Theory ListApplication

Up to index of Isabelle/HOL/Lambda

theory ListApplication
imports Lambda
begin

(*  Title:      HOL/Lambda/ListApplication.thy
    ID:         $Id: ListApplication.thy,v 1.14 2005/06/17 14:13:08 haftmann Exp $
    Author:     Tobias Nipkow
    Copyright   1998 TU Muenchen
*)

header {* Application of a term to a list of terms *}

theory ListApplication imports Lambda begin

syntax
  "_list_application" :: "dB => dB list => dB"    (infixl "°°" 150)
translations
  "t °° ts" == "foldl (op °) t ts"

lemma apps_eq_tail_conv [iff]: "(r °° ts = s °° ts) = (r = s)"
  apply (induct_tac ts rule: rev_induct)
   apply auto
  done

lemma Var_eq_apps_conv [iff]:
    "!!s. (Var m = s °° ss) = (Var m = s ∧ ss = [])"
  apply (induct ss)
   apply auto
  done

lemma Var_apps_eq_Var_apps_conv [iff]:
    "!!ss. (Var m °° rs = Var n °° ss) = (m = n ∧ rs = ss)"
  apply (induct rs rule: rev_induct)
   apply simp
   apply blast
  apply (induct_tac ss rule: rev_induct)
   apply auto
  done

lemma App_eq_foldl_conv:
  "(r ° s = t °° ts) =
    (if ts = [] then r ° s = t
    else (∃ss. ts = ss @ [s] ∧ r = t °° ss))"
  apply (rule_tac xs = ts in rev_exhaust)
   apply auto
  done

lemma Abs_eq_apps_conv [iff]:
    "(Abs r = s °° ss) = (Abs r = s ∧ ss = [])"
  apply (induct_tac ss rule: rev_induct)
   apply auto
  done

lemma apps_eq_Abs_conv [iff]: "(s °° ss = Abs r) = (s = Abs r ∧ ss = [])"
  apply (induct_tac ss rule: rev_induct)
   apply auto
  done

lemma Abs_apps_eq_Abs_apps_conv [iff]:
    "!!ss. (Abs r °° rs = Abs s °° ss) = (r = s ∧ rs = ss)"
  apply (induct rs rule: rev_induct)
   apply simp
   apply blast
  apply (induct_tac ss rule: rev_induct)
   apply auto
  done

lemma Abs_App_neq_Var_apps [iff]:
    "∀s t. Abs s ° t ~= Var n °° ss"
  apply (induct_tac ss rule: rev_induct)
   apply auto
  done

lemma Var_apps_neq_Abs_apps [iff]:
    "!!ts. Var n °° ts ~= Abs r °° ss"
  apply (induct ss rule: rev_induct)
   apply simp
  apply (induct_tac ts rule: rev_induct)
   apply auto
  done

lemma ex_head_tail:
  "∃ts h. t = h °° ts ∧ ((∃n. h = Var n) ∨ (∃u. h = Abs u))"
  apply (induct_tac t)
    apply (rule_tac x = "[]" in exI)
    apply simp
   apply clarify
   apply (rename_tac ts1 ts2 h1 h2)
   apply (rule_tac x = "ts1 @ [h2 °° ts2]" in exI)
   apply simp
  apply simp
  done

lemma size_apps [simp]:
  "size (r °° rs) = size r + foldl (op +) 0 (map size rs) + length rs"
  apply (induct_tac rs rule: rev_induct)
   apply auto
  done

lemma lem0: "[| (0::nat) < k; m <= n |] ==> m < n + k"
  apply simp
  done

lemma lift_map [simp]:
    "!!t. lift (t °° ts) i = lift t i °° map (λt. lift t i) ts"
  by (induct ts) simp_all

lemma subst_map [simp]:
    "!!t. subst (t °° ts) u i = subst t u i °° map (λt. subst t u i) ts"
  by (induct ts) simp_all

lemma app_last: "(t °° ts) ° u = t °° (ts @ [u])"
  by simp


text {* \medskip A customized induction schema for @{text "°°"}. *}

lemma lem [rule_format (no_asm)]:
  "[| !!n ts. ∀t ∈ set ts. P t ==> P (Var n °° ts);
    !!u ts. [| P u; ∀t ∈ set ts. P t |] ==> P (Abs u °° ts)
  |] ==> ∀t. size t = n --> P t"
proof -
  case rule_context
  show ?thesis
   apply (induct_tac n rule: nat_less_induct)
   apply (rule allI)
   apply (cut_tac t = t in ex_head_tail)
   apply clarify
   apply (erule disjE)
    apply clarify
    apply (rule prems)
    apply clarify
    apply (erule allE, erule impE)
      prefer 2
      apply (erule allE, erule mp, rule refl)
     apply simp
     apply (rule lem0)
      apply force
     apply (rule elem_le_sum)
     apply force
    apply clarify
    apply (rule prems)
     apply (erule allE, erule impE)
      prefer 2
      apply (erule allE, erule mp, rule refl)
     apply simp
    apply clarify
    apply (erule allE, erule impE)
     prefer 2
     apply (erule allE, erule mp, rule refl)
    apply simp
    apply (rule le_imp_less_Suc)
    apply (rule trans_le_add1)
    apply (rule trans_le_add2)
    apply (rule elem_le_sum)
    apply force
    done
qed

theorem Apps_dB_induct:
  "[| !!n ts. ∀t ∈ set ts. P t ==> P (Var n °° ts);
    !!u ts. [| P u; ∀t ∈ set ts. P t |] ==> P (Abs u °° ts)
  |] ==> P t"
proof -
  case rule_context
  show ?thesis
    apply (rule_tac t = t in lem)
      prefer 3
      apply (rule refl)
     apply (assumption | rule prems)+
    done
qed

end

lemma apps_eq_tail_conv:

  (r °° ts = s °° ts) = (r = s)

lemma Var_eq_apps_conv:

  (Var m = s °° ss) = (Var m = sss = [])

lemma Var_apps_eq_Var_apps_conv:

  (Var m °° rs = Var n °° ss) = (m = nrs = ss)

lemma App_eq_foldl_conv:

  (r ° s = t °° ts) =
  (if ts = [] then r ° s = t else ∃ss. ts = ss @ [s] ∧ r = t °° ss)

lemma Abs_eq_apps_conv:

  (Abs r = s °° ss) = (Abs r = sss = [])

lemma apps_eq_Abs_conv:

  (s °° ss = Abs r) = (s = Abs rss = [])

lemma Abs_apps_eq_Abs_apps_conv:

  (Abs r °° rs = Abs s °° ss) = (r = srs = ss)

lemma Abs_App_neq_Var_apps:

s t. Abs s ° t ≠ Var n °° ss

lemma Var_apps_neq_Abs_apps:

  Var n °° ts ≠ Abs r °° ss

lemma ex_head_tail:

ts h. t = h °° ts ∧ ((∃n. h = Var n) ∨ (∃u. h = Abs u))

lemma size_apps:

  size (r °° rs) = size r + foldl op + 0 (map size rs) + length rs

lemma lem0:

  [| 0 < k; mn |] ==> m < n + k

lemma lift_map:

  lift (t °° ts) i = lift t i °° map (%t. lift t i) ts

lemma subst_map:

  (t °° ts)[u/i] = t[u/i] °° map (%t. t[u/i]) ts

lemma app_last:

  (t °° ts) ° u = t °° (ts @ [u])

lemma lem:

  [| !!n ts. Ball (set ts) P ==> P (Var n °° ts);
     !!u ts. [| P u; Ball (set ts) P |] ==> P (Abs u °° ts); size t = n |]
  ==> P t

theorem Apps_dB_induct:

  [| !!n ts. ∀t∈set ts. P t ==> P (Var n °° ts);
     !!u ts. [| P u; ∀t∈set ts. P t |] ==> P (Abs u °° ts) |]
  ==> P t