Specification of the Exim Mall
Transfer Agent

Philip Hazel

University of Cambridge Computing Service

Specification of the Exim Mail Transfer Agent
Author: Philip Hazel

University of Cambridge Computing Service
New Museums Site, Pembroke Street, Cambridge CB2 3QH, England

Copyright © 2007 University of Cambridge
Revision 4.68 23 August 2007

1.

Introduction

1.1
1.2
1.3
1.4
15
1.6
1.7
1.8
1.9

Contents

EXim documentationccuuveiiiiiiiiiiiii e
FTP and Web SIteSccooiiiiiiiiiiie e
MaAIIING TISTS ...
EXIM traiNiNg ...ceeeeieiiiei s
BUQ FEPOITS e
Where to find the Exim distributionccccoeeiiiiiiiiiis
(T3 11 = U1 0] PP
Run time configurationeevveioiiiiiieeeee e
Calling INTEITACEeviiiiiiiiee e

[

WWWWNN

4
................................. 4......
4

1.20 TermMiNOIOQY ...eeeeeeeeeiiiiiiiiiiie ettt e e et r e e e e e s s snsnnnneeeee e s e nnnnnnnneeeee s B

. Incorporated code

. How Exim receives and delivers mail

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

. Buil

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13
4.14
4.15
4.16
4.17
4.18

Overall PhiloSOPNY ...
POIICY CONIOL ...

ReCeIVING Maleeeiiiiiiieee e
Handling an inComiNg MEeSSAJEcccoviiurririieeeeeiiiiiiiie e e e
Life Of @ MESSAGEcceeiiiiiiiiiiee e
Processing an address for deliveryccccoociiiiiiiiiiiiiiiiieeeeen.
Processing an address for verificationcccccccviviiiiiiiininnnnns
Running an individual rOUereeevviiiiiiiiiiieeeeeeeeeeeeenn
Duplicate addreSSesSccuvviiiiieiiiiiiiiie e
Router preCoNditioNScooriiiiiiiiieee e
Delivery in detail ...
Retry MeChaniSImooiiiiiiiiiiiiiecce e
Temporary delivery failurecccoeeiiiiiii e
Permanent delivery failureccooooiiiiiiiiiiee
Failures to deliver bounce MeSSagesccccvvveeeriiiiiiiiiieeeennane

ding and installing EXim ...

UNPACKING ..ottt e e
Multiple machine architectures and operating SYStEMScooviivriirrieeeriiiiiiiiieeeeennn
DBM lIBrari@soveiiiiiiiiiiiiee e
Pre-building configurationccceevvieeiiiiiiiiee e
SUPPOIE FOr ICONV() oeeeeiiiiiiieee et
Including TLS/SSL encryption SUPPOITcoeveviiiiimiiieieeeeeiiiiieee
USE Of tCPWIBPPETS ..eeeeieeiiiiiiiii e et e e
Including SUPPOrt fOr IPV6ccooiiiiiiiiiiiieee e

The building process

OUutput from “MaKe”ccoeii e
Overriding build-time options for EXiMcccccoviiiiiiiiieeennnnne
OS-specific header fileSuuvuriiiiiiiiiiiiiiiiiiiieieeeeeeee e

Overriding build-time options for the monitor

Installing Exim binaries and SCriptsccccveeeiiiiiiiiiiieee e
Installing info documentationccccvvveeiieiiniiiieeee e
Setting up the SPOOI AIFECIONYcevviiiiiiiiiiiiiiee e
TESHING .t
Replacing another MTA with EXIM ...,

8

8
................................ < T

8

................................ ...

4.19 Upgrading EXIMcooooiiie e 26......

4.20 Stopping the Exim daemon 0N SOIArIScooovviviiiiiiiiiiiiii e 26..

. The EXim command iNE ... 27.....
5.1 Setting options DY Program NAIMEcooieiiiiiiiiiiiiee e 27....
5.2 Trusted and adMin USEIScooiiiiiiiiiiiiiiie et e e e e e e e e 21.....
5.3 Command lIN€ OPLIONScooiieiiiiii e 28.....

. The Exim run time configuration file ... e 48...
6.1 Using a different configuration file ... 48...
6.2 Configuration file fOrmatoooviiiiiiii 49.....
6.3 File inclusions in the configuration file ... 49..
6.4 Macros in the configuration file ... 50....
6.5 MACIO SUDSHEULION ... e e e 50......
6.6 RedefiniNg MACIOS ...ccooiiii e 50......
6.7 Overriding MACIO VAlUEBScooiiiieiieeeee e 51.....
ORI e T g o (o)l g = Tod Co U ES7= o = SRR bl...
6.9 Conditional skips in the configuration file ... h1..
6.10 ComMMON OPLION SYNLAX ..ceeiieiiieeeeeee e 51.....
LS00 = To To (== T o o] o] 1 o] g = h2......
B.12 INTEOET VAlUBS ...ttt ettt s e e e e e e e e e e e e e eees 52......
6.13 OcCtal INTEGET VAIUES ...ttt s e e e e e eeeeeeeeees 52.....
L e = To [o To T 1o 018 0 4] 1= TP h2.....
6.15 TIME INTEIVAISeeiiiiiiie et e e e e e e e e e 52......
LI IS] o IR 7= 10T SRR 53......
6.17 EXpanded StrNGS .ocooeieeeeeieeee e 53......
6.18 User and groUp NAIMESccoeiiiiieeee e 53.....
6.19 LISt CONSIIUCTION ...eviiiiiiiiiietie ettt e e e e et e e e e e e e e e e e e s e 54......
6.20 Changing liSt SEPArALOrScoeviiiiiiiiiiiiii e 54.....
6.21 Empty itemMS iN lISES .oooiiiiiieiieeeeee 54......
6.22 Format of driver configurations ... 55....

. The default configuration file ... e 57....
7.1 Main configuration SETHNGSttt ee e eeeeeeeeeeeeeeeeeeeeees 57....
A N O I oo T oo 18] =[] IR ha......
7.3 Router CONfIgUIAtiONcooiiiiiiieee e 62.....
7.4 Transport CONIQUIALIONooooeiiiii e 65.....
7.5 Default retry TUIEoov i 65......
7.6 Rewriting CONfIQUIALIONcooiiiii i 66.....
7.7 Authenticators Configurationoooiiiiiii i 6a....

B =0 U] U= o] =271 (o] R 67......
8.1 Testing regular EXPreSSIONSuuu i uuuueeeeeeiieeieeeieeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeereeeeeeeees 67....

. File and database I00KUPS ooiiiiiieeeeeeeee e 69.....
9.1 Examples of different I00KUP SYNTAXccooeeieiiiiii e 69...
1S I e o (U I8 1Y/ 0 1< PSSP 69.......
9.3 Single-Key I00KUP TYPESooiieiiiiiiiiiii et e e e e e 70.....
9.4 Query-style I0OKUP tYPESuuuueiiiiiiiiiiiiiiiiiiiiiiiieeiieeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeesd Lueen.
9.5 Temporary errors iN l0OKUPScooviiiiiiieeeeee e 73....
9.6 Default values in single-key 100KUPS ... 13...
9.7 Partial matching in single-key [00KUPS ..o 74...
1S IR S I e o] (U o J o= Tod 11 T [P 75......

iv

9.9 QUOLING [00KUP data ...ceeeeeeeeeeeeeee s 75......

9.10 More about dNSADcoooiiiiiii e d D
9.11 Pseudo dnsSdD reCOrd tyPeSuuuuuuuueiiiiiiiiiiieiiiiiiieees 76....
9.12 Multiple dnsdb I0OKUPS .. .ccooeieeeeeee e 11.....
9.13 More aboUt LDAPcoiiiiiiiie e nnnnnee e el e
9.14 Format Of LDAP QUETIESuueiieiiiiiieiiiiiiiieieieeeseeeesees d Beeens
9.15 LDAP QUOTING .ceeeieeeeeeeeee e 78......
9.16 LDAP CONNECHIONScuiiiiiiiieeiiiiiiiiieeeee et e e e e s e e e e s snnnnnneeeeeessnnnnnnneeeeee s Qe
9.17 LDAP authentication and control informationcccceeiiiiiiiiiiieee e 79.
9.18 Format of data returned DY LDAPuuuiiiiiiiiiiiiiiieeiieiieeieeee e eeeeeeeeeas 81...
9.19 MOre @abOUL NISH ...t e e ae e 81......
S I I @]I o o] (U 1SR 82......
9.21 More about MySQL, PostgreSQL, Oracle, and InterBaseccccvvvvvvveevieeneenneenn. 82
9.22 Specifying the Server in the QUETYeeeiiiiiiiiiiiiieiiieeieeeeeeeeee e e e e e eeeeeeas 83...
9.23 Special MYSQL fEALUIESooeiiiiiieiieiiieeeee e 83....
9.24 Special POStGreSQL fEATUIESooiiiiiiiiiiiiiie et e e 83....
9.25 More about SQLITE ...ooooiiieiieeeeee e 84....
10. Domain, host, address, and local part listS ..o 85..
10.1 EXPANSION OF lISES ...ttt n e e e ee e e e 85......
10.2 Negated itemMS IN HISTSuuiiiiiiiiiiiiiei ettt eeeeeeeeeeeeeeeeeeeeeeeeees 85.....
10.3 File NAMES IN TISTS ... 85......
10.4 An Isearch file is not an out-0f-liNe liStooviiiiiiiii e 86..
10.5 NAMEA lISES ...t e e e e e e e e e e e 86.......
10.6 Named lists compared With MACIOSc.coviiiiiiiiiiiiii e 81...
10.7 Named liSt CAChINGccooiiiiiii e neennee 8r.....
10.8 DOMAIN LISTS ...eeeeeeeeeiiiiiiie ittt e e e e e e e e e e e as 88......
F0.9 HOSE HISES ..ot e e e e e e et e e e e e r e e e 0.......
10.10 Special NOSt lISt PAIEINS ... al....
10.11 Host list patterns that match by IP address ... Q.
10.12 Host list patterns for single-key lookups by host addresscceeveeiiviiiieinennee. 91
10.13 Host list patterns that match by host name ... Q2.
10.14 Behaviour when an IP address or name cannot be foundccccceeviiiiiiinnnnn. 93
10.15 Temporary DNS errors when looking up host informationcccccooviiiiiennnen. 93
10.16 Host list patterns for single-key lookups by host name ... a3
10.17 Host list patterns for query-style [00KUPSoooeiiiiiiiii 94..
10.18 Mixing wildcarded host names and addresses in hoSt liStSeeveveiiiiiiiiiieienenl! 94
10.19 AAAIESS SIS ...eieeiiieeiiiite ettt et e e e e e s e e e e e e 9%......
10.20 Case of letters in addreSS lISTScoiiiiiiiiiiiiiii e 97...
10.21 LOCAI PAIT IISTS ...ttt e s e e e e eeeeneeees a7......
11, SErNG EXPANSIONS .oiiiiiiiiiiitiiie e e e e e et e e e e e e s s e e e e e e e s e s s e e e e e e e e s s s bb e s e e e e e e e e s annnnneeeeeas Qs8......
11.1 Literal text in eXpanded SrNGScccccooioiiie e eeeeeeeeeeeeeeeeeeeeeeeneeeees 98....
11.2 Character escape sequences in expanded StrNgSeeeeeeeieeieeeeieeeeeeeeeeeeeeeeeeeee. a8
11.3 Testing StriNG EXPANSIONSuuuuuuuuuuunueenueenuenneeeeennneeneaennenseesseeeseeeseeeseeeseeeeeeeeeeeeeeeeees 98....
11.4 Forced expansion failure ... 99.....
T ¢ o = 1 1S3 o (=T 1 LSRR Qa.....
G o T= T LS (o] g o] 0= = (] PR 108...
11.7 EXPansion CONAILIONScoooiiiiiiiieeeee e 112...
11.8 Combining expansion CONAItIONScoooeiiiiiiiiii e 118.
I ¢ o T= T LS (o] Y 7= 1 F=] [P 119..
12, EMBDEAAEA PEIl ..o e 135....
12.1 Setting up so Perl can be used ... 135.
12.2 Calling Perl SUDFOULINEScoooiiiiieiie e 135...

12.3 Calling Exim functions from Perl ... 136.

12.4 Use of standard output and error by Perl ... 136
13. Starting the daemon and the use of network interfaces ... 137
13.1 Starting a listening dAGMONuuuiiumiiiiiiiiiiiiiiiieeeeieeeeeee e eeeeeeeeeeeeeeeees 137..
13.2 Special IP listening addreSSEScoovvviiiiiiiiiiiiee e 138.
13.3 Overriding local_interfaces and daemon_Smtp_pPortSccccccvvveiiiiiiiiiiiiiieeeeeeeee. 138
13.4 Support for the obsolete SSMTP (or SMTPS) protocolccevveeiiiiiiiiiiiiieeees 138
13.5 IPVE QUUIESS SCOPES .eeeeeeeieieieeiieeieieeeteeateeeaaeeeaaaaaeaeaaaeeeees 139...
RS B G I T E7= T][T 1Y P 139...
13.7 Examples of starting a listening daemon ... 139
13.8 Recognizing the 10Cal NOSTooviiiiiiiiiiii 14Q..
13.9 Delivering to @ remote hOSEcoooiiiiie s 140..
2 /=TT I o T U = U1 o] o R 141....
14.1 MISCEIIANEOUSooeeiiiiiiiiiiiee ettt e e e e e e e e e e e e e aanes 141....
I (g T o T T = 10 4= (= £ PP 141....
14.3 Privilege CONLIOIS ...cooeiiieiieeeeeeeee s 141....
2 e To T 1] o SRS SRR 141.....
145 FrOZEN MESSAGES .eettuuuiiieaiieititti e e e et e eeattt e r e e aaaeetettbaaaaeaaaeeaesbaaa e e eaeeeeesssnaannss 142...
I G B = 1 = T (oo (U | 1RSSR 142....
I T T ST T T T PP 142....
14.8 Embedded Perl STartupoooooiriioioie oo 142..
e B - T=T 1 [o 142.....
14.10 RESOUICE CONEIOI .ot e ettt a e e e e 142...
14.11 POLICY CONLIOIS ... 143....
14.12 CalloUt CACNEcoeiiiie et e e e e 144....
I I T I SO PP PP PP PPPPTPPPI 144......
I 0 o To= | L=< gl = T o |1 o PR 144...
14.15 All incoming messages (SMTP and NoN-SMTP)oouiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee 144
14.16 NON-SMTP iNCOMING MESSAUESuuuuuuuururnunnuenunnnnnnnnnnnnneesensneesenneeeeeeeeeeeeeeeeeeeeeeees 144.
14.17 INCOMING SMTP MESSAYES ...evevvueereneiuieieieieieieeeeieeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeaereeeeeeeees 144..
14.18 SMTP EXIENSIONSutiiiiiiiiiiiiitiie et e e e et e e e e e r e e e e e e e e e e e e e e s e eeeeeas 145...
14.19 ProCeSSIiNG MESSATES ...cceiieeeeeieeaaeeaaaaaaaaaaaaaaaaaaaaaaaaa s s e nnnnnnnnnnnnnnesnnennne 145...
14.20 SYSIEM FILEE ..ceieeiie e e 145....
14.21 ROULING AN AEIVEIYeieiii ettt e e e e e e eeeeeeeeeeas 146...
14.22 Bounce and WarNing MESSATESceeeeeeeeeieeeeeeeeeeeeeaea e aaaaaaaaaaaaaaaaa s s aaaasaaeaaeeennnnes 146.
14.23 Alphabetical list of Main OPtioNSoooeiiiii i 146.
15. Generic OptioNS fOr FOULEIS oooiiiiiii oo 186..
G N g T = ToT o= | (11 (T PP 199....
17. The dnsIOOKUP FOULET oo 200...
17.1 Problems with DNS I0OKUPSeuuuiiiiiiiiiiiiiiiiiiiee ettt e e e e e e e e e eeeeeas 200..
17.2 Private options for dnSIOOKUPoooeeeiiiie e 200..
17.3 Effect of qualify_single and search_parentsc.cccccoovviii 202
18. The IPHEEral FOULEE ...ttt e e e e e e e e e e e e e eeeeas 204....
19. The iplOOKUP FOULET oo 205....
20. The ManUAITOULE TOULET coiiiiiiiii et e e e e e e e e e e e e 207...
20.1 Private options for ManualrOULecooiiiiiiiiiiee e 207.

20.2 Routing rules in route_liStooviiiiiiiii 208..

20.3 Routing rules in route_dataloovvveiiiiiiiiiiiieee e 209..
20.4 Format of the lisSt Of NOSESuiiiiiiiie e 209..
20.5 Format of ONE NOSEITEIMcoiiiiiiii e 210...
20.6 HOW the list Of NOSEIS IS USEAccoiiiiiiiiiiieiee et 210..
20.7 How the OptioNS @re USEAooviiiiiiiiiiie e 211..
20.8 Manualroute eXamMPIESuuuuuuiiiiiiiiiiiiiieiieiiieieee e eeeeee e ee e e e e e eeeeeeeeeeeeeeeeeees 211...
21. The qUErYPrOgIram FOULET eeiiiiiiiiiiiiee et eee et et ettt ettt e e et e e e et e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaaaaens 214...
22. TNE FEAINECE FTOULET ..oeiiiiiiee ittt e e e e e e e e e e e s e e e e e e e aanas 216....
22.1 REIrECHON TALAvveeeiieeiiiiiiie ettt e e e e e e e e e e e e e e n e 216....
22.2 Forward files and address VErifiCationoccuviiiiiieeiiiiiiiieecee e 216
22.3 Interpreting redireCtion dataoooeeiiiiiii oo 211..
22.4 Items in a non-filter redireCtion liIStcoooiiiiiiiiie e 217.
22.5 Redirecting to alocal MailboXcoooiieiiiiii s 2117..
22.6 Special items in redireCtion lIStScoooi oo 218.
22.7 DUPICAte AOAIESSES ... oo ieeii e nnennne 220...
22.8 Repeated redireCtion XPANSIONuuuruuuuuuueuueeeeeneurenneeneeeneneneeneeenneeeeeesneeeneeeees 220.
22.9 Errors in redireCtion lISTSooviiiiiiiiiieii e 220..
22.10 Private options for the redir@Ct FOULETuuuuuuuiiueeiiiiiiiiiieeiieeiieeeieeeeeeeeeeeeeeeeeeee 220
23. Environment for running local tranSportS ..o 228
23.1 CONCUITENE AEIIVEIIESeeiieieeiiiiieei ettt e e e e e as 228...
PG T B [(o K53 T g To o | o £ SRS 228....
23.3 Current and NOME AIFECIOMIESoeviiiiiiiiiiiiiieee e 229..
23.4 Expansion variables derived from the addresscccccvvvvviiiiiii 229
24. Generic optioNns fOr trANSPOIS ..oeiiiiiiiiieeeee e 230..
25. Address batching in local tranSPOrtS oo 236.
26. The appendfile traNSPOIT uiiiiiiiiiiiiie it eee e ee e e e e e e e eeeeeeeeeeeeeeeeeees 238...
26.1 The file and direCtory OPLIONScoooeeiiiiiei e 238.
26.2 Private options for appendfile ... 239.
26.3 Operational details for appendingcooooiioii i 248.
26.4 Operational details for delivery to a new file ..o 250
26.5 MalAIr EIVETYeieeiiiiiiieie ettt ettt e et e e e e e e e e eeeeeeeeeeeeeeeeeaeeees 250....
26.6 Using tags to record MESSAQE SIZESccoieiiiiiieieeneeeeeeeeeeeeeeeeeeeeneeenee 251
26.7 Using @ MaildirSize fil@uueeiiiiiiiiiiiiiiiiiiiiiiieie ettt e e e e e e e e e e e e e eeeees 251...
26.8 MaIStOre EIVEIYeeeiiiiiieeieeeeeeeeee ettt e e e e e e e aaaeeas 252....
26.9 Non-special Nnew file deliVEery ... 252..
27. The autoreply tranSPOMT ..o 253...
27.1 Private options fOr @QUIOTEPIYuuueieuimiiiiiiiiiiiiiiiiiieiieei et e e e e e e e e e e e eeeeeees 253..
28. The IMP tranSPOIT oo e 256....
29. The PIPE traNSPOIT oo e 258....
29.1 CoNCUITENE AEIIVEIY ..oeieiiiieieeee e, 258...
29.2 Returned Status and datalcueeiiieeiiiiiiiie e 258..
29.3 HOW the COMMEANT IS TUNeiiiiiiiiiiiii et e e e e 259..
29.4 ENVIrONMENT VAIADIESviiiiiiiiiiii et 259...

29.5 Private OptioNS fOF PIPEeeeeiiiiiiiiieiiiie ettt 260...

29.6 Using an external local delivery agenteuueeeueeiuieeimmeieeiieeiieeeieeieeeeeeeneeeeeeeee 264
1CTO TR I o ToT=Y o T R 1= T L= oo o AP 266....
30.1 Multiple messages on a single CONNECLIONc.oevviiiiiiiiiiiiiiie e 266
30.2 Use of the $host and $host_address variablescccovvviieiiiiie e 266
30.3 Use of $tIs_cipher and $tIS_peerdncooviiiiiiiiiiiiee e 266.

30.4 Private options fOr SMIPcoooiiieieeeeeee e 266...
30.5 How the limits for the number of hosts to try are used ..., 274
30 Ao (o [ST SR €T] o T PP 276....
31.1 Explicitly configured addreSs reWritiNgeeeueeuuerrumemmmmeeeeneneeeeneneneeeeeeeeneeeeeeee 276
31.2 When does reWriting NaPPENT? ... eeee 276..
31.3 Testing the rewriting rules that apply on iNPUtcoooiiiiiiii e 217

31.4 REWIIHING FUIBSeiiitiiiiiiiiieiteeiieiieeiee ettt ettt e e e e e e e e e e e e eeeeeeeeeeeeeeeeaeaeees 277....
31.5 ReWrtING PAEINS .. oo 218....
31.6 Rewriting replaCcemeNntscoooii i 279...
31.7 ReWrtING flagS .ooo oo 279....
31.8 Flags specifying which headers and envelope addresses to rewrite 279
31.9 The SMTP-time rewriting flagcooveiiei e 279..
31.10 Flags controlling the reWriting PrOCESSuuuuuuerrrmeiieiiieeiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeas 280
31.11 REWTrItiNG EXAMPIESuuuuiuiiiiiieiiiiiieeieeetieeieeaeaaeeees 280...
IC YA & (=1 1 VA o0 1110 [0 = 11 (o] o NP 282....
32.1 Changing retry FUIEScoooii i eeneenee 282...
32.2 FOrmat Of retry TUIEScooeii i 282...
32.3 Choosing which retry rule to use for address errorscevvvvvevvieeiieeiieeieeeeeeeeeee, 283
32.4 Choosing which retry rule to use for host and message errors...........ccccceeeeeeeee.. 283
32.5 Retry rules for SPECIfIC ITOISoiiiiiiiiiiiiiei et 284..
32.6 Retry rules for specified SENAErsooovvviiiiiiiii 285.
32.7 RELrY PArAMELEIS ...ttt e e e e et e e e e e e e e e e ettt e e e aeaeas 286....
32.8 Retry rule @Xamplesooooiiiiiiiii e 286...
32.9 TIMEOUL Of FEIIY ALveieeeiiiiiiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e eeeeeeeeeeeeeees 287...
32.10 Long-term failUreScooviiiiiiiieiieee 287...
32.11 Deliveries that work intermittently ... 288.
33. SMTP QUINENTICALION ..ot e e e 289...
33.1 Generic options for AUtNENTICAIONSueueiiiiiiiiiiiiiieeiieee e 290.
33.2 The AUTH parameter on MAIL cOMMAaNdScoooiiiiiiiiiiiiieeeeeeeeeeeeeeee e 291
33.3 Authentication on an EXIM SEIVETcccuuiiiiiiiiiiiiieeee e 292.
33.4 Testing server authentiCation ..o 293.
33.5 Authentication by an EXim CENTuuuuiiiiiiiiiiiiiiiiiiiiiiiiieiieiiieieeeeeeeeeeeeeeeeeeeeeeeees 293.
34. The plaintext authentiCator oooviiiiiii 295..
34.1 PlainteXt OPLIONS ..o e 295....
34.2 Using plainteXt iN @ SEIVETccoiiii i eneennes 295..
34.3 The PLAIN authentication MeChaniSmccceeviiiiiiiiiiii e 295
34.4 The LOGIN authentication MeCRaNISIMcouiiiiiiiiiiiiiieeee e 296
34.5 Support for different kinds of authenticationccccoooiiiiiiiiiiiiies 297
34.6 Using plainteXt in @ CENTeiiiieeeeeeeee e 297...
35. The cram_md5 authentiCator ... 299..

35.1 USING Cram_MAD5 @S @ SEIVELooeiiiiiiiiiiiieeiieee ettt ettt ettt e e e e e e e e e e aaaaaaaaaas 299..

35.2 Using cram_md5 as @ ClIeNtoooeeiiiiiii e 299..
36. The cyrus_sasl authentiCator —coooiiiiiiii i 301..
36.1 USING CYrUS_SASI QS @ SEIVENcoeeiiiiiiiiiiieeiieee ettt a e e e 301.
37. The dovecot QUtNENTICATON ooiiiiiiiiiiie et e e e 303..
38. The spa authentiCatoroooviiiiiiiii 304...
38.1 USING SPA AS 8 SEIVET ...eeeiiiee e e ennnne 304...
38.2 USING SPA S @ CHENTuiiiiiiiiiiiiiiiiiiet ettt eeeeaaeees 304...
39. Encrypted SMTP connections using TLS/SSL ... 306
39.1 Support for the legacy “ssmtp” (aka “smtps”) protocolccccevvviiiiiii. 306
39.2 OPENSSL VS GNUTLS ..ttt e e e e e e e e e 306...
39.3 GNUTLS parameter COMPULALIONeeeiiieiiiiiiiieiee e e e 307.
39.4 Requiring specific ciphers in OPEeNSSLcoovvvviiiiiiii 307
39.5 Requiring specific ciphers or other parameters in GNUTLScccccceeiiiiiiiiieennenn. 308
39.6 Configuring an EXim Server to USE TLS ..o 309
39.7 Requesting and verifying client certificatesccccoeeii 310
39.8 REVOKEd CEIIfICALEScceiiiiiiieieiie ettt e e e e e e 311...
39.9 Configuring an EXim client t0 USE TLSuiiiiiiiiiiiiiiiiiiiiiiiiiieiiieiieeieeeeeeeeeeeeeeeeeeeee 311
39.10 Multiple messages on the same encrypted TCP/IP connectionccccee.... 311
39.11 Certificates and all thALooooiiiiii e 312..
39.12 CertifiCate CRAINScoiiiiiie e e e e e e e 312...
39.13 Self-SIgNed CErtifiCALESciiiiiiiiiiiiiii e e e 312..
40. ACCESS CONMIOI lISES .t 314....
O Tt O == 1 o 2 PSPPSR 314....
40.2 Specifying When ACLS are USEdccoiiiiiiiiiiiiiiiiiiiieieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 314.
40.3 The NON-SMTP ACLSuiiiiiiiiieiiii e e e e e e e 315...
40.4 The SMTP CONNECE ACL ...t e s 315..
40.5 The EHLOHELO ACL ...ttt e e 315...
40.6 TNE DATA ACLS ...ceeeeeiiite ettt e e e e e e s e e e e e e e e e 315....
40.7 The SMTP MIME ACL ...ttt r e e e e 316...
40.8 The QUIT ACKL ettt e e e e e e e e e e s e e e aeeas 316....
40.9 The NO-QUIT ACL ...eviiiiiiieiei et e e e e e s 316...
40.10 FiNdiNG QN ACL t0 USE ...ciiiiiiiiiiieeieeee ettt 317...
40.11 ACL FELUIMN COUES ...ceiiiiiiiiiiie e e ettt e et e e e e e et e e e e e e e e e e e e e annnees 317...
40.12 UNSEt ACL OPLIONS ..ooiiiieiieeeeee e 318...
40.13 Data for meSSAge ACLSooiiiiiieeieee e 318..
40.14 Data for NON-MeSSage ACLS ..o 318.
40.15 FOrmat Of @n ACLcooiiiiiiieii e 319...
40.16 ACL VEIDS ...ttt ettt e e e et e e e e e e e 319....
40.17 ACL VANADIES ...ttt e e e e e e e 321....
40.18 Condition and Modifier ProCESSING ...cceeeeeeeeeeeeeeee s 321
40.19 ACL MOAIFIEISitieiiieeeee ittt e e e e e e e e e e r e e e e e e e e annes 322....
40.20 Use of the control MOIfIENoeiiiiiiiiie e 326..
40.21 Summary of message fiXup CONIOLcooiiiiiiiiiiii e 328
40.22 Adding header liNeS iN ACLScoooiiiiii s 328.
40.23 ACL CONITIONSitiiiieeee e ettt e e e e e e e e e e e e e e s r e e e e e e e annnnreeeaeeas 330....
40.24 USING DNS [ISTS ...eeeiiiiiiiiiiiiieie ettt e e e e e e e e e e e 334....
40.25 Specifying the IP address for a DNS liSt I0OKUPc.cvvviiiiieiiiiiiiecce e 334
40.26 DNS lists keyed on domain NAMEScooeeiiiiiiiiieee s 334

iX

40.27 Multiple explicit keys for a DNS IStoooiiiiiii s 335

40.28 Data returned by DNS lISISoooiiiiiii i 336..
40.29 Variables set from DNS lIStSooiiiiiiiiiiiiiiiiic e 336..
40.30 Additional matching conditions for DNS liStScccooiiiiiiiiiiiiieiieeeeeeee 336
40.31 Negated DNS matching CONAItIONSuuuiuiurimiiiniiiiiieiiinieeeieneeeeeeeeeeeeeeeeeeeeeee 337
40.32 Handling multiple DNS records from a DNS liStccuviiiiiiiiiiiiicce e 338
40.33 Detailed information from merged DNS liStSccvviiiiiiiiiiiiiiie e 338
40.34 DNS [IStS QN IPVGcoviiiiiiiiiiiiii et e s 339...
40.35 Rate limiting iNCOMING MESSAQESuuuvururuuueunuinuinnneenueeneeeeeeeneeeneenneesnennneesseeneeenees 339.
40.36 Ratelimit options for what is being measuredccccvveeiiiiiiiiiiiiiiieiiiieeeeeee 340
40.37 Ratelimit options for handling fast Clients ... 341
40.38 USING rate liMItING ..ottt eseeeeeeeeeeeeees 341...
40.39 Reading ratelimit data without updatingccooeviiiiiiiii 342
40.40 AdAress VEIIFICATIONcuuiiiiieiee ettt e e e e e e e 342...
40.41 CalloUt VEIIFICALIONeviiiiiiiee ettt e e e e e e 343...
40.42 Additional parameters for callouts ... 344
40.43 Callout CACNINGcoeiieii e 346....
40.44 Sender address verification rePOrtingccvveevveeeeiiiiiiiiieeee e 346
40.45 Redirection wWhile VErifyingcoovvviiiiiiii 341..
40.46 Client SMTP authorization (CSA)eeeiiiooiiiiee et 341.
40.47 Bounce address tag validation ..o 348.
40.48 Using an ACL t0 CONtrol relayingoooooooooooeoeeeie e 349.
40.49 Checking a relay configuration ... 350.
41. Content scanning at ACL tIMe ..o 351..
41.1 SCaNNING fOF VIFUSEScoeiiiiieeeee et 351...
41.2 Scanning With SPaMASSASSINccoiiiiiiiieeeee e 354.
41.3 Calling SpamAssassin from an EXim ACL ... 354
41.4 Scanning MIME PArtSoooiiiiiiiiiiiii e 356...
41.5 Scanning with regular @XPreSSIONSuuueuuuururuuuierieeneeeeeeeneeeeeeeeenereeeneereeeeeeeee 358.
41.6 The demime CONAITIONc.eviiiiiiie e r e e e e e e e e annes 3509...
42. Adding a local scan function to EXim ... 361
42.1 Building Exim to use a local scan functionccccueeeevieiimeiiieiieiiieiiieeeeeeeeeeee. 361
v N o I (o) gl (o Tox= | o o T USRI 361...
42.3 Configuration options for local_Scan()ccooeeerriiiiiiii 362
42.4 Available EXim variablesooooiiiiii s 363..
42.5 Structure Of NEAUET lINESoiiiiiiii e 365..
42.6 Structure Of reCIPIENT ILEIMSuuuiiieiiiiiiiiiiiiiieteeeieeeeeeeaees 365..
42.7 Available EXim fUNCLIONSoiiiiiiiiei e 366...
42.8 More about Exim’'s memory handling ... 370
43. System-wide message filteriNg oeeeiiiiiii e 371.
43.1 SpPecCifying @ SYStEM filter e eeeeeeees 371..
43.2 Testing a system filter ... 371...
43.3 Contents of @ System filter ..., 371..
43.4 Additional variable for system filters ... 372
43.5 Defer, freeze, and fail commands for system filtersccccc 3172
43.6 Adding and removing headers in a system filter.............cccoo 373
43.7 Setting an errors address in a system filter ... 373
43.8 Per-address filteringoooooeeiiiii 374...
Y [T Yo o T= T o] o Tt E1] | o o 375...
44.1 Submission mode for Non-local MESSAGESuuuiuiiiiiiiiiiiiiiiiiiiiieiieeiieeeeeeeeeeeeeeeee 375

X

A4.2 LINE BNAINGS ..oieiieeiieeieee e 376.....
44.3 Unqualified addreSSEScoooiiiiiiiiii e 3176...
44.4 The UUCP From lINE ..ottt e e 377...
44.5 ReSeNt- NEAUET INEScooiiiiiiiiie e e 377...
44.6 The Auto-Submitted: header N ... 378.
44.7 The BCC: header iNEcceiiiiiieie e 378...
44.8 The Date: header lINEoooiiiiiiic e 378...
44.9 The Delivery-date: header liNeuuuiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 378.
44.10 The Envelope-to: header liN@ ... eeeeeeeees 378.
44.11 The From: header lINEooo i 378...
44.12 The Message-ID: header liNe ...t eeeeeeeeeeeeeeeeeees 379.
44.13 The Received: Neader liNEooiiiiiiiiiii e 379..
44.14 The References: NeAUEr liNEcooiiiiiiiiiiiiei s 379.
44.15 The Return-path: header lIN@ ... eeeeeeeeeeeeees 379.
44.16 The Sender: header lINE ... 379..
44.17 Adding and removing header lines in routers and transSportsccccccveeeeeeeeen. 380
44.18 CoONSLruCted AUUIESSESeeeiiiiiiiiitiiiiie e et e e e e e e e e 381..
44.19 Case Of I0Cal PANTS ..oooeiiiiieeeeee e 381...
44.20 DOtS iN [OCAI PAITS ...ttt e e e e eeeeeeees 382...
44.21 ReWNtING AAAMESSES ...coeeeiiiiiiiiieee e 382...
A5, SMTP PIOCESSING .eteeieiieeiiiiitiee ittt e e e e e et e e e e e e e s e e e et e e e e e s s b e e et e e e e e e aanbbsneeeeeeeaaannns 383....
45.1 Outgoing SMTP and LMTP over TCP/IPcccuviiiiiiieeiieee e 383
45.2 Errors in outgoiNg SMTP ..ot 384..
45.3 Incoming SMTP messages over TCP/IP ... 385
45.4 Unrecognized SMTP COMMANGASuuuuuuuumiiiinieieieeiieeieeeeenneaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 3817.
45.5 Syntax and protocol errors in SMTP comMmMandsccccuviiirieeeinniiiiiiieeee e 387
45.6 Use of non-mail SMTP COMMANTScooiiiiiiiiiiiiiiieeeee it 387.
45.7 The VRFY and EXPN COMMANGScooiiiiiiiiiieeieeiiiieee e 387.
45.8 The ETRN COMMANTooiiiiiiiiiiiiiiiie et e e e e e 3817...
45.9 INcomiNg 10CAI SMTP ..o 388...
45.10 Outgoing batched SMTP ..o, 388..
45.11 Incoming batched SMTP ..., 389..
46. Customizing bounce and warning MESSAQES evvvrrrrreruremmmeeeeereereeeeeeeeeeeeeeeeeeeeeeeees 390
46.1 Customizing BOUNCE MESSAGEScciiiiiieeeeee e 390Q.
46.2 Customizing WarniNg MESSAJES ...uuuuuuuuuuuunnnnnnnnnnnnennnennnennnennnennneennensesnnssnsssnnesssnnnees 391.
47. Some common configuration SEtINGS ...ooociiiiiiiiee e 392
47.1 Sending Mail t0 @ SMAIt NOSTuuuiiiiiiiiiiiiiiiii e eeeeeeeeeeeeees 392.
47.2 Using Exim to handle mailing liStScoooiiiiiiii e 392.
47.3 Syntax errors in Mailing liStSooooiiiiiiiii e 392..
47.4 Re-expansion of Mailing lISTSeuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeiieeeeeeeeeeeeeeeeeeeeeeeeeeees 393.
47.5 Closed MailiNg lISTS ...ttt e e e e e e e eeeeees 393...
47.6 Variable Envelope Return Paths (VERP)uuuiiiiiiiiiiiiiiiiieiiiiiiieeiieeieeeeeeeeeeeeeeeee 394
A7.7 Virtual dOMEUNScooeiiiiiiiei et e e e e e e e e e e e 395....
47.8 Multiple user MailbDOXESoooeiiiiiiiiiiiiii 396...
47.9 Simplified Vacation PrOCESSINGuuuuuuuuuueiuuiiueiiiueiuteneeeeneeeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeaees 397.
47.10 Taking copies Of Mallooovviiiiiiiiii 397...
47.11 Intermittently connected hOSESoooiiiiiiiii 397.
47.12 Exim on the upstream Server hOoStooovovviiiiiiiii 397.
47.13 Exim on the intermittently connected client hostccc . 398
48. Using Exim as a non-queueing ClIiENt ... 399

Xi

e T o o 11 =2 | § I

49.1 Where the 10gS are WItEEN ...t eeeeeeeeeeeees 401..
49.2 Logging to local files that are periodically “cycled”ccccuuuiriiiiiiiiiiiiiiiiieeieneee. 402
49.3 Datestamped 10g fileSoooviiiiiii 402...
ke I A o To o Lo I (0 J=3Y£S] (o o [PPSR | 1. S
Ve TR o To 11 = = Vo LSS PPPPPRP 404....
49.6 L0ogging MeSSage rECEPLIONcovviiiiiiee e 404..
49.7 LOogging EIIVEIIEScooiiiiiiiiieieeeee e 405....
49.8 DiISCarded TEIVEIIEScciiiiiiiiiiiii et e s 406...
49.9 Deferred delIVEIESocciiiiiiiie e e e 406...
49.10 Delivery faIlUIEScccccuiuuiiiiiieiiiiiiiiiiinieeieeeeeeeneeeeeseeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeee. 4000
49.11 FaKe UEIVEIIES ...ttt e e e e e as 406....
49.12 COMPIBLION oo 406.....
49.13 Summary of Fields in LOG LINEScooiiiiiiiiieiceeee e 4017.
49.14 Other 10g ENIMESooiiiiiiiiiiiei e 407....
49.15 Reducing or increasing what is loggedccooiiiiiiiiiiiicieccieeeeeennn . 408
49.16 MESSATE 100 ..eeeereeiiiiiiiiiieiiiee ettt ettt ettt ettt et e e e et e e e e e et e e et e e e e e e aaaaaaaaaaaaaaaaaaas 411....
50. EXIM ULIITIES ooeeeiieeiiiie ettt e e e e e e e e s r e e e e e e 413.....
50.1 Finding out what Exim processes are doing (exiwhat)cccccoviiiiii 413
50.2 Selective queue listing (EXIQOIEP) - eeeeeeeeeeee e eee e e e 413.
50.3 Summarizing the queue (EXIGSUMIM)oiiiiiiiiiiiiei et aaaaaaaaaaaaeas 414
50.4 Extracting specific information from the log (eXIigrep)ccovveeeeeeeiieeiee 415
50.5 Selecting messages by various criteria (eXIPICK)oovvvviviiiiiiiiii 415
50.6 Cycling log files (EXICYCIOG) «.eevveiiiieiiiiiiiiiiieee 415..
50.7 Mail statistiCS (EXIMSIALS) ..ovviiiiiiiiieiiee e 416..
50.8 Checking access policy (exim_checkacCess)cooeeiiiiiiiiiieiiiieeees 417
50.9 Making DBM files (exim_dbmbuild) ... 417.
50.10 Finding individual retry times (EXINEXL)cooieiiiiiiiee e 418
50.11 Hints database MaiNtENANCEc.uviiiiiiiiiii e 418.
L0 I 2 = d ¢ e (1 0] oo | PR 418....
50.13 eXIM_tidYdDoeoiiiee e 419....
50.14 eXiM_fiXUDeeeiiiiiiiie e AL O
50.15 Mailbox maintenance (eXim_I0CK)ooovviiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeieeeeeeeeeeeeeeeen . A20.,
51. The EXIM MONITOT ..oooiiiiiiiiiie et e e e e e e e e e e e e 422....
51.1 RUNNING the MONITOT ..o 422...
o I g oI i] o od = T PRSP 422....
51.3 Main aCtiON DULLONSeeiiiiiiiiiiiii e e e e s 423...
o3 I g T o T 0 L] o] = PRSP 423....
51.5 The queUe diSPIayccooiiiiiiiie e neeenee 424....
51.6 THE QUEUE MENU ...ouiiiiiiiiiiieiieiieteeeeeeeeeeeeeeneeeeeeeneseennsssnsnnnnssssseeseneeeeeeneens D240
52. Security CONSIAEIALIONS ..o e e e e e e e e e e e ane 426...
52.1 Building a more “hardened” EXiMooooiiiiiiiiiiii e 426.
52.2 ROOL PIIVIIEOE oeeeiiieieeie e 4286....
52.3 Running EXim WithOUt Privilegeoooo i 427.
52.4 Delivering to 10Cal fileScccooiiieeeeeeeeeeeveeeeeeeeeeeeeeeeeeeeeee A28
52.5 IPV4 SOUICE FOULING .eeviiiiiiiiieiiieiee et 429...
52.6 The VRFY, EXPN, and ETRN commands in SMTPc.ooooviiiiiiiie e, 429
B52.7 Privileged USEIS ..o e 429....
B52.8 SPOOITIlES e 429.....
52.9 USE OF @rgV[0] «eeeeeieeeiiiiiieiiiee et 429....
52.10 Use of %f formattingooooeiiiiiiiioi e 429...

Xii

52.11 Embedded EXim pathcccccovimiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee . 430,

52.12 USE Of SPINTF() 1oeeeeeeeeeieeeeeeee e 430....
52.13 Use of debug_printf() and 10g_Write()ooovvrrriiiiiiiii 430
52.14 Use of strcat() and StrCPY() «.eeeeeeeeeeemmmmmmmmmmmmmmmmeineiieeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee. A30.
53. Format Of SPOO0I fil@S .o 431...
53.1 FOrmat of the -H fIl@oore s 431...
54. Adding new drivers or IOOKUP tYPES oot 436
OPLONS INABX e 431......
VariabIES INAEX ... e e e e e e e e e e e 443.....
L0} g Tol=T o | 15T [G 445......

Xiii

1. Introduction

Exim is a mail transfer agent (MTA) for hosts that are running Unix or Unix-like operating systems. It
was designed on the assumption that it would be run on hosts that are permanently connected to the
Internet. However, it can be used on intermittently connected hosts with suitable configuration
adjustments.

Configuration files currently exist for the following operating systems: AIX, BSD/OS (aka BSDI),
Darwin (Mac OS X), DGUX, Dragonfly, FreeBSD, GNU/Hurd, GNU/Linux, HI-OSF (Hitachi), HI-

UX, HP-UX, IRIX, MIPS RISCOS, NetBSD, OpenBSD, OpenUNIX, QNX, SCO, SCO SVR4.2 (aka
UNIX-SV), Solaris (aka SunOS5), SunOS4, Tru64-Unix (formerly Digital UNIX, formerly DEC-
OSF1), Ultrix, and Unixware. Some of these operating systems are no longer current and cannot
easily be tested, so the configuration files may no longer work in practice.

There are also configuration files for compiling Exim in the Cygwin environment that can be installed
on systems running Windows. However, this document does not contain any information about run-
ning Exim in the Cygwin environment.

The terms and conditions for the use and distribution of Exim are contained in tiNCiiléCE Exim
is distributed under the terms of the GNU General Public Licence, a copy of which may be found in
the fileLICENCE

The use, supply or promotion of Exim for the purpose of sending bulk, unsolicited electronic mail is
incompatible with the basic aims of the program, which revolve around the free provision of a service
that enhances the quality of personal communications. The author of Exim regards indiscriminate
mass-mailing as an antisocial, irresponsible abuse of the Internet.

Exim owes a great deal to Smail 3 and its author, Ron Karr. Without the experience of running and
working on the Smail 3 code, | could never have contemplated starting to write a new MTA. Many of
the ideas and user interfaces were originally taken from Smail 3, though the actual code of Exim is
entirely new, and has developed far beyond the initial concept.

Many people, both in Cambridge and around the world, have contributed to the development and the
testing of Exim, and to porting it to various operating systems. | am grateful to them all. The
distribution now contains a file callelCKNOWLEDGMENTSn which | have started recording the
names of contributors.

1.1 Exim documentation

This edition of the Exim specification applies to version 4.69 of Exim. Substantive changes from the
4.68 edition are marked in some renditions of the document; this paragraph is so marked|if the
rendition is capable of showing a change indicator.

This document is very much a reference manual; it is not a tutorial. The reader is expected to have
some familiarity with the SMTP mail transfer protocol and with general Unix system administration.
Although there are some discussions and examples in places, the information is mostly organized in a
way that makes it easy to look up, rather than in a natural order for sequential reading. Furthermore,
the manual aims to cover every aspect of Exim in detail, including a number of rarely-used, special-
purpose features that are unlikely to be of very wide interest.

An “easier” discussion of Exim which provides more in-depth explanatory, introductory, and tutorial
material can be found in a book entitldthe Exim SMTP Mail Servesecond edition, 2007), pub-
lished by UIT Cambridgenhftp://www.uit.co.uk/exim-book/).

This book also contains a chapter that gives a general introduction to SMTP and Internet mail.
Inevitably, however, the book is unlikely to be fully up-to-date with the latest release of Exim. (Note

that the earlier book about Exim, published by O'Reilly, covers Exim 3, and many things have

changed in Exim 4.)

If you are using a Debian distribution of Exim, you will find information about Debian-specific
features in the filéusr/share/doc/exim4-base/README.Debifihe commandnan update-exim.conf
is another source of Debian-specific information.

1 Introduction (1)

As the program develops, there may be features in newer versions that have not yet made it into this
document, which is updated only when the most significant digit of the fractional part of the version
number changes. Specifications of new features that are not yet in this manual are placed in the file
doc/NewStufin the Exim distribution.

Some features may be classified as “experimental”. These may change incompatibly while they are
developing, or even be withdrawn. For this reason, they are not documented in this manual.
Information about experimental features can be found in théddéxperimental.txt

All changes to the program (whether new features, bug fixes, or other kinds of change) are noted
briefly in the file calledloc/ChangelLog

This specification itself is available as an ASCII filednc/spec.txso that it can easily be searched
with a text editor. Other files in tlowcdirectory are:

OptionLists.txt list of all options in alphabetical order
dbm.discuss.txt discussion about DBM libraries

exim.8 a man page of Exim’s command line options
experimental.txt documentation of experimental features
filter.txt specification of the filter language
pcrepattern.txt specification of PCRE regular expressions
pcretest.txt specification of the PCRE testing program
Exim3.upgrade upgrade notes from release 2 to release 3
Exim4.upgrade upgrade notes from release 3 to release 4

The main specification and the specification of the filtering language are also available in other
formats (HTML, PostScript, PDF, and Texinfo). Section 1.6 below tells you how to get hold of these.

1.2 FTP and web sites

The primary site for Exim source distributions is currently the University of Cambridge’s FTP site,
whose contents are describedithere to find the Exim distributidmelow. In addition, there is a web

site and an FTP site axim.org. These are now also hosted at the University of Cambridge. The
exim.org site was previously hosted for a number of years by Energis Squared, formerly Planet
Online Ltd, whose support | gratefully acknowledge.

As well as Exim distribution tar files, the Exim web site contains a number of differently formatted

versions of the documentation. A recent addition to the online information is the Exim wiki

(http://wiki.exim.org), which contains what used to be a separate FAQ, as well as various pther
examples, tips, and know-how that have been contributed by Exim users.

An Exim Bugzilla exists ahttp://bugs.exim.org. You can use this to report bugs, and also to aldd
items to the wish list. Please search first to check that you are not duplicating a previous entry.

1.3 Mailing lists

The following Exim mailing lists exist:

exim-users@exim.org General discussion list

exim-dev@exim.org Discussion of bugs, enhancements, etc.
exim-announce@exim.org Moderated, low volume announcements list
exim-future@exim.org Discussion of long-term development

You can subscribe to these lists, change your existing subscriptions, and view or search the archives
via the mailing lists link on the Exim home page. If you are using a Debian distribution of Exim, you
may wish to subscribe to the Debian-specific mailingpisg-exim4-users@lists.alioth.debian.mig

this web page:

http://lists.alioth.debian.org/mailman/listinfo/pkg-exim4-users

Please ask Debian-specific questions on this list and not on the general Exim lists.

2 Introduction (1)

1.4 Exim training

Training courses in Cambridge (UK) used to be run annually by the author of Exim, before he retired.
At the time of writing, there are no plans to run further Exim courses in Cambridge. However, if that
changes, relevant information will be postetith://www-tus.csx.cam.ac.uk/courses/exim/

1.5 Bug reports

Reports of obvious bugs can be emailed bags@exim.orgor reported via the Bugzilla
(http://bugs.exim.org). However, if you are unsure whether some behaviour is a bug or not, the|best
thing to do is to post a message togkien-devmailing list and have it discussed.

1.6 Where to find the Exim distribution
The master ftp site for the Exim distribution is
ftp://ftp.csx.cam.ac.uk/pub/software/email/exim
This is mirrored by
ftp://ftp.exim.org/pub/exim

The file references that follow are relative to #gsémdirectories at these sites. There are now quite a
number of independent mirror sites around the world. Those that | know about are listed in the file
calledMirrors.

Within the eximdirectory there are subdirectories callexim3 (for previous Exim 3 distributions),
exim4(for the latest Exim 4 distributions), aniéstingfor testing versions. In thexim4subdirectory,
the current release can always be found in files called

exim-n.nn.tar.gz
exim-n.nn.tar.bz2

wheren.nnis the highest such version number in the directory. The two files contain identical data;
the only difference is the type of compression. Hz2file is usually a lot smaller than tigzfile.

The distributions are currently signed with Philip Hazel's GPG key. The corresponding public key is
available from a number of keyservers, and there is also a copy in tHeufilkic-Key The signatures
for the tar bundles are in:

exim-n.nn.tar.gz.sig
exim-n.nn.tar.bz2.sig

For each released version, the log of changes is made separately available in a separate file in the
directoryChangelLogso that it is possible to find out what has changed without having to download
the entire distribution.

The main distribution contains ASCII versions of this specification and other documentation; other
formats of the documents are available in separate files insidgithédirectory of the FTP site:

exim-html-n.nn.tar.gz
exim-pdf-n.nn.tar.gz
exim-postscript-n.nn.tar.gz
exim-texinfo-n.nn.tar.gz

These tar files contain only thadoc directory, not the complete distribution, and are also available in
.bz2as well asgzforms.

1.7 Limitations

» Exim is designed for use as an Internet MTA, and therefore handles addresses in RFC 2822 domain
format only. It cannot handle UUCP “bang paths”, though simple two-component bang paths can
be converted by a straightforward rewriting configuration. This restriction does not prevent Exim
from being interfaced to UUCP as a transport mechanism, provided that domain addresses are
used.

3 Introduction (1)

» Exim insists that every address it handles has a domain attached. For incoming local messages,
domainless addresses are automatically qualified with a configured domain value. Configuration
options specify from which remote systems unqualified addresses are acceptable. These are then
gualified on arrival.

» The only external transport mechanisms that are currently implemented are SMTP and LMTP over
a TCP/IP network (including support for IPv6). However, a pipe transport is available, and there
are facilities for writing messages to files and pipes, optionallpatched SMTHormat; these
facilities can be used to send messages to other transport mechanisms such as UUCP, provided they
can handle domain-style addresses. Batched SMTP input is also catered for.

« Exim is not designed for storing mail for dial-in hosts. When the volumes of such mail are large, it
is better to get the messages “delivered” into files (that is, off Exim's queue) and subsequently
passed on to the dial-in hosts by other means.

» Although Exim does have basic facilities for scanning incoming messages, these are not compre-
hensive enough to do full virus or spam scanning. Such operations are best carried out using
additional specialized software packages. If you compile Exim with the content-scanning exten-
sion, straightforward interfaces to a number of common scanners are provided.

1.8 Run time configuration

Exim'’s run time configuration is held in a single text file that is divided into a number of sections. The
entries in this file consist of keywords and values, in the style of Smail 3 configuration files. A default
configuration file which is suitable for simple online installations is provided in the distribution, and
is described in chapter 7 below.

1.9 Calling interface

Like many MTAs, Exim has adopted the Sendmail command line interface so that it can be a straight
replacement forustr/lib/sendmailor /usr/sbhin/sendmaivhen sending mail, but you do not need to
know anything about Sendmail in order to run Exim. For actions other than sending messages,
Sendmail-compatible options also exist, but those that produce output (for exabpplahich lists

the messages on the queue) do so in Exim’s own format. There are also some additional options that
are compatible with Smail 3, and some further options that are new to Exim. Chapter 5 documents all
Exim’s command line options. This information is automatically made into the man page that forms
part of the Exim distribution.

Control of messages on the queue can be done via certain privileged command line options. There is
also an optional monitor program callegdimon which displays current information in an X window,
and which contains a menu interface to Exim’s command line administration options.

1.10 Terminology

The body of a message is the actual data that the sender wants to transmit. It is the last part of a
message, and is separated fromhbader(see below) by a blank line.

When a message cannot be delivered, it is normally returned to the sender in a delivery failure
message or a “non-delivery report” (NDR). The tebmunceis commonly used for this action, and

the error reports are often callbdunce messageshis is a convenient shorthand for “delivery failure
error report”. Such messages have an empty sender address in the me=sagjejzgsee below) to
ensure that they cannot themselves give rise to further bounce messages.

The termdefaultappears frequently in this manual. It is used to qualify a value which is used in the
absence of any setting in the configuration. It may also qualify an action which is taken unless a
configuration setting specifies otherwise.

The termdeferis used when the delivery of a message to a specific destination cannot immediately
take place for some reason (a remote host may be down, or a user’s local mailbox may be full). Such
deliveries ara@leferreduntil a later time.

4 Introduction (1)

The worddomainis sometimes used to mean all but the first component of a host's namendt is
used in that sense here, where it normally refers to the part of an email address following the @ sign.

A message in transit has an associatedelope as well as a header and a body. The envelope
contains a sender address (to which bounce messages should be delivered), and any number of
recipient addresses. References to the sender or the recipients of a message usually mean the
addresses in the envelope. An MTA uses these addresses for delivery, and for returning bounce
messages, not the addresses that appear in the header lines.

The headerof a message is the first part of a message'’s text, consisting of a number of lines, each of
which has a name such &wom:, To:, Subject; etc. Long header lines can be split over several text
lines by indenting the continuations. The header is separated from the body by a blank line.

The termlocal part, which is taken from RFC 2822, is used to refer to that part of an email address
that precedes the @ sign. The part that follows the @ sign is callddrttanor mail domain

The termdocal deliveryandremote deliveryare used to distinguish delivery to a file or a pipe on the
local host from delivery by SMTP over TCP/IP to another host. As far as Exim is concerned, all hosts
other than the host it is running on aeenote

Return pathis another name that is used for the sender address in a message’s envelope.

The termqueueis used to refer to the set of messages awaiting delivery, because this term is in
widespread use in the context of MTAs. However, in Exim’s case the reality is more like a pool than a
gueue, because there is normally no ordering of waiting messages.

The termqueue runners used to describe a process that scans the queue and attempts to deliver those
messages whose retry times have come. This term is used by other MTAs, and also relates to the
commandung, but in Exim the waiting messages are normally processed in an unpredictable order.

The termspool directoryis used for a directory in which Exim keeps the messages on its queue — that
is, those that it is in the process of delivering. This should not be confused with the directory in which
local mailboxes are stored, which is called a “spool directory” by some people. In the Exim documen-
tation, “spool” is always used in the first sense.

5 Introduction (1)

2. Incorporated code

A number of pieces of external code are included in the Exim distribution.

* Regular expressions are supported in the main Exim program and in the Exim monitor using the
freely-distributable PCRE library, copyright © University of Cambridge. The source is distributed
in the directorysrc/pcre However, this is a cut-down version of PCRE. If you want to use the
PCRE library in other programs, you should obtain and install the full version of the library from
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre

» Support for the cdb (Constant DataBase) lookup method is provided by code contributed by Nigel
Metheringham of (at the time he contributed it) Planet Online Ltd. The implementation is com-
pletely contained within the code of Exim. It does not link against an external cdb library. The code
contains the following statements:

Copyright © 1998 Nigel Metheringham, Planet Online Ltd

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version. This code implements
Dan Bernstein’s Constant DataBase (cdb) spec. Information, the spec and sample code
for cdb can be obtained fromttp://www.pobox.com/~djb/cdb.html. This implemen-

tation borrows some code from Dan Bernstein’s implementation (which has no license
restrictions applied to it).

» Client support for Microsoft'sSecure Password Authenticaticnprovided by code contributed by
Marc Prud’hommeaux. Server support was contributed by Tom Kistner. This includes code taken
from the Samba project, which is released under the Gnu GPL.

» Support for calling the Cyrupwcheckandsaslauthddaemons is provided by code taken from the
Cyrus-SASL library and adapted by Alexander S. Sabourenkov. The permission notice appears
below, in accordance with the conditions expressed therein.

Copyright © 2001 Carnegie Mellon University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

(3) The name “Carnegie Mellon University” must not be used to endorse or promote
products derived from this software without prior written permission. For per-
mission or any other legal details, please contact

Office of Technology Transfer
Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3890

(412) 268-4387, fax: (412) 268-7395
tech-transfer@andrew.cmu.edu

(4) Redistributions of any form whatsoever must retain the following
acknowledgment:

“This product includes software developed by Computing Services at Carnegie
Mellon University fttp://www.cmu.edu/computing/.”

CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES

6 Incorporated code (2)

OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL CARNEGIE
MELLON UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

» The Exim Monitor program, which is an X-Window application, includes modified versions of the
Athena StripChart and TextPop widgets. This code is copyright by DEC and MIT, and their
permission notice appears below, in accordance with the conditions expressed therein.

Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and
the Massachusetts Institute of Technology, Cambridge, Massachusetts.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appear in all copies and that both that copyright notice and this permission notice appear
in supporting documentation, and that the names of Digital or MIT not be used in
advertising or publicity pertaining to distribution of the software without specific, writ-
ten prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOFTWARE.

* Many people have contributed code fragments, some large, some small, that were not covered by

any specific licence requirements. It is assumed that the contributors are happy to see their code
incorporated into Exim under the GPL.

7 Incorporated code (2)

3. How Exim receives and delivers mail

3.1 Overall philosophy

Exim is designed to work efficiently on systems that are permanently connected to the Internet and
are handling a general mix of mail. In such circumstances, most messages can be delivered immedi-
ately. Consequently, Exim does not maintain independent queues of messages for specific domains or
hosts, though it does try to send several messages in a single SMTP connection after a host has been
down, and it also maintains per-host retry information.

3.2 Policy control

Policy controls are now an important feature of MTAs that are connected to the Internet. Perhaps their
most important job is to stop MTAs being abused as “open relays” by misguided individuals who
send out vast amounts of unsolicited junk, and want to disguise its source. Exim provides flexible
facilities for specifying policy controls on incoming mail:

» Exim 4 (unlike previous versions of Exim) implements policy controls on incoming mail by means
of Access Control List¢ACLs). Each list is a series of statements that may either grant or deny
access. ACLs can be used at several places in the SMTP dialogue while receiving a message from a
remote host. However, the most common places are after each RCPT command, and at the very
end of the message. The sysadmin can specify conditions for accepting or rejecting individual
recipients or the entire message, respectively, at these two points (see chapter 40). Denial of access
results in an SMTP error code.

* An ACL is also available for locally generated, non-SMTP messages. In this case, the only avail-
able actions are to accept or deny the entire message.

* When Exim is compiled with the content-scanning extension, facilities are provided in the ACL
mechanism for passing the message to external virus and/or spam scanning software. The result of
such a scan is passed back to the ACL, which can then use it to decide what to do with the
message.

* When a message has been received, either from a remote host or from the local host, but before the
final acknowledgment has been sent, a locally supplied C function dattatl scan()can be run to
inspect the message and decide whether to accept it or not (see chapter 42). If the message is
accepted, the list of recipients can be modified by the function.

* Using thelocal_scan()mechanism is another way of calling external scanner software SFie
Exim add-on package works this way. It does not require Exim to be compiled with the content-
scanning extension.

» After a message has been accepted, a further checking mechanism is available in the form of the
system filtesee chapter 43). This runs at the start of every delivery process.

3.3 User filters

In a conventional Exim configuration, users are able to run private filters by setting up appropriate
.forwardfiles in their home directories. See chapter 22 (aboutdgtgectrouter) for the configuration
needed to support this, and the separate document eriitieds interfaces to mail filterindor user
details. Two different kinds of filtering are available:

» Sieve filters are written in the standard filtering language that is defined by RFC 3028.

» Exim filters are written in a syntax that is unique to Exim, but which is more powerful than Sieve,
which it pre-dates.

User filters are run as part of the routing process, described below.

8 Receiving and delivering mail (3)

3.4 Message identification

Every message handled by Exim is givemassage iavhich is sixteen characters long. It is divided

into three parts, separated by hyphens, for exarhféDhn-0001bo-D3 . Each part is a sequence

of letters and digits, normally encoding numbers in base 62. However, in the Darwin operating system
(Mac OS X) and when Exim is compiled to run under Cygwin, base 36 (avoiding the use of lower
case letters) is used instead, because the message id is used to construct file names, and the names of
files in those systems are not always case-sensitive.

The detail of the contents of the message id have changed as Exim has evolved. Earlier versions relied
on the operating system not re-using a process id (pid) within one second. On modern operating
systems, this assumption can no longer be made, so the algorithm had to be changed. To retain
backward compatibility, the format of the message id was retained, which is why the following rules
are somewhat eccentric:

» The first six characters of the message id are the time at which the message started to be received,
to a granularity of one second. That is, this field contains the number of seconds since the start of
the epoch (the normal Unix way of representing the date and time of day).

» After the first hyphen, the next six characters are the id of the process that received the message.
» There are two different possibilities for the final two characters:

(1) If localhost_numberis not set, this value is the fractional part of the time of reception,
normally in units of 1/2000 of a second, but for systems that must use base 36 instead of base
62 (because of case-insensitive file systems), the units are 1/1000 of a second.

(2) If localhost_numberis set, it is multiplied by 200 (100) and added to the fractional part of
the time, which in this case is in units of 1/200 (1/100) of a second.

After a message has been received, Exim waits for the clock to tick at the appropriate resolution
before proceeding, so that if another message is received by the same process, or by another process
with the same (re-used) pid, it is guaranteed that the time will be different. In most cases, the clock
will already have ticked while the message was being received.

3.5 Receiving malil

The only way Exim can receive mail from another host is using SMTP over TCP/IP, in which case the
sender and recipient addresses are transferred using SMTP commands. However, from a locally
running process (such as a user’'s MUA), there are several possibilities:

» If the process runs Exim with thdom option, the message is read non-interactively (usually via a
pipe), with the recipients taken from the command line, or from the body of the messdgs if
also used.

« If the process runs Exim with théS option, the message is also read non-interactively, but in this
case the recipients are listed at the start of the message in a series of SMTP RCPT commands,
terminated by a DATA command. This is so-called “batch SMTP” format, but it isn’t really SMTP.
The SMTP commands are just another way of passing envelope addresses in a non-interactive
submission.

* If the process runs Exim with thdds option, the message is read interactively, using the SMTP
protocol. A two-way pipe is normally used for passing data between the local process and the Exim
process. This is “real” SMTP and is handled in the same way as SMTP over TCP/IP. For example,
the ACLs for SMTP commands are used for this form of submission.

» A local process may also make a TCP/IP call to the host's loopback address (127.0.0.1) or any
other of its IP addresses. When receiving messages, Exim does not treat the loopback address
specially. It treats all such connections in the same way as connections from other hosts.

In the three cases that do not involve TCP/IP, the sender address is constructed from the login name of
the user that called Exim and a default qualification domain (which can be set Quah/_domain
configuration option). For local or batch SMTP, a sender address that is passed using the SMTP
MAIL command is ignored. However, the system administrator may allow certain users (“trusted

9 Receiving and delivering mail (3)

users”) to specify a different sender address unconditionally, or all users to specify certain forms of
different sender address. THeoption or the SMTP MAIL command is used to specify these different
addresses. See section 5.2 for details of trusted users, andttheted_set_sendeoption for a way

of allowing untrusted users to change sender addresses.

Messages received by either of the non-interactive mechanisms are subject to checking by the non-
SMTP ACL, if one is defined. Messages received using SMTP (either over TCP/IP, or interacting with
a local process) can be checked by a number of ACLs that operate at different times during the SMTP
session. Either individual recipients, or the entire message, can be rejected if local policy require-
ments are not met. Thecal _scan()function (see chapter 42) is run for all incoming messages.

Exim can be configured not to start a delivery process when a message is received; this can be
unconditional, or depend on the number of incoming SMTP connections or the system load. In these

situations, new messages wait on the queue until a queue runner process picks them up. However, in
standard configurations under normal conditions, delivery is started as soon as a message is received.

3.6 Handling an incoming message

When Exim accepts a message, it writes two files in its spool directory. The first contains the envelope
information, the current status of the message, and the header lines, and the second contains the body
of the message. The names of the two spool files consist of the message id, followeddoyhe file
containing the envelope and header, dhdor the data file.

By default all these message files are held in a single directory dalted inside the general Exim

spool directory. Some operating systems do not perform very well if the number of files in a directory
gets large; to improve performance in such casesspiie spool_directory option can be used. This
causes Exim to split up the input files into 62 sub-directories whose names are single letters or digits.
When this is done, the queue is processed one sub-directory at a time instead of all at once, which can
improve overall performance even when there are not enough files in each directory to affect file
system performance.

The envelope information consists of the address of the message’s sender and the addresses of the
recipients. This information is entirely separate from any addresses contained in the header lines. The
status of the message includes a list of recipients who have already received the message. The format
of the first spool file is described in chapter 53.

Address rewriting that is specified in the rewrite section of the configuration (see chapter 31) is done
once and for all on incoming addresses, both in the header lines and the envelope, at the time the
message is accepted. If during the course of delivery additional addresses are generated (for example,
via aliasing), these new addresses are rewritten as soon as they are generated. At the time a message is
actually delivered (transported) further rewriting can take place; because this is a transport option, it
can be different for different forms of delivery. It is also possible to specify the addition or removal of
certain header lines at the time the message is delivered (see chapters 15 and 24).

3.7 Life of a message

A message remains in the spool directory until it is completely delivered to its recipients or to an error
address, or until it is deleted by an administrator or by the user who originally created it. In cases
when delivery cannot proceed — for example, when a message can neither be delivered to its recipi-
ents nor returned to its sender, the message is marked “frozen” on the spool, and no more deliveries
are attempted.

An administrator can “thaw” such messages when the problem has been corrected, and can also
freeze individual messages by hand if necessary. In addition, an administrator can force a delivery
error, causing a bounce message to be sent.

There are options calle@ynore_bounce_errors_after and timeout_frozen_after, which discard
frozen messages after a certain time. The first applies only to frozen bounces, the second to any
frozen messages.

While Exim is working on a message, it writes information about each delivery attempt to its main
log file. This includes successful, unsuccessful, and delayed deliveries for each recipient (see chapter

10 Receiving and delivering mail (3)

49). The log lines are also written to a sepanaiessage lodile for each message. These logs are
solely for the benefit of the administrator, and are normally deleted along with the spool files when
processing of a message is complete. The use of individual message logs can be disabled by setting
no_message_logshis might give an improvement in performance on very busy systems.

All the information Exim itself needs to set up a delivery is kept in the first spool file, along with the
header lines. When a successful delivery occurs, the address is immediately written at the end of a
journal file, whose name is the message id followed.by At the end of a delivery run, if there are
some addresses left to be tried again later, the first spool filektH#e) is updated to indicate which

these are, and the journal file is then deleted. Updating the spool file is done by writing a new file and
renaming it, to minimize the possibility of data loss.

Should the system or the program crash after a successful delivery but before the spool file has been
updated, the journal is left lying around. The next time Exim attempts to deliver the message, it reads
the journal file and updates the spool file before proceeding. This minimizes the chances of double
deliveries caused by crashes.

3.8 Processing an address for delivery

The main delivery processing elements of Exim are cattaders and transports and collectively
these are known adrivers Code for a number of them is provided in the source distribution, and
compile-time options specify which ones are included in the binary. Run time options specify which
ones are actually used for delivering messages.

Each driver that is specified in the run time configuration isnstanceof that particular driver type.
Multiple instances are allowed; for example, you can set up several diffengtpitransports, each

with different option values that might specify different ports or different timeouts. Each instance has
its own identifying name. In what follows we will normally use the instance name when discussing
one particular instance (that is, one specific configuration of the driver), and the generic driver name
when discussing the driver’s features in general.

A routeris a driver that operates on an address, either determining how its delivery should happen, by
assigning it to a specific transport, or converting the address into one or more new addresses (for
example, via an alias file). A router may also explicitly choose to fail an address, causing it to be
bounced.

A transportis a driver that transmits a copy of the message from Exim’s spool to some destination.
There are two kinds of transport: forlacal transport, the destination is a file or a pipe on the local
host, whereas for &motetransport the destination is some other host. A message is passed to a
specific transport as a result of successful routing. If a message has several recipients, it may be
passed to a number of different transports.

An address is processed by passing it to each configured router instance in turn, subject to certain
preconditions, until a router accepts the address or specifies that it should be bounced. We will
describe this process in more detail shortly. First, as a simple example, we consider how each recipi-
ent address in a message is processed in a small configuration of three routers.

To make this a more concrete example, it is described in terms of some actual routers, but remember,
this is only an example. You can configure Exim’s routers in many different ways, and there may be
any number of routers in a configuration.

The first router that is specified in a configuration is often one that handles addresses in domains that
are not recognized specially by the local host. These are typically addresses for arbitrary domains on
the Internet. A precondition is set up which looks for the special domains known to the host (for
example, its own domain name), and the router is run for addresses that ahatch. Typically, this

is a router that looks up domains in the DNS in order to find the hosts to which this address routes. If

it succeeds, the address is assigned to a suitable SMTP transport; if it does not succeed, the router is
configured to fail the address.

The second router is reached only when the domain is recognized as one that “belongs” to the local
host. This router does redirection — also known as aliasing and forwarding. When it generates one or
more new addresses from the original, each of them is routed independently from the start. Otherwise,

11 Receiving and delivering mail (3)

the router may cause an address to fail, or it may simply decline to handle the address, in which case
the address is passed to the next router.

The final router in many configurations is one that checks to see if the address belongs to a local
mailbox. The precondition may involve a check to see if the local part is the name of a login account,

or it may look up the local part in a file or a database. If its preconditions are not met, or if the router

declines, we have reached the end of the routers. When this happens, the address is bounced.

3.9 Processing an address for verification

As well as being used to decide how to deliver to an address, Exim’s routers are also wsadidéss
verification Verification can be requested as one of the checks to be performed in an ACL for
incoming messages, on both sender and recipient addresses, and it can be tested dgingritie
-bvs command line options.

When an address is being verified, the routers are run in “verify mode”. This does not affect the way
the routers work, but it is a state that can be detected. By this means, a router can be skipped or made
to behave differently when verifying. A common example is a configuration in which the first router
sends all messages to a message-scanning program, unless they have been previously scanned. Thus,
the first router accepts all addresses without any checking, making it useless for verifying. Normally,
theno_verify option would be set for such a router, causing it to be skipped in verify mode.

3.10 Running an individual router

As explained in the example above, a number of preconditions are checked before running a router. If
any are not met, the router is skipped, and the address is passed to the next router. When all the
preconditions on a routeare met, the router is run. What happens next depends on the outcome,
which is one of the following:

» accept The router accepts the address, and either assigns it to a transport, or generates one or more
“child” addresses. Processing the original address ceases, unlessséenoption is set on the
router. This option can be used to set up multiple deliveries with different routing (for example, for
keeping archive copies of messages). Wheseenis set, the address is passed to the next router.
Normally, however, aacceptreturn marks the end of routing.

Any child addresses generated by the router are processed independently, starting with the first
router by default. It is possible to change this by setting ré@irect_router option to specify

which router to start at for child addresses. Unlgass_router(see below) the router specified by
redirect_router may be anywhere in the router configuration.

» pass The router recognizes the address, but cannot handle it itself. It requests that the address be
passed to another router. By default the address is passed to the next router, but this can be changed
by setting thepass_router option. However, (unlikeedirect_router) the named router must be
below the current router (to avoid loops).

» decline The router declines to accept the address because it does not recognize it at all. By default,
the address is passed to the next router, but this can be prevented by setting rifere option.
Whenno_moreis set, all the remaining routers are skipped. In effaot,more convertsdecline
into fail.

« fail: The router determines that the address should fail, and queues it for the generation of a bounce
message. There is no further processing of the original addressumdessis set on the router.

» defer The router cannot handle the address at the present time. (A database may be offline, or a
DNS lookup may have timed out.) No further processing of the address happens in this delivery
attempt. It is tried again next time the message is considered for delivery.

 error: There is some error in the router (for example, a syntax error in its configuration). The action
is as for defer.

If an address reaches the end of the routers without having been accepted by any of them, it is
bounced as unrouteable. The default error message in this situation is “unrouteable address”, but you

12 Receiving and delivering mail (3)

can set your own message by making use ofddwenot_route_messageption. This can be set for
any router; the value from the last router that “saw” the address is used.

Sometimes while routing you want to fail a delivery when some conditions are met but others are not,
instead of passing the address on for further routing. You can do this by having a second router that
explicitly fails the delivery when the relevant conditions are met. Téwirect router has a “fail”

facility for this purpose.

3.11 Duplicate addresses

Once routing is complete, Exim scans the addresses that are assigned to local and remote transports,
and discards any duplicates that it finds. During this check, local parts are treated as case-sensitive.
This happens only when actually delivering a message; when testing routerstyitil the routed
addresses are shown.

3.12 Router preconditions

The preconditions that are tested for each router are listed below, in the order in which they are tested.
The individual configuration options are described in more detail in chapter 15.

» Thelocal _part_prefix andlocal_part_suffix options can specify that the local parts handled by
the router may or must have certain prefixes and/or suffixes. If a mandatory affix (prefix or suffix)
is not present, the router is skipped. These conditions are tested first. When an affix is present, it
is removed from the local part before further processing, including the evaluation of any other
conditions.

* Routers can be designated for use only when not verifying an address, that is, only when routing it
for delivery (or testing its delivery routing). If theerify option is set false, the router is skipped
when Exim is verifying an address. Setting therify option actually sets two optionserify_
sender and verify_recipient, which independently control the use of the router for sender and
recipient verification. You can set these options directly if you want a router to be used for only one
type of verification.

» If the address_tesbption is set false, the router is skipped when Exim is run with-tiv@ption to
test an address routing. This can be helpful when the first router sends all new messages to a
scanner of some sort; it makes it possible to ti#teto test subsequent delivery routing without
having to simulate the effect of the scanner.

* Routers can be designated for use only when verifying an address, as opposed to routing it for
delivery. Theverify_only option controls this.

 Individual routers can be explicitly skipped when running the routers to check an address given in
the SMTP EXPN command (see #gn option).

« If the domainsoption is set, the domain of the address must be in the set of domains that it defines.

 If the local_parts option is set, the local part of the address must be in the set of local parts that it
defines. Iflocal_part_prefix orlocal_part_suffix is in use, the prefix or suffix is removed from the
local part before this check. If you want to do precondition tests on local parts that include affixes,
you can do so by using eondition option (see below) that uses the varialffscal part $local
part_prefix and$local_part_suffixas necessary.

 If the check _local_useroption is set, the local part must be the name of an account on the local
host. If this check succeeds, the uid and gid of the local user are plackidcal user uidand
$local_user_gidand the user’'s home directory is placedbimome these values can be used in the
remaining preconditions.

« If the router_home_directory option is set, it is expanded at this point, because it overrides the
value of$home If this expansion were left till later, the value $ifiomeas set bycheck_local _user
would be used in subsequent tests. Having two different valug&bahein the same router could
lead to confusion.

13 Receiving and delivering mail (3)

If the sendersoption is set, the envelope sender address must be in the set of addresses that it
defines.

If the require_files option is set, the existence or non-existence of specified files is tested.

If the condition option is set, it is evaluated and tested. This option uses an expanded string to
allow you to set up your own custom preconditions. Expanded strings are described in chapter 11.

Note thatrequire_files comes near the end of the list, so you cannot use it to check for the existence
of a file in which to lookup up a domain, local part, or sender. However, as these options are all
expanded, you can use teeistsexpansion condition to make such tests within each condition. The
require_files option is intended for checking files that the router may be going to use internally, or
which are needed by a specific transport (for exammiecmailrg).

3.13 Delivery in detall
When a message is to be delivered, the sequence of events is as follows:

If a system-wide filter file is specified, the message is passed to it. The filter may add recipients to

the message, replace the recipients, discard the message, cause a new message to be generated, or
cause the message delivery to fail. The format of the system filter file is the same as for Exim user
filter files, described in the separate document entillgo’s interfaces to mail filtering(Note:

Sieve cannot be used for system filter files.)

Some additional features are available in system filters — see chapter 43 for details. Note that a
message is passed to the system filter only once per delivery attempt, however many recipients it
has. However, if there are several delivery attempts because one or more addresses could not be
immediately delivered, the system filter is run each time. The filter conditisin delivery can be

used to detect the first run of the system filter.

Each recipient address is offered to each configured router in turn, subject to its preconditions, until
one is able to handle it. If no router can handle the address, that is, if they all decline, the address is
failed. Because routers can be targeted at particular domains, several locally handled domains can
be processed entirely independently of each other.

A router that accepts an address may assign it to a local or a remote transport. However, the
transport is not run at this time. Instead, the address is placed on a list for the particular transport,
which will be run later. Alternatively, the router may generate one or more new addresses (typically
from alias, forward, or filter files). New addresses are fed back into this process from the top, but in
order to avoid loops, a router ignores any address which has an identically-named ancestor that was
processed by itself.

When all the routing has been done, addresses that have been successfully handled are passed to
their assigned transports. When local transports are doing real local deliveries, they handle only
one address at a time, but if a local transport is being used as a pseudo-remote transport (for
example, to collect batched SMTP messages for transmission by some other means) multiple
addresses can be handled. Remote transports can always handle more than one address at a time,
but can be configured not to do so, or to restrict multiple addresses to the same domain.

Each local delivery to a file or a pipe runs in a separate process under a non-privileged uid, and
these deliveries are run one at a time. Remote deliveries also run in separate processes, normally
under a uid that is private to Exim (“the Exim user”), but in this case, several remote deliveries can
be run in parallel. The maximum number of simultaneous remote deliveries for any one message is
set by theremote_max_parallel option. The order in which deliveries are done is not defined,
except that all local deliveries happen before any remote deliveries.

When it encounters a local delivery during a queue run, Exim checks its retry database to see if
there has been a previous temporary delivery failure for the address before running the local
transport. If there was a previous failure, Exim does not attempt a new delivery until the retry time
for the address is reached. However, this happens only for delivery attempts that are part of a queue
run. Local deliveries are always attempted when delivery immediately follows message reception,
even if retry times are set for them. This makes for better behaviour if one particular message is
causing problems (for example, causing quota overflow, or provoking an error in a filter file).

14 Receiving and delivering mail (3)

* Remote transports do their own retry handling, since an address may be deliverable to one of a
number of hosts, each of which may have a different retry time. If there have been previous
temporary failures and no host has reached its retry time, no delivery is attempted, whether in a
gueue run or not. See chapter 32 for details of retry strategies.

« If there were any permanent errors, a bounce message is returned to an appropriate address (the
sender in the common case), with details of the error for each failing address. Exim can be
configured to send copies of bounce messages to other addresses.

» If one or more addresses suffered a temporary failure, the message is left on the queue, to be tried
again later. Delivery of these addresses is said tieferred

* When all the recipient addresses have either been delivered or bounced, handling of the message is
complete. The spool files and message log are deleted, though the message log can optionally be
preserved if required.

3.14 Retry mechanism

Exim's mechanism for retrying messages that fail to get delivered at the first attempt is the queue
runner process. You must either run an Exim daemon that uses tyation with a time interval to

start queue runners at regular intervals, or use some other means (stroh)de start them. If you

do not arrange for queue runners to be run, messages that fail temporarily at the first attempt will
remain on your queue for ever. A queue runner process works its way through the queue, one message
at a time, trying each delivery that has passed its retry time. You can run several queue runners at
once.

Exim uses a set of configured rules to determine when next to retry the failing address (see chapter
32). These rules also specify when Exim should give up trying to deliver to the address, at which
point it generates a bounce message. If no retry rules are set for a particular host, address, and error
combination, no retries are attempted, and temporary errors are treated as permanent.

3.15 Temporary delivery failure

There are many reasons why a message may not be immediately deliverable to a particular address.
Failure to connect to a remote machine (because it, or the connection to it, is down) is one of the most
common. Temporary failures may be detected during routing as well as during the transport stage of
delivery. Local deliveries may be delayed if NFS files are unavailable, or if a mailbox is on a file
system where the user is over quota. Exim can be configured to impose its own quotas on local
mailboxes; where system quotas are set they will also apply.

If a host is unreachable for a period of time, a number of messages may be waiting for it by the time it
recovers, and sending them in a single SMTP connection is clearly beneficial. Whenever a delivery to
a remote host is deferred,

Exim makes a note in its hints database, and whenever a successful SMTP delivery has happened, it
looks to see if any other messages are waiting for the same host. If any are found, they are sent over
the same SMTP connection, subject to a configuration limit as to the maximum number in any one
connection.

3.16 Permanent delivery failure

When a message cannot be delivered to some or all of its intended recipients, a bounce message is
generated. Temporary delivery failures turn into permanent errors when their timeout expires. All the
addresses that fail in a given delivery attempt are listed in a single message. If the original message
has many recipients, it is possible for some addresses to fail in one delivery attempt and others to fail
subsequently, giving rise to more than one bounce message. The wording of bounce messages can be
customized by the administrator. See chapter 46 for details.

Bounce messages contain ArFailed-Recipientsheader line that lists the failed addresses, for the
benefit of programs that try to analyse such messages automatically.

15 Receiving and delivering mail (3)

A bounce message is normally sent to the sender of the original message, as obtained from the
message’s envelope. For incoming SMTP messages, this is the address given in the MAIL command.
However, when an address is expanded via a forward or alias file, an alternative address can be
specified for delivery failures of the generated addresses. For a mailing list expansion (see section
47.2) it is common to direct bounce messages to the manager of the list.

3.17 Failures to deliver bounce messages

If a bounce message (either locally generated or received from a remote host) itself suffers a perma-
nent delivery failure, the message is left on the queue, but it is frozen, awaiting the attention of an
administrator. There are options that can be used to make Exim discard such failed messages, or to
keep them for only a short time (d&®weout_frozen_after andignore_bounce_errors_afte}.

16 Receiving and delivering mail (3)

4. Building and installing Exim

4.1 Unpacking

Exim is distributed as a gzipped or bzipped tar file which, when unpacked, creates a directory with the
name of the current release (for examplém-4.69 into which the following files are placed:

ACKNOWLEDGMENTS contains some acknowledgments

CHANGES contains a reference to where changes are documented
LICENCE the GNU General Public Licence

Makefile top-level make file

NOTICE conditions for the use of Exim

README list of files, directories and simple build instructions

Other files whose names begin WREADMEmay also be present. The following subdirectories are
created:

Local an empty directory for local configuration files
(O OS-specific files

doc documentation files

exim_monitor source files for the Exim monitor

scripts scripts used in the build process

src remaining source files

util independent utilities

The main utility programs are contained in thre directory, and are built with the Exim binary. The
util directory contains a few optional scripts that may be useful to some sites.

4.2 Multiple machine architectures and operating systems

The building process for Exim is arranged to make it easy to build binaries for a number of different
architectures and operating systems from the same set of source files. Compilation does not take place
in the src directory. Instead, #&uild directoryis created for each architecture and operating system.
Symbolic links to the sources are installed in this directory, which is where the actual building takes
place. In most cases, Exim can discover the machine architecture and operating system for itself, but
the defaults can be overridden if necessary.

4.3 DBM libraries

Even if you do not use any DBM files in your configuration, Exim still needs a DBM library in order
to operate, because it uses indexed files for its hints databases. Unfortunately, there are a number of
DBM libraries in existence, and different operating systems often have different ones installed.

If you are using Solaris, IRIX, one of the modern BSD systems, or a modern Linux distribution, the
DBM configuration should happen automatically, and you may be able to ignore this section.
Otherwise, you may have to learn more than you would like about DBM libraries from what follows.

Licensed versions of Unix normally contain a library of DBM functions operating vianitiiem
interface, and this is what Exim expects by default. Free versions of Unix seem to vary in what they
contain as standard. In particular, some early versions of Linux have no default DBM library, and
different distributors have chosen to bundle different libraries with their packaged versions. However,
the more recent releases seem to have standardized on the Berkeley DB library.

Different DBM libraries have different conventions for naming the files they use. When a program
opens a file calledbmfile there are several possibilities:

(1) A traditionalndbmimplementation, such as that supplied as part of Solaris, operates on two files
calleddbmfile.diranddbmfile.pag

(2) The GNU library,gdbm operates on a single file. If used via itdbmcompatibility interface it
makes two different hard links to it with namdbmfile.diranddbmfile.pagbut if used via its
native interface, the file name is used unmodified.

17 Building and installing Exim (4)

(3) The Berkeley DB package, if called via tsbmcompatibility interface, operates on a single file
called dbmfile.db but otherwise looks to the programmer exactly the same as the traditional
ndbmimplementation.

(4) If the Berkeley package is used in its native mode, it operates on a single file dbiteide the
programmer’s interface is somewhat different to the traditiodbininterface.

(5) To complicate things further, there are several very different versions of the Berkeley DB pack-
age. Version 1.85 was stable for a very long time, releasearftl 3x were current for a while,
but the latest versions are now numberex Maintenance of some of the earlier releases has
ceased. All versions of Berkeley DB can be obtained fitip//www.sleepycat.com/

(6) Yet another DBM library, calletdb, is available fromhttp://download.sourceforge.net/tdb It
has its own interface, and also operates on a single file.

Exim and its utilities can be compiled to use any of these interfaces. In order to use any version of the
Berkeley DB package in native mode, you must set USE_DB in an appropriate configuration file
(typically Local/Makefilg. For example:

USE_DB=yes

Similarly, for gdbm you set USE_GDBM, and for tdb you set USE_TDB. An error is diagnosed if
you set more than one of these.

At the lowest level, the build-time configuration sets none of these options, thereby assuming an
interface of type (1). However, some operating system configuration files (for example, those for the
BSD operating systems and Linux) assume type (4) by setting USE_DB as their default, and the
configuration files for Cygwin set USE_GDBM. Anything you setLiocal/Makefile however, over-

rides these system defaults.

As well as setting USE_DB, USE_GDBM, or USE_TDB, it may also be necessary to set DBMLIB,
to cause inclusion of the appropriate library, as in one of these lines:

DBMLIB = -ldb
DBMLIB = -ltdb

Settings like that will work if the DBM library is installed in the standard place. Sometimes it is not,
and the library’s header file may also not be in the default path. You may need to set INCLUDE to
specify where the header file is, and to specify the path to the library more fully in DBMLIB, as in
this example:

INCLUDE=-l/usr/locall/include/db-4.1
DBMLIB=/usr/local/lib/db-4.1/libdb.a

There is further detailed discussion about the various DBM libraries in thddidébm.discuss.txh
the Exim distribution.

4.4 Pre-building configuration

Before building Exim, a local configuration file that specifies options independent of any operating
system has to be created with the nanoeal/Makefile A template for this file is supplied as the file
src/EDITME and it contains full descriptions of all the option settings therein. These descriptions are
therefore not repeated here. If you are building Exim for the first time, the simplest thing to do is to
copysrc/EDITMEto Local/Makefile then read it and edit it appropriately.

There are three settings that you must supply, because Exim will not build without them. They are the
location of the run time configuration file (CONFIGURE_FILE), the directory in which Exim binaries
will be installed (BIN_DIRECTORY), and the identity of the Exim user (EXIM_USER and maybe
EXIM_GROUP as well). The value of CONFIGURE_FILE can in fact be a colon-separated list of file
names; Exim uses the first of them that exists.

There are a few other parameters that can be specified either at build time or at run time, to enable the
same binary to be used on a number of different machines. However, if the locations of Exim’'s spool
directory and log file directory (if not within the spool directory) are fixed, it is recommended that

18 Building and installing Exim (4)

you specify them inLocal/Makefileinstead of at run time, so that errors detected early in Exim’s
execution (such as a malformed configuration file) can be logged.

Exim’s interfaces for calling virus and spam scanning software directly from access control lists are
not compiled by default. If you want to include these facilities, you need to set

WITH_CONTENT_SCAN=yes
in your Local/Makefile For details of the facilities themselves, see chapter 41.

If you are going to build the Exim monitor, a similar configuration process is required. The file
exim_monitor/EDITMEmust be edited appropriately for your installation and saved under the name
Local/eximon.conflf you are happy with the default settings describedexim_monitor/EDITME
Local/eximon.confan be empty, but it must exist.

This is all the configuration that is needed in straightforward cases for known operating systems.
However, the building process is set up so that it is easy to override options that are set by default or
by operating-system-specific configuration files, for example to change the name of the C compiler,
which defaults tgycc See section 4.11 below for details of how to do this.

4.5 Support for iconv()

The contents of header lines in messages may be encoded according to the rules described RFC 2047.
This makes it possible to transmit characters that are not in the ASCII character set, and to label them
as being in a particular character set. When Exim is inspecting header lines by means$bf the
mechanism, it decodes them, and translates them into a specified character set (default ISO-8859-1).
The translation is possible only if the operating system supporisoting) function.

However, some of the operating systems that supmyv() do not support very many conversions.
The GNUIibiconv library (available fromhttp://www.gnu.org/software/libiconv/) can be installed
on such systems to remedy this deficiency, as well as on systems that do not isopp(yat all.
After installinglibiconv, you should add

HAVE_ICONV=yes

to yourLocal/Makefileand rebuild Exim.

4.6 Including TLS/SSL encryption support

Exim can be built to support encrypted SMTP connections, using the STARTTLS command as per
RFC 2487. It can also support legacy clients that expect to start a TLS session immediately on
connection to a non-standard port (see tlseon_connect_portsruntime option and thetls-on-
connectcommand line option).

If you want to build Exim with TLS support, you must first install either the OpenSSL or GnuTLS
library. There is no cryptographic code in Exim itself for implementing SSL.

If OpenSSL is installed, you should set

SUPPORT_TLS=yes
TLS_LIBS=-Issl -Icrypto

in Local/Makefile You may also need to specify the locations of the OpenSSL library and include
files. For example:

SUPPORT_TLS=yes
TLS_LIBS=-L/usr/local/openssl/lib -Issl -Icrypto
TLS_INCLUDE=-I/usr/local/openssl/include/

If GNUTLS is installed, you should set

SUPPORT_TLS=yes
USE_GNUTLS=yes
TLS_LIBS=-Ignutls -Itasnl -lgcrypt

19 Building and installing Exim (4)

in Local/Makefile and again you may need to specify the locations of the library and include files. For
example:

SUPPORT_TLS=yes

USE_GNUTLS=yes

TLS_LIBS=-L/usr/gnu/lib -Ignutls -ltasnl -lgcrypt
TLS_INCLUDE=-l/usr/gnu/include

You do not need to set TLS_INCLUDE if the relevant directory is already specified in INCLUDE.
Details of how to configure Exim to make use of TLS are given in chapter 39.

4.7 Use of tcpwrappers

Exim can be linked with thécpwrapperslibrary in order to check incoming SMTP calls using the
tcpwrapperscontrol files. This may be a convenient alternative to Exim’s own checking facilities for
installations that are already making usdagwrapperdor other purposes. To do this, you should set
USE_TCP_WRAPPERS ibhocal/Makefile arrange for the filécpd.hto be available at compile time,
and also ensure that the libralipwrap.ais available at link time, typically by includingwrap in
EXTRALIBS_EXIM. For example, iftcpwrapperds installed inusr/local you might have

USE_TCP_WRAPPERS=yes
CFLAGS=-0 -l/usr/local/include
EXTRALIBS_EXIM=-L/usr/local/lib -lwrap

in Local/Makefile The name to use in thepwrapperscontrol files is “exim”. For example, the line
exim : LOCAL 192.168.1. .friendly.domain.example

in your /etc/hosts.allovfile allows connections from the local host, from the subnet 192.168.1.0/24,
and from all hosts infriendly.domain.exampleAll other connections are denied. Consult the
tcpwrappersdocumentation for further details.

4.8 Including support for IPv6

Exim contains code for use on systems that have IPv6 support. Sét#E IPV6=YES in
Local/Makefilecauses the IPv6 code to be included; it may also be necessary to set IPV6_INCLUDE
and IPV6_LIBS on systems where the IPv6 support is not fully integrated into the normal include and
library files.

Two different types of DNS record for handling IPv6 addresses have been defined. AAAA records
(analogous to A records for IPv4) are in use, and are currently seen as the mainstream. Another record
type called A6 was proposed as better than AAAA because it had more flexibility. However, it was
felt to be over-complex, and its status was reduced to “experimental”. It is not known if anyone is
actually using A6 records. Exim has support for A6 records, but this is included only if you set
SUPPORT_A6=YE® Local/Makefile The support has not been tested for some time.

4.9 The building process

Once Local/Makefile(and Local/eximon.confif required) have been created, ramakeat the top

level. It determines the architecture and operating system types, and creates a build directory if one
does not exist. For example, on a Sun system running Solaris 8, the dirbatlehy5unOS5-5.8-sparc

is created. Symbolic links to relevant source files are installed in the build directory.

Warning: The-j (parallel) flag must not be used witiake the building process fails if it is set.

If this is the first timemakehas been run, it calls a script that builds a make file inside the build
directory, using the configuration files from thecal directory. The new make file is then passed to
another instance afake This does the real work, building a number of utility scripts, and then
compiling and linking the binaries for the Exim monitor (if configured), a number of utility programs,
and finally Exim itself. The commanghake makefile can be used to force a rebuild of the make
file in the build directory, should this ever be necessary.

20 Building and installing Exim (4)

If you have problems building Exim, check for any comments there may be iRERDME file
concerning your operating system, and also take a look at the FAQ, where some common problems
are covered.

4.10 Output from “make”

The output produced by thmakeprocess for compile lines is often very unreadable, because these
lines can be very long. For this reason, the normal output is suppressed by default, and instead output
similar to that which appears when compiling the 2.6 Linux kernel is generated: just a short line for
each module that is being compiled or linked. However, it is still possible to get the full output, by
calling makelike this:

FULLECHO=" make -e

The value of FULLECHO defaults to “@”, the flag character that suppresses command reflection in
make When you ask for the full output, it is given in addition to the short output.

4.11 Overriding build-time options for Exim

The main make file that is created at the beginning of the building process consists of the concat-
enation of a number of files which set configuration values, followed by a fixed seakéinstruc-

tions. If a value is set more than once, the last setting overrides any previous ones. This provides a
convenient way of overriding defaults. The files that are concatenated are, in order:

OS/Makefile-Default
OS/Makefile<ostype
Local/Makefile
Local/Makefile<ostype
Local/Makefile<archtype
Local/Makefile<ostype-<archtype
OS/Makefile-Base

where <ostype is the operating system type andrehtype is the architecture typd.ocal/Makefile
is required to exist, and the building process fails if it is absent. The other tloeal files are
optional, and are often not needed.

The values used foroestype and <archtype> are obtained from scripts callextripts/os-typeand
scripts/arch-typerespectively. If either of the environment variables EXIM_OSTYPE or EXIM_
ARCHTYPE is set, their values are used, thereby providing a means of forcing particular settings.
Otherwise, the scripts try to get values from tlm@ame command. If this fails, the shell variables
OSTYPE and ARCHTYPE are inspected. A numberdfhoctransformations are then applied, to
produce the standard names that Exim expects. You can run these scripts directly from the shell in
order to find out what values are being used on your system.

OS/Makefile-Defaultontains comments about the variables that are set therein. Some (but not all) are
mentioned below. If there is something that needs changing, review the contents of this file and the
contents of the make file for your operating systeds(Makefile-<ostypepto see what the default
values are.

If you need to change any of the values that are seD8/Makefile-Defaulor in OS/Makefile-
<ostype> or to add any new definitions, you do not need to change the original files. Instead, you
should make the changes by putting the new values in an appropde#file. For example, when
building Exim in many releases of the Tru64-Unix (formerly Digital UNIX, formerly DEC-OSF1)
operating system, it is necessary to specify that the C compiler is aalether thargcc Also, the
compiler must be called with the optieatdl, to make it recognize some of the features of Standard

C that Exim uses. (Most other compilers recognize Standard C by default.) To do this, you should
create a file calletocal/Makefile-OSFTontaining the lines

CC=cc
CFLAGS=-std1

21 Building and installing Exim (4)

If you are compiling for just one operating system, it may be easier to put these lines directly into
Local/Makefile

Keeping all your local configuration settings separate from the distributed files makes it easy to
transfer them to new versions of Exim simply by copying the contents hbdatdirectory.

Exim contains support for doing LDAP, NIS, NIS+, and other kinds of file lookup, but not all systems
have these components installed, so the default is not to include the relevant code in the binary. All
the different kinds of file and database lookup that Exim supports are implemented as separate code
modules which are included only if the relevant compile-time options are set. In the case of LDAP,
NIS, and NIS+, the settings fapcal/Makefileare:

LOOKUP_LDAP=yes
LOOKUP_NIS=yes
LOOKUP_NISPLUS=yes

and similar settings apply to the other lookup types. They are all listettiEDITME In many cases

the relevant include files and interface libraries need to be installed before compiling Exim. However,
there are some optional lookup types (such as cdb) for which the code is entirely contained within
Exim, and no external include files or libraries are required. When a lookup type is not included in the
binary, attempts to configure Exim to use it cause run time configuration errors.

Exim can be linked with an embedded Perl interpreter, allowing Perl subroutines to be called during
string expansion. To enable this facility,

EXIM_PERL=perl.0
must be defined ibhocal/Makefile Details of this facility are given in chapter 12.

The location of the X11 libraries is something that varies a lot between operating systems, and there
may be different versions of X11 to cope with. Exim itself makes no use of X11, but if you are
compiling the Exim monitor, the X11 libraries must be available. The following three variables are set
in OS/Makefile-Default

X11=/usr/X11R6
XINCLUDE=-I1$(X11)/include
XLFLAGS=-L$(X11)/lib

These are overridden in some of the operating-system configuration files. For example, in
OS/Makefile-SunOShere is

X11=/usr/openwin
XINCLUDE=-1$(X11)/include
XLFLAGS=-L$(X11)/lib -R$(X11)/lib

If you need to override the default setting for your operating system, place a definition of all three of
these variables into yolocal/Makefile-<ostypeile.

If you need to add any extra libraries to the link steps, these can be put in a variable called
EXTRALIBS, which appears in all the link commands, but by default is not defined. In contrast,
EXTRALIBS_EXIM is used only on the command for linking the main Exim binary, and not for any
associated utilities.

There is also DBMLIB, which appears in the link commands for binaries that use DBM functions
(see also section 4.3). Finally, there is EXTRALIBS_EXIMON, which appears only in the link step
for the Exim monitor binary, and which can be used, for example, to include additional X11 libraries.

The make file copes with rebuilding Exim correctly if any of the configuration files are edited.
However, if an optional configuration file is deleted, it is necessary to touch the associated non-
optional file (that isl.ocal/Makefileor Local/eximon.confbefore rebuilding.

4.12 OS-specific header files

The OS directory contains a number of files with names of the fasmh-<ostype> These are
system-specific C header files that should not normally need to be changed. There is a list of macro

22 Building and installing Exim (4)

settings that are recognized in the f@&/o0s.configuringvhich should be consulted if you are porting
Exim to a new operating system.

4.13 Overriding build-time options for the monitor

A similar process is used for overriding things when building the Exim monitor, where the files that
are involved are

OS/eximon.conf-Default
OS/eximon.confostype
Local/eximon.conf
Local/eximon.confostype
Local/eximon.confarchtype
Local/eximon.confostype--<archtype

As with Exim itself, the final three files need not exist, and in this cas@©tBk&ximon.conf-<ostype>

file is also optional. The default values @S/eximon.conf-Defauttan be overridden dynamically by
setting environment variables of the same name, preceded by EXIMON_. For example, setting
EXIMON_LOG_DEPTH in the environment overrides the value of LOG_DEPTH at run time.

4.14 Installing Exim binaries and scripts

The commandnake install runs theexim_installscript with no arguments. The script copies
binaries and utility scripts into the directory whose name is specified by the BIN_DIRECTORY
setting inLocal/Makefile The install script copies files only if they are newer than the files they are
going to replace. The Exim binary is required to be owned by root and haveethé&lbit set, for
normal configurations. Therefore, you must mmake install as root so that it can set up the
Exim binary in this way. However, in some special situations (for example, if a host is doing no local
deliveries) it may be possible to run Exim without making the binary setuid root (see chapter 52 for
details).

Exim’s run time configuration file is named by the CONFIGURE_FILE settinganal/Makefile If

this names a single file, and the file does not exist, the default configuratiandit®nfigure.default

is copied there by the installation script. If a run time configuration file already exists, it is left alone.
If CONFIGURE_FILE is a colon-separated list, naming several alternative files, no default is
installed.

One change is made to the default configuration file when it is installed: the default configuration
contains a router that references a system aliases file. The path to this file is set to the value specified
by SYSTEM_ALIASES_FILE inLocal/Makefile(/etc/aliasesby default). If the system aliases file

does not exist, the installation script creates it, and outputs a comment to the user.

The created file contains no aliases, but it does contain comments about the aliases a site should
normally have. Mail aliases have traditionally been keptatc/aliases However, some operating
systems are now usirigtc/mail/aliasesYou should check if yours is one of these, and change Exim’s
configuration if necessary.

The default configuration uses the local host’'s name as the only local domain, and is set up to do local
deliveries into the shared directofyar/mail, running as the local user. System aliases &oidvard

files in users’ home directories are supported, but no NIS or NIS+ support is configured. Domains
other than the name of the local host are routed using the DNS, with delivery over SMTP.

It is possible to install Exim for special purposes (such as building a binary distribution) in a private
part of the file system. You can do this by a command such as

make DESTDIR=/some/directory/ install

This has the effect of pre-pending the specified directory to all the file paths, except the name of the
system aliases file that appears in the default configuration. (If a default alias file is created, its name
is modified.) For backwards compatibility, ROOT is used if DESTDIR is not set, but this usage is
deprecated.

23 Building and installing Exim (4)

Running make installdoes not copy the Exim 4 conversion scrganvert4r4 or the pcretesttest
program. You will probably run the first of these only once (if you are upgrading from Exim 3), and
the second isn't really part of Exim. None of the documentation files irdtedirectory are copied,
except for the info files when you have set INFO_DIRECTORY, as described in section 4.15 below.

For the utility programs, old versions are renamed by adding the sfig their names. The Exim
binary itself, however, is handled differently. It is installed under a name that includes the version
number and the compile number, for exampiem-4.69-1 The script then arranges for a symbolic
link calledeximto point to the binary. If you are updating a previous version of Exim, the script takes
care to ensure that the namemis never absent from the directory (as seen by other processes).

If you want to see what thmake instalwill do before running it for real, you can pass threoption
to the installation script by this command:

make INSTALL_ARG=-n install

The contents of the variable INSTALL_ARG are passed to the installation script. You do not need to
be root to run this test. Alternatively, you can run the installation script directly, but this must be
from within the build directory. For example, from the top-level Exim directory you could use this
command:

(cd build-Sun0OS5-5.5.1-sparc; ../scripts/exim_install -n)
There are two other options that can be supplied to the installation script.

* -no_chownbypasses the call to change the owner of the installed binary to root, and the call to
make it a setuid binary.

» -no_symlink bypasses the setting up of the symbolic érknto the installed binary.
INSTALL_ARG can be used to pass these options to the script. For example:
make INSTALL_ARG=-no_symlink install

The installation script can also be given arguments specifying which files are to be copied. For
example, to install just the Exim binary, and nothing else, without creating the symbolic link, you
could use:

make INSTALL ARG='-no_symlink exim' install

4.15 Installing info documentation

Not all systems use the GNldfo system for documentation, and for this reason, the Texinfo source
of Exim’s documentation is not included in the main distribution. Instead it is available separately
from the ftp site (see section 1.6).

If you have defined INFO_DIRECTORY ihocal/Makefileand the Texinfo source of the documen-
tation is found in the source tree, runninggke install automatically builds the info files and
installs them.

4.16 Setting up the spool directory

When it starts up, Exim tries to create its spool directory if it does not exist. The Exim uid and gid are
used for the owner and group of the spool directory. Sub-directories are automatically created in the
spool directory as necessary.

4.17 Testing

Having installed Exim, you can check that the run time configuration file is syntactically valid by
running the following command, which assumes that the Exim binary directory is within your PATH
environment variable:

exim -bV

24 Building and installing Exim (4)

If there are any errors in the configuration file, Exim outputs error messages. Otherwise it outputs the
version number and build date, the DBM library that is being used, and information about which
drivers and other optional code modules are included in the binary. Some simple routing tests can be
done by using the address testing option. For example,

exim -bt <local username
should verify that it recognizes a local mailbox, and
exim -bt <remote address

a remote one. Then try getting it to deliver mail, both locally and remotely. This can be done by
passing messages directly to Exim, without going through a user agent. For example:

exim -v postmaster@your.domain.example
From: user@your.domain.example

To: postmaster@your.domain.example
Subject: Testing Exim

This is a test message.
D

The-v option causes Exim to output some verification of what it is doing. In this case you should see
copies of three log lines, one for the message’s arrival, one for its delivery, and one containing
“Completed”.

If you encounter problems, look at Exim’s log filemdinlog and paniclog to see if there is any
relevant information there. Another source of information is running Exim with debugging turned on,
by specifying the-d option. If a message is stuck on Exim’s spool, you can force a delivery with
debugging turned on by a command of the form

exim-d-M <exim-message-id

You must be root or an “admin user” in order to do this. Fe@ption produces rather a lot of output,
but you can cut this down to specific areas. For example, if youdisdi+route only the debugging
information relevant to routing is included. (See-heption in chapter 5 for more details.)

One specific problem that has shown up on some sites is the inability to do local deliveries into a
shared mailbox directory, because it does not have the “sticky bit” set on it. By default, Exim tries to
create a lock file before writing to a mailbox file, and if it cannot create the lock file, the delivery is
deferred. You can get round this either by setting the “sticky bit” on the directory, or by setting a
specific group for local deliveries and allowing that group to create files in the directory (see the
comments above tHecal deliverytransport in the default configuration file). Another approach is to
configure Exim not to use lock files, but just to rely famtl() locking instead. However, you should

do this only if all user agents also usentl() locking. For further discussion of locking issues, see
chapter 26.

One thing that cannot be tested on a system that is already running an MTA is the receipt of incoming
SMTP mail on the standard SMTP port. However, tb¥ option can be used to run an Exim daemon
that listens on some other port, dmetd can be used to do this. Thébh option and the
exim_checkaccesasility can be used to check out policy controls on incoming SMTP mail.

Testing a new version on a system that is already running Exim can most easily be done by building a
binary with a different CONFIGURE_FILE setting. From within the run time configuration, all other
file and directory names that Exim uses can be altered, in order to keep it entirely clear of the
production version.

4.18 Replacing another MTA with Exim

Building and installing Exim for the first time does not of itself put it in general use. The name by
which the system’s MTA is called by mail user agents is eithasr/sbin/sendmail or
lusr/lib/sendmaildepending on the operating system), and it is necessary to make this name point to
the eximbinary in order to get the user agents to pass messages to Exim. This is normally done by
renaming any existing file and makirigsr/sbin/sendmaibr /usr/lib/sendmaila symbolic link to the

25 Building and installing Exim (4)

eximbinary. It is a good idea to remove any setuid privilege and executable status from the old MTA.
It is then necessary to stop and restart the mailer daemon, if one is running.

Some operating systems have introduced alternative ways of switching MTAs. For example, if you are
running FreeBSD, you need to edit the fi#c/mail/mailer.confnstead of setting up a symbolic link
as just described. A typical example of the contents of this file for running Exim is as follows:

sendmail /usr/exim/bin/exim
send-mail lusr/exim/bin/exim
mailq {usr/exim/bin/exim -bp
newaliases {usr/bin/true

Once you have set up the symbolic link, or editetc/mail/mailer.confyour Exim installation is
“live”. Check it by sending a message from your favourite user agent.

You should consider what to tell your users about the change of MTA. Exim may have different
capabilities to what was previously running, and there are various operational differences such as the
text of messages produced by command line options and in bounce messages. If you allow your users
to make use of Exim’s filtering capabilities, you should make the document ertiedfs interface

to mail filteringavailable to them.

4.19 Upgrading Exim

If you are already running Exim on your host, building and installing a new version automatically
makes it available to MUAs, or any other programs that call the MTA directly. However, if you are
running an Exim daemon, you do need to send it a HUP signal, to make it re-execute itself, and
thereby pick up the new binary. You do not need to stop processing mail in order to install a new
version of Exim. The install script does not modify an existing runtime configuration file.

4.20 Stopping the Exim daemon on Solaris
The standard command for stopping the mailer daemon on Solaris is

/etc/init.d/sendmail stop
If /usr/lib/sendmaihas been turned into a symbolic link, this script fails to stop Exim because it uses
the commangbs -eand greps the output for the text “sendmail”; this is not present because the actual
program name (that is, “exim”) is given by thgs command with these options. A solution is to
replace the line that finds the process id with something like

pid="cat /var/spool/exim/exim-daemon.pid’

to obtain the daemon'’s pid directly from the file that Exim saves it in.

Note, however, that stopping the daemon does not “stop Exim”. Messages can still be received from
local processes, and if automatic delivery is configured (the normal case), deliveries will still occur.

26 Building and installing Exim (4)

5. The Exim command line

Exim’s command line takes the standard Unix form of a sequence of options, each starting with a
hyphen character, followed by a number of arguments. The options are compatible with the main
options of Sendmail, and there are also some additional options, some of which are compatible with
Smail 3. Certain combinations of options do not make sense, and provoke an error if used. The form
of the arguments depends on which options are set.

5.1 Setting options by program name

If Exim is called under the nammailg, it behaves as if the optiofbp were present before any other
options. The-bp option requests a listing of the contents of the mail queue on the standard output.
This feature is for compatibility with some systems that contain a command of that name in one of the
standard libraries, symbolically linked Aesr/sbin/sendmaibr /usr/lib/sendmail

If Exim is called under the nammsmtpit behaves as if the optiotbS were present before any other
options, for compatibility with Smail. ThebS option is used for reading in a number of messages in
batched SMTP format.

If Exim is called under the nanmenail it behaves as if thd and-oeeoptions were present before any
other options, for compatibility with Smail. The nammail is used as an interface by some UUCP
systems.

If Exim is called under the nameunq it behaves as if the optiorg were present before any other
options, for compatibility with Smail. Theq option causes a single queue runner process to be
started.

If Exim is called under the nameewaliasest behaves as if the optiotbi were present before any
other options, for compatibility with Sendmail. This option is used for rebuilding Sendmail’s alias
file. Exim does not have the concept of a single alias file, but can be configured to run a given
command if called with thebi option.

5.2 Trusted and admin users

Some Exim options are available onlyttasted usersnd others are available only &almin usersin

the description below, the phrases “Exim user” and “Exim group” mean the user and group defined
by EXIM_USER and EXIM_GROUP inLocal/Makefileor set by theexim_user and exim_group
options. These do not necessarily have to use the name “exim”.

» The trusted users are root, the Exim user, any user listed imtbieed _usersconfiguration option,
and any user whose current group or any supplementary group is one of those listelustete
groups configuration option. Note that the Exim group is not automatically trusted.

Trusted users are always permitted to use-theption or a leading “From " line to specify the
envelope sender of a message that is passed to Exim through the local interface {seeahé-f
options below). See thantrusted_set_sendeioption for a way of permitting non-trusted users to
set envelope senders.

For a trusted user, there is never any check on the contents Bfdhre header line, and &ender:
line is never added. Furthermore, any exist®ender:line in incoming local (non-TCP/IP) mess-
ages is not removed.

Trusted users may also specify a host name, host address, interface address, protocol hame, ident
value, and authentication data when submitting a message locally. Thus, they are able to insert
messages into Exim’s queue locally that have the characteristics of messages received from a
remote host. Untrusted users may in some circumstanced,usg can never set the other values

that are available to trusted users.

» The admin users are root, the Exim user, and any user that is a member of the Exim group or of any
group listed in theadmin_groups configuration option. The current group does not have to be one
of these groups.

27 The Exim command line (5)

Admin users are permitted to list the queue, and to carry out certain operations on messages, for
example, to force delivery failures. It is also necessary to be an admin user in order to see the full
information provided by the Exim monitor, and full debugging output.

By default, the use of theM, -q, -R, and-S options to cause Exim to attempt delivery of messages
on its queue is restricted to admin users. However, this restriction can be relaxed by setting the
prod_requires_admin option false (that is, specifyimgp_prod_requires_admir).

Similarly, the use of thebp option to list all the messages in the queue is restricted to admin users
unlessqueue_list_requires_adminis set false.

Warning: If you configure your system so that admin users are able to edit Exim’s configuration file,
you are giving those users an easy way of getting root. There is further discussion of this issue at the
start of chapter 6.

5.3 Command line options

Exim's command line options are described in alphabetical order below. If none of the options that
specifies a specific action (such as starting the daemon or a queue runner, or testing an address, or
receiving a message in a specific format, or listing the queue) are present, and there is at least one
argument on the command lindgm (accept a local message on the standard input, with the argu-
ments specifying the recipients) is assumed. Otherwise, Exim outputs a brief message about itself and
exits.

This is a pseudo-option whose only purpose is to terminate the options and therefore to cause
subsequent command line items to be treated as arguments rather than options, even if they begin
with hyphens.

--help
This option causes Exim to output a few sentences stating what it is. The same output is generated
if the Exim binary is called with no options and no arguments.

-B<type>
This is a Sendmail option for selecting 7 or 8 bit processing. Exim is 8-bit clean; it ignores this
option.

-bd
This option runs Exim as a daemon, awaiting incoming SMTP connections. Usuatlydtogtion
is combined with theg<time> option, to specify that the daemon should also initiate periodic
gueue runs.

The-bd option can be used only by an admin user. If either of-th@ebugging) orv (verifying)
options are set, the daemon does not disconnect from the controlling terminal. When running this
way, it can be stopped by pressing ctrl-C.

By default, Exim listens for incoming connections to the standard SMTP port on all the host’s
running interfaces. However, it is possible to listen on other ports, on multiple ports, and only on
specific interfaces. Chapter 13 contains a description of the options that control this.

When a listening daemon is started without the useo¥f (that is, without overriding the normal
configuration), it writes its process id to a file callekim-daemon.piéh Exim’s spool directory.
This location can be overridden by setting PID_FILE_PATH.otal/Makefile The file is written
while Exim is still running as root.

When-oX is used on the command line to start a listening daemon, the process id is not written to
the normal pid file path. HoweveroP can be used to specify a path on the command line if a pid
file is required.

The SIGHUP signal can be used to cause the daemon to re-execute itself. This should be done
whenever Exim’s configuration file, or any file that is incorporated into it by means ointlede

facility, is changed, and also whenever a new version of Exim is installed. It is not necessary to do
this when other files that are referenced from the configuration (for example, alias files) are
changed, because these are reread each time they are used.

28 The Exim command line (5)

-bdf
This option has the same effect dsd except that it never disconnects from the controlling
terminal, even when no debugging is specified.

-be
Run Exim in expansion testing mode. Exim discards its root privilege, to prevent ordinary users
from using this mode to read otherwise inaccessible files. If no arguments are given, Exim runs
interactively, prompting for lines of data. Otherwise, it processes each argument in turn.

If Exim was built with USE_READLINE=yes irLocal/Makefile it tries to load thdibreadline
library dynamically whenever thdoe option is used without command line arguments. If success-
ful, it uses thereadline() function, which provides extensive line-editing facilities, for reading the
test data. A line history is supported.

Long expansion expressions can be split over several lines by using backslash continuations. As in
Exim’s run time configuration, white space at the start of continuation lines is ignored. Each
argument or data line is passed through the string expansion mechanism, and the result is output.
Variable values from the configuration file (for exampbgualify_domail are available, but no
message-specific values (suchbaender_domajnare set, because no message is being processed
(but seebem and-Mset).

Note: If you use this mechanism to test lookups, and you change the data files or databases you are
using, you must exit and restart Exim before trying the same lookup again. Otherwise, because
each Exim process caches the results of lookups, you will just get the same result as before.

-bem <filename
This option operates likdoe except that it must be followed by the name of a file. For example:

exim -bem /tmp/testmessage

The file is read as a message (as if receiving a locally-submitted non-SMTP message) before any
of the test expansions are done. Thus, message-specific variables sfintessage sizand
$header_from:are available. However, nBeceived:header is added to the message. If the
option is set, recipients are read from the headers in the normal way, and are shown in the
$recipientsvariable. Note that recipients cannot be given on the command line, because further
arguments are taken as strings to expand (justbi®e

-bF <filename
This option is the same abf except that it assumes that the filter being tested is a system filter.
The additional commands that are available only in system filters are recognized.

-bf <filename
This option runs Exim in user filter testing mode; the file is the filter file to be tested, and a test
message must be supplied on the standard input. If there are no message-dependent tests in the
filter, an empty file can be supplied.

If you want to test a system filter file, uskF instead of-bf. You can use bothbF and-bf on the
same command, in order to test a system filter and a user filter in the same run. For example:

exim -bF /system/filter -bf /user/filter </test/message

This is helpful when the system filter adds header lines or sets filter variables that are used by the
user filter.

If the test filter file does not begin with one of the special lines

Exim filter
Sieve filter

it is taken to be a normaforward file, and is tested for validity under that interpretation. See
sections 22.4 to 22.6 for a description of the possible contents of non-filter redirection lists.

The result of an Exim command that usds, provided no errors are detected, is a list of the
actions that Exim would try to take if presented with the message for real. More details of filter
testing are given in the separate document entitléh’s interfaces to mail filtering

29 The Exim command line (5)

When testing a filter file, the envelope sender can be set byf thygtion, or by a “From ” line at

the start of the test message. Various parameters that would normally be taken from the envelope
recipient address of the message can be set by means of additional command line options (see the
next four options).

-bfd <domairr
This sets the domain of the recipient address when a filter file is being tested by meanshéf the
option. The default is the value $fualify_domain

-bfl <local part
This sets the local part of the recipient address when a filter file is being tested by meansobf the
option. The default is the username of the process that calls Exim. A local part should be specified
with any prefix or suffix stripped, because that is how it appears to the filter when a message is
actually being delivered.

-bfp <prefix>
This sets the prefix of the local part of the recipient address when a filter file is being tested by
means of thebf option. The default is an empty prefix.

-bfs <suffix>
This sets the suffix of the local part of the recipient address when a filter file is being tested by
means of thebf option. The default is an empty suffix.

-bh <IP address
This option runs a fake SMTP session as if from the given IP address, using the standard input and
output. The IP address may include a port number at the end, after a full stop. For example:

exim -bh 10.9.8.7.1234
exim -bh fe80::a00:20ff:fe86:a061.5678

When an IPv6 address is given, it is converted into canonical form. In the case of the second
example above, the value &sender_host_addresafter conversion to the canonical form is
fe80:0000:0000:0a00:20ff:fe86:a061.5678

Comments as to what is going on are written to the standard error file. These include lines
beginning with “LOG” for anything that would have been logged. This facility is provided for
testing configuration options for incoming messages, to make sure they implement the required
policy. For example, you can test your relay controls ugihg

Warning 1: You can test features of the configuration that rely on ident (RFC 1413) information
by using the-oMt option. However, Exim cannot actually perform an ident callout when testing
using-bh because there is no incoming SMTP connection.

Warning 2: Address verification callouts (see section 40.41) are also skipped when testing using
-bh. If you want these callouts to occur, ublc instead.

Messages supplied during the testing session are discarded, and nothing is written to any of the
real log files. There may be pauses when DNS (and other) lookups are taking place, and of course
these may time out. Th@Mi option can be used to specify a specific IP interface and port if this

is important, andoMaa and-oMai can be used to set parameters as if the SMTP session were
authenticated.

The exim_checkaccesdility is a “packaged” version ofbh whose output just states whether a
given recipient address from a given host is acceptable or not. See section 50.8.

Features such as authentication and encryption, where the client input is not plain text, cannot
easily be tested witkbh. Instead, you should use a specialized SMTP test program sisshaks
(http://jetmore.org/john/code/#swaks)

-bhc <IP address
This option operates in the same way -8, except that address verification callouts are per-
formed if required. This includes consulting and updating the callout cache database.

30 The Exim command line (5)

-bi

Sendmail interprets thebi option as a request to rebuild its alias file. Exim does not have the
concept of a single alias file, and so it cannot mimic this behaviour. However, calls to
lusr/lib/sendmailwith the -bi option tend to appear in various scripts such as NIS make files, so
the option must be recognized.

If -bi is encountered, the command specified by bhecommand configuration option is run,
under the uid and gid of the caller of Exim. If theA option is used, its value is passed to the
command as an argument. The command sebibgommand may not contain arguments. The
command can use thexim_dbmbuildutility, or some other means, to rebuild alias files if this is
required. If thebi_command option is not set, calling Exim witlbi is a no-op.

-bm

This option runs an Exim receiving process that accepts an incoming, locally-generated message
on the current input. The recipients are given as the command arguments (except vshaiso

present — see below). Each argument can be a comma-separated list of RFC 2822 addresses. This
is the default option for selecting the overall action of an Exim call; it is assumed if no other
conflicting option is present.

If any addresses in the message are unqualified (have no domain), they are qualified by the values
of the qualify_domain or qualify_recipient options, as appropriate. Thienqg option (see below)
provides a way of suppressing this for special cases.

Policy checks on the contents of local messages can be enforced by means of the non-SMTP ACL.
See chapter 40 for details.

The return code is zero if the message is successfully accepted. Otherwise, the action is controlled
by the-oex option setting — see below.

The format of the message must be as defined in RFC 2822, except that, for compatibility with
Sendmail and Smail, a line in one of the forms

From sender Fri Jan 5 12:55 GMT 1997
From sender Fri, 5 Jan 97 12:55:01

(with the weekday optional, and possibly with additional text after the date) is permitted to appear
at the start of the message. There appears to be no authoritative specification of the format of this
line. EXim recognizes it by matching against the regular expression defined lyitpe from_

pattern option, which can be changed if necessary.

The specified sender is treated as if it were given as the argument-foapion, but if a-f option
is also present, its argument is used in preference to the address taken from the message. The caller
of Exim must be a trusted user for the sender of a message to be set in this way.

-bng

By default, Exim automatically qualifies unqualified addresses (those without domains) that
appear in messages that are submitted locally (that is, not over TCP/IP). This qualification applies
both to addresses in envelopes, and addresses in header lines. Sender addresses are qualified using
qualify_domain, and recipient addresses usiggalify_recipient (which defaults to the value of
qualify_domain).

Sometimes, qualification is not wanted. For examplep® (batch SMTP) is being used to re-
submit messages that originally came from remote hosts after content scanning, you probably do
not want to qualify unqualified addresses in header lines. (Such lines will be present only if you
have not enabled a header syntax check in the appropriate ACL.)

The-bng option suppresses all qualification of unqualified addresses in messages that originate on
the local host. When this is used, unqualified addresses in the envelope provoke errors (causing
message rejection) and unqualified addresses in header lines are left alone.

-bP

If this option is given with no arguments, it causes the values of all Exim’s main configuration
options to be written to the standard output. The values of one or more specific options can be
requested by giving their names as arguments, for example:

31 The Exim command line (5)

exim -bP qualify_domain hold_domains

However, any option setting that is preceded by the word “hide” in the configuration file is not
shown in full, except to an admin user. For other users, the output is as in this example:

mysql_servers = <value not displayable>

If configure_fileis given as an argument, the name of the run time configuration file is output. If a
list of configuration files was supplied, the value that is output here is the name of the file that was
actually used.

If log_file_path or pid_file_path are given, the names of the directories where log files and
daemon pid files are written are output, respectively. If these values are unset, log files are written
in a sub-directory of the spool directory callled), and the pid file is written directly into the spool
directory.

If -bP is followed by a name preceded byfor example,
exim -bP +local_domains

it searches for a matching named list of any type (domain, host, address, or local part) and outputs
what it finds.

If one of the wordsrouter, transport, or authenticator is given, followed by the name of an
appropriate driver instance, the option settings for that driver are output. For example:

exim -bP transport local_delivery

The generic driver options are output first, followed by the driver’s private options. A list of the
names of drivers of a particular type can be obtained by using one of the wawtky_list,
transport_list, or authenticator_list, and a complete list of all drivers with their option settings
can be obtained by usimguters, transports, or authenticators.

_bp
This option requests a listing of the contents of the mail queue on the standard outputbip the
option is followed by a list of message ids, just those messages are listed. By default, this option
can be used only by an admin user. However,dgbeue_list_requires_adminoption can be set
false to allow any user to see the queue.

Each message on the queue is displayed as in the following example:

25m 2.9K 0t5C6f-0000c8-00 <alice@wonderland.fict.example>
red.king@looking-glass.fict.example
<other addresses>

The first line contains the length of time the message has been on the queue (in this case 25
minutes), the size of the message (2.9K), the unique local identifier for the message, and the
message sender, as contained in the envelope. For bounce messages, the sender address is empty,
and appears as “<>". If the message was submitted locally by an untrusted user who overrode the
default sender address, the user’s login name is shown in parentheses before the sender address.

If the message is frozen (attempts to deliver it are suspended) then the text “*** frozen ***” is
displayed at the end of this line.

The recipients of the message (taken from the envelope, not the headers) are displayed on subse-
quent lines. Those addresses to which the message has already been delivered are marked with the
letter D. If an original address gets expanded into several addresses via an alias or forward file, the
original is displayed with a D only when deliveries for all of its child addresses are complete.

-bpa
This option operates likebp, but in addition it shows delivered addresses that were generated
from the original top level address(es) in each message by alias or forwarding operations. These
addresses are flagged with “+D” instead of just “D”.

-bpc
This option counts the number of messages on the queue, and writes the total to the standard
output. It is restricted to admin users, unlgssue_list_requires_adminis set false.

32 The Exim command line (5)

-bpr
This option operates likebp, but the output is not sorted into chronological order of message
arrival. This can speed it up when there are lots of messages on the queue, and is particularly
useful if the output is going to be post-processed in a way that doesn't need the sorting.

-bpra
This option is a combination ebpr and-bpa.

-bpru
This option is a combination ebpr and-bpu.

-bpu
This option operates likebp but shows only undelivered top-level addresses for each message
displayed. Addresses generated by aliasing or forwarding are not shown, unless the message was
deferred after processing by a router withahe_timeoption set.

-brt
This option is for testing retry rules, and it must be followed by up to three arguments. It causes
Exim to look for a retry rule that matches the values and to write it to the standard output. For
example:

exim -brt bach.comp.mus.example
Retry rule: *.comp.mus.example F,2h,15m; F,4d,30m;

See chapter 32 for a description of Exim’s retry rules. The first argument, which is required, can be
a complete address in the folotal_part@domainor it can be just a domain name. If the second
argument contains a dot, it is interpreted as an optional second domain name; if no retry rule is
found for the first argument, the second is tried. This ties in with Exim’s behaviour when looking
for retry rules for remote hosts — if no rule is found that matches the host, one that matches the
mail domain is sought. Finally, an argument that is the name of a specific delivery error, as used in
setting up retry rules, can be given. For example:

exim -brt haydn.comp.mus.example quota_3d
Retry rule: *@haydn.comp.mus.example quota_3d F,1h,15m

-brw
This option is for testing address rewriting rules, and it must be followed by a single argument,
consisting of either a local part without a domain, or a complete address with a fully qualified
domain. Exim outputs how this address would be rewritten for each possible place it might appear.
See chapter 31 for further details.

-bS
This option is used for batched SMTP input, which is an alternative interface for non-interactive
local message submission. A number of messages can be submitted in a single run. However,
despite its name, this is not really SMTP input. Exim reads each message’s envelope from SMTP
commands on the standard input, but generates no responses. If the caller is trustéasted
set_sendeiis set, the senders in the SMTP MAIL commands are believed; otherwise the sender is
always the caller of Exim.

The message itself is read from the standard input, in SMTP format (leading dots doubled),
terminated by a line containing just a single dot. An error is provoked if the terminating dot is
missing. A further message may then follow.

As for other local message submissions, the contents of incoming batch SMTP messages can be
checked using the non-SMTP ACL (see chapter 40). Unqualified addresses are automatically
qualified usingqualify_domain and qualify_recipient, as appropriate, unless tHenq option is

used.

Some other SMTP commands are recognized in the input. HELO and EHLO act as RSET; VRFY,
EXPN, ETRN, and HELP act as NOOP; QUIT quits, ignoring the rest of the standard input.

If any error is encountered, reports are written to the standard output and error streams, and Exim
gives up immediately. The return code is O if no error was detected,; it is 1 if one or more messages
were accepted before the error was detected; otherwise it is 2.

33 The Exim command line (5)

More details of input using batched SMTP are given in section 45.11.

-bs
This option causes Exim to accept one or more messages by reading SMTP commands on the
standard input, and producing SMTP replies on the standard output. SMTP policy controls, as
defined in ACLs (see chapter 40) are applied. Some user agents use this interface as a way of
passing locally-generated messages to the MTA.

In this usage, if the caller of Exim is trusted, ontrusted_set_senderis set, the senders of
messages are taken from the SMTP MAIL commands. Otherwise the content of these commands
is ignored and the sender is set up as the calling user. Unqualified addresses are automatically
qualified usingqualify_domain and qualify_recipient, as appropriate, unless tHenq option is

used.

The-bs option is also used to run Exim froimetd, as an alternative to using a listening daemon.
Exim can distinguish the two cases by checking whether the standard input is a TCP/IP socket.
When Exim is called froninetd the source of the mail is assumed to be remote, and the comments
above concerning senders and qualification do not apply. In this situation, Exim behaves in exactly
the same way as it does when receiving a message via the listening daemon.

-bt
This option runs Exim in address testing mode, in which each argument is taken as a recipient
address to be tested for deliverability. The results are written to the standard output. If a test fails,
and the caller is not an admin user, no details of the failure are output, because these might contain
sensitive information such as usernames and passwords for database lookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be tested.

Unlike the-be test option, you cannot arrange for Exim to userdgeedline()function, because it is
running agoot and there are security issues.

Each address is handled as if it were the recipient address of a message (comgareten).

It is passed to the routers and the result is written to the standard output. However, any router that
hasno_address_testet is bypassed. This can mak easier to use for genuine routing tests if
your first router passes everything to a scanner program.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code 0 is given only when all addresses
succeed.

Note When actually delivering a message, Exim removes duplicate recipient addresses after
routing is complete, so that only one delivery takes place. This does not happen when testing with
-bt; the full results of routing are always shown.

Warning: -bt can only do relatively simple testing. If any of the routers in the configuration makes
any tests on the sender address of a message, you can ukeitien to set an appropriate sender
when running-bt tests. Without it, the sender is assumed to be the calling user at the default
qualifying domain. However, if you have set up (for example) routers whose behaviour depends on
the contents of an incoming message, you cannot test those conditionshisifitpe -N option
provides a possible way of doing such tests.

-bVv
This option causes Exim to write the current version number, compilation number, and compi-
lation date of theeximbinary to the standard output. It also lists the DBM library this is being
used, the optional modules (such as specific lookup types), the drivers that are included in the
binary, and the name of the run time configuration file that is in use.

As part of its operationsbV causes Exim to read and syntax check its configuration file. However,
this is a static check only. It cannot check values that are to be expanded. For example, although a
misspelt ACL verb is detected, an error in the verb’s arguments is not. You cannot refp/on

alone to discover (for example) all the typos in the configuration; some realistic testing is needed.
The-bh and-N options provide more dynamic testing facilities.

34 The Exim command line (5)

-bv
This option runs Exim in address verification mode, in which each argument is taken as a recipient
address to be verified by the routers. (This does not involve any verification callouts). During
normal operation, verification happens mostly as a consequence proces&rify acondition in
an ACL (see chapter 40). If you want to test an entire ACL, possibly including callouts, see the
-bh and-bhc options.

If verification fails, and the caller is not an admin user, no details of the failure are output, because
these might contain sensitive information such as usernames and passwords for database lookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be verified.

Unlike the-betest option, you cannot arrange for Exim to userdadline()function, because it is
running aeximand there are security issues.

Verification differs from address testing (tHet option) in that routers that have_verify set are
skipped, and if the address is accepted by a router thatailaserify set, verification fails. The
address is verified as a recipientlifv is used; to test verification for a sender addrdsgs should

be used.

If the -v option is not set, the output consists of a single line for each address, stating whether it
was verified or not, and giving a reason in the latter case. Withgujenerating more than one
address by redirection causes verification to end successfully, without considering the generated
addresses. However, if just one address is generated, processing continues, and the generated
address must verify successfully for the overall verification to succeed.

When-v is set, more details are given of how the address has been handled, and in the case of
address redirection, all the generated addresses are also considered. Verification may succeed for
some and fail for others.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code 0 is given only when all addresses
succeed.

If any of the routers in the configuration makes any tests on the sender address of a message, you
should use thef option to set an appropriate sender when runaihvgtests. Without it, the sender
is assumed to be the calling user at the default qualifying domain.

-bvs
This option acts likebv, but verifies the address as a sender rather than a recipient address. This
affects any rewriting and qualification that might happen.

-C <filelist>
This option causes Exim to find the run time configuration file from the given list instead of from
the list specified by the CONFIGURE_FILE compile-time setting. Usually, the list will consist of
just a single file name, but it can be a colon-separated list of names. In this case, the first file that
exists is used. Failure to open an existing file stops Exim from proceeding any further along the
list, and an error is generated.

When this option is used by a caller other than root or the Exim user, and the list is different from
the compiled-in list, Exim gives up its root privilege immediately, and runs with the real and
effective uid and gid set to those of the caller. However, if ALT_CONFIG_ROOT_ONLY is
defined inLocal/Makefile root privilege is retained foC only if the caller of Exim is root.

That is, the Exim user is no longer privileged in this regard. This build-time option is not set by
default in the Exim source distribution tarbundle. However, if you are using a “packaged” version
of Exim (source or binary), the packagers might have enabled it.

Setting ALT_CONFIG_ROOT_ONLY locks out the possibility of testing a configuration using

right through message reception and delivery, even if the caller is root. The reception works, but by
that time, Exim is running as the Exim user, so when it re-executes to regain privilege for the
delivery, the use ofC causes privilege to be lost. However, root can test reception and delivery

35 The Exim command line (5)

using two separate commands (one to put a message on the queuepdsirand another to do
the delivery, usingM).

If ALT_CONFIG_PREFIX is definedn Local/Makefile it specifies a prefix string with which any
file named in aC command line option must start. In addition, the file name must not contain the
sequencé../ . However, if the value of theC option is identical to the value of CONFIGURE_
FILE in Local/Makefile Exim ignores-C and proceeds as usual. There is no default setting for
ALT_CONFIG_PREFIX; when it is unset, any file name can be used@ith

ALT_CONFIG_PREFIX can be used to confine alternative configuration files to a directory to
which only root has access. This prevents someone who has broken into the Exim account from
running a privileged Exim with an arbitrary configuration file.

The-C facility is useful for ensuring that configuration files are syntactically correct, but cannot be
used for test deliveries, unless the caller is privileged, or unless it is an exotic configuration that
does not require privilege. No check is made on the owner or group of the files specified by this
option.

-D<macro>=<value>
This option can be used to override macro definitions in the configuration file (see section 6.4).
However, like-C, if it is used by an unprivileged caller, it causes Exim to give up its root privilege.
If DISABLE_D_OPTION is defined inLocal/Makefile the use ofD is completely disabled, and
its use causes an immediate error exit.

The entire option (including equals sign if present) must all be within one command line-iem.
can be used to set the value of a macro to the empty string, in which case the equals sign is
optional. These two commands are synonymous:

exim -DABC ...
exim -DABC-= ...

To include spaces in a macro definition item, quotes must be used. If you use quotes, spaces are
permitted around the macro name and the equals sign. For example:

exim '-D ABC = something' ...
-D may be repeated up to 10 times on a command line.

-d<debug options
This option causes debugging information to be written to the standard error stream. It is restricted
to admin users because debugging output may show database queries that contain password infor-
mation. Also, the details of users’ filter files should be protected. If a non-admin userdjses
Exim writes an error message to the standard error stream and exits with a non-zero return code.

When-d is used,-v is assumed. Ifd is given on its own, a lot of standard debugging data is
output. This can be reduced, or increased to include some more rarely needed information, by
directly following -d with a string made up of names preceded by plus or minus characters. These
add or remove sets of debugging data, respectively. For exargpifer adds filter debugging,
whereas-d-all+filter selects only filter debugging. Note that no spaces are allowed in the debug
setting. The available debugging categories are:

acl ACL interpretation

auth authenticators

deliver general delivery logic

dns DNS lookups (see also resolver)

dnsbl DNS black list (aka RBL) code

exec arguments foexecv()calls

expand detailed debugging for string expansions
filter filter handling

hints_lookup hints data lookups

host_lookup all types of name-to-IP address handling
ident ident lookup

interface lists of local interfaces

lists matching things in lists

36 The Exim command line (5)

load

system load checks

local_scan can be used bipcal_scan()(see chapter 42)

lookup general lookup code and all lookups

memory memory handling

pid add pid to debug output lines

process_info setting info for the process log

queue_run queue runs

receive general message reception logic

resolver turn on the DNS resolver’'s debugging output

retry retry handling

rewrite address rewriting

route address routing

timestamp add timestamp to debug output lines

tls TLS logic

transport transports

uid changes of uid/gid and looking up uid/gid

verify address verification logic

all almost all of the above (see below), and also
Theall option excludesnemory when used asall , but includes it for-all . The reason for

this is that+all is something that people tend to use when generating debug output for Exim
maintainers. If+memory is included, an awful lot of output that is very rarely of interest is
generated, so it now has to be explicitly requested. Howaler, does turn everything off.

The resolver option produces output only if the DNS resolver was compiled with DEBUG
enabled. This is not the case in some operating systems. Also, unfortunately, debugging output
from the DNS resolver is written to stdout rather than stderr.

The default {d with no argument) omitexpand , filter ,interface , load , memory, pid ,
resolver , andtimestamp . However, thepid selector is forced when debugging is turned on

for a daemon, which then passes it on to any re-executed Exims. Exim also automatically adds the
pid to debug lines when several remote deliveries are run in parallel.

Thetimestamp selector causes the current time to be inserted at the start of all debug output
lines. This can be useful when trying to track down delays in processing.

If the debug_print option is set in any driver, it produces output whenever any debugging is
selected, or ifv is used.

-dd<debug options

This option behaves exactly likel except when used on a command that starts a daemon process.

In that case, debugging is turned off for the subprocesses that the daemon creates. Thus, it is useful
for monitoring the behaviour of the daemon without creating as much output as full debugging
does.

-dropcr

-E

-ex

This is an obsolete option that is now a no-op. It used to affect the way Exim handled CR and LF
characters in incoming messages. What happens now is described in section 44.2.

This option specifies that an incoming message is a locally-generated delivery failure report. It is
used internally by Exim when handling delivery failures and is not intended for external use. Its
only effect is to stop Exim generating certain messages to the postmaster, as otherwise message
cascades could occur in some situations. As part of the same option, a message id may follow the
charactersE. If it does, the log entry for the receipt of the new message contains the id, following
“R=", as a cross-reference.

There are a number of Sendmail options starting with which seem to be called by various
programs without the leadingin the option. For example, theacation program useseq. Exim
treats all options of the forpex as synonymous with the correspondiogx options.

37 The Exim command line (5)

-F <string>

This option sets the sender’s full name for use when a locally-generated message is being
accepted. In the absence of this option, the usgtosentry from the password data is used. As
users are generally permitted to alter thg@icosentries, no security considerations are involved.
White space betweef and the string> is optional.

-f <address

-G

This option sets the address of the envelope sender of a locally-generated message (also known as
the return path). The option can normally be used only by a trusted useunbutsted_set
sendercan be set to allow untrusted users to use it.

Processes running as root or the Exim user are always trusted. Other trusted users are defined by
the trusted_usersor trusted_groups options. In the absence ef, or if the caller is not trusted,
the sender of a local message is set to the caller’s login name at the default qualify domain.

There is one exception to the restriction on the usd:an empty sender can be specified by any

user, trusted or not, to create a message that can never provoke a bounce. An empty sender can be
specified either as an empty string, or as a pair of angle brackets with nothing between them, as in
these examples of shell commands:

exim -f '<>' user@domain
exim -f " user@domain

In addition, the use off is not restricted when testing a filter file withf or when testing or
verifying addresses using tHeat or -bv options.

Allowing untrusted users to change the sender address does not of itself make it possible to send
anonymous mail. Exim still checks that tReom: header refers to the local user, and if it does not,
it adds aSender:header, though this can be overridden by settindocal_from_check

White space betweeifi and the «@ddress is optional (that is, they can be given as two arguments

or one combined argument). The sender of a locally-generated message can also be set (when
permitted) by an initial “From ” line in the message — see the descriptiechrofabove — but if-f

is also present, it overrides “From ".

This is a Sendmail option which is ignored by Exim.

-h <numbep

This option is accepted for compatibility with Sendmail, but has no effect. (In Sendmail it over-
rides the “hop count” obtained by countiRgceivedheaders.)

This option, which has the same effect-a$ specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. | can find no documentation for this option in Solaris
2.4 Sendmail, but theailx command in Solaris 2.4 uses it. See atiiso

-M <message i <message id ...

This option requests Exim to run a delivery attempt on each message in turn. If any of the
messages are frozen, they are automatically thawed before the delivery attempt. The settings of
queue_domainsqueue_smtp_domainsandhold_domainsare ignored.

Retry hints for any of the addresses are overridden — Exim tries to deliver even if the normal retry
time has not yet been reached. This option requires the caller to be an admin user. However, there
is an option callegbrod_requires_admin which can be set false to relax this restriction (and also

the same requirement for tkeg -R, and-S options).

The deliveries happen synchronously, that is, the original Exim process does not terminate until all
the delivery attempts have finished. No output is produced unless there is a serious error. If you
want to see what is happening, use-theption as well, or inspect Exim’s main log.

-Mar <message i <address <address ...

This option requests Exim to add the addresses to the list of recipients of the message (“ar” for
“add recipients”). The first argument must be a message id, and the remaining ones must be email

38 The Exim command line (5)

addresses. However, if the message is active (in the middle of a delivery attempt), it is not altered.
This option can be used only by an admin user.

-MC <transport <hostname <sequence numbermessage el
This option is not intended for use by external callers. It is used internally by Exim to invoke
another instance of itself to deliver a waiting message using an existing SMTP connection, which
is passed as the standard input. Details are given in chapter 45. This must be the final option, and
the caller must be root or the Exim user in order to use it.

-MCA
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the-MC option. It signifies that the connection to the remote host has been authenticated.

-MCP
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the-MC option. It signifies that the server to which Exim is connected supports pipelining.

-MCQ <process it <pipe fc>
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option when the original delivery was started by a queue runner. It passes on the
process id of the queue runner, together with the file descriptor number of an open pipe. Closure of
the pipe signals the final completion of the sequence of processes that are passing messages
through the same SMTP connection.

-MCS
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option, and passes on the fact that the SMTP SIZE option should be used on
messages delivered down the existing connection.

-MCT
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option, and passes on the fact that the host to which Exim is connected supports
TLS encryption.

-Mc <message & <message i ...
This option requests Exim to run a delivery attempt on each message in turn, but unldé the
option, it does check for retry hints, and respects any that are found. This option is not very useful
to external callers. It is provided mainly for internal use by Exim when it needs to re-invoke itself
in order to regain root privilege for a delivery (see chapter 52). Howelar,can be useful when
testing, in order to run a delivery that respects retry times and other options sheolidadomains
that are overridden whei is used. Such a delivery does not count as a queue run. If you want to
run a specific delivery as if in a queue run, you should «p&ith a message id argument. A
distinction between queue run deliveries and other deliveries is made in one or two places.

-Mes <message i <address
This option requests Exim to change the sender address in the message to the given address, which
must be a fully qualified address or “<>" (“es” for “edit sender”). There must be exactly two
arguments. The first argument must be a message id, and the second one an email address.
However, if the message is active (in the middle of a delivery attempt), its status is not altered.
This option can be used only by an admin user.

-Mf <message ® <message i ...
This option requests Exim to mark each listed message as “frozen”. This prevents any delivery
attempts taking place until the message is “thawed”, either manually or as a resultaftthe
thaw configuration option. However, if any of the messages are active (in the middle of a delivery
attempt), their status is not altered. This option can be used only by an admin user.

-Mg <message i® <message i ...
This option requests Exim to give up trying to deliver the listed messages, including any that are
frozen. However, if any of the messages are active, their status is not altered. For non-bounce
messages, a delivery error message is sent to the sender, containing the text “cancelled by adminis-
trator”. Bounce messages are just discarded. This option can be used only by an admin user.

39 The Exim command line (5)

-Mmad <message e <message i ...
This option requests Exim to mark all the recipient addresses in the messages as already delivered
(“mad” for “mark all delivered”). However, if any message is active (in the middle of a delivery
attempt), its status is not altered. This option can be used only by an admin user.

-Mmd <message i <address <address ...
This option requests Exim to mark the given addresses as already delivered (“md” for “mark
delivered”). The first argument must be a message id, and the remaining ones must be emalil
addresses. These are matched to recipient addresses in the message in a case-sensitive manner. If
the message is active (in the middle of a delivery attempt), its status is not altered. This option can
be used only by an admin user.

-Mrm <message e <message i ...
This option requests Exim to remove the given messages from the queue. No bounce messages are
sent; each message is simply forgotten. However, if any of the messages are active, their status is
not altered. This option can be used only by an admin user or by the user who originally caused
the message to be placed on the queue.

-Mset <message i
This option is useful only in conjunction wittbe (that is, when testing string expansions). Exim
loads the given message from its spool before doing the test expansions, thus setting message-
specific variables such &nessage_siznd the header variables. Theecipientsvariable is made
available. This feature is provided to make it easier to test expansions that make use of these
variables. However, this option can be used only by an admin user. Sdeeatso

-Mt <message © <message i ...
This option requests Exim to “thaw” any of the listed messages that are “frozen”, so that delivery
attempts can resume. However, if any of the messages are active, their status is not altered. This
option can be used only by an admin user.

-Mvb <message i
This option causes the contents of the message body (-D) spool file to be written to the standard
output. This option can be used only by an admin user.

-Mvc <message id
This option causes a copy of the complete message (header lines plus body) to be written to the
standard output in RFC 2822 format. This option can be used only by an admin user.

-Mvh <message i
This option causes the contents of the message headers (-H) spool file to be written to the standard
output. This option can be used only by an admin user.

-Mvl <message i
This option causes the contents of the message log spool file to be written to the standard output.
This option can be used only by an admin user.

-m
This is apparently a synonym feom that is accepted by Sendmail, so Exim treats it that way too.

-N
This is a debugging option that inhibits delivery of a message at the transport level. It inwlies
Exim goes through many of the motions of delivery — it just doesn't actually transport the mess-
age, but instead behaves as if it had successfully done so. However, it does not make any updates
to the retry database, and the log entries for deliveries are flagged with “*>” rather than “=>".

BecauseN discards any message to which it applies, only root or the Exim user are allowed to use
it with -bd, -q, -R or -M. In other words, an ordinary user can use it only when supplying an
incoming message to which it will apply. Although transportation never fails wheis set, an
address may be deferred because of a configuration problem on a transport, or a routing problem.
Once-N has been used for a delivery attempt, it sticks to the message, and applies to any subse-
quent delivery attempts that may happen for that message.

-n
This option is interpreted by Sendmail to mean “no aliasing”. It is ignored by Exim.

40 The Exim command line (5)

-O <data>
This option is interpreted by Sendmail to meahoption . It is ignored by Exim.

-0A <file name
This option is used by Sendmail in conjunction withi to specify an alternative alias file name.
Exim handlesbi differently; see the description above.

-0B <n>
This is a debugging option which limits the maximum number of messages that can be delivered
down one SMTP connection, overriding the value set in smyptransport. If €1> is omitted, the
limit is set to 1.

-odb
This option applies to all modes in which Exim accepts incoming messages, including the listen-
ing daemon. It requests “background” delivery of such messages, which means that the accepting
process automatically starts a delivery process for each message received, but does not wait for the
delivery processes to finish.

When all the messages have been received, the reception process exits, leaving the delivery pro-
cesses to finish in their own time. The standard output and error streams are closed at the start of
each delivery process. This is the default action if none obtheptions are present.

If one of the queueing options in the configuration fiu¢ue_only or queue_only file for
example) is in effect;odb overrides it ifqueue_only overrideis set true, which is the default
setting. Ifqueue_only_overrideis set false;odb has no effect.

-odf
This option requests “foreground” (synchronous) delivery when Exim has accepted a locally-
generated message. (For the daemon it is exactly the saroella¥ A delivery process is auto-
matically started to deliver the message, and Exim waits for it to complete before proceeding.

The original Exim reception process does not finish until the delivery process for the final message
has ended. The standard error stream is left open during deliveries.

However, like-odb, this option has no effect iueue_only_overrideis false and one of the
queueing options in the configuration file is in effect.

If there is a temporary delivery error during foreground delivery, the message is left on the queue
for later delivery, and the original reception process exits. See chapter 48 for a way of setting up a
restricted configuration that never queues messages.

-odi
This option is synonymous witlodf. It is provided for compatibility with Sendmail.

-odqg
This option applies to all modes in which Exim accepts incoming messages, including the listen-
ing daemon. It specifies that the accepting process should not automatically start a delivery process
for each message received. Messages are placed on the queue, and remain there until a subsequent
gqueue runner process encounters them. There are several configuration options (puebeas
only) that can be used to queue incoming messages under certain conditions. This option overrides
all of them and alseodqs It always forces queueing.

-odgs
This option is a hybrid betweemdb/-odi and-odg. However, like-odb and-odi, this option has
no effect ifqueue_only_overrideis false and one of the queueing options in the configuration file
is in effect.

When-odqgs does operate, a delivery process is started for each incoming message, in the back-
ground by default, but in the foreground-ddi is also present. The recipient addresses are routed,
and local deliveries are done in the normal way. However, if any SMTP deliveries are required,
they are not done at this time, so the message remains on the queue until a subsequent queue
runner process encounters it. Because routing was done, Exim knows which messages are waiting
for which hosts, and so a number of messages for the same host can be sent in a single SMTP

41 The Exim command line (5)

connection. Thequeue_smtp_domainsconfiguration option has the same effect for specific
domains. See also theq option.

-oee
If an error is detected while a non-SMTP message is being received (for example, a malformed
address), the error is reported to the sender in a mail message.

Provided this error message is successfully sent, the Exim receiving process exits with a return
code of zero. If not, the return code is 2 if the problem is that the original message has no
recipients, or 1 any other error. This is the defagk option if Exim is called asmail.

-0oem
This is the same a®ee except that Exim always exits with a non-zero return code, whether or not
the error message was successfully sent. This is the de@albption, unless Exim is called as
rmail.

-oep
If an error is detected while a non-SMTP message is being received, the error is reported by
writing a message to the standard error file (stderr). The return code is 1 for all errors.

-oeq
This option is supported for compatibility with Sendmail, but has the same effeetpas

-oew
This option is supported for compatibility with Sendmail, but has the same effeetnas

-0i
This option, which has the same effect -asspecifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. Otherwise, a single dot does terminate, though Exim
does no special processing for other lines that start with a dot. This option is set by default if Exim
is called asmail. See alseti.

-oitrue
This option is treated as synonymous wih

-oMa <host address
A number of options starting witkoM can be used to set values associated with remote hosts on
locally-submitted messages (that is, messages not received over TCP/IP). These options can be
used by any caller in conjunction with thbh, -be, -bf, -bF, -bt, or -bv testing options. In other
circumstances, they are ignored unless the caller is trusted.

The -oMa option sets the sender host address. This may include a port number at the end, after a
full stop (period). For example:

exim -bs -oMa 10.9.8.7.1234

An alternative syntax is to enclose the IP address in square brackets, followed by a colon and the
port number:

exim -bs -oMa [10.9.8.7]:1234

The IP address is placed in tlieender_host_addresariable, and the port, if present, §sender_
host_port If both -oMa and-bh are present on the command line, the sender host IP address is
taken from whichever one is last.

-oMaa <name>
See-oMa above for general remarks about #od options. The-oMaa option sets the value of
$sender_host_authenticatéthe authenticator name). See chapter 33 for a discussion of SMTP
authentication. This option can be used witth and-bsto set up an authenticated SMTP session
without actually using the SMTP AUTH command.

-oMai <string>
See-oMa above for general remarks about ted options. The-oMai option sets the value of
$authenticated_idthe id that was authenticated). This overrides the default value (the caller’s
login id, except with-bh, where there is no default) for messages from local sources. See chapter
33 for a discussion of authenticated ids.

42 The Exim command line (5)

-oMas <address
See -oMa above for general remarks about theM options. The-oMas option sets the
authenticated sender value$authenticated_senddt overrides the sender address that is created
from the caller’s login id for messages from local sources, except whters used, when there is
no default. For bothbh and-bs, an authenticated sender that is specified on a MAIL command
overrides this value. See chapter 33 for a discussion of authenticated senders.

-oMi <interface address
See-oMa above for general remarks about tod/ options. The-oMi option sets the IP interface
address value. A port number may be included, using the same syntax-aMfarThe interface
address is placed Breceived_ip_addresand the port number, if present direceived_port

-oMr <protocol name
See-oMa above for general remarks about teVl options. The-oMr option sets the received
protocol value that is stored ifireceived_protocolHowever, it does not apply (and is ignored)
when-bh or -bs is used. Forbh, the protocol is forced to one of the standard SMTP protocol
names (see the description $received_protocain section 11.9). Forbs, the protocol is always
“local-" followed by one of those same names. Ho® (batched SMTP) however, the protocol can
be set byoMr.

-oMs <host name
See-oMa above for general remarks about Hod/ options. The-oMs option sets the sender host
name in$sender_host_nam®&/hen this option is present, Exim does not attempt to look up a host
name from an IP address; it uses the name it is given.

-oMt <ident string>
See-oMa above for general remarks about Hod/l options. The-oMt option sets the sender ident
value in$sender_identThe default setting for local callers is the login id of the calling process,
except whenbh is used, when there is no default.

-om
In Sendmail, this option means “me too”, indicating that the sender of a message should receive a
copy of the message if the sender appears in an alias expansion. Exim always does this, so the
option does nothing.

-00
This option is ignored. In Sendmail it specifies “old style headers”, whatever that means.

-oP <path>
This option is useful only in conjunction witlbd or -q with a time value. The option specifies the
file to which the process id of the daemon is written. WheX is used with-bd, or when-q with
a time is used withoutbd, this is the only way of causing Exim to write a pid file, because in
those cases, the normal pid file is not used.

-or <time>
This option sets a timeout value for incoming non-SMTP messages. If it is not set, Exim will wait
forever for the standard input. The value can also be set byebeive timeoutoption. The
format used for specifying times is described in section 6.15.

-0s<time>
This option sets a timeout value for incoming SMTP messages. The timeout applies to each SMTP
command and block of data. The value can also be set bgrtiip_receive_timeoutoption; it
defaults to 5 minutes. The format used for specifying times is described in section 6.15.

-ov
This option has exactly the same effecthas

-0X <number or string
This option is relevant only when théd (start listening daemon) option is also given. It controls
which ports and interfaces the daemon uses. Details of the syntax, and how it interacts with
configuration file options, are given in chapter 13. WheX is used to start a daemon, no pid file
is written unlessoP is also present to specify a pid file name.

43 The Exim command line (5)

_pd
This option applies when an embedded Perl interpreter is linked with Exim (see chapter 12). It
overrides the setting of thperl_at_start option, forcing the starting of the interpreter to be
delayed until it is needed.

_ps
This option applies when an embedded Perl interpreter is linked with Exim (see chapter 12). It
overrides the setting of theerl_at_start option, forcing the starting of the interpreter to occur as
soon as Exim is started.

-p<rval>:<svab
For compatibility with Sendmail, this option is equivalent to

-oMr <rval>-oMs <svab

It sets the incoming protocol and host name (for trusted callers). The host name and its colon can
be omitted when only the protocol is to be set. Note the Exim already has two private oppidns,
and-ps, that refer to embedded Perl. It is therefore impossible to set a protocol vajueos

using this option (but that does not seem a real limitation).

This option is normally restricted to admin users. However, there is a configuration option called
prod_requires_admin which can be set false to relax this restriction (and also the same require-
ment for theM, -R, and-S options).

The-q option starts one queue runner process. This scans the queue of waiting messages, and runs
a delivery process for each one in turn. It waits for each delivery process to finish before starting
the next one. A delivery process may not actually do any deliveries if the retry times for the
addresses have not been reached -tfsgsee below) if you want to override this.

If the delivery process spawns other processes to deliver other messages down passed SMTP
connections, the queue runner waits for these to finish before proceeding.

When all the queued messages have been considered, the original queue runner process terminates.
In other words, a single pass is made over the waiting mail, one message at a timg.viitea
time (see below) if you want this to be repeated periodically.

Exim processes the waiting messages in an unpredictable order. It isn’t very random, but it is
likely to be different each time, which is all that matters. If one particular message screws up a
remote MTA, other messages to the same MTA have a chance of getting through if they get tried
first.

It is possible to cause the messages to be processed in lexical message id order, which is essen-
tially the order in which they arrived, by setting theeue_run_in_order option, but this is not
recommended for normal use.

-g<gflags>
The-g option may be followed by one or more flag letters that change its behaviour. They are all
optional, but if more than one is present, they must appear in the correct order. Each flag is
described in a separate item below.

-qqg...
An option starting with-qq requests a two-stage queue run. In the first stage, the queue is scanned
as if thequeue_smtp_domainoption matched every domain. Addresses are routed, local deliver-
ies happen, but no remote transports are run.

The hints database that remembers which messages are waiting for specific hosts is updated, as if
delivery to those hosts had been deferred. After this is complete, a second, normal queue scan
happens, with routing and delivery taking place as normal. Messages that are routed to the same
host should mostly be delivered down a single SMTP connection because of the hints that were set
up during the first queue scan. This option may be useful for hosts that are connected to the
Internet intermittently.

44 The Exim command line (5)

-q[q]i...
If the i flag is present, the queue runner runs delivery processes only for those messages that

haven’t previously been tried. $tands for “initial delivery”.) This can be helpful if you are putting
messages on the queue usiodq and want a queue runner just to process the new messages.

-q[a]filf...
If onef flag is present, a delivery attempt is forced for each non-frozen message, whereas fwithout

only those non-frozen addresses that have passed their retry times are tried.

-q[q][ilff...
If ff is present, a delivery attempt is forced for every message, whether frozen or not.

-q[a] (LA
Thel (the letter “ell) flag specifies that only local deliveries are to be done. If a message requires
any remote deliveries, it remains on the queue for later delivery.

-g<gflags> <start id> <end id>
When scanning the queue, Exim can be made to skip over messages whose ids are lexically less
than a given value by following thq option with a starting message id. For example:

exim -g 0t5C6f-0000c8-00

Messages that arrived earlier tharbC6f-0000¢8-00 are not inspected. If a second message
id is given, messages whose ids are lexically greater than it are also skipped. If the same id is given
twice, for example,

exim -g 0t5C6f-0000c8-00 0t5C6f-0000c8-00

just one delivery process is started, for that message. This differs-fvbrim that retry data is
respected, and it also differs frofivic in that it counts as a delivery from a queue run. Note that

the selection mechanism does not affect the order in which the messages are scanned. There are
also other ways of selecting specific sets of messages for delivery in a queue rvR argks.

-g<gflags><time>
When a time value is present, thg option causes Exim to run as a daemon, starting a queue
runner process at intervals specified by the given time value (whose format is described in section
6.15). This form of the-q option is commonly combined with thdd option, in which case a
single daemon process handles both functions. A common way of starting up a combined daemon
at system boot time is to use a command such as

Jusr/exim/bin/exim -bd -q30m

Such a daemon listens for incoming SMTP calls, and also starts a queue runner process every 30
minutes.

When a daemon is started bywith a time value, but withoutbd, no pid file is written unless one
is explicitly requested by th@P option.

-qR<rsflags> <string>
This option is synonymous witiR. It is provided for Sendmail compatibility.

-gS<rsflags> <string>
This option is synonymous wit$.

-R<rsflags> <string>
The <sflags> may be empty, in which case the white space before the string is optional, unless the
string isf, ff, r, rf, or rff, which are the possible values forsflags>. White space is required if
<rsflags> is not empty.

This option is similar to-g with no time value, that is, it causes Exim to perform a single queue

run, except that, when scanning the messages on the queue, Exim processes only those that have at
least one undelivered recipient address containing the given string, which is checked in a case-
independent way. If thersflags> start withr, <string> is interpreted as a regular expression;
otherwise it is a literal string.

45 The Exim command line (5)

If you want to do periodic queue runs for messages with specific recipients, you can cefRbine
with -g and a time value. For example:

exim -q25m -R @special.domain.example

This example does a queue run for messages with recipients in the given domain every 25 minutes.
Any additional flags that are specified withare applied to each queue run.

Once a message is selected for delivery by this mechanism, all its addresses are processed. For the
first selected message, Exim overrides any retry information and forces a delivery attempt for each
undelivered address. This means that if delivery of any address in the first message is successful,
any existing retry information is deleted, and so delivery attempts for that address in subsequently
selected messages (which are processed without forcing) will run. However, if delivery of any
address does not succeed, the retry information is updated, and in subsequently selected messages,
the failing address will be skipped.

If the <rsflags> containf or ff, the delivery forcing applies to all selected messages, not just the
first; frozen messages are included wfies present.

The-R option makes it straightforward to initiate delivery of all messages to a given domain after
a host has been down for some time. When the SMTP command ETRN is accepted by its ACL
(see chapter 40), its default effect is to run Exim with {Reoption, but it can be configured to run

an arbitrary command instead.

-r
This is a documented (for Sendmail) obsolete alternative namke for

-S<rsflags> <string>
This option acts likeR except that it checks the string against each message’s sender instead of
against the recipients. IR is also set, both conditions must be met for a message to be selected. If
either of the options hdor ff in its flags, the associated action is taken.

-Tqt <times>
This an option that is exclusively for use by the Exim testing suite. It is not recognized when Exim
is run normally. It allows for the setting up of explicit “queue times” so that various warning/retry
features can be tested.

When Exim is receiving a locally-generated, non-SMTP message on its standard inptit, the
option causes the recipients of the message to be obtained frofo:iléc:, andBcc: header lines

in the message instead of from the command arguments. The addresses are extracted before any
rewriting takes place and tigec: header line, if present, is then removed.

If the command has any arguments, they specify addresses to which the messag®ibe
delivered. That is, the argument addresses are removed from the recipients list obtained from the
headers. This is compatible with Smail 3 and in accordance with the documented behaviour of
several versions of Sendmail, as described in man pages on a number of operating systems (e.g.
Solaris 8, IRIX 6.5, HP-UX 11). However, some versions of Sendimdd argument addresses to

those obtained from the headers, and the O’Reilly Sendmail book documents it that way. Exim can
be made to add argument addresses instead of subtracting them by setting theexipéion
addresses_remove_argumentsise.

If there are anyResent-header lines in the message, Exim extracts recipients froResént-Tq:
Resent-Cg:andResent-Bccheader lines instead of froffo:, Cc:, andBcc:. This is for compati-
bility with Sendmail and other MTAs. (Prior to release 4.20, Exim gave an errowhs used in
conjunction withResent-header lines.)

RFC 2822 talks about different setsRésent-header lines (for when a message is resent several
times). The RFC also specifies that they should be added at the front of the message, and separated
by Receivediines. It is not at all clear howt should operate in the present of multiple sets, nor
indeed exactly what constitutes a “set”. In practice, it seems that MUAs do not follow the RFC.
The Resent-lines are often added at the end of the header, and if a message is resent more than
once, it is common for the original set Besent-headers to be renamed>é¢sRkesent-when a new

set is added. This removes any possible ambiguity.

46 The Exim command line (5)

-ti
This option is exactly equivalent tb-i. It is provided for compatibility with Sendmail.

-tls-on-connect
This option is available when Exim is compiled with TLS support. It forces all incoming SMTP
connections to behave as if the incoming port is listed inttheon_connect_portsoption. See
section 13.4 and chapter 39 for further details.

-U
Sendmail uses this option for “initial message submission”, and its documentation states that in
future releases, it may complain about syntactically invalid messages rather than fixing them when
this flag is not set. Exim ignores this option.

-V
This option causes Exim to write information to the standard error stream, describing what it is
doing. In particular, it shows the log lines for receiving and delivering a message, and if an SMTP
connection is made, the SMTP dialogue is shown. Some of the log lines shown may not actually
be written to the log if the setting dbg_selectordiscards them. Any relevant selectors are shown
with each log line. If none are shown, the logging is unconditional.

-X
AIX uses -x for a private purpose (“mail from a local mail program has National Language
Support extended characters in the body of the mail item”). It-set¢hen calling the MTA from
its mail command. Exim ignores this option.

a7 The Exim command line (5)

6. The Exim run time configuration file

Exim uses a single run time configuration file that is read whenever an Exim binary is executed. Note
that in normal operation, this happens frequently, because Exim is designed to operate in a distributed
manner, without central control.

If a syntax error is detected while reading the configuration file, Exim writes a message on the

standard error, and exits with a non-zero return code. The message is also written to the panic log.
Note: Only simple syntax errors can be detected at this time. The values of any expanded options are
not checked until the expansion happens, even when the expansion does not actually alter the string.

The name of the configuration file is compiled into the binary for security reasons, and is specified
by the CONFIGURE_FILE compilation option. In most configurations, this specifies a single file.
However, it is permitted to give a colon-separated list of file names, in which case Exim uses the first
existing file in the list.

The run time configuration file must be owned by root or by the user that is specified at compile time
by the EXIM_USER option, or by the user that is specified at compile time by the CONFIGURE_

OWNER option (if set). The configuration file must not be world-writeable or group-writeable, unless

its group is the one specified at compile time by the EXIM_GROUP option or by the CONFIGURE_

GROUP option.

Warning: In a conventional configuration, where the Exim binary is setuid to root, anybody who is
able to edit the run time configuration file has an easy way to run commands as root. If you make your
mail administrators members of the Exim group, but do not trust them with root, make sure that the
run time configuration is not group writeable.

A default configuration file, which will work correctly in simple situations, is provided in the file
src/configure.defaulif CONFIGURE_FILE defines just one file name, the installation process copies
the default configuration to a new file of that name if it did not previously exist. If CONFIGURE_
FILE is a list, no default is automatically installed. Chapter 7 is a “walk-through” discussion of the
default configuration.

6.1 Using a different configuration file

A one-off alternate configuration can be specified by-beommand line option, which may specify
a single file or a list of files. However, whef is used, Exim gives up its root privilege, unless called
by root or the Exim user (or unless the argument f0ris identical to the built-in value from
CONFIGURE_FILE).-C is useful mainly for checking the syntax of configuration files before instal-
ling them. No owner or group checks are done on a configuration file specifiéd by

The privileged use ofC by the Exim user can be locked out by setting ALT_CONFIG_ROOT _
ONLY in Local/Makefilewhen building Exim. However, if you do this, you also lock out the possi-

bility of testing a configuration usingC right through message reception and delivery, even if the
caller is root. The reception works, but by that time, Exim is running as the Exim user, so when it
re-execs to regain privilege for the delivery, the use@fcauses privilege to be lost. However, root

can test reception and delivery using two separate commands (one to put a message on the queue,
using-odq, and another to do the delivery, ush).

If ALT_CONFIG_PREFIX is definedn Local/Makefile it specifies a prefix string with which any file
named in a-C command line option must start. In addition, the file name must not contain the
sequence/!./ ". There is no default setting for ALT_CONFIG_PREFIX; when it is unset, any file
name can be used wi@@.

One-off changes to a configuration can be specified byEheommand line option, which defines
and overrides values for macros used inside the configuration file. HoweverClikbe use of this
option by a non-privileged user causes Exim to discard its root privilege. If DISABLE_D_OPTION is
defined inLocal/Makefile the use ofD is completely disabled, and its use causes an immediate error
exit.

Some sites may wish to use the same Exim binary on different machines that share a file system, but
to use different configuration files on each machine. If CONFIGURE_FILE_USE_NODE is defined

48 The runtime configuration file (6)

in Local/Makefile Exim first looks for a file whose name is the configuration file name followed by a
dot and the machine’s node name, as obtained fronuttzne()function. If this file does not exist,

the standard name is tried. This processing occurs for each file name in the list given by
CONFIGURE_FILE orC.

In some esoteric situations different versions of Exim may be run under different effective uids and
the CONFIGURE_FILE_USE_EUID is defined to help with this. See the commests/BDITME
for details.

6.2 Configuration file format

Exim’s configuration file is divided into a number of different parts. General option settings must
always appear at the start of the file. The other parts are all optional, and may appear in any order.
Each part other than the first is introduced by the word “begin” followed by the name of the part. The
optional parts are:

» ACL: Access control lists for controlling incoming SMTP mail (see chapter 40).

» authenticators Configuration settings for the authenticator drivers. These are concerned with the
SMTP AUTH command (see chapter 33).

 routers Configuration settings for the router drivers. Routers process addresses and determine how
the message is to be delivered (see chapters 15-22).

* transports Configuration settings for the transport drivers. Transports define mechanisms for copy-
ing messages to destinations (see chapters 24-30).

 retry: Retry rules, for use when a message cannot be delivered immediately. If there is no retry
section, or if it is empty (that is, no retry rules are defined), Exim will not retry deliveries. In this
situation, temporary errors are treated the same as permanent errors. Retry rules are discussed in
chapter 32.

» rewrite: Global address rewriting rules, for use when a message arrives and when new addresses
are generated during delivery. Rewriting is discussed in chapter 31.

» local_scan Private options for théocal_scan()function. If you want to use this feature, you must
set

LOCAL_SCAN_HAS_OPTIONS=yes
in Local/Makefilebefore building Exim. Details of thimcal_scan()facility are given in chapter 42.
Leading and trailing white space in configuration lines is always ignored.

Blank lines in the file, and lines starting with a # character (ignoring leading white space) are treated
as comments and are ignorédbte: A # character other than at the beginning of a line is not treated
specially, and does not introduce a comment.

Any non-comment line can be continued by ending it with a backslash. Note that the general rule for
white space means that trailing white space after the backslash and leading white space at the start of
continuation lines is ignored. Comment lines beginning with # (but not empty lines) may appear in
the middle of a sequence of continuation lines.

A convenient way to create a configuration file is to start from the default, which is supplied in
src/configure.defaultand add, delete, or change settings as required.

The ACLs, retry rules, and rewriting rules have their own syntax which is described in chapters 40,
32, and 31, respectively. The other parts of the configuration file have some syntactic items in
common, and these are described below, from section 6.10 onwards. Before that, the inclusion,
macro, and conditional facilities are described.

6.3 File inclusions in the configuration file
You can include other files inside Exim’s run time configuration file by using this syntax:

49 The runtime configuration file (6)

.include <file name
.include_if exists <file name

on a line by itself. Double quotes round the file name are optional. If you use the first form, a
configuration error occurs if the file does not exist; the second form does nothing for non-existent
files. In all cases, an absolute file name is required.

Includes may be nested to any depth, but remember that Exim reads its configuration file often, so it is
a good idea to keep them to a minimum. If you change the contents of an included file, you must HUP
the daemon, because an included file is read only when the configuration itself is read.

The processing of inclusions happens early, at a physical line level, so, like comment lines, an
inclusion can be used in the middle of an option setting, for example:

hosts_lookup = a.b.c\
.include /somef/file

Include processing happens after macro processing (see below). Its effect is to process the lines of the
included file as if they occurred inline where the inclusion appears.

6.4 Macros in the configuration file

If a line in the main part of the configuration (that is, before the first “begin” line) begins with an
upper case letter, it is taken as a macro definition, and must be of the form

<name> = <est of line

The name must consist of letters, digits, and underscores, and need not all be in upper case, though
that is recommended. The rest of the line, including any continuations, is the replacement text, and
has leading and trailing white space removed. Quotes are not removed. The replacement text can
never end with a backslash character, but this doesn’t seem to be a serious limitation.

Macros may also be defined between router, transport, authenticator, or ACL definitions. They may
not, however, be defined within an individual driver or ACL, or in tbeal_scan retry, or rewrite
sections of the configuration.

6.5 Macro substitution

Once a macro is defined, all subsequent lines in the file (and any included files) are scanned for the

macro name; if there are several macros, the line is scanned for each in turn, in the order in which the

macros are defined. The replacement text is not re-scanned for the current macro, though it is scanned
for subsequently defined macros. For this reason, a macro hame may not contain the name of a
previously defined macro as a substring. You could, for example, define

ABCD_XYZ = <something
ABCD = <something else

but putting the definitions in the opposite order would provoke a configuration error. Macro expansion
is applied to individual physical lines from the file, before checking for line continuation or file
inclusion (see above). If a line consists solely of a macro name, and the expansion of the macro is
empty, the line is ignored. A macro at the start of a line may turn the line into a comment line or a
.nclude line.

6.6 Redefining macros

Once defined, the value of a macro can be redefined later in the configuration (or in an included file).
Redefinition is specified by usimgr instead of=. For example:

MAC = initial value

MAC == updated value

50 The runtime configuration file (6)

Redefinition does not alter the order in which the macros are applied to the subsequent lines of the
configuration file. It is still the same order in which the macros were originally defined. All that
changes is the macro’s value. Redefinition makes it possible to accumulate values. For example:

MAC = initial value

MAC == MAC and something added
This can be helpful in situations where the configuration file is built from a number of other files.

6.7 Overriding macro values

The values set for macros in the configuration file can be overridden bYpthemmand line option,
but Exim gives up its root privilege whetD is used, unless called by root or the Exim user. A
definition on the command line using thB option causes all definitions and redefinitions within the
file to be ignored.

6.8 Example of macro usage

As an example of macro usage, consider a configuration where aliases are looked up in a MySQL
database. It helps to keep the file less cluttered if long strings such as SQL statements are defined
separately as macros, for example:

ALIAS QUERY = select mailbox from user where \
login=${quote_mysql:$local_part};

This can then be used imedirectrouter setting like this:
data = ${lookup mysql{ALIAS_QUERY}}

In earlier versions of Exim macros were sometimes used for domain, host, or address lists. In Exim 4
these are handled better by named lists — see section 10.5.

6.9 Conditional skips in the configuration file

You can use the directivegdef , .ifndef , .elifdef , .elifndef , .else ,and.endif to
dynamically include or exclude portions of the configuration file. The processing happens whenever
the file is read (that is, when an Exim binary starts to run).

The implementation is very simple. Instances of the first four directives must be followed by text that
includes the names of one or macros. The condition that is tested is whether or not any macro
substitution has taken place in the line. Thus:

.ifdef AAA
message_size_limit = 50M
.else

message_size_limit = 100M
.endif

sets a message size limit of 50M if the maéwAis defined, and 100M otherwise. If there is more
than one macro named on the line, the condition is true if any of them are defined. That is, it is an
“or” condition. To obtain an “and” condition, you need to use nesdef s.

Although you can use a macro expansion to generate one of these directives, it is not very useful,
because the condition “there was a macro substitution in this line” will always be true.

Text following .else and.endif is ignored, and can be used as comment to clarify complicated
nestings.

6.10 Common option syntax

For the main set of options, driver options, dadal_scan(Joptions, each setting is on a line by itself,
and starts with a name consisting of lower-case letters and underscores. Many options require a data

51 The runtime configuration file (6)

value, and in these cases the name must be followed by an equals sign (with optional white space) and
then the value. For example:

qualify_domain = mydomain.example.com

Some option settings may contain sensitive data, for example, passwords for accessing databases. To
stop non-admin users from using tH#P command line option to read these values, you can precede
the option settings with the word “hide”. For example:

hide mysqgl_servers = localhost/users/admin/secret-password
For non-admin users, such options are displayed like this:
mysql_servers = <value not displayable>
If “hide” is used on a driver option, it hides the value of that option on all instances of the same driver.

The following sections describe the syntax used for the different data types that are found in option
settings.

6.11 Boolean options

Options whose type is given as boolean are on/off switches. There are two different ways of specify-
ing such options: with and without a data value. If the option name is specified on its own without
data, the switch is turned on; if it is preceded by “no_" or “not_" the switch is turned off. However,
boolean options may be followed by an equals sign and one of the words “true”, “false”, “yes”, or

“no”, as an alternative syntax. For example, the following two settings have exactly the same effect:

gueue_only
gueue_only = true

The following two lines also have the same (opposite) effect:

no_queue_only
gueue_only = false

You can use whichever syntax you prefer.

6.12 Integer values

If an option’s type is given as “integer”, the value can be given in decimal, hexadecimal, or octal. If it
starts with a digit greater than zero, a decimal number is assumed. Otherwise, it is treated as an octal
number unless it starts with the characters “0x”, in which case the remainder is interpreted as a
hexadecimal number.

If an integer value is followed by the letter K, it is multiplied by 1024; if it is followed by the letter M,

it is multiplied by 1024x1024. When the values of integer option settings are output, values which are
an exact multiple of 1024 or 1024x1024 are sometimes, but not always, printed using the letters K
and M. The printing style is independent of the actual input format that was used.

6.13 Octal integer values

If an option’s type is given as “octal integer”, its value is always interpreted as an octal number,
whether or not it starts with the digit zero. Such options are always output in octal.

6.14 Fixed point numbers

If an option’s type is given as “fixed-point”, its value must be a decimal integer, optionally followed
by a decimal point and up to three further digits.

6.15 Time intervals

A time interval is specified as a sequence of numbers, each followed by one of the following letters,
with no intervening white space:

52 The runtime configuration file (6)

S seconds
m minutes
h hours

d days

w weeks

For example, “3h50m” specifies 3 hours and 50 minutes. The values of time intervals are output in the
same format. Exim does not restrict the values; it is perfectly acceptable, for example, to specify
“90m” instead of “1h30m”.

6.16 String values

If an option’s type is specified as “string”, the value can be specified with or without double-quotes. If

it does not start with a double-quote, the value consists of the remainder of the line plus any continu-
ation lines, starting at the first character after any leading white space, with trailing white space
removed, and with no interpretation of the characters in the string. Because Exim removes comment
lines (those beginning with #) at an early stage, they can appear in the middle of a multi-line string.
The following two settings are therefore equivalent:

trusted_users = uucp:mail

trusted_users = uucp:\
This comment line is ignored
mail

If a string does start with a double-quote, it must end with a closing double-quote, and any backslash
characters other than those used for line continuation are interpreted as escape characters, as follows:

\\ single backslash

\n newline

\r carriage return

\t tab

\ <octal digits> up to 3 octal digits specify one character

\x <hex digits up to 2 hexadecimal digits specify one character

If a backslash is followed by some other character, including a double-quote character, that character
replaces the pair.

Quoting is necessary only if you want to make use of the backslash escapes to insert special charac-
ters, or if you need to specify a value with leading or trailing spaces. These cases are rare, so quoting
is almost never needed in current versions of Exim. In versions of Exim before 3.14, quoting was
required in order to continue lines, so you may come across older configuration files and examples
that apparently quote unnecessarily.

6.17 Expanded strings

Some strings in the configuration file are subjectesdttmg expansionby which means various parts

of the string may be changed according to the circumstances (see chapter 11). The input syntax for
such strings is as just described; in particular, the handling of backslashes in quoted strings is done as
part of the input process, before expansion takes place. However, backslash is also an escape charac-
ter for the expander, so any backslashes that are required for that reason must be doubled if they are
within a quoted configuration string.

6.18 User and group names

User and group names are specified as strings, using the syntax described above, but the strings are
interpreted specially. A user or group name must either consist entirely of digits, or be a name that
can be looked up using tigetpwnam(pr getgrnam()function, as appropriate.

53 The runtime configuration file (6)

6.19 List construction

The data for some configuration options is a list of items, with colon as the default separator. Many of
these options are shown with type “string list” in the descriptions later in this document. Others are
listed as “domain list”, “host list”, “address list”, or “local part list”. Syntactically, they are all the
same; however, those other than “string list” are subject to particular kinds of interpretation, as
described in chapter 10.

In all these cases, the entire list is treated as a single string as far as the input syntax is concerned. The
trusted_userssetting in section 6.16 above is an example. If a colon is actually needed in an item in a
list, it must be entered as two colons. Leading and trailing white space on each item in a list is
ignored. This makes it possible to include items that start with a colon, and in particular, certain forms
of IPv6 address. For example, the list

local_interfaces = 127.0.0.1 : ::::1
contains two IP addresses, the IPv4 address 127.0.0.1 and the IPv6 address ::1.

Note: Although leading and trailing white space is ignored in individual list items, it is not ignored
when parsing the list. The space after the first colon in the example above is necessary. If it were not
there, the list would be interpreted as the two items 127.0.0.1:: and 1.

6.20 Changing list separators

Doubling colons in IPv6 addresses is an unwelcome chore, so a mechanism was introduced to allow
the separator character to be changed. If a list begins with a left angle bracket, followed by any
punctuation character, that character is used instead of colon as the list separator. For example, the list
above can be rewritten to use a semicolon separator like this:

local_interfaces = <; 127.0.0.1 ; ::1

This facility applies to all lists, with the exception of the listlog_file_path It is recommended that
the use of non-colon separators be confined to circumstances where they really are needed.

It is also possible to use newline and other control characters (those with code values less than 32,
plus DEL) as separators in lists. Such separators must be provided literally at the time the list is
processed. For options that are string-expanded, you can write the separator using a normal escape
sequence. This will be processed by the expander before the string is interpreted as a list. For
example, if a newline-separated list of domains is generated by a lookup, you can process it directly
by a line such as this:

domains = <\n ${lookup mysql.....}}

This avoids having to change the list separator in such data. You are unlikely to want to use a control
character as a separator in an option that is not expanded, because the value is literal text. However, it
can be done by giving the value in quotes. For example:

local_interfaces = "<\n 127.0.0.1 \n ::1"

Unlike printing character separators, which can be included in list items by doubling, it is not possible
to include a control character as data when it is set as the separator. Two such characters in succession
are interpreted as enclosing an empty list item.

6.21 Empty items in lists

An empty item at the end of a list is always ignored. In other words, trailing separator characters are
ignored. Thus, the list in

senders = user@domain :

contains only a single item. If you want to include an empty string as one item in a list, it must not be
the last item. For example, this list contains three items, the second of which is empty:

senders = userl@domain : : user2@domain

54 The runtime configuration file (6)

Note: There must be white space between the two colons, as otherwise they are interpreted as
representing a single colon data character (and the list would then contain just one item). If you want
to specify a list that contains just one, empty item, you can do it as in this example:

senders = :

In this case, the first item is empty, and the second is discarded because it is at the end of the list.

6.22 Format of driver configurations

There are separate parts in the configuration for defining routers, transports, and authenticators. In
each part, you are defining a number of driver instances, each with its own set of options. Each driver
instance is defined by a sequence of lines like this:

<instance nane
<optior>

<optior>
In the following example, the instance hamidaluser and it is followed by three options settings:

localuser:
driver = accept
check_local_user
transport = local_delivery

For each driver instance, you specify which Exim code module it uses — by the settingdrividre

option — and (optionally) some configuration settings. For example, in the case of transports, if you
want a transport to deliver with SMTP you would use $inetpdriver; if you want to deliver to a local

file you would use th@ppendfiledriver. Each of the drivers is described in detall in its own separate
chapter later in this manual.

You can have several routers, transports, or authenticators that are based on the same underlying
driver (each must have a different instance name).

The order in which routers are defined is important, because addresses are passed to individual routers
one by one, in order. The order in which transports are defined does not matter at all. The order in
which authenticators are defined is used only when Exim, as a client, is searching them to find one
that matches an authentication mechanism offered by the server.

Within a driver instance definition, there are two kinds of optiganericand private The generic
options are those that apply to all drivers of the same type (that is, all routers, all transports or all
authenticators). Thdriver option is a generic option that must appear in every definition. The private
options are special for each driver, and none need appear, because they all have default values.

The options may appear in any order, except thatiier option must precede any private options,
since these depend on the particular driver. For this reason, it is recommendddviiatalways be
the first option.

Driver instance names, which are used for reference in log entries and elsewhere, can be any sequence
of letters, digits, and underscores (starting with a letter) and must be unique among drivers of the
same type. A router and a transport (for example) can each have the same name, but no two router
instances can have the same name. The name of a driver instance should not be confused with the
name of the underlying driver module. For example, the configuration lines:

remote_smtp:
driver = smtp

create an instance of tlentptransport driver whose namersmote_smtpThe same driver code can
be used more than once, with different instance names and different option settings each time. A
second instance of tlentptransport, with different options, might be defined thus:

special_smtp:
driver = smtp

55 The runtime configuration file (6)

port = 1234
command_timeout = 10s

The namesemote smt@ndspecial_smtpvould be used to reference these transport instances from
routers, and these names would appear in log lines.

Comment lines may be present in the middle of driver specifications. The full list of option settings

for any particular driver instance, including all the defaulted values, can be extracted by making use
of the-bP command line option.

56 The runtime configuration file (6)

7. The default configuration file

The default configuration file supplied with Exim s/configure.defaulis sufficient for a host with
simple mail requirements. As an introduction to the way Exim is configured, this chapter “walks
through” the default configuration, giving brief explanations of the settings. Detailed descriptions of
the options are given in subsequent chapters. The default configuration file itself contains extensive
comments about ways you might want to modify the initial settings. However, note that there are
many options that are not mentioned at all in the default configuration.

7.1 Main configuration settings

The main (global) configuration option settings must always come first in the file. The first thing
you'll see in the file, after some initial comments, is the line

primary_hostname =

This is a commented-out setting of thamary_hostname option. Exim needs to know the official,

fully qualified name of your host, and this is where you can specify it. However, in most cases you do
not need to set this option. When it is unset, Exim usesitteane()system function to obtain the host
name.

The first three non-comment configuration lines are as follows:

domainlist local_domains = @
domainlist relay_to_domains =
hostlist relay_from_hosts =127.0.0.1

These are not, in fact, option settings. They are definitions of two named domain lists and one named
host list. Exim allows you to give nhames to lists of domains, hosts, and email addresses, in order to
make it easier to manage the configuration file (see section 10.5).

The first line defines a domain list callédcal_domains this is used later in the configuration to
identify domains that are to be delivered on the local host.

There is just one item in this list, the string “@”. This is a special form of entry which means “the
name of the local host”. Thus, if the local host is calleahost.example mail to
any.user@a.host.examgke expected to be delivered locally. Because the local host’s name is refer-
enced indirectly, the same configuration file can be used on different hosts.

The second line defines a domain list caliethy _to_domaingbut the list itself is empty. Later in the
configuration we will come to the part that controls mail relaying through the local host; it allows
relaying to any domains in this list. By default, therefore, no relaying on the basis of a mail domain is
permitted.

The third line defines a host list calleelay_from_hostsThis list is used later in the configuration to
permit relaying from any host or IP address that matches the list. The default contains just the IP
address of the IPv4 loopback interface, which means that processes on the local host are able to
submit mail for relaying by sending it over TCP/IP to that interface. No other hosts are permitted to
submit messages for relaying.

Just to be sure there’s no misunderstanding: at this point in the configuration we aren't actually setting
up any controls. We are just defining some domains and hosts that will be used in the controls that are
specified later.

The next two configuration lines are genuine option settings:

acl_smtp_rcpt = acl_check_rcpt
acl_smtp_data = acl_check_data

These options specifiiccess Control List¢ACLs) that are to be used during an incoming SMTP
session for every recipient of a message (every RCPT command), and after the contents of the
message have been received, respectively. The names of the listechmheck rcptand
acl_check_dataand we will come to their definitions below, in the ACL section of the configuration.
The RCPT ACL controls which recipients are accepted for an incoming message — if a configuration

57 The default configuration file (7)

does not provide an ACL to check recipients, no SMTP mail can be accepted. The DATA ACL allows
the contents of a message to be checked.

Two commented-out option settings are next:

av_scanner = clamd:/tmp/clamd
spamd_address = 127.0.0.1 783

These are example settings that can be used when Exim is compiled with the content-scanning
extension. The first specifies the interface to the virus scanner, and the second specifies the interface
to SpamAssassin. Further details are given in chapter 41.

Three more commented-out option settings follow:

tls_advertise_hosts = *
tls_certificate = /etc/ssl/exim.crt
tIs_privatekey = /etc/ssl/exim.pem

These are example settings that can be used when Exim is compiled with support for TLS (aka SSL)
as described in section 4.6. The first one specifies the list of clients that are allowed to use TLS when
connecting to this server; in this case the wildcard means all clients. The other options specify where
Exim should find its TLS certificate and private key, which together prove the server’s identity to any
clients that connect. More details are given in chapter 39.

Another two commented-out option settings follow:

daemon_smtp_ports = 25 : 465 : 587
tls_on_connect_ports = 465

These options provide better support for roaming users who wish to use this server for message
submission. They are not much use unless you have turned on TLS (as described in the previous
paragraph) and authentication (about which more in section 7.7). The usual SMTP port 25 is often
blocked on end-user networks, so RFC 4409 specifies that message submission should use port 587
instead. However some software (notably Microsoft Outlook) cannot be configured to use port 587
correctly, so these settings also enable the non-standard “smtps” (aka “ssmtp”) port 465 (see section
13.4).

Two more commented-out options settings follow:

qualify_domain =
qualify_recipient =

The first of these specifies a domain that Exim uses when it constructs a complete email address from
a local login name. This is often needed when Exim receives a message from a local process. If you
do not sequalify_domain, the value ofprimary_hostname is used. If you set both of these options,

you can have different qualification domains for sender and recipient addresses. If you set only the
first one, its value is used in both cases.

The following line must be uncommented if you want Exim to recognize addresses of the form
user@[10.11.12.13fhat is, with a “domain literal” (an IP address within square brackets) instead of a
named domain.

allow_domain_literals

The RFCs still require this form, but many people think that in the modern Internet it makes little
sense to permit mail to be sent to specific hosts by quoting their IP addresses. This ancient format has
been used by people who try to abuse hosts by using them for unwanted relaying. However, some
people believe there are circumstances (for example, messages addregseintaster where

domain literals are still useful.

The next configuration line is a kind of trigger guard:
never_users = root

It specifies that no delivery must ever be run as the root user. The normal convention is tocmt up
as an alias for the system administrator. This setting is a guard against slips in the configuration. The
list of users specified bgever_usersis not, however, the complete list; the build-time configuration

58 The default configuration file (7)

in Local/Makefilehas an option called FIXED_NEVER_USERS specifying a list that cannot be
overridden. The contents okever_usersare added to this list. By default FIXED_NEVER_USERS
also specifies root.

When a remote host connects to Exim in order to send mail, the only information Exim has about the
host’s identity is its IP address. The next configuration line,

host_lookup = *

specifies that Exim should do a reverse DNS lookup on all incoming connections, in order to get a
host name. This improves the quality of the logging information, but if you feel it is too expensive,
you can remove it entirely, or restrict the lookup to hosts on “nearby” networks. Note that it is not
always possible to find a host name from an IP address, because not all DNS reverse zones are
maintained, and sometimes DNS servers are unreachable.

The next two lines are concerned wilentcallbacks, as defined by RFC 1413 (hence their names):

rfc1413_hosts = *
rfc1413_query_timeout = 5s

These settings cause Exim to make ident callbacks for all incoming SMTP calls. You can limit the
hosts to which these calls are made, or change the timeout that is used. If you set the timeout to zero,
all ident calls are disabled. Although they are cheap and can provide useful information for tracing
problem messages, some hosts and firewalls have problems with ident calls. This can result in a
timeout instead of an immediate refused connection, leading to delays on starting up an incoming
SMTP session.

When Exim receives messages over SMTP connections, it expects all addresses to be fully qualified
with a domain, as required by the SMTP definition. However, if you are running a server to which
simple clients submit messages, you may find that they send unqualified addresses. The two
commented-out options:

sender_unqualified_hosts =
recipient_unqualified_hosts =

show how you can specify hosts that are permitted to send unqualified sender and recipient addresses,
respectively.

Thepercent_hack_domainsoption is also commented out:
percent_hack_domains =

It provides a list of domains for which the “percent hack” is to operate. This is an almost obsolete
form of explicit email routing. If you do not know anything about it, you can safely ignore this topic.

The last two settings in the main part of the default configuration are concerned with messages that
have been “frozen” on Exim’s queue. When a message is frozen, Exim no longer continues to try to
deliver it. Freezing occurs when a bounce message encounters a permanent failure because the sender
address of the original message that caused the bounce is invalid, so the bounce cannot be delivered.
This is probably the most common case, but there are also other conditions that cause freezing, and
frozen messages are not always bounce messages.

ignore_bounce_errors_after = 2d
timeout_frozen_after = 7d

The first of these options specifies that failing bounce messages are to be discarded after 2 days on the
gueue. The second specifies that any frozen message (whether a bounce message or not) is to be
timed out (and discarded) after a week. In this configuration, the first setting ensures that no failing
bounce message ever lasts a week.

7.2 ACL configuration
In the default configuration, the ACL section follows the main configuration. It starts with the line
begin acl

59 The default configuration file (7)

and it contains the definitions of two ACLs, calledl_check_rcptand acl_check_datathat were
referenced in the settings @fl_smtp_rcptandacl_smtp_dataabove.

The first ACL is used for every RCPT command in an incoming SMTP message. Each RCPT
command specifies one of the message’s recipients. The ACL statements are considered in order, until
the recipient address is either accepted or rejected. The RCPT command is then accepted or rejected,
according to the result of the ACL processing.

acl_check_rcpt:
This line, consisting of a name terminated by a colon, marks the start of the ACL, and names it.
accept hosts =:

This ACL statement accepts the recipient if the sending host matches the list. But what does that
strange list mean? It doesn’t actually contain any host names or IP addresses. The presence of the
colon puts an empty item in the list; Exim matches this only if the incoming message did not come
from a remote host, because in that case, the remote hostname is empty. The colon is important.
Without it, the list itself is empty, and can never match anything.

What this statement is doing is to accept unconditionally all recipients in messages that are submitted
by SMTP from local processes using the standard input and output (that is, not using TCP/IP). A
number of MUAS operate in this manner.

deny message = Restricted characters in address
domains = +local_domains
local_parts ="[]: " *@%Y]]

deny message = Restricted characters in address
domains = I+local_domains
local_parts ="[/|] : ~*[@%!] : AN
These statements are concerned with local parts that contain any of the characters “@”, “%”", “!", “/",

“|", or dots in unusual places. Although these characters are entirely legal in local parts (in the case
of “@” and leading dots, only if correctly quoted), they do not commonly occur in Internet mail
addresses.

The first three have in the past been associated with explicitly routed addresses (percent is still
sometimes used — see thercent_hack domainsoption). Addresses containing these characters are
regularly tried by spammers in an attempt to bypass relaying restrictions, and also by open relay
testing programs. Unless you really need them it is safest to reject these characters at this early stage.
This configuration is heavy-handed in rejecting these characters for all messages it accepts from
remote hosts. This is a deliberate policy of being as safe as possible.

The first rule above is stricter, and is applied to messages that are addressed to one of the local
domains handled by this host. This is implemented by the first condition, which restricts it to domains
that are listed in théocal_domaingddomain list. The “+” character is used to indicate a reference to a
named list. In this configuration, there is just one domailogal_domainsbut in general there may

be many.

The second condition on the first statement uses two regular expressions to block local parts that
begin with a dot or contain “@", “%”, “1”, “/", or “|". If you have local accounts that include these
characters, you will have to modify this rule.

Empty components (two dots in a row) are not valid in RFC 2822, but Exim allows them because they
have been encountered in practice. (Consider the common convention of local parts constructed as
“first-initial.second-initial.family-nanfewhen applied to someone like the author of Exim, who has

no second initial.) However, a local part starting with a dot or containing “/../” can cause trouble if it

is used as part of a file name (for example, for a mailing list). This is also true for local parts that
contain slashes. A pipe symbol can also be troublesome if the local part is incorporated unthinkingly
into a shell command line.

The second rule above applies to all other domains, and is less strict. This allows your own users to
send outgoing messages to sites that use slashes and vertical bars in their local parts. It blocks local

60 The default configuration file (7)

parts that begin with a dot, slash, or vertical bar, but allows these characters within the local part.
However, the sequence “/../” is barred. The use of "@”, “%”, and “I” is blocked, as before. The
motivation here is to prevent your users (or your users’ viruses) from mounting certain kinds of attack
on remote sites.

accept local_parts = postmaster
domains = +local_domains

This statement, which has two conditions, accepts an incoming address if the localguastinigster
and the domain is one of those listed in theal _domainsgdomain list. The “+” character is used to
indicate a reference to a named list. In this configuration, there is just one domagaindomains
but in general there may be many.

The presence of this statement means that mail to postmaster is never blocked by any of the subse-
guent tests. This can be helpful while sorting out problems in cases where the subsequent tests are
incorrectly denying access.

require verify = sender

This statement requires the sender address to be verified before any subsequent ACL statement can be
used. If verification fails, the incoming recipient address is refused. Verification consists of trying to
route the address, to see if a bounce message could be delivered to it. In the case of remote addresses,
basic verification checks only the domain, loailoutscan be used for more verification if required.
Section 40.40 discusses the details of address verification.

accept hosts = +relay_from_hosts
control = submission

This statement accepts the address if the message is coming from one of the hosts that are defined as
being allowed to relay through this host. Recipient verification is omitted here, because in many cases
the clients are dumb MUAs that do not cope well with SMTP error responses. For the same reason,
the second line specifies “submission mode” for messages that are accepted. This is described in
detail in section 44.1; it causes Exim to fix messages that are deficient in some way, for example,
because they lack Bate: header line. If you are actually relaying out from MTAs, you should
probably add recipient verification here, and disable submission mode.

accept authenticated = *
control = submission

This statement accepts the address if the client host has authenticated itself. Submission mode is again
specified, on the grounds that such messages are most likely to come from MUAs. The default
configuration does not define any authenticators, though it does include some nearly complete
commented-out examples described in 7.7. This means that no client can in fact authenticate until you
complete the authenticator definitions.

require message = relay not permitted
domains = +local_domains : +relay_domains

This statement rejects the address if its domain is neither a local domain nor one of the domains for
which this host is a relay.

require verify = recipient

This statement requires the recipient address to be verified; if verification fails, the address is rejected.

#deny message = rejected because $sender_host_address \
is in a black list at $dnslist_domain\n\

$dnslist_text

dnslists = black.list.example

#

#warn dnslists = black.list.example

add_header = X-Warning: $sender_host_address is in \

a black list at $dnslist_domain

log_message = found in $dnslist_domain

61 The default configuration file (7)

These commented-out lines are examples of how you could configure Exim to check sending hosts
against a DNS black list. The first statement rejects messages from blacklisted hosts, whereas the
second just inserts a warning header line.

require verify = csa

This commented-out line is an example of how you could turn on client SMTP authorization (CSA)
checking. Such checks do DNS lookups for special SRV records.

accept

The final statement in the first ACL unconditionally accepts any recipient address that has success-
fully passed all the previous tests.

acl_check_data:

This line marks the start of the second ACL, and names it. Most of the contents of this ACL are
commented out:

#deny malware =*
message = This message contains a virus \
($malware_name).

These lines are examples of how to arrange for messages to be scanned for viruses when Exim has
been compiled with the content-scanning extension, and a suitable virus scanner is installed. If the
message is found to contain a virus, it is rejected with the given custom error message.

#warn spam = nobody

message = X-Spam_score: $spam_score\n\
X-Spam_score_int: $spam_score_int\n\
X-Spam_bar: $spam_bar\n\

X-Spam_report: $spam_report

These lines are an example of how to arrange for messages to be scanned by SpamAssassin when
Exim has been compiled with the content-scanning extension, and SpamAssassin has been installed.
The SpamAssassin check is run witbbody as its user parameter, and the results are added to the
message as a series of extra header line. In this case, the message is not rejected, whatever the spam
score.

accept
This final line in the DATA ACL accepts the message unconditionally.

7.3 Router configuration
The router configuration comes next in the default configuration, introduced by the line
begin routers

Routers are the modules in Exim that make decisions about where to send messages. An address is
passed to each router in turn, until it is either accepted, or failed. This means that the order in which
you define the routers matters. Each router is fully described in its own chapter later in this manual.
Here we give only brief overviews.

domain_literal:

driver = ipliteral

domains = !+local_domains
transport = remote_smtp

This router is commented out because the majority of sites do not want to support domain literal
addresses (those of the foroser@[10.9.8.7]. If you uncomment this router, you also need to
uncomment the setting aflow_domain_literals in the main part of the configuration.

dnslookup:
driver = dnslookup
domains =! +local_domains

62 The default configuration file (7)

transport = remote_smtp
ignore_target_hosts = 0.0.0.0 : 127.0.0.0/8
no_more

The first uncommented router handles addresses that do not involve any local domains. This is
specified by the line

domains = ! +local_domains

The domains option lists the domains to which this router applies, but the exclamation mark is a
negation sign, so the router is used only for domains that are not in the domain list called
local_domains (which was defined at the start of the configuration). The plus sign before
local_domaingndicates that it is referring to a named list. Addresses in other domains are passed on
to the following routers.

The name of the router driver @nslookupand is specified by theriver option. Do not be confused

by the fact that the name of this router instance is the same as the name of the driver. The instance
name is arbitrary, but the name set in tiéver option must be one of the driver modules that is in

the Exim binary.

The dnslookuprouter routes addresses by looking up their domains in the DNS in order to obtain a
list of hosts to which the address is routed. If the router succeeds, the address is queued for the
remote_smtpransport, as specified by ti@ansport option. If the router does not find the domain in

the DNS, no further routers are tried because of nbemore setting, so the address fails and is
bounced.

The ignore_target_hostsoption specifies a list of IP addresses that are to be entirely ignored. This
option is present because a number of cases have been encountered where MX records in the DNS
point to host names whose IP addresses are 0.0.0.0 or are in the 127 subnet (typically 127.0.0.1).
Completely ignoring these IP addresses causes Exim to fail to route the email address, so it bounces.
Otherwise, Exim would log a routing problem, and continue to try to deliver the message periodically
until the address timed out.

system_aliases:

driver = redirect

allow_fail

allow_defer

data = ${lookup{$local_part}lsearch{/etc/aliases}}
user = exim

file_transport = address_file

pipe_transport = address_pipe

Control reaches this and subsequent routers only for addresses in the local domains. This router
checks to see whether the local part is defined as an alias ietttialiasedile, and if so, redirects it
according to the data that it looks up from that file. If no data is found for the local part, the value of
thedata option is empty, causing the address to be passed to the next router.

/etc/aliasesis a conventional name for the system aliases file that is often used. That is why it is
referenced by from the default configuration file. However, you can change this by setting SYSTEM_
ALIASES_FILE inLocal/Makefilebefore building Exim.

userforward:
driver = redirect
check_local_user
local_part_suffix = +* : -*
local_part_suffix_optional
file = $home/.forward
allow_filter
no_verify
no_expn
check_ancestor
file_transport = address_file

63 The default configuration file (7)

pipe_transport = address_pipe
reply_transport = address_reply

This is the most complicated router in the default configuration. It is another redirection router, but
this time it is looking for forwarding data set up by individual users. Theck_local_usersetting
specifies a check that the local part of the address is the login name of a local user. If it is not, the
router is skipped. The two commented options that folbeck _local_usernamely:

local_part_suffix = +* : -*
local_part_suffix_optional

show how you can specify the recognition of local part suffixes. If the first is uncommented, a suffix
beginning with either a plus or a minus sign, followed by any sequence of characters, is removed from
the local part and placed in the varialfliecal_part_suffixThe second suffix option specifies that the
presence of a suffix in the local part is optional. When a suffix is present, the check for a local login
uses the local part with the suffix removed.

When a local user account is found, the file callfiealward in the user’s home directory is consulted.
If it does not exist, or is empty, the router declines. Otherwise, the conterftswhrd are interpreted
as redirection data (see chapter 22 for more details).

Traditional.forward files contain just a list of addresses, pipes, or files. Exim supports this by default.
However, ifallow_filter is set (it is commented out by default), the contents of the file are interpreted
as a set of Exim or Sieve filtering instructions, provided the file begins with “#Exim filter” or “#Sieve

filter”, respectively. User filtering is discussed in the separate document eifiileds interfaces to

mail filtering.

The no_verify and no_expn options mean that this router is skipped when verifying addresses, or
when running as a consequence of an SMTP EXPN command. There are two reasons for doing this:

(1) Whether or not a local user hasfarward file is not really relevant when checking an address
for validity; it makes sense not to waste resources doing unnecessary work.

(2) More importantly, when Exim is verifying addresses or handling an EXPN command during an
SMTP session, it is running as the Exim user, not as root. The group is the Exim group, and no
additional groups are set up. It may therefore not be possible for Exim to read Heensird
files at this time.

The setting ofcheck_ancestoiprevents the router from generating a new address that is the same as
any previous address that was redirected. (This works round a problem concerning a bad interaction
between aliasing and forwarding — see section 22.5).

The final three option settings specify the transports that are to be used when forwarding generates a
direct delivery to a file, or to a pipe, or sets up an auto-reply, respectively. For examplénivard
file contains

a.nother@elsewhere.example, /home/spgr/archive
the delivery tdhome/spqr/archivés done by running theddress_filetransport.

localuser:
driver = accept
check local user
local_part_suffix = +* : -*
local_part_suffix_optional
transport = local_delivery

The final router sets up delivery into local mailboxes, provided that the local part is the name of a
local login, by accepting the address and assigning it tddbal_deliverytransport. Otherwise, we

have reached the end of the routers, so the address is bounced. The commented suffix settings fulfil
the same purpose as they do forukerforwardrouter.

64 The default configuration file (7)

7.4 Transport configuration

Transports define mechanisms for actually delivering messages. They operate only when referenced
from routers, so the order in which they are defined does not matter. The transports section of the
configuration starts with

begin transports
One remote transport and four local transports are defined.

remote_smtp:
driver = smtp

This transport is used for delivering messages over SMTP connections. All its options are defaulted.
The list of remote hosts comes from the router.

local_delivery:
driver = appendfile
file = /lvar/mail/$local_part
delivery_date_add
envelope_to_add
return_path_add

group = malil

mode = 0660

This appendfiletransport is used for local delivery to user mailboxes in traditional BSD mailbox
format. By default it runs under the uid and gid of the local user, which requires the sticky bit to be set
on the/var/mail directory. Some systems use the alternative approach of running mail deliveries under
a particular group instead of using the sticky bit. The commented options show how this can be done.

Exim adds three headers to the message as it deliveDeiivery-date; Envelope-to:and Return-
path: This action is requested by the three similarly-named options above.

address_pipe:
driver = pipe
return_output

This transport is used for handling deliveries to pipes that are generated by redirection (aliasing or
users’.forward files). Thereturn_output option specifies that any output generated by the pipe is to
be returned to the sender.

address_file:
driver = appendfile
delivery_date_add
envelope_to_add
return_path_add

This transport is used for handling deliveries to files that are generated by redirection. The name of
the file is not specified in this instanceapipendfile because it comes from thedirectrouter.

address_reply:
driver = autoreply

This transport is used for handling automatic replies generated by users’ filter files.

7.5 Default retry rule

The retry section of the configuration file contains rules which affect the way Exim retries deliveries
that cannot be completed at the first attempt. It is introduced by the line

begin retry
In the default configuration, there is just one rule, which applies to all errors:
* * [2h,15m; G,16h,1h,1.5; F,4d,6h

65 The default configuration file (7)

This causes any temporarily failing address to be retried every 15 minutes for 2 hours, then at
intervals starting at one hour and increasing by a factor of 1.5 until 16 hours have passed, then every 6
hours up to 4 days. If an address is not delivered after 4 days of temporary failure, it is bounced.

If the retry section is removed from the configuration, or is empty (that is, if no retry rules are
defined), Exim will not retry deliveries. This turns temporary errors into permanent errors.

7.6 Rewriting configuration
The rewriting section of the configuration, introduced by

begin rewrite

contains rules for rewriting addresses in messages as they arrive. There are no rewriting rules in the
default configuration file.

7.7 Authenticators configuration
The authenticators section of the configuration, introduced by

begin authenticators

defines mechanisms for the use of the SMTP AUTH command. The default configuration file contains
two commented-out example authenticators which support plaintext username/password
authentication using the standard PLAIN mechanism and the traditional but non-standard LOGIN
mechanism, with Exim acting as the server. PLAIN and LOGIN are enough to support most MUA
software.

The example PLAIN authenticator looks like this:

#PLAIN:

driver = plaintext

server_set_id = $auth2

server_prompts =

server_condition = Authentication is not yet configured

server_advertise_condition = ${if def:tls_cipher }

And the example LOGIN authenticator looks like this:

#LOGIN:

driver = plaintext

server_set_id = $authl

server_prompts = <| Username: | Password:

server_condition = Authentication is not yet configured

server_advertise_condition = ${if def:tls_cipher }

The server_set_idoption makes Exim remember the authenticated usernarauthenticated_id

which can be used later in ACLs or routers. Témrver_prompts option configures theglaintext
authenticator so that it implements the details of the specific authentication mechanism, i.e. PLAIN or
LOGIN. Theserver_advertise_conditionsetting controls when Exim offers authentication to clients;

in the examples, this is only when TLS or SSL has been started, so to enable the authenticators you
also need to add support for TLS as described in 7.1.

Theserver_conditionsetting defines how to verify that the username and password are correct. In the

examples it just produces an error message. To make the authenticators work, you can use a string
expansion expression like one of the examples in 34.

66 The default configuration file (7)

8. Regular expressions

Exim supports the use of regular expressions in many of its options. It uses the PCRE regular
expression library; this provides regular expression matching that is compatible with Perl 5. The
syntax and semantics of regular expressions is discussed in many Perl reference books, and also in
Jeffrey Friedl's Mastering Regular Expressionswhich is published by O’'Reilly (see
http://www.oreilly.com/catalog/regex2j.

The documentation for the syntax and semantics of the regular expressions that are supported by
PCRE is included in plain text in the fildoc/pcrepattern.txin the Exim distribution, and also in the
HTML tarbundle of Exim documentation. It describes in detail the features of the regular expressions
that PCRE supports, so no further description is included here. The PCRE functions are called from
Exim using the default option settings (that is, with no PCRE options set), except that the PCRE_
CASELESS option is set when the matching is required to be case-insensitive.

In most cases, when a regular expression is required in an Exim configuration, it has to start with a
circumflex, in order to distinguish it from plain text or an “ends with” wildcard. In this example of a
configuration setting, the second item in the colon-separated list is a regular expression.

domains = a.b.c : \\d{3} : *.y.z : ...

The doubling of the backslash is required because of string expansion that precedes interpretation —
see section 11.1 for more discussion of this issue, and a way of avoiding the need for doubling
backslashes. The regular expression that is eventually used in this example contains just one
backslash. The circumflex is included in the regular expression, and has the normal effect of
“anchoring” it to the start of the string that is being matched.

There are, however, two cases where a circumflex is not required for the recognition of a regular
expression: these are timeatch condition in a string expansion, and theatches condition in an

Exim filter file. In these cases, the relevant string is always treated as a regular expression; if it does
not start with a circumflex, the expression is not anchored, and can match anywhere in the subject
string.

In all cases, if you want a regular expression to match at the end of a string, you must code the $
metacharacter to indicate this. For example:

domains = M\d{3}\\.example
matches the domait23.examplgbut it also matchek23.example.conYou need to use:
domains = M\d{3}\\.example\$

if you wantexampleto be the top-level domain. The backslash before the $ is needed because string
expansion also interprets dollar characters.

8.1 Testing regular expressions

A program calledpcretestforms part of the PCRE distribution and is built with PCRE during the
process of building Exim. It is primarily intended for testing PCRE itself, but it can also be used for
experimenting with regular expressions. After building Exim, the binary can be found in the build
directory (it is not installed anywhere automatically). There is documentation of various options in
doc/pcretest.txtbut for simple testing, none are needed. This is the output of a sample penetést

re> /MN[@+)@+\.(acledu)\.(?'kr)[a-z]{2}%/
data> Xx@. ac. uk
0: x@y.ac.uk
1:x
2:ac
data> x@. ac. kr
No match
data> x@.edu.com
No match
data> Xx@. edu.co

67 Regular expressions (8)

0: x@y.edu.co
1:x
2:edu

Input typed by the user is shown in bold face. After the “re>" prompt, a regular expression enclosed
in delimiters is expected. If this compiles without error, “data>" prompts are given for strings against
which the expression is matched. An empty data line causes a new regular expression to be read. If
the match is successful, the captured substring values (that is, what would be in the v&OaBles

$2, etc.) are shown. The above example tests for an email address whose domain ends with either
“ac” or “edu” followed by a two-character top-level domain that is not “kr”. The local part is captured

in $1 and the “ac” or “edu” ir$2.

68 Regular expressions (8)

9. File and database lookups

Exim can be configured to look up data in files or databases as it processes messages. Two different
kinds of syntax are used:

(1) A string that is to be expanded may contain explicit lookup requests. These cause parts of the
string to be replaced by data that is obtained from the lookup. Lookups of this type are con-
ditional expansion items. Different results can be defined for the cases of lookup success and
failure. See chapter 11, where string expansions are described in detail.

(2) Lists of domains, hosts, and email addresses can contain lookup requests as a way of avoiding
excessively long linear lists. In this case, the data that is returned by the lookup is often (but not
always) discarded; whether the lookup succeeds or fails is what really counts. These kinds of list
are described in chapter 10.

String expansions, lists, and lookups interact with each other in such a way that there is no order in
which to describe any one of them that does not involve references to the others. Each of these three
chapters makes more sense if you have read the other two first. If you are reading this for the first
time, be aware that some of it will make a lot more sense after you have read chapters 10 and 11.

9.1 Examples of different lookup syntax

It is easy to confuse the two different kinds of lookup, especially as the lists that may contain the
second kind are always expanded before being processed as lists. Therefore, they may also contain
lookups of the first kind. Be careful to distinguish between the following two examples:

domains = ${lookup{$sender_host_address}Isearch{/somef/file}}
domains = Isearch;/some/file

The first uses a string expansion, the result of which must be a domain list. No strings have been
specified for a successful or a failing lookup; the defaults in this case are the looked-up data and an
empty string, respectively. The expansion takes place before the string is processed as a list, and the
file that is searched could contain lines like this:

192.168.3.4: domainl:domain2:...
192.168.1.9: domain3:domain4-:...

When the lookup succeeds, the result of the expansion is a list of domains (and possibly other types of
item that are allowed in domain lists).

In the second example, the lookup is a single item in a domain list. It causes Exim to use a lookup to
see if the domain that is being processed can be found in the file. The file could contains lines like
this:

domainl;
domain2;

Any data that follows the keys is not relevant when checking that the domain matches the list item.

It is possible, though no doubt confusing, to use both kinds of lookup at once. Consider a file
containing lines like this:

192.168.5.6: Isearch;/another/file

If the value of$sender_host_address 192.168.5.6, expansion of the fidbmains setting above
generates the second setting, which therefore causes a second lookup to occur.

The rest of this chapter describes the different lookup types that are available. Any of them can be
used in any part of the configuration where a lookup is permitted.

9.2 Lookup types
Two different types of data lookup are implemented:

69 File and database lookups (9)

The single-keytype requires the specification of a file in which to look, and a single key to search
for. The key must be a non-empty string for the lookup to succeed. The lookup type determines
how the file is searched.

The query-styletype accepts a generalized database query. No particular key value is assumed by
Exim for query-style lookups. You can use whichever Exim variables you need to construct the
database query.

The code for each lookup type is in a separate source file that is included in the binary of Exim only if
the corresponding compile-time option is set. The default settirgygs/EDITMEare:

LOOKUP_DBM=yes
LOOKUP_LSEARCH=yes

which means that only linear searching and DBM lookups are included by default. For some types of
lookup (e.g. SQL databases), you need to install appropriate libraries and header files before building
Exim.

9.3 Single-key lookup types
The following single-key lookup types are implemented:

cdlx The given file is searched as a Constant DataBase file, using the key string without a terminat-
ing binary zero. The cdb format is designed for indexed files that are read frequently and never
updated, except by total re-creation. As such, it is particularly suitable for large files containing
aliases or other indexed data referenced by an MTA. Information about cdb can be found in several
places:

http://www.pobox.com/~djb/cdb.html
ftp://ftp.corpit.ru/pub/tinycdb/
http://packages.debian.org/stable/utils/freecdb.html

A cdb distribution is not needed in order to build Exim with cdb support, because the code for
reading cdb files is included directly in Exim itself. However, no means of building or testing cdb
files is provided with Exim, so you need to obtain a cdb distribution in order to do this.

dbm Calls to DBM library functions are used to extract data from the given DBM file by looking
up the record with the given key. A terminating binary zero is included in the key that is passed to
the DBM library. See section 4.3 for a discussion of DBM libraries.

For all versions of Berkeley DB, Exim uses the DB_HASH style of database when building DBM
files using theexim_dbmbuild utility. However, when using Berkeley DB versions 3 or 4, it opens
existing databases for reading with the DB_UNKNOWN option. This enables it to handle any of
the types of database that the library supports, and can be useful for accessing DBM files created
by other applications. (For earlier DB versions, DB_HASH is always used.)

dbmnz This is the same adbm except that a terminating binary zero is not included in the key
that is passed to the DBM library. You may need this if you want to look up data in files that are
created by or shared with some other application that does not use terminating zeros. For example,
you need to usdbmnzrather thardbmif you want to authenticate incoming SMTP calls using the
passwords from Courier'tetc/userdbshadow.ddile. Exim’s utility program for creating DBM

files (exim_dbmbuild includes the zeros by default, but has an option to omit them (see section
50.9).

dsearch The given file must be a directory; this is searched for an entry whose name is the key by
calling thelstat() function. The key may not contain any forward slash charactetstdf() suc-
ceeds, the result of the lookup is the name of the entry, which may be a file, directory, symbolic
link, or any other kind of directory entry. An example of how this lookup can be used to support
virtual domains is given in section 47.7.

iplsearch The given file is a text file containing keys and data. A key is terminated by a colon or
white space or the end of the line. The keys in the file must be IP addresses, or IP addresses with
CIDR masks. Keys that involve IPv6 addresses must be enclosed in quotes to prevent the first
internal colon being interpreted as a key terminator. For example:

70 File and database lookups (9)

1.2.3.4: data for 1.2.3.4
192.168.0.0/16 data for 192.168.0.0/16
"abcd::cdab": data for abcd::cdab
"abcd:abcd::/32" data for abcd:abcd::/32

The key for aniplsearchlookup must be an IP address (without a mask). The file is searched
linearly, using the CIDR masks where present, until a matching key is found. The first key that
matches is used; there is no attempt to find a “best” match. Apart from the way the keys are
matched, the processing fpisearchis the same as fégsearch

Warning 1: Unlike most other single-key lookup types, a file of data ifdsearchcan not be
turned into a DBM or cdb file, because those lookup types support only literal keys.

Warning 2: In a host list, you must always uset-iplsearchso that the implicit key is the host’s IP
address rather than its name (see section 10.12).

Isearch The given file is a text file that is searched linearly for a line beginning with the search key,
terminated by a colon or white space or the end of the line. The search is case-insensitive; that is,
upper and lower case letters are treated as the same. The first occurrence of the key that is found in
the file is used.

White space between the key and the colon is permitted. The remainder of the line, with leading

and trailing white space removed, is the data. This can be continued onto subsequent lines by
starting them with any amount of white space, but only a single space character is included in the
data at such a junction. If the data begins with a colon, the key must be terminated by a colon, for

example:

baduser: :fail:

Empty lines and lines beginning with # are ignored, even if they occur in the middle of an item.
This is the traditional textual format of alias files. Note that the keys iftsaarchfile are literal
strings. There is no wildcarding of any kind.

In most Isearchfiles, keys are not required to contain colons or # characters, or white space.
However, if you need this feature, it is available. If a key begins with a doublequote character, it is
terminated only by a matching quote (or end of line), and the normal escaping rules apply to its
contents (see section 6.16). An optional colon is permitted after quoted keys (exactly as for
unquoted keys). There is no special handling of quotes for the data patse@@hline.

nis: The given file is the name of a NIS map, and a NIS lookup is done with the given key, without
a terminating binary zero. There is a variant caltesDwhich does include the terminating binary
zero in the key. This is reportedly needed for Sun-style alias files. Exim does not recognize NIS
aliases; the full map names must be used.

wildlsearch or nwildlsearch These search a file linearly, likisearch but instead of being
interpreted as a literal string, each key in the file may be wildcarded. The difference between these
two lookup types is that fowildlsearch each key in the file is string-expanded before being used,
whereas fonwildlsearch no expansion takes place.

Like Isearch the testing is done case-insensitively. However, keys in the file that are regular
expressions can be made case-sensitive by the ysi¢ of within the pattern. The following forms
of wildcard are recognized:

(1) The string may begin with an asterisk to mean “ends with”. For example:

*.a.b.c data for anything.a.b.c
*fish data for anythingfish

(2) The string may begin with a circumflex to indicate a regular expression. For example, for
wildlsearch

MN\d+\.a\.b\N data for <digits>.a.b

Note the use ofN to disable expansion of the contents of the regular expression. If you are
usingnwildlsearch where the keys are not string-expanded, the equivalent entry is:

71 File and database lookups (9)

MNd+\.a\.b data for <digits>.a.b

The case-insensitive flag is set at the start of compiling the regular expression, but it can be
turned off by using(-i) at an appropriate point. For example, to make the entire pattern
case-sensitive:

N?-i\d+\.a\.b data for <digits>.a.b

If the regular expression contains white space or colon characters, you must either quote it
(seelsearchabove), or represent these characters in other ways. For examptan be used

for white space antk3A for a colon. This may be easier than quoting, because if you quote,
you have to escape all the backslashes inside the quotes.

Note: It is not possible to capture substrings in a regular expression match for later use,
because the results of all lookups are cached. If a lookup is repeated, the result is taken from
the cache, and no actual pattern matching takes place. The values of all the numeric variables
are unset after @)wildlsearchmatch.

(3) Although I cannot see it being of much use, the general matching function that is used to
implement(n)wildlsearchmeans that the string may begin with a lookup name terminated by
a semicolon, and followed by lookup data. For example:

cdb;/some/file data for keys that match the file
The data that is obtained from the nested lookup is discarded.

Keys that do not match any of these patterns are interpreted literally. The continuation rules for the
data are the same as feearch and keys may be followed by optional colons.

Warning: Unlike most other single-key lookup types, a file of data ([@wildlsearchcannot be
turned into a DBM or cdb file, because those lookup types support only literal keys.

9.4 Query-style lookup types

The supported query-style lookup types are listed below. Further details about many of them are given
in later sections.

dnsdb This does a DNS search for one or more records whose domain names are given in the
supplied query. The resulting data is the contents of the records. See section 9.10.

ibase This does a lookup in an InterBase database.

Idap: This does an LDAP lookup using a query in the form of a URL, and returns attributes from
a single entry. There is a variant callédhpm that permits values from multiple entries to be
returned. A third variant callefflapdnreturns the Distinguished Name of a single entry instead of
any attribute values. See section 9.13.

mysqgl The format of the query is an SQL statement that is passed to a MySQL database. See
section 9.20.

nisplus This does a NIS+ lookup using a query that can specify the name of the field to be
returned. See section 9.19.

oracle The format of the query is an SQL statement that is passed to an Oracle database. See
section 9.20.

passwds a query-style lookup with queries that are just user names. The lookumgegilsnam()

to interrogate the system password data, and on success, the result string is the same as you would
get from anlsearchlookup on a traditionaletc/passwd filethough with* for the password value.

For example:

*:42:42:King Rat:/home/kr:/bin/bash
pgsqgt The format of the query is an SQL statement that is passed to a PostgreSQL database. See
section 9.20.

72 File and database lookups (9)

» sqlite The format of the query is a file name followed by an SQL statement that is passed to an
SQLite database. See section 9.25.

» testdb This is a lookup type that is used for testing Exim. It is not likely to be useful in normal
operation.

» whoson Whoson(http://whoson.sourceforge.net is a protocol that allows a server to check
whether a particular (dynamically allocated) IP address is currently allocated to a known (trusted)
user and, optionally, to obtain the identity of the said user. For SMTP selWéiesonvas popular
at one time for “POP before SMTP” authentication, but that approach has been superseded by
SMTP authentication. In EximjV/hosoncan be used to implement “POP before SMTP” checking
using ACL statements such as

require condition =\
${lookup whoson {$sender_host_address{yes}{no}}

The query consists of a single IP address. The value returned is the name of the authenticated user,
which is stored in the variablvalue However, in this example, the data$malueis not used; the
result of the lookup is one of the fixed strings “yes” or “no”.

9.5 Temporary errors in lookups

Lookup functions can return temporary error codes if the lookup cannot be completed. For example,
an SQL or LDAP database might be unavailable. For this reason, it is not advisable to use a lookup
that might do this for critical options such as a list of local domains.

When a lookup cannot be completed in a router or transport, delivery of the message (to the relevant
address) is deferred, as for any other temporary error. In other circumstances Exim may assume the
lookup has failed, or may give up altogether.

9.6 Default values in single-key lookups

In this context, a “default value” is a value specified by the administrator that is to be used if a lookup
fails.

Note: This section applies only to single-key lookups. For query-style lookups, the facilities of the
guery language must be used. An attempt to specify a default for a query-style lookup provokes an
error.

If “*” is added to a single-key lookup type (for examplegarch*) and the initial lookup fails, the key
“*” is looked up in the file to provide a default value. See also the section on partial matching below.

Alternatively, if “*@” is added to a single-key lookup type (for examplem*@) then, if the initial

lookup fails and the key contains an @ character, a second lookup is done with everything before the
last @ replaced by *. This makes it possible to provide per-domain defaults in alias files that include
the domains in the keys. If the second lookup fails (or doesn’t take place because there is no @ in the
key), “*" is looked up. For example,radirectrouter might contain:

data = ${lookup{$local_part@$domain}isearch*@{/etc/mix-aliases}}

Suppose the address that is being processgohes@eyre.examplé&xim looks up these keys, in this
order:

jane@eyre.example
*@eyre.example
*

The data is taken from whichever key it finds fifdbte: In anlsearchfile, this does not mean the first
of these keys in the file. A complete scan is done for each key, and only if it is not found at all does
Exim move on to try the next key.

73 File and database lookups (9)

9.7 Partial matching in single-key lookups

The normal operation of a single-key lookup is to search the file for an exact match with the given
key. However, in a number of situations where domains are being looked up, it is useful to be able to
do partial matching. In this case, information in the file that has a key starting with “*.” is matched by
any domain that ends with the components that follow the full stop. For example, if a key in a DBM
file is

*.dates.fict.example

then when partial matching is enabled this is matched by (amongst o#%)dates.fict.example
and 1984.dates.fict.examplét is also matched bylates.fict.exampjdf that does not appear as a
separate key in the file.

Note: Partial matching is not available for query-style lookups. It is also not available for any lookup
items in address lists (see section 10.19).

Partial matching is implemented by doing a series of separate lookups using keys constructed by
modifying the original subject key. This means that it can be used with any of the single-key lookup
types, provided that partial matching keys beginning with a special prefix (default “*.") are included
in the data file. Keys in the file that do not begin with the prefix are matched only by unmodified
subject keys when partial matching is in use.

Partial matching is requested by adding the string “partial-” to the front of the name of a single-key
lookup type, for exampleartial-dbm . When this is done, the subject key is first looked up unmodi-
fied; if that fails, “*." is added at the start of the subject key, and it is looked up again. If that fails,
further lookups are tried with dot-separated components removed from the start of the subject key,
one-by-one, and “*” added on the front of what remains.

A minimum number of two non-* components are required. This can be adjusted by including a
number before the hyphen in the search type. For exampphial3-Isearch specifies a minimum of
three non-* components in the modified keys. Omitting the number is equivalent to “partial2-". If the
subject key is2250.dates.fict.exampkben the following keys are looked up when the minimum
number of non-* components is two:

2250.dates.fict.example
*,2250.dates.fict.example
*.dates.fict.example

* fict.example

As soon as one key in the sequence is successfully looked up, the lookup finishes.

The use of “*." as the partial matching prefix is a default that can be changed. The motivation for this
feature is to allow Exim to operate with file formats that are used by other MTAs. A different prefix
can be supplied in parentheses instead of the hyphen after “partial”. For example:

domains = partial(.)lsearch;/somef/file

In this example, if the domain ia.b.¢ the sequence of lookupsdsh.c ,.a.b.c ,and.b.c (the
default minimum of 2 non-wild components is unchanged). The prefix may consist of any punctuation
characters other than a closing parenthesis. It may be empty, for example:

domains = partiall()cdb;/some/file
For this example, if the domainasb.q the sequence of lookupsa$.c ,b.c , andc.

If “partial0” is specified, what happens at the end (when the lookup with just one non-wild com-
ponent has failed, and the original key is shortened right down to the null string) depends on the
prefix:

« If the prefix has zero length, the whole lookup fails.

 If the prefix has length 1, a lookup for just the prefix is done. For example, the final lookup for
“partial0(.)” is for. alone.

74 File and database lookups (9)

» Otherwise, if the prefix ends in a dot, the dot is removed, and the remainder is looked up. With the
default prefix, therefore, the final lookup is for “*” on its own.

» Otherwise, the whole prefix is looked up.

If the search type ends in “*” or “*@" (see section 9.6 above), the search for an ultimate default that
this implies happens after all partial lookups have failed. If “partial0” is specified, adding “*” to the
search type has no effect with the default prefix, because the “*” key is already included in the
sequence of partial lookups. However, there might be a use for lookup types such as
“partialO(.)Isearch*”.

The use of “*” in lookup partial matching differs from its use as a wildcard in domain lists and the
like. Partial matching works only in terms of dot-separated components; a key such as
*fict.example in a database file is useless, because the asterisk in a partial matching subject key
is always followed by a dot.

9.8 Lookup caching

Exim caches all lookup results in order to avoid needless repetition of lookups. However, because
(apart from the daemon) Exim operates as a collection of independent, short-lived processes, this
caching applies only within a single Exim process. There is no inter-process lookup caching facility.

For single-key lookups, Exim keeps the relevant files open in case there is another lookup that needs
them. In some types of configuration this can lead to many files being kept open for messages with
many recipients. To avoid hitting the operating system limit on the number of simultaneously open
files, Exim closes the least recently used file when it needs to open more files than its own internal
limit, which can be changed via tt@kup_open_maxoption.

The single-key lookup files are closed and the lookup caches are flushed at strategic points during
delivery — for example, after all routing is complete.

9.9 Quoting lookup data

When data from an incoming message is included in a query-style lookup, there is the possibility of
special characters in the data messing up the syntax of the query. For example, a NIS+ query that
contains

[name=$local_part]

will be broken if the local part happens to contain a closing square bracket. For NIS+, data can be
enclosed in double quotes like this:

[name="$local_part"]

but this still leaves the problem of a double quote in the data. The rule for NIS+ is that double quotes
must be doubled. Other lookup types have different rules, and to cope with the differing requirements,
an expansion operator of the following form is provided:

${quote_<lookup-type>:<string>}
For example, the safest way to write the NIS+ query is
[name="${quote_nisplus:$local_part}"]

See chapter 11 for full coverage of string expansions. The quote operator can be used for all lookup
types, but has no effect for single-key lookups, since no quoting is ever needed in their key strings.

9.10 More about dnsdb

The dnsdblookup type uses the DNS as its database. A simple query consists of a record type and a
domain name, separated by an equals sign. For example, an expansion string could contain:

${lookup dnsdb{mx=a.b.exampleH{$value}fail}

75 File and database lookups (9)

If the lookup succeeds, the result is placedbiralue which in this case is used on its own as the
result. If the lookup does not succeed, fd keyword causes &rced expansion failure- see
section 11.4 for an explanation of what this means.

The supported DNS record types are A, CNAME, MX, NS, PTR, SRV, and TXT, and, when Exim is
compiled with IPv6 support, AAAA (and A6 if that is also configured). If no type is given, TXT is
assumed. When the type is PTR, the data can be an IP address, written as normal; inversion and the
addition ofin-addr.arpa orip6.arpa happens automatically. For example:

${lookup dnsdb{ptr=192.168.4.5$value}fail}

If the data for a PTR record is not a syntactically valid IP address, it is not altered and nothing is
added.

For an MX lookup, both the preference value and the host name are returned for each record,
separated by a space. For an SRV lookup, the priority, weight, port, and host name are returned for
each record, separated by spaces.

For any record type, if multiple records are found (or, for A6 lookups, if a single record leads to
multiple addresses), the data is returned as a concatenation, with newline as the default separator.
The order, of course, depends on the DNS resolver. You can specify a different separator character
between multiple records by putting a right angle-bracket followed immediately by the new separator
at the start of the query. For example:

${lookup dnsdb{>: a=hostl.example}}

It is permitted to specify a space as the separator character. Further white space is ignored.

9.11 Pseudo dnsdb record types

By default, both the preference value and the host name are returned for each MX record, separated
by a space. If you want only host names, you can use the pseudo-type MXH:

${lookup dnsdb{mxh=a.b.example}}
In this case, the preference values are omitted, and just the host names are returned.

Another pseudo-type is ZNS (for “zone NS”). It performs a lookup for NS records on the given
domain, but if none are found, it removes the first component of the domain name, and tries again.
This process continues until NS records are found or there are no more components left (or there is a
DNS error). In other words, it may return the name servers for a top-level domain, but it never returns
the root name servers. If there are no NS records for the top-level domain, the lookup fails. Consider
these examples:

${lookup dnsdb{zns=xxx.quercite.com}}
${lookup dnsdb{zns=xxx.edu}}

Assuming that in each case there are no NS records for the full domain name, the first returns the
name servers faquercite.com and the second returns the name serversdiar

You should be careful about how you use this lookup because, unless the top-level domain does not
exist, the lookup always returns some host names. The sort of use to which this might be put is for
seeing if the name servers for a given domain are on a blacklist. You can probably assume that the
name servers for the high-level domains suctoasor co.uk are not going to be on such a list.

A third pseudo-type is CSA (Client SMTP Authorization). This looks up SRV records according to
the CSA rules, which are described in section 40.46. Althadrggdbsupports SRV lookups directly,

this is not sufficient because of the extra parent domain search behaviour of CSA. The result of a
successful lookup such as:

${lookup dnsdb {csa=$sender_helo_name}}

has two space-separated fields: an authorization code and a target host name. The authorization code
can be “Y” for yes, “N” for no, “X" for explicit authorization required but absent, or “?” for
unknown.

76 File and database lookups (9)

9.12 Multiple dnsdb lookups

In the previous sectiongnsdblookups for a single domain are described. However, you can specify a
list of domains or IP addresses in a sindlesdblookup. The list is specified in the normal Exim way,
with colon as the default separator, but with the ability to change this. For example:

${lookup dnsdb{one.domain.com:two.domain.com}}
${lookup dnsdb{a=one.host.com:two.host.com}}
${lookup dnsdb{ptr = <; 1.2.3.4 ; 4.5.6.8}}

In order to retain backwards compatibility, there is one special case: if the lookup type is PTR and no
change of separator is specified, Exim looks to see if the rest of the string is precisely one IPv6
address. In this case, it does not treat it as a list.

The data from each lookup is concatenated, with newline separators by default, in the same way that
multiple DNS records for a single item are handled. A different separator can be specified, as
described above.

The dnsdblookup fails only if all the DNS lookups fail. If there is a temporary DNS error for any of
them, the behaviour is controlled by an optional keyword followed by a comma that may appear
before the record type. The possible keywords are “defer_strict”, “defer_never”, and “defer_lax”.
With “strict” behaviour, any temporary DNS error causes the whole lookup to defer. With “never”
behaviour, a temporary DNS error is ignored, and the behaviour is as if the DNS lookup failed to find
anything. With “lax” behaviour, all the queries are attempted, but a temporary DNS error causes the
whole lookup to defer only if none of the other lookups succeed. The default is “lax”, so the following
lookups are equivalent:

${lookup dnsdb{defer_lax,a=one.host.com:two.host.com}}
${lookup dnsdb{a=one.host.com:two.host.com}}

Thus, in the default case, as long as at least one of the DNS lookups yields some data, the lookup
succeeds.

9.13 More about LDAP

The original LDAP implementation came from the University of Michigan; this has become “Open
LDAP”, and there are now two different releases. Another implementation comes from Netscape, and
Solaris 7 and subsequent releases contain inbuilt LDAP support. Unfortunately, though these are all
compatible at the lookup function level, their error handling is different. For this reason it is necessary
to set a compile-time variable when building Exim with LDAP, to indicate which LDAP library is in
use. One of the following should appear in ybocal/Makefile

LDAP_LIB_TYPE=UMICHIGAN
LDAP_LIB_TYPE=OPENLDAP1
LDAP_LIB_TYPE=OPENLDAP2
LDAP_LIB_TYPE=NETSCAPE
LDAP_LIB_TYPE=SOLARIS

If LDAP_LIB_TYPE is not set, Exim assumé3PENLDAP1which has the same interface as the
University of Michigan version.

There are three LDAP lookup types in Exim. These behave slightly differently in the way they handle
the results of a query:

» |daprequires the result to contain just one entry; if there are more, it gives an error.

» |dapdnalso requires the result to contain just one entry, but it is the Distinguished Name that is
returned rather than any attribute values.

» Idapm permits the result to contain more than one entry; the attributes from all of them are
returned.

For ldap andldapm if a query finds only entries with no attributes, Exim behaves as if the entry did
not exist, and the lookup fails. The format of the data returned by a successful lookup is described in
the next section. First we explain how LDAP queries are coded.

77 File and database lookups (9)

9.14 Format of LDAP queries

An LDAP query takes the form of a URL as defined in RFC 2255. For example, in the configuration
of aredirectrouter one might have this setting:

data = ${lookup Idap \
{Idap://lcn=$local_part,0=University%200f%20Cambridge,\
c=UK?mailbox?base?}}

The URL may begin witHdap or Idaps if your LDAP library supports secure (encrypted) LDAP
connections. The second of these ensures that an encrypted TLS connection is used.

9.15 LDAP quoting

Two levels of quoting are required in LDAP queries, the first for LDAP itself and the second because
the LDAP query is represented as a URL. Furthermore, within an LDAP query, two different kinds of
guoting are required. For this reason, there are two different LDAP-specific quoting operators.

The quote_ldap operator is designed for use on strings that are part of filter specifications.
Conceptually, it first does the following conversions on the string:

* => \2A
(=> \28
) => \29
\ => \5C

in accordance with RFC 2254. The resulting string is then quoted according to the rules for URLS,
that is, all non-alphanumeric characters except

1$'-._()*+
are converted to their hex values, preceded by a percent sign. For example:
${quote_Idap: a(bc)*, a<yz>;}
yields
%20a%5C28bc%5C29%5C2A%2C%20a%3Cyz%3E%3B%20
Removing the URL quoting, this is (with a leading and a trailing space):
a\28bc\29\2A, a<yz>;

The quote_ldap_dnoperator is designed for use on strings that are part of base DN specifications in
queries. Conceptually, it first converts the string by inserting a backslash in front of any of the
following characters:

,+H"\<>

It also inserts a backslash before any leading spaces or # characters, and before any trailing spaces.
(These rules are in RFC 2253.) The resulting string is then quoted according to the rules for URLSs.
For example:

${quote_lIdap_dn: a(bc)*, a<yz>; }
yields
%5C%20a(bc)*%5C%2C%20a%5C%3Cyz%5C%3E%5C%3B%5C%20
Removing the URL quoting, this is (with a trailing space):
\ a(bc)*\, a\<yz\>\;\

There are some further comments about quoting in the section on LDAP authentication below.

78 File and database lookups (9)

9.16 LDAP connections

The connection to an LDAP server may either be over TCP/IP, or, when OpenLDAP is in use, via a
Unix domain socket. The example given above does not specify an LDAP server. A server that is
reached by TCP/IP can be specified in a query by starting it with

Idap://<hostname>:<port>/...

If the port (and preceding colon) are omitted, the standard LDAP port (389) is used. When no server
is specified in a query, a list of default servers is taken fromidhp_default_serversconfiguration

option. This supplies a colon-separated list of servers which are tried in turn until one successfully
handles a query, or there is a serious error. Successful handling either returns the requested data, or
indicates that it does not exist. Serious errors are syntactical, or multiple values when only a single
value is expected. Errors which cause the next server to be tried are connection failures, bind failures,
and timeouts.

For each server name in the list, a port number can be given. The standard way of specifying a host
and port is to use a colon separator (RFC 1738). Beclaage default_serversis a colon-separated
list, such colons have to be doubled. For example

Idap_default_servers = |dapl.example.com::145:ldap2.example.com

If Idap_default_serversis unset, a URL with no server name is passed to the LDAP library with no
server name, and the library’s default (normally the local host) is used.

If you are using the OpenLDAP library, you can connect to an LDAP server using a Unix domain
socket instead of a TCP/IP connection. This is specified by udeyg instead ofidap in LDAP
queries. What follows here applies only to OpenLDAP. If Exim is compiled with a different LDAP
library, this feature is not available.

For this type of connection, instead of a host name for the server, a pathname for the socket is
required, and the port number is not relevant. The pathname can be specified either as an item in
Idap_default_servers or inline in the query. In the former case, you can have settings such as

Idap_default_servers = /tmp/ldap.sock : backup.ldap.your.domain

When the pathname is given in the query, you have to escape the slashe$-&s fit in with the
LDAP URL syntax. For example:

${lookup Idap {ldapi://%2Ftmp%2Fldap.sock/o=...

When Exim processes an LDAP lookup and finds that the “hostname” is really a pathname, it uses the
Unix domain socket code, even if the query actually specifieap or Idaps . In particular, no
encryption is used for a socket connection. This behaviour means that you can use a séitipg of
default_serverssuch as in the example above with traditiotddp or Idaps queries, and it will

work. First, Exim tries a connection via the Unix domain socket; if that fails, it tries a TCP/IP
connection to the backup host.

If an explicitIdapi type is given in a query when a host name is specified, an error is diagnosed.
However, if there are more itemsldap_default_servers they are tried. In other words:

* Using a pathname witldap orldaps forces the use of the Unix domain interface.
» Usingldapi with a host name causes an error.

Using Idapi with no host or path in the query, and no settingldfp_default_servers does
whatever the library does by default.

9.17 LDAP authentication and control information

The LDAP URL syntax provides no way of passing authentication and other control information to
the server. To make this possible, the URL in an LDAP query may be preceded by any number of
<namer=<value> settings, separated by spaces. If a value contains spaces it must be enclosed in
double quotes, and when double quotes are used, backslash is interpreted in the usual way inside
them. The following names are recognized:

79 File and database lookups (9)

DEREFERENCEet the dereferencing parameter

NETTIME set a timeout for a network operation

USER set the DN, for authenticating the LDAP bind
PASS set the password, likewise

REFERRALS set the referrals parameter

SIZE set the limit for the number of entries returned
TIME set the maximum waiting time for a query

The value of the DEREFERENCE parameter must be one of the words “never”, “searching”,
“finding”, or “always”. The value of the REFERRALS parameter must be “follow” (the default) or
“nofollow”. The latter stops the LDAP library from trying to follow referrals issued by the LDAP
server.

The name CONNECT is an obsolete name for NETTIME, retained for backwards compatibility. This
timeout (specified as a humber of seconds) is enforced from the client end for operations that can
be carried out over a network. Specifically, it applies to network connections and calls to the
Idap_result() function. If the value is greater than zero, it is used if LDAP_OPT_NETWORK _
TIMEOUT is defined in the LDAP headers (OpenLDAP), or if LDAP_X_ OPT_CONNECT_
TIMEOUT is defined in the LDAP headers (Netscape SDK 4.1). A value of zero forces an explicit
setting of “no timeout” for Netscape SDK; for OpenLDAP no action is taken.

The TIME parameter (also a number of seconds) is passed to the server to set a server-side limit on
the time taken to complete a search.

Here is an example of an LDAP query in an Exim lookup that uses some of these values. This is a
single line, folded to fit on the page:

${lookup Idap
{user="cn=manager,o=University of Cambridge,c=UK" pass=secret
Idap://lo=University%200f%20Cambridge,c=UK?sn?sub?(cn=foo)}
{$value}fail}

The encoding of spaces #20is a URL thing which should not be done for any of the auxiliary data.
Exim configuration settings that include lookups which contain password information should be
preceded by “hide” to prevent non-admin users from usingof@ption to see their values.

The auxiliary data items may be given in any order. The default is ho connection timeout (the system
timeout is used), no user or password, no limit on the number of entries returned, and no time limit on
gueries.

When a DN is quoted in the USER= setting for LDAP authentication, Exim removes any URL
guoting that it may contain before passing it LDAP. Apparently some libraries do this for themselves,
but some do not. Removing the URL quoting has two advantages:

» It makes it possible to use the samaote Idap_dnexpansion for USER= DNs as with DNs inside
actual queries.

It permits spaces inside USER= DNs.

For example, a setting such as
USER=cn=${quote_|dap_dn:$1}

should work even i$1 contains spaces.

Expanded data for the PASS= value should be quoted usinguibte expansion operator, rather than
the LDAP quote operators. The only reason this field needs quoting is to ensure that it conforms to the
Exim syntax, which does not allow unquoted spaces. For example:

PASS=${quote:$3}

The LDAP authentication mechanism can be used to check passwords as part of SMTP
authentication. See th@éapauth expansion string condition in chapter 11.

80 File and database lookups (9)

9.18 Format of data returned by LDAP

Theldapdnlookup type returns the Distinguished Name from a single entry as a sequence of values,
for example

cn=manager, o=University of Cambridge, c=UK

The Idap lookup type generates an error if more than one entry matches the search filter, whereas
Idapmpermits this case, and inserts a newline in the result between the data from different entries. It
is possible for multiple values to be returned for bédhp andIdapm but in the former case you

know that whatever values are returned all came from a single entry in the directory.

In the common case where you specify a single attribute in your LDAP query, the result is not quoted,
and does not contain the attribute name. If the attribute has multiple values, they are separated by
commas.

If you specify multiple attributes, the result contains space-separated, quoted strings, each preceded
by the attribute name and an equals sign. Within the quotes, the quote character, backslash, and
newline are escaped with backslashes, and commas are used to separate multiple values for the
attribute. Apart from the escaping, the string within quotes takes the same form as the output when a
single attribute is requested. Specifying no attributes is the same as specifying all of an entry’s
attributes.

Here are some examples of the output format. The first line of each pair is an LDAP query, and the
second is the data that is returned. The attribute cated has two values, whereadtr2 has only
one value:

Idap:///o=base?attrl?sub?(uid=fred)
valuel.l, valuel.2

Idap:///o=base?attr2?sub?(uid=fred)
value two

Idap:///o=base?attrl,attr2?sub?(uid=fred)
attrl="valuel.l, valuel.2" attr2="value two"

Idap:///o=base??sub?(uid=fred)
objectClass="top" attrl="valuel.1, valuel.2" attr2="value two"

The extract operator in string expansions can be used to pick out individual fields from data that
consists okey=valuepairs. You can make use of Eximse option to run expansion tests and thereby
check the results of LDAP lookups.

9.19 More about NIS+

NIS+ queries consist of a NISiadexed naméollowed by an optional colon and field name. If this is
given, the result of a successful query is the contents of the named field; otherwise the result consists
of a concatenation ofield-name=field-valugairs, separated by spaces. Empty values and values
containing spaces are quoted. For example, the query

[name=mg1456],passwd.org_dir
might return the string

name=mg1456 passwd="" uid=999 gid=999 gcos="Martin Guerre"
home=/home/mg1456 shell=/bin/bash shadow=""

(split over two lines here to fit on the page), whereas
[name=mg1456],passwd.org_dir:gcos
would just return

Martin Guerre

81 File and database lookups (9)

with no quotes. A NIS+ lookup fails if NIS+ returns more than one table entry for the given indexed
key. The effect of theuote_nisplusexpansion operator is to double any quote characters within the
text.

9.20 SQL lookups

Exim can support lookups in InterBase, MySQL, Oracle, PostgreSQL, and SQLite databases. Queries
for these databases contain SQL statements, so an example might be

${lookup mysgl{select mailbox from users where id="userx}\
{$value}fail}

If the result of the query contains more than one field, the data for each field in the row is returned,
preceded by its name, so the result of

${lookup pgsql{select home,name from users where id="userx'}\
{$value}}

might be
home=/home/userx name="Mister X"

Empty values and values containing spaces are double quoted, with embedded quotes escaped by a
backslash. If the result of the query contains just one field, the value is passed back verbatim, without
a field name, for example:

Mister X

If the result of the query yields more than one row, it is all concatenated, with a newline between the
data for each row.

9.21 More about MySQL, PostgreSQL, Oracle, and InterBase

If any MySQL, PostgreSQL, Oracle, or InterBase lookups are usedmysxl_servers pgsql_
servers oracle_servers oribase_serversoption (as appropriate) must be set to a colon-separated list
of server information. (For MySQL and PostgreSQL only, the global option need not be set fif all
queries contain their own server information — see section 9.22.) Each item in the list is a glash-
separated list of four items: host name, database name, user name, and password. In the case of
Oracle, the host name field is used for the “service name”, and the database name field is not used and
should be empty. For example:

hide oracle_servers = oracle.plc.example//userx/abcdwxyz

Because password data is sensitive, you should always precede the setting with “hide”, to prevent
non-admin users from obtaining the setting via the option. Here is an example where two MySQL
servers are listed:

hide mysql_servers = localhost/users/root/secret:\
otherhost/users/root/othersecret

For MySQL and PostgreSQL, a host may be specified mame:<port> but because this is a
colon-separated list, the colon has to be doubled. For each query, these parameter groups are tried in
order until a connection is made and a query is successfully processed. The result of a query may be
that no data is found, but that is still a successful query. In other words, the list of servers provides a
backup facility, not a list of different places to look.

Thequote_mysql quote_pgsql andquote_oracleexpansion operators convert newline, tab, carriage

return, and backspace to \n, \t, \r, and \b respectively, and the characters single-quote, double-quote,
and backslash itself are escaped with backslashesqiibie_pgsglexpansion operator, in addition,

escapes the percent and underscore characters. This cannot be done for MySQL because these escapes
are not recognized in contexts where these characters are not special.

82 File and database lookups (9)

9.22 Specifying the server in the query

For MySQL and PostgreSQL lookups (but not currently for Oracle and InterBase), it is possible to
specify a list of servers with an individual query. This is done by starting the query with

servers= serverl:server2:server3:..
Each item in the list may take one of two forms:

(1) If it contains no slashes it is assumed to be just a host name. The appropriate global option
(mysql_serversor pgsqgl_servers is searched for a host of the same name, and the remaining
parameters (database, user, password) are taken from there.

(2) Ifit contains any slashes, it is taken as a complete parameter set.

The list of servers is used in exactly the same way as the global list. Once a connection to a server has
happened and a query has been successfully executed, processing of the lookup ceases.

This feature is intended for use in master/slave situations where updates are occurring and you want
to update the master rather than a slave. If the master is in the list as a backup for reading, you might
have a global setting like this:

mysql_servers = slavel/db/name/pw:\
slave2/db/name/pw:\
master/db/name/pw

In an updating lookup, you could then write:
${lookup mysql{servers=master; UPDATE ...}

That query would then be sent only to the master server. If, on the other hand, the master is not to be
used for reading, and so is not present in the global option, you can still update it by a query of this
form:

${lookup pgsql{servers=master/db/name/pw; UPDATE ...}

9.23 Special MySQL features

For MySQL, an empty host name or the use of “localhostimigsql_serverscauses a connection to
the server on the local host by means of a Unix domain socket. An alternate socket can be specified in
parentheses. The full syntax of each itermiysql_serversis:

<hostname::<port>(<socket nanve)/<database/<user/<passworc

Any of the three sub-parts of the first field can be omitted. For normal use on the local host it can be
left blank or set to just “localhost”.

No database need be supplied — but if it is absent here, it must be given in the queries.

If a MySQL query is issued that does not request any data (an insert, update, or delete command), the
result of the lookup is the number of rows affected.

Warning: This can be misleading. If an update does not actually change anything (for example,
setting a field to the value it already has), the result is zero because no rows are affected.

9.24 Special PostgreSQL features

PostgreSQL lookups can also use Unix domain socket connections to the database. This is usually
faster and costs less CPU time than a TCP/IP connection. However it can be used only if the mail
server runs on the same machine as the database server. A configuration line for PostgreSQL via Unix
domain sockets looks like this:

hide pgsql_servers = (/tmp/.s.PGSQL.5432)/db/user/password : ...

In other words, instead of supplying a host name, a path to the socket is given. The path nhame is
enclosed in parentheses so that its slashes aren’t visually confused with the delimiters for the other
server parameters.

83 File and database lookups (9)

If a PostgreSQL query is issued that does not request any data (an insert, update, or delete command),
the result of the lookup is the number of rows affected.

9.25 More about SQLite

SQLite is different to the other SQL lookups because a file name is required in addition to the SQL
guery. An SQLite database is a single file, and there is no daemon as in the other SQL databases. The
interface to Exim requires the name of the file, as an absolute path, to be given at the start of the
query. It is separated from the query by white space. This means that the path name cannot contain
white space. Here is a lookup expansion example:

${lookup sqlite {/some/thing/sqglitedb \
select name from aliases where id='userx';}}

In a list, the syntax is similar. For example:

domainlist relay_domains = sqlite;/some/thing/sqlitedb \
select * from relays where ip="$sender_host_address'";

The only character affected by theote_sqliteoperator is a single quote, which it doubles.

The SQLite library handles multiple simultaneous accesses to the database internally. Multiple
readers are permitted, but only one process can update at once. Attempts to access the database while
it is being updated are rejected after a timeout period, during which the SQLite library waits for the
lock to be released. In Exim, the default timeout is set to 5 seconds, but it can be changed by means of
thesqlite_lock_timeoutoption.

84 File and database lookups (9)

10. Domain, host, address, and local part lists

A number of Exim configuration options contain lists of domains, hosts, email addresses, or local
parts. For example, thieold_domainsoption contains a list of domains whose delivery is currently
suspended. These lists are also used as data in ACL statements (see chapter 40), and as arguments to
expansion conditions such emtch_domain

Each item in one of these lists is a pattern to be matched against a domain, host, email address, or
local part, respectively. In the sections below, the different types of pattern for each case are
described, but first we cover some general facilities that apply to all four kinds of list.

10.1 Expansion of lists

Each list is expanded as a single string before it is used. The result of expansion must be a list,
possibly containing empty items, which is split up into separate items for matching. By default, colon

is the separator character, but this can be varied if necessary. See sections 6.19 and 6.21 for details of
the list syntax; the second of these discusses the way to specify empty list items.

If the string expansion is forced to fail, Exim behaves as if the item it is testing (domain, host,
address, or local part) is not in the list. Other expansion failures cause temporary errors.

If an item in a list is a regular expression, backslashes, dollars and possibly other special characters in
the expression must be protected against misinterpretation by the string expander. The easiest way to
do this is to use th&N expansion feature to indicate that the contents of the regular expression should
not be expanded. For example, in an ACL you might have:

deny senders = \NN\d{8\w@.*\.baddomain\.example$\N : \
${lookup{$domain}isearch{/badsenders/bydomain}}

The first item is a regular expression that is protected from expansitid bywhereas the second uses
the expansion to obtain a list of unwanted senders based on the receiving domain.

10.2 Negated items in lists

Items in a list may be positive or negative. Negative items are indicated by a leading exclamation
mark, which may be followed by optional white space. A list defines a set of items (domains, etc).

When Exim processes one of these lists, it is trying to find out whether a domain, host, address, or
local part (respectively) is in the set that is defined by the list. It works like this:

The list is scanned from left to right. If a positive item is matched, the subject that is being checked is
in the set; if a negative item is matched, the subject is not in the set. If the end of the list is reached
without the subject having matched any of the patterns, it is in the set if the last item was a negative
one, but not if it was a positive one. For example, the list in

domainlist relay_domains = la.b.c : *.b.c

matches any domain ending .incexcept fora.b.c Domains that match neitharb.cnor*.b.c do not
match, because the last item in the list is positive. However, if the setting were

domainlist relay_domains = la.b.c

then all domains other thaamb.cwould match because the last item in the list is negative. In other
words, a list that ends with a negative item behaves as if it had an extra i@mthe end.

Another way of thinking about positive and negative items in lists is to read the connector as “or”
after a positive item and as “and” after a negative item.

10.3 File names in lists

If an item in a domain, host, address, or local part list is an absolute file name (beginning with a slash
character), each line of the file is read and processed as if it were an independent item in the list,
except that further file names are not allowed, and no expansion of the data from the file takes place.
Empty lines in the file are ignored, and the file may also contain comment lines:

85 Domain, host, and address lists (10)

» For domain and host lists, if a # character appears anywhere in a line of the file, it and all following
characters are ignored.

» Because local parts may legitimately contain # characters, a comment in an address list or local
part list file is recognized only if # is preceded by white space or the start of the line. For example:

not#comment@x.y.z # but this is a comment

Putting a file name in a list has the same effect as inserting each line of the file as an item in the list
(blank lines and comments excepted). However, there is one important difference: the file is read each
time the list is processed, so if its contents vary over time, Exim’s behaviour changes.

If a file name is preceded by an exclamation mark, the sense of any match within the file is inverted.
For example, if

hold_domains = !/etc/nohold-domains
and the file contains the lines

la.b.c
*b.c

thena.b.cis in the set of domains defined Iyld_domains whereas any domain matchifidp.c
iS not.

10.4 An Isearch file is not an out-of-line list

As will be described in the sections that follow, lookups can be used in lists to provide indexed
methods of checking list membership. There has been some confusion about tiseavelylookups

work in lists. Because alsearchfile contains plain text and is scanned sequentially, it is sometimes
thought that it is allowed to contain wild cards and other kinds of non-constant pattern. This is not the
case. The keys in dsearchfile are always fixed strings, just as for any other single-key lookup type.

If you want to use a file to contain wild-card patterns that form part of a list, just give the file name
on its own, without a search type, as described in the previous section. You could also use the
wildlsearchor nwildlsearch but there is no advantage in doing this.

10.5 Named lists

A list of domains, hosts, email addresses, or local parts can be given a name which is then used to
refer to the list elsewhere in the configuration. This is particularly convenient if the same list is
required in several different places. It also allows lists to be given meaningful names, which can
improve the readability of the configuration. For example, it is conventional to define a domain list
calledlocal_domaindor all the domains that are handled locally on a host, using a configuration line
such as

domainlist local_domains = localhost:my.dom.example

Named lists are referenced by giving their name preceded by a plus sign, so, for example, a router that
is intended to handle local domains would be configured with the line

domains = +local_domains

The first router in a configuration is often one that handles all domains except the local ones, using a
configuration with a negated item like this:

dnslookup:
driver = dnslookup
domains =! +local_domains
transport = remote_smtp
no_more

The four kinds of named list are created by configuration lines starting with the wordainlist,
hostlist, addresslist or localpartlist, respectively. Then there follows the name that you are defining,
followed by an equals sign and the list itself. For example:

86 Domain, host, and address lists (10)

hostlist relay_hosts = 192.168.23.0/24 : my.friend.example
addresslist bad_senders = cdb;/etc/badsenders

A named list may refer to other named lists:

domainlist dom1 = first.example : second.example
domainlist dom2 = +dom1 : third.example
domainlist dom3 = fourth.example : +dom2 : fifth.example

Warning: If the last item in a referenced list is a negative one, the effect may not be what you
intended, because the negation does not propagate out to the higher level. For example, consider:

domainlist doml =la.b
domainlist dom2 = +dom1: *.b

The second list specifies “either in tdem1 list or *.b”. The first list specifies just “no&.b’, so the
domainx.y matches it. That means it matches the second list as well. The effect is not the same as

domainlist dom2 =la.b: *b
wherex.y does not match. It's best to avoid negation altogether in referenced lists if you can.

Named lists may have a performance advantage. When Exim is routing an address or checking an
incoming message, it caches the result of tests on named lists. So, if you have a setting such as

domains = +local_domains

on several of your routers or in several ACL statements, the actual test is done only for the first one.
However, the caching works only if there are no expansions within the list itself or any sublists that it
references. In other words, caching happens only for lists that are known to be the same each time
they are referenced.

By default, there may be up to 16 named lists of each type. This limit can be extended by changing a
compile-time variable. The use of domain and host lists is recommended for concepts such as local
domains, relay domains, and relay hosts. The default configuration is set up like this.

10.6 Named lists compared with macros

At first sight, named lists might seem to be no different from macros in the configuration file.
However, macros are just textual substitutions. If you write

ALIST = hostl : host2
auth_advertise_hosts = IALIST

it probably won't do what you want, because that is exactly the same as
auth_advertise hosts = lhostl : host2
Notice that the second host name is not negated. However, if you use a host list, and write

hostlist alist = host1 : host2
auth_advertise_hosts = ! +alist

the negation applies to the whole list, and so that is equivalent to
auth_advertise _hosts = lhost1 : 'host2

10.7 Named list caching

While processing a message, Exim caches the result of checking a named list if it is sure that the list
is the same each time. In practice, this means that the cache operates only if the list contains no $
characters, which guarantees that it will not change when it is expanded. Sometimes, however, you
may have an expanded list that you know will be the same each time within a given message. For
example:

domainlist special_domains =\
${lookup{$sender_host_address}cdb{/some/file}}

87 Domain, host, and address lists (10)

This provides a list of domains that depends only on the sending host’s IP address. If this domain list
is referenced a number of times (for example, in several ACL lines, or in several routers) the result of
the check is not cached by default, because Exim does not know that it is going to be the same list
each time.

By appending cache todomainlist you can tell Exim to go ahead and cache the result anyway.
For example:

domainlist_cache special_domains = ${lookup{...

If you do this, you should be absolutely sure that caching is going to do the right thing in all cases.
When in doubt, leave it out.

10.8 Domain lists

Domain lists contain patterns that are to be matched against a mail domain. The following types of
item may appear in domain lists:

 If a pattern consists of a single @ character, it matches the local host name, as segtiydng
hostname option (or defaulted). This makes it possible to use the same configuration file on
several different hosts that differ only in their names.

* If a pattern consists of the stri@[] it matches an IP address enclosed in square brackets (as in an
email address that contains a domain literal), but only if that IP address is recognized as local for
email routing purposes. THecal_interfacesand extra_local_interfacesoptions can be used to
control which of a host's several IP addresses are treated as local. In today’s Internet, the use of
domain literals is controversial.

 If a pattern consists of the strin@mx_anyit matches any domain that has an MX record pointing
to the local host or to any host that is listedhnsts_treat _as localThe items@mx_primary
and@mx_secondary are similar, except that the first matches only when a primary MX target is
the local host, and the second only when no primary MX target is the local host, but a secondary
MX target is. “Primary” means an MX record with the lowest preference value — there may of
course be more than one of them.

The MX lookup that takes place when matching a pattern of this type is performed with the
resolver options for widening names turned off. Thus, for example, a single-component domain
will notbe expanded by adding the resolver’'s default domain. Sequalkfy single andsearch_
parents options of thalnslookuprouter for a discussion of domain widening.

Sometimes you may want to ignore certain IP addresses when using one of these patterns. You can
specify this by following the pattern witlignore= <ip list>, where 4p list> is a list of IP
addresses. These addresses are ignored when processing the pattern (conigaoeetitarget
hostsoption on a router). For example:

domains = @mx_any/ignore=127.0.0.1

This example matches any domain that has an MX record pointing to one of the local host's IP
addresses other than 127.0.0.1.

The list of IP addresses is in fact processed by the same code that processes host lists, so it may
contain CIDR-coded network specifications and it may also contain negative items.

Because the list of IP addresses is a sublist within a domain list, you have to be careful about
delimiters if there is more than one address. Like any other list, the default delimiter can be
changed. Thus, you might have:

domains = @mx_any/ignore=<;127.0.0.1;0.0.0.0 : \
an.other.domain : ...

so that the sublist uses semicolons for delimiters. When IPv6 addresses are involved, it is easiest to
change the delimiter for the main list as well:

domains = <? @mx_any/ignore=<;127.0.0.1;::1 ? \
an.other.domain ? ...

88 Domain, host, and address lists (10)

» If a pattern starts with an asterisk, the remaining characters of the pattern are compared with the
terminating characters of the domain. The use of “*” in domain lists differs from its use in partial
matching lookups. In a domain list, the character following the asterisk need not be a dot, whereas
partial matching works only in terms of dot-separated components. For example, a domain list item
such agkey.ex matcheslonkey.exas well agipher.key.ex

» If a pattern starts with a circumflex character, it is treated as a regular expression, and matched
against the domain using a regular expression matching function. The circumflex is treated as part
of the regular expression. Email domains are case-independent, so this regular expression match is
by default case-independent, but you can make it case-dependent by starting {With .
References to descriptions of the syntax of regular expressions are given in chapter 8.

Warning: Because domain lists are expanded before being processed, you must escape any
backslash and dollar characters in the regular expression, or use the $§Necafjuence (see
chapter 11) to specify that it is not to be expanded (unless you really do want to build a regular
expression by expansion, of course).

 If a pattern starts with the name of a single-key lookup type followed by a semicolon (for example,
“dbm;” or “Isearch;”), the remainder of the pattern must be a file name in a suitable format for the
lookup type. For example, for “cdb;” it must be an absolute path:

domains = cdb;/etc/mail/local_domains.cdb

The appropriate type of lookup is done on the file using the domain name as the key. In most cases,
the data that is looked up is not used; Exim is interested only in whether or not the key is present in
the file. However, when a lookup is used for tdemains option on a router or alomains
condition in an ACL statement, the data is preserved infitiemain_datavariable and can be
referred to in other router options or other statements in the same ACL.

» Any of the single-key lookup type names may be precedegdstial <n>-, where the 1> is
optional, for example,

domains = partial-dbm;/partial/domains

This causes partial matching logic to be invoked; a description of how this works is given in
section 9.7.

* Any of the single-key lookup types may be followed by an asterisk. This causes a default lookup
for a key consisting of a single asterisk to be done if the original lookup fails. This is not a useful
feature when using a domain list to select particular domains (because any domain would match),
but it might have value if the result of the lookup is being used viafithemain_dataexpansion
variable.

» If the pattern starts with the name of a query-style lookup type followed by a semicolon (for
example, “nisplus;” or “Idap;”), the remainder of the pattern must be an appropriate query for the
lookup type, as described in chapter 9. For example:

hold_domains = mysql;select domain from holdlist \
where domain = '$domain’;

In most cases, the data that is looked up is not used (so for an SQL query, for example, it doesn’t
matter what field you select). Exim is interested only in whether or not the query succeeds.
However, when a lookup is used for tdemains option on a router, the data is preserved in the
$domain_datavariable and can be referred to in other options.

 If none of the above cases apply, a caseless textual comparison is made between the pattern and the
domain.

Here is an example that uses several different kinds of pattern:

domainlist funny_domains =\
@ :\
lib.unseen.edu : \
* .foundation.fict.example : \
\N/[1-2]\d{3}\.fict\.example$\N : \

89 Domain, host, and address lists (10)

partial-dbm;/opt/data/penguin/book : \
nis;domains.byname : \
nisplus;[name=$domain,status=local],domains.org_dir

There are obvious processing trade-offs among the various matching modes. Using an asterisk is
faster than a regular expression, and listing a few names explicitly probably is too. The use of a file or
database lookup is expensive, but may be the only option if hundreds of names are required. Because
the patterns are tested in order, it makes sense to put the most commonly matched patterns earlier.

10.9 Host lists

Host lists are used to control what remote hosts are allowed to do. For example, some hosts may be
allowed to use the local host as a relay, and some may be permitted to use the SMTP ETRN
command. Hosts can be identified in two different ways, by name or by IP address. In a host list,
some types of pattern are matched to a host name, and some are matched to an IP address. You need
to be particularly careful with this when single-key lookups are involved, to ensure that the right value

is being used as the key.

10.10 Special host list patterns

If a host list item is the empty string, it matches only when no remote host is involved. This is the case
when a message is being received from a local process using SMTP on the standard input, that is,
when a TCP/IP connection is not used.

The special pattern “*” in a host list matches any host or no host. Neither the IP address nor the name
is actually inspected.

10.11 Host list patterns that match by IP address

If an IPv4 host calls an IPv6 host and the call is accepted on an IPv6 socket, the incoming address
actually appears in the IPv6 host &f#ff: <v4address. When such an address is tested against a
host list, it is converted into a traditional IPv4 address first. (Not all operating systems accept IPv4
calls on IPv6 sockets, as there have been some security concerns.)

The following types of pattern in a host list check the remote host by inspecting its IP address:

 If the pattern is a plain domain name (not a regular expression, not starting with *, not a lookup of
any kind), Exim calls the operating system function to find the associated IP address(es). Exim
uses the newagetipnodebynameunction when available, otherwiggethostbyname(Jrhis typi-
cally causes a forward DNS lookup of the name. The result is compared with the IP address of the
subject host.

If there is a temporary problem (such as a DNS timeout) with the host name lookup, a temporary
error occurs. For example, if the list is being used in an ACL condition, the ACL gives a “defer”
response, usually leading to a temporary SMTP error code. If no IP address can be found for the
host name, what happens is described in section 10.14 below.

» If the pattern is “@”, the primary host name is substituted and used as a domain name, as just
described.

» If the pattern is an IP address, it is matched against the IP address of the subject host. IPv4
addresses are given in the normal “dotted-quad” notation. IPv6 addresses can be given in colon-
separated format, but the colons have to be doubled so as not to be taken as item separators when
the default list separator is used. IPv6 addresses are recognized even when Exim is compiled
without IPv6 support. This means that if they appear in a host list on an IPv4-only host, Exim will
not treat them as host names. They are just addresses that can never match a client host.

* If the pattern is “@[]”, it matches the IP address of any IP interface on the local host. For example,
if the local host is an IPv4 host with one interface address 10.45.23.56, these two ACL statements
have the same effect:

90 Domain, host, and address lists (10)

accept hosts = 127.0.0.1 : 10.45.23.56
accept hosts = @]]

* If the pattern is an IP address followed by a slash and a mask length (for example 10.11.42.0/24), it
is matched against the IP address of the subject host under the given mask. This allows, an entire
network of hosts to be included (or excluded) by a single item. The mask uses CIDR notation; it
specifies the number of address bits that must match, starting from the most significant end of the
address.

Note: The mask iota count of addresses, nor is it the high number of a range of addresses. It is
the number of bits in the network portion of the address. The above example specifies a 24-bit
netmask, so it matches all 256 addresses in the 10.11.42.0 network. An item such as

192.168.23.236/31

matches just two addresses, 192.168.23.236 and 192.168.23.237. A mask value of 32 for an IPv4
address is the same as no mask at all; just a single address matches.

Here is another example which shows an IPv4 and an IPv6 network:

recipient_unqualified_hosts = 192.168.0.0/16: \
3ffe::ffff.:836f::::/48

The doubling of list separator characters applies only when these items appear inline in a host list.
It is not required when indirecting via a file. For example:

recipient_unqualified_hosts = /opt/exim/unqualnets
could make use of a file containing

172.16.0.0/12
3ffe:ffff:836f::/48

to have exactly the same effect as the previous example. When listing IPv6 addresses inline, it is
usually more convenient to use the facility for changing separator characters. This list contains the
same two networks:

recipient_unqualified_hosts = <; 172.16.0.0/12; \
3ffe:ffff:836f::/48

The separator is changed to semicolon by the leading “<;” at the start of the list.

10.12 Host list patterns for single-key lookups by host address

When a host is to be identified by a single-key lookup of its complete IP address, the pattern takes this
form:

net-< single-key-search-type< search-data
For example:
hosts_lookup = net-cdb;/hosts-by-ip.db

The text form of the IP address of the subject host is used as the lookup key. IPv6 addresses are
converted to an unabbreviated form, using lower case letters, with dots as separators because colon is
the key terminator insearchfiles. [Colons can in fact be used in keyslgearchfiles by quoting the

keys, but this is a facility that was added later.] The data returned by the lookup is not used.

Single-key lookups can also be performed using masked IP addresses, using patterns of this form:
net< numbep-< single-key-search-type< search-data
For example:
net24-dbm;/networks.db
The IP address of the subject host is masked usmgnber as the mask length. A textual string is
constructed from the masked value, followed by the mask, and this is used as the lookup key. For

91 Domain, host, and address lists (10)

example, if the host's IP address is 192.168.34.6, the key that is looked up for the above example is
“192.168.34.0/24".

When an IPv6 address is converted to a string, dots are normally used instead of colons, so that keys
in Isearchfiles need not contain colons (which terminé&earchkeys). This was implemented some

time before the ability to quote keys was made availabliséarchfiles. However, the more recently
implementedplsearchfiles do require colons in IPv6 keys (notated using the quoting facility) so as to
distinguish them from IPv4 keys. For this reason, when the lookup tyjpgsisarch IPv6 addresses

are converted using colons and not dots. In all cases, full, unabbreviated IPv6 addresses are always
used.

Ideally, it would be nice to tidy up this anomalous situation by changing to colons in all cases, given
that quoting is now available fdsearch However, this would be an incompatible change that might
break some existing configurations.

Warning: Specifyingnet32-(for an IPv4 address) aret128-(for an IPv6 address) is not the same as
specifying justnet- without a number. In the former case the key strings include the mask value,
whereas in the latter case the IP address is used on its own.

10.13 Host list patterns that match by host name

There are several types of pattern that require Exim to know the name of the remote host. These are
either wildcard patterns or lookups by name. (If a complete hostname is given without any
wildcarding, it is used to find an IP address to match against, as described in the section 10.11 above.)

If the remote host name is not already known when Exim encounters one of these patterns, it has to be
found from the IP address. Although many sites on the Internet are conscientious about maintaining
reverse DNS data for their hosts, there are also many that do not do this. Consequently, a name cannot
always be found, and this may lead to unwanted effects. Take care when configuring host lists with
wildcarded name patterns. Consider what will happen if a name cannot be found.

Because of the problems of determining host names from IP addresses, matching against host names
is hot as common as matching against IP addresses.

By default, in order to find a host name, Exim first does a reverse DNS lookup; if no name is found in
the DNS, the system functiométhostbyaddr(pr getipnodebyaddr(if available) is tried. The order

in which these lookups are done can be changed by settindndbe lookup_order option. For
security, once Exim has found one or more names, it looks up the IP addresses for these names and
compares them with the IP address that it started with. Only those names whose IP addresses match
are accepted. Any other names are discarded. If no names are left, Exim behaves as if the host name
cannot be found. In the most common case there is only one name and one IP address.

There are some options that control what happens if a host name cannot be found. These are
described in section 10.14 below.

As a result of aliasing, hosts may have more than one name. When processing any of the following
types of pattern, all the host’'s names are checked:

 If a pattern starts with “*” the remainder of the item must match the end of the host name. For
example*.b.c matches all hosts whose names encdbia This special simple form is provided
because this is a very common requirement. Other kinds of wildcarding require the use of a regular
expression.

 If the item starts with “*" it is taken to be a regular expression which is matched against the host
name. Host names are case-independent, so this regular expression match is by default case-
independent, but you can make it case-dependent by starting i{®ith . References to descrip-
tions of the syntax of regular expressions are given in chapter 8. For example,

Aalb)\.c\.d$

is a regular expression that matches either of the two hastsl or b.c.d When a regular
expression is used in a host list, you must take care that backslash and dollar characters are not
misinterpreted as part of the string expansion. The simplest way to do this is\td ueanark that

part of the string as non-expandable. For example:

92 Domain, host, and address lists (10)

sender_unqualified_hosts = \N”(a|b)\.c\.d$\N :

Warning: If you want to match a complete host name, you must include$&thterminating
metacharacter in the regular expression, as in the above example. Without it, a match at the start of
the host name is all that is required.

10.14 Behaviour when an IP address or name cannot be found

While processing a host list, Exim may need to look up an IP address from a name (see section
10.11), or it may need to look up a host name from an IP address (see section 10.13). In either case,
the behaviour when it fails to find the information it is seeking is the same.

Note: This section applies to permanent lookup failures. It do&sapply to temporary DNS errors,
whose handling is described in the next section.

By default, Exim behaves as if the host does not match the list. This may not always be what you
want to happen. To change Exim’s behaviour, the special itefimelude_unknown or
+ignore_unknown may appear in the list (at top level — they are not recognized in an indirected
file).

o If any item that follows+include_unknown requires information that cannot found, Exim
behaves as if the host does match the list. For example,

host_reject_connection = +include_unknown:*.enemy.ex

rejects connections from any host whose nhame mattkesmy.ex , and also any hosts whose
name it cannot find.

« If any item that follows+ignore_unknown requires information that cannot be found, Exim
ignores that item and proceeds to the rest of the list. For example:

accept hosts = +ignore_unknown : friend.example : \
192.168.4.5

accepts from any host whose namdrisnd.examplend from 192.168.4.5, whether or not its host
name can be found. Withogignore_unknown , if no name can be found for 192.168.4.5, it is
rejected.

Both +include_unknown and+ignore_unknown may appear in the same list. The effect of
each one lasts until the next, or until the end of the list.

10.15 Temporary DNS errors when looking up host information

A temporary DNS lookup failure normally causes a defer action (except whenagain_means_
nonexistconverts it into a permanent error). However, host lists can inchigieore_defer and
+include_defer | analagous ta-ignore_unknown and+include_unknown , as described

in the previous section. These options should be used with care, probably only in non-critical host
lists such as whitelists.

10.16 Host list patterns for single-key lookups by host name
If a pattern is of the form

<single-key-search-type<search-data
for example

dbm;/host/accept/list

a single-key lookup is performed, using the host name as its key. If the lookup succeeds, the host
matches the item. The actual data that is looked up is not used.

Reminder: With this kind of pattern, you must have hosimesas keys in the file, not IP addresses.
If you want to do lookups based on IP addresses, you must precede the search type with “net-" (see

93 Domain, host, and address lists (10)

section 10.12). There is, however, no reason why you could not use two items in the same list, one
doing an address lookup and one doing a name lookup, both using the same file.

10.17 Host list patterns for query-style lookups
If a pattern is of the form
<query-style-search-type<query>

the query is obeyed, and if it succeeds, the host matches the item. The actual data that is looked up is
not used. The variableégsender_host_addressid $sender_host_nanean be used in the query. For
example:

hosts_lookup = pgsql;\
select ip from hostlist where ip="$sender_host_address'
The value offsender_host_addrefs an IPv6 address contains colons. You can usagiexpansion

item to change this if you need to. If you want to use masked IP addresses in database queries, you
can use thenask expansion operator.

If the query contains a reference®eender_host_namExim automatically looks up the host name if
has not already done so. (See section 10.13 for comments on finding host names.)

Historical note: prior to release 4.30, Exim would always attempt to find a host name before running
the query, unless the search type was precedeaeby . This is no longer the case. For backwards
compatibility, net- is still recognized for query-style lookups, but its presence or absence has no
effect. (Of course, for single-key lookupst- is important. See section 10.12.)

10.18 Mixing wildcarded host names and addresses in host lists

If you have name lookups or wildcarded host names and IP addresses in the same host list, you should
normally put the IP addresses first. For example, in an ACL you could have:

accept hosts = 10.9.8.7 : *.friend.example

The reason for this lies in the left-to-right way that Exim processes lists. It can test IP addresses
without doing any DNS lookups, but when it reaches an item that requires a host name, it fails if it
cannot find a host name to compare with the pattern. If the above list is given in the opposite order,
theacceptstatement fails for a host whose name cannot be found, even if its IP address is 10.9.8.7.

If you really do want to do the name check first, and still recognize the IP address, you can rewrite the
ACL like this:

accept hosts = *.friend.example
accept hosts = 10.9.8.7

If the firstacceptfails, Exim goes on to try the second one. See chapter 40 for details of ACLs.

10.19 Address lists

Address lists contain patterns that are matched against mail addresses. There is one special case to be
considered: the sender address of a bounce message is always empty. You can test for this by provid-
ing an empty item in an address list. For example, you can set up a router to process bounce messages
by using this option setting:

senders =:

The presence of the colon creates an empty item. If you do not provide any data, the list is empty and
matches nothing. The empty sender can also be detected by a regular expression that matches an
empty string, and by a query-style lookup that succeeds $d@rder_address empty.

Non-empty items in an address list can be straightforward email addresses. For example:

senders = joc@askone.example : hs@anacreon.example

94 Domain, host, and address lists (10)

A certain amount of wildcarding is permitted. If a pattern contains an @ character, but is not a regular
expression and does not begin with a semicolon-terminated lookup type (described below), the local
part of the subject address is compared with the local part of the pattern, which may start with an
asterisk. If the local parts match, the domain is checked in exactly the same way as for a pattern in a
domain list. For example, the domain can be wildcarded, refer to a named list, or be a lookup:

deny senders = *@*.spamming.site:\
*@+hostile_domains:\
bozo@partial-Isearch;/list/of/dodgy/sites:\
*@dbm;/bad/domains.db

If a local part that begins with an exclamation mark is required, it has to be specified using a regular
expression, because otherwise the exclamation mark is treated as a sign of negation, as is standard in
lists.

If a non-empty pattern that is not a regular expression or a lookup does not contain an @ character, it
is matched against the domain part of the subject address. The only two formats that are recognized
this way are a literal domain, or a domain pattern that starts with *. In both these cases, the effect is

the same as @ preceded the pattern. For example:

deny senders = enemy.domain : *.enemy.domain

The following kinds of more complicated address list pattern can match any address, including the
empty address that is characteristic of bounce message senders:

» If (after expansion) a pattern starts with “*”, a regular expression match is done against the
complete address, with the pattern as the regular expression. You must take care that backslash and
dollar characters are not misinterpreted as part of the string expansion. The simplest way to do this
is to uséN to mark that part of the string as non-expandable. For example:

deny senders = \N”.*this.*@example\.com$\N : \
\N™Md{8}.+ @spamhaus.example$\N : ...

The\N sequences are removed by the expansion, so these items do indeed start with “*” by the
time they are being interpreted as address patterns.

» Complete addresses can be looked up by using a pattern that starts with a lookup type terminated
by a semicolon, followed by the data for the lookup. For example:

deny senders = cdb;/etc/blocked.senders : \
mysql;select address from blocked where \
address="${quote_mysqgl:$sender_address}'

Both query-style and single-key lookup types can be used. For a single-key lookup type, Exim uses
the complete address as the key. However, empty keys are not supported for single-key lookups, so
a match against the empty address always fails. This restriction does not apply to query-style
lookups.

Partial matching for single-key lookups (section 9.7) cannot be used, and is ignored if specified,
with an entry being written to the panic log. However, you can configure lookup defaults, as
described in section 9.6, but this is useful only for the “*@” type of default. For example, with this
lookup:

accept senders = Isearch*@;/somef/file
the file could contains lines like this:

userl@domainl.example
*@domain2.example

and for the sender addresmrod@jaeger.exampl¢he sequence of keys that are tried is:

nimrod@jaeger.example
*@jaeger.example
*

95 Domain, host, and address lists (10)

Warning 1: Do not include a line keyed by “*" in the file, because that would mean that every
address matches, thus rendering the test useless.

Warning 2: Do not confuse these two kinds of item:

deny recipients = dbm*@;/some/file
deny recipients = *@dbm;/some/file

The first does a whole address lookup, with defaulting, as just described, because it starts with a
lookup type. The second matches the local part and domain independently, as described in a bullet
point below.

The following kinds of address list pattern can match only non-empty addresses. If the subject
address is empty, a match against any of these pattern types always fails.

o If a pattern starts with “@@” followed by a single-key lookup item (for example,
@ @Isearch;/some/file), the address that is being checked is split into a local part and a
domain. The domain is looked up in the file. If it is not found, there is no match. If it is found, the
data that is looked up from the file is treated as a colon-separated list of local part patterns, each of
which is matched against the subject local part in turn.

The lookup may be a partial one, and/or one involving a search for a default keyed by “*” (see
section 9.6). The local part patterns that are looked up can be regular expressions or begin with
“*” or even be further lookups. They may also be independently negated. For example, with

deny senders = @ @dbm;/etc/reject-by-domain

the data from which the DBM file is built could contain lines like
baddomain.com: Ipostmaster : *

to reject all senders excgpbstmasterfrom that domain.

If a local part that actually begins with an exclamation mark is required, it has to be specified using
a regular expression. Iisearchfiles, an entry may be split over several lines by indenting the
second and subsequent lines, but the separating colon must still be included at line breaks. White
space surrounding the colons is ignored. For example:

aol.com: spammerl : spammer2 : N[0-9]+$:
spammer3 : spammer4

As in all colon-separated lists in Exim, a colon can be included in an item by doubling.

If the last item in the list starts with a right angle-bracket, the remainder of the item is taken as a
new key to look up in order to obtain a continuation list of local parts. The new key can be any
sequence of characters. Thus one might have entries like

aol.com: spammerl : spammer 2 : >*
Xyz.com: spammer3 : >*
*: Md{8}$

in a file that was searched wit®@@dbm*, to specify a match for 8-digit local parts for all
domains, in addition to the specific local parts listed for each domain. Of course, using this feature
costs another lookup each time a chain is followed, but the effort needed to maintain the data is
reduced.

It is possible to construct loops using this facility, and in order to catch them, the chains may be no
more than fifty items long.

* The @@4<ookup> style of item can also be used with a query-style lookup, but in this case, the
chaining facility is not available. The lookup can only return a single list of local parts.

Warning: There is an important difference between the address list items in these two examples:

senders = +my_list
senders = *@+my_list

96 Domain, host, and address lists (10)

In the first one;my_list is a named address list, whereas in the second example it is a named
domain list.

10.20 Case of letters in address lists

Domains in email addresses are always handled caselessly, but for local parts case may be significant
on some systems (samseful_local partfor how Exim deals with this when routing addresses).
However, RFC 2505 Anti-Spam Recommendations for SMTP MTAsggests that matching of
addresses to blocking lists should be done in a case-independent manner. Since most address lists in
Exim are used for this kind of control, Exim attempts to do this by default.

The domain portion of an address is always lowercased before matching it to an address list. The local
part is lowercased by default, and any string comparisons that take place are done caselessly. This
means that the data in the address list itself, in files included as plain file names, and in any file that is
looked up using the “@@" mechanism, can be in any case. However, the keys in files that are looked
up by a search type other thisearch(which works caselessly) must be in lower case, because these
lookups are not case-independent.

To allow for the possibility of caseful address list matching, if an item in an address list is the string
“+caseful”, the original case of the local part is restored for any comparisons that follow, and string
comparisons are no longer case-independent. This does not affect the domain, which remains in lower
case. However, although independent matches on the domain alone are still performed caselessly,
regular expressions that match against an entire address become case-sensitive after “+caseful” has
been seen.

10.21 Local part lists

Case-sensitivity in local part lists is handled in the same way as for address lists, as just described.
The “+caseful” item can be used if required. In a setting of ldwal_parts option in a router with
caseful_local_partset false, the subject is lowercased and the matching is initially case-insensitive.
In this case, “+caseful” will restore case-sensitive matching in the local part list, but not elsewhere in
the router. Ifcaseful_local_partis set true in a router, matching in thacal_parts option is case-
sensitive from the start.

If a local part list is indirected to a file (see section 10.3), comments are handled in the same way as
address lists — they are recognized only if the # is preceded by white space or the start of the line.
Otherwise, local part lists are matched in the same way as domain lists, except that the special items
that refer to the local host@ @[], @mx_any @mx_primary , and @mx_secondary) are not
recognized. Refer to section 10.8 for details of the other available item types.

97 Domain, host, and address lists (10)

11. String expansions

Many strings in Exim’s run time configuration are expanded before use. Some of them are expanded
every time they are used; others are expanded only once.

When a string is being expanded it is copied verbatim from left to right except when a dollar or
backslash character is encountered. A dollar specifies the start of a portion of the string that is
interpreted and replaced as described below in section 11.5 onwards. Backslash is used as an escape
character, as described in the following section.

11.1 Literal text in expanded strings

An uninterpreted dollar can be included in an expanded string by putting a backslash in front of it. A
backslash can be used to prevent any special character being treated specially in an expansion,
including backslash itself. If the string appears in quotes in the configuration file, two backslashes are
required because the quotes themselves cause interpretation of backslashes when the string is read in
(see section 6.16).

A portion of the string can specified as non-expandable by placing it between two occurrekides of
This is particularly useful for protecting regular expressions, which often contain backslashes and
dollar signs. For example:

deny senders = \NMd{8}[a-z]@some\.site\.example$\N

On encountering the fir8N , the expander copies subsequent characters without interpretation until it
reaches the neX or the end of the string.

11.2 Character escape sequences in expanded strings

A backslash followed by one of the letters “n”, “r", or “t” in an expanded string is recognized as an
escape sequence for the character newline, carriage return, or tab, respectively. A backslash followed
by up to three octal digits is recognized as an octal encoding for a single character, and a backslash
followed by “x” and up to two hexadecimal digits is a hexadecimal encoding.

These escape sequences are also recognized in quoted strings when they are read in. Their interpret-
ation in expansions as well is useful for unquoted strings, and for other cases such as looked-up
strings that are then expanded.

11.3 Testing string expansions

Many expansions can be tested by calling Exim with e option. This takes the command argu-
ments, or lines from the standard input if there are no arguments, runs them through the string
expansion code, and writes the results to the standard output. Variables based on configuration values
are set up, but since no message is being processed, variables shiccadspart have no value.
Nevertheless thebe option can be useful for checking out file and database lookups, and the use of
expansion operators suchsggsubstr andnhash

Exim gives up its root privilege when it is called with tHee option, and instead runs under the uid
and gid it was called with, to prevent users from usibg for reading files to which they do not have
access.

If you want to test expansions that include variables whose values are taken from a message, there are
two other options that can be used. THem option is like -be except that it is followed by a file
name. The file is read as a message before doing the test expansions. For example:

exim -bem /tmp/test. message '$h_subject:’

The-Mset option is used in conjunction witkbe and is followed by an Exim message identifier. For
example:

exim -be -Mset 1GrA8W-0004WS-LQ '$recipients'

98 String expansions (11)

This loads the message from Exim’s spool before doing the test expansions, and is therefore restricted
to admin users.

11.4 Forced expansion failure

A number of expansions that are described in the following section have alternative “true” and “false”
substrings, enclosed in brace characters (which are sometimes called “curly brackets”). Which of the
two strings is used depends on some condition that is evaluated as part of the expansion. If, instead of
a “false” substring, the word “fail” is used (not in braces), the entire string expansion fails in a way
that can be detected by the code that requested the expansion. This is called “forced expansion
failure”, and its consequences depend on the circumstances. In some cases it is no different from any
other expansion failure, but in others a different action may be taken. Such variations are mentioned
in the documentation of the option that is being expanded.

11.5 Expansion items

The following items are recognized in expanded strings. White space may be used between sub-items
that are keywords or substrings enclosed in braces inside an outer set of braces, to improve read-
ability. Warning : Within braces, white space is significant.

$<variable name or ${<variable name}
Substitute the contents of the named variable, for example:

$local_part
${domain}

The second form can be used to separate the name from subsequent alphanumeric characters. This
form (using braces) is available only for variables; it dowd apply to message headers. The
names of the variables are given in section 11.9 below. If the name of a non-existent variable is
given, the expansion fails.

${<op>:<string>}
The string is first itself expanded, and then the operation specifiedbpy s applied to it. For
example:

${lc:$local_part}

The string starts with the first character after the colon, which may be leading white space. A list

of operators is given in section 11.6 below. The operator notation is used for simple expansion
items that have just one argument, because it reduces the number of braces and therefore makes
the string easier to understand.

$bheader <header nanve: or $bh_<header name:
This item inserts “basic” header lines. It is described withhdaler expansion item below.

${dIfunc{<file>H <functior-} <arg>}{ <arg>}...}
This expansion dynamically loads and then calls a locally-written C function. This functionality is
available only if Exim is compiled with

EXPAND_DLFUNC=yes

set in Local/Makefile Once loaded, Exim remembers the dynamically loaded object so that it
doesn't reload the same obiject file in the same Exim process (but of course Exim does start new
processes frequently).

There may be from zero to eight arguments to the function. When compiling a local function that
is to be called in this waypcal_scan.hshould be included. The Exim variables and functions that
are defined by that API are also available for dynamically loaded functions. The function itself
must have the following type:

int difunction(uschar **yield, int argc, uschar *argv[])
Whereuschar is a typedef forunsigned char in local_scan.h The function should return
one of the following values:

99 String expansions (11)

OK Success. The string that is placed in the varialiddd is put into the expanded string that is
being built.

FAIL : A non-forced expansion failure occurs, with the error message takenyiedif it is set.

FAIL_FORCED A forced expansion failure occurs, with the error message takenyfelohif it is
set.

ERRORSame a§AIL , except that a panic log entry is written.

When compiling a function that is to be used in this way with gcc, you need teshdded to the
gcc command. Also, in the Exim build-time configuration, you must aggport-dynamic to
EXTRALIBS.

${extract{<key>H <string 1>} <string2>}{ <string3>}}
The key and string1> are first expanded separately. Leading and trailing white space is removed
from the key (but not from any of the strings). The key must not consist entirely of digits. The
expanded string1> must be of the form:

<keyD> = <value> <key2 = <value2 ...

where the equals signs and spaces (but not both) are optional. If any of the values contain white
space, they must be enclosed in double quotes, and any values that are enclosed in double quotes
are subject to escape processing as described in section 6.16. The expsinidgd><is searched

for the value that corresponds to the key. The search is case-insensitive. If the key is found,
<string2> is expanded, and replaces the whole item; otherwisteing3> is used. During the
expansion of string2> the variablebvaluecontains the value that has been extracted. Afterwards,

it is restored to any previous value it might have had.

If {<string3>} is omitted, the item is replaced by an empty string if the key is not found. If
{<string2>} is also omitted, the value that was extracted is used. Thus, for example, these two
expansions are identical, and yield “2001”:

${extract{gid}{uid=1984 gid=2001}}
${extract{gidH{uid=1984 gid=2001}{$value}}

Instead of {string3>} the word “fail” (not in curly brackets) can appear, for example:
${extract{Z}{A=... B=...}{$value} fail }

This forces an expansion failure (see section 11.4%tdrg2>} must be present for “fail” to be
recognized.

${extract{<numbepr}{ <separators}{ <string1>K <string2>}{ <string3>}}
The <shumbepr argument must consist entirely of decimal digits, apart from leading and trailing
white space, which is ignored. This is what distinguishes this forraxtfact from the previous
kind. It behaves in the same way, except that, instead of extracting a named field, it extracts from
<string1> the field whose number is given as the first argument. You ca$waleein <string2>
orfail instead of string3> as before.

The fields in the string are separated by any one of the characters in the separator string. These
may include space or tab characters. The first field is numbered one. If the number is negative, the
fields are counted from the end of the string, with the rightmost one numbered -1. If the number
given is zero, the entire string is returned. If the modulus of the number is greater than the number
of fields in the string, the result is the expansion sfring3>, or the empty string if string3> is

not provided. For example:

${extract{2}{:}{x:42:99:& Mailer::/bin/bash}}
yields “42”, and
${extract{-4{:Hx:42:99:& Mailer::/bin/bash}}

yields “99”. Two successive separators mean that the field between them is empty (for example,
the fifth field above).

100 String expansions (11)

${filter{ <string>}{ <conditiorr}}
After expansion, string> is interpreted as a list, colon-separated by default, but the separator can
be changed in the usual way. For each item in this list, its value is plaggem and then the
condition is evaluated. If the condition is trktemis added to the output as an item in a new list;
if the condition is false, the item is discarded. The separator used for the output list is the same as
the one used for the input, but a separator setting is not included in the output. For example:

$ffilter{a:b:cH{'eq{$itemKb}}
yieldsa:c . At the end of the expansion, the valueRifemis restored to what it was before. See
also themap andreduce expansion items.
${hash{<string1>} <string2>}{ <string3>}}
This is a textual hashing function, and was the first to be implemented in early versions of Exim.

In current releases, there are other hashing functions (numeric, MD5, and SHA-1), which are
described below.

The first two strings, after expansion, must be numbers. Call themand <n>. If you are using
fixed values for these numbers, that is, gtekngl> and <string2> do not change when they are
expanded, you can use the simpler operator notation that avoids some of the braces:

${hash_<n>_<m>:<string>}

The second number is optional (in both notations).nf<s greater than or equal to the length of

the string, the expansion item returns the string. Otherwise it computes a new string of lergth <
by applying a hashing function to the string. The new string consists of characters taken from the
first <m> characters of the string

abcdefghijklmnopqgrstuvwxyzABCDEFGHIJKLMNOPQWRSTUVWXYZ0123456789
If <m> is not present the value 26 is used, so that only lower case letters appear. For example:

$hash{3}{monty}} yields jmg
$hash{5}{monty}} yields monty
$hash{4}{62{monty python}} yields fbWx

$header <header name: or $h_<header name:
$bheader <header name: or $bh_<header name:
$rheader_<header name or $rh_<header nane:
Substitute the contents of the named message header line, for example

$header_reply-to:

The newline that terminates a header line is not included in the expansion, but internal newlines
(caused by splitting the header line over several physical lines) may be present.

The difference betweerneader, bheader, andheaderis in the way the data in the header line is
interpreted.

» rheader gives the original “raw” content of the header line, with no processing at all, and
without the removal of leading and trailing white space.

» bheaderremoves leading and trailing white space, and then decodes base64 or quoted-printable
MIME “words” within the header text, but does no character set translation. If decoding of what
looks superficially like a MIME “word” fails, the raw string is returned. If decoding produces a
binary zero character, it is replaced by a question mark — this is what Exim does for binary zeros
that are actually received in header lines.

» headertries to translate the string as decodedbgaderto a standard character set. This is an
attempt to produce the same string as would be displayed on a user's MUA. If translation fails,
the bheader string is returned. Translation is attempted only on operating systems that support
the iconv() function. This is indicated by the compile-time macro HAVE_ICONV in a system
Makefile or inLocal/Makefile

In a filter file, the target character set foeader can be specified by a command of the following
form:

101 String expansions (11)

headers charset "UTF-8"

This command affects all referencestio_(or $header) expansions in subsequently obeyed filter
commands. In the absence of this command, the target character set in a filter is taken from the
setting of theheaders_charsetoption in the runtime configuration. The value of this option
defaults to the value of HEADERS CHARSET liocal/Makefile The ultimate default is ISO-
8859-1.

Header names follow the syntax of RFC 2822, which states that they may contain any printing
characters except space and colon. Consequently, curly bratketstterminate header names,

and should not be used to enclose them as if they were variables. Attempting to do so causes a
syntax error.

Only header lines that are common to all copies of a message are visible to this mechanism. These
are the original header lines that are received with the message, and any that are added by an ACL
statement or by a system filter. Header lines that are added to a particular copy of a message by a
router or transport are not accessible.

For incoming SMTP messages, no header lines are visible in ACLs that are obeyed before the
DATA ACL, because the header structure is not set up until the message is received. Header lines
that are added in a RCPT ACL (for example) are saved until the message’s incoming header lines
are available, at which point they are added. When a DATA ACL is running, however, header lines
added by earlier ACLs are visible.

Upper case and lower case letters are synonymous in header names. If the following character is

white space, the terminating colon may be omitted, but this is not recommended, because you may

then forget it when it is needed. When white space terminates the header name, it is included in the

expanded string. If the message does not contain the given header, the expansion item is replaced
by an empty string. (See thdef condition in section 11.7 for a means of testing for the existence

of a header.)

If there is more than one header with the same name, they are all concatenated to form the
substitution string, up to a maximum length of 64K. Unlelseader is being used, leading and

trailing white space is removed from each header before concatenation, and a completely empty
header is ignored. A newline character is then inserted between non-empty headers, but there is no
newline at the very end. For theeader and bheader expansion, for those headers that contain

lists of addresses, a comma is also inserted at the junctions between headers. This does not happen
for therheader expansion.

${hmac{<hashname}{ <secret}{ <string>}}
This function uses cryptographic hashing (either MD5 or SHA-1) to convert a shared secret and
some text into a message authentication code, as specified in RFC 2104. This differs from
${md5:secret_text...} or ${shal:secret_text...} in that the hmac step adds a
signature to the cryptographic hash, allowing for authentication that is not possible with MD5 or
SHA-1 alone. The hash name must expand to emigdror shal at present. For example:

${hmac{md5}{somesecretl{$primary_hostname $tod_log}}
For the hostnammnail.example.corand time 2002-10-17 11:30:59, this produces:
dd97e3ba5d1a61b5006108f8c8252953

As an example of how this might be used, you might put in the main part of an Exim
configuration:

SPAMSCAN_SECRET=cohgheelLei2thahw
In a router or a transport you could then have:

headers_add =\
X-Spam-Scanned: ${primary_hostname} ${message_exim_id} \
${hmac{md5{SPAMSCAN_SECRET}
{${primary_hostname},${message_exim_id},$h_message-id:}}

102 String expansions (11)

Then given a message, you can check where it was scanned by looking>&Sihem-Scanned:
header line. If you know the secret, you can check that this header line is authentic by recomputing
the authentication code from the host name, message ID aMéabgage-idheader line. This can

be done using Exim’sbe option, or by other means, for example by using lineac_md5_hex()
function in Perl.

${if <conditiorr {<string1>}{ <string2>}}
If <conditior® is true, sstring1l> is expanded and replaces the whole item; otherwigeang2> is
used. The available conditions are described in section 11.7 below. For example:

${if eq {$local_part}{postmaster} {yes}{no} }

The second string need not be present; if it is not and the condition is not true, the item is replaced
with nothing. Alternatively, the word “fail” may be present instead of the second string (without
any curly brackets). In this case, the expansion is forced to fail if the condition is not true (see
section 11.4).

If both strings are omitted, the result is the strimge if the condition is true, and the empty
string if the condition is false. This makes it less cumbersome to write custom ACL and router
conditions. For example, instead of

condition = ${if >{$acl_m4}{3Htrue}H{false}}
you can use
condition = ${if >{$acl_m4}3}}

${length{<string1>}{ <string2>}}
Thelengthitem is used to extract the initial portion of a string. Both strings are expanded, and the
first one must yield a numberns, say. If you are using a fixed value for the number, that is, if
<string1l> does not change when expanded, you can use the simpler operator notation that avoids
some of the braces:

${length_<n>:<string>}

The result of this item is either the firshs characters or the whole oktring2>, whichever is the
shorter. Do not confudength with strlen, which gives the length of a string.

${lookup{<key>} <search type {<file>} {<string1>} {<string2>}}
This is the first of one of two different types of lookup item, which are both described in the next
item.

${lookup <search type {<query>} {<string1>} {<string2>}}
The two forms of lookup item specify data lookups in files and databases, as discussed in chapter
9. The first form is used for single-key lookups, and the second is used for query-style lookups.
The <key>, <file>, and qquery> strings are expanded before use.

If there is any white space in a lookup item which is part of a filter command, a retry or rewrite
rule, a routing rule for thenanualrouterouter, or any other place where white space is significant,
the lookup item must be enclosed in double quotes. The use of data lookups in users’ filter files
may be locked out by the system administrator.

If the lookup succeeds,string1> is expanded and replaces the entire item. During its expansion,
the variable$valuecontains the data returned by the lookup. Afterwards it reverts to the value it
had previously (at the outer level it is empty). If the lookup failstring2> is expanded and
replaces the entire item. If §tring2>} is omitted, the replacement is the empty string on failure.
If <string2> is provided, it can itself be a nested lookup, thus providing a mechanism for looking
up a default value when the original lookup fails.

If a nested lookup is used as part afting1>, $valuecontains the data for the outer lookup while
the parameters of the second lookup are expanded, and also strileg2> of the second lookup

is expanded, should the second lookup fail. Instead str{rg2>} the word “fail” can appear, and

in this case, if the lookup fails, the entire expansion is forced to fail (see section 11.4). If both
{<string1>} and {<string2>} are omitted, the result is the looked up value in the case of a
successful lookup, and nothing in the case of failure.

103 String expansions (11)

For single-key lookups, the string “partial” is permitted to precede the search type in order to do
partial matching, and * or *@ may follow a search type to request default lookups if the key does
not match (see sections 9.6 and 9.7 for details).

If a partial search is used, the variablgsand$2 contain the wild and non-wild parts of the key
during the expansion of the replacement text. They return to their previous values at the end of the
lookup item.

This example looks up the postmaster alias in the conventional alias file:
${lookup {postmaster} Isearch {/etc/aliases} {$value}}

This example uses NIS+ to look up the full name of the user corresponding to the local part of an
address, forcing the expansion to fail if it is not found:

${lookup nisplus {{[name=$local_part],passwd.org_dir:gcos} \
{$value}lfail}

${map{<string1>} <string2>}}
After expansion, string1> is interpreted as a list, colon-separated by default, but the separator can
be changed in the usual way. For each item in this list, its value is pla&item and then
<string2> is expanded and added to the output as an item in a new list. The separator used for the
output list is the same as the one used for the input, but a separator setting is not included in the
output. For example:

${map{a:b:c}{[$item]}} ${map{<- x-y-z}{($item)}}

expands tda]:[b]:[c] (X)-(y)-(2) . At the end of the expansion, the value$ifemis
restored to what it was before. See alsditter andreduce expansion items.

${nhash{<string1>} <string2>}{ <string3>}}
The three strings are expanded; the first two must yield numbers. Call therand €n>. If you
are using fixed values for these numbers, that isstfingl> and <string2> do not change when
they are expanded, you can use the simpler operator notation that avoids some of the braces:

${nhash_<n>_ <m>:<string>}

The second number is optional (in both notations). If there is only one number, the result is a
number in the range Of=-1. Otherwise, the string is processed by a div/imod hash function that
returns two numbers, separated by a slash, in the rangesr>t@ end O to «>-1, respectively.

For example,

${nhash{8}{64}{supercalifragilisticexpialidocious}}
returns the string “6/33".

${perl{ <subroutine{ <arg>}{ <arg>}...}
This item is available only if Exim has been built to include an embedded Perl interpreter. The
subroutine name and the arguments are first separately expanded, and then the Perl subroutine is
called with those arguments. No additional arguments need be given; the maximum number per-
mitted, including the name of the subroutine, is nine.

The return value of the subroutine is inserted into the expanded string, unless the return value is
undef. In that case, the expansion fails in the same way as an explicit “fail” on a lookup item. The
return value is a scalar. Whatever you return is evaluated in a scalar context. For example, if you
return the name of a Perl vector, the return value is the size of the vector, not its contents.

If the subroutine exits by calling Perldie function, the expansion fails with the error message
that was passed the. More details of the embedded Perl facility are given in chapter 12.

Theredirectrouter has an option callgdrbid_filter_perl which locks out the use of this expan-
sion item in filter files.

${prvs{<address}{ <secret}{ <keynumber}}
The first argument is a complete email address and the second is secret keystring. The third
argument, specifying a key number, is optional. If absent, it defaults to 0. The result of the
expansion is a prvs-signed email address, to be typically used witletine_path option on an

104 String expansions (11)

smtptransport as part of a bounce address tag validation (BATV) scheme. For more discussion and
an example, see section 40.47.

${prvscheck{<address}H <secret}{ <string>}}
This expansion item is the complement of thess item. It is used for checking prvs-signed
addresses. If the expansion of the first argument does not yield a syntactically valid prvs-signed
address, the whole item expands to the empty string. When the first argument does expand to a
syntactically valid prvs-signed address, the second argument is expanded, with the prvs-decoded
version of the address and the key number extracted from the address in the vé&pateseck
addressand$prvscheck_keynumespectively.

These two variables can be used in the expansion of the second argument to retrieve the secret.
The validity of the prvs-signed address is then checked against the secret. The result is stored in
the variablebprvscheck_resylivhich is empty for failure or “1” for success.

The third argument is optional; if it is missing, it defaults to an empty string. This argument is now
expanded. If the result is an empty string, the result of the expansion is the decoded version of the
address. This is the case whether or not the signature was valid. Otherwise, the result of the
expansion is the expansion of the third argument.

All three variables can be used in the expansion of the third argument. However, once the expan-
sion is complete, onlyprvscheck resultemains set. For more discussion and an example, see
section 40.47.

${readfile{<file name}{ <eol string>}}
The file name and end-of-line string are first expanded separately. The file is then read, and its
contents replace the entire item. All newline characters in the file are replaced by the end-of-line
string if it is present. Otherwise, newlines are left in the string. String expansion is not applied to
the contents of the file. If you want this, you must wrap the item irxgpand operator. If the file
cannot be read, the string expansion fails.

The redirect router has an option callefbrbid_filter _readfile which locks out the use of this
expansion item in filter files.

${readsocketkname-H <request} <timeout-} <eol string>}{ <fail string>}}
This item inserts data from a Unix domain or Internet socket into the expanded string. The
minimal way of using it uses just two arguments, as in these examples:

${readsocket{/socket/name}{request string}}
${readsocket{inet:some.host:1234Krequest string}}

For a Unix domain socket, the first substring must be the path to the socket. For an Internet socket,
the first substring must containet: followed by a host name or IP address, followed by a colon
and a port, which can be a number or the name of a TCP pdetdrservicesAn IP address may
optionally be enclosed in square brackets. This is best for IPv6 addresses. For example:

${readsocket{inet:[::1]:1234Krequest string}}

Only a single host name may be given, but if looking it up yields more than one IP address, they
are each tried in turn until a connection is made. For both kinds of socket, Exim makes a connec-
tion, writes the request string (unless it is an empty string) and reads from the socket until an
end-of-file is read. A timeout of 5 seconds is applied. Additional, optional arguments extend what
can be done. Firstly, you can vary the timeout. For example:

${readsocket{/socket/name}{request string}{3s}}

A fourth argument allows you to change any newlines that are in the data that is read, in the same
way as foreadfile (see above). This example turns them into spaces:

${readsocket{inet:127.0.0.1:3294}request string{3s}H }}

As with all expansions, the substrings are expanded before the processing happens. Errors in these
sub-expansions cause the expansion to fail. In addition, the following errors can occur:

» Failure to create a socket file descriptor;

105 String expansions (11)

* Failure to connect the socket;
 Failure to write the request string;
« Timeout on reading from the socket.

By default, any of these errors causes the expansion to fail. However, if you supply a fifth sub-
string, it is expanded and used when any of the above errors occurs. For example:

${readsocket{/socket/name}{request stringH{3sH{\n}\
{socket failure}}

You can test for the existence of a Unix domain socket by wrapping this expansi®fif in

exists , but there is a race condition between that test and the actual opening of the socket, so it
is safer to use the fifth argument if you want to be absolutely sure of avoiding an expansion error
for a non-existent Unix domain socket, or a failure to connect to an Internet socket.

Theredirectrouter has an option calledrbid_filter_readsocket which locks out the use of this
expansion item in filter files.

${reduce{<string1>}{< string2>}{ <string3>}}
This operation reduces a list to a single, scalar string. After expanstang&> is interpreted as a
list, colon-separated by default, but the separator can be changed in the usual waysffimg2><
is expanded and assigned to thealue variable. After this, each item in thestingl> list is
assigned t&itemin turn, and string3> is expanded for each of them. The result of that expansion
is assigned t&valuebefore the next iteration. When the end of the list is reached, the final value
of $valueis added to the expansion output. Tleeluce expansion item can be used in a number of
ways. For example, to add up a list of numbers:

${reduce {<, 1,2,30}{${eval:$value+sitem}}}
The result of that expansion would ®eThe maximum of a list of humbers can be found:
${reduce {3:0:9:4:6 HOH{${if >{$item}{$value}{$item}{$Svalue}}}}

At the end of areduce expansion, the values &itemand$valueare restored to what they were
before. See also ttidter andmap expansion items.

$rheader_<header name or $rh_<header nane:
This item inserts “raw” header lines. It is described withnibader expansion item above.

${run{ <command <args>H <string1>} <string2>}}
The command and its arguments are first expanded separately, and then the command is run in a
separate process, but under the same uid and gid. As in other command executions from Exim, a
shell is not used by default. If you want a shell, you must explicitly code it.

The standard input for the command exists, but is empty. The standard output and standard error
are set to the same file descriptor. If the command succeeds (gives a zero returnstoag)><is
expanded and replaces the entire item; during this expansion, the standard output/error from the
command is in the variablgvalue If the command fails, string2>, if present, is expanded and
used. Once again, during the expansion, the standard output/error from the command is in the
variable$value

If <string2> is absent, the result is empty. Alternativelgteng2> can be the word “fail” (not in
braces) to force expansion failure if the command does not succeed. If both strings are omitted, the
result is contents of the standard output/error on success, and nothing on failure.

The return code from the command is put in the varidslenrc, and this remains set afterwards,
so in a filter file you can do things like this:

if "${run{x y z}{}}$runrc" is 1 then ...
elif $runrc is 2 then ...

endif
If execution of the command fails (for example, the command does not exist), the return code is
127 — the same code that shells use for non-existent commands.

106 String expansions (11)

Warning: In a router or transport, you cannot assume the order in which option values are
expanded, except for those preconditions whose order of testing is documented. Therefore, you
cannot reliably expect to s@tunrc by the expansion of one option, and use it in another.

Theredirectrouter has an option callgdrbid_filter_run which locks out the use of this expan-
sion item in filter files.

${sg{<subjectH <regex}{ <replacement}}
This item works like Perl's substitution operator (s) with the global (/g) option; hence its name.
However, unlike the Perl equivalent, Exim does not modify the subject string; instead it returns the
modified string for insertion into the overall expansion. The item takes three arguments: the
subject string, a regular expression, and a substitution string. For example:

${sg{abcdefabcdef{abcHxyz}}

yields “xyzdefxyzdef’. Because all three arguments are expanded before use, if any $ or \ charac-
ters are required in the regular expression or in the substitution string, they have to be escaped. For
example:

${sg{abcdefH (...)(.. \$H{\$2\$1}}
yields “defabc”, and
${sg{1=A 4=D 3=CH\N(\d+)=\NKK\$1=}}

yields “K1=A K4=D K3=C". Note the use ofN to protect the contents of the regular expression
from string expansion.

${substr{<stringI>}H <string2>} <string3>}}
The three strings are expanded; the first two must yield numbers. Call therared <n>. If you
are using fixed values for these numbers, that isstfingl> and <string2> do not change when
they are expanded, you can use the simpler operator notation that avoids some of the braces:

${substr_<n>_<m>:<string>}

The second number is optional (in both notations). If it is absent in the simpler format, the
preceding underscore must also be omitted.

Thesubstritem can be used to extract more general substringsiémayth. The first number, B>,
is a starting offset, andw> is the length required. For example

${substr{3{2}{$local_part}}

If the starting offset is greater than the string length the result is the null string; if the length plus
starting offset is greater than the string length, the result is the right-hand part of the string, starting
from the given offset. The first character in the string has offset zero.

The substr expansion item can take negative offset values to count from the right-hand end of its
operand. The last character is offset -1, the second-last is offset -2, and so on. Thus, for example,

${substr{-54{2}{1234567}}

yields “34". If the absolute value of a negative offset is greater than the length of the string, the
substring starts at the beginning of the string, and the length is reduced by the amount of over-
shoot. Thus, for example,

${substr{-5}{2}{12}}
yields an empty string, but

${substr{-3{21{12}}
yields “1”.

When the second number is omitted franmbstr, the remainder of the string is taken if the offset
is positive. If it is negative, all characters in the string preceding the offset point are taken. For
example, an offset of -1 and no length, as in these semantically identical examples:

107 String expansions (11)

${substr_-1:abcde}
${substr{-1}{abcde}}

yields all but the last character of the string, that is, “abcd”.

${tr{ <subject}{ <characters}{ <replacements}}
This item does single-character translation on its subject string. The second argument is a list of
characters to be translated in the subject string. Each matching character is replaced by the corre-
sponding character from the replacement list. For example

${tr{abcdea{ac}{13}}

yields1b3del . If there are duplicates in the second character string, the last occurrence is used. If
the third string is shorter than the second, its last character is replicated. However, if it is empty, no
translation takes place.

11.6 Expansion operators

For expansion items that perform transformations on a single argument string, the “operator” notation
is used because it is simpler and uses fewer braces. The substring is first expanded before the
operation is applied to it. The following operations can be performed:

${addressx<string>}
The string is interpreted as an RFC 2822 address, as it might appear in a header line, and the
effective address is extracted from it. If the string does not parse successfully, the result is empty.

${addressessstring>}
The string (after expansion) is interpreted as a list of addresses in RFC 2822 format, such as can be
found in aTo: or Cc: header line. The operative addregscél-part@domaii is extracted from
each item, and the result of the expansion is a colon-separated list, with appropriate doubling of
colons should any happen to be present in the email addresses. Syntactically invalid RFC2822
address items are omitted from the output.

It is possible to specify a character other than colon for the output separator by starting the string
with > followed by the new separator character. For example:

${addresses:>& Chief <ceo@up.stairs>, sec@base.ment (dogsbody)}

expands toceo@up.stairs&sec@base.ment . Compare theaddress (singular) expansion
item, which extracts the working address from a single RFC2822 address. Sitethenap, and
reduceitems for ways of processing lists.

${base62«xdigits>}
The string must consist entirely of decimal digits. The number is converted to base 62 and output
as a string of six characters, including leading zeros. In the few operating environments where
Exim uses base 36 instead of base 62 for its message identifiers (because those systems do not
have case-sensitive file names), base 36 is used by this operator, despite itdlasmaust to be
absolutely clear: this isotbase64 encoding.

${base62d<base-62 digits}
The string must consist entirely of base-62 digits, or, in operating environments where Exim uses
base 36 instead of base 62 for its message identifiers, base-36 digits. The number is converted to
decimal and output as a string.

${domain:<string>}
The string is interpreted as an RFC 2822 address and the domain is extracted from it. If the string
does not parse successfully, the result is empty.

${escapexstring>}
If the string contains any non-printing characters, they are converted to escape sequences starting
with a backslash. Whether characters with the most significant bit set (so-called “8-bit characters”)
count as printing or not is controlled by twént_topbitchars option.

108 String expansions (11)

${eval:<string>} and${evall0<string>}
These items supports simple arithmetic and bitwise logical operations in expansion strings. The
string (after expansion) must be a conventional arithmetic expression, but it is limited to basic
arithmetic operators, bitwise logical operators, and parentheses. All operations are carried out
using integer arithmetic. The operator priorities are as follows (the same as in the C programming
language):

highest: not (~), negate (-)
multiply (*), divide (/), remainder (%)
plus (+), minus (-)
shift-left (<<), shift-right (>>)
and (&)
xor (")
lowest: or (])

Binary operators with the same priority are evaluated from left to right. White space is permitted
before or after operators.

For eval, numbers may be decimal, octal (starting with “0") or hexadecimal (starting with “0x”).

For evallQ all numbers are taken as decimal, even if they start with a leading zero; hexadecimal
numbers are not permitted. This can be useful when processing numbers extracted from dates or
times, which often do have leading zeros.

A number may be followed by “K” or “M” to multiply it by 1024 or 1024*1024, respectively.
Negative numbers are supported. The result of the computation is a decimal representation of the
answer (without “K” or “M"). For example:

${eval:1+1} yields 2
${eval:1+2*3} yields 7
${eval:(1+2)*3} yields 9
${eval:2+42%5} yields 4
${eval:0xc&5} yields 4
${eval:0xc|5} yields 13
${eval:0xc"5} yields 9
${eval:0xc>>1} yields 6
${eval:0xc<<1} yields 24
${eval:~255&0x1234} yields 4608
${eval:-(~255&0x1234)} yields -4608

As a more realistic example, in an ACL you might have

deny message = Too many bad recipients
condition = \
${if and { \
{>{$rcpt_count{10}} \
{ \

< \
{$recipients_count} \
{${eval:$rcpt_count/2}} \
} \
HyesKno}}

The condition is true if there have been more than 10 RCPT commands and fewer than half of
them have resulted in a valid recipient.

${expand:<string>}
Theexpand operator causes a string to be expanded for a second time. For example,

${expand:${lookup{$domain}dbm{/some/file{$value}}}

first looks up a string in a file while expanding the operandeigpand and then re-expands what
it has found.

109 String expansions (11)

${from_utf8: <string>}
The world is slowly moving towards Unicode, although there are no standards for email yet.
However, other applications (including some databases) are starting to store data in Unicode, using
UTF-8 encoding. This operator converts from a UTF-8 string to an 1ISO-8859-1 string. UTF-8 code
values greater than 255 are converted to underscores. The input must be a valid UTF-8 string. If it
is not, the result is an undefined sequence of bytes.

Unicode code points with values less than 256 are compatible with ASCII and ISO-8859-1 (also

known as Latin-1). For example, character 169 is the copyright symbol in both cases, though the
way it is encoded is different. In UTF-8, more than one byte is needed for characters with code

values greater than 127, whereas 1SO-8859-1 is a single-byte encoding (but thereby limited to 256
characters). This makes translation from UTF-8 to 1ISO-8859-1 straightforward.

${hash_<n>_<m>:<string>}
The hash operator is a simpler interface to the hashing function that can be used when the two
parameters are fixed numbers (as opposed to strings that change when expanded). The effect is the

same as
${hash{<n>H<m>}<string>}}

See the description of the genetash item above for details. The abbreviatibncan be used
whenhashis used as an operator.

${hex2b64<hexstring-}
This operator converts a hex string into one that is base64 encoded. This can be useful for

processing the output of the MD5 and SHA-1 hashing functions.

${lc:<string>}
This forces the letters in the string into lower-case, for example:

${lc:$local_part}

${length_<numbep:<string>}
The length operator is a simpler interface to thength function that can be used when the
parameter is a fixed number (as opposed to a string that changes when expanded). The effect is the

same as
${length{<number>H<string>}}

See the description of the genelaigth item above for details. Note thkgngth is not the same as
strlen. The abbreviatiohcan be used whdangth is used as an operator.

${local_part:<string>}
The string is interpreted as an RFC 2822 address and the local part is extracted from it. If the

string does not parse successfully, the result is empty.

${mask:<IP address/<bit count}
If the form of the string to be operated on is not an IP address followed by a slash and an integer
(that is, a network address in CIDR notation), the expansion fails. Otherwise, this operator con-
verts the IP address to binary, masks off the least significant bits according to the bit count, and
converts the result back to text, with mask appended. For example,

${mask:10.111.131.206/28}

returns the string “10.111.131.192/28". Since this operation is expected to be mostly used for
looking up masked addresses in files, the result for an IPv6 address uses dots to separate com-
ponents instead of colons, because colon terminates a key string in Isearch files. So, for example,

${mask:3ffe:ffff:836f:0a00:000a:0800:200a:c031/99}
returns the string
3ffe.ffff.836f.0a00.000a.0800.2000.0000/99

Letters in IPv6 addresses are always output in lower case.

110 String expansions (11)

${md5:<string>}
The md5 operator computes the MD5 hash value of the string, and returns it as a 32-digit hexa-
decimal number, in which any letters are in lower case.

${nhash_<n> <m>:<string>}
The nhash operator is a simpler interface to the numeric hashing function that can be used when

the two parameters are fixed numbers (as opposed to strings that change when expanded). The
effect is the same as

${nhash{<n>H<m>H<string>}}
See the description of the genarhhshitem above for details.

${quote:<string>}
The quote operator puts its argument into double quotes if it is an empty string or contains
anything other than letters, digits, underscores, dots, and hyphens. Any occurrences of double
quotes and backslashes are escaped with a backslash. Newlines and carriage returns are converted
to\n and\r , respectively For example,

${quote:ab"*"cd}
becomes
"ab\"*\"cd"

The place where this is useful is when the argument is a substitution from a variable or a message
header.

${quote_local_part:<string>}
This operator is likequote, except that it quotes the string only if required to do so by the rules of
RFC 2822 for quoting local parts. For example, a plus sign would not cause quoting (but it would
for quote). If you are creating a new email address from the conten$azfal _part(or any other
unknown data), you should always use this operator.

${quote_<lookup-type:<string>}
This operator applies lookup-specific quoting rules to the string. Each query-style lookup type has
its own quoting rules which are described with the lookups in chapter 9. For example,

${quote_ldap:two * two}
returns
two%20%5C2A%20two

For single-key lookup types, no quoting is ever necessary and this operator yields an unchanged
string.

${rfc2047:<string>}
This operator encodes text according to the rules of RFC 2047. This is an encoding that is used in
header lines to encode non-ASCII characters. It is assumed that the input string is in the encoding
specified by thdneaders_charsebption, which defaults to ISO-8859-1. If the string contains only
characters in the range 33-126, and no instances of the characters

?=0)<>@,;:\". []_

it is not modified. Otherwise, the result is the RFC 2047 encoding of the string, using as many
“encoded words” as necessary to encode all the characters.

${rfc2047d:<string>}
This operator decodes strings that are encoded as per RFC 2047. Binary zero bytes are replaced
by question marks. Characters are converted into the character set defihedd®rs_charset
Overlong RFC 2047 “words” are not recognized untdexk _rfc2047_lengths set false.

Note: If you use$header xxx (or $h_xxx) to access a header line, RFC 2047 decoding is done
automatically. You do not need to use this operator as well.

111 String expansions (11)

${rxquote:<string>}
Therxquote operator inserts a backslash before any non-alphanumeric characters in its argument.
This is useful when substituting the values of variables or headers inside regular expressions.

${shalx<string>}
The shal operator computes the SHA-1 hash value of the string, and returns it as a 40-digit
hexadecimal number, in which any letters are in upper case.

${stat:<string>}
The string, after expansion, must be a file path. A call tostla¢() function is made for this path. If
stat() fails, an error occurs and the expansion fails. If it succeeds, the data from the stat replaces
the item, as a series olhame=<value> pairs, where the values are all numerical, except for the
value of “smode”. The names are: “mode” (giving the mode as a 4-digit octal number), “smode”
(giving the mode in symbolic format as a 10-character string, as fotsteemmand), “inode”,

“device”, “links”, “uid”, “gid”, “size”, “atime”, “mtime”, and “ctime”. You can extract individual
fields using thextract expansion item.

The use of thestat expansion in users’ filter files can be locked out by the system administrator.
Warning: The file size may be incorrect on 32-bit systems for files larger than 2GB.

${str2b64:<string>}
This operator converts a string into one that is base64 encoded.

${strlen:<string>}
The item is replace by the length of the expanded string, expressed as a decimal iNotd &0
not confusestrlen with length.

${substr_<start>_<length:<string>}
The substr operator is a simpler interface to tsebstr function that can be used when the two
parameters are fixed numbers (as opposed to strings that change when expanded). The effect is the
same as

${substr{<start>}<length>H<string>}}

See the description of the genesralbstr item above for details. The abbreviatisrcan be used
whensubstr is used as an operator.

${time_eval:<string>}
This item converts an Exim time interval suclddh5m into a number of seconds.

${time_interval: <string>}
The argument (after sub-expansion) must be a sequence of decimal digits that represents an inter-
val of time as a number of seconds. It is converted into a number of larger units and output in
Exim’s normal time format, for examplé&w3d4h2m6s.

${uc:<string>}
This forces the letters in the string into upper-case.

11.7 Expansion conditions
The following conditions are available for testing by $i¢ construct while expanding strings:

I<conditiorr
Preceding any condition with an exclamation mark negates the result of the condition.

<symbolic operator {<string1>}{ <string2>}
There are a number of symbolic operators for doing numeric comparisons. They are:

= equal

== equal

> greater

>= greater or equal
< less

<= less or equal

112 String expansions (11)

For example:
${if >{$message_size}{10M} ...

Note that the general negation operator provides for inequality testing. The two strings must take
the form of optionally signed decimal integers, optionally followed by one of the letters “K” or
“M” (in either upper or lower case), signifying multiplication by 1024 or 1024*1024, respectively.
As a special case, the numerical value of an empty string is taken as zero.

crypteq {<string1>K <string2>}
This condition is included in the Exim binary if it is built to support any authentication mechan-
isms (see chapter 33). Otherwise, it is necessary to define SUPPORT_CRYPTEQ in
Local/Makefileto getcrypteq included in the binary.

Thecrypteq condition has two arguments. The first is encrypted and compared against the second,
which is already encrypted. The second string may be in the LDAP form for storing encrypted
strings, which starts with the encryption type in curly brackets, followed by the data. If the second
string does not begin with “{” it is assumed to be encrypted veityipt() or crypt16()(see below),

since such strings cannot begin with “{". Typically this will be a field from a password file. An
example of an encrypted string in LDAP form is:

{md5}CY9rzUYh03PK3k6DJie09g==

If such a string appears directly in an expansion, the curly brackets have to be quoted, because they
are part of the expansion syntax. For example:

${if crypteq {test{{md5\}CY9rzUYh0O3PK3k6DJie09g==Kyes}{no}}
The following encryption types (whose names are matched case-independently) are supported:

« {md5} computes the MD5 digest of the first string, and expresses this as printable characters to
compare with the remainder of the second string. If the length of the comparison string is 24,
Exim assumes that it is base64 encoded (as in the above example). If the length is 32, Exim
assumes that it is a hexadecimal encoding of the MD5 digest. If the length not 24 or 32, the
comparison fails.

» {shal} computes the SHA-1 digest of the first string, and expresses this as printable characters
to compare with the remainder of the second string. If the length of the comparison string is 28,
Exim assumes that it is base64 encoded. If the length is 40, Exim assumes that it is a hexadeci-
mal encoding of the SHA-1 digest. If the length is not 28 or 40, the comparison fails.

» {crypt} calls thecrypt() function, which traditionally used to use only the first eight characters
of the password. However, in modern operating systems this is no longer true, and in many
cases the entire password is used, whatever its length.

» {cryptl6} calls thecryptl6()function, which was originally created to use up to 16 characters
of the password in some operating systems. Again, in modern operating systems, more charac-
ters may be used.

Exim has its own version afrypt16() which is just a double call torypt(). For operating systems

that have their own version, setting HAVE_CRYPT16 lincal/Makefilewhen building Exim
causes it to use the operating system version instead of its own. This option is set by default in the
OS-dependeritlakefilefor those operating systems that are known to suppget16()

Some years after Exim'sryptl6() was implemented, a user discovered that it was not using the
same algorithm as some operating systems’ versions. It turns out that as wrgtbed6()there is a
function calledbigcrypt()in some operating systems. This may or may not use the same algorithm,
and both of them may be different to Exim’s builteiypt16()

However, since there is now a move away from the traditiamgpt() functions towards using
SHAZ1 and other algorithms, tidying up this area of Exim is seen as very low priority.

If you do not put a encryption type (in curly brackets) irciypteq comparison, the default is
usually eithecrypt} or {cryptl6} , as determined by the setting of DEFAULT_CRYPT in
Local/Makefile The default default igcrypt} . Whatever the default, you can always use either
function by specifying it explicitly in curly brackets.

113 String expansions (11)

def:<variable name
The def condition must be followed by the name of one of the expansion variables defined in
section 11.9. The condition is true if the variable does not contain the empty string. For example:

${if def:sender_ident {from $sender_ident}}

Note that the variable name is given without a leadihcharacter. If the variable does not exist,
the expansion fails.

def:header <header name: or def.h_<header name:
This condition is true if a message is being processed and the named header exists in the message.
For example,

${if def:header_reply-to:{$h_reply-to:}{$h_from:}}

Note: No $ appears beforbeader_or h_in the condition, and the header name must be termin-
ated by a colon if white space does not follow.

eq {<string1>} <string2>}

eqi {<string1>}{ <string2>}
The two substrings are first expanded. The condition is true if the two resulting strings are identi-
cal. Foreq the comparison includes the case of letters, whereasdbthe comparison is case-
independent.

exists kfile name}
The substring is first expanded and then interpreted as an absolute path. The condition is true if the
named file (or directory) exists. The existence test is done by callingt#itg) function. The use of
theexiststest in users’ filter files may be locked out by the system administrator.

first_delivery
This condition, which has no data, is true during a message’s first delivery attempt. It is false
during any subsequent delivery attempts.

foral{ <a list>}{ <a conditiorr}

forany{<a list>}{ <a conditiorr}
These conditions iterate over a list. The first argument is expanded to form the list. By default, the
list separator is a colon, but it can be changed by the normal method. The second argument is
interpreted as a condition that is to be applied to each item in the list in turn. During the interpret-
ation of the condition, the current list item is placed in a variable ciliech

» Forforany, interpretation stops if the condition is true for any item, and the result of the whole
condition is true. If the condition is false for all items in the list, the overall condition is false.

» Forforall, interpretation stops if the condition is false for any item, and the result of the whole
condition is false. If the condition is true for all items in the list, the overall condition is true.

Note that negation oforany means that the condition must be false for all items for the overall
condition to succeed, and negationfafall means that the condition must be false for at least one
item. In this example, the list separator is changed to a comma:

${if forany{<, $recipients}{match{$item}{*user3@}}{yesino}}

The value of$itemis saved and restored whilerany or forall is being processed, to enable these
expansion items to be nested.

ge {string1>}H <string2>}

gei {<string1>} <string2>}
The two substrings are first expanded. The condition is true if the first string is lexically greater
than or equal to the second string. Fg@the comparison includes the case of letters, whereas for
geithe comparison is case-independent.

gt {<string1>}{ <string2>}

gti {<string1>}{ <string2>}
The two substrings are first expanded. The condition is true if the first string is lexically greater
than the second string. Fgt the comparison includes the case of letters, whereagtfothe
comparison is case-independent.

114 String expansions (11)

isip {<string>}

isip4 {<string>}

isip6 {<string>}
The substring is first expanded, and then tested to see if it has the form of an IP address. Both IPv4
and IPv6 addresses are valid fsip, whereassip4 andisip6 test specifically for IPv4 or IPv6
addresses.

For an IPv4 address, the test is for four dot-separated components, each of which consists of from
one to three digits. For an IPv6 address, up to eight colon-separated components are permitted,
each containing from one to four hexadecimal digits. There may be fewer than eight components if
an empty component (adjacent colons) is present. Only one empty component is permitted.

Note: The checks are just on the form of the address; actual numerical values are not considered.

Thus, for example, 999.999.999.999 passes the IPv4 check. The main use of these tests is to
distinguish between IP addresses and host names, or between IPv4 and IPv6 addresses. For
example, you could use

${if isip4{$sender_host_address}...
to test which IP version an incoming SMTP connection is using.

Idapauth {<ldap query}
This condition supports user authentication using LDAP. See section 9.13 for details of how to use
LDAP in lookups and the syntax of queries. For this use, the query must contain a user name and
password. The query itself is not used, and can be empty. The condition is true if the password is
not empty, and the user name and password are accepted by the LDAP server. An empty password
is rejected without calling LDAP because LDAP binds with an empty password are considered
anonymous regardless of the username, and will succeed in most configurations. See chapter 33
for details of SMTP authentication, and chapter 34 for an example of how this can be used.

le {<string1>}{ <string2>}

lei {<string1>}{ <string2>}
The two substrings are first expanded. The condition is true if the first string is lexically less than
or equal to the second string. Herthe comparison includes the case of letters, wheredsiftre
comparison is case-independent.

It { <stringI>} <string2>}

Iti { <stringI>}H <string2>}
The two substrings are first expanded. The condition is true if the first string is lexically less than
the second string. Fdir the comparison includes the case of letters, whereds fttre comparison
is case-independent.

match {<string1>}{ <string2>}
The two substrings are first expanded. The second is then treated as a regular expression and
applied to the first. Because of the pre-expansion, if the regular expression contains dollar, or
backslash characters, they must be escaped. Care must also be taken if the regular expression
contains braces (curly brackets). A closing brace must be escaped so that it is not taken as a
premature termination of string2>. The easiest approach is to use the feature to disable
expansion of the regular expression. For example,

${if match {$local_part}{\N\d{3}\N} ...
If the whole expansion string is in double quotes, further escaping of backslashes is also required.

The condition is true if the regular expression match succeeds. The regular expression is not
required to begin with a circumflex metacharacter, but if there is no circumflex, the expression is
not anchored, and it may match anywhere in the subject, not just at the start. If you want the
pattern to match at the end of the subject, you must includ& ttmetacharacter at an appropriate
point.

At the start of arif expansion the values of the numeric variable substitutginstc. are remem-
bered. Obeying anatch condition that succeeds causes them to be reset to the substrings of that
condition and they will have these values during the expansion of the success string. At the end of

115 String expansions (11)

theif expansion, the previous values are restored. After testing a combination of conditions using
or, the subsequent values of the numeric variables are those of the condition that succeeded.

match_address gstring1>} <string2>}
Seematch_local_part

match_domain {string1>} <string2>}
Seematch_local_part

match_ip {<string1>}{ <string2>}
This condition matches an IP address to a list of IP address patterns. It must be followed by two
argument strings. The first (after expansion) must be an IP address or an empty string. The second
(after expansion) is a restricted host list that can match only an IP address, not a host name. For
example:

${if match_ip{$sender_host_address}{1.2.3.4:5.6.7.8{......}}
The specific types of host list item that are permitted in the list are:
e An IP address, optionally with a CIDR mask.
* A single asterisk, which matches any IP address.

« An empty item, which matches only if the IP address is empty. This could be useful for testing
for a locally submitted message or one from specific hosts in a single test such as

${if match_ip{$sender_host_address}{:4.3.2.1:.. {.. {..}}
where the first item in the list is the empty string.
* The item @[] matches any of the local host’s interface addresses.

» Single-key lookups are assumed to be like “net-" style lookups in host lists, ewettif is not
specified. There is never any attempt to turn the IP address into a host name. The most common
type of linear search famatch_ip is likely to beiplsearch, in which the file can contain CIDR
masks. For example:

${if match_ip{$sender_host_address}iplsearch;/some/file}...

It is of course possible to use other kinds of lookup, and in such a case, you do need to specify
thenet- prefix if you want to specify a specific address mask, for example:

${if match_ip{$sender_host_address}{net24-dbm;/someffile}...

However, unless you are combiningratch_ip condition with others, it is just as easy to use
the fact that a lookup is itself a condition, and write:

${lookup{${mask:$sender_host_address/24}}dbm{/alfile}...
Consult section 10.11 for further details of these patterns.

match_local_part {<string1>}{ <string2>}
This condition, together withmatch_address and match_domain make it possible to test
domain, address, and local part lists within expansions. Each condition requires two arguments: an
item and a list to match. A trivial example is:

${if match_domain{a.b.c}{x.y.z:a.b.c:p.q.ri{yesino}}

In each case, the second argument may contain any of the allowable items for a list of the
appropriate type. Also, because the second argument (after expansion) is a standard form of list, it
is possible to refer to a named list. Thus, you can use conditions like this:

${if match_domain{$domain}{+local_domains}...

For address lists, the matching starts off caselessly, but¢hseful item can be used, as in all
address lists, to cause subsequent items to have their local parts matched casefully. Domains are
always matched caselessly.

116 String expansions (11)

Note: Host lists arenot supported in this way. This is because hosts have two identities: a name
and an IP address, and it is not clear how to specify cleanly how such a test would work. However,
IP addresses can be matched usiragch_ip.

pam {<string1>:<string2>:...}
Pluggable Authentication Module@ttp://www.kernel.org/pub/linux/libs/pam/) are a facility
that is available in the latest releases of Solaris and in some GNU/Linux distributions. The Exim
support, which is intended for use in conjunction with the SMTP AUTH command, is available
only if Exim is compiled with

SUPPORT_PAM=yes

in Local/Makefile You probably need to addpam to EXTRALIBS, and in some releases of
GNU/Linux -Idl is also needed.

The argument string is first expanded, and the result must be a colon-separated list of strings.
Leading and trailing white space is ignored. The PAM module is initialized with the service name
“exim” and the user name taken from the first item in the colon-separated data sisingd%>).

The remaining items in the data string are passed over in response to requests from the
authentication function. In the simple case there will only be one request, for a password, so the
data consists of just two strings.

There can be problems if any of the strings are permitted to contain colon characters. In the usual
way, these have to be doubled to avoid being taken as separators. If the data is being inserted from
a variable, thesg expansion item can be used to double any existing colons. For example, the
configuration of a LOGIN authenticator might contain this setting:

server_condition = ${if pam{$authl:${sg{Sauth2}{:}{::}}}}
For a PLAIN authenticator you could use:
server_condition = ${if pam{$auth2:${sg{$auth3}{:}::}}}}

In some operating systems, PAM authentication can be done only from a process running as root.
Since Exim is running as the Exim user when receiving messages, this means that PAM cannot be
used directly in those systems. A patched version ofpe_unixmodule that comes with the

Linux PAM package is available fromittp://www.e-admin.de/pam_exim/ The patched module
allows one special uid/gid combination, in addition to root, to authenticate. If you build the
patched module to allow the Exim user and group, PAM can then be used from an Exim
authenticator.

pwcheck {string1>:<string2>}
This condition supports user authentication using the Cpwsheckdaemon. This is one way of
making it possible for passwords to be checked by a process that is not running aotenT he
use ofpwcheckis now deprecated. Its replacemergdslauthdsee below).

The pwcheck support is not included in Exim by default. You need to specify the location of the
pwcheck daemon’s socket limcal/Makefilebefore building Exim. For example:

CYRUS_PWCHECK_SOCKET=/var/pwcheck/pwcheck

You do not need to install the full Cyrus software suite in order to use the pwcheck daemon. You
can compile and install just the daemon alone from the Cyrus SASL library. Ensuexitms the
only user that has access to thar/pwchecldirectory.

The pwcheck condition takes one argument, which must be the user name and password, separ-
ated by a colon. For example, in a LOGIN authenticator configuration, you might have this:

server_condition = ${if pwcheck{$authl:$auth2}}

gueue_running
This condition, which has no data, is true during delivery attempts that are initiated by queue
runner processes, and false otherwise.

117 String expansions (11)

radius {<authentication string}
Radius authentication (RFC 2865) is supported in a similar way to PAM. You must set RADIUS _
CONFIG_FILE inLocal/Makefileto specify the location of the Radius client configuration file in
order to build Exim with Radius support.

With just that one setting, Exim expects to be linked with thadiusclient library, using the
original API. If you are using release 0.4.0 or later of this library, you need to set

RADIUS_LIB_TYPE=RADIUSCLIENTNEW

in Local/Makefilewhen building Exim. You can also link Exim with thigradius library that
comes with FreeBSD. To do this, set

RADIUS_LIB_TYPE=RADLIB

in Local/Makefile in addition to setting RADIUS_CONFIGURE_FILE. You may also have to
supply a suitable setting in EXTRALIBS so that the Radius library can be found when Exim is
linked.

The string specified by RADIUS_CONFIG_FILE is expanded and passed to the Radius client
library, which calls the Radius server. The condition is true if the authentication is successful. For
example:

server_condition = ${if radius{<arguments>}}

saslauthd {{<usepr}H <password}{ <servicee{{ <realn>}}
This condition supports user authentication using the Cgastauthddaemon. This replaces the
older pwcheckdaemon, which is now deprecated. Using this daemon is one way of making it
possible for passwords to be checked by a process that is not running as root.

The saslauthd support is not included in Exim by default. You need to specify the location of the
saslauthd daemon’s socketliacal/Makefilebefore building Exim. For example:

CYRUS_SASLAUTHD_SOCKET=/var/state/saslauthd/mux

You do not need to install the full Cyrus software suite in order to use the saslauthd daemon. You
can compile and install just the daemon alone from the Cyrus SASL library.

Up to four arguments can be supplied to gaslauthdcondition, but only two are mandatory. For
example:

server_condition = ${if saslauthd{{$auth1}{$auth2}}}

The service and the realm are optional (which is why the arguments are enclosed in their own set
of braces). For details of the meaning of the service and realm, and how to run the daemon, consult
the Cyrus documentation.

11.8 Combining expansion conditions

Several conditions can be tested at once by combining them usingnitheénd or combination
conditions. Note thaaind and or are complete conditions on their own, and precede their lists of
sub-conditions. Each sub-condition must be enclosed in braces within the overall braces that contain
the list. No repetition of is used.

or {{<condB>H <cond2}...}
The sub-conditions are evaluated from left to right. The condition is true if any one of the sub-
conditions is true. For example,

${if or {{eqg{$local_parti{spqr}}{eq{$domain}{testing.com}}}...

When a true sub-condition is found, the following ones are parsed but not evaluated. If there are
several “match” sub-conditions the values of the numeric variables afterwards are taken from the
first one that succeeds.

and {{<condP>}{ <cond2}...}
The sub-conditions are evaluated from left to right. The condition is true if all of the sub-
conditions are true. If there are several “match” sub-conditions, the values of the numeric variables

118 String expansions (11)

afterwards are taken from the last one. When a false sub-condition is found, the following ones are
parsed but not evaluated.

11.9 Expansion variables

This section contains an alphabetical list of all the expansion variables. Some of them are available
only when Exim is compiled with specific options such as support for TLS or the content scanning
extension.

$0, $1, etc
When amatch expansion condition succeeds, these variables contain the captured substrings
identified by the regular expression during subsequent processing of the success string of the
containingif expansion item. However, they do not retain their values afterwards; in fact, their
previous values are restored at the end of processiriyisam. The numerical variables may also
be set externally by some other matching process which precedes the expansion of the string. For
example, the commands available in Exim filter files includefasommand with its own regular
expression matching condition.

$acl_c...
Values can be placed in these variables bysdnodifier in an ACL. They can be given any name
that starts withbacl_cand is at least six characters long, but the sixth character must be either a
digit or an underscore. For examplgacl_c5 $acl_c_mycountThe values of théacl_c...vari-
ables persist throughout the lifetime of an SMTP connection. They can be used to pass information
between ACLs and between different invocations of the same ACL. When a message is received,
the values of these variables are saved with the message, and can be accessed by filters, routers,
and transports during subsequent delivery.

$acl_m...
These variables are like tt&acl_c...variables, except that their values are reset after a message
has been received. Thus, if several messages are received in one SMTP coneciiam...
values are not passed on from one message to the ne$achsc...values are. Théacl_m...
variables are also reset by MAIL, RSET, EHLO, HELO, and after starting a TLS session. When a
message is received, the values of these variables are saved with the message, and can be accessed
by filters, routers, and transports during subsequent delivery.

$acl_verify_message
After an address verification has failed, this variable contains the failure message. It retains its
value for use in subsequent modifiers. The message can be preserved by coding like this:

warn !verify = sender
set acl_mO = $acl_verify_message

You can usebacl_verify_messagguring the expansion of thaessager log_messagenodifiers,
to include information about the verification failure.

$address_data
This variable is set by means of thddress_dataoption in routers. The value then remains with
the address while it is processed by subsequent routers and eventually a transport. If the transport
is handling multiple addresses, the value from the first address is used. See chapter 15 for more
details.Note: The contents dbaddress_datare visible in user filter files.

If $address_datas set when the routers are called from an ACL to verify a recipient address, the
final value is still in the variable for subsequent conditions and modifiers of the ACL statement. If
routing the address caused it to be redirected to just one address, the child address is also routed as
part of the verification, and in this case the final valu&afidress_dat& from the child’s routing.

If $address_datas set when the routers are called from an ACL to verify a sender address, the
final value is also preserved, but this time$sender_address_daté distinguish it from data
from a recipient address.

In both cases (recipient and sender verification), the value does not persist after the end of the
current ACL statement. If you want to preserve these values for longer, you can save them in ACL
variables.

119 String expansions (11)

$address_file
When, as a result of aliasing, forwarding, or filtering, a message is directed to a specific file, this
variable holds the name of the file when the transport is running. At other times, the variable is
empty. For example, using the default configuration, if t has aforwardfile containing

/home/r2d2/savemail

then when theaddress_file transport is running,$address_file contains the text string
/home/r2d2/savemail . For Sieve filters, the value may be “inbox” or a relative folder name.

It is then up to the transport configuration to generate an appropriate absolute path to the relevant
file.

$address_pipe
When, as a result of aliasing or forwarding, a message is directed to a pipe, this variable holds the
pipe command when the transport is running.

$authl-$auth3
These variables are used in SMTP authenticators (see chapters 34—38). Elsewhere, they are empty.

$authenticated_id
When a server successfully authenticates a client it may be configured to preserve some of the
authentication information in the variabkauthenticated_idsee chapter 33). For example, a
user/password authenticator configuration might preserve the user name for use in the routers.
Note that this is not the same information that is save@sander_host_authenticated/hen a
message is submitted locally (that is, not over a TCP connection) the valisttfenticated_ids
normally the login name of the calling process. However, a trusted user can override this by means
of the-oMai command line option.

$authenticated_sender
When acting as a server, Exim takes note of the AUTH= parameter on an incoming SMTP MAIL
command if it believes the sender is sufficiently trusted, as described in section 33.2. Unless the
data is the string “<>", it is set as the authenticated sender of the message, and the value is
available during delivery in th&authenticated_sendeariable. If the sender is not trusted, Exim
accepts the syntax of AUTH=, but ignores the data.

When a message is submitted locally (that is, not over a TCP connection), the value of
$authenticated_sendés an address constructed from the login name of the calling process and
$qualify_domainexcept that a trusted user can override this by means ebMas command line
option.

$authentication_failed
This variable is set to “1” in an Exim server if a client issues an AUTH command that does not
succeed. Otherwise it is set to “0”. This makes it possible to distinguish between “did not try to
authenticate” $sender_host_authenticatézlempty andbauthentication_faileds set to “0”) and
“tried to authenticate but failed'$6ender_host_authenticatedempty andbauthentication_failed
is set to “1"). Failure includes any negative response to an AUTH command, including (for
example) an attempt to use an undefined mechanism.

$body_linecount
When a message is being received or delivered, this variable contains the number of lines in the
message’s body. See altmessage_linecount

$body_zerocount
When a message is being received or delivered, this variable contains the number of binary zero
bytes in the message’s body.

$bounce_recipient
This is set to the recipient address of a bounce message while Exim is creating it. It is useful if a
customized bounce message text file is in use (see chapter 46).

$bounce_return_size_limit
This contains the value set in th®unce_return_size_limitoption, rounded up to a multiple of
1000. It is useful when a customized error message text file is in use (see chapter 46).

120 String expansions (11)

$caller_gid
The real group id under which the process that called Exim was running. This is not the same as
the group id of the originator of a message (§eeiginator_gid. If Exim re-execs itself, this
variable in the new incarnation normally contains the Exim gid.

$caller_uid
The real user id under which the process that called Exim was running. This is not the same as the
user id of the originator of a message ($eeiginator_uid. If Exim re-execs itself, this variable in
the new incarnation normally contains the Exim uid.

$compile_date
The date on which the Exim binary was compiled.

$compile_number
The building process for Exim keeps a count of the number of times it has been compiled. This
serves to distinguish different compilations of the same version of the program.

$demime_errorlevel
This variable is available when Exim is compiled with the content-scanning extension and the
obsoletademime condition. For details, see section 41.6.

$demime_reason
This variable is available when Exim is compiled with the content-scanning extension and the
obsoletademime condition. For details, see section 41.6.

$dnslist_domain

$dnslist_matched

$dnslist_text

$dnslist_value
When a DNS (black) list lookup succeeds, these variables are set to contain the following data
from the lookup: the list's domain name, the key that was looked up, the contents of any associated
TXT record, and the value from the main A record. See section 40.29 for more details.

$domain
When an address is being routed, or delivered on its own, this variable contains the domain.
Uppercase letters in the domain are converted into lower ca$ddorain

Global address rewriting happens when a message is received, so the v&denainduring

routing and delivery is the value after rewritifgdomainis set during user filtering, but not during
system filtering, because a message may have many recipients and the system filter is called just
once.

When more than one address is being delivered at once (for example, several RCPT commands in
one SMTP delivery)$domainis set only if they all have the same domain. Transports can be
restricted to handling only one domain at a time if the valu&addmainis required at transport

time — this is the default for local transports. For further details of the environment in which local
transports are run, see chapter 23.

At the end of a delivery, if all deferred addresses have the same domain, it issietnmainduring
the expansion afelay_warning_condition

The$domainvariable is also used in some other circumstances:

* When an ACL is running for a RCPT commarf&tjomaincontains the domain of the recipient
address. The domain of tleenderaddress is irbfsender_address_domad both MAIL time
and at RCPT timebdomainis not normally set during the running of the MAIL ACL. However,
if the sender address is verified with a callout during the MAIL ACL, the sender domain is
placed infdomainduring the expansions bbsts interface, andport in thesmtptransport.

* When a rewrite item is being processed (see chapterd@ibmaincontains the domain portion
of the address that is being rewritten; it can be used in the expansion of the replacement address,
for example, to rewrite domains by file lookup.

» With one important exception, whenever a domain list is being scaifeanaincontains the
subject domainException: When a domain list in @ender_domainscondition in an ACL is

121 String expansions (11)

being processed, the subject domain is$sender_address_domaand not in$domain It
works this way so that, in a RCPT ACL, the sender domain list can be dependent on the
recipient domain (which is what is $domainat this time).

« When thesmtp_etrn_command option is being expandedidomaincontains the complete
argument of the ETRN command (see section 45.8).

$domain_data
When thedomains option on a router matches a domain by means of a lookup, the data read by
the lookup is available during the running of the routefsdemain_dataln addition, if the driver
routes the address to a transport, the value is available in that transport. If the transport is handling
multiple addresses, the value from the first address is used.

$domain_datas also set when thdomainscondition in an ACL matches a domain by means of a
lookup. The data read by the lookup is available during the rest of the ACL statement. In all other
situations, this variable expands to nothing.

$exim_gid
This variable contains the numerical value of the Exim group id.

$exim_path
This variable contains the path to the Exim binary.

$exim_uid
This variable contains the numerical value of the Exim user id.

$found_extension
This variable is available when Exim is compiled with the content-scanning extension and the
obsoletademime condition. For details, see section 41.6.

$header<name
This is not strictly an expansion variable. It is expansion syntax for inserting the message header
line with the given name. Note that the name must be terminated by colon or white space, because
it may contain a wide variety of characters. Note also that bracesotis used.

$home
When thecheck_local_useioption is set for a router, the user's home directory is placekhome
when the check succeeds. In particular, this means it is set during the running of users’ filter files.
A router may also explicitly set a home directory for use by a transport; this can be overridden by
a setting on the transport itself.

When running a filter test via thdf option, $homels set to the value of the environment variable
HOME.

$host
If a router assigns an address to a transport (any transport), and passes a list of hosts with the
address, the value &hostwhen the transport starts to run is the name of the first host on the list.
Note that this applies both to local and remote transports.

For thesmtptransport, if there is more than one host, the valu8haistchanges as the transport
works its way through the list. In particular, when thmtptransport is expanding its options for
encryption using TLS, or for specifying a transport filter (see chapter&stcontains the name
of the host to which it is connected.

When used in the client part of an authenticator configuration (see chapt&h@3}contains the
name of the server to which the client is connected.

$host_address
This variable is set to the remote host’s IP address wherghastis set for a remote connection.
It is also set to the IP address that is being checked wheigtioee target_hostsoption is being
processed.

$host_data
If a hostscondition in an ACL is satisfied by means of a lookup, the result of the lookup is made
available in theéshost_datavariable. This allows you, for example, to do things like this:

122 String expansions (11)

deny hosts = net-Isearch;/some/file
message = $host_data

$host_lookup_deferred
This variable normally contains “0”, as dogkost_lookup_failedWhen a message comes from a
remote host and there is an attempt to look up the host's name from its IP address, and the attempt
is not successful, one of these variables is set to “1”.

« If the lookup receives a definite negative response (for example, a DNS lookup succeeded, but
no records were foundphost_lookup_faileds set to “1”.

« If there is any kind of problem during the lookup, such that Exim cannot tell whether or not the
host name is defined (for example, a timeout for a DNS look$bdst lookup_deferreid set
to “1”.
Looking up a host’s name from its IP address consists of more than just a single reverse lookup.
Exim checks that a forward lookup of at least one of the names it receives from a reverse lookup
yields the original IP address. If this is not the case, Exim does not accept the looked up name(s),
and $host_lookup_faileds set to “1”. Thus, being able to find a name from an IP address (for
example, the existence of a PTR record in the DNS) is not sufficient on its own for the success of a
host name lookup. If the reverse lookup succeeds, but there is a lookup problem such as a timeout
when checking the result, the name is not accepted $aondt_lookup_deferred set to “1”. See
also$sender_host_name

$host_lookup_failed
See$host_lookup_deferred

$inode
The only time this variable is set is while expanding thieectory_file option in theappendfile
transport. The variable contains the inode number of the temporary file which is about to be
renamed. It can be used to construct a unique name for the file.

Sinterface_address
This is an obsolete name fdreceived_ip_address

Sinterface_port
This is an obsolete name fdreceived_port

$item
This variable is used during the expansiorfafll andforany conditions (see section 11.7), and
filter, man, andreduceitems (see section 11.7). In other circumstances, it is empty.

$ldap_dn
This variable, which is available only when Exim is compiled with LDAP support, contains the
DN from the last entry in the most recently successful LDAP lookup.

$load_average
This variable contains the system load average, multiplied by 1000 so that it is an integer. For
example, if the load average is 0.21, the value of the variable is 210. The value is recomputed
every time the variable is referenced.

$local_part
When an address is being routed, or delivered on its own, this variable contains the local part.
When a number of addresses are being delivered together (for example, multiple RCPT commands
in an SMTP session$jocal_partis not set.

Global address rewriting happens when a message is received, so the v@loeabfpartduring

routing and delivery is the value after rewritinglocal_partis set during user filtering, but not
during system filtering, because a message may have many recipients and the system filter is called
just once.

If a local part prefix or suffix has been recognized, it is not included in the vald&oohl_part
during routing and subsequent delivery. The values of any prefix or suffix &ledal_part_prefix
and$local_part_suffixrespectively.

123 String expansions (11)

When a message is being delivered to a file, pipe, or autoreply transport as a result of aliasing or
forwarding, $local_partis set to the local part of the parent address, not to the file name or
command (se®address_filand$address_pipe

When an ACL is running for a RCPT commar®lpcal_partcontains the local part of the recipi-
ent address.

When a rewrite item is being processed (see chaptei$Bigal_partcontains the local part of the
address that is being rewritten; it can be used in the expansion of the replacement address, for
example.

In all cases, all quoting is removed from the local part. For example, for both the addresses

"abc:xyz"@test.example
abc\:xyz@test.example

the value offlocal_partis
abc:xyz

If you use $local_partto create another address, you should always wrap it inside a quoting
operator. For example, inradirectrouter you could have:

data = ${quote_local_part:$local_part}@new.domain.example

Note: The value of$local_partis normally lower cased. If you want to process local parts in a
case-dependent manner in a router, you can seasieful local_partoption (see chapter 15).

$local_part_data
When thelocal_parts option on a router matches a local part by means of a lookup, the data read
by the lookup is available during the running of the routeBleal_part_dataln addition, if the
driver routes the address to a transport, the value is available in that transport. If the transport is
handling multiple addresses, the value from the first address is used.

$local_part_datais also set when théocal_parts condition in an ACL matches a local part by
means of a lookup. The data read by the lookup is available during the rest of the ACL statement.
In all other situations, this variable expands to nothing.

$local_part_prefix
When an address is being routed or delivered, and a specific prefix for the local part was
recognized, it is available in this variable, having been removed$iaral_part

$local_part_suffix
When an address is being routed or delivered, and a specific suffix for the local part was
recognized, it is available in this variable, having been removed$local_part

$local_scan_data
This variable contains the text returned by theal_scan()function when a message is received.
See chapter 42 for more details.

$local_user_gid
SeeS$local_user_uid

$local_user_uid
This variable andblocal_user_gidare set to the uid and gid after tlwbeck_local_userrouter
precondition succeeds. This means that their values are available for the remaining preconditions
(senders require_files, and condition), for the address_dataexpansion, and for any router-
specific expansions. At all other times, the values in these variablefuiaret)(-1) and
(gid_t)(-1) , respectively.

$localhost_number
This contains the expanded value of tbealhost_numberoption. The expansion happens after
the main options have been read.

124 String expansions (11)

$log_inodes
The number of free inodes in the disk partition where Exim’s log files are being written. The value
is recalculated whenever the variable is referenced. If the relevant file system does not have the
concept of inodes, the value of is -1. See alsahieek log_inodeoption.

$log_space
The amount of free space (as a number of kilobytes) in the disk partition where Exim’s log files
are being written. The value is recalculated whenever the variable is referenced. If the operating
system does not have the ability to find the amount of free space (only true for experimental
systems), the space value is -1. See alsohibek_log_spaception.

$mailstore_basename
This variable is set only when doing deliveries in “mailstore” format in aippendfiletransport.
During the expansion of thmailstore prefix, mailstore_suffix, message prefixandmessage
suffix options, it contains the basename of the files that are being written, that is, the name without
the “.tmp”, “.env”, or “.msg” suffix. At all other times, this variable is empty.

$malware_name
This variable is available when Exim is compiled with the content-scanning extension. It is set to
the name of the virus that was found when the Atlware condition is true (see section 41.1).

$max_received_linelength
This variable contains the number of bytes in the longest line that was received as part of the
message, not counting the line termination character(s).

$message_age
This variable is set at the start of a delivery attempt to contain the number of seconds since the
message was received. It does not change during a single delivery attempt.

$message_body
This variable contains the initial portion of a message’s body while it is being delivered, and is
intended mainly for use in filter files. The maximum number of characters of the body that are put
into the variable is set by teessage body_visibleonfiguration option; the default is 500.

By default, newlines are converted into space$imessage _bodyo make it easier to search for
phrases that might be split over a line break. However, this can be disabled by settssgge
body_ newlinesto be true. Binary zeros are always converted into spaces.

$message_body end
This variable contains the final portion of a message’s body while it is being delivered. The format
and maximum size are as fimessage_body

$message_body_size
When a message is being delivered, this variable contains the size of the body in bytes. The count
starts from the character after the blank line that separates the body from the header. Newlines are
included in the count. See al$message_siz8body _linecountand$body_zerocount

$message_exim_id
When a message is being received or delivered, this variable contains the unique message id that is
generated and used by Exim to identify the message. An id is not created for a message until after
its header has been successfully receimte: This isnotthe contents of thilessage-IDheader
line; it is the local id that Exim assigns to the message, for exafp¥aIK-0001yO-VA .

$message_headers
This variable contains a concatenation of all the header lines when a message is being processed,
except for lines added by routers or transports. The header lines are separated by newline charac-
ters. Their contents are decoded in the same way as a header line that is indshéadiey

$message_headers_raw
This variable is likebmessage headeescept that no processing of the contents of header lines is
done.

$message_id
This is an old name f@message_exim_ id/hich is now deprecated.

125 String expansions (11)

$message_linecount
This variable contains the total number of lines in the header and body of the message. Compare
$body_linecountwhich is the count for the body only. During the DATA and content-scanning
ACLs, $message_linecounbntains the number of lines received. Before delivery happens (that is,
before filters, routers, and transports run) the count is increased to includRetieévedheader
line that Exim standardly adds, and also any other header lines that are added by ACLs. The blank
line that separates the message header from the body is not counted. Here is an example of the use
of this variable in a DATA ACL:

deny message = Too many lines in message header
condition =\
${if <{250}{${eval:$message_linecount - $body_linecount}}}

In the MAIL and RCPT ACLs, the value is zero because at that stage the message has not yet been
received.

$message_size
When a message is being processed, this variable contains its size in bytes. In most cases, the size
includes those headers that were received with the message, but not those (Bneblage-toy
that are added to individual deliveries as they are written. However, there is one special case:
during the expansion of thmaildir_tag option in theappendfiletransport while doing a delivery
in maildir format, the value o$message_sias the precise size of the file that has been written.
See als®message_body_sj&body_linecountand$body_zerocount

While running an ACL at the time of an SMTP RCPT commatishessage_sizeontains the size
supplied on the MAIL command, or -1 if no size was given. The value may not, of course, be
truthful.

$mime_xxx
A number of variables whose names start vithimeare available when Exim is compiled with
the content-scanning extension. For details, see section 41.4.

$n0-%$n9
These variables are counters that can be incremented by meansadiithemmand in filter files.

$original_domain
When a top-level address is being processed for delivery, this contains the same &doenasm
However, if a “child” address (for example, generated by an alias, forward, or filter file) is being
processed, this variable contains the domain of the original address (lower cased). This differs
from $parent_domaironly when there is more than one level of aliasing or forwarding. When
more than one address is being delivered in a single transpdboriginal_domainis not set.

If a new address is created by means afediver command in a system filter, it is set up with an
artificial “parent” address. This has the local gygtem-filteiand the default qualify domain.

$original_local_part
When a top-level address is being processed for delivery, this contains the same \#lluzahs
part, unless a prefix or suffix was removed from the local part, bec&asiginal_local_part
always contains the full local part. When a “child” address (for example, generated by an alias,
forward, or filter file) is being processed, this variable contains the full local part of the original
address.

If the router that did the redirection processed the local part case-insensitively, the value in
$original_local_partis in lower case. This variable differs frofparent_local_partonly when

there is more than one level of aliasing or forwarding. When more than one address is being
delivered in a single transport rigriginal_local_partis not set.

If a new address is created by means afediver command in a system filter, it is set up with an
artificial “parent” address. This has the local pystem-filteiand the default qualify domain.

$originator_gid
This variable contains the value 8taller_gidthat was set when the message was received. For

messages received via the command line, this is the gid of the sending user. For messages received
by SMTP over TCP/IP, this is normally the gid of the Exim user.

126 String expansions (11)

$originator_uid
The value of$caller_uidthat was set when the message was received. For messages received via
the command line, this is the uid of the sending user. For messages received by SMTP over
TCP/IP, this is normally the uid of the Exim user.

$parent_domain
This variable is similar tdboriginal_domain(see above), except that it refers to the immediately
preceding parent address.

$parent_local_part
This variable is similar t&original_local_part(see above), except that it refers to the immediately
preceding parent address.

$pid
This variable contains the current process id.

$pipe_addresses
This is not an expansion variable, but is mentioned here because the$ijey addresses
is handled specially in the command specification for fiyge transport (chapter 29) and in
transport filters (described und&ansport_filter in chapter 24). It cannot be used in general
expansion strings, and provokes an “unknown variable” error if encountered.

$primary_hostname
This variable contains the value setjaymary_hostname in the configuration file, or read by the
uname()function. If uname()returns a single-component name, Exim cagdthostbyname(jor
getipnodebynamegyhere available) in an attempt to acquire a fully qualified host name. See also
$smtp_active_hostname

$prvscheck_address
This variable is used in conjunction with thevscheck expansion item, which is described in
sections 11.5 and 40.47.

$prvscheck_keynum
This variable is used in conjunction with thmvscheck expansion item, which is described in
sections 11.5 and 40.47.

$prvscheck_result
This variable is used in conjunction with thevscheck expansion item, which is described in
sections 11.5 and 40.47.

$qualify_domain
The value set for thgualify_domain option in the configuration file.

$qualify_recipient
The value set for thqualify_recipient option in the configuration file, or if not set, the value of
$qualify_domain

$rcpt_count
When a message is being received by SMTP, this variable contains the number of RCPT com-
mands received for the current message. If this variable is used in a RCPT ACL, its value includes
the current command.

$rcpt_defer_count
When a message is being received by SMTP, this variable contains the number of RCPT com-
mands in the current message that have previously been rejected with a tempayaegpbdnse.

$rept_fail_count
When a message is being received by SMTP, this variable contains the number of RCPT com-
mands in the current message that have previously been rejected with a permagemsfionse.

$received_count
This variable contains the number Beceived:header lines in the message, including the one
added by Exim (so its value is always greater than zero). It is available in the DATA ACL, the
non-SMTP ACL, and while routing and delivering.

127 String expansions (11)

$received_for
If there is only a single recipient address in an incoming message, this variable contains that
address when thReceivedheader line is being built. The value is copied after recipient rewriting
has happened, but before theal_scan()function is run.

$received_ip_address
As soon as an Exim server starts processing an incoming TCP/IP connection, this variable is set to
the address of the local IP interface, atieceived_portis set to the local port number. (The
remote IP address and port are$isender_host_addressmd $sender_host_pajt When testing
with -bh, the port value is -1 unless it has been set usingpiecommand line option.

As well as being useful in ACLs (including the “connect” ACL), these variable could be used, for
example, to make the file name for a TLS certificate depend on which interface and/or port is
being used for the incoming connection. The value$reteived_ip_addressnd $received_port

are saved with any messages that are received, thus making these variables available at delivery
time.

Note: There are no equivalent variables for outgoing connections, because the values are unknown
(unless they are explicitly set by options of sinetptransport).

$received_port
See$received_ip_address

$received_protocol
When a message is being processed, this variable contains the name of the protocol by which it
was received. Most of the names used by Exim are defined by RFCs 821, 2821, and 3848. They
start with “smtp” (the client used HELO) or “esmtp” (the client used EHLO). This can be followed
by “s” for secure (encrypted) and/or “a” for authenticated. Thus, for example, if the protocol is set
to “esmtpsa”, the message was received over an encrypted SMTP connection and the client was
successfully authenticated.

Exim uses the protocol name “smtps” for the case when encryption is automatically set up on
connection without the use of STARTTLS (sé® on_connect_port$, and the client uses HELO

to initiate the encrypted SMTP session. The name “smtps” is also used for the rare situation where
the client initially uses EHLO, sets up an encrypted connection using STARTTLS, and then uses
HELO afterwards.

The -oMr option provides a way of specifying a custom protocol name for messages that are
injected locally by trusted callers. This is commonly used to identify messages that are being
re-injected after some kind of scanning.

$received_time
This variable contains the date and time when the current message was received, as a number of
seconds since the start of the Unix epoch.

$recipient_data
This variable is set after an indexing lookup success in an A€tlipients condition. It contains
the data from the lookup, and the value remains set until theraejgients test. Thus, you can do
things like this:

require recipients = cdb*@;/somef/file
deny some further test involvirsrecipient_data

Warning: This variable is set only when a lookup is used as an indexing method in the address
list, using the semicolon syntax as in the example above. The variable is not set for a lookup that is
used as part of the string expansion that all such lists undergo before being interpreted.

$recipient_verify_failure
In an ACL, when a recipient verification fails, this variable contains information about the failure.
It is set to one of the following words:

» “qualify”: The address was unqualified (no domain), and the message was neither local nor
came from an exempted host.

* “route”: Routing failed.

128 String expansions (11)

* “mail”: Routing succeeded, and a callout was attempted; rejection occurred at or before the
MAIL command (that is, on initial connection, HELO, or MAIL).

» “recipient”: The RCPT command in a callout was rejected.
* “postmaster”: The postmaster check in a callout was rejected.

The main use of this variable is expected to be to distinguish between rejections of MAIL and
rejections of RCPT.

$recipients
This variable contains a list of envelope recipients for a message. A comma and a space separate
the addresses in the replacement text. However, the variable is not generally available, to prevent
exposure of Bcc recipients in unprivileged users’ filter files. You canfuseipientsonly in these
cases:

(1) Ina systemfilter file.

(2) Inthe ACLs associated with the DATA command and with non-SMTP messages, that is, the
ACLs defined byacl smtp _predata acl _smtp_datg acl_smtp_mime acl_not_smtp_
start, acl_not_smtp andacl_not_smtp_mime

(3) From within docal_scan()function.

$recipients_count
When a message is being processed, this variable contains the number of envelope recipients that
came with the message. Duplicates are not excluded from the count. While a message is being
received over SMTP, the number increases for each accepted recipient. It can be referenced in an
ACL.

$regex_match_string
This variable is set to contain the matching regular expression aftegex ACL condition has
matched (see section 41.5).

$reply_address
When a message is being processed, this variable contains the contentsReptirelo:header
line if one exists and it is not empty, or otherwise the contents oFthm: header line. Apart from
the removal of leading white space, the value is not processed in any way. In particular, no RFC
2047 decoding or character code translation takes place.

$return_path
When a message is being delivered, this variable contains the return path — the sender field that
will be sent as part of the envelope. It is not enclosed in <> characters. At the start of routing an
address$return_pathhas the same value &sender_addresdut if, for example, an incoming
message to a mailing list has been expanded by a router which specifies a different address for
bounce message$return_pathsubsequently contains the new bounce address, whiseasler
addressalways contains the original sender address that was received with the message. In other
words, $sender_addressontains the incoming envelope sender, &neturn_pathcontains the
outgoing envelope sender.

$return_size_limit
This is an obsolete name fBlbounce_return_size_limit

$runrc
This variable contains the return code from a command that is run {the...} expansion item.
Warning: In a router or transport, you cannot assume the order in which option values are
expanded, except for those preconditions whose order of testing is documented. Therefore, you
cannot reliably expect to sgtunrc by the expansion of one option, and use it in another.

$self_hostname
When an address is routed to a supposedly remote host that turns out to be the local host, what
happens is controlled by theelf generic router option. One of its values causes the address to be
passed to another router. When this happ&saslf_hostnames set to the name of the local host
that the original router encountered. In other circumstances its contents are null.

129 String expansions (11)

$sender_address
When a message is being processed, this variable contains the sender’s address that was received
in the message’s envelope. The case of letters in the address is retained, in both the local part and
the domain. For bounce messages, the value of this variable is the empty string. Skretalso
path

$sender_address_data
If $address_datas set when the routers are called from an ACL to verify a sender address, the
final value is preserved i$sender_address_dat¢éo distinguish it from data from a recipient
address. The value does not persist after the end of the current ACL statement. If you want to
preserve it for longer, you can save it in an ACL variable.

$sender_address_domain
The domain portion ddsender_address

$sender_address_local_part
The local part portion ddsender_address

$sender_data
This variable is set after a lookup success in an A€einderscondition or in a routesenders
option. It contains the data from the lookup, and the value remains set until thearelerstest.
Thus, you can do things like this:

require senders = cdb*@;/some/file
deny some further test involvirfgsender_data

Warning: This variable is set only when a lookup is used as an indexing method in the address
list, using the semicolon syntax as in the example above. The variable is not set for a lookup that is
used as part of the string expansion that all such lists undergo before being interpreted.

$sender_fullhost
When a message is received from a remote host, this variable contains the host name and IP
address in a single string. It ends with the IP address in square brackets, followed by a colon and a
port number if the logging of ports is enabled. The format of the rest of the string depends on
whether the host issued a HELO or EHLO SMTP command, and whether the host name was
verified by looking up its IP address. (Looking up the IP address can be forced bgshdookup
option, independent of verification.) A plain host name at the start of the string is a verified host
name; if this is not present, verification either failed or was not requested. A host name in parenth-
eses is the argument of a HELO or EHLO command. This is omitted if it is identical to the verified
host name or to the host’s IP address in square brackets.

$sender_helo_name
When a message is received from a remote host that has issued a HELO or EHLO command, the
argument of that command is placed in this variable. It is also set if HELO or EHLO is used when
a message is received using SMTP locally vialbiser -bS options.

$sender_host_address
When a message is received from a remote host, this variable contains that host’s IP address. For
locally submitted messages, it is empty.

$sender_host_authenticated
This variable contains the name (not the public name) of the authenticator driver that successfully
authenticated the client from which the message was received. It is empty if there was no success-
ful authentication. See al§authenticated_id

$sender_host_name
When a message is received from a remote host, this variable contains the host’'s name as obtained
by looking up its IP address. For messages received by other means, this variable is empty.

If the host name has not previously been looked up, a referengseteder_host_nanteggers a
lookup (for messages from remote hosts). A looked up name is accepted only if it leads back to the
original IP address via a forward lookup. If either the reverse or the forward lookup fails to find
any data, or if the forward lookup does not yield the original IP addréssnder_host_name
remains empty, anghost_lookup_faileds set to “1".

130 String expansions (11)

However, if either of the lookups cannot be completed (for example, there is a DNS timeout),
$host_lookup_deferreid set to “1”, andbhost_lookup_failedemains set to “0”.

Once$host_lookup_faileds set to “1”, Exim does not try to look up the host name again if there
is a subsequent reference®sender_host_name the same Exim process, but it does try again if
$host_lookup_deferreid set to “1”.

Exim does not automatically look up every calling host’'s name. If you want maximum efficiency,
you should arrange your configuration so that it avoids these lookups altogether. The lookup
happens only if one or more of the following are true:

» A string containingdsender_host_nanig expanded.

» The calling host matches the list ost_lookup. In the default configuration, this option is set
to *, so it must be changed if lookups are to be avoided. (In the code, the defatlbgor
lookup is unset.)

« Exim needs the host name in order to test an item in a host list. The items that require this are
described in sections 10.13 and 10.16.

e The calling host matchekelo_try verify hosts or helo_verify hosts In this case, the host
name is required to compare with the name quoted in any EHLO or HELO commands that the
client issues.

* The remote host issues a EHLO or HELO command that quotes one of the domas in
lookup_domains The default value of this option is

helo_lookup_domains = @ : @[]

which causes a lookup if a remote host (incorrectly) gives the server's name or IP address in an
EHLO or HELO command.

$sender_host_port
When a message is received from a remote host, this variable contains the port number that was
used on the remote host.

$sender_ident
When a message is received from a remote host, this variable contains the identification received
in response to an RFC 1413 request. When a message has been received locally, this variable
contains the login name of the user that called Exim.

$sender_rate_xxx
A number of variables whose names be§sender_rate are set as part of theatelimit ACL
condition. Details are given in section 40.35.

$sender_rcvhost
This is provided specifically for use iReceivedheaders. It starts with either the verified host
name (as obtained from a reverse DNS lookup) or, if there is no verified host name, the IP address
in square brackets. After that there may be text in parentheses. When the first item is a verified
host name, the first thing in the parentheses is the IP address in square brackets, followed by a
colon and a port number if port logging is enabled. When the first item is an IP address, the port is
recorded as “portexxX inside the parentheses.

There may also be items of the form “heloexX if HELO or EHLO was used and its argument

was not identical to the real host name or IP address, and “igexit=f an RFC 1413 ident string

is available. If all three items are present in the parentheses, a newline and tab are inserted into the
string, to improve the formatting of tikeceivedheader.

$sender_verify_failure
In an ACL, when a sender verification fails, this variable contains information about the failure.
The details are the same as$oecipient_verify_failure

$sending_ip_address
This variable is set whenever an outgoing SMTP connection to another host has been set up. It
contains the IP address of the local interface that is being used. This is useful if a host that has

131 String expansions (11)

more than one IP address wants to take on different personalities depending on which one is being
used. For incoming connections, $geceived_ip_address

$sending_port
This variable is set whenever an outgoing SMTP connection to another host has been set up. It
contains the local port that is being used. For incoming connectiorfireseéved_port

$smtp_active_hostname
During an incoming SMTP session, this variable contains the value of the active host name, as
specified by thesmtp_active_hostnameoption. The value offsmtp_active_hostnanis saved
with any message that is received, so its value can be consulted during routing and delivery.

$smtp_command
During the processing of an incoming SMTP command, this variable contains the entire command.
This makes it possible to distinguish between HELO and EHLO in the HELO ACL, and also to
distinguish between commands such as these:

MAIL FROM:<>
MAIL FROM: <>

For a MAIL command, extra parameters such as SIZE can be inspected. For a RCPT command,
the address i$smtp_commanid the original address before any rewriting, whereas the values in
$local_partand$domainare taken from the address after SMTP-time rewriting.

$smtp_command_argument
While an ACL is running to check an SMTP command, this variable contains the argument, that is,
the text that follows the command name, with leading white space removed. Following the intro-
duction of $smtp_commandhis variable is somewhat redundant, but is retained for backwards
compatibility.

$smtp_count_at_connection_start

This variable is set greater than zero only in processes spawned by the Exim daemon for handling
incoming SMTP connections. The name is deliberately long, in order to emphasize what the
contents are. When the daemon accepts a new connection, it increments this variable. A copy of
the variable is passed to the child process that handles the connection, but its value is fixed, and
never changes. It is only an approximation of how many incoming connections there actually are,
because many other connections may come and go while a single connection is being processed.
When a child process terminates, the daemon decrements its copy of the variable.

$sn0-$sn9
These variables are copies of the values ofth@— $n9accumulators that were current at the end
of the system filter file. This allows a system filter file to set values that can be tested in users’
filter files. For example, a system filter could set a value indicating how likely it is that a message
is junk mail.

$spam_xxx
A number of variables whose names start vfispamare available when Exim is compiled with
the content-scanning extension. For details, see section 41.2.

$spool_directory
The name of Exim’s spool directory.

$spool_inodes
The number of free inodes in the disk partition where Exim’s spool files are being written. The
value is recalculated whenever the variable is referenced. If the relevant file system does not have
the concept of inodes, the value of is -1. See alsoheek spool_inode®sption.

$spool_space
The amount of free space (as a number of kilobytes) in the disk partition where Exim’s spool files
are being written. The value is recalculated whenever the variable is referenced. If the operating
system does not have the ability to find the amount of free space (only true for experimental
systems), the space value is -1. For example, to check in an ACL that there is at least 50 megabytes
free on the spool, you could write:

132 String expansions (11)

condition = ${if > {$spool_space}{50000}}
See also theheck_spool_spaception.

$thisaddress
This variable is set only during the processing of thenyaddresscommand in a filter file. Its
use is explained in the description of that command, which can be found in the separate document
entitledExim’s interfaces to mail filtering

$tIs_certificate_verified
This variable is set to “1” if a TLS certificate was verified when the message was received, and “0”
otherwise.

$tIs_cipher
When a message is received from a remote host over an encrypted SMTP connection, this variable
is set to the cipher suite that was negotiated, for example DES-CBC3-SHA. In other circum-
stances, in particular, for message received over unencrypted connections, the variable is empty.
Testing $tls_cipher for emptiness is one way of distinguishing between encrypted and non-
encrypted connections during ACL processing.

The $tls_ciphervariable retains its value during message delivery, except when an outward SMTP
delivery takes place via themtptransport. In this casétls_cipheris cleared before any outgoing
SMTP connection is made, and then set to the outgoing cipher suite if one is negotiated. See
chapter 39 for details of TLS support and chapter 30 for details efritpgransport.

$tls_peerdn
When a message is received from a remote host over an encrypted SMTP connection, and Exim is
configured to request a certificate from the client, the value of the Distinguished Name qf the
certificate is made available in ti§ls_peerdrduring subsequent processing. Liks_cipher the
value is retained during message delivery, except during outbound SMTP deliveries.

$tod_bsdinbox
The time of day and the date, in the format required for BSD-style mailbox files, for example: Thu
Oct 17 17:14:09 1995.

$tod_epoch
The time and date as a number of seconds since the start of the Unix epoch.

$tod_full
A full version of the time and date, for example: Wed, 16 Oct 1995 09:51:40 +0100. The timezone
is always given as a numerical offset from UTC, with positive values used for timezones that are
ahead (east) of UTC, and negative values for those that are behind (west).

$tod_log
The time and date in the format used for writing Exim’'s log files, for example: 1995-10-12
15:32:29, but without a timezone.

$tod_logfile
This variable contains the date in the format yyyymmdd. This is the format that is used for
datestamping log files wheog_file_path contains thésDflag.

$tod_zone
This variable contains the numerical value of the local timezone, for example: -0500.

$tod_zulu
This variable contains the UTC date and time in “Zulu” format, as specified by 1SO 8601, for
example: 20030221154023Z.

$value
This variable contains the result of an expansion lookup, extraction operation, or external com-
mand, as described above. It is also used duriadure expansion.

$version_number
The version number of Exim.

133 String expansions (11)

$warn_message_delay
This variable is set only during the creation of a message warning about a delivery delay. Details
of its use are explained in section 46.2.

$warn_message_recipients

This variable is set only during the creation of a message warning about a delivery delay. Details
of its use are explained in section 46.2.

134 String expansions (11)

12. Embedded Perl

Exim can be built to include an embedded Perl interpreter. When this is done, Perl subroutines can be
called as part of the string expansion process. To make use of the Perl support, you need version 5.004
or later of Perl installed on your system. To include the embedded interpreter in the Exim binary,
include the line

EXIM_PERL = perl.o

in your Local/Makefileand then build Exim in the normal way.

12.1 Setting up so Perl can be used

Access to Perl subroutines is via a global configuration option calked startup and an expansion
string operato®{perl ...}. If there is noperl_startup option in the Exim configuration file then no

Perl interpreter is started and there is almost no overhead for Exim (since none of the Perl library will
be paged in unless used). If there igaal_startup option then the associated value is taken to be Perl
code which is executed in a newly created Perl interpreter.

The value ofperl_startup is not expanded in the Exim sense, so you do not need backslashes before
any characters to escape special meanings. The option should usually be something like

perl_startup = do 'fetc/exim.pl'

where/etc/exim.plis Perl code which defines any subroutines you want to use from Exim. Exim can
be configured either to start up a Perl interpreter as soon as it is entered, or to wait until the first time
it is needed. Starting the interpreter at the beginning ensures that it is done while Exim still has its
setuid privilege, but can impose an unnecessary overhead if Perl is not in fact used in a particular run.
Also, note that this does not mean that Exim is necessarily running as root when Perl is called at a
later time. By default, the interpreter is started only when it is needed, but this can be changed in two
ways:

» Setting perl_at_start (a boolean option) in the configuration requests a startup when Exim is
entered.

» The command line optiorps also requests a startup when Exim is entered, overriding the setting
of perl_at_start.

There is also a command line optigod (for delay) which suppresses the initial startup, evepeif_
at_start is set.

12.2 Calling Perl subroutines

When the configuration file includesperl_startup option you can make use of the string expansion
item to call the Perl subroutines that are defined bypthig_startup code. The operator is used in any
of the following forms:

${perl{foo}}
${perl{foo}{argument}}
${perl{foo}{argumentlH{argument2} ... }

which calls the subroutiné®o with the given arguments. A maximum of eight arguments may be
passed. Passing more than this results in an expansion failure with an error message of the form

Too many arguments passed to Perl subroutine "foo" (max is 8)

The return value of the Perl subroutine is evaluated in a scalar context before it is passed back to
Exim to be inserted into the expanded string. If the return valuendef the expansion is forced to

fail in the same way as an explicit “fail” on ahor lookup item. If the subroutine aborts by obeying
Perl'sdie function, the expansion fails with the error message that was pasted to

135 Embedded Perl (12)

12.3 Calling Exim functions from Perl

Within any Perl code called from Exim, the functi@xim::expand_string(Js available to call back
into Exim’s string expansion function. For example, the Perl code

my $lp = Exim::expand_string(‘$local_part');

makes the current Exirilocal_partavailable in the Perl variabl§lp. Note those are single quotes
and not double quotes to protect agadigtal_partbeing interpolated as a Perl variable.

If the string expansion is forced to fail by a “fail” item, the resultEXim::expand_string(}s undef.
If there is a syntax error in the expansion string, the Perl call from the original expansion string fails
with an appropriate error message, in the same waydas\ifere used.

Two other Exim functions are available for use from within Perl cdgddm::debug_write()writes a

string to the standard error stream if Exim’s debugging is enabled. If you want a newline at the end,
you must supply itExim::log_write()writes a string to Exim’s main log, adding a leading timestamp.

In this case, you should not supply a terminating newline.

12.4 Use of standard output and error by Perl

You should not write to the standard error or output streams from within your Perl code, as it is not
defined how these are set up. In versions of Exim before 4.50, it is possible for the standard output or
error to refer to the SMTP connection during message reception via the daemon. Writing to this
stream is certain to cause chaos. From Exim 4.50 onwards, the standard output and error streams are
connected tddev/nullin the daemon. The chaos is avoided, but the output is lost.

The Perlwarn statement writes to the standard error stream by default. Callgato may be
embedded in Perl modules that you use, but over which you have no control. When Exim starts up the
Perl interpreter, it arranges for output from tarn statement to be written to the Exim main log.

You can change this by including appropriate Perl magic somewhere in your Perl code. For example,
to discardwarn output completely, you need this:

$SIG{_WARN_ }=sub{};

Whenever avarn is obeyed, the anonymous subroutine is called. In this example, the code for the
subroutine is empty, so it does nothing, but you can include any Perl code that you like. The text of
thewarn message is passed as the first subroutine argument.

136 Embedded Perl (12)

13. Starting the daemon and the use of network interfaces

A host that is connected to a TCP/IP network may have one or more physical hardware network
interfaces. Each of these interfaces may be configured as one or more “logical” interfaces, which are
the entities that a program actually works with. Each of these logical interfaces is associated with an
IP address. In addition, TCP/IP software supports “loopback” interfaces (127.0.0.1 in IPv4 and ::1 in

IPv6), which do not use any physical hardware. Exim requires knowledge about the host’s interfaces
for use in three different circumstances:

(1) When a listening daemon is started, Exim needs to know which interfaces and ports to listen on.

(2) When Exim is routing an address, it needs to know which IP addresses are associated with local
interfaces. This is required for the correct processing of MX lists by removing the local host and
others with the same or higher priority values. Also, Exim needs to detect cases when an address
is routed to an IP address that in fact belongs to the local host. Unlesgltlveuter option or
theallow_localhostoption of the smtp transport is set (as appropriate), this is treated as an error
situation.

(3) When Exim connects to a remote host, it may need to know which interface to use for the
outgoing connection.

Exim’s default behaviour is likely to be appropriate in the vast majority of cases. If your host has only
one interface, and you want all its IP addresses to be treated in the same way, and you are using only
the standard SMTP port, you should not need to take any special action. The rest of this chapter does
not apply to you.

In a more complicated situation you may want to listen only on certain interfaces, or on different
ports, and for this reason there are a number of options that can be used to influence Exim’s behav-
iour. The rest of this chapter describes how they operate.

When a message is received over TCP/IP, the interface and port that were actually used are set in
$received_ip_addresand$received_port

13.1 Starting a listening daemon

When a listening daemon is started (by means of-titecommand line option), the interfaces and
ports on which it listens are controlled by the following options:

» daemon_smtp_portscontains a list of default ports. (For backward compatibility, this option can
also be specified in the singular.)

* local_interfacescontains list of interface IP addresses on which to listen. Each item may option-
ally also specify a port.

The default list separator in both cases is a colon, but this can be changed as described in section 6.19.
When IPv6 addresses are involved, it is usually best to change the separator to avoid having to double
all the colons. For example:

local_interfaces = <; 127.0.0.1 ;\
192.168.23.65 ; \
w10
3ffe:ffff:836f::fe86:a061

There are two different formats for specifying a port along with an IP addriegslininterfaces

(1) The port is added onto the address with a dot separator. For example, to listen on port 1234 on
two different IP addresses:

local_interfaces = <; 192.168.23.65.1234 ; \
3ffe:ffff:836f::fe86:a4061.1234

(2) The IP address is enclosed in square brackets, and the port is added with a colon separator, for
example:

137 Starting the daemon (13)

local_interfaces = <; [192.168.23.65]:1234 ; \
[3ffe:ffff:836f::fe86:a061]:1234

When a port is not specified, the valueddemon_smtp_portsis used. The default setting contains
just one port:

daemon_smtp_ports = smtp

If more than one port is listed, each interface that does not have its own port specified listens on all of
them. Ports that are listed idaemon_smtp_portscan be identified either by name (defined in
letc/servicesor by number. However, when ports are given with individual IP addresskscah
interfaces, only numbers (not names) can be used.

13.2 Special IP listening addresses

The addresses 0.0.0.0 and ::0 are treated specially. They are interpreted as “all IPv4 interfaces” and
“all IPv6 interfaces”, respectively. In each case, Exim tells the TCP/IP stack to “listen on all IPv
interfaces” instead of setting up separate listening sockets for each interface. The default value of
local_interfacesis

local_interfaces = 0.0.0.0
when Exim is built without IPv6 support; otherwise it is:
local_interfaces = <; ::0; 0.0.0.0

Thus, by default, Exim listens on all available interfaces, on the SMTP port.

13.3 Overriding local_interfaces and daemon_smtp_ports

The -oX command line option can be used to override the valuedagimon_smtp_portsand/or
local_interfacesfor a particular daemon instance. Another way of doing this would be to use macros
and the-D option. However;0X can be used by any admin user, whereas modification of the runtime
configuration byD is allowed only when the caller is root or exim.

The value of-oX is a list of items. The default colon separator can be changed in the usual way if
required. If there are any items that do not contain dots or colons (that is, are not IP addresses), the
value ofdaemon_smtp_portsis replaced by the list of those items. If there are any items that do
contain dots or colons, the valuelo€al_interfacesis replaced by those items. Thus, for example,

-0X 1225
overridesdaemon_smtp_ports but leavesocal_interfacesunchanged, whereas
-0X 192.168.34.5.1125

overrideslocal_interfaces leaving daemon_smtp_portsunchanged. (However, sindecal_inter-
facesnow contains no items without ports, the valuedaEmon_smtp_portsis no longer relevant in
this example.)

13.4 Support for the obsolete SSMTP (or SMTPS) protocol

Exim supports the obsolete SSMTP protocol (also known as SMTPS) that was used before the
STARTTLS command was standardized for SMTP. Some legacy clients still use this protocol. If the
tls_on_connect_portsoption is set to a list of port numbers, connections to those ports must use
SSMTP. The most common use of this option is expected to be

tls_on_connect_ports = 465

because 465 is the usual port number used by the legacy clients. There is also a command line option
-tls-on-connect which forces all ports to behave in this way when a daemon is started.

Warning: Settingtls_on_connect_portsdoes not of itself cause the daemon to listen on those ports.
You must still specify them irdaemon_smtp_ports local_interfaces or the-oX option. (This is

138 Starting the daemon (13)

becausetls_on_connect_portsapplies toinetd connections as well as to connections via the
daemon.)

13.5 IPv6 address scopes

IPv6 addresses have “scopes”, and a host with multiple hardware interfaces can, in principle, have the
same link-local IPv6 address on different interfaces. Thus, additional information is needed, over and
above the IP address, to distinguish individual interfaces. A convention of using a percent sign
followed by something (often the interface name) has been adopted in some cases, leading to
addresses like this:

fe80::202:b3ff:fe03:45¢c1%eth0

To accommaodate this usage, a percent sign followed by an arbitrary string is allowed at the end of an
IPv6 address. By default, Exim caligetaddrinfo()to convert a textual IPv6 address for actual use.
This function recognizes the percent convention in operating systems that support it, and it processes
the address appropriately. Unfortunately, some older libraries have problengetadidrinfo() If

IPV6_USE_INET_PTON=yes

is set inLocal/Makefile(or an OS-dependent Makefile) when Exim is built, Exim uses_pton()to
convert a textual IPv6 address for actual use, insteagetafddrinfo() (Before version 4.14, it always
used this function.) Of course, this means that the additional functionalitgetdddrinfo() —
recognizing scoped addresses — is lost.

13.6 Disabling IPv6

Sometimes it happens that an Exim binary that was compiled with IPv6 support is run on a host
whose kernel does not support IPv6. The binary will fall back to using IPv4, but it may waste
resources looking up AAAA records, and trying to connect to IPv6 addresses, causing delays to mail
delivery. If you set thadisable_ipv6 option true, even if the Exim binary has IPv6 support, no IPv6
activities take place. AAAA records are never looked up, and any IPv6 addresses that are listed in
local_interfaces data for themanualrouterouter, etc. are ignored. If IP literals are enabled, the
ipliteral router declines to handle IPv6 literal addresses.

On the other hand, when IPv6 is in use, there may be times when you want to disable it for certain
hosts or domains. You can use tifes_ipv4 lookupoption to globally suppress the lookup of AAAA
records for specified domains, and you can useiginere_target _hostsgeneric router option to
ignore IPv6 addresses in an individual router.

13.7 Examples of starting a listening daemon
The default case in an IPv6 environment is

daemon_smtp_ports = smtp
local_interfaces = <; ::0; 0.0.0.0

This specifies listening on the smtp port on all IPv6 and IPv4 interfaces. Either one or two sockets
may be used, depending on the characteristics of the TCP/IP stack. (This is complicated and messy;
for more information, read the comments in daemon.csource file.)

To specify listening on ports 25 and 26 on all interfaces:
daemon_smtp_ports =25 : 26
(leavinglocal_interfacesat the default setting) or, more explicitly:

local_interfaces = <; ::0.25 ;::0.26\
0.0.0.0.25; 0.0.0.0.26

To listen on the default port on all IPv4 interfaces, and on port 26 on the IPv4 loopback address only:
local_interfaces = 0.0.0.0 ;: 127.0.0.1.26
To specify listening on the default port on specific interfaces only:

139 Starting the daemon (13)

local_interfaces = 192.168.34.67 : 192.168.34.67

Warning: Such a setting excludes listening on the loopback interfaces.

13.8 Recognizing the local host

Thelocal_interfacesoption is also used when Exim needs to determine whether or not an IP address
refers to the local host. That is, the IP addresses of all the interfaces on which a daemon is listening
are always treated as local.

For this usage, port numbers limcal_interfacesare ignored. If either of the items 0.0.0.0 or ::0 are
encountered, Exim gets a complete list of available interfaces from the operating system, and extracts
the relevant (that is, IPv4 or IPv6) addresses to use for checking.

Some systems set up large numbers of virtual interfaces in order to provide many virtual web servers.
In this situation, you may want to listen for email on only a few of the available interfaces, but
nevertheless treat all interfaces as local when routing. You can do this by ssttiaglocal_inter-
facesto a list of IP addresses, possibly including the “all” wildcard values. These addresses are
recognized as local, but are not used for listening. Consider this example:

local_interfaces = <; 127.0.0.1 ; ::1;\
192.168.53.235 ; \
3ffe:2101:12:1:a00:20ff:fe86:a061

extra_local_interfaces = <; ::0; 0.0.0.0

The daemon listens on the loopback interfaces and just one IPv4 and one IPv6 address, but all
available interface addresses are treated as local when Exim is routing.

In some environments the local host name may be in an MX list, but with an IP address that is not
assigned to any local interface. In other cases it may be desirable to treat other host names as if they
referred to the local host. Both these cases can be handled by settimgsthetreat_as_locabption.

This contains host names rather than IP addresses. When a host is referenced during routing, either
via an MX record or directly, it is treated as the local host if its name matobsts_treat_as_local

or if any of its IP addresses matokal_interfacesor extra_local_interfaces

13.9 Delivering to a remote host

Delivery to a remote host is handled by the smtp transport. By default, it allows the system’s TCP/IP
functions to choose which interface to use (if there is more than one) when connecting to a remote
host. However, thinterface option can be set to specify which interface is used. See the description
of the smtp transport in chapter 30 for more details.

140 Starting the daemon (13)

14. Main configuration

The first part of the run time configuration file contains three types of item:

» Macro definitions: These lines start with an upper case letter. See section 6.4 for details of macro
processing.

« Named list definitions: These lines start with one of the words “domainlist”, “hostlist”,
“addresslist”, or “localpartlist”. Their use is described in section 10.5.

* Main configuration settings: Each setting occupies one line of the file (with possible continu-
ations). If any setting is preceded by the word “hide”, tb® command line option displays its
value to admin users only. See section 6.10 for a description of the syntax of these option settings.

This chapter specifies all the main configuration options, along with their types and default values.
For ease of finding a particular option, they appear in alphabetical order in section 14.23 below.
However, because there are now so many options, they are first listed briefly in functional groups, as
an aid to finding the name of the option you are looking for. Some options are listed in more than one

group.

14.1 Miscellaneous

bi_command
disable_ipv6
keep_malformed
localhost_number
message_body newlines
message_body_visible
mua_wrapper
print_topbitchars
timezone

14.2 Exim parameters

exim_group
exim_path
exim_user
primary_hostname
split_spool_directory
spool_directory

14.3 Privilege controls

admin_groups
deliver_drop_privilege
local_from_check
local_from_prefix
local_from_suffix
local_sender_retain
never_users
prod_requires_admin
gqueue_list_requires_admin
trusted_groups
trusted_users

14.4 Logging

hosts_connection_nolog
log_file_path

to run for-bi command line option

do no IPv6 processing

for broken files — should not happen
for unique message ids in clusters
retain newlines itmessage_body
how much to show iBmessage_body
run in “MUA wrapper” mode

top-bit characters are printing

force time zone

override compiled-in value
override compiled-in value
override compiled-in value
default fromuname()

use multiple directories
override compiled-in value

groups that are Exim admin users
drop root for delivery processes
insertSenderif necessary

for testingFrom: for local sender
for testingFrom: for local sender
keepSenderfrom untrusted user
do not run deliveries as these
forced delivery requires admin user
queue listing requires admin user
groups that are trusted

users that are trusted

exemption from connect logging
override compiled-in value

141 Main configuration (14)

log_selector set/unset optional logging
log_timezone add timezone to log lines
message_logs create per-message logs
preserve_message_logs after message completion
process_log_path for SIGUSR1 anexiwhat
syslog_duplication controls duplicate log lines on syslog
syslog_facility set syslog “facility” field
syslog_processname set syslog “ident” field
syslog_timestamp timestamp syslog lines
write_rejectlog control use of message log

14.5 Frozen messages

auto_thaw sets time for retrying frozen messages
freeze_tell send message when freezing
move_frozen_messages to another directory
timeout_frozen_after keep frozen messages only so long

14.6 Data lookups

ibase_servers InterBase servers
Idap_default_servers used if no server in query
Idap_version set protocol version
lookup_open_max lookup files held open
mysql_servers default MySQL servers
oracle_servers Oracle servers
pgsql_servers default PostgreSQL servers
sqglite_lock_timeout as it says

14.7 Message ids

message_id_header_domain used to buildMessage-IDheader
message_id_header_text ditto

14.8 Embedded Perl Startup

perl_at_start always start the interpreter
perl_startup code to obey when starting Perl

14.9 Daemon

daemon_smtp_ports default ports
daemon_startup_retries number of times to retry

daemon_startup_sleep
extra_local_interfaces
local_interfaces
pid_file_path
queue_run_max

14.10 Resource control

check_log_inodes
check_log_space
check_spool_inodes
check_spool_space
deliver_queue_load_max
gueue_only_load
gueue_only_load_latch

time to sleep between tries
not necessarily listened on

on which to listen, with optional ports

override compiled-in value

maximum simultaneous queue runners

before accepting a message
before accepting a message
before accepting a message
before accepting a message

no queue deliveries if load high

queue incoming if load high

don’t re-evaluate load for each message

142

Main configuration (14)

gueue_run_max
remote_max_parallel
smtp_accept_max

smtp_accept_max_nonmail
smtp_accept_max_nonmail_hosts
smtp_accept_max_per_connection
smtp_accept_max_per_host

smtp_accept_queue

smtp_accept_queue_per_connection

smtp_accept_reserve

smtp_check_spool_space

smtp_connect_backlog
smtp_load_reserve
smtp_reserve_hosts

14.11 Policy controls

acl_not_smtp
acl_not_smtp_mime
acl_not_smtp_start
acl_smtp_auth
acl_smtp_connect
acl_smtp_data
acl_smtp_etrn
acl_smtp_expn
acl_smtp_helo
acl_smtp_mail
acl_smtp_mailauth
acl_smtp_mime
acl_smtp_predata
acl_smtp_quit
acl_smtp_rcpt
acl_smtp_starttls
acl_smtp_vrfy
av_scanner
check_rfc2047_length
dns_csa_search_limit
dns_csa_use_reverse
header_maxsize
header_line_maxsize
helo_accept_junk_hosts
helo_allow_chars
helo_lookup_domains
helo_try verify _hosts
helo_verify _hosts
host_lookup
host_lookup_order
host_reject_connection
hosts_treat as_local
local_scan_timeout
message_size_limit
percent_hack_domains
spamd_address
strict_acl_vars

maximum simultaneous queue runners
parallel SMTP delivery per message
simultaneous incoming connections
non-mail commands

hosts to which the limit applies
messages per connection

connections from one host

queue mail if more connections

queue if more messages per connection
only reserve hosts if more connections
from SIZE on MAIL command

passed to TCP/IP stack

SMTP from reserved hosts if load high
these are the reserve hosts

ACL for non-SMTP messages

ACL for non-SMTP MIME parts

ACL for start of non-SMTP message
ACL for AUTH

ACL for connection

ACL for DATA

ACL for ETRN

ACL for EXPN

ACL for EHLO or HELO

ACL for MAIL

ACL for AUTH on MAIL command
ACL for MIME parts

ACL for start of data

ACL for QUIT

ACL for RCPT

ACL for STARTTLS

ACL for VRFY

specify virus scanner

check length of RFC 2047 “encoded words”
control CSA parent search depth
en/disable CSA IP reverse search
total size of message header
individual header line limit

allow syntactic junk from these hosts
allow illegal chars in HELO names
lookup hostname for these HELO names
HELO soft-checked for these hosts
HELO hard-checked for these hosts
host name looked up for these hosts
order of DNS and local name lookups
reject connection from these hosts
useful in some cluster configurations
timeout forlocal_scan()

for all messages

recognize %-hack for these domains
set interface to SpamAssassin
object to unset ACL variables

143 Main configuration (14)

14.12 Callout cache

callout_domain_negative_expire
callout_domain_positive_expire
callout_negative_expire
callout_positive_expire

timeout for negative domain cache item
timeout for positive domain cache item

timeout for negative address cache item
timeout for positive address cache item

callout_random_local_part

14.13 TLS

gnutls_require_kx
gnutls_require_mac
gnutls_require_protocols
tls_advertise _hosts
tls_certificate

tls_crl

tls_dhparam
tls_on_connect_ports
tls_privatekey
tls_remember_esmtp
tls_require_ciphers
tls_try_verify_hosts
tls_verify_certificates
tls_verify _hosts

14.14 Local user handling

finduser_retries
gecos_name
gecos_pattern
max_username_length
unknown_login
unknown_username
uucp_from_pattern
uucp_from_sender

string to use for “random” testing

control GnuTLS key exchanges
control GnuTLS MAC algorithms
control GnuTLS protocols
advertise TLS to these hosts
location of server certificate
certificate revocation list

DH parameters for server
specify SSMTP (SMTPS) ports
location of server private key
don’t reset after starting TLS
specify acceptable ciphers

try to verify client certificate
expected client certificates
insist on client certificate verify

useful in NIS environments
used when creatingender:

ditto

for systems that truncate

used when no login name found
ditto

for recognizing “From ” lines
ditto

14.15 All incoming messages (SMTP and non-SMTP)

header_maxsize
header_line_maxsize
message_size_limit
percent_hack domains
received_header_text
received_headers_max
recipients_max
recipients_max_reject

total size of message header
individual header line limit

applies to all messages

recognize %-hack for these domains
expanded to makieceived:

for mail loop detection

limit per message

permanently reject excess recipients

14.16 Non-SMTP incoming messages

receive_timeout

14.17 Incoming SMTP messages
See also th@olicy controlssection above.

host_lookup
host_lookup_order
recipient_unqualified_hosts
rfc1413_hosts

for non-SMTP messages

host name looked up for these hosts
order of DNS and local name lookups
may send unqualified recipients
make ident calls to these hosts

144 Main configuration (14)

rfc1413_query_timeout
sender_unqualified_hosts
smtp_accept_keepalive
smtp_accept_max
smtp_accept_max_nonmail
smtp_accept_max_nonmail_hosts
smtp_accept_max_per_connection
smtp_accept_max_per_host
smtp_accept_queue
smtp_accept_queue_per_connection
smtp_accept_reserve
smtp_active_hostname
smtp_banner
smtp_check_spool_space
smtp_connect_backlog
smtp_enforce_sync
smtp_etrn_command
smtp_etrn_serialize
smtp_load_reserve
smtp_max_unknown_commands
smtp_ratelimit_hosts
smtp_ratelimit_mail
smtp_ratelimit_rcpt
smtp_receive_timeout
smtp_reserve_hosts
smtp_return_error_details

14.18 SMTP extensions

accept_8bitmime
auth_advertise_hosts
ignore_fromline_hosts
ignore_fromline_local
pipelining_advertise _hosts
tls_advertise _hosts

14.19 Processing messages

allow_domain_literals
allow_mx_to_ip
allow_utf8_domains

check rfc2047 length
delivery_date _remove
envelope_to_remove
extract_addresses_remove_arguments
headers_charset
gualify_domain
qualify_recipient
return_path_remove
strip_excess_angle_brackets
strip_trailing_dot
untrusted_set_sender

14.20 System filter

system_filter
system_filter_directory_transport
system_filter_file_transport

zero disables ident calls

may send unqualified senders
some TCP/IP magic

simultaneous incoming connections
non-mail commands

hosts to which the limit applies
messages per connection
connections from one host

queue mail if more connections
queue if more messages per connection
only reserve hosts if more connections
host name to use in messages

text for welcome banner

from SIZE on MAIL command
passed to TCP/IP stack

of SMTP command/responses
what to run for ETRN

only one at once

only reserve hosts if this load
before dropping connection

apply ratelimiting to these hosts
ratelimit for MAIL commands
ratelimit for RCPT commands

per command or data line

these are the reserve hosts

give detail on rejections

advertise 8BITMIME

advertise AUTH to these hosts
allow “From ” from these hosts
allow “From ” from local SMTP
advertise pipelining to these hosts
advertise TLS to these hosts

recognize domain literal syntax
allow MX to point to IP address

in addresses

check length of RFC 2047 “encoded words”
from incoming messages

from incoming messages

affects-t processing

default for translations

default for senders

default for recipients

from incoming messages

in addresses

at end of addresses

untrusted can set envelope sender

locate system filter
transport for delivery to a directory
transport for delivery to a file

145

Main configuration (14)

system_filter_group
system_filter_pipe_transport
system_filter_reply_transport
system_filter_user

14.21 Routing and delivery

disable_ipv6
dns_again_means_nonexist
dns_check_names_pattern
dns_ipv4_lookup
dns_retrans

dns_retry
hold_domains
local_interfaces
gqueue_domains
queue_only
queue_only_file
queue_only load
queue_only load_latch
queue_only _override
queue_run_in_order
gueue_run_max
queue_smtp_domains
remote_max_parallel
remote_sort_domains
retry_data_expire
retry_interval_max

group for filter running
transport for delivery to a pipe
transport for autoreply delivery
user for filter running

do no IPv6 processing

for broken domains

pre-DNS syntax check

only v4 lookup for these domains
parameter for resolver

parameter for resolver

hold delivery for these domains

for routing checks

no immediate delivery for these

no immediate delivery at all

no immediate delivery if file exists
no immediate delivery if load is high
don't re-evaluate load for each message
allow command line to override
order of arrival

of simultaneous queue runners

no immediate SMTP delivery for these
parallel SMTP delivery per message
order of remote deliveries

timeout for retry data

safety net for retry rules

14.22 Bounce and warning messages

bounce_message file
bounce_message_text
bounce_return_body
bounce_return_message
bounce_return_size_limit
bounce_sender_authentication
dsn_from

errors_copy

errors_reply_to
delay_warning
delay_warning_condition
ignore_bounce_errors_after
smtp_return_error_details
warn_message_file

content of bounce

content of bounce

include body if returning message
include original message in bounce
limit on returned message

send authenticated sender with bounce
setFrom: contents in bounces

copy bounce messages

Reply-to:in bounces

time schedule

condition for warning messages
discard undeliverable bounces

give detail on rejections

content of warning message

14.23 Alphabetical list of main options

Those options that undergo string expansion before use are marked with t.

| accept_8bitmime Use:main Type:boolean Default:false

This option causes Exim to send 8BITMIME in its response to an SMTP EHLO command, and to
accept the BODY= parameter on MAIL commands. However, though Exim is 8-bit clean, it is not a
protocol converter, and it takes no steps to do anything special with messages received by this route.
Consequently, this option is turned off by default.

146 Main configuration (14)

acl_not_smtp Use:main Type:stringt Default:unset

This option defines the ACL that is run when a non-SMTP message has been read and is on the point
of being accepted. See chapter 40 for further details.

acl_not_smtp_mime Use:main Type:stringt Default:unset

This option defines the ACL that is run for individual MIME parts of non-SMTP messages. It
operates in exactly the same wayaak smtp_mimeoperates for SMTP messages.

acl_not_smtp_start Use:main Type:stringt Default:unset

This option defines the ACL that is run before Exim starts reading a non-SMTP message. See chapter
40 for further details.

acl_smtp_auth Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP AUTH command is received. See chapter 40
for further details.

acl_smtp_connect Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP connection is received. See chapter 40 for
further details.

acl_smtp_data Use:main Type:stringt Default:unset

This option defines the ACL that is run after an SMTP DATA command has been processed and the
message itself has been received, but before the final acknowledgment is sent. See chapter 40 for
further detalils.

acl_smtp_etrn Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP ETRN command is received. See chapter 40
for further details.

acl_smtp_expn Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP EXPN command is received. See chapter 40
for further details.

acl_smtp_helo Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP EHLO or HELO command is received. See
chapter 40 for further details.

acl_smtp_mail Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP MAIL command is received. See chapter 40
for further details.

147 Main configuration (14)

acl_smtp_mailauth Use:main Type:stringt Default:unset

This option defines the ACL that is run when there is an AUTH parameter on a MAIL command. See
chapter 40 for details of ACLs, and chapter 33 for details of authentication.

acl_smtp_mime Use:main Type:stringt Default:unset

This option is available when Exim is built with the content-scanning extension. It defines the ACL
that is run for each MIME part in a message. See section 41.4 for details.

acl_smtp_predata Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP DATA command is received, before the
message itself is received. See chapter 40 for further details.

acl_smtp_quit Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP QUIT command is received. See chapter 40
for further details.

acl_smtp_rcpt Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP RCPT command is received. See chapter 40
for further details.

acl_smtp_starttls Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP STARTTLS command is received. See
chapter 40 for further details.

acl_smtp_vrfy Use:main Type:stringt Default:unset

This option defines the ACL that is run when an SMTP VRFY command is received. See chapter 40
for further details.

admin_groups Use:main Type:string listt Default:unset

This option is expanded just once, at the start of Exim’s processing. If the current group or any of the
supplementary groups of an Exim caller is in this colon-separated list, the caller has admin privileges.
If all your system programmers are in a specific group, for example, you can give them all Exim
admin privileges by putting that group admin_groups However, this does not permit them to read
Exim'’s spool files (whose group owner is the Exim gid). To permit this, you have to add individuals to
the Exim group.

allow_domain_literals Use:main Type:boolean Default:false

If this option is set, the RFC 2822 domain literal format is permitted in email addresses. The option is
not set by default, because the domain literal format is not normally required these days, and few
people know about it. It has, however, been exploited by mail abusers.

Unfortunately, it seems that some DNS black list maintainers are using this format to report black
listing to postmasters. If you want to accept messages addressed to your hosts by IP address, you need
to setallow_domain_literals true, and also to ad@®][] to the list of local domains (defined in the

148 Main configuration (14)

named domain listocal_domainsin the default configuration). This “magic string” matches the
domain literal form of all the local host’s IP addresses.

allow_mx_to_ip Use:main Type:boolean Default:false

It appears that more and more DNS zone administrators are breaking the rules and putting domain
names that look like IP addresses on the right hand side of MX records. Exim follows the rules and

rejects this, giving an error message that explains the mis-configuration. However, some other MTAs
support this practice, so to avoid “Why can’t Exim do this?” complaiatlew_mx_to_ip exists, in

order to enable this heinous activity. It is not recommended, except when you have no other choice.

allow_utf8 domains Use:main Type:boolean Default:false

Lots of discussion is going on about internationalized domain names. One camp is strongly in favour
of just using UTF-8 characters, and it seems that at least two other MTAs permit this. This option
allows Exim users to experiment if they wish.

If it is set true, Exim’s domain parsing function allows valid UTF-8 multicharacters to appear in
domain name components, in addition to letters, digits, and hyphens. However, just setting this option
is not enough; if you want to look up these domain names in the DNS, you must also adjust the value
of dns_check_names_pattermo match the extended form. A suitable setting is:

dns_check_names_pattern = (?)"?>(?(1)\.]())[a-z0-9\xcO-\xff]\
(?>[-a-z0-9\x80-\xff]*[a-z0-9\x80-\xbf]) ?)+$

Alternatively, you can just disable this feature by setting
dns_check_names_pattern =
That is, set the option to an empty string so that no check is done.

auth_advertise_hosts Use:main Type:host listf Default:*

If any server authentication mechanisms are configured, Exim advertises them in response to an
EHLO command only if the calling host matches this list. Otherwise, Exim does not advertise AUTH.
Exim does not accept AUTH commands from clients to which it has not advertised the availability of
AUTH. The advertising of individual authentication mechanisms can be controlled by the use of the
server_advertise_conditiongeneric authenticator option on the individual authenticators. See chap-
ter 33 for further details.

Certain mail clients (for example, Netscape) require the user to provide a name and password for
authentication if AUTH is advertised, even though it may not be needed (the host may accept mess-
ages from hosts on its local LAN without authentication, for example). diith_advertise_hosts

option can be used to make these clients more friendly by excluding them from the set of hosts to
which Exim advertises AUTH.

If you want to advertise the availability of AUTH only when the connection is encrypted using TLS,
you can make use of the fact that the value of this option is expanded, with a setting like this:

auth_advertise_hosts = ${if eq{$tls_cipher}{}{}{*}}

If $tIs_cipheris empty, the session is not encrypted, and the result of the expansion is empty, thus
matching no hosts. Otherwise, the result of the expansion is *, which matches all hosts.

| auto_thaw Use:main Type:time Default:0s

If this option is set to a time greater than zero, a queue runner will try a new delivery attempt on any
frozen message, other than a bounce message, if this much time has passed since it was frozen. This
may result in the message being re-frozen if nothing has changed since the last attempt. It is a way of
saying “keep on trying, even though there are big problems”.

149 Main configuration (14)

Note: This is an old option, which predatémeout_frozen_afterandignore_bounce_errors_after
It is retained for compatibility, but it is not thought to be very useful any more, and its use should
probably be avoided.

av_scanner Use:main Type:string Default:see beIovx}

This option is available if Exim is built with the content-scanning extension. It specifies which
anti-virus scanner to use. The default value is:

sophie:/var/run/sophie

If the value ofav_scannerstarts with dollar character, it is expanded before use. See section 41.1 for
further detalils.

bi_command Use:main Type:string Default: unset|

This option supplies the name of a command that is run when Exim is called withitbetion (see
chapter 5). The string value is just the command name, it is not a complete command line. If an
argument is required, it must come from tb& command line option.

bounce_message _file Use:main Type:string Default: unset|

This option defines a template file containing paragraphs of text to be used for constructing bounce
messages. Details of the file’s contents are given in chapter 46. Seamlsmessage_file

bounce_message_text Use:main Type:string Default: unset

When this option is set, its contents are included in the default bounce message immediately after
“This message was created automatically by mail delivery software.” It is not usbduifce_
message_filés set.

bounce_return_body Use:main Type:boolean Default:true

This option controls whether the body of an incoming message is included in a bounce message when
bounce_return_messagés true. The default setting causes the entire message, both header and body,
to be returned (subject to the value lmdunce_return_size_limi). If this option is false, only the
message header is included. In the case of a non-SMTP message containing an error that is detected
during reception, only those header lines preceding the point at which the error was detected are
returned.

bounce_return_message Use:main Type:boolean Default:true

If this option is set false, none of the original message is included in bounce messages generated by
Exim. See alsbounce_return_size_limitandbounce_return_body.

bounce_return_size_limit Use:main Type:integer Default: 100K

This option sets a limit in bytes on the size of messages that are returned to senders as part of bounce
messages whdmounce_return_messagés true. The limit should be less than the value of the global
message_size_limiand of anymessage_size limisettings on transports, to allow for the bounce

text that Exim generates. If this option is set to zero there is no limit.

When the body of any message that is to be included in a bounce message is greater than the limit, it
is truncated, and a comment pointing this out is added at the top. The actual cutoff may be greater

150 Main configuration (14)

than the value given, owing to the use of buffering for transferring the message in chunks (typically
8K in size). The idea is to save bandwidth on those undeliverable 15-megabyte messages.

bounce_sender_authentication Use:main Type:string Default: unset|

This option provides an authenticated sender address that is sent with any bounce messages generated
by Exim that are sent over an authenticated SMTP connection. A typical setting might be:

bounce_sender_authentication = mailer-daemon@my.domain.example
which would cause bounce messages to be sent using the SMTP command:
MAIL FROM:<> AUTH=mailer-daemon@my.domain.example

The value obounce_sender_authenticatiomust always be a complete email address.

callout_domain_negative_expire Use:main Type:time Default: 3h

This option specifies the expiry time for negative callout cache data for a domain. See section 40.41
for details of callout verification, and section 40.43 for details of the caching.

callout_domain_positive_expire Use:main Type:time Default: 7d

This option specifies the expiry time for positive callout cache data for a domain. See section 40.41
for details of callout verification, and section 40.43 for details of the caching.

callout_negative_expire Use:main Type:time Default: 2h

This option specifies the expiry time for negative callout cache data for an address. See section 40.41
for details of callout verification, and section 40.43 for details of the caching.

callout_positive_expire Use:main Type:time Default:24h

This option specifies the expiry time for positive callout cache data for an address. See section 40.41
for details of callout verification, and section 40.43 for details of the caching.

callout_random_local_part Use:main Type:stringt Default:see beIOV\}

This option defines the “random” local part that can be used as part of callout verification. The default
value is

$primary_host_name-$tod_epoch-testing

See section 40.42 for details of how this value is used.

| check_log_inodes Use:main Type:integer Default:0 |

Seecheck_spool_spackelow.

| check_log_space Use:main Type:integer Default:0 |

Seecheck_spool_spackelow.

151 Main configuration (14)

check_rfc2047_length Use:main Type:boolean Default:true

RFC 2047 defines a way of encoding non-ASCII characters in headers using a system of “encoded
words”. The RFC specifies a maximum length for an encoded word; strings to be encoded that exceed
this length are supposed to use multiple encoded words. By default, Exim does not recognize encoded
words that exceed the maximum length. However, it seems that some software, in violation of the
RFC, generates overlong encoded wordschéck rfc2047_lengthis set false, Exim recognizes
encoded words of any length.

| check_spool_inodes Use:main Type:integer Default:0 |

Seecheck_spool_spackelow.

| check_spool_space Use:main Type:integer Default:0 |

The fourcheck_...options allow for checking of disk resources before a message is accepted.

When any of these options are set, they apply to all incoming messages. If you want to apply different
checks to different kinds of message, you can do so by testing the varbiesnodes$log_space
$spool_inodesand$spool_spac@ an ACL with appropriate additional conditions.

check_spool_spacandcheck_spool_inodegheck the spool partition if either value is greater than
zero, for example:

check_spool_space = 10M
check_spool_inodes = 100

The spool partition is the one that contains the directory defined by SPOOL_DIRECTORY in
Local/Makefile It is used for holding messages in transit.

check log_spacendcheck log_inodesheck the partition in which log files are written if either is
greater than zero. These should be set onlpdf file_path and spool_directory refer to different
partitions.

If there is less space or fewer inodes than requested, Exim refuses to accept incoming mail. In the
case of SMTP input this is done by giving a 452 temporary error response to the MAIL command. If
ESMTP is in use and there was a SIZE parameter on the MAIL command, its value is added to the
check_spool_spacegalue, and the check is performed evenlieck spool_spaces zero, unlesso_
smtp_check_spool_spacis set.

The values forcheck spool_spacand check log_spaceare held as a number of kilobytes. If a
non-multiple of 1024 is specified, it is rounded up.

For non-SMTP input and for batched SMTP input, the test is done at start-up; on failure a message is
written to stderr and Exim exits with a non-zero code, as it obviously cannot send an error message of
any kind.

daemon_smtp_ports Use:main Type:string Default:snt p |

This option specifies one or more default SMTP ports on which the Exim daemon listens. See chapter
13 for details of how it is used. For backward compatibilthgemon_smtp_port (singular) is a
synonym.

daemon_startup_retries Use:main Type:integer Default:9 |

This option, along withdaemon_startup_sleepcontrols the retrying done by the daemon at startup
when it cannot immediately bind a listening socket (typically because the socket is already in use):
daemon_startup_retriesdefines the number of retries after the first failure, dagdmon_startup__
sleepdefines the length of time to wait between retries.

152 Main configuration (14)

| daemon_startup_sleep Use:main Type:time Default: 305|

Seedaemon_startup_retries

| delay_warning Use:main Type:time list Default:24h |

When a message is delayed, Exim sends a warning message to the sender at intervals specified by this
option. The data is a colon-separated list of times after which to send warning messages. If the value
of the option is an empty string or a zero time, no warnings are sent. Up to 10 times may be given. If a
message has been on the queue for longer than the last time, the last interval between the times is
used to compute subsequent warning times. For example, with

delay_warning = 4h:8h:24h

the first message is sent after 4 hours, the second after 8 hours, and the third one after 24 hours. After
that, messages are sent every 16 hours, because that is the interval between the last two times on the
list. If you set just one time, it specifies the repeat interval. For example, with:

delay_warning = 6h

messages are repeated every six hours. To stop warnings after a given time, set a very large time at the
end of the list. For example:

delay_warning = 2h:12h:99d

delay_warning_condition Use:main Type:stringt Default:see be|0V\+

The string is expanded at the time a warning message might be sent. If all the deferred addresses have
the same domain, it is set $domainduring the expansion. Otherwi$elomainis empty. If the result

of the expansion is a forced failure, an empty string, or a string matching any of “0”, “no” or “false”
(the comparison being done caselessly) then the warning message is not sent. The default is:

delay_warning_condition = ${if or {\
{'eq{$h_list-id:$h_list-post:$h_list-subscribe:}{})\
{ match{$h_precedence:}{(?i)bulk|list|junk} }\
{ match{$h_auto-submitted:}{(?i)auto-generated|auto-replied} }\

}{no}yes}}

This suppresses the sending of warnings for messages that ctum&iD:, List-Post; or List-
Subscribeheaders, or have “bulk”, “list” or “junk” in @recedenceheader, or have “auto-generated”
or “auto-replied” in arAuto-Submittedheader.

deliver_drop_privilege Use:main Type:boolean Default:false

If this option is set true, Exim drops its root privilege at the start of a delivery process, and runs as the
Exim user throughout. This severely restricts the kinds of local delivery that are possible, but is viable
in certain types of configuration. There is a discussion about the use of root privilege in chapter 52.

deliver_queue_load_max Use:main Type:fixed-point Default:unset

When this option is set, a queue run is abandoned if the system load average becomes greater than the
value of the option. The option has no effect on ancient operating systems on which Exim cannot
determine the load average. See aiseue_only loadandsmtp_load_reserve

delivery_date _remove Use:main Type:boolean Default:true

Exim’s transports have an option for addin@alivery-date:header to a message when it is delivered,
in exactly the same way &eturn-pathis handledDelivery-date:rrecords the actual time of delivery.

153 Main configuration (14)

Such headers should not be present in incoming messages, and this option causes them to be removed
at the time the message is received, to avoid any problems that might occur when a delivered message
is subsequently sent on to some other recipient.

disable _fsync Use:main Type:boolean Default:false

This option is available only if Exim was built with the compile-time option ENABLE_DISABLE_
FSYNC. When this is not set, a referencedisable_fsyncin a runtime configuration generates an
“unknown option” error. You should not build Exim with ENABLE_DISABLE_FSYNC or set
disable_fsyncunless you really, really, really understand what you are ddimgpre-compiled distri-
butions of Exim should ever make this option available.

Whendisable_fsyncis set true, Exim no longer calfsync()to force updated files’ data to be written
to disc before continuing. Unexpected events such as crashes and power outages may cause data to be
lost or scrambled. Here be DragoBsware.

disable_ipv6 Use:main Type:boolean Default:false

If this option is set true, even if the Exim binary has IPv6 support, no IPv6 activities take place.
AAAA records are never looked up, and any IPv6 addresses that are listechininterfaces data

for the manualroute router, etc. are ignored. If IP literals are enabled,iiigeral router declines to
handle IPv6 literal addresses.

dns_again_means_nonexist Use:main Type:domain list Default:unset

DNS lookups give a “try again” response for the DNS errors “non-authoritative host not found” and
“SERVERFAIL". This can cause Exim to keep trying to deliver a message, or to give repeated
temporary errors to incoming mail. Sometimes the effect is caused by a badly set up name server and
may persist for a long time. If a domain which exhibits this problem matches anythiahgiragain_
means_nonexistit is treated as if it did not exist. This option should be used with care. You can
make it apply to reverse lookups by a setting such as this:

dns_again_means_nonexist = *.in-addr.arpa

This option applies to all DNS lookups that Exim does. It also applies whegdti®ostbyname@r
getipnodebynameunctions give temporary errors, since these are most likely to be caused by DNS
lookup problems. Thanslookuprouter has some options of its own for controlling what happens
when lookups for MX or SRV records give temporary errors. These more specific options are applied
after this global option.

dns_check_names_pattern Use:main Type:string Default:see be|OV\+

When this option is set to a non-empty string, it causes Exim to check domain names for characters
that are not allowed in host names before handing them to the DNS resolver, because some resolvers
give temporary errors for names that contain unusual characters. If a domain name contains any
unwanted characters, a “not found” result is forced, and the resolver is not called. The check is done
by matching the domain name against a regular expression, which is the value of this option. The
default pattern is

dns_check_names_pattern =\
N>\ 0)INW_](?>[a-z0-9/-1* [N\W_])?)+$

which permits only letters, digits, slashes, and hyphens in components, but they must start and end
with a letter or digit. Slashes are not, in fact, permitted in host names, but they are found in certain NS
records (which can be accessed in Exim by usimnsdb lookup). If you setallow_utf8_domains

you must modify this pattern, or set the option to an empty string.

154 Main configuration (14)

dns_csa_search_limit Use:main Type:integer Default:5

This option controls the depth of parental searching for CSA SRV records in the DNS, as described in
more detail in section 40.46.

dns_csa_use_reverse Use:main Type:boolean Default:true

This option controls whether or not an IP address, given as a CSA domain, is reversed and looked up
in the reverse DNS, as described in more detail in section 40.46.

| dns_ipv4_lookup Use:main Type:domain list Default:unset

When Exim is compiled with IPv6 support amtisable_ipv6is not set, it looks for IPv6 address
records (AAAA records) as well as IPv4 address records (A records) when trying to find IP addresses
for hosts, unless the host’s domain matches this list.

This is a fudge to help with name servers that give big delays or otherwise do not work for the AAAA
record type. In due course, when the world’s name servers have all been upgraded, there should be no
need for this option.

dns_retrans Use:main Type:time Default:0s

The optionsdns_retrans and dns_retry can be used to set the retransmission and retry parameters
for DNS lookups. Values of zero (the defaults) leave the system default settings unchanged. The first
value is the time between retries, and the second is the number of retries. It isn't totally clear exactly
how these settings affect the total time a DNS lookup may take. | haven't found any documentation
about timeouts on DNS lookups; these parameter values are available in the external resolver interface
structure, but nowhere does it seem to describe how they are used or what you might want to set in
them.

| dns_retry Use:main Type:integer Default: 0 |

Seedns_retransabove.

| drop_cr Use:main Type:boolean Default:false |

This is an obsolete option that is now a no-op. It used to affect the way Exim handled CR and LF
characters in incoming messages. What happens now is described in section 44.2.

dsn_from Use:main Type:stringt Default:see beIovx}

This option can be used to vary the content§mim: header lines in bounces and other automatically
generated messages (“Delivery Status Notifications” — hence the name of the option). The default
setting is:

dsn_from = Mail Delivery System <Mailer-Daemon@$qualify_domain>

The value is expanded every time it is needed. If the expansion fails, a panic is logged, and the default
value is used.

envelope_to_remove Use:main Type:boolean Default:true

Exim’s transports have an option for addingEmvelope-toheader to a message when it is delivered,
in exactly the same way aReturn-path:is handled.Envelope-to:records the original recipient
address from the messages’s envelope that caused the delivery to happen. Such headers should not be

155 Main configuration (14)

present in incoming messages, and this option causes them to be removed at the time the message is
received, to avoid any problems that might occur when a delivered message is subsequently sent on to
some other recipient.

errors_copy Use:main Type:string listf Default:unset

Setting this option causes Exim to send bcc copies of bounce messages that it generates to other
addressedNote: This does not apply to bounce messages coming from elsewhere. The value of the
option is a colon-separated list of items. Each item consists of a pattern, terminated by white space,
followed by a comma-separated list of email addresses. If a pattern contains spaces, it must be
enclosed in double quotes.

Each pattern is processed in the same way as a single item in an address list (see section 10.19). When
a pattern matches the recipient of the bounce message, the message is copied to the addresses on the
list. The items are scanned in order, and once a matching one is found, no further items are examined.
For example:

errors_copy = spgr@mydomain postmaster@mydomain.example :\
rgps@mydomain hostmaster@mydomain.example,\
postmaster@mydomain.example

The address list is expanded before use. The expansion varkibted partand $domainare set
from the original recipient of the error message, and if there was any wildcard matching in the
pattern, the expansion variabkd; $1, etc. are set in the normal way.

errors_reply_to Use:main Type:string Default:unset

By default, Exim’s bounce and delivery warning messages contain the header line
From: Mail Delivery System <Mailer-Daemon@ qualify-domairr

wherequalify-domainis the value of thejualify_domain option. A warning message that is gener-
ated by thequota_warn_messageoption in anappendfiletransport may contain its owRrom:
header line that overrides the default.

Experience shows that people reply to bounce messages. Krtbes reply to option is set, a
Reply-To:header is added to bounce and warning messages. For example:

errors_reply_to = postmaster@my.domain.example

The value of the option is not expanded. It must specify a valid RFC 2822 address. However, if a
warning message that is generated by gleta_warn_messageption in anappendfiletransport
contain its owrReply-To:header line, the value of tleerors_reply_to option is not used.

exim_group Use:main Type:string Default:compile-
time configured

This option changes the gid under which Exim runs when it gives up root privilege. The default value
is compiled into the binary. The value of this option is used only wésém_useris also set. Unless

it consists entirely of digits, the string is looked up usigtgrnam() and failure causes a configur-
ation error. See chapter 52 for a discussion of security issues.

exim_path Use:main Type:string Default:see be|0V\+

This option specifies the path name of the Exim binary, which is used when Exim needs to re-exec
itself. The default is set up to point to the fd&imin the directory configured at compile time by the
BIN_DIRECTORY setting. It is necessary to charg@m_path if, exceptionally, Exim is run from

some other placaarning: Do not use a macro to define the value of this option, because you will

156 Main configuration (14)

break those Exim utilities that scan the configuration file to find where the binary is. (They then use
the-bP option to extract option settings such as the valspobl_directory.)

exim_user Use:main Type:string Default:compile-
time configured

This option changes the uid under which Exim runs when it gives up root privilege. The default value
is compiled into the binary. Ownership of the run time configuration file and the use eCthrd-D
command line options is checked against the values in the binary, not what is set here.

Unless it consists entirely of digits, the string is looked up ugetpwnam()and failure causes a
configuration error. lexim_groupis not also supplied, the gid is taken from the resulgetpwnam()
if it is used. See chapter 52 for a discussion of security issues.

extra_local_interfaces Use:main Type:string list Default: unset|

This option defines network interfaces that are to be considered local when routing, but which are not
used for listening by the daemon. See section 13.8 for details.

extract_addresses_remove_ Use:main Type:boolean Default:true
arguments

According to some Sendmail documentation (Sun, IRIX, HP-UX), if any addresses are present on the
command line when the option is used to build an envelope from a message!s Cc: and Bcc:
headers, the command line addresses are removed from the recipients list. This is also how Smail
behaves. However, other Sendmail documentation (the O’Reilly book) states that command line
addresses are added to those obtained from the header lines. &Xtnaat_addresses_remove_
argumentsis true (the default), Exim subtracts argument headers. If it is set false, Exim adds rather
than removes argument addresses.

finduser_retries Use:main Type:integer Default:0

On systems running NIS or other schemes in which user and group information is distributed from a
remote system, there can be times whetpwnam(nd related functions fail, even when given valid
data, because things time out. Unfortunately these failures cannot be distinguished from genuine “not
found” errors. Iffinduser_retriesis set greater than zero, Exim will try that many extra times to find

a user or a group, waiting for one second between retries.

You should not set this option greater than zero if your user information is in a traditeingdasswd
file, because it will cause Exim needlessly to search the file multiple times for non-existent users, and
also cause delay.

freeze _tell Use:main Type:string list, Default: unset
comma separated

On encountering certain errors, or when configured to do so in a system filter, ACL, or special router,
Exim freezes a message. This means that no further delivery attempts take place until an administrator
thaws the message, or theto_thaw, ignore_bounce_errors_after or timeout_frozen_after fea-

ture cause it to be processed.fiéeze tellis set, Exim generates a warning message whenever it
freezes something, unless the message it is freezing is a locally-generated bounce message. (Without
this exception there is the possibility of looping.) The warning message is sent to the addresses
supplied as the comma-separated value of this option. If several of the message’s addresses cause
freezing, only a single message is sent. If the freezing was automatic, the reason(s) for freezing can be
found in the message log. If you configure freezing in a filter or ACL, you must arrange for any
logging that you require.

157 Main configuration (14)

gecos_name Use:main Type:stringt Default:unset

Some operating systems, notably HP-UX, use the “gecos” field in the system password file to hold
other information in addition to users’ real names. Exim looks up this field for use when it is creating
Sender:or From: headers. If eithegecos_patternor gecos_namere unset, the contents of the field

are used unchanged, except that, if an ampersand is encountered, it is replaced by the user’s login
name with the first character forced to upper case, since this is a convention that is observed on many
systems.

When these options are sggcos_patternis treated as a regular expression that is to be applied to
the field (again with & replaced by the login name), and if it matclgesos _nameés expanded and
used as the user's name.

Numeric variables such &, $2, etc. can be used in the expansion to pick up sub-fields that were
matched by the pattern. In HP-UX, where the user’'s name terminates at the first comma, the following
can be used:

gecos_pattern = ([*,]*)
gecos_name = $1

| gecos_pattern Use:main Type:string Default: unset|

Seegecos_namabove.

| gnutls_require_kx Use:main Type:string Default: unset|

This option controls the key exchange mechanisms when GnuTLS is used in an Exim server. For
details, see section 39.5.

gnutls_require_mac Use:main Type:string Default: unset

This option controls the MAC algorithms when GnuTLS is used in an Exim server. For details, see
section 39.5.

gnutls_require_protocols Use:main Type:string Default: unset

This option controls the protocols when GnuTLS is used in an Exim server. For details, see section
39.5.

headers_charset Use:main Type:string Default:see be|OV\+

This option sets a default character set for translating from encoded MIME “words” in header lines,
when referenced by abh_xxxexpansion item. The default is the value of HEADERS_CHARSET in
Local/Makefile The ultimate default is ISO-8859-1. For more details see the description of header
insertions in section 11.5.

header_maxsize Use:main Type:integer Default:see be|OV\+

This option controls the overall maximum size of a message’s header section. The default is the value
of HEADER_MAXSIZE in Local/Makefile the default for that is 1M. Messages with larger header
sections are rejected.

158 Main configuration (14)

header_line_maxsize Use:main Type:integer Default:0

This option limits the length of any individual header line in a message, after all the continuations
have been joined together. Messages with individual header lines that are longer than the limit are
rejected. The default value of zero means “no limit”.

helo_accept_junk_hosts Use:main Type:host listf Default:unset|

Exim checks the syntax of HELO and EHLO commands for incoming SMTP mail, and gives an error
response for invalid data. Unfortunately, there are some SMTP clients that send syntactic junk. They
can be accommodated by setting this option. Note that this is a syntax check onhel8eeerify

hostsif you want to do semantic checking. See alsglo_allow_charsfor a way of extending the
permitted character set.

helo_allow_chars Use:main Type:string Default: unset|

This option can be set to a string of rogue characters that are permitted in all EHLO and HELO names
in addition to the standard letters, digits, hyphens, and dots. If you really must allow underscores, you
can set

helo_allow _chars = _

Note that the value is one string, not a list.

helo_lookup_domains Use:main Type:domain listr Default: @ @] |

If the domain given by a client in a HELO or EHLO command matches this list, a reverse lookup is
done in order to establish the host’s true name. The default forces a lookup if the client host gives the
server’'s name or any of its IP addresses (in brackets), something that broken clients have been seen to
do.

helo_try verify_hosts Use:main Type:host listf Default:unset

By default, Exim just checks the syntax of HELO and EHLO commands ligé® accept_junk__

hosts and helo_allow_char3. However, some sites like to do more extensive checking of the data
supplied by these commands. The ACL conditi@nify = helo is provided to make this possible.
Formerly, it was necessary also to set this optioeld_try verify hostg to force the check to occur.

From release 4.53 onwards, this is no longer necessary. If the check has not been done before
verify = helo is encountered, it is done at that time. Consequently, this option is obsolete. Its
specification is retained here for backwards compatibility.

When an EHLO or HELO command is received, if the calling host matbleés try verify hosts
Exim checks that the host name given in the HELO or EHLO command either:

* is an IP literal matching the calling address of the host, or
* matches the host name that Exim obtains by doing a reverse lookup of the calling host address, or

* when looked up usingethostbyname(or getipnodebynamefyhen available) yields the calling
host address.

However, the EHLO or HELO command is not rejected if any of the checks fail. Processing con-

tinues, but the result of the check is remembered, and can be detected later in an ACldayfyhe
= helo condition.

159 Main configuration (14)

helo_verify _hosts Use:main Type:host listf Default:unset

Like helo_try verify hosts this option is obsolete, and retained only for backwards compatibility.
For hosts that match this option, Exim checks the host name given in the HELO or EHLO in the same
way as forhelo_try verify _hosts If the check fails, the HELO or EHLO command is rejected with a
550 error, and entries are written to the main and reject logs. If a MAIL command is received before
EHLO or HELO, it is rejected with a 503 error.

| hold_domains Use:main Type:domain list Default:unset

This option allows mail for particular domains to be held on the queue manually. The option is
overridden if a message delivery is forced with ti, -gf, -Rf or -Sf options, and also while testing

or verifying addresses usingt or -bv. Otherwise, if a domain matches an itemhioid_domains no
routing or delivery for that address is done, and it is deferred every time the message is looked at.

This option is intended as a temporary operational measure for delaying the delivery of mail while
some problem is being sorted out, or some new configuration tested. If you just want to delay the
processing of some domains until a queue run occurs, you shouldueses_domainsor queue_
smtp_domains nothold_domains

A setting ofhold_domainsdoes not override Exim’s code for removing messages from the queue if
they have been there longer than the longest retry time in any retry rule. If you want to hold messages
for longer than the normal retry times, insert a dummy retry rule with a long retry time.

host_lookup Use:main Type:host listf Default:unset|

Exim does not look up the name of a calling host from its IP address unless it is required to compare
against some host list, or the host matchefo_try verify _hostsor helo_verify _hosts or the host
matches this option (which normally contains IP addresses rather than host names). The default
configuration file contains

host_lookup = *

which causes a lookup to happen for all hosts. If the expense of these lookups is felt to be too great,
the setting can be changed or removed.

After a successful reverse lookup, Exim does a forward lookup on the name it has obtained, to verify
that it yields the IP address that it started with. If this check fails, Exim behaves as if the name lookup
failed.

After any kind of failure, the host name (BBsender_host_nampeemains unset, anfihost_lookup__
failed is set to the string “1". See alsdns_again_means_nonexisthelo _lookup_domains and
verify ~ =reverse_host_lookup in ACLs.

host_lookup_order Use:main Type:string list Default:
bydns: byaddr

This option specifies the order of different lookup methods when Exim is trying to find a host name
from an IP address. The default is to do a DNS lookup first, and then to try a local lookup (using
gethostbyaddr(pr equivalent) if that fails. You can change the order of these lookups, or omit one
entirely, if you want.

Warning: The “byaddr” method does not always yield aliases when there are multiple PTR records in

the DNS and the IP address is not listed/@tc/hosts Different operating systems give different
results in this case. That is why the default tries a DNS lookup first.

160 Main configuration (14)

host_reject_connection Use:main Type:host listf Default:unset

If this option is set, incoming SMTP calls from the hosts listed are rejected as soon as the connection
is made. This option is obsolete, and retained only for backward compatibility, because nowadays the
ACL specified byacl_smtp_connectan also reject incoming connections immediately.

The ability to give an immediate rejection (either by this option or using an ACL) is provided for use

in unusual cases. Many hosts will just try again, sometimes without much delay. Normally, it is better
to use an ACL to reject incoming messages at a later stage, such as after RCPT commands. See
chapter 40.

hosts_connection_nolog Use:main Type:host listf Default:unset

This option defines a list of hosts for which connection logging does not happen, even though the
smtp_connectionlog selector is set. For example, you might want not to log SMTP connections from
local processes, or from 127.0.0.1, or from your local LAN. This option is consulted in the main loop
of the daemon; you should therefore strive to restrict its value to a short inline list of IP addresses and
networks. To disable logging SMTP connections from local processes, you must create a host list with
an empty item. For example:

hosts_connection_nolog = :

If the smtp_connectionlog selector is not set, this option has no effect.

hosts_treat_as_local Use:main Type:domain list Default:unset

If this option is set, any host names that match the domain list are treated as if they were the local host
when Exim is scanning host lists obtained from MX records or other sources. Note that the value of

this option is a domain list, not a host list, because it is always used to check host names, not IP
addresses.

This option also applies when Exim is matching the special it@msx_any @mx_primary , and
@mx_secondary in a domain list (see section 10.8), and when checkinghtbgs option in the
smtptransport for the local host (see th#ow_localhostoption in that transport). See al$émcal_
interfaces extra_local_interfaces and chapter 13, which contains a discussion about local network
interfaces and recognizing the local host.

ibase_servers Use:main Type:string list Default: unset

This option provides a list of InterBase servers and associated connection data, to be used in conjunc-
tion with ibaselookups (see section 9.21). The option is available only if Exim has been built with
InterBase support.

ignore_bounce_errors_after Use:main Type:time Default: 10w

This option affects the processing of bounce messages that cannot be delivered, that is, those that
suffer a permanent delivery failure. (Bounce messages that suffer temporary delivery failures are of
course retried in the usual way.)

After a permanent delivery failure, bounce messages are frozen, because there is no sender to whom
they can be returned. When a frozen bounce message has been on the queue for more than the given
time, it is unfrozen at the next queue run, and a further delivery is attempted. If delivery fails again,
the bounce message is discarded. This makes it possible to keep failed bounce messages around for a
shorter time than the normal maximum retry time for frozen messages. For example,

ignore_bounce_errors_after = 12h

161 Main configuration (14)

retries failed bounce message deliveries after 12 hours, discarding any further failures. If the value of
this option is set to a zero time period, bounce failures are discarded immediately. Setting a very long
time (as in the default value) has the effect of disabling this option. For ways of automatically dealing
with other kinds of frozen message, se#o_thaw andtimeout_frozen_after.

| ignore_fromline_hosts Use:main Type:host listt Default:unset

Some broken SMTP clients insist on sending a UUCP-like “From ” line before the headers of a
message. By default this is treated as the start of the message’s body, which means that any following
headers are not recognized as such. Exim can be made to ignore it by ggttirg fromline_hosts

to match those hosts that insist on sending it. If the sender is actually a local process rather than a
remote host, and is usings to inject the messageignore_fromline_local must be set to achieve

this effect.

| ignore_fromline_local Use:main Type:boolean Default:false |

Seeignore_fromline_hostsabove.

| keep_malformed Use:main Type:time Default:4d |

This option specifies the length of time to keep messages whose spool files have been corrupted in
some way. This should, of course, never happen. At the next attempt to deliver such a message, it gets
removed. The incident is logged.

Idap_default_servers Use:main Type:string list Default: unset

This option provides a list of LDAP servers which are tried in turn when an LDAP query does not
contain a server. See section 9.14 for details of LDAP queries. This option is available only when
Exim has been built with LDAP support.

Idap_version Use:main Type:integer Default: unset

This option can be used to force Exim to set a specific protocol version for LDAP. If it option is
unset, it is shown by thebP command line option as -1. When this is the case, the default is 3 if
LDAP_VERSIONS is defined in the LDAP headers; otherwise it is 2. This option is available only
when Exim has been built with LDAP support.

local_from_check Use:main Type:boolean Default:true

When a message is submitted locally (that is, not over a TCP/IP connection) by an untrusted user,
Exim removes any existingender:header line, and checks that theom: header line matches the
login of the calling user and the domain specifiedjblify_domain.

Note: An unqualified address (no domain) in theom: header in a locally submitted message is
automatically qualified by Exim, unless t#img command line option is used.

You can usdocal_from_prefix andlocal_from_suffix to permit affixes on the local part. If tHegom:
header line does not match, Exim addSenderheader with an address constructed from the calling
user’s login and the default qualify domain.

If local_from_checkis set false, thérom: header check is disabled, and Sender:header is ever
added. If, in addition, you want to retaBender:header lines supplied by untrusted users, you must
also setocal_sender_retainto be true.

162 Main configuration (14)

These options affect only the header lines in the message. The envelope sender is still forced to be the
login id at the qualify domain unleamtrusted_set_sendempermits the user to supply an envelope
sender.

For messages received over TCP/IP, an ACL can specify “submission mode” to request similar header
line checking. See section 44.16, which has more details S8bader:processing.

| local_from_ prefix Use:main Type:string Default: unset

When Exim checks th&rom: header line of locally submitted messages for matching the login id
(seelocal_from_checkabove), it can be configured to ignore certain prefixes and suffixes in the local
part of the address. This is done by settiogal_from_prefix and/orlocal_from_suffix to appropri-

ate lists, in the same form as thazal_part_prefix andlocal_part_suffix router options (see chapter
15). For example, if

local_from_prefix = *-
is set, @&rom: line containing
From: anything-user@your.domain.example

will not cause &Sender:header to be added ifser@your.domain.exampheatches the actual sender
address that is constructed from the login name and qualify domain.

| local_from_ suffix Use:main Type:string Default: unset|

Seelocal_from_prefix above.

| local_interfaces Use:main Type:string list Default:see belovxf

This option controls which network interfaces are used by the daemon for listening; they are also used
to identify the local host when routing. Chapter 13 contains a full description of this option and the
related optionsdaemon_smtp_ports extra_local_interfaces hosts_treat_as_local and tls_on_
connect_ports The default value fdocal_interfacesis

local_interfaces = 0.0.0.0
when Exim is built without IPv6 support; otherwise it is

local_interfaces = <; ::0; 0.0.0.0

local_scan_timeout Use:main Type:time Default:5m

This timeout applies to thivcal_scan()function (see chapter 42). Zero means “no timeout”. If the
timeout is exceeded, the incoming message is rejected with a temporary error if it is an SMTP
message. For a non-SMTP message, the message is dropped and Exim ends with a non-zero code.
The incident is logged on the main and reject logs.

local_sender_retain Use:main Type:boolean Default:false

When a message is submitted locally (that is, not over a TCP/IP connection) by an untrusted user,
Exim removes any existingender:header line. If you do not want this to happen, you must set
local_sender_retain and you must also sé&ical_from_checkto be false (Exim will complain if you

do not). See also the ACL modifiepntrol = suppress_local_fixups . Section 44.16 has

more details abouenderprocessing.

163 Main configuration (14)

localhost_number Use:main Type:stringt Default:unset

Exim’s message ids are normally unique only within the local host. If unigueness among a set of hosts
is required, each host must set a different value for ldmalhost_number option. The string is
expanded immediately after reading the configuration file (so that a number can be computed from the
host name, for example) and the result of the expansion must be a number in the range 0-16 (or 0-10
on operating systems with case-insensitive file systems). This is available in subsequent string expan-
sions via the variabl&localhost_numbeMhenlocalhost_number is setthe final two characters of

the message id, instead of just being a fractional part of the time, are computed from the time and the
local host number as described in section 3.4.

log_file_path Use:main Type:string listt Default:set at comj
pile time

This option sets the path which is used to determine the names of Exim’s log files, or indicates that
logging is to be to syslog, or both. It is expanded when Exim is entered, so it can, for example,
contain a reference to the host name. If no specific path is set for the log files at compile or run time,
they are written in a sub-directory callénfy in Exim’s spool directory. Chapter 49 contains further
details about Exim’s logging, and section 49.1 describes how the contelatg dile path are used.

If this string is fixed at your installation (contains no expansion variables) it is recommended that you
do not set this option in the configuration file, but instead supply the path using LOG_FILE _PATH in
Local/Makefileso that it is available to Exim for logging errors detected early on — in particular,
failure to read the configuration file.

log_selector Use:main Type:string Default: unset

This option can be used to reduce or increase the number of things that Exim writes to its log files. Its
argument is made up of names preceded by plus or minus characters. For example:

log_selector = +arguments -retry_defer

A list of possible names and what they control is given in the chapter on logging, in section 49.15.

log_timezone Use:main Type:boolean Default:false |

By default, the timestamps on log lines are in local time without the timezone. This means that if your
timezone changes twice a year, the timestamps in log lines are ambiguous for an hour when the clocks
go back. One way of avoiding this problem is to set the timezone to UTC. An alternative iddg set
timezonetrue. This turns on the addition of the timezone offset to timestamps in log lines. Turning on
this option can add quite a lot to the size of log files because each line is extended by 6 characters.
Note that the$tod_logvariable contains the log timestamp without the zone, but there is another
variable calledbtod_zonehat contains just the timezone offset.

| lookup_open_max Use:main Type:integer Default: 25

This option limits the number of simultaneously open files for single-key lookups that use regular
files (that is,Isearch dbom andcdb). Exim normally keeps these files open during routing, because
often the same file is required several times. If the limit is reached, Exim closes the least recently used
file. Note that if you are using thedbmlibrary, it actually opens two files for each logical DBM
database, though it still counts as one for the purposéso&iip_open_max If you are getting “too

many open files” errors with NDBM, you need to reduce the vallmokiip_open_max

164 Main configuration (14)

max_username_length Use:main Type:integer Default:0 |

Some operating systems are broken in that they truncate long argumegésptenam()to eight
characters, instead of returning “no such user”. If this option is set greater than zero, any attempt to
call getpwnam(with an argument that is longer behaves aggipwnam(failed.

| message_body_newlines Use:main Type:bool Default:false |

By default, newlines in the message body are replaced by spaces when setfingetisage bodynd
$message_body_emrdpansion variables. If this option is set true, this no longer happens.

| message_body_visible Use:main Type:integer Default:500 |

This option specifies how much of a message’s body is to be included ifinlessage bodsnd
$message_body_emrdpansion variables.

| message_id_header_domain Use:main Type:stringt Default:unset|

If this option is set, the string is expanded and used as the right hand side (domainM#dbage-

ID: header that Exim creates if a locally-originated incoming message does not have one. “Locally-
originated” means “not received over TCP/IP.” Otherwise, the primary host name is used. Only letters,
digits, dot and hyphen are accepted; any other characters are replaced by hyphens. If the expansion is
forced to fail, or if the result is an empty string, the option is ignored.

message_id_header_text Use:main Type:stringt Default:unset

If this variable is set, the string is expanded and used to augment the text ldesage-idheader

that Exim creates if a locally-originated incoming message does not have one. The text of this header
is required by RFC 2822 to take the form of an address. By default, Exim uses its internal message id
as the local part, and the primary host name as the domain. If this option is set, it is expanded, and
provided the expansion is not forced to fail, and does not yield an empty string, the result is inserted
into the header immediately before the @, separated from the internal message id by a dot. Any
characters that are illegal in an address are automatically converted into hyphens. This means that
variables such gbtod_logcan be used, because the spaces and colons will become hyphens.

message_logs Use:main Type:boolean Default:true

If this option is turned off, per-message log files are not created imigdogspool sub-directory.

This reduces the amount of disk I/O required by Exim, by reducing the number of files involved in
handling a message from a minimum of four (header spool file, body spool file, delivery journal, and
per-message log) to three. The other major I/O activity is Exim’s main log, which is not affected by
this option.

message_size_limit Use:main Type:stringt Default:50M

This option limits the maximum size of message that Exim will process. The value is expanded for
each incoming connection so, for example, it can be made to depend on the IP address of the remote
host for messages arriving via TCP/IP. After expansion, the value must be a sequence of decimal
digits, optionally followed by K or M.

Note: This limit cannot be made to depend on a message’s sender or any other properties of an
individual message, because it has to be advertised in the server’s response to EHLO. String expan-
sion failure causes a temporary error. A value of zero means no limit, but its use is not recommended.
See alsdounce_return_size_limit

165 Main configuration (14)

Incoming SMTP messages are failed with a 552 error if the limit is exceeded; locally-generated
messages either get a stderr message or a delivery failure message to the sender, dependiog on the
setting. Rejection of an oversized message is logged in both the main and the reject logs. See also the
generic transport optiomessage_size_limjtwhich limits the size of message that an individual
transport can process.

move_frozen_messages Use:main Type:boolean Default:false

This option, which is available only if Exim has been built with the setting
SUPPORT_MOVE_FROZEN_MESSAGES=yes

in Local/Makefile causes frozen messages and their message logs to be moved frompuihend
msglogdirectories on the spool tBinput and Fmsglog respectively. There is currently no support in
Exim or the standard utilities for handling such moved messages, and they do not show up in lists
generated bybp or by the Exim monitor.

mua_wrapper Use:main Type:boolean Default:false

Setting this option true causes Exim to run in a very restrictive mode in which it passes messages
synchronously to a smart host. Chapter 48 contains a full description of this facility.

| mysql_servers Use:main Type:string list Default: unset

This option provides a list of MySQL servers and associated connection data, to be used in conjunc-
tion with mysqgllookups (see section 9.21). The option is available only if Exim has been built with
MySQL support.

| never_users Use:main Type:string listt Default:unset

This option is expanded just once, at the start of Exim’s processing. Local message deliveries are
normally run in processes that are setuid to the recipient, and remote deliveries are normally run
under Exim’s own uid and gid. It is usually desirable to prevent any deliveries from running as root,
as a safety precaution.

When Exim is built, an option called FIXED_NEVER_USERS can be set to a list of users that must
not be used for local deliveries. This list is fixed in the binary and cannot be overridden by the
configuration file. By default, it contains just the single user name “root”. flder_usersruntime
option can be used to add more users to the fixed list.

If a message is to be delivered as one of the users on the fixed list aetlee_userslist, an error
occurs, and delivery is deferred. A common example is

never_users = root:daemon:bin

Including root is redundant if it is also on the fixed list, but it does no harm. This option overrides the
pipe_as_creatoroption of thepipetransport driver.

oracle_servers Use:main Type:string list Default: unset

This option provides a list of Oracle servers and associated connection data, to be used in conjunction
with oraclelookups (see section 9.21). The option is available only if Exim has been built with Oracle
support.

166 Main configuration (14)

percent_hack domains Use:main Type:domain list Default:unset

The “percent hack” is the convention whereby a local part containing a percent sign is re-interpreted
as a hew email address, with the percent replaced by @. This is sometimes called “source routing”,
though that term is also applied to RFC 2822 addresses that begin with an @ character. If this option
is set, Exim implements the percent facility for those domains listed, but no others. This happens
before an incoming SMTP address is tested against an ACL.

Warning: The “percent hack” has often been abused by people who are trying to get round relaying
restrictions. For this reason, it is best avoided if at all possible. Unfortunately, a number of less
security-conscious MTAs implement it unconditionally. If you are running Exim on a gateway host,
and routing mail through to internal MTAs without processing the local parts, it is a good idea to
reject recipient addresses with percent characters in their local parts. Exim’s default configuration
does this.

perl_at_start Use:main Type:boolean Default:false

This option is available only when Exim is built with an embedded Perl interpreter. See chapter 12 for
details of its use.

perl_startup Use:main Type:string Default: unset

This option is available only when Exim is built with an embedded Perl interpreter. See chapter 12 for
details of its use.

pgsql_servers Use:main Type:string list Default: unset

This option provides a list of PostgreSQL servers and associated connection data, to be used in
conjunction withpgsgllookups (see section 9.21). The option is available only if Exim has been built
with PostgreSQL support.

pid_file_path Use:main Type:stringt Default:set at com-
pile time

This option sets the name of the file to which the Exim daemon writes its process id. The string is
expanded, so it can contain, for example, references to the host name:

pid_file_path = /var/log/$primary_hostname/exim.pid
If no path is set, the pid is written to the fiéxim-daemon.pith Exim’s spool directory. The value set

by the option can be overridden by theP command line option. A pid file is not written if a
“non-standard” daemon is run by means of th¥ option, unless a path is explicitly supplied fP.

pipelining_advertise_hosts Use:main Type:host listf Default:* |

This option can be used to suppress the advertisement of the SMTP PIPELINING extension to
specific hosts. See also thm_pipelining control in section 40.20. When PIPELINING is not
advertised anégmtp_enforce_synds true, an Exim server enforces strict synchronization for each
SMTP command and response. When PIPELINING is advertised, Exim assumes that clients will use
it; “out of order” commands that are “expected” do not count as protocol errorss(age max__
synprot_errors).

167 Main configuration (14)

preserve_message_logs Use:main Type:boolean Default:false

If this option is set, message log files are not deleted when messages are completed. Instead, they are
moved to a sub-directory of the spool directory calledglog.OLD where they remain available for
statistical or debugging purposes. This is a dangerous option to set on systems with any appreciable
volume of mail. Use with care!

primary_hostname Use:main Type:string Default:see beIOV\}

This specifies the name of the current host. It is used in the default EHLO or HELO command for
outgoing SMTP messages (changeable viahtb® dataoption in thesmtptransport), and as the
default for qualify_domain. The value is also used by default in some SMTP response messages
from an Exim server. This can be changed dynamically by settiyg_active _hostname

If primary_hostname is not set, Exim callsiname()to find the host name. If this fails, Exim panics
and dies. If the name returned hyname() contains only one component, Exim passes it to
gethostbyname(pr getipnodebyname(yhen available) in order to obtain the fully qualified version.
The variable$primary_hostnameontains the host name, whether set explicitly by this option, or
defaulted.

print_topbitchars Use:main Type:boolean Default:false

By default, Exim considers only those characters whose codes lie in the range 32-126 to be printing
characters. In a number of circumstances (for example, when writing log entries) non-printing charac-
ters are converted into escape sequences, primarily to avoid messing up the laypouint If
topbitchars is set, code values of 128 and above are also considered to be printing characters.

This option also affects the header syntax checks performed bgutioeeplytransport, and whether

Exim uses RFC 2047 encoding of the user’s full name when constructing From: and Sender:
addresses (as described in section 44.18). Setting this option can cause Exim to generate eight bit
message headers that do not conform to the standards.

process_log_path Use:main Type:string Default: unset

This option sets the name of the file to which an Exim process writes its “process log” when sent a
USRL1 signal. This is used by thexiwhatutility script. If this option is unset, the file callegikim-
process.infan Exim’s spool directory is used. The ability to specify the name explicitly can be useful
in environments where two different Exims are running, using different spool directories.

prod_requires_admin Use:main Type:boolean Default:true |

The -M, -R, and-q command-line options require the caller to be an admin user uipless_
requires_adminis set false. See algpeue_list_requires_admin

| qualify_domain Use:main Type:string Default:see beIOV\}

This option specifies the domain name that is added to any envelope sender addresses that do not
have a domain qualification. It also applies to recipient addressesalify recipient is not set.
Unqualified addresses are accepted by default only for locally-generated messages. Qualification is
also applied to addresses in header lines sudhiam: andTo: for locally-generated messages, unless
the-bng command line option is used.

Messages from external sources must always contain fully qualified addresses, unless the sending host
matchessender_unqualified_hostsor recipient_unqualified_hosts(as appropriate), in which case
incoming addresses are qualified withalify _domain or qualify_recipient as necessary. Internally,

168 Main configuration (14)

Exim always works with fully qualified envelope addresseguélify_domain is not set, it defaults
to theprimary_hostname value.

| qualify_recipient Use:main Type:string Default:see beIovx}

This option allows you to specify a different domain for qualifying recipient addresses to the one that
is used for senders. Sqealify_domain above.

gueue_domains Use:main Type:domain listr Default:unset

This option lists domains for which immediate delivery is not required. A delivery process is started
whenever a message is received, but only those domains that do not match are processed. All other
deliveries wait until the next queue run. See aldd_domainsandqueue_smtp_domains

queue_list_requires_admin Use:main Type:boolean Default:true

The-bp command-line option, which lists the messages that are on the queue, requires the caller to be
an admin user unlesgieue_list_requires_adminis set false. See alpood_requires_admin.

gueue_only Use:main Type:boolean Default:false |

If queue_onlyis set, a delivery process is not automatically started whenever a message is received.
Instead, the message waits on the queue for the next queue run. Buend onlyis false, incoming
messages may not get delivered immediately when certain conditions (such as heavy load) occur.

The-odgq command line has the same effecgague_only The-odb and-odi command line options
override queue_onlyunlessqueue_only_overrideis set false. See alsgueue_only_file queue_
only load, andsmtp_accept_queue

| gueue_only_file Use:main Type:string Default: unset

This option can be set to a colon-separated list of absolute path names, each one optionally preceded
by “smtp”. When Exim is receiving a message, it tests for the existence of each listed path using a call
to stat(). For each path that exists, the corresponding queueing option is set. For paths with no prefix,
gueue_onlyis set; for paths prefixed by “smtpfueue_smtp_domaings set to match all domains.

So, for example,

gueue_only_file = smtp/somef/file

causes Exim to behave agjifeue_smtp_domainsvere set to “*” whenevelsome/fileexists.

qgueue_only_load Use:main Type:fixed-point Default: unset

If the system load average is higher than this value, incoming messages from all sources are queued,
and no automatic deliveries are started. If this happens during local or remote SMTP input, all
subsequent messages received on the same SMTP connection are queued by default, whatever hap-
pens to the load in the meantime, but this can be changed by getting only load_latchalse.

Deliveries will subsequently be performed by queue runner processes. This option has no effect on

ancient operating systems on which Exim cannot determine the load average. Sekelaiso
gueue_load_maxandsmtp_load_reserve

169 Main configuration (14)

gueue_only load_latch Use:main Type:boolean Default:true

When this option is true (the default), once one message has been queued because the load average is
higher than the value set lmueue_only load all subsequent messages received on the same SMTP
connection are also queued. This is a deliberate choice; even though the load average may fall below
the threshold, it doesn’t seem right to deliver later messages on the same connection when not
delivering earlier ones. However, there are special circumstances such as very long-lived connections
from scanning appliances where this is not the best strategy. In such gaees, only load_latch

should be set false. This causes the value of the load average to be re-evaluated for each message.

gueue_only_override Use:main Type:boolean Default:true

When this option is true, theodx command line options override the setting aquieue_only or
gueue_only filein the configuration file. Ifqueue_only overrideis set false, the-odx options
cannot be used to override; they are accepted, but ignored.

gueue_run_in_order Use:main Type:boolean Default:false

If this option is set, queue runs happen in order of message arrival instead of in an arbitrary order. For
this to happen, a complete list of the entire queue must be set up before the deliveries start. When the
queue is all held in a single directory (the default), a single list is created for both the ordered and the
non-ordered cases. Howeversjlit_spool_directory is set, a single list is not created whgueue__
run_in_order is false. In this case, the sub-directories are processed one at a time (in a random
order), and this avoids setting up one huge list for the whole queue. Thus, spigng run_in_

order with split_spool_directory may degrade performance when the queue is large, because of the
extra work in setting up the single, large list. In most situatieusue_run_in_ordershould not be

set.

gueue_run_max Use:main Type:integer Default:5

This controls the maximum number of queue runner processes that an Exim daemon can run simulta-
neously. This does not mean that it starts them all at once, but rather that if the maximum number are
still running when the time comes to start another one, it refrains from starting another one. This can

happen with very large queues and/or very sluggish deliveries. This option does not, however, inter-

lock with other processes, so additional queue runners can be started by other means, or by killing
and restarting the daemon.

Setting this option to zero does not suppress queue runs; rather, it disables the limit, allowing any
number of simultaneous queue runner processes to be run. If you do not want queue runs to occur,
omit the-gxx setting on the daemon’s command line.

| gueue_smtp_domains Use:main Type:domain list Default:unset

When this option is set, a delivery process is started whenever a message is received, routing is
performed, and local deliveries take place. However, if any SMTP deliveries are required for domains
that matchqueue_smtp_domainsthey are not immediately delivered, but instead the message waits

on the queue for the next queue run. Since routing of the message has taken place, Exim knows to
which remote hosts it must be delivered, and so when the queue run happens, multiple messages for
the same host are delivered over a single SMTP connection-ogs command line option causes

all SMTP deliveries to be queued in this way, and is equivalent to seftiegie_smtp_domaingo

“*”_See alsohold_domainsandqueue_domains

170 Main configuration (14)

receive_timeout Use:main Type:time Default:0s

This option sets the timeout for accepting a non-SMTP message, that is, the maximum time that Exim
waits when reading a message on the standard input. If the value is zero, it will wait for ever. This
setting is overridden by ther command line option. The timeout for incoming SMTP messages is
controlled bysmtp_receive_timeout

received_header_text Use:main Type:stringt Default:see beIOV\}

This string defines the contents of tReceivedmessage header that is added to each message, except
for the timestamp, which is automatically added on at the end (preceded by a semicolon). The string
is expanded each time it is used. If the expansion yields an empty strirRecwivedheader line is

added to the message. Otherwise, the string should start with the text “Received:” and conform to the
RFC 2822 specification fdReceivedheader lines. The default setting is:

received_header_text = Received: \
${if def:sender_rcvhost {from $sender_rcvhost\n\t})\
{${if def:sender_ident \
{from ${quote_local_part:$sender_ident} }}
${if def:sender_helo_name {(helo=$sender_helo_name)\n\t}}}})\
by $primary_hostname \
${if def:received_protocol {with $received_protocol}} \
${if def:tls_cipher {($tls_cipher)\n\t}}\
(Exim $version_number)\n\t\
${if def:sender_address \
{(envelope-from <$sender_address>)\n\t}}\
id $message_exim_id\
${if def:received_for {\n\tfor $received_for}}

The reference to the TLS cipher is omitted when Exim is built without TLS support. The use of
conditional expansions ensures that this works for both locally generated messages and messages
received from remote hosts, giving header lines such as the following:

Received: from scrooge.carol.example ([192.168.12.25] ident=root)
by marley.carol.example with esmtp (Exim 4.00)

(envelope-from <bob@-carol.example>)

id 1610Wa-00019I-00

for chas@dickens.example; Tue, 25 Dec 2001 14:43:44 +0000
Received: by scrooge.carol.example with local (Exim 4.00)

id 1610WW-000083-00; Tue, 25 Dec 2001 14:43:41 +0000

Until the body of the message has been received, the timestamp is the time when the message started
to be received. Once the body has arrived, and all policy checks have taken place, the timestamp is
updated to the time at which the message was accepted.

received_headers_max Use:main Type:integer Default: 30

When a message is to be delivered, the numbdéRaxfeivedheaders is counted, and if it is greater
than this parameter, a mail loop is assumed to have occurred, the delivery is abandoned, and an error
message is generated. This applies to both local and remote deliveries.

recipient_unqualified_hosts Use:main Type:host listf Default:unset|

This option lists those hosts from which Exim is prepared to accept unqualified recipient addresses in
message envelopes. The addresses are made fully qualified by the additiorgqoélife recipient

value. This option also affects message header lines. Exim does not reject unqualified recipient
addresses in headers, but it qualifies them only if the message came from a host that matches

171 Main configuration (14)

recipient_unqualified_hosts or if the message was submitted locally (not using TCP/IP), and the
-bng option was not set.

recipients_max Use:main Type:integer Default: 0 |

If this option is set greater than zero, it specifies the maximum number of original recipients for any
message. Additional recipients that are generated by aliasing or forwarding do not count. SMTP
messages get a 452 response for all recipients over the limit; earlier recipients are delivered as normal.
Non-SMTP messages with too many recipients are failed, and no deliveries are done.

Note: The RFCs specify that an SMTP server should accept at least 100 RCPT commands in a single
message.

| recipients_max_reject Use:main Type:boolean Default:false

If this option is set true, Exim rejects SMTP messages containing too many recipients by giving 552
errors to the surplus RCPT commands, and a 554 error to the eventual DATA command. Otherwise
(the default) it gives a 452 error to the surplus RCPT commands and accepts the message on behalf of
the initial set of recipients. The remote server should then re-send the message for the remaining
recipients at a later time.

| remote_max_parallel Use:main Type:integer Default: 2

This option controls parallel delivery of one message to a number of remote hosts. If the value is less
than 2, parallel delivery is disabled, and Exim does all the remote deliveries for a message one by one.
Otherwise, if a single message has to be delivered to more than one remote host, or if several copies
have to be sent to the same remote host, ugetoote_max_parallel deliveries are done simulta-
neously. If more thamemote _max_parallel deliveries are required, the maximum number of pro-
cesses are started, and as each one finishes, another is begun. The order of starting processes is the
same as if sequential delivery were being done, and can be controlled byntbée _sort_domains

option. If parallel delivery takes place while running with debugging turned on, the debugging output
from each delivery process is tagged with its process id.

This option controls only the maximum number of parallel deliveries for one message in one Exim
delivery process. Because Exim has no central queue manager, there is no way of controlling the total
number of simultaneous deliveries if the configuration allows a delivery attempt as soon as a message
is received.

If you want to control the total number of deliveries on the system, you need to setu¢ue only

option. This ensures that all incoming messages are added to the queue without starting a delivery
process. Then set up an Exim daemon to start queue runner processes at appropriate intervals
(probably fairly often, for example, every minute), and limit the total number of queue runners by
setting thequeue_run_maxparameter. Because each queue runner delivers only one message at a
time, the maximum number of deliveries that can then take place at omgeig_run_maxmulti-

plied byremote_max_parallel

If it is purely remote deliveries you want to control, ugeeue_smtp_domainsnstead ofqueue
only. This has the added benefit of doing the SMTP routing before queueing, so that several messages
for the same host will eventually get delivered down the same connection.

remote_sort_domains Use:main Type:domain list Default:unset

When there are a number of remote deliveries for a message, they are sorted by domain into the order
given by this list. For example,

remote_sort_domains = *.cam.ac.uk:*.uk

172 Main configuration (14)

would attempt to deliver to all addresses in ttem.ac.ukdomain first, then to those in thak
domain, then to any others.

retry _data_expire Use:main Type:time Default: 7d

This option sets a “use before” time on retry information in Exim’s hints database. Any older retry
data is ignored. This means that, for example, once a host has not been tried for 7 days, Exim behaves
as if it has no knowledge of past failures.

retry_interval_max Use:main Type:time Default:24h

Chapter 32 describes Exim's mechanisms for controlling the intervals between delivery attempts for
messages that cannot be delivered straight away. This option sets an overall limit to the length of time
between retries. It cannot be set greater than 24 hours; any attempt to do so forces the default value.

return_path_remove Use:main Type:boolean Default:true

RFC 2821, section 4.4, states that an SMTP server must indedt@n-path:header line into a
message when it makes a “final delivery”. TReturn-path:header preserves the sender address as
received in the MAIL command. This description implies that this header should not be present in an
incoming message. Weturn_path_remove is true, any existindgReturn-path:headers are removed
from messages at the time they are received. Exim’s transports have options for Rdtling-path:
headers at the time of delivery. They are normally used only for final local deliveries.

| return_size_limit Use:main Type:integer Default: 100K |

This option is an obsolete synonym bBmunce_return_size_limit

| rfc1413_hosts Use:main Type:host listf Default:* |

RFC 1413 identification calls are made to any client host which matches an item in the list.

| rfc1413_query_timeout Use:main Type:time Default:5s |

This sets the timeout on RFC 1413 identification calls. If it is set to zero, no RFC 1413 calls are ever
made.

sender_unqualified_hosts Use:main Type:host listt Default:unset

This option lists those hosts from which Exim is prepared to accept unqualified sender addresses. The
addresses are made fully qualified by the additioquilify_domain. This option also affects mess-

age header lines. Exim does not reject unqualified addresses in headers that contain sender addresses,
but it qualifies them only if the message came from a host that maseimeter_unqualified_hostsor

if the message was submitted locally (not using TCP/IP), andbtiogoption was not set.

smtp_accept_keepalive Use:main Type:boolean Default:true

This option controls the setting of the SO_KEEPALIVE option on incoming TCP/IP socket connec-

tions. When set, it causes the kernel to probe idle connections periodically, by sending packets with
“old” sequence numbers. The other end of the connection should send an acknowledgment if the
connection is still okay or a reset if the connection has been aborted. The reason for doing this is that
it has the beneficial effect of freeing up certain types of connection that can get stuck when the remote

173 Main configuration (14)

host is disconnected without tidying up the TCP/IP call properly. The keepalive mechanism takes
several hours to detect unreachable hosts.

smtp_accept_max Use:main Type:integer Default: 20

This option specifies the maximum number of simultaneous incoming SMTP calls that Exim will
accept. It applies only to the listening daemon; there is no control (in Exim) when incoming SMTP is
being handled bynetd If the value is set to zero, no limit is applied. However, it is required to be
non-zero if eithersmtp_accept_max_per_hostor smtp_accept_queueis set. See alsemtp_
accept_reserveandsmtp_load_reserve

A new SMTP connection is immediately rejected if $ratp_accept_maximit has been reached. If
not, Exim first checksmtp_accept_max_per_hostlf that limit has not been reached for the client
host, smtp_accept_reserveand smtp_load_reserve are then checked before accepting the
connection.

smtp_accept_max_nonmail Use:main Type:integer Default: 10

Exim counts the number of “non-mail” commands in an SMTP session, and drops the connection
if there are too many. This option defines “too many”. The check catches some denial-of-service
attacks, repeated failing AUTHSs, or a mad client looping sending EHLO, for example. The check is
applied only if the client host matchesitp_accept_max_nonmail _hosts

When a new message is expected, one occurrence of RSET is not counted. This allows a client to
send one RSET between messages (this is not necessary, but some clients do it). Exim also allows one
uncounted occurrence of HELO or EHLO, and one occurrence of STARTTLS between messages.
After starting up a TLS session, another EHLO is expected, and so it too is not counted. The first
occurrence of AUTH in a connection, or immediately following STARTTLS is not counted.
Otherwise, all commands other than MAIL, RCPT, DATA, and QUIT are counted.

smtp_accept_max_nonmail_hostdJse:main Type:host listf Default:*

You can control which hosts are subject to $mtp_accept_max_nonmailcheck by setting this
option. The default value makes it apply to all hosts. By changing the value, you can exclude any
badly-behaved hosts that you have to live with.

smtp_accept_max_per_ Use:main Type:integer Default: 1000
connection

The value of this option limits the number of MAIL commands that Exim is prepared to accept over a
single SMTP connection, whether or not each command results in the transfer of a message. After the
limit is reached, a 421 response is given to subsequent MAIL commands. This limit is a safety
precaution against a client that goes mad (incidents of this type have been seen).

smtp_accept_max_per_host Use:main Type:stringt Default: unset|

This option restricts the number of simultaneous IP connections from a single host (strictly, from a
single IP address) to the Exim daemon. The option is expanded, to enable different limits to be
applied to different hosts by reference®sender_host_addres®nce the limit is reached, additional
connection attempts from the same host are rejected with error code 421. This is entirely independent
of smtp_accept_reserveThe option’s default value of zero imposes no limit. If this option is set
greater than zero, it is required tattp_accept_maxbe non-zero.

Warning: When setting this option you should not use any expansion constructions that take an
appreciable amount of time. The expansion and test happen in the main daemon loop, in order to
reject additional connections without forking additional processes (otherwise a denial-of-service

174 Main configuration (14)

attack could cause a vast number or processes to be created). While the daemon is doing this process-
ing, it cannot accept any other incoming connections.

smtp_accept_queue Use:main Type:integer Default: 0

If the number of simultaneous incoming SMTP connections being handled via the listening daemon
exceeds this value, messages received by SMTP are just placed on the queue; no delivery processes
are started automatically. The count is fixed at the start of an SMTP connection. It cannot be updated

in the subprocess that receives messages, and so the queueing or not queueing applies to all messages
received in the same connection.

A value of zero implies no limit, and clearly any non-zero value is useful only if it is less than the
smtp_accept_maxvalue (unless that is zero). See algoeue_only queue_only_load queue_
smtp_domains and the variousodx command line options.

smtp_accept_queue_per_ Use:main Type:integer Default: 10
connection

This option limits the number of delivery processes that Exim starts automatically when receiving
messages via SMTP, whether via the daemon or by the udis of -bS. If the value of the option is

greater than zero, and the number of messages received in a single SMTP session exceeds this
number, subsequent messages are placed on the queue, but no delivery processes are started. This
helps to limit the number of Exim processes when a server restarts after downtime and there is a lot of
mail waiting for it on other systems. On large systems, the default should probably be increased, and
on dial-in client systems it should probably be set to zero (that is, disabled).

smtp_accept_reserve Use:main Type:integer Default:0

Whensmtp_accept_maxis set greater than zero, this option specifies a number of SMTP connec-
tions that are reserved for connections from the hosts that are speciettpnreserve_hostsThe

value set irsmtp_accept_maxncludes this reserve pool. The specified hosts are not restricted to this
number of connections; the option specifies a minimum number of connection slots for them, not a
maximum. It is a guarantee that this group of hosts can always get atskefst accept_reserve
connections. However, the limit specified Byntp_accept_max_per_hosts still applied to each
individual host.

For example, ismtp_accept_maxs set to 50 an@mtp_accept_reserves set to 5, once there are 45
active connections (from any hosts), new connections are accepted only from hosts listet in
reserve_hostsprovided the other criteria for acceptance are met.

| smtp_active_hostname Use:main Type:stringt Default:unset|

This option is provided for multi-homed servers that want to masquerade as several different hosts. At
the start of an incoming SMTP connection, its value is expanded and used instead of the value of
$primary_hostnama SMTP responses. For example, it is used as domain name in the response to an
incoming HELO or EHLO command.

The active hostname is placed in tBsmtp_active_hostnameriable, which is saved with any
messages that are received. It is therefore available for use in routers and transports when the message
is later delivered.

If this option is unset, or if its expansion is forced to fail, or if the expansion results in an empty
string, the value offprimary_hostnameés used. Other expansion failures cause a message to be
written to the main and panic logs, and the SMTP command receives a temporary error. Typically, the
value ofsmtp_active_hostnamelepends on the incoming interface address. For example:

smtp_active_hostname = ${if eq{$received_ip_address}{10.0.0.1}\
{cox.mydomain}{box.mydomain}}

175 Main configuration (14)

Although $smtp_active_hostnanig primarily concerned with incoming messages, it is also used as
the default for HELO commands in callout verification if there is ho remote transport from which to
obtain ahelo_datavalue.

| smtp_banner Use:main Type:stringt Default:see beIovx}

This string, which is expanded every time it is used, is output as the initial positive response to an
SMTP connection. The default setting is:

smtp_banner = $smtp_active_hostname ESMTP Exim \
$version_number $tod_full

Failure to expand the string causes a panic error. If you want to create a multiline response to the
initial SMTP connection, use “\n” in the string at appropriate points, but not at the end. Note that the
220 code is not included in this string. Exim adds it automatically (several times in the case of a
multiline response).

smtp_check_spool_space Use:main Type:boolean Default:true

When this option is set, if an incoming SMTP session encounters the SIZE option on a MAIL
command, it checks that there is enough space in the spool directory’s partition to accept a message of
that size, while still leaving free the amount specifieddimeck _spool_spacéeven if that value is

zero). If there isn’t enough space, a temporary error code is returned.

| smtp_connect_backlog Use:main Type:integer Default: 20

This option specifies a maximum number of waiting SMTP connections. Exim passes this value to the
TCP/IP system when it sets up its listener. Once this number of connections are waiting for the
daemon’s attention, subsequent connection attempts are refused at the TCP/IP level. At least, that is
what the manuals say; in some circumstances such connection attempts have been observed to time
out instead. For large systems it is probably a good idea to increase the value (to 50, say). It also gives
some protection against denial-of-service attacks by SYN flooding.

smtp_enforce_sync Use:main Type:boolean Default:true |

The SMTP protocol specification requires the client to wait for a response from the server at certain
points in the dialogue. Without PIPELINING these synchronization points are after every command;
with PIPELINING they are fewer, but they still exist.

Some spamming sites send out a complete set of SMTP commands without waiting for any response.
Exim protects against this by rejecting a message if the client has sent further input when it should not
have. The error response “554 SMTP synchronization error” is sent, and the connection is dropped.
Testing for this error cannot be perfect because of transmission delays (unexpected input may be on
its way but not yet received when Exim checks). However, it does detect many instances.

The check can be globally disabled by settsmgtp_enforce_syndalse. If you want to disable the
check selectively (for example, only for certain hosts), you can do so by an appropriate use of a
control modifier in an ACL (see section 40.20). See gipelining_advertise_hosts

smtp_etrn_command Use:main Type:stringt Default:unset

If this option is set, the given command is run whenever an SMTP ETRN command is received from a
host that is permitted to issue such commands (see chapter 40). The string is split up into separate
arguments which are independently expanded. The expansion vadibiginis set to the argument

of the ETRN command, and no syntax checking is done on it. For example:

176 Main configuration (14)

smtp_etrn_command = /etc/etrn_command $domain \
$sender_host_address

A new process is created to run the command, but Exim does not wait for it to complete.
Consequently, its status cannot be checked. If the command cannot be run, a line is written to the
panic log, but the ETRN caller still receives a 250 success response. Exim is normally running under
its own uid when receiving SMTP, so it is not possible for it to change the uid before running the
command.

smtp_etrn_serialize Use:main Type:boolean Default:true

When this option is set, it prevents the simultaneous execution of more than one identical command
as a result of ETRN in an SMTP connection. See section 45.8 for details.

smtp_load_reserve Use:main Type:fixed-point Default: unset

If the system load average ever gets higher than this, incoming SMTP calls are accepted only from
those hosts that match an entry amtp _reserve_hosts If smtp_reserve_hostsis not set, no
incoming SMTP calls are accepted when the load is over the limit. The option has no effect on
ancient operating systems on which Exim cannot determine the load average. Seelaso
gueue_load _maxandqueue_only load

smtp_max_synprot_errors Use:main Type:integer Default: 3

Exim rejects SMTP commands that contain syntax or protocol errors. In particular, a syntactically
invalid email address, as in this command:

RCPT TO:<abc xyz@a.b.c>

causes immediate rejection of the command, before any other tests are done. (The ACL cannot be run
if there is no valid address to set up for it.) An example of a protocol error is receiving RCPT before
MAIL. If there are too many syntax or protocol errors in one SMTP session, the connection is
dropped. The limit is set by this option.

When the PIPELINING extension to SMTP is in use, some protocol errors are “expected”, for
instance, a RCPT command after a rejected MAIL command. Exim assumes that PIPELINING will
be used if it advertises it (sg@pelining_advertise_host}, and in this situation, “expected” errors do
not count towards the limit.

smtp_max_unknown_commands Use:main Type:integer Default: 3

If there are too many unrecognized commands in an incoming SMTP session, an Exim server drops
the connection. This is a defence against some kinds of abuse that subvert web clients into making
connections to SMTP ports; in these circumstances, a number of non-SMTP command lines are sent
first.

smtp_ratelimit_hosts Use:main Type:host listf Default:unset

Some sites find it helpful to be able to limit the rate at which certain hosts can send them messages,
and the rate at which an individual message can specify recipients.

Exim has two rate-limiting facilities. This section describes the older facility, which can limit rates
within a single connection. The newextelimit ACL condition can limit rates across all connections.
See section 40.35 for details of the newer facility.

When a host matchesmtp_ratelimit_hosts, the values ofsmtp_ratelimit_mail and smtp_
ratelimit_rcpt are used to control the rate of acceptance of MAIL and RCPT commands in a single
SMTP session, respectively. Each option, if set, must contain a set of four comma-separated values:

177 Main configuration (14)

» A threshold, before which there is no rate limiting.

* An initial time delay. Unlike other times in Exim, numbers with decimal fractional parts are
allowed here.

» A factor by which to increase the delay each time.

* A maximum value for the delay. This should normally be less than 5 minutes, because after that
time, the client is liable to timeout the SMTP command.

For example, these settings have been used successfully at the site which first suggested this feature,
for controlling mail from their customers:

smtp_ratelimit_mail = 2,0.5s,1.05,4m
smtp_ratelimit_rcpt = 4,0.25s,1.015,4m

The first setting specifies delays that are applied to MAIL commands after two have been received
over a single connection. The initial delay is 0.5 seconds, increasing by a factor of 1.05 each time.
The second setting applies delays to RCPT commands when more than four occur in a single
message.

| smtp_ratelimit_mail Use:main Type:string Default: unset|

Seesmtp_ratelimit_hostsabove.

| smtp_ratelimit_rcpt Use:main Type:string Default: unset|

Seesmtp_ratelimit_hostsabove.

| smtp_receive_timeout Use:main Type:time Default:5m |

This sets a timeout value for SMTP reception. It applies to all forms of SMTP input, including batch
SMTP. If a line of input (either an SMTP command or a data line) is not received within this time, the
SMTP connection is dropped and the message is abandoned. A line is written to the log containing
one of the following messages:

SMTP command timeout on connection from...
SMTP data timeout on connection from...

The former means that Exim was expecting to read an SMTP command; the latter means that it was in
the DATA phase, reading the contents of a message.

The value set by this option can be overridden by-ttecommand-line option. A setting of zero time
disables the timeout, but this should never be used for SMTP over TCP/IP. (It can be useful in some
cases of local input usingbs or -bS.) For non-SMTP input, the reception timeout is controlled by
receive_timeoutand-or.

smtp_reserve_hosts Use:main Type:host listt Default:unset

This option defines hosts for which SMTP connections are reservednsipe accept_reserveand
smtp_load_reserveabove.

smtp_return_error_details Use:main Type:boolean Default: false

In the default state, Exim uses bland messages such as “Administrative prohibition” when it rejects
SMTP commands for policy reasons. Many sysadmins like this because it gives away little infor-
mation to spammers. However, some other sysadmins who are applying strict checking policies want
to give out much fuller information about failures. Settisigtp _return_error_details true causes

Exim to be more forthcoming. For example, instead of “Administrative prohibition”, it might give:

178 Main configuration (14)

550-Rejected after DATA: >' missing at end of address:
550 failing address in "From" header is: <user@dom.ain

spamd_address Use:main Type:string Default:see beIovx}

This option is available when Exim is compiled with the content-scanning extension. It specifies how
Exim connects to SpamAssassisfamd daemon. The default value is

127.0.0.1 783

See section 41.2 for more details.

split_spool_directory Use:main Type:boolean Default:false

If this option is set, it causes Exim to split its input directory into 62 subdirectories, each with a single
alphanumeric character as its name. The sixth character of the message id is used to allocate messages
to subdirectories; this is the least significant base-62 digit of the time of arrival of the message.

Splitting up the spool in this way may provide better performance on systems where there are long
mail queues, by reducing the number of files in any one directory. The msglog directory is also split
up in a similar way to the input directory; howeverpifeserve_message_logs set, all old msglog

files are still placed in the single directangglog.OLD

It is not necessary to take any special action for existing messages when chapbiingpool_
directory. Exim notices messages that are in the “wrong” place, and continues to process them. If the
option is turned off after a period of being on, the subdirectories will eventually empty and be
automatically deleted.

When split_spool_directory is set, the behaviour of queue runner processes changes. Instead of
creating a list of all messages in the queue, and then trying to deliver each one in turn, it constructs a
list of those in one sub-directory and tries to deliver them, before moving on to the next sub-directory.
The sub-directories are processed in a random order. This spreads out the scanning of the input
directories, and uses less memory. It is particularly beneficial when there are lots of messages on the
gueue. However, ifjlueue_run_in_order is set, none of this new processing happens. The entire
gueue has to be scanned and sorted before any deliveries can start.

spool_directory Use:main Type:stringt Default:set at com-
pile time

This defines the directory in which Exim keeps its spool, that is, the messages it is waiting to deliver.
The default value is taken from the compile-time configuration setting, if there is one. If not, this
option must be set. The string is expanded, so it can contain, for example, a referépcinary
hostname

If the spool directory name is fixed on your installation, it is recommended that you set it at build time
rather than from this option, particularly if the log files are being written to the spool directory (see
log_file_path). Otherwise log files cannot be used for errors that are detected early on, such as
failures in the configuration file.

By using this option to override the compiled-in path, it is possible to run tests of Exim without using
the standard spool.

sglite_lock_timeout Use:main Type:time Default:5s |

This option controls the timeout that tkglite lookup uses when trying to access an SQLite database.
See section 9.25 for more details.

179 Main configuration (14)

strict_acl_vars Use:main Type:boolean Default:false

This option controls what happens if a syntactically valid but undefined ACL variable is referenced. If
it is false (the default), an empty string is substituted; if it is true, an error is generated. See section
40.17 for details of ACL variables.

strip_excess_angle_brackets Use:main Type:boolean Default:false

If this option is set, redundant pairs of angle brackets round “route-addr” items in addresses are
stripped. For examples<xxx@a.b.c.d>>is treated agxxx@a.b.c.d> If this is in the envelope and

the message is passed on to another MTA, the excess angle brackets are not passed on. If this option is
not set, multiple pairs of angle brackets cause a syntax error.

strip_trailing_dot Use:main Type:boolean Default:false

If this option is set, a trailing dot at the end of a domain in an address is ignored. If this is in the
envelope and the message is passed on to another MTA, the dot is not passed on. If this option is not
set, a dot at the end of a domain causes a syntax error. However, addresses in header lines are checked
only when an ACL requests header syntax checking.

syslog_duplication Use:main Type:boolean Default:true |

When Exim is logging to syslog, it writes the log lines for its three separate logs at different syslog
priorities so that they can in principle be separated on the logging hosts. Some installations do not
require this separation, and in those cases, the duplication of certain log lines is a nuissysleglf
duplication is set false, only one copy of any particular log line is written to syslog. For lines that
normally go to both the main log and the reject log, the reject log version (possibly containing
message header lines) is written, at LOG_NOTICE priority. Lines that normally go to both the main
and the panic log are written at the LOG_ALERT priority.

syslog_facility Use:main Type:string Default: unset

This option sets the syslog “facility” name, used when Exim is logging to syslog. The value must be
one of the strings “mail”, “user”, “news”, “uucp”, “daemon”, or “locdlwherex is a digit between 0
and 7. If this option is unset, “mail” is used. See chapter 49 for details of Exim’s logging.

syslog_processname Use:main Type:string Default:exi m

This option sets the syslog “ident” name, used when Exim is logging to syslog. The value must be no
longer than 32 characters. See chapter 49 for details of Exim’s logging.

syslog_timestamp Use:main Type:boolean Default:true

If syslog_timestamps set false, the timestamps on Exim’s log lines are omitted when these lines are
sent to syslog. See chapter 49 for details of Exim’s logging.

system_filter Use:main Type:stringt Default:unset

This option specifies an Exim filter file that is applied to all messages at the start of each delivery
attempt, before any routing is done. System filters must be Exim filters; they cannot be Sieve filters. If
the system filter generates any deliveries to files or pipes, or any new mail messages, the appropriate
system_filter_..._transportoption(s) must be set, to define which transports are to be used. Details

of this facility are given in chapter 43.

180 Main configuration (14)

system_filter_directory_transport Use:main Type:stringt Default:unset

This sets the name of the transport driver that is to be used whesatltecommand in a system
message filter specifies a path ending in “/”, implying delivery of each message into a separate file in
some directory. During the delivery, the variabsgldress_fileontains the path name.

system_filter_file_transport Use:main Type:stringt Default: unset|

This sets the name of the transport driver that is to be used whesatltlcommand in a system
message filter specifies a path not ending in “/". During the delivery, the varduderess_file
contains the path name.

system_filter_group Use:main Type:string Default: unset|

This option is used only whesystem_filter _useris also set. It sets the gid under which the system
filter is run, overriding any gid that is associated with the user. The value may be numerical or
symbolic.

system_filter_pipe_transport Use:main Type:stringt Default:unset

This specifies the transport driver that is to be used whpip@command is used in a system filter.
During the delivery, the variabfaddress_pipeontains the pipe command.

| system_filter_reply_transport Use:main Type:stringt Default: unset|

This specifies the transport driver that is to be used winesilacommand is used in a system filter.

| system_filter_user Use:main Type:string Default: unset|

If this option is not set, the system filter is run in the main Exim delivery process, as root. When the
option is set, the system filter runs in a separate process, as the given user. Unless the string consists
entirely of digits, it is looked up in the password data. Failure to find the named user causes a
configuration error. The gid is either taken from the password data, or specifiegstgm_filter_

group. When the uid is specified numericalystem_filter_groupis required to be set.

If the system filter generates any pipe, file, or reply deliveries, the uid under which the filter is run is
used when transporting them, unless a transport option overrides. Normally you shosydteat_
filter_user if your system filter generates these kinds of delivery.

tcp_nodelay Use:main Type:boolean Default:true |

If this option is set false, it stops the Exim daemon setting the TCP_NODELAY option on its listening
sockets. Setting TCP_NODELAY turns off the “Nagle algorithm”, which is a way of improving
network performance in interactive (character-by-character) situations. Turning it off should improve
Exim’s performance a bit, so that is what happens by default. However, it appears that some broken
clients cannot cope, and time out. Hence this option. It affects only those sockets that are set up for
listening by the daemon. Sockets created by the smtp transport for delivering mail always set TCP_
NODELAY.

timeout_frozen_after Use:main Type:time Default:0s

If timeout_frozen_afteris set to a time greater than zero, a frozen message of any kind that has been
on the queue for longer than the given time is automatically cancelled at the next queue run. If the
frozen message is a bounce message, it is just discarded; otherwise, a bounce is sent to the sender, in a

181 Main configuration (14)

similar manner to cancellation by thélg command line option. If you want to timeout frozen
bounce messages earlier than other kinds of frozen messagg@eebounce_errors_after

Note: the default value of zero means no timeouts; with this setting, frozen messages remain on the
gueue forever (except for any frozen bounce messages that are releagedry bounce_errors_
after).

| timezone Use:main Type:string Default: unset|

The value oftimezone is used to set the environment variable TZ while running Exim (if it is
different on entry). This ensures that all timestamps created by Exim are in the required timezone. If
you want all your timestamps to be in UTC (aka GMT) you should set

timezone = UTC

The default value is taken from TIMEZONE_DEFAULT Lrocal/Makefile or, if that is not set, from

the value of the TZ environment variable when Exim is builttitiezoneis set to the empty string,
either at build or run time, any existing TZ variable is removed from the environment when Exim
runs. This is appropriate behaviour for obtaining wall-clock time on some, but unfortunately not all,
operating systems.

tls_advertise_hosts Use:main Type:host listf Default:unset

When Exim is built with support for TLS encrypted connections, the availability of the STARTTLS
command to set up an encrypted session is advertised in response to EHLO only to those client hosts
that match this option. See chapter 39 for details of Exim’s support for TLS.

tls_certificate Use:main Type:stringt Default:unset

The value of this option is expanded, and must then be the absolute path to a file which contains the
server’s certificates. The server's private key is also assumed to be in this tfde gfivatekey is
unset. See chapter 39 for further details.

Note: The certificates defined by this option are used only when Exim is receiving incoming mess-
ages as a server. If you want to supply certificates for use when sending messages as a client, you
must set théls_certificate option in the relevargmtptransport.

tls_crl Use:main Type:stringt Default:unset

This option specifies a certificate revocation list. The expanded value must be the name of a file that
contains a CRL in PEM format.

tls_dhparam Use:main Type:stringt Default:unset

The value of this option is expanded, and must then be the absolute path to a file which contains the
server’s DH parameter values. This is used only for OpenSSL. When Exim is linked with GnuTLS,
this option is ignored. See section 39.2 for further details.

| tls_on_connect_ports Use:main Type:string list Default: unset

This option specifies a list of incoming SSMTP (aka SMTPS) ports that should operate the obsolete
SSMTP (SMTPS) protocol, where a TLS session is immediately set up without waiting for the client
to issue a STARTTLS command. For further details, see section 13.4.

182 Main configuration (14)

tls_privatekey Use:main Type:stringt Default:unset

The value of this option is expanded, and must then be the absolute path to a file which contains the
server’'s private key. If this option is unset, or if the expansion is forced to fail, or the result is an
empty string, the private key is assumed to be in the same file as the server’s certificates. See chapter
39 for further details.

tls_remember_esmtp Use:main Type:boolean Default:false

If this option is set true, Exim violates the RFCs by remembering that it is in “esmtp” state after
successfully negotiating a TLS session. This provides support for broken clients that fail to send a
new EHLO after starting a TLS session.

tls_require_ciphers Use:main Type:stringt Default:unset

This option controls which ciphers can be used for incoming TLS connectionsnitpgransport has

an option of the same name for controlling outgoing connections. This option is expanded for each
connection, so can be varied for different clients if required. The value of this option must be a list of
permitted cipher suites. The OpenSSL and GnuTLS libraries handle cipher control in somewhat
different ways. If GnuTLS is being used, the client controls the preference order of the available
ciphers. Details are given in sections 39.4 and 39.5.

| tls_try verify hosts Use:main Type:host listf Default:unset|

Seetls_verify_hostsbelow.

| tls_verify certificates Use:main Type:stringt Default: unset|

The value of this option is expanded, and must then be the absolute path to a file containing permitted
certificates for clients that matdts_verify_hostsor tls_try_verify_hosts. Alternatively, if you are

using OpenSSL, you can sts_verify_certificatesto the name of a directory containing certificate
files. This does not work with GnuTLS; the option must be set to the name of a single file if you are
using GnuTLS.

| tls_verify _hosts Use:main Type:host listf Default:unset

This option, along withtls_try verify hosts, controls the checking of certificates from clients. The
expected certificates are definedtbs; verify_certificates which must be set. A configuration error
occurs if eithetls_verify _hostsortls_try verify _hostsis set andls_verify_certificatesis not set.

Any client that matchedls_verify _hostsis constrained byls_verify_certificates When the client
initiates a TLS session, it must present one of the listed certificates. If it does not, the connection is
aborted.Warning: Including a host intls_verify _hostsdoes not require the host to use TLS. It can

still send SMTP commands through unencrypted connections. Forcing a client to use TLS has to be
done separately using an ACL to reject inappropriate commands when the connection is not
encrypted.

A weaker form of checking is provided kis_try verify _hosts. If a client matches this option (but

not tls_verify_hostg, Exim requests a certificate and checks it agailsstverify certificates but

does not abort the connection if there is no certificate or if it does not match. This state can be
detected in an ACL, which makes it possible to implement policies such as “accept for relay only if a
verified certificate has been received, but accept for local delivery if encrypted, even without a verified
certificate”.

Client hosts that match neither of these lists are not asked to present certificates.

183 Main configuration (14)

trusted_groups Use:main Type:string listf Default:unset

This option is expanded just once, at the start of Exim’s processing. If this option is set, any process
that is running in one of the listed groups, or which has one of them as a supplementary group, is
trusted. The groups can be specified numerically or by name. See section 5.2 for details of what
trusted callers are permitted to do. If neithrsted_groups nor trusted_usersis set, only root and

the Exim user are trusted.

trusted_users Use:main Type:string listt Default:unset

This option is expanded just once, at the start of Exim’s processing. If this option is set, any process
that is running as one of the listed users is trusted. The users can be specified numerically or by name.
See section 5.2 for details of what trusted callers are permitted to do. If newtlséed_groups nor
trusted_usersis set, only root and the Exim user are trusted.

unknown_login Use:main Type:stringt Default:unset

This is a specialized feature for use in unusual configurations. By default, if the uid of the caller of
Exim cannot be looked up usirgetpwuid() Exim gives up. Theinknown_login option can be used

to set a login name to be used in this circumstance. It is expanded, so valuesditéealler_uidcan

be set. Wherunknown_login is used, the value ainknown_usernameis used for the user’s real
name (gecos field), unless this has been set by-tbption.

| unknown_username Use:main Type:string Default: unset|

Seeunknown_login.

| untrusted_set_sender Use:main Type:address list Default:unset|

When an untrusted user submits a message to Exim using the standard input, Exim normally creates
an envelope sender address from the user’s login and the default qualification domain. Data from the
-f option (for setting envelope senders on non-SMTP messages) or the SMTP MAIL commdnsd (if
or-bSis used) is ignored.

However, untrusted users are permitted to set an empty envelope sender address, to declare that a
message should never generate any bounces. For example:

exim -f '<>' user@domain.example

The untrusted_set_sendeioption allows you to permit untrusted users to set other envelope sender
addresses in a controlled way. When it is set, untrusted users are allowed to set envelope sender
addresses that match any of the patterns in the list. Like all address lists, the string is expanded. The
identity of the user is irfsender_identso you can, for example, restrict users to setting senders that
start with their login ids followed by a hyphen by a setting like this:

untrusted_set_sender = *$sender_ident-
If you want to allow untrusted users to set envelope sender addresses without restriction, you can use
untrusted_set _sender = *

The untrusted_set_senderoption applies to all forms of local input, but only to the setting of the
envelope sender. It does not permit untrusted users to use the other options which trusted user can use
to override message parameters. Furthermore, it does not stop Exim from removing an existing
Sender:header in the message, or from addingender:header if necessary. Séacal_sender_

retain and local_from_check for ways of overriding these actions. The handling of ®ender:

header is also described in section 44.16.

184 Main configuration (14)

The log line for a message’s arrival shows the envelope sender following “<=". For local messages,
the user’s login always follows, after “U=". Irbp displays, and in the Exim monitor, if an untrusted
user sets an envelope sender address, the user’s login is shown in parentheses after the sender address.

uucp_from_pattern Use:main Type:string Default:see beIovx}

Some applications that pass messages to an MTA via a command line interface use an initial line
starting with “From " to pass the envelope sender. In particular, this is used by UUCP software. Exim
recognizes such a line by means of a regular expression that iswatpn from_pattern. When the
pattern matches, the sender address is constructed by expanding the contieists &fom_sender
provided that the caller of Exim is a trusted user. The default pattern recognizes lines in the following
two forms:

From ph10 Fri Jan 5 12:35 GMT 1996
From ph10 Fri, 7 Jan 97 14:00:00 GMT

The pattern can be seen by running

exim -bP uucp_from_pattern
It checks only up to the hours and minutes, and allows for a 2-digit or 4-digit year in the second case.
The first word after “From " is matched in the regular expression by a parenthesized subpattern. The

default value foruucp_from_senderis “$1”, which therefore just uses this first word (“ph10” in the
example above) as the message’s sender. Seigadse fromline_hosts

| uucp_from_sender Use:main Type:stringt Default:$1 |

Seeuucp_from_pattern above.

| warn_message_file Use:main Type:string Default: unset|

This option defines a template file containing paragraphs of text to be used for constructing the
warning message which is sent by Exim when a message has been on the queue for a specified
amount of time, as specified ldelay warning. Details of the file’s contents are given in chapter 46.

See alsdbounce_message_file

write_rejectlog Use:main Type:boolean Default:true

If this option is set false, Exim no longer writes anything to the reject log. See chapter 49 for details
of what Exim writes to its logs.

185 Main configuration (14)

15. Generic options for routers

This chapter describes the generic options that apply to all routers. Those that are preconditions are
marked with 1 in the “use” field.

For a general description of how a router operates, see sections 3.10 and 3.12. The latter specifies the
order in which the preconditions are tested. The order of expansion of the options that provide data
for a transport iserrors_to, headers_addheaders_removetransport.

address_data Use:routers Type:stringt Default:unset

The string is expanded just before the router is run, that is, after all the precondition tests have
succeeded. If the expansion is forced to fail, the router declines, the vahadmfss dataremains
unchanged, and thmore option controls what happens next. Other expansion failures cause delivery
of the address to be deferred.

When the expansion succeeds, the value is retained with the address, and can be accessed using the
variable$address_datén the current router, subsequent routers, and the eventual transport.

Warning: If the current or any subsequent router isedirectrouter that runs a user’s filter file, the
contents offaddress_datare accessible in the filter. This is not normally a problem, because such
data is usually either not confidential or it “belongs” to the current user, but if you do put confidential
data into$address_datgou need to remember this point.

Even if the router declines or passes, the valugaifdress_dataemains with the address, though it
can be changed by anotheddress_datasetting on a subsequent router. If a router generates child
addresses, the value $address_datgropagates to them. This also applies to the special kind of
“child” that is generated by a router with thleseenoption.

The idea ofaddress_datais that you can use it to look up a lot of data for the address once, and then
pick out parts of the data later. For example, you could use a single LDAP lookup to return a string of
the form

uid=1234 gid=5678 mailbox=/mail/xyz forward=/home/xyz/.forward
In the transport you could pick out the mailbox by a setting such as
file = ${extract{mailbox}{$address_data}}

This makes the configuration file less messy, and also reduces the number of lookups (though Exim
does cache lookups).

Theaddress_datafacility is also useful as a means of passing information from one router to another,
and from a router to a transport. In addition $idddress_datas set by a router when verifying a
recipient address from an ACL, it remains available for use in the rest of the ACL statement. After
verifying a sender, the value is transferre@sender_address_data

| address_test Use:routerst Type:boolean Default:true |

If this option is set false, the router is skipped when routing is being tested by means -t the
command line option. This can be a convenience when your first router sends messages to an external
scanner, because it saves you having to set the “already scanned” indicator when testing real address
routing.

cannot_route_message Use:routers Type:stringt Default:unset

This option specifies a text message that is used when an address cannot be routed because Exim has
run out of routers. The default message is “Unrouteable address”. This option is useful only on
routers that havenore set false, or on the very last router in a configuration, because the value that is
used is taken from the last router that is considered. This includes a router that is skipped because its

186 Generic options for routers (15)

preconditions are not met, as well as a router that declines. For example, using the default configur-
ation, you could put:

cannot_route_message = Remote domain not found in DNS
on the first router, which is@nslookuprouter withmore set false, and
cannot_route_message = Unknown local user

on the final router that checks for local users. If string expansion fails for this option, the default
message is used. Unless the expansion failure was explicitly forced, a message about the failure is
written to the main and panic logs, in addition to the normal message about the routing failure.

caseful_local_part Use:routers Type:boolean Default:false

By default, routers handle the local parts of addresses in a case-insensitive manner, though the actual
case is preserved for transmission with the message. If you want the case of letters to be significant in
a router, you must set this option true. For individual router options that contain address or local part
lists (for examplelocal_parts), case-sensitive matching can be turned on by “+caseful” as a list item.
See section 10.20 for more details.

The value of theSlocal_partvariable is forced to lower case while a router is running unteseful_
local_part is set. When a router assigns an address to a transport, the vaiozaf partwhen the
transport runs is the same as it was in the router. Similarly, when a router generates child addresses by
aliasing or forwarding, the values $briginal_local_partand$parent_local_partare those that were

used by the redirecting router.

This option applies to the processing of an address by a router. When a recipient address is being
processed in an ACL, there is a separawatrol modifier that can be used to specify case-sensitive
processing within the ACL (see section 40.20).

check_local_user Use:routerst Type:boolean Default:false |

When this option is true, Exim checks that the local part of the recipient address (with affixes
removed if relevant) is the name of an account on the local system. The check is done by calling the
getpwnam(function rather than trying to reddtc/passwadlirectly. This means that other methods of
holding password data (such as NIS) are supported. If the local part is a locabluseris set from

the password data, and can be tested in other preconditions that are evaluated after this one (the order
of evaluation is given in section 3.12). However, the valu&lodmecan be overridden byouter
home_directory. If the local part is not a local user, the router is skipped.

If you want to check that the local part is either the name of a local user or matches something else,
you cannot combineheck_local_usemith a setting olocal_parts, because that specifies the logical

and of the two conditions. However, you can uspasswdookup in alocal_parts setting to achieve

this. For example:

local_parts = passwd;$local_part : Isearch;/etc/other/users

Note, however, that the side effectsafeck local_user(such as setting up a home directory) do not
occur when gasswdookup is used in bbcal_parts (or any other) precondition.

condition Use:routerst Type:stringt Default:unset|

This option specifies a general precondition test that has to succeed for the router to be called. The
condition option is the last precondition to be evaluated (see section 3.12). The string is expanded,
and if the result is a forced failure, or an empty string, or one of the strings “0” or “no” or “false”
(checked without regard to the case of the letters), the router is skipped, and the address is offered to
the next one.

If the result is any other value, the router is run (as this is the last precondition to be evaluated, all the
other preconditions must be true).

187 Generic options for routers (15)

The condition option provides a means of applying custom conditions to the running of routers. Note
that in the case of a simple conditional expansion, the default expansion values are exactly what is
wanted. For example:

condition = ${if >{$message_age}600}}
Because of the default behaviour of the string expansion, this is equivalent to
condition = ${if >{$message_ageH600Ktrue}}}

If the expansion fails (other than forced failure) delivery is deferred. Some of the other precondition
options are common special cases that could in fact be specifieccosigon.

debug_print Use:routers Type:stringt Default:unset

If this option is set and debugging is enabled (seedh®mmand line option), the string is expanded
and included in the debugging output. If expansion of the string fails, the error message is written to
the debugging output, and Exim carries on processing. This option is provided to help with checking
out the values of variables and so on when debugging router configurations. For examplenif a
dition option appears not to be workindebug_print can be used to output the variables it refer-
ences. The output happens after checksdfmmains local_parts, andcheck_local_usetbut before

any other preconditions are tested. A newline is added to the text if it does not end with one.

disable_logging Use:routers Type:boolean Default: false

If this option is set true, nothing is logged for any routing errors or for any deliveries caused by this
router. You should not set this option unless you really, really know what you are doing. See also the
generic transport option of the same name.

| domains Use:routerst Type:domain list Default:unset

If this option is set, the router is skipped unless the current domain matches the list. If the match is
achieved by means of a file lookup, the data that the lookup returned for the domain is placed in
$domain_datdor use in string expansions of the driver’s private options. See section 3.12 for a list of
the order in which preconditions are evaluated.

| driver Use:routers Type:string Default: unset|

This option must always be set. It specifies which of the available routers is to be used.

| errors_to Use:routers Type:stringt Default:unset|

If a router successfully handles an address, it may assign the address to a transport for delivery or it
may generate child addresses. In both cases, if there is a delivery problem during later processing, the
resulting bounce message is sent to the address that results from expanding this string, provided that
the address verifies successfully. Téreors_to option is expanded befoteeaders_add headers_

remove, andtransport.

The errors_to setting associated with an address can be overridden if it subsequently passes through
other routers that have their ovemrors_to settings, or if the message is delivered by a transport with
areturn_path setting.

If errors_to is unset, or the expansion is forced to fail, or the result of the expansion fails to verify,
the errors address associated with the incoming address is used. At top level, this is the envelope
sender. A non-forced expansion failure causes delivery to be deferred.

If an address for whiclerrors_to has been set ends up being delivered over SMTP, the envelope
sender for that delivery is therrors_to value, so that any bounces that are generated by other MTAs

188 Generic options for routers (15)

on the delivery route are also sent there. You caresetrs_to to the empty string by either of these
settings:

errors_to =
errors_to =

An expansion item that yields an empty string has the same effect. If you do this, a locally detected
delivery error for addresses processed by this router no longer gives rise to a bounce message; the
error is discarded. If the address is delivered to a remote host, the return path is<setunless
overridden by theeturn_path option on the transport.

If for some reason you want to discard local errors, but use a non-empty MAIL command for remote
delivery, you can preserve the original return patt$audress_datén the router, and reinstate it in
the transport by settingturn_path.

The most common use @frrors_to is to direct mailing list bounces to the manager of the list, as
described in section 47.2, or to implement VERP (Variable Envelope Return Paths) (see section 47.6).

expn Use:routerst Type:boolean Default:true |

If this option is turned off, the router is skipped when testing an address as a result of processing an
SMTP EXPN command. You might, for example, want to turn it off on a router for uskensvard

files, while leaving it on for the system alias file. See section 3.12 for a list of the order in which
preconditions are evaluated.

The use of the SMTP EXPN command is controlled by an ACL (see chapter 40). When Exim is
running an EXPN command, it is similar to testing an address wiith Compare VRFY, whose
counterpart isbv.

| fail_verify Use:routers Type:boolean Default:false |

Setting this option has the effect of setting bddil_verify sender andfail_verify recipient to the
same value.

| fail_verify_recipient Use:routers Type:boolean Default:false

If this option is true and an address is accepted by this router when verifying a recipient, verification
fails.

| fail_verify_sender Use:routers Type:boolean Default:false

If this option is true and an address is accepted by this router when verifying a sender, verification
fails.

fallback hosts Use:routers Type:string list Default: unset

String expansion is not applied to this option. The argument must be a colon-separated list of host
names or IP addresses. The list separator can be changed (see section 6.19), and a port can be
specified with each name or address. In fact, the format of each item is exactly the same as defined for
the list of hosts in enanualrouterouter (see section 20.5).

If a router queues an address for a remote transport, this host list is associated with the address, and
used instead of the transport’s fallback host lishdkts_randomizeis set on the transport, the order

of the list is randomized for each use. Seefidtback hostsoption of thesmtptransport for further

details.

189 Generic options for routers (15)

group Use:routers Type:stringt Default:see belovxf

When a router queues an address for a transport, and the transport does not specify a group, the group
given here is used when running the delivery process. The group may be specified numerically or by
name. If expansion fails, the error is logged and delivery is deferred. The default is unset, unless
check local_useris set, when the default is taken from the password information. See also
initgroups anduser and the discussion in chapter 23.

headers_add Use:routers Type:stringt Default:unset

This option specifies a string of text that is expanded at routing time, and associated with any
addresses that are accepted by the router. However, this option has no effect when an address is just
being verified. The way in which the text is used to add header lines at transport time is described in
section 44.17. New header lines are not actually added until the message is in the process of being
transported. This means that references to header lines in string expansions in the transport’s con-
figuration do not “see” the added header lines.

The headers_addoption is expanded aftanrrors_to, but beforeheaders_removeandtransport. If
the expanded string is empty, or if the expansion is forced to fail, the option has no effect. Other
expansion failures are treated as configuration errors.

Warning 1: The headers_addoption cannot be used for medirect router that has thene_time
option set.

Warning 2: If the unseenoption is set on the router, all header additions are deleted when the address
is passed on to subsequent routers. Foedirect router, if a generated address is the same as the
incoming address, this can lead to duplicate addresses with different header modifications. Exim does
not do duplicate deliveries (except, in certain circumstances, to pipes -- see section 22.7), but it is
undefined which of the duplicates is discarded, so this ambiguous situation should be avoided. The
repeat_useoption of theredirect router may be of help.

headers_remove Use:routers Type:stringt Default: unset|

This option specifies a string of text that is expanded at routing time, and associated with any
addresses that are accepted by the router. However, this option has no effect when an address is just
being verified. The way in which the text is used to remove header lines at transport time is described
in section 44.17. Header lines are not actually removed until the message is in the process of being
transported. This means that references to header lines in string expansions in the transport’'s con-
figuration still “see” the original header lines.

The headers_removeoption is expanded aftarrors_to andheaders_add but beforetransport. If
the expansion is forced to fail, the option has no effect. Other expansion failures are treated as
configuration errors.

Warning 1: The headers_removeoption cannot be used forradirectrouter that has thene_time
option set.

Warning 2: If the unseenoption is set on the router, all header removal requests are deleted when the
address is passed on to subsequent routers, and this can lead to problems with duplicates -- see the
similar warning forheaders_addabove.

ignore_target_hosts Use:routers Type:host listf Default:unset

Although this option is a host list, it should normally contain IP address entries rather than names. If
any host that is looked up by the router has an IP address that matches an item in this list, Exim
behaves as if that IP address did not exist. This option allows you to cope with rogue DNS entries like

remote.domain.example. A 127.0.0.1
by setting

190 Generic options for routers (15)

ignore_target_hosts = 127.0.0.1

on the relevant router. If all the hosts found bgirsslookuprouter are discarded in this way, the router
declines. In a conventional configuration, an attempt to mail to such a domain would normally
provoke the “unrouteable domain” error, and an attempt to verify an address in the domain would fail.
Similarly, if ignore_target_hostss set on anpliteral router, the router declines if presented with one

of the listed addresses.

You can use this option to disable the use of IPv4 or IPv6 for mail delivery by means of the first or the
second of the following settings, respectively:

ignore_target_hosts = 0.0.0.0/0
ignore_target_hosts = <; 0::0/0

The pattern in the first line matches all IPv4 addresses, whereas the pattern in the second line matches
all IPv6 addresses.

This option may also be useful for ignoring link-local and site-local IPv6 addresses. Because, like all
host lists, the value afjnore_target_hostsis expanded before use as a list, it is possible to make it
dependent on the domain that is being routed.

During its expansiorhost_addresis set to the IP address that is being checked.

initgroups Use:routers Type:boolean Default:false

If the router queues an address for a transport, and this option is true, and the uid supplied by the
router is not overridden by the transport, thegroups()function is called when running the transport

to ensure that any additional groups associated with the uid are set up. Sgecals@nduser and

the discussion in chapter 23.

local_part_prefix Use:routerst Type:string list Default: unset

If this option is set, the router is skipped unless the local part starts with one of the given strings, or
local_part_prefix_optional is true. See section 3.12 for a list of the order in which preconditions are
evaluated.

The list is scanned from left to right, and the first prefix that matches is used. A limited form of
wildcard is available; if the prefix begins with an asterisk, it matches the longest possible sequence of
arbitrary characters at the start of the local part. An asterisk should therefore always be followed by
some character that does not occur in normal local parts. Wildcarding can be used to set up multiple
user mailboxes, as described in section 47.8.

During the testing of thdocal_parts option, and while the router is running, the prefix is removed
from the local part, and is available in the expansion vari8tbeal_part_prefix When a message is

being delivered, if the router accepts the address, this remains true during subsequent delivery by a
transport. In particular, the local part that is transmitted in the RCPT command for LMTP, SMTP, and
BSMTP deliveries has the prefix removed by default. This behaviour can be overridden by setting
rcpt_include_affixestrue on the relevant transport.

When an address is being verifiddgal_part_prefix affects only the behaviour of the router. If the
callout feature of verification is in use, this means that the full address, including the prefix, will be
used during the callout.

The prefix facility is commonly used to handle local parts of the fawmer-something Another
common use is to support local parts of the formal-usernameto bypass a user'dorward file —
helpful when trying to tell a user their forwarding is broken — by placing a router like this one
immediately before the router that handfesward files:

real_localuser:
driver = accept
local_part_prefix = real-

191 Generic options for routers (15)

check_local_user
transport = local_delivery

For security, it would probably be a good idea to restrict the use of this router to locally-generated
messages, using a condition such as this:

condition = ${if match {$sender_host_address}\
{\N~(]127\.0\.0\.1)$\N}}

If both local_part_prefix andlocal_part_suffix are set for a router, both conditions must be met if
not optional. Care must be taken if wildcards are used in both a prefix and a suffix on the same router.
Different separator characters must be used to avoid ambiguity.

| local_part_prefix_optional Use:routers Type:boolean Default:false |

Seelocal_part_prefix above.

| local_part_suffix Use:routerst Type:string list Default: unset|

This option operates in the same wayl@sal_part_prefix, except that the local part must end (rather
than start) with the given string, thecal_part_suffix_optional option determines whether the suffix

is mandatory, and the wildcard * character, if present, must be the last character of the suffix. This
option facility is commonly used to handle local parts of the f@amething-requestand multiple

user mailboxes of the forosername-foo

| local_part_suffix_optional Use:routers Type:boolean Default:false |

Seelocal_part_suffix above.

| local_parts Use:routerst Type:local part listf Default:unset|

The router is run only if the local part of the address matches the list. See section 3.12 for a list of the
order in which preconditions are evaluated, and section 10.21 for a discussion of local part lists.
Because the string is expanded, it is possible to make it depend on the domain, for example:

local_parts = dbm;/usr/local/specials/$domain

If the match is achieved by a lookup, the data that the lookup returned for the local part is placed in
the variable$local_part_datafor use in expansions of the router’s private options. You might use this
option, for example, if you have a large humber of local virtual domains, and you want to send all
postmaster mail to the same place without having to set up an alias in each virtual domain:

postmaster:
driver = redirect
local_parts = postmaster
data = postmaster@real.domain.example

log_as_local Use:routers Type:boolean Default:see be|OV\+

Exim has two logging styles for delivery, the idea being to make local deliveries stand out more
visibly from remote ones. In the “local” style, the recipient address is given just as the local part,
without a domain. The use of this style is controlled by this option. It defaults to true facitept

router, and false for all the others. This option applies only when a router assigns an address to a
transport. It has no effect on routers that redirect addresses.

192 Generic options for routers (15)

more Use:routers Type:booleart Default:true

The result of string expansion for this option must be a valid boolean value, that is, one of the strings
“yes”, “no”, “true”, or “false”. Any other result causes an error, and delivery is deferred. If the
expansion is forced to fail, the default value for the option (true) is used. Other failures cause delivery

to be deferred.

If this option is set false, and the router declines to handle the address, no further routers are tried,
routing fails, and the address is bounced. However, if the router explicitly passes an address to the
following router by means of the setting

self = pass

or otherwise, the setting afore is ignored. Also, the setting ahore does not affect the behaviour if
one of the precondition tests fails. In that case, the address is always passed to the next router.

Note thataddress_datais not considered to be a precondition. If its expansion is forced to fail, the
router declines, and the valuerbre controls what happens next.

pass_on_timeout Use:routers Type:boolean Default:false

If a router times out during a host lookup, it normally causes deferral of the addrgsassdfon
timeout is set, the address is passed on to the next router, overmdingnore This may be helpful

for systems that are intermittently connected to the Internet, or those that want to pass to a smart host
any messages that cannot immediately be delivered.

There are occasional other temporary errors that can occur while doing DNS lookups. They are
treated in the same way as a timeout, and this option applies to all of them.

pass_router Use:routers Type:string Default:unset

Routers that recognize the geneself option @nslookup ipliteral, and manualroutg¢ are able to

return “pass”, forcing routing to continue, and overriding a false settingare. When one of these
routers returns “pass”, the address is normally handed on to the next router in sequence. This can be
changed by settingass_routerto the name of another router. However (unlikelirect_router) the

named router must be below the current router, to avoid loops. Note that this option applies only to
the special case of “pass”. It does not apply when a router returns “decline” because it cannot handle
an address.

redirect_router Use:routers Type:string Default: unset

Sometimes an administrator knows that it is pointless to reprocess addresses generated from alias or
forward files with the same router again. For example, if an alias file translates real names into login
ids there is no point searching the alias file a second time, especially if it is a large file.

Theredirect_router option can be set to the name of any router instance. It causes the routing of any
generated addresses to start at the named router instead of at the first router. This option has no effect
if the router in which it is set does not generate new addresses.

require_files Use:routerst Type:string listf Default:unset

This option provides a general mechanism for predicating the running of a router on the existence or
non-existence of certain files or directories. Before running a router, as one of its precondition tests,
Exim works its way through theequire_files list, expanding each item separately.

Because the list is split before expansion, any colons in expansion items must be doubled, or the
facility for using a different list separator must be used. If any expansion is forced to fail, the item is
ignored. Other expansion failures cause routing of the address to be deferred.

193 Generic options for routers (15)

If any expanded string is empty, it is ignored. Otherwise, except as described below, each string must
be a fully qualified file path, optionally preceded by “!". The paths are passed &tdt{@function to

test for the existence of the files or directories. The router is skipped if any paths not preceded by “!”
do not exist, or if any paths preceded by “!” do exist.

If stat() cannot determine whether a file exists or not, delivery of the message is deferred. This can
happen when NFS-mounted filesystems are unavailable.

This option is checked after trdomains local_parts, andsendersoptions, so you cannot use it to
check for the existence of a file in which to look up a domain, local part, or sender. (See section 3.12
for a full list of the order in which preconditions are evaluated.) However, as these options are all
expanded, you can use tegistsexpansion condition to make such tests. Téguire_files option is
intended for checking files that the router may be going to use internally, or which are needed by a
transport (for examplgorocmailrg.

During delivery, thestat() function is run as root, but there is a facility for some checking of the
accessibility of a file by another user. This is not a proper permissions check, but just a “rough” check
that operates as follows:

If an item in arequire_files list does not contain any forward slash characters, it is taken to be the
user (and optional group, separated by a comma) to be checked for subsequent files in the list. If no
group is specified but the user is specified symbolically, the gid associated with the uid is used. For
example:

require_files = mail:/some/file
require_files = $local_part:$home/.procmailrc

If a user or group name inraquire_files list does not exist, thequire_files condition fails.

Exim performs the check by scanning along the components of the file path, and checking the access
for the given uid and gid. It checks for “x” access on directories, and “r" access on the final file. Note
that this means that file access control lists, if the operating system has them, are ignored.

Warning 1: When the router is being run to verify addresses for an incoming SMTP message, Exim
is not running as root, but under its own uid. This may affect the resultrefjaire_files check. In
particular,stat() may yield the error EACCES (“Permission denied”). This means that the Exim user
is not permitted to read one of the directories on the file’s path.

Warning 2: Even when Exim is running as root while delivering a messagg() can yield EACCES

for a file in an NFS directory that is mounted without root access. In this case, if a check for access by

a particular user is requested, Exim creates a subprocess that runs as that user, and tries the check
again in that process.

The default action for handling an unresolved EACCES is to consider it to be caused by a configur-

ation error, and routing is deferred because the existence or non-existence of the file cannot be
determined. However, in some circumstances it may be desirable to treat this condition as if the file

did not exist. If the file name (or the exclamation mark that precedes the file name for non-existence)
is preceded by a plus sign, the EACCES error is treated as if the file did not exist. For example:

require_files = +/somef/file

If the router is not an essential part of verification (for example, it handles udergiard files),
another solution is to set threrify option false so that the router is skipped when verifying.

retry_use_local_part Use:routers Type:boolean Default:see be|0V\+

When a delivery suffers a temporary routing failure, a retry record is created in Exim’s hints database.
For addresses whose routing depends only on the domain, the key for the retry record should not
involve the local part, but for other addresses, both the domain and the local part should be included.
Usually, remote routing is of the former kind, and local routing is of the latter kind.

This option controls whether the local part is used to form the key for retry hints for addresses that
suffer temporary errors while being handled by this router. The default value is true for any router that

194 Generic options for routers (15)

hascheck_local_userset, and false otherwise. Note that this option does not apply to hints keys for
transport delays; they are controlled by a generic transport option of the same name.

The setting ofretry_use_local_part applies only to the router on which it appears. If the router
generates child addresses, they are routed independently; this setting does not become attached to
them.

router_home_directory Use:routers Type:stringt Default:unset

This option sets a home directory for use while the router is running. (Contgzareport_home_
directory, which sets a home directory for later transporting.) In particular, if used oadigect
router, this option sets a value f@homewhile a filter is running. The value is expanded; forced
expansion failure causes the option to be ignored — other failures cause the router to defer.

Expansion ofrouter_home_directory happens immediately after tlebheck local_usettest (if con-
figured), before any further expansions take place. (See section 3.12 for a list of the order in which
preconditions are evaluated.) While the router is runniogter_home_directory overrides the value

of $homethat came froncheck_local_user

When a router accepts an address and assigns it to a local transport (including the cases when a
redirectrouter generates a pipe, file, or autoreply delivery), the home directory setting for the trans-
port is taken from the first of these values that is set:

» Thehome_directory option on the transport;

» Thetransport_home_directory option on the router;

» The password datad¢heck_local_uselis set on the router;
» Therouter_home_directory option on the router.

In other words router_home_directory overrides the password data for the router, but not for the
transport.

self Use:routers Type:string Default:freeze

This option applies to those routers that use a recipient address to find a list of remote hosts.
Currently, these are the@nslookup ipliteral, and manualrouterouters. Certain configurations of the
gueryprogramrouter can also specify a list of remote hosts. Usually such routers are configured to
send the message to a remote host viaratptransport. Theself option specifies what happens when

the first host on the list turns out to be the local host. The way in which Exim checks for the local host
is described in section 13.8.

Normally this situation indicates either an error in Exim’s configuration (for example, the router
should be configured not to process this domain), or an error in the DNS (for example, the MX should
not point to this host). For this reason, the default action is to log the incident, defer the address, and
freeze the message. The following alternatives are provided for use in special cases:

defer
Delivery of the message is tried again later, but the message is not frozen.

reroute: <domairr
The domain is changed to the given domain, and the address is passed back to be reprocessed by
the routers. No rewriting of headers takes place. This behaviour is essentially a redirection.

reroute: rewrite: <domaire
The domain is changed to the given domain, and the address is passed back to be reprocessed by
the routers. Any headers that contain the original domain are rewritten.

pass
The router passes the address to the next router, or to the router namegdassheouteroption if
it is set. This overridesio_more During subsequent routing and delivery, the variabdelf

195 Generic options for routers (15)

hostnamecontains the name of the local host that the router encountered. This can be used to
distinguish between different cases for hosts with multiple names. The combination

self = pass
no_more

ensures that only those addresses that routed to the local host are passed on. Withware,
addresses that were declined for other reasons would also be passed to the next router.

fail
Delivery fails and an error report is generated.

send
The anomaly is ignored and the address is queued for the transport. This setting should be used
with extreme caution. For asmtptransport, it makes sense only in cases where the program that is
listening on the SMTP port is not this version of Exim. That is, it must be some other MTA, or
Exim with a different configuration file that handles the domain in another way.

senders Use:routerst Type:address list Default:unset

If this option is set, the router is skipped unless the message’s sender address matches something on
the list. See section 3.12 for a list of the order in which preconditions are evaluated.

There are issues concerning verification when the running of routers is dependent on the sender.
When Exim is verifying the address in anrors_to setting, it sets the sender to the null string. When
using the-bt option to check a configuration file, it is necessary also to useftbgtion to set an
appropriate sender. For incoming mail, the sender is unset when verifying the sender, but is available
when verifying any recipients. If the SMTP VRFY command is enabled, it must be used after MAIL

if the sender address matters.

translate_ip_address Use:routers Type:stringt Default:unset

There exist some rare networking situations (for example, packet radio) where it is helpful to be able
to translate IP addresses generated by normal routing mechanisms into other IP addresses, thus
performing a kind of manual IP routing. This should be done only if the normal IP routing of the
TCP/IP stack is inadequate or broken. Because this is an extremely uncommon requirement, the code
to support this option is not included in the Exim binary unless SUPPORT_TRANSLATE IP_
ADDRESS=yes is set inhocal/Makefile

The translate_ip_addressstring is expanded for every IP address generated by the router, with the
generated address set$host_addresdf the expansion is forced to fail, no action is taken. For any

other expansion error, delivery of the message is deferred. If the result of the expansion is an IP
address, that replaces the original address; otherwise the result is assumed to be a host name — this is
looked up usinggethostbyname(fjor getipnodebyname@vhen available) to produce one or more
replacement IP addresses. For example, to subvert all IP addresses in some specific networks, this
could be added to a router:

translate_ip_address =\
${lookup{${mask:$host_address/26}}Isearch{/some/file}\
{$valuelfail}}
The file would contain lines like

10.2.3.128/26 some.host
10.8.4.34/26 10.44.8.15

You should not make use of this facility unless you really understand what you are doing.

196 Generic options for routers (15)

transport Use:routers Type:stringt Default:unset

This option specifies the transport to be used when a router accepts an address and sets it up for
delivery. A transport is never needed if a router is used only for verification. The value of the option is
expanded at routing time, after the expansioewbrs_to, headers_add andheaders_removeand

result must be the name of one of the configured transports. If it is not, delivery is deferred.

Thetransport option is not used by theedirectrouter, but it does have some private options that set
up transports for pipe and file deliveries (see chapter 22).

transport_current_directory Use:routers Type:stringt Default:unset

This option associates a current directory with any address that is routed to a local transport. This can
happen either because a transport is explicitly configured for the router, or because it generates a
delivery to a file or a pipe. During the delivery process (that is, at transport time), this option string is
expanded and is set as the current directory, unless overridden by a setting on the transport. If the
expansion fails for any reason, including forced failure, an error is logged, and delivery is deferred.
See chapter 23 for details of the local delivery environment.

transport_home_directory Use:routers Type:stringt Default:see be|OV\+

This option associates a home directory with any address that is routed to a local transport. This can
happen either because a transport is explicitly configured for the router, or because it generates a
delivery to a file or a pipe. During the delivery process (that is, at transport time), the option string is
expanded and is set as the home directory, unless overridden by a settiogefdirectory on the
transport. If the expansion fails for any reason, including forced failure, an error is logged, and
delivery is deferred.

If the transport does not specify a home directory, aladsport_home_directory is not set for the
router, the home directory for the transport is taken from the password ddttedk local_uselis set
for the router. Otherwise it is taken frorauter_home_directory if that option is set; if not, no home
directory is set for the transport.

See chapter 23 for further details of the local delivery environment.

unseen Use:routers Type:booleart Default:false

The result of string expansion for this option must be a valid boolean value, that is, one of the strings
“yes”, “no”, “true”, or “false”. Any other result causes an error, and delivery is deferred. If the
expansion is forced to fail, the default value for the option (false) is used. Other failures cause

delivery to be deferred.

When this option is set true, routing does not cease if the router accepts the address. Instead, a copy of
the incoming address is passed to the next router, overriding a false settingr@f There is little

point in settingmore false if unseenis always true, but it may be useful in cases when the value of
unseencontains expansion items (and therefore, presumably, is sometimes true and sometimes false).

Setting theunseenoption has a similar effect to thenseencommand qualifier in filter files. It can be

used to cause copies of messages to be delivered to some other destination, while also carrying out a
normal delivery. In effect, the current address is made into a “parent” that has two children — one that
is delivered as specified by this router, and a clone that goes on to be routed further. For this reason,
unseenmay not be combined with tlome_timeoption in aredirectrouter.

Warning: Header lines added to the address (or specified for removal) by this router or by previous
routers affect the “unseen” copy of the message only. The clone that continues to be processed by
further routers starts with no added headers and none specified for removaleloeat router, if a
generated address is the same as the incoming address, this can lead to duplicate addresses with
different header modifications. Exim does not do duplicate deliveries (except, in certain circum-

197 Generic options for routers (15)

stances, to pipes -- see section 22.7), but it is undefined which of the duplicates is discarded, so this
ambiguous situation should be avoided. Tapeat_useoption of theredirect router may be of help.

Unlike the handling of header modifications, any data that was set gdihess_dataoption in the
current or previous routers passed on to subsequent routers.

user Use:routers Type:stringt Default:see be|OV\+

When a router queues an address for a transport, and the transport does not specify a user, the user
given here is used when running the delivery process. The user may be specified numerically or by
name. If expansion fails, the error is logged and delivery is deferred. This user is also used by the
redirectrouter when running a filter file. The default is unset, except wdietk_local_uselis set. In

this case, the default is taken from the password information. If the user is specified as a name, and
group is not set, the group associated with the user is used. Se@datpoups andgroup and the
discussion in chapter 23.

| verify Use:routerst Type:boolean Default:true |

Setting this option has the effect of settiggify _senderandverify_recipient to the same value.

| verify_only Use:routerst Type:boolean Default:false |

If this option is set, the router is used only when verifying an address or testing withuthaption,
not when actually doing a delivery, testing with tH& option, or running the SMTP EXPN com-
mand. It can be further restricted to verifying only senders or recipients by meassifyf sender
andverify_recipient.

Warning: When the router is being run to verify addresses for an incoming SMTP message, Exim is
not running as root, but under its own uid. If the router accesses any files, you need to make sure that
they are accessible to the Exim user or group.

| verify_recipient Use:routerst Type:boolean Default:true

If this option is false, the router is skipped when verifying recipient addresses or testing recipient
verification usingbv. See section 3.12 for a list of the order in which preconditions are evaluated.

| verify_sender Use:routerst Type:boolean Default:true

If this option is false, the router is skipped when verifying sender addresses or testing serfder veri
cation usingbvs. See section 3.12 for a list of the order in which preconditions are evaluated.

198 Generic options for routers (15)

16. The accept router

Theacceptrouter has no private options of its own. Unless it is being used purely fdioation (see
verify_only) a transport is required to be filged by the generitransport option. If the precon-
ditions that are spefted by generic options are met, the router accepts the address and queues it for
the given transport. The most common use of this router is for setting up deliveries to local mailboxes.
For example:

localusers:
driver = accept
domains = mydomain.example
check_local_user
transport = local_delivery

The domains condition in this example checks the domain of the address,chadk_local user

checks that the local part is the login of a local user. When both preconditions are matctys
router runs, and queues the address foloited _deliverytransport.

199 The accept router (16)

17. The dnslookup router

The dnslookuprouter looks up the hosts that handle mail for the recipgedbmain in the DNS. A
transport must always be set for this router, untesi§y _only is set.

If SRV support is cofigured (seeheck_srvbelow), Eximfirst searches for SRV records. If none are

found, or if SRV support is not cdigured, MX records are looked up. If no MX records exist,

address records are sought. Howewvex_domains can be set to disable the direct use of address
records.

MX records of equal priority are sorted by Exim into a random order. Exim then looks for address
records for the host names obtained from MX or SRV records. When a host has more than one IP
address, they are sorted into a random order, except that IPv6 addresses are always sorted before IPv4
addresses. If all the IP addresses found are discarded by a settinggrfidhe target _hostsgeneric

option, the router declines.

Unless they have the highest priority (lowest MX value), MX records that point to the local host, or to
any host name that matchleasts_treat _as_localare discarded, together with any other MX records
of equal or lower priority.

If the host pointed to by the highest priority MX record, or looked up as an address record, is the local
host, or matchelsosts_treat_as_localwhat happens is controlled by the genedlf option.

17.1 Problems with DNS lookups

There have been problems with DNS servers when SRV records are looked up. Some mis-behaving
servers return a DNS error or timeout when a non-existent SRV record is sought. Similar problems
have in the past been reported for MX records. The glalnal again_means_nonexisiption can

help with this problem, but it is heavy-handed because it is a global option.

For this reason, there are two optiomssy_fail_domains and mx_fail_domains that control what
happens when a DNS lookup indaslookuprouter results in a DNS failure or“dry agairi response.

If an attempt to look up an SRV or MX record causes one of these results, and the domain matches
the relevant list, Exim behaves as if the DNS had resporidedsuch record In the case of an SRV
lookup, this means that the router proceeds to look for MX records; in the case of an MX lookup, it
proceeds to look for A or AAAA records, unless the domain matesh&sdomains in which case
routing fails.

17.2 Private options for dnslookup
The private options for thénslookuprouter are as follows:

| check_secondary_mx Use:dnslookup Type:boolean Default:false |

If this option is set, the router declines unless the local host is found in (and removed from) the list of
hosts obtained by MX lookup. This can be used to process domains for which the local host is a
secondary mail exchanger differently to other domains. The way in which Exim decides whether a
host is the local host is described in section 13.8.

check_srv Use:dnslookup Type:stringt Default: unset

Thednslookuprouter supports the use of SRV records (see RFC 2782) in addition to MX and address
records. The support is disabled by default. To enable SRV support, seti¢bk srvoption to the
name of the service required. For example,

check_srv = smtp

looks for SRV records that refer to the normal smtp service. The option is expanded, so the service
name can vary from message to message or address to address. This might be helpful if SRV records

200 The dnslookup router (17)

are being used for a submission service. If the expansion is forced to fath#uwk_srvoption is
ignored, and the router proceeds to look for MX records in the normal way.

When the expansion succeeds, the router searfttstsfor SRV records for the given service (it
assumes TCP protocol). A single SRV record with a host name that consists of just a single dot
indicates”no such service for this domdinif this is encountered, the router declines. If other kinds

of SRV record are found, they are used to construct a host list for delivery according to the rules of
RFC 2782. MX records are not sought in this case.

When no SRV records are found, MX records (and address records) are sought in the traditional way.
In other words, SRV records take precedence over MX records, just as MX records take precedence
over address records. Note that this behaviour is not sanctioned by RFC 2782, though a previous draft
RFC ddined it. It is apparently believed that MX records ardfigignt for email and that SRV records
should not be used for this purpose. However, SRV records have an additimight’ feature which

some people mighind useful when trying to split an SMTP load between hosts of different power.

See section 17.1 above for a discussion of Extmhaviour when there is a DNS lookup error.

mx_domains Use:dnslookup Type:domain list Default:unset

A domain that matchesix_domainsis required to have either an MX or an SRV record in order to
be recognized. (The name of this option could be improved.) For example, if all the mail hosts in
fict.exampleare known to have MX records, except for thoseliscworld.fict.exampleyou could use

this setting:

mx_domains = ! *.discworld.fict.example : *.fict.example

This spedies that messages addressed to a domain that matches the list but has no MX record should
be bounced immediately instead of being routed using the address record.

mx_fail_domains Use:dnslookup Type:domain list Default:unset

If the DNS lookup for MX records for one of the domains in this list causes a DNS lookup error,
Exim behaves as if no MX records were found. See section 17.1 for more discussion.

| qualify_single Use:dnslookup Type:boolean Default:true

When this option is true, the resolver option RES_DEFNAMES is set for DNS lookups. Typically, but
not standardly, this causes the resolver to qualify single-component hames with the default domain.
For example, on a machine calldittionary.ref.examplethe domainthesaurusvould be changed to
thesaurus.ref.exampieside the resolver. For details of what your resolver actually does, consult your
man pages faresolverandresolv.conf

rewrite_headers Use:dnslookup Type:boolean Default:true |

If the domain name in the address that is being processed is not fullfigdalt may be expanded to
its full form by a DNS lookup. For example, if an address is sfpediasdormouse @teaparfythe
domain might be expanded teaparty.wonderland.fict.exampBomain expansion can also occur as
a result of setting theviden_domains option. If rewrite_headersis true, all occurrences of the
abbreviated domain name in aBcc:, Cc:, From:, Reply-to; Sender; and To: header lines of the
message are rewritten with the full domain name.

This option should be turned off only when it is known that no message is ever going to be sent
outside an environment where the abbreviation makes sense.

When an MX record is looked up in the DNS and matches a wildcard record, name servers normally
return a record containing the name that has been looked up, making it impossible to detect whether a
wildcard was present or not. However, some name servers have recently been seen to return the

201 The dnslookup router (17)

wildcard entry. If the name returned by a DNS lookup begins with an asterisk, it is not used for header
rewriting.

same_domain_copy_routing Use:dnslookup Type:boolean Default:false

Addresses with the same domain are normally routed bydtiookuprouter to the same list of

hosts. However, this cannot be presumed, because the router options and preconditions may refer to
the local part of the address. By default, therefore, Exim routes each address in a message indepen-
dently. DNS servers run caches, so repeated DNS lookups are not normally expensive, and in any
case, personal messages rarely have more than a few recipients.

If you are running mailing lists with large numbers of subscribers at the same domain, and you are
using adnslookuprouter which is independent of the local part, you canssehe_domain_copy_

routing to bypass repeated DNS lookups for identical domains in one message. In this case, when
dnslookuproutes an address to a remote transport, any other unrouted addresses in the message that
have the same domain are automatically given the same routing without processing them indepen-
dently, provided the following conditions are met:

» No router that processed the address fipedieaders_addor headers_remove
» The router did not change the address in any way, for examgiejidgning the domain.

search_parents Use:dnslookup Type:boolean Default:false

When this option is true, the resolver option RES_DNSRCH is set for DNS lookups. This is different
from the qualify_single option in that it applies to domains containing dots. Typically, but not
standardly, it causes the resolver to search for the name in the current domain and in parent domains.
For example, on a machine in tiiet.exampledomain, if looking upteaparty.wonderlandailed, the
resolver would tryteaparty.wonderland.fict.examplEor details of what your resolver actually does,
consult your man pages farsolverandresolv.conf

Setting this option true can cause problems in domains that have a wildcard MX record, because any
domain that does not have its own MX record matches the local wildcard.

srv_fail_domains Use:dnslookup Type:domain list Default:unset

If the DNS lookup for SRV records for one of the domains in this list causes a DNS lookup error,
Exim behaves as if no SRV records were found. See section 17.1 for more discussion.

widen_domains Use:dnslookup Type:string list Default: unset

If a DNS lookup fails and this option is set, each of its strings in turn is added onto the end of the
domain, and the lookup is tried again. For example, if

widen_domains = fict.example:ref.example

is set and a lookup dflingon.dictionaryfails, klingon.dictionary.fict.examplie looked up, and if this
fails, klingon.dictionary.ref.example tried. Note that thgualify _single andsearch_parentsoptions
can cause some widening to be undertaken inside the DNS resweiden_domainsis not applied to
sender addresses when verifying, untesgite _headersis false (not the default).

17.3 Effect of qualify_single and search_parents

When a domain from an envelope recipient is changed by the resolver as a resultopfattie
single or search_parentsoptions, Exim rewrites the corresponding address in the messhgader
lines unlessewrite_headersis set false. Exim then re-routes the address, using the full domain.

These two options affect only the DNS lookup that takes place inside the router for the domain of the
address that is being routed. They do not affect lookups such as that implied by

202 The dnslookup router (17)

domains = @mx_any

that may happen while processing a router precondition before the router is entered. No widening ever
takes place for these lookups.

203 The dnslookup router (17)

18. The ipliteral router

This router has no private options. Unless it is being used purely fdiicegion (seeverify_only) a
transport is required to be filved by the generitransport option. The router accepts the address if
its domain part takes the form of an RFC 2822 domain literal. For exampleipliteral router
handles the address

root@[192.168.1.1]

by setting up delivery to the host with that IP address. IPv4 domain literals consist of an IPv4 address
enclosed in square brackets. IPv6 domain literals are similar, but the address is precguéd by
For example:

postmaster@]ipv6:fe80::a00:20ff:fe86:a061.5678]

Exim allowsipv4: before IPv4 addresses, for consistency, and on the grounds that sooner or later
somebody will try it.

If the IP address matches somethindggnore_target_hosts the router declines. If an IP literal turns
out to refer to the local host, the genesgdf option determines what happens.

The RFCs require support for domain literals; however, their use is controversial irngdaigynet. If

you want to use this router, you must also set the mairiigoration optionallow_domain_literals.
Otherwise, Exim will not recognize the domain literal syntax in addresses.

204 The ipliteral router (18)

19. The iplookup router

The iplookup router was written to fdil a spediic requirement in Cambridge University (which in
fact no longer exists). For this reason, it is not included in the binary of Exim by default. If you want
to include it, you must set

ROUTER_IPLOOKUP=yes
in your Local/Makefilecorfigurationfile.

The iplookuprouter routes an address by sending it over a TCP or UDP connection to one or more
specfic hosts. The host can then return the same or a different addrizs®ffect rewriting the
recipient address in the messagenvelope. The new address is then passed on to subsequent routers.
If this process fails, the address can be passed on to other routers, or delivery can be deferred. Since
iplookupis just a rewriting router, a transport must not be $igekcfor it.

hosts Use:iplookup Type:string Default: unset

This option must be supplied. Its value is a colon-separated list of host names. The hosts are looked
up usinggethostbyname(for getipnodebyname@hen available) and are tried in order until one
responds to the query. If none respond, what happens is controlbgdidayal.

optional Use:iplookup Type:boolean Default:false

If optional is true, if no response is obtained from any host, the address is passed to the next router,
overridingno_more If optional is false, delivery to the address is deferred.

| port Use:iplookup Type:integer Default: 0 |

This option must be supplied. It spiées the port number for the TCP or UDP call.

| protocol Use:iplookup Type:string Default:udp |

This option can be set taidp’ or“tcp’ to specify which of the two protocols is to be used.

| query Use:iplookup Type:stringt Default:see belovxf

This ddines the content of the query that is sent to the remote hosts. The default value is:
$local_part@$domain $local_part@$domain

The repetition serves as a way of checking that a response is to the correct query in the default case
(seeresponse_patternbelow).

| reroute Use:iplookup Type:stringt Default:unset

If this option is not set, the rerouted address is precisely the byte string returned by the remote host,
up to thefirst white space, if any. If set, the string is expanded to form the rerouted address. It can
include parts matched in the responserégponse_patternby means of numeric variables such as

$1, $2, etc. The variabl&0 refers to the entire input string, whether or not a pattern is in use. In all
cases, the rerouted address must end up in thedoah part@domain

205 The iplookup router (19)

response_pattern Use:iplookup Type:string Default: unset

This option can be set to a regular expression that is applied to the string returned from the remote
host. If the pattern does not match the response, the router declinespdinse _patterris not set, no
checking of the response is done, unless the query was defaulted, in which case there is a check that
the text returned after tHrst white space is the original address. This checks that the answer that has
been received is in response to the correct question. For example, if the response is just a new domain,
the following could be used:

response_pattern = ([*@]+)$
reroute = $local_part@$1

timeout Use:iplookup Type:time Default:5s

This spedies the amount of time to wait for a response from the remote machine. The same timeout
is used for theonnect()function for a TCP call. It does not apply to UDP.

206 The iplookup router (19)

20. The manualroute router

The manualrouterouter is so-called because it provides a way of manually routing an address
according to its domain. It is mainly used when you want to route addresses to remote hosts according
to your own rules, bypassing the normal DNS routing that looks up MX records. However,
manualroutecan also route to local transports, a facility that may be useful if you want to save
messages for dial-in hosts in lofidés.

The manualrouterouter compares a list of domain patterns with the domain it is trying to route. If
there is no match, the router declines. Each pattern has associated with it a list of hosts and some
other optional data, which may include a transport. The combination of a pattern and its data is called
a “routing rulé. For patterns that do not have an associated transport, the gga@sport option

must specify a transport, unless the router is being used purely focateon (seeerify_only).

In the case of vefication, matching the domain pattern is fstient for the router to accept the
address. When actually routing an address for delivery, an address that matches a domain pattern is
gqueued for the associated transport. If the transport is not a local one, a host list must be associated
with the pattern; IP addresses are looked up for the hosts, and these are passed to the transport along
with the mail address. For local transports, a host list is optional. If it is present, it is pasSiedsin

as a single text string.

The list of routing rules can be provided as an inline stringoimte _list, or the data can be obtained
by looking up the domain in &le or database by settimgute _data. Only one of these settings may
appear in any one instance mfanualroute The format of routing rules is described below, following
the list of private options.

20.1 Private options for manualroute
The private options for th@manualrouterouter are as follows:

| host_all_ignored Use:manualroute Type:string Default: defer|

Seehost_find_failed

| host_find_failed Use:manualroute Type:string Default:freeze|

This option controls what happens wheranualroutetries tofind an IP address for a host, and the
host does not exist. The option can be set to one of the following values:

decline
defer
fail
freeze
ignore
pass

The default (freez€) assumes that this state is a seriousfigumation error. The difference between
“pas$ and“declin€ is that the former forces the address to be passed to the next router (or the router
defined bypass_routed, overridingno_more, whereas the latter passes the address to the next router
only if more is true.

The value‘ignore’ causes Exim to completely ignore a host whose IP address cannot be found. If all
the hosts in the list are ignored, the behaviour is controlled bjdise_all_ignoredoption. This takes
the same values &®ust_find_failed except that it cannot be set‘ignore’.

The host_find_failed option applies only to a dimite “does not exist state; if a host lookup gets a
temporary error, delivery is deferred unless the gepass_on_timeoubption is set.

207 The manualroute router (20)

hosts_randomize Use:manualroute Type:boolean Default:false

If this option is set, the order of the items in a host list in a routing rule is randomized each time the
list is used, unless an option in the routing rule overrides (see below). Randomizing the order of a host
list can be used to do crude load sharing. However, if more than one mail address is routed by the
same router to the same host list, the host lists are considered to be the same (even though they may
be randomized into different orders) for the purpose of deciding whether to batch the deliveries into a
single SMTP transaction.

When hosts_randomizeis true, a host list may be split into groups whose order is separately
randomized. This makes it possible to set up MX-like behaviour. The boundaries between groups are
indicated by an item that is justin the host list. For example:

route_list = * hostl:host2:host3:+:host4:host5

The order of thdirst three hosts and the order of the last two hosts is randomized for each use, but the
first three always end up before the last twohdfsts_randomizeis not set, a+ item in the list is
ignored. If a randomized host list is passed tosamptransport that also hasosts_randomize set

the list is not re-randomized.

route_data Use:manualroute Type:stringt Default:unset

If this option is set, it must expand to yield the data part of a routing rule. Typically, the expansion
string includes a lookup based on the domain. For example:

route_data = ${lookup{$domain}dbm{/etc/routes}}

If the expansion is forced to fail, or the result is an empty string, the router declines. Other kinds of
expansion failure cause delivery to be deferred.

route_list Use:manualroute Type:string list Default: unset

This string is a list of routing rules, in the form fileed below. Note that, unlike most string lists, the
items are separated by semicolons. This is so that they may contain colon-separated host lists.

same_domain_copy_routing Use:manualroute Type:boolean Default:false

Addresses with the same domain are normally routed byrtherualrouterouter to the same list of

hosts. However, this cannot be presumed, because the router options and preconditions may refer to
the local part of the address. By default, therefore, Exim routes each address in a message indepen-
dently. DNS servers run caches, so repeated DNS lookups are not normally expensive, and in any
case, personal messages rarely have more than a few recipients.

If you are running mailing lists with large numbers of subscribers at the same domain, and you are
using amanualrouterouter which is independent of the local part, you cansseme _domain_copy_

routing to bypass repeated DNS lookups for identical domains in one message. In this case, when
manualrouteroutes an address to a remote transport, any other unrouted addresses in the message that
have the same domain are automatically given the same routing without processing them indepen-
dently. However, this is only donetitaders_addandheaders_removeare unset.

20.2 Routing rules in route_list

The value ofroute_list is a string consisting of a sequence of routing rules, separated by semicolons.

If a semicolon is needed in a rule, it can be entered as two semicolons. Alternatively, the list separator
can be changed as described (for colon-separated lists) in section 6.19. Empty rules are ignored. The
format of each rule is

<domain pattern <list of hosts <options
The following example contains two rules, each with a simple domain pattern and no options:

208 The manualroute router (20)

route_list =\
dict.ref.example mail-1.ref.example:mail-2.ref.example ; \
thes.ref.example mail-3.ref.example:mail-4.ref.example

The three parts of a rule are separated by white space. The pattern and the list of hosts can be
enclosed in quotes if necessary, and if they are, the usual quoting rules apply. Each maleten hst

must start with a single domain pattern, which is the only mandatory item in the rule. The patternis in
the same format as one item in a domain list (see section 10.8), except that it may not be the name of
an interpolatedile. That is, it may be wildcarded, or a regular expression,fdear database lookup

(with semicolons doubled, because of the use of semicolon as a separatwtén kst).

The rules inroute_list are searched in order until one of the patterns matches the domain that is being
routed. The list of hosts and then options are then used as described below. If there is no match, the
router declines. Whemute _list is setroute_data must not be set.

20.3 Routing rules in route_data

The use ofroute_list is convenient when there are only a small number of routing rules. For larger
numbers, it is easier to usdfite or database to hold the routing information, and usedbée_data

option instead. The value agbute _data is a list of hosts, followed by (optional) options. Most
commonly,route_datais set as a string that contains an expansion lookup. For example, suppose we
place two routing rules infle like this:

dict.ref.example: mail-1.ref.example:mail-2.ref.example
thes.ref.example: mail-3.ref.example:mail-4.ref.example

This data can be accessed by setting
route_data = ${lookup{$domain}isearch{/the/file/name}}

Failure of the lookup results in an empty string, causing the router to decline. However, you do not
have to use a lookup iroute_data. The only requirement is that the result of expanding the string is

a list of hosts, possibly followed by options, separated by white space. The list of hosts must be
enclosed in quotes if it contains white space.

20.4 Format of the list of hosts

A list of hosts, whether obtained viaute data or route_list, is always separately expanded before

use. If the expansion fails, the router declines. The result of the expansion must be a colon-separated
list of names and/or IP addresses, optionally also including ports. The format of each item in the list is
described in the next section. The list separator can be changed as described in section 6.19.

If the list of hosts was obtained from raute_list item, the following variables are set during its
expansion:

« If the domain was matched against a regular expression, the numeric vafiapss etc. may be
set. For example:

route_list = "domain(\d+) host-$1.text.example
e $0is always set to the entire domain.
» $1is also set when partial matching is done fitealookup.

 If the pattern that matched the domain was a lookup item, the data that was looked up is available
in the expansion variabf&value For example:

route_list = Isearch;;/some/file.routes $value

Note the doubling of the semicolon in the pattern that is necessary because semicolon is the default
route list separator.

209 The manualroute router (20)

20.5 Format of one host item

Each item in the list of hosts is either a host name or an IP address, optionally with an attached port
number. When no port is given, an IP address is not enclosed in brackets. When a porfiisdspeci
overrides the port spdoiation on the transport. The port is separated from the name or address by a
colon. This leads to some complications:

» Because colon is the default separator for the list of hosts, either the colon thditespagiort must
be doubled, or the list separator must be changed. The following two examples have the same
effect:

route_list = * "host1.tld::1225 : host2.tld::1226"
route_list = * "<+ host1.tld:1225 + host2.tld:1226"

* When IPv6 addresses are involved, it gets worse, because they contain colons of their own. To
make this case easier, it is permitted to enclose an IP address (either v4 or v6) in square brackets if
a port number follows. For example:

route_list = * "</ [10.1.1.1]:1225/ [::1]:1226"

20.6 How the list of hosts is used

When an address is routed to smtptransport bymanualroute each of the hosts is tried, in the order
specfied, when carrying out the SMTP delivery. However, the order can be changed by setting the
hosts_randomizeoption, either on the router (see section 20.1 above), or on the transport.

Hosts may be listed by name or by IP address. An unadorned name in the list of hosts is interpreted as
a host name. A name that is followed BMX is interpreted as an indirection to a sublist of hosts
obtained by looking up MX records in the DNS. For example:

route_list =* x.y.z:p.q.r/MX:e.f.g
If this feature is used with a port spféei, the port must come last. For example:
route_list =* doml.tld/mx::1225

If the hosts_randomizeoption is set, the order of the items in the list is randomized before any
lookups are done. Exim then scans the list; for any name that is not followBdyt looks up an IP
address. If this turns out to be an interface on the local host and the item is rfaisthia the list,
Exim discards it and any subsequent items. If it isfih& item, what happens is controlled by gedf
option of the router.

A name on the list that is followed bAMX is replaced with the list of hosts obtained by looking up

MX records for the name. This is always a DNS lookup; llyeins andbyname options (see section

20.7 below) are not relevant here. The order of these hosts is determined by the preference values in
the MX records, according to the usual rules. Because randomizing happens before the MX lookup, it
does not affect the order that ifided by MX preferences.

If the local host is present in the sublist obtained from MX records, but is not the most preferred host
in that list, it and any equally or less preferred hosts are removed before the sublist is inserted into the
main list.

If the local host is the most preferred host in the MX list, what happens depends on where in the
original list of hosts théMX item appears. If it is not thérst item (that is, there are previous hosts in
the main list), Exim discards this name and any subsequent items in the main list.

If the MX item isfirst in the list of hosts, and the local host is the most preferred host, what happens
is controlled by theelf option of the router.

DNS failures when lookup up the MX records are treated in the same way as DNS failures when
looking up IP addressegass_on_timeoutandhost_find_failed are used when relevant.

The generidgnore_target_hostsoption applies to all hosts in the list, whether obtained from an MX
lookup or not.

210 The manualroute router (20)

20.7 How the options are used

The options are a sequence of words; in practice no more than three are ever present. One of the
words can be the name of a transport; this overridestridwesport option on the router for this
particular routing rule only. The other words (if present) control randomization of the list of hosts on

a per-rule basis, and how the IP addresses of the hosts are to be found when routing to a remote
transport. These options are as follows:

» randomize: randomize the order of the hosts in this list, overriding the settirigpsfs_randomize
for this routing rule only.

* no_randomize do not randomize the order of the hosts in this list, overriding the settihgsif
randomize for this routing rule only.

* byname usegetipnodebyname()gethostbyname(®n older systems) téind IP addresses. This
function may ultimately cause a DNS lookup, but it may also looketa/hostor other sources of
information.

* bydns: look up address records for the hosts directly in the DNS; fail if no address records are
found. If there is a temporary DNS error (such as a timeout), delivery is deferred.

For example:

route_list = domainl hostl:host2:host3 randomize bydns;\
domain2 host4:host5

If neither byname nor bydns is given, Exim behaves as follows: First, a DNS lookup is done. If this
yields anything other than HOST_NOT_FOUND, that result is used. Otherwise, Exim goes on to try a
call togetipnodebyname@r gethostbyname(and the result of the lookup is the result of that call.

Warning: It has been discovered that on some systems, if a DNS lookup called via
getipnodebyname(imes out, HOST_NOT_FOUND is returned instead of TRY_AGAIN. That is
why the default action is to try a DNS lookdisst. Only if that gives a danite “no such hostis the

local function called.

If no IP address for a host can be found, what happens is controlledimsthénd_failed option.

When an address is routed to a local transport, IP addresses are not looked up. The host list is passed
to the transport in thghostvariable.

20.8 Manualroute examples

In some of the examples that follow, the presence ofrdmote_smtptransport, as dmed in the
default cofigurationfile, is assumed:

* Themanualrouterouter can be used to forward all external mail tenaart hostIf you have set up,
in the main part of the cdiguration, a named domain list that contains your local domains, for
example:

domainlist local_domains = my.domain.example

You can arrange for all other domains to be routed to a smart host by makindfiysturouter
something like this:

smart_route:
driver = manualroute
domains = !+local_domains
transport = remote_smtp
route_list = * smarthost.ref.example

This causes all non-local addresses to be sent to the singlstasthost.ref.exampléf a colon-
separated list of smart hosts is given, they are tried in order (but you cémate randomizeto
vary the order each time). Another way of tgaring the same thing is this:

smart_route:
driver = manualroute

211 The manualroute router (20)

transport = remote_smtp
route_list = +local_domains smarthost.ref.example

There is no difference in behaviour between these two routers as they stand. However, they behave
differently if no_moreis added to them. In thérst example, the router is skipped if the domain
does not match thdomains precondition; the following router is always tried. If the router runs, it
always matches the domain and so can never decline. There@mmmore would have no effect. In

the second case, the router is never skipped; it always runs. However, if it’dosstch the
domain, it declines. In this case_morewould prevent subsequent routers from running.

A mail hubis a host which receives mail for a number of domains via MX records in the DNS and
delivers it via its own private routing mechanism. Often fimal destinations are behindiaewall,

with the mail hub being the one machine that can connect to machines both inside and outside the
firewall. Themanualrouterouter is usually used on a mail hub to route incoming messages to the
correct hosts. For a small number of domains, the routing can be inline, usirmgutieelist option,

but for a larger numberféde or database lookup is easier to manage.

If the domain names are in fact the names of the machines to which the mail is to be sent by the
mail hub, the caiiguration can be quite simple. For example:

hub_route:
driver = manualroute
transport = remote_smtp
route_list = *.rhodes.tvs.example $domain

This corfiguration routes domains that matthhodes.tvs.example to hosts whose names

are the same as the mail domains. A similar approach can be taken if the host name can be obtained
from the domain name by a string manipulation that the expansion facilities can handle. Otherwise,
a lookup based on the domain can be usdishdiothe host:

through_firewall:
driver = manualroute
transport = remote_smtp
route_data = ${lookup {$domain} cdb {/internal/host/routes}}

The result of the lookup must be the name or IP address of the host (or hosts) to which the address
is to be routed. If the lookup fails, the route data is empty, causing the router to decline. The
address then passes to the next router.

You can usemanualrouteto deliver messages to pipesfdes in batched SMTP format for onward
transportation by some other means. This is one way of storing mail for a dial-up host when it is
not connected. The route list entry can be as simple as a single domain name figaredion like

this:

save_in_file:
driver = manualroute
transport = batchsmtp_appendfile
route_list = saved.domain.example

though often a pattern is used to pick up more than one domain. If there are several domains or
groups of domains with different transport requirements, different transports can be listed in the
routing information:

save_in_file:
driver = manualroute
route_list =\
* saved.domainl.example $domain batch_appendfile; \
*.saved.domain2.example \
${lookup{$domain}dbm{/domain2/hosts}{$value}fail} \
batch_pipe

Thefirst of these just passes the domain in$hestvariable, which doeshachieve much (since it
is also in$domair), but the second doesfée lookup tofind a value to pass, causing the router to
decline to handle the address if the lookup fails.

212 The manualroute router (20)

* Routing mail directly to UUCP software is a spicicase of the use oghanualroutein a gateway
to another mail environment. This is an example of one way it can be done:

Transport
uucp:
driver = pipe
user = nobody
command = /ustr/local/bin/uux -r -\
${substr_-5:$host}'rmail ${local_part}
return_fail_output = true

Router

uucphost:
transport = uucp
driver = manualroute
route_data =\

${lookup{$domain}isearch{/usr/local/exim/uucphosts}}
Thefile /usr/local/exim/uucphostsontains entries like

darksite.ethereal.example: darksite.UUCP

It can be set up more simply without adding and remoVinglUCP’ but this way makes clear the
distinction between the domain namarksite.ethereal.exampéd the UUCP host nandarksite

213 The manualroute router (20)

21. The queryprogram router

Thequeryprogranrouter routes an address by running an external command and acting on its output.
This is an expensive way to route, and is intended mainly for use in lightly-loaded systems, or for
performing experiments. However, if it is possible to use the precondition optitamsaing local_

parts, etc) to skip this router for most addresses, it could sensibly be used in special cases, even on a
busy host. There are the following private options:

| command Use:queryprogram Type:stringt Default: unset|

This option must be set. It spéies the command that is to be run. The command is split up into a
command name and arguments, and then each is expanded separately (exactlypgsefivaasport,
described in chapter 29).

command_group Use:queryprogram Type:string Default:unset

This option spedies a gid to be set when running the command while routing an address for deliver.
It must be set itommand_userspecfies a numerical uid. If it begins with a digit, it is interpreted as
the numerical value of the gid. Otherwise it is looked up ug@tgrnam()

command_user Use:queryprogram Type:string Default: unset

This option must be set. It spéies the uid which is set when running the command while routing an
address for delivery. If the value begins with a digit, it is interpreted as the numerical value of the uid.
Otherwise, it is looked up usingetpwnam(}o obtain a value for the uid and, dbmmand_groupis

not set, a value for the gid also.

Warning: Changing uid and gid is possible only when Exim is running as root, which it does during a
normal delivery in a conventional cbiguration. However, when an address is beingfiediduring
message reception, Exim is usually running as the Exim user, not as root.qdi¢ngprogranrouter

is called from a non-root process, Exim cannot change uid or gid before running the command. In this
circumstance the command runs under the current uid and gid.

current_directory Use:queryprogram Type:string Default:/

This option spedies an absolute path which is made the current directory before running the
command.

timeout Use:queryprogram Type:time Default: 1h

If the command does not complete within the timeout period, its process group is killed and the
message is frozen. A value of zero time Spegino timeout.

The standard output of the command is connected to a pipe, which is read when the command
terminates. It should consist of a single line of output, containing djvédields, separated by white
space. The maximum length of the line is 1023 characters. Longer lines are silently truncated. The
firstfield is one of the following words (case-insensitive):

» Accept routing succeeded; the remainiigjds specify what to do (see below).
» Decline the router declines; pass the address to the next router, nolgasreis set.

 Fail: routing failed; do not pass the address to any more routers. Any subsequent text on the line is
an error message. If the router is run as part of addresfoaidn during an incoming SMTP
message, the message is included in the SMTP response.

214 The queryprogram router (21)

» Defer. routing could not be completed at this time; try again later. Any subsequent text on the line
is an error message which is logged. It is not included in any SMTP response.

» Freezethe same adefer, except that the message is frozen.

» Pass pass the address to the next router (or the router Bpediy pass_routel), overridingno_
more.

» Redirect the message is redirected. The remainder of the line is a list of new addresses, which are
routed independently, starting with tlfiest router, or the router spdigd by redirect_router, if
set.

When thefirst word isaccept the remainder of the line consists of a number of keyed data values, as
follows (split into two lines here, tiit on the page):

ACCEPT TRANSPORT=<transport> HOSTS=<list of hosts>
LOOKUP=byname|bydns DATA=<text>

The data items can be given in any order, and all are optional. If no transport is included, the transport
specfied by the generitransport option is used. The list of hosts and the lookup type are needed
only if the transport is asmtptransport that does not itself supply a list of hosts.

The format of the list of hosts is the same as foritienualrouterouter. As well as host names and IP
addresses with optional port numbers, as described in section 20.5, it may contain names followed by
IMX to specify sublists of hosts that are obtained by looking up MX records (see section 20.6).

If the lookup type is not spefted, Exim behaves as follows when tryingfiod an IP address for each

host: First, a DNS lookup is done. If this yields anything other than HOST_NOT_FOUND, that result

is used. Otherwise, Exim goes on to try a callgetipnodebyname@r gethostbyname(Jand the

result of the lookup is the result of that call.

If the DATA field is set, its value is placed in tBaddress_dataariable. For example, this return line
accept hosts=x1.y.example:x2.y.example data="rulel1"

routes the address to the default transport, passing a list of two hosts. When the transport runs, the
string“rulel” is in$address_data

215 The queryprogram router (21)

22. The redirect router

The redirect router handles several kinds of address redirection. Its most common uses are for
resolving local part aliases from a central afiids (usually calledetc/aliaseyand for handling users
personalforward files, but it has many other potential uses. The incoming address can be redirected
in several different ways:

* It can be replaced by one or more new addresses which are themselves routed independently.
It can be routed to be delivered to a gifiém or directory.

It can be routed to be delivered to a spedipipe command.

It can cause an automatic reply to be generated.

It can be forced to fail, optionally with a custom error message.

It can be temporarily deferred, optionally with a custom message.

* It can be discarded.

The generidransport option must not be set faedirect routers. However, there are some private
options which déne transports for delivery thles and pipes, and for generating autoreplies. See the
file_transport, pipe_transport andreply_transport descriptions below.

22.1 Redirection data

The router operates by interpreting a text string which it obtains either by expanding the contents of
the data option, or by reading the entire contents ofil@ whose name is given in thide option.

These two options are mutually exclusive. Thrat is commonly used for handling system aliases, in

a coriguration like this:

system_aliases:
driver = redirect
data = ${lookup{$local_part}isearch{/etc/aliases}}

If the lookup fails, the expanded string in this example is empty. When the expansilatteofesults
in an empty string, the router declines. A forced expansion failure also causes the router to decline;
other expansion failures cause delivery to be deferred.

A corfiguration usindile is commonly used for handling userf®rwardfiles, like this:

userforward:
driver = redirect
check_local_user
file = $home/.forward
no_verify

If the file does not exist, or causes no action to be taken (for example, it is empty or consists only of
comments), the router declinédlarning: This is not the case when thHide contains syntactically

valid items that happen to yield empty addresses, for example, items containing only RFC 2822
address comments.

22.2 Forward files and address verification

It is usual to seho_verify on redirectrouters which handle usérdorward files, as in the example
above. There are two reasons for this:

» When Exim is receiving an incoming SMTP message from a remote host, it is running under the
Exim uid, not as root. Exim is unable to change uid to readfifeeas the user, and it may not be
able to read it as the Exim user. So in practice the router may not be able to operate.

» However, even when the router can operate, the existencefofveard file is unimportant when
verifying an address. What should be checked is whether the local part is a valid user name or not.
Cutting out the redirection processing saves some resources.

216 The redirect router (22)

22.3 Interpreting redirection data

The contents of the data string, whether obtained fdata or file, can be interpreted in two different
ways:

* If the allow_filter option is set true, and the data begins with the te&xim filter” or “#Sieve
filter”, it is interpreted as a list diltering instructions in the form of an Exim or Siev#ter file,
respectively. Details of the syntax and semanticBltEr files are described in a separate document
entitledExim’s interfaces to mail filteringhis document is intended for use by end users.

» Otherwise, the data must be a comma-separated list of redirection items, as described in the next
section.

When a message is redirected tbla (a“mail folder’), thefile name given in a nofilter redirection

list must always be an absolute path.fiker may generate a relative pathhow this is handled
depends on the transp@tcorfiguration. See section 26.1 for a discussion of this issue for the
appendfileransport.

22.4 Iltems in a non-filter redirection list

When the redirection data is not an Exim or Siélter, for example, if it comes from a conventional

alias or forwardfile, it consists of a list of addressdde names, pipe commands, or certain special
items (see section 22.6 below). The special items can be individually enabled or disabled by means of
options whose names begin wieitlow_ or forbid_, depending on their default values. The items in

the list are separated by commas or newlines. If a comma is required in an item, the entire item must
be enclosed in double quotes.

Lines starting with a # character are comments, and are ignored, and # may also appear following a
comma, in which case everything between the # and the next newline character is ignored.

If an item is entirely enclosed in double quotes, these are removed. Otherwise double quotes are
retained because some forms of mail address require their use (but never to enclose the entire
address). In the following descriptiohitem” refers to what remains after any surrounding double
guotes have been removed.

Warning: If you use an Exim expansion to construct a redirection address, and the expansion con-
tains a reference tdlocal_part you should make use of tlgpiote_local_partexpansion operator, in

case the local part contains special characters. For example, to redirect all mail for the domain
obsolete.exampleetaining the existing local part, you could use this setting:

data = ${quote_local_part:$local_part}@newdomain.example

22.5 Redirecting to a local mailbox

A redirection item may safely be the same as the address currently under consideration. This does not
cause a routing loop, because a router is automatically skipped if any ancestor of the address that is
being processed is the same as the current address and was processed by the current router. Such an
address is therefore passed to the following routers, so it is handled as if there were no redirection.
When making this loop-avoidance test, the complete local part, including afiy presufix, is used.

Specifying the same local part without a domain is a common usage in pefgtardlles when the
user wants to have messages delivered to the local mailbox and also forwarded elsewhere. For
example, the user whose logircleo might have aforwardfile containing this:

cleo, cleopatra@egypt.example

For compatibility with other MTAs, such unqufid local parts may be preceded By, but this is
not a requirement for loop prevention. However, it does make a difference if more than one domain is
being handled synonymously.

If an item begins witH'\" and the rest of the item parses as a valid RFC 2822 address that does not
include a domain, the item is quiaéid using the domain of the incoming address. In the absence of a
leading“\”, unqualfied addresses are quad using the value imualify_recipient, but you can

force the incoming domain to be used by settjnglify _preserve_domain

217 The redirect router (22)

Care must be taken if there are alias names for local users. Consider an MTA handling a single local
domain where the system alide contains:

Sam.Reman: spqr

Now suppose that Sam (whose login icfm) wants to save copies of messages in the local mailbox,
and also forward copies elsewhere. He creates this fofilerd

Sam.Reman, spgr@reme.elsewhere.example

With these settings, an incoming message address&hmo.Rematfails. The redirect router for
system aliases does not proc&msn.Remathe second time round, because it has previously routed
it, and the following routers presumably cannot handle the alias. The forfilaréhould really
contain

spgr, spgr@reme.elsewhere.example

but because this is such a common error,¢heck_ancestoroption (see below) exists to provide a
way to get round it. This is normally set oredirectrouter that is handling usér$orwardfiles.

22.6 Special items in redirection lists

In addition to addresses, the following types of item may appear in redirection lists (that is, in
nonfilter redirection data):

* An item is treated as a pipe command if it begins wWithand does not parse as a valid RFC 2822
address that includes a domain. A transport for running the command must biespbyi the
pipe_transport option. Normally, either the router or the transport sfiesia user and a group
under which to run the delivery. The default is to use the Exim user and group.

Single or double quotes can be used for enclosing the individual arguments of the pipe command;
no interpretation of escapes is done for single quotes. If the command contains a comma character,
it is necessary to put the whole item in double quotes, for example:

"|l/some/command ready,steady,go"

since items in redirection lists are terminated by commas. Do not, however, quote just the com-
mand. An item such as

|"/some/command ready,steady,go"
is interpreted as a pipe with a rather strange command name, and no arguments.

* Anitem is interpreted as a path name if it begins Withand does not parse as a valid RFC 2822
address that includes a domain. For example,

/home/world/minbari
is treated as fle name, but
/s=molari/o=babylon/@x400gate.way

is treated as an address. Fofila name, a transport must be spgieal using thdfile_transport
option. However, if the generated path name ends with a forward slash character, it is interpreted as
a directory name rather tharil® name, andirectory_transport is used instead.

Normally, either the router or the transport sfiies a user and a group under which to run the
delivery. The default is to use the Exim user and group.

However, if a redirection item is the pattlev/nul| delivery to it is bypassed at a high level, and the
log entry shows'**bypassed** instead of a transport name. In this case the user and group are
not used.

» If an item is of the form
sinclude:<path name>
a list of further items is taken from the givdite and included at that poinNote: Such afile can
not be afilter file; it is just an out-of-line addition to the list. The items in the included list are

218 The redirect router (22)

separated by commas or newlines and are not subject to expansion. If thisfiistliem in an
alias list in anlsearchfile, a colon must be used to terminate the alias name. This example is
incorrect:

listl :include:/opt/lists/listl
It must be given as
listl: :include:/opt/lists/listl

Sometimes you want to throw away mail to a particular local part. Makingl#ta option expand

to an empty string does not work, because that causes the router to decline. Instead, the alias item
:blackhole:can be used. It does what its name implies. No delivery is done, and no error message
is generated. This has the same effect as §pgddev/nullas a destination, but it can be indepen-
dently disabled.

Warning: If :blackhole:appears anywhere in a redirection list, no delivery is done for the original
local part, even if other redirection items are present. If you are generating a multi-item list (for
example, by reading a database) and need the ability to provide a no-op item, you must use
/dev/null

An attempt to deliver a particular address can be deferred or forced to fail by redirection items of
the form

:defer:
fail:

respectively. When a redirection list contains such an item, it applies to the entire redirection; any
other items in the list are ignoredb{ackhole:is different). Any text following:fail: or :defer: is
placed in the error text associated with the failure. For example, affilaliasght contain:

X.Employee: :fail: Gone away, no forwarding address

In the case of an address that is beingfieed from an ACL or as the subject of a VRFY command,

the text is included in the SMTP error response by default. The text is not included in the response
to an EXPN command. In non-SMTP cases the text is included in the error message that Exim
generates.

By default, Exim sends a 451 SMTP code fadafer:, and 550 for.fail: . However, if the message

starts with three digits followed by a space, optionally followed by an extended code of the form
n.n.n also followed by a space, and the vdinst digit is the same as the default error code, the
code from the message is used instead. If the fiesy digit is incorrect, a panic error is logged,

and the default code is used. You can suppress the use of the supplied code in a redirect router by
setting thdorbid_smtp_codeoption true. In this case, any SMTP code is quietly ignored.

In an ACL, an explicitly provided message overrides the default, but the default message is avail-
able in the variabl&acl_verify_messagend can therefore be included in a custom message if this
is desired.

Normally the error text is the rest of the redirection kst comma does not terminate-tbut a
newline does act as a terminator. Newlines are not normally present in alias expanslseardn
lookups they are removed as part of the continuation process, but they may exist in other kinds of
lookup and ininclude:files.

During routing for message delivery (as opposed tofigation), a redirection containingail:

causes an immediate failure of the incoming address, whetetes: causes the message to remain

on the queue so that a subsequent delivery attempt can happen at a later time. If an address is
deferred for too long, it will ultimately fail, because the normal retry rules still apply.

Sometimes it is useful to use a single-key search type with a default (see chapter 9) to look up
aliases. However, there may be a need for exceptions to the default. These can be handled by
aliasing them taunknown: This differs from:fail: in that it causes theadirectrouter to decline,
whereasfail: forces routing to fail. A lookup which results in an empty redirection list has the
same effect.

219 The redirect router (22)

22.7 Duplicate addresses

Exim removes duplicate addresses from the list to which it is delivering, so as to deliver just one copy
to each address. This does not apply to deliveries routed to pipes by different immediate parent
addresses, but an indirect aliasing scheme of the type

pipe: |/some/command $local_part
localpartl: pipe
localpart2: pipe

does not work with a message that is addressed to both local parts, because when the second is aliased
to the intermediate local palpipe’ it gets discarded as being the same as a previously handled
address. However, a scheme such as

localpartl: [/some/command $local_part
localpart2: |/some/command $local_part

does result in two different pipe deliveries, because the immediate parents of the pipes are distinct.

22.8 Repeated redirection expansion

When a message cannot be delivered to all of its recipients immediately, leading to two or more
delivery attempts, redirection expansion is carried out afresh each time for those addresses whose
children were not all previously delivered. If redirection is being used as a mailing list, this can lead
to new members of the list receiving copies of old messages.onbketime option can be used to

avoid this.

22.9 Errors in redirection lists

If skip_syntax_errorsis set, a malformed address that causes a parsing error is skipped, and an entry
is written to the main log. This may be useful for mailing lists that are automatically managed.
Otherwise, if an error is detected while generating the list of new addresses, the original address is
deferred. See alsyntax_errors_ta

22.10 Private options for the redirect router
The private options for thedirectrouter are as follows:

| allow_defer Use:redirect Type:boolean Default:false

Setting this option allows the use mwfefer: in nonilter redirection data, or théefer command in an
Exim filter file.

allow_fail Use:redirect Type:boolean Default:false

If this option is true, thefail: item can be used in a redirection list, and fa# command may be
used in an Exinfilter file.

allow_filter Use:redirect Type:boolean Default:false

Setting this option allows Exim to interpret redirection data that starts ‘Wixim filter’ or “#Sieve
filter” as a set ofiltering instructions. There are some features of Efiter files that some adminis-
trators may wish to lock out; see tioebid_filter_ xxxoptions below.

It is also possible to lock out Exirfilters or Sievefilters while allowing the other type; sderbid
exim_filter andforbid_sieve_filter.

Thefilter is run using the uid and gid set by the generser and group options. These take their
defaults from the password datacifieck_local_uselis set, so in the normal case of usepersonal

220 The redirect router (22)

filter files, thefilter is run as the relevant user. Whaltow_filter is set true, Exim insists that either
check_local _useroruseris set.

allow_freeze Use:redirect Type:boolean Default:false

Setting this option allows the use of tlfieeze command in an Exindilter. This command is more
normally encountered in systeidiiters, and is disabled by default for redirectiiters because it ish
something you usually want to let ordinary users do.

check_ancestor Use:redirect Type:boolean Default:false

This option is concerned with handling generated addresses that are the same as some address in the
list of redirection ancestors of the current address. Although it is turned off by default in the code, it is

set in the default cdigurationfile for handling users.forwardfiles. It is recommended for this use of
theredirectrouter.

When check_ancestoris set, if a generated address (including the domain) is the same as any
ancestor of the current address, it is replaced by a copy of the current address. This helps in the case
where local part A is aliased to B, and B hasaward file pointing back to A. For example, within a

single domain, the local pardoe.Bloggs is aliased tdjb” and jb/.forward contains:

\Joe.Bloggs, <other item(s)>

Without thecheck _ancestorsetting, either local part'jb” or “joe.blogg8) gets processed once by
each router and so ends up as it was originally.jihf is the real mailbox name, mail tgb” gets
delivered (having been turned intme.bloggs by the.forwardfile and back tdjb” by the alias), but
mail to “joe.bloggs fails. Settingcheck _ancestoion theredirectrouter that handles théorwardfile
prevents it from turningjb” back into“joe.bloggé when that was the original address. See also the
repeat_useoption below.

check_group Use:redirect Type:boolean Default:see belovxf

When thefile option is used, the group owner of tfike is checked only when this option is set. The
permitted groups are those listed in thngroups option, together with the userdefault group if
check_local_useris set. If thefile has the wrong group, routing is deferred. The default setting for
this option is true iftheck_local_useiis set and thenodemaskoption permits the group write bit, or

if the owngroupsoption is set. Otherwise it is false, and no group check occurs.

check_owner Use:redirect Type:boolean Default:see beIOV\}

When thefile option is used, the owner of tHde is checked only when this option is setcHeck
local_useris set, the local user is permitted; otherwise the owner must be one of those listed in the
owners option. The default value for this option is true d¢heck local_useror owners is set.
Otherwise the default is false, and no owner check occurs.

data Use:redirect Type:stringt Default: unset

This option is mutually exclusive witfile. One or other of them must be set, but not both. The
contents ofdata are expanded, and then used as the list of forwarding items, or as afg&trofg
instructions. If the expansion is forced to fail, or the result is an empty string or a string that has no
effect (consists entirely of comments), the router declines.

Whenfiltering instructions are used, the string must begin Witkxim filter’, and all comments in
the string, including this initial one, must be terminated with newline characters. For example:

data = #Exim filter\n\
if $h_to: contains Exim then save $home/mail/exim endif

221 The redirect router (22)

If you are reading the data from a database where newlines cannot be included, you carf{sg the
expansion item to turn the escape string of your choice into a newline.

directory_transport Use:redirect Type:stringt Default: unset|

A redirect router sets up a direct delivery to a directory when a path name ending with a slash is
specfied as a newaddress. The transport used is spéeid by this option, which, after expansion,
must be the name of a dagured transport. This should normally beagpendfileransport.

file Use:redirect Type:stringt Default:unset

This option spedies the name of file that contains the redirection data. It is mutually exclusive with

the data option. The string is expanded before use; if the expansion is forced to fail, the router
declines. Other expansion failures cause delivery to be deferred. The result of a successful expansion
must be an absolute path. The enfiile is read and used as the redirection data. If the data is an
empty string or a string that has no effect (consists entirely of comments), the router declines.

If the attempt to open thile fails with a“does not existerror, Exim runs a check on the containing
directory, unlessgnore_enotdir is true (see below). If the directory does not appear to exist, delivery
is deferred. This can happen when usei@wardfiles are in NFS-mounted directories, and there is a
mount problem. If the containing directory does exist, bufitaeloes not, the router declines.

file_transport Use:redirect Type:stringt Default: unset|

A redirectrouter sets up a direct delivery tdige when a path name not ending in a slash is djesti
as a new address. The transport used is spéeid by this option, which, after expansion, must be the
name of a cofigured transport. This should normally be gppendfileransport. When it is running,
thefile name is irbaddress_file

filter_prepend_home Use:redirect Type:boolean Default:true |

When this option is true, if @avecommand in an Exinfilter speciies a relative path, arthomeis
defined, it is automatically prepended to the relative path. If this option is set false, this action does
not happen. The relative path is then passed to the transport €iechodi

| forbid_blackhole Use:redirect Type:boolean Default:false |

If this option is true, theblackhole:item may not appear in a redirection list.

| forbid_exim_filter Use:redirect Type:boolean Default:false |

If this option is set true, only Sievidters are permitted wheallow_filter is true.

| forbid_file Use:redirect Type:boolean Default:false |

If this option is true, this router may not generate a new address thafispet@livery to a locdile or
directory, either from dilter or from a conventional forwartile. This option is forced to be true if
one_timeis set. It applies to Sieviélters as well as to Exinfilters, but if true, it locks out the Sieise
“keep facility.

222 The redirect router (22)

forbid_filter_dlIfunc Use:redirect Type:boolean Default:false

If this option is true, string expansions in Exifitters are not allowed to make use of tbdéunc
expansion facility to run dynamically loaded functions.

forbid_filter_existstest Use:redirect Type:boolean Default:false

If this option is true, string expansions in Exifilters are not allowed to make use of thgists
condition or thestat expansion item.

forbid_filter_logwrite Use:redirect Type:boolean Default:false

If this option is true, use of the logging facility in Exifiiters is not permitted. Logging is in any case
available only if thefilter is being run under some unprivileged uid (which is normally the case for
ordinary users.forwardfiles).

forbid_filter_lookup Use:redirect Type:boolean Default:false

If this option is true, string expansions in Exifiiter files are not allowed to make use lobkup
items.

forbid_filter_perl Use:redirect Type:boolean Default:false

This option has an effect only if Exim is built with embedded Perl support. If it is true, string
expansions in Exirfilter files are not allowed to make use of the embedded Perl support.

forbid_filter_readfile Use:redirect Type:boolean Default:false

If this option is true, string expansions in Exifiter files are not allowed to make use i@adfile
items.

forbid_filter_readsocket Use:redirect Type:boolean Default:false

If this option is true, string expansions in Exiiiiter files are not allowed to make userefadsocket
items.

forbid_filter_reply Use:redirect Type:boolean Default:false

If this option is true, this router may not generate an automatic reply message. Automatic replies can
be generated only from Exim or Sieviter files, not from traditional forwardiles. This option is
forced to be true ibne_timeis set.

| forbid_filter_run Use:redirect Type:boolean Default:false |

If this option is true, string expansions in EXiter files are not allowed to make useofi items.

| forbid_include Use:redirect Type:boolean Default:false |

If this option is true, items of the form
:include:<path name>

are not permitted in nofikter redirection lists.

223 The redirect router (22)

forbid_pipe Use:redirect Type:boolean Default:false

If this option is true, this router may not generate a new address whicHiggedelivery to a pipe,
either from an Exinfilter or from a conventional forwarfile. This option is forced to be true dne_
time is set.

| forbid_sieve_filter Use:redirect Type:boolean Default:false |

If this option is set true, only Exifilters are permitted wheadlow_filter is true.

| forbid_smtp_code Use:redirect Type:boolean Default:false |

If this option is set true, any SMTP error codes that are present at the start of messadesdsioeci

.defer: or :fail: are quietly ignored, and the default codes (451 and 550, respectively) are
always used.
hide_child_in_errmsg Use:redirect Type:boolean Default:false |

If this option is true, it prevents Exim from quoting a child address if it generates a bounce or delay
message for it. Instead it sayan address generated frorthe top level address. Of course, this
applies only to bounces generated locally. If a message is forwarded to anothetsiumince may

well quote the generated address.

| ignore_eacces Use:redirect Type:boolean Default:false |

If this option is set and an attempt to open a redirecfimyields the EACCES error (permission
denied), theedirectrouter behaves as if tifiée did not exist.

| ignore_enotdir Use:redirect Type:boolean Default:false |

If this option is set and an attempt to open a redirectitmnyields the ENOTDIR error (something on
the path is not a directory), thedirectrouter behaves as if tliége did not exist.

Settingignore_enotdir has another effect as well: Wherredirect router that has théle option set
discovers that théile does not exist (the ENOENT error), it tries stat() the parent directory, as a
check against unmounted NFS directories. If the parent can not be statted, delivery is deferred.
However, it seems wrong to do this check wligmore_enotdir is set, because that option tells Exim

to ignore“something on the path is not a directorfghe ENOTDIR error). This is a confusing area,
because it seems that some operating systems give ENOENT where others give ENOTDIR.

include_directory Use:redirect Type:string Default: unset

If this option is set, the path names of amyclude: items in a redirection list must start with this
directory.

modemask Use:redirect Type:octal integer Default:022

This spedies mode bits which must not be set fofile speciied by thefile option. If any of the
forbidden bits are set, delivery is deferred.

224 The redirect router (22)

one_time Use:redirect Type:boolean Default:false

Sometimes the fact that Exim re-evaluates aliases and reprocesses rediilestieach time it tries to

deliver a message causes a problem when one or more of the generated addresses fails be delivered at
thefirst attempt. The problem is not one of duplicate delivelgxim is clever enough to handle that

— but of what happens when the redirection list changes during the time that the message is’sn Exim
gueue. This is particularly true in the case of mailing lists, where new subscribers might receive
copies of messages that were posted before they subscribed.

If one_timeis set and any addresses generated by the router fail to deliver tghattempt, the
failing addresses are added to the messag&tas level addresses, and the parent address that
generated them is markédelivered. Thus, redirection does not happen again at the next delivery
attempt.

Warning 1: Any header line addition or removal that is sges by this router would be lost if
delivery did not succeed at thHirst attempt. For this reason, theaders_addandheaders_remove
generic options are not permitted whare_timeis set.

Warning 2: To ensure that the router generates only addresses (as opposed tofpgdaiiveries or
auto-replies¥orbid_file, forbid_pipe, andforbid_filter_reply are forced to be true whemne_time
is set.

Warning 3: Theunseengeneric router option may not be set witie_time

The original top-level address is remembered with each of the generated addresses, and is output in
any log messages. However, any intermediate parent addresses are not recorded. This makes a differ-
ence to the log only ill_parents log selector is set. It is expected thate_timewill typically be

used for mailing lists, where there is normally just one level of expansion.

owners Use:redirect Type:string list Default:unset

This spedies a list of permitted owners for tliée speciied byfile. This list is in addition to the local
user whercheck_local_uselis set. Seeheck _ownerabove.

owngroups Use:redirect Type:string list Default: unset

This spedies a list of permitted groups for tlide spediied byfile. The list is in addition to the local
usefts primary group wheoheck_local_uselis set. Seeheck groupabove.

pipe_transport Use:redirect Type:stringt Default:unset

A redirectrouter sets up a direct delivery to a pipe when a string starting with a vertical bar character
is spediied as a newaddress. The transport used is sp&ed by this option, which, after expansion,
must be the name of a cgured transport. This should normally bepgpe transport. When the
transport is run, the pipe command isaddress_pipe

| qualify_domain Use:redirect Type:stringt Default:unset

If this option is set, and an unquiéid address (one without a domain) is generated, and that address
would normally be qualied by the global setting iqualify_recipient, it is instead quafied with the
domain spedied by expanding this string. If the expansion fails, the router declines. If you want to
revert to the default, you can have the expansion gerfragdify _recipient

This option applies to all unqudikkd addresses generated by Efitiers, but for traditionalforward
files, it applies only to addresses that are not preceded by a backslashfil&eveannot generate
unqualfied addresses.

225 The redirect router (22)

| qualify_preserve_domain Use:redirect Type:boolean Default:false |

If this option is set, the rout&s local qualify_domain option must not be set (a cfiguration error
occurs if it is). If an unquafied address (one without a domain) is generated, it is figgwith the
domain of the parent address (the immediately preceding ancestor) instead of theqglalifsl
recipient value. In the case of a traditiondbrward file, this applies whether or not the address is
preceded by a backslash.

repeat_use Use:redirect Type:boolean Default:true |

If this option is set false, the router is skipped for a child address that has any ancestor that was routed
by this router. This test happens before any of the other preconditions are testeds Hafault
anti-looping rules skip only when the ancestor is the same as the current address. S¥eeiso
ancestorabove and the generiedirect_router option.

reply_transport Use:redirect Type:stringt Default:unset

A redirectrouter sets up an automatic reply whemail or vacation command is used in filter file.

The transport used is spéeid by this option, which, after expansion, must be the name of a con-
figured transport. This should normally be autoreplytransport. Other transports are unlikely to do
anything sensible or useful.

rewrite Use:redirect Type:boolean Default:true

If this option is set false, addresses generated by the router are not subject to address rewriting.
Otherwise, they are treated like new addresses and are rewritten according to the global rewriting
rules.

| sieve_subaddress Use:redirect Type:stringt Default: unset|

The value of this option is passed to a Sidter to specify the :subaddress part of an address.

| sieve_useraddress Use:redirect Type:stringt Default: unset|

The value of this option is passed to a Siélter to specify the :user part of an address. However, if it
is unset, the entire original local part (including anyigrer sufix) is used for :user.

sieve_vacation_directory Use:redirect Type:stringt Default: unset|

To enable theé'vacatiori extension for Sievdilters, you must sesieve_vacation_directoryto the
directory where vacation databases are held (do not put anything else in that directory), and ensure
that thereply_transport option refers to amutoreplytransport. Each user needs their own directory;
Exim will create it if necessary.

skip_syntax_errors Use:redirect Type:boolean Default:false |

If skip_syntax_errors is set, syntactically malformed addresses in fitier redirection data are
skipped, and each failing address is loggedsytax_errors_to is set, a message is sent to the
address it dienes, giving details of the failures. $iyntax_errors_textis set, its contents are expanded
and placed at the head of the error message generateghtax_errors_ta Usually it is appropriate
to setsyntax_errors_toto be the same address as the geneniors_to option. Theskip_syntax_
errors option is often used when handling mailing lists.

226 The redirect router (22)

If all the addresses in a redirection list are skipped because of syntax errors, the router declines to
handle the original address, and it is passed to the following routers.

If skip_syntax_errorsis set when an Exinfilter is interpreted, any syntax error in thiéer causes
filtering to be abandoned without any action being taken. The incident is logged, and the router
declines to handle the address, so it is passed to the following routers.

Syntax errors in a Sievilter file cause thékeeg action to occur. This action is spéieid by RFC
3028. The values afkip_syntax_errors syntax_errors_tq andsyntax_errors_textare not used.

skip_syntax_errorscan be used to specify that errors in usdéosward lists orfilter files should not
prevent delivery. Theyntax_errors_tooption, used with an address that does not get redirected, can
be used to notify users of these errors, by means of a router like this:

userforward:
driver = redirect
allow_filter
check_local_user
file = $home/.forward
file_transport = address_file
pipe_transport = address_pipe
reply_transport = address_reply
no_verify
skip_syntax_errors
syntax_errors_to = real-$local_part@$domain
syntax_errors_text =\
This is an automatically generated message. An error has\n\
been found in your .forward file. Details of the error are\n\
reported below. While this error persists, you will receive\n\
a copy of this message for every message that is addressed\n\
to you. If your .forward file is a filter file, or if it is\n\
a non-filter file containing no valid forwarding addresses,\n\
a copy of each incoming message will be put in your normal\n\
mailbox. If a non-filter file contains at least one valid\n\
forwarding address, forwarding to the valid addresses will\n\
happen, and those will be the only deliveries that occur.

You also need a router to ensure that local addresses that fiveegdrieyreal- are recognized, but
not forwarded offiltered. For example, you could put this immediately beforeuserforwardrouter:

real_localuser:
driver = accept
check_local_user
local_part_prefix = real-
transport = local_delivery

For security, it would probably be a good idea to restrict the use of this router to locally-generated
messages, using a condition such as this:

condition = ${if match {$sender_host_address}\
{\N~(|127\.0\.0\.1)$\N}}

| syntax_errors_text Use:redirect Type:stringt Default: unset|

Seeskip_syntax_errorsabove.

| syntax_errors_to Use:redirect Type:string Default: unset|

Seeskip_syntax_errorsabove.

227 The redirect router (22)

23. Environment for running local transports

Local transports handle deliveries fites and pipes. (Thautoreplytransport can be thought of as
similar to a pipe.) Exim always runs transports in subprocesses, undefispedis and gids. Typical
deliveries to local mailboxes run under the uid and gid of the local user.

Exim also sets a spdii current directory while running the transport; for some transports a home
directory setting is also relevant. Tpgetransport is the only one that sets up environment variables;
see section 29.4 for details.

The values used for the uid, gid, and the directories may come from several different places. In many
cases, the router that handles the address associates settings with that address as a rekeltlof its
local_user, group, or user options. However, values may also be given in the transpown con-
figuration, and these override anything that comes from the router.

23.1 Concurrent deliveries

If two different messages for the same local recipient arrive more or less simultaneously, the two
delivery processes are likely to run concurrently. Whenappendfiletransport is used to write to a

file, Exim applies locking rules to stop concurrent processes from writing to thefdamethe same

time.

However, when you use @ipe transport, it is up to you to arrange any locking that is needed. Here is
a silly example:

my_transport:
driver = pipe
command = /bin/sh -c 'cat >>/some/file’'

This is supposed to write the message at the end ofitdheHowever, if two messages arrive at the
same time, théile will be scrambled. You can use tle&im_lock utility program (see section 50.15)
to lock afile using the same algorithm that Exim itself uses.

23.2 Uids and gids

All transports have the optiorgroup anduser. If group is set, it overrides any group that the router
set in the address, evenuser is not set for the transport. This makes it possible, for example, to run
local mail delivery under the uid of the recipient (set by the router), but in a special group (set by the
transport). For example:

Routers ...
User/group are set by check_local_user in this router
local_users:

driver = accept

check_local_user

transport = group_delivery

Transports ...
This transport overrides the group
group_delivery:
driver = appendfile
file = /var/spool/mail/$local_part
group = malil

If useris set for a transport, its value overrides what is set in the address by the rouiser i
non-numeric andjroup is not set, the gid associated with the user is usedséf is numeric,group
must be set.

When the uid is taken from the transgertoriguration, theinitgroups() function is called for the
groups associated with that uid if th@tgroups option is set for the transport. When the uid is not

228 Environment for local transports (23)

specfied by the transport, but is associated with the address by a router, the option for calling
initgroups()is taken from the router cbguration.

The pipe transport contains the special optipipe_as_creator If this is set anduser is not set, the
uid of the process that called Exim to receive the message is used, gnouif is not set, the
corresponding original gid is also used.

This is the detailed preference order for obtaining a gidijtieof the following that is set is used:
» A group setting of the transport;
» A group setting of the router;

» A gid associated with a user setting of the router, either as a reswehexk local useror an
explicit non-numeriaiser setting;

» The group associated with a non-numeiser setting of the transport;
» In apipetransport, the creatsergid ifdeliver_as_creatoris set and the uid is the creasouid,;
» The Exim gid if the Exim uid is being used as a default.

If, for example, the user is spdigd numerically on the router and there are no group settings, no gid
is available. In this situation, an error occurs. This is different for the uid, for which there always is an
ultimate default. Théirst of the following that is set is used:

» A user setting of the transport;

* In apipetransport, the creatsruid ifdeliver_as_creatoris set;

» A user setting of the router;

» A check_local_usersetting of the router;

* The Exim uid.

Of course, an error will still occur if the uid that is chosen is oméver_usersdlist.

23.3 Current and home directories

Routers may set current and home directories for local transports by means thrisport
current_directory and transport_home_directory options. However, if the transpéstcurrent
directory or home_directory options are set, they override the rougevalues. In detail, the home
directory for a local transport is taken from fhret of these values that is set:

» Thehome_directory option on the transport;

» Thetransport_home_directory option on the router;

» The password data¢heck_local_uselis set on the router;

» Therouter_home_directory option on the router.

The current directory is taken from thiest of these values that is set:
» Thecurrent_directory option on the transport;

» Thetransport_current_directory option on the router.

If neither the router nor the transport sets a current directory, Exim uses the value of the home
directory, if it is set. Otherwise it sets the current directovybiefore running a local transport.

23.4 Expansion variables derived from the address

Normally a local delivery is handling a single address, and in that case the variables $athresn

and $local_part are set during local deliveries. However, in some circumstances more than one
address may be handled at once (for example, while writing batch SMTP for onward transmission by
some other means). In this case, the variables associated with the local part are n®demsainis

set only if all the addresses have the same domair§aiginal_domainis never set.

229 Environment for local transports (23)

24. Generic options for transports

The following generic options apply to all transports:

body_ only Use:transports Type:boolean Default:false

If this option is set, the messdgeneaders are not transported. It is mutually exclusive héidders
only. If it is used with theappendfileor pipetransports, the settings ofessage_prefiandmessage
suffix should be checked, because this option does not automatically suppress them.

current_directory Use:transports Type:stringt Default:unset

This spedies the current directory that is to be set while running the transport, overriding any value
that may have been set by the router. If the expansion fails for any reason, including forced failure, an
error is logged, and delivery is deferred.

disable_logging Use:transports Type:boolean Default:false

If this option is set true, nothing is logged for any deliveries by the transport or for any transport
errors. You should not set this option unless you really, really know what you are doing.

debug_print Use:transports Type:stringt Default: unset

If this option is set and debugging is enabled (seedh®ommand line option), the string is expanded
and included in the debugging output when the transport is run. If expansion of the string fails, the
error message is written to the debugging output, and Exim carries on processing. This facility is
provided to help with checking out the values of variables and so on when debugging driffgucon
ations. For example, if headers_addoption is not working properlyjebug_print could be used to
output the variables it references. A newline is added to the text if it does not end with one.

| delivery_date _add Use:transports Type:boolean Default:false

If this option is true, éDelivery-date:header is added to the message. This gives the actual time the
delivery was made. As this is not a standard header, Exim hasfayamation option delivery_date_

remove) which requests its removal from incoming messages, so that delivered messages can safely
be resent to other recipients.

| driver Use:transports Type:string Default: unset

This spedies which of the available transport drivers is to be used. There is no default, and this
option must be set for every transport.

| envelope_to_add Use:transports Type:boolean Default:false

If this option is true, anEnvelope-to:header is added to the message. This gives the original
address(es) in the incoming envelope that caused this delivery to happen. More than one address may
be present if the transport is dogured to handle several addresses at once, or if more than one
original address was redirected to the sdinal address. As this is not a standard header, Exim has a
corfiguration option €¢nvelope_to_removewhich requests its removal from incoming messages, so

that delivered messages can safely be resent to other recipients.

230 Generic options for transports (24)

group Use:transports Type:stringt Default: Exim group

This option spedies a gid for running the transport process, overriding any value that the router
supplies, and also overriding any value associatedusith(see below).

headers_add Use:transports Type:stringt Default: unset|

This option spedies a string of text that is expanded and added to the header portion of a message as
it is transported, as described in section 44.17. Additional header lines can also Heedpegi
routers. If the result of the expansion is an empty string, or if the expansion is forced to fail, no action
is taken. Other expansion failures are treated as errors and cause the delivery to be deferred.

headers_only Use:transports Type:boolean Default:false |

If this option is set, the messdgdody is not transported. It is mutually exclusive witbdy only. If
it is used with theappendfileor pipe transports, the settings aiessage_prefixand message_suffix
should be checked, since this option does not automatically suppress them.

headers_remove Use:transports Type:stringt Default:unset

This option spedies a string that is expanded into a list of header names; these headers are omitted
from the message as it is transported, as described in section 44.17. Header removal can also be
specfied by routers. If the result of the expansion is an empty string, or if the expansion is forced to
fail, no action is taken. Other expansion failures are treated as errors and cause the delivery to be
deferred.

headers_rewrite Use:transports Type:string Default: unset

This option allows addresses in header lines to be rewritten at transport time, that is, as the message is
being copied to its destination. The contents of the option are a colon-separated list of rewriting rules.
Each rule is in exactly the same form as one of the general rewriting rules that are applied when a
message is received. These are described in chapter 31. For example,

headers_rewrite = a@b c@d f : \
X@y w@z

changea@binto c@din From: header lines, and@yinto w@zin all address-bearing header lines.

The rules are applied to the header lines just before they are written out at transport time, so they
affect only those copies of the message that pass through the transport. However, only the’smessage
original header lines, and any that were added by a syBt&m are rewritten. If a router or transport
adds header lines, they are not affected by this option. These rewriting rulestaapplied to the
envelope. You can change the return path usetgrn_path, but you cannot change envelope recipi-
ents at this time.

home_directory Use:transports Type:stringt Default:unset

This option spedies a home directory setting for a local transport, overriding any value that may be
set by the router. The home directory is placedshomewhile expanding the transpdst private
options. It is also used as the current directory if no current directory is set lmuthent_directory
option on the transport or thieansport_current_directory option on the router. If the expansion
fails for any reason, including forced failure, an error is logged, and delivery is deferred.

231 Generic options for transports (24)

initgroups Use:transports Type:boolean Default:false |

If this option is true and the uid for the delivery process is provided by the transpoiitigp@ups()
function is called when running the transport to ensure that any additional groups associated with the
uid are set up.

message_size_limit Use:transports Type:stringt Default:0 |

This option controls the size of messages passed through the transport. It is expanded before use; the
result of the expansion must be a sequence of decimal digits, optionally followed by K or M. If the
expansion fails for any reason, including forced failure, or if the result is not of the required form,
delivery is deferred. If the value is greater than zero and the size of a message exceeds this limit, the
address is failed. If there is any chance that the resulting bounce message could be routed to the same
transport, you should ensure thiaturn_size_limit is less than the transptsinessage_size_limitas
otherwise the bounce message will fail to get delivered.

rcpt_include_affixes Use:transports Type:boolean Default:false |

When this option is false (the default), and an address that has hadfauss dpréixes or sufixes)
removed from the local part is delivered by any form of SMTP or LMTP, tlixed are not included.
For example, if a router that contains

local_part_prefix = *-
routes the addresdbc-xyz@some.domatio an SMTP transport, the envelope is delivered with
RCPT TO:<xyz@some.domain>

This is also the case when an ACL-time callout is being used to verify a recipient address. However, if
rcpt_include_affixesis set true, the whole local part is included in the RCPT command. This option
applies to BSMTP deliveries by theppendfileand pipe transports as well as to thmtp and smtp
transports.

retry_use_local_part Use:transports Type:boolean Default:see beIOV\}

When a delivery suffers a temporary failure, a retry record is created in’&Ximts database. For
remote deliveries, the key for the retry record is based on the name and/or IP address of the failing
remote host. For local deliveries, the key is normally the entire address, including both the local part
and the domain. This is suitable for most common cases of local delivery temporary faitare
example, exceeding a mailbox quota should delay only deliveries to that mailbox, not to the whole
domain.

However, in some special cases you may want to treat a temporary local delivery as a failure
associated with the domain, and not with a particular local part. (For example, if you are storing all
mail for some domain ifiles.) You can do this by settimgtry _use_local_partfalse.

For all the local transports, its default value is true. For remote transports, the default value is false for
tidiness, but changing the value has no effect on a remote transport in the current implementation.

| return_path Use:transports Type:stringt Default:unset

If this option is set, the string is expanded at transport time and replaces the existing return path
(envelope sender) value in the copy of the message that is being delivered. An empty return path is
permitted. This feature is designed for remote deliveries, where the value of this option is used in the
SMTP MAIL command. If you seteturn_path for a local transport, the only effect is to change the
address that is placed in tiReturn-path:header line, if one is added to the message (see the next
option).

232 Generic options for transports (24)

Note: A changed return path is not logged unless you aetdrn_path_on_delivery to the log
selector.

The expansion can refer to the existing value $i@turn_path This is either the messageenvelope
sender, or an address set by #reors_to option on a router. If the expansion is forced to fail, no
replacement occurs; if it fails for another reason, delivery is deferred. This option can be used to
support VERP (Variable Envelope Return Pathsge section 47.6.

Note: If a delivery error is detected locally, including the case when a remote server rejects a message
at SMTP time, the bounce message is not sent to the value of this option. It is sent to the previously
set errors address. This defaults to the incoming sender address, but can be changed by setting
errors_to in a router.

return_path_add Use:transports Type:boolean Default:false

If this option is true, aReturn-path:header is added to the message. Although the return path is
normally available in the pfix line of BSD mailboxes, this is commonly not displayed by MUAS,
and so the user does not have easy access to it.

RFC 2821 states that tiReturn-path:header is added to a messdgéhen the delivery SMTP server
makes thdinal delivery. This implies that this header should not be present in incoming messages.
Exim has a cofiguration optionyeturn_path_remove, which requests removal of this header from
incoming messages, so that delivered messages can safely be resent to other recipients.

| shadow_condition Use:transports Type:stringt Default: unset|

Seeshadow_transportbelow.

| shadow_transport Use:transports Type:string Default: unset|

A local transport may set thehadow_transport option to the name of another local transport.
Shadow remote transports are not supported.

Whenever a delivery to the main transport succeeds, and aitiegfow conditionis unset, or its
expansion does not result in the empty string or one of the sttidiger “na” or “fals€’, the message

is also passed to the shadow transport, with the same delivery address or addresses. If expansion fails,
no action is taken except that non-forced expansion failures cause a log line to be written.

The result of the shadow transport is discarded and does not affect the subsequent processing of the
message. Only a single level of shadowing is provided;stiedow_transportoption is ignored on

any transport when it is running as a shadow. Options concerned with output from pipes are also
ignored. The log line for the successful delivery has an item added on the end, of the form

ST=<shadow transport name>

If the shadow transport did not succeed, the error message is put in parentheses afterwards. Shadow
transports can be used for a number of different purposes, including keeping more detailed log
information than Exim normally provides, and implementing automatic acknowledgment policies
based on message headers that some sites insist on.

transport_filter Use:transports Type:stringt Default: unset

This option sets up éltering (in the Unix shell sense) process for messages at transport time. It
should not be confused with méiltering as set up by individual users or via a sydi#sn.

When the message is about to be written out, the commandiggkloytransport_filter is started up

in a separate, parallel process, and the entire message, including the header lines, is passed to it on its
standard input (this in fact is done from a third process, to avoid deadlock). The command must be
specfied as an absolute path.

233 Generic options for transports (24)

The lines of the message that are written to the trandptat are terminated by newliné\(”). The
message is passed to thieer before any SMTP-spdat processing, such as turnifign” into “\r\n”

and escaping lines beginning with a dot, and also before any processing implied by the settings of
check_stringandescape_stringn theappendfileor pipe transports.

The standard error for thiélter process is set to the same destination as its standard output; this is
read and written to the messéageiltimate destination. The process that writes the message to the
filter, thefilter itself, and the original process that reads the result and delivers it are all run in parallel,
like a shell pipeline.

Thefilter can perform any transformations it likes, but of course should take care not to break RFC
2822 syntax. A demonstration Perl script is provideduti/transport-filter.pl this makes a few
arbitrary modiications just to show the possibilities. Exim does not check the result, except to test for
afinal newline when SMTP is in use. All messages transmitted over SMTP must end with a newline,
so Exim supplies one if it is missing.

A transportfilter can be used to provide content-scanning on a per-user basis at delivery time if the
only required effect of the scan is to modify the message. For example, a content scan could insert a
new header line containing a spam score. This could be interpretedilbgr @n the uses MUA. It is

not possible to discard a message at this stage.

A problem might arise if thdilter increases the size of a message that is being sent down an SMTP
connection. If the receiving SMTP server has indicated support for the SIZE parameter, Exim will
have sent the size of the message at the start of the SMTP session. If what is actually sent is
substantially more, the server might reject the message. This can be worked round by setiirg the
addition option on thesmtptransport, either to allow for additions to the message, or to disable the
use of SIZE altogether.

The value of thdransport_filter option is the command string for starting thiter, which is run
directly from Exim, not under a shell. The string is parsed by Exim in the same way as a command
string for thepipe transport: Exim breaks it up into arguments and then expands each argument
separately (see section 29.3). Any kind of expansion failure causes delivery to be deferred. The
special argumenpipe_addresses replaced by a number of arguments, one for each address that
applies to this delivery. (This ishan ideal name for this feature here, but as it was already
implemented for theipetransport, it seemed sensible not to change it.)

The expansion variableBhostand $host_addresare available when the transport is a remote one.
They contain the name and IP address of the host to which the message is being sent. For example:

transport_filter = /some/directory/transport-filter.pl \
$host $host_address $sender_address $pipe_addresses

Two problems arise if you want to use more complicated expansion items to generate tréfisport
commands, both of which due to the fact that the command is spléfagexpansion.

» If an expansion item contains white space, you must quote it, so that it is all part of the same
command item. If the entire option setting is one such expansion item, you have to take care what
kind of quoting you use. For example:

transport_filter = '/bin/cmd${if eq{$host}{a.b.c{1}H2}}'

This runs the commantbin/cmdlif the host name is.b.¢ and/bin/cmd2otherwise. If double
quotes had been used, they would have been stripped by Exim when it read thésoyrioe.
When the value is used, if the single quotes were missing, the line would be split into two items,
/bin/cmd${if andeqg{$hostH{a.b.c}{1}2} , and an error would occur when Exim tried

to expand thdirst one.

» Except for the special case &pipe_addressethat is mentioned above, an expansion cannot
generate multiple arguments, or a command name followed by arguments. Consider this example:

transport_filter = ${lookup{$host}isearch{/a/file}\
{$value}{/bin/cat}}

The result of the lookup is interpreted as the name of the command, even if it contains white space.
The simplest way round this is to use a shell:

234 Generic options for transports (24)

transport_filter = /bin/sh -c ${lookup{$host}isearch{/a/file}\
{$value}{/bin/cat}}

Thefilter process is run under the same uid and gid as the normal delivery. For remote deliveries this
is the Exim uid/gid by default. The command should normally yield a zero return code. Transport
filters are not supposed to fail. A non-zero code is taken to mean that the traf$poencountered

some serious problem. Delivery of the message is deferred; the message remains on the queue and is
tried again later. It is not possible to cause a message to be bounced from a ftiiétesport

If a transporffilter is set on an autoreply transport, the original message is passed throdijte tizes
it is being copied into the newly generated message, which happensrdtthe_messageoption is
set.

transport_filter_timeout Use:transports Type:time Default:5m |

When Exim is reading the output of a transpbiter, it a applies a timeout that can be set by this
option. Exceeding the timeout is normally treated as a temporary delivery failure. However, if a
transporffilter is used with gipetransport, a timeout in the transpditter is treated in the same way

as a timeout in the pipe command itself. By default, a timeout is a hard error, but iplee
transports timeout_defer option is set true, it becomes a temporary error.

user Use:transports Type:stringt Default: Exim used

This option spedies the user under whose uid the delivery process is to be run, overriding any uid
that may have been set by the router. If the user is given as a name, the uid is looked up from the
password data, and the associated group is taken as the value of the gid to be usgiffihaption

iS not set.

For deliveries that use local transports, a user and group are normallfisgesiplicitly or implicitly
(for example, as a result ofieck local_use) by the router or transport.

For remote transports, you should leave this option unset unless you really are sure you know what

you are doing. When a remote transport is running, it needs to be able to access Biita
databases, because each host may have its own retry data.

235 Generic options for transports (24)

25. Address batching in local transports

The only remote transporsintp is normally corigured to handle more than one address at a time, so

that when several addresses are routed to the same remote host, just one copy of the message is sent.
Local transports, however, normally handle one address at a time. That is, a separate instance of the
transport is run for each address that is routed to the transport. A separate copy of the message is
delivered each time.

In special cases, it may be desirable to handle several addresses at once in a local transport, for
example:

» In anappendfilegransport, when storing messagediias for later delivery by some other means, a
single copy of the message with multiple recipients saves space.

* In anlmtptransport, when delivering ovélocal SMTP to some process, a single copy saves time,
and is the normal way LMTP is expected to work.

* In a pipe transport, when passing the message to a scanner program or to some other delivery
mechanism such as UUCP, multiple recipients may be acceptable.

These three local transports all have the same options for controlling multigécthed) deliveries,
namelybatch_maxandbatch_id. To save repeating the information for each transport, these options
are described here.

The batch_maxoption spedies the maximum number of addresses that can be delivered together in
a single run of the transport. Its default value is one (no batching). When more than one address is
routed to a transport that hasbhatch_max value greater than one, the addresses are delivered in a
batch (that is, in a single run of the transport with multiple recipients), subject to certain conditions:

* If any of the transpo's options contain a referencefocal_part no batching is possible.

» If any of the transpots options contain a reference $mlomain only addresses with the same
domain are batched.

« If batch_id is set, it is expanded for each address, and only those addresses with the same
expanded value are batched. This allows you to specify customized batching conditions. Failure of
the expansion for any reason, including forced failure, disables batching, but it does not stop the
delivery from taking place.

» Batched addresses must also have the same errors address (where to send delivery errors), the same
header additions and removals, the same user and group for the transport, and if a host list is
present, théirst host must be the same.

In the case of thappendfileandpipetransports, batching applies both when fihe or pipe command

is spediied in the transport, and when it is sdesdl by aredirectrouter, but all the batched addresses
must of course be routed to the saffile or pipe command. These two transports have an option
calleduse_bsmtp which causes them to deliver the messagéhatched SMTP format, with the
envelope represented as SMTP commands. chieek_string and escape_stringoptions are forced

to the values

nn

check_string =".
escape_string=".."

when batched SMTP is in use. A full description of the batch SMTP mechanism is given in section
45.10. Thelmtp transport does not haveuse_bsmtpoption, because it always delivers using the
SMTP protocol.

If the genericenvelope to_addoption is set for a batching transport, thavelope-toheader that is

added to the message contains all the addresses that are being processed together. If you are using a
batchingappendfiletransport withoutuse bsmtp the only way to preserve the recipient addresses is

to set theenvelope_to_addption.

If you are using gipe transport without BSMTP, and setting the transigocbmmand option, you
can include$pipe_addresseas part of the command. This is not a true variable; it is a bit of magic

236 Address batching (25)

that causes each of the recipient addresses to be inserted into the command as a separate argument.
This provides a way of accessing all the addresses that are being delivered in théb&tchis is
not possible for pipe commands that are dptby aredirectrouter.

237 Address batching (25)

26. The appendfile transport

The appendfiletransport delivers a message by appending it to an exiftiagor by creating an
entirely newfile in a spedied directory. Singldiles to which messages are appended can be in the
traditional Unix mailbox format, or optionally in the MBX format supported by the Pine MUA and
University of Washington IMAP daemornter alia. When each message is being delivered as a
separatdile, “maildir’ format can optionally be used to give added protection against failures that
happen part-way through the delivery. A third form of sepafdgéedelivery known as mailstoré is

also supported. For dlile formats, Exim attempts to create as many levels of directory as necessary,
provided thatreate_directory s set.

The code for the optional formats is not included in the Exim binary by default. It is necessary to set
SUPPORT_MBX, SUPPORT_MAILDIR and/or SUPPORT_MAILSTORH.ocal/Makefileto have
the appropriate code included.

Exim recognizes system quota errors, and generates an appropriate message. Exim also supports its
own quota control within the transport, for use when the system facility is unavailable or cannot be
used for some reason.

If there is an error while appending tofide (for example, quota exceeded or partitiblied), Exim
attempts to reset thide’s length and last mofication time back to what they were before. If there is
an error while creating an entirely néie, the newfile is removed.

Before appending to file, a number of security checks are made, andfiteas locked. A detailed
description is given below, after the list of private options.

The appendfileransport is most commonly used for local deliveries to usai@lboxes. However, it
can also be used as a pseudo-remote transport for putting messag@esniior remote delivery by
some means other than ExiffBatch SMTP format is often used in this case (see tis®_bsmtp

option).

26.1 The file and directory options

The file option spedies a singlefile, to which the message is appended; thectory option
specfies a directory, in which a netfile containing the message is created. Only one of these two
options can be set, and for normal deliveries to mailboxes, one ofithethe set.

However,appendfilds also used for delivering messagedites or directories whose names (or parts
of names) are obtained from alias, forwardingfitiering operations (for example,savecommand

in a usels Eximfilter). When such a transport is runnirglpcal_partcontains the local part that was
aliased or forwarded, andaddress_filecontains the name (or partial name) of fille or directory
generated by the redirection operation. There are two cases:

« If neitherfile nor directory is set, the redirection operation must specify an absolute path (one that
begins with/). This is the most common case when users with local accountilieseg to sort
mail into different folders. See for example, thddress_fildransport in the default cdiguration.
If the path ends with a slash, it is assumed to be the name of a directory. A delivery to a directory
can also be forced by settintpildir_format or mailstore_format.

» If file or directory is set for a delivery from a redirection, it is used to determine ftkee or
directory name for the delivery. Normally, the contentsbafidress_fileare used in some way in
the string expansion.

As an example of the second case, consider an environment where users do not have home directories.
They may be permitted to use Exiitter commands of the form:

save folder23

or Sievefilter commands of the form:
require "fileinto";
fileinto "folder23";

238 The appendfile transport (26)

In this situation, the expansion dife or directory in the transport must transform the relative path
into an appropriate absolufide name. In the case of Siefiéters, the namébox must be handled. It
is the name that is used as a result dtkaed action in thefilter. This example shows one way of
handling this requirement:

file = ${if eq{$address_fileKinbox} \

{ivar/mail/$local_part} \

{${if eq{${substr_0_1:$address_file}}{/} \
{$address_file} \
{$home/mail/$address_file} \

} B

With this setting offile, inboxrefers to the standard mailbox location, absolute paths are used without
change, and other folders are in thail directory within the home directory.

Note 1 While processing an Exirfilter, a relative path such dslder23is turned into an absolute
path if a home directory is known to the router. In particular, this is the caseeitk local_useris
set. If you want to prevent this happening at routing time, you carosg¢r_home_directory empty.
This forces the router to pass the relative path to the transport.

Note 2 An absolute path irfaddress_files not treated specially; thide or directory option is still
used if it is set.

26.2 Private options for appendfile

| allow_fifo Use:appendfile Type:boolean Default:false

Setting this option permits delivery to named pipes (FIFOs) as well as to rdgakarlf no process is
reading the named pipe at delivery time, the delivery is deferred.

allow_symlink Use:appendfile Type:boolean Default:false

By default,appendfilewill not deliver if the path name for théle is that of a symbolic link. Setting

this option relaxes that constraint, but there are security issues involved in the use of symbolic links.
Be sure you know what you are doing if you set this. Details of exactly what this option affects are
included in the discussion which follows this list of options.

batch_id Use:appendfile Type:stringt Default:unset

See the description of local delivery batching in chapter 25. However, batching is automatically
disabled forappendfiledeliveries that happen as a result of forwarding or aliasing or other redirection
directly to afile.

| batch_max Use:appendfile Type:integer Default: 1 |

See the description of local delivery batching in chapter 25.

| check_group Use:appendfile Type:boolean Default:false |

When this option is set, the group owner of file ddined by thefile option is checked to see that it
is the same as the group under which the delivery process is running. The default setting is false
because the defadlte mode is 0600, which means that the group is irrelevant.

239 The appendfile transport (26)

check_owner Use:appendfile Type:boolean Default:true

When this option is set, the owner of tlitke ddined by thefile option is checked to ensure that it is
the same as the user under which the delivery process is running.

check_string Use:appendfile Type:string Default:see beIOV\}

As appendfilewrites the message, the start of each line is tested for matchieck_string and if it

does, the initial matching characters are replaced by the conterdscape_string The value of
check_string is a literal string, not a regular expression, and the case of any letters it contains is
signfficant.

If use_bsmtpis set the values ofheck_string andescape_stringare forced td'.” and“..” respect-
ively, and any settings in the cfiguration are ignored. Otherwise, they default“terom ” and
“>From” when thefile option is set, and unset when any of ttlieectory, maildir, or mailstore
options are set.

The default settings, along witmessage_prefixand message_suffixare suitable for traditional
“BSD" mailboxes, where a line beginning witkrom” indicates the start of a new message. All four
options need changing if another format is used. For example, to deliver to mailboxes in MMDF
format:

check_string = "\1\1\1\1\n"
escape_string = "\1\1\1\1 \n"
message_prefix = "\1\1\1\1\n"
message_suffix = "\1\1\1\1\n"

create_directory Use:appendfile Type:boolean Default:true |

When this option is true, Exim attempts to create any missing superior directories fdettiat it is
about to write. A created directésymode is given by thdirectory_mode option.

The group ownership of a newly created directory is highly dependent on the operating system (and
possibly thefile system) that is being used. For example, in Solaris, if the parent directory has the

setgid bit set, its group is propagated to the child; if not, the currently set group is used. However, in

FreeBSD, the parestgroup is always used.

create_file Use:appendfile Type:string Default: anywhere|

This option constrains the location fifes and directories that are created by this transport. It applies
to files ddined by thefile option and directories dimed by thedirectory option. In the case of
maildir delivery, it applies to the top level directory, not the maildir directories beneath.

The option must be set to one of the wortdsywheré, “inhomé, or “belowhomé. In the second

and third cases, a home directory must have been set for the transport. This option is not useful when
an explicitfile name is given for normal mailbox deliveries. It is intended for the case vileen
names are generated from useferward files. These are usually handled byappendfileransport
calledaddress_file See alsdile_must_exist

directory Use:appendfile Type:stringt Default:unset

This option is mutually exclusive with thide option, but one ofile or directory must be set, unless
the delivery is the direct result of a redirection (see section 26.1).

Whendirectory is set, the string is expanded, and the message is delivered into leenfiles in
or below the given directory, instead of being appended to a single mdilboA number of different
formats are provided (samaildir_format andmailstore_format), and see section 26.4 for further
details of this form of delivery.

240 The appendfile transport (26)

| directory_file Use:appendfile Type:stringt Default:see belovxf

Whendirectory is set, but neithemaildir_format nor mailstore_format is set,appendfiledelivers
each message intditge whose name is obtained by expanding this string. The default value is:

g${base62:$tod_epoch}-$inode

This generates a unique name from the current time, in base 62 form, and the inoddilef fhiee
variable$inodeis available only when expanding this option.

| directory_mode Use:appendfile Type:octal integer Default:0700

If appendfilecreates any directories as a result of theate directory option, their mode is speoed
by this option.

escape_string Use:appendfile Type:string I?jefaul_t: see
escription

Seecheck_stringabove.

file Use:appendfile Type:stringt Default: unset|

This option is mutually exclusive with thdirectory option, but one ofile or directory must be set,
unless the delivery is the direct result of a redirection (see section 26.1)ildtuption spedies a
singlefile, to which the message is appended. One or monesef fcntl_lock use_flock lock or

use_lockfilemust be set witfile.

If you are using more than one host to deliver over NFS into the same mailboxes, you should always
use lockfiles.

The string value is expanded for each delivery, and must yield an absolute path. The most common
settings of this option are variations on one of these examples:

file = /var/spool/mail/$local_part
file = /home/$local_part/inbox
file = $home/inbox

In the first example, all deliveries are done into the same directory. If Exim ifguned to use lock
files (seause_lockfilebelow) it must be able to createfide in the directory, so thésticky’ bit must
be turned on for deliveries to be possible, or alternativelygtmip option can be used to run the
delivery under a group id which has write access to the directory.

| file_format Use:appendfile Type:string Default: unset|

This option requests the transport to check the format of an exiftingefore adding to it. The check
consists of matching a spéici string at the start of thiéle. The value of the option consists of an even
number of colon-separated strings. That of each pair is the test string, and the second is the name
of a transport. If the transport associated with a matched string is not the current transport, control is
passed over to the other transport. For example, suppose the stiuddrdeliverytransport has this
added to it:

file_format = "From : local_delivery :\
\1\1\1\1\n : local_mmdf_delivery"

Mailboxes that begin withFrom’ are still handled by this transport, but if a mailbox begins with four
binary ones followed by a newline, control is passed to a transport clalted mmdf_delivery,
which presumably is cdigured to do the delivery in MMDF format. If a mailbox does not exist or is
empty, it is assumed to match the current transport. If the start of a mailbox’toesch any string,

or if the transport named for a given string is ndtrakl, delivery is deferred.

241 The appendfile transport (26)

file_must_exist Use:appendfile Type:boolean Default:false

If this option is true, thdile spediied by thefile option must exist. A temporary error occurs if it does
not, causing delivery to be deferred. If this option is falsefilhés created if it does not exist.

lock_fentl_timeout Use:appendfile Type:time Default:0s

By default, theappendfiletransport uses non-blocking calls fimtl() when locking an open mailbox

file. If the call fails, the delivery process sleeps lock interval and tries again, up tiock retries

times. Non-blocking calls are used so that fhe is not kept open during the wait for the lock; the
reason for this is to make it as safe as possible for deliveries over NFS in the case when processes
might be accessing an NFS mailbox without using a Ifdlek This should not be done, but misunder-
standings and hence misfigurations are not unknown.

On a busy system, however, the performance of a non-blocking lock approach is not as good as using
a blocking lock with a timeout. In this case, the waiting is done inside the system call, andsExim
delivery process acquires the lock and can proceed as soon as the previous lock holder releases it.

If lock fentl_timeout is set to a non-zero time, blocking locks, with that timeout, are used. There
may still be some retrying: the maximum number of retries is

(lock_retries * lock_interval) / lock_fcntl_timeout

rounded up to the next whole number. In other words, the total time during vapisndfiles trying
to get a lock is roughly the same, unlksk_fcntl_timeout is set very large.

You should consider setting this option if you are getting a lot of delayed local deliveries because of
errors of the form

failed to lock mailbox /someffile (fcntl)

lock_flock_timeout Use:appendfile Type:time Default:0s

This timeout applies tdile locking when usindglock() (seeuse_flocR; the timeout operates in a
similar manner tdock_fcntl_timeout.

| lock_interval Use:appendfile Type:time Default:3s |

This spedies the time to wait between attempts to lockfillee See below for details of locking.

| lock_retries Use:appendfile Type:integer Default: 10 |

This spedies the maximum number of attempts to lock file. A value of zero is treated as 1. See
below for details of locking.

lockfile_mode Use:appendfile Type:octal integer Default:0600

This spedies the mode of the created lofile, when a lockKile is being used (seese_lockfileand
use_mbx_loch.

lockfile_timeout Use:appendfile Type:time Default: 30m

When a lockfile is being used (seese_lockfilg, if a lock file already exists and is older than this
value, it is assumed to have been left behind by accident, and Exim attempts to remove it.

242 The appendfile transport (26)

mailbox_filecount Use:appendfile Type:stringt Default:unset

If this option is set, it is expanded, and the result is taken as the current numlifiéesoin the
mailbox. It must be a decimal number, optionally followed by K or M. This provides a way of
obtaining this information from an external source that maintains the data.

mailbox_size Use:appendfile Type:stringt Default: unset

If this option is set, it is expanded, and the result is taken as the current size the mailbox. It must be a
decimal number, optionally followed by K or M. This provides a way of obtaining this information
from an external source that maintains the data. This is likely to be helpful for maildir deliveries
where it is computationally expensive to compute the size of a mailbox.

maildir_format Use:appendfile Type:boolean Default:false |

If this option is set with thalirectory option, the delivery is into a netile, in the“maildir’ format
that is used by other mail software. When the transport is activated directly frediractrouter (for
example, theaddress_filgransport in the default cdiguration), settingmaildir_format causes the
path received from the router to be treated as a directory, whether or not it ends. Witks option is
available only if SUPPORT_MAILDIR is present ibocal/Makefile See section 26.5 below for
further details.

| maildir_quota_directory_regex Use:appendfile Type:string Default: See belov4'

This option is relevant only whemaildir_use_size_fileis set. It déines a regular expression for
specifying directories, relative to the quota directory (gaeta_directory), that should be included
in the quota calculation. The default value is:

maildir_quota_directory_regex = ~(?:cur|new|\..*)$

This includes theur andnewdirectories, and any maildir++ folders (directories whose names begin
with a dot). If you want to exclude th&rashfolder from the count (as some sites do), you need to
change this setting to

maildir_quota_directory_regex = ~(?:cur|new|\.(?!Trash).*)$

This uses a negative lookahead in the regular expression to exclude the directory whose name is
.Trash When a directory is excluded from quota calculations, quota processing is bypassed for any
messages that are delivered directly into that directory.

maildir_retries Use:appendfile Type:integer Default: 10

This option spedies the number of times to retry when writindike in “maildir’ format. See section
26.5 below.

| maildir_tag Use:appendfile Type:stringt Default: unset|

This option applies only to deliveries in maildir format, and is described in section 26.5 below.

| maildir_use_size file Use:appendfile Type:boolean Default:false |

Setting this option true enables support foaildirsize files. Exim creates anaildirsize file in a
maildir if one does not exist, taking the quota from tiigota option of the transport. Ifjuota is
unset, the value is zero. Sewaildir_quota_directory_regex above and section 26.5 below for
further details.

243 The appendfile transport (26)

maildirfolder_create_regex Use:appendfile Type:string Default: unset

The value of this option is a regular expression. If it is unset, it has no effect. Otherwise, before a
maildir delivery takes place, the pattern is matched against the name of the maildir directory, that is,
the directory containing theewandtmp subdirectories that will be used for the delivery. If there is a
match, Exim checks for the existence dfile calledmaildirfolderin the directory, and creates it if it
does not exist. See section 26.5 for more details.

mailstore_format Use:appendfile Type:boolean Default:false

If this option is set with thalirectory option, the delivery is into two nefiles in“mailstoré format.
The option is available only if SUPPORT_MAILSTORE is presentical/Makefile See section
26.4 below for further detalils.

| mailstore_prefix Use:appendfile Type:stringt Default: unset|

This option applies only to deliveries in mailstore format, and is described in section 26.4 below.

| mailstore_suffix Use:appendfile Type:stringt Default: unset|

This option applies only to deliveries in mailstore format, and is described in section 26.4 below.

| mbx_format Use:appendfile Type:boolean Default:false |

This option is available only if Exim has been compiled with SUPPORT_MBX skeboal/Makefile

If mbx_format is set with thefile option, the message is appended to the maifidexn MBX format
instead of traditional Unix format. This format is supported by Pine4 and its associated IMAP and
POP daemons, by means of thelientlibrary that they all use.

Note: The message_prefixandmessage_suffijoptions are not automatically changed by the use of
mbx_format. They should normally be set empty when using MBX format, so this option almost
always appears in this combination:

mbx_format = true
message_prefix =
message_suffix =

If none of the locking options are mentioned in the ftguration,use_mbx_lockis assumed and the
other locking options default to false. It is possible to specify the other kinds of lockingmbth_
format, butuse_fcntl_lockanduse_mbx_lockare mutually exclusive. MBX locking interworks with
c-client providing for shared access to the mailbox. It should not be used if any program that does not
use this form of locking is going to access the mailbox, nor should it be used if the méilbds

NFS mounted, because it works only when the mailbox is accessed from a single host.

If you setuse_fcntl_lock with an MBX-format mailbox, you cannot use the standard version of
c-client because as long as it has a mailbox open (this means for the whole of a Pine or IMAP
session), Exim will not be able to append messages to it.

| message_prefix Use:appendfile Type:stringt Default:see be|0V\+

The string spefied here is expanded and output at the start of every message. The default is unset
unlesdile is spedied anduse_bsmtpis not set, in which case it is:

message_prefix = "From ${if def.return_path{$return_path}\
{MAILER-DAEMON}} $tod_bsdinbox\n"

Note: If you setuse_crlftrue, you must change any occurrencesmofo\r\n in message_ prefix

244 The appendfile transport (26)

message_suffix Use:appendfile Type:stringt Default:see belovxf

The string spefied here is expanded and output at the end of every message. The default is unset
unlessfile is spediied anduse bsmtpis not set, in which case it is a single newline character. The
suffix can be suppressed by setting

message_suffix =
Note: If you setuse_crlftrue, you must change any occurrenceésmofo\r\n in message_suffix

mode Use:appendfile Type:octal integer Default:0600

If the outputfile is created, it is given this mode. If it already exists and has wider permissions, they
are reduced to this mode. If it has narrower permissions, an error occurs onadssfail_narrower

is false. However, if the delivery is the result ofavecommand in dilter file specifying a particular
mode, the mode of the outdile is always forced to take that value, and this option is ignored.

| mode_fail_narrower Use:appendfile Type:boolean Default:true |

This option applies in the case when an existing mailfilexhas a narrower mode than that sfieci
by themodeoption. If mode_fail_narrower is true, the delivery is deferreirhailbox has the wrong
modé€); otherwise Exim continues with the delivery attempt, using the existing modefdéthe

| notify _comsat Use:appendfile Type:boolean Default:false |

If this option is true, theeomsatdaemon is nofied after every successful delivery to a user mailbox.
This is the daemon that nibéis logged on users about incoming mail.

guota Use:appendfile Type:stringt Default:unset

This option imposes a limit on the size of tfike to which Exim is appending, or to the total space
used in the directory tree when tdgectory option is set. In the latter case, computation of the space
used is expensive, because all fhes in the directory (and any sub-directories) have to be individu-
ally inspected and their sizes summed. (§aeta_size_regexandmaildir_use_size_filefor ways to
avoid this in environments where users have no shell access to their mailboxes).

As there is no interlock against two simultaneous deliveries into a rilgtinailbox, it is possible for
the quota to be overrun in this case. For siffiggemailboxes, of course, an interlock is a necessity.

A file's size is taken as itgssedvalue. Because of blocking effects, this may be a lot less than the
actual amount of disk space allocated to fihe If the sizes of a number diles are being added up,

the rounding effect can become quite noticeable, especially on systems that have large block sizes.
Nevertheless, it seems best to stick to tisedfigure, because this is the obvious value which users
understand most easily.

The value of the option is expanded, and must then be a numerical value (decimal point allowed),
optionally followed by one of the letters K, M, or G, for kilobytes, megabytes, or gigabytes. If Exim
is running on a system with largde support (Linux and FreeBSD have this), mailboxes larger than
2G can be handled.

Note: A value of zero is interpreted &so quota.

The expansion happens while Exim is running as root, before it changes uid for the delivery. This
means thafiles that are inaccessible to the end user can be used to hold quota values that are looked
up in the expansion. When delivery fails because this quota is exceeded, the handling of the error is as
for system quota failures.

By default, Eximis quota checking mimics system quotas, and restricts the mailbox to théiegeci
maximum size, though the value is not accurate to the last byte, owing to separator lines and

245 The appendfile transport (26)

additional headers that may get added during message delivery. When a mailbox is nearly full, large
messages may get refused even though small ones are accepted, because the size of the current
message is added to the quota when the check is made. This behaviour can be changed by setting
guota_is_inclusivefalse. When this is done, the check for exceeding the quota does not include the
current message. Thus, deliveries continue until the quota has been exceeded; thereafter, no further
messages are delivered. See glsota_warn_threshold

guota_directory Use:appendfile Type:stringt Default:unset

This option déines the directory to check for quota purposes when delivering into individaal
The default is the delivery directory, or, iffde calledmaildirfolder exists in a maildir directory, the
parent of the delivery directory.

| guota_filecount Use:appendfile Type:stringt Default:0

This option applies when thgirectory option is set. It limits the total number &fes in the directory
(compare the inode limit in system quotas). It can only be usepldfta is also set. The value is
expanded; an expansion failure causes delivery to be deferred. A value of zero is interpraied as
quotd.

| guota_is_inclusive Use:appendfile Type:boolean Default:true|
Seequota above.
| guota_size_regex Use:appendfile Type:string Default:unset|

This option applies when one of the delivery modes that writes a sefddemfer each message is
being used. When Exim wants fnd the size of one of theddes in order to test the quota,fitst
checksquota_size regexl|f this is set to a regular expression that matchesfileename, and it
captures one string, that string is interpreted as a representationfdétbsize. The value ajuota_
size_regexs not expanded.

This feature is useful only when users have no shell access to their mailboxesrwise they could
defeat the quota simply by renaming thkes. This facility can be used with maildir deliveries, by
settingmaildir_tag to add thdile length to thdile name. For example:

maildir_tag = ,S=$message_size
guota_size regex = ,S=(\d+)

An alternative to$message_size $message_linecounivhich contains the number of lines in the
message.

The regular expression should not assume that the length is at the endfité theme (even though
maildir_tag puts it there) because maildir MUAs sometimes add other information onto the ends of
messagéile names.

guota_warn_message Use:appendfile Type:stringt Default:see beIOV\}

See below for the use of this option. If it is not set wipgota_warn_thresholdis set, it defaults to

quota_warn_message ="\
To: $local_part@$domain\n\
Subject: Your mailbox\n\n\
This message is automatically created \
by mail delivery software.\n\n\
The size of your mailbox has exceeded \

246 The appendfile transport (26)

a warning threshold that is\n\
set by the system administrator.\n"

guota_warn_threshold Use:appendfile Type:stringt Default:0 |

This option is expanded in the same waygamta (see above). If the resulting value is greater than
zero, and delivery of the message causes the size dfiehar total space in the directory tree to cross
the given threshold, a warning message is semudfta is also set, the threshold may be sfied as

a percentage of it by following the value with a percent sign. For example:

quota = 10M
guota_warn_threshold = 75%

If quota is not set, a setting gluota_warn_thresholdthat ends with a percent sign is ignored.

The warning message itself is spieed by thequota_warn_messag@eption, and it must start with a

To: header line containing the recipient(s) of the warning message. These do not necessarily have to
include the recipient(s) of the original messagesuybjectiline should also normally be supplied. You

can include any other header lines that you want. If you do not incladenaline, the default is:

From: Mail Delivery System <mailer-daemon@$qualify_domain_sender>
If you supply aReply-To:line, it overrides the glob&rrors_reply_to option.

The quota option does not have to be set in order to use this option; they are independent of one
another except when the threshold is dipettias a percentage.

use_bsmtp Use:appendfile Type:boolean Default:false

If this option is set trueappendfilewrites messages ihbatch SMTP format, with the envelope
sender and recipient(s) included as SMTP commands. If you want to include a leading HELO com-
mand with such messages, you can do so by settinghdssage_prefioption. See section 45.10 for
details of batch SMTP.

| use_crlf Use:appendfile Type:boolean Default:false |

This option causes lines to be terminated with the two-character CRLF sequence (carriage return,
linefeed) instead of just a linefeed character. In the case of batched SMTP, the byte sequence written
to thefile is then an exact image of what would be sent down a real SMTP connection.

Note: The contents of thenessage_prefirandmessage_suffixoptions (which are used to supply the
traditional“From” and blank line separators in Berkeley-style mailboxes) are written verbatim, so
must contain their own carriage return characters if these are needed. In cases where these options
have non-empty defaults, the values end with a single linefeed, so they must be changed to end with
\\n if use_crlfis set.

use_fcntl_lock Use:appendfile Type:boolean Default:see belovxf

This option controls the use of thentl() function to lock afile for exclusive use when a message is
being appended. It is set by default unlese_flock_lockis set. Otherwise, it should be turned off
only if you know that all your MUAs use locfile locking. When botluse_fcntl_lockanduse_flock
lock are unsetyse_lockfilemust be set.

use_flock_lock Use:appendfile Type:boolean Default:false

This option is provided to support the useflafck() for file locking, for the few situations where it is
needed. Most modern operating systems supigott() andlockf() locking, and these two functions
interwork with each other. Exim uskstl() locking by default.

247 The appendfile transport (26)

This option is required only if you are using an operating system wheck() is used by programs
that access mailboxes (typically MUAS), and whélcek() does not correctly interwork witfentl().
You can use botfentl() andflock() locking simultaneously if you want.

Not all operating systems providieck(). Some versions of Solaris do not have it (and some, | think,
provide a not quite right version built on top lafckf()). If the OS does not havibock(), Exim will be
built without the ability to use it, and any attempt to do so will causefegcoation error.

Warning: flock() locks do not work on NFSiles (unlesdlock() is just being mapped ontantl() by
the OS).

| use_lockfile Use:appendfile Type:boolean Default:see belovxf

If this option is turned off, Exim does not attempt to create a lfilgkwhen appending to a mailbox
file. In this situation, the only locking is bigntl(). You should only turruse_lockfileoff if you are
absolutely sure that every MUA that is ever going to look at your useeslboxes useentl() rather
than a locKile, and even then only when you are not delivering over NFS from more than one host.

In order to append to an NFHe safely from more than one host, it is necessary to take out a lock
beforeopening thefile, and the locKile achieves this. Otherwise, even witintl() locking, there is a
risk of file corruption.

The use_lockfileoption is set by default unlessse_mbx_lockis set. It is not possible to turn both
use_lockfileanduse_fcntl_lockoff, except whembx_format is set.

use_mbx_lock Use:appendfile Type:boolean Default:see be|OV\+

This option is available only if Exim has been compiled with SUPPORT_MBX skboal/Makefile
Setting the option spetes that special MBX locking rules be used. It is set by defaultbk_format

is set and none of the locking options are mentioned in thégaration. The locking rules are the
same as are used by thoeclient library that underlies Pine and the IMAP4 and POP daemons that
come with it (see the discussion below). The rules allow for shared access to the mailbox. However,
this kind of locking does not work when the mailbox is NFS mounted.

You can setuse_mbx_lockwith either (or both) ofuse_fcntl_lock and use_flock_lockto control
what kind of locking is used in implementing the MBX locking rules. The default is toferse) if
use_mbx_lockis set withoutise _fcntl_lockoruse_flock lock

26.3 Operational details for appending
Before appending tofée, the following preparations are made:
« If the name of théile is/dev/null no action is taken, and a success return is given.

 If any directories on théile’s path are missing, Exim creates them if theate_directory option is
set. A created directoly mode is given by thdirectory_mode option.

+ If file_format is set, the format of an existinfile is checked. If this indicates that a different
transport should be used, control is passed to that transport.

» If use_lockfileis set, a locKile is built in a way that will work reliably over NFS, as follows:

(1) Create &hitching post file whose name is that of the lofike with the current time, primary
host name, and process id added, by opening for writing as afitewf this fails with an
access error, delivery is deferred.

(2) Close the hitching pofite, and hard link it to the lodkle name.

(3) If the call tolink() succeeds, creation of the lofike has succeeded. Unlink the hitching post
name.

(4) Otherwise, usstat()to get information about the hitching pdse, and then unlink hitching
post name. If the number of links is exactly two, creation of the Itk succeeded but

248 The appendfile transport (26)

something (for example, an NFS server crash and restart) caused this fact not to be communi-
cated to thdink() call.

(5) If creation of the lockfile failed, wait forlock_interval and try again, up tdock_retries
times. However, since any program that writes to a mailbox should complete its task very
quickly, it is reasonable to time out old lotikes that are normally the result of user agent and
system crashes. If an existing lofile is older thardockfile_timeout Exim attempts to unlink
it before trying again.

A call is made tdstat() to discover whether the maiile exists, and if so, what its characteristics
are. Iflstat() fails for any reason other than non-existence, delivery is deferred.

If the file does exist and is a symbolic link, delivery is deferred, unlesaltbes_symlink option is

set, in which case the ownership of the link is checked, and skes) is called tofind out about

the realfile, which is then subjected to the checks below. The check on the top-level link ownership
prevents one user creating a link for anoteemailbox in a sticky directory, though allowing
symbolic links in this case is @iaitely not a good idea. If there is a chain of symbolic links, the
intermediate ones are not checked.

If the file already exists but is not a regulidle, or if thefile’s owner and group (if the group is
being checked- seecheck_groupabove) are different from the user and group under which the
delivery is running, delivery is deferred.

If the file's permissions are more generous than $g@etithey are reduced. If they are incient,
delivery is deferred, unlessiode_fail_narrower is set false, in which case the delivery is tried
using the existing permissions.

Thefile’s inode number is saved, and file is then opened for appending. If this fails because the
file has vanishedappendfilebehaves as if it hadhexisted (see below). For any other failures,
delivery is deferred.

If the file is opened successfully, check that the inode number'thabanged, that it is still a
regularfile, and that the owner and permissions have not changed. If anything is wrong, defer
delivery and freeze the message.

If the file did not exist originally, defer delivery if théle_must_existoption is set. Otherwise,

check that thédile is being created in a permitted directory if treate_fileoption is set (deferring

on failure), and then open for writing as a néie, with the O_EXCL and O_CREAT options,
except when dealing with a symbolic link (tlalow_symlink option must be set). In this case,
which can happen if the link points to a non-existéfd, thefile is opened for writing using O_
CREAT but not O_EXCL, because that prevents link following.

If opening fails because théle exists, obey the tests given above for existiilgs. However, to
avoid looping in a situation where thiéle is being continuously created and destroyed, the
exists/not-exists loop is broken after 10 repetitions, and the message is then frozen.

If opening fails with any other error, defer delivery.

Once thefile is open, unless bothse_fcntl_lockanduse_flock_lockare false, it is locked using
fentl() or flock() or both. If use_mbx_lockis false, an exclusive lock is requested in each case.
However, ifuse_mbx_lockis true, Exim takes out a shared lock on the ofien and an exclusive
lock on thefile whose name is

/tmp/.<device-number>.<inode-number>

using the device and inode numbers of the open maifidexin accordance with the MBX locking
rules. Thidfile is created with a mode that is sfiied by thdockfile_modeoption.

If Exim fails to lock thefile, there are two possible courses of action, depending on the value of the
locking timeout. This is obtained frotock_fcntl_timeout or lock_flock_timeout, as appropriate.

If the timeout value is zero, tHée is closed, Exim waits folock_interval, and then goes back and
re-opens thdile as above and tries to lock it again. This happens updk_retries times, after
which the delivery is deferred.

249 The appendfile transport (26)

If the timeout has a value greater than zero, blocking callend() or flock() are used (with the
given timeout), so there has already been some waiting involved by the time locking fails.
Nevertheless, Exim does not give up immediately. It retries up to

(lock_retries * lock_interval) / <timeout>
times (rounded up).

At the end of delivery, Exim closes tHie (which releases thientl() and/orflock() locks) and then
deletes the lockle if one was created.

26.4 Operational details for delivery to a new file

When thedirectory option is set instead dile, each message is delivered into a newly-creéitecr

set offiles. Whenappendfileis activated directly from aedirect router, neitheffile nor directory

is normally set, because the path for delivery is supplied by the router. (See for example, the
address_fildransport in the default cdiguration.) In this case, delivery is to a nédike if either the

path name ends in, or themaildir_format or mailstore_format option is set.

No locking is required while writing the message to a rfée; so the various locking options of the
transport are ignored. Th&Front line that by default separates messages in a sifiteis not
normally needed, nor is the escaping of message lines that startRvdhi’, and there is no need to
ensure a newline at the end of each message. Consequently, the default valclesctorstring,
message_prefix and message_suffixare all unset when any dflirectory, maildir_format, or
mailstore_format is set.

If Exim is required to check ajuota setting, it adds up the sizes of all tliées in the delivery
directory by default. However, you can specify a different directory by setfiraja_directory. Also,
for maildir deliveries (see below) timeaildirfolder convention is honoured.

There are three different ways in which delivery to individfisds can be done, controlled by the
settings of themaildir_format andmailstore_format options. Note that code to support maildir or
mailstore formats is not included in the binary unless SUPPORT_MAILDIR or SUPPORT_
MAILSTORE, respectively, is set inocal/Makefile

In all three cases an attempt is made to create the directory and any necessary sub-directories if they
do not exist, provided that thereate_directory option is set (the default). The location of a created
directory can be constrained by settiogeate file A created directorys mode is given by the
directory_mode option. If creation fails, or if thereate_directory option is not set when creation is
required, delivery is deferred.

26.5 Maildir delivery

If the maildir_format option is true, Exim delivers each message by writing it fidleawhose name is
tmp/<stime>.H<mtime>P<pid>.<host>in the directory that is dened by thedirectory option (the
“delivery directory). If the delivery is successful, tii¢e is renamed into theewsubdirectory.

In the file name, stime> is the current time of day in seconds, anachtime> is the microsecond
fraction of the time. After a maildir delivery, Exim checks that the time-of-day clock has moved on by

at least one microsecond before terminating the delivery process. This guarantees uniqueness for the
file name. However, as a precaution, Exim catst() for the file before opening it. If any response

other than ENOENT (does not exist) is given, Exim waits 2 seconds and tries againmapldo_

retries times.

Before Exim carries out a maildir delivery, it ensures that subdirectories aatgccur, andtmp exist

in the delivery directory. If they do not exist, Exim tries to create them and any superior directories in
their path, subject to thereate_directory andcreate_fileoptions. If themaildirfolder_create_regex

option is set, and the regular expression it contains matches the delivery directory, Exim also ensures
that afile calledmaildirfolder exists in the delivery directory. If a missing directory romildirfolder

file cannot be created, delivery is deferred.

These features make it possible to use Exim to create all the necddsargnd directories in a
maildir mailbox, including subdirectories for maildir++ folders. Consider this example:

250 The appendfile transport (26)

maildir_format = true
directory = /var/mail/$local_part\
${if eq{$local_part_suffix}{}{}\
{/.${substr_1:$local_part_suffix}}}
maildirfolder_create_regex = \.[M]+$

If $local_part_suffixis empty (there was no dix for the local part), delivery is into a toplevel
maildir with a name like'var/mail/pimbo(for the user callegpimbg. The pattern imaildirfolder_
create_regex does not match this name, so Exim will not look for or create file
Ivar/mail/pimbo/maildirfoldey though it will creatévar/mail/pimbo/{cur,new,tmpif necessary.

However, if$local_part_suffixontains-eximusers (for example), delivery is into the maildir++
folder /var/mail/pimbo/.eximusersvhich does matcmaildirfolder_create regex In this case, Exim
will create /var/mail/pimbo/.eximusers/maildirfoldeas well as the three maildir directories
/var/mail/pimbo/.eximusers/{cur,new,tmp}

Warning: Take care when settingnaildirfolder_create_regex that it does not inadvertently match
the toplevel maildir directory, becausevaildirfolder file at top level would completely break quota
calculations.

If Exim is required to check guota setting before a maildir delivery, amliota_directory is not set,

it looks for afile calledmaildirfolder in the maildir directory (alongsideew, cur, tmp). If this exists,

Exim assumes the directory is a maildir++ folder directory, which is one level down from thies user
top level mailbox directory. This causes it to start at the parent directory instead of the current
directory when calculating the amount of space used.

One problem with delivering into a mulfile mailbox is that it is computationally expensive to
compute the size of the mailbox for quota checking. Various approaches have been taken to reduce
the amount of work needed. The next two sections describe two of them. A third alternative is to use
some external process for maintaining the size data, and use the expansiomafliox_sizeoption

as a way of importing it into Exim.

26.6 Using tags to record message sizes

If maildir_tag is set, the string is expanded for each delivery. When the mdildirs renamed into

the newsub-directory, the tag is added to its name. However, if adding the tag takes the length of the
name to the point where the testtt() call fails with ENAMETOOLONG, the tag is dropped and the
maildir file is created with no tag.

Tags can be used to encode the sizefilefs in their names; segquota_size_regexabove for an
example. The expansion ofaildir_tag happens after the message has been written. The value of the
$message_siz@riable is set to the number of bytes actually written. If the expansion is forced to fail,
the tag is ignored, but a non-forced failure causes delivery to be deferred. The expanded tag may
contain any printing characters excét. Non-printing characters in the string are ignored; if the
resulting string is empty, it is ignored. If it starts with an alphanumeric character, a leading colon is
inserted.

26.7 Using a maildirsize file

If maildir_use_size_fileis true, Exim implements the maildir++ rules for storing quota and message
size information in dile calledmaildirsizewithin the toplevel maildir directory. If thigile does not
exist, Exim creates it, setting the quota from theta option of the transport. If the maildir directory
itself does not exist, it is created before any attempt to wniteildirsizefile.

The maildirsizefile is used to hold information about the sizes of messages in the maildir, thus
speeding up quota calculations. The quota value irfiteas just a cache; if the quota is changed in

the transport, the new value overrides the cached value when the next message is delivered. The cache
is maintained for the befieof other programs that access the maildir and need to know the quota.

If the quota option in the transport is unset or zero, tmaildirsizefile is maintained (with a zero
guota setting), but no quota is imposed.

251 The appendfile transport (26)

A regular expression is available for controlling which directories in the maildir participate in quota
calculations when anaildirsizefileis in use. See the description of theaildir_quota_directory_
regexoption above for details.

26.8 Mailstore delivery

If the mailstore_format option is true, each message is written as fikes in the given directory. A
unique base name is constructed from the message id and the current delivery processfibasd the
that are written use this base name plus thdixes .env and .msg The .env file contains the
message envelope, and theansgfile contains the message itself. The base name is placed in the
variable$mailstore_basename

During delivery, the envelope first written to &file with the sufix .tmp The.msdfile is then written,
and when it is complete, thémpfile is renamed as thenvfile. Programs that access messages in
mailstore format should wait for the presence of botmagand a.envfile before accessing either of
them. An alternative approach is to wait for the absencetofiile.

The envelopdile starts with any text dined by themailstore_ prefix option, expanded and termin-
ated by a newline if there iShone. Then follows the sender address on one line, then all the recipient
addresses, one per line. There can be more than one recipient onlybifiitte max option is set
greater than one. Finallynailstore_suffix is expanded and the result appended tofilee followed

by a newline if it does not end with one.

If expansion ofmailstore_prefix or mailstore_suffix ends with a forced failure, it is ignored. Other
expansion errors are treated as serioudigamation errors, and delivery is deferred. The variable
$mailstore_basenanis available for use during these expansions.

26.9 Non-special new file delivery

If neither maildir_format nor mailstore_format is set, a single nedile is created directly in the
named directory. For example, when delivering messagedila®in batched SMTP format for later
delivery to some host (see section 45.10), a setting such as

directory = /var/bsmtp/$host
might be used. A message is written téila with a temporary name, which is then renamed when the

delivery is complete. Thdéinal name is obtained by expanding the contents ofdinectory file
option.

252 The appendfile transport (26)

27. The autoreply transport

The autoreplytransport is not a true transport in that it does not cause the message to be transmitted.
Instead, it generates a new mail message as an automatic reply to the incoming niRstagaces:

and Auto-Submittedheader lines are included. These are constructed according to the rules in RFCs
2822 and 3834, respectively.

If the router that passes the message to this transport does not havesé@moption set, the original
message (for the current recipient) is not delivered anywhere. However, whengkenoption is set

on the router that passes the message to this transport, routing of the address continues, so another
router can set up a normal message delivery.

The autoreplytransport is usually run as the result of midilering, a“vacatiori message being the
standard example. However, it can also be run directly from a router like any other transport. To
reduce the possibility of message cascades, messages createdabyotkelytransport always have
empty envelope sender addresses, like bounce messages.

The parameters of the message to be sent can bdispleiti the cofiguration by options described

below. However, these are used only when the address passed to the transport does not contain its own
reply information. When the transport is run as a consequenceardilaor vacation command in a

filter file, the parameters of the message are supplied bfiltee and passed with the address. The
transports options that dine the message are then ignored (so they are not usually set in this case).
The message is spéieid entirely by thdilter or by the transport; it is never built from a mixture of
options. However, thiile_optional, mode andreturn_messageoptions apply in all cases.

Autoreplyis implemented as a local transport. When used as a result of a command insdiliser
file, autoreplynormally runs under the uid and gid of the user, and with appropriate current and home
directories (see chapter 23).

There is a subtle difference between routing a messag@ifpedransport that generates some text to

be returned to the sender, and routing it toaamoreplytransport. This difference is noticeable only if

more than one address from the same message is so handled. In the case of a pipe, the separate
outputs from the different addresses are gathered up and returned to the sender in a single message,
whereas ifautoreplyis used, a separate message is generated for each address that is passed to it.

Non-printing characters are not permitted in the header lines generated for the messagwmtapty
creates, with the exception of newlines that are immediately followed by white space. If any non-
printing characters are found, the transport defers. Whether characters with the top bit set count as
printing characters or not is controlled by ghrent_topbitchars global option.

If any of the generic options for manipulating headers (for exanpdaders_add are set on an
autoreplytransport, they apply to the copy of the original message that is included in the generated
message whereturn_messageis set. They do not apply to the generated message itself.

If the autoreplytransport receives return code 2 from Exim when it submits the message, indicating
that there were no recipients, it does not treat this as an error. This means that autoreplies sent to
$sender_addreswhen this is empty (because the incoming message is a bounce message) do not
cause problems. They are just discarded.

27.1 Private options for autoreply

| bcc Use:autoreply Type:stringt Default: unset

This spedies the addresses that are to recéibind carbon copi€s of the message when the
message is spdi@d by the transport.

253 The autoreply transport (27)

cc Use:autoreply Type:stringt Default:unset

This spedies recipients of the message and the contents ofCthieheader when the message is
specfied by the transport.

file Use:autoreply Type:stringt Default: unset|

The contents of théile are sent as the body of the message when the message isespbygithe
transport. If botHile andtext are set, the text string conmfiarst.

file_expand Use:autoreply Type:boolean Default:false |

If this is set, the contents of tHfde named by thdile option are subjected to string expansion as they
are added to the message.

file_optional Use:autoreply Type:boolean Default:false

If this option is true, no error is generated if tike named by thdile option or passed with the
address does not exist or cannot be read.

| from Use:autoreply Type:stringt Default: unset|

This spedies the contents of thgom: header when the message is dpettiby the transport.

| headers Use:autoreply Type:stringt Default: unset|

This spedies additional RFC 2822 headers that are to be added to the message when the message is
specfied by the transport. Several can be given by usingj to separate them. There is no check on
the format.

log Use:autoreply Type:stringt Default: unset

This option names éile in which a record of every message sent is logged when the message is
specfied by the transport.

| mode Use:autoreply Type:octal integer Default: 0600|

If either the lodfile or the*oncé file has to be created, this mode is used.

| never_mail Use:autoreply Type:address list Default: unset|

If any run of the transport creates a message with a recipient that matches any item in the list, that
recipient is quietly discarded. If all recipients are discarded, no message is created. This applies both
when the recipients are generated iyter and when they are spéed in the transport.

once Use:autoreply Type:stringt Default: unset|

This option names &le or DBM database in which a record of eabir recipient is kept when the
message is spédi@d by the transporiote: This does not apply tGc¢: or Bec: recipients.

If onceis unset, or is set to an empty string, the message is always sent. By defanttei§ set to a
non-emptyfile name, the message is not sent if a potential recipient is already listed in the database.
However, if theonce_repeatoption spedies a time greater than zero, the message is sent if that

254 The autoreply transport (27)

much time has elapsed since a message was last sent to this recipient. A setting of zerodiroe_for
repeat (the default) prevents a message from being sent a second-timehis case, zero means
infinity.

If once_file_sizés zero, a DBM database is used to remember recipients, and it is allowed to grow as
large as necessary.dhce_file_sizds set greater than zero, it changes the way Exim implements the

onceoption. Instead of using a DBMle to record every recipient it sends to, it uses a regfilar
whose size will never get larger than the given value.

In the file, Exim keeps a linear list of recipient addresses and the times at which they were sent
messages. If théle is full when a new address needs to be added, the oldest address is dropped. If
once_repeatis not set, this means that a given recipient may receive multiple messages, but at
unpredictable intervals that depend on the rate of turnover of addressesfile tiieonce_repeatis

set, it spedies a maximum time between repeats.

| once_file_size Use:autoreply Type:integer Default:0 |
Seeonceabove.
| once_repeat Use:autoreply Type:timet Default:0s |

Seeonceabove. After expansion, the value of this option must be a valid time value.

| reply_to Use:autoreply Type:stringt Default: unset|

This spedies the contents of tiReply-To:header when the message is dpattiby the transport.

| return_message Use:autoreply Type:boolean Default:false |

If this is set, a copy of the original message is returned with the new message, subject to the
maximum size set in theturn_size_limit global coffiguration option.

subject Use:autoreply Type:stringt Default: unset

This spedies the contents of thBubject:header when the message is sfiediby the transport. It is
tempting to quote the original subject in automatic responses. For example:

subject = Re: $h_subject:

There is a danger in doing this, however. It may allow a third party to subscribe your users to an
opt-in mailing list, provided that the list accepts bounce messages as subscriptimmatans.
Well-managed lists require a non-bounce message téiroom subscription, so the danger is rela-
tively small.

text Use:autoreply Type:stringt Default: unset|

This spedies a single string to be used as the body of the message when the messagé ésl dpeci
the transport. If botkext andfile are set, the text comésst.

to Use:autoreply Type:stringt Default: unset|

This spedies recipients of the message and the contents offthéheader when the message is
specfied by the transport.

255 The autoreply transport (27)

28. The Imtp transport

The Imtp transport runs the LMTP protocol (RFC 2033) over a pipe to a fipedccommand or by
interacting with a Unix domain socket. This transport is something of a cross betwepip&end
smtptransports. Exim also has support for using LMTP over TCP/IP; this is implemented as an option
for the smtptransport. Because LMTP is expected to be of minority interest, the default build-time
corfigure insrc/EDITMEhas it commented out. You need to ensure that

TRANSPORT_LMTP=yes

is present in youtocal/Makefilein order to have thémtp transport included in the Exim binary. The
private options of thémtp transport are as follows:

| batch_id Use:Imtp Type:stringt Default: unset|

See the description of local delivery batching in chapter 25.

| batch_max Use:Imtp Type:integer Default: 1 |

This limits the number of addresses that can be handled in a single delivery. Most LMTP servers can
handle several addresses at once, so it is normally a good idea to increase this value. See the descrip-
tion of local delivery batching in chapter 25.

command Use:Imtp Type:stringt Default: unset

This option must be set i$ocketis not set. The string is a command which is run in a separate
process. It is split up into a command name and list of arguments, each of which is separately
expanded (so expansion cannot change the number of arguments). The command is run directly, not
via a shell. The message is passed to the new process using the standard input and output to operate
the LMTP protocol.

ignore_quota Use:Imtp Type:boolean Default:false

If this option is set true, the stringENOREQUOTA added to RCPT commands, provided that the
LMTP server has advertised support for IGNOREQUOTA in its response to the LHLO command.

socket Use:Imtp Type:stringt Default: unset

This option must be set fommandis not set. The result of expansion must be the name of a Unix
domain socket. The transport connects to the socket and delivers the message to it using the LMTP
protocol.

timeout Use:Imtp Type:time Default:5m |

The transport is aborted if the created process or Unix domain socket does not respond to LMTP
commands or message input within this timeout. Delivery is deferred, and will be tried again |Iater.
Here is an example of a typical LMTP transport:

Imtp:
driver = Imtp
command = /some/local/lmtp/delivery/program
batch_max = 20
user = exim

256 The Imtp transport (28)

This delivers up to 20 addresses at a time, in a mixture of domains if necessary, running as the user
exim

257 The Imtp transport (28)

29. The pipe transport

The pipe transport is used to deliver messages via a pipe to a command running in another process.
One example is the use @ipe as a pseudo-remote transport for passing messages to some other

delivery mechanism (such as UUCP). Another is the use by individual users to automatically process
their incoming messages. Thgetransport can be used in one of the following ways:

» A router routes one address to a transport in the normal way, and the transporfiggicmhas a
pipe transport. In this case&local_partcontains the local part of the address (as usual), and the
command that is run is spéeid by thecommand option on the transport.

 If the batch_maxoption is set greater than 1 (the default is 1), the transport can handle more than
one address in a single run. In this case, when more than one address is routed to the transport,
$local_partis not set (because it is not unique). However, the pseudo-varfgdie addresses
(described in section 29.3 below) contains all the addresses that are routed to the transport.

» A router redirects an address directly to a pipe command (for example, from an alias or forward
file). In this case$address_pipeontains the text of the pipe command, and ¢benmand option
on the transport is ignored. If only one address is being transpdyégdh_maxis not greater than
one, or only one address was redirected to this pipe comméilodgl partcontains the local part
that was redirected.

The pipe transport is a non-interactive delivery method. Exim can also deliver messages over pipes
using the LMTP interactive protocol. This is implemented byriip transport.

In the case whepipeis run as a consequence of an entry in a local’askerward file, the command

runs under the uid and gid of that user. In other cases, the uid and gid have to eedpeqlicitly,

either on the transport or on the router that handles the address. Currefficaand directories are

also controllable. See chapter 23 for details of the local delivery environment and chapter 25 for a
discussion of local delivery batching.

29.1 Concurrent delivery

If two messages arrive at almost the same time, and both are routed to a pipe delivery, the two pipe
transports may be run concurrently. You must ensure that any pipe commands you set up are robust
against this happening. If the commands write fiteatheexim_lock utility might be of use.

29.2 Returned status and data

If the command exits with a non-zero return code, the delivery is deemed to have failed, unless either
theignore_statusoption is set (in which case the return code is treated as zero), or the return code is
one of those listed in theemp_errors option, which are interpreted as meanitigy again latet. In

this case, delivery is deferred. Details of a permanent failure are logged, but are not included in the
bounce message, which merely contdinsal delivery failed.

If the return code is greater than 128 and the command being run is a shell script, it normally means
that the script was terminated by a signal whose value is the return code minus 128.

If Exim is unable to run the command (that iseXecve(¥ails), the return code is set to 127. This is
the value that a shell returns if it is asked to run a non-existent command. The wording for the log line
suggests that a non-existent command may be the problem.

The return_output option can affect the result of a pipe delivery. If it is set and the command
produces any output on its standard output or standard error streams, the command is considered to
have failed, even if it gave a zero return code dgifore_statusis set. The output from the command

is included as part of the bounce message. fidtarn_fail_output option is similar, except that

output is returned only when the command exits with a failure return code, that is, a value other than
zero or a code that matchesnp_errors.

258 The pipe transport (29)

29.3 How the command is run

The command line is (by default) broken down into a command name and arguments fipehe
transport itself. Thallow_commandsandrestrict_to_path options can be used to restrict the com-
mands that may be run.

Unquoted arguments are delimited by white space. If an argument appears in double quotes,
backslash is interpreted as an escape character in the usual way. If an argument appears in single
guotes, no escaping is done.

String expansion is applied to the command line except when it comes from a traditmnelrd file
(commands from dilter file are expanded). The expansion is applied to each argument in turn rather
than to the whole line. For this reason, any string expansion item that contains white space must be
guoted so as to be contained within a single argument. A setting such as

command = /some/path ${if eq{$local_part}{postmaster{xx}{yy}}
will not work, because the expansion item gets split between several arguments. You have to write
command = /some/path "${if eq{$local_part{postmasteri{xxH{yy}}"

to ensure that it is all in one argument. The expansion is done in this way, argument by argument, so
that the number of arguments cannot be changed as a result of expansion, and quotes or backslashes
in inserted variables do not interact with external quoting. However, this leads to problems if you
want to generate multiple arguments (or the command name plus arguments) from a single expansion.
In this situation, the simplest solution is to use a shell. For example:

command = /bin/sh -c¢ ${lookup{$local_part}isearch{/some/file}}

Special handling takes place when an argument consists of precisely ti$pigst addresses

This is not a general expansion variable; the only place this string is recognized is when it appears as
an argument for a pipe or transpditter command. It causes each address that is being handled to be
inserted in the argument list at that poed a separate argumenthis avoids any problems with
spaces or shell metacharacters, and is of use wipgpedransport is handling groups of addresses in

a batch.

After splitting up into arguments and expansion, the resulting command is run in a subprocess directly
from the transportnot under a shell. The message that is being delivered is supplied on the standard
input, and the standard output and standard error are both connected to a single pipe that is read by
Exim. The max_output option controls how much output the command may produce, and the
return_output andreturn_fail_output options control what is done with it.

Not running the command under a shell (by default) lessens the security risks in cases when a
command from a uskxfilter file is built out of data that was taken from an incoming message. If a
shell is required, it can of course be explicitly spesd as the command to be run. However, there are
circumstances where existing commands (for examplefoinwvard files) expect to be run under a

shell and cannot easily be mdig¢d. To allow for these cases, there is an option calieel shell

which changes the way thape transport works. Instead of breaking up the command line as just
described, it expands it as a single string and passes the retilt/gh Therestrict_to_path option

and the $pipe_addressefacility cannot be used withuse_shell and the whole mechanism is
inherently less secure.

29.4 Environment variables

The environment variables listed below are set up when the command is invoked. This list is a
compromise for maximum compatibility with other MTAs. Note that #veironment option can be
used to add additional variables to this environment.

DOMAIN the domain of the address

HOME the home directory, if set

HOST the host name when called from a router (see below)
LOCAL_PART see below

LOCAL_PART_PREFIX see below
LOCAL_PART_SUFFIX see below

259 The pipe transport (29)

LOGNAME see below

MESSAGE_ID Exim's local ID for the message

PATH as spedied by thepath option below
QUALIFY_DOMAIN the sender quéication domain

RECIPIENT the complete recipient address

SENDER the sender of the message (empty if a bounce)
SHELL /bin/sh

TZ the value of thémezoneoption, if set

USER see below

When apipetransport is called directly from (for example) aoceptrouter, LOCAL_PART is set to

the local part of the address. When it is called as a result of a forward or alias expansion, LOCAL _
PART is set to the local part of the address that was expanded. In both casedijxas/aat removed

from the local part, and made available in LOCAL_PART_PREFIX and LOCAL_PART_SUFFIX,
respectively. LOGNAME and USER are set to the same value as LOCAL_PART for compatibility
with other MTAs.

HOST is set only when gipetransport is called from a router that associates hosts with an address,
typically when usingpipe as a pseudo-remote transport. HOST is set tditise host name spdioed
by the router.

If the transpors generichome_directory option is set, its value is used for the HOME environment
variable. Otherwise, a home directory may be set by the rautansport _home_directory option,
which defaults to the ussrhome directory i€heck local_usels set.

29.5 Private options for pipe

| allow_commands Use:pipe Type:string listf Default:unset

The string is expanded, and is then interpreted as a colon-separated list of permitted commands. If
restrict_to_path is not set, the only commands permitted are those inaftev_commandslist.

They need not be absolute paths; gath option is still used for relative paths. iéstrict_to_path is

set with allow_commands the command must either be in thlow commandslist, or a name
without any slashes that is found on the path. In other words, if nealew commands nor
restrict_to_path is set, there is no restriction on the command, but otherwise only commands that are
permitted by one or the other are allowed. For example, if

allow_commands = /usr/bin/vacation

andrestrict_to_path is not set, the only permitted command/issr/bin/vacation The allow_com-
mands option may not be setifse_shellis set.

| batch_id Use:pipe Type:stringt Default: unset|

See the description of local delivery batching in chapter 25.

| batch_max Use:pipe Type:integer Default: 1 |

This limits the number of addresses that can be handled in a single delivery. See the description of
local delivery batching in chapter 25.

check_string Use:pipe Type:string Default: unset

As pipe writes the message, the start of each line is tested for matchieck_string and if it does,

the initial matching characters are replaced by the conten¢sadpe_string provided both are set.
The value ofcheck_stringis a literal string, not a regular expression, and the case of any letters it
contains is sigriicant. Whenuse_bsmtpis set, the contents aheck_string andescape_stringare

260 The pipe transport (29)

forced to values that implement the SMTP escaping protocol. Any settings made in flogucation
file are ignored.

command Use:pipe Type:stringt Default:unset|

This option need not be set wheipeis being used to deliver to pipes obtained directly from address
redirections. In other cases, the option must be set, to provide a command to be run. It need not yield
an absolute path (see tipath option below). The command is split up into separate arguments by
Exim, and each argument is separately expanded, as described in section 29.3 above.

environment Use:pipe Type:stringt Default:unset|

This option is used to add additional variables to the environment in which the command runs (see
section 29.4 for the default list). Its value is a string which is expanded, and then interpreted as a
colon-separated list of environment settings of the foname=<value>.

| escape_string Use:pipe Type:string Default: unset|

Seecheck_stringabove.

| freeze_exec_fall Use:pipe Type:boolean Default:false |

Failure to exec the command in a pipe transport is by default treated like any other failure while
running the command. However, fifeeze _exec_failis set, failure to exec is treated specially, and
causes the message to be frozen, whatever the settgripoé_status

ignore_status Use:pipe Type:boolean Default:false

If this option is true, the status returned by the subprocess that is set up to run the command is
ignored, and Exim behaves as if zero had been returned. Otherwise, a hon-zero status or termination
by signal causes an error return from the transport unless the status value is one of those listed in
temp_errors; these cause the delivery to be deferred and tried again later.

Note: This option does not apply to timeouts, which do not return a status. Seartbeut defer
option for how timeouts are handled.

| log_defer_output Use:pipe Type:boolean Default:false |

If this option is set, and the status returned by the command is one of the codes ligegbirerrors
(that is, delivery was deferred), and any output was producedirgtidine of it is written to the main
log.

| log_fail_output Use:pipe Type:boolean Default:false |

If this option is set, and the command returns any output, and also ends with a return code that is
neither zero nor one of the return codes listedemp_errors (that is, the delivery failed), thérst

line of output is written to the main log. This option alod_output are mutually exclusive. Only one

of them may be set.

261 The pipe transport (29)

log_output Use:pipe Type:boolean Default:false

If this option is set and the command returns any outputfitseline of output is written to the main
log, whatever the return code. This option dad_fail output are mutually exclusive. Only one of
them may be set.

max_output Use:pipe Type:integer Default: 20K

This spedies the maximum amount of output that the command may produce on its standard output
and standard errdile combined. If the limit is exceeded, the process running the command is Killed.
This is intended as a safety measure to catch runaway processes. The limit is applied independently of
the settings of the options that control what is done with such output (for exaraplen_output).

Because of buffering effects, the amount of output may exceed the limit by a small amount before
Exim notices.

message_prefix Use:pipe Type:stringt Default:see be|OV\+

The string spedied here is expanded and output at the start of every message. The default is unset if
use_bsmtpis set. Otherwise it is

message_prefix =\
From ${if def:return_path{$return_path{MAILER-DAEMON}}
${tod_bsdinbox}\n

This is required by the commonly uségsr/bin/vacatiorprogram. However, it mustot be present if
delivery is to the Cyrus IMAP server, or to thmail local delivery agent. The pfi®@ can be sup-
pressed by setting

message_prefix =

Note: If you setuse_crlftrue, you must change any occurrencesmofo\r\n in message_prefix

message_suffix Use:pipe Type:stringt Default:see beIOV\}

The string spefied here is expanded and output at the end of every message. The default is unset if
use_bsmitpis set. Otherwise it is a single newline. Thdigufan be suppressed by setting

message_suffix =

Note: If you setuse_crlftrue, you must change any occurrenceésofo\r\n in message_suffix

path Use:pipe Type:string Default:see beIOV\}

This option spedies the string that is set up in the PATH environment variable of the subprocess. The
default is:

/bin:/usr/bin

If the command option does not yield an absolute path name, the command is sought in the PATH
directories, in the usual wayVarning: This does not apply to a command sifiexd as a transport
filter.

pipe_as_creator Use:pipe Type:boolean Default:false

If the genericuser option is not set and this option is true, the delivery process is run under the uid
that was in force when Exim was originally called to accept the message. If the group id is not
otherwise set (via the genergroup option), the gid that was in force when Exim was originally
called to accept the message is used.

262 The pipe transport (29)

restrict_to_path Use:pipe Type:boolean Default:false

When this option is set, any command name not listealliow_commandsmust contain no slashes.
The command is searched for only in the directories listed irpttth option. This option is intended
for use in the case when a pipe command has been generated from sa.faseard file. This is
usually handled by pipe transport calle@ddress_pipe

return_fail_output Use:pipe Type:boolean Default:false |

If this option is true, and the command produced any output and ended with a return code other than
zero or one of the codes listed temp_errors (that is, the delivery failed), the output is returned in

the bounce message. However, if the message has a null sender (that is, it is itself a bounce message),
output from the command is discarded. This option egtdrn_output are mutually exclusive. Only

one of them may be set.

return_output Use:pipe Type:boolean Default:false |

If this option is true, and the command produced any output, the delivery is deemed to have failed
whatever the return code from the command, and the output is returned in the bounce message.
Otherwise, the output is just discarded. However, if the message has a null sender (that is, it is a
bounce message), output from the command is always discarded, whatever the setting of this option.
This option andeturn_fail_output are mutually exclusive. Only one of them may be set.

temp_errors Use:pipe Type:string list Default:see be|OV\+

This option contains either a colon-separated list of numbers, or a single asteiiglord_statusis

false andreturn_output is not set, and the command exits with a non-zero return code, the failure is
treated as temporary and the delivery is deferred if the return code matches one of the numbers, or if
the setting is a single asterisk. Otherwise, non-zero return codes are treated as permanent errors. The
default setting contains the codedided by EX_TEMPFAIL and EX_CANTCREAT igysexits.hlf

Exim is compiled on a system that does nofide these macros, it assumes values of 75 and 73,
respectively.

| timeout Use:pipe Type:time Default: 1h

If the command fails to complete within this time, it is killed. This normally causes the delivery to fail
(but seetimeout_defer). A zero time interval spefies no timeout. In order to ensure that any
subprocesses created by the command are also killed, Exim makes the initial process a process group
leader, and kills the whole process group on a timeout. However, this can be defeated if one of the
processes starts a new process group.

timeout_defer Use:pipe Type:boolean Default:false |

A timeout in apipetransport, either in the command that the transport runs, or in a trarigisrthat
is associated with it, is by default treated as a hard error, and the delivery fails. Howeivaedtit_
defer is set true, both kinds of timeout become temporary errors, causing the delivery to be deferred.

umask Use:pipe Type:octal integer Default:022 |

This spedies the umask setting for the subprocess that runs the command.

263 The pipe transport (29)

use_bsmtp Use:pipe Type:boolean Default:false

If this option is set true, theipe transport writes messages fibatch SMTP format, with the
envelope sender and recipient(s) included as SMTP commands. If you want to include a leading
HELO command with such messages, you can do so by settingndssage prefixoption. See
section 45.10 for details of batch SMTP.

use_classresources Use:pipe Type:boolean Default:false

This option is available only when Exim is running on FreeBSD, NetBSD, or BSD/OS. If it is set
true, thesetclassresourcesflunction is used to set resource limits whemige transport is run to
perform a delivery. The limits for the uid under which the pipe is to run are obtained from the login
class database.

| use_crlf Use:pipe Type:boolean Default:false |

This option causes lines to be terminated with the two-character CRLF sequence (carriage return,
linefeed) instead of just a linefeed character. In the case of batched SMTP, the byte sequence written
to the pipe is then an exact image of what would be sent down a real SMTP connection.

The contents of thenessage_prefixand message_suffivoptions are written verbatim, so must con-
tain their own carriage return characters if these are needed. Wdgemsmtpis not set, the default
values for bothmessage_prefixand message_suffiend with a single linefeed, so their values must
be changed to end withn if use_crlfis set.

use_shell Use:pipe Type:boolean Default:false

If this option is set, it causes the command to be passduirishinstead of being run directly from

the transport, as described in section 29.3. This is less secure, but is heeded in some situations where
the command is expected to be run under a shell and cannot easily béegodheallow_com-

mands and restrict_to_path options, and theéspipe_addresses facility are incompatible with
use_shell The command is expanded as a single string, and handbihtshas data for itsc option.

29.6 Using an external local delivery agent

The pipe transport can be used to pass all messages that require local delivery to a separate local
delivery agent such gsrocmail. When doing this, care must be taken to ensure that the pipe is run
under an appropriate uid and gid. In some fogurations one wants this to be a uid that is trusted by

the delivery agent to supply the correct sender of the message. It may be necessary to recompile or
recorfigure the delivery agent so that it trusts an appropriate user. The following is an example
transport and router cbguration forprocmail:

transport

procmail_pipe:
driver = pipe
command = /ustr/local/bin/procmail -d $local_part
return_path_add
delivery_date_add
envelope_to_add
check_string = "From "
escape_string = ">From "
user = $local_part
group = malil

router
procmail:
driver = accept

264 The pipe transport (29)

check_local_user
transport = procmail_pipe

In this example, the pipe is run as the local user, but with the groupnsatl.tén alternative is to run
the pipe as a spdat user such amail or exim but in this case you must arrange foncmail to trust
that user to supply a correct sender address. If you do not specify eigineu@ or auser option, the
pipe command is run as the local user. The home directory is the lnsere directory by default.

Note: The command that the pipe transport runs do¢begin with
[FS=""

as shown in somprocmail documentation, because Exim does not by default use a shell to run pipe
commands.

The next example shows a transport and a router for a system where local deliveries are handled by
the Cyrus IMAP server.

transport
local_delivery_cyrus:
driver = pipe
command = /usr/cyrus/bin/deliver \
-m ${substr_1:$local_part_suffix} -- $local_part
user = cyrus
group = mail
return_output
log_output
message_prefix =
message_suffix =

router

local_user_cyrus:
driver = accept
check_local_user
local_part_suffix = .*
transport = local_delivery_cyrus

Note the unsetting ofmessage prefixand message_suffixand the use ofeturn_output to cause
any text written by Cyrus to be returned to the sender.

265 The pipe transport (29)

30. The smtp transport

The smtptransport delivers messages over TCP/IP connections using the SMTP or LMTP protocol.
The list of hosts to try can either be taken from the address that is being processed (having been set up
by the router), or spefied explicitly for the transport. Timeout and retry processing (see chapter 32)

is applied to each IP address independently.

30.1 Multiple messages on a single connection
The sending of multiple messages over a single TCP/IP connection can arise in two ways:

» If a message contains more thawax_rcpt (see below) addresses that are routed to the same host,
more than one copy of the message has to be sent to that host. In this situation, multiple copies may
be sent in a single run of themtptransport over a single TCP/IP connection. (What Exim actually
does when it has too many addresses to send in one message also depends on the value of the
globalremote_max_paralleloption. Details are given in section 45.1.)

* When a message has been successfully delivered over a TCP/IP connection, Exim looks in its hints
database to see if there are any other messages awaiting a connection to the same host. If there are,
a new delivery process is started for one of them, and the current TCP/IP connection is passed on
to it. The new process may in turn send multiple copies and possibly create yet another process.

For each copy sent over the same TCP/IP connection, a sequence counter is incremented, and if it
ever gets to the value ofonnection_max_messageqo further messages are sent over that
connection.

30.2 Use of the $host and $host_address variables

At the start of a run of themtptransport, the values d&hostand$host_addresare the name and IP
address of théirst host on the host list passed by the router. However, when the transport is about to
connect to a speftc host, and while it is connected to that h@tpstand$host_addresare set to the
values for that host. These are the values that are in force whehelbedatg hosts_try auth
interface, serialize_hostsand the various TLS options are expanded.

30.3 Use of $tIs_cipher and $tls_peerdn

At the start of a run of themtptransport, the values @tls_cipherand$tls_peerdrare the values that

were set when the message was received. These are the values that are used for options that are
expanded before any SMTP connections are made. Just before each connection is made, these two
variables are emptied. If TLS is subsequently started, they are set to the appropriate values for the
outgoing connection, and these are the values that are in force when any authenticators are run and
when theauthenticated_senderoption is expanded.

30.4 Private options for smtp
The private options of themtptransport are as follows:

| address_retry_include_sender Use:smtp Type:boolean Default:true |

When an address is delayed because obardsponse to a RCPT command, it is the combination of
sender and recipient that is delayed in subsequent queue runs until the retry time is reached. You can
delay the recipient without reference to the sender (which is what earlier versions of Exim did), by
settingaddress_retry_include_sendelfalse. However, this can lead to problems with servers that
regularly issue ¥x responses to RCPT commands.

266 The smtp transport (30)

allow_localhost Use:smtp Type:boolean Default:false |

When a host spefied inhostsor fallback _hosts(see below) turns out to be the local host, or is listed
in hosts_treat_as_localdelivery is deferred by default. However, aflow_localhostis set, Exim
goes on to do the delivery anyway. This should be used only in special cases whenfitgeration
ensures that no looping will result (for example, a differentlyfigured Exim is listening on the port
to which the message is sent).

authenticated_sender Use:smtp Type:stringt Default: unset|

When Exim has authenticated as a client, aatifthenticated_sender_forces true, this option sets a
value for the AUTH= item on outgoing MAIL commands, overriding any existing authenticated
sender value. If the string expansion is forced to fail, the option is ignored. Other expansion failures
cause delivery to be deferred. If the result of expansion is an empty string, that is also ignored.

The expansion happens after the outgoing connection has been made and TLS started, if required.
This means that thghost $host_addressbtls_cipher and$tls_peerdrvariables are set according to
the particular connection.

If the SMTP session is not authenticated, the expansiautifenticated_senderstill happens (and
can cause the delivery to be deferred if it fails), but no AUTH= item is added to MAIL commands
unlessauthenticated_sender_forcas true.

This option allows you to use themtptransport in LMTP mode to deliver mail to Cyrus IMAP and
provide the proper local part as treuthenticated sendervia a setting such as:

authenticated_sender = $local_part

This removes the need for IMAP subfolders to be assigned special ACLs to allow direct delivery to
those subfolders.

Because of expected uses such as that just described for Cyrus (when no domain is involved), there is
no checking on the syntax of the provided value.

authenticated_sender_force Use:smtp Type:boolean Default:false |

If this option is set true, th@authenticated_senderoption's value is used for the AUTH= item on
outgoing MAIL commands, even if Exim has not authenticated as a client.

command_timeout Use:smtp Type:time Default:5m

This sets a timeout for receiving a response to an SMTP command that has been sent out. It is also
used when waiting for the initial banner line from the remote host. Its value must not be zero.

connect_timeout Use:smtp Type:time Default:5m

This sets a timeout for theonnect()function, which sets up a TCP/IP call to a remote host. A setting

of zero allows the system timeout (typically several minutes) to act. To have any effect, the value of
this option must be less than the system timeout. However, it has been observed that on some systems
there is no system timeout, which is why the default value for this option is 5 minutes, a value
recommended by RFC 1123.

connection_max_messages Use:smtp Type:integer Default:500

This controls the maximum number of separate message deliveries that are sent over a single TCP/IP
connection. If the value is zero, there is no limit. For testing purposes, this value can be overridden by
the-oB command line option.

267 The smtp transport (30)

data_timeout Use:smtp Type:time Default:5m

This sets a timeout for the transmission of each block in the data portion of the message. As a result,
the overall timeout for a message depends on the size of the message. Its value must not be zero. See
alsofinal_timeout.

delay_after_cutoff Use:smtp Type:boolean Default:true

This option controls what happens when all remote IP addresses for a given domain have been
inaccessible for so long that they have passed their retry cutoff times.

In the default state, if the next retry time has not been reached for any of them, the address is bounced
without trying any deliveries. In other words, Exim delays retrying an IP address aftén#heutoff

time until a new retry time is reached, and can therefore bounce an address without ever trying a
delivery, when machines have been down for a long time. Some people are unhappy at this prospect,
S0...

If delay_after_cutoff is set false, Exim behaves differently. If all IP addresses are pastfihalr

cutoff time, Exim tries to deliver to those IP addresses that have not been tried since the message
arrived. If there are none, of if they all fail, the address is bounced. In other words, it does not delay
when a hew message arrives, but immediately tries those expired IP addresses tHableavemied

since the message arrived. If there is a continuous stream of messages for the dead hosts, unsetting
delay_after_cutoff means that there will be many more attempts to deliver to them.

dns_qualify_single Use:smtp Type:boolean Default:true

If the hostsor fallback _hostsoption is being used, and tlyethostbynameoption is false, the RES
DEFNAMES resolver option is set. See thalify_single option in chapter 17 for more details.

dns_search_parents Use:smtp Type:boolean Default:false

If the hostsor fallback_hostsoption is being used, and tlyethostbynameoption is false, the RES
DNSRCH resolver option is set. See flsarch_parentsoption in chapter 17 for more details.

fallback _hosts Use:smtp Type:string list Default: unset

String expansion is not applied to this option. The argument must be a colon-separated list of host
names or IP addresses, optionally also including port numbers, though the separator can be changed,
as described in section 6.19. Each individual item in the list is the same as an itenoutealist

setting for thananualrouterouter, as described in section 20.5.

Fallback hosts can also be sfdemil on routers, which associate them with the addresses they process.
As for the hosts option withouthosts_override fallback _hosts specfied on the transport is used
only if the address does not have its own associated fallback host list. Undks a setting of
fallback_hostson an address is not overridden bysts_override However,hosts_randomizedoes

apply to fallback host lists.

If Exim is unable to deliver to any of the hosts for a particular address, and the errors are not
permanent rejections, the address is put on a separate transport queue with its host list replaced by the
fallback hosts, unless the address was routed via MX records and the current host was in the original
MX list. In that situation, the fallback host list is not used.

Once normal deliveries are complete, the fallback queue is delivered by re-running the same trans-
ports with the new host lists. If several failing addresses have the same fallback hostsafarrdpt
permits it), a single copy of the message is sent.

268 The smtp transport (30)

The resolution of the host names on the fallback list is controlled byétkeostbynameoption, as
for the hostsoption. Fallback hosts apply both to cases when the host list comes with the address and
when it is taken fronmosts This option provides ‘ause a smart host only if delivery fdil&cility.

final_timeout Use:smtp Type:time Default: 10m

This is the timeout that applies while waiting for the response tditta line containing just.” that
terminates a message. Its value must not be zero.

gethostbyname Use:smtp Type:boolean Default:false

If this option is true when thaostsand/orfallback _hostsoptions are being used, names are looked
up using gethostbyname(jor getipnodebyname(vhen available) instead of using the DNS. Of
course, that function may in fact use the DNS, but it may also consult other sources of information
such agetc/hosts

gnutls_require_kx Use:main Type:string Default: unset

This option controls the key exchange mechanisms when GnuTLS is used in an Exim client. For
details, see section 39.5.

gnutls_require_mac Use:main Type:string Default: unset

This option controls the MAC algorithms when GnuTLS is used in an Exim client. For details, see
section 39.5.

gnutls_require_protocols Use:main Type:string Default:unset

This option controls the protocols when GnuTLS is used in an Exim client. For details, see section
39.5.

helo_data Use:smtp Type:stringt Default:see be|OV\+

The value of this option is expanded after a connection to a another host has been set up. The result is
used as the argument for the EHLO, HELO, or LHLO command that starts the outgoing SMTP or
LMTP session. The default value of the option is:

$primary_hostname

During the expansion, the variabl§sostand$host_addresare set to the identity of the remote host,

and the variable$sending_ip_addresand $sending_portare set to the local IP address and port
number that are being used. These variables can be used to generate different values for different
servers or different local IP addresses. For example, if you want the string that is usediofadlata

to be obtained by a DNS lookup of the outgoing interface address, you could use this:

helo_data = ${lookup dnsdb{ptr=$sending_ip_address}{$value}\
{$primary_hostname}}

The use ohelo_dataapplies both to sending messages and when doing callouts.

| hosts Use:smtp Type:string listf Default:unset

Hosts are associated with an address by a router sudhsésokup which finds the hosts by looking
up the address domain in the DNS, or tmanualroute which has lists of hosts in its céguration.

269 The smtp transport (30)

However, email addresses can be passed tasritptransport by any router, and not all of them can
provide an associated list of hosts.

The hostsoption spedies a list of hosts to be used if the address being processed does not have any
hosts associated with it. The hosts sfied byhostsare also used, whether or not the address has its
own hosts, ihosts_overrideis set.

The string isfirst expanded, before being interpreted as a colon-separated list of host names or IP
addresses, possibly including port numbers. The separator may be changed to something other than
colon, as described in section 6.19. Each individual item in the list is the same as an iteouia_a

list setting for themanualrouterouter, as described in section 20.5. However, note thatNh¢

facility of themanualrouterouter is not available here.

If the expansion fails, delivery is deferred. Unless the failure was caused by the inability to complete a
lookup, the error is logged to the panic log as well as the main log. Host names are looked up either
by searching directly for address records in the DNS or by callgeghostbyname()or
getipnodebynamef)hen available), depending on the setting of gethostbynameoption. When

Exim is compiled with IPv6 support, if a host that is looked up in the DNS has both IPv4 and IPv6
addresses, both types of address are used.

During delivery, the hosts are tried in order, subject to their retry status, umbsts randomizeis
set.

hosts_avoid_esmtp Use:smtp Type:host listf Default: unset|

This option is for use with broken hosts that announce ESMTP facilities (for example, PIPELINING)
and then fail to implement them properly. When a host matdieests_avoid_esmtp Exim sends
HELO rather than EHLO at the start of the SMTP session. This means that it cannot use any of the
ESMTP facilities such as AUTH, PIPELINING, SIZE, and STARTTLS.

hosts_avoid_pipelining Use:smtp Type:host listt Default:unset

Exim will not use the SMTP PIPELINING extension when delivering to any host that matches this
list, even if the server host advertises PIPELINING support.

hosts_avoid_tls Use:smtp Type:host listf Default:unset

Exim will not try to start a TLS session when delivering to any host that matches this list. See chapter
39 for details of TLS.

hosts_max_try Use:smtp Type:integer Default:5

This option limits the number of IP addresses that are tried for any one delivery in cases where there
are temporary delivery errors. Section 30.5 describes in detail how the value of this option is used.

hosts_max_try hardlimit Use:smtp Type:integer Default:50

This is an additional check on the maximum number of IP addresses that Exim tries for any one
delivery. Section 30.5 describes its use and why it exists.

hosts_nopass_tls Use:smtp Type:host listf Default: unset

For any host that matches this list, a connection on which a TLS session has been started will not be
passed to a new delivery process for sending another message on the same connection. See section
39.10 for an explanation of when this might be needed.

270 The smtp transport (30)

hosts_override Use:smtp Type:boolean Default:false

If this option is set and th&osts option is also set, any hosts that are attached to the address are
ignored, and instead the hosts sfiieci by thehosts option are always used. This option does not
apply tofallback hosts

hosts_randomize Use:smtp Type:boolean Default:false

If this option is set, and either the list of hosts is taken fromhbstsor thefallback hostsoption, or

the hosts supplied by the router were not obtained from MX records (this includes fallback hosts from
the router), and were not randomized by the router, the order of trying the hosts is randomized each
time the transport runs. Randomizing the order of a host list can be used to do crude load sharing.

When hosts_randomizeis true, a host list may be split into groups whose order is separately
randomized. This makes it possible to set up MX-like behaviour. The boundaries between groups are
indicated by an item that is justin the host list. For example:

hosts = hostl:host2:host3:+:host4:host5

The order of thdirst three hosts and the order of the last two hosts is randomized for each use, but the
first three always end up before the last twohdfsts_randomizeis not set, a+ item in the list is
ignored.

hosts_require_auth Use:smtp Type:host listf Default:unset

This option provides a list of servers for which authentication must succeed before Exim will try to
transfer a message. If authentication fails for servers which are not in this list, Exim tries to send
unauthenticated. If authentication fails for one of these servers, delivery is deferred. This temporary
error is detectable in the retry rules, so it can be turned into a hard failure if required. Skestso
try_auth, and chapter 33 for details of authentication.

hosts_require_tls Use:smtp Type:host listf Default:unset

Exim will insist on using a TLS session when delivering to any host that matches this list. See chapter
39 for details of TLS.Note: This option affects outgoing mail only. To insist on TLS for incoming
messages, use an appropriate ACL.

hosts_try auth Use:smtp Type:host listt Default:unset

This option provides a list of servers to which, provided they announce authentication support, Exim
will attempt to authenticate as a client when it connects. If authentication fails, Exim will try to
transfer the message unauthenticated. Seelasts_require_auth and chapter 33 for details of
authentication.

interface Use:smtp Type:string listt Default: unset|

This option spedies which interface to bind to when making an outgoing SMTP call. The value is an
IP address, not an interface name suctet® . Do not confuse this with the interface address that

was used when a message was received, which i$regeived_ip_addresformerly known as
$interface_addressThe name was changed to minimize confusion with the outgoing interface
address. There is no variable that contains an outgoing interface address because, unless it is set by
this option, its value is unknown.

During the expansion of thiaterface option the variable$hostand$host_addresgefer to the host
to which a connection is about to be made during the expansion of the string. Forced expansion
failure, or an empty string result causes the option to be ignored. Otherwise, after expansion, the

271 The smtp transport (30)

string must be a list of IP addresses, colon-separated by default, but the separator can be changed in
the usual way. For example:

interface = <; 192.168.123.123 ; 3ffe:ffff.836f::fe86:a061

Thefirst interface of the correct type (IPv4 or IPv6) is used for the outgoing connection. If none of
them are the correct type, the option is ignoredntérface is not set, or is ignored, the systeniP
functions choose which interface to use if the host has more than one.

keepalive Use:smtp Type:boolean Default:true

This option controls the setting of SO_KEEPALIVE on outgoing TCP/IP socket connections. When
set, it causes the kernel to probe idle connections periodically, by sending packetSoldith
sequence numbers. The other end of the connection should send a acknowledgment if the connection
is still okay or a reset if the connection has been aborted. The reason for doing this is that it has the
bendicial effect of freeing up certain types of connection that can get stuck when the remote host is
disconnected without tidying up the TCP/IP call properly. The keepalive mechanism takes several
hours to detect unreachable hosts.

Imtp_ignore_quota Use:smtp Type:boolean Default:false |

If this option is set true when tharotocol option is set td'Imtp”, the stringlGNOREQUOTA added
to RCPT commands, provided that the LMTP server has advertised support for IGNOREQUOTA in
its response to the LHLO command.

max_rcpt Use:smtp Type:integer Default: 100 |

This option limits the number of RCPT commands that are sent in a single SMTP message transac-
tion. Each set of addresses is treated independently, and so can cause parallel connections to the same
host ifremote_max_parallelpermits this.

multi_domain Use:smtp Type:boolean Default:true

When this option is set, themtptransport can handle a number of addresses containing a mixture of
different domains provided they all resolve to the same list of hosts. Turning the option off restricts
the transport to handling only one domain at a time. This is useful if you want t@dm®ainin an
expansion for the transport, because it is set only when there is a single domain involved in a remote
delivery.

port Use:smtp Type:stringt Default:see be|OV\+

This option spedies the TCP/IP port on the server to which Exim conngdtste: Do not confuse
this with the port that was used when a message was received, whicBrsceived_portformerly
known as$interface_port The name was changed to minimize confusion with the outgoing port.
There is no variable that contains an outgoing port.

If the value of this option begins with a digit it is taken as a port number; otherwise it is looked up
using getservbyname()The default value is normallysmtg’, but if protocol is set to"Imtp”, the
default is“Imtp”. If the expansion fails, or if a port number cannot be found, delivery is deferred.

protocol Use:smtp Type:string Default:smtp

If this option is set ta*Imtp” instead of*smtg, the default value for th@ort option changes to
“Imtp”, and the transport operates the LMTP protocol (RFC 2033) instead of SMTP. This protocol is
sometimes used for local deliveries into closed message stores. Exim also has support for running
LMTP over a pipe to a local processee chapter 28.

272 The smtp transport (30)

retry_include_ip_address Use:smtp Type:boolean Default:true

Exim normally includes both the host name and the IP address in the key it constructs for indexing
retry data after a temporary delivery failure. This means that when one of several IP addresses for a
host is failing, it gets tried periodically (controlled by the retry rules), but use of the other IP addresses
is not affected.

However, in some dialup environments hosts are assigned a different IP address each time they
connect. In this situation the use of the IP address as part of the retry key leads to undesirable
behaviour. Setting this option false causes Exim to use only the host name. This should normally be
done on a separate instance ofsheptransport, set up specially to handle the dialup hosts.

serialize_hosts Use:smtp Type:host listt Default:unset

Because Exim operates in a distributed manner, if several messages for the same host arrive at around
the same time, more than one simultaneous connection to the remote host can occur. This is not
usually a problem except when there is a slow link between the hosts. In that situation it may be
helpful to restrict Exim to one connection at a time. This can be done by setiglize_hoststo

match the relevant hosts.

Exim implements serialization by means of a hints database in which a record is written whenever a
process connects to one of the restricted hosts. The record is deleted when the connection is com-
pleted. Obviously there is scope for records to get left lying around if there is a system or program
crash. To guard against this, Exim ignores any records that are more than six hours old.

If you set up this kind of serialization, you should also arrange to delete the relevant hints database
whenever your system reboots. The names ofiths start withmiscand they are kept in thepool/db
directory. There may be one or twides, depending on the type of DBM in use. The sdites are

used for ETRN serialization.

size_addition Use:smtp Type:integer Default: 1024 |

If a remote SMTP server indicates that it supports the SIZE option of the MAIL command, Exim uses
this to pass over the message size at the start of an SMTP transaction. It adds the \&hee of
addition to the value it sends, to allow for headers and other text that may be added during delivery
by corfiguration options or in a transpditter. It may be necessary to increase this if a lot of text is
added to messages.

Alternatively, if the value ofsize_additionis set negative, it disables the use of the SIZE option
altogether.

tls_certificate Use:smtp Type:stringt Default: unset|

The value of this option must be the absolute path fileawhich contains the cliers certficate, for
possible use when sending a message over an encrypted connection. The véhestarid $host_
addressare set to the name and address of the server during the expansion. See chapter 39 for details
of TLS.

Note: This option must be set if you want Exim to be able to use a TLSfmate when sending
messages as a client. The global option of the same namdiepdbk cerficate for Exim as a server;

it is not automatically assumed that the same fieatie should be used when Exim is operating as a
client.

tls_crl Use:smtp Type:stringt Default: unset

This option spedies a cerficate revocation list. The expanded value must be the namdilef that
contains a CRL in PEM format.

273 The smtp transport (30)

| tls_privatekey Use:smtp Type:stringt Default:unset

The value of this option must be the absolute path fdeawhich contains the clieit private key.

This is used when sending a message over an encrypted connection using a clioateerfihe
values of$hostand$host_addresare set to the name and address of the server during the expansion.
If this option is unset, or the expansion is forced to fail, or the result is an empty string, the private key
is assumed to be in the safile as the ceffiicate. See chapter 39 for details of TLS.

| tls_require_ciphers Use:smtp Type:stringt Default: unset

The value of this option must be a list of permitted cipher suites, for use when setting up an outgoing
encrypted connection. (There is a global option of the same name for controlling incoming connec-
tions.) The values dbhostand$host_addresare set to the name and address of the server during the
expansion. See chapter 39 for details of TLS; note that this option is used in different ways by
OpenSSL and GnuTLS (see sections 39.4 and 39.5). For GnuTLS, the order of the ciphers is a
preference order.

tls_tempfail_tryclear Use:smtp Type:boolean Default:true

When the server host is not osts_require_tls and there is a problem in setting up a TLS session,

this option determines whether or not Exim should try to deliver the message unencrypted. If it is set
false, delivery to the current host is deferred; if there are other hosts, they are tried. If this option is set
true, Exim attempts to deliver unencrypted aftexa lesponse to STARTTLS. Also, if STARTTLS is
accepted, but the subsequent TLS negotiation fails, Exim closes the current connection (because it is
in an unknown state), opens a new one to the same host, and then tries the delivery in clear.

| tls_verify_certificates Use:smtp Type:stringt Default: unset|

The value of this option must be the absolute path fiteecontaining permitted server céitiates, for

use when setting up an encrypted connection. Alternatively, if you are using OpenSSL, you can set
tls_verify_certificatesto the name of a directory containing cédatefiles. This does not work with
GnuTLS; the option must be set to the name of a sifidgeif you are using GnuTLS. The values of
$hostand $host_addresare set to the name and address of the server during the expansion of this
option. See chapter 39 for details of TLS.

30.5 How the limits for the number of hosts to try are used

There are two options that are concerned with the number of hosts that are tried when an SMTP
delivery takes place. They dnests_max_tryandhosts_max_try_hardlimit.

The hosts_max_try option limits the number of hosts that are tried for a single delivery. However,
despite the ternihost in its name, the option actually applies to each IP address independently. In
other words, a multihomed host is treated as several independent hosts, just as it is for retrying.

Many of the larger ISPs have multiple MX records which often point to multihomed hosts. As a
result, a list of a dozen or more IP addresses may be created as a result of routing one of these
domains.

Trying every single IP address on such a long list does not seem sensible; if several at the top of the
list fail, it is reasonable to assume there is some problem that is likely to affect all of them. Roughly
speaking, the value dfiosts_max_tryis the maximum number that are tried before deferring the
delivery. However, the logic cannot be quite that simple.

Firstly, IP addresses that are skipped because their retry times have not arrived do not count, and in
addition, addresses that are past their retry limits are also not counted, even when they are tried. This
means that when some IP addresses are past their retry limits, more than the ahsésofmax

retry may be tried. The reason for this behaviour is to ensure that all IP addresses are considered
before timing out an email address (but see below for an exception).

274 The smtp transport (30)

Secondly, when thbosts_max_trylimit is reached, Exim looks down the host list to see if there is a
subsequent host with a different (higher valued) MX. If there is, that host is considered next, and the
current IP address is used but not counted. This behaviour helps in the case of a domain with a retry
rule that hardly ever delays any hosts, as is now explained:

Consider the case of a long list of hosts with one MX value, and a few with a higher MX value. If
hosts_max_tryis small (the default is 5) only a few hosts at the top of the list are tridatsit With
the default retry rule, which spdi@s increasing retry times, the higher MX hosts are eventually tried
when those at the top of the list are skipped because they have not reached their retry times.

However, it is common practice to putfexed short retry time on domains for large ISPs, on the
grounds that their servers are rarely down for very long. Unfortunately, these are exactly the domains
that tend to resolve to long lists of hosts. The short retry time means that the lowest MX hosts are
tried every time. The attempts may be in a different order because of random sorting, but without the
special MX check, the higher MX hosts would never be tried until all the lower MX hosts had timed
out (which might be several days), because there are always some lower MX hosts that have reached
their retry times. With the special check, Exim considers at least one IP address from each MX value
at every delivery attempt, even if thests_max_trylimit has already been reached.

The above logic means thabsts_max_tryis not a hard limit, and in particular, Exim normally
eventually tries all the IP addresses before timing out an email address. Mghtsn max_trywas
implemented, this seemed a reasonable thing to do. Recently, however, some lunatic Biy&-con
ations have been set up with hundreds of IP addresses for some domains. It can take a very long time
indeed for an address to time out in these cases.

The hosts_max_try_hardlimit option was added to help with this problem. Exim never tries more

than this number of IP addresses; if it hits this limit and they are all timed out, the email address is
bounced, even though not all possible IP addresses have been tried.

275 The smtp transport (30)

31. Address rewriting

There are some circumstances in which Exim automatically rewrites domains in addresses. The two
most common are when an address is given without a domain (referred td ascpralfied addresy
or when an address contains an abbreviated domain that is expanded by DNS lookup.

Unqualfied envelope addresses are accepted only for locally submitted messages, or for messages
that are received from hosts matchisgnder_unqualified_hostsor recipient_unqualified_hosts as
appropriate. Unqudiied addresses in header lines are digaliif they are in locally submitted mess-

ages, or messages from hosts that are permitted to send digguialivelope addresses. Otherwise,
unqualfied addresses in header lines are neitherfopaahor rewritten.

One situation in which Exim doesot automatically rewrite a domain is when it is the name of a
CNAME record in the DNS. The older RFCs suggest that such a domain should be rewritten using the
“canonicdl name, and some MTAs do this. The new RFCs do not contain this suggestion.

31.1 Explicitly configured address rewriting

This chapter describes the rewriting rules that can be used in the main rewrite section offifyereon
ationfile, and also in the genetieaders_rewriteoption that can be set on any transport.

Some people believe that digured address rewriting is a Mortal Sin. Others believe that life is not
possible without it. Exim provides the facility; you do not have to use it.

The main rewriting rules that appear in theewrité’ section of the coligurationfile are applied to
addresses in incoming messages, both envelope addresses and addresses in header lines. Each rule
specfies the types of address to which it applies.

Whether or not addresses in header lines are rewritten depends on the origin of the headers and the
type of rewriting. Global rewriting, that is, rewriting rules from the rewrite section of thdigon

ationfile, is applied only to those headers that were received with the message. Header lines that are
added by ACLs or by a systefiilter or by individual routers or transports (which are sfiecio
individual recipient addresses) are not rewritten by the global rules.

Rewriting at transport time, by means of theaders_rewriteoption, applies all headers except those
added by routers and transports. That is, as well as the headers that were received with the message, it
also applies to headers that were added by an ACL or a sfjkegm

In general, rewriting addresses from your own system or domain has some legitimacy. Rewriting
other addresses should be done only with great care and in special circumstances. The author of Exim
believes that rewriting should be used sparingly, and mainlyregularizing addresses in your own
domains. Although it can sometimes be used as a routing tool, this is very strongly discouraged.

There are two commonly encountered circumstances where rewriting is used, as illustrated by these
examples:

» The company whose domain fgtch.fict.exampldias a number of hosts that exchange mail with
each other behind firewall, but there is only a single gateway to the outer world. The gateway
rewrites*.hitch.fict.examplashitch.fict.examplevhen sending mail off-site.

» A host rewrites the local parts of its own users so that, for exanfpg@hitch.fict.example
becomed-ord.Prefect@hitch.fict.example

31.2 When does rewriting happen?
Corfigured address rewriting can take place at several different stages of a isqasagssing.

At the start of an ACL for MAIL, the sender address may have been rewritten by a special SMTP-
time rewrite rule (see section 31.9), but no ordinary rewrite rules have yet been applied. If, however,
the sender address is Vieed in the ACL, it is rewritten before vdircation, and remains rewritten
thereafter. The subsequent value $sender_address the rewritten address. This also applies if
sender vefication happens in a RCPT ACL. Otherwise, when the sender address is fietdyetiis
rewritten as soon as a messadwader lines have been received.

276 Address rewriting (31)

Similarly, at the start of an ACL for RCPT, the current recipisr@iddress may have been rewritten by

a special SMTP-time rewrite rule, but no ordinary rewrite rules have yet been applied to it. However,
the behaviour is different from the sender address when a recipient isedeiihe address is rewrit-

ten for the veffication, but the rewriting is not remembered at this stage. The val@&ooél_part

and $domainafter verfication are always the same as they were before (that is, they contain the
unrewritten— except for SMTP-time rewriting address).

As soon as a messdgeheader lines have been received, all the envelope recipient addresses are
permanently rewritten, and rewriting is also applied to the addresses in the header lines (if con-
figured). This happens before adding any header lines that werdiegeni MAIL or RCPT ACLs,

and before the DATA ACL anlcal_scan()functions are run.

When an address is being routed, either for delivery or forfieation, rewriting is applied immedi-
ately to child addresses that are generated by redirection, nolessvrite is set on the router.

At transport time, additional rewriting of addresses in header lines can bdisgeay setting the
genericheaders_rewriteoption on a transport. This option contains rules that are identical in form to
those in the rewrite section of the diagurationfile. They are applied to the original message header
lines and any that were added by ACLs or a systidter. They are not applied to header lines that are
added by routers or the transport.

The outgoing envelope sender can be rewritten by means ofetiuen_path transport option.
However, it is not possible to rewrite envelope recipients at transport time.

31.3 Testing the rewriting rules that apply on input

Exim’s input rewriting cofiguration appears in a part of the run time figarationfile headed by
“begin rewrité. It can be tested by thdorw command line option. This takes an address (which can
be a full RFC 2822 address) as its argument. The output is a list of how the address would be
transformed by the rewriting rules for each of the different places it might appear in an incoming
message, that is, for each different header and for the envelope sender and rd@fdent~or
example,

exim -brw ph10@exim.workshop.example
might produce the output

sender: Philip.Hazel@exim.workshop.example
from: Philip.Hazel@exim.workshop.example

to: ph10@exim.workshop.example

cc: phl0@exim.workshop.example

bcc: phl0@exim.workshop.example

reply-to: Philip.Hazel@exim.workshop.example
env-from: Philip.Hazel@exim.workshop.example
env-to: ph10@exim.workshop.example

which shows that rewriting has been set up for that address when used in any of thefisbiscéut
not when it appears as a recipient address. At the present time, there is no equivalent way of testing
rewriting rules that are set for a particular transport.

31.4 Rewriting rules
The rewrite section of the chigurationfile consists of lines of rewriting rules in the form
<source pattern <replacemernt <flags>

Rewriting rules that are spdigd for theheaders_rewrite generic transport option are given as a
colon-separated list. Each item in the list takes the same form as a line in the main rewrifiiggicon
ation (except that any colons must be doubled, of course).

The formats of source patterns and replacement strings are described below. Each is terminated by
white space, unless enclosed in double quotes, in which case normal quoting conventions apply inside

277 Address rewriting (31)

the quotes. The flags are single characters which may appear in any order. Spaces and tabs between
them are ignored.

For each address that could potentially be rewritten, the rules are scanned in order, and replacements
for the address from earlier rules can themselves be replaced by later rules (but ‘sgeahd”R”
flags).

The order in which addresses are rewritten is diméel, may change between releases, and must not

be relied on, with one exception: when a message is received, the envelope sender is always rewritten
first, before any header lines are rewritten. For example, the replacement string for a rewrite of an
address inTo: must not assume that the messagaddress irfFrom: has (or has not) already been
rewritten. However, a rewrite oFrom: may assume that the envelope sender has already been
rewritten.

The variables$local_partand$domaincan be used in the replacement string to refer to the address
that is being rewritten. Note that lookup-driven rewriting can be done by a rule of the form

@ ${lookup ...

where the lookup key uséil and$2 or $local_partand$domainto refer to the address that is being
rewritten.

31.5 Rewriting patterns

The source pattern in a rewriting rule is any item which may appear in an address list (see section
10.19). It is in fact processed as a single-item address list, which means that it is expanded before
being tested against the address. As always, if you use a regular expression as a pattern, you must take
care to escape dollar and backslash characters, or usé tifcility to suppress string expansion

within the regular expression.

Domains in patterns should be given in lower case. Local parts in patterns are case-sensitive. If you
want to do case-insensitive matching of local parts, you can use a regular expression that starts with
~(?i)

After matching, the numerical variablé, $2, etc. may be set, depending on the type of match
which occurred. These can be used in the replacement string to insert portions of the incoming
address$0 always refers to the complete incoming address. When a regular expression is used, the

numerical variables are set from its capturing subexpressions. For other types of pattern they are set as
follows:

» If a local part or domain starts with an asterisk, the numerical variables refer to the character
strings matched by asterisks, witfi associated with théirst asterisk, an®&2 with the second, if
present. For example, if the pattern

queen@.fict.example
is matched against the addréesrts-queen@wonderland.fict.examibien

$0 = hearts-queen@wonderland.fict.example
$1 = hearts-
$2 = wonderland

Note that if the local part does not start with an asterisk, but the domain doe$lithat contains
the wild part of the domain.

 If the domain part of the pattern is a partial lookup, the wild dixeéd parts of the domain are
placed in the next available numerical variables. Suppose, for example, that the address
foo@bar.baz.example processed by a rewriting rule of the form

*@partial-dbm;/some/dbm/file <replacement string
and the key in théle that matches the domairn*ibaz.example . Then

$1 =foo
$2 = bar
$3 = baz.example

278 Address rewriting (31)

If the addressoo@baz.examplis looked up, this matches the same wildchle entry, and in this

case$2 is set to the empty string, b&8 is still set tobaz.examplelf a non-wild key is matched in

a partial lookup,$2 is again set to the empty string a8 is set to the whole domain. For
non-partial domain lookups, no numerical variables are set.

31.6 Rewriting replacements

If the replacement string for a rule is a single asterisk, addresses that match the pattern and the flags
arenot rewritten, and no subsequent rewriting rules are scanned. For example,

hatta@lookingglass.fict.example * f
specfies thahatta@lookingglass.fict.examgkenever to be rewritten From: headers.

If the replacement string is not a single asterisk, it is expanded, and must yield a fullfieglali
address. Within the expansion, the variabtscal part and $domainrefer to the address that is

being rewritten. Any letters they contain retain their original cagbey are not lower cased. The
numerical variables are set up according to the type of pattern that matched the address, as described
above. If the expansion is forced to fail by the presencéfail” in a conditional or lookup item,
rewriting by the current rule is abandoned, but subsequent rules may take effect. Any other expansion
failure causes the entire rewriting operation to be abandoned, and an entry written to the panic log.

31.7 Rewriting flags

There are three different kinds of flag that may appear on rewriting rules:

» Flags that specify which headers and envelope addresses to rewrite: E, F, T, b, ¢, f, h, r, s, t.
» A flag that spedies rewriting at SMTP time: S.

» Flags that control the rewriting process: Q, g, R, w.

For rules that are part of thheaders_rewrite generic transport option, E, F, T, and S are not
permitted.

31.8 Flags specifying which headers and envelope addresses to rewrite

If none of the following flag letters, nor theS® flag (see section 31.9) are present, a main rewriting
rule applies to all headers and to both the sender and recifpedds of the envelope, whereas a
transport-time rewriting rule just applies to all headers. Otherwise, the rewriting rule is skipped unless
the relevant addresses are being processed.

rewrite all envelopgelds
rewrite the envelope Froireld
rewrite the envelope Teld
rewrite theBcc: header
rewrite theCc: header
rewrite thé=-rom: header
rewrite all headers

rewrite thdReply-To:header
rewrite thesenderheader
rewrite thdo: header

~nw S ITrooTHTM

"All headers" means all of the headers listed above that can be selected individually, plieteit-
versions. It does not include other headers suSGubgct.etc.

You should be particularly careful about rewriti®8gnder:headers, and restrict this to special known
cases in your own domains.

31.9 The SMTP-time rewriting flag

The rewrite flag'S’ specfies a rewrite of incoming envelope addresses at SMTP time, as soon as an
address is received in a MAIL or RCPT command, and before any other processing; even before

279 Address rewriting (31)

syntax checking. The pattern is required to be a regular expression, and it is matched against the
whole of the data for the command, including any surrounding angle brackets.

This form of rewrite rule allows for the handling of addresses that are not compliant with RFCs 2821
and 2822 (for examplépang path’sin batched SMTP input). Because the input is not required to be

a syntactically valid address, the variab®ecal_part and $domainare not available during the
expansion of the replacement string. The result of rewriting replaces the original address in the MAIL
or RCPT command.

31.10 Flags controlling the rewriting process

There are four flags which control the way the rewriting process works. These take effect only when a
rule is invoked, that is, when the address is of the correct type (matches the flags) and matches the
pattern:

» If the “Q” flag is set on a rule, the rewritten address is permitted to be an ufigddtical part. It
is qualfied with qualify_recipient. In the absence ofQ” the rewritten address must always
include a domain.

« If the “q” flag is set on a rule, no further rewriting rules are considered, even if no rewriting
actually takes place because dffail” in the expansion. Thi&g” flag is not effective if the address
is of the wrong type (does not match the flags) or does not match the pattern.

* The“R” flag causes a successful rewriting rule to be re-applied to the new address, up to ten times.
It can be combined with thég” flag, to stop rewriting once it fails to match (after at least one
successful rewrite).

* When an address in a header is rewritten, the rewriting normally applies only to the working part of
the address, with any comments and RFC 28a2Zrasé left unchanged. For example, rewriting
might change

From: Ford Prefect <fp42@restaurant.hitch.fict.example>
into
From: Ford Prefect <prefectf@hitch.fict.example>

Sometimes there is a need to replace the whole address item, and this can be done by adding the
flag letter“w” to a rule. If this is set on a rule that causes an address in a header line to be
rewritten, the entire address is replaced, not just the working part. The replacement must be a
complete RFC 2822 address, including the angle brackets if necessary. If text outside angle
brackets contains a character whose value is greater than 126 or less than 32 (except for tab), the
text is encoded according to RFC 2047. The character set is takenhfgaders_charsetwhich

defaults to ISO-8859-1.

When the“w” flag is set on a rule that causes an envelope address to be rewritten, all but the
working part of the replacement address is discarded.

31.11 Rewriting examples
Here is an example of the two common rewriting paradigms:

@.hitch.fict.example $1@hitch.fict.example
*@hitch.fict.example ${lookup{$1}dbm{/etc/realnames}\
{$valuelfail}@hitch.fict.example bctfrF

Note the use offail” in the lookup expansion in the second rule, forcing the string expansion to fail if
the lookup does not succeed. In this context it has the effect of leaving the original address un-
changed, but Exim goes on to consider subsequent rewriting rules, if any, becatigeé filag is not
present in that rule. An alternative tdail” would be to supplybl explicitly, which would cause the
rewritten address to be the same as before, at the cost of a small bit of processing. Not supplying
either of these is an error, since the rewritten address would then contain no local part.

280 Address rewriting (31)

Thefirst example above replaces the domain with a superior, more general domain. This may not be
desirable for certain local parts. If the rule

root@*.hitch.fict.example *

were inserted before tHast rule, rewriting would be suppressed for the local paot at any domain
ending inhitch.fict.example

Rewriting can be made conditional on a number of tests, by making uéf afi the expansion item.
For example, to apply a rewriting rule only to messages that originate outside the local host:

@.hitch.fict.example "${if leq {$sender_host_address}{}\
{$1@hitch.fict.example}fail}"

The replacement string is quoted in this example because it contains white space.

Exim does not handle addresses in the formlaEng paths If it sees such an address it treats it as an
unqualfied local part which it qudiies with the local qudiication domain (if the source of the
message is local or if the remote host is permitted to send ufiguakhddresses). Rewriting can
sometimes be used to handle simple bang paths witted number of components. For example, the
rule

\NA([M]+H) () @your.domain.example$\N $2@$1

rewrites a two-component bang patiost.nameluseras the domain addressser@host.name
However, there is a security implication in using this as a global rewriting rule for envelope addresses.
It can provide a backdoor method for using your system as a relay, because the incoming addresses
appear to be local. If the bang path addresses are received via SMTP, it is safer to‘i&efldng to

rewrite them as they are received, so that relay checking can be done on the rewritten addresses.

281 Address rewriting (31)

32. Retry configuration

The “retry’ section of the runtime cdigurationfile contains a list of retry rules that control how
often Exim tries to deliver messages that cannot be delivered &irshattempt. If there are no retry

rules (the section is empty or not present), there are no retries. In this situation, temporary errors are
treated as permanent. The default ftgaration contains a single, general-purpose retry rule (see
section 7.5). Thebrt command line option can be used to test which retry rule will be used for a
given address, domain and error.

The most common cause of retries is temporary failure to deliver to a remote host because the host is
down, or inaccessible because of a network problem. Bximgtry processing in this case is applied

on a per-host (strictly, per IP address) basis, not on a per-message basis. Thus, if one message has
recently been delayed, delivery of a new message to the same host is not immediately tried, but waits
for the hosts retry time to arrive. If theetry defer log selector is set, the messdfetry time not

reached is written to the main log whenever a delivery is skipped for this reason. Section 45.2
contains more details of the handling of errors during remote deliveries.

Retry processing applies to routing as well as to delivering, except as covered in the next paragraph.
The retry rules do not distinguish between these actions. It is not possible, for example, to specify
different behaviour for failures to route the domanark.fict.exampland failures to deliver to the

host snark.fict.examplel didn't think anyone would ever need this added complication, so did not
implement it. However, although they share the same retry rule, the actual retry times for routing and
transporting a given domain are maintained independently.

When a delivery is not part of a queue run (typically an immediate delivery on receipt of a message),
the routers are always run, and local deliveries are always attempted, even if retry times are set for
them. This makes for better behaviour if one particular message is causing problems (for example,
causing quota overflow, or provoking an error itilter file). If such a delivery suffers a temporary
failure, the retry data is updated as normal, and subsequent delivery attempts from queue runs occur
only when the retry time for the local address is reached.

32.1 Changing retry rules

If you change the retry rules in your doguration, you should consider whether or not to delete the
retry data that is stored in Exisispool area ifiles with names likelb/retry. Deleting any of Exins
hintsfiles is always safe; that is why they are calleidts’.

The hints retry data contains suggested retry times based on the previous rules. In the case of a
long-running problem with a remote host, it might record the fact that the host has timed out. If your
new rules increase the timeout time for such a host, you shotilditedy remove the old retry data

and let Exim recreate it, based on the new rules. Otherwise Exim might bounce messages that it
should now be retaining.

32.2 Format of retry rules

Each retry rule occupies one line and consists of three or four parts, separated by white space: a
pattern, an error name, an optional list of sender addresses, and a list of retry parameters. The pattern
and sender lists must be enclosed in double quotes if they contain white space. The rules are searched
in order until one is found where the pattern, error name, and sender list (if present) match the failing
host or address, the error that occurred, and the méssageler, respectively.

The pattern is any single item that may appear in an address list (see section 10.19). It is in fact
processed as a one-item address list, which means that it is expanded before being tested against the
address that has been delayed. A negated address list item is permitted. Address list processing treats
a plain domain name as if it were preceded‘b@”, which makes it possible for many retry rules to

start with just a domain. For example,

lookingglass.fict.example * F,24h,30m;

provides a rule for any address in thekingglass.fict.exampldomain, whereas

282 Retry configuration (32)

alice@lookingglass.fict.example * F,24h,30m,;

applies only to temporary failures involving the local palite. In practice, almost all rules start with
a domain name pattern without a local part.

Warning: If you use a regular expression in a routing rule pattern, it must match a complete address,
not just a domain, because that is how regular expressions work in address lists.

MNxyz\d+\.abc\.example$\N * G,1h,10m,2 Wrong
MNP @]+@xyz\d+\.abc\.example$\N * G,1h,10m,2 Right

32.3 Choosing which retry rule to use for address errors

When Exim is looking for a retry rule after a routing attempt has failed (for example, after a DNS
timeout), each line in the retry cbguration is tested against the complete address ométrif _use
local_part is set for the router. Otherwise, only the domain is used, except when matching against a
regular expression, when the local part of the address is replaced*With domain on its own can
match a domain pattern, or a pattern that starts Wwi@"”. By default,retry_use_local_patrtis true

for routers whereheck _local_uselis true, and false for other routers.

Similarly, when Exim is looking for a retry rule after a local delivery has failed (for example, after a
mailbox full error), each line in the retry ctiguration is tested against the complete address only if
retry_use_local_partis set for the transport (it defaults true for all local transports).

However, when Exim is looking for a retry rule after a remote delivery attempt suffers an address
error (a 4x SMTP response for a recipient address), the whole address is always used as the key
when searching the retry rules. The rule that is found is used to create a retry time for the combination
of the failing address and the messagsender. It is the combination of sender and recipient that is
delayed in subsequent queue runs until its retry time is reached. You can delay the recipient without
regard to the sender by settingdress_retry_include_sendefalse in thesmtptransport but this can

lead to problems with servers that regularly isswerdsponses to RCPT commands.

32.4 Choosing which retry rule to use for host and message errors

For a temporary error that is not related to an individual address (for example, a connection timeout),
each line in the retry cdiguration is checked twice. First, the name of the remote host is used as a
domain name (preceded BYy@” when matching a regular expression). If this does not match the
line, the domain from the email address is tried in a similar fashion. For example, suppose the MX
records fora.b.c.examplare

a.b.c.example MX 5 x.y.z.example
MX 6 p.g.r.example
MX 7 m.n.o.example

and the retry rules are

p.g.r.example * F,24h,30m;
a.b.c.example * F,4d,45m;

and a delivery to the hosty.z.examplsuffers a connection failure. THest rule matches neither the

host nor the domain, so Exim looks at the second rule. This does not match the host, but it does match
the domain, so it is used to calculate the retry time for the kgst.exampleMeanwhile, Exim tries

to deliver top.qg.rexamplelf this also suffers a host error, tHast retry rule is used, because it
matches the host.

In other words, temporary failures to deliver to hpsy.r.examplaise thefirst rule to determine retry
times, but for all the other hosts for the domait.c.examplethe second rule is used. The second
rule is also used if routing #b.c.examplsuffers a temporary failure.

Note: The host name is used when matching the patterns, not its IP address. However, if a message is
routed directly to an IP address without the use of a host name, for examplegaihaalrouterouter
contains a setting such as:

route_list = *.a.example 192.168.34.23

283 Retry configuration (32)

then the*host namé that is used when searching for a retry rule is the textual form of the IP address.

32.5 Retry rules for specific errors

The secondield in a retry rule is the name of a particular error, or an asterisk, which matches any
error. The errors that can be tested for are:

auth_failed
Authentication failed when trying to send to a host in thests_require_authlist in an smtp
transport.

data_4xx
A 4xxerror was received for an outgoing DATA command, either immediately after the command,
or after sending the messagdata.

mail_4xx
A 4xxerror was received for an outgoing MAIL command.

rcpt_4xx
A 4xxerror was received for an outgoing RCPT command.

For the three ®¥x errors, either théirst or both of the ¥ can be given as spéici digits, for example:
mail_45x or rcpt_ 436 . For example, to recognize 452 errors given to RCPT commands for
addresses in a certain domain, and have retries every ten minutes with a one-hour timeout, you could
set up a retry rule of this form:

the.domain.name rcpt_ 452 F,1h,10m

These errors apply to both outgoing SMTP (8mtptransport) and outgoing LMTP (either thatp
transport, or themtptransport in LMTP mode).

lost_connection
A server unexpectedly closed the SMTP connection. There may, of course, legitimate reasons for
this (host died, network died), but if it repeats a lot for the same host, it indicates something odd.

refused_MX
A connection to a host obtained from an MX record was refused.

refused_A
A connection to a host not obtained from an MX record was refused.

refused
A connection was refused.

timeout_connect_MX
A connection attempt to a host obtained from an MX record timed out.

timeout_connect_A
A connection attempt to a host not obtained from an MX record timed out.

timeout_connect
A connection attempt timed out.

timeout_ MX
There was a timeout while connecting or during an SMTP session with a host obtained from an
MX record.

timeout_A
There was a timeout while connecting or during an SMTP session with a host not obtained from an
MX record.

timeout
There was a timeout while connecting or during an SMTP session.

284 Retry configuration (32)

tls_required
The server was required to use TLS (it matchedts_require_tlsin the smtptransport), but either
did not offer TLS, or it responded withx& to STARTTLS, or there was a problem setting up the
TLS connection.

quota
A mailbox quota was exceeded in a local delivery byaggendfileransport.

guota_<time>
A mailbox quota was exceeded in a local delivery by dppendfilegransport, and the mailbox has
not been accessed fotime>. For exampleguota_4dapplies to a quota error when the mailbox
has not been accessed for four days.

The idea ofquota_<time> is to make it possible to have shorter timeouts when the mailbox is full and
is not being read by its owner. Ideally, it should be based on the last time that the user accessed the
mailbox. However, it is not always possible to determine this. Exim uses the following heuristic rules:

 If the mailbox is a singldile, the time of last access (thatim€’) is used. As no hew messages are
being delivered (because the mailbox is over quota), Exim does not accdsg tise this is the
time of last user access.

» For a maildir delivery, the time of last mddiation of thenewsubdirectory is used. As the mailbox
is over guota, no neviles are created in theewsubdirectory, because no new messages are being
delivered. Any change to theew subdirectory is therefore assumed to be the result of an MUA
moving a new message to thar directory when it ifirst read. The time that is used is therefore
the last time that the user read a new message.

» For other kinds of multfile mailbox, the time of last access cannot be obtained, so a retry rule that
uses this type of errdireld is never matched.

The quota errors apply both to system-enforced quotas and to’&€riwn quota mechanism in the
appendfilgransport. Thejuotaerror also applies when a local delivery is deferred because a partition
is full (the ENOSPC error).

32.6 Retry rules for specified senders

You can specify retry rules that apply only when the failing message has disetider. In particu-
lar, this can be used to fire retry rules that apply only to bounce messages. The third item in a retry
rule can be of this form:

senders= <address list
The retry timings themselves are then the fourth item. For example:
* rcpt_4xx senders=: F,1h,30m

matches recipientxk errors for bounce messages sent to any address at any host. If the address list
contains white space, it must be enclosed in quotes. For example:

a.domain rcpt_452 senders="xb.dom : yc.dom" G,8h,10m,1.5

Warning: This facility can be unhelpful if it is used for host errors (which do not depend on the
recipient). The reason is that the sender is used only to match the retry rule. Once the rule has been
found for a host error, its contents are used to set a retry time for the host, and this will apply to all
messages, not just those with sfie@enders.

When testing retry rules usindprt, you can supply a sender using tfiecommand line option, like
this:

nn

exim -f " -brt user@dom.ain

If you do not setf with -brt, a retry rule that contains a senders list is never matched.

285 Retry configuration (32)

32.7 Retry parameters

The third (or fourth, if a senders list is presefigld in a retry rule is a sequence of retry parameter
sets, separated by semicolons. Each set consists of

<letter>,<cutoff time>,<arguments

The letter idenfies the algorithm for computing a new retry time; the cutoff time is the time beyond
which this algorithm no longer applies, and the arguments vary the algositiction. The cutoff time

is measured from the time that thiest failure for the domain (combined with the local part if
relevant) was detected, not from the time the message was received.

The available algorithms are:
» F: retry atfixed intervals. There is a single time parameter specifying the interval.

» G: retry at geometrically increasing intervals. Thest argument speftes a starting value for the
interval, and the second a multiplier, which is used to increase the size of the interval at each retry.

» H:retry at randomized intervals. The arguments are a&féor each retry, the previous interval is
multiplied by the factor in order to get a maximum for the next interval. The minimum interval is
thefirst argument of the parameter, and an actual interval is chosen randomly between them. Such
a rule has been found to be helpful in cluster fogurations when all the members of the cluster
restart at once, and may therefore synchronize their queue processing times.

When computing the next retry time, the algorithnfidgions are scanned in order until one whose
cutoff time has not yet passed is reached. This is then used to compute a new retry time that is later
than the current time. In the casefofed interval retries, this simply means adding the interval to the
current time. For geometrically increasing intervals, retry intervals are computed from the rule
parameters until one that is greater than the previous interval is found. The mdigucation
variableretry_interval_max limits the maximum interval between retries. It cannot be set greater
than24h, which is its default value.

A single remote domain may have a number of hosts associated with it, and each host may have more
than one IP address. Retry algorithms are selected on the basis of the domain name, but are applied to
each IP address independently. If, for example, a host has two IP addresses and one is unusable, Exim
will generate retry times for it and will not try to use it until its next retry time comes. Thus the good

IP address is likely to be tridiist most of the time.

Retry times are hints rather than promises. Exim does not make any attempt to run deliveries exactly

at the computed times. Instead, a queue runner process starts delivery processes for delayed messages
periodically, and these attempt new deliveries only for those addresses that have passed their next
retry time. If a new message arrives for a deferred address, an immediate delivery attempt occurs only

if the address has passed its retry time. In the absence of new messages, the minimum time between
retries is the interval between queue runner processes. There is not much point in setting retry times
of five minutes if your queue runners happen only once an hour, unless there ardieagignumber

of incoming messages (which might be the case on a system that is sending everything to a smart
host, for example).

The data in the retry hints database can be inspected by usimxithedumpdlor exim_fixdbutility
programs (see chapter 50). The latter utility can also be used to change the dagxinBxeutility

script can be used tbhnd out what the next retry times are for the hosts associated with a particular
mail domain, and also for local deliveries that have been deferred.

32.8 Retry rule examples
Here are some example retry rules:

alice@wonderland.fict.example quota_5d F,7d,3h
wonderland.fict.example quota_5d
wonderland.fict.example * F,1h,15m; G,2d,1h,2;

lookingglass.fict.example * F,24h,30m;
* refused_A F,2h,20m,;
* * F,2h,15m; G,16h,1h,1.5; F,5d,8h

286 Retry configuration (32)

The first rule sets up special handling for mail aice@wonderland.fict.exampighen there is an
over-quota error and the mailbox has not been read for at least 5 days. Retries continue every three
hours for 7 days. The second rule handles over-quota errors for all other local parts at
wonderland.fict.examplehe absence of a local part has the same effect as supply@mg. As no

retry algorithms are supplied, messages that fail are bounced immediately if the mailbox has not been
read for at least 5 days.

The third rule handles all other errorsvabnderland.fict.exampleetries happen every 15 minutes for

an hour, then with geometrically increasing intervals until two days have passed since a digbtery
failed. After thefirst hour there is a delay of one hour, then two hours, then four hours, and so on (this
is a rather extreme example).

The fourth rule controls retries for the domadmokingglass.fict.exampleThey happen every 30
minutes for 24 hours only. The remaining two rules handle all other domains, with special action for
connection refusal from hosts that were not obtained from an MX record.

The final rule in a retry cofiguration should always have asterisks in fhrst two fields so as to
provide a general catch-all for any addresses that do not have their own special handling. This
example tries every 15 minutes for 2 hours, then with intervals starting at one hour and increasing by
a factor of 1.5 up to 16 hours, then every 8 hours up to 5 days.

32.9 Timeout of retry data

Exim timestamps the data that it writes to its retry hints database. When it consults the data during a
delivery it ignores any that is older than the value setetny data expire (default 7 days). If, for
example, a host ha4nbeen tried for 7 days, Exim will try to deliver to it immediately a message
arrives, and if that fails, it will calculate a retry time as if it were failing foffitlsé time.

This improves the behaviour for messages routed to rarely-used hosts such as MX backups. If such a
host was down at one time, and happens to be down again when Exim tries a month later, using the
old retry data would imply that it had been down all the time, which is not igdssissumption.

If a host really is permanently dead, this behaviour causes a burst of retries every now and again, but
only if messages routed to it are rare. If there is a message at least once every 7 days the retry data
never expires.

32.10 Long-term failures

Special processing happens when an email address has been failing for so long that the cutoff time for
the last algorithm is reached. For example, using the default retry rule:

** F,2h,15m; G,16h,1h,1.5; F,4d,6h

the cutoff time is four days. Reaching the retry cutoff is independent of how long anyfispeci
message has been failing; it is the length of continuous failure for the recipient address that counts.

When the cutoff time is reached for a local delivery, or for all the IP addresses associated with a
remote delivery, a subsequent delivery failure causes Exim to give up on the address, and a bounce
message is generated. In order to cater for new messages that use the failing address, a next retry time
is still computed from th&nal algorithm, and is used as follows:

For local deliveries, one delivery attempt is always made for any subsequent messages. If this delivery
fails, the address fails immediately. The post-cutoff retry time is not used.

If the delivery is remote, there are two possibilities, controlled bydeky _after_cutoff option of

the smtptransport. The option is true by default. Until the post-cutoff retry time for one of the IP
addresses is reached, the failing email address is bounced immediately, without a delivery attempt
taking place. After that time, one new delivery attempt is made to those IP addresses that are past
their retry times, and if that still fails, the address is bounced and new retry times are computed.

In other words, when all the hosts for a given email address have been failing for a long time, Exim
bounces rather then defers until one of the Hosttry times is reached. Then it tries once, and

287 Retry configuration (32)

bounces if that attempt fails. This behaviour ensures that few resources are wasted in repeatedly
trying to deliver to a broken destination, but if the host does recover, Exim will eventually notice.

If delay_after cutoff is set false, Exim behaves differently. If all IP addresses are pastfthalr

cutoff time, Exim tries to deliver to those IP addresses that have not been tried since the message
arrived. If there are no suitable IP addresses, or if they all fail, the address is bounced. In other words,
it does not delay when a new message arrives, but tries the expired addresses immediately, unless they
have been tried since the message arrived. If there is a continuous stream of messages for the failing
domains, settinglelay_after_cutoff false means that there will be many more attempts to deliver to
permanently failing IP addresses than whelay_after_ cutoffis true.

32.11 Deliveries that work intermittently

Some additional logic is needed to cope with cases where a host is intermittently available, or when a
message has some attribute that prevents its delivery when others to the same address get through. In
this situation, because some messages are successfully deliverédettigeclock for the host or

address keeps getting reset by the successful deliveries, and so failing messages remain on the queue
for ever because the cutoff time is never reached.

Two exceptional actions are applied to prevent this happening.fiféteapplies to errors that are
related to a message rather than a remote host. Section 45.2 has a discussion of the different kinds of
error; examples of message-related errors axadsponses to MAIL or DATA commands, and quota
failures. For this type of error, if a messagarrival time is earlier than thdirst failed time for the

error, the earlier time is used when scanning the retry rules to decide when to try next and when to
time out the address.

The exceptional second action applies in all cases. If a message has been on the queue for longer than
the cutoff time of any applicable retry rule for a given address, a delivery is attempted for that
address, even if it is not yet time, and if this delivery fails, the address is timed out. A new retry time
is not computed in this case, so that other messages for the same address are considered immediately.

288 Retry configuration (32)

33. SMTP authentication

The “authenticators section of Exims run time cofiguration is concerned with SMTP
authentication. This facility is an extension to the SMTP protocol, described in RFC 2554, which
allows a client SMTP host to authenticate itself to a server. This is a common way for a server to
recognize clients that are permitted to use it as a relay. SMTP authentication is not of relevance to the
transfer of mail between servers that have ho managerial connection with each other.

Very briefly, the way SMTP authentication works is as follows:

» The server advertises a number of authenticatimchanismsn response to the clieilst EHLO
command.

» The client issues an AUTH command, naming a dpechechanism. The command may, option-
ally, contain some authentication data.

» The server may issue one or mafeallengesto which the client must send appropriate responses.
In simple authentication mechanisms, the challenges are just prompts for user names and pass-
words. The server does not have to issue any challergesome mechanisms the relevant data
may all be transmitted with the AUTH command.

» The server either accepts or denies authentication.

 If authentication succeeds, the client may optionally make use of the AUTH option on the MAIL
command to pass an authenticated sender in subsequent mail transactions. Authentication lasts for
the remainder of the SMTP connection.

« If authentication fails, the client may give up, or it may try a different authentication mechanism, or
it may try transferring mail over the unauthenticated connection.

If you are setting up a client, and want to know which authentication mechanisms the server supports,
you can use Telnet to connect to port 25 (the SMTP port) on the server, and issue an EHLO com-
mand. The response to this includes the list of supported mechanisms. For example:

$ tel net server.exanple 25
Trying 192.168.34.25...

Connected to server.example.

Escape character is "]'.

220 server.example ESMTP Exim 4.20 ...
ehl o client.exanple
250-server.example Hello client.example [10.8.4.5]
250-SIZE 52428800

250-PIPELINING

250-AUTH PLAIN

250 HELP

The second-last line of this example output shows that the server supports authentication using the
PLAIN mechanism. In Exim, the different authentication mechanisms argguwad by specifying
authenticatordrivers. Like the routers and transports, which authenticators are included in the binary
is controlled by build-time danitions. The following are currently available, included by setting

AUTH_CRAM_MD5=yes
AUTH_CYRUS_SASL=yes
AUTH_PLAINTEXT=yes
AUTH_SPA=yes

in Local/Makefile respectively. Thdirst of these supports the CRAM-MD5 authentication mechan-
ism (RFC 2195), and the second provides an interface to the Cyrus SASL authentication library. The
third can be cofigured to support the PLAIN authentication mechanism (RFC 2595) or the LOGIN
mechanism, which is not formally documented, but used by several MUAs. The fourth authenticator
supports Microsofs Secure Password Authenticatiorechanism.

289 SMTP authentication (33)

The authenticators are cidgured using the same syntax as other drivers (see section 6.22). If no
authenticators are required, no authentication section need be present infigarationfile. Each
authenticator can in principle have both server and client functions. When Exim is receiving SMTP
mail, it is acting as a server; when it is sending out messages over SMTP, it is acting as a client.
Authenticator cofiguration options are provided for use in both these circumstances.

To make it clear which options apply to which situation, thefipgsserver_andclient_ are used on

option names that are spgcito either the server or the client function, respectively. Server and client
functions are disabled if none of their options are set. If an authenticator is to be used for both server
and client functions, a single fil@tion, using both sets of options, is required. For example:

cram:
driver = cram_md5
public_name = CRAM-MD5
server_secret = ${if eq{$auth1}{ph10}{secretl}fail}
client_name = ph10
client_secret = secret2

The server_option is used when Exim is acting as a server, anctlieat _ options when it is acting
as a client.

Descriptions of the individual authenticators are given in subsequent chapters. The remainder of this
chapter covers the generic options for the authenticators, followed by general discussion of the way
authentication works in Exim.

33.1 Generic options for authenticators

| client_condition Use:authenticators Type:stringt Default: unset

When Exim is authenticating as a client, it skips any authenticator wtl@s®_condition expansion

yields“0", “na’, or “fals€’. This can be used, for example, to skip plain text authenticators when the
connection is not encrypted by a setting such as:

client_condition = ${if leq{$tls_cipher}{}}

(Older documentation incorrectly states tB#s_ciphercontains the cipher used for incoming mess-
ages. In fact, during SMTP delivery, it contains the cipher used for the delivery.)

| driver Use:authenticators Type:string Default: unset|

This option must always be set. It sgied which of the available authenticators is to be used.

| public_name Use:authenticators Type:string Default: unset|

This option spedies the name of the authentication mechanism that the driver implements, and by
which it is known to the outside world. These names should contain only upper case letters, digits,
underscores, and hyphens (RFC 2222), but Exim in fact matches them caselgadbjiclfnameis

not set, it defaults to the driverinstance name.

server_advertise_condition Use:authenticators Type:stringt Default:unset

When a server is about to advertise an authentication mechanism, the condition is expanded. If it
yields the empty strind;0”, “nao’, or “false’, the mechanism is not advertised. If the expansion fails,
the mechanism is not advertised. If the failure was not forced, and was not caused by a lookup defer,
the incident is logged. See section 33.3 below for further discussion.

290 SMTP authentication (33)

server_condition Use:authenticators Type:stringt Default:unset

This option must be set for plaintext server authenticator, where it is used directly to control
authentication. See section 34.2 for details.

For the other authenticatorserver_condition can be used as an additional authentication or
authorization mechanism that is applied after the other authenticator conditions succeed. If it is set, it
is expanded when the authenticator would otherwise return a success code. If the expansion is forced
to fail, authentication fails. Any other expansion failure causes a temporary error code to be returned.
If the result of a successful expansion is an empty stfiAg, “no’, or “fals€’, authentication fails. If

the result of the expansion 14", “yes’, or “true’, authentication succeeds. For any other result, a
temporary error code is returned, with the expanded string as the error text.

server_debug_print Use:authenticators Type:stringt Default:unset|

If this option is set and authentication debugging is enabled (seedltbemmand line option), the

string is expanded and included in the debugging output when the authenticator is run as a server.
This can help with checking out the values of variables. If expansion of the string fails, the error
message is written to the debugging output, and Exim carries on processing.

server_set _id Use:authenticators Type:stringt Default:unset

When an Exim server successfully authenticates a client, this string is expanded using data from the
authentication, and preserved for any incoming messages in the vadalilgenticated_idit is also
included in the log lines for incoming messages. For example, a user/password authenticator con-
figuration might preserve the user name that was used to authenticate, and refer to it subsequently
during delivery of the message. If expansion fails, the option is ignored.

server_mail_auth_condition Use:authenticators Type:stringt Default: unset|

This option allows a server to discard authenticated sender addresses supplied as part of MAIL
commands in SMTP connections that are authenticated by the driver on sdrebr _mail_auth_
condition is set. The option is not used as part of the authentication process; instead its (unexpanded)
value is remembered for later use. How it is used is described in the following section.

33.2 The AUTH parameter on MAIL commands

When a client supplied an AUTH= item on a MAIL command, Exim applies the following checks
before accepting it as the authenticated sender of the message:

« If the connection is not using extended SMTP (that is, HELO was used rather than EHLO), the use
of AUTH= is a syntax error.

 If the value of the AUTH= parameter‘is>", it is ignored.

» If acl_smtp_mailauth is ddined, the ACL it spedies is run. While it is running, the value of
$authenticated_sendés set to the value obtained from the AUTH= parameter. If the ACL does
not yield “accept, the value of$authenticated_sendés deleted. Theacl_smtp_mailauth ACL
may not returrfdrop’ or “discard. If it defers, a temporary error code (451) is given for the MAIL
command.

» If acl_smtp_mailauthis not ddined, the value of the AUTH= parameter is accepted and placed in
$authenticated_sendenly if the client has authenticated.

« If the AUTH= value was accepted by either of the two previous rules, and the client has
authenticated, and the authenticator has a setting fosd¢heer_mail_auth_condition the con-
dition is checked at this point. The valued that was saved from the authenticator is expanded. If the

expansion fails, or yields an empty striri@’, “nad’, or “fals€’, the value offauthenticated_sender

291 SMTP authentication (33)

is deleted. If the expansion yields any other value, the valugaathenticated_sendés retained
and passed on with the message.

When $authenticated_sendes set for a message, it is passed on to other hosts to which Exim
authenticates as a client. Do not confuse this value $atithenticated_idwhich is a string obtained
from the authentication process, and which is not usually a complete email address.

Whenever an AUTH= value is ignored, the incident is logged. The ACL for MAIL, firted, is run
after AUTH= is accepted or ignored. It can therefore make uskaathenticated sendefhe con-
verse is not true: the value 8sender_address not yet set up when thecl_smtp_mailauthACL is
run.

33.3 Authentication on an Exim server

When Exim receives an EHLO command, it advertises the public names of those authenticators that
are cofigured as servers, subject to the following conditions:

» The client host must mat@uth_advertise_hostgdefault *).

» It the server_advertise_conditionoption is set, its expansion must not yield the empty strigy,
“no’, or“false'.

The order in which the authenticators ardided controls the order in which the mechanisms are
advertised.

Some mail clients (for example, some versions of Netscape) require the user to provide a name and
password for authentication whenever AUTH is advertised, even though authentication may not in
fact be needed (for example, Exim may be set up to allow unconditional relaying from the client by
an IP address check). You can make such clients more friendly by not advertising AUTH to them. For
example, if clients on the 10.9.8.0/24 network are permitted (by the ACL that runs for RCPT) to relay
without authentication, you should set

auth_advertise_hosts =!10.9.8.0/24
so that no authentication mechanisms are advertised to them.

Theserver_advertise_conditioncontrols the advertisement of individual authentication mechanisms.
For example, it can be used to restrict the advertisement of a particular mechanism to encrypted
connections, by a setting such as:

server_advertise_condition = ${if eq{$tls_cipher}{}{no}{yes}}

If the session is encryptedfls_cipheris not empty, and so the expansion yietges', which allows
the advertisement to happen.

When an Exim server receives an AUTH command from a client, it rejects it immediately if AUTH
was not advertised in response to an earlier EHLO command. This is the case if

» The client host does not matahth_advertise_hostsor
» No authenticators are cfigured with server options; or
» Expansion okerver_advertise_conditionblocked the advertising of all the server authenticators.

Otherwise, Exim runs the ACL spéi@d byacl_smtp_authin order to decide whether to accept the
command. lfacl_smtp_authis not set, AUTH is accepted from any client host.

If AUTH is not rejected by the ACL, Exim searches its &iguration for a server authentication
mechanism that was advertised in response to EHLO and that matches the one named in the AUTH
command. If itfinds one, it runs the appropriate authentication protocol, and authentication either
succeeds or fails. If there is no matching advertised mechanism, the AUTH command is rejected with
a 504 error.

When a message is received from an authenticated host, the valirecafived protocois set to
“esmtpd or “esmtpsainstead of‘esmtg or “esmtps, and$sender_host_authenticatedntains the

name (not the public name) of the authenticator driver that successfully authenticated the client from
which the message was received. This variable is empty if there was no successful authentication.

292 SMTP authentication (33)

33.4 Testing server authentication

Exim’'s -bh option can be useful for testing server authenticationfigonations. The data for the
AUTH command has to be sent using base64 encoding. A quick way to produce such data for testing
is the following Perl script:

use MIME::Base64;
printf ("%s", encode_base64(eval "\"$ARGV[O]\"");

This interprets its argument as a Perl string, and then encodes it. The interpretation as a Perl string
allows binary zeros, which are required for some kinds of authentication, to be included in the data.
For example, a command line to run this script on such data might be

encode '\Ouser\Opassword'

Note the use of single quotes to prevent the shell interpreting the backslashes, so that they can be
interpreted by Perl to specify characters whose code value is zero.

Warning 1: If either of the user or password strings starts with an octal digit, you must use three
zeros instead of one after the leading backslash. If you do not, the octal digit that starts your string
will be incorrectly interpreted as part of the code forfirst character.

Warning 2: If there are characters in the strings that Perl interprets specially, you must use a Perl
escape to prevent them being misinterpreted. For example, a command such as

encode "\Ouser@domain.com\Opas$$word'
gives an incorrect answer because of the unesc¢a@@ednd“$’ characters.

If you have themimencodecommand installed, another way to do produce base64-encoded strings is
to run the command

echo -e -n "\Quser\Opassword' | mimencode

The -e option of echo enables the interpretation of backslash escapes in the argument, amd the
option spedies no newline at the end of its output. However, not all versiorechbrecognize these
options, so you should check your version before relying on this suggestion.

33.5 Authentication by an Exim client

The smtptransport has two options calldwsts_require_authandhosts_try auth When thesmtp
transport connects to a server that announces support for authentication, and the host matches an entry
in either of these options, Exim (as a client) tries to authenticate as follows:

» For each authenticator that is dmured as a client, in the order in which they ardiied in the
corfiguration, it searches the authentication mechanisms announced by the server for one whose
name matches the public name of the authenticator.

* When it finds one that matches, it runs the authenti¢atolient code. The variabledhostand
$host_addresare available for any string expansions that the client might do. They are set to the
servets name and IP address. If any expansion is forced to fail, the authentication attempt is
abandoned, and Exim moves on to the next authenticator. Otherwise an expansion failure causes
delivery to be deferred.

« If the result of the authentication attempt is a temporary error or a timeout, Exim abandons trying
to send the message to the host for the moment. It will try again later. If there are any backup hosts
available, they are tried in the usual way.

 If the response to authentication is a permanent ercot¢6de), Exim carries on searching the list
of authenticators and tries another one if possible. If all authentication attempts give permanent
errors, or if there are no attempts because no mechanisms match (or option expansions force
failure), what happens depends on whether the host matatsts_require_author hosts_try
auth. In thefirst case, a temporary error is generated, and delivery is deferred. The error can be
detected in the retry rules, and thereby turned into a permanent error if you wish. In the second
case, Exim tries to deliver the message unauthenticated.

293 SMTP authentication (33)

When Exim has authenticated itself to a remote server, it adds the AUTH parameter to the MAIL
commands it sends, if it has an authenticated sender for the message. If the message came from a
remote host, the authenticated sender is the one that was receiving on an incoming MAIL command,
provided that the incoming connection was authenticated andséneer_mail_auth condition

allowed the authenticated sender to be retained. If a local process calls Exim to send a message, the
sender address that is built from the login name godlify_domain is treated as authenticated.
However, if the authenticated_sender option is set on thesmtp transport, it overrides the
authenticated sender that was received with the message.

294 SMTP authentication (33)

34. The plaintext authenticator

The plaintextauthenticator can be cgured to support the PLAIN and LOGIN authentication mech-
anisms, both of which transfer authentication data as plain (unencrypted) text (though base64
encoded). The use of plain text is a security risk; you are strongly advised to insist on the use of
SMTP encryption (see chapter 39) if you use the PLAIN or LOGIN mechanisms. If you do use
unencrypted plain text, you should not use the same passwords for SMTP connections as you do for
login accounts.

34.1 Plaintext options
When coffigured as a servaslaintextuses the following options:

| server_condition Use:authenticators Type:stringt Default:unset

This is actually a global authentication option, but it must be set in order thgeoa theplaintext
driver as a server. Its use is described below.

server_prompts Use:plaintext Type:stringt Default:unset

The contents of this option, after expansion, must be a colon-separated list of prompt strings. If
expansion fails, a temporary authentication rejection is given.

34.2 Using plaintext in a server

When running as a servaslaintextperforms the authentication test by expanding a string. The data
sent by the client with the AUTH command, or in response to subsequent prompts, is base64 encoded,
and so may contain any byte values when decoded. If any data is supplied with the command, it is
treated as a list of strings, separated by NULs (binary zerosjirgtehree of which are placed in the
expansion variable$authl $auth2 and $auth3(neither LOGIN nor PLAIN uses more than three
strings).

For compatibility with previous releases of Exim, the values are also placed in the expansion variables
$1, $2, and$3. However, the use of these variables for this purpose is now deprecated, as it can lead
to confusion in string expansions that also use them for other things.

If there are more strings iserver_prompts than the number of strings supplied with the AUTH
command, the remaining prompts are used to obtain more data. Each response from the client may be
a list of NUL-separated strings.

Once a suicient number of data strings have been receigedlyer_condition is expanded. If the
expansion is forced to fail, authentication fails. Any other expansion failure causes a temporary error
code to be returned. If the result of a successful expansion is an empty $@ingna’, or “false’,
authentication fails. If the result of the expansiori1s, “yes’, or “true’, authentication succeeds and

the genericserver_set_idoption is expanded and saved$authenticated_idFor any other result, a
temporary error code is returned, with the expanded string as the error text.

Warning: If you use a lookup in the expansion fmd the usés password, be sure to make the
authentication fail if the user is unknown. There are good and bad examples at the end of the next
section.

34.3 The PLAIN authentication mechanism

The PLAIN authentication mechanism (RFC 2595) sfiesithat three strings be sent as one item of
data (that is, one combined string containing two NUL separators). The data is sent either as part of
the AUTH command, or subsequently in response to an empty prompt from the server.

The second and third strings are a user name and a corresponding password. Usindfixethgter
name and password as an example, this could byoced as follows:

295 The plaintext authenticator (34)

fixed_plain:
driver = plaintext
public_name = PLAIN
server_prompts = :
server_condition =\
${if and {{eq{$auth2}{username}{eq{$auth3}{mysecret}}}}
server_set_id = $auth2

Note that the default result strings frai(“true€’ or an empty string) are exactly what we want here,
so they need not be spéeid. Obviously, if the password contains expansion-fiicgmt characters
such as dollar, backslash, or closing brace, they have to be escaped.

The server_prompts setting spedies a single, empty prompt (empty items at the end of a string list
are ignored). If all the data comes as part of the AUTH command, as is commonly the case, the
prompt is not used. This authenticator is advertised in the response to EHLO as

250-AUTH PLAIN
and a client host can authenticate itself by sending the command
AUTH PLAIN AHVzZXJuYW1IAG15¢c2VjcmV0

As this contains three strings (more than the number of prompts), no further data is required from the
client. Alternatively, the client may just send

AUTH PLAIN

to initiate authentication, in which case the server replies with an empty prompt. The client must
respond with the combined data string.

The data string is base64 encoded, as required by the RFC. This example, when decoded, is
<NUL>username <NUL>mysecret , where NUL> represents a zero byte. This is split up into
three strings, thérst of which is empty. Theerver_conditionoption in the authenticator checks that

the second two angsername andmysecret respectively.

Having just ondixed user name and password, as in this example, is not very realistic, though for a
small organization with only a handful of authenticating clients it could make sense.

A more sophisticated instance of this authenticator could use the user n&aathi2to look up a
password in dile or database, and maybe do an encrypted comparisorcifgeteq in chapter 11).
Here is a example of this approach, where the passwords are looked up in dileBMarning: This
iS an incorrect example:

server_condition =\
${if eq{$auth3{${lookup{$auth2}dbm{/etc/authpwd}}}}

The expansion uses the user nabauth? as the key to look up a password, which it then compares

to the supplied passwor@guth3. Why is this example incorrect? It worki:e for existing users, but
consider what happens if a non-existent user name is given. The lookup fails, but as no success/failure
strings are given for the lookup, it yields an empty string. Thus, to defeat the authentication, all a
client has to do is to supply a non-existent user name and an empty password. The correct way of
writing this test is:

server_condition = ${lookup{$auth2}dbm{/etc/authpwd}\
{${if eq{$value}{$auth3}}} {false}}

In this case, if the lookup succeeds, the result is checked; if the lookup“failse’ is returned and
authentication fails. Itrypteq is being used instead @fg, thefirst example is in fact safe, because
crypteq always fails if its second argument is empty. However, the second way of writing the test
makes the logic clearer.

34.4 The LOGIN authentication mechanism

The LOGIN authentication mechanism is not documented in any RFC, but is in use in a number of
programs. No data is sent with the AUTH command. Instead, a user name and password are supplied

296 The plaintext authenticator (34)

separately, in response to prompts. The plaintext authenticator can foguced to support this as in
this example:

fixed_login:
driver = plaintext
public_name = LOGIN
server_prompts = User Name : Password
server_condition =\
${if and {{eqg{$auth1l}{username}{eq{$auth2}{mysecret}}}}
server_set_id = $authl

Because of the way plaintext operates, this authenticator accepts data supplied with the AUTH com-
mand (in contravention of the spé&cation of LOGIN), but if the client does not supply it (as is the
case for LOGIN clients), the prompt strings are used to obtain two data items.

Some clients are very particular about the precise text of the prompts. For example, Outlook Express
is reported to recognize onlyUsernamé: and “Password. Here is an example of a LOGIN
authenticator that uses those strings. It usesdfygauth expansion condition to check the user name

and password by binding to an LDAP server:

login:

driver = plaintext

public_name = LOGIN

server_prompts = Username:: : Password::

server_condition = ${if Idapauth \
{user="cn=${quote_ldap_dn:$authl},ou=people,o=example.org" \
pass=${quote:$auth2} \
Idap://Idap.example.org/}}

server_set_id = uid=$%authl,ou=people,o=example.org

Note the use of thguote Idap _dnoperator to correctly quote the DN for authentication. However,

the basioquote operator, rather than any of the LDAP quoting operators, is the correct one to use for
the password, because quoting is needed only to make the password conform to the Exim syntax. At
the LDAP level, the password is an uninterpreted string.

34.5 Support for different kinds of authentication

A number of string expansion features are provided for the purpose of interfacing to different ways of
user authentication. These include checking traditionally encrypted passwordgetadpasswdor
equivalent), PAM, Radiusdapauth, pwcheckandsaslauthd For details see section 11.7.

34.6 Using plaintext in a client
Theplaintextauthenticator has two client options:

| client_ignore_invalid_base64 Use:plaintext Type:boolean Default:false

If the client receives a server prompt that is not a valid base64 string, authentication is abandoned by
default. However, if this option is set true, the error in the challenge is ignored and the client sends the
response as usual.

client_send Use:plaintext Type:stringt Default: unset

The string is a colon-separated list of authentication data strings. Each string is independently
expanded before being sent to the server. flits string is sent with the AUTH command; any more
strings are sent in response to prompts from the server. Before each string is expanded, the value of
the most recent prompt is placed in the n&auth<n> variable, starting withauthl for the first

prompt. Up to three prompts are stored in this way. Thus, the prompt that is received in response to
sending thdirst string (with the AUTH command) can be used in the expansion of the second string,

297 The plaintext authenticator (34)

and so on. If an invalid base64 string is received wbl@anmt_ignore_invalid_base64s set, an empty
string is put in th&auth<n> variable.

Note: You cannot use expansion to create multiple strings, because splitting takes priority and hap-
pensfirst.

Because the PLAIN authentication mechanism requires NUL (binary zero) bytes in the data, further
processing is applied to each string before it is sent. If there are any single circumflex characters in
the string, they are converted to NULs. Should an actual circumflex be required as data, it must be
doubled in the string.

This is an example of a client ciguration that implements the PLAIN authentication mechanism
with afixed user name and password:

fixed_plain:
driver = plaintext
public_name = PLAIN
client_send = “username”mysecret

The lack of colons means that the entire text is sent with the AUTH command, with the circumflex
characters converted to NULs. A similar example that uses the LOGIN mechanism is:

fixed_login:
driver = plaintext
public_name = LOGIN
client_send = : username : mysecret

The initial colon means that thiérst string is empty, so no data is sent with the AUTH command
itself. The remaining strings are sent in response to prompts.

298 The plaintext authenticator (34)

35. The cram_md5 authenticator

The CRAM-MD5 authentication mechanism is described in RFC 2195. The server sends a challenge
string to the client, and the response consists of a user name and the CRAM-MD5 digest of the
challenge string combined with a secret string (password) which is known to both server and client.
Thus, the secret is not sent over the network as plain text, which makes this authenticator more secure
thanplaintext However, the downside is that the secret has to be available in plain text at either end.

35.1 Using cram_md5 as a server
This authenticator has one server option, which must be set faooa the authenticator as a server:

| server_secret Use:cram_md5 Type:stringt Default:unset

When the server receives the clientesponse, the user name is placed in the expansion variable
$authl andserver_secrets expanded to obtain the password for that user. The server then computes
the CRAM-MD?5 digest that the client should have sent, and checks that it received the correct string.
If the expansion ogerver_secrets forced to fail, authentication fails. If the expansion fails for some
other reason, a temporary error code is returned to the client.

For compatibility with previous releases of Exim, the user name is also pla&id However, the use
of this variables for this purpose is now deprecated, as it can lead to confusion in string expansions
that also use numeric variables for other things.

For example, the following authenticator checks that the user name given by the cfiphl®, and
if so, usessecret as the password. For any other user name, authentication fails.

fixed_cram:
driver = cram_md5
public_name = CRAM-MD5
server_secret = ${if eq{$auth1H{ph10}{secret}fail}
server_set_id = $authl

If authentication succeeds, the settingsefver_set_idpreserves the user name$authenticated_id
A more typical cofiguration might look up the secret string irfile, using the user name as the key.
For example:

lookup_cram:
driver = cram_md5
public_name = CRAM-MD5
server_secret = ${lookup{$auth1}isearch{/etc/authpwd}\
{$value}fail}
server_set_id = $authl

Note that this expansion explicitly forces failure if the lookup fails becabameathl contains an
unknown user name.

35.2 Using cram_md5 as a client
When used as a client, tbemm_mdSauthenticator has two options:

client_name Use:cram_md>5 Type:stringt Default:the primary
host name

This string is expanded, and the result used as the user name data when computing the response to the
servets challenge.

299 The cram_md>5 authenticator (35)

client_secret Use:cram_md5 Type:stringt Default:unset

This option must be set for the authenticator to work as a client. Its value is expanded and the result
used as the secret string when computing the response.

Different user names and secrets can be used for different servers by referfihgsimr $host_
addressin the options. Forced failure of either expansion string is treated as an indication that this
authenticator is not prepared to handle this case. Exim moves on to the ndiguced client
authenticator. Any other expansion failure causes Exim to give up trying to send the message to the
current server.

A simple example cdiguration of acram_md5authenticator, usinfixed strings, is:

fixed_cram:
driver = cram_md5
public_name = CRAM-MD5
client_name = ph10
client_secret = secret

300 The cram_md>5 authenticator (35)

36. The cyrus_sasl authenticator

The code for this authenticator was provided by Matthew Byng-Maddick of A L Digital Ltd
(http://www.aldigital.co.uk).

The cyrus_sashuthenticator provides server support for the Cyrus SASL library implementation of
the RFC 2222 “Simple Authentication and Security Laygr This library supports a number of
authentication mechanisms, including PLAIN and LOGIN, but also several others that Exim does not
support directly. In particular, there is support for Kerberos authentication.

The cyrus_sashuthenticator provides a gatewaying mechanism directly to the Cyrus interface, so if
your Cyrus library can do, for example, CRAM-MD5, then so candieis_sashuthenticator. By
default it uses the public name of the driver to determine which mechanism to support.

Where access to some kind of sedié is required, for example in GSSAPI or CRAM-MDS5, it is
worth noting that the authenticator runs as the Exim user, and that the Cyrus SASL library has no way
of escalating privileges by default. You may afsad you need to set environment variables, depend-
ing on the driver you are using.

The application name provided by Exim“iexim’, so various SASL options may be setarim.conf

in your SASL directory. If you are using GSSAPI for Kerberos, note that because of limitations in the
GSSAPI interface, changing the server keytab might need to be communicated down to the Kerberos
layer independently. The mechanism for doing so is dependent upon the Kerberos implementation.
For example, for Heimdal, the environment variable KRB5_KTNAME may be set to point to an
alternative keytalfile. Exim will pass this variable through from its own inherited environment when
started as root or the Exim user. The keyii#needs to be readable by the Exim user.

36.1 Using cyrus_sasl as a server

The cyrus_saslauthenticator has four private options. It puts the username (on a successful
authentication) intdbauthl For compatibility with previous releases of Exim, the username is also
placed in$1. However, the use of this variable for this purpose is now deprecated, as it can lead to
confusion in string expansions that also use numeric variables for other things.

| server_hostname Use:cyrus_sasl Type:stringt Default:see be|OV\+

This option selects the hostname that is used when communicating with the library. The default value
is $primary_hostname . It is up to the underlying SASL plug-in what it does with this data.

| server_mech Use:cyrus_sasl Type:string Default:see beIovx}

This option selects the authentication mechanism this driver should use. The default is the value of the
genericpublic_name option. This option allows you to use a different underlying mechanism from
the advertised name. For example:

sasl:
driver = cyrus_sasl
public_name = X-ANYTHING
server_mech = CRAM-MD5
server_set_id = $authl

server_realm Use:cyrus_sasl Type:string Default: unset

This spedies the SASL realm that the server claims to be in.

301 The cyrus_sasl authenticator (36)

server_service Use:cyrus_sasl Type:string Default:snt p

This is the SASL service that the server claims to implement.

For straightforward cases, you do not need to set any of the autherscativate options. All you
need to do is to specify an appropriate mechanism as the public name. Thus, if you have a SASL
library that supports CRAM-MD5 and PLAIN, you could have two authenticators as follows:

sasl_cram_md5:
driver = cyrus_sasl
public_name = CRAM-MD5
server_set_id = $authl

sasl_plain:
driver = cyrus_sasl
public_name = PLAIN
server_set_id = $authl

Cyrus SASL does implement the LOGIN authentication method, even though it is not a standard

method. It is disabled by default in the source distribution, but it is present in many binary
distributions.

302 The cyrus_sasl authenticator (36)

37. The dovecot authenticator

This authenticator is an interface to the authentication facility of the Dovecot POP/IMAP server,
which can support a number of authentication methods. If you are using Dovecot to authenticate
POP/IMAP clients, it might be helpful to use the same mechanisms for SMTP authentication. This is
a server authenticator only. There is only one option:

server_socket Use:dovecot Type:string Default: unset

This option must specify the socket that is the interface to Dovecot authenticatiopublie_name
option must specify an authentication mechanism that Dovecot fsgewad to support. You can have
several authenticators for different mechanisms. For example:

dovecot_plain:
driver = dovecot
public_name = PLAIN
server_socket = /var/run/dovecot/auth-client
server_set_id = $authl

dovecot_ntim:
driver = dovecot
public_name = NTLM
server_socket = /var/run/dovecot/auth-client
server_set_id = $authl

If the SMTP connection is encrypted, or$6ender_host_addres$s equal to$received_ip_address
(that is, the connection is local), tsecured option is passed in the Dovecot authentication com-
mand. If, for a TLS connection, a client céitiate has been véred, the"valid-client-cert option is
passed. When authentication succeeds, the identity of the user who authenticated is faceillin

303 The dovecot authenticator (37)

38. The spa authenticator

The spaauthenticator provides client support for Microssfbecure Password Authenticatiomech-
anism, which is also sometimes known as NTLM (NT LanMan). The code for client side of this
authenticator was contributed by Marc Proioimmeaux, and much of it is taken from the Samba
project http://www.samba.org). The code for the server side was subsequently contributed by Tom
Kistner. The mechanism works as follows:

» After the AUTH command has been accepted, the client sends an SPA authentication request based
on the user name and optional domain.

» The server sends back a challenge.

» The client builds a challenge response which makes use of this gisessword and sends it to the
server, which then accepts or rejects it.

Encryption is used to protect the password in transit.

38.1 Using spa as a server
Thespaauthenticator has just one server option:

| server_password Use:spa Type:stringt Default:unset

This option is expanded, and the result must be the cleartext password for the authenticating user,
whose name is at this point ifauthl For compatibility with previous releases of Exim, the user
name is also placed i1l However, the use of this variable for this purpose is now deprecated, as it
can lead to confusion in string expansions that also use numeric variables for other things. For
example:

spa:
driver = spa
public_name = NTLM
server_password =\
${lookup{$authl}isearch{/etc/exim/spa_clearpass}i{$valuelfail}

If the expansion is forced to fail, authentication fails. Any other expansion failure causes a temporary
error code to be returned.

38.2 Using spa as a client
Thespaauthenticator has the following client options:

| client_domain Use:spa Type:stringt Default: unset|

This option spedies an optional domain for the authentication.

| client_password Use:spa Type:stringt Default: unset|

This option spefies the usés password, and must be set.

| client_username Use:spa Type:stringt Default: unset|

This option spedies the user name, and must be set. Here is an example ofiguration of this
authenticator for use with the mail serversnah.com

msn:
driver = spa

304 The spa authenticator (38)

public_name = MSN

client_username = msn/msn_username
client_password = msn_plaintext_password
client_domain = DOMAIN_OR_UNSET

305 The spa authenticator (38)

39. Encrypted SMTP connections using TLS/SSL

Support for TLS (Transport Layer Security), formerly known as SSL (Secure Sockets Layer), is
implemented by making use of the OpenSSL library or the GnuTLS library (Exim requires GnuTLS
release 1.0 or later). There is no cryptographic code in the Exim distribution itself for implementing
TLS. In order to use this feature you must install OpenSSL or GnuTLS, and then build a version of
Exim that includes TLS support (see section 4.6). You also need to understand the basic concepts of
encryption at a managerial level, and in particular, the way that public keys, private keys, afi certi
cates are used.

RFC 3207 dénes how SMTP connections can make use of encryption. Once a connection is estab-
lished, the client issues a STARTTLS command. If the server accepts this, the client and the server
negotiate an encryption mechanism. If the negotiation succeeds, the data that subsequently passes
between them is encrypted.

Exim's ACLs can detect whether the current SMTP session is encrypted or not, and if so, what cipher
suite is in use, whether the client supplied a dedte, and whether or not that céidate was
verified. This makes it possible for an Exim server to deny or accept certain commands based on the
encryption state.

Warning: Certain types ofirewall and certain anti-virus products can disrupt TLS connections. You
need to turn off SMTP scanning for these products in order to get TLS to work.

39.1 Support for the legacy “ssmtp” (aka “smtps”) protocol

Early implementations of encrypted SMTP used a different TCP port from normal SMTP, and
expected an encryption negotiation to start immediately, instead of waiting for a STARTTLS com-
mand from the client using the standard SMTP port. The protocol was ¢aldmaty or “smtps, and

port 465 was allocated for this purpose.

This approach was abandoned when encrypted SMTP was standardized, but there are still some
legacy clients that use it. Exim supports these clients by means afstten_connect_portsglobal
option. Its value must be a list of port numbers; the most common use is expected to be:

tls_on_connect_ports = 465

The port numbers spdi@d by this option apply to all SMTP connections, both via the daemon and
viainetd You still need to specify all the ports that the daemon uses (by seltiagnon_smtp_ports

or local_interfacesor the-oX command line option) becautls_on_connect_portsdoes not add an
extra port-rather, it spedies different behaviour on a port that ifided elsewhere.

There is also atls-on-connectcommand line option. This overridéls_on_connect_portsit forces
the legacy behaviour for all ports.

39.2 OpenSSL vs GnuTLS

Thefirst TLS support in Exim was implemented using OpenSSL. Support for GnuTLS followed later,
when thefirst versions of GnuTLS were released. To build Exim to use GnuTLS, you need to set

USE_GNUTLS=yes
in Local/Makéile, in addition to
SUPPORT_TLS=yes

You must also set TLS_LIBS and TLS_INCLUDE appropriately, so that the indileteand libraries
for GNUTLS can be found.

There are some differences in usage when using GnuTLS instead of OpenSSL.:

» Thetls_verify_certificatesoption must contain the name ofiige, not the name of a directory (for
OpenSSL it can be either).

306 Encrypted SMTP connections (39)

» Thetls_dhparam option is ignored, because early versions of GnuTLS had no facility for varying
its Diffie-Hellman parameters. | understand that this has changed, but Exim has not been updated
to provide this facility.

» Distinguished Name (DN) strings reported by the OpenSSL library use a slash for separating
fields; GnuTLS uses commas, in accordance with RFC 2253. This affects the value$tisthe
peerdnvariable.

» OpenSSL idenfies cipher suites using hyphens as separators, for example: DES-CBC3-SHA.
GnuTLS uses underscores, for example: RSA_ARCFOUR_SHA. What is more, OpenSSL com-
plains if underscores are present in a cipher list. To make life simpler, Exim changes underscores to
hyphens for OpenSSL and hyphens to underscores for GnuTLS when processing lists of cipher
suites in thdls_require_ciphersoptions (the global option and temtptransport option).

» Thetls_require_ciphersoptions operate differently, as described in the sections 39.4 and 39.5.

39.3 GnuTLS parameter computation

GnuTLS uses RSA and D-H parameters that may take a substantial amount of time to compute. It is
unreasonable to re-compute them for every TLS session. Therefore, Exim keeps this dfila iim a

its spool directory, callegnutls-paramsThefile is owned by the Exim user and is readable only by

its owner. Every Exim process that start up GnuTLS reads the RSA and D-H parameters from this
file. If thefile does not exist, thérst Exim process that needs it computes the data and writes it to a
temporaryfile which is renamed once it is complete. It does not matter if several Exim processes do
this simultaneously (apart from wasting a few resources). Oriide & in place, new Exim processes
immediately start using it.

For maximum security, the parameters that are stored irfithishould be recalculated periodically,

the frequency depending on your paranoia level. Arranging this is easy in principle; just deligte the
when you want new values to be computed. However, there may be a problem. The calculation of new
parameters needs random numbers, and these are obtainedd&atmmandom If the system is not

very active,/dev/irandommay delay returning data until enough randomness (entropy) is available.
This may cause Exim to hang for a substantial amount of time, causing timeouts on incoming
connections.

The solution is to generate the parameters externally to Exim. They are stogeditis-paramsn
PEM format, which means that they can be generated externally usingeitieol command that is
part of GnuTLS.

To replace the parameters with new ones, instead of deletinjjerend letting Exim re-create it, you
can generate new parameters usiegttool and, when this has been done, replace Exioachdile
by renaming. The relevant commands are something like this:

rm -f new-params

touch new-params

chown exim:exim new-params

chmod 0400 new-params

certtool --generate-privkey --bits 512 >new-params

echo "™ >>new-params

certtool --generate-dh-params --bits 1024 >> new-params
mv new-params gnutls-params

If ExXim never has to generate the parameters itself, the possibility of stalling is removed.

39.4 Requiring specific ciphers in OpenSSL

There is a function in the OpenSSL library that can be passed a list of cipher suites before the cipher
negotiation takes place. This spiges which ciphers are acceptable. The list is colon separated and
may contain names like DES-CBC3-SHA. Exim passes the expanded vatlse refquire_ciphers
directly to this function call. The following quotation from the OpenSSL documentation fegseci
what forms of item are allowed in the cipher string:

307 Encrypted SMTP connections (39)

It can consist of a single cipher suite such as RC4-SHA.

» |t can represent a list of cipher suites containing a certain algorithm, or cipher suites of a certain
type. For example SHAL represents all ciphers suites using the digest algorithm SHAL1 and SSLv3
represents all SSL v3 algorithms.

 Lists of cipher suites can be combined in a single cipher string using the + character. This is used
as a logical and operation. For example SHA1+DES represents all cipher suites containing the
SHAL and the DES algorithms.

Each cipher string can be optionally preceded by one of the chatacteos +.

e If | is used, the ciphers are permanently deleted from the list. The ciphers deleted can never
reappear in the list even if they are explicitly stated.

» If - is used, the ciphers are deleted from the list, but some or all of the ciphers can be added again
by later options.

» If +is used, the ciphers are moved to the end of the list. This option does not add any new ciphers;
it just moves matching existing ones.

If none of these characters is present, the string is interpreted as a list of ciphers to be appended to the
current preference list. If the list includes any ciphers already present they will be ignored: that is,
they will not be moved to the end of the list.

39.5 Requiring specific ciphers or other parameters in GnuTLS

The GnuTLS library allows the caller to specify separate lists of permitted key exchange methods,

main cipher algorithms, MAC algorithms, and protocols. Unfortunately, these lists are numerical, and

the library does not have a function for turning names into numbers. Consequently, lists of recognized
names have to be built into the application. The permitted key exchange methods, ciphers, and MAC
algorithms may be used in any combination to form a cipher suite. This is unlike OpenSSL, where

complete cipher suite names are passed to its control function.

For compatibility with OpenSSL, thés_require_ciphersoption can be set to complete cipher suite
names such as RSA_ARCFOUR_SHA, but for GnuTLS this option controls only the cipher algo-
rithms. Exim searches each item in the list for the name of an available algorithm. For example, if the
list contains RSA_AES_SHA, then AES is recognized, and the behaviour is exactly the same as if just
AES were given.

There are additional options callgphutls_require_kx, gnutls_require_mag andgnutls_require_
protocols that can be used to restrict the key exchange methods, MAC algorithms, and protocols,
respectively. These options are ignored if OpenSSL is in use.

All four options are available as global options, controlling how Exim behaves as a server, and also as
options of thesmtptransport, controlling how Exim behaves as a client. All the values are string
expanded. After expansion, the values must be colon-separated lists, though the separator can be
changed in the usual way.

Each of the four lists starts out with a default set of algorithms. Iffitst item in a list doesiot start

with an exclamation mark, all the default items are deleted. In this case, only those that are explicitly
specfied can be used. If thiérst item in a listdoesstart with an exclamation mark, the defaults are
left on the list.

Then, any item that starts with an exclamation mark causes the relevant entry to be removed from the
list, and any item that does not start with an exclamation mark causes a new entry to be added to the
list. Unrecognized items in the list are ignored. Thus:

tls_require_ciphers = |ARCFOUR

allows all the defaults except ARCFOUR, whereas
tls_require_ciphers = AES : 3DES

allows only cipher suites that use AES or 3DES.

308 Encrypted SMTP connections (39)

Fortls_require_ciphersthe recognized names are AES_256, AES_128, AES (both of the preceding),
3DES, ARCFOUR_128, ARCFOUR_40, and ARCFOUR (both of the preceding). The default list
does not contain all of these; it just has AES_256, AES_128, 3DES, and ARCFOUR_128.

For gnutls_require_kx, the recognized names are DHE_RSA, RSA (which includes DHE_RSA),
DHE_DSS, and DHE (which includes both DHE_RSA and DHE_DSS). The default list contains
RSA, DHE_DSS, DHE_RSA.

For gnutls_require_mag the recognized names are SHA (synonym SHA1), and MD5. The default
list contains SHA, MD5.

For gnutls_require_protocols the recognized names are TLS1 and SSL3. The default list contains
TLS1, SSL3.

In a server, the order of items in these lists is unimportant. The server advertises the availability of all
the relevant cipher suites. However, in a client, the order intlthgequire_ciphers list specfies a
preference order for the cipher algorithms. Thst one in the cliens list that is also advertised by

the server is triefirst. The default order is as listed above.

39.6 Configuring an Exim server to use TLS

When Exim has been built with TLS support, it advertises the availability of the STARTTLS com-
mand to client hosts that mate¢ls_advertise _hostsbut not to any others. The default value of this
option is unset, which means that STARTTLS is not advertised at all. This default is chosen because
you need to set some other options in order to make TLS available, and also it is sensible for systems
that want to use TLS only as a client.

If a client issues a STARTTLS command and there is somégoration problem in the server, the
command is rejected with a 454 error. If the client persists in trying to issue SMTP commands, all
except QUIT are rejected with the error

554 Security failure

If a STARTTLS command is issued within an existing TLS session, it is rejected with a 554 error
code.

To enable TLS operations on a server, you musttlseadvertise_hosts¢o match some hosts. You
can, of course, set it to * to match all hosts. However, this is not all you need to do. TLS sessions to a
server woit work without some further cdiguration at the server end.

It is rumoured that all existing clients that support TLS/SSL use RSA encryption. To make this work
you need to set, in the server,

tls_certificate = /some/file/name
tls_privatekey = /some/file/name

These options are, in fact, expanded strings, so you can make them depend on the identity of the
client that is connected if you wish. THigst file contains the servier X509 certiicate, and the second
contains the private key that goes with it. Théides need to be readable by the Exim user, and must
always be given as full path names. They can be the ddei both the cerfiicate and the key are
contained within it. Iftls_privatekey is not set, or if its expansion is forced to fail or results in an
empty string, this is assumed to be the case. Thefioatiéfile may also contain intermediate cérti

cates that need to be sent to the client to enable it to authenticate this sertiécate.

If you do not understand about céitates and keys, please tryfiod a source of this background
information, which is not Exim-spdti. (There are a few comments below in section 39.11.)

Note: These options do not apply when Exim is operating as a cli¢éimeéy apply only in the case of a
server. If you need to use a céitate in an Exim client, you must set the options of the same names
in ansmtptransport.

With just these options, an Exim server will be able to use TLS. It does not require the client to have a
certificate (but see below for how to insist on this). There is one other option that may be needed in
other situations. If

309 Encrypted SMTP connections (39)

tls_dhparam = /some/file/name

is set, the SSL library is initialized for the use of é-Hellman ciphers with the parameters con-
tained in thdile. This increases the set of cipher suites that the server supports. See the command

openssl dhparam

for a way of generating this data. At presetté, dhparam is used only when Exim is linked with
OpenSSL. ltis ignored if GnuTLS is being used.

The strings supplied for these three options are expanded every time a client host connects. It is
therefore possible to use different cBdates and keys for different hosts, if you so wish, by making
use of the clieris IP address isender_host_address control the expansion. If a string expansion

is forced to fail, Exim behaves as if the option is not set.

The variable$tls_cipheris set to the cipher suite that was negotiated for an incoming TLS connec-
tion. It is included in theReceivedheader of an incoming message (by defawbu can, of course,
change this), and it is also included in the log line that records a messagiwal, keyed by X=",
unless thetls_cipher log selector is turned off. Thencrypted condition can be used to test for
specfic cipher suites in ACLs. (For outgoing SMTP deliveri@sls _cipheris reset— see section
39.9.)

Once TLS has been established, the ACLs that run for subsequent SMTP commands can check the
name of the cipher suite and vary their actions accordingly. The cipher suite names vary, depending
on which TLS library is being used. For example, OpenSSL uses the name DES-CBC3-SHA for the
cipher suite which in other contexts is known as TLS_RSA WITH_3DES EDE_CBC_SHA. Check
the OpenSSL or GnuTLS documentation for more details.

39.7 Requesting and verifying client certificates

If you want an Exim server to request a ckctite when negotiating a TLS session with a client, you
must set eithetls_verify_hostsor tls_try verify_hosts. You can, of course, set either of them to * to
apply to all TLS connections. For any host that matches one of these options, Exim requests a
certificate as part of the setup of the TLS session. The contents of th&cegetiare vefied by
comparing it with a list of expected cditates. These must be available irila or, for OpenSSL

only (not GnuTLS), a directory, idefigd bytls_verify_certificates

A file can contain multiple ceficates, concatenated end to end. If a directory is used (OpenSSL
only), each cerficate must be in a separafide, with a name (or a symbolic link) of the form
<haslr.0, where dash> is a hash value constructed from the dagtite. You can compute the
relevant hash by running the command

openssl x509 -hash -noout -in /cert/file
where/cert/file contains a single cefittate.

The difference betweeths_verify _hostsandtls_try verify hostsis what happens if the client does

not supply a cerficate, or if the cerficate does not match any of the ckctates in the collection
named bytls_verify_certificates If the client matchedls_verify _hosts the attempt to set up a TLS
session is aborted, and the incoming connection is dropped. If the client malsheg verify

hosts the (encrypted) SMTP session continues. ACLs that run for subsequent SMTP commands can
detect the fact that no ceiitate was vefied, and vary their actions accordingly. For example, you
can insist on a cefficate before accepting a message for relaying, but not when the message is
destined for local delivery.

When a client supplies a cditiate (whether it vefies or not), the value of the Distinguished Name of
the certficate is made available in the varialfgls_peerdnduring subsequent processing of the
message.

Because it is often a long text string, it is not included in the log linReceivedheader by default.
You can arrange for it to be logged, keyedtiyN=", by setting thels_peerdnlog selector, and you
can useeceived_header_texto change thé&keceivedheader. When no cefittate is supplied$tls_
peerdnis empty.

310 Encrypted SMTP connections (39)

39.8 Revoked certificates

Certificate issuing authorities issue Cdate Revocation Lists (CRLs) when cérdates are revoked.
If you have such a list, you can pass it to an Exim server using the global option galled and to

an Exim client using an identically named option for 8retptransport. In each case, the value of the
option is expanded and must then be the namdilef #nat contains a CRL in PEM format.

39.9 Configuring an Exim client to use TLS

The tls_cipher and tls_peerdn log selectors apply to outgoing SMTP deliveries as well as to
incoming, the latter one causing logging of the server ttesties DN. The remaining client cdigur-
ation for TLS is all within themtptransport.

It is not necessary to set any options to have TLS work instm¢ptransport. If Exim is built with
TLS support, and TLS is advertised by a server, dhmptransport always tries to start a TLS session.
However, this can be prevented by settimgsts_avoid_tls(an option of the transport) to a list of
server hosts for which TLS should not be used.

If you do not want Exim to attempt to send messages unencrypted when an attempt to set up an
encrypted connection fails in any way, you can Bests_require_tlsto a list of hosts for which
encryption is mandatory. For those hosts, delivery is always deferred if an encrypted connection
cannot be set up. If there are any other hosts for the address, they are tried in the usual way.

When the server host is not hosts_require_tls Exim may try to deliver the message unencrypted. It
always does this if the response to STARTTLS isxa &ode. For a temporary error code, or for a
failure to negotiate a TLS session after a success response code, what happens is controlled by the
tls_tempfail_tryclear option of thesmtptransport. If it is false, delivery to this host is deferred, and
other hosts (if available) are tried. If it is true, Exim attempts to deliver unencrypted aftex a 4
response to STARTTLS, and if STARTTLS is accepted, but the subsequent TLS negotiation fails,
Exim closes the current connection (because it is in an unknown state), opens a new one to the same
host, and then tries the delivery unencrypted.

Thetls_certificate andtls_privatekey options of thesmtptransport provide the client with a cditi

cate, which is passed to the server if it requests it. If the server is Exim, it will request facasti

only if tls_verify_hostsor tls_try_verify _hosts matches the clientNote: These options must be set

in the smtptransport for Exim to use TLS when it is operating as a client. Exim does not assume that
a server cerficate (set by the global options of the same name) should also be used when operating as
a client.

If tls_verify_certificatesis set, it must name file or, for OpenSSL only (not GnuTLS), a directory,
that contains a collection of expected server &iedtes. The client vdies the servés certficate
against this collection, taking into account any revoked fiegties that are in the list fieed bytls
crl.

If tls_require_ciphersis set on thesmtptransport, it must contain a list of permitted cipher suites. If
either of these checks fails, delivery to the current host is abandoned, asththgansport tries to
deliver to alternative hosts, if any.

All the TLS options in thesmtptransport are expanded before use, viittostand $host_address
containing the name and address of the server to which the client is connected. Forced failure of an
expansion causes Exim to behave as if the relevant option were unset.

Before an SMTP connection is established, $tls_cipherand $tls_peerdnvariables are emptied.

(Until the first connection, they contain the values that were set when the message was received.) If
STARTTLS is subsequently successfully obeyed, these variables are set to the relevant values for the
outgoing connection.

39.10 Multiple messages on the same encrypted TCP/IP connection

Exim sends multiple messages down the same TCP/IP connection by starting up an entirely new
delivery process for each message, passing the socket from one process to the next. This implemen-
tation does nofit well with the use of TLS, because there is quite a lot of state information associated

311 Encrypted SMTP connections (39)

with a TLS connection, not just a socket iddia@tion. Passing all the state information to a new
process is not feasible. Consequently, Exim shuts down an existing TLS session before passing the
socket to a new process. The new process may then try to start a new TLS session, and if successful,
may try to re-authenticate if AUTH is in use, before sending the next message.

The RFC is not clear as to whether or not an SMTP session continues in clear after TLS has been shut
down, or whether TLS may be restarted again later, as just described. However, if the server is Exim,
this shutdown and reinitialization works. It is not known which (if any) other servers operate success-
fully if the client closes a TLS session and continues with unencrypted SMTP, but there are certainly
some that do not work. For such servers, Exim should not pass the socket to another process, because
the failure of the subsequent attempt to use it would cause Exim to record a temporary host error, and
delay other deliveries to that host.

To test for this case, Exim sends an EHLO command to the server after closing down the TLS
session. If this fails in any way, the connection is closed instead of being passed to a new delivery
process, but no retry information is recorded.

There is also a manual override; you canlsests_nopass_tl®n thesmtptransport to match those
hosts for which Exim should not pass connections to new processes if TLS has been used.

39.11 Certificates and all that

In order to understand fully how TLS works, you need to know aboutfoEates, cerficate signing,

and certiicate authorities. This is not the place to give a tutorial, especially as | do not know very
much about it myself. Some helpful introduction can be found in the FAQ for the SSL addition to
Apache, currently at

http://www.modssl.org/docs/2.7/ssl_faq.html#ToC24

Other parts of themodssldocumentation are also helpful, and have links to furtfikys. Eric
Rescorlés book,SSL and TLSpublished by Addison-Wesley (ISBN 0-201-61598-3), contains both
introductory and more in-depth descriptions. Some sample programs taken from the book are avail-
able from

http://www.rtfm.com/openssl-examples/

39.12 Certificate chains

The file named bytls_certificate may contain more than one céitate. This is useful in the case
where the cerficate that is being sent is validated by an intermediatefigaté which the other end
does not have. Multiple cefitates must be in the correct order in file. First the hoss certficate
itself, then thefirst intermediate ceficate to validate the issuer of the host deséte, then the next
intermediate cerficate to validate the issuer of thHast intermediate ceficate, and so on, until
finally (optionally) the root cetficate. The root cefficate must already be trusted by the recipient for
validation to succeed, of course, but iinot preinstalled, sending the root cctte along with the

rest makes it available for the user to install if the receiving end is a client MUA that can interact with
a user.

39.13 Self-signed certificates
You can create a self-signed cfectite using theeq command provided with OpenSSL, like this:

openssl req -x509 -newkey rsa:1024 -keyout filel -out file2 \
-days 9999 -nodes

filel andfile2 can be the samtle; the key and the ceficate are delimited and so can be idéat
independently. Thedays option spedies a period for which the cefitate is valid. The-nodes

option is important: if you do not set it, the key is encrypted with a passphrase that you are prompted
for, and any use that is made of the key causes more prompting for the passphrase. This is not helpful
if you are going to use this cditiate and key in an MTA, where prompting is not possible.

312 Encrypted SMTP connections (39)

A self-signed cerficate made in this way is didient for testing, and may be adequate for all your
requirements if you are mainly interested in encrypting transfers, and not in secufecatimti

However, many clients require that the ckectite presented by the server be a user (also caked
or “sitd’) certificate, and not a self-signed céidate. In this situation, the self-signed ckctate
described above must be installed on the client host as a trustedemtifitation authority(CA), and
the certficate used by Exim must be a user @iedte signed with that self-signed ckctite.

For information on creating self-signed CA cérdates and using them to sign user dardites, see

the General implementation overvieshapter of the Open-source PKI book, available online at
http://ospkibook.sourceforge.net/

313 Encrypted SMTP connections (39)

40. Access control lists

Access Control Lists (ACLs) are fimed in a separate section of the run time fogurationfile,
headed by'begin acl. Each ACL dénition starts with a name, terminated by a colon. Here is a
complete ACL section that contains just one very small ACL:

begin acl
small_acl:
accept hosts = one.host.only

You can have as many lists as you like in the ACL section, and the order in which they appear does
not matter. The lists are self-terminating.

The majority of ACLs are used to control EXisnbehaviour when it receives certain SMTP com-
mands. This applies both to incoming TCP/IP connections, and when a local process submits a
message using SMTP by specifying thes option. The most common use is for controlling which
recipients are accepted in incoming messages. In addition, you dane den ACL that is used to
check local non-SMTP messages. The defaulffigomationfile contains an example of a realistic

ACL for checking RCPT commands. This is discussed in chapter 7.

40.1 Testing ACLs

The-bh command line option provides a way of testing your ACL feguration locally by running a
fake SMTP session with which you interact. The he$ay-test.mail-abuse.orgrovides a service for
checking your relaying cdiguration (see section 40.49 for more details).

40.2 Specifying when ACLs are used

In order to cause an ACL to be used, you have to name it in one of the relevant options in the main
part of the cofiguration. These options are:

acl_not_smtp ACL for non-SMTP messages
acl_not_smtp_mime ACL for non-SMTP MIME parts
acl_not_smtp_start ACL at start of non-SMTP message
acl_smtp_auth ACL for AUTH

acl_smtp_connect ACL for start of SMTP connection
acl_smtp_data ACL after DATA is complete
acl_smtp_etrn ACL for ETRN

acl_smtp_expn ACL for EXPN

acl_smtp_helo ACL for HELO or EHLO
acl_smtp_mail ACL for MAIL

acl_smtp_mailauth ACL for the AUTH parameter of MAIL
acl_smtp_mime ACL for content-scanning MIME parts
acl_smtp_notquit ACL for non-QUIT terminations
acl_smtp_predata ACL at start of DATA command
acl_smtp_quit ACL for QUIT

acl_smtp_rcpt ACL for RCPT

acl_smtp_starttls ACL for STARTTLS

acl_smtp_vrfy ACL for VRFY

For example, if you set
acl_smtp_rcpt = small_acl

the little ACL ddined above is used whenever Exim receives a RCPT command in an SMTP dia-
logue. The majority of policy tests on incoming messages can be done when RCPT commands arrive.
A rejection of RCPT should cause the sending MTA to give up on the recipient address contained in
the RCPT command, whereas rejection at other times may cause the client MTA to keep on trying to
deliver the message. It is therefore recommended that you do as much testing as possible at RCPT
time.

314 Access control lists (40)

40.3 The non-SMTP ACLs

The non-SMTP ACLs apply to all non-interactive incoming messages, that is, they apply to batched
SMTP as well as to non-SMTP messages. (Batched SMTP is not really SMTP.) Many of the ACL
conditions (for example, host tests, and tests on the state of the SMTP connection such as encryption
and authentication) are not relevant and are forbidden in these ACLs. However, the sender and
recipients are known, so tteendersand sender_domainsconditions and thé&sender_addresand
$recipientsvariables can be used. Variables sucl$asthenticated_sendeare also available. You can
specify added header lines in any of these ACLs.

Theacl_not_smtp_startACL is run right at the start of receiving a non-SMTP message, before any
of the message has been read. (This is the analogue atthemtp predataACL for SMTP input.)

In the case of batched SMTP input, it runs after the DATA command has been reached. The result of
this ACL is ignored; it cannot be used to reject a message. If you really need to, you could set a value
in an ACL variable here and reject based on that inable not_smtp ACL. However, this ACL can

be used to set controls, and in particular, it can be used to set

control = suppress_local_fixups
This cannot be used in the other non-SMTP ACLs because by the time they are run, it is too late.

The acl_not_smtp_mimeACL is available only when Exim is compiled with the content-scanning
extension. For details, see chapter 41.

Theacl_not_smtpACL is run just before théocal _scan()function. Any kind of rejection is treated
as permanent, because there is no way of sending a temporary error for these kinds of message.

40.4 The SMTP connect ACL

The ACL test spefied byacl_smtp_connecthappens at the start of an SMTP session, after the test
specfied byhost_reject_connection(which is now an anomaly) and any TCP Wrappers testing (if
corfigured). If the connection is accepted byamteptverb that has amessagemodifier, the contents

of the message override the banner message that is otherwisieeddmcthesmtp_banner option.

40.5 The EHLO/HELO ACL

The ACL test spedied byacl_smtp_helohappens when the client issues an EHLO or HELO com-
mand, after the tests spéed by helo_accept_junk _hostshelo_allow_chars helo_verify _hosts
andhelo_try verify_hosts Note that a client may issue more than one EHLO or HELO command in
an SMTP session, and indeed is required to issue a new EHLO or HELO after successfully setting up
encryption following a STARTTLS command.

If the command is accepted by acceptverb that has anessagemodifier, the message may not
contain more than one line (it will be truncated at fivret newline and a panic logged if it does). Such

a message cannot affect the EHLO options that are listed on the second and subsequent lines of an
EHLO response.

40.6 The DATA ACLs

Two ACLs are associated with the DATA command, because it is two-stage command, with two
responses being sent to the client. When the DATA command is received, the AGkedlbyacl
smtp_predatais obeyed. This gives you control after all the RCPT commands, but before the mess-
age itself is received. It offers the opportunity to give a negative response to the DATA command
before the data is transmitted. Header lines added by MAIL or RCPT ACLs are not visible at this
time, but any that are fiaed here are visible when thel _smtp_dataACL is run.

You cannot test the contents of the message, for example, to verify addresses in the headers, at RCPT
time or when the DATA command is received. Such tests have to appear in the ACL that is run after
the message itself has been received, beforditla¢ response to the DATA command is sent. This is

the ACL spedied byacl_smtp_data which is the second ACL that is associated with the DATA
command.

315 Access control lists (40)

For both of these ACLSs, it is not possible to reject individual recipients. An error response rejects the
entire message. Unfortunately, it is known that some MTAs do not treat haxyl rgsponses to the
DATA command (either before or after the data) correetlihey keep the message on their queues
and try again later, but that is their problem, though it does waste some of your resources.

40.7 The SMTP MIME ACL

The acl_smtp_mime option is available only when Exim is compiled with the content-scanning
extension. For details, see chapter 41.

40.8 The QUIT ACL

The ACL for the SMTP QUIT command is anomalous, in that the outcome of the ACL does not affect
the response code to QUIT, which is always 221. Thus, the ACL does not in fact control any access.
For this reason, the only verbs that are permittedereptandwarn.

This ACL can be used for tasks such as custom logging at the end of an SMTP session. For example,
you can use ACL variables in other ACLs to count messages, recipients, etc., and log the totals at
QUIT time using one or molegwrite modifiers on avarn verb.

Warning: Only the$acl_cxvariables can be used for this, because®hel _mxvariables are reset at
the end of each incoming message.

You do not need to have fanal accept but if you do, you can use messagemodifier to specify
custom text that is sent as part of the 221 response to QUIT.

This ACL is run only for a“normal QUIT. For certain kinds of disastrous failure (for example,
failure to open a lodile, or when Exim is bombing out because it has detected an unrecoverable
error), all SMTP commands from the client are given temporary error responses until QUIT is
received or the connection is closed. In these special cases, the QUIT ACL does not run.

40.9 The not-QUIT ACL

The not-QUIT ACL, spedied by smtp_notquit_acl, is run in most cases when an SMTP session
ends without sending QUIT. However, when Exim itself is is bad trouble, such as being unable to
write to its logfiles, this ACL is not run, because it might try to do things (such as write tdilesg)

that make the situation even worse.

Like the QUIT ACL, this ACL is provided to make it possible to do customized logging or to gather
statistics, and its outcome is ignored. Ttelay modifier is forbidden in this ACL, and the only
permitted verbs aracceptandwarn.

When the not-QUIT ACL is running, the variabfsmtp_notquit_reasois set to a string that indi-
cates the reason for the termination of the SMTP connection. The possible values are:

acl-drop Another ACL issued drop command
bad-commands Too many unknown or non-mail commands
command-timeout Timeout while reading SMTP commands
connection-lost The SMTP connection has been lost
data-timeout Timeout while reading message data
local-scan-error Thelocal_scan()function crashed
local-scan-timeout Thelocal_scan()function timed out
signal-exit SIGTERM or SIGINT
synchronization-error SMTP synchronization error

tls-failed TLS failed to start

In most cases when an SMTP connection is closed without having received QUIT, Exim sends an
SMTP response message before actually closing the connection. With the exceptionaof-the

drop case, the default message can be overridden bgndssagemodifier in the not-QUIT ACL. In

the case of drop verb in another ACL, it is the message from the other ACL that is used.

316 Access control lists (40)

40.10 Finding an ACL to use

The value of amacl_smtp xxx option is expanded before use, so you can use different ACLs in
different circumstances. For example,

acl_smtp_rcpt = ${if ={25S$interface_port} \
{acl_check_rcpt} {acl_check_rcpt_submit} }

In the default cofigurationfile there are some example settings for providing an RFC 4409 message
submission service on port 587 and a non-stantismatps$ service on port 465. You can use a string
expansion like this to choose an ACL for MUAs on these ports which is more appropriate for this
purpose than the default ACL on port 25.

The expanded string does not have to be the name of an ACL in thigomationfile; there are other
possibilities. Having expanded the string, Exim searches for an ACL as follows:

* If the string begins with a slash, Exim uses it asl@name, and reads its contents as an ACL. The
lines are processed in the same way as lines in the Exirfigroationfile. In particular, continu-
ation lines are supported, blank lines are ignored, as are lines vilngtseon-whitespace character
is “#". If the file does not exist or cannot be read, an error occurs (typically causing a temporary
failure of whatever caused the ACL to be run). For example:

acl_smtp_data = /etc/acls/\
${lookup{$sender_host_address}Isearch\
{/etc/acllist{$value{default}}

This looks up an AClfile to use on the basis of the hestP address, falling back to a default if the
lookup fails. If an ACL is successfully read fronfide, it is retained in memory for the duration of
the Exim process, so that it can be re-used without having to re-refdld the

 If the string does not start with a slash, and does not contain any spaces, Exim searches the ACL
section of the cdiguration for an ACL whose name matches the string.

» If no named ACL is found, or if the string contains spaces, Exim parses the string as an inline
ACL. This can save typing in cases where you just want to have something like

acl_smtp_vrfy = accept

in order to allow free use of the VRFY command. Such a string may contain newlines; it is
processed in the same way as an ACL that is read fifdm a

40.11 ACL return codes

Except for the QUIT ACL, which does not affect the SMTP return code (see section 40.8 above), the
result of running an ACL is eithetaccept or “deny’, or, if some test cannot be completed (for
example, if a database is dowfijlefer’. These results causeo? 5xx, and &x return codes, respect-
ively, to be used in the SMTP dialogue. A fourth retutratror’, occurs when there is an error such as
invalid syntax in the ACL. This also causesxa return code.

For the non-SMTP ACL' defef and“error’ are treated in the same way ‘aeny’, because there is
no mechanism for passing temporary errors to the submitters of non-SMTP messages.

ACLs that are relevant to message reception may also rétdiscard. This has the effect of
“accept, but causes either the entire message or an individual recipient address to be discarded. In
other words, it is a blackholing facility. Use it with care.

If the ACL for MAIL returns“discard, all recipients are discarded, and no ACL is run for subsequent
RCPT commands. The effect ‘tdliscard in a RCPT ACL is to discard just the one recipient address.
If there are no recipients left when the messagdata is received, the DATA ACL is not run. A
“discard return from the DATA or the non-SMTP ACL discards all the remaining recipients. The
“discard return is not permitted for theecl_smtp_predataACL.

Thelocal_scan()function is always run, even if there are no remaining recipients; it may create new
recipients.

317 Access control lists (40)

40.12 Unset ACL options

The default actions when any of tlael_xxx options are unset are not all the sarmte: These
defaults apply only when the relevant ACL is noffided at all. For any dned ACL, the default
action when control reaches the end of the ACL statemetdeny .

For acl_smtp_quitandacl_not_smtp_startthere is no default because these two are ACLs that are
used only for their side effects. They cannot be used to accept or reject anything.

For acl_not_smtp acl_smtp_auth acl_smtp_connectacl_smtp_datg acl_smtp_helg acl_smtp_
mail, acl_smtp_mailauth acl_smtp_mime acl_smtp_predatg and acl_smtp_starttls the action
when the ACL is not dimed is“accept.

For the others dcl_smtp_etrn acl_smtp_expn acl_smtp_rcpt, and acl_smtp_vrfy), the action
when the ACL is not dégned is“deny’. This means thaacl_smtp_rcpt must be déned in order to
receive any messages over an SMTP connection. For an example, see the ACL in the ddfgult-con
ationfile.

40.13 Data for message ACLs

When a MAIL or RCPT ACL, or either of the DATA ACLs, is running, the variables that contain
information about the host and the messagsender (for example$sender_host_addresand
$sender_addre}sre set, and can be used in ACL statements. In the case of RCPT (but not MAIL or
DATA), $domainand $local_partare set from the argument address. The entire SMTP command is
available inssmtp_command

When an ACL for the AUTH parameter of MAIL is running, the variables that contain information
about the host are set, bisender_address not yet set. Section 33.2 contains a discussion of this
parameter and how it is used.

The $message_sizeariable is set to the value of the SIZE parameter on the MAIL command at
MAIL, RCPT and pre-data time, or to -1 if that parameter is not given. The value is updated to the
true message size by the time fimal DATA ACL is run (after the message data has been received).

The $rcpt_countvariable increases by one for each RCPT command receivedbrEbipients count
variable increases by one each time a RCPT command is accepted, so while an ACL for RCPT is
being processed, it contains the number of previously accepted recipients. At DATA time (for both the
DATA ACLs), $rcpt_countcontains the total number of RCPT commands, &retipients_count
contains the total number of accepted recipients.

40.14 Data for non-message ACLs

When an ACL is being run for AUTH, EHLO, ETRN, EXPN, HELO, STARTTLS, or VRFY, the
remainder of the SMTP command line is placecdamtp_command_argumeand the entire SMTP
command is available ifismtp_commandhese variables can be tested usingpadition condition.

For example, here is an ACL for use with AUTH, which insists that either the session is encrypted, or
the CRAM-MD5 authentication method is used. In other words, it does not permit authentication
methods that use cleartext passwords on unencrypted connections.

acl_check_auth:
accept encrypted = *
accept condition = ${if eq{${uc:$smtp_command_argument}}\
{CRAM-MD5}}
deny message = TLS encryption or CRAM-MD5 required

(Another way of applying this restriction is to arrange for the authenticators that use cleartext pass-
words not to be advertised when the connection is not encrypted. You can use the geneanic
advertise_conditionauthenticator option to do this.)

318 Access control lists (40)

40.15 Format of an ACL

An individual ACL consists of a number of statements. Each statement starts with a verb, optionally
followed by a number of conditions aridhodffiers' . Modifiers can change the way the verb operates,
define error and log messages, set variables, insert delays, and vary the processing of accepted
messages.

If all the conditions are met, the verb is obeyed. The same condition may be used (with different
arguments) more than once in the same statement. This provides a means of specifiamg an
conjunction between conditions. For example:

deny dnslists = listl.example
dnslists = list2.example

If there are no conditions, the verb is always obeyed. Exim stops evaluating the conditions and
modifiers when it reaches a condition that fails. What happens then depends on the verb (and in one
case, on a special mdar). Not all the conditions make sense at every testing point. For example,
you cannot test a sender address in the ACL that is run for a VRFY command.

40.16 ACL verbs
The ACL verbs are as follows:

» accept If all the conditions are met, the ACL returthaccept. If any of the conditions are not met,
what happens depends on whetbadpassappears among the conditions (for syntax see below).
If the failing condition is beforeendpass control is passed to the next ACL statement; if it is after
endpass the ACL returnsdeny’. Consider this statement, used to check a RCPT command:

accept domains = +local_domains
endpass
verify = recipient

If the recipient domain does not match #hemainscondition, control passes to the next statement.
If it does match, the recipient is véied, and the command is accepted if fiedtion succeeds.
However, if verfication fails, the ACL yields“deny, because the failing condition is after
endpass

Theendpassfeature has turned out to be confusing to many people, so its use is not recommended
nowadays. It is always possible to rewrite an ACL so #radpasss not needed, and it is no longer
used in the default céiguration.

If a messagemodifier appears on aaccept statement, its action depends on whether or not
endpassis present. In the absence ehdpass(when anaccept verb either accepts or passes
control to the next statementjiessagecan be used to vary the message that is sent when an SMTP
command is accepted. For example, in a RCPT ACL you could have:

accept <some conditiorns
message = OK, | will allow you through today

You can specify an SMTP response code, optionally followed byesttended response cddat
the start of the message, but tivst digit must be the same as would be sent by default, which is 2
for anacceptverb.

If endpassis present in amcceptstatementmessagespecfies an error message that is used when
access is denied. This behaviour is retained for backward compatibility, but clipessitpracticé
is to avoid the use @ndpass

« defer: If all the conditions are true, the ACL returidefef’ which, in an SMTP session, causes a
4xx response to be given. For a non-SMTP AQefer is the same adeny, because there is no
way of sending a temporary error. For a RCPT commateder is much the same as using a
redirect router and:defer: while verifying, but thedefer verb can be used in any ACL, and
even for a recipient it might be a simpler approach.

» deny: If all the conditions are met, the ACL returfideny'. If any of the conditions are not met,
control is passed to the next ACL statement. For example,

319 Access control lists (40)

deny dnslists = blackholes.mail-abuse.org
rejects commands from hosts that are on a DNS black list.

» discard: This verb behaves likaccept except that it returnsdiscard from the ACL instead of
“accept. It is permitted only on ACLs that are concerned with receiving messages. When all the
conditions are true, the sending entity receivessaccess response. Howevediscard causes
recipients to be discarded. If it is used in an ACL for RCPT, just the one recipient is discarded; if
used for MAIL, DATA or in the non-SMTP ACL, all the messagerecipients are discarded.
Recipients that are discarded before DATA do not appear in the log line whdagheecipients
log selector is set.

If the log_messagenodifier is set wherdiscard operates, its contents are added to the line that is
automatically written to the log. Theessaganodfier operates exactly as it does &acept

» drop: This verb behaves likdeny, except that an SMTP connection is forcibly closed after the 5
error message has been sent. For example:

drop message =Idon'ttake more than 20 RCPTs
condition = ${if > {$rcpt_count}{20}}

There is no difference betweeateny and drop for the connect-time ACL. The connection is
always dropped after sending a 550 response.

» require: If all the conditions are met, control is passed to the next ACL statement. If any of the
conditions are not met, the ACL returrdeny . For example, when checking a RCPT command,

require message = Sender did not verify
verify = sender

passes control to subsequent statements only if the méssageler can be véied. Otherwise, it
rejects the command. Note the positioning of thessagemodyffier, before theverify condition.
The reason for this is discussed in section 40.18.

« warn: If all the conditions are true, a line spéed by thelog_messaganodfier is written to
Exim’'s main log. Control always passes to the next ACL statement. If any condition is false, the
log line is not written. If an identical log line is requested several times in the same message, only
one copy is actually written to the log. If you want to force duplicates to be written, use the
logwrite modfier instead.

If log_messagés not present, avarn verb just checks its conditions and obeys dimgmediaté
modifiers (such agontrol, set logwrite, and add_heade) that appear before thirst failing
condition. There is more about adding header lines in section 40.22.

If any condition on avarn statement cannot be completed (that is, there is some sort of defer), the
log line spedied bylog_messagés not written. This does not include the case of a forced failure
from a lookup, which is considered to be a successful completion. After a defer, no further con-
ditions or modiiers in thewarn statement are processed. The incident is logged, and the ACL
continues to be processed, from the next statement onwards.

When one of thevarn conditions is an address vication that fails, the text of the véication
failure message is ifacl_verify_messagédf you want this logged, you must set it up explicitly.
For example:

warn lverify = sender
log_message = sender verify failed: $acl_verify_message

At the end of each ACL there is an implicit unconditiothexhy.

As you can see from the examples above, the conditions andiersdare written one to a line, with
thefirst one on the same line as the verb, and subsequent ones on following lines. If you have a very
long condition, you can continue it onto several physical lines by the usual backslash continuation
mechanism. It is conventional to align the conditions vertically.

320 Access control lists (40)

40.17 ACL variables

There are some special variables that can be set during ACL processing. They can be used to pass
information between different ACLs, different invocations of the same ACL in the same SMTP
connection, and between ACLs and the routers, transportsfibes that are used to deliver a
message. The names of these variables must beginbatth cor $acl_m followed either by a digit

or an underscore, but the remainder of the name can be any sequence of alphanumeric characters and
underscores that you choose. There is no limit on the number of ACL variables. The two sets act as
follows:

* The values of those variables whose names begin$eth_cpersist throughout an SMTP connec-
tion. They are never reset. Thus, a value that is set while receiving one message is still available
when receiving the next message on the same SMTP connection.

» The values of those variables whose names begin $aiti_m persist only while a message is
being received. They are reset afterwards. They are also reset by MAIL, RSET, EHLO, HELO, and
after starting up a TLS session.

When a message is accepted, the current values of all the ACL variables are preserved with the
message and are subsequently made available at delivery time. The ACL variables are set by a
modifier calledset For example:

accept hosts = whatever

set acl_m4 = some value
accept authenticated = *

set acl_c_auth = yes

Note: A leading dollar sign is not used when naming a variable that is to be set. If you want to set
a variable without taking any action, you can usevarn verb without any other mofiers or
conditions.

What happens if a syntactically valid but urieled ACL variable is referenced depends on the setting
of the strict_acl_vars option. If it is false (the default), an empty string is substituted; if it is true, an
error is generated.

Versions of Exim before 4.64 have a limited set of numbered variables, but their names are compat-
ible, so there is no problem with upgrading.

40.18 Condition and modifier processing
An exclamation mark preceding a condition negates its result. For example:
deny domains = *.dom.example
lverify = recipient

causes the ACL to returhdeny if the recipient domain ends idom.exampleand the recipient
address cannot be vBad. Sometimes negation can be used on the right-hand side of a condition. For
example, these two statements are equivalent:

deny hosts =1192.168.3.4
deny 'hosts = 192.168.3.4

However, for many conditionsvérify being a good example), only left-hand side negation of the
whole condition is possible.

The arguments of conditions and mbdrs are expanded. A forced failure of an expansion causes a
condition to be ignored, that is, it behaves as if the condition is true. Consider these two statements:

accept senders = ${lookup{$host_name}Isearch\
{/some/file{$value}fail}

accept senders = ${lookup{$host_name}isearch\
{/some/file{$value}{}}

Each attempts to look up a list of acceptable senders. If the lookup succeeds, the returned list is
searched, but if the lookup fails the behaviour is different in the two casesfailhe the first

321 Access control lists (40)

statement causes the condition to be ignored, leaving no further conditionac@égtverb therefore
succeeds. The second statement, however, generates an empty list when the lookup fails. No sender
can match an empty list, so the condition fails, and thereforctteptalso fails.

ACL modifiers appear mixed in with conditions in ACL statements. Some of them specify actions that
are taken as the conditions for a statement are checked; others specify text for messages that are used
when access is denied or a warning is generated.coh&ol modifier affects the way an incoming
message is handled.

The positioning of the moélers in an ACL statement important, because the processing of a verb
ceases as soon as its outcome is known. Only thosefimiadihat have already been encountered will
take effect. For example, consider this use ohtkesagemodiier:

require message = Can't verify sender
verify = sender
message = Can't verify recipient
verify = recipient
message = This message cannot be used

If sender vefiication fails, Exim knows that the result of the statemenftlisny’, so it goes no further.
The first messagemodifier has been seen, so its text is used as the error message. If seniiter veri
cation succeeds, but recipient aration fails, the second message is used. If recipienfiwation
succeeds, the third message becoffmsrent, but is never used because there are no more con-
ditions to cause failure.

For thedeny verb, on the other hand, it is always the lagtssagamodifier that is used, because all
the conditions must be true for rejection to happen. Specifying more thamessaganodifier does
not make sense, and the message can even bBespatter all the conditions. For example:

deny hosts = ...
Isenders = *@my.domain.example
message = Invalid sender from client host

The“deny result does not happen until the end of the statement is reached, by which time Exim has
set up the message.

40.19 ACL modifiers

The ACL modfiers are as follows:

add_header= <text-
This modfier spedies one or more header lines that are to be added to an incoming message,
assuming, of course, that the message is ultimately accepted. For details, see section 40.22.

continue = <text>
This modfier does nothing of itself, and processing of the ACL always continues with the next
condition or modier. The value ofcontinue is in the side effects of expanding its argument.
Typically this could be used to update a database. It is really just a syntactic tidiness, to avoid
having to write rather ugly lines like this:

condition = ${if eq{OK <some expansio{trueKtrue}}
Instead, all you need is
continue = <some expansioen

control = <text
This modfier affects the subsequent processing of the SMTP connection or of an incoming mess-
age that is accepted. The effect of first type of control lasts for the duration of the connection,
whereas the effect of the second type lasts only until the current message has been received. The
message-spdiat controls always apply to the whole message, not to individual recipients, even if
thecontrol modifier appears in a RCPT ACL.

As there are now quite a few controls that can be applied, they are described separately in section
40.20. Thecontrol modiier can be used in several different ways. For example:

322 Access control lists (40)

It can be at the end of atceptstatement:

accept ...some conditions
control = queue_only

In this case, the control is applied when this statement yieddsept, in other words, when the
conditions are all true.

* It can be in the middle of acceptstatement:

accept ...some conditions...
control = queue_only
...some more conditions...

If the first set of conditions are true, the control is applied, even if the statement does not accept
because one of the second set of conditions is false. In this case, some subsequent statement
must yield“accept for the control to be relevant.

It can be used withvarn to apply the control, leaving the decision about accepting or denying
to a subsequent verb. For example:

warn ...some conditions...
control = freeze
accept ...

This example ofvarn does not contaimessagelog_messaggeor logwrite, so it does not add
anything to the message and does not write a log entry.

 If you want to apply a control unconditionally, you can use it witfequire verb. For example:
require control = no_multiline_responses

delay = <time>
This modfier may appear in any ACL. It causes Exim to wait for the time interval before proceed-
ing. However, when testing Exim using thbh option, the delay is not actually imposed (an
appropriate message is output instead). The time is given in the usual Exim notation, and the delay
happens as soon as the nfagli is processed. In an SMTP session, pending output is flushed
before the delay is imposed.

Like control, delay can be used withcceptor deny, for example:

deny ...some conditions...
delay = 30s

The delay happens if all the conditions are true, before the statement redems. Compare this
with:

deny delay = 30s
...some conditions...

which waits for 30s before processing the conditions. @iakay modifier can also be used with
warn and together witlsontrol:

warn ...some condit