Theory ListBeta

Up to index of Isabelle/HOL/Lambda

theory ListBeta
imports ListApplication ListOrder
begin

(*  Title:      HOL/Lambda/ListBeta.thy
    ID:         $Id: ListBeta.thy,v 1.13 2005/06/17 14:13:08 haftmann Exp $
    Author:     Tobias Nipkow
    Copyright   1998 TU Muenchen
*)

header {* Lifting beta-reduction to lists *}

theory ListBeta imports ListApplication ListOrder begin

text {*
  Lifting beta-reduction to lists of terms, reducing exactly one element.
*}

syntax
  "_list_beta" :: "dB => dB => bool"   (infixl "=>" 50)
translations
  "rs => ss" == "(rs, ss) : step1 beta"

lemma head_Var_reduction_aux:
  "v -> v' ==> ∀rs. v = Var n °° rs --> (∃ss. rs => ss ∧ v' = Var n °° ss)"
  apply (erule beta.induct)
     apply simp
    apply (rule allI)
    apply (rule_tac xs = rs in rev_exhaust)
     apply simp
    apply (force intro: append_step1I)
   apply (rule allI)
   apply (rule_tac xs = rs in rev_exhaust)
    apply simp
    apply (auto 0 3 intro: disjI2 [THEN append_step1I])
  done

lemma head_Var_reduction:
  "Var n °° rs -> v ==> (∃ss. rs => ss ∧ v = Var n °° ss)"
  apply (drule head_Var_reduction_aux)
  apply blast
  done

lemma apps_betasE_aux:
  "u -> u' ==> ∀r rs. u = r °° rs -->
    ((∃r'. r -> r' ∧ u' = r' °° rs) ∨
     (∃rs'. rs => rs' ∧ u' = r °° rs') ∨
     (∃s t ts. r = Abs s ∧ rs = t # ts ∧ u' = s[t/0] °° ts))"
  apply (erule beta.induct)
     apply (clarify del: disjCI)
     apply (case_tac r)
       apply simp
      apply (simp add: App_eq_foldl_conv)
      apply (split split_if_asm)
       apply simp
       apply blast
      apply simp
     apply (simp add: App_eq_foldl_conv)
     apply (split split_if_asm)
      apply simp
     apply simp
    apply (clarify del: disjCI)
    apply (drule App_eq_foldl_conv [THEN iffD1])
    apply (split split_if_asm)
     apply simp
     apply blast
    apply (force intro!: disjI1 [THEN append_step1I])
   apply (clarify del: disjCI)
   apply (drule App_eq_foldl_conv [THEN iffD1])
   apply (split split_if_asm)
    apply simp
    apply blast
   apply (clarify, auto 0 3 intro!: exI intro: append_step1I)
  done

lemma apps_betasE [elim!]:
  "[| r °° rs -> s; !!r'. [| r -> r'; s = r' °° rs |] ==> R;
    !!rs'. [| rs => rs'; s = r °° rs' |] ==> R;
    !!t u us. [| r = Abs t; rs = u # us; s = t[u/0] °° us |] ==> R |]
  ==> R"
proof -
  assume major: "r °° rs -> s"
  case rule_context
  show ?thesis
    apply (cut_tac major [THEN apps_betasE_aux, THEN spec, THEN spec])
    apply (assumption | rule refl | erule prems exE conjE impE disjE)+
    done
qed

lemma apps_preserves_beta [simp]:
    "r -> s ==> r °° ss -> s °° ss"
  apply (induct_tac ss rule: rev_induct)
  apply auto
  done

lemma apps_preserves_beta2 [simp]:
    "r ->> s ==> r °° ss ->> s °° ss"
  apply (erule rtrancl_induct)
   apply blast
  apply (blast intro: apps_preserves_beta rtrancl_into_rtrancl)
  done

lemma apps_preserves_betas [rule_format, simp]:
    "∀ss. rs => ss --> r °° rs -> r °° ss"
  apply (induct_tac rs rule: rev_induct)
   apply simp
  apply simp
  apply clarify
  apply (rule_tac xs = ss in rev_exhaust)
   apply simp
  apply simp
  apply (drule Snoc_step1_SnocD)
  apply blast
  done

end

lemma head_Var_reduction_aux:

  v -> v' ==> ∀rs. v = Var n °° rs --> (∃ss. rs => ssv' = Var n °° ss)

lemma head_Var_reduction:

  Var n °° rs -> v ==> ∃ss. rs => ssv = Var n °° ss

lemma apps_betasE_aux:

  u -> u'
  ==> ∀r rs. u = r °° rs -->
             (∃r'. r -> r'u' = r' °° rs) ∨
             (∃rs'. rs => rs'u' = r °° rs') ∨
             (∃s t ts. r = Abs srs = t # tsu' = s[t/0] °° ts)

lemma apps_betasE:

  [| r °° rs -> s; !!r'. [| r -> r'; s = r' °° rs |] ==> R;
     !!rs'. [| rs => rs'; s = r °° rs' |] ==> R;
     !!t u us. [| r = Abs t; rs = u # us; s = t[u/0] °° us |] ==> R |]
  ==> R

lemma apps_preserves_beta:

  r -> s ==> r °° ss -> s °° ss

lemma apps_preserves_beta2:

  r ->> s ==> r °° ss ->> s °° ss

lemma apps_preserves_betas:

  rs => ss ==> r °° rs -> r °° ss