can be omitted. For normal use on the local host it can be
left blank or set to just ‘localhost’, as in the example above.

Also for MySQL, no database need be supplied – but if it is absent here, it must be given in the
queries.

For each query, these parameter groups are tried in order until a connection and a query succeeds.
Queries for these databases are SQL statements, so an example might be

${lookup mysql{select mailbox from users where id=’ph10’}{$value}fail}

If the result of the query contains more than one field, the data for each field in the row is returned,
preceded by its name, so the result of

${lookup pgsql{select home,name from users where id=’ph10’}{$value}}

might be

home=/home/ph10 name="Philip Hazel"

Values containing spaces and empty values are double quoted, with embedded quotes escaped by a
backslash.

If the result of the query contains just one field, the value is passed back verbatim, without a field
name, for example:

Philip Hazel

If the result of the query yields more than one row, it is all concatenated, with a newline between the
data for each row.

The quote_mysql, quote_pgsql, and quote_oracle expansion operators convert newline, tab, carriage
return, and backspace to \n, \t, \r, and \b respectively, and the characters single-quote, double-quote,
and backslash itself are escaped with backslashes. The quote_pgsql expansion operator, in addition,
escapes the percent and underscore characters. This cannot be done for MySQL because these escapes
are not recognized in contexts where these characters are not special.

Exim 4.10 [62] file/database lookups (9)

10. Domain, Host, Address, and Local Part lists

A number of Exim configuration options contain lists of domains, hosts, email addresses, or local
parts. For example, the hold_domains option contains a list of domains whose delivery is currently
suspended. These lists are also used as data in ACL statements (see chapter 37).

Each item in one of these lists is a pattern to be matched against a domain, host, email address, or
local part, respectively. In the sections below, the different types of pattern for each case are described,
but first we cover some general facilities that apply to all four kinds of list.

10.1 Expansion of lists
Each list is expanded as a single string before it is used. If the expansion is forced to fail, Exim
behaves as if the item it is testing (domain, host, address, or local part) is not in the list. Other
expansion failures cause temporary errors.

If an item in a list is a regular expression, backslashes, dollars and possibly other special characters in
the expression must be protected against misinterpretation by the string expander. The easiest way to
do this is to use the \N expansion feature to indicate that the contents of the regular expression should
not be expanded. For example, in an ACL you might have:

deny senders = \N^\d{8}\w@.*\.baddomain\.example$\N :
 ${lookup{$domain}lsearch{/badsenders/bydomain}}

The first item is a regular expression that is protected from expansion by \N, whereas the second uses
the expansion to obtain a list of unwanted senders based on the receiving domain.

After expansion, the list is split up into separate items for matching. Normally, colon is used as the
separator character, but this can be varied if necessary, as described in section 6.13.

10.2 Negated items in lists
Items in a list may be positive or negative. Negative items are indicated by a leading exclamation
mark, which may be followed by optional white space. A list defines a set of items (domains, etc).
When Exim processes one of these lists, it is trying to find out whether a domain, host, address, or
local part (respectively) is in the set that is defined by the list. It works like this:

The list is scanned from left to right. If a positive item is matched, the subject that is being checked is
in the set; if a negative item is matched, the subject is not in the set. If the end of the list is reached
without the subject having matched any of the patterns, it is in the set if the last item was a negative
one, but not if it was a positive one. For example, the list in

domainlist relay_domains = !a.b.c : *.b.c

matches any domain ending in .b.c except for a.b.c. Domains that match neither a.b.c nor *.b.c do not
match, because the last item in the list is positive. However, if the setting were

domainlist relay_domains = !a.b.c

then all domains other than a.b.c would match because the last item in the list is negative. In other
words, a list that ends with a negative item behaves as if it had an extra item :* on the end.

Another way of thinking about positive and negative items in lists is to read the connector as ‘or ’ after
a positive item and as ‘and’ after a negative item.

10.3 File names in lists
If an item in a domain, host, address, or local part list is an absolute file name (beginning with a slash
character), each line of the file is read and processed as if it were an independent item in the list,
except that further file names are not allowed, and no expansion of the data from the file takes place.
Empty lines in the file are ignored, and the file may also contain comment lines:

Exim 4.10 [63] domain, host, and address lists (10)

• For domain and host lists, if a # character appears anywhere in a line of the file, it and all
following characters are ignored.

• Because local parts may legitimately contain # characters, a comment in an address list or local
part list file is recognized only if # is preceded by white space or the start of the line. For

 example:

not#comment@x.y.z # but this is a comment

Putting a file name in a list has the same effect as inserting each line of the file as an item in the list
(blank lines and comments excepted). However, there is one important difference: the file is read each
time the list is processed, so if its contents vary over time, Exim’s behaviour changes.

If a file name is preceded by an exclamation mark, the sense of any match within the file is inverted.
For example, if

hold_domains = !/etc/nohold-domains

and the file contains the lines

!a.b.c
 *.b.c

then a.b.c is in the set of domains defined by hold_domains, whereas any domain matching *.b.c
is not.

10.4 An lsearch file is not an out-of-line list

As will be described in the sections which follow, lookups can be used in lists to provide indexed
methods of checking list membership. There has been some confusion about the way lsearch lookups
work in lists. Because an lsearch file contains plain text and is scanned sequentially, it is sometimes
thought that it is allowed to contain wild cards and other kinds of non-constant pattern. This is not the
case. The keys in an lsearch file are always fixed strings, just as for any other single-key lookup type.

If you want to use a file to contain wild-card patterns, just give the file name on its own, without a
search type, as described in the previous section.

10.5 Named lists

A list of domains, hosts, email addresses, or local parts can be given a name which is then used to
refer to the list elsewhere in the configuration. This is particularly convenient if the same list is
required in several different places. It also allows lists to be given meaningful names, which can
improve the readability of the configuration. For example, it is conventional to define a domain list
called local_domains for all the domains that are handled locally on a host, by a configuration line
such as

domainlist local_domains = localhost:my.dom.example

Named lists are referenced by giving their name preceded by a plus sign, so, for example, a router that
is intended to handle local domains would be configured with the line

domains = +local_domains

The first router in a configuration is often one that handles all domains except the local ones, using a
configuration with a negated item like this:

dnslookup:
driver = dnslookup
domains = ! +local_domains
transport = remote_smtp

 no_more

Exim 4.10 [64] domain, host, and address lists (10)

The four kinds of name list are created by configuration lines starting with the words domainlist,
hostlist, addresslist, or localpartlist, respectively. Then there follows the name that you are defining,
followed by an equals sign and the list itself. For example:

hostlist relay_hosts = 192.168.23.0/24 : my.friend.example
addresslist bad_senders = cdb;/etc/badsenders

A named list may refer to other named lists:

domainlist dom1 = first.example : second.example
domainlist dom2 = +dom1 : third.example
domainlist dom3 = fourth.example : +dom2 : fifth.example

Warning: If the last item in a referenced list is a negative one, the effect may not be what you
intended, because the negation does not propagate out to the higher level. For example, consider:

domainlist dom1 = !a.b
domainlist dom2 = +dom1 : *.b

The second list specifies ‘either in the dom1 list or *.b’. The first list specifies just ‘not a.b’, so the
domain x.y matches it. That means it matches the second list as well. The effect is not the same as

domainlist dom2 = !a.b : *.b

where x.y does not match. It’s best to avoid negation altogether in referenced lists if you can.

At first sight, these named lists might seem to be no different from macros in the configuration file.
However, macros are just textual substitutions. If you write

ALIST = host1 : host2
auth_advertise_hosts = !ALIST

it probably won’t do what you want, because that is exactly the same as

auth_advertise_hosts = !host1 : host2

Notice that the second host name is not negated. However, if you use a host list, and write

hostlist alist = host1 : host2
auth_advertise_hosts = ! +alist

the negation applies to the whole list, and so that is equivalent to

auth_advertise_hosts = !host1 : !host2

Named lists may have a performance advantage. When Exim is routing an address or checking an
incoming message, it caches the result of tests on named lists. So, if you have a setting such as

domains = +local_domains

on several of your routers, the actual test is done only for the first one. However, the caching works
only if there are no expansions within the list itself or any sublists that it references. In other words,
caching happens only for lists that are known to be the same each time they are referenced.

By default, there may be up to 16 named lists of each type. This limit can be extended by changing a
compile-time variable. The use of domain and host lists is recommended for concepts such as local
domains, relay domains, and relay hosts. The default configuration is set up like this.

10.6 Domain lists
Domain lists contain patterns that are to be matched against a mail domain. The following types of
item may appear in domain lists:

• If a pattern consists of a single @ character, it matches the local host name, as set by the
primary_hostname option (or defaulted). This makes it possible to use the same configuration
file on several different hosts that differ only in their names.

Exim 4.10 [65] domain, host, and address lists (10)

• If a pattern consists of the string @[] it matches any local IP interface address, enclosed in
square brackets, as in an email address that contains a domain literal. The use of domain literals
is dying out in today’s Internet.

• If a pattern consists of the string @mx_any it matches any domain that has an MX record
pointing to the local host, or to any host that is listed in hosts_treat_as_local. The items
@mx_primary and @mx_secondary are similar, except that the first matches only when a
primary MX target is the local host, and the second only when no primary MX target is the local
host, but a secondary MX target is. ‘Primary’ means an MX record with the lowest preference
value – there may of course be more than one of them.

• If a pattern starts with an asterisk, the remaining characters of the pattern are compared with the
terminating characters of the domain. The use of ‘*’ in domain lists differs from its use in partial
matching lookups. In a domain list, the character following the asterisk need not be a dot,
whereas partial matching works only in terms of dot-separated components. For example, a
domain list item such as *key.ex matches donkey.ex as well as cipher.key.ex.

• If a pattern starts with a circumflex character, it is treated as a regular expression, and matched
against the domain using a regular expression matching function. The circumflex is treated as
part of the regular expression. References to descriptions of the syntax of regular expressions are
given in chapter 8.

Warning: Because domain lists are expanded before being processed, you must escape any
backslash and dollar characters in the regular expression, or use the special \N sequence (see
chapter 11) to specify that it is not to be expanded (unless you really do want to build a regular
expression by expansion, of course).

• If a pattern starts with the name of a single-key lookup type followed by a semicolon (for
example, ‘dbm;’ or ‘lsearch;’), the remainder of the pattern must be a file name in a suitable
format for the lookup type. For example, for ‘cdb;’ it must be an absolute path:

domains = cdb;/etc/mail/local_domains.cdb

The appropriate type of lookup is done on the file using the domain name as the key. In most
cases, the data that is looked up is not used; Exim is interested only in whether or not the key is
present in the file. However, when a lookup is used for the domains option on a router, the data
is preserved in the $domain_data variable and can be referred to in other options.

• Any of the single-key lookup type names may be preceded by ‘partial<n>-’, where the <n> is
optional, for example,

domains = partial-dbm;/partial/domains

This causes partial matching logic to be invoked; a description of how this works is given in
section 9.5.

• Any of the single-key lookup types may be followed by an asterisk. This causes a default lookup
for a key consisting of a single asterisk to be done if the original lookup fails. This is not a
useful feature when using a domain list to select particular domains (because any domain would
match), but it might have value if the result of the lookup is being used via the $domain_data
expansion variable.

• If the pattern starts with the name of a query-style lookup type followed by a semicolon (for
example, ‘nisplus;’ or ‘ldap;’), the remainder of the pattern must be an appropriate query for the
lookup type, as described in chapter 9. For example:

hold_domains = mysql;select domain from holdlist \
where domain = ’$domain’;

In most cases, the data that is looked up is not used (so for an SQL query, for example, it doesn’t
matter what field you select). Exim is interested only in whether or not the query succeeds.

 However, when a lookup is used for the domains option on a router, the data is preserved in the
$domain_data variable and can be referred to in other options.

Exim 4.10 [66] domain, host, and address lists (10)

• If none of the above cases apply, a caseless textual comparison is made between the pattern and
the domain.

Here is an example which uses several different kinds of pattern:

domainlist funny_domains = \
@ : \
lib.unseen.edu : \
*.foundation.fict.example : \
\N^[1-2]\d{3}\.fict\.example$\N : \
partial-dbm;/opt/data/penguin/book : \
nis;domains.byname : \

 nisplus;[name=$domain,status=local],domains.org_dir

There are obvious processing trade-offs among the various matching modes. Using an asterisk is faster
than a regular expression, and listing a few names explicitly probably is too. The use of a file or
database lookup is expensive, but may be the only option if hundreds of names are required. Because
the patterns are tested in order, it makes sense to put the most commonly matched patterns earlier.

10.7 Host lists
Host lists are used to control what remote hosts are allowed to do. For example, some hosts may be
allowed to use the local host as a relay, and some may be permitted to use the SMTP ETRN command.
Hosts can be identified in two different ways, by name or by IP address. In a host list, some types of
pattern are matched to a host name, and some are matched to an IP address. You need to be
particularly careful with this when single-key lookups are involved, to ensure that the right value is
being used as the key.

10.8 Special host list patterns
If a host list item is the empty string, it matches only when no remote host is involved. This is the
case when a message is being received from a local process using SMTP on the standard input, that is,
when a TCP/IP connection is not used.

The special pattern ‘*’ in a host list matches any host or no host. Neither the IP address nor the name
is actually inspected.

10.9 Host list patterns that match by IP address
If an IPv4 host calls an IPv6 host and the call is accepted on an IPv6 socket, the incoming address
actually appears in the IPv6 host as ‘::ffff:<v4address>’. When such an address is tested against a
host list, it is converted into a traditional IPv4 address first. (Not all operating systems accept IPv4
calls on IPv6 sockets, as there have been some security concerns.)

The following types of pattern in a host list check the remote host by inspecting its IP address:

• If the pattern is a plain domain name (not a regular expression, not starting with *), Exim calls
the operating system function to find the associated IP address(es). Exim uses the newer
getipnodebyname() function when available, otherwise gethostbyname().

This typically causes a forward DNS lookup of the name. The result is compared with the IP
address of the subject host.

• If the pattern is ‘@’, the primary host name is substituted and used as a domain name, as just
 described.

• If the pattern is an IP address, it is matched against the IP address of the subject host. IPv4
addresses are given in the normal ‘dotted-quad’ notation. IPv6 addresses can be given in colon-
separated format, but the colons have to be doubled so as not to be taken as item separators when
the default list separator is used. IPv6 addresses are recognized even when Exim is compiled
without IPv6 support. This means that if they appear in a host list on an IPv4-only host, Exim
won’t treat them as host names. They will just be addresses that can never match a client host.

Exim 4.10 [67] domain, host, and address lists (10)

• If the pattern is ‘@[]’, it matches the IP address of any IP interface on the local host. For
example, if the local host is an IPv4 host with one interface address 10.45.23.56, these two ACL
statements have the same effect:

accept hosts = 127.0.0.1 : 10.45.23.56
accept hosts = @[]

• If the pattern is an IP address followed by a slash and a mask length (for example 10.11.42.0/24),
it is matched against the IP address of the subject host under the given mask. This allows, an
entire network of hosts to be included (or excluded) by a single item. The mask uses CIDR
notation; it specifies the number of address bits that must match, starting from the most signifi-
cant end of the address.

Note: the mask is not a count of addresses, nor is it the high number of a range of addresses. It is
the number of bits in the network portion of the address. The above example specifies a 24-bit
netmask, so it matches all 256 addresses in the 10.11.42.0 network. An item such as

192.168.23.236/30

matches just two addresses, 192.168.23.236 and 192.168.23.237. A mask value of 32 for an IPv4
address is the same as no mask at all; just a single address matches.

Here is another example which shows an IPv4 and an IPv6 network:

recipient_unqualified_hosts = 192.168.0.0/16: \
 3ffe::ffff::836f::::/48

The doubling of list separator characters applies only when these items appear inline in a host
list. It is not required when indirecting via a file. For example,

recipient_unqualified_hosts = /opt/exim/unqualnets

could make use of a file containing

172.16.0.0/12
3ffe:ffff:836f::/48

to have exactly the same effect as the previous example. When listing small numbers of IPv6
addresses inline, it is usually more convenient to use the facility for changing separator charac-
ters. This list contains the same two networks:

recipient_unqualified_hosts = <; 172.16.0.0/12; \
 3ffe:ffff:836f::/48

The separator is changed to semicolon by the leading ‘<;’ at the start of the list.

• When a host is to be identified by a lookup of its complete IP address, the pattern can take this
form:

net-<search-type>;<search-data>

For example:

hosts_lookup = net-cdb;/hosts-by-ip.db

For a single-key lookup type, the text form of the IP address of the subject host is used as the
lookup key. IPv6 addresses are converted to an unabbreviated form, using lower case letters, with
full stops (periods) as separators because colon is the key terminator in lsearch files.

For a query-style lookup, the variable $sender_host_address can be used in the query. For
example:

hosts_lookup = net-pgsql;\
select ip from hostlist where ip=’$sender_host_address’

In both cases, the data returned by the lookup is not used.

Exim 4.10 [68] domain, host, and address lists (10)

• Lookups can also be performed using masked IP addresses, using patterns of this form:

net<number>-<search-type>;<search-data>

For example:

net24-dbm;/networks.db

If the search type is a single-key lookup, the IP address of the subject host is masked using
 <number> as the mask length. A textual string is constructed from the masked value, followed by

the mask, and this is used as the lookup key. For example, if the host’s IP address is
192.168.34.6, the key that is looked up for the above example is ‘192.168.34.0/24’. IPv6
addresses are converted to a text value using lower case letters and full stops (periods) as
separators instead of the more usual colon, because colon is the key terminator in lsearch files.
Full, unabbreviated IPv6 addresses are always used.

Warning: Specifing net32- (for an IPv4 address) or net128- (for an IPv6 address) is not the
same as specifing just net- without a number. In the former case the key strings include the mask
value, whereas in the latter case the IP address is used on its own.

If the search type is a query-style lookup, <number> is not relevant, and this type of pattern is no
 different to the previous kind, that is, net- without a number. If you want to use masked IP

addresses in database queries, you can use the mask expansion operator.

10.10 Host list patterns that match by host name
The remaining types of pattern that can appear in host lists require Exim to know the name of the
remote host. They are all wildcarded names of different kinds. (If a complete name is given without
any wildcarding, it is used to find an IP address to match against, as described in the previous section.)

If the remote host name is not already known when Exim encounters one of these patterns, a system
function (gethostbyaddr() or getipnodebyaddr() if available) is used to find it from the IP address. This
typically causes a reverse DNS lookup to occur. Although many sites on the Internet are conscientious
about maintaining reverse DNS data for their hosts, there are also many that do not do this.
Consequently, a name cannot always be found, and this may lead to unwanted effects.

If the DNS lookup fails, that is, if there is no reverse DNS entry for the IP address, Exim behaves as if
the host does not match the list. This may not always be what you want to happen. To change Exim’s
behaviour, the special item ‘+include_unknown’ may appear in the list (at top level – it is not
recognized in an indirected file). If any subsequent items require a host name, but no name can be
found, Exim behaves as if the host does match the list. For example,

host_reject_connection = +include_unknown:*.enemy.ex

rejects connections from any host whose name matches *.enemy.ex, and also any hosts whose
name it cannot find.

Warning: Take care when configuring host lists with wildcarded name patterns. Consider what will
happen if a name cannot be found.

As a result of aliasing, hosts may have more than one name. When processing any of the following
types of pattern, all the host’s names are checked:

• If a pattern starts with ‘*’ the remainder of the item must match the end of the host name. For
example, *.b.c matches all hosts whose names end in .b.c. This special simple form is
provided because this is a very common requirement. Other kinds of wildcarding require the use
of a regular expression.

• If the item starts with ‘^’ it is taken to be a regular expression which is matched against the host
name. For example,

^(a|b)\.c\.d$

is a regular expression which matches either of the two hosts a.c.d or b.c.d. When a regular
expression is used in a host list, you must take care that backslash and dollar characters are not

Exim 4.10 [69] domain, host, and address lists (10)

misinterpreted as part of the string expansion. The simplest way to do this is to use \N to mark
that part of the string as non-expandable. For example:

sender_unqualified_hosts = \N^(a|b)\.c\.d$\N :

• If a pattern is of the form

<search-type>;<filename or query>

for example

dbm;/host/accept/list

the host name is looked up using the search type and file name or query (as appropriate). If the
lookup succeeds, the host matches the item. The actual data that is looked up is not used.

Warning 1: When using this kind of pattern with a single-key lookup, you must have host names
as keys in the file, not IP addresses. If you want to do lookups based on IP addresses, you must
precede the search type with ‘net-’ (see the previous section). There is, however, no reason why
you could not use two items in the same list, one doing an address lookup and one doing a name
lookup, both using the same file.

Warning 2: For a query-style lookup, what to lookup is given explicitly in the query, but Exim
always ensures that the host name is available before running the query for this type of pattern. If
you are not using the host name in your query, you should be using the net- form of search
described in the previous section, so that Exim does not look up the host name unnecessarily.

10.11 Mixing wildcarded host names and addresses in host lists
If you have name lookups or wildcarded host names and IP addresses in the same host list, you should
normally put the IP addresses first. For example, in an ACL you could have:

accept hosts = 10.9.8.7 : *.friend.example

The reason for this lies in the left-to-right way that Exim processes lists. It can test IP addresses
without doing any DNS lookups, but when it reaches an item that requires a host name, it fails if it
cannot find a host name to compare with the pattern. If the above list is given in the opposite order,
the accept statement fails for a host whose name cannot be found, even if its IP address is 10.9.8.7.

If you really do want to do the name check first, and still recognize the IP address, you can rewrite the
ACL like this:

accept hosts = *.friend.example
accept hosts = 10.9.8.7

If the first accept fails, Exim goes on to try the second one. See chapter 37 for details of ACLs.

10.12 Address lists
Address lists contain patterns which are matched against mail addresses. There is one special case to
be considered: the sender address of a bounce message is always empty. You can test for this by
providing an empty item in an address list. For example, you can set up a router to process bounce
messages only by this option setting:

senders = :

The presence of the colon creates an empty item. If you do not provide any data, the list is empty and
matches nothing. The empty sender can also be detected by a regular expression that matches an
empty string.

The following kinds of pattern are supported in address lists:

• If (after expansion) a pattern starts with ‘^’, a regular expression match is done against the
complete address, with the pattern as the regular expression. You must take care that backslash

Exim 4.10 [70] domain, host, and address lists (10)

and dollar characters are not misinterpreted as part of the string expansion. The simplest way to
do this is to use \N to mark that part of the string as non-expandable. For example:

deny senders = \N^\d{8}.+@spamhaus.example$\N : ...

The \N sequences are removed by the expansion, so the item does start with ‘^’ by the time it is
being interpreted as an address pattern.

• If a pattern starts with ‘@@’ followed by a single-key lookup item (for example,
@@lsearch;/some/file), the address that is being checked is split into a local part and a
domain. The domain is looked up in the file. If it is not found, there is no match. If it is found,
the data that is looked up from the file is treated as a colon-separated list of local part patterns,
each of which is matched against the subject local part in turn.

The lookup may be a partial one, and/or one involving a search for a default keyed by ‘*’ (see
section 9.4). The local part patterns that are looked up can be regular expressions or begin with

 ‘*’, or even be further lookups. They may also be independently negated. For example, with

deny senders = @@dbm;/etc/reject-by-domain

the data from which the DBM file is built could contain lines like

baddomain.com: !postmaster : *

to reject all senders except postmaster from that domain. If a local part that actually begins with
an exclamation mark is required, it has to be specified using a regular expression. In lsearch
files, an entry may be split over several lines by indenting the second and subsequent lines, but
the separating colon must still be included at line breaks. White space surrounding the colons is
ignored. For example:

aol.com: spammer1 : spammer2 : ^[0-9]+$:
spammer3 : spammer4

As in all colon-separated lists in Exim, a colon can be included in an item by doubling.

If the last item in the list starts with a right angle-bracket, the remainder of the item is taken as a
new key to look up in order to obtain a continuation list of local parts. The new key can be any
sequence of characters. Thus one might have entries like

aol.com: spammer1 : spammer 2 : >*
xyz.com: spammer3 : >*
*: ^\d{8}$

in a file that was searched with @@dbm*, to specify a match for 8-digit local parts for all
domains, in addition to the specific local parts listed for each domain. Of course, using this
feature costs another lookup each time a chain is followed, but the effort needed to maintain the
data is reduced. It is possible to construct loops using this facility, and in order to catch them, the
chains may be no more than fifty items long.

• The @@<lookup> style of item can also be used with a query-style lookup, but in this case, the
chaining facility is not available. The lookup can only return a single list of local parts.

• Complete addresses can be looked up by using a pattern that consists of a lookup type, a
semicolon, and the data for the lookup. For example:

deny senders = cdb;/etc/blocked.senders : \
mysql;select address from blocked where \

 address=’${quote_mysql:$sender_address}’

For a single-key lookup type, Exim uses the complete address as the key. Partial matching
(section 9.5) cannot be used, and is ignored if specified, with an entry being written to the panic
log. However, you can configure a lookup default, as described in section 9.4.

• If a pattern contains an @ character, but is not a regular expression or a lookup as described
above, the local part of the subject address is compared with the local part of the pattern, which

Exim 4.10 [71] domain, host, and address lists (10)

may start with an asterisk. If the local parts match, the domain is checked in exactly the same
way as for a pattern in a domain list. For example, the domain can be wildcarded, refer to a
named list, be be or a lookup:

deny senders = *@*.spamming.site:\
 *@+hostile_domains:\
 bozo@partial-lsearch;/list/of/dodgy/sites

If a local part that begins with an exclamation mark is required, it has to be specified using a
regular expression, because otherwise the exclamation mark is treated as a sign of negation.

• If a pattern is not one of the above syntax forms, that is, if a pattern which is not a regular
expression or a lookup does not contain an @ character, it is matched against the domain part of
the subject address. The only two formats that are recognized this way are a literal domain, or a
domain pattern that starts with *. In both these cases, the effect is the same as if *@ precedes the
pattern.

Note: there is an important difference between the address list items in these two examples:

senders = +my_list
senders = *@+my_list

In the first one, my_list is a named address list, whereas in the second example it is a named
domain list.

10.13 Case of letters in address lists
Domains in email addresses are always handled caselessly, but for local parts case may be significant
on some systems (see caseful_local_part for how Exim deals with this when routing addresses).
However, RFC 2505 (Anti-Spam Recommendations for SMTP MTAs) suggests that matching of
addresses to blocking lists should be done in a case-independent manner. Since most address lists in
Exim are used for this kind of control, Exim attempts to do this by default.

The domain portion of an address is always lowercased before matching it to an address list. The local
part is lowercased by default, and any string comparisons that take place are done caselessly. This
means that the data in the address list itself, in files included as plain file names, and in any file that is
looked up using the ‘@@’ mechanism, can be in any case. However, the keys in files that are looked
up by a search type other than lsearch (which works caselessly) must be in lower case, because these
lookups are not case-independent.

To allow for the possibility of caseful address list matching, if an item in an address list is the string
‘+caseful’, the original case of the local part is restored for any comparisons that follow, and string
comparisons are no longer case-independent. This does not affect the domain, which remains in lower
case. However, although independent matches on the domain alone are still performed caselessly,
regular expressions that match against an entire address become case-sensitive after ‘+caseful’ has
been seen.

10.14 Local part lists
Case-sensitivity in local part lists is handled in the same way as for address lists, as just described.
The ‘+caseful’ item can be used if required. In a setting of the local_parts option in a router with
caseful_local_part set false, the subject is lowercased and the matching is initially case-insensitive. In
this case, ‘+caseful’ will restore case-sensitive matching in the local part list, but not elsewhere in the
router. If caseful_local_part is set true in a router, matching in the local_parts option is case-sensitive
from the start.

If a local part list is indirected to a file (see section 10.3), comments are handled in the same way as
address lists – they are recognized only if the # is preceded by white space or the start of the line.
Otherwise, local part lists are matched in the same way as domain lists, except that the special items
that refer to the local host (@, @[], @mx_any, @mx_primary, and @mx_secondary) are not
recognized. Refer to section 10.6 for details of the other available item types.

Exim 4.10 [72] domain, host, and address lists (10)

 11. String expansions

Many strings that are given in Exim’s run time configuration are expanded before use. Some of them
are expanded every time they are used; others are expanded only once.

When a string is being expanded it is copied verbatim from left to right except when a dollar or
backslash character is encountered. A dollar specifies the start of a portion of the string which is
interpreted and replaced as described below in section 11.4 onwards.

11.1 Literal text in expanded strings

An uninterpreted dollar can be included in an expanded string by putting a backslash in front of it. A
backslash can be used to prevent any special character being treated specially in an expansion,
including itself. If the string appears in quotes in the configuration file, two backslashes are required
because the quotes themselves cause interpretation of backslashes when the string is read in.

An entire portion of the string can specified as non-expandable by placing it between two occurrences
of \N. This is particularly useful for protecting regular expressions, which often contain backslashes
and dollar signs. For example:

deny senders = \N^\d{8}[a-z]@some\.site\.example$\N

On encountering the first \N, the expander copies subsequent characters without interpretation until it
reaches the next \N or the end of the string.

11.2 Character escape sequences in expanded strings

A backslash followed by one of the letters ‘n’, ‘r’, or ‘t’ in an expanded string is recognized as an
escape sequence for the character newline, carriage return, or tab, respectively. A backslash followed
by up to three octal digits is recognized as an octal encoding for a single character, and a backslash
followed by ‘x’ and up to two hexadecimal digits is a hexadecimal encoding.

These escape sequences are also recognized in quoted strings when they are read in. Their interpret-
ation in expansions as well is useful for unquoted strings, and for other cases such as looked-up strings
that are then expanded.

11.3 Testing string expansions

Many expansions can be tested by calling Exim with the -be option. This takes the command
arguments, or lines from the standard input if there are no arguments, runs them through the string
expansion code, and writes the results to the standard output. Variables based on configuration values
are set up, but since no message is being processed, variables such as $local_part have no value.
Nevertheless the -be option can be useful for checking out file and database lookups, and the use of
expansion operators such as substr and hash.

Exim gives up its root privilege when it is called with the -be option, and instead runs under the uid
and gid it was called with, to prevent users from using -be for reading files to which they normally do
not have access.

11.4 Expansion items

The following items are recognized in expanded strings. White space may be used between sub-items
that are keywords or substrings enclosed in braces inside an outer set of braces, to improve readability.
Within braces, however, white space is significant.

Exim 4.10 [73] string expansions (11)

$<variable name> or ${<variable name>}

Substitute the contents of the named variable, for example

$local_part
 ${domain}

The second form can be used to separate the name from subsequent alphanumeric characters. This
form (using curly brackets) is available only for variables; it does not apply to message headers.
The names of the variables are given in section 11.8 below. If the name of a non-existent variable
is given, the expansion fails.

${<op>:<string>}

The string is first itself expanded, and then the operation specified by <op> is applied to it. For
example,

${lc:$local_part}

A list of operators is given in section 11.5 below. The string starts with the first character after the
colon, which may be leading white space.

${extract{<key>}{<string1>}{<string2>}{<string3>}}

The key and <string1> are first expanded separately. The key must not consist entirely of digits.
The expanded <string1> must be of the form:

<key1> = <value1> <key2> = <value2> ...

where the equals signs and spaces (but not both) are optional. If any of the values contain white
space, they must be enclosed in double quotes, and any values that are enclosed in double quotes
are subject to escape processing as described in section 6.10. The expanded <string1> is searched
for the value that corresponds to the key. The search is case-insensitive. If the key is found,

 <string2> is expanded, and replaces the whole item; otherwise <string3> is used. During the
expansion of <string2> the variable $value contains the value that has been extracted. Afterwards,
it is restored to any previous value it might have had.

If {<string3>} is omitted, the item is replaced by an empty string if the key is not found. If
 {<string2>} is also omitted, the value that was extracted is used. Thus, for example, these two

expansions are identical, and yield ‘2001’:

${extract{gid}{uid=1984 gid=2001}}
${extract{gid}{uid=1984 gid=2001}{$value}}

Instead of {<string3>} the word ‘fail’ (not in curly brackets) can appear, for example:

${extract{Z}{A=... B=...}{$value} fail }

{<string2>} must be present for ‘fail’ to be recognized. When this syntax is used, if the extraction
fails, the entire string expansion fails in a way that can be detected by the code in Exim which
requested the expansion. This is called ‘forced expansion failure’, and its consequences depend on
the circumstances. In some cases it is no different from any other expansion failure, but in others
a different action may be taken. Such variations are mentioned in the documentation of the option
which is expanded.

${extract{<number>}{<separators>}{<string1>}{<string2>}{<string3>}}

The <number> argument must consist entirely of decimal digits. This is what distinguishes this
form of extract from the previous kind. It behaves in the same way, except that, instead of
extracting a named field, it extracts from <string1> the field whose number is given as the first

 argument. You can use $value in <string2> or fail instead of <string3> as before.

The first field is numbered one. If the number is negative, the fields are counted from the end of
the string, with the rightmost one numbered -1. If the number given is zero, the entire string is
returned. If the modulus of the number is greater than the number of fields in the string, the result

Exim 4.10 [74] string expansions (11)

is the expansion of <string3>, or the empty string if <string3> is not provided. The fields in the
string are separated by any one of the characters in the separator string. For example:

${extract{2}{:}{x:42:99:& Mailer::/bin/bash}}

yields ‘42’, and

${extract{-4}{:}{x:42:99:& Mailer::/bin/bash}}

yields ‘99’. Two successive separators mean that the field between them is empty (for example,
the fifth field above).

$header_<header name>: or $h_<header name>:

Substitute the contents of the named message header line, for example

$header_reply-to:

The terminating newline is not included in the expansion, but internal newlines (caused by
splitting the header line over several physical lines) may be present.

The header names follow the syntax of RFC 2822, which states that they may contain any printing
characters except space and colon. Consequently, curly brackets do not terminate header names,
and should not be used to enclose them as if they were variables. Attempting to do so causes a
syntax error.

Only header lines that are common to all copies of a message are visible to this mechanism. These
are the original header lines that are received with the message, and any that are added by a
system filter. Header lines that are added to a particular copy of a message by a router or transport
are not accessible.

Upper case and lower case letters are synonymous in header names. If the following character is
white space, the terminating colon may be omitted, but this is not recommended, because you may
then forget it when it is needed. When white space terminates the header name, it is included in
the expanded string. If the message does not contain the given header, the expansion item is
replaced by an empty string. (See the def condition in section 11.6 for a means of testing for the
existence of a header.)

If there is more than one header with the same name, they are all concatenated to form the
substitution string, up to a maximum length of 64K. A newline character is inserted between each
line, and for those headers that contain lists of addresses, a comma is also inserted at the
junctions.

${if <condition> {<string1>}{<string2>}}

If <condition> is true, <string1> is expanded and replaces the whole item; otherwise <string2> is
used. For example,

${if eq {$local_part}{postmaster} {yes}{no} }

The second string need not be present; if it is not and the condition is not true, the item is
replaced with nothing. Alternatively, the word ‘fail’ may be present instead of the second string
(without any curly brackets). In this case, the expansion is forced to fail if the condition is not
true. The available conditions are described in section 11.6 below.

${lookup{<key>} <search type> {<file>} {<string1>} {<string2>}}

${lookup <search type> {<query>} {<string1>} {<string2>}}

These items specify data lookups in files and databases, as discussed in chapter 9. The first form
is used for single-key lookups, and the second is used for query-style lookups. The <key>, <file>,
and <query> strings are expanded before use.

If there is any white space in a lookup item which is part of a filter command, a retry or rewrite
rule, a routing rule for the manualroute router, or any other place where white space is signifi-

Exim 4.10 [75] string expansions (11)

cant, the lookup item must be enclosed in double quotes. The use of data lookups in users’ filter
files may be locked out by the system administrator.

If the lookup succeeds, <string1> is expanded and replaces the entire item. During its expansion,
the variable $value contains the data returned by the lookup. Afterwards it reverts to the value it
had previously (at the outer level it is empty). If the lookup fails, <string2> is expanded and
replaces the entire item. If {<string2>} is omitted, the replacement is null on failure. Alternatively,

 <string2> can itself be a nested lookup, thus providing a mechanism for looking up a default
value when the original lookup fails.

If a nested lookup is used as part of <string1>, $value contains the data for the outer lookup
while the parameters of the second lookup are expanded, and also while <string2> of the second
lookup is expanded, should the second lookup fail.

Instead of {<string2>} the word ‘fail’ can appear, and in this case, if the lookup fails, the entire
expansion is forced to fail. If both {<string1>} and {<string2>} are omitted, the result is the
looked up value in the case of a successful lookup, and nothing in the case of failure.

For single-key lookups, the string ‘partial-’ is permitted to precede the search type in order to do
partial matching, and * or *@ may follow a search type to request default lookups if the key does
not match (see sections 9.4 and 9.5).

If a partial search is used, the variables $1 and $2 contain the wild and non-wild parts of the key
during the expansion of the replacement text. They return to their previous values at the end of the
lookup item.

This example looks up the postmaster alias in the conventional alias file:

${lookup {postmaster} lsearch {/etc/aliases} {$value}}

This example uses NIS+ to look up the full name of the user corresponding to the local part of an
address, forcing the expansion to fail if it is not found:

${lookup nisplus {[name=$local_part],passwd.org_dir:gcos} \
 {$value}fail}

${perl{<subroutine>}{<arg>}{<arg>}...}

This item is available only if Exim has been built to include an embedded Perl interpreter. The
subroutine name and the arguments are first separately expanded, and then the Perl subroutine is
called with those arguments. No arguments need be given; the maximum number permitted is

 eight.

The return value of the subroutine is inserted into the expanded string, unless the return value is
 undef. In that case, the expansion fails in the same way as an explicit ‘fail’ on a lookup item. If

the subroutine exits by calling Perl’s die function, the expansion fails with the error message that
was passed to die. More details of the embedded Perl facility are given in chapter 12.

The redirect router has an option called forbid_filter_perl which locks out the use of this
expansion item in filter files.

${readfile{<file name>}{<eol string>}}

The file name and end-of-line string are first expanded separately. The file is then read, and its
contents replace the entire item. All newline characters in the file are replaced by the end-of-line
string if it is present. Otherwise, newlines are left in the string.

The redirect router has an option called forbid_filter_readfile which locks out the use of this
expansion item in filter files.

Exim 4.10 [76] string expansions (11)

${run{<command> <args>}{<string1>}{<string2>}}

The command and its arguments are first expanded separately, and then the command is run in a
separate process, but under the same uid and gid. As in other command executions from Exim, a
shell is not used by default. If you want a shell, you must explicitly code it. If the command
succeeds (gives a zero return code) <string1> is expanded and replaces the entire item; during this
expansion, the standard output from the command is in the variable $value. If the command fails,

 <string2>, if present, is expanded. If it is absent, the result is empty. Alternatively, <string2> can
be the word ‘fail’ (not in braces) to force expansion failure if the command does not succeed. If
both strings are omitted, the result is the standard output on success, and nothing on failure.

The return code from the command is put in the variable $runrc, and this remains set afterwards,
so in a filter file you can do things like this:

if "${run{x y z}{}}$runrc" is 1 then ...
elif $runrc is 2 then ...

 ...
 endif

The redirect router has an option called forbid_filter_run which locks out the use of this
expansion item in filter files.

${sg{<subject>}{<regex>}{<replacement>}}

This item works like Perl’s substitution operator (s) with the global (/g) option; hence its name.
However, unlike the Perl equivalent, Exim does not modify the subject string; instead it returns
the modified string for insertion into the overall expansion. The item takes three arguments: the
subject string, a regular expression, and a substitution string. For example

${sg{abcdefabcdef}{abc}{xyz}}

yields ‘xyzdefxyzdef’. Because all three arguments are expanded before use, if any $ or \
characters are required in the regular expression or in the substitution string, they have to be
escaped. For example

${sg{abcdef}{^(...)(...)\$}{\$2\$1}}

yields ‘defabc’, and

${sg{1=A 4=D 3=C}{\N(\d+)=\N}{K\$1=}}

yields ‘K1=A K4=D K3=C’.

${tr{<subject>}{<characters>}{<replacements>}}

This item does single-character translation on its subject string. The second argument is a list of
characters to be translated in the subject string. Each matching character is replaced by the
corresponding character from the replacement list. For example

${tr{abcdea}{ac}{13}}

yields ‘1b3de1’. If there are duplicates in the second character string, the last occurrence is used.
If the third string is shorter than the second, its last character is replicated. However, if it is empty,
no translation takes place.

11.5 Expansion operators
The following operations can be performed on portions of an expanded string. The substring is first
expanded before the operation is applied to it.

Exim 4.10 [77] string expansions (11)

${address:<string>}

The string is interpreted as an RFC 2822 address, as it might appear in a header line, and the
 effective address is extracted from it. If the string does not parse successfully, the result is empty.

${base62:<digits>}

The string must consist entirely of decimal digits. The number is converted to base 62 and output
as a string of six characters, including leading zeros.

${domain:<string>}

The string is interpreted as an RFC 2822 address and the domain is extracted from it. If the string
does not parse successfully, the result is empty.

${escape:<string>}

If the string contains any non-printing characters, they are converted to escape sequences starting
with a backslash. Whether characters with the most significant bit set (so-called ‘8-bit characters’)
count as printing or not is controlled by the print_topbitchars option.

${expand:<string>}

The expand operator causes a string to be expanded for a second time. For example,

${expand:${lookup{$domain}dbm{/some/file}{$value}}}

first looks up a string in a file while expanding the operand for expand, and then re-expands what
it has found.

${hash_<n>_<m>:<string>}

This is Exim’s original hashing function. There are also numeric and MD5 hashing functions (see
below). The two items <n> and <m> are numbers. If <n> is greater than or equal to the length of
the string, the operator returns the string. Otherwise it computes a new string of length <n> by
applying a hashing function to the string. The new string consists of characters taken from the first

 <m> characters of the string

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQWRSTUVWXYZ0123456789

and if <m> is not present the value 26 is used, so that only lower case letters appear. These
 examples:

${hash_3:monty}
 ${hash_5:monty}

${hash_4_62:monty python}

yield

jmg
monty
fbWx

respectively. The abbreviation h can be used instead of hash.

${lc:<string>}

This forces the letters in the string into lower-case, for example:

${lc:$local_part}

${length_<number>:<string>}

The length operator can be used to extract the initial portion of a string. It is followed by an
underscore and the number of characters required. For example

${length_50:$message_body}

Exim 4.10 [78] string expansions (11)

The result of this operator is either the first <number> characters or the whole string, whichever is
the shorter. The abbreviation l can be used instead of length.

${local_part:<string>}

The string is interpreted as an RFC 2822 address and the local part is extracted from it. If the
string does not parse successfully, the result is empty.

${mask:<IP address>/<bit count>}

If the form of the string to be operated on is not an IP address followed by a slash and an integer
(that is, a network address in CIDR notation), the expansion fails. Otherwise, this operator
converts the IP address to binary, masks off the least significant bits according to the bit count,
and converts the result back to text, with mask appended. For example,

${mask:10.111.131.206/28}

returns the string ‘10.111.131.192/28’. Since this operation is expected to be mostly used for
looking up masked addresses in files, the result for an IPv6 address uses full stops (periods) to
separate components instead of colons, because colon terminates a key string in lsearch files. So,
for example,

${mask:3ffe:ffff:836f:0a00:000a:0800:200a:c031/99}

returns the string

3ffe.ffff.836f.0a00.000a.0800.2000.0000/99

Letters in IPv6 addresses are always output in lower case.

${md5:<string>}

The md5 operator computes the MD5 hash value of the string, and returns it as a 32-digit
hexadecimal number.

${nhash_<n>:<string>}

The string is processed by a hash function which returns a numeric value in the range 0 to <n>-1.

${nhash_<n>_<m>:<string>}

The string is processed by a div/mod hash function which returns two numbers, separated by a
slash, in the ranges 0 to <n>-1 and 0 to <m>-1, respectively. For example,

${nhash_8_64:supercalifragilisticexpialidocious}

returns the string ‘6/33’.

${quote:<string>}

The quote operator puts its argument into double quotes if it contains anything other than letters,
digits, underscores, full stops (periods), and hyphens. Any occurrences of double quotes and
backslashes are escaped with a backslash. For example,

${quote:ab"*"cd}

becomes

"ab\"*\"cd"

The place where this is useful is when the argument is a substitution from a variable or a message
 header.

${quote_<lookup-type>:<string>}

This operator applies lookup-specific quoting rules to the string. Each query-style lookup type has
its own quoting rules which are described with the lookups in chapter 9. For example,

${quote_ldap:two + two}

Exim 4.10 [79] string expansions (11)

returns ‘two%20%5C+%20two’. For single-key lookup types, no quoting is necessary and this
operator yields an unchanged string.

${rxquote:<string>}

The rxquote operator inserts a backslash before any non-alphanumeric characters in its argument.
This is useful when substituting the values of variables or headers inside regular expressions.

${substr_<start>_<length>:<string>}

The substr operator can be used to extract more general substrings than length. It is followed by
an underscore and the starting offset, then a second underscore and the length required. For
example

${substr_3_2:$local_part}

If the starting offset is greater than the string length the result is the null string; if the length plus
starting offset is greater than the string length, the result is the right-hand part of the string,
starting from the given offset. The first character in the string has offset zero. The abbreviation s
can be used instead of substr.

The substr expansion operator can take negative offset values to count from the right-hand end of
its operand. The last character is offset -1, the second-last is offset -2, and so on. Thus, for
example,

${substr_-5_2:1234567}

yields ‘34’. If the absolute value of a negative offset is greater than the length of the string, the
substring starts at the beginning of the string, and the length is reduced by the amount of
overshoot. Thus, for example,

${substr_-5_2:12}

yields an empty string, but

${substr_-3_2:12}

yields ‘1’.

If the second number is omitted from substr, the remainder of the string is taken if the offset was
positive. If it was negative, all characters in the string preceding the offset point are taken. For
example, an offset of -1 and no length yields all but the last character of the string.

${uc:<string>}

This forces the letters in the string into upper-case.

11.6 Expansion conditions
The following conditions are available for testing by the ${if construct while expanding strings:

!<condition>

Preceding any condition with an exclamation mark negates the result of the condition.

<symbolic operator> {<string1>}{<string2>}

There are a number of symbolic operators for doing numeric comparisons. They are:

= equal
== equal
> greater
>= greater or equal
< less
<= less or equal

For example,

Exim 4.10 [80] string expansions (11)

${if >{$message_size}{10M} ...

Note that the general negation operator provides for inequality testing. The two strings must take
the form of optionally signed decimal integers, optionally followed by one of the letters ‘K’ or
‘M’ (in either upper or lower case), signifying multiplication by 1024 or 1024*1024, respectively.

crypteq {<string1>}{<string2>}

This condition is included in the Exim binary if it is built to support any authentication mechan-
isms (see chapter 32). Otherwise, it is necessary to define SUPPORT_CRYPTEQ in Local/Makefile to
get crypteq included in the binary.

The crypteq condition has two arguments. The first is encrypted and compared against the second,
which is already encrypted. The second string may be in the LDAP form for storing encrypted
strings, which starts with the encryption type in curly brackets, followed by the data. If the second
string does not begin with ‘{’ it is assumed to be encrypted with crypt(), since such strings cannot
begin with ‘{’. Typically this will be a field from a password file.

An example of an encrypted string in LDAP form is:

{md5}CY9rzUYh03PK3k6DJie09g==

If such a string appears directly in an expansion, the curly brackets have to be quoted, because
they are part of the expansion syntax. For example:

${if crypteq {test}{\{md5\}CY9rzUYh03PK3k6DJie09g==}{yes}{no}}

Two encryption types are currently supported:

• {md5} computes the MD5 digest of the first string, and expresses this as printable characters
to compare with the remainder of the second string. If the length of the comparison string is
24, Exim assumes that it is base-64 encoded (as in the above example). If the length is 32,
Exim assumes that it is a hexadecimal encoding of the MD5 digest. If the length not 24 or
32, the comparison fails.

• {crypt} calls the crypt() function (the same action as when the string does not start with ‘}’).

def:<variable name>

The def condition must be followed by the name of one of the expansion variables defined in
section 11.8. The condition is true if the named expansion variable does not contain the empty
string, for example

${if def:sender_ident {from $sender_ident}}

Note that the variable name is given without a leading $ character. If the variable does not exist,
the expansion fails.

def:header_<header name>: or def:h_<header name>:

This condition is true if a message is being processed and the named header exists in the message.
For example,

${if def:header_reply-to:{$h_reply-to:}{$h_from:}}

Note that no $ appears before header_ or h_ in the condition, and that header names must be
terminated by colons if white space does not follow.

eq {<string1>}{<string2>}

The two substrings are first expanded. The condition is true if the two resulting strings are
identical, including the case of letters. Use the lc or uc expansion operators to force both strings
to the same case if you want to do a caseless comparison.

Exim 4.10 [81] string expansions (11)

exists {<file name>}

The substring is first expanded and then interpreted as an absolute path. The condition is true if
the named file (or directory) exists. The existence test is done by calling the stat() function. The
use of the exists test in users’ filter files may be locked out by the system administrator.

first_delivery

This condition, which has no data, is true during a message’s first delivery attempt. It is false
during any subsequent delivery attempts.

ldapauth {<ldap query>}

This condition supports user authentication using LDAP. See section 9.9 for details of how to use
LDAP in lookups and the syntax of queries. For this use, the query must contain a user name and
password. The query itself is not used, and can be empty. The condition is true if the password is
not empty, and the user name and password are accepted by the LDAP server. An empty password
is rejected without calling LDAP because LDAP binds with an empty password are considered
anonymous regardless of the username, and will succeed in most configurations. See chapter 32
for details of SMTP authentication, and chapter 33 for an example of how this can be used.

match {<string1>}{<string2>}

The two substrings are first expanded. The second is then treated as a regular expression and
applied to the first. Because of the pre-expansion, if the regular expression contains dollar, or
backslash characters, they must be escaped. Care must also be taken if the regular expression
contains braces (curly brackets). A closing brace must be escaped so that it is not taken as a
premature termination of <string2>. The easiest approach is to use the \N feature to disable
expansion of the regular expression. For example,

${if match {$local_part}{\N^\d{3}\N} ...

If the whole expansion string is in double quotes, further escaping of backslashes is also required.

The condition is true if the regular expression match succeeds. At the start of an if expansion the
values of the numeric variable substitutions $1 etc. are remembered. Obeying a match condition
that succeeds causes them to be reset to the substrings of that condition and they will have these
values during the expansion of the success string. At the end of the if expansion, the previous
values are restored. After testing a combination of conditions using or, the subsequent values of
the numeric variables are those of the condition that succeeded.

pam {<string1>:<string2>:...}

Pluggable Authentication Modules (http://www.kernel.org/pub/linux/libs/pam/) are a facility
which is available in the latest releases of Solaris and in some GNU/Linux distributions. The
Exim support, which is intended for use in conjunction with the SMTP AUTH command, is
available only if Exim is compiled with

SUPPORT_PAM=yes

in Local/Makefile. You probably need to add -lpam to EXTRALIBS, and in some releases of
GNU/Linux -ldl is also needed.

The argument string is first expanded, and the result must be a colon-separated list of strings. The
 PAM module is initialized with the service name ‘exim’ and the user name taken from the first

item in the colon-separated data string (<string1>). The remaining items in the data string are
passed over in response to requests from the authentication function. In the simple case there will
only be one request, for a password, so the data consists of just two strings.

There can be problems if any of the strings are permitted to contain colon characters. In the usual
 way, these have to be doubled to avoid being taken as separators. If the data is being inserted

from a variable, the sg expansion item can be used to double any existing colons. For example,
the configuration of a LOGIN authenticator might contain this setting:

server_condition = ${if pam{$1:${sg{$2}{:}{::}}}{yes}{no}}

Exim 4.10 [82] string expansions (11)

In some operating systems, PAM authentication can be done only from a process running as root.
Since Exim is running as the Exim user when receiving messages, this means that PAM cannot be
used directly in those systems.

pwcheck {<string1>:<string2>}

This condition supports user authentication using the Cyrus pwcheck daemon. This is one way of
making it possible for passwords to be checked by a process that is not running as root.

The pwcheck support is not included in Exim by default. You need to specify the location of the
pwcheck daemon’s socket in Local/Makefile before building Exim. For example:

CYRUS_PWCHECK_SOCKET=/var/pwcheck/pwcheck

You do not need to install the full Cyrus software suite in order to use the pwcheck daemon. You
can compile and install just the daemon alone from the Cyrus SASL library. Ensure that exim is
the only user that has access to the /var/pwcheck directory.

The pwcheck condition takes one argument, which must be the user name and password, separ-
ated by a colon. For example, in a LOGIN authenticator configuration, you might have this:

server_condition = ${if pwcheck{$1:$2}{1}{0}}

queue_running

This condition, which has no data, is true during delivery attempts that are initiated by queue-
runner processes, and false otherwise.

radius {<authentication string>}

Radius authentication (RFC 2865) is supported in a similar way to PAM. You must set
RADIUS_CONFIG_FILE in Local/Makefile to specify the location of the Radius client configuration file
in order to build Exim with Radius support. The string is expanded and passed to the Radius
client library, which calls the Radius server. The condition is true if the authentication is success-
ful. For example

server_condition = ${if radius{<arguments>}{yes}{no}}

11.7 Combining expansion conditions

Several conditions can be tested at once by combining them using the and and or combination
conditions. Note that and and or are complete conditions on their own, and precede their lists of sub-
conditions. Each sub-condition must be enclosed in braces within the overall braces that contain the
list. No repetition of if is used.

or {{<cond1>}{<cond2>}...}

The sub-conditions are evaluated from left to right. The condition is true if any one of the sub-
conditions is true. For example,

${if or {{eq{$local_part}{spqr}}{eq{$domain}{testing.com}}}...

When a true sub-condition is found, the following ones are parsed but not evaluated. If there are
several ‘match’ sub-conditions the values of the numeric variables afterwards are taken from the
first one that succeeds.

and {{<cond1>}{<cond2>}...}

The sub-conditions are evaluated from left to right. The condition is true if all of the sub-
conditions are true. If there are several ‘match’ sub-conditions, the values of the numeric variables
afterwards are taken from the last one. When a false sub-condition is found, the following ones
are parsed but not evaluated.

Exim 4.10 [83] string expansions (11)

11.8 Expansion variables

The variables that are available for use in expansion strings are:

$0, $1, etc: When a match expansion condition succeeds, these variables contain the captured
substrings identified by the regular expression during subsequent processing of the success string of
the containing if expansion item. They may also be set externally by some other matching process
which precedes the expansion of the string. For example, the commands available in Exim filter
files include an if command with its own regular expression matching condition.

$acl_verify_message: During the expansion of the message modifier in an ACL statement after an
address verification has failed, this variable contains the original failure message that will be
overridden by the expanded string.

$address_data: This variable gets set by means of the address_data option in routers. The value then
remains with the address while it is processed by subsequent routers and eventually a transport. If
the transport is handling multiple addresses, the value from the first address is used. See chapter 14
for more details.

$address_file: When, as a result of aliasing or forwarding, a message is directed to a specific file, this
variable holds the name of the file when the transport is running. For example, using the default
configuration, if user r2d2 has a .forward file containing

/home/r2d2/savemail

then when the address_file transport is running, $address_file contains ‘/home/r2d2/savemail’. At
other times, the variable is empty.

$address_pipe: When, as a result of aliasing or forwarding, a message is directed to a pipe, this
variable holds the pipe command when the transport is running.

$authenticated_id: When a server successfully authenticates a client it may be configured to preserve
some of the authentication information in the variable $authenticated_id (see chapter 32). For
example, a user/password authenticator configuration might preserve the user name for use in the
routers. When a message is submitted locally (that is, not over a TCP connection), the value of
$authenticated_id is the login name of the calling process.

$authenticated_sender: When a client host has authenticated itself, Exim pays attention to the AUTH=

parameter on the SMTP MAIL command, provided the setting of server_mail_auth_condition (see
chapter 32) permits it. Otherwise, it accepts the syntax, but ignores the data. Unless the data is the
string ‘<>’, it is set as the authenticated sender of the message, and the value is available during
delivery in the $authenticated_sender variable. When a message is submitted locally (that is, not
over a TCP connection), the value of $authenticated_sender is an address constructed from the
login name of the calling process and $qualify_domain.

$body_linecount: When a message is being received or delivered, this variable contains the number of
lines in the message’s body.

$bounce_recipient: This is set to the recipient address of a bounce message while Exim is creating it.
It is useful if a customized bounce message text file is in use (see chapter 40).

$caller_gid: The group id under which the process that called Exim was running. This is not the same
as the group id of the originator of a message (see $originator_gid). If Exim re-execs itself, this
variable in the new incarnation normally contains the Exim gid.

$caller_uid: The user id under which the process that called Exim was running. This is not the same
as the user id of the originator of a message (see $originator_uid). If Exim re-execs itself, this
variable in the new incarnation normally contains the Exim uid.

$compile_date: The date on which the Exim binary was compiled.

$compile_number: The building process for Exim keeps a count of the number of times it has been
compiled. This serves to distinguish different compilations of the same version of the program.

Exim 4.10 [84] string expansions (11)

$dnslist_domain: When a client host is found to be on a DNS (black) list, the list’s domain name is
put into this variable so that it can be included in the rejection message.

$dnslist_text: When a client host is found to be on a DNS (black) list, the contents of any associated
TXT record are placed in this variable.

$dnslist_value: When a client host is found to be on a DNS (black) list, the IP address from the
resource record is placed in this variable.

$domain: When an address is being routed, or delivered on its own, this variable contains the domain.
Global address rewriting happens when a message is received, so the value of $domain during
routing and delivery is the value after rewriting. $domain is set during user filtering, but not during
system filtering, because a message may have many recipients and the system filter is called just
once.

When more than one address is being delivered at once (for example, several RCPT commands in
one SMTP delivery), $domain is set only if they all have the same domain. Transports can be
restricted to handling only one domain at a time if the value of $domain is required at transport
time – this is the default for local transports. For further details of the environment in which local
transports are run, see chapter 22.

At the end of a delivery, if all deferred addresses have the same domain, it is set in $domain during
the expansion of delay_warning_condition.

The $domain variable is also used in some other circumstances:

• When an ACL is running for a RCPT command, $domain contains the domain of the recipient
address.

• When a rewrite item is being processed (see chapter 30), $domain contains the domain
portion of the address that is being rewritten; it can be used in the expansion of the replace-
ment address, for example, to rewrite domains by file lookup.

• Whenever a domain list is being scanned, $domain contains the subject domain.

• When the smtp_etrn_command option is being expanded, $domain contains the complete
 argument of the ETRN command (see section 42.6).

$domain_data: When the domains option on a router matches a domain by means of a lookup, the
data read by the lookup is available during the running of the router as $domain_data. In addition,
if the driver routes the address to a transport, the value is available in that transport. If the transport
is handling multiple addresses, the value from the first address is used.

$domain_data is also set when the domains condition in an ACL matches a domain by means of a
lookup. The data read by the lookup is available during the rest of the ACL statement. In all other
situations, this variable expands to nothing.

$header_<name>: This is not strictly an expansion variable. It is expansion syntax for inserting the
message header line with the given name. Note that the name must be terminated by colon or white
space, because it may contain a wide variety of characters.

$home: When the check_local_user option is set for a router, the user ’s home directory is placed in
$home when the check succeeds. In particular, this means it is set during the running of users’ filter
files. A router may also explicitly set a home directory for use by a transport; this can be
overridden by a setting on the transport itself.

When running a filter test via the -bf option, $home is set to the value of the environment variable
 HOME.

$host: When the smtp transport is expanding its options for encryption using TLS, $host contains the
name of the host to which it is connected. Likewise, when used in the client part of an authenticator
configuration (see chapter 32), $host contains the name of the server to which the client is
connected. When used in a transport filter (see chapter 23) $host refers to the host involved in the

Exim 4.10 [85] string expansions (11)

current connection. When a local transport is run as a result of a router that sets up a host list,
$host contains the name of the first host.

$host_address: This variable is set to the remote host’s IP address whenever $host is set for a remote
 connection.

$host_lookup_failed: This variable contains ‘1’ if the message came from a remote host and there
was an attempt to look up the host’s name from its IP address, but the attempt failed. Otherwise the
value of the variable is ‘0’.

$inode: The only time this variable is set is while expanding the directory_file option in the
appendfile transport. The variable contains the inode number of the temporary file which is about
to be renamed. It can be used to construct a unique name for the file.

$interface_address: For a message received over a TCP/IP connection, this variable contains the
address of the IP interface that was used. See also the -oMi command line option.

$interface_port: For a message received over a TCP/IP connection, this variable contains the port that
was used. See also the -oMi command line option.

$local_part: When an address is being routed, or delivered on its own, this variable contains the local
part. When a number of addresses are being delivered together (for example, multiple RCPT

commands in an SMTP session), $local_part is not set.

Global address rewriting happens when a message is received, so the value of $local_part during
routing and delivery is the value after rewriting. $local_part is set during user filtering, but not
during system filtering, because a message may have many recipients and the system filter is called
just once.

If a local part prefix or suffix has been recognized, it is not included in the value of $local_part
during routing and subsequent delivery. The values of any prefix or suffix are in $local_part_prefix
and $local_part_suffix, respectively.

When a message is being delivered to a file, pipe, or autoreply transport as a result of aliasing or
forwarding, $local_part is set to the local part of the parent address, not to the file name or
command (see $address_file and $address_pipe).

When an ACL is running for a RCPT command, $local_part contains the local part of the recipient
address.

When a rewrite item is being processed (see chapter 30), $local_part contains the local part of the
address that is being rewritten; it can be used in the expansion of the replacement address, for
example.

In all cases, all quoting is removed from the local part. For example, for both the addresses

"abc:xyz"@test.example
 abc\:xyz@test.example

the value of $local_part is

abc:xyz

If you use $local_part to create another address, you should always wrap it inside a quoting
 operator. For example, in a redirect router you could have:

data = ${quote:$local_part}@new.domain.example

$local_part_data: When the local_parts option on a router matches a local part by means of a
lookup, the data read by the lookup is available during the running of the router as

 $local_part_data. In addition, if the driver routes the address to a transport, the value is available
in that transport. If the transport is handling multiple addresses, the value from the first address is
used.

Exim 4.10 [86] string expansions (11)

$local_part_data is also set when the local_partss condition in an ACL matches a local part by
means of a lookup. The data read by the lookup is available during the rest of the ACL statement.
In all other situations, this variable expands to nothing.

$local_part_prefix: When an address is being routed or delivered, and a specific prefix for the local
part was recognized, it is available in this variable, having been removed from $local_part.

$local_part_suffix: When an address is being routed or delivered, and a specific suffix for the local
part was recognized, it is available in this variable, having been removed from $local_part.

$local_scan_data: This variable contains the text returned by the local_scan() function when a
message is received. See chapter 38 for more details.

$localhost_number: This contains the expanded value of the localhost_number option. The expan-
sion happens after the main options have been read.

$message_age: This variable is set at the start of a delivery attempt to contain the number of seconds
since the message was received. It does not change during a single delivery attempt.

$message_body: This variable contains the initial portion of a message’s body while it is being
delivered, and is intended mainly for use in filter files. The maximum number of characters of the
body that are put into the variable is set by the message_body_visible configuration option; the
default is 500. Newlines are converted into spaces to make it easier to search for phrases that might
be split over a line break. Binary zeros are also converted into spaces.

$message_body_end: This variable contains the final portion of a message’s body while it is being
delivered. The format and maximum size are as for $message_body.

$message_body_size: When a message is being processed, this variable contains the size of the body
in bytes. The count starts from the character after the blank line that separates the body from the

 header. Newlines are included in the count. See also $message_size and $body_linecount.

$message_headers: This variable contains a concatenation of all the header lines when a message is
being processed, except for lines added by routers or transports. The header lines are separated by
newline characters.

$message_id: When a message is being received or delivered, this variable contains the unique
message id which is used by Exim to identify the message.

$message_size: When a message is being processed, this variable contains its size in bytes. In most
cases, the size includes those headers that were received with the message, but not those (such as

 Envelope-to:) that are added to individual deliveries as they are written. However, there is one
special case: during the expansion of the maildir_tag option in the appendfile transport while
doing a delivery in maildir format, the value of $message_size is the precise size of the file that has
been written. See also $message_body_size and $body_linecount.

While running an ACL at the time of an SMTP RCPT command, $message_size contains the size
supplied on the MAIL command, or zero if no size was given. The value may not, of course, be

 truthful.

$n0 – $n9: These variables are counters that can be incremented by means of the add command in
filter files.

$original_domain: When a top-level address is being processed for delivery, this contains the same
value as $domain. However, if a ‘child’ address (for example, generated by an alias, forward, or
filter file) is being processed, this variable contains the domain of the original address. This differs
from $parent_domain only when there is more than one level of aliasing or forwarding. When
more than one address is being delivered in a single transport run, $original_domain is not set.

If new an address is created by means of a deliver command in a system filter, it is set up with an
artificial ‘parent’ address. This has the local part system-filter and the default qualify domain.

$original_local_part: When a top-level address is being processed for delivery, this contains the same
value as $local_part, unless a prefix or suffix was removed from the local part, in which case

Exim 4.10 [87] string expansions (11)

$original_local_part contains the full local part. When a ‘child’ address (for example, generated by
an alias, forward, or filter file) is being processed, this variable contains the full local part of the
original address. If the router that did the redirection processed the local part case-insensitively, the
value in $original_local_part is in lower case. This variable differs from $parent_local_part only
when there is more than one level of aliasing or forwarding. When more than one address is being
delivered in a single transport run, $original_local_part is not set.

If new an address is created by means of a deliver command in a system filter, it is set up with an
artificial ‘parent’ address. This has the local part system-filter and the default qualify domain.

$originator_gid: The value of $caller_gid that was set when the message was received. For messages
received via the command line, this is the gid of the sending user. For messages received by SMTP
over TCP/IP, this is normally the gid of the Exim user.

$originator_uid: The value of $caller_uid that was set when the message was received. For messages
received via the command line, this is the uid of the sending user. For messages received by SMTP
over TCP/IP, this is normally the uid of the Exim user.

$parent_domain: This variable is similar to $original_domain (see above), except that it refers to the
immediately preceding parent address.

$parent_local_part: This variable is similar to $original_local_part (see above), except that it refers
to the immediately preceding parent address.

$pid: This variable contains the current process id.

$pipe_addresses: This is not an expansion variable, but is mentioned here because the string
‘$pipe_addresses’ is handled specially in the command specification for the pipe transport (chapter
28) and in transport filters (described under transport_filter in chapter 23). It cannot be used in
general expansion strings, and provokes an ‘unknown variable’ error if encountered.

$primary_hostname: The value set in the configuration file, or read by the uname() function. If
uname() returns a single-component name, Exim calls gethostbyname() (or getipnodebyname()
where available) in an attempt to acquire a fully qualified host name.

$qualify_domain: The value set for this option in the configuration file.

$qualify_recipient: The value set for this option in the configuration file, or if not set, the value of
 $qualify_domain.

$rcpt_count: When a message is being received by SMTP, this variable contains the number of RCPT

commands received, and may be used in an ACL. At other times, its value is undefined.

$received_for: If there is only a single recipient address in an incoming message, this variable
contains that address when the Received: header line is being built.

$received_protocol: When a message is being processed, this variable contains the name of the
protocol by which it was received. See also the -oMr option.

$recipients: This variable contains a list of envelope recipients for a message, but is recognized only
in the system filter file, to prevent exposure of Bcc recipients to ordinary users. A comma and a
space separate the addresses in the replacement text.

$recipients_count: When a message is being processed, this variable contains the number of envelope
recipients that came with the message. Duplicates are not excluded from the count. While a
message is being received over SMTP, the number increases for each accepted recipient. It can be
referenced in an ACL.

$reply_address: When a message is being processed, this variable contains the contents of the Reply-
 To: header line if one exists, or otherwise the contents of the From: header line.

$return_path: When a message is being delivered, this variable contains the return path – the sender
field that will be sent as part of the envelope. It is not enclosed in <> characters. In many cases,

 $return_path has the same value as $sender_address, but if, for example, an incoming message to
a mailing list has been expanded by a router which specifies a different address for bounce

Exim 4.10 [88] string expansions (11)

messages, $return_path contains the new bounce address, whereas $sender_address contains the
original sender address that was received with the message.

$return_size_limit: This contains the value set in the return_size_limit option, rounded up to a
multiple of 1000. It is useful when a customized error message text file is in use (see chapter 40).

$runrc: This variable contains the return code from a command that is run by the ${run...} expansion
item.

$self_hostname: When an address is routed to a supposedly remote host that turns out to be the local
host, what happens is controlled by the self generic router option. One of its values causes the
address to be passed to another router. When this happens, $self_hostname is set to the name of the
local host that the original router encountered. In other circumstances its contents are null.

$sender_address: When a message is being processed, this variable contains the sender ’s address that
was received in the message’s envelope. For bounce messages, the value of this variable is the
empty string.

$sender_address_domain: The domain portion of $sender_address.

$sender_address_local_part: The local part portion of $sender_address.

$sender_fullhost: When a message is received from a remote host, this variable contains the host
name and IP address in a single string. It ends with the IP address in square brackets, followed by a
colon and a port number if the logging of ports is enabled. The format of the rest of the string
depends on whether the host issued a HELO or EHLO SMTP command, and whether the host name
was verified by looking up its IP address. (Looking up the IP address can be forced by the
host_lookup option, independent of verification.) A plain host name at the start of the string is a
verified host name; if this is not present, verification either failed or was not requested. A host
name in parentheses is the argument of a HELO or EHLO command. This is omitted if it is identical to
the verified host name or to the host’s IP address in square brackets.

$sender_helo_name: When a message is received from a remote host that has issued a HELO or EHLO

command, the argument of that command is placed in this variable. It is also set if HELO or EHLO is
used when a message is received using SMTP locally via the -bs or -bS options.

$sender_host_address: When a message is received from a remote host, this variable contains that
 host’s IP address. For locally submitted messages, it is empty.

$sender_host_authenticated: This variable contains the name (not the public name) of the
authenticator driver which successfully authenticated the client from which the message was
received. It is empty if there was no successful authentication.

$sender_host_name: When a message is received from a remote host, this variable contains the host’s
name as obtained by looking up its IP address. If the lookup failed, or was not requested, this
variable contains the empty string.

Exim does not always look up every calling host’s name. If you want maximum efficiency, you
should arrange your configuration so that it avoids these lookups altogether. The lookup happens
only if any of the following are true:

(1) The calling host matches the list in host_lookup. The default for this option is *, so it must be
changed if any lookups are to be avoided.

(2) Exim needs the host name in order to test an item in a host list. The items that require this are
described in section 10.10. A common mistake is to forget to use ‘net-’ before a query-style
lookup that actually looks up the host address.

(3) The calling host matches helo_try_verify_hosts or helo_verify_hosts. In this case, the host
name is required to compare with the name quoted in any EHLO or HELO commands that the
client issues.

(4) The remote host issues a EHLO or HELO command that quotes one of the domains in
helo_lookup_domains. The default value of this option is

Exim 4.10 [89] string expansions (11)

helo_lookup_domains = @ : @[]

which causes a lookup if a remote host (incorrectly) gives the server ’s name or IP address in
an EHLO or HELO command.

$sender_host_port: When a message is received from a remote host, this variable contains the port
number that was used on the remote host.

$sender_ident: When a message is received from a remote host, this variable contains the identifi-
cation received in response to an RFC 1413 request. When a message has been received locally,
this variable contains the login name of the user that called Exim.

$sender_rcvhost: This is provided specifically for use in Received: headers. It starts with either the
verified host name (as obtained from a reverse DNS lookup) or, if there is no verified host name,
the IP address in square brackets. After that there may be text in parentheses. When the first item is
a verified host name, the first thing in the parentheses is the IP address in square brackets, followed
by a colon and a port number if port logging is enabled. When the first item is an IP address, the
port is recorded as ‘port=xxxx’ inside the parentheses.

There may also be items of the form ‘helo=xxxx’ if HELO or EHLO was used and its argument was
not identical to the real host name or IP address, and ‘ident=xxxx’ if an RFC 1413 ident string is
available. If all three items are present in the parentheses, a newline and tab are inserted into the
string, to improve the formatting of the Received: header.

$smtp_command_argument: While an ACL is running to check an AUTH, EXPN, ETRN, or VRFY

command, this variable contains the argument for the SMTP command.

$sn0 – $sn9: These variables are copies of the values of the $n0 – $n9 accumulators that were current
at the end of the system filter file. This allows a system filter file to set values that can be tested in
users’ filter files. For example, a system filter could set a value indicating how likely it is that a
message is junk mail.

$spool_directory: The name of Exim’s spool directory.

$thisaddress: This variable is set only during the processing of the foranyaddress command in a filter
file. Its use is explained in the description of that command.

$tls_cipher: When a message is received from a remote host over an encrypted SMTP connection, this
variable is set to the cipher suite that was negotiated, for example DES-CBC3-SHA. See chap-
ter 36.

$tls_peerdn: When a message is received from a remote host over an encrypted SMTP connection,
and Exim is configured to request and verify a certificate from the client, the value of the
Distinguished Name of the certificate is made available in the $tls_peerdn during subsequent

 processing.

$tod_bsdinbox: The time of day and date, in the format required for BSD-style mailbox files, for
example: Thu Oct 17 17:14:09 1995.

$tod_epoch: The time and date as a number of seconds since the start of the Unix epoch.

$tod_full: A full version of the time and date, for example: Wed, 16 Oct 1995 09:51:40 +0100. The
timezone is always given as a numerical offset from GMT.

$tod_log: The time and date in the format used for writing Exim’s log files, for example: 1995-10-12
15:32:29.

$value: This variable contains the result of an expansion lookup, extraction operation, or external
command, as described above.

$version_number: The version number of Exim.

$warnmsg_delay: This variable is set only during the creation of a message warning about a delivery
 delay. Details of its use are explained in section 40.2.

Exim 4.10 [90] string expansions (11)

$warnmsg_recipients: This variable is set only during the creation of a message warning about a
delivery delay. Details of its use are explained in section 40.2.

Exim 4.10 [91] string expansions (11)

12. Embedded Perl

Exim can be built to include an embedded Perl interpreter. When this is done, Perl subroutines can be
called as part of the string expansion process. To make use of the Perl support, you need version 5.004
or later of Perl installed on your system. To include the embedded interpreter in the Exim binary,
include the line

EXIM_PERL = perl.o

in your Local/Makefile and then build Exim in the normal way.

Access to Perl subroutines is via a global configuration option called perl_startup and an expansion
string operator ${perl ...}. If there is no perl_startup option in the Exim configuration file then no
Perl interpreter is started and there is almost no overhead for Exim (since none of the Perl library will
be paged in unless used). If there is a perl_startup option then the associated value is taken to be Perl
code which is executed in a newly created Perl interpreter.

The value of perl_startup is not expanded in the Exim sense, so you do not need backslashes before
any characters to escape special meanings. The option should usually be something like

perl_startup = do ’/etc/exim.pl’

where /etc/exim.pl is Perl code which defines any subroutines you want to use from Exim. Exim can
be configured either to start up a Perl interpreter as soon as it is entered, or to wait until the first time
it is needed. Starting the interpreter at the beginning ensures that it is done while Exim still has its
setuid privilege, but can impose an unnecessary overhead if Perl is not in fact used in a particular run.
Also, note that this does not mean that Exim is necessarily running as root when Perl is called at a
later time. By default, the interpreter is started only when it is needed, but this can be changed in two
ways:

• Setting perl_at_start (a boolean option) in the configuration requests a startup when Exim is
entered.

• The command line option -ps also requests a startup when Exim is entered, overriding the setting
of perl_at_start.

There is also a command line option -pd (for delay) which suppresses the initial startup, even if
perl_at_start is set.

When the configuration file includes a perl_startup option you can make use of the string expansion
item to call the Perl subroutines that are defined by the perl_startup code. The operator is used in any
of the following forms:

${perl{foo}}
${perl{foo}{argument}}
${perl{foo}{argument1}{argument2} ... }

which calls the subroutine foo with the given arguments. A maximum of eight arguments may be
passed. Passing more than this results in an expansion failure with an error message of the form

Too many arguments passed to Perl subroutine "foo" (max is 8)

The return value of the subroutine is inserted into the expanded string, unless the return value is undef.
In that case, the expansion fails in the same way as an explicit ‘fail’ on an ${if ...} or ${lookup...}
item. If the subroutine aborts by obeying Perl’s die function, the expansion fails with the error
message that was passed to die.

Within any Perl code called from Exim, the function Exim::expand_string is available to call back into
Exim’s string expansion function. For example, the Perl code

my $lp = Exim::expand_string(’$local_part’);

Exim 4.10 [92] embedded Perl (12)

makes the current Exim $local_part available in the Perl variable $lp. Note those are single quotes
and not double quotes to protect against $local_part being interpolated as a Perl variable.

If the string expansion is forced to fail by a ‘fail’ item, the result of Exim::expand_string is undef. If
there is a syntax error in the expansion string, the Perl call from the original expansion string fails
with an appropriate error message, in the same way as if die were used.

Exim 4.10 [93] embedded Perl (12)

13. Main configuration

The first part of the run time configuration file contains three types of item:

• Macro definitions: These lines start with an upper case letter. See section 6.4 for details of macro
processing.

• Named list definitions: These lines start with one of the words ‘domainlist’, ‘hostlist’,
‘addresslist’, or ‘localpartlist’. Their use is described in section 10.5.

• Main configuration settings: Each setting occupies one line of the file (including possible continu-
ations). If any setting is preceded by the word ‘hide’, the -bP option displays its value to admin
users only (see section 6.5).

This chapter lists all the main configuration options, along with their types and default values, in
alphabetical order. Those that undergo string expansion before use are marked with †.

accept_8bitmime Type: boolean Default: false

This option causes Exim to send 8BITMIME in its response to an SMTP EHLO command, and to accept
the BODY= parameter on MAIL commands. However, though Exim is 8-bit clean, it is not a protocol

 converter, and it takes no steps to do anything special with messages received by this route.
 Consequently, this option is turned off by default.

acl_smtp_auth Type: string† Default: unset

This option defines the ACL that is run when an SMTP AUTH command is received. See chapter 37
for further details.

acl_smtp_data Type: string† Default: unset

This option defines the ACL that is run after an SMTP DATA command has been processed and the
message itself has been received, but before the final acknowledgement is sent. See chapter 37 for
further details.

acl_smtp_etrn Type: string† Default: unset

This option defines the ACL that is run when an SMTP ETRN command is received. See chapter 37
for further details.

acl_smtp_expn Type: string† Default: unset

This option defines the ACL that is run when an SMTP EXPN command is received. See chapter 37
for further details.

acl_smtp_rcpt Type: string† Default: unset

This option defines the ACL that is run when an SMTP RCPT command is received. See chapter 37
for further details.

acl_smtp_vrfy Type: string† Default: unset

This option defines the ACL that is run when an SMTP VRFY command is received. See chapter 37
for further details.

admin_groups Type: string Default: unset

If the current group or any of the supplementary groups of the caller is in this colon-separated list,
the caller has admin privileges. If all your system programmers are in a specific group, for example,
you can give them all Exim admin privileges by putting that group in admin_groups. However,

Exim 4.10 [94] main configuration (13)

this does not permit them to read Exim’s spool files (whose group owner is the Exim gid). To
permit this, you have to add individuals to the Exim group.

allow_domain_literals Type: boolean Default: false

If this option is set, the RFC 2822 domain literal format is permitted in email addresses. The option
is not set by default, because the domain literal format is not normally required these days, and few
people know about it. It has, however, been exploited by mail abusers.

Unfortunately, it seems that some DNS black list maintainers are using this format to report black
listing to postmasters. If you want to accept messages addressed to your hosts by IP address, you
need to set allow_domain_literals true, and also to add @[] to the list of local domains (defined in
the named domain list local_domains in the default configuration). This ‘magic string’ matches the
domain literal form of all the local host’ s IP addresses.

allow_mx_to_ip Type: boolean Default: false

It appears that more and more DNS zone administrators are breaking the rules and putting domain
names that look like IP addresses on the right hand side of MX records. Exim follows the rules and
rejects this, giving an error message that explains the mis-configuration. However, some other

 MTAs support this practice, so to avoid ‘Why can’t Exim do this?’ complaints, allow_mx_to_ip
exists, in order to enable this heinous activity. It is not recommended, except when you have no
other choice.

auth_advertise_hosts Type: host list† Default: *

If any server authentication mechanisms are configured, Exim advertises them in response to an
EHLO command only if the calling host matches this list. Otherwise, Exim does not advertise AUTH,
though it is always prepared to accept it.

Certain mail clients (for example, Netscape) require the user to provide a name and password for
authentication if AUTH is advertised, even though it may not be needed (the host may accept
messages from hosts on its local LAN without authentication, for example). The
auth_advertise_hosts option can be used to make these clients more friendly by excluding them
from the set of hosts to which Exim advertises AUTH.

If you want to advertise the availability of AUTH only when the the connection is encrypted using
TLS, you can make use of the fact that the value of this option is expanded, with a setting like this:

auth_advertise_hosts = ${if eq{$tls_cipher}{}{}{*}}

If $tls_cipher is empty, the session is not encrypted, and the result of the expansion is empty, thus
matching no hosts. Otherwise, the result of the expansion is *, which matches all hosts.

auto_thaw Type: time Default: 0s

If this option is set to a time greater than zero, a queue runner will try a new delivery attempt on
any frozen message if this much time has passed since it was frozen. This may result in the
message being re-frozen if nothing has changed since the last attempt. It is a way of saying ‘keep
on trying, even though there are big problems’. See also timeout_frozen_after and

 ignore_bounce_errors_after.

bi_command Type: string Default: unset

This option supplies the name of a command that is run when Exim is called with the -bi option
(see chapter 5). The string value is just the command name, it is not a complete command line. If
an argument is required, it must come from the -oA command line option.

bounce_message_file Type: string Default: unset

This option defines a template file containing paragraphs of text to be used for constructing bounce
messages. Details of the file’s contents are given in chapter 40. See also warn_message_file.

Exim 4.10 [95] main configuration (13)

bounce_message_text Type: string Default: unset

When this option is set, its contents are included in the default bounce message immediately after
‘This message was created automatically by mail delivery software.’ It is not used if
bounce_message_file is set.

bounce_return_message Type: boolean Default: true

If this option is set false, the original message is not included in bounce messages generated by
Exim. See also return_size_limit.

bounce_sender_authentication Type: string Default: unset

This option provides an authenticated sender address that is sent with any bounce messages
generated by Exim that are sent over an authenticated SMTP connection. A typical setting
might be:

bounce_sender_authentication = mailer-daemon@my.domain.example

which would cause bounce messages to be sent using the SMTP command:

MAIL FROM:<> AUTH=mailer-daemon@my.domain.example

The value of bounce_sender_authentication must always be a complete email address.

check_log_inodes Type: integer Default: 0

See check_spool_space below.

check_log_space Type: integer Default: 0

See check_spool_space below.

check_spool_inodes Type: integer Default: 0

See check_spool_space below.

check_spool_space Type: integer Default: 0

The four check_... options allow for checking of disc resources before a message is accepted:
check_spool_space and check_spool_inodes check the spool partition if either value is greater than
zero, for example:

check_spool_space = 10M
check_spool_inodes = 100

The spool partition is the one which contains the directory defined by SPOOL_DIRECTORY in
 Local/Makefile. It is used for holding messages in transit.

check_log_space and check_log_inodes check the partition in which log files are written if either
is greater than zero. These should be set only if log_file_path and spool_directory refer to different

 partitions.

If there is less space or fewer inodes than requested, Exim refuses to accept incoming mail. In the
case of SMTP input this is done by giving a 452 temporary error response to the MAIL command. If
ESMTP is in use and there was a SIZE parameter on the MAIL command, its value is added to the
check_spool_space value, and the check is performed even if check_spool_space is zero, unless
no_smtp_check_spool_space is set.

For non-SMTP input and for batched SMTP input, the test is done at start-up; on failure a message
is written to stderr and Exim exits with a non-zero code, as it obviously cannot send an error
message of any kind.

Exim 4.10 [96] main configuration (13)

daemon_smtp_port Type: string Default: unset

This option specifies the default SMTP port on which the Exim daemon listens. It can either be
given as a number, or as a service name. It can be overridden by giving an explicit port number on
an IP address in the local_interfaces option, or by using -oX on the command line. If this option is
not set, the service name ‘smtp’ is used.

delay_warning Type: time list Default: 24h

When a message is delayed, Exim sends a warning message to the sender at intervals specified by
this option. If it is set to a zero, no warnings are sent. The data is a colon-separated list of times
after which to send warning messages. Up to 10 times may be given. If a message has been on the
queue for longer than the last time, the last interval between the times is used to compute
subsequent warning times. For example, with

delay_warning = 4h:8h:24h

the first message is sent after 4 hours, the second after 8 hours, and subsequent ones every 16 hours
 thereafter. To stop warnings after a given time, set a huge subsequent time.

delay_warning_condition Type: string† Default: see below

The string is expanded at the time a warning message might be sent. If all the deferred addresses
have the same domain, it is set in $domain during the expansion. Otherwise $domain is empty. If
the result of the expansion is a forced failure, an empty string, or a string matching any of ‘0’, ‘no’
or ‘false’ (the comparison being done caselessly) then the warning message is not sent. The
default is

delay_warning_condition = \
${if match{$h_precedence:}{(?i)bulk|list|junk}{no}{yes}}

which suppresses the sending of warnings about messages that have ‘bulk’, ‘list’ or ‘junk’ in a
 Precedence: header.

deliver_drop_privilege Type: boolean Default: false

If this option is set true, Exim drops its root privilege at the start of a delivery process, and runs as
the Exim user throughout. This severely restricts the kinds of local delivery that are possible, but is
viable in certain types of configuration. There is a discussion about the use of root privilege in
chapter 47.

deliver_queue_load_max Type: fixed-point Default: unset

When this option is set, a queue run is abandoned if the system load average becomes greater than
the value of the option. The option has no effect on ancient operating systems on which Exim
cannot determine the load average. See also queue_only_load and smtp_load_reserve.

delivery_date_remove Type: boolean Default: true

Exim’s transports have an option for adding a Delivery-date: header to a message when it is
delivered – in exactly the same way as Return-path: is handled. Delivery-date: records the actual
time of delivery. Such headers should not be present in incoming messages, and this option causes
them to be removed at the time the message is received, to avoid any problems that might occur
when a delivered message is subsequently sent on to some other recipient.

dns_again_means_nonexist Type: domain list† Default: unset

DNS lookups give a ‘try again’ response for the DNS errors ‘non-authoritative host not found’ and
 ‘SERVERFAIL’. This can cause Exim to keep trying to deliver a message, or to give repeated

temporary errors to incoming mail. Sometimes the effect is caused by a badly set up name server
and may persist for a long time. If a domain which exhibits this problem matches anything in dns_

 again_means_nonexist, it is treated as if it did not exist. This option should be used with care.

Exim 4.10 [97] main configuration (13)

dns_check_names_pattern Type: string Default: see below

When this option is set to a non-empty string, it causes Exim to check domain names for illegal
characters before handing them to the DNS resolver, because some resolvers give temporary errors
for malformed names. If a domain name contains any illegal characters, a ‘not found’ result is
forced, and the resolver is not called. The check is done by matching the domain name against a
regular expression, which is the value of this option. The default pattern is

dns_check_names_pattern = \
(?i)^(?>(?(1)\.|())[^\W_](?>[a-z0-9-]*[^\W_])?)+$

which permits only letters, digits, and hyphens in components, but they may not start or end with a
hyphen.

dns_ipv4_lookup Type: domain list† Default: unset

When Exim is compiled with IPv6 support, it looks for IPv6 address records (AAAA and, if
configured, A6) as well as IPv4 address records when trying to find IP addresses for hosts, unless
the host’s domain matches this list.

This is a fudge to help with name servers that give big delays or otherwise do not work for the new
IPv6 record types. If Exim is handed an IPv6 address record as a result of an MX lookup, it always
recognizes it, and may as a result make an outgoing IPv6 connection. All this option does is to
make Exim look only for IPv4-style A records when it needs to find an IP address for a host name.
In due course, when the world’s name servers have all been upgraded, there should be no need for
this option.

dns_retrans Type: time Default: 0s

The options dns_retrans and dns_retry can be used to set the retransmission and retry parameters
for DNS lookups. Values of zero (the defaults) leave the system default settings unchanged. The
first value is the time between retries, and the second is the number of retries. It isn’t totally clear
exactly how these settings affect the total time a DNS lookup may take. I haven’t found any
documentation about timeouts on DNS lookups; these parameter values are available in the external
resolver interface structure, but nowhere does it seem to describe how they are used or what you
might want to set in them.

dns_retry Type: integer Default: 0

See dns_retrans above.

drop_cr Type: boolean Default: false

Setting drop_cr true affects non-SMTP messages that are submitted locally. It causes every carriage
return character that immediately precedes a linefeed to be discarded. Other carriage returns are
treated as data. This action can be requested for individual messages by means of the -dropcr
command line option.

envelope_to_remove Type: boolean Default: true

Exim’s transports have an option for adding an Envelope-to: header to a message when it is
delivered – in exactly the same way as Return-path: is handled. Envelope-to: records the original
recipient address from the messages’s envelope that caused the delivery to happen. Such headers
should not be present in incoming messages, and this option causes them to be removed at the time
the message is received, to avoid any problems that might occur when a delivered message is
subsequently sent on to some other recipient.

errors_copy Type: string list† Default: unset

Setting this option causes Exim to send bcc copies of bounce messages that it generates to other
addresses. Note: this does not apply to bounce messages coming from elsewhere. The value of the
option is a colon-separated list of items. Each item consists of a pattern, terminated by white space,
followed by a comma-separated list of email addresses. If a pattern contains spaces, it must be
enclosed in double quotes.

Exim 4.10 [98] main configuration (13)

Each pattern is processed in the same way as a single item in an address list (see section 10.12).
When a pattern matches the recipient of the bounce message, the message is copied to the addresses
on the list. The items are scanned in order, and once a matching one is found, no further items are
examined. For example:

errors_copy = spqr@mydomain postmaster@mydomain.example :\
rqps@mydomain hostmaster@mydomain.example,\

postmaster@mydomain.example

The address list is expanded before use. The expansion variables $local_part and $domain are set
from the original recipient of the error message, and if there was any wildcard matching in the
pattern, the expansion variables $0, $1, etc. are set in the normal way.

errors_reply_to Type: string Default: unset

Exim’s bounce messages contain the header line

From: Mail Delivery System <Mailer-Daemon@$qualify_domain>

(suitably expanded). Experience shows that a large number of people reply to bounce messages. If
the errors_reply_to option is set, a Reply-To: header is added. The option must specify the
complete header body.

exim_group Type: string Default: compile-time configured

This option changes the gid under which Exim runs when it gives up root privilege. The default
value is compiled into the binary. The value of this option is used only when exim_user is also set.
Unless it consists entirely of digits, the string is looked up using getgrnam(), and failure causes a
configuration error. See chapter 47 for a discussion of security issues.

exim_path Type: string Default: see below

This option specifies the path name of the Exim binary, which is used when Exim needs to re-exec
itself. The default is set up to point to the file exim in the directory configured at compile time by
the BIN_DIRECTORY setting. It is necessary to change exim_path if Exim is run from some other

 place.

exim_user Type: string Default: compile-time configured

This option changes the uid under which Exim runs when it gives up root privilege. The default
value is compiled into the binary. Ownership of the run time configuration file and the use of the -C
and -D command line options is checked against the values in the binary, not what is set here.

Unless it consists entirely of digits, the string is looked up using getpwnam(), and failure causes a
configuration error. If exim_group is not also supplied, the gid is taken from the result of
getpwnam() if it is used. See chapter 47 for a discussion of security issues.

extract_addresses_remove_arguments Type: boolean Default: true

According to some Sendmail documentation (Sun, IRIX, HP-UX), if any addresses are present on
the command line when the -t option is used to build an envelope from a message’s To:, Cc: and
Bcc: headers, the command line addresses are removed from the recipients list. This is also how
Smail behaves. However, other Sendmail documentation (the O’Reilly book) states that command
line addresses are added to those obtained from the header lines. When

 extract_addresses_remove_arguments is true (the default), Exim subtracts argument headers. If it
is set false, Exim adds rather than removes argument addresses.

finduser_retries Type: integer Default: 0

On systems running NIS or other schemes in which user and group information is distributed from
a remote system, there can be times when getpwnam() and related functions fail, even when given
valid data, because things time out. Unfortunately these failures cannot be distinguished from
genuine ‘not found’ errors. If finduser_retries is set greater than zero, Exim will try that many
extra times to find a user or a group, waiting for one second between retries.

Exim 4.10 [99] main configuration (13)

freeze_tell Type: string Default: unset

On encountering certain errors, or when configured to do so in a system filter, Exim freezes a
message. This means that no further delivery attempts take place until an administrator (or the
auto_thaw feature) thaws the message. If freeze_tell is set, Exim generates a warning message
whenever it freezes something, unless the message it is freezing is a bounce message. (Without this
exception there is the possibility of looping.) The warning message is sent to the addresses supplied
as the comma-separated value of this option. If several of the message’s addresses cause freezing,
only a single message is sent. The reason(s) for freezing can be found in the message log.

gecos_name Type: string† Default: unset

Some operating systems, notably HP-UX, use the ‘gecos’ field in the system password file to hold
other information in addition to users’ real names. Exim looks up this field for use when it is
creating Sender: or From: headers. If either gecos_pattern or gecos_name are unset, the contents
of the field are used unchanged, except that, if an ampersand is encountered, it is replaced by the
user ’s login name with the first character forced to upper case, since this is a convention that is
observed on many systems.

When these options are set, gecos_pattern is treated as a regular expression that is to be applied to
the field (again with & replaced by the login name), and if it matches, gecos_name is expanded and
used as the user ’s name. Numeric variables such as $1, $2, etc. can be used in the expansion to pick
up sub-fields that were matched by the pattern. In HP-UX, where the user ’s name terminates at the
first comma, the following can be used:

gecos_pattern = ([^,]*)
gecos_name = $1

gecos_pattern Type: string Default: unset

See gecos_name above.

helo_accept_junk_hosts Type: host list† Default: unset

Exim checks the syntax of HELO and EHLO commands for incoming SMTP mail, and gives an error
response for invalid data. Unfortunately, there are some SMTP clients that send syntactic junk.
They can be accommodated by setting this option. Note that this is a syntax check only. See
helo_verify_hosts if you want to do semantic checking. See also helo_allow_chars for a way of
extending the permitted character set.

helo_allow_chars Type: string Default: unset

This option can be set to a string of rogue characters that are permitted in all EHLO and HELO names
in addition to the standard letters, digits, hyphens, and dots. If you really must allow underscores,
you can set

helo_allow_chars = _

Note that the value is one string, not a list.

helo_lookup_domains Type: domain list† Default: @:@[]

If the domain given by a client in a HELO or EHLO command matches this list, a reverse lookup is
done in order to establish the host’s true name. The default forces a lookup if the client host gives
the server ’s name or any of its IP addresses (in brackets), something that broken clients have been
seen to do.

helo_try_verify_hosts Type: host list† Default: unset

The RFCs mandate that a server must not reject a message because it doesn’t like the HELO or EHLO

command. By default, Exim just checks the syntax of these commands (see
helo_accept_junk_hosts and helo_allow_chars above). However, some sites like to be stricter. If
the calling host matches helo_try_verify_hosts, Exim checks that the host name given in the HELO

or EHLO command either:

Exim 4.10 [100] main configuration (13)

• is an IP literal matching the calling address of the host (the RFCs specifically allow this), or

• matches the host name that Exim obtains by doing a reverse lookup of the calling host
address, or

• when looked up using gethostbyname() (or getipnodebyname() when available) yields the
calling host address.

However, the EHLO or HELO command is not rejected if any of the checks fail. Processing continues,
but the result of the check is remembered, and can be detected later in an ACL by the verify =
helo condition. If you want verification failure to cause rejection of EHLO or HELO, use
helo_verify_hosts instead.

helo_verify_hosts Type: host list† Default: unset

For hosts that match this option, Exim checks that the host name given in the HELO or EHLO in the
same way as for helo_try_verify_hosts. If the check fails, the HELO or EHLO command is rejected
with a 550 error, and entries are written to the main and reject logs. If a MAIL command is received
before EHLO or HELO, it is rejected with a 550 error.

hold_domains Type: domain list† Default: unset

This option allows mail for particular domains to be held on the queue manually. The option is
overridden if a message delivery is forced with the -M, -qf, -Rf or -Sf options, and also while
testing or verifying addresses using -bt or -bv. Otherwise, if a domain matches an item in

 hold_domains, no routing or delivery for that address is done, and it is deferred every time the
message is looked at.

This option is intended as a temporary operational measure for delaying the delivery of mail while
some problem is being sorted out, or some new configuration tested. If you just want to delay the
processing of some domains until a queue run occurs, you should use queue_domains or

 queue_smtp_domains, not hold_domains.

A setting of hold_domains does not override Exim’s code for removing messages from the queue if
they have been there longer than the longest retry time in any retry rule. If you want to hold
messages for longer than the normal retry times, insert a dummy retry rule with a long retry time.

host_lookup Type: host list† Default: unset

Exim does not look up the name of a calling host from its IP address unless it is required to
compare against some host list, or the host matches helo_try_verify_hosts or helo_verify_hosts, or
the host matches this option (which normally contains IP addresses rather than host names). The
default configuration file contains

host_lookup = *

which causes a lookup to happen for all hosts. If the expense of these lookups is felt to be too
great, the setting can be changed or removed.

After a successful reverse lookup, Exim does a forward lookup on the name it has obtained, to
verify that it yields the IP address that it started with. If this check fails, Exim behaves as if the
name lookup failed.

After any kind of failure, the host name (in $sender_host_name) remains unset, and
$host_lookup_failed is set to the string ‘1’. See also helo_lookup_domains and verify =
reverse_host_lookup in ACLs.

host_reject_connection Type: host list† Default: unset

If this option is set, incoming SMTP calls from the hosts listed are rejected as soon as the
connection is made. This option is provided for use in unusual cases. Many host will just try again.

 Normally, it is better to use an ACL to reject incoming messages at a later stage, such as after RCPT

commands. See chapter 37.

Exim 4.10 [101] main configuration (13)

hosts_treat_as_local Type: domain list† Default: unset

If this option is set, any host names that match the domain list are treated as if they were the local
host when Exim is scanning host lists obtained from MX records. This option also applies when
Exim is matching the special items @mx_any, @mx_primary, and @mx_secondary in a
domain list (see section 10.6), and when checking the hosts option in the smtp transport for the
local host (see the allow_localhost option in that transport).

ignore_bounce_errors_after Type: time Default: 10w

This option affects the processing of bounce messages that cannot be delivered. After an initial
failure, such messages are frozen, because there is no sender to whom they can be returned. When a
frozen bounce message has been on the queue for more than the given time, it is unfrozen at the
next queue run, and a further delivery is attempted. If delivery fails again, the bounce message is
discarded. This makes it possible to keep failed bounce messages around for a shorter time than the
normal maximum retry time for frozen messages. For example,

ignore_bounce_errors_after = 12h

retries failed bounce message deliveries after 12 hours, discarding any further failures. If the value
of this option is set to a zero time period, bounce failures are discarded immediately. Setting a very
long time (as in the default value) has the effect of disabling this option. For ways of automatically
dealing with other kinds of frozen message, see auto_thaw and timeout_frozen_after.

ignore_fromline_hosts Type: host list† Default: unset

Some broken SMTP clients insist on sending a UUCP-like ‘From’ line before the headers of a
message. By default this is treated as the start of the message’s body, which means that any
following headers are not recognized as such. Exim can be made to ignore it by setting

 ignore_fromline_hosts to match those hosts that insist on sending it. If the sender is actually a
local process rather than a remote host, and is using -bs to inject the messages, ignore_fromline_
local must be set to achieve this effect.

ignore_fromline_local Type: boolean Default: false

See ignore_fromline_hosts above.

keep_malformed Type: time Default: 4d

This option specifies the length of time to keep messages whose spool files have been corrupted in
some way. This should, of course, never happen. At the next attempt to deliver such a message, it
gets removed. The incident is logged.

ldap_default_servers Type: string list Default: unset

This option provides a list of LDAP servers which are tried in turn when an LDAP query does not
contain a server. See section 9.10 for details of LDAP queries. This option is available only when
Exim has been built with LDAP support.

local_from_check Type: boolean Default: true

When a message is submitted locally (that is, not over a TCP/IP connection) by an untrusted user,
Exim removes any existing Sender: header line, and checks that the From: header line matches the
login of the calling user. You can use local_from_prefix and local_from_suffix to permit affixes on
the local part. If the From: header line does not match, Exim adds a Sender: header with an address
constructed from the calling user ’s login and the default qualify domain.

If local_from_check is set false, the From: header check is disabled, and no Sender: header is ever
added. If, in addition, you want to retain Sender: header lines supplied by untrusted users, you must
also set local_sender_retain to be true.

These options affect only the header lines in the message. The envelope sender is still forced to be
the login id at the qualify domain unless untrusted_set_sender permits the user to supply an
envelope sender. Section 43.12 has more details about Sender: processing.

Exim 4.10 [102] main configuration (13)

local_from_prefix Type: string Default: unset

When Exim checks the From: header line of locally submitted messages for matching the login id
(see local_from_check above), it can be configured to ignore certain prefixes and suffixes in the
local part of the address. This is done by setting local_from_prefix and/or local_from_suffix to
appropriate lists, in the same form as the local_part_prefix and local_part_suffix router options
(see chapter 14). For example, if

local_from_prefix = *-

is set, a From: line containing

From: anything-user@your.domain.example

will not cause a Sender: header to be added if user@your.domain.example matches the actual
sender address that is constructed from the login name and qualify domain.

local_from_suffix Type: string Default: unset

See local_from_prefix above.

local_interfaces Type: string list Default: unset

The string must contain a list of IP addresses, in dotted-quad format for IPv4 addresses, or in
colon-separated format for IPv6 addresses. It is usually easier to change the list separator character
instead of doubling all the colons in IPv6 addresses. For example:

local_interfaces = <; 127.0.0.1 ; \
192.168.23.65 ; \
::1 ; \

 3ffe:ffff:836f::fe86:a061

A port number can be specified along with each IP address. Two different formats are recognized:

• The port is added onto the address with a dot separator, for example,

local_interfaces = <; 192.168.23.65.1234 ; \
 3ffe:ffff:836f::fe86:a061.1234

• The IP address is enclosed in square brackets, and the port is added with a colon separator, for
example,

local_interfaces = <; [192.168.23.65]:1234 ; \
[3ffe:ffff:836f::fe86:a061]:1234

This list of IP addresses is used for two different purposes:

• When a daemon is started to listen for incoming SMTP calls, it listens only on the interfaces
and ports identified here. For interfaces listed without a port, the value of daemon_smtp_port
is used, unless overridden by the -oX option. Exim can be made to listen on more than one
port by listing the same interface with different port numbers, for example:

local_interfaces = 192.168.34.67.25 : 192.168.34.67.26

When a message is received over TCP/IP, the interface and port that were used are set in
 $interface_address and $interface_port. When the daemon is started, an error occurs if it is

unable to bind a listening socket to any listed interface.

• Only the IP addresses listed here are taken as the local host’s IP addresses when routing mail
and checking for mail loops. In this case, the port values are not used.

If local_interfaces is unset, the daemon issues a generic listen() that accepts incoming calls to any
interface. The same port is used in all cases. In addition, Exim gets a complete list of available
interfaces from the operating system, and treats them all as local when routing mail. On most
systems, the default action is what is wanted. However, some systems set up large numbers of
virtual interfaces in order to provide many different virtual web servers. In these cases

Exim 4.10 [103] main configuration (13)

local_interfaces can be used to restrict SMTP traffic to one or two interfaces only. See also
 hosts_treat_as_local.

local_scan_timeout Type: time Default: 5m

This timeout applies to the local_scan() function (see chapter 38). Zero means ‘no timeout’. If the
timeout is exceeded, the incoming message is rejected with a temporary error if it is an SMTP
message. For a non-SMTP message, the message is dropped and Exim ends with a non-zero code.
The incident is logged on the main and reject logs.

local_sender_retain Type: boolean Default: false

When a message is submitted locally (that is, not over a TCP/IP connection) by an untrusted user,
Exim removes any existing Sender: header line. If you do not want this to happen, you must set

 local_sender_retain, and you must also set local_from_check to be false (Exim will complain if
you do not). Section 43.12 has more details about Sender: processing.

localhost_number Type: string† Default: unset

Exim’s message ids are normally unique only within the local host. If uniqueness among a set of
hosts is required, each host must set a different value for the localhost_number option. The string
is expanded immediately after reading the configuration file (so that a number can be computed
from the host name, for example) and the result of the expansion must be a number in the range
0– 255. This is available in subsequent string expansions via the variable $localhost_number. The
final two characters of the message id, instead of just being a sequence count of the number of
messages received by one process in one second, are the base 62 encoding of

<sequence count> * 256 + <local host number>

This reduces the possible range of the sequence count to 0 – 14. If the count ever reaches 14 in a
receiving process, a delay of one second is imposed to allow the clock to tick, thereby allowing the
count to be reset to zero.

log_file_path Type: string list† Default: set at compile time

This option sets the path which is used to determine the names of Exim’s log files, or indicates that
logging is to be to syslog, or both. It is expanded when Exim is entered, so it can, for example,
contain a reference to the host name. If no specific path is set for the log files, they are written in a
sub-directory called log in Exim’s spool directory. Chapter 44 contains further details about Exim’s
logging, and section 44.1 describes how the contents of log_file_path are used. If this string is fixed
at your installation (contains no expansion variables) it is recommended that you do not set this
option in the configuration file, but instead supply the path using LOG_FILE_PATH in Local/Makefile
so that it is available to Exim for logging errors detected early on – in particular, failure to read the
configuration file.

log_selector Type: string Default: unset

This option can be used to reduce or increase the number of things that Exim writes to its log files.
Its argument is made up of names preceded by plus or minus characters. For example:

log_selector = +arguments -retry_defer

A list of possible names and what they control is given in the chapter on logging, in section 44.14.

lookup_open_max Type: integer Default: 25

This option limits the number of simultaneously open files for single-key lookups that use regular
files (that is, lsearch, dbm, and cdb). Exim normally keeps these files open during routing, because
often the same file is required several times. If the limit is reached, Exim closes the least recently
used file. Note that if you are using the ndbm library, it actually opens two files for each logical
DBM database, though it still counts as one for the purposes of lookup_open_max. If you are
getting ‘too many open files’ errors with NDBM, you need to reduce the value of

 lookup_open_max.

Exim 4.10 [104] main configuration (13)

max_username_length Type: integer Default: 0

Some operating systems are broken in that they truncate long arguments to getpwnam() to eight
characters, instead of returning ‘no such user’. If this option is set greater than zero, any attempt to
call getpwnam() with an argument that is longer behaves as if getpwnam() failed.

message_body_visible Type: integer Default: 500

This option specifies how much of a message’s body is to be included in the $message_body and
$message_body_end expansion variables.

message_id_header_text Type: string† Default: unset

If this variable is set, the string is expanded and used to augment the text of the Message-id: header
that Exim creates if an incoming message does not have one. The text of this header is required by
RFC 2822 to take the form of an address. By default, Exim uses its internal message id as the local
part, and the primary host name as the domain. If this option is set, it is expanded, and provided the
expansion does not yield an empty string, it is inserted into the header immediately before the @,
separated from the internal message id by a dot. Any characters that are illegal in an address are
automatically converted into hyphens. This means that variables such as $tod_log can be used,
because the spaces and colons will become hyphens.

message_logs Type: boolean Default: true

If this option is turned off, per-message log files are not created in the msglog spool sub-directory.
This reduces the amount of disk I/O required by Exim, by reducing the number of files involved in
handling a message from a minimum of four (header spool file, body spool file, delivery journal,
and per-message log) to three. The other major I/O activity is Exim’s main log, which is not
affected by this option.

message_size_limit Type: string† Default: 50M

This option limits the maximum size of message that Exim will process. The value is expanded for
each incoming message so, for example, it can be made to depend on the IP address of the remote
host for messages arriving via TCP/IP. String expansion failure causes a temporary error. A value of
zero means no limit, but its use is not recommended. See also return_size_limit.

Incoming SMTP messages are failed with a 552 error if the limit is exceeded; locally-generated
messages either get a stderr message or a delivery failure message to the sender, depending on the
-oe setting. Rejection of an oversized message is logged in both the main and the reject logs. See
also the generic transport option message_size_limit, which limits the size of message that an
individual transport can process.

move_frozen_messages Type: boolean Default: false

This option, which is available only if Exim has been built with the setting

SUPPORT_MOVE_FROZEN_MESSAGES=yes

in Local/Makefile, causes frozen messages and their message logs to be moved from the input and
msglog directories on the spool to Finput and Fmsglog, respectively. There is currently no support
in Exim or the standard utilities for handling such moved messages, and they do not show up in
lists generated by -bp or by the Exim monitor.

mysql_servers Type: string list Default: unset

This option provides a list of MySQL servers and associated connection data, to be used in
conjunction with mysql lookups (see section 9.14). The option is available only if Exim has been
built with MySQL support.

Exim 4.10 [105] main configuration (13)

never_users Type: string list Default: unset

Local mail deliveries are normally run in processes that are setuid to the recipient, and remote
deliveries are normally run under Exim’s own uid and gid. It is usually desirable to prevent any
deliveries from running as root, as a safety precaution. If a message is to be delivered as one of the
users on the never_users list, an error occurs, and delivery is deferred. A common example is

never_users = root:daemon:bin

This option overrides the pipe_as_creator option of the pipe transport driver.

oracle_servers Type: string list Default: unset

This option provides a list of Oracle servers and associated connection data, to be used in
conjunction with oracle lookups (see section 9.14). The option is available only if Exim has been
built with Oracle support.

percent_hack_domains Type: domain list† Default: unset

The ‘percent hack’ is the convention whereby a local part containing a percent sign is re-interpreted
as a new email address, with the percent replaced by @. This is sometimes called ‘source routing’,
though that term is also applied to RFC 2822 addresses that begin with an @ character. If this
option is set, Exim implements the percent facility for those domains listed, but no others. This
happens before an incoming SMTP address is tested against an ACL.

Warning: The ‘percent hack’ has often been abused by people who are trying to get round relaying
restrictions. For this reason, it is best avoided if at all possible. Unfortunately, a number of less
security-conscious MTAs implement it unconditionally. If you are running Exim on a gateway host,
and routing mail through to internal MTAs without processing the local parts, it is a good idea to
reject recipient addresses with percent characters in their local parts. Exim’s default configuration
does this.

perl_at_start Type: boolean Default: false

This option is available only when Exim is built with an embedded Perl interpreter. See chapter 12
for details of its use.

perl_startup Type: string Default: unset

This option is available only when Exim is built with an embedded Perl interpreter. See chapter 12
for details of its use.

pgsql_servers Type: string list Default: unset

This option provides a list of PostgreSQL servers and associated connection data, to be used in
conjunction with pgsql lookups (see section 9.14). The option is available only if Exim has been
built with PostgreSQL support.

pid_file_path Type: string Default: set at compile time

This option sets the name of the file to which the Exim daemon writes its process id. The string is
expanded, so it can contain, for example, references to the host name:

pid_file_path = /var/log/$primary_hostname/exim.pid

If no path is set, the pid is written to the file exim-daemon.pid in Exim’s spool directory. The
value set by the option can be overridden by the -oP command line option. A pid file is not written
if a ‘non-standard’ daemon is run by means of the -oX option, unless a path is explicitly supplied
by -oP.

preserve_message_logs Type: boolean Default: false

If this option is set, message log files are not deleted when messages are completed. Instead, they
are moved to a sub-directory of the spool directory called msglog.OLD, where they remain
available for statistical or debugging purposes. This is a dangerous option to set on systems with
any appreciable volume of mail. Use with care!

Exim 4.10 [106] main configuration (13)

primary_hostname Type: string Default: see below

This specifies the name of the current host. This is used in the EHLO command for outgoing SMTP
messages, and as the default for qualify_domain. If it is not set, Exim calls uname() to find it. If
this fails, Exim panics and dies. If the name returned by uname() contains only one component,
Exim passes it to gethostbyname() (or getipnodebyname() when available) in order to obtain the
fully qualified version.

print_topbitchars Type: boolean Default: false

By default, Exim considers only those characters whose codes lie in the range 32–126 to be
printing characters. In a number of circumstances (for example, when writing log entries) non-
printing characters are converted into escape sequences, primarily to avoid messing up the layout. If
print_topbitchars is set, code values of 128 and above are also considered to be printing

 characters.

prod_requires_admin Type: boolean Default: true

The -M, -R, and -q command-line options require the caller to be an admin user unless
 prod_requires_admin is set false. See also queue_list_requires_admin.

qualify_domain Type: string Default: see below

This option specifies the domain name that is added to any sender addresses that do not have a
domain qualification. It also applies to recipient addresses if qualify_recipient is not set. Such
addresses are accepted by default only for locally-generated messages. Messages from external
sources must always contain fully qualified addresses, unless the sending host matches
sender_unqualified_hosts or recipient_unqualified_hosts (as appropriate), in which case incoming
addresses are qualified with qualify_domain or qualify_recipient as necessary. Internally, Exim
always works with fully qualified addresses. If qualify_domain is not set, it defaults to the
primary_hostname value.

qualify_recipient Type: string Default: see below

This specifies the domain name that is added to any recipient addresses that do not have a domain
qualification. Such addresses are accepted by default only for locally-generated messages. Messages
from external sources must always contain fully qualified recipient addresses, unless the sending
host matches recipient_unqualified_hosts, in which case incoming recipient addresses are qualified
with qualify_recipient. If qualify_recipient is not set, it defaults to the qualify_domain value.

queue_domains Type: domain list† Default: unset

This option lists domains for which immediate delivery is not required. A delivery process is started
whenever a message is received, but only those domains that do not match are processed. All other
deliveries wait until the next queue run. See also hold_domains and queue_smtp_domains.

queue_list_requires_admin Type: boolean Default: true

The -bp command-line option, which lists the messages that are on the queue, requires the caller to
be an admin user unless queue_list_requires_admin is set false. See also prod_requires_admin.

queue_only Type: boolean Default: false

If queue_only is set, a delivery process is not automatically started whenever a message is
received. Instead, the message waits on the queue for the next queue run. The -odq command line
has the same effect. Even if queue_only is false, incoming messages may not get delivered
immediately when certain conditions occur. See queue_only_file, queue_only_load and

 smtp_accept_queue.

Exim 4.10 [107] main configuration (13)

queue_only_file Type: string Default: unset

This option can be set to a colon-separated list of absolute path names, each one optionally
preceded by ‘smtp’. When Exim is receiving a message, it tests for the existence of each listed path
using a call to stat(). For each path that exists, the corresponding queuing option is set. For paths
with no prefix, queue_only is set; for paths prefixed by ‘smtp’, queue_smtp_domains is set to
match all domains. So, for example,

queue_only_file = smtp/some/file

causes Exim to behave as if queue_smtp_domains were set to ‘*’ whenever /some/file exists.

queue_only_load Type: fixed-point Default: unset

If the system load average is higher than this value, incoming messages from all sources are
queued, and no automatic deliveries are started. If this happens during local or remote SMTP input,
all subsequent messages on the same connection are queued. Deliveries will subsequently be
performed by queue runner processes. This option has no effect on ancient operating systems on
which Exim cannot determine the load average. See also deliver_queue_load_max and

 smtp_load_reserve.

queue_run_in_order Type: boolean Default: false

If this option is set, queue runs happen in order of message arrival instead of in an arbitrary order.
For this to happen, a complete list of the entire queue must be set up before the deliveries start.
When the queue is all in a single directory (the default), this happens anyway, but if

 split_spool_directory is set it does not – for delivery in random order, the sub-directories are
processed one at a time (in random order), to avoid setting up one huge list. Thus, setting
queue_run_in_order with split_spool_directory may degrade performance when the queue is

 large. In most situations, queue_run_in_order should not be set.

queue_run_max Type: integer Default: 5

This controls the maximum number of queue-runner processes that an Exim daemon can run
 simultaneously. This does not mean that it starts them all at once, but rather that if the maximum

number are still running when the time comes to start another one, it refrains from starting another
one. This can happen with very large queues and/or very sluggish deliveries. This option does not,

 however, interlock with other processes, so additional queue-runners can be started by other means,
or by killing and restarting the daemon.

queue_smtp_domains Type: domain list† Default: unset

When this option is set, a delivery process is started whenever a message is received, routing is
performed, and local deliveries take place. However, if any SMTP deliveries are required for
domains that match queue_smtp_domains, they are not immediately delivered, but instead the
message waits on the queue for the next queue run. Since routing of the message has taken place,
Exim knows to which remote hosts it must be delivered, and so when the queue run happens,
multiple messages for the same host are delivered over a single SMTP connection. The -odqs
command line option causes all SMTP deliveries to be queued in this way, and is equivalent to
setting queue_smtp_domains to ‘*’. See also hold_domains and queue_domains.

receive_timeout Type: time Default: 0s

This option sets the timeout for accepting a non-SMTP message, that is, the maximum time that
Exim waits when reading a message on the standard input. If the value is zero, it will wait for ever.
This setting is overridden by the -or command line option. The timeout for incoming SMTP
messages is controlled by smtp_receive_timeout.

Exim 4.10 [108] main configuration (13)

received_header_text Type: string† Default: see below

This string defines the contents of the Received: message header that is added to each message,
except for the timestamp, which is automatically added on at the end (preceded by a semicolon).
The string is expanded each time it is used, and the default is:

received_header_text = Received: \
${if def:sender_rcvhost {from $sender_rcvhost\n\t}\
{${if def:sender_ident {from $sender_ident }}\
${if def:sender_helo_name {(helo=$sender_helo_name)\n\t}}}}\
by $primary_hostname \
${if def:received_protocol {with $received_protocol}} \
${if def:tls_cipher {($tls_cipher)\n\t}}\
(Exim $version_number)\n\t\
id $message_id\
${if def:received_for {\n\tfor $received_for}}

Note the use of quotes, to allow the sequences \n and \t to be used for newlines and tabs,
 respectively. The reference to the TLS cipher is omitted when Exim is built without TLS support.

The use of conditional expansions ensures that this works for both locally generated messages and
messages received from remote hosts, giving header lines such as the following:

Received: from scrooge.carol.example ([192.168.12.25] ident=root)
by marley.carol.example with esmtp (Exim 4.00)
id 16IOWa-00019l-00
for chas@dickens.example; Tue, 25 Dec 2001 14:43:44 +0000

Received: by scrooge.carol.example with local (Exim 4.00)
id 16IOWW-000083-00; Tue, 25 Dec 2001 14:43:41 +0000

received_headers_max Type: integer Default: 30

When a message is to be delivered, the number of Received: headers is counted, and if it is greater
than this parameter, a mail loop is assumed to have occurred, the delivery is abandoned, and an
error message is generated. This applies to both local and remote deliveries.

recipient_unqualified_hosts Type: host list† Default: unset

This option lists those hosts from which Exim is prepared to accept unqualified recipient addresses
in message envelopes. The addresses are made fully qualified by the addition of the

 qualify_recipient value. This option also affects message header lines. Exim does not reject
unqualified recipient addresses in headers, but it qualifies them only if the message came from a
host that matches recipient_unqualified_hosts.

recipients_max Type: integer Default: 0

If this option is set greater than zero, it specifies the maximum number of original recipients for any
message. Additional recipients that are generated by aliasing or forwarding do not count. SMTP
messages get a 452 response for all recipients over the limit; earlier recipients are delivered as
normal. Non-SMTP messages with too many recipients are failed, and no deliveries are done. Note
that the RFCs specify that an SMTP server should accept at least 100 RCPT commands in a single
message.

recipients_max_reject Type: boolean Default: false

If this option is set true, Exim rejects SMTP messages containing too many recipients by giving
552 errors to the surplus RCPT commands, and a 554 error to the eventual DATA command.
Otherwise (the default) it gives a 452 error to the surplus RCPT commands and accepts the message
on behalf of the initial set of recipients. The remote server should then re-send the message for the
remaining recipients at a later time.

Exim 4.10 [109] main configuration (13)

remote_max_parallel Type: integer Default: 2

This option controls parallel delivery of one message to a number of remote hosts. If the value is
less than 2, parallel delivery is disabled, and Exim does all the remote deliveries for a message one
by one. Otherwise, if a single message has to be delivered to more than one remote host, or if
several copies have to be sent to the same remote host, up to remote_max_parallel deliveries are
done simultaneously. If more than remote_max_parallel deliveries are required, the maximum
number of processes are started, and as each one finishes, another is begun. The order of starting
processes is the same as if sequential delivery were being done, and can be controlled by the

 remote_sort_domains option. If parallel delivery takes place while running with debugging turned
on, the debugging output from each delivery process is tagged with its process id.

This option controls only the maximum number of parallel deliveries for one message in one Exim
delivery process. Because Exim has no central queue manager, there is no way of controlling the
total number of simultaneous deliveries if the configuration allows a delivery attempt as soon as a
message is received. If you want to control the total number of deliveries on the system, you need
to set the queue_only option. This ensures that all incoming messages are added to the queue
without starting a delivery process. Then set up an Exim daemon to start queue runner processes at
appropriate intervals (probably fairly often, for example, every minute), and limit the total number
of queue runners by setting the queue_run_max parameter. Because each queue runner delivers
only one message at a time, the maximum number of deliveries that can then take place at once is
queue_run_max multiplied by remote_max_parallel.

If it is purely remote deliveries you want to control, use queue_smtp instead of queue_only. This
has the added benefit of doing the SMTP routing before queuing, so that several messages for the
same host will eventually get delivered down the same connection.

remote_sort_domains Type: domain list† Default: unset

When there are a number of remote deliveries for a message, they are sorted by domain into the
order given by this list. For example,

remote_sort_domains = *.cam.ac.uk:*.uk

would attempt to deliver to all addresses in the cam.ac.uk domain first, then to those in the uk
domain, then to any others.

retry_data_expire Type: time Default: 7d

This option sets a ‘use before’ time on retry information in Exim’s hints database. Any older retry
data is ignored. This means that, for example, once a host has not been tried for 7 days, Exim
behaves as if it has no knowledge of past failures.

retry_interval_max Type: time Default: 24h

Chapter 31 describes Exim’s mechanisms for controlling the intervals between delivery attempts for
messages that cannot be delivered straight away. This option sets an overall limit to the length of
time between retries.

return_path_remove Type: boolean Default: true

RFC 2821, section 4.4, states that an SMTP server must insert a Return-path: header line into a
message when it makes a ‘final delivery’. The Return-path: header preserves the sender address as
received in the MAIL command. This description implies that this header should not be present in an
incoming message. If return_path_remove is true, any existing Return-path: headers are removed
from messages at the time they are received. Exim’s transports have options for adding Return-
path: headers at the time of delivery. They are normally used only for final local deliveries.

Exim 4.10 [110] main configuration (13)

return_size_limit Type: integer Default: 100K

This option sets a limit in bytes on the size of messages that are returned to senders as part of
bounce messages. The limit should be less than the value of the global message_size_limit and of
any message_size_limit settings on transports, to allow for the bounce text that Exim generates. If
this option is set to zero there is no limit.

When the body of any message that is to be included in a bounce message is greater than the limit,
it is truncated, and a comment pointing this out is added at the top. The actual cutoff may be
greater than the value given, owing to the use of buffering for transferring the message in chunks.
The idea is just to save bandwidth on those undeliverable 15-megabyte messages. See also

 bounce_return_message.

rfc1413_hosts Type: host list† Default: *

RFC 1413 identification calls are made to any client host which matches an item in the list.

rfc1413_query_timeout Type: time Default: 30s

This sets the timeout on RFC 1413 identification calls. If it is set to zero, no RFC 1413 calls are
ever made.

sender_unqualified_hosts Type: host list† Default: unset

This option lists those hosts from which Exim is prepared to accept unqualified sender addresses.
The addresses are made fully qualified by the addition of qualify_domain. This option also affects
message header lines. Exim does not reject unqualified addresses in headers that contain sender
addresses, but it qualifies them only if the message came from a host that matches

 sender_unqualified_hosts.

smtp_accept_keepalive Type: boolean Default: true

This option controls the setting of the SO_KEEPALIVE option on incoming TCP/IP socket connections.
When set, it causes the kernel to probe idle connections periodically, by sending packets with ‘old’
sequence numbers. The other end of the connection should send an acknowledgement if the
connection is still okay or a reset if the connection has been aborted. The reason for doing this is
that it has the beneficial effect of freeing up certain types of connection that can get stuck when the
remote host is disconnected without tidying up the TCP/IP call properly. The keepalive mechanism
takes several hours to detect unreachable hosts.

smtp_accept_max Type: integer Default: 20

This option specifies the maximum number of simultaneous incoming SMTP calls that Exim will
accept. It applies only to the listening daemon; there is no control (in Exim) when incoming SMTP
is being handled by inetd. If the value is set to zero, no limit is applied. However, it is required to
be non-zero if either smtp_accept_max_per_host or smtp_accept_queue is set. See also

 smtp_accept_reserve.

smtp_accept_max_per_connection Type: integer Default: 1000

The value of this option limits the number of MAIL commands that Exim is prepared to accept over
a single SMTP connection, whether or not each command results in the transfer of a message. After
the limit is reached, a 421 response is given to subsequent MAIL commands. This limit is a safety
precaution against a client that goes mad (incidents of this type have been seen).

smtp_accept_max_per_host Type: string† Default: unset

This option restricts the number of simultaneous IP connections from a single host (strictly, from a
single IP address) to the Exim daemon. The option is expanded, to enable different limits to be
applied to different hosts by reference to $sender_host_address. Once the limit is reached,
additional connection attempts from the same host are rejected with error code 421. The default
value of zero imposes no limit. If this option is set, it is required that smtp_accept_max be non-
zero.

Exim 4.10 [111] main configuration (13)

 Warning: When setting this option you should not use any expansion constructions that take an
appreciable amount of time. The expansion and test happen in the main daemon loop, in order to
reject additional connections without forking additional processes (otherwise a denial-of-service
attack could cause a vast number or processes to be created). While the daemon is doing this
processing, it cannot accept any other incoming connections.

smtp_accept_queue Type: integer Default: 0

If the number of simultaneous incoming SMTP calls handled via the listening daemon exceeds this
value, messages received by SMTP are just placed on the queue; no delivery processes are started

 automatically. A value of zero implies no limit, and clearly any non-zero value is useful only if it is
less than the smtp_accept_max value (unless that is zero). See also queue_only, queue_only_load,

 queue_smtp_domains, and the various -od command line options.

smtp_accept_queue_per_connection Type: integer Default: 10

This option limits the number of delivery processes that Exim starts automatically when receiving
messages via SMTP, whether via the daemon or by the use of -bs or -bS. If the value of the option
is greater than zero, and the number of messages received in a single SMTP session exceeds this

 number, subsequent messages are placed on the queue, but no delivery processes are started. This
helps to limit the number of Exim processes when a server restarts after downtime and there is a lot
of mail waiting for it on other systems. On large systems, the default should probably be increased,
and on dial-in client systems it should probably be set to zero (that is, disabled).

smtp_accept_reserve Type: integer Default: 0

When smtp_accept_max is set greater than zero, this option specifies a number of SMTP connec-
tions that are reserved for connections from the hosts that are specified in smtp_reserve_hosts. The
value set in smtp_accept_max includes this reserve pool. The specified hosts are not restricted to
this number of connections; the option specifies a minimum number of connection slots for them,
not a maximum. It is a guarantee that that group of hosts can always get at least

 smtp_accept_reserve connections.

For example, if smtp_accept_max is set to 50 and smtp_accept_reserve is set to 5, once there are
45 active connections (from any hosts), new connections are accepted only from hosts listed in

 smtp_reserve_hosts. See also smtp_accept_max_per_host.

smtp_banner Type: string† Default: see below

This string, which is expanded every time it is used, is output as the initial positive response to an
SMTP connection. The default setting is:

smtp_banner = $primary_hostname ESMTP Exim $version_number \
$tod_full

Failure to expand the string causes a panic error. If you want to create a multiline response to the
initial SMTP connection, use ‘\n’ in the string at appropriate points, but not at the end. Note that
the 220 code is not included in this string. Exim adds it automatically (several times in the case of a
multiline response).

smtp_check_spool_space Type: boolean Default: true

When this option is set, if an incoming SMTP session encounters the SIZE option on a MAIL

command, it checks that there is enough space in the spool directory’s partition to accept a message
of that size, while still leaving free the amount specified by check_spool_space (even if that value
is zero). If there isn’t enough space, a temporary error code is returned.

smtp_connect_backlog Type: integer Default: 20

This option specifies a maximum number of waiting SMTP connections. Exim passes this value to
the TCP/IP system when it sets up its listener. Once this number of connections are waiting for the

 daemon’s attention, subsequent connection attempts are refused at the TCP/IP level. At least, that is
what the manuals say; in some circumstances such connection attempts have been observed to time

Exim 4.10 [112] main configuration (13)

out instead. For large systems it is probably a good idea to increase the value (to 50, say). It also
gives some protection against denial-of-service attacks by SYN flooding.

smtp_enforce_sync Type: boolean Default: true

The SMTP protocol specification requires the client to wait for a response from the server at certain
points in the dialogue. Without PIPELINING these synchronization points are after every command;
with PIPELINING they are fewer, but they still exist. Some spamming sites send out a complete set
of SMTP commands without waiting for any response. Exim protects against this by rejecting a
message if the client has sent further input when it should not have. The error response ‘554 SMTP
synchronization error’ is sent, and the connection is dropped. The check can be disabled by setting

 smtp_enforce_sync false.

smtp_etrn_command Type: string† Default: unset

If this option is set, the given command is run whenever an SMTP ETRN command is received from
a host that is permitted to issue such commands (see chapter 37). The string is split up into separate

 arguments which are independently expanded. The expansion variable $domain is set to the
 argument of the ETRN command, and no syntax checking is done on it. For example:

smtp_etrn_command = /etc/etrn_command $domain $sender_host_address

A new process is created to run the command, but Exim does not wait for it to complete.
 Consequently, its status cannot be checked. If the command cannot be run, a line is written to the

panic log, but the ETRN caller still receives a 250 success response. Exim is normally running under
its own uid when receiving SMTP, so it is not possible for it to change the uid before running the
command.

smtp_etrn_serialize Type: boolean Default: true

When this option is set, it prevents the simultaneous execution of more than one identical command
as a result of ETRN in an SMTP connection. See section 42.6 for details.

smtp_load_reserve Type: fixed-point Default: unset

If the system load average ever gets higher than this, incoming SMTP calls are accepted only from
those hosts that match an entry in smtp_reserve_hosts. If smtp_reserve_hosts is not set, no
incoming SMTP calls are accepted when the load is over the limit. The option has no effect on
ancient operating systems on which Exim cannot determine the load average. See also
deliver_queue_load_max and queue_only_load.

smtp_ratelimit_hosts Type: host list† Default: unset

Some sites find it helpful to be able to limit the rate at which certain hosts can send them messages,
and the rate at which an individual message can specify recipients. When a host matches

 smtp_ratelimit_hosts, the values of smtp_ratelimit_mail and smtp_ratelimit_rcpt are used to
control the rate of acceptance of MAIL and RCPT commands in a single SMTP session, respectively.
Each option, if set, must contain a set of four comma-separated values:

• A threshold, before which there is no rate limiting.

• An initial time delay. Unlike other times in Exim, numbers with decimal fractional parts are
allowed here.

• A factor by which to increase the delay each time.

• A maximum value for the delay. This should normally be less than 5 minutes, because after
that time, the client is liable to timeout the SMTP command.

For example, these settings have been used successfully at the site which first suggested this
feature, for controlling mail from their customers:

smtp_ratelimit_mail = 2,0.5s,1.05,4m
smtp_ratelimit_rcpt = 4,0.25s,1.015,4m

Exim 4.10 [113] main configuration (13)

The first setting specifies delays that are applied to MAIL commands after two have been received
over a single connection. The initial delay is 0.5 seconds, increasing by a factor of 1.05 each time.
The second setting applies delays to RCPT commands when more than four occur in a single

 message.

smtp_ratelimit_mail Type: string Default: unset

See smtp_ratelimit_hosts above.

smtp_ratelimit_rcpt Type: string Default: unset

See smtp_ratelimit_hosts above.

smtp_receive_timeout Type: time Default: 5m

This sets a timeout value for SMTP reception. It applies to all forms of SMTP input, including
batch SMTP. If a line of input (either an SMTP command or a data line) is not received within this
time, the SMTP connection is dropped and the message is abandoned. The value set by this option
can be overridden by the -os command-line option. A setting of zero time disables the timeout, but
this should never be used for SMTP over TCP/IP. (It can be useful in some cases of local input
using -bs or -bS.) For non-SMTP input, the reception timeout is controlled by receive_timeout and

 -or.

smtp_reserve_hosts Type: host list† Default: unset

This option defines hosts for which SMTP connections are reserved; see smtp_accept_reserve and
 smtp_load_reserve above.

split_spool_directory Type: boolean Default: false

If this option is set, it causes Exim to split its input directory into 62 subdirectories, each with a
single alphanumeric character as its name. The sixth character of the message id is used to allocate
messages to subdirectories; this is the least significant base-62 digit of the time of arrival of the

 message.

Splitting up the spool in this way may provide better performance on systems where there are long
mail queues, by reducing the number of files in any one directory. The msglog directory is also split
up in a similar way to the input directory; however, if preserve_message_logs is set, all old msglog
files are still placed in the single directory msglog.OLD.

It is not necessary to take any special action for existing messages when changing
 split_spool_directory. Exim notices messages that are in the ‘wrong’ place, and continues to

process them. If the option is turned off after a period of being on, the subdirectories will
eventually empty and be automatically deleted.

When split_spool_directory is set, the behaviour of queue runner processes changes. Instead of
creating a list of all messages in the queue, and then trying to deliver each one in turn, it constructs
a list of those in one sub-directory and tries to deliver them, before moving on to the next sub-

 directory. The sub-directories are processed in a random order. This spreads out the scanning of the
input directories, and uses less memory. It is particularly beneficial when there are lots of messages
on the queue. However, if queue_run_in_order is set, none of this new processing happens. The
entire queue has to be scanned and sorted before any deliveries can start.

spool_directory Type: string Default: set at compile time

This defines the directory in which Exim keeps its spool, that is, the messages it is waiting to
 deliver. The default value is taken from the compile-time configuration setting, if there is one. If

not, this option must be set. The string is expanded, so it can contain, for example, a reference to
 $primary_hostname.

If the spool directory name is fixed on your installation, it is recommended that you set it at build
time rather than from this option, particularly if the log files are being written to the spool directory
(see log_file_path). Otherwise log files cannot be used for errors that are detected early on, such as
failures in the configuration file.

Exim 4.10 [114] main configuration (13)

By using this option to override the compiled-in path, it is possible to run tests of Exim without
using the standard spool.

strip_excess_angle_brackets Type: boolean Default: false

If this option is set, redundant pairs of angle brackets round ‘route-addr’ items in addresses are
stripped. For example, <<xxx@a.b.c.d>> is treated as <xxx@a.b.c.d>. If this is in the envelope
and the message is passed on to another MTA, the excess angle brackets are not passed on. If this
option is not set, multiple pairs of angle brackets cause a syntax error.

strip_trailing_dot Type: boolean Default: false

If this option is set, a trailing dot at the end of a domain in an address is ignored. If this is in the
envelope and the message is passed on to another MTA, the dot is not passed on. If this option is
not set, a dot at the end of a domain causes a syntax error.

syslog_timestamp Type: boolean Default: true

If syslog_timestamp is set false, the timestamps on Exim’s log lines are omitted when these lines
are sent to syslog. See chapter 44 for details of Exim’s logging.

system_filter Type: string† Default: unset

This option specifies a filter file which is applied to all messages at the start of each delivery
attempt, before any routing is done. This is called the ‘system message filter’. If the filter generates
any deliveries to files or pipes, or any new mail messages, the appropriate
system_filter_..._transport option(s) must be set, to define which transports are to be used. Details
of this facility are given in chapter 39.

system_filter_directory_transport Type: string† Default: unset

This sets the name of the transport driver that is to be used when the save command in a system
message filter specifies a path ending in ‘/’, implying delivery of each message into a separate file
in some directory. During the delivery, the variable $address_file contains the path name.

system_filter_file_transport Type: string† Default: unset

This sets the name of the transport driver that is to be used when the save command in a system
message filter specifies a path not ending in ‘/’. During the delivery, the variable $address_file
contains the path name.

system_filter_group Type: string Default: unset

This option is used only when system_filter_user is also set. It sets the gid under which the system
filter is run, overriding any gid that is associated with the user. The value may be numerical or
symbolic.

system_filter_pipe_transport Type: string† Default: unset

This specifies the transport driver that is to be used when a pipe command is used in a system filter.
During the delivery, the variable $address_pipe contains the pipe command.

system_filter_reply_transport Type: string† Default: unset

This specifies the transport driver that is to be used when a mail command is used in a system
 filter.

system_filter_user Type: string Default: unset

If this option is not set, the system filter is run in the main Exim delivery process, as root. When
the option is set, the system filter runs in a separate process, as the given user. Unless the string
consists entirely of digits, it is looked up in the password data. Failure to find the named user
causes a configuration error. The gid is either taken from the password data, or specified by

 system_filter_group. When the uid is specified numerically, system_filter_group is required to
be set.

Exim 4.10 [115] main configuration (13)

If the system filter generates any pipe, file, or reply deliveries, the uid under which the filter is run
is used when transporting them, unless a transport option overrides. Normally you should set
system_filter_user if your system filter generates these kinds of delivery.

timeout_frozen_after Type: time Default: 0s

If timeout_frozen_after is set to a time greater than zero, a frozen message of any description that
has been on the queue for longer than the given time is automatically cancelled at the next queue
run. If it is a bounce message, it is just discarded; otherwise, a bounce is sent to the sender, in a
similar manner to cancellation by the -Mg command line option. If you want to timeout frozen
bounce messages earlier than other kinds of frozen message, see ignore_bounce_errors_after.

timezone Type: string Default: unset

The value of timezone is used to set the environment variable TZ while running Exim (if it is
 different on entry). This ensures that all timestamps created by Exim are in the required timezone.

If you want all your timestamps to be in UTC (aka GMT) you should set

timezone = UTC

The default value is taken from TIMEZONE_DEFAULT in Local/Makefile, or, if that is not set, from the
value of the TZ environment variable when Exim is built. If timezone is set to the empty string,
either at build or run time, any existing TZ variable is removed from the environment when Exim
runs. This is appropriate behaviour for obtaining wall-clock time on some, but unfortunately not all,
operating systems.

tls_advertise_hosts Type: host list† Default: unset

When Exim is built with support for TLS encrypted connections, the availability of the STARTTLS

command to set up an encrypted session is advertised in response to EHLO only to those client hosts
that match this option. See chapter 36 for details of Exim’s support for TLS.

tls_certificate Type: string† Default: unset

The value of this option is expanded, and must then be the absolute path to a file which contains
the server ’s certificates. The server ’s private key is also assumed to be in this file if tls_privatekey
is unset. See chapter 36 for further details.

tls_dhparam Type: string† Default: unset

The value of this option is expanded, and must then be the absolute path to a file which contains
the server ’s DH parameter values.

tls_privatekey Type: string† Default: unset

The value of this option is expanded, and must then be the absolute path to a file which contains
the server ’s private key. If this option is unset, the private key is assumed to be in the same file as
the server ’s certificates. See chapter 36 for further details.

tls_try_verify_hosts Type: host list† Default: unset

See tls_verify_hosts below.

tls_verify_certificates Type: string† Default: unset

The value of this option is expanded, and must then be the absolute path to a file or a directory
containing permitted certificates for clients that match tls_verify_hosts or tls_try_verify_hosts.

tls_verify_hosts Type: host list† Default: unset

This option, along with tls_try_verify_hosts, controls the checking of certificates from clients. Any
client that matches tls_verify_hosts is constrained by tls_verify_certificates. The client must
present one of the listed certificates. If it does not, the connection is aborted.

A weaker form of checking is provided by tls_try_verify_hosts. If a client matches this option (but
not tls_try_verify_hosts), Exim requests a certificate and checks it against tls_verify_certificates,
but does not abort the connection if there is no certificate or if it does not match. This state can be

Exim 4.10 [116] main configuration (13)

detected in an ACL, which makes it possible to implement policies such as ‘accept for relay only if
a verified certificate has been received, but accept for local delivery if encrypted, even without a
verified certificate’.

Client hosts that match neither of these lists are not asked to present certificates.

trusted_groups Type: string list Default: unset

If this option is set, any process that is running in one of the listed groups, or which has one of
them as a supplementary group, is trusted. See section 5.2 for details of what trusted callers are
permitted to do. If neither trusted_groups nor trusted_users is set, only root and the Exim user
are trusted.

trusted_users Type: string list Default: unset

If this option is set, any process that is running as one of the listed users is trusted. See section 5.2
for details of what trusted callers are permitted to do. If neither trusted_groups nor trusted_users
is set, only root and the Exim user are trusted.

unknown_login Type: string† Default: unset

This is a specialized feature for use in unusual configurations. By default, if the uid of the caller of
Exim cannot be looked up using getpwuid(), Exim gives up. The unknown_login option can be
used to set a login name to be used in this circumstance. It is expanded, so values like
user$caller_uid can be set. When unknown_login is used, the value of unknown_username is
used for the user ’s real name (gecos field), unless this has been set by the -F option.

unknown_username Type: string Default: unset

See unknown_login.

untrusted_set_sender Type: address list† Default: unset

When an untrusted user submits a message to Exim using the standard input, Exim normally creates
an envelope sender address from the user ’s login and the default qualification domain. Data from
the -f option (for setting envelope senders on non-SMTP messages) or the SMTP MAIL command (if
-bs or -bS is used) is ignored.

However, untrusted users are permitted to set an empty envelope sender address, to declare that a
message should never generate any bounces. For example:

exim -f ’<>’ user@domain.example

The untrusted_set_sender option allows you to permit untrusted users to set other envelope sender
addresses in a controlled way. When it is set, untrusted users are allowed to set envelope sender
addresses that match any of the patterns in the list. Like all address lists, the string is expanded.
The identity of the user is in $sender_ident, so you can, for example, restrict users to setting
senders that start with their login ids by a setting like this:

untrusted_set_sender = ^$sender_ident-

If you want to allow untrusted users to set envelope sender addresses without restriction, you
can use

untrusted_set_sender = *

The untrusted_set_sender option applies to all forms of local input, but only to the setting of the
envelope sender. It does not permit untrusted users to use the other options which trusted user can
use to override message parameters. Furthermore, it does not stop Exim from removing an existing
Sender: header in the message, or from adding a Sender: header if necessary. See

 local_sender_retain and local_from_check for ways of overriding these actions. The handling of
the Sender: header is also described in section 43.12.

The log line for a message’s arrival shows the envelope sender following ‘<=’. For local messages,
the user ’s login always follows, after ‘U=’. In -bp displays, and in the Exim monitor, if an

Exim 4.10 [117] main configuration (13)

untrusted user sets an envelope sender address, the user ’s login is shown in parentheses after the
sender address.

uucp_from_pattern Type: string Default: see below

Some applications that pass messages to an MTA via a command line interface use an initial line
starting with ‘From’ to pass the envelope sender. In particular, this is used by UUCP software.
Exim recognizes such a line by means of a regular expression that is set in uucp_from_pattern.
When the pattern matches, the sender address is constructed by expanding the contents of

 uucp_from_sender, provided that the caller of Exim is a trusted user. The default pattern
recognizes lines in the following two forms:

From ph10 Fri Jan 5 12:35 GMT 1996
From ph10 Fri, 7 Jan 97 14:00:00 GMT

The pattern can be seen by running

exim -bP uucp_from_pattern

It checks only up to the hours and minutes, and allows for a 2-digit or 4-digit year in the second
case. The first word after ‘From’ is matched in the regular expression by a parenthesized subpattern.
The default value for uucp_from_sender is ‘$1’, which therefore just uses this first word (‘ph10’ in
the example above) as the message’s sender. See also ignore_fromline_hosts.

uucp_from_sender Type: string† Default: $1

See uucp_from_pattern above.

warn_message_file Type: string Default: unset

This option defines a template file containing paragraphs of text to be used for constructing the
warning message which is sent by Exim when a message has been on the queue for a specified
amount of time, as specified by delay_warning. Details of the file’s contents are given in chapter
40. See also bounce_message_file.

Exim 4.10 [118] main configuration (13)

14. Generic options for routers

This chapter describes the generic options that apply to all routers. For a general description of how a
router operates, see sections 3.8 and 3.9.

address_data Type: string† Default: unset

The string is expanded just before the router is run, that is, after all the pre-condition tests have
succeeded. If the expansion is forced to fail, the router declines. Other expansion failures cause
delivery of the address to be deferred.

When the expansion succeeds, the value is retained with the address, and can be accessed using the
variable $address_data in the current router, subsequent routers, and the eventual transport. Even if
the router declines or passes, the value remains with the address, though it can be changed by
another address_data setting on a subsequent router. If a router generates child addresses, the value
of $address_data propagates to them. This also applies to the special kind of ‘child’ that is
generated by a router with the unseen option).

The idea of address_data is that you can use it to look up a lot of data for the address once, and
then pick out parts of the data later. For example, you could use a single LDAP lookup to return a
string of the form

uid=1234 gid=5678 mailbox=/mail/xyz forward=/home/xyz/.forward

In the transport you could pick out the mailbox by a setting such as

file = ${extract{mailbox}{$address_data}}

This makes the configuration file less messy, and also reduces the number of lookups. (Exim does
cache the most recent lookup, but there may be several addresses in a message which cause lookups
to occur.)

The address_data facility is also useful as a means of passing information from one router to
another.

caseful_local_part Type: boolean Default: false

By default, routers handle the local parts of addresses in a case-insensitive manner, though the
actual case is preserved for transmission with the message. If you want the case of letters to be
significant in a router, you must set this option true. For individual router options that contain
address or local part lists (for example, local_parts), case-sensitive matching can be turned on by
‘+caseful’ as a list item. See section 10.13 for more details.

check_local_user Type: boolean Default: false

When this option is true, Exim checks that the local part of the recipient address (with affixes
removed if relevant) is the name of an account on the local system. The check is done by calling
the getpwnam() function rather than trying to read /etc/passwd directly. This means that other
methods of holding password data (such as NIS) are supported. If the local part is a local user,
$home is set from the password data, and can be tested in other pre-conditions that are evaluated
after this one (see section 3.9). If the local part is not a local user, the router is skipped.

condition Type: string† Default: unset

This option specifies a general pre-condition test that has to succeed for the router to be called. The
string is expanded, and if the result is a forced failure or an empty string or one of the strings ‘0’ or
‘no’ or ‘false’ (checked without regard to the case of the letters), the router is skipped, and the
address is offered to the next one. This provides a means of applying special-purpose conditions to
the running of routers.

If the expansion fails (other than forced failure) delivery is deferred. Some of the other options
below are common special cases that could in fact be specified using condition.

Exim 4.10 [119] generic router options (14)

debug_print Type: string† Default: unset

If this option is set and debugging is enabled (see the -d command line option), the string is
expanded and included in the debugging output. This is to help with checking out the values of
variables and so on when debugging router configurations. For example, if a condition option
appears not to be working, debug_print can be used to output the variables it references. The
output happens after checks for domains, local_parts, and check_local_user but before any other
pre-conditions are tested. A newline is added to the text if it does not end with one.

domains Type: domain list† Default: unset

If this option is set, the router is skipped unless the current domain matches the list. If the match is
achieved by means of a file lookup, the data that the lookup returned for the domain is placed in
$domain_data for use in string expansions of the driver ’s private options.

driver Type: string Default: unset

This option must always be set. It specifies which of the available routers is to be used.

errors_to Type: string† Default: unset

If the router successfully handles an address, it may queue it for delivery or it may generate child
addresses. In both cases, if there is a delivery problem during later processing, the resulting bounce
message is sent to the address that results from expanding this string, provided that the address
verifies successfully. If the option is unset, or fails to verify, the errors address associated with the
incoming address is used. At top level, this is the envelope sender.

If an address for which errors_to has been set ends up being delivered over SMTP, the envelope
sender for that delivery is the errors_to value, so that any bounces that are generated by other

 MTAs on the delivery route are also sent there. The most common use of errors_to is probably to
direct mailing list bounces to the manager of the list, as described in section 41.2.

The errors_to setting associated with an address can be overridden if it subsequently passes
through other routers which have their own errors_to settings.

expn Type: boolean Default: true

If this option is turned off, the router is skipped when testing an address as a result of processing an
SMTP EXPN command. You might, for example, want to turn it off on a router for users’ .forward
files, while leaving it on for the system alias file. The use of the SMTP EXPN command is controlled
by an ACL (see chapter 37). When Exim is running an EXPN command, it is similar to testing an
address with -bt. Compare VRFY, whose counterpart is -bv.

fail_verify Type: boolean Default: false

Setting this option has the effect of setting both fail_verify_sender and fail_verify_recipient to the
same value.

fail_verify_recipient Type: boolean Default: false

If this option is true and an address is accepted by this router when verifying a recipient,
verification fails.

fail_verify_sender Type: boolean Default: false

If this option is true and an address is accepted by this router when verifying a sender, verification
fails.

fallback_hosts Type: string list Default: unset

String expansion is not applied to this option. The argument must be a colon-separated list of host
names or IP addresses. If a router queues an address for a remote transport, this host list is
associated with the address, and used instead of the transport’s fallback host list. If
hosts_randomize is set on the transport, the order of the list is randomized for each use. See the
fallback_hosts option of the smtp transport for further details.

Exim 4.10 [120] generic router options (14)

group Type: string Default: see below

When a router queues an address for a transport, and the transport does not specify a group, the
group given here is used when running the delivery process. The default is unset, but if
check_local_user is set, the default is taken from the password information. See also initgroups
and user and the discussion in chapter 22.

headers_add Type: string† Default: unset

This option specifies a string of text which is expanded at routing time, and associated with any
addresses that are processed by the router. If the expanded string is empty, or if the expansion is
forced to fail, the option has no effect. Other expansion failures are treated as configuration errors.

The expanded string must be in the form of one or more RFC 2822 header lines, separated by
newlines (coded as ‘\n’). For example:

headers_add = X-added-header: added by $primary_hostname\n\
X-added-second: another added header line

Exim does not check the syntax of these added header lines, except that a newline is supplied at the
end if one is not present. If an address passes through several routers as a result of aliasing or
forwarding operations, any headers_add or headers_remove specifications are cumulative. This
does not apply for multiple routers that result from the use of ‘unseen’.

At transport time, all the original headers listed in headers_remove are removed. If there are
multiple instances of any listed header, they are all removed. Then the new headers specified by
headers_add are added, in the order in which they were attached to the address. Finally, any
additional headers specified by the transport are added. It is not possible to remove headers added
to an address by headers_add.

Because the addition does not happen until transport time, header lines that are added by
headers_add are not accessible by means of the $header_xxx expansion syntax. Conversely,
header lines that are removed by headers_remove remain visible.

Addresses with different headers_add or headers_remove settings cannot be delivered together in
a batch. The headers_add option cannot be used for a redirect router that has the one_time
option set.

headers_remove Type: string† Default: unset

The string is expanded at routing time and is then associated with any addresses that are processed
by the router. If the expansion is forced to fail, the option has no effect. Other expansion failures
are treated as configuration errors. After expansion, the string must consist of a colon-separated list
of header names, not including the terminating colon, for example:

headers_remove = return-receipt-to:acknowledge-to

It is used at transport time as described under headers_add above. The headers_remove option
cannot be used for a redirect router that has the one_time option set.

ignore_target_hosts Type: host list† Default: unset

Although this option is a host list, it should normally contain IP address entries rather than names.
If any host that is looked up by the router has an IP address that matches an item in this list, Exim
behaves as if that IP address did not exist. This option allows you to cope with rogue DNS
entries like

remote.domain.example A 127.0.0.1

by setting

ignore_target_hosts = 127.0.0.1

on the relevant router. An attempt to mail to such a domain then provokes the ‘unrouteable domain’
 error, and an attempt to verify an address in the domain fails. This option may also be useful for

ignoring link-local and site-local IPv6 addresses. Because, like all host lists, the value of

Exim 4.10 [121] generic router options (14)

 ignore_target_hosts is expanded before use as a list, it is possible to make it dependent on the
domain that is being routed.

initgroups Type: boolean Default: false

If the router queues an address for a transport, and this option is true, and the uid supplied by the
router is not overridden by the transport, the initgroups() function is called when running the
transport to ensure that any additional groups associated with the uid are set up. See also group and
user and the discussion in chapter 22.

local_part_prefix Type: string list Default: unset

If this option is set, the router is skipped unless the local part starts with one of the given strings, or
 local_part_prefix_optional is true. The list is scanned from left to right, and the first prefix that

matches is used. A limited form of wildcard is available; if the prefix begins with an asterisk, it
matches the longest possible sequence of arbitrary characters at the start of the local part. An
asterisk should therefore always be followed by some character that does not occur in normal local
parts. Wildcarding can be used to set up multiple user mailboxes, as described in section 41.7.

During the testing of the local_parts option, and while the router is running, the prefix is removed
from the local part, and is available in the expansion variable $local_part_prefix. If the router
accepts the address, this remains true during subsequent delivery.

The prefix facility is commonly used to handle local parts of the form owner-something. Another
common use is to support local parts of the form real-username to bypass a user ’s .forward file –
helpful when trying to tell a user their forwarding is broken – by placing a router like this one
immediately before the router that handles .forward files:

real_localuser:
driver = accept
local_part_prefix = real-

 check_local_user
transport = local_delivery

If both local_part_prefix and local_part_suffix are set for a router, both conditions must be met if
not optional. Care must be taken if wildcards are used in both a prefix and a suffix on the same

 router. Different separator characters must be used to avoid ambiguity.

local_part_prefix_optional Type: boolean Default: false

See local_part_prefix above.

local_part_suffix Type: string list Default: unset

This option operates in the same way as local_part_prefix, except that the local part must end
(rather than start) with the given string, the local_part_suffix_optional option determines whether
the suffix is mandatory, and the wildcard * character, if present, must be the last character of the

 suffix. This option facility is commonly used to handle local parts of the form something-request
and multiple user mailboxes of the form username-foo.

local_part_suffix_optional Type: boolean Default: false

See local_part_suffix above.

local_parts Type: local part list† Default: unset

The router is run only if the local part of the address matches the list. See section 10.14 for a
discussion of local part lists. Because the string is expanded, it is possible to make it depend on the
domain, for example:

local_parts = dbm;/usr/local/specials/$domain

If the match is achieved by a lookup, the data that the lookup returned for the local part is placed in
the variable $local_part_data for use in expansions of the router ’s private options. You might use

Exim 4.10 [122] generic router options (14)

this option, for example, if you have a large number of local virtual domains, and you want to send
all postmaster mail to the same place without having to set up an alias in each virtual domain:

postmaster:
driver = redirect
local_parts = postmaster
data = postmaster@real.domain.example

log_as_local Type: boolean Default: see below

Exim has two logging styles for delivery, the idea being to make local deliveries stand out more
visibly from remote ones. In the ‘local’ style, the recipient address is given just as the local part,
without a domain. The use of this style is controlled by this option. It defaults to true for the accept

 router, and false for all the others.

more Type: boolean Default: true

If this option is set false, and the router is run, but declines to handle the address, no further routers
are tried, routing fails, and the address is bounced. However, if the router explicitly passes an
address to the following router by means of the setting

self = pass

or otherwise, the setting of more is ignored. Also, the setting of more does not affect the behaviour
if one of the pre-condition tests fails. In that case, the address is always passed to the next router.

pass_on_timeout Type: boolean Default: false

If a router times out during a host lookup, it normally causes deferral of the address. If
pass_on_timeout is set, the address is passed on to the next router, overriding no_more. This may
be helpful for systems that are intermittently connected to the Internet, or those that want to pass to
a smart host any messages that cannot immediately be delivered.

There are occasional other temporary errors that can occur while doing DNS lookups. They are
treated in the same way as a timeout, and this option applies to all of them.

pass_router Type: string Default: unset

When a router returns ‘pass’, the address is normally handed on to the next router in sequence. This
can be changed by setting pass_router to the name of another router. However (unlike

 redirect_router) the named router must be below the current router, to avoid loops. Note that this
option applies only to the special case of ‘pass’. It does not apply when a router returns ‘decline’.

redirect_router Type: string Default: unset

Sometimes an administrator knows that it is pointless to reprocess addresses generated from alias or
forward files with the same router again. For example, if an alias file translates real names into
login ids there is no point searching the alias file a second time, especially if it is a large file.

The redirect_router option can be set to the name of any router instance. It causes the routing of
any generated addresses to start at the named router instead of at the first router. This option has no

 effect if the router in which it is set does not generate new addresses.

require_files Type: string list† Default: unset

This option provides a general mechanism for predicating the running of a router on the existence
or non-existence of certain files or directories. Before running a router, as one of its pre-condition
tests, Exim works its way through the require_files list, expanding each item separately.

Because the list is split before expansion, any colons in expansion items must be doubled, or the
facility for using a different list separator must be used. If any expansion is forced to fail, the item
is ignored. Other expansion failures cause routing of the address to be deferred.

If any expanded string is empty, it is ignored. Otherwise, except as described below, each string
must be a fully qualified file path, optionally preceded by ‘!’. The paths are passed to the stat()

Exim 4.10 [123] generic router options (14)

function to test for the existence of the files or directories. The router is skipped if any paths not
preceded by ‘!’ do not exist, or if any paths preceded by ‘!’ do exist.

If stat() cannot determine whether a file exists or not, delivery of the message is deferred. This can
happen when NFS-mounted filesystems are unavailable.

This option is checked after the domains, local_parts, and senders options, so you cannot use it to
check for the existence of a file in which to look up up a domain, local part, or sender. However, as
these options are all expanded, you can use the exists expansion condition to make such tests. The

 require_files option is intended for checking files that the router may be going to use internally, or
which are needed by a transport (for example .procmailrc).

During delivery, the stat() function is run as root, but there is a facility for checking the
accessibility of a file by another user. If an item in a require_files list does not contain any forward
slash characters, it is taken to be the user (and optional group, separated by a comma) to be
checked for subsequent files in the list. If no group is specified but the user is specified

 symbolically, the gid associated with the uid is used. For example:

require_files = mail:/some/file
require_files = $local_part:$home/.procmailrc

If a user or group name in a require_files list does not exist, the require_files condition fails.

Exim performs the check by scanning along the components of the file path, and checking the
access for the given uid and gid. It checks for ‘x’ access on directories, and ‘r’ access on the final
file. Note that this means that file access control lists, if the operating system has them, are ignored.

Warning: When the router is being run to verify addresses for an incoming SMTP message, Exim
is not running as root, but under its own uid. This may affect the result of a require_files check. In

 particular, stat() may yield the error EACCES (‘Permission denied’). This means that the Exim user is
not permitted to read one of the directories on the file’s path. The default action is to consider this a
configuration error, and routing is deferred because the existence or non-existence of the file cannot
be determined. However, in some circumstances it may be desirable to treat this condition as if the
file did not exist. If the file name (or the exclamation mark that precedes the file name for non-
existence) is preceded by a plus sign, the EACCES error is treated as if the file did not exist. For
example:

require_files = +/some/file

retry_use_local_part Type: boolean Default: see below

When a delivery suffers a temporary routing failure, a retry record is created in Exim’s hints
database. For addresses whose routing depends only on the domain, the key for the retry record
should not involve the local part, but for other addresses, both the domain and the local part should
be included. Usually, remote routing is of the former kind, and local routing is of the latter kind.

This option controls whether the local part is used to form the key for retry hints for addresses that
 suffer temporary errors while being handled by this router. The default value is true for any router

that has check_local_user set, and false otherwise. Note that this option does not apply to hints
keys for transport delays; they are controlled by a generic transport option of the same name.

self Type: string Default: freeze

This option applies to those routers which use the address to find a list of remote hosts. Currently,
these are the dnslookup, ipliteral, and manualroute routers. Usually such routers are configured to
send the message to a remote host via an smtp transport. The self option specifies what happens
when the first host on the list turns out to be the local host (this is checked by comparing IP
addresses), or a host whose name matches hosts_treat_as_local.

Normally this situation indicates either an error in Exim’s configuration (for example, the router
should be configured not to process this domain), or an error in the DNS (for example, the MX
should not point to this host). For this reason, the default action is to log the incident, defer the
address, and freeze the message. The following alternatives are provided for use in special cases:

Exim 4.10 [124] generic router options (14)

• defer
Delivery of the message is tried again later, but the message is not frozen.

• reroute: <domain>
The domain is changed to the given domain, and the address is passed back to be reprocessed
by the routers. No rewriting of headers takes place. This behaviour is essentially a redirection.

• reroute: rewrite: <domain>
The domain is changed to the given domain, and the address is passed back to be reprocessed
by the routers. Any headers that contain the original domain are rewritten.

• pass
The router passes the address to the next router, or to the router named in the pass_router
option if it is set. This overrides no_more.

During subsequent routing and delivery, the variable $self_hostname contains the name of the
local host that the router encountered. This can be used to distinguish between different cases
for hosts with multiple names. The combination

self = pass
no_more

ensures that only those addresses that routed to the local host are passed on. Without
 no_more, addresses that were declined for other reasons would also be passed to the next
 router.

• fail
Delivery fails and an error report is generated.

• send
The anomaly is ignored and the address is queued for the transport. This setting should be
used with extreme caution. For an smtp transport, it makes sense only in cases where the
program that is listening on the SMTP port is not this version of Exim. That is, it must be
some other MTA, or Exim with a different configuration file that handles the domain in
another way.

senders Type: address list† Default: unset

If this option is set, the router is skipped unless the message’s sender address matches something on
the list. There are issues concerning verification when the running of routers is dependent on the

 sender. When Exim is verifying the address in an errors_to setting, it sets the sender to the null
string. When using the -bt option to check a configuration file, it is necessary also to use the -f
option to set an appropriate sender. For incoming mail, the sender is unset when verifying the

 sender, but is available when verifying any recipients. If the SMTP VRFY command is enabled, it
must be used after MAIL if the sender address matters.

translate_ip_address Type: string† Default: unset

There exist some rare networking situations (for example, packet radio) where it is helpful to be
able to translate IP addresses generated by normal routing mechanisms into other IP addresses, thus
performing a kind of manual IP routing. This should be done only if the normal IP routing of the
TCP/IP stack is inadequate or broken. Because this is an extremely uncommon requirement, the
code to support this option is not included in the Exim binary unless SUPPORT_TRANSLATE_IP_

 ADDRESS=yes is set in Local/Makefile.

The translate_ip_address string is expanded for every IP address generated by the router, with the
generated address set in $host_address. If the expansion is forced to fail, no action is taken. If it
returns an IP address, that replaces the original address; otherwise the result is assumed to be a host
name – this is looked up using gethostbyname() (or getipnodebyname() when available) to produce
one or more replacement IP addresses. For example, to subvert all IP addresses in some specific
networks, this could be added to a router:

Exim 4.10 [125] generic router options (14)

translate_ip_address = \

 ${lookup{${mask:$host_address/26}}lsearch{/some/file}{$value}fail}

The file would contain lines like

10.2.3.128/26 some.host
10.8.4.34/26 10.44.8.15

You should not make use of this facility unless you really understand what you are doing.

transport Type: string† Default: unset

This option specifies the transport to be used when a router accepts an address and sets it up for
 delivery. A transport is never needed if a router is used only for verification. The value of the

option is expanded at routing time, and must yield the name of one of the configured transports. If
it does not, delivery is deferred. The transport option is not used by the redirect router, but it does
have some private options that set up transports for pipe and file deliveries (see chapter 21).

transport_current_directory Type: string† Default: unset

This option associates a current directory with any address that is routed to a local transport. This
can happen either because a transport is explicitly configured for the router, or because it generates
a delivery to a file or a pipe. During the delivery process (that is, at transport time), this option
string is expanded and is set as the current directory, unless overridden by a setting on the transport.
See chapter 22 for details of the local delivery environment.

transport_home_directory Type: string† Default: see below

This option associates a home directory with any address that is routed to a local transport. This can
happen either because a transport is explicitly configured for the router, or because it generates a
delivery to a file or a pipe. If check_local_user is set for the router, the default value is the user ’s
home directory; otherwise the default is unset. During the delivery process (that is, at transport
time), the option string is expanded and is set as the home directory, unless overridden by a setting
on the transport. See chapter 22 for details of the local delivery environment.

unseen Type: boolean Default: false

When this option is set true, routing does not cease if the router accepts the address. Instead, a copy
of the incoming address is passed to the next router. This option can be used to cause copies of
messages to be delivered to some other destination, while leaving the normal delivery untouched.
The effect is to clone the address before processing one copy of it, so options such as headers_add
on the current router do not affect the other copy. However, any data that was set by the
address_data option in the current or previous routers is passed on. Setting this option has a
similar effect to the unseen command qualifier in filter files.

user Type: string Default: see below

When a router queues an address for a transport, and the transport does not specify a user, the user
given here is used when running the delivery process. This user is also used by the redirect router
when running a filter file. The default is unset, except when check_local_user is set. In this case,
the default is taken from the password information. If the user is specified as a name, and group is
not set, the group associated with the user is used. See also initgroups and group and the
discussion in chapter 22.

verify Type: boolean Default: true

Setting this option has the effect of setting verify_sender and verify_recipient to the same value.

verify_only Type: boolean Default: false

If this option is set, the router is used only when verifying an address or testing with the -bv option,
not when actually doing a delivery, testing with the -bt option, or running the SMTP EXPN

command. It can be further restricted to verifying only senders or recipients by means of
verify_sender and verify_recipient.

Exim 4.10 [126] generic router options (14)

verify_recipient Type: boolean Default: true

If this option is false, the router is skipped when verifying recipient addresses.

verify_sender Type: boolean Default: true

If this option is false, the router is skipped when verifying sender addresses.

Exim 4.10 [127] generic router options (14)

15. The accept router

The accept router has no private options of its own. Unless it is being used purely for verification (see
verify_only) a transport is required to be defined by the generic transport option. If the pre-conditions
that are specified by generic options are met, the router accepts the address and queues it for the given
transport. The most common use of this router is for setting up deliveries to local mailboxes. For
example:

localusers:
driver = accept
domains = mydomain.example

 check_local_user
transport = local_delivery

The domains condition in this example checks the domain of the address, and check_local_user
checks that the local part is the login of a local user. When both pre-conditions are met, the accept
router runs, and queues the address for the local_delivery transport.

Exim 4.10 [128] accept router (15)

16. The dnslookup router

The nslookup router looks up the hosts that handle mail for the given domain in the DNS. A transport
must always be set for this router, unless verify_only is set.

MX records are looked up first, followed by address records if no MX records are found, unless the
domain matches mx_domains. MX records of equal priority are sorted by Exim into a random order.
Unless they have the highest priority (lowest MX value), MX records that point to the local host, or to
any host name that matches hosts_treat_as_local, are discarded, together with any other MX records
of equal or lower priority.

If the host pointed to by the highest priority MX record, or looked up as an address record, is the local
host, or matches hosts_treat_as_local, what happens is controlled by the generic self option.

There are a number of private options that can be used to vary the way the DNS lookup is handled.

check_secondary_mx Type: boolean Default: false

If this option is set, the router declines unless the local host is found in (and removed from) the list
of hosts obtained by MX lookup. This can be used to process domains for which the local host is a
secondary mail exchanger differently to other domains.

mx_domains Type: domain list† Default: unset

A domain which matches mx_domains is required to have an MX record in order to be recognised.
For example, if all the mail hosts in fict.example are known to have MX records, except for those in

 discworld.fict.example, you could use this setting:

mx_domains = ! *.discworld.fict.example : *.fict.example

This specifies that messages addressed to a domain that matches the list but has no MX record
should be bounced immediately instead of being routed using the address record.

qualify_single Type: boolean Default: true

When this option is true, the resolver option RES_DEFNAMES is set for DNS lookups. Typically, but
not standardly, this causes the resolver to qualify single-component names with the default domain.
For example, on a machine called dictionary.ref.example, the domain thesaurus would be changed
to thesaurus.ref.example inside the resolver. For details of what your resolver actually does, consult
your man pages for resolver and resolv.conf.

rewrite_headers Type: boolean Default: true

An abbreviated name may be expanded to its full form by a DNS lookup, or as a result of the
widen_domains option. For example, if an address is specified as dormouse@teaparty, the domain
might get expanded to teaparty.wonderland.fict.example. If this option is true, all occurrences of the
abbreviated name in the headers of the message are rewritten with the full name. This option should
be turned off only when it is known that no message is ever going to be sent outside an
environment where the abbreviation makes sense.

When an MX record is looked up in the DNS and matches a wildcard record, name servers
normally return a record containing the name that has been looked up, making it impossible to
detect whether a wildcard was present or not. However, some name servers have recently been seen
to return the wildcard entry. If the name returned by a DNS lookup begins with an asterisk, it is not
used for header rewriting.

Exim 4.10 [129] dnslookup router (16)

same_domain_copy_routing Type: boolean Default: false

Addresses with the same domain are normally routed by the dnslookup router to the same list of
hosts. However, this cannot be presumed, because the router options and pre-conditions may refer
to the local part of the address. By default, therefore, Exim routes each address in a message

 independently. DNS servers run caches, so repeated DNS lookups are not normally expensive, and
in any case, personal messages rarely have more than a few recipients.

If you are running mailing lists with large numbers of subscribers at the same domain, and you are
using a dnslookup router which is independent of the local part, you can set

 same_domain_copy_routing to bypass repeated DNS lookups for identical domains in one mess-
age. In this case, when dnslookup routes an address to a remote transport, any other unrouted
addresses in the message that have the same domain are automatically given the same routing
without processing them independently. However, this is only done if headers_add and

 headers_remove are unset, and the router does not ‘widen’ the domain.

search_parents Type: boolean Default: false

When this option is true, the resolver option RES_DNSRCH is set for DNS lookups. This is different
from the qualify_single option in that it applies to domains containing dots. Typically, but not

 standardly, it causes the resolver to search for the name in the current domain and in parent
domains. For example, on a machine in the fict.example domain, if looking up teaparty.wonderland
failed, the resolver would try teaparty.wonderland.fict.example. For details of what your resolver
actually does, consult your man pages for resolver and resolv.conf.

Setting this option true can cause problems in domains that have a wildcard MX record, because
any domain that does not have its own MX record matches the local wildcard.

widen_domains Type: string list Default: unset

If a DNS lookup fails and this option is set, each of its strings in turn is added onto the end of the
domain, and the lookup is tried again. For example, if

widen_domains = fict.example:ref.example

is set and a lookup of klingon.dictionary fails, klingon.dictionary.fict.example is looked up, and if
this fails, klingon.dictionary.ref.example is tried. Note that the qualify_single and search_parents
options can cause some widening to be undertaken inside the DNS resolver.

Exim 4.10 [130] dnslookup router (16)

17. The ipliteral router

This router has no private options. Unless it is being used purely for verification (see verify_only) a
transport is required to be defined by the generic transport option. The router accepts the address if its
domain part takes the form of an RFC 2822 domain literal, that is, an IP address enclosed in square
brackets. For example, this router handles the address

root@[192.168.1.1]

by setting up delivery to the host with that IP address. If an IP literal turns out to refer to the local
host, the generic self option determines what happens. The RFCs require support for domain literals,
though it seems anachronistic in today’s Internet.

If you want to use this router, you must also set the main configuration option allow_domain_literals.
Otherwise, Exim will not recognize the domain literal syntax in addresses.

Exim 4.10 [131] ipliteral router (17)

18. The iplookup router

The iplookup router was written to fulfil a specific requirement in Cambridge University. For this
reason, it is not included in the binary of Exim by default. If you want to include it, you must set

ROUTER_IPLOOKUP=yes

in your Local/Makefile configuration file.

The iplookup router routes an address by sending it over a TCP or UDP connection to one or more
specific hosts. The host can then return the same or a different address – in effect rewriting the
recipient address in the message’s envelope. The new address is then passed on to subsequent routers.

If this process fails, the address can be passed on to other routers, or delivery can be deferred.

Background, for those that are interested: We have an Oracle database of all Cambridge users, and one
of the items of data it maintains for each user is where to send mail addressed to user@cam.ac.uk. The
MX records for cam.ac.uk point to a central machine that has a large alias list that is abstracted from
the database. Mail from outside is switched by this system, and originally internal mail was also done
this way. However, this resulted in a fair number of messages travelling from some of our larger
systems to the switch and back again. The Oracle machine now runs a UDP service that can be called
by the iplookup router in Exim to find out where user@cam.ac.uk addresses really have to go; this
saves passing through the central switch, and in many cases saves doing any remote delivery at all.

Since iplookup is just a rewriting router, a transport must not be specified for it.

hosts Type: string Default: unset

This option must be supplied. Its value is a colon-separated list of host names. The hosts are looked
up using gethostbyname() (or getipnodebyname() when available) and are tried in order until one
responds to the query. If none respond, what happens is controlled by optional.

optional Type: boolean Default: false

If optional is true, if no response is obtained from any host, the address is passed to the next router,
overriding no_more. If optional is false, delivery to the address is deferred.

port Type: integer Default: 0

This option must be supplied. It specifies the port number for the TCP or UDP call.

protocol Type: string Default: udp

This option can be set to ‘udp’ or ‘tcp’ to specify which of the two protocols is to be used.

query Type: string†
Default: $local_part@$domain $local_part@$domain

This defines the content of the query that is sent to the remote hosts. The repetition serves as a way
of checking that a response is to the correct query in the default case (see response_pattern

 below).

reroute Type: string† Default: unset

If this option is not set, the rerouted address is precisely the byte string returned by the remote host,
up to the first white space, if any. If set, the string is expanded to form the rerouted address. It can
include parts matched in the response by response_pattern by means of numeric variables such as

 $1, $2, etc. The variable $0 refers to the entire input string, whether or not a pattern is in use. In all
cases, the rerouted address must end up in the form local_part@domain.

Exim 4.10 [132] iplookup router (18)

response_pattern Type: string Default: unset

This option can be set to a regular expression that is applied to the string returned from the remote
host. If the pattern does not match the response, the router declines. If response_pattern is not set,
no checking of the response is done, unless the query was defaulted, in which case there is a check
that the text returned after the first white space is the original address. This checks that the answer
that has been received is in response to the correct question. For example, if the response is just a
new domain, the following could be used:

response_pattern = ^([^@]+)$
reroute = $local_part@$1

timeout Type: time Default: 5s

This specifies the amount of time to wait for a response from the remote machine. The same
timeout is used for the connect() function for a TCP call. It does not apply to UDP.

Exim 4.10 [133] iplookup router (18)

19. The manualroute router

The manualroute router is so-called because it provides a way of manually routing an address
according to its domain. It is mainly used when you want to route addresses to remote hosts according
to your own rules, bypassing the normal DNS routing that looks up MX records. However,
manualroute can also route to local transports, a facility that may be useful if you want to save
messages for dial-in hosts in local files.

The manualroute router compares a list of domain patterns with the domain it is trying to route. If
there is no match, the router declines. Each pattern has associated with it a list of hosts and some other
optional data, which may include a transport. The combination of a pattern and its data is called a
‘routing rule’. For patterns that do not have an associated transport, the generic transport option must
specify a transport, unless the router is being used purely for verification (see verify_only).

In the case of verification, matching the domain pattern is sufficient for the router to accept the
address. When actually routing an address for delivery, an address that matches a domain pattern is
queued for the associated transport. If the transport is not a local one, a host list must be associated
with the pattern; IP addresses are looked up for the hosts, and these are passed to the transport along
with the mail address. For local transports, a host list is optional. If it is present, it is passed in $host
as a single text string.

The list of routing rules can be provided as an inline string in route_list, or the data can be obtained
by looking up the domain in a file or database by setting route_data. Only one of these settings may
appear in any one instance of manualroute. The format of routing rules is described below, following
the list of private options.

19.1 Private options for manualroute

The private options for the manualroute router are as follows:

host_find_failed Type: string Default: freeze

This option controls what happens when manualroute tries to find an IP address for a host, and the
host does not exist. The option can be set to one of

decline
 defer
 fail
 freeze
 pass

The default assumes that this state is a serious configuration error. The difference between ‘pass’
and ‘decline’ is that the former forces the address to be passed to the next router (or the router
defined by pass_router), overriding no_more, whereas the latter passes the address to the next
router only if more is true.

This option applies only to a definite ‘does not exist’ state; if a host lookup gets a temporary error,
delivery is deferred unless the generic pass_on_timeout option is set.

hosts_randomize Type: boolean Default: false

If this option is set, the order of the items in a host list in a routing rule is randomized each time it
is used. This can be used to do crude load sharing. However, there is a complication when a
message has more than one address that is routed by the same rule. Without randomization, each
such address ends up with an identical host list, and so they are all eligible for batching and
sending in a single SMTP transaction. When the host order is randomized by the router, the
addresses won’t all end up with the same host list, and so they will not be batched in the same way.

Exim 4.10 [134] manualroute router (19)

This may be desirable if you want a number of different delivery processes to be used. However, if
you do want all addresses that route to the same hosts to be batched together, but still want to use
the hosts in a random order, you should not set hosts_randomize on this router. Instead, arrange to
use a special smtp transport, and set hosts_randomize on the transport.

route_data Type: string† Default: unset

If this option is set, it must expand to yield the data part of a routing rule. Typically, the expansion
string includes a lookup based on the domain. For example:

route_data = ${lookup{$domain}dbm{/etc/routes/}}

If the expansion is forced to fail, or the result is an empty string, the router declines. Other kinds of
expansion failure cause delivery to be deferred.

route_list Type: string list, semicolon-separated Default: unset

This string is a list of routing rules, in the form defined below. Note that, unlike most string lists,
the items are separated by semicolons. This is so that they may contain colon-separated host lists.

same_domain_copy_routing Type: boolean Default: false

Addresses with the same domain are normally routed by the manualroute router to the same list of
hosts. However, this cannot be presumed, because the router options and pre-conditions may refer
to the local part of the address. By default, therefore, Exim routes each address in a message

 independently. DNS servers run caches, so repeated DNS lookups are not normally expensive, and
in any case, personal messages rarely have more than a few recipients.

If you are running mailing lists with large numbers of subscribers at the same domain, and you are
using a manualroute router which is independent of the local part, you can set

 same_domain_copy_routing to bypass repeated DNS lookups for identical domains in one mess-
age. In this case, when manualroute routes an address to a remote transport, any other unrouted
addresses in the message that have the same domain are automatically given the same routing
without processing them independently. However, this is only done if headers_add and

 headers_remove are unset.

19.2 Routing rules in route_list

The value of route_list is a string consisting of a sequence of routing rules, separated by semicolons.
If a semicolon is needed in a rule, it can be entered as two semicolons. Empty rules are ignored. The
format of each rule is

<domain pattern> <host list> <options>

The following example contains two rules, each with a simple domain pattern and no options:

route_list = \
dict.ref.example mail-1.ref.example:mail-2.ref.example ; \
thes.ref.example mail-3.ref.example:mail-4.ref.example

The three parts of a rule are separated by white space. The pattern and host list can be enclosed in
quotes if necessary, and if they are, the usual quoting rules apply. Each rule in a route_list must start
with a single domain pattern, which is the only mandatory item in the rule. The pattern is in the same
format as one item in a domain list (see section 10.6), that is, it may be wildcarded or a regular
expression, or a file or database lookup (with semicolons doubled, because of the use of semicolon as
a separator in a route_list).

The rules in route_list are searched in order until one of the patterns matches the domain that is being
routed. The host list and options are then used as described below. If there is no match, the router
declines. When route_list is set, route_data must not be set.

Exim 4.10 [135] manualroute router (19)

19.3 Routing rules in route_data
The use of route_list is convenient when there are only a small number of routing rules. For larger
numbers, it is easier to use a file or database to hold the routing information, and use the route_data
option instead. Most commonly, the value of route_data is a string that contains an expansion lookup.
For example, suppose we place two routing rules in a file like this:

dict.ref.example: mail-1.ref.example:mail-2.ref.example
thes.ref.example: mail-3.ref.example:mail-4.ref.example

This data can be accessed by setting

route_data = ${lookup{$domain}lsearch{/the/file/name}}

Failure of the lookup results in an empty string, causing the router to decline. However, you do not
have to use a lookup in route_data. The only requirement is that the result of expanding the string is a
single host list, possibly followed by options, separated by white space. The host list can be enclosed
in quotes if necessary.

19.4 Host list format
A host list, whether obtained via route_data or route_list, is always separately expanded before use.
If the expansion fails, the router declines. The result of the expansion must be a colon-separated list of
host names and/or IP addresses. IP addresses in host lists are not enclosed in brackets.

If the host list was obtained from a route_list item, the following variables are set during the
expansion of the host list:

• If the domain was matched against a regular expression, the numeric variables $1, $2, etc. may
be set.

• $0 is always set to the entire domain.

• $1 is also set when partial matching is done in a file lookup.

• If the pattern that matched the domain was a lookup item, the data that was looked up is
available in the expansion variable $value.

19.5 Options format
Options are a sequence of words, but in practice no more than two are ever present. One of the words
can be the name of a transport, and this overrides the transport option on the router for this particular
routing rule only. The other word (if present) specifies how the IP addresses of the hosts named in the
host list are to be found when routing to a remote transport:

• byname: use gethostbyname() (or getipnodebyname() when available). This is the default way of
finding host addresses if no options are given.

• bydns: look up address records for the host(s) in the DNS; fail if there are none.

If no IP address for a host can be found, what happens is controlled by the host_find_failed option.

When an address is routed to a local transport, IP addresses are not looked up. The host list is passed
to the transport in the $host variable.

19.6 Manualroute examples
In some of the examples that follow, the presence of the remote_smtp transport, as defined in the
default configuration file, is assumed:

• The manualroute router can be used to forward all external mail to a smart host. If you have set
up, in the main part of the configuration, a named domain list that contains your local domains,
for example,

domainlist local_domains = my.domain.example

Exim 4.10 [136] manualroute router (19)

you can arrange for all other domains to be routed to a smart host by making your first router
something like this:

smart_route:
driver = manualroute
domains = !+local_domains
transport = remote_smtp
route_list = * smarthost.ref.example

This causes all non-local addresses to be sent to the single host smarthost.ref.example. If a colon-
separated list of smart hosts is given, they are tried in order (but you can use hosts_randomize
to vary the order each time). Another way of configuring the same thing is this:

smart_route:
driver = manualroute
transport = remote_smtp
route_list = !+local_domains smarthost.ref.example

There is no difference in behaviour between these two routers as they stand. However, they
behave differently if no_more is added to them. In the first example, the router is skipped if the
domain does not match the domains pre-condition; the following router is always tried. If the
router runs, it always matches the domain and so can never decline. Therefore, no_more would
have no effect. In the second case, the router is never skipped; it always runs. However, if it

 doesn’t match the domain, it declines. In this case no_more would prevent subsequent routers
from running.

• A mail hub is a host which receives mail for a number of domains via MX records in the DNS
and delivers it via its own private routing mechanism. Often the final destinations are behind a
firewall, with the mail hub being the one machine that can connect to machines both inside and
outside the firewall. The manualroute router is usually used on a mail hub to route incoming
messages to the correct hosts. For a small number of domains, the routing can be inline, using
the route_list option, but for a larger number a file or database lookup is easier to manage.

If the domain names are in fact the names of the machines to which the mail is to be sent by the
mail hub, the configuration can be quite simple. For example,

hub_route:
driver = manualroute
transport = remote_smtp
route_list = *.rhodes.tvs.example $domain

This configuration routes domains that match *.rhodes.tvs.example to hosts whose names
are the same as the mail domains. A similar approach can be taken if the host name can be
obtained from the domain name by a string manipulation that the expansion facilities can handle.
Otherwise, a lookup based on the domain can be used to find the host:

through_firewall:
driver = manualroute
transport = remote_smtp
route_data = ${lookup {$domain} cdb {/internal/host/routes}}

The result of the lookup must be the name or IP address of the host (or hosts) to which the
address is to be routed. If the lookup fails, the route data is empty, causing the router to decline.
The address then passes to the next router.

• You can use manualroute to deliver messages to pipes or files in batched SMTP format for
onward transportation by some other means. This is one way of storing mail for a dial-up host
when it is not connected. The route list entry can be as simple as a single domain name in a
configuration like this:

Exim 4.10 [137] manualroute router (19)

 save_in_file:
driver = manualroute
transport = batchsmtp_appendfile
route_list = saved.domain.example

though often a pattern is used to pick up more than one domain. If there are several domains or
groups of domains with different transport requirements, different transports can be listed in the
routing information:

save_in_file:
driver = manualroute
route_list = \
*.saved.domain1.example $domain batch_appendfile; \
*.saved.domain2.example \
${lookup{$domain}dbm{/domain2/hosts}{$value}fail} \

 batch_pipe

The first of these just passes the domain in the $host variable, which doesn’t achieve much (since
it is also in $domain), but the second does a file lookup to find a value to pass, causing the
router to decline to handle the address if the lookup fails.

• Routing mail directly to UUCP software is a specific case of the use of manualroute in a
gateway to another mail environment. This is an example of one way it can be done:

Transport
 uucp:

driver = pipe
user = nobody
command = /usr/local/bin/uux -r - \

${substr_-5:$host}!rmail ${local_part}
return_fail_output = true

Router
 uucphost:

transport = uucp
driver = manualroute
route_data = \

 ${lookup{$domain}lsearch{/usr/local/exim/uucphosts}}

The file /usr/local/exim/uucphosts contains entries like

darksite.ethereal.example: darksite.UUCP

It can be set up more simply without adding and removing ‘.UUCP’ but this way makes clear the
distinction between the domain name darksite.ethereal.example and the UUCP host name

 darksite.

Exim 4.10 [138] manualroute router (19)

20. The queryprogram router

The queryprogram router routes an address by running an external command and acting on its output.
This is an expensive way to route, and is intended mainly for use in lightly-loaded systems, or for
performing experiments. However, if it is possible to use the pre-condition options (domains,
local_parts, etc) to skip this router for most addresses, it could sensibly be used in special cases, even
on a busy host. There are the following private options:

command Type: string† Default: unset

This option must be set. It specifies the command that is to be run. The command is split up into a
command name and arguments, and then each is expanded separately (exactly as for a pipe
transport, described in chapter 28).

command_group Type: string Default: unset

This option specifies a gid to be set when running the command. It must be set if command_user
specifies a numerical uid. If it begins with a digit, it is interpreted as the numerical value of the gid.
Otherwise it is looked up using getgrnam().

command_user Type: string Default: unset

This option must be set. It specifies the uid which is set when running the command. If it begins
with a digit it is interpreted as the numerical value of the uid. Otherwise, it is looked up using
getpwnam() to obtain a value for the uid and, if command_group is not set, a value for the gid
also.

current_directory Type: string Default: /

This option specifies an absolute path which is made the current directory before running the
command.

timeout Type: time Default: 1h

If the command does not complete within the timeout period, its process group is killed and the
message is frozen. A value of zero time specifies no timeout.

The standard output of the command is connected to a pipe, which is read when the command
terminates. It should consist of a single line of output, containing up to five fields, separated by white
space. The first field is one of the following words (case-insensitive):

• Accept: routing succeeded; the remaining fields specify what to do (see below).

• Decline: the router declines; pass the address to the next router, unless no_more is set.

• Fail: routing failed; do not pass the address to any more routers. Any subsequent text on the line
is an error message. If the router is run as part of address verification during an incoming SMTP
message, the message is included in the SMTP response.

• Defer: routing could not be completed at this time; try again later. Any subsequent text on the
line is an error message which is logged. It is not included in any SMTP response.

• Freeze: the same as defer, except that the message is frozen.

• Pass: pass the address to the next router (or the router specified by pass_router), overriding
 no_more.

• Redirect: the message is redirected. The remainder of the line is a list of new addresses, which
are routed independently, starting with the first router, or the router specified by redirect_router,
if set.

When the first word is accept, the remainder of the line consists of a number of keyed data values, as
follows (split into two lines here, to fit on the page):

Exim 4.10 [139] queryprogram router (20)

ACCEPT TRANSPORT=<transport> HOSTS=<host list>
LOOKUP=byname|bydns DATA=<text>

The data items can be given in any order, and all are optional. If no transport is included, the transport
specified by the generic transport option is used. The host list and lookup type are needed only if the
transport is an smtp transport that does not itself have a host list. The default lookup type is ‘byname’.
If the DATA field is set, its value is placed in the $address_data variable. For example, this
return line

accept hosts=x1.y.example:x2.y.example data="rule1"

routes the address to the default transport, with a host list containing two hosts. When the transport
runs, the string ‘rule1’ is in $address_data.

Exim 4.10 [140] queryprogram router (20)

21. The redirect router

The redirect router handles several kinds of address redirection. Its most common uses are for
resolving local part aliases from a central alias file (usually called /etc/aliases) and for handling users’
personal .forward files, but it has many other potential uses. The incoming address can be redirected
in several different ways:

• It can be replaced by one or more new addresses which are themselves routed independently.

• It can be routed to be delivered to a given file or directory.

• It can be routed to be delivered to a specified pipe command.

• It can cause an automatic reply to be generated.

• It can be forced to fail, with a custom error message.

• It can be temporarily deferred.

• It can be discarded.

The generic transport option must not be set for redirect routers. However, there are some private
options which define transports for delivery to files and pipes, and for generating autoreplies. See the
file_transport, pipe_transport and reply_transport descriptions below.

21.1 Redirection data
The router operates by interpreting a text string which it obtains either by expanding the contents of
the data option, or by reading the entire contents of a file whose name is given in the file option.
These two options are mutually exclusive. The first is commonly used for handling system aliases, in a
configuration like this:

system_aliases:
driver = redirect
data = ${lookup{$local_part}lsearch{/etc/aliases}}

If the lookup fails, causing the expanded string to be empty, the router declines. A configuration using
file is commonly used for handling users’ .forward files, like this:

userforward:
driver = redirect

 check_local_user
file = $home/.forward
no_verify

If the file does not exist, or causes no action to be taken (for example, it is empty or consists only of
comments), the router declines. Warning: This is not the case when the file contains syntactically
valid items that happen to yield empty addresses, for example, items containing only RFC 2822
address comments.

21.2 Forward files and address verification
It is usual to set no_verify on redirect routers which handle users’ .forward files, as in the example
above. There are two reasons for this:

• When Exim is receiving an incoming SMTP message from a remote host, it is running under the
Exim uid, not as root. Therefore, it is unable to change uid to read the file as the user, and it may
not be able to read it as the Exim user. So in practice the router may not be able to operate.

• However, even when the router can operate, the existence of a .forward file is unimportant when
verifying an address. What should be checked is whether the local part is a valid user name or
not. Cutting out the redirection processing saves some resources.

Exim 4.10 [141] redirect router (21)

21.3 Interpreting redirection data
The contents of the data string, whether obtained from data or file, can be interpreted in two different
ways:

• If the allow_filter option is set true, and the data begins with the text ‘#Exim filter ’, it is
interpreted as a list of filtering instructions in the form of an Exim filter file. Details of the syntax
and semantics of filter files are described in a separate document entitled Exim’s interface to mail

 filtering; this document is intended for use by end users.

• Otherwise, the data must be a comma-separated list of redirection items, as described in the next
 section.

21.4 Items in a non-filter redirection list
When the redirection data is not an Exim filter, for example, if it comes from a conventional alias or
forward file, it consists of a list of addresses, file names, pipe commands, or certain special items (see
below). The special items can be individually enabled or disabled by means of options whose names
begin with allow_ or forbid_, depending on their default values. The items in the list are separated by
commas or newlines.

Lines starting with a # character are comments, and are ignored, and # may also appear following a
comma, in which case everything between the # and the next newline character is ignored.

If an item is entirely enclosed in double quotes, these are removed. Otherwise double quotes are
retained because some forms of mail address require their use (but never to enclose the entire address).
In the following description, ‘item’ refers to what remains after any surrounding double quotes have
been removed.

21.5 Redirecting to a local mailbox
A redirection item may safely be the same as the address currently under consideration. This does not
cause a routing loop, because a router is automatically skipped if any ancestor of the address that is
being processed has the same local part and was processed by that router. The address is therefore
passed to the following routers, so it is handled as if there were no redirection. When making this
loop-avoidance test, the complete local part, including any prefix or suffix, is used.

Specifying the same local part without a domain is a common usage in personal filter files when the
user wants to have messages delivered to the local mailbox and also forwarded elsewhere. For
example, the user spqr might have a .forward file containing this:

spqr, Sam.Reman@other.domain.example

For compatibility with other MTAs, such local parts may be preceeded by ‘\’, but this is not a
requirement for loop prevention. However, it does make a difference if more than one domain is being
handled synonymously.

If an item begins with ‘\’ and the rest of the item parses as a valid RFC 2822 address that does not
include a domain, the item is qualified using the domain of the incoming address. In the absence of a
leading ‘\’, unqualified addresses are qualified using the value in qualify_recipient, but you can force
the incoming domain to be used by setting qualify_preserve_domain.

Care must be taken if there are alias names for local users. For example if the system alias file
contains

Sam.Reman: spqr

then

Sam.Reman, spqr@reme.elsewhere.example

in spqr’s forward file fails on an incoming message addressed to Sam.Reman. The redirect router does
not process Sam.Reman the second time round, because it has previously routed it, and the following
routers presumably cannot handle the alias. The forward file should really contain

Exim 4.10 [142] redirect router (21)

spqr, spqr@reme.elsewhere.example

but because this is such a common error, the check_ancestor option (see below) exists to provide a
way to get round it. This is normally set on a redirect router that is handling users’ .forward files.

21.6 Special items in redirection lists
In addition to addresses, the following types of item may appear in redirection lists:

• An item is treated as a pipe command if it begins with ‘|’ and does not parse as a valid RFC
2822 address that includes a domain. A transport for running the command must be specified by
the pipe_transport option. Either the router or the transport must specify a user and group under
which to run the delivery. Single or double quotes can be used for enclosing the individual

 arguments of the pipe command; no interpretation of escapes is done for single quotes. If the
command contains a comma character, it is necessary to put the whole item in double quotes, for

 example:

"|/some/command ready,steady,go"

since items in redirection lists are terminated by commas. Do not, however, quote just the
command. An item such as

|"/some/command ready,steady,go"

is interpreted as a pipe with a rather strange command name, and no arguments.

• An item is interpreted as a path name if it begins with ‘/’ and does not parse as a valid RFC
2822 address that includes a domain. For example,

/home/world/minbari

is treated as a file name, but

/s=molari/o=babylon/@x400gate.way

is treated as an address. For a file name, a transport must be specified using the file_transport
option. However, if the generated path name ends with a forward slash character, it is interpreted
as a directory name rather than a file name, and directory_transport is used instead. Either the
router or the transport must specify a user and group under which to run the delivery. However, if
a redirection item is the path /dev/null, delivery to it is bypassed at a high level, and the log
entry shows ‘**bypassed**’ instead of a transport name. This avoids the need to specify a user
and group.

• If an item is of the form

:include:<path name>

a list of further items is taken from the given file and included at that point. The items in the list
are separated by commas or newlines and are not subject to expansion. If this is the first item in
an alias list in an lsearch file, a colon must be used to terminate the alias name. This example is

 incorrect:

list1 :include:/opt/lists/list1

It must be given as

list1: :include:/opt/lists/list1

• Sometimes you want to throw away mail to a particular local part. Making the data option
expand to an empty string does not work, because that causes the router to decline. Instead, the
alias item

:blackhole:

can be used. It does what its name implies. No delivery is done, and no error message is
generated. This has the same effect as specifing /dev/null, but can be independently disabled.

Exim 4.10 [143] redirect router (21)

• An attempt to deliver a particular address can be deferred or forced to fail by redirection items of
the form

:defer:
or
:fail:

respectively. When a redirection list contains such an item, it applies to the entire redirection; any
other items in the list are ignored (:blackhole: is different). Any text following :fail: or :defer: is
placed in the error text associated with the failure. For example, an alias file might contain:

X.Employee: :fail: Gone away, no forwarding address

In the case of an address that is being verified for the SMTP RCPT or VRFY commands, the text is
included in the SMTP error response, which has a 451 code for a :defer: failure, and 550 for

 :fail:. In other cases the text is included in the error message that Exim generates.

Normally the error text is the rest of the redirection list – a comma does not terminate it – but a
newline does act as a terminator. Newlines are not normally present in alias expansions. In

 lsearch lookups they are removed as part of the continuation process, but they may exist in other
kinds of lookup and in :include: files.

During routing for message delivery (as opposed to verification), a redirection containing :fail:
causes an immediate failure of the incoming address, whereas :defer: causes the message to
remain on the queue so that a subsequent delivery attempt can happen at a later time. If an
address is deferred for too long, it will ultimately fail, because the normal retry rules still apply.

• Sometimes it is useful to use a single-key search type with a default (see chapter 9) to look up
aliases. However, there may be a need for exceptions to the default. These can be handled by
aliasing them to

:unknown:

This differs from :fail: in that it causes the redirect router to decline, whereas :fail: forces
routing to fail. A lookup which results in an empty redirection list has the same effect.

21.7 Duplicate addresses
Exim removes duplicate addresses from the list to which it is delivering, so as to deliver just one copy
to each address. This does not apply to deliveries routed to pipes by different immediate parent
addresses, but an indirect aliasing scheme of the type

pipe: |/some/command $local_part
localpart1: pipe
localpart2: pipe

does not work with a message that is addressed to both local parts, because when the second is aliased
to the intermediate local part ‘pipe’ it gets discarded as being the same as a previously handled
address. However, a scheme such as

localpart1: |/some/command $local_part
localpart2: |/some/command $local_part

does result in two different pipe deliveries, because the immediate parents of the pipes are distinct.

21.8 Repeated redirection expansion
When a message cannot be delivered to all of its recipients immediately, leading to two or more
delivery attempts, redirection expansion is carried out afresh each time for those addresses whose
children were not all previously delivered. If redirection is being used as a mailing list, this can lead to
new members of the list receiving copies of old messages. The one_time option can be used to avoid
this.

Exim 4.10 [144] redirect router (21)

21.9 Errors in redirection lists
If skip_syntax_errors is set, a malformed address that causes a parsing error is skipped, and an entry
is written to the main log. This may be useful for mailing lists that are automatically managed.
Otherwise, if an error is detected while generating the list of new addresses, the original address is
deferred. See also syntax_errors_to.

21.10 Private options for the redirect router

The private options for the redirect router are as follows:

allow_defer Type: boolean Default: false

Setting this option allows the use of :defer: in non-filter redirection data.

allow_fail Type: boolean Default: false

If this option is true, the :fail: item can be used in a redirection list, and the fail command may be
used in a filter file.

allow_filter Type: boolean Default: false

Setting this option allows Exim to interpret redirection data that starts with ‘#Exim filter’ as a set of
filtering instructions. There are some features of filter files that some administrators may wish to
lock out; see the forbid_filter_xxx options below. The filter is run using the uid and gid set by the
generic user and group options. These take their defaults from the password data if
check_local_user is set, so in the normal case of users’ personal filter files, the filter is run as the
relevant user. When allow_filter is set true, Exim insists that either check_local_user or user is set.

allow_freeze Type: boolean Default: false

Setting this option allows the use of the freeze command in a filter. This command is more
normally encountered in system filters, and is disabled by default for redirection filters because it

 isn’t something you usually want to let ordinary users do.

check_ancestor Type: boolean Default: false

This option is concerned with handling generated addresses which are the same as some address in
the list of redirection ancestors of the current address. Although it is turned off by default in the
code, it is set in the default configuration file for handling users’ .forward files. It is recommended
for this use of the redirect router.

When check_ancestor is set, if a generated address is the same as any ancestor of the current
address, it is replaced by a copy of the current address. This helps in the case where local part A is
aliased to B, and B has a .forward file pointing back to A. For example: ‘Joe.Bloggs’ is aliased to
‘jb’ and ~jb/.forward contains:

\Joe.Bloggs, <other item(s)>

Without the check_ancestor setting, either local part (‘jb’ or ‘joe.bloggs’) gets processed once by
each router and so ends up as it was originally. If ‘jb’ is the real mailbox name, mail to ‘jb’ gets
delivered (having been turned into ‘joe.bloggs’ by the .forward file and back to ‘jb’ by the alias),
but mail to ‘joe.bloggs’ fails. Setting check_ancestor on the redirect router that handles the
.forward file prevents it from turning ‘jb’ back into ‘joe.bloggs’ when that was the original address.
See also the repeat_use option below.

check_group Type: boolean Default: see below

When the file option is used, the group owner of the file is checked only when this option is set.
The permitted groups are those listed in the owngroups option, together with the user ’s default
group if check_local_user is set. If the file has the wrong group, routing is deferred. The default
setting for this option is true if check_local_user is set and the modemask option permits the
group write bit, or if the owngroups option is set. Otherwise it is false, and no group check occurs.

Exim 4.10 [145] redirect router (21)

check_owner Type: boolean Default: see below

When the file option is used, the owner of the file is checked only when this option is set. If
check_local_user is set, the local user is permitted; otherwise the owner must be one of those listed
in the owners option. The default value for this option is true if check_local_user or owners is set.
Otherwise the default is false, and no owner check occurs.

data Type: string† Default: unset

This option is mutually exclusive with file. One or other of them must be set, but not both. The
contents of data are expanded, and then used as the list of forwarding items, or as a set of filtering
instructions. If the expansion is forced to fail, or the result is an empty string or a string that has no

 effect (consists entirely of comments), the router declines.

When filtering instructions are used, the string must begin with ‘#Exim filter ’, and all comments in
the string, including this initial one, must be terminated with newline characters. For example:

data = #Exim filter\n\
if $h_to: contains Exim then save $home/mail/exim endif

If you are reading the data from a database where newlines cannot be included, you can use the
${sg} expansion item to turn the escape string of your choice into a newline.

directory_transport Type: string† Default: unset

A redirect router sets up a direct delivery to a directory when a path name ending with a slash is
specified as a new ‘address’. The transport used is specified by this option, which, after expansion,
must be the name of a configured transport. This should normally be an appendfile transport.

file Type: string† Default: unset

This option specifies the name of a file that contains the redirection data. It is mutually exclusive
with the data option. The string is expanded before use; if the expansion is forced to fail, the router
declines. Other expansion failures cause delivery to be deferred. The result of a successful expan-
sion must be an absolute path. The entire file is read and used as the redirection data. If the data is
an empty string or a string that has no effect (consists entirely of comments), the router declines.

If the attempt to open the file fails with a ‘does not exist’ error, Exim runs a check on the
containing directory. If the directory does not appear to exist, delivery is deferred. This can happen
when users’ .forward files are in NFS-mounted directories, and there is a mount problem. If the
containing directory does exist, but the file does not, the router declines.

file_transport Type: string† Default: unset

A redirect router sets up a direct delivery to a file when a path name not ending in a slash is
specified as a new ‘address’. The transport used is specified by this option, which, after expansion,
must be the name of a configured transport. This should normally be an appendfile transport. When
it is running, the file name is in $address_file.

forbid_blackhole Type: boolean Default: false

If this option is true, the :blackhole: item may not appear in a redirection list.

forbid_file Type: boolean Default: false

If this option is true, this router may not generate a new address which specifies delivery to a local
file or directory, either from a filter or from a conventional forward file. This option is forced to be
true if one_time is set.

forbid_filter_existstest Type: boolean Default: false

If this option is true, string expansions in filters are not allowed to make use of the exists condition.

Exim 4.10 [146] redirect router (21)

forbid_filter_logwrite Type: boolean Default: false

If this option is true, use of the logging facility in filters is not permitted. Logging is in any case
available only if the filter is being run under some unprivileged uid (which is normally the case for
ordinary users’ .forward files).

forbid_filter_lookup Type: boolean Default: false

If this option is true, string expansions in filter files are not allowed to make use of lookup items.

forbid_filter_perl Type: boolean Default: false

This option is available only if Exim is built with embedded Perl support. If it is true, string
expansions in filter files are not allowed to make use of the embedded Perl support.

forbid_filter_readfile Type: boolean Default: false

If this option is true, string expansions in filter files are not allowed to make use of readfile items.

forbid_filter_reply Type: boolean Default: false

If this option is true, this router may not generate an automatic reply message. Automatic replies
can be generated only from filter files, not from traditional forward files. This option is forced to be
true if one_time is set.

forbid_filter_run Type: boolean Default: false

If this option is true, string expansions in filter files are not allowed to make use of run items.

forbid_include Type: boolean Default: false

If this option is true, items of the form

:include:<path name>

are not permitted in non-filter redirection lists.

forbid_pipe Type: boolean Default: false

If this option is true, this router may not generate a new address which specifies delivery to a pipe,
either from a filter or from a conventional forward file. This option is forced to be true if one_time
is set.

hide_child_in_errmsg Type: boolean Default: false

If this option is true, it prevents Exim from quoting a child address if it generates a bounce or delay
message for it. Instead it says ‘an address generated from <the top level address>’. Of course, this
applies only to bounces generated locally. If a message is forwarded to another host, its bounce may
well quote the generated address.

ignore_eacces Type: boolean Default: false

If this option is set and an attempt to open a redirection file yields the EACCES error (permission
denied), the redirect router behaves as if the file did not exist.

ignore_enotdir Type: boolean Default: false

If this option is set and an attempt to open a redirection file yields the ENOTDIR error (something on
the path is not a directory), the redirect router behaves as if the file did not exist.

include_directory Type: string Default: unset

If this option is set, the path names of any :include: items in a redirection list must start with this
 directory.

Exim 4.10 [147] redirect router (21)

modemask Type: octal integer Default: 022

This specifies mode bits which must not be set for a file specified by the file option. If any of the
forbidden bits are set, delivery is deferred.

one_time Type: boolean Default: false

Sometimes the fact that Exim re-evaluates aliases and reprocesses redirection files each time it tries
to deliver a message causes problems. This is particularly true in the case of mailing lists. If
one_time is set and any addresses generated by the router fail to deliver at the first attempt, the
failing addresses are added to the message as ‘top level’ addresses, and the parent address that
generated them is marked ‘delivered’. Thus, redirection does not happen again at the next delivery
attempt.

Warning 1: This means that any header line addition or removal that is specified by this router
would be lost if delivery did not succeed at the first attempt. For this reason, the headers_add and

 headers_remove generic options are not permitted when one_time is set.

Warning 2: To ensure that the router generates only addresses (as opposed to pipe or file deliveries
or auto-replies) forbid_file, forbid_pipe, and forbid_filter_reply are forced to be true when
one_time is set.

The original top-level address is remembered with each of the generated addresses, and is output in
any log messages. However, any intermediate parent addresses are not recorded. This makes a

 difference to the log only if all_parents log selector is set. It is expected that one_time will
typically be used for mailing lists, where there is normally just one level of expansion.

owners Type: string list Default: unset

This specifies a list of permitted owners for the file specified by file. This list is in addition to the
local user when check_local_user is set. See check_owner above.

owngroups Type: string list Default: unset

This specifies a list of permitted groups for the file specified by file. The list is in addition to the
local user ’s primary group when check_local_user is set. See check_group above.

pipe_transport Type: string† Default: unset

A redirect router sets up a direct delivery to a pipe when a string starting with a vertical bar
character is specified as a new ‘address’. The transport used is specified by this option, which, after
expansion, must be the name of a configured transport. This should normally be a pipe transport.
When the transport is run, the pipe command is in $address_pipe.

qualify_preserve_domain Type: boolean Default: false

If this is set and an unqualified address (one without a domain) is generated, it is qualified with the
domain of the incoming address instead of the global setting in qualify_recipient.

repeat_use Type: boolean Default: true

If this option is set false, the router is skipped for a child address that has any ancestor that was
routed by this router. This test happens before any of the other pre-conditions are tested. Exim’s
default anti-looping rules skip only when the ancestor is the same as the current address. See also
check_ancestor above and the generic redirect_router option.

reply_transport Type: string† Default: unset

A redirect router sets up an automatic reply when a mail or vacation command is used in a filter
file. The transport used is specified by this option, which, after expansion, must be the name of a
configured transport. This should normally be an autoreply transport. Other transports are unlikely
to do anything sensible or useful.

Exim 4.10 [148] redirect router (21)

rewrite Type: boolean Default: true

If this option is set false, addresses generated by the router are not subject to address rewriting.
Otherwise, they are treated like new addresses and are rewritten according to the global rewriting

 rules.

skip_syntax_errors Type: boolean Default: false

If skip_syntax_errors is set, syntactically malformed addresses in non-filter redirection data are
skipped, and each failing address is logged. If syntax_errors_to is set, a message is sent to the
address it defines, giving details of the failures. If syntax_errors_text is set, its contents are
expanded and placed at the head of the error message generated by syntax_errors_to. Usually it is
appropriate to set syntax_errors_to to be the same address as the generic errors_to option. The

 skip_syntax_errors option is often used when handling mailing lists.

If all the addresses in a redirection list are skipped because of syntax errors, the router declines to
handle the original address, and it is passed to the following routers.

If skip_syntax_errors is set when an Exim filter is interpreted, any syntax error in the filter causes
filtering to be abandoned without any action being taken. The incident is logged, and the router
declines to handle the address, so it is passed to the following routers.

skip_syntax_errors can be used to specify that errors in users’ forward lists or filter files should
not prevent delivery. The syntax_errors_to option, used with an address that does not get redirec-
ted, can be used to notify users of these errors, by means of a router like this:

userforward:
driver = redirect
allow_filter

 check_local_user
file = $home/.forward
file_transport = address_file
pipe_transport = address_pipe
reply_transport = address_reply

 no_verify
 skip_syntax_errors

syntax_errors_to = real-$local_part@$domain
syntax_errors_text = \
This is an automatically generated message. An error has\n\
been found in your .forward file. Details of the error are\n\
reported below. While this error persists, you will receive\n\
a copy of this message for every message that is addressed\n\
to you. If your .forward file is a filter file, or if it is\n\
a non-filter file containing no valid forwarding addresses,\n\
a copy of each incoming message will be put in your normal\n\
mailbox. If a non-filter file contains at least one valid\n\
forwarding address, forwarding to the valid addresses will\n\
happen, and those will be the only deliveries that occur.

You also need a router to ensure that local addresses that are prefixed by real- are recognized,
but not forwarded or filtered. For example, you could put this immediately before the userforward

 router:

real_localuser:
driver = accept

 check_local_user
local_part_prefix = real-
transport = local_delivery

Exim 4.10 [149] redirect router (21)

syntax_errors_text Type: string† Default: unset

See skip_syntax_errors above.

syntax_errors_to Type: string Default: unset

See skip_syntax_errors above.

Exim 4.10 [150] redirect router (21)

22. Environment for running local transports

Local transports handle deliveries to files and pipes. (The autoreply transport can be thought of as
similar to a pipe.) Exim always runs transports in subprocesses, under specified uids and gids. Typical
deliveries to local mailboxes run under the uid and gid of the local user.

Exim also sets a specific current directory while running the transport; for some transports a home
directory setting is also relevant. The pipe transport is the only one which sets up environment
variables; see section 28.3 for details.

The values used for the uid, gid, and the directories may come from several different places. In many
cases, the router that handles the address associates settings with that address as a result of its
check_local_user, group, or user options. However, values may also be given in the transport’s own
configuration, and these override anything that comes with the address.

22.1 Uids and gids

All transports have the options group and user. If group is set, it overrides any group that may be set
in the address, even if user is not set. This makes it possible, for example, to run local mail delivery
under the uid of the recipient, but in a special group. For example:

group_delivery:
driver = appendfile
file = /var/spool/mail/$local_part
group = mail

If user is set for a transport, its value overrides what is set in the address. If user is non-numeric and
group is not set, the gid associated with the user is used. If user is numeric, group must be set.

When the uid is taken from the transport’s configuration, the initgroups() function is called for the
groups associated with that uid if the initgroups option is set for the transport. When the uid is not
specified by the transport, but is associated with the address by a router, the option for calling
initgroups() is taken from the router configuration.

The pipe transport contains the special option pipe_as_creator. If this is set and user is not set, the
uid of the process that called Exim to receive the message is used, and if group is not set, the
corresponding original gid is also used.

22.2 Current and home directories

Routers may set current and home directories for local transports by means of the
transport_current_directory and transport_home_directory options. When check_local_user is set
for a router, the home directory value defaults to the user ’s home directory. However, transports can
override the values set by the router by means of the current_directory and home_directory options.

If neither the router nor the transport sets a current directory, Exim uses the value of the home
directory, if it is set. Otherwise it sets the current directory to / before running a local transport.

22.3 Expansion variables derived from the address

Normally a local delivery is handling a single address, and in that case the variables such as $domain
and $local_part are set during local deliveries. However, in some circumstances more than one
address may be handled at once (for example, while writing batch SMTP for onward transmission by
some other means). In this case, the variables associated with the local part are never set, $domain is
set only if all the addresses have the same domain, and $original_domain is never set.

Exim 4.10 [151] local transport environment (22)

23. Generic options for transports

The following generic options apply to all transports:

body_only Type: boolean Default: false

If this option is set, the message’s headers are not transported. It is mutually exclusive with
 headers_only. If it is used with the appendfile or pipe transports, the settings of message_prefix

and message_suffix should be checked, because this option does not automatically suppress them.

current_directory Type: string† Default: unset

This specifies the current directory that is to be set while running the transport, overriding any value
that may have been set by the router.

debug_print Type: string† Default: unset

If this option is set and debugging is enabled (see the -d command line option), the string is
expanded and included in the debugging output when the transport is run. This is to help with
checking out the values of variables and so on when debugging driver configurations. For example,
if a headers_add option is not working properly, debug_print could be used to output the
variables it references. A newline is added to the text if it does not end with one.

delivery_date_add Type: boolean Default: false

If this option is true, a Delivery-date: header is added to the message. This gives the actual time the
delivery was made. As this is not a standard header, Exim has a configuration option

 (delivery_date_remove) which requests its removal from incoming messages, so that delivered
messages can safely be resent to other recipients.

driver Type: string Default: unset

This specifies which of the available transport drivers is to be used. There is no default, and this
option must be set for every transport.

envelope_to_add Type: boolean Default: false

If this option is true, an Envelope-to: header is added to the message. This gives the original
address(es) in the incoming envelope that caused this delivery to happen. More than one address
may be present if the transport is configured to handle several addresses at once, or if more than
one original address was redirected to the same final address. As this is not a standard header, Exim
has a configuration option (envelope_to_remove) which requests its removal from incoming mess-
ages, so that delivered messages can safely be resent to other recipients.

group Type: string Default: Exim group

This option specifies a gid for running the transport process, overriding any value that the router
supplies, and also overriding any value associated with user (see below).

headers_add Type: string† Default: unset

This option specifies a string of text which is expanded and added to the header portion of a
message as it is transported. If the result of the expansion is an empty string, or if the expansion is
forced to fail, no action is taken. Other expansion failures are treated as errors and cause the
delivery to be deferred. The expanded string should be in the form of one or more RFC 2822
header lines, separated by newlines (coded as ‘\n’), for example:

headers_add = X-added: this is a header added at $tod_log\n\
X-added: this is another

Exim does not check the syntax of these added headers. A newline is supplied at the end if one is
not present. The text is added at the end of any existing headers. If you include a blank line within
the string, you can subvert this facility into adding text at the start of the message’s body. This is

Exim 4.10 [152] generic transport options (23)

not recommended. Additional headers can also be specified by routers. See chapter 14 and section
 43.13.

headers_only Type: boolean Default: false

If this option is set, the message’s body is not transported. It is mutually exclusive with body_only.
If it is used with the appendfile or pipe transports, the settings of message_prefix and
message_suffix should be checked, since this option does not automatically suppress them.

headers_remove Type: string† Default: unset

This option is expanded; the result must consist of a colon-separated list of header names, not
including the terminating colon, for example:

headers_remove = return-receipt-to:acknowledge-to

Any existing headers matching those names are not included in any message that is transmitted by
the transport. If there are multiple instances of a header, they are all removed. However, added
headers may have these names. Thus it is possible to replace a header by specifying it in

 headers_remove and supplying the replacement in headers_add. Headers to be removed can also
be specified by routers. See chapter 14 and section 43.13.

headers_rewrite Type: string Default: unset

This option allows addresses in header lines to be rewritten at transport time, that is, as the message
is being copied to its destination. The contents of the option are a colon-separated list of rewriting
rules. Each rule is in exactly the same form as one of the general rewriting rules that are applied
when a message is received. These are described in chapter 30. For example,

headers_rewrite = a@b c@d f : \
x@y w@z

changes a@b into c@d in From: header lines, and x@y into w@z in all address-bearing header
lines. The rules are applied to the header lines just before they are written out at transport time, so
they affect only those copies of the message that pass through the transport. However, only the

 message’s original header lines, and any that were added by a system filter, are rewritten. If a router
or transport adds header lines, they are not affected by this option. These rewriting rules are not
applied to the envelope. You can change the return path using return_path, but you cannot change
envelope recipients at this time.

home_directory Type: string† Default: unset

This option specifies a home directory setting for the transport, overriding any value that may be set
by the router. The home directory is placed in $home while expanding the transport’s private
options.

initgroups Type: boolean Default: false

If this option is true and the uid for the delivery process is provided by the transport, the
 initgroups() function is called when running the transport to ensure that any additional groups

associated with the uid are set up.

message_size_limit Type: string† Default: 0

This option controls the size of messages passed through the transport. It is expanded before use;
any expansion failure causes delivery to be deferred. The result of the expansion must be a
sequence of digits, optionally followed by K or M. If its value is greater than zero and the size of a
message exceeds the limit, the address is failed. If there is any chance that the resulting bounce
message could be routed to the same transport, you should ensure that return_size_limit is less
than the transport’s message_size_limit, as otherwise the bounce message will fail to get delivered.

Exim 4.10 [153] generic transport options (23)

retry_use_local_part Type: boolean Default: see below

When a delivery suffers a temporary failure, a retry record is created in Exim’s hints database. For
remote deliveries, the key for the retry record is based on the name and/or IP address of the failing
remote host. For local deliveries, the key is normally the entire address, including both the local
part and the domain. This is suitable for most common cases of local delivery temporary failure –
for example, exceeding a mailbox quota should delay only deliveries to that mailbox, not to the
whole domain.

However, in some special cases you may want to treat a temporary local delivery as a failure
associated with the domain, and not with a particular local part. (For example, if you are storing all
mail for some domain in files.) You can do this by setting retry_use_local_part false.

For all the local transports, its default value is true. For remote transports, the default value is false
for tidiness, but changing the value has no effect on a remote transport in the current

 implementation.

return_path Type: string† Default: unset

If this option is set, the string is expanded at transport time and replaces the existing return path
(envelope sender) value. The expansion can refer to the existing value via $return_path. If the
expansion is forced to fail, no replacement occurs; if it fails for another reason, delivery is deferred.
This option can be used to support VERP (Variable Envelope Return Paths) – see chapter 42.

return_path_add Type: boolean Default: false

If this option is true, a Return-path: header is added to the message. Although the return path is
normally available in the prefix line of BSD mailboxes, this is commonly not displayed by MUAs,
and so the user does not have easy access to it.

RFC 2821 states that the Return-path: header is added to a message ‘when the delivery SMTP
server makes the final delivery’. This implies that this header should not be present in incoming
messages. Exim has a configuration option, return_path_remove, which requests removal of this
header from incoming messages, so that delivered messages can safely be resent to other recipients.

shadow_condition Type: string† Default: unset

See shadow_transport below.

shadow_transport Type: string Default: unset

A local transport may set the shadow_transport option to the name of another local transport.
Shadow remote transports are not supported.

Whenever a delivery to the main transport succeeds, and either shadow_condition is unset, or its
expansion does not result in a forced expansion failure or the empty string or one of the strings ‘0’
or ‘no’ or ‘false’, the message is also passed to the shadow transport, with the same delivery
address or addresses. However, the result of the shadow transport is discarded and does not affect
the subsequent processing of the message. Only a single level of shadowing is provided; the
shadow_transport option is ignored on any transport when it is running as a shadow. Options
concerned with output from pipes are also ignored.

The log line for the successful delivery has an item added on the end, of the form

ST=<shadow transport name>

If the shadow transport did not succeed, the error message is put in parentheses afterwards.

Shadow transports can be used for a number of different purposes, including keeping more detailed
log information than Exim normally provides, and implementing automatic acknowledgement poli-
cies based on message headers that some sites insist on.

Exim 4.10 [154] generic transport options (23)

transport_filter Type: string† Default: unset

This option sets up a filtering (in the Unix shell sense) process for messages at transport time. It
should not be confused with mail filtering as set up by individual users or via a system filter.

When the message is about to be written out, the command specified by transport_filter is started
up in a separate process, and the entire message, including the headers, is passed to it on its
standard input (this in fact is done from a third process, to avoid deadlock). This happens before
any SMTP-specific processing, such as turning ‘\n’ into ‘\r\n’ and escaping lines beginning with a
dot, and also before any processing implied by the settings of check_string and escape_string in
the appendfile or pipe transports.

The filter ’s standard output is read and written to the message’s destination. The filter can perform
any transformations it likes, but of course should take care not to break RFC 2822 syntax. A
demonstration Perl script is provided in util/transport-filter.pl; this makes a few arbitrary modifi-
cations just to show the possibilities. Exim does not check the result, except to test for a final
newline when SMTP is in use. All messages transmitted over SMTP must end with a newline, so
Exim supplies one if it is missing.

A problem might arise if the filter increases the size of a message that is being sent down an SMTP
channel. If the receiving SMTP server has indicated support for the SIZE parameter, Exim will have
sent the size of the message at the start of the SMTP session. If what is actually sent is substantially
more, the server might reject the message. This can be worked round by setting the size_addition
option on the smtp transport, either to allow for additions to the message, or to disable the use of
SIZE altogether.

The value of the option is the command string for starting up the filter, which is run directly from
Exim, not under a shell. The string is parsed by Exim in the same way as a command string for the
pipe transport: Exim breaks it up into arguments and then expands each argument separately. The
special argument $pipe_addresses is replaced by a number of arguments, one for each address that
applies to this delivery. (This isn’t an ideal name for this feature here, but as it was already
implemented for the pipe transport, it seemed sensible not to change it.)

The expansion variables $host and $host_address are available when the transport is a remote one.
They contain the name and IP address of the host to which the message is being sent. For example:

transport_filter = /some/directory/transport-filter.pl \
$host $host_address $sender_address $pipe_addresses

The filter process is run under the same uid and gid as the normal delivery. For remote deliveries
this is the Exim uid/gid by default.

If a transport filter is set on an autoreply transport, the original message is passed through the filter
as it is being copied into the newly generated message, which happens if the return_message
option is set.

user Type: string Default: Exim user

This option specifies the user under whose uid the delivery process is to be run, overriding any uid
that may have been set by the router. If the user is given as a name, the uid is looked up from the
password data, and the associated group is taken as the value of the gid to be used if the group
option is not set.

For remote transports, you should leave this option unset unless you really are sure you know what
you are doing. When a remote transport is running, it needs to be able to access Exim’s hints
databases, because each host may have its own retry data.

Exim 4.10 [155] generic transport options (23)

24. Address batching in local transports

The only remote transport (smtp) is normally configured to handle more than one address at a time, so
that when several addresses are routed to the same remote host, just one copy of the message is sent.
Local transports, however, normally handle one address at a time. That is, a separate instance of the
transport is run for each address that is routed to the transport. A separate copy of the message is
delivered each time.

In special cases, it may be desirable to handle several addresses at once in a local transport, for
example:

• In an appendfile transport, when storing messages in files for later delivery by some other
means, a single copy of the message with multiple recipients saves space.

• In an lmtp transport, when delivering over ‘local SMTP’ to some process, a single copy saves
time, and is the normal way LMTP is expected to work.

• In a pipe transport, when passing the message to some other delivery mechanism such as UUCP,
multiple recipients may be acceptable.

These three transports (appendfile, lmtp, and pipe) all have the same options for controlling multiple
(‘batched’) deliveries, namely batch_max and batch_id. To save repeating the information for each
transport, these options are described here.

The batch_max option specifies the maximum number of addresses that can be delivered together in a
single run of the transport. Its default value is one. When more than one address is routed to a
transport that has a batch_max value greater than one, the addresses are delivered in a batch (that is,
in a single run of the transport), subject to certain conditions:

• If any of the transport’s options contain a reference to $local_part, no batching is possible.

• If any of the transport’s options contain a reference to $domain, only addresses with the same
domain are batched.

• If batch_id is set, it is expanded for each address, and only those addresses with the same
expanded value are batched. This allows you to specify customized batching conditions.

• Batched addresses must also have the same errors address (where to send delivery errors), the
same header additions and removals, the same user and group for the transport, and if a host list
is present, the first host must be the same.

If the generic envelope_to_add option is set for the transport, the Envelope-to: header that is added to
the message contains all the addresses that are batched together.

The appendfile and pipe transports have an option called use_bsmtp, which causes them to deliver
the message in ‘batched SMTP’ format, with the envelope represented as SMTP commands. The
check_string and escape_string options are forced to the values

check_string = "."
escape_string = ".."

when batched SMTP is in use. A full description of the batch SMTP mechanism is given in section
42.8. The lmtp transport does not have a use_bsmtp option, because it always delivers using the
SMTP protocol.

If you are not using BSMTP, but are using a pipe transport, you can include $pipe_addresses as part
of the command. This is not a true variable; it is a bit of magic that causes each of the recipient
addresses to be inserted into the command as a separate argument. This provides a way of accessing
all the addresses that are being delivered in the batch.

Exim 4.10 [156] address batching (24)

If you are using a batching appendfile transport without use_bsmtp, the only way to preserve the
recipient addresses is to set the envelope_to_add option. This causes an Envelope-to: header line to be
added to the message, containing all the recipients.

Exim 4.10 [157] address batching (24)

25. The appendfile transport

The appendfile transport delivers a message by appending it to a file in the local file system, or by
creating an entirely new file in a specified directory. Single files to which messages are appended can
be in the traditional Unix mailbox format, or optionally in the MBX format supported by the Pine
MUA and University of Washington IMAP daemon, inter alia. When each message is being delivered
as a separate file, ‘maildir’ format can optionally be used to give added protection against failures that
happen part-way through the delivery. A third form of separate-file delivery known as ‘mailstore’ is
also supported. For all file formats, Exim attempts to create as many levels of directory as necessary,
provided that create_directory is set.

The code for the optional formats is not included in the Exim binary by default. It is necessary to set
SUPPORT_MBX, SUPPORT_MAILDIR and/or SUPPORT_MAILSTORE in Local/Makefile to have the appropriate
code included.

Exim recognises system quota errors, and generates an appropriate message. Exim also supports its
own quota control within the transport, for use when the system facility is unavailable or cannot be
used for some reason.

If there is an error while appending to a file (for example, quota exceeded or partition filled), Exim
attempts to reset the file’s length and last modification time back to what they were before. If there is
an error while creating an entirely new file, the new file is removed.

appendfile is most commonly used for local deliveries to users’ mailboxes. However, it can also be
used as a pseudo-remote transport for putting messages into files for remote delivery by some means
other than Exim. ‘Batch SMTP’ format is often used in this case (see the use_bsmtp option).
appendfile is also used for delivering messages to files or directories whose names are obtained
directly from alias, forwarding, or filtering operations. In these cases, $local_part contains the local
part that was aliased or forwarded, while $address_file contains the name of the file or directory.

Before appending to a file, a number of security checks are made, and the file is locked. A detailed
description is given below, after the list of private options.

25.1 Private options for appendfile

allow_fifo Type: boolean Default: false

Setting this option permits delivery to named pipes (FIFOs) as well as to regular files. If no process
is reading the named pipe at delivery time, the delivery is deferred.

allow_symlink Type: boolean Default: false

By default, appendfile will not deliver if the path name for the file is that of a symbolic link.
Setting this option relaxes that constraint, but there are security issues involved in the use of
symbolic links. Be sure you know what you are doing if you set this. Details of exactly what this
option affects are included in the discussion which follows this list of options.

batch_id Type: string† Default: unset

See the description of local delivery batching in chapter 24.

batch_max Type: integer Default: 1

See the description of local delivery batching in chapter 24.

check_group Type: boolean Default: false

When this option is set, the group owner of the file defined by the file option is checked to see that
it is the same as the group under which the delivery process is running. The default setting is false
because the default file mode is 0600, which means that the group is irrelevant.

Exim 4.10 [158] appendfile transport (25)

check_owner Type: boolean Default: true

When this option is set, the owner of the file defined by the file option is checked to ensure that it
is the same as the user under which the delivery process is running.

check_string Type: string Default: see below

As appendfile writes the message, the start of each line is tested for matching check_string, and if
it does, the initial matching characters are replaced by the contents of escape_string. The value of
check_string is a literal string, not a regular expression, and the case of any letters it contains is

 significant.

If use_bsmtp is set the values of check_string and escape_string are forced to ‘.’ and ‘..’
 respectively, and any settings in the configuration are ignored. Otherwise, they default to ‘From ’

and ‘>From ’ when the file option is set, and unset when the directory option is set.

The default settings, along with message_prefix and message_suffix, are suitable for traditional
‘BSD’ mailboxes, where a line beginning with ‘From ’ indicates the start of a new message. All
four options need changing if another format is used. For example, to deliver to mailboxes in
MMDF format:

check_string = "\1\1\1\1\n"
escape_string = "\1\1\1\1 \n"
message_prefix = "\1\1\1\1\n"
message_suffix = "\1\1\1\1\n"

create_directory Type: boolean Default: true

When this option is true, Exim attempts to create any missing superior directories for the file that it
is about to write. A created directory’s mode is given by the directory_mode option.

create_file Type: string Default: anywhere

This option constrains the location of files and directories that are created by this transport. It
applies to files defined by the file option and directories defined by the directory option. In the case
of maildir delivery, it applies to the top level directory, not the maildir directories beneath.

The option must be set to one of the words ‘anywhere’, ‘inhome’, or ‘belowhome’. In the second
and third cases, a home directory must have been set for the transport. This option is not useful
when an explicit file name is given for normal mailbox deliveries. It is intended for the case when
file names are generated from users’ .forward files. These are usually handled by an appendfile
transport called address_file. See also file_must_exist.

directory Type: string† Default: unset

This option is mutually exclusive with the file option. When it is set, the string is expanded, and the
message is delivered into a new file or files in or below the given directory, instead of being
appended to a single mailbox file. A number of different formats are provided (see maildir_format
and mailstore_format), and see section 25.3 for further details of this form of delivery.

directory_file Type: string†
Default: q${base62:$tod_epoch}-$inode

When directory is set, but neither maildir_format nor mailstore_format is set, appendfile
delivers each message into a file whose name is obtained by expanding this string. The default
value generates a unique name from the current time, in base 62 form, and the inode of the file. The
variable $inode is available only when expanding this option.

directory_mode Type: octal integer Default: 0700

If appendfile creates any directories as a result of the create_directory option, their mode is
specified by this option.

Exim 4.10 [159] appendfile transport (25)

escape_string Type: string Default: see description

See check_string above.

file Type: string† Default: unset

This option is mutually exclusive with the directory option. It should not be set when appendfile is
being used to deliver to files whose names are obtained from forwarding, filtering, or aliasing
address expansions (by default under the instance name address_file), because in those cases the
file name is already associated with the address. If file is set under these circumstances, its value is
ignored.

Otherwise, the file option must be set unless the directory option is set. Either use_fcntl_lock or
use_lockfile (or both) must be set with file. If you are using more than one host to deliver over
NFS into the same mailboxes, you should always use lock files.

The string value is expanded for each delivery, and must yield an absolute path. The most common
settings of this option are variations on one of these examples:

file = /var/spool/mail/$local_part
file = /home/$local_part/inbox
file = $home/inbox

In the first example, all deliveries are done into the same directory. If Exim is configured to use
lock files (see use_lockfile below) it must be able to create a file in the directory, so the ‘sticky’ bit
must be turned on for deliveries to be possible, or alternatively the group option can be used to run
the delivery under a group id which has write access to the directory.

file_format Type: string Default: unset

This option requests the transport to check the format of an existing file before adding to it. The
check consists of matching a specific string at the start of the file. The value of the option consists
of an even number of colon-separated strings. The first of each pair is the test string, and the second
is the name of a transport. If the transport associated with a matched string is not the current
transport, control is passed over to the other transport. For example, suppose the standard
local_delivery transport has this added to it:

file_format = "From : local_delivery :\
\1\1\1\1\n : local_mmdf_delivery"

Mailboxes that begin with ‘From’ are still handled by this transport, but if a mailbox begins with
four binary ones followed by a newline, control is passed to a transport called local_mmdf_

 delivery, which presumably is configured to do the delivery in MMDF format. If a mailbox does
not exist or is empty, it is assumed to match the current transport. If the start of a mailbox doesn’t
match any string, or if the transport named for a given string is not defined, delivery is deferred.

file_must_exist Type: boolean Default: false

If this option is true, the file specified by the file option must exist, and an error occurs if it does
not. Otherwise, it is created if it does not exist.

lock_fcntl_timeout Type: time Default: 0s

By default, the appendfile transport uses non-blocking calls to fcntl() when locking an open
mailbox file. If the call fails, the delivery process sleeps for lock_interval and tries again, up to

 lock_retries times. Non-blocking calls are used so that the file is not kept open during the wait for
the lock; the reason for this is to make it as safe as possible for deliveries over NFS in the case
when processes might be accessing an NFS mailbox without using a lock file. This should not be
done, but misunderstandings and hence misconfigurations are not unknown.

On a busy system, however, the performance of a non-blocking lock approach is not as good as
using a blocking lock with a timeout. In this case, the waiting is done inside the system call, and

 Exim’s delivery process acquires the lock and can proceed as soon as the previous lock holder
releases it.

Exim 4.10 [160] appendfile transport (25)

If lock_fcntl_timeout is set to a non-zero time, blocking locks, with that timeout, are used. There
may still be some retrying: the maximum number of retries is

(lock_retries * lock_interval) / lock_fcntl_timeout

rounded up to the next whole number. In other words, the total time during which appendfile is
trying to get a lock is roughly the same, unless lock_fcntl_timeout is set very large.

You should consider setting this option if you are getting a lot of delayed local deliveries because
of errors of the form

failed to lock mailbox /some/file (fcntl)

lock_interval Type: time Default: 3s

This specifies the time to wait between attempts to lock the file. See below for details of locking.

lock_retries Type: integer Default: 10

This specifies the maximum number of attempts to lock the file. A value of zero is treated as 1. See
below for details of locking.

lockfile_mode Type: octal integer Default: 0600

This specifies the mode of the created lock file, when a lock file is being used (see use_lockfile).

lockfile_timeout Type: time Default: 30m

When a lock file is being used (see use_lockfile), if a lock file already exists and is older than this
value, it is assumed to have been left behind by accident, and Exim attempts to remove it.

maildir_format Type: boolean Default: false

If this option is set with the directory option, the delivery is into a new file in the ‘maildir ’ format
that is used by other mail software. The option is available only if SUPPORT_MAILDIR is present in

 Local/Makefile. See section 25.3 below for further details.

maildir_retries Type: integer Default: 10

This option specifies the number of times to retry when writing a file in ‘maildir’ format. See
section 25.3 below.

maildir_tag Type: string† Default: unset

This option applies only to deliveries in maildir format, and is described in section 25.3 below.

mailstore_format Type: boolean Default: false

If this option is set with the directory option, the delivery is into two new files in ‘mailstore’
format. The option is available only if SUPPORT_MAILSTORE is present in Local/Makefile. See section
25.3 below for further details.

mailstore_prefix Type: string† Default: unset

This option applies only to deliveries in mailstore format, and is described in section 25.3 below.

mailstore_suffix Type: string† Default: unset

This option applies only to deliveries in mailstore format, and is described in section 25.3 below.

mbx_format Type: boolean Default: false

This option is available only if Exim has been compiled with SUPPORT_MBX set in Local/Makefile. If
mbx_format is set with the file option, the message is appended to the mailbox file in MBX format
instead of traditional Unix format. This format is supported by Pine4 and its associated IMAP and
POP daemons, by means of the c-client library that they all use. The message_prefix and
message_suffix options are not automatically changed by the use of mbx_format; they should
normally be set empty.

Exim 4.10 [161] appendfile transport (25)

If none of the locking options are mentioned in the configuration, use_mbx_lock is assumed and
the other locking options default to false. It is possible to specify the other kinds of locking with

 mbx_format, but use_fcntl_lock and use_mbx_lock are mutually exclusive. MBX locking
interworks with c-client, providing for shared access to the mailbox. It should not be used if any
program that does not use this form of locking is going to access the mailbox, nor should it be used
if the mailbox file is NFS mounted, because it works only when the mailbox is accessed from a
single host.

If you set use_fcntl_lock with an MBX-format mailbox, you cannot use the standard version of c-
 client, because as long as it has a mailbox open (this means for the whole of a Pine or IMAP

session), Exim will not be able to append messages to it.

message_prefix Type: string† Default: see below

The string specified here is expanded and output at the start of every message. The default is unset
unless file is specified and use_bsmtp is not set, in which case it is:

message_prefix = "From ${if def:return_path{$return_path}\
{MAILER-DAEMON}} $tod_bsdinbox\n"

message_suffix Type: string† Default: see below

The string specified here is expanded and output at the end of every message. The default is unset
unless file is specified and use_bsmtp is not set, in which case it is a single newline character. The

 suffix can be suppressed by setting

message_suffix =

mode Type: octal integer Default: 0600

If the output file is created, it is given this mode. If it already exists and has wider permissions,
they are reduced to this mode. If it has narrower permissions, an error occurs unless mode_fail_

 narrower is false. However, if the delivery is the result of a save command in a filter file specifing
a particular mode, the mode of the output file is always forced to take that value, and this option is
ignored.

mode_fail_narrower Type: boolean Default: true

This option applies in the case when an existing mailbox file has a narrower mode than that
specified by the mode option. If mode_fail_narrower is true, the delivery is deferred (‘mailbox has
the wrong mode’); otherwise Exim continues with the delivery attempt, using the existing mode of
the file.

notify_comsat Type: boolean Default: false

If this option is true, the comsat daemon is notified after every successful delivery to a user
mailbox. This is the daemon that notifies logged on users about incoming mail.

quota Type: string† Default: unset

This option imposes a limit on the size of the file to which Exim is appending, or to the total space
used in the directory tree when the directory option is set. In the latter case, computation of the
space used is expensive, because all the files in the directory (and any sub-directories) have to be
individually inspected and their sizes summed (but see quota_size_regex below). Also, there is no
interlock against two simultaneous deliveries into a multi-file mailbox. For single-file mailboxes, of
course, an interlock is a necessity.

A file’s size is take as its used value. Because of blocking effects, this may be a lot less than the
actual amount of disc space allocated to the file. If the sizes of a number of files are being added
up, the rounding effect can become quite noticeable, especially on systems that have large block
sizes. Nevertheless, it seems best to stick to the used figure, because this is the obvious value which
users understand most easily.

The value of the option is expanded, and must then be a numerical value (decimal point allowed),
optionally followed by one of the letters K or M. A value of zero unsets the option. The expansion

Exim 4.10 [162] appendfile transport (25)

happens while Exim is running as root, before it changes uid for the delivery. This means that files
which are inaccessible to the end user can be used to hold quota values that are looked up in the
expansion. When delivery fails because this quota is exceeded, the handling of the error is as for
system quota failures.

By default, Exim’s quota checking mimics system quotas, and restricts the mailbox to the specified
maximum size, though the value is not accurate to the last byte, owing to separator lines and
additional headers that may get added during message delivery. When a mailbox is nearly full, large
messages may get refused even though small ones are accepted, because the size of the current
message is added to the quota when the check is made. This behaviour can be changed by setting
quota_is_inclusive false. When this is done, the check for exceeding the quota does not include the
current message. Thus, deliveries continue until the quota has been exceeded; thereafter, no further
messages are delivered. See also quota_warn_threshold.

quota_filecount Type: string† Default: 0

This option applies when the directory option is set. It limits the total number of files in the
directory (compare the inode limit in system quotas). It can only be used if quota is also set. The
value is expanded; an expansion failure causes delivery to be deferred.

quota_is_inclusive Type: boolean Default: true

See quota above.

quota_size_regex Type: string Default: unset

This option applies when one of the delivery modes that writes a separate file for each message is
being used. When Exim wants to find the size of one of these files in order to test the quota, it first
checks quota_size_regex. If this is set to a regular expression that matches the file name, and it
captures one string, that string is interpreted as a representation of the file’s size. The value of

 quota_size_regex is not expanded.

This feature is useful only when users have no shell access to their mailboxes – otherwise they
could defeat the quota simply by renaming the files. This facility can be used with maildir
deliveries, by setting maildir_tag to add the file length to the file name. For example:

maildir_tag = ,S=$message_size
quota_size_regex = ,S=(\d+)

The regular expression should not assume that the length is at the end of the file name (even though
maildir_tag puts it there) because maildir MUAs sometimes add other information onto the ends of
message file names.

quota_warn_message Type: string† Default: see below

See below for the use of this option. If it is not set when quota_warn_threshold is set, it
defaults to

quota_warn_message = "\
To: $local_part@$domain\n\
Subject: Your mailbox\n\n\
This message is automatically created \
by mail delivery software.\n\n\
The size of your mailbox has exceeded \
a warning threshold that is\n\
set by the system administrator.\n"

quota_warn_threshold Type: string† Default: 0

This option is expanded in the same way as quota (see above). If the resulting value is greater than
zero, and delivery of the message causes the size of the file or total space in the directory tree to
cross the given threshold, a warning message is sent. If quota is also set, the threshold may be
specified as a percentage of it by following the value with a percent sign. For example:

Exim 4.10 [163] appendfile transport (25)

quota = 10M
quota_warn_threshold = 75%

If quota is not set, a setting of quota_warn_threshold that ends with a percent sign is ignored.

The warning message itself is specified by the quota_warn_message option, and it must start with
a To: header line containing the recipient(s). A Subject: line should also normally be supplied. The
quota option does not have to be set in order to use this option; they are independent of one
another except when the threshold is specified as a percentage.

use_bsmtp Type: boolean Default: false

If this option is set true, appendfile writes messages in ‘batch SMTP’ format, with the envelope
sender and recipient(s) included as SMTP commands. If you want to include a leading HELO

command with such messages, you can do so by setting the message_prefix option. See section
42.8 for details of batch SMTP.

use_crlf Type: boolean Default: false

This option causes lines to be terminated with the two-character CRLF sequence (carriage return,
linefeed) instead of just a linefeed character. In the case of batched SMTP, the byte sequence
written to the file is then an exact image of what would be sent down a real SMTP connection.

The contents of the message_prefix and message_suffix options are written verbatim, so must
contain their own carriage return characters if these are needed. In cases where these options have
non-empty defaults, the values end with a single linefeed, so they almost always need to be
changed to end with \r\n if use_crlf is set.

use_fcntl_lock Type: boolean Default: see below

This option controls the use of the fcntl() function to lock a file for exclusive use when a message
is being appended. It is set by default unless use_mbx_lock is set. Otherwise, it should be turned

 off only if you know that all your MUAs use lock file locking. When use_fcntl_lock is off,
use_lockfile must be on if mbx_format is not set.

use_lockfile Type: boolean Default: see below

If this option is turned off, Exim does not attempt to create a lock file when appending to a mailbox
file. In this situation, the only locking is by fcntl(). You should only turn use_lockfile off if you are
absolutely sure that every MUA that is ever going to look at your users’ mailboxes uses fcntl()
rather than a lock file, and even then only when you are not delivering over NFS from more than
one host.

In order to append to an NFS file safely from more than one host, it is necessary to take out a lock
 before opening the file, and the lock file achieves this. Otherwise, even with fcntl() locking, there is

a risk of file corruption.

The use_lockfile option is set by default unless use_mbx_lock is set. It is not possible to turn both
use_lockfile and use_fcntl_lock off, except when mbx_format is set.

use_mbx_lock Type: boolean Default: see below

This option is available only if Exim has been compiled with SUPPORT_MBX set in Local/Makefile.
Setting the option specifies that special MBX locking rules be used. It is set by default if
mbx_format is set and none of the locking options are mentioned in the configuration. The locking
rules are the same as are used by the c-client library that underlies Pine and the IMAP4 and POP
daemons that come with it (see the discussion below). The rules allow for shared access to the
mailbox. However, this kind of locking does not work when the mailbox is NFS mounted.

25.2 Operational details for appending
Before appending to a file, the following preparations are made:

• If the name of the file is /dev/null, no action is taken, and a success return is given.

Exim 4.10 [164] appendfile transport (25)

• If any directories on the file’s path are missing, Exim creates them if the create_directory option
is set. A created directory’s mode is given by the directory_mode option.

• If file_format is set, the format of an existing file is checked. If this indicates that a different
transport should be used, control is passed to that transport.

• If use_lockfile is set, a lock file is built in a way that will work reliably over NFS, as follows:

• Create a ‘hitching post’ file whose name is that of the lock file with the current time,
primary host name, and process id added, by opening for writing as a new file. If this fails
with an access error, delivery is deferred.

• Close the hitching post file, and hard link it to the lock file name.

• If the call to link() succeeds, creation of the lock file has succeeded. Unlink the hitching
post name.

• Otherwise, use stat() to get information about the hitching post file, and then unlink hitching
post name. If the number of links is exactly two, creation of the lock file succeeded but
something (for example, an NFS server crash and restart) caused this fact not to be
communicated to the link() call.

• If creation of the lock file failed, wait for lock_interval and try again, up to lock_retries
times. However, since any program that writes to a mailbox should complete its task very

 quickly, it is reasonable to time out old lock files that are normally the result of user agent
and system crashes. If an existing lock file is older than lockfile_timeout Exim attempts to
unlink it before trying again.

• A call is made to lstat() to discover whether the main file exists, and if so, what its characteristics
are. If lstat() fails for any reason other than non-existence, delivery is deferred.

• If the file does exist and is a symbolic link, delivery is deferred, unless the allow_symlinks
option is set, in which case the ownership of the link is checked, and then stat() is called to find
out about the real file, which is then subjected to the checks below. The check on the top-level
link ownership prevents one user creating a link for another ’s mailbox in a sticky directory,
though allowing symbolic links in this case is definitely not a good idea. If there is a chain of
symbolic links, the intermediate ones are not checked.

• If the file already exists but is not a regular file, or if the file’s owner and group (if the group is
being checked – see check_group above) are different from the user and group under which the
delivery is running, delivery is deferred.

• If the file’s permissions are more generous than specified, they are reduced. If they are insuf-
ficient, delivery is deferred, unless mode_fail_narrower is set false, in which case the delivery is
tried using the existing permissions.

• The file’s inode number is saved, and the file is then opened for appending. If this fails because
the file has vanished, appendfile behaves as if it hadn’t existed (see below). For any other
failures, delivery is deferred.

• If the file is opened successfully, check that the inode number hasn’t changed, that it is still a
regular file, and that the owner and permissions have not changed. If anything is wrong, defer
delivery and freeze the message.

• If the file did not exist originally, defer delivery if the file_must_exist option is set. Otherwise,
check that the file is being created in a permitted directory if the create_file option is set
(deferring on failure), and then open for writing as a new file, with the O_EXCL and O_CREAT

options, except when dealing with a symbolic link (the allow_symlinks option must be set). In
this case, which can happen if the link points to a non-existent file, the file is opened for writing
using O_CREAT but not O_EXCL, because that prevents link following.

• If opening fails because the file exists, obey the tests given above for existing files. However, to
avoid looping in a situation where the file is being continuously created and destroyed, the
exists/not-exists loop is broken after 10 repetitions, and the message is then frozen.

Exim 4.10 [165] appendfile transport (25)

• If opening fails with any other error, defer delivery.

• Once the file is open, unless both use_fcntl_lock and use_mbx_lock are false, it is locked using
 fcntl(). In the former case, an exclusive lock is requested, while in the latter, Exim takes out a

shared lock on the open file, and an exclusive lock on the file whose name is

/tmp/.<device-number>.<inode-number>

using the device and inode numbers of the open mailbox file, in accordance with the MBX
locking rules.

If fcntl() locking fails, there are two possible courses of action, depending on the value of
 lock_fcntl_timeout. If its value is zero, the file is closed, Exim waits for lock_interval, and then

goes back and re-opens it as above and tries to lock it again. This happens up to lock_retries
times, after which the delivery is deferred.

If lock_fcntl_timeout has a value greater than zero, a blocking call to fcntl() with that timeout is
used, so there has already been some waiting involved. Nevertheless, Exim does not give up

 immediately. It retries up to

(lock_retries * lock_interval) / lock_fcntl_timeout

times (rounded up).

At the end of delivery, Exim closes the file (which releases the fcntl() lock) and then deletes the lock
file if one was created.

25.3 Operational details for delivery to a new file
When the directory option is set, each message is delivered into a newly-created file or set of files. No
locking is required while writing the message, so the various locking options of the transport are
ignored. The ‘From’ line that by default separates messages in a single file is not normally needed, nor
is the escaping of message lines that start with ‘From’, and there is no need to ensure a newline at the
end of each message. Consequently, the default values for check_string, message_prefix, and
message_suffix are all unset when directory is set.

There are three different ways in which delivery to individual files can be done, controlled by the
settings of the maildir_format and mailstore_format options. Note that code to support maildir or
mailstore formats is not included in the binary unless SUPPORT_MAILDIR or SUPPORT_MAILSTORE, respect-
ively, is set in Local/Makefile.

In all three cases an attempt is made to create the directory and any necessary sub-directories if they
do not exist, provided that the create_directory option is set (the default). The location of a created
directory can be constrained by setting create_file. A created directory’s mode is given by the
directory_mode option. If creation fails, or if the create_directory option is not set when creation is
required, delivery is deferred.

The three different kinds of ‘single file’ delivery are as follows:

• If neither maildir_format nor mailstore_format is set, a single new file is created directly in the
named directory. For example, when delivering messages into files in batched SMTP format for
later delivery to some host (see section 42.8), a setting such as

directory = /var/bsmtp/$host

might be used. A message is written to a file with a temporary name, which is then renamed
when the delivery is complete. The final name is obtained by expanding the contents of the

 directory_file option.

• If the maildir_format option is true, Exim delivers each message by writing it to a file whose
name is tmp/<time>.<pid>.<host> in the given directory, and then renaming it into the new sub-
directory if all goes well.

Before opening the temporary file, Exim calls stat() on its name. If any response other than
ENOENT (does not exist) is given, it waits 2 seconds and tries again, up to maildir_retries times.

Exim 4.10 [166] appendfile transport (25)

If Exim is required to check a quota setting before a maildir delivery, it looks for a file called
maildirfolder in the maildir directory (alongside new, cur, tmp). If this exists, Exim assumes
the directory is a maildir++ folder directory, which is one level down from the user ’s top level
mailbox directory. This causes it to start at the parent directory instead of the current directory
when calculating the amount of space used.

If maildir_tag is set, the string is expanded for each delivery. This is done after the message has
been written, so that the value of the $message_size variable can be set accurately during the
expansion. If the expansion is forced to fail, the tag is ignored, but a non-forced failure causes
delivery to be deferred. The expanded tag may contain any printing characters except ‘/’. Non-
printing characters in the string are ignored; if the resulting string is empty, it is ignored. If it
starts with an alphanumeric character, a leading colon is inserted.

When the temporary maildir file is renamed into the new sub-directory, the tag is added to its
name. However, if adding the tag takes the length of the name to the point where the test stat()
call fails with ENAMETOOLONG, the tag is dropped and the maildir file is created with no tag. Tags
can be used to encode the size of files in their names; see quota_size_regex above for an

 example.

• If the mailstore_format option is true, each message is written as two files in the given
 directory. A unique base name is constructed from the message id and the current delivery

process, and the files that are written use this base name plus the suffixes .env and .msg. The
.env file contains the message’s envelope, and the .msg file contains the message itself.

During delivery, the envelope is first written to a file with the suffix .tmp. The .msg file is then
written, and when it is complete, the .tmp file is renamed as the .env file. Programs that access
messages in mailstore format should wait for the presence of both a .msg and a .env file before
accessing either of them. An alternative approach is to wait for the absence of a .tmp file.

The envelope file starts with any text defined by the mailstore_prefix option, expanded and
terminated by a newline if there isn’t one. Then follows the sender address on one line, then all
the recipient addresses, one per line. There can be more than one recipient only if the batch_max
option is set greater than one. Finally, mailstore_suffix is expanded and the result appended to
the file, followed by a newline if it does not end with one.

If expansion of mailstore_prefix or mailstore_suffix ends with a forced failure, it is ignored.
Other expansion errors are treated as serious configuration errors, and delivery is deferred.

Exim 4.10 [167] appendfile transport (25)

26. The autoreply transport

The autoreply transport is not a true transport in that it does not cause the message to be transmitted.
Instead, it generates another mail message. It is usually run as the result of mail filtering, a ‘vacation’
message being the standard example. However, it can also be run directly from a router like any other
transport. To reduce the possibility of message cascades, messages created by the autoreply transport
always have empty envelope sender addresses, like bounce messages.

The parameters of the message to be sent can be specified in the configuration by options described
below. However, these are used only when the address passed to the transport does not contain its own
reply information. When the transport is run as a consequence of a mail or vacation command in a
filter file, the parameters of the message are supplied by the filter, and passed with the address. The
transport’s options that define the message are then ignored (so they are not usually set in this case).
The message is specified entirely by the filter or by the transport; it is never built from a mixture of
options. However, the file_optional, mode, and return_message options apply in all cases.

Autoreply is implemented as a local transport. When used as a result of a command in a user ’s filter
file, autoreply normally runs under the uid and gid of the user, and with appropriate current and home
directories (see chapter 22).

There is a subtle difference between routing a message to a pipe transport that generates some text to
be returned to the sender, and routing it to an autoreply transport. This difference is noticeable only if
more than one address from the same message is so handled. In the case of a pipe, the separate outputs
from the different addresses are gathered up and returned to the sender in a single message, whereas if
autoreply is used, a separate message is generated for each address that is passed to it.

Non-printing characters are not permitted in the header lines generated for the message that autoreply
creates, with the exception of space and tab. Other non-printing characters are converted into escape
sequences. Whether characters with the top bit set count as printing characters or not is controlled by
the print_topbitchars global option.

If any of the generic options for manipulating headers (for example, headers_add) are set on an
autoreply transport, they apply to the copy of the original message that is included in the generated
message when return_message is set. They do not apply to the generated message itself.

If the autoreply transport receives return code 2 from Exim when it submits the message, indicating
that there were no recipients, it does not treat this as an error. This means that autoreplies sent to
$sender_address when this is empty (because the incoming message is a bounce message) do not
cause problems. They are just discarded.

26.1 Private options for autoreply

bcc Type: string† Default: unset

This specifies the addresses that are to receive ‘blind carbon copies’ of the message when the
message is specified by the transport.

cc Type: string† Default: unset

This specifies recipients of the message and the contents of the Cc: header when the message is
specified by the transport.

file Type: string† Default: unset

The contents of the file are sent as the body of the message when the message is specified by the
transport. If both file and text are set, the text string comes first.

Exim 4.10 [168] autoreply transport (26)

file_expand Type: boolean Default: false

If this is set, the contents of the file named by the file option are subjected to string expansion as
they are added to the message.

file_optional Type: boolean Default: false

If this option is true, no error is generated if the file named by the file option or passed with the
address does not exist or cannot be read.

from Type: string† Default: unset

This specifies the contents of the From: header when the message is specified by the transport.

headers Type: string† Default: unset

This specifies additional RFC 2822 headers that are to be added to the message when the message
is specified by the transport. Several can be given by using ‘\n’ to separate them. There is no check
on the format.

log Type: string† Default: unset

This option names a file in which a record of every message sent is logged when the message is
specified by the transport.

mode Type: octal integer Default: 0600

If either the log file or the ‘once’ file has to be created, this mode is used.

once Type: string† Default: unset

This option names a file or DBM database in which a record of each recipient is kept when the
message is specified by the transport. If once_file_size is not set, a DBM database is used, and it is
allowed to grow as large as necessary. If a potential recipient is already in the database, no message
is sent by default. However, if once_repeat specifies a time greater than zero, the message is sent if
that much time has elapsed since a message was last sent to this recipient. If once is unset, the
message is always sent.

If once_file_size is set greater than zero, it changes the way Exim implements the once option.
Instead of using a DBM file to record every recipient it sends to, it uses a regular file, whose size
will never get larger than the given value. In the file, it keeps a linear list of recipient addresses and
times at which they were sent messages. If the file is full when a new address needs to be added,
the oldest address is dropped. If once_repeat is not set, this means that a given recipient may
receive multiple messages, but at unpredictable intervals that depend on the rate of turnover of
addresses in the file. If once_repeat is set, it specifies a maximum time between repeats.

once_file_size Type: integer Default: 0

See once above.

once_repeat Type: time Default: 0s

See once above.

reply_to Type: string† Default: unset

This specifies the contents of the Reply-To: header when the message is specified by the transport.

return_message Type: boolean Default: false

If this is set, a copy of the original message is returned with the new message, subject to the
maximum size set in the return_size_limit global configuration option.

Exim 4.10 [169] autoreply transport (26)

subject Type: string† Default: unset

This specifies the contents of the Subject: header when the message is specified by the transport.

text Type: string† Default: unset

This specifies a single string to be used as the body of the message when the message is specified
by the transport. If both text and file are set, the text comes first.

to Type: string† Default: unset

This specifies recipients of the message and the contents of the To: header when the message is
specified by the transport.

Exim 4.10 [170] autoreply transport (26)

27. The lmtp transport

The lmtp transport runs the LMTP protocol (RFC 2033) over a pipe to a specified command. It is
something of a cross between the pipe and smtp transports. Exim also has support for using LMTP
over TCP/IP; this is implemented as an option for the smtp transport. Because LMTP is expected to
be of minority interest, the default build-time configure in src/EDITME has it commented out. You
need to ensure that

TRANSPORT_LMTP=yes

is present in your Local/Makefile in order to have the lmtp transport included in the Exim binary.

The private options of the lmtp transport are as follows:

batch_id Type: string† Default: unset

See the description of local delivery batching in chapter 24.

batch_max Type: integer Default: 1

This limits the number of addresses that can be handled in a single delivery. Most LMTP servers
can handle several addresses at once, so it is normally a good idea to increase this value. See the
description of local delivery batching in chapter 24.

command Type: string† Default: unset

This is a mandatory option, which must be set. The string is a command which is run in a separate
process. It is split up into a command name and list of arguments, each of which is separately
expanded (so expansion cannot change the number of arguments). The command is run directly, not
via a shell. The message is passed to the new process using the standard input and output to operate
the LMTP protocol.

timeout Type: time Default: 5m

The transport is aborted if the created process does not respond to LMTP commands or message
input within this timeout.

Here is an example of a typical LMTP transport:

lmtp:
driver = lmtp
command = /some/local/lmtp/delivery/program
batch_max = 20
user = exim

This delivers up to 20 addresses at a time, in a mixture of domains if necessary, running as the user
exim.

Exim 4.10 [171] lmtp transport (27)

28. The pipe transport

The pipe transport is used to deliver messages via a pipe to a command running in another process.
This can happen in one of two ways:

• A router routes an address to a transport in the normal way, and the transport is configured as a
pipe transport. In this case, $local_part contains the address (as usual), and the command which
is run is specified by the command option on the transport. An example of this is the use of pipe
as a pseudo-remote transport for passing messages to some other delivery mechanism (such as

 UUCP).

• A router redirects an address directly to a pipe command (for example, from an alias or forward
file). In this case, $local_part contains the local part that was redirected, and $address_pipe
contains the text of the pipe command itself. The command option on the transport is ignored.

In the case when pipe is run as a consequence of an entry in a local user ’s .forward file, the command
runs under the uid and gid of that user. In other cases, the uid and gid have to be specified explicitly,
either on the transport or on the router that handles the address. Current and ‘home’ directories are
also controllable. See chapter 22 for details of the local delivery environment.

28.1 Returned status and data
If the command exits with a non-zero return code, the delivery is deemed to have failed, unless either
the ignore_status option is set (in which case the return code is treated as zero), or the return code is
one of those listed in the temp_errors option, which are interpreted as meaning ‘try again later’. In
this case, delivery is deferred.

Details of a permanent failure are logged, but are not included in the bounce message, which merely
contains ‘local delivery failed’.

If the return code is greater than 128 and the command being run is a shell script, it normally means
that the script was terminated by a signal whose value is the return code minus 128.

The return_output option can affect the result of a pipe delivery. If it is set and the command
produces any output on its standard output or standard error streams, the command is considered to
have failed, even if it gave a zero return code or if ignore_status is set. The output from the command
is included as part of the bounce message. The return_fail_output option is similar, except that output
is returned only when the command exits with a failure return code, that is, a value other than zero or
a code that matches temp_errors.

28.2 How the command is run
The command line is (by default) broken down into a command name and arguments by the pipe
transport itself. The allow_commands and restrict_to_path options can be used to restrict the
commands that may be run. Unquoted arguments are delimited by white space. If an argument appears
in double quotes, backslash is interpreted as an escape character in the usual way. If an argument
appears in single quotes, no escaping is done.

String expansion is applied to the command line except when it comes from a traditional .forward file
(commands from a filter file are expanded). The expansion is applied to each argument in turn rather
than to the whole line. For this reason, any string expansion item that contains white space must be
quoted so as to be contained within a single argument. A setting such as

command = /some/path ${if eq{$local_part}{postmaster}{xxx}{yyy}}

will not work, because the expansion item gets split between several arguments. You have to write

command = /some/path "${if eq{$local_part}{postmaster}{xxx}{yyy}}"

Exim 4.10 [172] pipe transport (28)

to ensure that it is all in one argument. The expansion is done in this way, argument by argument, so
that the number of arguments cannot be changed as a result of expansion, and quotes or backslashes in
inserted variables do not interact with external quoting.

Special handling takes place when an argument consists of precisely the text ‘$pipe_addresses’.
This is not a general expansion variable; the only place this string is recognized is when it appears as
an argument for a pipe or transport filter command. It causes each address that is being handled to be
inserted in the argument list at that point as a separate argument. This avoids any problems with
spaces or shell metacharacters, and is of use when a pipe transport is handling groups of addresses in
a batch.

After splitting up into arguments and expansion, the resulting command is run in a subprocess directly
from the transport, not under a shell. The message that is being delivered is supplied on the standard
input, and the standard output and standard error are both connected to a single pipe that is read by
Exim. The max_output option controls how much output the command may produce, and the
return_output and return_fail_output options control what is done with it.

Not running the command under a shell (by default) lessens the security risks in cases when a
command from a user ’s filter file is built out of data that was taken from an incoming message. If a
shell is required, it can of course be explicitly specified as the command to be run. However, there are
circumstances where existing commands (for example, in .forward files) expect to be run under a
shell and cannot easily be modified. To allow for these cases, there is an option called use_shell,
which changes the way the pipe transport works. Instead of breaking up the command line as just
described, it expands it as a single string and passes the result to /bin/sh. The restrict_to_path option
and the $pipe_addresses facility cannot be used with use_shell, and the whole mechanism is
inherently less secure.

28.3 Environment variables
The environment variables listed below are set up when the command is invoked. This list is a
compromise for maximum compatibility with other MTAs. Note that the environment option can be
used to add additional variables to this environment.

DOMAIN the domain of the address
HOME the home directory, if set
HOST the host name when called from a router (see below)
LOCAL_PART see below
LOCAL_PART_PREFIX see below
LOCAL_PART_SUFFIX see below
LOGNAME see below
MESSAGE_ID the message’s id
PATH as specified by the path option below
QUALIFY_DOMAIN the sender qualification domain
RECIPIENT the complete recipient address
SENDER the sender of the message (empty if a bounce)
SHELL ‘/bin/sh’
TZ the value of the timezone option, if set
USER see below

When a pipe transport is called directly from (for example) an accept router, LOCAL_PART is set to the
local part of the address. When it is called as a result of a forward or alias expansion, LOCAL_PART is
set to the local part of the address that was expanded. In both cases, any affixes are removed from the
local part, and made available in LOCAL_PART_PREFIX and LOCAL_PART_SUFFIX, respectively. LOGNAME and
USER are set to the same value as LOCAL_PART for compatibility with other MTAs.

HOST is set only when a pipe transport is called from a router that associates hosts with an address,
typically when using pipe as a pseudo-remote transport. HOST is set to the first host name specified by
the router.

Exim 4.10 [173] pipe transport (28)

If the transport’s generic home_directory option is set, its value is used for the HOME environment
variable. Otherwise, a home directory may be set by the router ’s transport_home_directory option,
which defaults to the user ’s home directory if check_local_user is set.

28.4 Private options for pipe

allow_commands Type: string list† Default: unset

The string is expanded, and is then interpreted as a colon-separated list of permitted commands. If
 restrict_to_path is not set, the only commands permitted are those in the allow_commands list.

They need not be absolute paths; the path option is still used for relative paths. If restrict_to_path
is set with allow_commands, the command must either be in the allow_commands list, or a name
without any slashes that is found on the path. In other words, if neither allow_commands nor

 restrict_to_path is set, there is no restriction on the command, but otherwise only commands that
are permitted by one or the other are allowed. For example, if

allow_commands = /usr/bin/vacation

and restrict_to_path is not set, the only permitted command is /usr/bin/vacation. The
allow_commands option may not be set if use_shell is set.

batch_id Type: string† Default: unset

See the description of local delivery batching in chapter 24.

batch_max Type: integer Default: 1

This limits the number of addresses that can be handled in a single delivery. See the description of
local delivery batching in chapter 24.

check_string Type: string Default: unset

As pipe writes the message, the start of each line is tested for matching check_string, and if it
does, the initial matching characters are replaced by the contents of escape_string, provided both
are set. The value of check_string is a literal string, not a regular expression, and the case of any
letters it contains is significant. When use_bsmtp is set, the contents of check_string and
escape_string are forced to values that implement the SMTP escaping protocol. Any settings made
in the configuration file are ignored.

command Type: string† Default: unset

This option need not be set when pipe is being used to deliver to pipes obtained directly from
address redirections. In other cases, the option must be set, to provide a command to be run. It need
not yield an absolute path (see the path option below). The command is split up into separate

 arguments by Exim, and each argument is separately expanded, as described in section 28.2 above.

environment Type: string† Default: unset

This option is used to add additional variables to the environment in which the command runs (see
section 28.3 for the default list). Its value is a string which is expanded, and then interpreted as a
colon-separated list of environment settings of the form ‘<name>=<value>’.

escape_string Type: string Default: unset

See check_string above.

freeze_exec_fail Type: boolean Default: false

Failure to exec the command in a pipe transport is by default treated like any other failure while
running the command. However, if freeze_exec_fail is set, failure to exec is treated specially, and
causes the message to be frozen, whatever the setting of ignore_status.

Exim 4.10 [174] pipe transport (28)

ignore_status Type: boolean Default: false

If this option is true, the status returned by the subprocess that is set up to run the command is
ignored, and Exim behaves as if zero had been returned. Otherwise, a non-zero status causes an
error return from the transport unless the value is one of those listed in temp_errors, which causes
the delivery to be deferred and tried again later.

log_defer_output Type: boolean Default: false

If this option is set, and the status returned by the command is one of the codes listed in
 temp_errors (that is, delivery was deferred), and any output was produced, the first line of it is

written to the main log.

log_fail_output Type: boolean Default: false

If this option is set, and the command returns any output, and also ends with a return code that is
neither zero nor one of the return codes listed in temp_errors (that is, the delivery failed), the first
line of output is written to the main log.

log_output Type: boolean Default: false

If this option is set and the command returns any output, the first line of output is written to the
main log, whatever the return code.

max_output Type: integer Default: 20K

This specifies the maximum amount of output that the command may produce on its standard
output and standard error file combined. If the limit is exceeded, the process running the command
is killed. This is intended as a safety measure to catch runaway processes. The limit is applied
independently of the settings of the options that control what is done with such output (for example,

 return_output). Because of buffering effects, the amount of output may exceed the limit by a small
amount before Exim notices.

message_prefix Type: string† Default: see below

The string specified here is expanded and output at the start of every message. The default is unset
if use_bsmtp is set. Otherwise it is

message_prefix = \
From ${if def:return_path{$return_path}{MAILER-DAEMON}}\

 ${tod_bsdinbox}\n

This is required by the commonly used /usr/bin/vacation program. However, it must not be present
if delivery is to the Cyrus IMAP server, or to the tmail local delivery agent. The prefix can be
suppressed by setting

message_prefix =

message_suffix Type: string† Default: see below

The string specified here is expanded and output at the end of every message. The default is unset
if use_bsmtp is set. Otherwise it is a single newline. The suffix can be suppressed by setting

message_suffix =

path Type: string Default: /usr/bin

This option specifies the string that is set up in the PATH environment variable of the subprocess. If
the command option does not yield an absolute path name, the command is sought in the PATH

directories, in the usual way.

Exim 4.10 [175] pipe transport (28)

pipe_as_creator Type: boolean Default: false

If the generic user option is not set and this option is true, the delivery process is run under the uid
that was in force when Exim was originally called to accept the message. If the group id is not
otherwise set (via the generic group option), the gid that was in force when Exim was originally
called to accept the message is used.

restrict_to_path Type: boolean Default: false

When this option is set, any command name not listed in allow_commands must contain no
slashes. The command is searched for only in the directories listed in the path option. This option
is intended for use in the case when a pipe command has been generated from a user ’s .forward
file. This is usually handled by a pipe transport called address_pipe.

return_fail_output Type: boolean Default: false

If this option is true, and the command produced any output and ended with a return code other
than zero or one of the codes listed in temp_errors (that is, the delivery failed), the output is
returned in the bounce message. However, if the message has a null sender (that is, it is itself a
bounce message), output from the command is discarded.

return_output Type: boolean Default: false

If this option is true, and the command produced any output, the delivery is deemed to have failed
whatever the return code from the command, and the output is returned in the bounce message.
Otherwise, the output is just discarded. However, if the message has a null sender (that is, it is a
bounce message), output from the command is always discarded, whatever the setting of this
option.

temp_errors Type: string list Default: see below

This option contains a colon-separated list of numbers. If ignore_status is false and the command
exits with a return code that matches one of the numbers, the failure is treated as temporary and the
delivery is deferred. Other non-zero return codes are treated as permanent errors. The default setting
contains the codes defined by EX_TEMPFAIL and EX_CANTCREAT in sysexits.h. If Exim is compiled on
a system that does not define these macros, it assumes values of 75 and 73, respectively.

timeout Type: time Default: 1h

If the command fails to complete within this time, it is killed. This normally causes the delivery to
fail. A zero time interval specifies no timeout. In order to ensure that any subprocesses created by
the command are also killed, Exim makes the initial process a process group leader, and kills the
whole process group on a timeout. However, this can be defeated if one of the processes starts a
new process group.

umask Type: octal integer Default: 022

This specifies the umask setting for the subprocess that runs the command.

use_bsmtp Type: boolean Default: false

If this option is set true, the pipe transport writes messages in ‘batch SMTP’ format, with the
envelope sender and recipient(s) included as SMTP commands. If you want to include a leading
HELO command with such messages, you can do so by setting the message_prefix option. See
section 42.8 for details of batch SMTP.

use_crlf Type: boolean Default: false

This option causes lines to be terminated with the two-character CRLF sequence (carriage return,
linefeed) instead of just a linefeed character. In the case of batched SMTP, the byte sequence
written to the pipe is then an exact image of what would be sent down a real SMTP connection.

The contents of the message_prefix and message_suffix options are written verbatim, so must
contain their own carriage return characters if these are needed. Since the default values for both

Exim 4.10 [176] pipe transport (28)

 message_prefix and message_suffix end with a single linefeed, their values almost always need to
be changed to end with \r\n if use_crlf is set.

use_shell Type: boolean Default: false

If this option is set, it causes the command to be passed to /bin/sh instead of being run directly
from the transport, as described in section 28.2. This is less secure, but is needed in some situations
where the command is expected to be run under a shell and cannot easily be modified. The
allow_commands and restrict_to_path options, and the ‘$pipe_addresses’ facility are incom-
patible with use_shell. The command is expanded as a single string, and handed to /bin/sh as data
for its -c option.

28.5 Using an external local delivery agent
The pipe transport can be used to pass all messages that require local delivery to a separate local
delivery agent such as procmail. When doing this, care must be taken to ensure that the pipe is run
under an appropriate uid and gid. In some configurations one wants this to be a uid that is trusted by
the delivery agent to supply the correct sender of the message. It may be necessary to recompile or
reconfigure the delivery agent so that it trusts an appropriate user. The following is an example
transport and router configuration for procmail:

transport
 procmail_pipe:

driver = pipe
command = /usr/local/bin/procmail -d $local_part

 return_path_add
 delivery_date_add
 envelope_to_add

check_string = "From "
escape_string = ">From "
user = $local_part
group = mail

router
 procmail:

driver = accept
 check_local_user

transport = procmail_pipe

In this example, the pipe is run as the local user, but with the group set to mail. An alternative is to
run the pipe as a specific user such as mail or exim, but in this case you must arrange for procmail to
trust that user to supply a correct sender address. If you do not specify either a group or a user option,
the pipe command is run as the local user. The home directory is the user ’s home directory by default.

Note that the command that the pipe transport runs does not begin with

IFS=" "

as shown in the procmail documentation, because Exim does not by default use a shell to run pipe
commands.

The next example shows a transport and a router for a system where local deliveries are handled by
the Cyrus IMAP server.

Exim 4.10 [177] pipe transport (28)

transport
 local_delivery_cyrus:

driver = pipe
command = /usr/cyrus/bin/deliver \

-m ${substr_1:$local_part_suffix} -- $local_part
user = cyrus
group = mail

 return_output
 log_output

message_prefix =
message_suffix =

router
 local_user_cyrus:

driver = accept
 check_local_user

local_part_suffix = .*
transport = local_delivery_cyrus

Note the unsetting of message_prefix and message_suffix, and the use of return_output to cause any
text written by Cyrus to be returned to the sender.

Exim 4.10 [178] pipe transport (28)

29. The smtp transport

The smtp transport delivers messages over TCP/IP connections using the SMTP or LMTP protocol.
The list of hosts to try can either be taken from the address that is being processed, or specified
explicitly for the transport. Timeout and retry processing (see chapter 31) is applied to each IP address
independently.

29.1 Multiple messages on a single connection
The sending of multiple messages over a single TCP/IP connection can arise in two ways:

• If a message contains more than max_rcpt (see below) addresses that are routed to the same
host, more than one copy of the message has to be sent to that host. In this situation, multiple
copies may be sent in a single run of the smtp transport over a single TCP/IP connection. (What
Exim actually does when it has too many addresses to send in one message also depends on the
value of the global remote_max_parallel option. Details are given in section 42.1.)

• When a message has been successfully delivered over a TCP/IP connection, Exim looks in its
hints database to see if there are any other messages awaiting a connection to the same host. If
there are, a new delivery process is started for one of them, and the current TCP/IP connection is
passed on to it. The new process may in turn send multiple copies and possibly create yet another
process.

For each copy sent over the same TCP/IP connection, a sequence counter is incremented, and if it ever
gets to the value of connection_max_messages, no further messages are sent over that connection.

29.2 Use of the $host variable
At the start of a run of the smtp transport, the values of $host and $host_address are the name and IP
address of the first host on the host list passed by the router. However, when the transport is about to
connect to a specific host, and while it is connected to that host, $host and $host_address are set to
the values for that host. These are the values that are in force when the helo_data, hosts_try_auth,
interface, serialize_hosts, and the various TLS options are expanded.

29.3 Private options for smtp
The private options of the smtp transport are as follows:

allow_localhost Type: boolean Default: false

When a host specified in hosts or fallback_hosts (see below) turns out to be the local host, or is
listed in hosts_treat_as_local, delivery is deferred by default. However, if allow_localhost is set,
Exim goes on to do the delivery anyway. This should be used only in special cases when the
configuration ensures that no looping will result (for example, a differently configured Exim is
listening on the port to which the message is sent).

command_timeout Type: time Default: 5m

This sets a timeout for receiving a response to an SMTP command that has been sent out. It is also
used when waiting for the initial banner line from the remote host. Its value must not be zero.

connect_timeout Type: time Default: 5m

This sets a timeout for the connect() function, which sets up a TCP/IP call to a remote host. A
setting of zero allows the system timeout (typically several minutes) to act. To have any effect, the
value of this option must be less than the system timeout. However, it has been observed that on
some systems there is no system timeout, which is why the default value for this option is 5
minutes, a value recommended by RFC 1123.

Exim 4.10 [179] smtp transport (29)

connection_max_messages Type: integer Default: 500

This controls the maximum number of separate message deliveries that are sent over a single
TCP/IP connection. If the value is zero, there is no limit. For testing purposes, this value can be
overridden by the -oB command line option.

data_timeout Type: time Default: 5m

This sets a timeout for the transmission of each block in the data portion of the message. As a
result, the overall timeout for a message depends on the size of the message. Its value must not be
zero. See also final_timeout.

delay_after_cutoff Type: boolean Default: true

This option controls what happens when all remote IP addresses for a given domain have been
inaccessible for so long that they have passed their retry cutoff times.

In the default state, if the next retry time has not been reached for any of them, the address is
bounced without trying any deliveries. In other words, Exim delays retrying an IP address after the
final cutoff time until a new retry time is reached, and can therefore bounce an address without ever
trying a delivery, when machines have been down for a long time. Some people are unhappy at this
prospect, so...

If delay_after_cutoff is set false, Exim behaves differently. If all IP addresses are past their final
 cutoff time, Exim tries to deliver to those IP addresses that have not been tried since the message

arrived. If there are none, of if they all fail, the address is bounced. In other words, it does not
delay when a new message arrives, but immediately tries those expired IP addresses that haven’t
been tried since the message arrived. If there is a continuous stream of messages for the dead hosts,
unsetting delay_after_cutoff means that there will be many more attempts to deliver to them.

dns_qualify_single Type: boolean Default: true

If the hosts or fallback_hosts option is being used, and the gethostbyname option is false, the
RES_DEFNAMES resolver option is set. See the qualify_single option in chapter 16 for more details.

dns_search_parents Type: boolean Default: false

If the hosts or fallback_hosts option is being used, and the gethostbyname option is false, the
RES_DNSRCH resolver option is set. See the search_parents option in chapter 16 for more details.

fallback_hosts Type: string list Default: unset

String expansion is not applied to this option. The argument must be a colon-separated list of host
names or IP addresses. Fallback hosts can also be specified on routers, which associate them with
the addresses they process. As for the hosts option without hosts_override, fallback_hosts speci-
fied on the transport is used only if the address does not have its own associated fallback host list.
Unlike hosts, a setting of fallback_hosts on an address is not overridden by hosts_override.
However, hosts_randomize does apply to fallback host lists.

If Exim is unable to deliver to any of the hosts for a particular address, and the errors are not
permanent rejections, the address is put on a separate transport queue with its host list replaced by
the fallback hosts, unless the address was routed via MX records and the current host was in the
original MX list. In that situation, the fallback host list is not used.

Once normal deliveries are complete, the fallback queue is delivered by re-running the same
transports with the new host lists. If several failing addresses have the same fallback hosts (and

 max_rcpt permits it), a single copy of the message is sent.

The resolution of the host names on the fallback list is controlled by the gethostbyname option, as
for the hosts option. Fallback hosts apply both to cases when the host list comes with the address
and when it is taken from hosts. This option provides a ‘use a smart host only if delivery fails’

 facility.

Exim 4.10 [180] smtp transport (29)

final_timeout Type: time Default: 10m

This is the timeout that applies while waiting for the response to the final line containing just ‘.’
that terminates a message. Its value must not be zero.

gethostbyname Type: boolean Default: false

If this option is true when the hosts and/or fallback_hosts options are being used, names are
looked up using gethostbyname() (or getipnodebyname() when available) instead of using the DNS.
Of course, that function may in fact use the DNS, but it may also consult other sources of
information such as /etc/hosts.

helo_data Type: string† Default: $primary_hostname

The value of this option is expanded, and used as the argument for the EHLO or HELO command that
starts the outgoing SMTP session.

hosts Type: string list† Default: unset

Hosts are associated with an address by a router such as dnslookup, which finds the hosts by
looking up the address domain in the DNS. However, addresses can be passed to the smtp transport
by any router, and not all of them can provide an associated host list. The hosts option specifies a
list of hosts which are used if the address being processed does not have any hosts associated with
it. The hosts specified by hosts are also used, whether or not the address has its own hosts, if
hosts_override is set.

The string is first expanded, before being interpreted as a colon-separated list of host names or IP
addresses. If the expansion fails, delivery is deferred. Unless the failure was caused by the inability
to complete a lookup, the error is logged to the panic log as well as the main log. Host names are
looked up either by searching directly for address records in the DNS or by calling gethostbyname()
(or getipnodebyname() when available), depending on the setting of the gethostbyname option.
When Exim is compiled with IPv6 support, if a host that is looked up in the DNS has both IPv4
and IPv6 addresses, both types of address are used.

During delivery, the hosts are tried in order, subject to their retry status, unless hosts_randomize
is set.

hosts_avoid_tls Type: host list† Default: unset

Exim will not try to start a TLS session when delivering to any host that matches this list. See
chapter 36 for details of TLS.

hosts_max_try Type: integer Default: 5

This option limits the number of IP addresses that will be tried for any one delivery. Some large
domains have very many MX records, each of which may refer to several IP addresses. Trying
every single one of such a long list does not seem sensible; if several at the top of the list fail, it is
reasonable to assume there is some problem that is likely to affect all of them. The value of
hosts_max_try is the maximum number of IP addresses that will actually be tried; any that are
skipped because their retry times have not arrived do not count.

hosts_nopass_tls Type: host list† Default: unset

For any host that matches this list, a connection on which a TLS session has been started will not
be passed to a new delivery process for sending another message on the same connection. See
section 36.4 for an explanation of when this might be needed.

hosts_override Type: boolean Default: false

If this option is set and the hosts option is also set, any hosts that are attached to the address are
ignored, and instead the hosts specified by the hosts option are always used. This option does not
apply to fallback_hosts.

Exim 4.10 [181] smtp transport (29)

hosts_randomize Type: boolean Default: false

If this option is set, and either the list of hosts is being taken from the hosts or the fallback_hosts
option, or the hosts supplied by the router were not obtained from MX records (this includes
fallback hosts from the router), the order of trying the hosts is randomized each time the transport
runs.

hosts_require_auth Type: host list† Default: unset

This option provides a list of servers for which authentication must succeed before Exim will try to
transfer a message. If authentication fails for servers which are not in this list, Exim tries to send
unauthenticated. If authentication fails for one of these servers, delivery is deferred. This temporary
error is detectable in the retry rules, so it can be turned into a hard failure if required. See also

 hosts_try_auth, and chapter 32 for details of authentication.

hosts_require_tls Type: host list† Default: unset

Exim will insist on using a TLS session when delivering to any host that matches this list. See
chapter 36 for details of TLS.

hosts_try_auth Type: host list† Default: unset

This option provides a list of servers to which, provided they announce authentication support,
Exim will attempt to authenticate as a client when it connects. If authentication fails, Exim will try
to transfer the message unauthenticated. See also hosts_require_auth, and chapter 32 for details of
authentication.

interface Type: string list† Default: unset

This option specifies which interface to bind to when making an outgoing SMTP call. The variables
$host and $host_address refer to the host to which a connection is about to be made during the
expansion of the string. Forced expansion failure, or an empty string result causes the option to be
ignored. Otherwise, after expansion, the string must be a colon-separated list of IP addresses, for
example:

interface = <; 192.168.123.123 ; 3ffe:ffff:836f::fe86:a061

The first interface of the correct type (IPv4 or IPv6) is used for the outgoing connection. If none of
them are the correct type, the option is ignored. If interface is not set, or is ignored, the system’s IP
functions choose which interface to use if the host has more than one.

keepalive Type: boolean Default: true

This option controls the setting of SO_KEEPALIVE on outgoing TCP/IP socket connections. When set,
it causes the kernel to probe idle connections periodically, by sending packets with ‘old’ sequence
numbers. The other end of the connection should send a acknowledgement if the connection is still
okay or a reset if the connection has been aborted. The reason for doing this is that it has the
beneficial effect of freeing up certain types of connection that can get stuck when the remote host is
disconnected without tidying up the TCP/IP call properly. The keepalive mechanism takes several
hours to detect unreachable hosts.

max_rcpt Type: integer Default: 100

This option limits the number of RCPT commands that are sent in a single SMTP message transac-
tion. Each set of addresses is treated independently, and so can cause parallel connections to the
same host if remote_max_parallel permits this.

multi_domain Type: boolean Default: true

When this option is set, the smtp transport can handle a number of addresses containing a mixture
of different domains provided they all resolve to the same list of hosts. Turning the option off
restricts the transport to handling only one domain at a time. This is useful if you want to use
$domain in an expansion for the transport, because it is set only when there is a single domain
involved in a remote delivery.

Exim 4.10 [182] smtp transport (29)

port Type: string Default: see below

This option specifies the TCP/IP port on the server to which Exim connects. If it begins with a digit
it is taken as a port number; otherwise it is looked up using getservbyname(). The default value is
normally ‘smtp’, but if protocol is set to ‘lmtp’, the default is ‘lmtp’.

protocol Type: string Default: smtp

If this option is set to ‘lmtp’ instead of ‘smtp’, the default value for the port option changes to
‘lmtp’, and the transport operates the LMTP protocol (RFC 2033) instead of SMTP. This protocol is
sometimes used for local deliveries into closed message stores. Exim also has support for running
LMTP over a pipe to a local process – see chapter 27.

retry_include_ip_address Type: boolean Default: true

Exim normally includes both the host name and the IP address in the key it constructs for indexing
retry data after a temporary delivery failure. This means that when one of several IP addresses for a
host is failing, it gets tried periodically (controlled by the retry rules), but use of the other IP
addresses is not affected.

However, in some dialup environments hosts are assigned a different IP address each time they
connect. In this situation the use of the IP address as part of the retry key leads to undesirable

 behaviour. Setting this option false causes Exim to use only the host name. This should normally be
done on a separate instance of the smtp transport, set up specially to handle the dialup hosts.

serialize_hosts Type: host list† Default: unset

Because Exim operates in a distributed manner, if several messages for the same host arrive at
around the same time, more than one simultaneous connection to the remote host can occur. This is
not usually a problem except when there is a slow link between the hosts. In that situation it may
be helpful to restrict Exim to one connection at a time. This can be done by setting serialize_hosts
to match the relevant hosts.

Exim implements serialization by means of a hints database in which a record is written whenever a
process connects to one of the restricted hosts. The record is deleted when the connection is
completed. Obviously there is scope for records to get left lying around if there is a system or
program crash. To guard against this, Exim ignores any records that are more than six hours old.

If you set up this kind of serialization, you should also arrange to delete the relevant hints database
whenever your system reboots. The names of the files start with misc and they are kept in the
spool/db directory. There may be one or two files, depending on the type of DBM in use. The same
files are used for ETRN serialization.

size_addition Type: integer Default: 1024

If a remote SMTP server indicates that it supports the SIZE option of the MAIL command, Exim uses
this to pass over the message size at the start of an SMTP transaction. It adds the value of
size_addition to the value it sends, to allow for headers and other text that may be added during
delivery by configuration options or in a transport filter. It may be necessary to increase this if a lot
of text is added to messages.

Alternatively, if the value of size_addition is set negative, it disables the use of the SIZE option
 altogether.

tls_certificate Type: string† Default: unset

The value of this option must be the absolute path to a file which contains the client’s certificate,
for use when sending a message over an encrypted connection. The values of $host and

 $host_address are set to the name and address of the server during the expansion. See chapter 36
for details of TLS.

Exim 4.10 [183] smtp transport (29)

tls_privatekey Type: string† Default: unset

The value of this option must be the absolute path to a file which contains the client’s private key,
for use when sending a message over an encrypted connection. The values of $host and

 $host_address are set to the name and address of the server during the expansion. If this option is
unset, the private key is assumed to be in the same file as the certificate. See chapter 36 for details
of TLS.

tls_require_ciphers Type: string† Default: unset

The value of this option must be a list of permitted cipher suites, for use when setting up an
encrypted connection. The values of $host and $host_address are set to the name and address of
the server during the expansion. See chapter 36 for details of TLS.

tls_tempfail_tryclear Type: boolean Default: true

When the server host is not in hosts_require_tls, and there is a problem in setting up a TLS
session, this option determines whether Exim should try to deliver the message in clear or not. If it
is set false, delivery to the current host is deferred; if there are other hosts, they are tried. If this
option is set true, Exim attempts to deliver in clear after a 4xx response to STARTTLS. Also, if
STARTTLS is accepted, but the subsequent TLS negotiation fails, Exim closes the current connection
(because it is in an unknown state), opens a new one to the same host, and then tries the delivery in
clear.

tls_verify_certificates Type: string† Default: unset

The value of this option must be the absolute path to a file or a directory containing permitted
server certificates, for use when setting up an encrypted connection. The values of $host and

 $host_address are set to the name and address of the server during the expansion. See chapter 36
for details of TLS.

Exim 4.10 [184] smtp transport (29)

30. Address rewriting

There are some circumstances in which Exim automatically rewrites domains in addresses. The two
most common are when an address is given without a domain (referred to as an ‘unqualified address’)
or when an address contains an abbreviated domain that is expanded by DNS lookup.

Unqualified envelope addresses are accepted only for locally submitted messages, or messages from
hosts that match sender_unqualified_hosts or recipient_unqualified_hosts, respectively. Unqualified
addresses in header lines are qualified if they are in locally submitted messages, or messages from
hosts that are permitted to send unqualified envelope addresses. Otherwise, unqualified addresses in
header lines are neither qualified nor rewritten.

One situation in which Exim does not rewrite a domain is when it is the name of a CNAME record in
the DNS. The older RFCs suggest that such a domain should be rewritten using the ‘canonical’ name,
and some MTAs do this. The new RFCs do not contain this suggestion.

This chapter is about address rewriting that is explicitly specified in the configuration. Some people
believe that configured rewriting is a Mortal Sin. Others believe that life is not possible without it.
Exim provides the facility; you do not have to use it.

In general, rewriting addresses from your own system or domain has some legitimacy. Rewriting other
addresses should be done only with great care and in special circumstances. The author of Exim
believes that rewriting should be used sparingly, and mainly for ‘regularizing’ addresses in your own
domains. Although it can sometimes be used as a routing tool, this is very strongly discouraged.

There are two commonly encountered circumstances where rewriting is used, as illustrated by these
examples:

• The company whose domain is hitch.fict.example has a number of hosts that exchange mail with
each other behind a firewall, but there is only a single gateway to the outer world. The gateway
rewrites *.hitch.fict.example as hitch.fict.example when sending mail off-site.

• A host rewrites the local parts of its own users so that, for example, fp42@hitch.fict.example
becomes Ford.Prefect@hitch.fict.example.

Configured address rewriting can take place at several different stages of a message’s processing. The
main rewriting happens when a message is received, but it can also happen when a new address is
generated during routing (for example, by aliasing), and when a message is transported.

The rewriting rules that appear in the ‘rewrite’ section of the configuration file apply to addresses in
incoming messages, and to addresses that are generated from the envelope recipients by redirection,
unless no_rewrite is set on the relevant routers. Basically, they apply to each address the first time
Exim sees it. These rules operate both on envelope addresses and on addresses in header lines. Each
rule specifies to which types of address it applies.

At transport time, additional rewriting of addresses in header lines can be specified by setting the
generic headers_rewrite option on a transport. This option contains rules that are identical in form to
those in the rewrite section of the configuration file. In addition, the outgoing envelope sender can be
rewritten by means of the return_path transport option. However, it is not possible to rewrite
envelope recipients at transport time.

Rewriting of addresses in header lines applies only to those headers that were received with the
message, and, in the case of transport rewriting, those that were added by a system filter. That is, it
applies only to those headers that are common to all copies of the message. Header lines that are
added by individual routers or transports (and which are therefore specific to individual recipient
addresses) are not rewritten.

The remainder of this chapter describes the rewriting rules that are used in the main rewrite section of
the configuration file, and also in the generic headers_rewrite option that can be set on any transport.

Exim 4.10 [185] address rewriting (30)

30.1 Testing the rewriting rules that apply on input

Exim’s input rewriting configuration appears in a part of the run time configuration file headed by
‘begin rewrite’. It can be tested by the -brw command line option. This takes an address (which can
be a full RFC 2822 address) as its argument. The output is a list of how the address would be
transformed by the rewriting rules for each of the different places it might appear in an incoming
message, that is, for each different header and for the envelope sender and recipient fields. For
example,

exim -brw ph10@exim.workshop.example

might produce the output

sender: Philip.Hazel@exim.workshop.example
from: Philip.Hazel@exim.workshop.example
to: ph10@exim.workshop.example
cc: ph10@exim.workshop.example
bcc: ph10@exim.workshop.example

reply-to: Philip.Hazel@exim.workshop.example
env-from: Philip.Hazel@exim.workshop.example
env-to: ph10@exim.workshop.example

which shows that rewriting has been set up for that address when used in any of the source fields, but
not when it appears as a recipient address. At the present time, there is no equivalent way of testing
rewriting rules that are set for a particular transport.

30.2 Rewriting rules

The rewrite section of the configuration file consists of lines of rewriting rules in the form

<source pattern> <replacement> <flags>

Rewriting rules that are specified for the headers_rewrite generic transport option are given as a
colon-separated list. Each item in the list takes the same form as a line in the main rewriting
configuration.

The formats of source patterns and replacement strings are described below. Each is terminated by
white space, unless enclosed in double quotes, in which case normal quoting conventions apply inside
the quotes. The flags are single characters which may appear in any order. Spaces and tabs between
them are ignored.

For each address that could potentially be rewritten, the rules are scanned in order, and replacements
for the address from earlier rules can themselves be replaced by later rules (but see the ‘q’ and ‘R’
flags).

The order in which addresses are rewritten is undefined, may change between releases, and must not
be relied on, with one exception: when a message is received, the envelope sender is always rewritten
first, before any header lines are rewritten. For example, the replacement string for a rewrite of an
address in To: must not assume that the message’s address in From: has (or has not) already been
rewritten. However, a rewrite of From: may assume that the envelope sender has already been
rewritten.

The variables $local_part and $domain can be used in the replacement string to refer to the address
that is being rewritten. Note that lookup-driven rewriting can be done by a rule of the form

@ ${lookup ...

where the lookup key uses $1 and $2 or $local_part and $domain to refer to the address that is being
rewritten.

Exim 4.10 [186] address rewriting (30)

30.3 Rewriting patterns
The source pattern in a rewriting rule is any item which may appear in an address list (see section
10.12). It is in fact processed as a single-item address list, which means that it is expanded before
being tested against the address.

After matching, the numerical variables $1, $2, etc. may be set, depending on the type of match which
occurred. These can be used in the replacement string to insert portions of the incoming address. $0
always refers to the complete incoming address. When a regular expression is used, the numerical
variables are set from its capturing subexpressions. For other types of pattern they are set as follows:

• If a local part or domain starts with an asterisk, the numerical variables refer to the character
strings matched by asterisks, with $1 associated with the first asterisk, and $2 with the second, if
present. For example, if the pattern

queen@.fict.example

is matched against the address hearts-queen@wonderland.fict.example then

$0 = hearts-queen@wonderland.fict.example
$1 = hearts-
$2 = wonderland

Note that if the local part does not start with an asterisk, but the domain does, it is $1 that
contains the wild part of the domain.

• If the domain part of the pattern is a partial lookup, the wild and fixed parts of the domain are
placed in the next available numerical variables. Suppose, for example, that the address

 foo@bar.baz.example is processed by a rewriting rule of the form

*@partial-dbm;/some/dbm/file <replacement string>

and the key in the file that matches the domain is *.baz.example. Then

$1 = foo
$2 = bar
$3 = baz.example

If the address foo@baz.example is looked up, this matches the same wildcard file entry, and in
this case $2 is set to the empty string, but $3 is still set to baz.example. If a non-wild key is
matched in a partial lookup, $2 is again set to the empty string and $3 is set to the whole
domain. For non-partial domain lookups, no numerical variables are set.

30.4 Rewriting replacements
If the replacement string for a rule is a single asterisk, addresses that match the pattern and the flags
are not rewritten, and no subsequent rewriting rules are scanned. For example,

hatta@lookingglass.fict.example * f

specifies that hatta@lookingglass.fict.example is never to be rewritten in From: headers.

If the replacement string is not a single asterisk, it is expanded, and must yield a fully qualified
address. Within the expansion, the variables $local_part and $domain refer to the address that is
being rewritten. Any letters they contain retain their original case – they are not lower cased. The
numerical variables are set up according to the type of pattern that matched the address, as described
above. If the expansion is forced to fail by the presence of ‘fail’ in a conditional or lookup item,
rewriting by the current rule is abandoned, but subsequent rules may take effect. Any other expansion
failure causes the entire rewriting operation to be abandoned, and an entry written to the panic log.

30.5 Rewriting flags
There are three different kinds of flag that may appear on rewriting rules:

Exim 4.10 [187] address rewriting (30)

• Flags that specify which headers and envelope addresses to rewrite: E, F, T, b, c, f, h, r, s, t.

• A flag that specifies rewriting at SMTP time: S.

• Flags that control the rewriting process: Q, q, R, w.

For rules that are part of the headers_rewrite generic transport option, E, F, T, and S are not
permitted.

30.6 Flags specifying which headers and envelope addresses to rewrite
If none of the following flag letters, nor the ‘S’ flag (see section 30.7) are present, a main rewriting
rule applies to all headers and to both the sender and recipient fields of the envelope, whereas a
transport-time rewriting rule just applies to all headers. Otherwise, the rewriting rule is skipped unless
the relevant addresses are being processed.

E rewrite all envelope fields
F rewrite the envelope From field
T rewrite the envelope To field
b rewrite the Bcc: header
c rewrite the Cc: header
f rewrite the From: header
h rewrite all headers
r rewrite the Reply-To: header
s rewrite the Sender: header
t rewrite the To: header

You should be particularly careful about rewriting Sender: headers, and restrict this to special known
cases in your own domains.

30.7 The SMTP-time rewriting flag
The rewrite flag ‘S’ specifies a rewrite of incoming envelope addresses at SMTP time, as soon as an
address is received in a MAIL or RCPT command, and before any other processing; even before syntax
checking. The pattern is required to be a regular expression, and it is matched against the whole of the
data for the command, including any surrounding angle brackets.

This form of rewrite rule allows for the handling of addresses that are not compliant with RFCs 2821
and 2822 (for example, ‘bang paths’ in batched SMTP input). Because the input is not required to be a
syntactically valid address, the variables $local_part and $domain are not available during the
expansion of the replacement string. The result of rewriting replaces the original address in the MAIL or
RCPT command.

30.8 Flags controlling the rewriting process
There are four flags which control the way the rewriting process works. These take effect only when a
rule is invoked, that is, when the address is of the correct type (matches the flags) and matches the
pattern:

• If the ‘Q’ flag is set on a rule, the rewritten address is permitted to be an unqualified local part. It
is qualified with qualify_recipient. In the absence of ‘Q’ the rewritten address must always
include a domain.

• If the ‘q’ flag is set on a rule, no further rewriting rules are considered, even if no rewriting
actually takes place because of a ‘fail’ in the expansion. The ‘q’ flag is not effective if the
address is of the wrong type (does not match the flags) or does not match the pattern.

• The ‘R’ flag causes a successful rewriting rule to be re-applied to the new address, up to ten
times. It can be combined with the ‘q’ flag, to stop rewriting once it fails to match (after at least
one successful rewrite).

Exim 4.10 [188] address rewriting (30)

• When an address in a header is rewritten, the rewriting normally applies only to the working part
of the address, with any comments and RFC 2822 ‘phrase’ left unchanged. For example,
rewriting might change

From: Ford Prefect <fp42@restaurant.hitch.fict.example>

into

From: Ford Prefect <prefectf@hitch.fict.example>

Sometimes there is a need to replace the whole address item, and this can be done by adding the
flag letter ‘w’ to a rule. If this is set on a rule that causes an address in a header line to be
rewritten, the entire address is replaced, not just the working part. The replacement must be a
complete RFC 2822 address, including the angle brackets if necessary. When the ‘w’ flag is set
on a rule that causes an envelope address to be rewritten, all but the working part of the
replacement address is discarded.

30.9 Rewriting examples

Here is an example of the two common rewriting paradigms:

@.hitch.fict.example $1@hitch.fict.example
*@hitch.fict.example ${lookup{$1}dbm{/etc/realnames}\

{$value}fail}@hitch.fict.example bctfrF

Note the use of ‘fail’ in the lookup expansion in the second rule, forcing the string expansion to fail if
the lookup does not succeed. In this context it has the effect of leaving the original address unchanged,
but Exim goes on to consider subsequent rewriting rules, if any, because the ‘q’ flag is not present in
that rule. An alternative to ‘fail’ would be to supply $1 explicitly, which would cause the rewritten
address to be the same as before, at the cost of a small bit of processing. Not supplying either of these
is an error, since the rewritten address would then contain no local part.

The first example above replaces the domain with a superior, more general domain. This may not be
desirable for certain local parts. If the rule

root@*.hitch.fict.example *

were inserted before the first rule, rewriting would be suppressed for the local part root at any domain
ending in hitch.fict.example.

Rewriting can be made conditional on a number of tests, by making use of ${if in the expansion item.
For example, to apply a rewriting rule only to messages that originate outside the local host:

@.hitch.fict.example "${if !eq {$sender_host_address}{}\
 {$1@hitch.fict.example}fail}"

The replacement string is quoted in this example because it contains white space.

Exim does not handle addresses in the form of ‘bang paths’. If it sees such an address it treats it as an
unqualified local part which it qualifies with the local qualification domain (if the source of the
message is local or if the remote host is permitted to send unqualified addresses). Rewriting can
sometimes be used to handle simple bang paths with a fixed number of components. For example,
the rule

\N^([^!]+)!(.*)@your.domain.example$\N $2@$1

rewrites a two-component bang path host.name!user as the domain address user@host.name. However,
there is a security implication in using this as a global rewriting rule for envelope addresses. It can
provide a backdoor method for using your system as a relay, because the incoming addresses appear to
be local. If the bang path addresses are received via SMTP, it is safer to use the ‘S’ flag to rewrite
them as they are received, so that relay checking can be done on the rewritten addresses.

Exim 4.10 [189] address rewriting (30)

31. Retry configuration

The ‘retry’ section of the run time configuration file contains a list of retry rules which control how
often Exim tries to deliver messages that cannot be delivered at the first attempt. If there are no retry
rules, temporary errors are treated as permanent. The -brt command line option can be used to test
which retry rule will be used for a given address or domain.

The most common cause of retries is temporary failure to deliver to a remote host because the host is
down, or inaccessible because of a network problem. Exim’s retry processing in this case is applied on
a per-host (strictly, per IP address) basis, not on a per-message basis. Thus, if one message has
recently been delayed, a new message to the same host does not immediately get tried, but waits for
the host’s retry time to arrive. If the retry_defer log selector is set, the message ‘retry time not
reached’ is written to the main log whenever a delivery is skipped for this reason. Section 42.2
contains more details of the handling of errors during remote deliveries.

Retry processing applies to routing as well as to delivering, except as covered in the next paragraph.
The retry rules do not distinguish between these actions. It is not possible, for example, to specify
different behaviour for failures to route the domain snark.fict.example and failures to deliver to the
host snark.fict.example. I didn’t think anyone would ever need this added complication, so did not
implement it. However, although they share the same retry rule, the actual retry times for routing and
transporting a given domain are maintained independently.

When a delivery is not part of a queue run (typically an immediate delivery on receipt of a message),
the routers are always run, and local deliveries are always attempted, even if retry times are set for
them. This makes for better behaviour if one particular message is causing problems (for example,
causing quota overflow, or provoking an error in a filter file). If such a delivery suffers a temporary
failure, the retry data gets updated as normal, and subsequent delivery attempts from queue runs occur
only when the retry time for the local address is reached.

31.1 Retry rules
Each retry rule occupies one line and consists of three parts, separated by white space: a pattern, an
error name, and a list of retry parameters. The pattern must be enclosed in double quotes if it contains
white space. The rules are searched in order until one is found whose pattern matches the failing host
or address.

The pattern is any single item that may appear in an address list (see section 10.12). It is in fact
processed as a single-item address list, which means that it is expanded before being tested against the
address which has been delayed. Address list processing treats a plain domain name as if it were
preceded by ‘*@’, which makes it possible for many retry rules to start with just a domain. For
example,

lookingglass.fict.example * F,24h,30m;

provides a rule for any address in the lookingglass.fict.example domain, whereas

alice@lookingglass.fict.example * F,24h,30m;

applies only to temporary failures involving the local part alice.

When looking for a retry rule after a routing attempt has failed (for example, after a DNS timeout),
each line in the retry configuration is tested only against the domain in the address. However, when
looking for a retry rule after a remote delivery attempt has failed (for example, a connection timeout),
each line in the retry configuration is first tested against the remote host name, and then against the
domain name in the address. For example, if the MX records for a.b.c.example are

a.b.c.example MX 5 x.y.z.example
MX 6 p.q.r.example
MX 7 m.n.o.example

Exim 4.10 [190] retry configuration (31)

and the retry rules are

p.q.r.example * F,24h,30m;
a.b.c.example * F,4d,45m;

then failures to deliver to host p.q.r.example use the first rule to determine retry times, but for all the
other hosts for the domain a.b.c.example, the second rule is used, and that rule is also used if routing
to a.b.c.example suffers a temporary failure.

31.2 Retry rules for specific errors
The second field in a retry rule is the name of a particular error, or an asterisk, which matches any
error. The errors that can be tested for are:

auth_failed: authentication failed when trying to send to a host in the hosts_require_auth list in
an smtp transport

refused_MX: connection refused from a host obtained from an MX record

refused_A: connection refused from a host not obtained from an MX record

refused: any connection refusal

timeout_connect: connection timed out

timeout_DNS: DNS lookup timed out

timeout: any timeout

quota: quota exceeded in local delivery by appendfile

quota_<time>: quota exceeded in local delivery, and the mailbox has not been read for <time>.
For example, quota_4d applies to a quota error when the mailbox has not been read for four
days. Warning: this applies only when the mailbox consists of a single file whose access time
can be checked. If you are using multi-file mailboxes, a retry rule that uses this type of error field
is never matched.

The quota errors apply both to system-enforced quotas and to Exim’s own quota mechanism in the
appendfile transport. The quota error also applies when a local delivery is deferred because a partition
is full (the ENOSPC error).

31.3 Retry rule parameters
The third field in a retry rule is a sequence of retry parameter sets, separated by semicolons. Each set
consists of

<letter>,<cutoff time>,<arguments>

The letter identifies the algorithm for computing a new retry time; the cutoff time is the time beyond
which this algorithm no longer applies, and the arguments vary the algorithm’s action. The cutoff time
is measured from the time that the first failure for the domain (combined with the local part if
relevant) was detected, not from the time the message was received. The available algorithms are:

• F: retry at fixed intervals. There is a single time parameter specifying the interval.

• G: retry at geometrically increasing intervals. The first argument specifies a starting value for the
interval, and the second a multiplier, which is used to increase the size of the interval at each

 retry.

When computing the next retry time, the algorithm definitions are scanned in order until one whose
cutoff time has not yet passed is reached. This is then used to compute a new retry time that is later
than the current time. In the case of fixed interval retries, this simply means adding the interval to the
current time. For geometrically increasing intervals, retry intervals are computed from the rule’s
parameters until one that is greater than the previous interval is found. The main configuration variable
retry_interval_max limits the maximum interval between retries.

Exim 4.10 [191] retry configuration (31)

A single remote domain may have a number of hosts associated with it, and each host may have more
than one IP address. Retry algorithms are selected on the basis of the domain name, but are applied to
each IP address independently. If, for example, a host has two IP addresses and one is unusable, Exim
will generate retry times for it and will not try to use it until its next retry time comes. Thus the good
IP address is likely to be tried first most of the time.

Retry times are hints rather than promises. Exim does not make any attempt to run deliveries exactly
at the computed times. Instead, a queue-runner process starts delivery processes for delayed messages
periodically, and these attempt new deliveries only for those addresses that have passed their next retry
time. If a new message arrives for a deferred address, an immediate delivery attempt occurs only if the
address has passed its retry time. In the absence of new messages, the minimum time between retries
is the interval between queue-runner processes. There is not much point in setting retry times of five
minutes if your queue-runners happen only once an hour, unless there are a significant number of
incoming messages (which might be the case on a system that is sending everything to a smart host,
for example).

The data in the retry hints database can be inspected by using the exim_dumpdb or exim_fixdb utility
programs (see chapter 45). The latter utility can also be used to change the data. The exinext utility
script can be used to find out what the next retry times are for the hosts associated with a particular
mail domain, and also for local deliveries that have been deferred.

31.4 Retry rule examples
Here are some example retry rules:

alice@wonderland.fict.example quota_5d F,7d,3h
wonderland.fict.example quota_5d
wonderland.fict.example * F,1h,15m; G,2d,1h,2;
lookingglass.fict.example * F,24h,30m;
* refused_A F,2h,20m;
* * F,2h,15m; G,16h,1h,1.5; F,5d,8h

The first rule sets up special handling for mail to alice@wonderland.fict.example when there is an
over-quota error and the mailbox has not been read for at least 5 days. Retries continue every three
hours for 7 days. The second rule handles over-quota errors for all other local parts at
wonderland.fict.example; the absence of a local part has the same effect as supplying ‘*@’. As no
retry algorithms are supplied, messages that fail are bounced immediately if the mailbox has not been
read for at least 5 days.

The third rule handles all other errors at wonderland.fict.example; retries happen every 15 minutes for
an hour, then with geometrically increasing intervals until two days have passed since a delivery first
failed. After the first hour there is a delay of one hour, then two hours, then four hours, and so on (this
is a rather extreme example).

The fourth rule controls retries for the domain lookingglass.fict.example. They happen every 30
minutes for 24 hours only. The remaining two rules handle all other domains, with special action for
connection refusal from hosts that were not obtained from an MX record.

The final rule in a retry configuration should always have asterisks in the first two fields so as to
provide a general catch-all for any addresses that do not have their own special handling. This
example tries every 15 minutes for 2 hours, then with intervals starting at one hour and increasing by a
factor of 1.5 up to 16 hours, then every 8 hours up to 5 days.

31.5 Timeout of retry data
Exim timestamps the data that it writes to its retry hints database. When it consults the data during a
delivery it ignores any that is older than the value set in retry_data_expire (default 7 days). If, for
example, a host hasn’t been tried for 7 days, Exim will try to deliver to it immediately a message
arrives, and if that fails, it will calculate a retry time as if it were failing for the first time.

Exim 4.10 [192] retry configuration (31)

This improves the behaviour for messages routed to rarely-used hosts such as MX backups. If such a
host was down at one time, and happens to be down again when Exim tries a month later, using the
old retry data would imply that it had been down all the time, which is not a justified assumption.

If a host really is permanently dead, this behaviour causes a burst of retries every now and again, but
only if messages routed to it are rare. It there is a message at least once every 7 days the retry data
never expires.

31.6 Long-term failures
Special processing happens when an address has been failing for so long that the cutoff time for the
last algorithm has been reached. This is independent of how long any specific message has been
failing; it is the length of continuous failure for the address that counts. When this is the case for a
local delivery, or for all IP addresses associated with a remote delivery, a subsequent delivery failure
causes Exim to give up on the address, and a bounce message is generated. In order to cater for new
messages that may use the failing address, a next retry time is still computed from the final algorithm,
and is used as follows:

If the delivery is a local one, one delivery attempt is always made for any subsequent messages. If it
fails, the address fails immediately. The post-cutoff retry time is not used.

If the delivery is remote, there are two possibilities, controlled by the delay_after_cutoff option of the
smtp transport. The option is true by default and in that case:

Until the post-cutoff retry time for one of the IP addresses is reached, any attempt to deliver to
the failing address is bounced immediately. After that time, one new delivery attempt is made to
those IP addresses that are past their retry times, and if that still fails, the address is bounced and
new retry times are computed.

In other words, Exim delays retrying an IP address after the final cutoff time until a new retry time is
reached, and can therefore bounce an email address without ever trying a delivery when a host has
been down for a long time. This ensures that few resources are wasted in repeatedly trying to deliver
to a broken destination, but if the host does recover, Exim will eventually notice.

If delay_after_cutoff is set false, Exim behaves differently. If all IP addresses are past their final
cutoff time, Exim tries to deliver to those IP addresses that have not been tried since the message
arrived. If there are none, or if they all fail, the address is bounced. In other words, it does not delay
when a new message arrives, but tries the expired addresses immediately, unless they have been tried
since the message arrived. If there is a continuous stream of messages for the failing domains,
unsetting delay_after_cutoff means that there will be many more attempts to deliver to failing IP
addresses than when delay_after_cutoff is true.

31.7 Ultimate address timeout
An additional rule is needed to cope with cases where a host is intermittently available, or when a
message has some attribute that prevents its delivery when others to the same address get through. In
this situation, because some messages are successfully delivered, the ‘retry clock’ for the address
keeps getting restarted, and so a message could remain on the queue for ever. To prevent this, if a
message has been on the queue for longer than the cutoff time of any applicable retry rule for a given
address, a delivery is attempted for that address, even if it is not yet time, and if this delivery fails, the
address is timed out. A new retry time is not computed in this case, so that other messages for the
same address are considered immediately.

Exim 4.10 [193] retry configuration (31)

32. SMTP authentication

The ‘authenticators’ section of Exim’s run time configuration is concerned with SMTP authentication.
This facility is an extension to the SMTP protocol, described in RFC 2554, which allows a client
SMTP host to authenticate itself to a server. By this means a server might, for example, recognize
clients that are permitted to use it as a relay. SMTP authentication is not of relevance to the transfer of
mail between servers that have no managerial connection with each other.

Very briefly, the way SMTP authentication works is as follows:

• The server advertises a number of authentication mechanisms.

• The client issues an AUTH command, naming a specific mechanism. The command may, option-
 ally, contain some authentication data.

• The server may issue one or more challenges, to which the client must send appropriate
responses. In simple authentication mechanisms, the challenges are just prompts for user names
and passwords. The server does not have to issue any challenges – in some mechanisms the
relevant data may all be transmitted with the AUTH command.

• The server either accepts or denies authentication.

• If authentication succeeds, the client may optionally make use of the AUTH option on the MAIL

command to pass an authenticated sender in subsequent mail transactions. Authentication lasts for
the remainder of the SMTP connection.

• If authentication fails, the client may give up, or it may try a different authentication mechanism,
or it may try transferring mail over the unauthenticated connection.

If you are setting up a client, and want to know which authentication mechanisms the server supports,
you can use Telnet to connect to port 25 (the SMTP port) on the server, and issue an EHLO command.
The response to this includes the list of supported mechanisms. For example:

$ telnet server.example 25
Trying 192.168.34.25...
Connected to server.example.
Escape character is ’^]’.
220 server.example ESMTP Exim 4.00 ...
ehlo client.example
250-server.example Hello client.example [10.8.4.5]
250-SIZE 52428800

 250-PIPELINING
250-AUTH PLAIN
250 HELP

The second-last line of this example output shows that the server supports authentication using the
PLAIN mechanism.

When Exim is receiving SMTP mail, it is acting as a server; when it is sending out messages over
SMTP, it is acting as a client. Configuration options are provided for use in both these circumstances.
The different authentication mechanisms are configured by specifying authenticator drivers for Exim.
Like the routers and transports, which authenticators are included in the binary is controlled by build-
time definitions. The following are currently available, included by setting

AUTH_CRAM_MD5=yes
 AUTH_PLAINTEXT=yes
 AUTH_SPA=yes

in Local/Makefile, respectively. The first of these supports the CRAM-MD5 authentication mechanism
(RFC 2195), and the second can be configured to support the PLAIN authentication mechanism (RFC

Exim 4.10 [194] SMTP authentication (32)

2595) or the LOGIN mechanism, which is not formally documented, but used by several MUAs. The
third authenticator supports Microsoft’s Secure Password Authentication mechanism.

The authenticators are configured using the same syntax as other drivers (see section 6.14). If none are
required, no authentication section need be present in the configuration file. Each authenticator can in
principle have both server and client functions. To make it clear which options apply to which, the
prefixes server_ and client_ are used on option names which are specific to either the server or the
client function, respectively. Server and client functions are disabled if none of their options are set. If
an authenticator is to be used for both server and client functions, a single definition, using both sets
of options, is required. For example:

cram:
driver = cram_md5
public_name = CRAM-MD5
server_secret = ${if eq{$1}{ph10}{secret1}fail}
client_name = ph10
client_secret = secret2

The server_ option is used when Exim is acting as a server, and the client_ options when it is acting
as a client.

Descriptions of the individual authenticators are given in subsequent chapters. The remainder of this
chapter covers the generic options for the authenticators, followed by general discussion of the way
authentication works in Exim.

32.1 Generic options for authenticators

driver Type: string Default: unset

This option must always be set. It specifies which of the available authenticators is to be used.

public_name Type: string Default: unset

This option specifies the name of the authentication mechanism which the driver implements, and
by which it is known to the outside world. These names should contain only upper case letters,
digits, underscores, and hyphens (RFC 2222), but Exim in fact matches them caselessly. If
public_name is not set, it defaults to the driver ’s instance name.

The public names of authenticators that are configured as servers are advertised by Exim when it
receives an EHLO command, in the order in which they are defined. When an AUTH command is
received, the list of authenticators is scanned in definition order for one whose public name matches
the mechanism given in the AUTH command.

server_debug_print Type: string† Default: unset

If this option is set and authentication debugging is enabled (see the -d command line option), the
string is expanded and included in the debugging output when the authenticator is run as a server.
This can help with checking out the values of variables.

server_set_id Type: string† Default: unset

When an Exim server successfully authenticates a client, this string is expanded using data from the
authentication, and preserved for any incoming messages in the variable $authenticated_id. It is
also included in the log lines for incoming messages. For example, a user/password authenticator
configuration might preserve the user name which was used to authenticate, and refer to it
subsequently during delivery of the message.

server_mail_auth_condition Type: string† Default: unset

This option allows a server to discard authenticated sender addresses supplied in MAIL commands
according to configured conditions. If the option is unset, addresses supplied by the AUTH option of
MAIL commands are always accepted. Otherwise, when an authenticated client supplies an AUTH

value on a MAIL command, the value of this option is expanded. If it yields an empty string, ‘0’,

Exim 4.10 [195] SMTP authentication (32)

‘no’, or ‘false’, the AUTH address is ignored. If the expansion yields any other value, the AUTH

address is retained and passed on with the message. During the expansion, the address that was
supplied by the AUTH keyword is available in $authenticated_sender.

32.2 Authentication on an Exim server
When an Exim server receives an AUTH command from a client, it runs the ACL specified by
acl_smtp_auth in order to decide whether to accept the command or not. If acl_smtp_auth is not set,
AUTH is accepted from any client host. You can insist that any client that uses the AUTH command must
first start a TLS encrypted session, by checking for encryption in the ACL that runs for AUTH (see the
example in section 37.4). Other ACLs, for example, those that run for the RCPT or ETRN commands, can
check whether the SMTP session has been authenticated or not.

If AUTH is not rejected by the ACL, Exim searches its configuration for a server authentication
mechanism that matches the one named in the AUTH command, and then runs the appropriate
authentication protocol.

Normally, an Exim server advertises the authentication mechanisms it supports in response to any EHLO

command. However, this is in fact controlled by the global option auth_advertise_hosts, which
defaults to *. You can use this option to turn off the authentication advertisement to certain hosts.

Some mail clients (for example, Netscape) require the user to provide a name and password for
authentication whenever AUTH is advertised, even though authentication may not in fact be needed (for
example, Exim may be set up to allow unconditional relaying from the client). You can make such
clients more friendly by not advertising AUTH to them. For example, if clients on the 10.9.8.0/24
network are permitted (by the ACL that runs for RCPT) to relay without authentication, you should set

auth_advertise_hosts = ! 10.9.8.0/24

When a message is received from an authenticated host, the value of $received_protocol is set to
‘asmtp’ instead of ‘esmtp’, and $sender_host_authenticated contains the name (not the public name)
of the authenticator driver which successfully authenticated the client from which the message was
received. This variable is empty if there was no successful authentication.

32.3 Testing server authentication
Exim’s -bh option can be useful for testing server authentication configurations. The data for the AUTH

command has to be sent encoded in base 64. A quick way to produce such data for testing is the
following Perl script:

use MIME::Base64;
printf ("%s", encode_base64(eval "\"$ARGV[0]\""));

This interprets its argument as a Perl string, and then encodes it. The interpretation as a Perl string
allows binary zeros, which are required for some kinds of authentication, to be included in the data.
For example, a command line to run this script on such data might be

encode ’\0user\0password’

Note the use of single quotes to prevent the shell interpreting the backslashes, so that they can be
interpreted by Perl to specify characters whose code value is zero. If you have the mimencode
command installed, another way to do this is to run the command

echo -e -n ‘\0user\0password’ | mimencode

The -e option of echo enables the interpretation of backslash escapes in the argument, and the -n
option specifies no newline at the end of its output. However, not all versions of echo recognize these
options, so you should check your version before relying on this suggestion.

Warning: If either of the user or password strings starts with an octal digit, you must use three zeros
instead of one after the leading backslash. If you do not, the octal digit that starts your string will be
incorrectly interpreted as part of the code for the first character.

Exim 4.10 [196] SMTP authentication (32)

32.4 Authenticated senders
When a client host has authenticated itself, Exim pays attention to the AUTH parameter on incoming
SMTP MAIL commands. Otherwise, it accepts the syntax, but ignores the data. Unless the data is the
string ‘<>’, it is set as the authenticated sender of the message. The value is available during delivery
in the $authenticated_sender variable, and is passed on to other hosts to which Exim authenticates as
a client. Do not confuse this value with $authenticated_id, which is a string obtained from the
authentication process, and which is not usually a complete email address.

32.5 Authentication by an Exim client
The smtp transport has two options called hosts_require_auth and hosts_try_auth. When the smtp
transport connects to a server that announces support for authentication, and the host matches an entry
in either of these options, Exim (as a client) tries to authenticate as follows:

• For each authenticator that is configured as a client, it searches the authentication mechanisms
announced by the server for one whose name matches the public name of the authenticator.

• When it finds one that matches, it runs the authenticator ’s client code. The variables $host and
 $host_address are available for any string expansions that the client might do. They are set to

the server ’s name and IP address. If any expansion is forced to fail, the authentication attempt is
abandoned. Otherwise an expansion failure causes delivery to be deferred.

• If the result is a temporary error or a timeout, Exim abandons trying to send the message to the
host for the moment. It will try again later. If there are any backup hosts available, they are tried
in the usual way.

• If the response to authentication is a permanent error (5xx code), Exim carries on searching the
list of authenticators and tries another one if possible. If all authentication attempts give perma-
nent errors, or if there are no attempts because no mechanisms match, what happens depends on
whether the host matches hosts_require_auth or hosts_try_auth. In the first case, a temporary
error is generated, and delivery is deferred. The error can be detected in the retry rules, and
thereby turned into a permanent error if you wish. In the second case, Exim tries to deliver the
message unauthenticated.

When Exim has authenticated itself to a remote server, it adds the AUTH parameter to the MAIL

commands it sends, if it has got an authenticated sender for the message. If a local process calls Exim
to send a message, the sender address that is built from the login name and qualify_domain is treated
as authenticated.

Exim 4.10 [197] SMTP authentication (32)

33. The plaintext authenticator

The plaintext authenticator can be configured to support the PLAIN and LOGIN authentication
mechanisms, both of which transfer authentication data as plain (unencrypted) text, though encoded in
base 64. The use of plain text is a security risk. If you use one of these mechanisms without also
making use of SMTP encryption (see chapter 36) you should not use the same passwords for SMTP
connections as you do for login accounts.

33.1 Using plaintext in a server
When running as a server, plaintext performs the authentication test by expanding a string. It has the
following options:

server_prompts Type: string† Default: unset

The contents of this option, after expansion, must be a colon-separated list of prompt strings.

server_condition Type: string† Default: unset

This option must be set in order to configure the driver as a server. Its use is described below.

The data sent by the client with the AUTH command or in response to subsequent prompts is encoded
in base 64, and so may contain any byte values when decoded. If any data was supplied with the
command, it is treated as a list of NUL-separated strings which are placed in the expansion variables
$1, $2, etc. If there are more strings in server_prompts than the number of strings supplied with the
AUTH command, the remaining prompts are used to obtain more data. Each response from the client
may be a list of NUL-separated strings.

Once a sufficient number of data strings has been received, server_condition is expanded. Failure of
the expansion (forced or otherwise) causes a temporary error code to be returned. If the result of a
successful expansion is an empty string, ‘0’, ‘no’, or ‘false’, authentication fails. If the result of the
expansion is ‘1’, ‘yes’, or ‘true’, authentication succeeds and the generic server_set_id option is
expanded and saved in $authenticated_id. For any other result, a temporary error code is returned,
with the expanded string as the error text.

33.2 The PLAIN authentication mechanism
The PLAIN authentication mechanism (RFC 2595) specifies that three strings be sent as one item of
data (that is, one combined string containing two NUL separators). The data is either sent either as
part of the AUTH command, or subsequently in response to an empty prompt from the server.

The second and third strings are a user name and a corresponding password. Using a single fixed user
name and password as an example, this could be configured as follows:

fixed_plain:
driver = plaintext
public_name = PLAIN
server_prompts = :
server_condition = \
${if and {{eq{$2}{ph10}}{eq{$3}{secret}}}{yes}{no}}

server_set_id = $2

The server_prompts setting specifies a single, empty prompt (empty items at the end of a string list
are ignored). If all the data comes as part of the AUTH command, as is commonly the case, the prompt
is not used. This authenticator is advertised in the response to EHLO as

250-AUTH PLAIN

and a client host can authenticate itself by sending the command

AUTH PLAIN AHBoMTAAc2VjcmV0

Exim 4.10 [198] plaintext authenticator (33)

As this contains three strings (more than the number of prompts), no further data is required from the
client. Alternatively, the client may just send

AUTH PLAIN

to initiate authentication, in which case the server replies with an empty prompt. The client must
respond with the combined data string.

The data string is encoded in base 64, as required by the RFC. This example, when decoded, is
‘<NUL>ph10<NUL>secret’, where <NUL> represents a zero byte. This is split up into three strings,
the first of which is empty. The condition checks that the second two are ‘ph10’ and ‘secret’
respectively.

A more sophisticated instance of this authenticator could make use of the user name in $2 to look up a
password in a file or database, and maybe do an encrypted comparison (see crypteq in chapter 11).

33.3 The LOGIN authentication mechanism
The LOGIN authentication mechanism is not documented in any RFC, but is in use in a number of
programs. No data is sent with the AUTH command. Instead, a user name and password are supplied
separately, in response to prompts. The plaintext authenticator can be configured to support this as in
this example:

fixed_login:
driver = plaintext
public_name = LOGIN
server_prompts = User Name : Password
server_condition = \
${if and {{eq{$1}{ph10}}{eq{$2}{secret}}}{yes}{no}}

server_set_id = $1

Because of the way plaintext operates, this authenticator accepts data supplied with the AUTH command
(in contravention of the specification of LOGIN), but if the client does not supply it (as is the case for
LOGIN clients), the prompt strings are used to obtain two data items.

Some clients are very particular about the precise text of the prompts. For example, Outlook Express is
reported to recognize only ‘Username:’ and ‘Password:’. Here is an example of a LOGIN authenticator
which uses those strings, and which uses the ldapauth expansion condition to check the user name
and password by binding to an LDAP server:

login:
driver = plaintext
public_name = LOGIN
server_prompts = Username:: : Password::
server_condition = ${if ldapauth \
{user="uid=${quote_ldap:$1},ou=people,o=example.org" \
pass="$2" \

 ldap://ldap.example.org/}{yes}{no}}
server_set_id = uid=$1,ou=people,o=example.org

33.4 Support for different kinds of authentication
The examples above show literal password checking (which is unrealistic), and the use of ldapauth. A
number of string expansion features are provided for the purpose of interfacing to different ways of
user authentication. These include checking traditionally encrypted passwords from /etc/passwd (or
equivalent), PAM, Radius, ldapauth, and pwcheck. For details see section 11.6.

Exim 4.10 [199] plaintext authenticator (33)

33.5 Using plaintext in a client
The plaintext authenticator has just one client option:

client_send Type: string† Default: unset

The string is a colon-separated list of authentication data strings. Each string is independently
expanded before being sent to the server. The first string is sent with the AUTH command; any more
strings are sent in response to prompts from the server.

Because the PLAIN authentication mechanism requires NUL (zero) bytes in the data, further
processing is applied to each string before it is sent. If there are any single circumflex characters in
the string, they are converted to NULs. Should an actual circumflex be required as data, it must be
doubled in the string.

This is an example of a client configuration that implements the PLAIN authentication mechanism
with a fixed user name and password:

fixed_plain:
driver = plaintext
public_name = PLAIN
client_send = ^ph10^secret

The lack of colons means that the entire text is sent with the AUTH command, with the circumflex
characters converted to NULs. A similar example that uses the LOGIN mechanism is:

fixed_login:
driver = plaintext
public_name = LOGIN
client_send = : ph10 : secret

The initial colon means that the first string is empty, so no data is sent with the AUTH command itself.
The remaining strings are sent in response to prompts.

Exim 4.10 [200] plaintext authenticator (33)

34. The cram_md5 authenticator

The CRAM-MD5 authentication mechanism is described in RFC 2195. The server sends a challenge
string to the client, and the response consists of a user name and the CRAM-MD5 digest of the
challenge string combined with a secret string (password) which is known to both server and client.
Thus, the secret does not get sent over the network as plain text, which makes this authenticator more
secure than plaintext. However, the downside is that the secret has to be available in plain text at
either end.

34.1 Using cram_md5 as a server
This authenticator has one server option, which must be set to configure the authenticator as a server:

server_secret Type: string† Default: unset

When the server receives the client’s response, the user name is placed in the expansion variable
 $1, and server_secret is expanded to obtain the password for that user. The server then computes

the CRAM-MD5 digest that the client should have sent, and checks that it received the correct
string. If the expansion of server_secret is forced to fail, authentication fails. If the expansion fails
for some other reason, a temporary error code is returned to the client.

For example, the following authenticator checks that the user name given by the client is ‘ph10’, and
if so, uses ‘secret’ as the password. For any other user name, authentication fails. A more sophisticated
version might look up the secret string in a file, using the user name as the key.

fixed_cram:
driver = cram_md5
public_name = CRAM-MD5
server_secret = ${if eq{$1}{ph10}{secret}fail}
server_set_id = $1

If authentication succeeds, the setting of server_set_id preserves the user name in $authenticated_id.

34.2 Using cram_md5 as a client
When used as a client, the cram_md5 authenticator has two options:

client_name Type: string† Default: the primary host name

This string is expanded, and the result used as the user name data when computing the response to
the server ’s challenge.

client_secret Type: string† Default: unset

This option must be set for the authenticator to work as a client. Its value is expanded and the result
used as the secret string when computing the response.

Different user names and secrets can be used for different servers by referring to $host or
$host_address in the options.

Forced failure of either expansion string is treated as an indication that this authenticator is not
prepared to handle this case. Exim moves on to the next configured client authenticator. Any other
expansion failure causes Exim to give up trying to send the message to the current server.

A simple example configuration of a cram_md5 authenticator, using fixed strings, is:

fixed_cram:
driver = cram_md5
public_name = CRAM-MD5
client_name = ph10
client_secret = secret

Exim 4.10 [201] cram_md5 authenticator (34)

35. The spa authenticator

The spa authenticator provides client support for Microsoft’s Secure Password Authentication mechan-
ism. It does not provide server support for this mechanism. The code for this authenticator was
contributed by Marc Prud’hommeaux, and much of it is taken from the Samba project
(http://www.samba.org).

The mechanism works as follows:

• After the AUTH command has been accepted, the client sends an SPA authentication request based
on the user name and optional domain.

• The server sends back a challenge.

• The client builds a challenge response which makes use of the user ’s password and sends it to
the server, which then accepts or rejects it.

Encryption is used to protect the password in transit.

35.1 Using spa as a client
This authenticator has the following client options:

client_domain Type: string Default: unset

This option specifies an optional domain for the authentication.

client_password Type: string Default: unset

This option specifies the user ’s password, and must be set.

client_username Type: string Default: unset

This option specifies the user name, and must be set.

Here is an example of a configuration of this authenticator for use with the mail servers at msn.com:

msn:
driver = spa
public_name = MSN
client_username = msn/msn_username
client_password = msn_plaintext_password
client_domain = DOMAIN_OR_UNSET

Exim 4.10 [202] spa authenticator (35)

36. Encrypted SMTP connections using TLS/SSL

Support for TLS (Transport Layer Security), otherwise known as SSL (Secure Sockets Layer), is
implemented by making use of the OpenSSL library. There is no cryptographic code in the Exim
distribution itself for implementing TLS. In order to use this feature you must install OpenSSL, and
then build a version of Exim that includes TLS support (see section 4.5). You also need to understand
the basic concepts of encryption at a managerial level, and in particular, the way that public keys,
private keys, and certificates are used.

RFC 2487 defines how SMTP connections can make use of encryption. Once a connection is
established, the client issues a STARTTLS command. If the server accepts this, the client and the server
negotiate an encryption mechanism. If the negotiation succeeds, the data that subsequently passes
between them is encrypted.

Exim also has support for legacy clients that do not use the STARTTLS mechanism. Instead, they connect
to a dif ferent port on the server (usually called the ‘ssmtp’ port), and expect to negotiate a TLS session
as soon as the connection to the server is established. The -tls-on-connect command line option option
can be used to run an Exim server in this way from inetd, and it can also be used to run a special
daemon that operates in this manner (use -oX to specify the port).

Exim’s ACLs can detect whether the current SMTP session is encrypted or not, and if so, what cipher
suite is in use, whether the client supplied a certificate, and whether or not that certificate was verified.
This makes it possible for an Exim server to deny or accept certain commands based on the encryption
state.

36.1 Configuring an Exim server to use TLS
When Exim has been built with TLS support, it advertises the availability of the STARTTLS command to
client hosts that match tls_advertise_hosts, but not to any others. The default value of this option is
unset, which means that STARTTLS is not advertised at all. This default is chosen because you need to
set some other options in order to make TLS avaliable, and also it is sensible for systems that want to
use TLS only as a client.

If a client issues a STARTTLS command and there is some configuration problem in the server, the
command is rejected with a 454 error. If the client persists in trying to issue SMTP commands, all
except QUIT are rejected with the error

554 Security failure

If a STARTTLS command is issued within an existing TLS session, it is rejected with a 554 error code.

To enable TLS operations on a server, you must set tls_advertise_hosts to match some hosts. You can,
of course, set it to * to match all hosts. However, this is not all you need to do. TLS sessions to a
server won’t work without some further configuration at the server end.

It is rumoured that all existing clients that support TLS/SSL use RSA encryption. To make this work
you need to set, in the server,

tls_certificate = /some/file/name
tls_privatekey = /some/file/name

The first file contains the server ’s X509 certificate, and the second contains the private key that goes
with it. These files need to be readable by the Exim user. They can be the same file if both the
certificate and the key are contained within it, and if tls_privatekey is not set, this is assumed to be
the case. The certificate file may also contain intermediate certificates that need to be sent to the client
to enable it to authenticate the server ’s certifcate.

If you do not understand about certificates and keys, please try to find a source of this background
information, which is not Exim-specific. (There are a few comments below in section 36.5.)

Exim 4.10 [203] TLS encryption (36)

With just these options, Exim will work as a server with clients such as Netscape. It does not require
the client to have a certificate (but see below for how to insist on this). There is one other option that
may be needed in other situations. If

tls_dhparam = /some/file/name

is set, the SSL library is initialized for the use of Diffie-Hellman ciphers with the parameters contained
in the file. This increases the set of cipher suites that the server supports. See the command

openssl dhparam

for a way of generating this data.

The strings supplied for these three options are expanded every time a client host connects. It is
therefore possible to use different certificates and keys for different hosts, if you so wish, by making
use of the client’s IP address in $sender_host_address to control the expansion. If a string expansion
is forced to fail, Exim behaves as if the option is not set.

The variable $tls_cipher is set to the cipher suite that was negotiated for an incoming TLS connection.
It is included in the Received: header of an incoming message (by default – you can, of course,
change this), and it is also included in the log line that records a message’s arrival, keyed by ‘X=’,
unless the tls_cipher log selector is turned off.

The ACLs that run for subsequent SMTP commands can check the name of the cipher suite and vary
their actions accordingly. The cipher suite names are those used by OpenSSL. These may differ from
the names used elsewhere. For example, OpenSSL uses the name DES-CBC3-SHA for the cipher suite
which in other contexts is known as TLS_RSA_WITH_3DES_EDE_CBC_SHA. Check the OpenSSL
documentation for more details.

36.2 Requesting and verifying client certificates
If you want an Exim server to request a certificate when negotiating a TLS session with a client, you
must set either tls_verify_hosts or tls_try_verify_hosts. You can, of course, set either of them to * to
apply to all TLS connections. For any host that matches one of these options, Exim requests a
certificate as part of the setup of the TLS session. The contents of the certificate are verified by
comparing it with a list of expected certificates. These must be available in a file or directory that is
identified by tls_verify_certificates.

A file can contain multiple certificates, concatenated end to end. If a directory is used, each certificate
must be in a separate file, with a name (or a symbolic link) of the form <hash>.0, where <hash> is a
hash value constructed from the certificate. You can compute the relevant hash by running the
command

openssl x509 -hash -noout -in /cert/file

where /cert/file contains a single certificate.

The difference between tls_verify_hosts and tls_try_verify_hosts is what happens if the client does
not supply a certificate, or if the certificate does not match any of the certificates in the collection
named by tls_verify_certificates. If the client matches tls_verify_hosts, the attempt to set up a TLS
session is aborted, and the incoming connection is dropped. If the client matches tls_try_verify_hosts,
the (encrypted) SMTP session continues. ACLs that run for subsequent SMTP commands can detect
the fact that no certificate was verified, and vary their actions accordingly. For example, you can insist
on a certificate before accepting a message for relaying, but not when the message is destined for local
delivery.

When a client supplies a certificate (whether it verifies or not), the value of the Distinguished Name of
the certificate is made available in the variable $tls_peerdn during subsequent processing of the
message. Because it is often a long text string, it is not included in the log line or Received: header by
default. You can arrange for it to be logged, keyed by ‘DN=’, by setting the tls_peerdn log selector,
and you can use received_header_text to change the Received: header. When no certificate is
supplied, $tls_peerdn is empty.

Exim 4.10 [204] TLS encryption (36)

36.3 Configuring an Exim client to use TLS
The tls_cipher and tls_peerdn log selectors apply to outgoing SMTP deliveries as well as to
incoming, the latter one causing logging of the server certificate’s DN. The remaining client configur-
ation for TLS is all within the smtp transport.

It is not necessary to set any options to have TLS work in the smtp transport. If Exim is built with
TLS support, and TLS is advertised by a server, the smtp transport always tries to start a TLS session.
However, this can be prevented by setting hosts_avoid_tls (an option of the transport) to a list of
server hosts for which TLS should not be used.

If you do not want Exim to attempt to send messages in clear when an attempt to set up an encrypted
connection fails in any way, you can set hosts_require_tls to a list of hosts for which encryption is
mandatory. For those hosts, delivery is always deferred if an encrypted connection cannot be set up. If
there are any other hosts for the address, they are tried in the usual way.

When the server host is not in hosts_require_tls, Exim may try to deliver the message unencrypted. It
always does this if the response to STARTTLS is a 5xx code. For a temporary error code, or for a failure
to negotiate a TLS session after a success response code, what happens is controlled by the
tls_tempfail_tryclear option of the smtp transport. If it is false, delivery to this host is deferred, and
other hosts (if available) are tried. If it is true, Exim attempts to deliver in clear after a 4xx response to
STARTTLS, and if STARTTLS is accepted, but the subsequent TLS negotiation fails, Exim closes the
current connection (because it is in an unknown state), opens a new one to the same host, and then
tries the delivery in clear.

The tls_certificate and tls_privatekey options of the smtp transport provide the client with a certifi-
cate, which is passed to the server if it requests it. If the server is Exim, it will request a certificate
only if tls_verify_hosts or tls_try_verify_hosts matches the client.

If tls_verify_certificates is set, it must name a file or directory that contains a collection of expected
certificates. The client verifies the server ’s certificate against this collection. If tls_require_ciphers is
set on the smtp transport, it must contain a list of permitted cipher suites. If either of these checks
fails, delivery to the current host is abandoned, and the smtp transport tries to deliver to alternative
hosts, if any.

All the TLS options in the smtp transport are expanded before use, with $host and $host_address
containing the name and address of the server to which the client is connected. Forced failure of an
expansion causes Exim to behave as if the relevant option were unset.

36.4 Multiple messages on the same encrypted TCP/IP connection
Exim sends multiple messages down the same TCP/IP connection by starting up an entirely new
delivery process for each message, passing the socket from one process to the next. This implemen-
tation does not fit well with the use of TLS, because there is quite a lot of state information associated
with a TLS connection, not just a socket identification. Passing all the state information to a new
process is not feasible. Consequently, Exim shuts down an existing TLS session before passing the
socket to a new process. The new process may then try to start a new TLS session, and if successful,
may try to re-authenticate if AUTH is in use, before sending the next message.

The RFC is not clear as to whether or not an SMTP session continues in clear after TLS has been shut
down, or whether TLS may be restarted again later, as just described. However, if the server is Exim,
this shutdown and reinitialization works. It is not known which (if any) other servers operate success-
fully if the client closes a TLS session and continues with unencrypted SMTP, but there are certainly
some that do not work. For such servers, Exim should not pass the socket to another process, because
the failure of the subsequent attempt to use it would cause Exim to record a temporary host error, and
delay other deliveries to that host.

To test for this case, Exim sends an EHLO command to the server after closing down the TLS session.
If this fails in any way, the connection is closed instead of being passed to a new delivery process, but
no retry information is recorded.

Exim 4.10 [205] TLS encryption (36)

There is also a manual override; you can set hosts_nopass_tls on the smtp transport to match those
hosts for which Exim should not pass connections to new processes if TLS has been used.

36.5 Certificates and all that
In order to understand fully how TLS works, you need to know about certificates, certificate signing,
and certificate authorities. This is not the place to give a tutorial, especially as I do not know very
much about it myself. Some helpful introduction can be found in the FAQ for the SSL addition to
Apache, currently at

http://www.modssl.org/docs/2.7/ssl_faq.html#ToC24

Other parts of the modssl documentation are also helpful, and have links to further files. Eric
Rescorla’s book, SSL and TLS, published by Addison-Wesley (ISBN 0-201-61598-3), contains both
introductory and more in-depth descriptions. Some sample programs taken from the book are available
from

http://www.rtfm.com/openssl-examples/

36.6 Certificate chains
The file named by tls_certificate may contain more than one certificate. This is useful in the case
where the certificate that is being sent is validated by an intermediate certificate which the other end
does not have. Multiple certificates must be in the correct order in the file. First the host’s certificate
itself, then the first intermediate certificate to validate the issuer of the host certificate, then the next
intermediate certificate to validate the issuer of the first intermediate certificate, and so on, until finally
(optionally) the root certificate. The root certificate must already be trusted by the recipient for
validation to succeed, of course, but if it’s not preinstalled, sending the root certificate along with the
rest makes it available for the user to install if the receiving end is a client MUA that can interact with
a user.

36.7 Self-signed certificates
You can create a self-signed certificate using the req command provided with OpenSSL, like this:

openssl req -x509 -newkey rsa:1024 -keyout file1 -out file2 \
-days 9999 -nodes

file1 and file2 can be the same file; the key and the certificate are delimited and so can be identified
independently. The -days option specifies a period for which the certificate is valid. The -nodes option
is important: if you do not set it, the key is encrypted with a passphrase that you are prompted for, and
any use that is made of the key causes more prompting for the passphrase. This is not helpful if you
are going to use this certificate and key in an MTA, where prompting is not possible.

A self-signed certificate made in this way is sufficient for testing, and may be adequate for all your
requirements if you are mainly interested in encrypting transfers, and not in secure identification.

However, many clients require that the certificate presented by the server be a user (also called ‘leaf ’
or ‘site’) certificate, and not a self-signed certificate. In this situation, the self-signed certificate
described above must be installed on the client host as a trusted root certification authority (CA), and
the certificate used by Exim must be a user certificate signed with that self-signed certificate.

For information on creating self-signed CA certificates and using them to sign user certificates, see the
General implementation overview chapter of the Open-source PKI book, available online at
http://ospkibook.sourceforge.net/.

Exim 4.10 [206] TLS encryption (36)

37. Access control lists

Access Control Lists (ACLs) are defined in a separate section of the run time configuration file,
headed by ‘begin acl’. Each ACL definition starts with a name, terminated by a colon. Here is a
complete ACL section which contains just one very small ACL:

begin acl

small_acl:
accept hosts = one.host.only

You can have as many lists as you like in the ACL section, and the order in which they appear does
not matter. The lists are self-terminating.

ACLs are used to control Exim’s behaviour when it receives certain SMTP commands. This applies
both to incoming TCP/IP connections, and when a local process submits a message over a pipe (using
the -bs option). The most common use is for controlling which recipients are accepted in incoming
messages. The default configuration file contains an example of a realistic ACL. This is discussed in
chapter 7. The -bh command line option provides a way of testing your ACL configuration by running
a fake SMTP session.

In order to cause an ACL to be used, you have to name it in one of the relevant options in the main
part of the configuration. These options are:

acl_smtp_auth ACL for AUTH

acl_smtp_data ACL after DATA

acl_smtp_etrn ACL for ETRN

acl_smtp_expn ACL for EXPN

 acl_smtp_rcpt ACL for RCPT

acl_smtp_vrfy ACL for VRFY

For example, if you set

acl_smtp_rcpt = small_acl

the little ACL defined above is used whenever Exim receives a RCPT command in an SMTP dialogue.
The majority of policy tests on incoming messages can be done when RCPT commands arrive. A
rejection of RCPT should cause the sending MTA to give up on the recipient address contained in the
RCPT command.

You cannot test the contents of the message, for example, to verify addresses in the headers, at RCPT

time. Such tests have to appear in the ACL that is run after the message has been received, before the
final response to the DATA command is sent. This is the ACL specified by acl_smtp_data. At this time,
it is no longer possible to reject individual recipients. An error response should reject the entire
message. Unfortunately, it is known that some MTAs do not treat hard (5xx) errors correctly at this
point – they keep the message on their queues and try again later, but that is their problem, though it
does waste some of your resources.

37.1 ACL return codes
The result of running an ACL is either ‘accept’ or ‘deny’, or, if some test cannot be completed (for
example, if a database is down), ‘defer ’. These results cause 2xx, 5xx, and 4xx return codes, respect-
ively, to be used in the SMTP dialogue. A fourth return, ‘error’, occurs when there is an error such as
invalid syntax in the ACL. This also causes a 4xx return code.

37.2 Unset ACL options
The default actions when any of the acl_smtp_xxx options are unset are not all the same. If
acl_smtp_auth is not defined, AUTH is always accepted (and an attempt is made to authenticate the

Exim 4.10 [207] ACL (37)

connection). If acl_smtp_data is not defined, no checks are done after a message has been received (at
the end of the DATA phase).

However, if any of the other options are not defined, the relevant SMTP command is rejected. In
particular, this means that acl_smtp_rcpt must be defined in order to receive any messages over an
SMTP connection. The default configuration file contains a suggested ACL which is set up for
acl_smtp_rcpt.

37.3 Data for message ACLs
When an ACL for RCPT or DATA is being run, the variables that contain information about the host and
the message’s sender (for example, $sender_host_address and $sender_address) are set, and can be
used in ACL statements. In the case of RCPT (but not DATA), $domain and $local_part are set from the
argument address.

The $message_size variable is set to the value of the SIZE parameter on the MAIL command at RCPT

time, or -1 if that parameter was not given. Its value is updated to the true message size by the time
the ACL after DATA is run.

The $rcpt_count variable increases by one for each RCPT command received. The $recipients_count
variable increases by one each time a RCPT command is accepted, so while an ACL for RCPT is being
processed, it contains the number of previously accepted recipients. At DATA time, $rcpt_count
contains the total number of RCPT commands, and $recipients_count contains the total number of
accepted recipients.

37.4 Data for non-message ACLs
When an ACL for AUTH, ETRN, EXPN, or VRFY is being run, the remainder of the SMTP command line
is placed in $smtp_command_argument. This can be tested using a condition condition. For
example, here is an ACL for use with AUTH, which insists that either the session is encrypted, or the
CRAM-MD5 authentication method is used. In other words, it does not permit authentication methods
that use cleartext passwords on unencrypted connections.

acl_check_auth:
accept encrypted = *
accept condition = ${if eq{${uc:$smtp_command_argument}}\

 {CRAM-MD5}{yes}{no}}
deny message = TLS encryption or CRAM-MD5 required

37.5 Use of the ACL selection options
The value of an acl_smtp_xxx option is expanded before use, so you can use different ACLs in
different circumstances, and in fact the resulting string does not have to be the name of a configured
list. Having expanded the string, Exim searches for an ACL as follows:

• If the string begins with a slash, Exim attempts to open the file and read its contents as an ACL.
If the file does not exist or cannot be read, an error occurs (typically causing a temporary failure
of whatever caused the ACL to be run). If an ACL is successfully read from a file, it is retained
in memory, so that it can be re-used without actually having to re-read the file. For example:

acl_smtp_data = /etc/acls/\
 ${lookup{$sender_host_address}lsearch\
 {/etc/acllist}{$value}{default}}

This looks up an ACL file to use on the basis of the host’s IP address, falling back to a default if
the lookup fails.

• If the string does not start with a slash, and does not contain any spaces, Exim searches the ACL
section of the configuration for a list whose name matches the string.

• If no named ACL is found, or if the string contains spaces, Exim parses the string as an inline
ACL. This can save typing in cases where you just want to have something like

Exim 4.10 [208] ACL (37)

acl_smtp_vrfy = accept

in order to allow free use of the VRFY command.

37.6 Format of an ACL
An individual ACL consists of a number of statements. Each statement starts with a verb, optionally
followed by a number of conditions and other modifiers. If all the conditions are met, the verb is
obeyed. If there are no conditions, the verb is always obeyed. What happens if any of the conditions
are not met depends on the verb (and in one case, on a special modifier). Not all the conditions make
sense at every testing point. For example, you cannot test a sender address in the ACL that is run for a
VRFY command.

The verbs are as follows:

• accept: If all the conditions are met, the ACL returns ‘accept’. If any of the conditions are not
met, what happens depends on whether endpass appears among the conditions (for syntax see
below). If the failing condition precedes endpass, control is passed to the next ACL statement; if
it follows endpass, the ACL returns ‘deny’. Consider this statement, used to check a RCPT

 command:

accept domains = +local_domains
 endpass

verify = recipient

If the recipient domain does not match the domains condition, control passes to the next
statement. If it does match, the recipient is verified, and the command is accepted if verification
succeeds. However, if verification fails, the ACL yields ‘deny’, because the failing condition is
after endpass.

• deny: If all the conditions are met, the ACL returns ‘deny’. If any of the conditions are not met,
control is passed to the next ACL statement. For example,

deny dnslists = blackholes.mail-abuse.org

rejects commands from hosts that are on a DNS black list.

• require: If all the conditions are met, control is passed to the next ACL statement. If any of the
conditions are not met, the ACL returns ‘deny’. For example, when checking a RCPT command,

require verify = sender

passes control to subsequent statements only if the message’s sender can be verified. Otherwise, it
rejects the command.

• warn: If all the conditions are met, some warning action is taken. In all cases, control passes to
the next ACL statement. In the case of testing an incoming message, the warning action consists
of adding header lines to the message, and/or writing an entry in the main log. Additional header
lines are specified by the message modifier, as in this example:

warn message = X-blacklisted-at: $dnslist_domain
dnslists = blackholes.mail-abuse.org : \

dialup.mail-abuse.org

If the same header line is requested several times (provoked, for example, by multiple RCPT

commands), only one copy is actually added to the message. Header lines that are added by an
ACL at RCPT time are visible in string expansions in the ACL that is run after DATA.

Log lines are specified by the log_message modifier. For ACLs that are not concerned with
incoming messages, only the logging action is available.

If any condition on a warn statement cannot be completed (that is, there is some sort of defer),
the warning action does not take place. The incident is logged, but the ACL continues to be
processed.

Exim 4.10 [209] ACL (37)

At the end of each ACL there is an implicit unconditional deny.

As you can see from the examples above, the conditions and modifiers are written one to a line, with
the first one on the same line as the verb, and subsequent ones on following lines. If you have a very
long condition, you can continue it onto several physical lines by the usual \ continuation mechanism.
It is conventional to align the conditions vertically.

37.7 Condition and modifier processing
An exclamation mark preceding a condition negates its result. For example,

deny domains = *.dom.example
!verify = recipient

causes the ACL to return ‘deny’ if the recipient domain ends in dom.example, but the recipient address
cannot be verified.

The arguments of conditions and modifiers are expanded. A forced failure of an expansion causes a
condition to be ignored, that is, it behaves as if the condition is true. Consider these two statements:

accept senders = ${lookup{$host_name}lsearch\
{/some/file}{$value}fail}

accept senders = ${lookup{$host_name}lsearch\
{/some/file}{$value}{}}

Each attempts to look up a list of acceptable senders. If the lookup succeeds, the returned list is
searched, but if the lookup fails the behaviour is different in the two cases. The fail in the first
statement causes the condition to be ignored, leaving no further conditions. The accept verb therefore
succeeds. The second statement, however, generates an empty list when the lookup fails. No sender
can match an empty list, so the condition fails and therefore the accept also fails.

37.8 ACL modifiers
The ACL modifiers are endpass, log_message, and message. They operate as follows:

endpass

This modifier, which has no argument, is recognized only in accept statements. It marks the
boundary between the conditions whose failure causes control to pass to the next statement, and
the conditions whose failure causes the ACL to return ‘deny’. See the description of accept above.

log_message = <text>

This modifier sets up a message which is used as part of the log message if the ACL denies
access because of a subsequent condition in the current statement. For example:

require log_message = wrong cipher suite $tls_cipher
encrypted = DES-CBC3-SHA

log_message adds to any underlying error message that may exist because of the condition. For
example, while verifying a recipient address, a :fail: redirection might have already set up a
message. Although the message is defined before the conditions to which it applies, the expansion
does not happen until after a condition has failed. This means that any variables that are set by the
condition are available for inclusion in the message. For example, the $dnslist_<xxx> variables
are set after a DNS black list lookup succeeds. If log_message is used with a warn statement,

 ‘Warning:’ is added to the start of the message.

message = <text>

This modifier sets up a message which is used as an error message if a subsequent condition in
the current statement causes the ACL to deny access. The message is returned as part of the
SMTP response. For example:

Exim 4.10 [210] ACL (37)

deny message = Relaying denied
domains = !+relay_domains

The text is literal; any quotes are taken as literals, but because it is expanded, backslash escapes
are processed anyway. If the message contains newlines, this gives rise to a multi-line SMTP
response. Like log_message, the contents of message are not expanded until after a condition has

 failed.

If message is used on a statement that verifies an address, the message specified overrides any
message that is generated by the verification process. However, the original message is available
in the variable $acl_verify_message, so you can incorporate it into your message if you wish. In
particular, if you want the text from :fail: items in redirect routers to be passed back as part of
the SMTP response, you should either not use a message modifier, or make use of
$acl_verify_message.

If message is used with warn, it causes a header line to be added an incoming message; for non-
message ACLs, it has no effect with warn.

If log_message is not present but message is present, the message text is used for logging. However,
if it contains newlines, only the first line of the text is logged. In the absence of both log_message and
message, a default built-in message is used. Neither log_message nor message are used if they are
empty strings, or if their expansions fail.

37.9 ACL conditions
Not all conditions are relevant in all circumstances. For example, testing senders and recipients does
not make sense in an ACL that is being run as the result of the arrival of an ETRN command, and
checks on message headers can be done only in the ACL specified by acl_smtp_data.

The conditions are:

acl = <name of acl or ACL string or file name >

The possible values of the argument are the same as for the acl_smtp_xxx options. The named or
inline ACL is run. If it returns ‘accept’ the condition is true; if it returns ‘deny’ the condition is
false; if it returns ‘defer’, the current ACL returns ‘defer’. ACLs may be nested up to 20 deep; the
limit exists purely to catch runaway loops.

This condition allows you to use different ACLs in different conditions. For example, different
ACLs can be used to handle RCPT commands for different local users or different local domains.

authenticated = <string list>

If the SMTP connection is not authenticated, the condition is false. Otherwise, the name of the
authenticator is tested against the list. To test for authentication by any authenticator, you can set

authenticated = *

condition = <string>

This feature allows you to make up custom conditions. If the result of expanding the string is an
empty string, the number zero, or one of the strings ‘no’ or ‘false’, the condition is false. If the
result is any non-zero number, or one of the strings ‘yes’ or ‘true’, the condition is true. For any
other values, some error is assumed to have occured, and the ACL returns ‘defer ’.

dnslists = <list of domain names and other data>

This condition checks for entries in DNS black lists. These are also known as ‘RBL lists’, after
the original Realtime Blackhole List, but note that the use of the lists at mail-abuse.org now
carries a charge. In its simplest form, the dnslists condition tests whether the calling host is on a
DNS black list by looking up the inverted IP address in one or more DNS domains. For example,
if the calling host’s IP address is 192.168.62.43, and the ACL statement is

deny dnslists = blackholes.mail-abuse.org : \
 dialups.mail-abuse.org

Exim 4.10 [211] ACL (37)

the following domains are looked up:

43.62.168.192.blackholes.mail-abuse.org
 43.62.168.192.dialups.mail-abuse.org

If a DNS lookup times out or otherwise fails to give a decisive answer, Exim behaves as if the
host is not on the relevant list. This is usually the required action when dnslists is used with deny
(which is the most common usage), because it prevents a DNS failure from blocking mail.
However, you can change this behaviour by putting one of the following special items in the list:

+include_unknown behave as if the item is on the list
+exclude_unknown behave as if the item is not on the list (default)
+defer_unknown give a temporary error

Each of these applies to any subsequent items on the list. For example:

deny dnslists = +defer_unknown : foo.bar.example

Testing the list of domains stops as soon as a match is found. If you want to warn for one list and
block for another, you can use two different statements:

deny dnslists = blackholes.mail-abuse.org
warn dnslists = dialups.mail-abuse.org

There are some lists which are keyed on domain names rather than inverted IP addresses (see for
example the domain based zones link at http://www.rfc-ignorant.org/). You can change the name
that is looked up by adding additional data to a dnslists item, introduced by a slash. For example,

deny message = Sender’s domain is listed at $dnslist_domain
dnslists = dsn.rfc-ignorant.org/$sender_address_domain

This particular example is useful only in ACLs that are obeyed after the RCPT or DATA commands,
when a sender address is available. If (for example) the message’s sender is user@tld.example the
name that is looked up is

tld.example.dsn.rfc-ignorant.org

You can mix entries with and without additional data in the same dnslists condition.

When an entry is found in a DNS black list, the variable $dnslist_domain contains the name of
the domain which matched, $dnslist_value contains the data from the entry, and $dnslist_text
contains the contents of any associated TXT record. You can use these variables in message or
log_message modifiers – although these appear before the condition in the ACL, they are not
expanded until after it has failed. For example:

deny hosts = !+local_networks
message = $sender_host_address is listed \

at $dnslist_domain
dnslists = rbl-plus.mail-abuse.example

DNS black list lookups are cached by Exim for the duration of the SMTP session, so a lookup
based on the IP address is done at most once for any incoming connection. Exim does not share
information between multiple incoming connections (but your local name server cache should be
active).

DNS black lists are constructed using address records in the DNS. The original RBL just used the
address 127.0.0.1 on the right hand side of the records, but the RBL+ list and some other lists use
a number of values with different meanings. The values used on the RBL+ list are:

Exim 4.10 [212] ACL (37)

127.1.0.1 RBL
127.1.0.2 DUL
127.1.0.3 DUL and RBL
127.1.0.4 RSS
127.1.0.5 RSS and RBL
127.1.0.6 RSS and DUL
127.1.0.7 RSS and DUL and RBL

If you add an equals sign and an IP address after a dnslists domain name, you can restrict its
action to DNS records with a matching right hand side. For example,

deny dnslists = rblplus.mail-abuse.org=127.0.0.2

rejects only those hosts that yield 127.0.0.2. More than one address may be given, using a comma
as a separator. These are alternatives – if any one of them matches, the RBL entry operates. If
there are no addresses, any address record is considered to be a match.

If you want to specify a constraining address and also change the name that is looked up, the
address list must be specified first. For example:

deny dnslists = dsn.rfc-ignorant.org\
 =127.0.0.2/$sender_address_domain

domains = <domain list>

This condition is relevant only after a RCPT command. It checks that the domain of the recipient
address is in the domain list. If percent-hack processing is enabled, it is done before this test is
done. If the check succeeds with a lookup, the result of the lookup is placed in $domain_data
until the next domains test.

encrypted = <string list>

If the SMTP connection is not encrypted, the condition is false. Otherwise, the name of the cipher
suite in use is tested against the list. To test for encryption without testing for any specific cipher
suite(s), set

encrypted = *

hosts = < host list>

This condition tests that the calling host matches the host list. If you have name lookups or
wildcarded host names and IP addresses in the same host list, you should normally put the IP
addresses first. For example, you could have:

accept hosts = 10.9.8.7 : dbm;/etc/friendly/hosts

The reason for this lies in the left-to-right way that Exim processes lists. It can test IP addresses
without doing any DNS lookups, but when it reaches an item that requires a host name, it fails if
it cannot find a host name to compare with the pattern. If the above list is given in the opposite

 order, the accept statement fails for a host whose name cannot be found, even if its IP address is
 10.9.8.7.

If you really do want to do the name check first, and still recognize the IP address even if the
name lookup fails, you can rewrite the ACL like this:

accept hosts = dbm;/etc/friendly/hosts
accept hosts = 10.9.8.7

The default action on failing to find the host name is to assume that the host is not in the list, so
the first accept statement fails. The second statement can then check the IP address.

Exim 4.10 [213] ACL (37)

local_parts = <local part list>

This condition is relevant only after a RCPT command. It checks that the local part of the recipient
address is in the list. If percent-hack processing is enabled, it is done before this test. If the check
succeeds with a lookup, the result of the lookup is placed in $local_part_data until the next
local_parts test.

recipients = <address list>

This condition is relevant only after a RCPT command. It checks the entire recipient address against
a list of recipients.

sender_domains = <domain list>

This condition tests the domain of the sender of the message against the given domain list.

senders = <address list>

This condition tests the sender of the message against the given list. To test for a bounce message,
which has an empty sender, set

senders = :

verify = certificate

This condition is true if the SMTP session is encrypted, and a certificate was received from the
client, and the certificate was verified. The server requests a certificate only if the client matches
tls_verify_hosts or tls_try_verify_hosts (see chapter 36).

verify = header_sender/<options>

This condition is relevant only in an ACL that is run after a message has been received, that is, in
an ACL specified by acl_smtp_data. It checks that there is a verifiable sender address in at least
one of the Sender:, Reply-To:, or From: header lines. Details of address verification and the
options are given in the next section. You can combine this condition with the senders condition
to restrict it to bounce messages only:

deny senders = :
message = A valid sender header is required for bounces

!verify = header_sender

verify = header_syntax

This condition is relevant only in an ACL that is run after a message has been received, that is, in
an ACL specified by acl_smtp_data. It checks the syntax of all header lines that can contain lists
of addresses (Sender:, From:, Reply-To:, To:, Cc:, and Bcc:). This is a syntax check only. A
common spamming ploy is to send syntactically invalid headers such as

To: @

This condition can be used to reject such messages.

verify = helo

This condition is true if a HELO or EHLO command has been received from the client host, and its
contents have been verified. Verification of these commands does not happen by default. See the
description of the helo_verify_hosts and helo_try_verify_hosts options for details of how to
request it.

verify = recipient/<options>

This condition is relevant only after a RCPT command. It verifies the current recipient. Details are
given in the next section.

Exim 4.10 [214] ACL (37)

verify = reverse_host_lookup

This condition ensures that a verified host name has been looked up from the IP address of the
client host. (This may have happened already if the host name was needed for checking a host list,
or if the host matched host_lookup.) Verification ensures that the host name obtained from a
reverse DNS lookup, or one of its aliases, does, when itself looked up in the DNS, yield the
original IP address.

verify = sender/<options>

This condition is relevant only after a RCPT command, or after a message has been received. If the
 message’s sender is empty (that is, this is a bounce message), the condition is true. Otherwise, the

sender address is verified. Details of verification are given in the next section. Exim caches the
result of sender verification, to avoid doing it more than once per message.

verify = sender=address/<options>

This is a variation of the previous option, in which a modified address is verified as a sender.

37.10 Address verification
Several of the verify conditions described in the previous section cause addresses to be verified. These
conditions can be followed by a number of options that modify the verification process. The options
are separated from the keyword and from each other by slashes. For example:

verify = sender/callout
verify = recipient/defer_ok/callout=10s/callout_defer_ok

The first stage of verification is to run the address through the routers, in ‘verify mode’. Routers can
detect the difference between verification and routing for delivery, and their actions can be varied by a
number of generic options such as verify and verify_only (see chapter 14).

If there is a defer error while doing this verification routing, the ACL normally returns ‘defer ’.
However, if you include defer_ok in the options, the condition is forced to be true instead.

For non-local addresses, routing verifies the domain, but is unable to do any checking of the local part.
There are situations where some means of verifying the local part is desirable. One way this can be
done is to make an SMTP callback to the sending host (for a sender address) or a callforward to a
subsequent host (for a recipient address), to see if the host accepts the address. We use the term callout
to cover both cases. This facility should be used with care, because it adds a lot of resource usage to
the cost of verifying an address.

If the callout option is present on a condition that verifies an address, a second stage of verification
occurs if the address is successfully routed to one or more remote hosts. Exim makes SMTP
connections to the remote hosts, to test whether the address is acceptable. For a sender address, it
behaves as if transmitting a bounce message and sends:

HELO <primary host name>
MAIL FROM:<>
RCPT TO:<the address to be tested>
QUIT

For a recipient address, the MAIL command contains the sender address of the message. If the response
to the RCPT command is a 2xx code, the verification succeeds. If it is 5xx, the verification fails. For any
other condition, Exim tries the next host, if any. If there is a problem with all the remote hosts, the
ACL yields ‘defer’, unless the callout_defer_ok option is given, in which case the condition is forced
to succeed.

For SMTP callout connections, the port to connect to and the outgoing interface are taken from the
transport to which address was routed, if it is a remote transport. Otherwise port 25 is used, and the
interface is not specified.

The timeout that applies for the callout attempt to each host can be changed by specifying it on the
callout option. For example:

Exim 4.10 [215] ACL (37)

verify = sender/callout=5s

The default is 30 seconds.

37.11 Sender address verification reporting
When sender verification fails in an ACL, the details of the failure are given as additional output lines
before the 550 response to the relevant SMTP command (RCPT or DATA). For example, if sender callout
is in use, you might see:

MAIL FROM:<xyz@abc.example>
250 OK
RCPT TO:<pqr@def.example>
550-Verification failed for <xyz@abc.example>
550-Called: 192.168.34.43
550-Sent: RCPT TO:<xyz@abc.example>
550-Response: 550 Unknown local part xyz in <xyz@abc.example>
550 Sender verification failed

If more than one RCPT command fails in the same way, the details are given only for the first of them.
However, some administrators do not want to send out this much information. You can suppress the
details by adding ‘/no_details’ to the ACL statement that requests sender verification. For example:

verify = sender/no_details

37.12 Redirection while verifying
A dilemma arises when a local address is redirected by aliasing or forwarding during verification:
should the generated addresses themselves be verified, or should the successful expansion of the
original address be enough to verify it? Exim takes the following pragmatic approach:

• When an incoming address is redirected to just one child address, verification continues with the
child address, and if that fails to verify, the original verification also fails.

• When an incoming address is redirected to more than one child address, verification does not
continue. A success result is returned.

This seems the most reasonable behaviour for the common use of aliasing as a way of redirecting
different local parts to the same mailbox. It means, for example, that a pair of alias entries of the form

A.Wol: aw123
aw123: :fail: Gone away, no forwarding address

work as expected, with both local parts causing verification failure. When a redirection generates more
than one address, the behaviour is more like a mailing list, where the existence of the alias itself is
sufficient for verification to succeed.

37.13 Using an ACL to control relaying
An MTA is said to relay a message if it receives it from some host and delivers it directly to another
host as a result of a remote address contained within it. Redirecting a local address via an alias or
forward file and then passing the message on to another host is not relaying, but a redirection as a
result of the ‘percent hack’ is.

Two kinds of relaying exist, which are termed ‘incoming’ and ‘outgoing’. A host which is acting as a
gateway or an MX backup is concerned with incoming relaying from arbitrary hosts to a specific set of
domains. On the other hand, a host which is acting as a smart host for a number of clients is
concerned with outgoing relaying from those clients to the Internet at large. Often the same host is
fulfilling both functions, as illustrated in the diagram below, but in principle these two kinds of
relaying are entirely independent. What is not wanted is the transmission of mail from arbitrary remote
hosts through your system to arbitrary domains.

Exim 4.10 [216] ACL (37)

Arbitrary
remote hosts

Arbitrary
domains

Local host

Specific
hosts

Specific
domains

Outgoing Incoming

Not wanted

Controlled relaying

You can implement relay control by means of suitable statements in the ACL that runs for each RCPT

command. For convenience, it is often easiest to use Exim’s named list facility to define the domains
and hosts involved. For example, suppose you want to do the following:

• Deliver a number of domains to mailboxes on the local host (or process them locally in some
other way). Let’s say these are my.dom1.example and my.dom2.example.

• Relay mail for a number of other domains for which you are the secondary MX. These might be
friend1.example and friend2.example.

• Relay mail from the hosts on your local LAN, to whatever domains are involved. Suppose your
LAN is 192.168.45.0/24.

In the main part of the configuration, you put the following definitions:

domainlist local_domains = my.dom1.example : my.dom2.example
domainlist relay_domains = friend1.example : friend2.example
hostlist relay_hosts = 192.168.45.0/24

Now you can use these definitions in the ACL that is run for every RCPT command:

acl_check_rcpt:
accept domains = +local_domains : +relay_domains
accept hosts = +relay_hosts

The first statement accepts any RCPT command that contains an address in the local or relay domains.
For any other domain, control passes to the second statement, which accepts the command only if it
comes from one of the relay hosts. In practice, you will probably want to make your ACL more
sophisticated than this, for example, by including sender and recipient verification. The default
configuration includes a more comprehensive example, which is described in chapter 7.

Exim 4.10 [217] ACL (37)

38. Adding a local scan function to Exim

In these days of email worms, viruses, and ever-increasing spam, some sites want to apply a lot of
checking to messages before accepting them. You can do a certain amount through string expansions
and the condition condition in the ACL that runs after the SMTP DATA command (see chapter 37), but
this has its limitations. To allow for more general checking that can be customized to a site’s own
requirements, there is the possibility of linking Exim with a private message scanning function, written
in C. If you want to run code that is written in something other than C, you can of course use a little
C stub to call it.

Unlike the ACL checks, which apply only to incoming SMTP messages, a local scan function is run
for every incoming message. It can therefore be used to control non-SMTP messages from local
processes.

Exim applies a timeout to calls of this function, and there is an option called local_scan_timeout for
setting it. The default is 5 minutes. Zero means ‘no timeout’. If the timeout is exceeded, the incoming
message is rejected with a temporary error if it is an SMTP message. For a non-smtp message, the
message is dropped and Exim ends with a non-zero code. The incident is logged on the main and
reject logs.

To make use of the local scan function feature, you must tell Exim where your function is before
building Exim, by setting LOCAL_SCAN_SOURCE in your Local/Makefile. A recommended place to put it
is in the Local directory, so you might set

LOCAL_SCAN_SOURCE=Local/local_scan.c

for example. The function must be called local_scan(). It is called by Exim after it has received a
message, when the success return code is about to be sent. For SMTP input, this is after all the ACLs
have been run. The return code from your function controls whether the message is actually accepted
or not. There is a commented template function (that just accepts the message) in the file
src/local_scan.c.

38.1 API for local_scan()
You must include this line near the start of your code:

#include "local_scan.h"

This header file defines a number of variables and other values, and the prototype for the function
itself. Exim is coded to use unsigned char values almost exclusively, and one of the things this header
defines is a shorthand for unsigned char called uschar. It also contains the following macro
definitions, to simplify casting character strings and pointers to character strings:

#define CS (char *)
#define CSS (char **)
#define US (unsigned char *)
#define USS (unsigned char **)

The function prototype for local_scan() is:

extern int local_scan(int fd, uschar **return_text);

The arguments are as follows:

• fd is a file descriptor for the file that contains the body of the message (the -D file). The
descriptor is positioned at character 17 of the file, which is the first character of the body itself,
because the first 17 characters are the message id followed by a newline. The file is open for
reading and writing, but updating it is not recommended.

• return_text is an address which you can use to return a pointer to a text string at the end of the
function. The value it points to on entry is NULL.

Exim 4.10 [218] local scan function (38)

The function must return an int value which is one of the following macros:

• LOCAL_SCAN_ACCEPT

The message is accepted. If you pass back a string of text, it is saved with the message, and
made available in the variable $local_scan_data. No newlines are permitted (if there are any,
they are turned into spaces) and the maximum length of text is 1000 characters.

• LOCAL_SCAN_REJECT

The message is rejected; returned text is used as an error message. Newlines are permitted – they
cause a multiline response for SMTP rejections. If no message is given, ‘Administrative prohib-
ition’ is used.

• LOCAL_SCAN_TEMPREJECT

The message is temporarily rejected; returned text is used as an error message. If no message is
given, ‘Temporary local problem’ is used.

If the message is not being received by interactive SMTP, failures are reported by writing to stderr or
by sending an email, as configured by the -oe command line options.

38.2 Available Exim variables

The header local_scan.h gives you access to a number of Exim variables. These are the only ones that
are guaranteed to be maintained from release to release:

uschar *sender_address

The envelope sender address. For bounce messages this is the empty string.

header_line *header_list

A pointer to a chain of header lines. The header_line structure is discussed below.

header_line *header_last

A pointer to the last of the header lines.

uschar *interface_address

The IP address of the interface that received the message, as a string. This is NULL for locally
submitted messages.

int interface_port

The port on which this message was received.

uschar *received_protocol

The name of the protocol by which the message was received.

int recipients_count

The number of accepted recipients.

recipient_item *recipients_list

The list of accepted recipients, held in a vector of length recipients_count. The recipient_item
structure is discussed below. You can add additional recipients by calling receive_add_recipient()
(see below). You can delete recipients by removing them from the vector and adusting the value
in recipients_count. In particular, by setting recipients_count to zero you remove all recipients.
If you then return the value LOCAL_SCAN_ACCEPT, the message is accepted, but immediately
blackholed. To replace the recipients, set recipients_count zero and then call
receive_add_recipient() as often as needed.

Exim 4.10 [219] local scan function (38)

uschar *sender_host_address

The IP address of the sending host, as a string. This is NULL for locally-submitted messages.

uschar *sender_host_authenticated

The name of the authentication mechanism that was used, or NULL if the message was not
received over an authenticated SMTP connection.

uschar *sender_host_name

The name of the sending host, if known.

int sender_host_port

The port on the sending host.

38.3 Structure of header lines

The header_line structure contains the members listed below. You can add additional header lines by
calling the header_add() function (see below). You can cause header lines to be ignored (deleted) by
setting their type to *.

struct header_line *next

A pointer to the next header line, or NULL for the last line.

int type

A code identifying certain headers that Exim recognizes. The codes are printing characters, and
are documented in chapter 48 of this manual. Notice in particular that any header line whose type
is * is not transmitted with the message. This flagging is used for header lines that have been
rewritten, or are to be removed (for example, Envelope-sender: header lines.) Effectively, * means
‘deleted’.

int slen

The number of characters in the header line, including the terminating and any internal newlines.

uschar *text

A pointer to the text of the header. It always ends with a newline, followed by a zero byte.
Internal newlines are preserved.

38.4 Structure of recipient items

The recipient_item structure contains these members:

uschar *address

This is a pointer to the recipient address as it was received.

int pno

This is used in later Exim processing when top level addresses are created by the one_time
option. It is not relevant at the time local_scan() is run and must always contain -1 at this stage.

uschar *errors_to

If this value is not NULL, bounce messages caused by failing to deliver to the recipient are sent
to the address it contains. In other words, it overrides the envelope sender for this one recipient.
(Compare the errors_to generic router option.) When local_scan() is called, this field is NULL
for all recipients.

Exim 4.10 [220] local scan function (38)

38.5 Available Exim functions

The header local_scan.h gives you access to a number of Exim functions. These are the only ones that
are guaranteed to be maintained from release to release:

pid_t child_open_exim(int *fd)

int child_close(pid_t pid, int timeout)

These two functions provide you with a means of submitting a new message to Exim. (Of course,
you can also call /usr/sbin/sendmail yourself if you want, but this packages it all up for you.)
The first function creates a pipe, forks a subprocess that is running

exim -t -oem -oi -f <>

and returns to you (via the int * argument) a file descriptor for the pipe that is connected to the
standard input. The yield of the function is the PID of the subprocess. You can then write a
message to the file descriptor, with recipients in To:, Cc:, and/or Bcc: header lines. When you
have finished, call child_close() with the PID as the first argument, and a timeout in seconds as
the second. A value of zero means wait as long as it takes (which is usually fine in this
circumstance). The return value is as follows:

• >= 0

The process terminated by a normal exit and the value is the process ending status. Unless
you have made a mistake with the recipient addresses, you should get a return code of zero.

• < 0 and > – 256

The process was terminated by a signal and the value is the negation of the signal number.

• – 256

The process timed out.

• – 257

The was some other error in wait(); errno is still set.

uschar *expand_string(uschar *string)

This is an interface to Exim’s string expansion code. The return value is the expanded string, or
NULL if there was an expansion failure.

void header_add(int type, char *format, ...)

This function allows you to add additional header lines. The first argument is the type, and should
normally be a space character. The second argument is a format string and any number of
substitution arguments as for sprintf(). You may include internal newlines if you want, and you
must ensure that the string ends with a newline.

void log_write(unsigned int selector, int which, char *format, ...)

This function writes to Exim’s log files. The first argument should be zero (it is concerned with
 log_selector). The second argument can be LOG_MAIN or LOG_REJECT or the inclusive ‘or’ of

both of them. The remaining arguments are a format and relevant insertion arguments. The string
should not contain any newlines, not even at the end.

void receive_add_recipient(uschar *address, int pno)

This function adds an additional recipient to the message. The first argument is the recipient
address. The second argument must always be -1.

This function does not allow you to specify a private errors_to address (as described with the
structure of recipient_item above), because it pre-dates the addition of that field to the structure.
However, it is easy to add such a value afterwards. For example:

Exim 4.10 [221] local scan function (38)

receive_add_recipient(monitor@mydom.example, -1);
recipients_list[recipients_count-1].errors_to =
US"postmaster@mydom.example";

void *store_get(int)

This function accesses Exim’s internal store manager. It gets a new chunk of memory whose size
is given by the argument. Exim bombs out if it ever runs out of memory.

uschar *string_copy(uschar *string)

uschar *string_copyn(uschar *string, int length)

uschar *string_sprintf(char *format, ...)

These three functions create strings using Exim’s dynamic store facilities. The first makes a copy
of an entire string. The second copies up to a maximum number of characters, indicated by the
second argument. The third uses a format and insertion arguments to create a new string. In each
case, the result is a pointer to a new string.

Exim 4.10 [222] local scan function (38)

39. System-wide message filtering

The previous chapters (on ACLs and the local scan function) describe checks that can be applied to
messages before they are accepted by a host. There is also a mechanism for checking messages once
they have been received, but before they are delivered. This is called the system filter.

The system filter operates in a similar manner to users’ filter files, but it is run just once per message
(however many recipients the message has). It should not normally be used as a substitute for routing,
because deliver commands in a system router provide new envelope recipient addresses.

The system filter is run at the start of a delivery attempt, before any routing is done. If a message fails
to be completely delivered at the first attempt, the system filter is run again at the start of every retry.

Warning: Because the system filter runs just once, variables that are specific to individual recipient
addresses, such as $local_part and $domain, are not set, and the ‘personal’ condition is not meaning-
ful. If you want to run a centrally-specified filter for each recipient address independently, you can do
so by setting up a suitable redirect router, as described in section 39.8 below.

39.1 Specifying a system filter

The name of the file that contains the system filter must be specified by setting system_filter. If you
want the filter to run under a uid and gid other than root, you must also set system_filter_user and
system_filter_group as appropriate. For example:

system_filter = /etc/mail/exim.filter
system_filter_user = exim

If a system filter generates any deliveries directly to files or pipes (via the save or pipe commands),
transports to handle these deliveries must be specified by setting system_filter_file_transport and
system_filter_pipe_transport, respectively. Similarly, system_filter_reply_transport must be set to
handle any messages generated by the reply command.

39.2 Testing a system filter

You can run simple tests of a system filter in the same way as for a user filter, but you should use -bF
rather than -bf, so that features which are only permitted in system filters are recognized.

39.3 Contents of a system filter

The language used to specify system filters is the same as for users’ filter files. It is described in the
separate end-user document Exim’s interface to mail filtering. However, there are some additional
features that are available only in system filters; these are described in subsequent sections. If they are
encountered in a user ’s filter file or when testing with -bf, they cause errors.

There are two special conditions which, though available in users’ filter files, are designed for use in
system filters. The condition first_delivery is true only for the first attempt at delivering a message,
and manually_thawed is true only if the message has been frozen, and subsequently thawed by an
admin user. An explicit forced delivery counts as a manual thaw, but thawing as a result of the auto_
thaw setting does not.

Warning: If a system filter uses the first_delivery condition to specify an ‘unseen’ (non-significant)
delivery, and that delivery does not succeed, it will not be tried again.

When a system filter finishes running, the values of the variables $n0 – $n9 are copied into $sn0 –
$sn9 and are thereby made available to users’ filter files. Thus a system filter can, for example, set up
‘scores’ to which users’ filter files can refer.

Exim 4.10 [223] system filtering (39)

39.4 Additional variable for system filters
The expansion variable $recipients, containing a list of all the recipients of the message (separated by
commas and white space), is available in system filters. It is not available in users’ filters for privacy
reasons.

39.5 Freeze and fail commands for system filters
There are two extra commands (freeze and fail) which are always available in system filters, but are
not normally enabled in users’ filters. (See the allow_freeze and allow_fail options for the redirect
router.) These commands can optionally be followed by the word text and a string containing an error
message, for example:

fail text "this message looks like spam to me"

The keyword text is optional if the next character is a double quote. The fail command causes all
recipients to be failed, and a bounce message to be created, whereas freeze suspends all delivery
attempts. The freeze command is ignored if the message has been manually unfrozen and not
manually frozen since. This means that automatic freezing by a system filter can be used as a way of
checking out suspicious messages. If a message is found to be all right, manually unfreezing it allows
it to be delivered.

The text given with a fail command is used as part of the bounce message as well as being written to
the log. If the message is quite long, this can fill up a lot of log space when such failures are common.
To reduce the size of the log message, Exim interprets the text in a special way if it starts with the two
characters << and contains >> later. The text between these two strings is written to the log, and the
rest of the text is used in the bounce message. For example:

fail "<<filter test 1>>Your message is rejected \
because it contains attachments that we are \
not prepared to receive."

Take great care with the fail command when basing the decision to fail on the contents of the
message, because the bounce message will of course include the contents of the original message and
will therefore trigger the fail command again (causing a mail loop) unless steps are taken to prevent
this. Testing the error_message condition is one way to prevent this. You could use, for example

if $message_body contains "this is spam" and not error_message
then fail text "spam is not wanted here" endif

though of course that might let through unwanted bounce messages. The alternative is clever checking
of the body and/or headers to detect bounces generated by the filter.

The interpretation of a system filter file ceases after a freeze or fail command is obeyed. However, any
deliveries that were set up earlier in the filter file are honoured, so you can use a sequence such as

mail ...
 freeze

to send a specified message when the system filter is freezing (or failing) something. The normal
deliveries for the message do not, of course, take place.

39.6 Adding and removing headers in a system filter
Two filter commands that are available only in system filters are:

headers add <<string>>
headers remove <<string>>

The argument for the headers add is a string which is expanded and then added to the end of the
message’s headers. It is the responsibility of the filter maintainer to make sure it conforms to RFC
2822 syntax. Leading white space is ignored, and if the string is otherwise empty, or if the expansion
is forced to fail, the command has no effect. A newline is added at the end of the string if it lacks one.
More than one header may be added in one command by including ‘\n’ within the string.

Exim 4.10 [224] system filtering (39)

Header lines that are added by this means are visible to users’ filter files and to all routers and
transports. If the message is not delivered at the first attempt, these added lines are stored with the
message. For that reason, it is usual to make the headers add command conditional on first_delivery.

The argument for headers remove is a colon-separated list of header names. This command applies
only to those headers that are stored with the message; those that are added at delivery time (such as
Envelope-To: and Return-Path:) cannot be removed by this means.

39.7 Setting an errors address in a system filter
In a system filter, if a deliver command is followed by

errors_to <some address>

in order to change the envelope sender (and hence the error reporting) for that delivery, any address
may be specified. (In a user filter, only the current user ’s address can be set.) For example, if some
mail is being monitored, you might use

unseen deliver monitor@spying.example errors_to root@local.example

to take a copy which would not be sent back to the normal error reporting address if its delivery
failed.

39.8 Per-address filtering
In contrast to the system filter, which is run just once per message for each delivery attempt, it is also
possible to set up a system-wide filtering operation that runs once for each recipient address. In this
case, variables such as $local_part and $domain can be used, and indeed, the choice of filter file
could be made dependent on them. This is an example of a router which implements such a filter:

central_filter:
driver = redirect
domains = +local_domains
file = /central/filters/$local_part

 no_verify
 allow_filter
 allow_freeze

Care should be taken to ensure that none of the commands in the filter file specify a significant
delivery if the message is to go on to be delivered to its intended recipient. The router will not then
claim to have dealt with the address, so it will be passed on to subsequent routers to be delivered in
the normal way.

Exim 4.10 [225] system filtering (39)

40. Customizing bounce and warning messages

When a message fails to get delivered, or remains on the queue for more than a configured amount of
time, Exim sends a message to the original sender, or to an alternative configured address. The text of
these messages is built into the code of Exim, but it is possible to change it, either by adding a single
string, or by replacing each of the paragraphs by text supplied in a file.

40.1 Customizing bounce messages
If bounce_message_text is set, its contents are included in the default message immediately after
‘This message was created automatically by mail delivery software.’ The string is not expanded. It is
not used if bounce_message_file is set.

When bounce_message_file is set, it must point to a template file for constructing error messages. The
file consists of a series of text items, separated by lines consisting of exactly four asterisks. If the file
cannot be opened, default text is used and a message is written to the main and panic logs. If any text
item in the file is empty, default text is used for that item.

Each item of text that is read from the file is expanded, and there are two expansion variables which
can be of use here: $bounce_recipient is set to the recipient of an error message while it is being
created, and $return_size_limit contains the value of the return_size_limit option, rounded to a
whole number.

The items must appear in the file in the following order:

• The first item is included in the headers, and should include at least a Subject: header. Exim does
not check the syntax of these headers.

• The second item forms the start of the error message. After it, Exim lists the failing addresses
with their error messages.

• The third item is used to introduce any text from pipe transports that is to be returned to the
 sender. It is omitted if there is no such text.

• The fourth item is used to introduce the copy of the message that is returned as part of the error
 report.

• The fifth item is added after the fourth one if the returned message is truncated because it is
bigger than return_size_limit.

• The sixth item is added after the copy of the original message.

The default state (bounce_message_file unset) is equivalent to the following file, in which the sixth
item is empty. The Subject: line has been split into two here in order to fit it on the page:

Subject: Mail delivery failed

${if eq{$sender_address}{$bounce_recipient}{: returning message to sender}}

This message was created automatically by mail delivery software (Exim).

A message ${if eq{$sender_address}{$bounce_recipient}{that you sent }{sent by

<$sender_address>

}}could not be delivered to all of its recipients.

The following address(es) failed:

The following text was generated during the delivery attempt(s):

------ This is a copy of the message, including all the headers. ------

------ The body of the message is $message_size characters long; only the first

Exim 4.10 [226] customizing messages (40)

------ $return_size_limit or so are included here.

40.2 Customizing warning messages
The option warnmsg_file can be pointed at a template file for use when warnings about message
delays are created. In this case there are only three text sections:

• The first item is included in the headers, and should include at least a Subject: header. Exim does
not check the syntax of these headers.

• The second item forms the start of the warning message. After it, Exim lists the delayed
 addresses.

• The third item then ends the message.

The default state is equivalent to the file

Subject: Warning: message $message_id delayed $warnmsg_delay

This message was created automatically by mail delivery software (Exim).

A message ${if eq{$sender_address}{$warnmsg_recipients}{that you sent }{sent by

<$sender_address>

}}has not been delivered to all of its recipients after

more than $warnmsg_delay on the queue on $primary_hostname.

The message identifier is: $message_id

The subject of the message is: $h_subject

The date of the message is: $h_date

The following address(es) have not yet been delivered:

No action is required on your part. Delivery attempts will continue for

some time, and this warning may be repeated at intervals if the message

remains undelivered. Eventually the mail delivery software will give up,

and when that happens, the message will be returned to you.

except that in the default state the subject and date lines are omitted if no appropriate headers exist.
During the expansion of this file, $warnmsg_delay is set to the delay time in one of the forms ‘<n>
minutes’ or ‘<n> hours’, and $warnmsg_recipients contains a list of recipients for the warning
message. There may be more than one if there are multiple addresses with different errors_to settings
on the routers that handled them.

Exim 4.10 [227] customizing messages (40)

41. Some common configuration requirements

This chapter discusses some configuration requirements that seem to be fairly common. More
examples and discussion can be found in the O’Reilly book.

41.1 Sending mail to a smart host
If you want to send all mail for non-local domains to a ‘smart host’, you should replace the default
dnslookup router with a router which does the routing explicitly:

send_to_smart_host:
driver = manualroute
route_list = !+local_domains smart.host.name
transport = remote_smtp

You can use the smart host’s IP address instead of the name if you wish.

41.2 Using Exim to handle mailing lists
Exim can be used to run simple mailing lists, but for large and/or complicated requirements, the use of
additional specialized mailing list software such as Majordomo or Mailman is recommended.

The redirect router can be used to handle mailing lists where each list is maintained in a separate file,
which can therefore be managed by an independent manager. The domains router option can be used
to run these lists in a separate domain from normal mail. For example:

lists:
driver = redirect
domains = lists.example
file = /usr/lists/$local_part
forbid_pipe

 forbid_file
errors_to = $local_part-request@lists.example
no_more

This router is skipped for domains other than lists.example. For addresses in that domain, it looks for a
file that matches the local part. If there is no such file, the router declines, but because no_more is set,
no subsequent routers are tried, and so the whole delivery fails.

The forbid_pipe and forbid_file options prevent a local part from being expanded into a file name or
a pipe delivery, which is usually inappropriate in a mailing list.

The errors_to option specifies that any delivery errors caused by addresses taken from a mailing list
are to be sent to the given address rather than the original sender of the message. However, before
acting on this, Exim verifies the error address, and ignores it if verification fails.

For example, using the configuration above, mail sent to dicts@lists.example is passed on to those
addresses contained in /usr/lists/dicts, with error reports directed to dicts-request@lists.example, pro-
vided that this address can be verified. There could be a file called /usr/lists/dicts-request containing
the address(es) of this particular list’s manager(s), but other approaches, such as setting up an earlier
router (possibly using the local_part_prefix or local_part_suffix options) to handle addresses of the
form owner-xxx or xxx-request, are also possible.

41.3 Syntax errors in mailing lists
If an entry in redirection data contains a syntax error, Exim normally defers delivery of the original
address. That means that a syntax error in a mailing list holds up all deliveries to the list. This may not
be appropriate when a list is being maintained automatically from data supplied by users, and the
addresses are not rigorously checked.

Exim 4.10 [228] common configuration requirements (41)

If the skip_syntax_errors option is set, the redirect router just skips entries that fail to parse, noting
the incident in the log. If in addition syntax_errors_to is set to a verifiable address, a message is sent
to it whenever a broken address is skipped. It is usually appropriate to set syntax_errors_to to the
same address as errors_to.

41.4 Re-expansion of mailing lists
Exim remembers every individual address to which a message has been delivered, in order to avoid
duplication, but it normally stores only the original recipient addresses with a message. If all the
deliveries to a mailing list cannot be done at the first attempt, the mailing list is re-expanded when the
delivery is next tried. This means that alterations to the list are taken into account at each delivery
attempt, so addresses that have been added to the list since the message arrived will therefore receive a
copy of the message, even though it pre-dates their subscription.

If this behaviour is felt to be undesirable, the one_time option can be set on the redirect router. If this
is done, any addresses generated by the router that fail to deliver at the first attempt are added to the
message as ‘top level’ addresses, and the parent address that generated them is marked ‘delivered’.
Thus, expansion of the mailing list does not happen again at the subsequent delivery attempts. The
disadvantage of this is that if any of the failing addresses are incorrect, correcting them in the file has
no effect on pre-existing messages.

The original top-level address is remembered with each of the generated addresses, and is output in
any log messages. However, any intermediate parent addresses are not recorded. This makes a
difference to the log only if the all_parents selector is set, but for mailing lists there is normally only
one level of expansion anyway.

41.5 Closed mailing lists
The examples so far have assumed open mailing lists, to which anybody may send mail. It is also
possible to set up closed lists, where mail is accepted from specified senders only. This is done by
making use of the generic senders option to restrict the router that handles the list.

The following example uses the same file as a list of recipients and as a list of permitted senders. It
requires three routers:

lists_request:
driver = redirect
domains = lists.example
local_part_suffix = -request
file = /usr/lists/$local_part$local_part_suffix

 no_more

lists_post:
driver = redirect
domains = lists.example
senders = ${if exists {/usr/lists/$local_part}\

 {lsearch;/usr/lists/$local_part}{*}}
file = /usr/lists/$local_part

 forbid_pipe
 forbid_file

errors_to = $local_part-request@lists.example
 no_more

lists_closed:
driver = redirect
domains = lists.example
allow_fail
data = :fail: $local_part@lists.example is a closed mailing list

Exim 4.10 [229] common configuration requirements (41)

All three routers have the same domains setting, so for any other domains, they are all skipped. The
first router runs only if the local part ends in -request. It handles messages to the list manager(s) by
means of an open mailing list.

The second router runs only if the senders pre-condition is satisfied. It checks for the existence of a
list that corresponds to the local part, and then checks that the sender is on the list by means of a
linear search. It is necessary to check for the existence of the file before trying to search it, because
otherwise Exim thinks there is a configuration error. If the file does not exist, the expansion of senders
is *, which matches all senders. This means that the router runs, but because there is no list, declines,
and no_more ensures that no further routers are run. The address fails with an ‘unrouteable address’
error.

The third router runs only if the second router is skipped, which happens when a mailing list exists,
but the sender is not on it. This router forcibly fails the address, giving a suitable error message.

41.6 Virtual domains

The phrase virtual domain is unfortunately used with two rather different meanings:

• A domain for which there are no real mailboxes; all valid local parts are aliases for other email
addresses. Common examples are organizational top-level domains and ‘vanity’ domains.

• One of a number of independent domains that are all handled by the same host, with mailboxes
on that host, but where the mailbox owners do not necessarily have login accounts on that host.

The first usage is probably more common, and does seem more ‘virtual’ than the second. This kind of
domain can be handled in Exim with a straightforward aliasing router. One approach is to create a
separate alias file for each virtual domain. Exim can test for the existence of the alias file to determine
whether the domain exists. The dsearch lookup type is useful here, leading to a router of this form:

virtual:
driver = redirect
domains = dsearch;/etc/mail/virtual
data = ${lookup{$local_part}lsearch{/etc/mail/virtual/$domain}}

 no_more

The domains option specifies that the router is to be skipped, unless there is a file in the
/etc/mail/virtual directory whose name is the same as the domain that is being processed. When the
router runs, it looks up the local part in the file to find a new address (or list of addresses). The
no_more setting ensures that if the lookup fails (leading to data being an empty string), Exim gives
up on the address without trying any subsequent routers.

This one router can handle all the virtual domains because the alias file names follow a fixed pattern.
Permissions can be arranged so that appropriate people can edit the different alias files. A successful
aliasing operation results in a new envelope recipient address, which is then routed from scratch.

The other kind of ‘virtual’ domain can also be handled in a straightforward way. One approach is to
create a file for each domain containing a list of valid local parts, and use it in a router like this:

my_domains:
driver = accept
domains = dsearch;/etc/mail/domains
local_parts = lsearch;/etc/mail/domains/$domain
transport = my_mailboxes

The address is accepted if there is a file for the domain, and the local part can be found in the file. The
domains option is used to check for the file’s existence because domains is tested before the
local_parts option (see section 3.9). You can’t use require_files, because that option is tested after
local_parts. The transport is as follows:

Exim 4.10 [230] common configuration requirements (41)

 my_mailboxes:
driver = appendfile
file = /var/mail/$domain/$local_part
user = mail

This uses a directory of mailboxes for each domain. The user setting is required, to specify which uid
is to be used for writing to the mailboxes.

The configuration shown here is just one example of how you might support this requirement. There
are many other ways this kind of configuration can be set up, for example, by using a database instead
of separate files to hold all the information about the domains.

41.7 Multiple user mailboxes
Heavy email users often want to operate with multiple mailboxes, into which incoming mail is
automatically sorted. A popular way of handling this is to allow users to use multiple sender addresses,
so that replies can easily be identified. Users are permitted to add prefixes or suffixes to their local
parts for this purpose. The wildcard facility of the generic router options local_part_prefix and
local_part_suffix can be used for this. For example, consider this router:

userforward:
driver = redirect
check_local_user
file = $home/.forward
local_part_suffix = -*
local_part_suffix_optional
allow_filter

It runs a user ’s .forward file for all local parts of the form username-*. Within the filter file the user
can distinguish different cases by testing the variable $local_part_suffix. For example:

if $local_part_suffix contains -special then
save /home/$local_part/Mail/special

endif

If the filter file does not exist, or does not deal with such addresses, they fall through to subsequent
routers, and, assuming no subsequent use of the local_part_suffix option is made, they presumably
fail. Thus, users have control over which suffixes are valid.

Alternatively, a suffix can be used to trigger the use of a different .forward file – which is the way a
similar facility is implemented in another MTA:

userforward:
driver = redirect
check_local_user
file = $home/.forward$local_part_suffix
local_part_suffix = -*
local_part_suffix_optional
allow_filter

If there is no suffix, .forward is used; if the suffix is -special, for example, .forward-special is used.
Once again, if the appropriate file does not exist, or does not deal with the address, it is passed on to
subsequent routers, which could, if required, look for an unqualified .forward file to use as a default.

41.8 Simplified vacation processing
The traditional way of running the vacation program is for a user to set up a pipe command in a
.forward file. This is prone to error by inexperienced users. There are two features of Exim that can
be used to make this process simpler for users:

Exim 4.10 [231] common configuration requirements (41)

• A local part prefix such as ‘vacation-’ can be specified on a router which can cause the message
to be delivered directly to the vacation program, or alternatively can use Exim’s autoreply
transport. The contents of a user ’s .forward file are then much simpler. For example:

spqr, vacation-spqr

• The require_files generic router option can be used to trigger a vacation delivery by checking for
the existence of a certain file in the user ’s home directory. The unseen generic option should also
be used, to ensure that the original delivery also proceeds. In this case, all the user has to do is to
create a file called, say, .vacation, containing a vacation message.

Another advantage of both these methods is that they both work even when the use of arbitrary pipes
by users is locked out.

41.9 Taking copies of mail
Some installations have policies that require archive copies of all messages to be made. A single copy
of each message can easily be taken by an appropriate command in a system filter, which could, for
example, use a different file for each day’s messages.

There is also a shadow transport mechanism that can be used to take copies of messages that are
successfully delivered by local transports, one copy per delivery. This could be used, inter alia, to
implement automatic notification of delivery by sites that insist on doing such things.

41.10 Intermittently connected hosts
It has become quite common (because it is cheaper) for hosts to connect to the Internet periodically
rather than remain connected all the time. The normal arrangement is that mail for such hosts
accumulates on a system that is permanently connected.

Exim was designed for use on permanently connected hosts, and so it is not particularly well-suited to
use in an intermittently connected environment. Nevertheless there are some features that can be used.

41.11 Exim on the upstream server host
It is tempting to arrange for incoming mail for the intermittently connected host to remain on Exim’s
queue until the client connects. However, this approach does not scale very well. Two different kinds
of waiting message are being mixed up in the same queue – those that cannot be delivered because of
some temporary problem, and those that are waiting for their destination host to connect. This makes it
hard to manage the queue, as well as wasting resources, because each queue runner scans the entire
queue.

A better approach is to separate off those messages that are waiting for an intermittently connected
host. This can be done by delivering these messages into local files in batch SMTP, ‘mailstore’, or
other envelope-preserving format, from where they are transmitted by other software when their
destination connects. This makes it easy to collect all the mail for one host in a single directory, and to
apply local timeout rules on a per-message basis if required.

On a very small scale, leaving the mail on Exim’s queue can be made to work. If you are doing this,
you should configure Exim with a long retry period for the intermittent host. For example:

cheshire.wonderland.fict.example * F,5d,24h

This stops a lot of failed delivery attempts from occurring, but Exim remembers which messages it has
queued up for that host. Once the intermittent host comes online, forcing delivery of one message
(either by using the -M or -R options, or by using the ETRN SMTP command (see section 42.6) causes
all the queued up messages to be delivered, often down a single SMTP connection. While the host
remains connected, any new messages get delivered immediately.

If the connecting hosts do not have fixed IP addresses, that is, if a host is issued with a different IP
address each time it connects, Exim’s retry mechanisms on the holding host get confused, because the
IP address is normally used as part of the key string for holding retry information. This can be avoided

Exim 4.10 [232] common configuration requirements (41)

by unsetting retry_include_ip_address on the smtp transport. Since this has disadvantages for perma-
nently connected hosts, it is best to arrange a separate transport for the intermittently connected ones.

41.12 Exim on the intermittently connected client host
The value of smtp_accept_queue_per_connection should probably be increased, or even set to zero
(that is, disabled) on the intermittently connected host, so that all incoming messages down a single
connection get delivered immediately.

Mail waiting to be sent from an intermittently connected host will probably not have been routed,
because without a connection DNS lookups are not possible. This means that if a normal queue run is
done at connection time, each message is likely to be sent in a separate SMTP session. This can be
avoided by starting the queue run with a command line option beginning with -qq instead of -q. In
this case, the queue is scanned twice. In the first pass, routing is done but no deliveries take place. The
second pass is a normal queue run; since all the messages have been previously routed, those destined
for the same host are likely to get sent as multiple deliveries in a single SMTP connection.

Exim 4.10 [233] common configuration requirements (41)

42. SMTP processing

Exim supports a number of different ways of using the SMTP protocol, and its LMTP variant, which
is an interactive protocol for transferring messages into a closed mail store application. This chapter
contains details of how SMTP is processed. For incoming mail, the following are available:

• SMTP over TCP/IP (Exim daemon or inetd);

• SMTP over the standard input and output (the -bs option);

• Batched SMTP on the standard input (the -bS option).

For mail delivery, the following are available:

• SMTP over TCP/IP (the smtp transport);

• LMTP over TCP/IP (the smtp transport with the protocol option set to ‘lmtp’);

• LMTP over a pipe to a process running in the local host (the lmtp transport);

• Batched SMTP to a file or pipe (the appendfile and pipe transports with the use_bsmtp option
 set).

Batched SMTP is the name for a process in which batches of messages are stored in or read from files
(or pipes), in a format in which SMTP commands are used to contain the envelope information.

42.1 Outgoing SMTP and LMTP over TCP/IP
Outgoing SMTP and LMTP over TCP/IP is implemented by the smtp transport. The protocol option
selects which protocol is to be used, but the actual processing is the same in both cases.

If, in response to its EHLO command, Exim is told that the SIZE parameter is supported, it adds
SIZE=<n> to each subsequent MAIL command. The value of <n> is the message size plus the value of
the size_addition option (default 1024) to allow for additions to the message such as per-transport
header lines, or changes made in a transport filter. If size_addition is set negative, the use of SIZE is
suppressed.

If the remote server advertises support for PIPELINING, Exim uses the pipelining extension to SMTP
(RFC 2197) to reduce the number of TCP/IP packets required for the transaction.

If the remote server advertises support for the STARTTLS command, and Exim was built to support TLS
encryption, it tries to start a TLS session unless the server matches hosts_avoid_tls. See chapter 36 for
more details.

If the remote server advertises support for the AUTH command, Exim scans the authenticators configur-
ation for any suitable client settings, as described in chapter 32.

Responses from the remote host are supposed to be terminated by CR followed by LF. However, there
are known to be hosts that do not send CR characters, so in order to be able to interwork with such
hosts, Exim treats LF on its own as a line terminator.

If a message contains a number of different addresses, all those with the same characteristics (for
example, the same envelope sender) that resolve to the same set of hosts, in the same order, are sent in
a single SMTP transaction, even if they are for different domains, unless there are more than the
setting of the max_rcpts option in the smtp transport allows, in which case they are split into groups
containing no more than max_rcpts addresses each. If remote_max_parallel is greater than one, such
groups may be sent in parallel sessions. The order of hosts with identical MX values is not significant
when checking whether addresses can be batched in this way.

When the smtp transport suffers a temporary failure that is not message-related, Exim updates its
transport-specific database, which contains records indexed by host name that remember which mess-
ages are waiting for each particular host. It also updates the retry database with new retry times.
Exim’s retry hints are based on host name plus IP address, so if one address of a multi-homed host is

Exim 4.10 [234] smtp processing (42)

broken, it will soon be skipped most of the time. See the next section for more detail about error
handling.

When a message is successfully delivered over a TCP/IP SMTP connection, Exim looks in the hints
database for the transport to see if there are any queued messages waiting for the host to which it is
connected. If it finds one, it creates a new Exim process using the -MC option (which can only be
used by a process running as root or the Exim user) and passes the TCP/IP socket to it so that it can
deliver another message using the same socket. The new process does only those deliveries that are
routed to the connected host, and may in turn pass the socket on to a third process, and so on.

The connection_max_messages option of the smtp transport can be used to limit the number of
messages sent down a single TCP/IP connection. The second and subsequent messages delivered down
an existing connection are identified in the main log by the addition of an asterisk after the closing
square bracket of the IP address.

42.2 Errors in outgoing SMTP
Three different kinds of error are recognized for outgoing SMTP: host errors, message errors, and
recipient errors.

(1) A host error is not associated with a particular message or with a particular recipient of a
message. The host errors are:

• Connection refused or timed out,

• Any error response code on connection,

• Any error response code to EHLO or HELO,

• Loss of connection at any time, except after ‘.’,

• I/O errors at any time,

• Timeouts during the session, other than in response to MAIL, RCPT or the ‘.’ at the end of the
data.

For a host error, a permanent error response on connection, or in response to EHLO, causes all
addresses routed to the host to be failed. Any other host error causes all addresses to be deferred,
and retry data to be created for the host. It is not tried again, for any message, until its retry time
arrives. If the current set of addresses are not all delivered in this run (to some alternative host),
the message is added to the list of those waiting for this host, so if it is still undelivered when a
subsequent successful delivery is made to the host, it will be sent down the same SMTP

 connection.

(2) A message error is associated with a particular message when sent to a particular host, but not
with a particular recipient of the message. The message errors are:

• Any error response code to MAIL, DATA, or the ‘.’ that terminates the data,

• Timeout after MAIL,

• Timeout or loss of connection after the ‘.’ that terminates the data. A timeout after the DATA

command itself is treated as a host error, as is loss of connection at any other time.

For a message error, a permanent error response (5xx) causes all addresses to be failed, and a
delivery error report to be returned to the sender. A temporary error response (4xx), or one of the
timeouts, causes all addresses to be deferred. Retry data is not created for the host, but instead, a
retry record for the combination of host plus message id is created. The message is not added to
the list of those waiting for this host. This ensures that the failing message will not be sent to this
host again until the retry time arrives. However, other messages that are routed to the host are not

 affected, so if it is some property of the message that is causing the error, it will not stop the
delivery of other mail.

Exim 4.10 [235] smtp processing (42)

If the remote host specified support for the SIZE parameter in its response to EHLO, Exim adds
 SIZE=nnn to the MAIL command, so an over-large message will cause a message error because

the error arrives as a response to MAIL.

(3) A recipient error is associated with a particular recipient of a message. The recipient errors are:

• Any error response to RCPT,

• Timeout after RCPT.

For a recipient error, a permanent error response (5xx) causes the recipient address to be failed,
and a bounce message to be returned to the sender. A temporary error response (4xx) or a timeout
causes the failing address to be deferred, and routing retry data to be created for it. This is used
to delay processing of the address in subsequent queue runs, until its routing retry time arrives.
This applies to all messages, but because it operates only in queue runs, one attempt will be
made to deliver a new message to the failing address before the delay starts to operate. This
ensures that, if the failure is really related to the message rather than the recipient (‘message too
big for this recipient’ is a possible example), other messages have a chance of getting delivered.
If a delivery to the address does succeed, the retry information gets cleared, so all stuck messages
get tried again, and the retry clock is reset.

The message is not added to the list of those waiting for this host. Use of the host for other
messages is unaffected, and except in the case of a timeout, other recipients are processed

 independently, and may be successfully delivered in the current SMTP session. After a timeout it
is of course impossible to proceed with the session, so all addresses get deferred. However, those
other than the one that failed do not suffer any subsequent retry delays. Therefore, if one
recipient is causing trouble, the others have a chance of getting through when a subsequent
delivery attempt occurs before the failing recipient’s retry time.

In all cases, if there are other hosts (or IP addresses) available for the current set of addresses (for
example, from multiple MX records), they are tried in this run for any undelivered addresses, subject
of course to their own retry data. In other words, recipient error retry data does not take effect until the
next delivery attempt.

Some hosts have been observed to give temporary error responses to every MAIL command at certain
times (‘insufficient space’ has been seen). It would be nice if such circumstances could be recognized,
and defer data for the host itself created, but this is not possible within the current Exim design. What
actually happens is that retry data for every (host, message) combination is created.

The reason that timeouts after MAIL and RCPT are treated specially is that these can sometimes arise as
a result of the remote host’s verification procedures. Exim makes this assumption, and treats them as if
a temporary error response had been received. A timeout after ‘.’ is treated specially because it is
known that some broken implementations fail to recognize the end of the message if the last character
of the last line is a binary zero. Thus, it is helpful to treat this case as a message error.

Timeouts at other times are treated as host errors, assuming a problem with the host, or the connection
to it. If a timeout after MAIL, RCPT, or ‘.’ is really a connection problem, the assumption is that at the
next try the timeout is likely to occur at some other point in the dialogue, causing it then to be treated
as a host error.

There is experimental evidence that some MTAs drop the connection after the terminating ‘.’ if they
do not like the contents of the message for some reason, in contravention of the RFC, which indicates
that a 5xx response should be given. That is why Exim treats this case as a message rather than a host
error, in order not to delay other messages to the same host.

42.3 Variable Envelope Return Paths (VERP)
Variable Envelope Return Paths – see ftp://koobera.math.uic.edu/www/proto/verp.txt – can be
supported in Exim by using the return_path generic transport option to rewrite the return path at
transport time. For example, the following could be used on an smtp transport:

Exim 4.10 [236] smtp processing (42)

return_path = \
${if match {$return_path}{^(.+?)-request@your.dom.example\$}\

 {$1-request=$local_part%$domain@your.dom.example}fail}

This has the effect of rewriting the return path (envelope sender) on all outgoing SMTP messages, if
the local part of the original return path ends in ‘-request’, and the domain is your.dom.example. The
rewriting inserts the local part and domain of the recipient into the return path. Suppose, for example,
that a message whose return path has been set to somelist-request@your.dom.example is sent to
subscriber@other.dom.example. In the transport, the return path is rewritten as

somelist-request=subscriber%other.dom.example@your.dom.example

For this to work, you must arrange for outgoing messages that have ‘-request’ in their return paths to
have just a single recipient. This can be done by setting

max_rcpt = 1

in the smtp transport. Otherwise a single copy of a message might be addressed to several different
recipients in the same domain, in which case $local_part is not available (because it is not unique). Of
course, if you do start sending out messages with this kind of return path, you must also configure
Exim to accept the bounce messages that come back to those paths. Typically this would be done by
setting an local_part_suffix option for a suitable router.

The overhead incurred in using VERP depends very much on the size of the message, the number of
recipient addresses that resolve to the same remote host, and the speed of the connection over which
the message is being sent. If a lot of addresses resolve to the same host and the connection is slow,
sending a separate copy of the message for each address may take substantially longer than sending a
single copy with many recipients (for which VERP cannot be used).

42.4 Incoming SMTP messages over TCP/IP
Incoming SMTP messages can be accepted in one of two ways: by running a listening daemon, or by
using inetd. In the latter case, the entry in /etc/inetd.conf should be like this:

smtp stream tcp nowait exim /opt/exim/bin/exim in.exim -bs

Exim distinguishes between this case and the case of a locally running user agent using the -bs option
by checking whether or not the standard input is a socket. When it is, either the port must be
privileged (less than 1024), or the caller must be root or the Exim user. If any other user passes a
socket with an unprivileged port number, Exim prints a message on the standard error stream and exits
with an error code.

By default, Exim does not make a log entry when a remote host connects or disconnects (either via the
daemon or inetd), unless the disconnection is unexpected. It can be made to write such log entries by
setting the smtp_connection log selector.

Commands from the remote host are supposed to be terminated by CR followed by LF. However, there
are known to be hosts that do not send CR characters, so in order to be able to interwork with such
hosts, Exim treats LF on its own as a line terminator.

One area that sometimes gives rise to problems concerns the EHLO or HELO commands. Some clients
send syntactically invalid versions of these commands, which Exim rejects by default. (This is nothing
to do with verifying the data that is sent, so helo_verify_hosts is not relevant.) You can tell Exim not
to apply a syntax check by setting helo_accept_junk_hosts to match the broken hosts that send
invalid commands.

The amount of disc space available is checked whenever SIZE is received on a MAIL command,
independently of whether message_size_limit or check_spool_space is configured, unless smtp_
check_spool_space is set false. A temporary error is given if there is not enough space. If
check_spool_space is set, the check is for that amount of space plus the value given with SIZE, that is,
it checks that the addition of the incoming message will not reduce the space below the threshold.

Exim 4.10 [237] smtp processing (42)

When a message is successfully received, Exim includes the local message id in its response to the
final ‘.’ that terminates the data. If the remote host logs this text it can help with tracing what has
happened to a message.

The Exim daemon can limit the number of simultaneous incoming connections it is prepared to handle
(see the smtp_accept_max option). It can also limit the number of simultaneous incoming connections
from a single remote host (see the smtp_accept_max_per_host option). Additional connection
attempts are rejected using the SMTP temporary error code 421.

The Exim daemon does not rely on the SIGCHLD signal to detect when a subprocess has finished, as this
can get lost at busy times. Instead, it looks for completed subprocesses every time it wakes up.
Provided there are other things happening (new incoming calls, starts of queue runs), completed
processes will be noticed and tidied away. On very quiet systems you may sometimes see a ‘defunct’
Exim process hanging about. This is not a problem; it will be noticed when the daemon next
wakes up.

When running as a daemon, Exim can reserve some SMTP slots for specific hosts, and can also be set
up to reject SMTP calls from non-reserved hosts at times of high system load – for details see the
smtp_accept_reserve, smtp_load_reserve, and smtp_reserve_hosts options. The load check applies
in both the daemon and inetd cases.

Exim normally starts a delivery process for each message received, though this can be varied by
means of the -odq command line option and the queue_only, queue_only_file, and queue_only_load
options. The number of simultaneously running delivery processes started in this way from SMTP
input can be limited by the smtp_accept_queue and smtp_accept_queue_per_connection options.
When either limit is reached, subsequently received messages are just put on the input queue without
starting a delivery process.

The controls that involve counts of incoming SMTP calls (smtp_accept_max, smtp_accept_queue,
smtp_accept_reserve) are not available when Exim is started up from the inetd daemon, because in
that case each connection is handled by an entirely independent Exim process. Control by load average
is, however, available with inetd.

Exim can be configured to verify addresses in incoming SMTP commands as they are received. See
chapter 37 for details. It can also be configured to rewrite addresses at this time – before any syntax
checking is done. See section 30.7.

Exim can also be configured to limit the rate at which a client host submits MAIL and RCPT commands
in a single SMTP session. See the smtp_ratelimit_hosts option.

42.5 The VRFY and EXPN commands
When Exim receives a VRFY or EXPN command on a TCP/IP connection, it runs the ACL specified by
acl_smtp_vrfy or acl_smtp_expn (as appropriate) in order to decide whether the command should be
accepted or not. If no ACL is defined, the command is rejected.

When VRFY is accepted, it runs exactly the same code as when Exim is called with the -bv option.
When EXPN is accepted, a single-level expansion of the address is done. EXPN is treated as an ‘address
test’ (similar to the -bt option) rather than a verification (the -bv option). If an unqualified local part is
given as the argument to EXPN, it is qualified with qualify_domain. Rejections of VRFY and EXPN

commands are logged on the main and reject logs, and VRFY verification failures are logged on the
main log for consistency with RCPT failures.

42.6 The ETRN command
RFC 1985 describes an SMTP command called ETRN that is designed to overcome the security
problems of the TURN command (which has fallen into disuse). When Exim receives an ETRN command
on a TCP/IP connection, it runs the ACL specified by acl_smtp_etrn in order to decide whether the
command should be accepted or not. If no ACL is defined, the command is rejected.

Exim 4.10 [238] smtp processing (42)

The ETRN command is concerned with ‘releasing’ messages that are awaiting delivery to certain hosts.
As Exim does not organize its message queue by host, the only form of ETRN that is supported by
default is the one where the text starts with the ‘#’ prefix, in which case the remainder of the text is
specific to the SMTP server. A valid ETRN command causes a run of Exim with the -R option to
happen, with the remainder of the ETRN text as its argument. For example,

ETRN #brigadoon

runs the command

exim -R brigadoon

which causes a delivery attempt on all messages with undelivered addresses containing the text
‘brigadoon’. When smtp_etrn_serialize is set (the default), Exim prevents the simultaneous execution
of more than one queue run for the same argument string as a result of an ETRN command. This stops a
misbehaving client from starting more than one queue-runner at once.

Exim implements the serialization by means of a hints database in which a record is written whenever
a process is started by ETRN, and deleted when the process completes. However, Exim does not keep
the SMTP session waiting for the ETRN process to complete. Once ETRN is accepted, the client is sent a
‘success’ return code. Obviously there is scope for hints records to get left lying around if there is a
system or program crash. To guard against this, Exim ignores any records that are more than six
hours old.

For more control over what ETRN does, the smtp_etrn_command option can used. This specifies a
command that is run whenever ETRN is received, whatever the form of its argument. For example:

smtp_etrn_command = /etc/etrn_command $domain $sender_host_address

The string is split up into arguments which are independently expanded. The expansion variable
$domain is set to the argument of the ETRN command, and no syntax checking is done on the contents
of this argument. Exim does not wait for the command to complete, so its status code is not checked.
Exim runs under its own uid and gid when receiving incoming SMTP, so it is not possible for it to
change them before running the command.

42.7 Incoming local SMTP
Some user agents use SMTP to pass messages to their local MTA using the standard input and output,
as opposed to passing the envelope on the command line and writing the message to the standard
input. This is supported by the -bs option. This form of SMTP is handled in the same way as
incoming messages over TCP/IP (including the use of ACLs), except that the envelope sender given in
a MAIL command is ignored unless the caller is trusted. In an ACL you can detect this form of SMTP
input by testing for an empty host identification. It is common to have this as the first line in the ACL
that runs for RCPT commands:

accept hosts = :

This accepts SMTP messages from local processes without doing any other tests.

42.8 Outgoing batched SMTP
Both the appendfile and pipe transports can be used for handling batched SMTP. Each has an option
called use_bsmtp which causes messages to be output in BSMTP format. No SMTP responses are
possible for this form of delivery. All it is doing is using SMTP commands as a way of transmitting
the envelope along with the message.

The message is written to the file or pipe preceded by the SMTP commands MAIL and RCPT, and
followed by a line containing a single dot. Lines in the message that start with a dot have an extra dot
added. The SMTP command HELO is not normally used. If it is required, the message_prefix option
can be used to specify it.

Because appendfile and pipe are both local transports, they accept only one recipient address at a time
by default. However, you can arrange for them to handle several addresses at once by setting the

Exim 4.10 [239] smtp processing (42)

batch_max option. When this is done for BSMTP, messages may contain multiple RCPT commands.
See chapter 24 for more details.

When one or more addresses are routed to a BSMTP transport by a router that sets up a host list, the
name of the first host on the list is available to the transport in the variable $host. Here is an example
of such a transport and router:

begin routers
 route_append:

driver = manualroute
transport = smtp_appendfile
route_list = domain.example batch.host.example

begin transports
 smtp_appendfile:

driver = appendfile
directory = /var/bsmtp/$host
batch_max = 1000

 use_bsmtp
user = exim

This causes messages addressed to domain.example to be written in BSMTP format to
/var/bsmtp/batch.host.example, with only a single copy of each message (unless there are more than
1000 recipients).

42.9 Incoming batched SMTP
The -bS command line option causes Exim to accept one or more messages by reading SMTP on the
standard input, but to generate no responses. If the caller is trusted, the senders in the MAIL commands
are believed; otherwise the sender is always the caller of Exim. Unqualified senders and receivers are
not rejected (there seems little point) but instead just get qualified. HELO and EHLO act as RSET; VRFY,
EXPN, ETRN and HELP, act as NOOP; QUIT quits.

No policy checking is done for BSMTP input. That is, no ACL is run at anytime. In this respect it is
like non-SMTP local input.

If an error is detected while reading a message, including a missing ‘.’ at the end, Exim gives up
immediately. It writes details of the error to the standard output in a stylized way that the calling
program should be able to make some use of automatically, for example:

554 Unexpected end of file
Transaction started in line 10
Error detected in line 14

It writes a more verbose version, for human consumption, to the standard error file, for example:

An error was detected while processing a file of BSMTP input.
The error message was:

501 ’>’ missing at end of address

The SMTP transaction started in line 10.
The error was detected in line 12.
The SMTP command at fault was:

rcpt to:<malformed@in.com.plete

1 previous message was successfully processed.
The rest of the batch was abandoned.

The return code from Exim is zero only if there were no errors. It is 1 if some messages were accepted
before an error was detected, and 2 if no messages were accepted.

Exim 4.10 [240] smtp processing (42)

43. Message processing

Exim performs various transformations on the sender and recipient addresses of all messages that it
handles, and also on the messages’ header lines. Some of these are optional and configurable, while
others always take place. All of this processing, except rewriting as a result of routing, and the
addition or removal of header lines while delivering, happens when a message is received, before it is
placed on Exim’s queue.

43.1 Unqualified addresses
By default, Exim expects every address it receives from an external host to be fully qualified.
Unqualified addresses cause negative responses to SMTP commands. However, because SMTP is used
as a means of transporting messages from MUAs running on personal workstations, there is sometimes
a requirement to accept unqualified addresses from specific hosts or IP networks.

Exim has two options that separately control which hosts may send unqualified sender or receipient
addresses in SMTP commands, namely sender_unqualified_hosts and recipient_unqualified_hosts.
In both cases, if an unqualified address is accepted, it is qualified by adding the value of qualify_
domain or qualify_recipient, as appropriate.

43.2 The UUCP From line
Messages that have come from UUCP (and some other applications) often begin with a line containing
the envelope sender and a timestamp, following the word ‘From’. Examples of two common for-
mats are:

From a.oakley@berlin.mus Fri Jan 5 12:35 GMT 1996
From f.butler@berlin.mus Fri, 7 Jan 97 14:00:00 GMT

This line precedes the RFC 2822 header lines. For compatibility with Sendmail, Exim recognizes such
lines at the start of messages that are submitted to it via the command line (that is, on the standard
input). It does not recognize such lines in incoming SMTP messages, unless the sending host matches
ignore_fromline_hosts or the -bs option was used for a local message and ignore_fromline_local is
set. The recognition is controlled by a regular expression that is defined by the uucp_from_pattern
option, whose default value matches the two common cases shown above and puts the address that
follows ‘From’ into $1.

When the caller of Exim for a non-SMTP message that contains a ‘From’ line is a trusted user, the
message’s sender address is constructed by expanding the contents of uucp_sender_address, whose
default value is ‘$1’. This is then parsed as an RFC 2822 address. If there is no domain, the local part
is qualified with qualify_domain unless it is the empty string. However, if the command line -f option
is used, it overrides the ‘From’ line.

If the caller of Exim is not trusted, the ‘From’ line is recognized, but the sender address is not
changed. This is also the case for incoming SMTP messages that are permitted to contain ‘From’ lines.

Only one ‘From’ line is recognized. If there is more than one, the second is treated as a data line that
starts the body of the message, as it is not valid as a header line. This also happens if a ‘From’ line is
present in an incoming SMTP message from a source that is not permitted to send them.

43.3 Resent- header lines
RFC 2822 makes provision for sets of header lines starting with the string Resent- to be added to a
message when it is resent by the original recipient to somebody else. These headers are Resent-Date:,
Resent-From:, Resent-Sender:, Resent-To:, Resent-Cc:, Resent-Bcc: and Resent-Message-ID:. The RFC
says:

Resent fields are strictly informational. They MUST NOT be used in the normal processing of replies
or other such automatic actions on messages.

Exim 4.10 [241] message processing (43)

This leaves things a bit vague as far as other processing actions such as address rewriting are
concerned. Exim treats Resent- header lines as follows:

• A Resent-From: line that just contains the login id of the submitting user is automatically
rewritten in the same way as From: (see below).

• If there’s a rewriting rule for a particular header line, it is also applied to Resent- header lines of
the same type. For example, a rule that rewrites From: also rewrites Resent-From:.

• For local messages, if Sender: is removed on input, Resent-Sender: is also removed.

• If there are any Resent- header lines but no Resent-Date:, Resent-From:, or Resent-Message-Id:,
they are added as necessary. It is the contents of Resent-Message-Id: (rather than Message-Id:)
which are included in log lines in this case.

• The logic for adding Sender: is duplicated for Resent-Sender: when any Resent- header lines are
 present.

43.4 The Bcc: header line
If Exim is called with the -t option, to take recipient addresses from a message’s header, it removes
any Bcc: header line that may exist (after extracting its addresses), unless the message has no To: or
Cc:, in which case a Bcc: header line with no addresses is left in the message. If -t is not present on
the command line, any existing Bcc: is not removed.

If Exim is called to receive a message with the recipient addresses given on the command line, and
there is no Bcc:, To:, or Cc: header in the message, an empty Bcc: header is added.

When there is no To: or Cc:, the presence of an empty Bcc: is needed to make the message conform to
RFC 822. It is not in fact needed for RFC 2822 conformance, and may be removed in future when
RFC 2822 has been around for some time.

43.5 The Date: header line
If a message has no Date: header line, Exim adds one, using the current date and time.

43.6 The Delivery-date: header line
Delivery-date: header lines are not part of the standard RFC 2822 header set. Exim can be configured
to add them to the final delivery of messages. (See the generic delivery_date_add transport option.)
They should not be present in messages in transit. If the delivery_date_remove configuration option is
set (the default), Exim removes Delivery-date: header lines from incoming messages.

43.7 The Envelope-to: header line
Envelope-to: header lines are not part of the standard RFC 2822 header set. Exim can be configured to
add them to the final delivery of messages. (See the generic envelope_to_add transport option.) They
should not be present in messages in transit. If the envelope_to_remove configuration option is set
(the default), Exim removes Envelope-to: header lines from incoming messages.

43.8 The From: header line
If an incoming message does not contain a From: header line, Exim adds one containing the sender ’s
address. This is obtained from the message’s envelope in the case of remote messages; for locally-
generated messages, the calling user ’s login name and full name are used to construct an address, as
described in section 43.14. They are obtained from the password data by calling getpwuid() (but see
the unknown_login configuration option). The address is qualified with qualify_domain.

For compatibility with Sendmail, if an incoming, non-SMTP message has a From: header line
containing just the unqualified login name of the calling user, this is replaced by an address containing
the user ’s login name and full name as described in section 43.14.

Exim 4.10 [242] message processing (43)

43.9 The Message-id: header line
If an incoming message does not contain a Message-id: or Resent-Message-id: header line, Exim adds
one to the message. If there are any Resent-: headers in the message, it creates Resent-Message-id:.
The id is constructed from Exim’s internal message id, preceded by the letter E to ensure it starts with
a letter, and followed by @ and the primary host name. Additional information can be included in this
header line by setting the message_id_header_text option.

43.10 The Received: header line
A Received: header line is added at the start of every message. The contents are defined by the
received_header_text configuration option, and Exim automatically adds a semicolon and a timestamp
to the configured string.

43.11 The Return-path: header line
Return-path: header lines are defined as something an MTA may insert when it does the final delivery
of messages. (See the generic return_path_add transport option.) Therefore, they should not be
present in messages in transit. If the return_path_remove configuration option is set (the default),
Exim removes Return-path: header lines from incoming messages.

43.12 The Sender: header line
For a locally-originated message from an untrusted user, Exim may remove an existing Sender: header
line, and it may add a new one. You can modify these actions by setting local_sender_retain true or
local_from_check false. No processing of Sender: header lines is done for messages received by
TCP/IP or for messages submitted by trusted users.

When a local message is received from an untrusted user and local_from_check is true (the default), a
check is made to see if the address given in the From: header line is the correct (local) sender of the
message. The address that is expected has the login name as the local part and the value of
qualify_domain as the domain. Prefixes and suffixes for the local part can be permitted by setting
local_from_prefix and local_from_suffix appropriately. If From: does not contain the correct sender, a
Sender: line is added to the message.

If you set local_from_check false, this checking does not occur. However, the removal of an existing
Sender: line still happens, unless you also set local_sender_retain to be true. It is not possible to set
both of these options true at the same time.

43.13 Adding and removing header lines
When a message is delivered, the addition and removal of header lines can be specified on any of the
routers and transports, and also in the system filter. Changes specified in the system filter affect all
deliveries of a message.

Header changes specified on a router affect all addresses handled by that router, and also any new
addresses it generates. If an address passes through several routers, the changes are cumulative. When
a message is processed by a transport, the message’s original set of header lines is output, except for
those named in any headers_remove options that the address has encountered as it was processed, and
any in the transport’s own headers_remove option. Then the new header lines from headers_add
options are output.

43.14 Constructed addresses
When Exim constructs a sender address for a locally-generated message, it uses the form

<user name> <<login>@<qualify_domain>>

For example:

Zaphod Beeblebrox <zaphod@end.univ.example>

Exim 4.10 [243] message processing (43)

The user name is obtained from the -F command line option if set, or otherwise by looking up the
calling user by getpwuid() and extracting the ‘gecos’ field from the password entry. If the ‘gecos’ field
contains an ampersand character, this is replaced by the login name with the first letter upper cased, as
is conventional in a number of operating systems. See the gecos_name option for a way to tailor the
handling of the ‘gecos’ field. The unknown_username option can be used to specify user names in
cases when there is no password file entry.

In all cases, the user name is made to conform to RFC 2822 by quoting all or parts of it if necessary.
In addition, if it contains any non-printing characters, it is encoded as described in RFC 2047, which
defines a way of including non-ASCII characters in header lines. The setting of print_topbitchars
controls whether characters with the top bit set (that is, with codes greater than 127) count as printing
characters or not.

43.15 Case of local parts
RFC 2822 states that the case of letters in the local parts of addresses cannot be assumed to be non-
significant. Exim preserves the case of local parts of addresses, but by default it uses a lower-cased
form when it is routing, because on most Unix systems, usernames are in lower case and case-
insensitive routing is required. However, any particular router can be made to use the original case for
local parts by setting the caseful_local_part generic router option.

If you must have mixed-case user names on your system, the best way to proceed, assuming you want
case-independent handling of incoming email, is to set up your first router to convert incoming local
parts in your domains to the correct case by means of a file lookup. For example:

correct_case:
driver = redirect
domains = +local_domains
data = ${lookup{$local_part}cdb\

 {/etc/usercased.cdb}{$value}fail}\
 @$domain

For this router, the local part is forced to lower case by the default action (caseful_local_part is not
set). The lower-cased local part is used to look up a new local part in the correct case. If you then set
caseful_local_part on any subsequent routers which process your domains, they will operate on local
parts with the correct case in a case-sensitive manner.

43.16 Dots in local parts
RFC 2822 forbids empty components in local parts. That is, an unquoted local part may not begin or
end with a dot, nor have two consecutive dots in the middle. However, it seems that many MTAs do
not enforce this, so Exim permits empty components for compatibility.

43.17 Rewriting addresses
Rewriting of sender and recipient addresses, and addresses in headers, can happen automatically, or as
the result of configuration options, as described in chapter 30. The headers that may be affected by this
are Bcc:, Cc:, From:, Reply-To:, Sender:, and To:.

Automatic rewriting includes qualification, as mentioned above. The other case in which it can happen
is when an incomplete non-local domain is given. The routing process may cause this to be expanded
into the full domain name. For example, a header such as

To: hare@teaparty

might get rewritten as

To: hare@teaparty.wonderland.fict.example

Rewriting as a result of routing is the one kind of message processing that does not happen at input
time, as it cannot be done until the address has been routed.

Exim 4.10 [244] message processing (43)

Strictly, one should not do any deliveries of a message until all its addresses have been routed, in case
any of the headers get changed as a result of routing. However, doing this in practice would hold up
many deliveries for unreasonable amounts of time, just because one address could not immediately be
routed. Exim therefore does not delay other deliveries when routing of one or more addresses is
deferred.

Exim 4.10 [245] message processing (43)

44. Log files

Exim writes three different logs, referred to as the main log, the reject log, and the panic log:

• The main log records the arrival of each message and each delivery in a single line in each case.
The format is as compact as possible, in an attempt to keep down the size of log files. Two-
character flag sequences make it easy to pick out these lines. A number of other events are
recorded in the main log. Some of them are optional, in which case the log_selector option
controls whether they are included or not. A Perl script called eximstats which does simple
analysis of main log files is provided in the Exim distribution (see section 45.5).

• The reject log records information from messages that are rejected as a result of a configuration
option (that is, for policy reasons). If the message’s header has been read at the time the log is
written, its contents are written to this log, following a copy of the one-line message that is
written to the main log. You can use the reject log to check that your policy controls are working

 correctly.

• When certain serious errors occur, Exim writes entries to its panic log. If the error is sufficiently
disastrous, Exim bombs out afterwards. Panic log entries are usually written to the main log as
well, but can get lost amid the mass of other entries. The panic log should be empty under
normal circumstances. It is therefore a good idea to check it (or to have a cron script check it)

 regularly, in order to become aware of any problems. When Exim cannot open its panic log, it
tries as a last resort to write to the system log (syslog). This is opened with
LOG_PID+LOG_CONS and the facility code of LOG_MAIL. The message itself is written at
priority LOG_CRIT.

Every log line starts with a timestamp, in the format shown in this example:

2001-09-16 16:09:47 SMTP connection from [127.0.0.1] closed by QUIT

44.1 Where the logs are written
The logs may be written to local files, or to syslog, or both. However, it should be noted that many
syslog implementations use UDP as a transport, and are therefore unreliable in the sense that messages
are not guaranteed to arrive at the loghost, nor is the ordering of messages necessarily maintained. It
has also been reported that on large log files (tens of megabytes) you may need to tweak syslog to
prevent it syncing the file with each write – on Linux this has been seen to make syslog take 90% plus
of CPU time.

The destination for Exim’s logs is configured by setting LOG_FILE_PATH in Local/Makefile or by setting
log_file_path in the run time configuration. This latter string is expanded, so it can contain, for
example, references to the host name:

log_file_path = /var/log/$primary_hostname/exim_%slog

It is generally advisable, however, to set the string in Local/Makefile rather than at run time, because
then the setting is available right from the start of Exim’s execution. Otherwise, if there’s something it
wants to log before it has read the configuration file (for example, an error in the configuration file) it
will not use the path you want, and may not be able to log at all.

The value of LOG_FILE_PATH or log_file_path is a colon-separated list, currently limited to at most two
items. This is one option where the facility for changing a list separator may not be used. The list must
always be colon-separated. If an item in the list is ‘syslog’ then syslog is used; otherwise the item
must either be an absolute path, containing %s at the point where ‘main’, ‘reject’, or ‘panic’ is to be
inserted, or be empty, implying the use of the default path, which is log/%slog in Exim’s spool
directory. The default path is used if nothing is specified. Here are some examples of possible settings:

Exim 4.10 [246] log files (44)

LOG_FILE_PATH=syslog syslog only
LOG_FILE_PATH=:syslog syslog and default path
LOG_FILE_PATH=syslog : /usr/log/exim_%ssyslog and specified path
LOG_FILE_PATH=/usr/log/exim_%s specified path only

If there are more than two paths in the list, the first is used and a panic error is logged.

44.2 Logging to local files

Some operating systems provide centralized and standardised methods for cycling log files. For those
that do not, a utility script called exicyclog is provided (see section 45.4). This renames and com-
presses the main and reject logs each time it is called. The maximum number of old logs to keep can
be set. It is suggested this script is run as a daily cron job.

An Exim delivery process opens the main log when it first needs to write to it, and it keeps the file
open in case subsequent entries are required – for example, if a number of different deliveries are
being done for the same message. However, remote SMTP deliveries can take a long time, and this
means that the file may be kept open long after it is renamed if exicyclog or something similar is being
used to rename log files on a regular basis. To ensure that a switch of log files is noticed as soon as
possible, Exim calls stat() on the main log’s name before reusing an open file, and if the file does not
exist, or its inode has changed, the old file is closed and Exim tries to open the main log from scratch.
Thus, an old log file may remain open for quite some time, but no Exim processes should write to it
once it has been renamed.

44.3 Logging to syslog

The use of syslog does not change what Exim logs or the format of its messages, except in one
respect. If syslog_timestamp is set false, the timestamps on Exim’s log lines are omitted when these
lines are sent to syslog. Apart from that, the same strings are written to syslog as to log files. The
syslog ‘facility’ is set to LOG_MAIL, and the program name to ‘exim’. On systems that permit it (all
except ULTRIX) the LOG_PID flag is set so that the syslog() call adds the pid as well as the time and
host name to each line. The three log streams are mapped onto syslog priorities as follows:

mainlog is mapped to LOG_INFO

rejectlog is mapped to LOG_NOTICE

paniclog is mapped to LOG_ALERT

Many log lines are written to both mainlog and rejectlog, so there will be duplicates if these are routed
by syslog to the same place.

Exim’s log lines can sometimes be very long, and some of its rejectlog entries contain multiple lines
when headers are included. To cope with both these cases, entries written to syslog are split into
separate syslog() calls at each internal newline, and also after a maximum of 1000 characters. To make
it easy to re-assemble them later, each component of a split entry starts with a string of the form
‘[<n>/<m>]’ or ‘[<n>\<m>]’ where <n> is the component number and <m> is the total number of
components in the entry. The / delimiter is used when the line was split because it was too long; if it
was split because of an internal newline, the \ delimiter is used. For example, supposing the length
limit to be 70 instead of 1000, the following would be the result of a typical rejection message to
mainlog (LOG_INFO), each line in addition being preceded by the time, host name, and pid as added
by syslog:

[1/3] 2002-09-16 16:09:43 16RdAL-0006pc-00 rejected from [127.0.0.1] (ph10):

[2/3] syntax error in ’From’ header when scanning for sender: missing or ma

[3/3] lformed local part in "<>" (envelope sender is <ph10@cam.example>)

The same error might cause the following lines to be written to ‘rejectlog’ (LOG_NOTICE):

Exim 4.10 [247] log files (44)

[1/14] 2002-09-16 16:09:43 16RdAL-0006pc-00 rejected from [127.0.0.1] (ph10):

[2/14] syntax error in ’From’ header when scanning for sender: missing or ma

[3\14] lformed local part in "<>" (envelope sender is <ph10@cam.example>)

[4\14] Recipients: ph10@some.domain.cam.example

[5\14] P Received: from [127.0.0.1] (ident=ph10)

[6\14] by xxxxx.cam.example with smtp (Exim 4.00)

[7\14] id 16RdAL-0006pc-00

[8\14] for ph10@cam.example; Mon, 16 Sep 2002 16:09:43 +0100

[9\14] F From: <>

[10\14] Subject: this is a test header

[11\14] X-something: this is another header

[12\14] I Message-Id: <E16RdAL-0006pc-00@xxxxx.cam.example>

[13\14] B Bcc:

[14/14] Date: Mon, 16 Sep 2002 16:09:43 +0100

Log lines that are neither too long nor contain newlines are written to syslog without modification.

If only syslog is being used, the Exim monitor is unable to provide a log tail display, unless syslog is
routing mainlog to a file on the local host and the environment variable EXIMON_LOG_FILE_PATH is set to
tell the monitor where it is.

44.4 Log line flags
One line is written to the main log for each message received, and for each successful, unsuccessful,
and delayed delivery. These lines can readily be picked out by the distinctive two-character flags that
immediately follow the timestamp. The flags are:

<= message arrival
 => normal message delivery
 -> additional address in same delivery
 *> delivery suppressed by -N
 ** delivery failed; address bounced
 == delivery deferred; temporary problem

44.5 Logging message reception
The format of the single-line entry in the main log that is written for every message received is shown
in the basic example below, which is split over several lines in order to fit it on the page:

2002-10-31 08:57:53 16ZCW1-0005MB-00 <= kryten@dwarf.fict.example
H=mailer.fict.example [192.168.123.123] U=exim
P=smtp S=5678 id=<incoming message id>

The address immediately following ‘<=’ is the envelope sender address. A bounce message is shown
with the sender address ‘<>’, and if it is locally generated, this is followed by an item of the form

R=<message id>

which is a reference to the message that caused the bounce to be sent.

For messages from other hosts, the H and U fields identify the remote host and record the RFC 1413
identity of the user that sent the message, if one was received. The number given in square brackets is
the IP address of the sending host. If there is just a single host name in the H field, as above, it has
been verified to correspond to the IP address (see the host_lookup option). If the name is in
parentheses, it was the name quoted by the remote host in the SMTP HELO or EHLO command, and has
not been verified. If verification yields a different name to that given for HELO or EHLO, the verified
name appears first, followed by the HELO or EHLO name in parentheses.

Misconfigured hosts (and mail forgers) sometimes put an IP address, with or without brackets, in the
HELO or EHLO command, leading to entries in the log containing text like these examples:

Exim 4.10 [248] log files (44)

H=(10.21.32.43) [192.168.8.34]
H=([10.21.32.43]) [192.168.8.34]

This can be confusing. Only the final address in square brackets can be relied on.

For locally generated messages (that is, messages not received over TCP/IP), the H field is omitted,
and the U field contains the login name of the caller of Exim.

For all messages, the P field specifies the protocol used to receive the message. This is set to ‘asmtp’
for messages received from hosts which have authenticated themselves using the SMTP AUTH com-
mand. In this case there is an additional item A= followed by the name of the authenticator that was
used. If an authenticated identification was set up by the authenticator ’s server_set_id option, this is
logged too, separated by a colon from the authenticator name.

The id field records the existing message id, if present. The size of the received message is given by
the S field. When the message is delivered, headers may get removed or added, so that the size of
delivered copies of the message may not correspond with this value (and indeed may be different to
each other).

The log_selector option can be used to request the logging of additional data when a message is
received. See section 44.14 below.

44.6 Logging deliveries
The format of the single-line entry in the main log that is written for every delivery is shown in one of
the examples below, for local and remote deliveries, respectively. Each example has been split into two
lines in order to fit it on the page:

2002-10-31 08:59:13 16ZCW1-0005MB-00 => marv <marv@hitch.fict.example>
R=localuser T=local_delivery

2002-10-31 09:00:10 16ZCW1-0005MB-00 => monk@holistic.fict.example
R=dnslookup T=remote_smtp H=holistic.fict.example [192.168.234.234]

For ordinary local deliveries, the original address is given in angle brackets after the final delivery
address, which might be a pipe or a file. If intermediate address(es) exist between the original and the
final address, the last of these is given in parentheses after the final address. The R and T fields record
the router and transport that were used to process the address.

If a shadow transport was run after a successful local delivery, the log line for the successful delivery
has an item added on the end, of the form

ST=<shadow transport name>

If the shadow transport did not succeed, the error message is put in parentheses afterwards.

When more than one address is included in a single delivery (for example, two SMTP RCPT commands
in one transaction) the second and subsequent addresses are flagged with ‘->’ instead of ‘=>’. When
two or more messages are delivered down a single SMTP connection, an asterisk follows the IP
address in the log lines for the second and subsequent messages.

The generation of a reply message by a filter file gets logged as a ‘delivery’ to the addressee, preceded
by ‘>’.

The log_selector option can be used to request the logging of additional data when a message is
received. See section 44.14 below.

44.7 Discarded deliveries
When a message is discarded as a result of the command ‘seen finish’ being obeyed in a filter file
which generates no deliveries, a log entry of the form

2002-12-10 00:50:49 16auJc-0001UB-00 => discarded
<low.club@bridge.example> R=userforward

Exim 4.10 [249] log files (44)

is written, to record why no deliveries are logged. When a message is discarded because it is aliased to
‘:blackhole:’ the log line is like this:

1999-03-02 09:44:33 10HmaX-0005vi-00 => :blackhole:
<hole@nowhere.example> R=blackhole_router

44.8 Deferred deliveries

When a delivery is deferred, a line of the following form is logged:

2002-12-19 16:20:23 16aiQz-0002Q5-00 == marvin@endrest.example
R=dnslookup T=smtp defer (146): Connection refused

In the case of remote deliveries, the error is the one that was given for the last IP address that was
tried. Details of individual SMTP failures are also written to the log, so the above line would be
preceded by something like

2002-12-19 16:20:23 16aiQz-0002Q5-00 Failed to connect to
mail1.endrest.example [192.168.239.239]: Connection refused

When a deferred address is skipped because its retry time has not been reached, a message is written
to the log, but this can be suppressed by setting an appropriate value in log_selector.

44.9 Delivery failures

If a delivery fails because an address cannot be routed, a line of the following form is logged:

1995-12-19 16:20:23 0tRiQz-0002Q5-00 ** jim@trek99.example
<jim@trek99.example>: unknown mail domain

If a delivery fails at transport time, the router and transport are shown, and the response from the
remote host is included, as in this example:

2002-07-11 07:14:17 17SXDU-000189-00 ** ace400@pb.example R=dnslookup
T=remote_smtp: SMTP error from remote mailer after
RCPT TO:<ace400@pb.example>: host pbmail3.py.example
[192.168.63.111]: 553 5.3.0 <ace400@pb.example>...
Addressee unknown

The log lines for all forms of delivery failure are flagged with **.

44.10 Fake deliveries

If a delivery does not actually take place because the -N option has been used to suppress it, a normal
delivery line is written to the log, except that ‘=>’ is replaced by ‘*>’.

44.11 Completion

A line of the form

2002-10-31 09:00:11 16ZCW1-0005MB-00 Completed

is written to the main log when a message is about to be removed from the spool at the end of its
processing.

44.12 Summary of Fields in Log Lines

A summary of the field identifiers that are used in log lines is shown in the following table:

Exim 4.10 [250] log files (44)

A authenticator name (and optional id)
C SMTP confirmation on delivery
DN DN from peer certificate
F sender address (on delivery lines)
H host name and IP address
id message id for incoming message
P protocol for incoming message
R on <= lines: reference for local bounce

on => lines: router name
S size of message
ST shadow transport name
T on <= lines: message subject (topic)

on => lines: transport name
U local user or RFC 1413 identity
X TLS cipher suite

44.13 Other log entries
Various other types of log entry are written from time to time. Most should be self-explanatory.
Among the more common are:

• retry time not reached An address previously suffered a temporary error during routing or local
 delivery, and the time to retry has not yet arrived. This message is not written to an individual

message log file unless it happens during the first delivery attempt.

• retry time not reached for any host An address previously suffered temporary errors during
remote delivery, and the retry time has not yet arrived for any of the hosts to which it is routed.

• spool file locked An attempt to deliver a message cannot proceed because some other Exim
process is already working on the message. This can be quite common if queue running processes
are started at frequent intervals. The exiwhat utility script can be used to find out what Exim
processes are doing.

44.14 Reducing or increasing what is logged
By setting the log_selector global option, you can disable some of Exim’s default logging, or you can
request additional logging. The value of log_selector is made up of names preceded by plus or minus
characters. For example:

log_selector = +arguments -retry_defer

The list of optional log items is in the following table, with the default selection marked by asterisks:

Exim 4.10 [251] log files (44)

address_rewrite address rewriting
all_parents all parents in => lines
arguments command line arguments

*connection_reject connection rejections
*delay_delivery immediate delivery delayed (message queued)
delivery_size add S=nnn to => lines

*dnslist_defer defers of DNS list (aka RBL) lookups
*etrn ETRN commands
incoming_interface incoming interface on <= lines
incoming_port incoming port on <= lines

*lost_incoming_connection as it says (includes timeouts)
*queue_run start and end queue runs
received_recipients recipients on <= lines
received_sender sender on <= lines

*retry_defer ‘retry time not reached’
sender_on_delivery add sender to => lines

*size_reject rejection because too big
*skip_delivery ‘message is frozen’, ‘spool file is locked’
smtp_confirmation SMTP confirmation on <= lines
smtp_connection SMTP connections
smtp_protocol_error SMTP protocol errors
smtp_syntax_error SMTP syntax errors
subject contents of Subject: on <= lines

*tls_cipher TLS cipher suite on <= and => lines
tls_peerdn TLS peer DN on <= and => lines

all all of the above

More details on each of these items follows:

• address_rewrite: This applies both to global rewrites and per-transport rewrites.

• all_parents: Normally only the original and final addresses are logged on delivery lines; with this
 selector, intermediate parents are given in parentheses between them.

• arguments: This causes Exim to write the arguments with which it was called to the main log.
This is a debugging feature, added to make it easier to find out with what arguments certain
MUAs call /usr/sbin/sendmail. The logging does not happen if Exim has given up root privilege
because it was called with the -C or -D options. This facility cannot log unrecognized arguments,
because the arguments are checked before the configuration file is read. The only way to log such
cases is to interpose a script such as util/logargs.sh between the caller and Exim.

• connection_reject: A log entry is written whenever an incoming SMTP connection is rejected,
for whatever reason.

• delay_delivery: A log entry is written whenever a delivery process is not started for an incoming
message because the load is too high or too many messages were received on one connection.
Logging does not occur if no delivery process is started because queue_only is set or -odq was
used.

• delivery_size: For each delivery, the size of message delivered is added to the ‘=>’ line, tagged
with S=.

• dnslist_defer: A log entry is written if an attempt to look up a host in a DNS black list suffers a
temporary error.

• etrn: Every legal ETRN command that is received is logged, before the ACL is run to determine
whether or not it is actually accepted. An invalid ETRN command, or one received within a
message transaction is not logged by this selector (see smtp_syntax_error and

 smtp_protocol_error).

Exim 4.10 [252] log files (44)

• incoming_interface: The interface on which a message was received is added to the ‘<=’ line as
an IP address in square brackets, tagged by I= and followed by a colon and the port number.

• incoming_port: The remote port number from which a message was received is added to log
entries and Received: header lines, following the IP address in square brackets, and separated
from it by a colon. This is implemented by changing the value that is put in the $sender_fullhost
and $sender_rcvhost variables. Recording the remote port number has become more important
with the widening use of NAT (see RFC 2505).

• lost_incoming_connection: A log line is written when an incoming SMTP connection is
unexpectedly dropped.

• queue_run: The start and end of every queue run are logged.

• received_recipients: The recipients of a message are listed in the main log as soon as the
message is received. The list appears at the end of the log line that is written when a message is
received, preceded by the word ‘for ’. The addresses are listed after they have been qualified, but
before any rewriting has taken place.

• received_sender: The unrewritten original sender of a message is added to the end of the log line
that records the message’s arrival, after the word ‘from’ (before the recipients if

 received_recipients is also set).

• retry_defer: A log line is written if a delivery is deferred because a retry time has not yet been
reached. However, this ‘retry time not reached’ message is always omitted from individual
message logs after the first delivery attempt.

• sender_on_delivery: The message’s sender address is added to every delivery and bounce line,
tagged by F= (for ‘from’).

• size_reject: A log line is written whenever a message is rejected because it is too big.

• skip_delivery: A log line is written whenever a message is skipped during a queue run because it
is frozen or because another process is already delivering it.

• smtp_confirmation: The response to the final ‘.’ in the SMTP dialogue for outgoing messages is
added to delivery log lines in the form ‘C="<text>"’. A number of MTAs (including Exim) return
an identifying string in this response.

• smtp_connection: A log line is written whenever an SMTP connection is established or closed.
(By contrast, lost_incoming_connection applies only when the closure is unexpected.) This
applies to connections from local processes that use -bs as well as to TCP/IP connections. If a
connection is dropped in the middle of a message, a log line is always written, whether this
selector is set or not, but otherwise nothing is written at the start and end of connections unless
this selector is enabled. For TCP/IP connections to an Exim daemon, the current number of
connections is included in the log message for each new connection, but note that the count is
reset if the daemon is restarted.

• smtp_protocol_error: A log line is written for every SMTP protocol error encountered.

• smtp_syntax_error: A log line is written for every SMTP syntax error encountered. An
unrecognized command is treated as a syntax error. For an external connection, the host identity
is given; for an internal connection using -bs the sender identification (normally the calling user)
is given.

• subject: The subject of the message is added to the arrival log line, preceded by ‘T=’ (T for
‘topic’, since S is already used for ‘size’).

• tls_cipher: When a message is sent or received over an encrypted connection, the cipher suite
used is added to the log line, preceded by X=.

• tls_peerdn: When a message is sent or received over an encrypted connection, and a certificate is
supplied by the remote host, the peer DN is added to the log line, preceded by DN=.

Exim 4.10 [253] log files (44)

44.15 Message log
In addition to the general log files, Exim writes a log file for each message that it handles. The names
of these per-message logs are the message ids, and they are kept in the msglog sub-directory of the
spool directory. Each message log contains copies of the log lines that apply to the message. This
makes it easier to inspect the status of an individual message without having to search the main log. A
message log is deleted when processing of the message is complete, unless preserve_message_logs is
set, but this should be used only with great care because they can fill up your disc very quickly.

On a heavily loaded system, it may be desirable to disable the use of per-message logs, in order to
reduce disc I/O. This can be done by setting the message_logs option false.

Exim 4.10 [254] log files (44)

45. Exim utilities

A number of utility scripts and programs are supplied with Exim and are described in this chapter.
There is also the Exim Monitor, which is covered in the next chapter. The utilities described here are:

45.1 exiwhat list what Exim processes are doing
45.2 exiqsumm summarize the queue
45.3 exigrep search the main log
45.4 exicyclog cycle (rotate) log files
45.5 eximstats extract statistics from the log
45.6 exim_checkaccess check address acceptance from given IP
45.7 exim_dbmbuild build a DBM file
45.8 exinext extract retry information
45.9 exim_dumpdb dump a hints database
45.9 exim_tidydb clean up a hints database
45.9 exim_fixdb patch a hints database
45.10 exim_lock lock a mailbox file

45.1 Finding out what Exim processes are doing (exiwhat)
On operating systems that can restart a system call after receiving a signal (most modern OS), an Exim
process responds to the SIGUSR1 signal by writing a line describing what it is doing to the file exim-
process.info in the Exim spool directory. The exiwhat script sends the signal to all Exim processes it
can find, having first emptied the file. It then waits for one second to allow the Exim processes to react
before displaying the results. In order to run exiwhat successfully you have to have sufficient privilege
to send the signal to the Exim processes, so it is normally run as root.

Unfortunately, the ps command which exiwhat uses to find Exim processes varies in different operating
systems. Not only are different options used, but the format of the output is different. For this reason,
there are some system configuration options that configure exactly how exiwhat works. If it doesn’t
seem to be working for you, check the following compile-time options:

EXIWHAT_PS_CMD the command for running ps
EXIWHAT_PS_ARG the argument for ps
EXIWHAT_EGREP_ARG the argument for egrep to select from ps output
EXIWHAT_KILL_ARG the argument for the kill command

An example of typical output from exiwhat is

164 daemon: -q1h, listening on port 25
10483 running queue: waiting for 0tAycK-0002ij-00 (10492)
10492 delivering 0tAycK-0002ij-00 to mail.ref.example [10.19.42.42]
(editor@ref.example)

10592 handling incoming call from [192.168.243.242]
10628 accepting a local non-SMTP message

The first number in the output line is the process number. The third line has been split here, in order to
fit it on the page.

45.2 Summarising the queue (exiqsumm)
The exiqsumm utility is a Perl script which reads the output of exim -bp and produces a summary of
the messages on the queue. Thus, you use it by running a command such as

exim -bp | exiqsumm

The output consists of one line for each domain that has messages waiting for it, as in the following
example:

Exim 4.10 [255] utilities (45)

3 2322 74m 66m msn.com.example

This lists the number of messages for the domain, their total volume, and the length of time that the
oldest and the newest messages have been waiting. By default the output is sorted on the domain
name, but exiqsumm has the options -a and -c, which cause the output to be sorted by oldest message
and by count of messages, respectively.

The output of exim -bp contains the original addresses in the message, so this also applies to the
output from exiqsumm. No domains from addresses generated by aliasing or forwarding are included
(unless the one_time option of the redirect router has been used to convert them into ‘top level’
addresses).

45.3 Extracting specific information from the log (exigrep)
The exigrep utility is a Perl script that searches one or more main log files for entries that match a
given pattern. When it finds a match, it extracts all the log entries for the relevant message, not just
those that match the pattern. Thus, exigrep can extract complete log entries for a given message, or all
mail for a given user, or for a given host, for example. The usage is:

exigrep [-l] <pattern> [<log file>] ...

where the -l flag means ‘literal’, that is, treat all characters in the pattern as standing for themselves.
Otherwise the pattern must be a Perl regular expression. The pattern match is case-insensitive. If no
file names are given on the command line, the standard input is read.

If the location of a zcat command is known from the definition of ZCAT_COMMAND in Local/Makefile,
exigrep automatically passes any file whose name ends in COMPRESS_SUFFIX through zcat as it
searches it.

45.4 Cycling log files (exicyclog)
The exicyclog script can be used to cycle (rotate) mainlog and rejectlog files. This is not necessary if
only syslog is being used. Some operating systems have their own standard mechanisms for log
cycling, and these can be used instead of exicyclog if preferred.

Each time exicyclog is run the file names get ‘shuffled down’ by one. If the main log file name is
mainlog (the default) then when exicyclog is run mainlog becomes mainlog.01, the previous
mainlog.01 becomes mainlog.02 and so on, up to a limit which is set in the script, and which defaults
to 10. Reject logs are handled similarly.

If no mainlog file exists, the script does nothing. Files that ‘drop off ’ the end are deleted. All files
with numbers greater than 01 are compressed, using a compression command which is configured by
the COMPRESS_COMMAND setting in Local/Makefile. It is usual to run exicyclog daily from a root
crontab entry of the form

1 0 * * * su exim -c /usr/exim/bin/exicyclog

assuming you have used the name ‘exim’ for the Exim user. You can run exicyclog as root if you wish,
but there is no need.

45.5 Mail statistics (eximstats)
A Perl script called eximstats is provided for extracting statistical information from log files. The
output is either plain text, or HTML.

The script has been hacked about quite a bit over time. The latest version is the result of some
extensive revision by Steve Campbell. A lot of information is given by default, but there are options
for suppressing various parts of it. Following any options, the arguments to the script are a list of files,
which should be main log files. For example:

eximstats -nr /var/spool/exim/log/mainlog.01

Exim 4.10 [256] utilities (45)

By default, eximstats extracts information about the number and volume of messages received from or
delivered to various hosts. The information is sorted both by message count and by volume, and the
top fifty hosts in each category are listed on the standard output. Similar information, based on email
addresses or domains instead of hosts can be requested by means of various options. For messages
delivered and received locally, similar statistics are also produced per user.

The output also includes total counts and statistics about delivery errors, and histograms showing the
number of messages received and deliveries made in each hour of the day. A delivery with more than
one address in its envelope (for example, an SMTP transaction with more than one RCPT command) is
counted as a single delivery by eximstats.

Though normally more deliveries than receipts are reported (as messages may have multiple recipi-
ents), it is possible for eximstats to report more messages received than delivered, even though the
queue is empty at the start and end of the period in question. If an incoming message contains no valid
recipients, no deliveries are recorded for it. A bounce message is handled as an entirely separate
message.

eximstats always outputs a grand total summary giving the volume and number of messages received
and deliveries made, and the number of hosts involved in each case. It also outputs the number of
messages that were delayed (that is, not completely delivered at the first attempt), and the number that
had at least one address that failed.

The remainder of the output is in sections that can be independently disabled or modified by various
options. It consists of a summary of deliveries by transport, histograms of messages received and
delivered per time interval (default per hour), information about the time messages spent on the queue,
a list of relayed messages, lists of the top fifty sending hosts, local senders, destination hosts, and
destination local users by count and by volume, and a list of delivery errors that occurred.

The relay information lists messages that were actually relayed, that is, they came from a remote host
and were directly delivered to some other remote host, without being processed (for example, for
aliasing or forwarding) locally.

The options for eximstats are as follows:

-bydomain
The ‘league tables’ are computed on the basis of the superior domains of the sending hosts
instead of the sending and receiving hosts. This option may be combined with -byhost and/or
-byemail.

-byemail
The ‘league tables’ are computed on the basis of complete email addresses, instead of sending
and receiving hosts. This option may be combined with -byhost and/or -bydomain.

-byhost
The ‘league tables’ are computed on the basis of sending and receiving hosts. This is the
default option. It may be combined with -bydomain and/or -byemail.

-cache Cache results of timegm() lookups. This results in a significant speedup when processing
hundreds of thousands of messages, at a cost of increasing the memory utilisation.

-help Show help information about eximstats’ options.

-h<n> This option controls the histograms of messages received and deliveries per time interval. By
default the time interval is one hour. If -h0 is given, the histograms are suppressed; otherwise
the value of <n> gives the number of divisions per hour. Valid values are 0, 1, 2, 3, 5, 10, 15,
20, 30 or 60, so -h2 sets an interval of 30 minutes, and the default is equivalent to -h1.

-html Output the results in HTML instead of plain text.

-ne Suppress the display of information about failed deliveries (errors).

-nr Suppress information about messages relayed through this host.

Exim 4.10 [257] utilities (45)

-nr/pattern/
Suppress information about relayed messages that match the pattern, which is matched against
a string of the following form (split over two lines here in order to fit it on the page):

H=<host> [<ip address>] A=<sender address> =>
H=<host> A=<recipient address>

for example

H=in.host [1.2.3.4] A=from@some.where.example =>
H=out.host A=to@else.where.example

The sending host name appears in parentheses if it has not been verified as matching the IP
address. The mail addresses are taken from the envelope, not the headers. This option allows
you to screen out hosts whom you are happy to have using your host as a relay.

-nt Suppress the statistics about delivery by transport.

-q0 Suppress information about times messages spend on the queue.

-q<n1>...
This option sets an alternative list of time intervals for the queueing information. The values
are separated by commas and are in seconds, but can involve arithmetic multipliers, so for
example you can set 3*60 to specify 3 minutes. A setting such as

-q60,5*60,10*60

causes eximstats to give counts of messages that stayed on the queue for less than one minute,
less than five minutes, less than ten minutes, and over ten minutes.

-t<n> Sets the ‘top’ count to <n>. This controls the listings of the ‘top <n>’ hosts and users by
count and volume. The default is 50, and setting 0 suppresses the output altogether.

-tnl Omit local information from the ‘top’ listings.

-t_remote_users
Include remote users in the ‘top’ listings.

45.6 Checking access policy (exim_checkaccess)
The -bh command line argument allows you to run a fake SMTP session with debugging output, in
order to check what Exim is doing when it is applying policy controls to incoming SMTP mail.
However, not everybody is sufficiently familiar with the SMTP protocol to be able to make full use of
-bh, and sometimes you just want to answer the question Does this address have access? without
bothering with any further details.

The exim_checkaccess utility is a ‘packaged’ version of -bh. It takes two arguments, an IP address and
an email address:

exim_checkaccess 10.9.8.7 A.User@a.domain.example

The utility runs a call to Exim with the -bh option, to test whether the given email address would be
accepted in a RCPT command in a TCP/IP connection from the host with the given IP address. The
output of the utility is either the word ‘accepted’, or the SMTP error response, for example:

Rejected:
550 Relay not permitted

When running this test, the utility uses <> as the envelope sender address for the MAIL command, but
you can change this by providing additional options. These are passed directly to the Exim command.
For example, to specify that the test is to be run with the sender address himself@there.example you
can use:

exim_checkaccess 10.9.8.7 A.User@a.domain.example \
-f himself@there.example

Exim 4.10 [258] utilities (45)

Note that these additional Exim command line items must be given after the two mandatory
arguments.

45.7 Making DBM files (exim_dbmbuild)
The exim_dbmbuild program reads an input file containing keys and data in the format used by the
lsearch lookup (see section 9.1). It writes a DBM file using the lower-cased alias names as keys and
the remainder of the information as data. The lower-casing can be prevented by calling the program
with the -nolc option.

A terminating zero is included as part of the key string. This is expected by the dbm lookup type.
However, if the option -nozero is given, exim_dbmbuild creates files without terminating zeroes in
either the key strings or the data strings. The dbmnz lookup type can be used with such files.

The program requires two arguments: the name of the input file (which can be a single hyphen to
indicate the standard input), and the name of the output file. It creates the output under a temporary
name, and then renames it if all went well. If the native DB interface is in use (USE_DB is set in a
compile-time configuration file – this is common in free versions of Unix) the two file names must be
different, because in this mode the Berkeley DB functions create a single output file using exactly the
name given. For example,

exim_dbmbuild /etc/aliases /etc/aliases.db

reads the system alias file and creates a DBM version of it in /etc/aliases.db.

In systems that use the ndbm routines (mostly proprietary versions of Unix), two files are used, with
the suffixes .dir and .pag. In this environment, the suffixes are added to the second argument of
exim_dbmbuild, so it can be the same as the first. This is also the case when the Berkeley functions are
used in compatibility mode (though this is not recommended), because in that case it adds a .db suffix
to the file name.

If a duplicate key is encountered, the program outputs a warning, and when it finishes, its return code
is 1 rather than zero, unless the -noduperr option is used. By default, only the first of a set of
duplicates is used – this makes it compatible with lsearch lookups. There is an option -lastdup which
causes it to use the data for the last duplicate instead. There is also an option -nowarn, which stops it
listing duplicate keys to stderr. For other errors, where it doesn’t actually make a new file, the return
code is 2.

45.8 Finding individual retry times (exinext)
A utility called exinext (mostly a Perl script) provides the ability to fish specific information out of the
retry database. Given a mail domain (or a complete address), it looks up the hosts for that domain, and
outputs any retry information for the hosts or for the domain. At present, the retry information is
obtained by running exim_dumpdb (see below) and post-processing the output. For example:

exinext piglet@milne.fict.example
kanga.milne.fict.example:192.168.8.1 error 146: Connection refused
first failed: 21-Feb-1996 14:57:34
last tried: 21-Feb-1996 14:57:34
next try at: 21-Feb-1996 15:02:34

roo.milne.fict.example:192.168.8.3 error 146: Connection refused
first failed: 20-Jan-1996 13:12:08
last tried: 21-Feb-1996 11:42:03
next try at: 21-Feb-1996 19:42:03
past final cutoff time

You can also give exinext a local part, without a domain, and it will give any retry information for that
local part in your default domain. A message id can be used to obtain retry information pertaining to a
specific message. This exists only when an attempt to deliver a message to a remote host suffers a
message-specific error (see section 42.2). exinext is not particularly efficient, but then it isn’t expected
to be run very often.

Exim 4.10 [259] utilities (45)

45.9 Hints database maintenance (exim_dumpdb, exim_fixdb, exim_tidydb)
Three utility programs are provided for maintaining the DBM files that Exim uses to contain its
delivery hint information. Each program requires two arguments. The first specifies the name of
Exim’s spool directory, and the second is the name of the database it is to operate on. These are as
follows:

• retry: the database of retry information

• wait-<transport name>: databases of information about messages waiting for remote hosts

• misc: other hints data (for example, for serializing ETRN runs)

The entire contents of a database are written to the standard output by the exim_dumpdb program,
which has no options or arguments other than the spool and database names. For example, to dump the
retry database:

exim_dumpdb /var/spool/exim retry

Two lines of output are produced for each entry:

T:mail.ref.example:192.168.242.242 146 77 Connection refused
31-Oct-1995 12:00:12 02-Nov-1995 12:21:39 02-Nov-1995 20:21:39 *

The first item on the first line is the key of the record. It starts with one of the letters R, or T,
depending on whether it refers to a routing or transport retry. For a local delivery, the next part is the
local address; for a remote delivery it is the name of the remote host, followed by its failing IP address
(unless no_retry_include_ip_address is set on the smtp transport). Then there follows an error code,
an additional error code, and a textual description of the error.

The three times on the second line are the time of first failure, the time of the last delivery attempt,
and the computed time for the next attempt. The line ends with an asterisk if the cutoff time for the
last retry rule has been exceeded.

Each output line from exim_dumpdb for the wait-xxx databases consists of a host name followed by a
list of ids for messages that are or were waiting to be delivered to that host. If there are a very large
number for any one host, continuation records, with a sequence number added to the host name, may
be seen. The data in these records is often out of date, because a message may be routed to several
alternative hosts, and Exim makes no effort to keep cross-references.

The exim_tidydb utility program is used to tidy up the contents of the hints databases. If run with no
options, it removes all records from a database that are more than 30 days old. The cutoff date can be
altered by means of the -t option, which must be followed by a time. For example, to remove all
records older than a week from the retry database:

exim_tidydb -t 7d /var/spool/exim retry

Both the wait-xxx and retry databases contain items that involve message ids. In the former these
appear as data in records keyed by host – they were messages that were waiting for that host – and in
the latter they are the keys for retry information for messages that have suffered certain types of error.
When exim_tidydb is run, a check is made to ensure that message ids in database records are those of
messages that are still on the queue. Message ids for messages that no longer exist are removed from
wait-xxx records, and if this leaves any records empty, they are deleted. For the retry database, records
whose keys are non-existent message ids are removed. The exim_tidydb utility outputs comments on
the standard output whenever it removes information from the database.

Removing records from a DBM file does not normally make the file smaller, but all the common DBM
libraries are able to re-use the space that is released. It is therefore suggested that exim_tidydb be run
periodically on all the hints databases, but at a quiet time of day, because it requires a database to be
locked (and therefore inaccessible to Exim) while it does its work.

The exim_fixdb program is a utility for interactively modifying databases. Its main use is for testing
Exim, but it might also be occasionally useful for getting round problems in a live system. It has no
options, and its interface is somewhat crude. On entry, it prompts for input with a right angle-bracket.
A key of a database record can then be entered, and the data for that record is displayed.

Exim 4.10 [260] utilities (45)

If ‘d’ is typed at the next prompt, the entire record is deleted. For all except the retry database, that is
the only operation that can be carried out. For the retry database, each field is output preceded by a
number, and data for individual fields can be changed by typing the field number followed by new
data, for example:

> 4 951102:1000

resets the time of the next delivery attempt. Time values are given as a sequence of digit pairs for
year, month, day, hour, and minute. Colons can be used as optional separators.

45.10 Mailbox maintenance (exim_lock)
The exim_lock utility locks a mailbox file using the same algorithm as Exim. For a discussion of
locking issues, see section 25.2. Exim_lock can be used to prevent any modification of a mailbox by
Exim or a user agent while investigating a problem. The utility requires the name of the file as its first
argument. If the locking is successful, the second argument is run as a command (using C’s system()
function); if there is no second argument, the value of the SHELL environment variable is used; if this
is unset or empty, /bin/sh is run. When the command finishes, the mailbox is unlocked and the utility
ends. The following options are available:

-fcntl Use fcntl() locking on the open mailbox.

-interval
This must be followed by a number, which is a number of seconds; it sets the interval to sleep
between retries (default 3).

-lockfile
Create a lock file before opening the mailbox.

-mbx Lock the mailbox using MBX rules.

-q Suppress verification output.

-retries
This must be followed by a number; it sets the number of times to try to get the lock
(default 10).

-timeout
This must be followed by a number, which is a number of seconds; it sets a timeout to be
used with a blocking fcntl() lock. If it is not set (the default), a non-blocking call is used.

-v Generate verbose output.

If none of -fcntl, -lockfile or -mbx are given, the default is to create a lock file and also use fcntl()
locking on the mailbox, which is the same as Exim’s default. The use of -fcntl requires that the file be
writeable; the use of -lockfile requires that the directory containing the file be writeable. Locking by
lock file does not last for ever; Exim assumes that a lock file is expired if it is more than 30
minutes old.

The -mbx option is mutually exclusive with -fcntl. It causes a shared lock to be taken out on the open
mailbox, and an exclusive lock on the file /tmp/.n.m where n and m are the device number and inode
number of the mailbox file. When the locking is released, if an exclusive lock can be obtained for the
mailbox, the file in /tmp is deleted.

The default output contains verification of the locking that takes place. The -v option causes some
additional information to be given. The -q option suppresses all output except error messages.

A command such as

exim_lock /var/spool/mail/spqr

runs an interactive shell while the file is locked, whereas

Exim 4.10 [261] utilities (45)

exim_lock -q /var/spool/mail/spqr <<End
 <some commands>
 End

runs a specific non-interactive sequence of commands while the file is locked, suppressing all verifi-
cation output. A single command can be run by a command such as

exim_lock -q /var/spool/mail/spqr \
"cp /var/spool/mail/spqr /some/where"

Note that if a command is supplied, it must be entirely contained within the second argument – hence
the quotes.

Exim 4.10 [262] utilities (45)

46. The Exim monitor

The Exim monitor is an application which displays in an X window information about the state of
Exim’s queue and what Exim is doing. An admin user can perform certain operations on messages
from this GUI interface; however all such facilities are also available from the command line, and
indeed, the monitor itself makes use of the command line to perform any actions requested.

46.1 Running the monitor

The monitor is started by running the script called eximon. This is a shell script which sets up a
number of environment variables, and then runs the binary called eximon.bin. The default appearance
of the monitor window can be changed by editing the Local/eximon.conf file created by editing
exim_monitor/EDITME. Comments in that file describe what the various parameters are for.

The parameters that get built into the eximon script can be overridden for a particular invocation by
setting up environment variables of the same names, preceded by ‘EXIMON_’. For example, a shell
command such as

EXIMON_LOG_DEPTH=400 eximon

(in a Bourne-compatible shell) runs eximon with an overriding setting of the LOG_DEPTH parameter. If
EXIMON_LOG_FILE_PATH is set in the environment, it overrides the Exim log file configuration. This
makes it possible to have eximon tailing log data that is written to syslog, provided that MAIL.INFO
syslog messages are routed to a file on the local host.

X resources can be used to change the appearance of the window in the normal way. For example, a
resource setting of the form

Eximon*background: gray94

changes the colour of the background to light grey rather than white. The stripcharts are drawn with
both the data lines and the reference lines in black. This means that the reference lines are not visible
when on top of the data. However, their colour can be changed by setting a resource called ‘highlight’
(an odd name, but that’s what the Athena stripchart widget uses). For example, if your X server is
running Unix, you could set up lighter reference lines in the stripcharts by obeying

xrdb -merge <<End
Eximon*highlight: gray
End

In order to see the contents of messages on the queue, and to operate on them, eximon must either be
run as root or by an admin user.

The monitor ’s window is divided into three parts. The first contains one or more stripcharts and two
action buttons, the second contains a ‘tail’ of the main log file, and the third is a display of the queue
of messages awaiting delivery, with two more action buttons. The following sections describe these
different parts of the display.

46.2 The stripcharts
The first stripchart is always a count of messages on the queue. Its name can be configured by setting
QUEUE_STRIPCHART_NAME in the Local/eximon.conf file. The remaining stripcharts are defined in the
configuration script by regular expression matches on log file entries, making it possible to display, for
example, counts of messages delivered to certain hosts or using certain transports. The supplied
defaults display counts of received and delivered messages, and of local and SMTP deliveries. The
default period between stripchart updates is one minute; this can be adjusted by a parameter in the
Local/eximon.conf file.

Exim 4.10 [263] monitor (46)

The stripchart displays rescale themselves automatically as the value they are displaying changes.
There are always 10 horizontal lines in each chart; the title string indicates the value of each division
when it is greater than one. For example, ‘x2’ means that each division represents a value of 2.

It is also possible to have a stripchart which shows the percentage fullness of a particular disc
partition, which is useful when local deliveries are confined to a single partition. This relies on the
availability of the statvfs() function or equivalent in the operating system. Most, but not all versions of
Unix that support Exim have this. For this particular stripchart, the top of the chart always represents
100%, and the scale is given as ‘x10%’. This chart is configured by setting SIZE_STRIPCHART and
(optionally) SIZE_STRIPCHART_NAME in the Local/eximon.conf file.

46.3 Main action buttons
Below the stripcharts there is an action button for quitting the monitor. Next to this is another button
marked ‘Size’. They are placed here so that shrinking the window to its default minimum size leaves
just the queue count stripchart and these two buttons visible. Pressing the ‘Size’ button causes the
window to expand to its maximum size, unless it is already at the maximum, in which case it is
reduced to its minimum.

When expanding to the maximum, if the window cannot be fully seen where it currently is, it is
moved back to where it was the last time it was at full size. When it is expanding from its minimum
size, the old position is remembered, and next time it is reduced to the minimum it is moved back
there.

The idea is that you can keep a reduced window just showing one or two stripcharts at a convenient
place on your screen, easily expand it to show the full window when required, and just as easily put it
back to what it was. The idea is copied from what the twm window manager does for its f.fullzoom
action. The minimum size of the window can be changed by setting the MIN_HEIGHT and MIN_WIDTH

values in Local/eximon.conf.

Normally, the monitor starts up with the window at its full size, but it can be built so that it starts up
with the window at its smallest size, by setting START_SMALL=yes in Local/eximon.conf.

46.4 The log display
The second section of the window is an area in which a display of the tail of the main log is
maintained. This is not available when the only destination for logging data is syslog, unless the syslog
lines are routed to a local file whose name is passed to eximon via the EXIMON_LOG_FILE_PATH

environment variable.

The log sub-window has a scroll bar at its lefthand side which can be used to move back to look at
earlier text, and the up and down arrow keys also have a scrolling effect. The amount of log that is
kept depends on the setting of LOG_BUFFER in Local/eximon.conf, which specifies the amount of
memory to use. When this is full, the earlier 50% of data is discarded – this is much more efficient
than throwing it away line by line. The sub-window also has a horizontal scroll bar for accessing the
ends of long log lines. This is the only means of horizontal scrolling; the right and left arrow keys are
not available. Text can be cut from this part of the window using the mouse in the normal way. The
size of this subwindow is controlled by parameters in the configuration file Local/eximon.conf.

Searches of the text in the log window can be carried out by means of the ^R and ^S keystrokes,
which default to a reverse and a forward search, respectively. The search covers only the text that is
displayed in the window. It cannot go further back up the log.

The point from which the search starts is indicated by a caret marker. This is normally at the end of
the text in the window, but can be positioned explicitly by pointing and clicking with the left mouse
button, and is moved automatically by a successful search. If new text arrives in the window when it
is scrolled back, the caret remains where it is, but if the window is not scrolled back, the caret is
moved to the end of the new text.

Pressing ^R or ^S pops up a window into which the search text can be typed. There are buttons for
selecting forward or reverse searching, for carrying out the search, and for cancelling. If the ‘Search’

Exim 4.10 [264] monitor (46)

button is pressed, the search happens and the window remains so that further searches can be done. If
the ‘Return’ key is pressed, a single search is done and the window is closed. If ^C is typed the search
is cancelled.

The searching facility is implemented using the facilities of the Athena text widget. By default this
pops up a window containing both ‘search’ and ‘replace’ options. In order to suppress the unwanted
‘replace’ portion for eximon, a modified version of the TextPop widget is distributed with Exim.
However, the linkers in BSDI and HP-UX seem unable to handle an externally provided version of
TextPop when the remaining parts of the text widget come from the standard libraries. The compile-
time option EXIMON_TEXTPOP can be unset to cut out the modified TextPop, making it possible to build
Eximon on these systems, at the expense of having unwanted items in the search popup window.

46.5 The queue display
The bottom section of the monitor window contains a list of all messages that are on the queue, which
includes those currently being received or delivered, as well as those awaiting delivery. The size of
this subwindow is controlled by parameters in the configuration file Local/eximon.conf, and the
frequency at which it is updated is controlled by another parameter in the same file – the default is 5
minutes, since queue scans can be quite expensive. However, there is an ‘Update’ action button just
above the display which can be used to force an update of the queue display at any time.

When a host is down for some time, a lot of pending mail can build up for it, and this can make it
hard to deal with other messages on the queue. To help with this situation there is a button next to
‘Update’ called ‘Hide’. If pressed, a dialogue box called ‘Hide addresses ending with’ is put up. If you
type anything in here and press ‘Return’, the text is added to a chain of such texts, and if every
undelivered address in a message matches at least one of the texts, the message is not displayed.

If there is an address that does not match any of the texts, all the addresses are displayed as normal.
The matching happens on the ends of addresses so, for example, cam.ac.uk specifies all addresses in
Cambridge, while xxx@foo.com.example specifies just one specific address. When any hiding has been
set up, a button called ‘Unhide’ is displayed. If pressed, it cancels all hiding. Also, to ensure that
hidden messages do not get forgotten, a hide request is automatically cancelled after one hour.

While the dialogue box is displayed, you can’t press any buttons or do anything else to the monitor
window. For this reason, if you want to cut text from the queue display to use in the dialogue box, you
have to do the cutting before pressing the ‘Hide’ button.

The queue display contains, for each unhidden queued message, the length of time it has been on the
queue, the size of the message, the message id, the message sender, and the first undelivered recipient,
all on one line. If it is a bounce message, the sender is shown as ‘<>’. If there is more than one
recipient to which the message has not yet been delivered, subsequent ones are listed on additional
lines, up to a maximum configured number, following which an ellipsis is displayed. Recipients that
have already received the message are not shown. If a message is frozen, an asterisk is displayed at the
left-hand side.

The queue display has a vertical scroll bar, and can also be scrolled by means of the arrow keys. Text
can be cut from it using the mouse in the normal way. The text searching facilities, as described above
for the log window, are also available, but the caret is always moved to the end of the text when the
queue display is updated.

46.6 The queue menu
If the shift key is held down and the left button is clicked when the mouse pointer is over the text for
any message, an action menu pops up, and the first line of the queue display for the message is
highlighted. This does not affect any selected text.

If you want to use some other event for popping up the menu, you can set the MENU_EVENT parameter
in Local/eximon.conf to change the default, or set EXIMON_MENU_EVENT in the environment before
starting the monitor. The value set in this parameter is a standard X event description. For example, to
run eximon using ctrl rather than shift you could use

Exim 4.10 [265] monitor (46)

EXIMON_MENU_EVENT=’Ctrl<Btn1Down>’ eximon

The title of the menu is the message id, and it contains entries which act as follows:

• message log: The contents of the message log for the message are displayed in a new text
 window.

• headers: Information from the spool file that contains the envelope information and headers is
displayed in a new text window. See chapter 48 for a description of the format of spool files.

• body: The contents of the spool file containing the body of the message are displayed in a new
text window. There is a default limit of 20,000 bytes to the amount of data displayed. This can be
changed by setting the BODY_MAX option at compile time, or the EXIMON_BODY_MAX option at run

 time.

• deliver message: A call to Exim is made using the -M option to request delivery of the message.
This causes an automatic thaw if the message is frozen. The -v option is also set, and the output
from Exim is displayed in a new text window. The delivery is run in a separate process, to avoid
holding up the monitor while the delivery proceeds.

• freeze message: A call to Exim is made using the -Mf option to request that the message be
 frozen.

• thaw message: A call to Exim is made using the -Mt option to request that the message be
thawed.

• give up on msg: A call to Exim is made using the -Mg option to request that Exim gives up
trying to deliver the message. A bounce message is generated for any remaining undelivered

 addresses.

• remove message: A call to Exim is made using the -Mrm option to request that the message be
deleted from the system without generating a bounce message.

• add recipient: A dialog box is displayed into which a recipient address can be typed. If the
address is not qualified and the QUALIFY_DOMAIN parameter is set in Local/eximon.conf, the
address is qualified with that domain. Otherwise it must be entered as a fully qualified address.
Pressing RETURN causes a call to Exim to be made using the -Mar option to request that an
additional recipient be added to the message, unless the entry box is empty, in which case no
action is taken.

• mark delivered: A dialog box is displayed into which a recipient address can be typed. If the
address is not qualified and the QUALIFY_DOMAIN parameter is set in Local/eximon.conf, the
address is qualified with that domain. Otherwise it must be entered as a fully qualified address.
Pressing RETURN causes a call to Exim to be made using the -Mmd option to mark the given
recipient address as already delivered, unless the entry box is empty, in which case no action is

 taken.

• mark all delivered: A call to Exim is made using the -Mmad option to mark all recipient
addresses as already delivered.

• edit sender: A dialog box is displayed initialized with the current sender ’s address. Pressing
RETURN causes a call to Exim to be made using the -Mes option to replace the sender address,
unless the entry box is empty, in which case no action is taken. If you want to set an empty
sender (as in bounce messages), you must specify it as ‘<>’. Otherwise, if the address is not
qualified and the QUALIFY_DOMAIN parameter is set in Local/eximon.conf, the address is qualified
with that domain.

When a delivery is forced, a window showing the -v output is displayed. In other cases when a call to
Exim is made, if there is any output from Exim (in particular, if the command fails) a window
containing the command and the output is displayed. Otherwise, the results of the action are normally
apparent from the log and queue displays. However, if you set ACTION_OUTPUT=yes in
Local/eximon.conf, a window showing the Exim command is always opened, even if no output is
generated.

Exim 4.10 [266] monitor (46)

The queue display is automatically updated for actions such as freezing and thawing, unless
ACTION_QUEUE_UPDATE=no has been set in Local/eximon.conf. In this case the ‘Update’ button has to
be used to force an update of the display after one of these actions.

In any text window that is displayed as result of a menu action, the normal cut-and-paste facility is
available, and searching can be carried out using ^R and ^S, as described above for the log tail
window.

Exim 4.10 [267] monitor (46)

47. Security considerations

This chapter discusses a number of issues concerned with security, some of which are also covered in
other parts of this manual.

For reasons that this author does not understand, some people have promoted Exim as a ‘particularly
secure’ mailer. Perhaps it is because of the existence of this chapter in the documentation. However,
the intent of the chapter is simply to describe the way Exim works in relation to certain security
concerns, not to make any specific claims about the effectiveness of its security as compared with
other MTAs.

What follows is a description of the way Exim is supposed to be. Best efforts have been made to try to
ensure that the code agrees with the theory, but an absence of bugs can never be guaranteed. Any that
are reported will get fixed as soon as possible.

47.1 Root privilege
The Exim binary is normally setuid to root, which means that it gains root privilege (runs as root)
when it starts execution. In some special cases (for example, when the daemon is not in use and there
are no local deliveries), it may be possible to run Exim setuid to some user other than root. This is
discussed in the next section. However, in most installations, root privilege is required for two things:

• To set up a socket connected to the standard SMTP port (25) when initialising the listening
daemon. If Exim is run from inetd, this privileged action is not required.

• To be able to change uid and gid in order to read users’ .forward files and perform local
deliveries as the receiving user or as specified in the configuration.

It is not necessary to be root to do any of the other things Exim does, such as receiving messages and
delivering them externally over SMTP, and it is obviously more secure if Exim does not run as root
except when necessary. For this reason, a user and group for Exim to use must be defined in
Local/Makefile. These are known as ‘the Exim user’ and ‘the Exim group’. Their values can be
changed by the run time configuration, though this is not recommended. Often a user called exim is
used, but some sites use mail or another user name altogether.

Exim uses setuid() whenever it gives up root privilege. This is a permanent abdication; the process
cannot regain root afterwards. Prior to release 4.00, seteuid() was used in some circumstances, but this
is no longer the case.

After a new Exim process has interpreted its command line options, it changes uid and gid in the
following cases:

• If the -C option is used to specify an alternate configuration file, or if the -D option is used to
define macro values for the configuration, and the calling process is not running as root or the
Exim user, the uid and gid are changed to those of the calling process.

• If the expansion test option (-be) or one of the filter testing options (-bf or -bF) are used, the uid
and gid are changed to those of the calling process.

• If the process is not a daemon process or a queue runner process or a delivery process or a
process for testing address routing (started with -bt), the uid and gid are changed to the Exim
user and group. This means that Exim always runs under its own uid and gid when receiving
messages. This also applies when testing address verification (the -bv option) and testing
incoming message policy controls (the -bh option).

• For a daemon, queue-runner, delivery, or address testing process, the uid remains as root at this
stage, but the gid is changed to the Exim group.

The processes that initially retain root privilege behave as follows:

Exim 4.10 [268] security (47)

• A daemon process changes the uid to the Exim user after setting up one or more listening
 sockets.

• A queue-runner process retains root privilege throughout its execution. Its job is to fork a
controlled sequence of delivery processes.

• A delivery process retains root privilege throughout most of its execution, but any actual
deliveries (that is, the transports themselves) are run in subprocesses which always change to a
non-root uid and gid. For local deliveries this is typically the uid and gid of the owner of the
mailbox; for remote deliveries, the Exim uid and gid are used. Once all the delivery subprocesses
have been run, a delivery process changes to the Exim uid and gid while doing post-delivery
tidying up such as updating the retry database and generating bounce and warning messages.

While the recipient addresses in a message are being routed, the delivery process runs as root.
 However, if a user ’s filter file has to be processed, this is done in a subprocess which runs under

the individual user ’s uid and gid. A system filter is run as root unless system_filter_user is set.

• A process that is testing addresses (the -bt option) runs as root so that the routing is done in the
same environment as a message delivery.

47.2 Running Exim without privilege
Some installations like to run Exim in an unprivileged state for more of its operation, for added
security. Support for this mode of operation is provided by the global option deliver_drop_privilege.
When this is set, the uid and gid are changed to the Exim user and group at the start of a delivery
process (and also queue-runner and address testing processes). This means that address routing is no
longer run as root, and the deliveries themselves cannot change to any other uid.

Leaving the binary setuid to root, but setting deliver_drop_privilege means that the daemon can still
be started in the usual way, and it can respond correctly to SIGHUP because the re-invocation regains
root privilege.

An alternative approach is to make Exim setuid/setgid to the Exim user and group. If you do this, the
daemon must be started from a root process. (Calling Exim from a root process makes it behave in the
way it does when it is setuid root.) However, the daemon cannot restart itself after a SIGHUP signal
because it cannot regain privilege.

It is still useful to set deliver_drop_privilege in this case, because it stops Exim from trying to re-
invoke itself to do a delivery after a message has been received. Such a re-invocation is a waste of
resources because it has no effect.

If restarting the daemon is not an issue (for example, if inetd is being used instead of a daemon),
having the binary setuid to the Exim user seems a clean approach, but there is one complication:

In this style of operation, Exim is running with the real uid and gid set to those of the calling process,
and the effective uid/gid set to Exim’s values. Ideally, any association with the calling process’ uid/gid
should be dropped, that is, the real uid/gid should be reset to the effective values so as to discard any
privileges that the caller may have. While some operating systems have a function that permits this
action for a non-root effective uid, quite a number of them do not. Because of this lack of
standardization, Exim does not address this problem at this time.

For this reason, the recommended approach for ‘mostly unprivileged’ running is to keep the Exim
binary setuid to root, and to set deliver_drop_privilege. This also has the advantage of allowing a
daemon to be used in the most straightforward way.

If you configure Exim not to run delivery processes as root, there are a number of restrictions on what
you can do:

• You can deliver only as the Exim user/group. You should explicitly use the user and group
options to override routers or local transports that normally deliver as the recipient. This makes
sure that configurations that work in this mode function the same way in normal mode. Any
implicit or explicit specification of another user causes an error.

Exim 4.10 [269] security (47)

• Use of .forward files is severely restricted, such that it is usually not worthwhile to include them
in the configuration.

• Users who wish to use .forward would have to make their home directory and the file itself
accessible to the Exim user. Pipe and append-to-file entries, and their equivalents in Exim filters,
cannot be used. While they could be enabled in the Exim user ’s name, that would be insecure
and not very useful.

• Unless the local user mailboxes are all owned by the Exim user (possible in some POP3 or
IMAP-only environments):

* They must be owned by the Exim group and be writable by that group. This implies you
must set mode in the appendfile configuration, as well as the mode of the mailbox files
themselves.

* You must set no_check_owner, since most or all of the files will not be owned by the Exim
 user.

* You must set file_must_exist, because Exim cannot set the owner correctly on a newly
created mailbox when unprivileged. This also implies that new mailboxes need to be created

 manually.

These restrictions severely restrict what can be done in local deliveries. However, there are no
restrictions on remote deliveries. If you are running a gateway host that does no local deliveries,
setting deliver_drop_privilege gives more security at essentially no cost.

47.3 Delivering to local files
Full details of the checks applied by appendfile before it writes to a file are given in chapter 25.

47.4 IPv4 source routing
Many operating systems suppress IP source-routed packets in the kernel, but some cannot be made to
do this, so Exim does its own check. It logs incoming IPv4 source-routed TCP calls, and then drops
them. Things are all different in IPv6. No special checking is currently done.

47.5 The VRFY, EXPN, and ETRN commands in SMTP
Support for these SMTP commands is disabled by default. If required, they can be enabled by defining
suitable ACLs.

47.6 Privileged users
Exim recognises two sets of users with special privileges. Trusted users are able to submit new
messages to Exim locally, but supply their own sender addresses and information about a sending host.
For other users submitting local messages, Exim sets up the sender address from the uid, and doesn’t
permit a remote host to be specified.

However, an untrusted user is permitted to use the -f command line option in the special form -f <> to
indicate that a delivery failure for the message should not cause an error report. This affects the
message’s envelope, but it does not affect the Sender: header. Untrusted users may also be permitted to
use specific forms of address with the -f option by setting the untrusted_set_sender option.

Trusted users are used to run processes that receive mail messages from some other mail domain and
pass them on to Exim for delivery either locally, or over the Internet. Exim trusts a caller that is
running as root, as the Exim user, as any user listed in the trusted_users configuration option, or
under any group listed in the trusted_groups option.

Admin users are permitted to do things to the messages on Exim’s queue. They can freeze or thaw
messages, cause them to be returned to their senders, remove them entirely, or modify them in various
ways. In addition, admin users can run the Exim monitor and see all the information it is capable of
providing, which includes the contents of files on the spool.

Exim 4.10 [270] security (47)

By default, the use of the -M and -q options to cause Exim to attempt delivery of messages on its
queue is restricted to admin users. This restriction can be relaxed by setting the
no_prod_requires_admin option. Similarly, the use of -bp (and its variants) to list the contents of the
queue is also restricted to admin users. This restriction can be relaxed by setting
no_queue_list_requires_admin.

Exim recognises an admin user if the calling process is running as root or as the Exim user or if any
of the groups associated with the calling process is the Exim group. It is not necessary actually to be
running under the Exim group. However, if admin users who are not root or the Exim user are to
access the contents of files on the spool via the Exim monitor (which runs unprivileged), Exim must
be built to allow group read access to its spool files.

47.7 Spool files
Exim’s spool directory and everything it contains is owned by the Exim user and set to the Exim
group. The mode for spool files is defined in the Local/Makefile configuration file, and defaults to
0640. This means that any user who is a member of the Exim group can access these files.

47.8 Use of argv[0]
Exim examines the last component of argv[0], and if it matches one of a set of specific strings, Exim
assumes certain options. For example, calling Exim with the last component of argv[0] set to ‘rsmtp’
is exactly equivalent to calling it with the option -bS. There are no security implications in this.

47.9 Use of %f formatting
The only use made of ‘%f’ by Exim is in formatting load average values. These are actually stored in
integer variables as 1000 times the load average. Consequently, their range is limited and so therefore
is the length of the converted output.

47.10 Embedded Exim path
Exim uses its own path name, which is embedded in the code, only when it needs to re-exec in order
to regain root privilege. Therefore, it is not root when it does so. If some bug allowed the path to get
overwritten, it would lead to an arbitrary program’s being run as exim, not as root.

47.11 Use of sprintf()
A large number of occurrences of ‘sprintf’ in the code are actually calls to string_sprintf(), a function
which returns the result in malloc’d store. The intermediate formatting is done into a large fixed buffer
by a function that runs through the format string itself, and checks the length of each conversion
before performing it, thus preventing buffer overruns.

The remaining uses of sprintf() happen in controlled circumstances where the output buffer is known
to be sufficiently long to contain the converted string.

47.12 Use of debug_printf() and log_write()
Arbitrary strings are passed to both these functions, but they do their formatting by calling the function
string_vformat(), which runs through the format string itself, and checks the length of each conversion.

47.13 Use of strcat() and strcpy()
These are used only in cases where the output buffer is known to be large enough to hold the result.

Exim 4.10 [271] security (47)

48. Format of spool files

A message on Exim’s queue consists of two files, whose names are the message id followed by -D and
-H, respectively. The data portion of the message is kept in the -D file on its own. The message’s
envelope, status, and headers are all kept in the -H file, whose format is described in this chapter. Each
of these two files contains the final component of its own name as its first line. This is insurance
against disc crashes where the directory is lost but the files themselves are recoverable.

Files whose names end with -J may also be seen in the input directory (or its subdirectories when
split_spool_directory is set). These are journal files, used to record addresses to which the message
has been delivered during the course of a delivery run. At the end of the run, the -H file is updated,
and the -J file is deleted.

The second line of the -H file contains the login name for the uid of the process that called Exim to
read the message, followed by the numerical uid and gid. For a locally generated message, this is
normally the user who sent the message. For a message received over TCP/IP, it is normally the Exim
user.

The third line of the file contains the address of the message’s sender as transmitted in the envelope,
contained in angle brackets. The sender address is empty for bounce messages. For incoming SMTP
mail, the sender address is given in the MAIL command. For locally generated mail, the sender address
is created by Exim from the login name of the current user and the configured qualify_domain.
However, this can be overridden by the -f option or a leading ‘From’ line if the caller is trusted, or if
the supplied address is ‘<>’ or an address that matches untrusted_set_senders.

The fourth line contains two numbers. The first is the time that the message was received, in the
conventional Unix form – the number of seconds since the start of the epoch. The second number is a
count of the number of messages warning of delayed delivery that have been sent to the sender.

There follow a number of lines starting with a hyphen. These can appear in any order, and are omitted
when not relevant:

• -auth_id <text>: The id information for a message received on an authenticated SMTP connec-
tion – the value of the $authenticated_id variable.

• -auth_sender <address>: The address of an authenticated sender – the value of the
$authenticated_sender variable.

• -body_linecount <number>: This records the number of lines in the body of the message, and is
always present.

• -deliver_firsttime: This is written when a new message is first added to the spool. When the
spool file is updated after a deferral, it is omitted.

• -frozen <time>: The message is frozen, and the freezing happened at <time>.

• -helo_name <text>: This records the host name as specified by a remote host in a HELO or EHLO

command.

• -host_address <address>.<port>: This records the IP address of the host from which the message
was received and the remote port number that was used. It is omitted for locally generated
messages.

• -host_auth <text>: If the message was received on an authenticated SMTP connection, this
records the name of the authenticator – the value of the $sender_host_authenticated variable.

• -host_lookup_failed: This is present if an attempt to look up the sending host’s name from its IP
address failed. It corresponds to the $host_lookup_failed variable.

• -host_name <text>: This records the name of the remote host from which the message was
received, if the host name was looked up from the IP address when the message was being
received. It is not present if no reverse lookup was done.

Exim 4.10 [272] spool file format (48)

• -ident <text>: For locally submitted messages, this records the login of the originating user,
unless it was a trusted user and the -oMt option was used to specify an ident value. For messages
received over TCP/IP, this records the ident string supplied by the remote host, if any.

• -interface_address <address>.<port>: This records the IP address of the local interface and the
port number through which a message was received from a remote host. It is omitted for locally
generated messages.

• -local: The message is from a local sender.

• -localerror: The message is a locally-generated bounce message.

• -local_scan <string>: This records the data string that was returned by the local_scan() function
when the message was received – the value of the $local_scan_data variable. It is omitted if no
data was returned.

• -manual_thaw: The message was frozen but has been thawed manually, that is, by an explicit
Exim command rather than via the auto-thaw process.

• -N: A testing delivery process was started using the -N option to suppress any actual deliveries,
but delivery was deferred. At any further delivery attempts, -N is assumed.

• -received_protocol: This records the value of the $received_protocol variable, which contains
the name of the protocol by which the message was received.

• -sender_set_untrusted: The envelope sender of this message was set by an untrusted local caller
(used to ensure that the caller is displayed in queue listings).

• -tls_cipher <cipher name>: When the message was received over an encrypted channel, this
records the name of the cipher suite that was used.

• -tls_peerdn <peer DN>: When the message was received over an encrypted channel, and a
certificate was received from the client, this records the Distinguished Name from that certificate.

Following the options there is a list of those addresses to which the message is not to be delivered.
This set of addresses is initialized from the command line when the -t option is used and extract_
addresses_remove_arguments is set; otherwise it starts out empty. Whenever a successful delivery is
made, the address is added to this set. The addresses are kept internally as a balanced binary tree, and
it is a representation of that tree which is written to the spool file. If an address is expanded via an
alias or forward file, the original address is added to the tree when deliveries to all its child addresses
are complete.

If the tree is empty, there is a single line in the spool file containing just the text ‘XX’. Otherwise,
each line consists of two letters, which are either Y or N, followed by an address. The address is the
value for the node of the tree, and the letters indicate whether the node has a left branch and/or a right
branch attached to it, respectively. If branches exist, they immediately follow. Here is an example of a
three-node tree:

YY darcy@austen.fict.example
NN alice@wonderland.fict.example
NN editor@thesaurus.ref.example

After the non-recipients tree, there is a list of the message’s recipients. This is a simple list, preceded
by a count. It includes all the original recipients of the message, including those to whom the message
has already been delivered. In the simplest case, the list contains one address per line. For example:

4
 editor@thesaurus.ref.example
 darcy@austen.fict.example
rdo@foundation
alice@wonderland.fict.example

However, when a child address has been added to the top-level addresses as a result of the use of the
one_time option on a redirect router, each line is of the following form:

Exim 4.10 [273] spool file format (48)

 <top-level address> <errors_to address> <length>,<parent number>#<flag bits>

The 01 flag bit indicates the presence of the three other fields that follow the top-level address. Other
bits may be used in future to support additional fields. The <parent number> is the offset in the
recipients list of the original parent of the ‘one time’ address. The first two fields are the envelope
sender that is associated with this address and its length. If the length is zero, there is no special
envelope sender (there are then two space characters in the line). A non-empty field can arise from a
redirect router that has an errors_to setting.

A blank line separates the envelope and status information from the headers which follow. A header
may occupy several lines of the file, and to save effort when reading it in, each header is preceded by
a number and an identifying character. The number is the number of characters in the header,
including any embedded newlines and the terminating newline. The character is one of the following:

<blank> header in which Exim has no special interest
B Bcc: header
C Cc: header
F From: header
I Message-id: header
P Received: header – P for ‘postmark’
R Reply-To: header
S Sender: header
T To: header
* replaced or deleted header

Deleted or replaced (rewritten) headers remain in the spool file for debugging purposes. They are not
transmitted when the message is delivered. Here is a typical set of headers:

111P Received: by hobbit.fict.example with local (Exim 4.00)
id 14y9EI-00026G-00; Fri, 11 May 2001 10:28:59 +0100

049 Message-Id: <E14y9EI-00026G-00@hobbit.fict.example>
038* X-rewrote-sender: bb@hobbit.fict.example
042* From: Bilbo Baggins <bb@hobbit.fict.example>
049F From: Bilbo Baggins <B.Baggins@hobbit.fict.example>
099* To: alice@wonderland.fict.example, rdo@foundation,
darcy@austen.fict.example, editor@thesaurus.ref.example
109T To: alice@wonderland.fict.example, rdo@foundation.fict.example,
darcy@austen.fict.example, editor@thesaurus.ref.example
038 Date: Fri, 11 May 2001 10:28:59 +0100

The asterisked headers indicate that the envelope sender, From: header, and To: header have been
rewritten, the last one because routing expanded the unqualified domain foundation.

Exim 4.10 [274] spool file format (48)

49. Adding new drivers or lookup types

The following actions have to be taken in order to add a new router, transport, authenticator, or lookup
type to Exim:

(1) Choose a name for the driver or lookup type that does not conflict with any existing name; I will
use ‘newdriver’ in what follows.

(2) Add to src/EDITME the line

<type>_NEWDRIVER=yes

where <type> is ROUTER, TRANSPORT, AUTH, or LOOKUP. If the code is not to be included in the
binary by default, comment this line out. You should also add any relevant comments about the
driver or lookup type.

(3) Add to src/config.h.defaults the line

#define <type>_NEWDRIVER

(4) Edit src/drtables.c, adding conditional code to pull in the private header and create a table entry
as is done for all the other drivers and lookup types.

(5) Edit Makefile in the appropriate sub-directory (src/routers, src/transports, src/auths, or
 src/lookups); add a line for the new driver or lookup type and add it to the definition of OBJ.

(6) Create newdriver.h and newdriver.c in the appropriate sub-directory of src.

(7) Edit scripts/MakeLinks and add commands to link the .h and .c files as for other drivers and
 lookups.

Then all you need to do is write the code! A good way to start is to make a proforma by copying an
existing module of the same type, globally changing all occurrences of the name, and cutting out most
of the code. Note that any options you create must be listed in alphabetical order, because the tables
are searched using a binary chop procedure.

There is a README file in each of the sub-directories of src describing the interface that is expected.

Exim 4.10 [275] adding drivers (49)

 Index

*@ 57
@[] in a domain list 66
@ in a domain list 65
@[] in a host list 68
@ in a host list 67
@mx_any 66
@mx_primary 66
@mx_secondary 66
/dev/null 143

8-bit characters 25, 94, 107

8BITMIME 94

abandoning mail 33, 143
accept router 128
accept_8bitmime 94
ACL:

condition processing 210
conditions, definition of 211
description 207
format 209
indirect 211
modifier processing 210
modifiers, definition of 210
nested 211
options for specifying 207
relay control 216
setting up for SMTP commands 94
specifying 208
unset 207
verbs, definition of 209
verifying header syntax 214
verifying HELO/EHLO 214
verifying host reverse lookup 215
verifying recipient 214
verifying sender 214, 215

acl_smtp_auth 94
acl_smtp_data 94
acl_smtp_etrn 94
acl_smtp_expn 94
acl_smtp_rcpt 94
acl_smtp_vrfy 94
adding drivers 275
additional groups 122, 153
address:

constructed 243
copying routing 130, 135
duplicated 144
qualification 241
rewriting 185, 244
sender 31
source-routed 106

testing 29, 120
verification 29

address list:
case forcing 72
empty item 70
in a rewriting pattern 187
patterns 70

address rewriting 9
address_data 119
admin user 32, 33, 94, 263, 270
admin user, definition of 24
admin_groups 94
alias file:

backslash in 142
broken 149
building 24, 26
exception to default 144
in a redirect router 141
one-time expansion 148
ownership 148
per-domain default 57

alias for host 69
allow_commands 174
allow_defer 145
allow_domain_literals 95
allow_fail 145
allow_fifo 158
allow_filter 145
allow_freeze 145
allow_localhost 179
allow_mx_to_ip 95
allow_symlink 158
alternate configuration file 30
‘and’ expansion condition 83
angle brackets, excess 115
appendfile transport 158
appending to a file 164
architecture type 19
asterisk after IP address 235
Athena 7
AUTH:

ACL for 94
advertising 95
advertising when encrypted 95

 argument 90
configuration 40, 53
how it works 194
in plaintext authenticator 198
logging 249
on bounce message 96
on MAIL command 84, 197
testing 196
with PAM 82

 [277]

auth_advertise_hosts 95
authentication: 35, 182, 194

ACL checking 211
advertising 95
bounce message 96
client 197
generic options 195
id 84
logging 249
sender 35, 84, 197
server 196
testing 196

authenticator name 35
auto_thaw 10, 95
autoreply transport 115, 168

background delivery 34
backlog of connections 112
backslash in alias file 142
bang paths: 3

rewriting 189
banner for SMTP 112
base36 8
base62 8, 78, 104, 159
batch_id 156, 158, 171, 174
batch_max 156, 158, 171, 174
batched local delivery 156
batched SMTP input 28, 240
batched SMTP output 137, 239
Bcc: header 38, 242
bcc option 168
Berkeley DB: 17

file format 55
bi_command 95
BIN_DIRECTORY 21
bind IP address 103, 182
black hole 143
black list (DNS) 84, 211, 252
body of message:

definition of 4
expansion variable 87
line count 84
size 87
transporting 152
visible size 105

body_only 152
bounce message: 15

copy to other address 98
customizing 95, 226
definition of 4
discarding 102
failure to deliver 15
generating 31
including original 96
sender authentication 96
size limit 111

bounce_message_file 95
bounce_message_text 96
bounce_return_message 96
bounce_sender_authentication 96
broken alias or forward files 149
bug reports 2
build directory 18
building DBM files 259
building Exim 16

C header files 20
caching lookup data 58
callout timeout 215
callout verification 215
carriage return 31, 98, 164, 176, 234, 237
case forcing in address lists 72
case forcing in strings 78, 80
case of local parts 12, 72, 119, 244
+caseful 72
caseful_local_part 119
cc compiler 19
Cc: header 38
cc option 168
cdb 6, 20, 55
certificate: 206

verifying 204, 214
character code 107
check_ancestor 145
check_group 145, 158
check_local_user 119
check_log_inodes 96
check_log_space 96
check_owner 146, 159
check_secondary_mx 129
check_spool_inodes 96
check_spool_space 96
check_string 159, 174
checking access 258
checking disc space 96, 112
CIDR notation 68, 79
cipher, logging 204, 205
client_domain 202
client_name 201
client_password 202
client_secret 201
client_send 200
client_username 202
command line options 24
command option 139, 171, 174
command_group 139
command_timeout 179
command_user 139
common option syntax 42
compiler name 19
condition option 119
configuration:

 [278]

default 46
main 94
pre-building 17
retry 190
run time 30, 40

configuration file:
alternate 40
common option syntax 42
editing 20
errors 40
format 40
including other files 41
macros 41
ownership 40

configuration options 27
CONFIGURE_FILE 21, 30, 40
connect_timeout 179
connection backlog 112
connection_max_messages 180
constructed address 243
control of incoming mail 207
copy of bounce message 98
copy of message (unseen option) 126
Courier 55
CR 31, 98, 164, 176, 234, 237
cram_md5 authenticator 201
create_directory 159
create_file 159
creating directories 158
current directory 151
current_directory 139, 152
customizing:

ACL condition 211
ACL failure message 49
batching condition 156
bounce message 95, 226
failure message 144
input scan using C function 218
pre-condition 13
Received: header 108
SMTP banner 112
warning message 118, 227

cycling logs 247, 256
Cygwin 8
Cyrus 6, 83, 175, 177

daemon 25, 103, 237
daemon, process id 25, 27
daemon_smtp_port 97
Darwin 8
DATA:

ACL for 94
data option 146
data_timeout 180
database:

lookup 55

maintenance 260
Date: header 242
DBM:

building dbm files 259
libraries 16, 20
lookup 55

debug_print 120, 152
debugging 30
default configuration 46
defaults for lookups 57
+defer_unknown 212
deferred delivery, forcing 144
delay_after_cutoff 180, 193
delay_warning 97
delay_warning_condition 85, 97
delayed delivery, logging 252
deliver_drop_privilege 97
deliver_queue_load_max 97
delivery:

by external agent 177
cancelling all 33
cancelling by address 33
deferral 14
failure 146, 147
failure, logging 250
failure, long-term 193
failure report see bounce message
fake 250
first 82
forcing 32
forcing deferral 144
forcing failure 144, 266
from given sender 38
in detail 13
maximum number of 110
permanent failure 15
problems with 22
procmail 177
retry mechanism 14
sorting remote 110
temporary failure 15
to given domain 38
to single file 166

delivery_date_add 152
delivery_date_remove 97, 242
Delivery-date: header 97, 152, 242
dialup see intermittently connected hosts
directories, multiple 114
directory creation 158, 159, 165, 166
directory option 159
directory_file 159
directory_mode 159
directory_transport 146
disc space, checking 96, 112
discarded messages 249
discarding bounce message 102

 [279]

DNS:
as a lookup type 56, 58
reverse lookup 90, 101

DNS list:
in ACL 211
logging defer 252

DNS reverse lookup 272
dns_again_means_nonexist 97
dns_check_names_pattern 98
dns_ipv4_lookup 98
dns_qualify_single 180
dns_retrans 98
dns_retry 98
dns_search_parents 180
dnsdb 58
dnslookup router 129
domain:

ACL checking 213
definition of 4
delivery to 38
extraction 78
in redirection, preserving 148
virtual 230

domain list patterns 65
domain literal 95, 131
domainless addresses 3
domains option 120
dot handling 35, 115
dots in local parts 244
driver configuration format 44
driver option 120, 152, 195
drivers, definition of 10
drop_cr 98
dsearch lookup 56
duplicate addresses 144

EACCES 147
editing configuration files 20
EHLO 100, 181, 234, 248
EHLO, underscores in 100
EHLO, verifying 100, 101, 214
encrypted comparison 81
encryption:

checking in an ACL 213
including support for 18
on SMTP connection 116, 203

ENOTDIR 147
envelope, definition of 4
envelope sender 24, 26, 31, 102, 117, 120, 154,

164, 176, 225, 236, 241
envelope sender, rewriting 185
envelope_to_add 152
envelope_to_remove 98, 242
Envelope-to: header 98, 152, 156, 242
environment for local transports 151
environment for pipe transport 173, 174

environment option 174
error messages: 31

copying 98
error reporting 34, 35
errors:

in configuration file 40
in outgoing SMTP 235
skipping bad syntax 149

errors_copy 98
errors_reply_to 99
errors_to 120, 228
escape_string 160, 174
ETRN:

ACL for 94
 argument 90

command to be run 113
ETRN:

logging 252
ETRN:

processing 238
serializing 113
value of $domain 85

+exclude_unknown 212
exec failure 174
exicyclog 247, 256
exigrep 256
Exim arguments, logging 252
exim monitor 263
exim_dbmbuild 259
exim_dumpdb 260
exim_fixdb 260
exim_group 99
EXIM_GROUP 40
exim_lock 261
exim_monitor/EDITME 17, 263
exim_path 99
exim_tidydb 260
exim_user 99
EXIM_USER 40
eximon 263
eximstats 256
eximstats options 257
exinext 259
exiqsumm 255
expansion:

character translation 77
combining conditions 83
conditions 75, 80
escape sequences 73
file lookup 75
headers 75
including literal text 73
inserting an entire file 76
non-expandable substrings 73
numeric comparison 80
of lists 63

 [280]

of strings 73
operators 74, 77
query lookup 75
running a command 77
string comparison 81
substitution 77
testing 25, 73
variables 74, 84

EXPN:
ACL for 94

 argument 90
processing 238
router skipping 120
with verify_only 126

expn option 120
external local delivery 177
external transports 3
extract_addresses_remove_arguments 99
EXTRALIBS 20

fail:
in system filter 224
log line, reducing 224

fail_verify 120
fail_verify_recipient 120
fail_verify_sender 120
failing delivery, forcing 144
failover see fallback
failure of exec 174
fallback 120, 180
fallback_hosts 120, 180
fallover see fallback
fifo (named pipe) 158
file:

appending 164
checking existing format 160
inserting into expansion 76
locking 161, 165, 166
lookup 55, 75
MBX format 161
too many open 104
transport 115

file option 146, 160, 168
file_expand 169
file_format 160
file_must_exist 160
file_optional 169
file_transport 146
filter:

system filter 115, 223
testing 26
transport filter 85, 88, 155, 173, 183, 234

filtering all mail 223
final_timeout 181
finduser_retries 99
first delivery 82

fixed point format 43
forbid_blackhole 146
forbid_file 146
forbid_filter_existstest 146
forbid_filter_logwrite 147
forbid_filter_lookup 147
forbid_filter_perl 147
forbid_filter_readfile 147
forbid_filter_reply 147
forbid_filter_run 147
forbid_include 147
forbid_pipe 147
forcing delivery 32
foreground delivery 34
format:

configuration file 40
fixed point 43
group name 44
integer 42
list 44
message 27
octal integer 43
spool files 272
string 43
time interval 43
user name 44

forward file:
broken 149
one-time expansion 148
ownership 148
testing 26

freeze:
in system filter 224

freeze message 224
freeze_exec_fail 174
freeze_tell 100
freezing messages 33, 100
‘From’ 24, 26, 27, 31, 102, 118, 159, 162, 166,

175, 241
From: header 24, 102, 242
from option 169
frozen messages: 28, 33, 223

display 265
forcing delivery 32, 37, 38
logging skipping 253
moving 105
spool data 272
thawing 10, 33, 266
timing out 116

gcc 19
gecos_name 100
gecos_pattern 100
generic options: 44

router 119
transport 152

 [281]

gethostbyname option 181
gid:
 queryprogram 139

caller 84
 Exim’s own 99

in spool file 272
local delivery 121
of originating user 88
system filter 115, 223

giving up on messages 33
group name format 44
group option 121, 152
groups, additional 122, 153

hash function:
numeric 79
textual 78

header, definition of 4
header files 20
header lines:

adding 121, 152, 243
listing 33
removing 121, 153, 243
transporting 153
verifying sender in 214
verifying syntax 214

$header_ 75
headers option 169
headers_add 121, 152
headers_only 153
headers_remove 121, 153
headers_rewrite 153
HELO 100, 181, 234, 248
HELO, underscores in 100
HELO, verifying 100, 101, 214
helo_accept_junk_hosts 100
helo_allow_chars 100
helo_data 181
helo_lookup_domains 100
helo_try_verify_hosts 100
helo_verify_hosts 101
hide_child_in_errmsg 147
hold_domains 101
HOME 173
home directory 151
home_directory 153
HOST 173
host:

ACL checking 213
alias 69
error 235
locally unique number 104
lookup failures 69
maximum number to try 181
name 65, 101
randomized list 134, 182

serialising connections 183
verifying reverse lookup 215

host list patterns 67
host_find_failed 134
host_lookup 101
host_reject_connection 101
hosts option 132, 181
hosts_avoid_tls 181
hosts_max_try 181
hosts_nopass_tls 181
hosts_override 181
hosts_randomize 134, 182
hosts_require_auth 182
hosts_require_tls 182
hosts_treat_as_local 66, 102, 124
hosts_try_auth 182
HP-UX 100
hub 137

id of message 8
ident see RFC 1413
ignore_bounce_errors_after 102
ignore_eacces 147
ignore_enotdir 147
ignore_fromline_hosts 102
ignore_fromline_local 102
ignore_status 175
ignore_target_hosts 121
ignoring faulty addresses 149
include_directory 147
+include_unknown 69, 212
included address list 143
inclusions in configuration file 41
incoming SMTP over TCP/IP 237
incorporated code 6
inetd 29, 111, 237
initgroups option 122, 153
initgroups option 151
installing Exim 21
integer format 42, 43
interface:

address 35
logging 253
network 103

interface option 182
intermittently connected hosts 232
IP address: 103

binding 103, 182
discarding 121
masking 69, 79
translating 125

IP source routing 270
ipliteral router 131
iplookup router 132
IPv6:

addresses in lists 44

 [282]

DNS lookup 98
including support for 18

journal file 10

keep_malformed 102
keepalive:

on incoming connection 111
on outgoing connection 182

keepalive option 182

LDAP: 19, 56, 59
authentication 60
data formats 60
query format 59
use for authentication 82
with TLS 59

ldap_default_servers 102
length of login name 105
LF 31, 164, 176, 234, 237
limit:

bounce message size 111
incoming SMTP connections 111
message size 105
message size per transport 153
number of hosts tried 181
number of MX tried 181
number of recipients 109
rate of message arrival 113
retry interval 191
user name length 105

limitations of Exim 3
linear search 56
linefeed 31, 164, 176, 234, 237
link, symbolic 16, 18, 23, 24, 158, 165
list:

address list 70
construction 44
domain list 65
expansion of 63
file name in 63
host list 67
local part list 72
named 64
negation 63

 separator, changing 44
listing:

message body 33
message headers 33
message log 33
the queue 27

LMTP:
over a pipe 171
over TCP/IP 183, 234

lmtp transport 171
load average 97, 108, 113

local delivery 177
local delivery, definition of 4
local host:

domains treated as 102
MX pointing to 124, 129
sending to 125, 179

local message reception 27
local part:

ACL checking 214
case of 244
definition of 4
dots in 244
prefix 231
starting with ! 71, 72

 suffix 231
local scan function 218
local scan function timeout 104
local SMTP input 29
local transports:

environment 151
uid and gid 121, 122, 126, 151

local user 119
local_from_check 102
local_from_prefix 103
local_from_suffix 103
local_interfaces 103
local_part_prefix 122
local_part_prefix_optional 122
local_part_suffix 122
local_part_suffix_optional 122
local_parts 122
local_scan_timeout 104
local_sender_retain 104
Local/eximon.conf 17, 21, 263
Local/Makefile 17, 19
localhost_number 8, 104
lock files 22, 160
lock_fcntl_timeout 160
lock_interval 161
lock_retries 161
lockfile_mode 161
lockfile_timeout 161
locking files 160, 161, 165, 166
locking mailboxes 261
log:

connection rejections 252
cycling 256
delayed delivery 252
destination 246
distinguished name 204, 205
dnslist defer 252
dropped connection 253
ETRN commands 252
Exim arguments 252
frozen skipped 253
full parentage 252

 [283]

incoming interface 253
incoming port 253
message 10, 254
message, disabling 105
message size on delivery 252
queue run 253
recipients 253
retry defer 253
rewriting 252
selection option 104
sender on delivery 253
sender reception 253
size rejection 253
smtp confirmation 253
SMTP connections 253
SMTP protocol error 253
SMTP syntax error 253
subject 253
tail 264
TLS cipher 204, 205, 253
TLS peer DN 253
to file 246
to syslog 246
types 246
unknown SMTP command 253

log cycling 247
log extraction 256
log line from fail command 224
log option 169
log_as_local 123
log_defer_output 175
log_fail_output 175
log_file_path 104
log_output 175
log_selector 104
lookup: 55

* 57
*@ 57
caching 58
cdb 55
dbm 55
dbm, terminating zero 55
dbmnz 55
default values 57
DNS 56
dnsdb 58
dsearch 56
inclusion in binary 19
LDAP 56, 59
lsearch 56
MySQL 56, 62
NIS 56
NIS+ 56, 61
Oracle 56, 62
partial matching 57
PostgreSQL 56

quoting 58
single key 55
temporary error 57
whoson 56
wildcard 57

lookup, in expanded string 75
lookup_open_max 104
loop:

caused by fail 224
in lookups 71
local host 103, 179
prevention 109
routing 14, 142
while file testing 165

lower casing 78, 259

macro setting 30
macros in configuration file 41
MAIL:

rewriting argument of 188
mail hub 137
mail loop prevention 109
mailbox:

maintenance 261
MMDF format 159
multiple 122, 231
size warning 163
symbolic link 158, 165

maildir format 166
maildir_format 161
maildir_retries 161
maildir_tag 161
mailing lists: 228

closed 229
one-time expansion 148
re-expansion 229

mailq 24
mailstore format 166
mailstore_format 161
mailstore_prefix 161
mailstore_suffix 161
main configuration 94
main log 246
maintaining Exim’s database 260
make 18
manualroute router 134
masked IP address 69, 79
max_output 175
max_rcpt 182
max_username_length 105
maximum see limit
mbx_format 161
MD5 hash 79, 81
message:

adding recipients 32
age of 87

 [284]

 body, visible size 105
body in expansion 87
body line count 84
body size 87
changing sender 33
controlling incoming 207
discarded 249
error 235
forced failure 224
format 27
freezing 224

 header, definition of 4
id 8, 104
listing body of 33
log 10, 254
log, disabling 105
log listing 33
processing 241
queueing 107, 108, 112
reception 9
size 87
transporting body only 152
transporting headers only 153

message size 28, 183
message size limit 105
message_body_visible 105
message_id_header_text 105, 243
message_logs 105
message_prefix 162, 175
message_size_limit 105, 153
message_suffix 162, 175
Message-id: header 243
mixed-case login names 244
MMDF format mailbox 159
mode option 162, 169
mode_fail_narrower 162
modemask option 148
monitor 7, 263
monitor window size 264
more option 123, 125, 134
move_frozen_messages 105
msglog directory 254
multi_domain 182
multiple mailboxes 122, 231
multiple SMTP deliveries 32, 34, 36, 37, 179, 181,

205, 233
multiple spool directories 114
MX record:

maximum tried 181
pointing to IP address 95
pointing to local host 124, 129

mx_domains 129
MySQL 56, 62
mysql_servers 105

name of sender 31

named lists 64
named pipe (fifo) 158
negation 63
network interface 103
never_users 106
new drivers, adding 275
newaliases 24
NFS: 124, 146

lock file 160, 164, 165
NIS 19, 56
NIS+ 19, 56, 61
non-immediate delivery 34
notify_comsat 162
number of deliveries 110
numeric comparison 80

once option 169
once_file_size 169
once_repeat 169
one_time 148
one-time aliasing/forwarding expansion 148
open files, too many 104
OpenSSL 203
operating system type 19
optional option 132
options:

appendfile 158
command line 24
command line, terminating 25
configuration 27
dnslookup 129
generic 44
generic router 119
generic transport 152
iplookup 132
manualroute 134
pipe 174
queryprogram 139
redirect 145
router 27
smtp 179
transport 27

‘or ’ expansion condition 83
Oracle 56, 62
oracle_servers 106
os.h 20
outgoing LMTP over TCP/IP 234
outgoing SMTP over TCP/IP 234
overriding build-time options 19
owners option 148
ownership:

alias file 148
configuration file 40
forward file 148

owngroups option 148

 [285]

packet radio 125
PAM 82
panic log 246
partial matching 57
pass_on_timeout 123
pass_router 123
path option 175
PCRE 6
pcretest 54
‘percent hack’ 106, 216
percent_hack_domains 106
periodic queue running 37
Perl:

calling from Exim 92
embedded 20, 36, 92
use in expanded string 76

perl_at_start 92, 106
perl_startup 92, 106
pgsql_servers 106
pid, of current process 88
pid, of daemon 25, 27, 36
pid_file_path 106
pipe:

control of commands 172, 174
duplicated 144
environment 173, 174
failure of exec 174
in redirection list 143
logging output 175
named (fifo) 158
path 172
returned data 172
temporary failure 176

pipe transport 115, 151, 156, 172
pipe_as_creator 176
pipe_transport 148
plaintext authenticator 198
policy control:

access control lists 207
address verification 215
by local scan function 218
checking 26
checking access 258
overview 8
relay control 216

port:
iplookup router 132
for daemon 96
logging 253
receiving TCP/IP 36
sending TCP/IP 183

port option 132, 183
PostgreSQL 56, 62
pre-building configuration 17
preserve_message_logs 106, 254
preserving domain in redirection 148

primary host name 65
primary_hostname 65, 107
print_topbitchars 107
printing characters 107
private options 44
privilege, running without 269
privileged user 270
process, querying 255
procmail 177
prod_requires_admin 107
protocol 35
protocol option 132, 183
public_name 195
pwcheck daemon 6, 83

qualify_domain 107, 241
qualify_preserve_domain 148
qualify_recipient 107, 241
qualify_single 129
query option 132
queryprogram router 139
queue:

definition of 4
delivering specific messages 37
display 265
double scanning 37
forcing 37
initial delivery 37
listing 27
routing 37
running 25, 36, 37, 38
running, abandoning 97
running, detecting 83
summary 255

queue run:
logging 253

queue_domains 107
queue_list_requires_admin 107
queue_only 107
queue_only_file 108
queue_only_load 108
queue_run_in_order 108
queue_run_max 108
queue_smtp_domains 108
queue-runner 5, 14, 24, 38
queue-runners, maximum number of 108
queueing incoming messages 107, 108, 112
quota:

imposed by Exim 162
warning threshold 163

quota option 162
quota_filecount 163
quota_is_inclusive 163
quota_size_regex 163
quota_warn_message 163
quota_warn_threshold 163

 [286]

quoting:
in lookups 58
in pipe command 172
in string expansions 79
lookup-specific 79
regular expressions 80

Radius 83
randomized host list 134, 182
RBL see DNS list
RCPT:

ACL for 48, 94
maximum number of incoming 109
maximum number of outgoing 182
rate limiting 113
rewriting argument of 188
value of $message_size 87

receive_timeout 108
Received: header 243
received_header_text 109
received_headers_max 109
receiving mail 9
recipient:

ACL checking 214
adding 32
adding in local scan 219
error 236
extracting from header lines 38
maximum number 109
removing 33
removing in local scan 219
verifying 214

recipient_unqualified_hosts 109
recipients_max 109
recipients_max_reject 109
redirect router 141
redirect_router 123
redirection:

repeated expansion 144
to pipe 143
while verifying 216

redirection errors 145
redirection files:

broken 149
redirection list 142
regular expressions:

in domain list 66
library 6, 54
quoting 80
testing 54

reject log 246
relaying:

control by ACL 216
testing configuration 26

remote delivery, definition of 4
remote_max_parallel 110

remote_sort_domains 110
removing messages 33
removing recipients 33
repeat_use 148
repeated redirection expansion 144
replacing another MTA 23
reply_to 169
reply_transport 148
reporting bugs 2
require_files 123
reroute option 132
response_pattern 133
restrict_to_path 176
retry:

algorithms 191
configuration 190
configuration testing 28
interval, maximum 191
rules 190
time not reached 190, 251
times 259

retry mechanism 14
retry_data_expire 110, 192
retry_include_ip_address 183
retry_interval_max 110, 191
retry_use_local_part 124, 154
return code 27, 28, 29, 34, 35, 40, 77, 89
return path, definition of 4
return path see also envelope sender
return_fail_output 176
return_message 169
return_output 176
return_path 154
return_path_add 154
return_path_remove 110, 243
return_size_limit 111
Return-path: header 110, 154, 243
reverse DNS lookup 90, 101, 272
rewrite option 149
rewrite_headers 129
rewriting:

addresses 9, 185, 244
at transport time 153
bang paths 189
flags 188
headers 129
logging 252
patterns 187
replacements 187
rules 186
testing 28, 186
whole addresses 189

RFC 1413 26, 111
rfc1413_hosts 111
rfc1413_query_timeout 111
rmail 24

 [287]

root privilege 268
route_data 135
route_list 135
router:

data attached to address 119
definition of 10
pre-conditions 13
running details 12

routers:
accept 128
dnslookup 129
ipliteral 131
iplookup 132
manualroute 134
queryprogram 139
redirect 141

routing loop 14, 142
routing timeout 123
routing whole queue 37
rsmtp 24
run time configuration 30, 40
runq 24

same_domain_copy_routing 130, 135
search_parents 130, 180
security 268
self option 123, 124
sender:

ACL checking 214
address 31, 241
authenticated 84
changing 33
definition of 4
gid 88
host address 35
host name 35
ident string 36
name 31
setting by untrusted user 117
source of 29
uid 88
verifying 215
verifying in header 214

Sender: header 24, 102, 104, 243
sender_unqualified_hosts 111
senders option 125
serialising connections 183
serialize_hosts 183
server_condition 198
server_debug_print 195
server_mail_auth_condition 195
server_prompts 198
server_secret 201
server_set_id 195
setuid 21, 268
shadow transport 154

shadow_condition 154
shadow_transport 154
SIGHUP 25
SIGUSR1 255
SIZE 234
size:

of bounce, limit 111
of mailbox 163
of message 28, 87, 183, 249, 252
of message, limit 105, 153
of monitor window 264

size_addition 183
skip_syntax_errors 149
skipping faulty addresses 149
smart host 136
SMTP:

authentication: configuration 194
batched incoming 28, 240
batched outgoing 137, 239
batching over TCP/IP 235
callout verification 215
delaying delivery 34
encrypted connection 116
encryption 203
errors in outgoing 235
incoming call count 112
incoming connection count 111
incoming message count 111
incoming over TCP/IP 237
local incoming 239
local input 29
logging confirmation 253
logging connections 253
logging protocol error 253
logging syntax error 253
multiple deliveries 32, 34, 36, 37, 179, 233
outgoing over TCP/IP 234
passed channel 36, 37, 179, 233
passed connection 235
passing channel 32, 34
rate limiting 113
rewriting malformed addresses 188
SIZE 155, 183
synchronization checking 113
syntax error, logging 253
testing incoming 26
timeout, input 36, 114
timeout, output 179
unknown command, logging 253
welcome banner 112

SMTP listener 25
smtp transport 179
smtp_accept_keepalive 111
smtp_accept_max 111
smtp_accept_max_per_connection 111
smtp_accept_max_per_host 111

 [288]

smtp_accept_queue 112
smtp_accept_queue_per_connection 112
smtp_accept_reserve 112
smtp_banner 112
smtp_check_spool_space 112
smtp_connect_backlog 112
smtp_enforce_sync 113
smtp_etrn_command 85, 113, 239
smtp_etrn_serialize 113
smtp_load_reserve 113
smtp_ratelimit_hosts 113
smtp_ratelimit_mail 114
smtp_ratelimit_rcpt 114
smtp_receive_timeout 114
smtp_reserve_hosts 114
sorting remote deliveries 110
source routing:

in email address 106
in IP packets 270

spa authenticator 202
split spool directories 114
split_spool_directory 114
spool directory:

checking space 96, 112
creating 22
definition of 5
file locked 251
files 9, 271
format of files 272
splitting 114

spool_directory 114
sprintf 271
src/EDITME 17
SSL see TLS
statistics 256
statvfs function 264
‘sticky’ bit 22, 160
string:

case forcing 78, 80
comparison 81
expansion see expansion
format 43
hashing 79

strip_excess_angle_brackets 115
strip_trailing_dot 115
stripchart 263
subject, logging 253
subject option 170
substr 80
substring extraction 80
SUPPORT_TLS 18
symbolic link 16, 18, 23, 24, 158, 165
syntax of common options 42
syntax_errors_text 150
syntax_errors_to 150
syslog 246

syslog_timestamp 115
system filter 223
system filter, testing 26
system log 246
system_filter 115
system_filter_directory_transport 115
system_filter_file_transport 115
system_filter_group 115
system_filter_pipe_transport 115
system_filter_reply_transport 115
system_filter_user 115

tail of log 264
TCP/IP incoming port 36
TCP/IP outgoing port 183
tcpwrappers 18
tdb 17
temp_errors 176
terminology definitions 4
testing: 22

addresses 29, 120
filter file 26
forward file 26
incoming SMTP 26
regular expressions 54
relay control 26
retry configuration 28
rewriting 28, 186
string expansion 73
string expansions 25
system filter 26
variables in drivers 120, 152

text option 170
thawing messages 33, 95, 266
time interval format 43
time zone 116
timeout:

blocking 160
frozen messages 116
local scan function 104
non-blocking 160
non-SMTP input 36, 108
of router 123
retry data 192
SMTP input 36, 114
SMTP outgoing 179

timeout option 133, 139, 171, 176
timeout_frozen_after 10, 116
timezone option 116
TLS: 116, 183

automatic start 39
avoiding for certain hosts 181
certificate verification 214
including support for 18
logging cipher 253
logging peer DN 253

 [289]

multiple message deliveries 181, 205
on SMTP connection 203
passing connection 181
requiring for certain servers 182
use without STARTTLS 39

tls_advertise_hosts 116
tls_certificate 116, 183
tls_dhparam 116
tls_privatekey 116, 184
tls_require_ciphers 184
tls_tempfail_tryclear 184
tls_try_verify_hosts 116
tls_verify_certificates 116, 184
tls_verify_hosts 116
tmail 175
To: header 38
to option 170
too many open files 104
top bit see 8-bit characters
trailing dot 115
trailing period 115
translate_ip_address 125
transport:

appendfile 158
autoreply 168
body only 152
definition of 10
external 3
filter 85, 88, 155, 173, 183, 234
header rewriting 153
headers only 153
lmtp 171
local 121, 122, 126, 151
pipe 172
shadow 154
smtp 179

transport option 126
transport_current_directory 126
transport_filter 155
transport_home_directory 126
trusted user 31, 35, 36, 117, 270
trusted user, definition of 24
trusted_groups 117
trusted_users 117

uid:
caller 84

 Exim’s own 99
for queryprogram 139
in spool file 272
local delivery 126, 155, 176
of originating user 88
system filter 115, 223
unknown caller 117

umask option 176
underscore in EHLO/HELO 100

unfreezing messages 33, 95, 266
unknown host name 69
unknown_login 117
unknown_username 117
unprivileged running 269
unqualified addresses 109, 111, 241
unseen option 126
untrusted user, setting sender 117
untrusted_set_sender 117
upgrading Exim 23
upper casing 80
use_bsmtp 164, 176
use_crlf 164, 176
USE_DB 17, 259
use_fcntl_lock 164
use_lockfile 164
use_mbx_lock 164
use_shell 177
USE_TCP_WRAPPERS 18
user:

admin, definition of 24
trusted, definition of 24
untrusted setting sender 117

user name:
format 44
maximum length 105

user option 126, 155
utilities 255
UUCP 31, 138, 241
UUCP, ‘From’ line 27, 102, 118, 241
uucp_from_pattern 118, 241
uucp_from_sender 118, 241

vacation processing 231
$value 76, 90, 136
Variable Envelope Return Paths 236
verify option 126
verify_only 126
verify_recipient 127
verify_sender 127
verifying:

address, options for 215
address by callout 215
addresses 29
EHLO 214
header syntax 214
HELO 214
recipient 214
redirection 216
sender 215
sender in header 214

VERP 236
version number 29
virtual domains 230
VRFY:

ACL for 94

 [290]

 argument 90
processing 238

warn_message_file 118
warning message:

customizing 227
warning of delay 97
warning of delay, customizing 118
web site 2
welcome banner for SMTP 112
whoson 56
widen_domains 130
wildcard lookups 57
window size 264

X-Failed-Recipients: header 15
X-windows 7, 263
X11 libraries 20

[291]

