
How To Image FreeBSD Systems Using tbku

This document describes how to use the TundraWare Inc. tbku utility to “image” or “clone” FreeBSD
systems.

Warning

What follows is a description of activities that can (and will) clobber the contents of a hard drive.
Never do any of this until you understand what’s going on fully. Obviously, you should have
backups of whatever machine you’re targeting so that if (when) you make a mistake, you can
recover your data. YOU HAVE BEEN WARNED! If you proceed, you do so at your own risk ...
and no, I will not come to your house and help you recover your hard drive.

Why Bother Imaging?

Suppose we need to build a new instance of a FreeBSD system. Perhaps we need to replace one that
just had a hard drive failure. Maybe we want to build a new server that is based on our “standard”
system configuration. In other words, we want to go from“bare metal” hardware to a fully running and

configured system as quickly as possible.
There are a number of commercial and open source solutions to this problem, but they all have

one thing in common: We want to minimize the amount of manual labor needed to install, configure,
and otherwise customize the final system. This is especially important in large data centers where
it is impractical to manually (re)install each and every server, its applications, and its customization
information.

“Imaging” or “Cloning” allows us to keep a copy of the entire OS as configured - that means with all
its applications and configuration options set up as desired. We then load or “Provision” a new hard
drive with this image and voila’, “instant” running system.

When Does Imaging NOT Make Sense?

Imaging works best when the system you are targeting is very similar or identical to the system that
made the image in the first place. For example, Imaging is a great way to restore a single machine from
its own backups - say after a hard disk crash or upgrade.

Imaging is more complex when the source of the image and the target machines are different. The
more different they are, the harder it will be to get the image running on the new target machine.

As a practical matter, production Data Centers tend to keep a separate restore image around for

each different system variant. So, for example, you might find a separate image for IBM web servers,
IBM applications servers, Dell database servers, Toshiba laptops, and so on.

Imaging may- or may not make sense when initially installing a new configuration. Say you have a
system that is a web server, but you now want to build a separate machine that is a database server.
Typically, you would initially install FreeBSD with the installation disk, configure the database and
then create a system image of your database server. However, this is kind of time consuming. It might
simpler to image the target machine with your web server image, boot it, reconfigure it as a database
server, and then take an image of your newly configured server for future installations.

1

What Is tbku?

tbku is a shell script that makes it easy to create tarballs of some of all of your filesystems. tbku does
not help you with restoring your image, it’s just handy for creating the image in the first place.

If you’ve never used it before, take a moment to download it and read the documentation. You’ll
find the latest copy at:

http://www.tundraware.com/Software/tbku

There is no fee for using tbku in any context, personal or commercial. However, there are some
licensing terms you have to abide by to use it, so take a moment to read the license in the distribution
tarball.

Note

You don’t have to use tbku to create your backup image. The description below should work
fine so long as you have a backup of all the relevant files that preserves all the appropriate file
information such as ownership and permissions. tbku just makes it easy to automate the creation
of such backups.

The Big Picture

Before diving into the details, it’s good to get a sense of the overall process. Imaging a system requires
the following steps:

A. Create the master image:

• Create a baseline system configured as you want it.

• Take an “image” of it. (That’s where tbku is helpful.)

• Save the image somewhere (DVD, USB drive, network drive ...) you can get
at when you need it to (re)install a system.

B. Use the master image to (re)provision a machine:

• Prepare the target hard disk to receive the image.

• Dump the image onto the hard disk.

• Adjust the configuration if/as needed for the new hardware.

Creating The Master Image

Unlike other approaches that make an image of the disk, tbku creates an image of files on the disk.
This means that your new target disk does not have to be physically the same as the one on which
the master image (sometimes called a “snapshot”) was made. You can clone systems back and forth
between SCSI, IDE, and SATA. You can clone from smaller disks to larger ones or go the other way.

Note

The whole point of imaging is to avoid having to do custom configuration for each new installation.
However, some configuration changes may be necessary when the target environment or hardware
is different than the system on which the master image was created. This is discussed a bit more
below in the Gotchas section.

Creating The Master Image

2

http://www.tundraware.com/Software/tbku

1. Select the machine whose existing FreeBSD installation you want pre-
served or used as a standard installation image.

2. Image that system with tbku using the following fileset:

/.cshrc

/.profile

/COPYRIGHT

/bin

/boot

/compat

/dist

/etc

/home

/lib

/libexec

/rescue

/root

/sbin

/sys

/usr

/var

/www

Notice that we do not backup the dynamic kernel-created filesystems like
/dev or /proc, nor do we backup utility mountpoints like /mnt or /tmp.
Also, if you have tbku writing your backup to the local disk, make sure
that directory is not included in the fileset. Doing so would create a
recursive backup wherein the backup would be copied to itself.
The exact fileset you use will vary somewhat depending on how you’ve
laid out your directory tree and just what you want included in your
image. Use the fileset above as a point of departure, and tune it for your
exact needs.

3. Save the resulting .tar.gz (tarball) file somewhere it can be retrieved
later when you want to image another machine. This can be a network
server, a USB drive, a DVD or whatever makes sense in your environment.
As with all backup systems, it’s pretty important to make multiple copies
of the backup image, and keep a couple of them off-site.

Provisioning With The Master Image

Now that we have a “snapshot” or master image, we can use it to (re)provision machines. The general
idea here is to take advantage of the tools already present on the FreeBSD installation CD. However,
instead of actually installing an operating system, we’ll just use the paritioning and disk labeling tools
to prepare the target disk to receive our FreeBSD image. Then, we’ll jump into the Fixit shell and
actually do the restore from there.

Provisioning Machines With A Master Image

1. Boot the FreeBSD installation disk.

2. Prepare the disk to receive a FreeBSD filesystem:

Custom

3

Partition

Select the target drive

Partition as desired

Select the partition that will boot

S - To make it bootable

Quit

Select the boot manager you want

Label

Layout your partition(s) as desired

The Automatic option is a good choice

WRITE DOWN THE DEVICE/MOUNT ASSIGNMENTS!

You’ll need them later

W -

Write the changes out (Answer "Yes" at the prompt)

Exit back to the main menu

At this point, your target disk has been partitioned, labeled, and had the
Master Boot Record installed. The copy of FreeBSD you booted from
CD is pretty smart about this. It has already mounted your mountpoints
(the ones you wrote down above, right?) under its own /mnt directory.
We’ll take advantage of this in the next step.

3. Now we’re ready to actually dump the image onto our newly prepared
disk. The FreeBSD team helpfully provides a fairly complete shell envi-
ronment where we can do what is needed. Simply select the Fixit option
from the main menu, and the CDROM/DVD suboption, and you’ll find your-
self in a shell. You can prove that your new disk mountpoints are ready
to be loaded, by doing this:

mount

You should see your newly created filesystems mounted under /mnt. Now,
we need to create the top level directories that are typically not backed
up in an image (some of these may already be present):

cd /mnt

mkdir cdrom dev dist proc tmp

At this point, we need the image tarball file to go ahead and do the image
restore. But ... we need to take a small detour here. You may need to do
a few things to be able to get to your image. The Fixit environment is
purposely fairly small (so it can run in a logical memory disk). As such,
it does not have a lot of the utilties, kernel modules, and/or libraries you
may need to get to your backup medium.
Say, for example, your image is on as USB drive. You plug the drive in
and take a look at /var/log/messages where you are informed that the
drive has been recognized as /dev/da1. So, you try this:

mount -t msdosfs /dev/da1s1 /mnt/mnt

4

Oops ... the Fixit shell complains - it doesn’t know how to mount filesys-
tems of type msdosfs because the necessary file /sbin/mount_msdosfs

file is not present in the Fixit operating environment.
Fortunately, there’s a very simple way to work around this. The CD from
which you booted is itself mounted under /dist. That CD has a more-
or-less full “live” FreeBSD system on it, that does have the files you need
there. In this case, the “fix” is to do something like this:

mkdir -

p /sbin # Make sure the directory exists in Fixit

cp -pv /dist/sbin/mount_msdosfs /sbin

Now the mount command above will work fine, and you can get to your
backup tarball.
You can use a similar approach to get the necessary files for accessing your
image via sftp, nfs, and other filesystem types. Just remember that, if
you do need to use a network, you need to initialize it first with something
like:

ifconfig <NIC device name> address mask

OK, so now we’ve mounted the medium with our image on it under
/mnt/mnt. To actually image the new disk, all we have to do is this:

cd /mnt # Make sure we’re at the

logical root of our disk

tar -xzvf mnt/my-fine-image.tar.gz

4. Finally, we need to make sure that our newly imaged filesystems will be
mounted properly at boot time. This is controlled by the contents of:
/mnt/etc/fstab Suppose, after we image the drive, that file looks like
this:

/dev/ad4s1b none swap sw 0 0

/dev/ad4s1a / ufs rw 1 1

/dev/ad4s1d /var ufs rw 2 2

/dev/ad4s1e /usr ufs rw 2 2

/dev/acd0 /cdrom cd9660 ro,noauto 0 0

This would indicate the image was taken from a system with FreeBSD
installed on the first SATA drive. Now, lets assume we’re going to use
the same slice layout, but our newly imaged drive is the first SCSI drive
on the system. /mnt/etc/fstab needs to be edited to look like this:

/dev/da0s1b none swap sw 0 0

/dev/da0s1a / ufs rw 1 1

/dev/da0s1d /var ufs rw 2 2

/dev/da0s1e /usr ufs rw 2 2

/dev/acd0 /cdrom cd9660 ro,noauto 0 0

It may also be necessary to edit the /mnt/etc/rc.conf file to adjust IP
address assignments or other system configuration parameters.

We’re DONE! Well ... maybe. If the environment or hardware of your target machine is similar/same
as the machine from which you took the original image OR if the kernel you plan to boot has support
for your new target hardware, you should just be able to boot and run at this point. If not, read the
following Gotchas section for further explanation.

This may all seem complex the first time you do it, but after a couple of times, you’ll be able to do
this in your sleep. This is one of those things where describing it is more complicated than just doing
it!

5

Depending on how large your backup image is, a complete system restore can typically be done in
less than an hour. That’s less than an hour to a completely configured system with all your applications,
custom configuration, and so on as you last left them.

Gotchas

If you use the approach described above to reprovision the same machine - say after a disk failure or
disk upgrade - then that’s all you have to do. Your “target” machine is essentially identical to the one
from which you got the backup image ... the same machine.

However, there are circumstances where you cannot avoid doing some configuration on the newly
provisioned machine. This is the case where there is a significant difference between the machine that
took the snapshot and the machine receiving it. This might be because the target machine has different
hardware, needs a different IP address, uses a different chipset, and so on.

What Problems Can I Expect?

So, you’ve decided to image a machine that is somehow different than the original source of the image.
Here’s what you’ll possibly encounter:

A. Environmental Differences

Your newly imaged machine may work fine except that its environment needs to change. The
most common thing here is the need to reconfigure the NIC with new network parameters
like IP address, netmask, DNS server, default route, and so on. Similarly, you may want to
change the machine name or domain name. This is why you need to edit /mnt/etc/rc.conf
before booting your newly imaged system.

Keep in mind that changing the OS environment may also require changes in your applica-
tions’ configuration. For instance, changing your machine name, IP, and so forth can break
Apache. You may need to edit /mnt/etc/rc.conf to temporarily prevent these applications
from starting so that you can successfully boot boot the newly imaged system. Once the
system is running, you can correct any applications’ configuration that need to be changed.

B. Different Hardware

This is the tougher situation to handle after a machine has been newly imaged. Modern
FreeBSD kernels come with enough standard driver support built-in that they should boot
on most standard hardware ... unless you’ve hand tuned the kernel on the machine where
the image was taken. You should therefore always build an image with a system that has
the option to boot a GENERIC kernel. This kernel is likely to boot on almost all but the
strangest hardware configurations.

However “booting” and “running properly” are two different things. If the hardware on your
target machine is considerably different thatn the original machine on which the image was
produced, you may need to do some further systems and/or kernel configuration.

Hardware differences show up in a number of places:

1. CPU Architecture
If you built your image on a machine that is configured exclusively
to run, say, on Pentium 4 chipsets, and then try to image another
machine with an 80386, um ... it’s not going to work. The kernels
in your image have to be compatible with the CPU architecture
on your target machine.

6

2. Motherboard Chipset
Motherboards have so-called“Northbridge”and“Southbridge”chipsets.
The Northbridge chip(s) control memory and high speed graphics
(like AGP). The Southbridge chip(s) control the slower I/O func-
tions and peripherals of the motherboard. If the machine you’re
imaging uses wildly different chipsets than the machine where the
image was taken, you may have problems.
If you have different Southbridges, you’ll run into this with any
of the on-board controllers:

• Audio

• Buses

• Disk

• Joystick

• Network

• Video

3. Peripheral Cards
If your newly imaged machine has different PCI and/or video cards than
the machine that produced the image, you may, again, have to install
additional or different drivers.

The good news is that FreeBSD is much more forgiving than Linux or Windows are in this
regard so long as you can boot a GENERIC kernel. The whole point of the GENERIC
kernel is to be able to get the machine to boot. Once you’re able to boot, it’s a fairly
straightforward matter to build a custom kernel or have the boot loader dynamically load
the additional necessary kernel modules.

Tip

Always build your image on a machine that has a GENERIC kernel on it even if you boot a
different or custom kernel by default. This will save your bacon later when you are imaging to
other hardware configurations.

Author

Tim Daneliuk - tbku@tundraware.com

Comments and/or improvements welcome!

Document Information

This document was produced using the very useful reStructuredText tools in the docutils package.
For more information, see:

http://docutils.sourceforge.net/rst.html

This document is Copyright (c) 2008, TundraWare Inc., Des Plaines, IL Permission is hereby given
to freely distribute, copy, or otherwise disseminate this document without charge, so long as you do so
without modifying it in any way.

$Id: Imaging-FreeBSD-With-tbku.txt,v 1.108 2008/03/19 06:14:08 tundra Exp $

7

mailto:tbku@tundraware.com
http://docutils.sourceforge.net/rst.html

