Theory NSPrimes

Up to index of Isabelle/HOL/HOL-Complex/ex

theory NSPrimes
imports Factorization Complex_Main
begin

(*  Title       : NSPrimes.thy
    Author      : Jacques D. Fleuriot
    Copyright   : 2002 University of Edinburgh
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
*)

header{*The Nonstandard Primes as an Extension of the Prime Numbers*}

theory NSPrimes
imports "~~/src/HOL/NumberTheory/Factorization" Complex_Main
begin

text{*These can be used to derive an alternative proof of the infinitude of
primes by considering a property of nonstandard sets.*}


constdefs
  hdvd  :: "[hypnat, hypnat] => bool"       (infixl "hdvd" 50)
   "(M::hypnat) hdvd N == ( *p2* (op dvd)) M N"

declare hdvd_def [transfer_unfold]

constdefs
  starprime :: "hypnat set"
  "starprime == ( *s* {p. prime p})"

declare starprime_def [transfer_unfold]

constdefs
  choicefun :: "'a set => 'a"
  "choicefun E == (@x. ∃X ∈ Pow(E) -{{}}. x : X)"

consts injf_max :: "nat => ('a::{order} set) => 'a"
primrec
  injf_max_zero: "injf_max 0 E = choicefun E"
  injf_max_Suc:  "injf_max (Suc n) E = choicefun({e. e:E & injf_max n E < e})"


text{*A "choice" theorem for ultrafilters, like almost everywhere
quantification*}

lemma UF_choice: "{n. ∃m. Q n m} : FreeUltrafilterNat
      ==> ∃f. {n. Q n (f n)} : FreeUltrafilterNat"
apply (rule_tac x = "%n. (@x. Q n x) " in exI)
apply (ultra, rule someI, auto)
done

lemma UF_if: "({n. P n} : FreeUltrafilterNat --> {n. Q n} : FreeUltrafilterNat) =
      ({n. P n --> Q n} : FreeUltrafilterNat)"
apply auto
apply ultra+
done

lemma UF_conj: "({n. P n} : FreeUltrafilterNat & {n. Q n} : FreeUltrafilterNat) =
      ({n. P n & Q n} : FreeUltrafilterNat)"
apply auto
apply ultra+
done

lemma UF_choice_ccontr: "(∀f. {n. Q n (f n)} : FreeUltrafilterNat) =
      ({n. ∀m. Q n m} : FreeUltrafilterNat)"
apply auto
 prefer 2 apply ultra
apply (rule ccontr)
apply (rule contrapos_np)
 apply (erule_tac [2] asm_rl)
apply (simp (no_asm) add: FreeUltrafilterNat_Compl_iff1 Collect_neg_eq [symmetric])
apply (rule UF_choice, ultra)
done

lemma dvd_by_all: "∀M. ∃N. 0 < N & (∀m. 0 < m & (m::nat) <= M --> m dvd N)"
apply (rule allI)
apply (induct_tac "M", auto)
apply (rule_tac x = "N * (Suc n) " in exI)
apply (safe, force)
apply (drule le_imp_less_or_eq, erule disjE)
apply (force intro!: dvd_mult2)
apply (force intro!: dvd_mult)
done

lemmas dvd_by_all2 = dvd_by_all [THEN spec, standard]

lemma lemma_hypnat_P_EX: "(∃(x::hypnat). P x) = (∃f. P (star_n f))"
apply auto
apply (rule_tac x = x in star_cases, auto)
done

lemma lemma_hypnat_P_ALL: "(∀(x::hypnat). P x) = (∀f. P (star_n f))"
apply auto
apply (rule_tac x = x in star_cases, auto)
done

lemma hdvd:
      "(star_n X hdvd star_n Y) =
       ({n. X n dvd Y n} : FreeUltrafilterNat)"
by (simp add: hdvd_def starP2)

lemma hypnat_of_nat_le_zero_iff: "(hypnat_of_nat n <= 0) = (n = 0)"
by (transfer, simp)
declare hypnat_of_nat_le_zero_iff [simp]


(* Goldblatt: Exercise 5.11(2) - p. 57 *)
lemma hdvd_by_all: "∀M. ∃N. 0 < N & (∀m. 0 < m & (m::hypnat) <= M --> m hdvd N)"
by (transfer, rule dvd_by_all)

lemmas hdvd_by_all2 = hdvd_by_all [THEN spec, standard]

(* Goldblatt: Exercise 5.11(2) - p. 57 *)
lemma hypnat_dvd_all_hypnat_of_nat:
     "∃(N::hypnat). 0 < N & (∀n ∈ -{0::nat}. hypnat_of_nat(n) hdvd N)"
apply (cut_tac hdvd_by_all)
apply (drule_tac x = whn in spec, auto)
apply (rule exI, auto)
apply (drule_tac x = "hypnat_of_nat n" in spec)
apply (auto simp add: linorder_not_less star_of_eq_0)
done


text{*The nonstandard extension of the set prime numbers consists of precisely
those hypernaturals exceeding 1 that have no nontrivial factors*}

(* Goldblatt: Exercise 5.11(3a) - p 57  *)
lemma starprime:
  "starprime = {p. 1 < p & (∀m. m hdvd p --> m = 1 | m = p)}"
by (transfer, auto simp add: prime_def)

lemma prime_two:  "prime 2"
apply (unfold prime_def, auto)
apply (frule dvd_imp_le)
apply (auto dest: dvd_0_left)
apply (case_tac m, simp, arith)
done
declare prime_two [simp]

(* proof uses course-of-value induction *)
lemma prime_factor_exists [rule_format]: "Suc 0 < n --> (∃k. prime k & k dvd n)"
apply (rule_tac n = n in nat_less_induct, auto)
apply (case_tac "prime n")
apply (rule_tac x = n in exI, auto)
apply (drule conjI [THEN not_prime_ex_mk], auto)
apply (drule_tac x = m in spec, auto)
apply (rule_tac x = ka in exI)
apply (auto intro: dvd_mult2)
done

(* Goldblatt Exercise 5.11(3b) - p 57  *)
lemma hyperprime_factor_exists [rule_format]:
  "!!n. 1 < n ==> (∃k ∈ starprime. k hdvd n)"
by (transfer, simp add: prime_factor_exists)

(* Goldblatt Exercise 3.10(1) - p. 29 *)
lemma NatStar_hypnat_of_nat: "finite A ==> *s* A = hypnat_of_nat ` A"
apply (rule_tac P = "%x. *s* x = hypnat_of_nat ` x" in finite_induct)
apply auto
done

(* proved elsewhere? *)
lemma FreeUltrafilterNat_singleton_not_mem: "{x} ∉ FreeUltrafilterNat"
by (auto intro!: FreeUltrafilterNat_finite)
declare FreeUltrafilterNat_singleton_not_mem [simp]


subsection{*Another characterization of infinite set of natural numbers*}

lemma finite_nat_set_bounded: "finite N ==> ∃n. (∀i ∈ N. i<(n::nat))"
apply (erule_tac F = N in finite_induct, auto)
apply (rule_tac x = "Suc n + x" in exI, auto)
done

lemma finite_nat_set_bounded_iff: "finite N = (∃n. (∀i ∈ N. i<(n::nat)))"
by (blast intro: finite_nat_set_bounded bounded_nat_set_is_finite)

lemma not_finite_nat_set_iff: "(~ finite N) = (∀n. ∃i ∈ N. n <= (i::nat))"
by (auto simp add: finite_nat_set_bounded_iff le_def)

lemma bounded_nat_set_is_finite2: "(∀i ∈ N. i<=(n::nat)) ==> finite N"
apply (rule finite_subset)
 apply (rule_tac [2] finite_atMost, auto)
done

lemma finite_nat_set_bounded2: "finite N ==> ∃n. (∀i ∈ N. i<=(n::nat))"
apply (erule_tac F = N in finite_induct, auto)
apply (rule_tac x = "n + x" in exI, auto)
done

lemma finite_nat_set_bounded_iff2: "finite N = (∃n. (∀i ∈ N. i<=(n::nat)))"
by (blast intro: finite_nat_set_bounded2 bounded_nat_set_is_finite2)

lemma not_finite_nat_set_iff2: "(~ finite N) = (∀n. ∃i ∈ N. n < (i::nat))"
by (auto simp add: finite_nat_set_bounded_iff2 le_def)


subsection{*An injective function cannot define an embedded natural number*}

lemma lemma_infinite_set_singleton: "∀m n. m ≠ n --> f n ≠ f m
      ==>  {n. f n = N} = {} |  (∃m. {n. f n = N} = {m})"
apply auto
apply (drule_tac x = x in spec, auto)
apply (subgoal_tac "∀n. (f n = f x) = (x = n) ")
apply auto
done

lemma inj_fun_not_hypnat_in_SHNat: "inj (f::nat=>nat) ==> star_n f ∉ Nats"
apply (auto simp add: SHNat_eq hypnat_of_nat_eq star_n_eq_iff)
apply (subgoal_tac "∀m n. m ≠ n --> f n ≠ f m", auto)
apply (drule_tac [2] injD)
prefer 2 apply assumption
apply (drule_tac N = N in lemma_infinite_set_singleton, auto)
done

lemma range_subset_mem_starsetNat:
   "range f <= A ==> star_n f ∈ *s* A"
apply (simp add: starset_def star_of_def Iset_star_n)
apply (subgoal_tac "∀n. f n ∈ A", auto)
done

(*--------------------------------------------------------------------------------*)
(* Gleason Proposition 11-5.5. pg 149, pg 155 (ex. 3) and pg. 360                 *)
(* Let E be a nonvoid ordered set with no maximal elements (note: effectively an  *)
(* infinite set if we take E = N (Nats)). Then there exists an order-preserving   *)
(* injection from N to E. Of course, (as some doofus will undoubtedly point out!  *)
(* :-)) can use notion of least element in proof (i.e. no need for choice) if     *)
(* dealing with nats as we have well-ordering property                            *)
(*--------------------------------------------------------------------------------*)

lemma lemmaPow3: "E ≠ {} ==> ∃x. ∃X ∈ (Pow E - {{}}). x: X"
by auto

lemma choicefun_mem_set: "E ≠ {} ==> choicefun E ∈ E"
apply (unfold choicefun_def)
apply (rule lemmaPow3 [THEN someI2_ex], auto)
done
declare choicefun_mem_set [simp]

lemma injf_max_mem_set: "[| E ≠{}; ∀x. ∃y ∈ E. x < y |] ==> injf_max n E ∈ E"
apply (induct_tac "n", force)
apply (simp (no_asm) add: choicefun_def)
apply (rule lemmaPow3 [THEN someI2_ex], auto)
done

lemma injf_max_order_preserving: "∀x. ∃y ∈ E. x < y ==> injf_max n E < injf_max (Suc n) E"
apply (simp (no_asm) add: choicefun_def)
apply (rule lemmaPow3 [THEN someI2_ex], auto)
done

lemma injf_max_order_preserving2: "∀x. ∃y ∈ E. x < y
      ==> ∀n m. m < n --> injf_max m E < injf_max n E"
apply (rule allI)
apply (induct_tac "n", auto)
apply (simp (no_asm) add: choicefun_def)
apply (rule lemmaPow3 [THEN someI2_ex])
apply (auto simp add: less_Suc_eq)
apply (drule_tac x = m in spec)
apply (drule subsetD, auto)
apply (drule_tac x = "injf_max m E" in order_less_trans, auto)
done

lemma inj_injf_max: "∀x. ∃y ∈ E. x < y ==> inj (%n. injf_max n E)"
apply (rule inj_onI)
apply (rule ccontr, auto)
apply (drule injf_max_order_preserving2)
apply (cut_tac m = x and n = y in less_linear, auto)
apply (auto dest!: spec)
done

lemma infinite_set_has_order_preserving_inj:
     "[| (E::('a::{order} set)) ≠ {}; ∀x. ∃y ∈ E. x < y |]
      ==> ∃f. range f <= E & inj (f::nat => 'a) & (∀m. f m < f(Suc m))"
apply (rule_tac x = "%n. injf_max n E" in exI, safe)
apply (rule injf_max_mem_set)
apply (rule_tac [3] inj_injf_max)
apply (rule_tac [4] injf_max_order_preserving, auto)
done

text{*Only need the existence of an injective function from N to A for proof*}

lemma hypnat_infinite_has_nonstandard:
     "~ finite A ==> hypnat_of_nat ` A < ( *s* A)"
apply auto
apply (subgoal_tac "A ≠ {}")
prefer 2 apply force
apply (drule infinite_set_has_order_preserving_inj)
apply (erule not_finite_nat_set_iff2 [THEN iffD1], auto)
apply (drule inj_fun_not_hypnat_in_SHNat)
apply (drule range_subset_mem_starsetNat)
apply (auto simp add: SHNat_eq)
done

lemma starsetNat_eq_hypnat_of_nat_image_finite: "*s* A =  hypnat_of_nat ` A ==> finite A"
apply (rule ccontr)
apply (auto dest: hypnat_infinite_has_nonstandard)
done

lemma finite_starsetNat_iff: "( *s* A = hypnat_of_nat ` A) = (finite A)"
by (blast intro!: starsetNat_eq_hypnat_of_nat_image_finite NatStar_hypnat_of_nat)

lemma hypnat_infinite_has_nonstandard_iff: "(~ finite A) = (hypnat_of_nat ` A < *s* A)"
apply (rule iffI)
apply (blast intro!: hypnat_infinite_has_nonstandard)
apply (auto simp add: finite_starsetNat_iff [symmetric])
done

subsection{*Existence of Infinitely Many Primes: a Nonstandard Proof*}

lemma lemma_not_dvd_hypnat_one: "~ (∀n ∈ - {0}. hypnat_of_nat n hdvd 1)"
apply auto
apply (rule_tac x = 2 in bexI)
apply (transfer, auto)
done
declare lemma_not_dvd_hypnat_one [simp]

lemma lemma_not_dvd_hypnat_one2: "∃n ∈ - {0}. ~ hypnat_of_nat n hdvd 1"
apply (cut_tac lemma_not_dvd_hypnat_one)
apply (auto simp del: lemma_not_dvd_hypnat_one)
done
declare lemma_not_dvd_hypnat_one2 [simp]

(* not needed here *)
lemma hypnat_gt_zero_gt_one:
  "!!N. [| 0 < (N::hypnat); N ≠ 1 |] ==> 1 < N"
by (transfer, simp)

lemma hypnat_add_one_gt_one:
    "!!N. 0 < N ==> 1 < (N::hypnat) + 1"
by (transfer, simp)

lemma zero_not_prime: "¬ prime 0"
apply safe
apply (drule prime_g_zero, auto)
done
declare zero_not_prime [simp]

lemma hypnat_of_nat_zero_not_prime: "hypnat_of_nat 0 ∉ starprime"
by (transfer, simp)
declare hypnat_of_nat_zero_not_prime [simp]

lemma hypnat_zero_not_prime:
   "0 ∉ starprime"
by (cut_tac hypnat_of_nat_zero_not_prime, simp)
declare hypnat_zero_not_prime [simp]

lemma one_not_prime: "¬ prime 1"
apply safe
apply (drule prime_g_one, auto)
done
declare one_not_prime [simp]

lemma one_not_prime2: "¬ prime(Suc 0)"
apply safe
apply (drule prime_g_one, auto)
done
declare one_not_prime2 [simp]

lemma hypnat_of_nat_one_not_prime: "hypnat_of_nat 1 ∉ starprime"
by (transfer, simp)
declare hypnat_of_nat_one_not_prime [simp]

lemma hypnat_one_not_prime: "1 ∉ starprime"
by (cut_tac hypnat_of_nat_one_not_prime, simp)
declare hypnat_one_not_prime [simp]

lemma hdvd_diff: "!!k m n. [| k hdvd m; k hdvd n |] ==> k hdvd (m - n)"
by (transfer, rule dvd_diff)

lemma dvd_one_eq_one: "x dvd (1::nat) ==> x = 1"
by (unfold dvd_def, auto)

lemma hdvd_one_eq_one: "!!x. x hdvd 1 ==> x = 1"
by (transfer, rule dvd_one_eq_one)

theorem not_finite_prime: "~ finite {p. prime p}"
apply (rule hypnat_infinite_has_nonstandard_iff [THEN iffD2])
apply (cut_tac hypnat_dvd_all_hypnat_of_nat)
apply (erule exE)
apply (erule conjE)
apply (subgoal_tac "1 < N + 1")
prefer 2 apply (blast intro: hypnat_add_one_gt_one)
apply (drule hyperprime_factor_exists)
apply (auto intro: STAR_mem)
apply (subgoal_tac "k ∉ hypnat_of_nat ` {p. prime p}")
apply (force simp add: starprime_def, safe)
apply (drule_tac x = x in bspec)
apply (rule ccontr, simp)
apply (drule hdvd_diff, assumption)
apply (auto dest: hdvd_one_eq_one)
done

end

lemma UF_choice:

  {n. ∃m. Q n m} ∈ \<U> ==> ∃f. {n. Q n (f n)} ∈ \<U>

lemma UF_if:

  ({n. P n} ∈ \<U> --> {n. Q n} ∈ \<U>) = ({n. P n --> Q n} ∈ \<U>)

lemma UF_conj:

  ({n. P n} ∈ \<U> ∧ {n. Q n} ∈ \<U>) = ({n. P nQ n} ∈ \<U>)

lemma UF_choice_ccontr:

  (∀f. {n. Q n (f n)} ∈ \<U>) = ({n. ∀m. Q n m} ∈ \<U>)

lemma dvd_by_all:

M. ∃N>0. ∀m. 0 < mmM --> m dvd N

lemmas dvd_by_all2:

N>0. ∀m. 0 < mmx --> m dvd N

lemmas dvd_by_all2:

N>0. ∀m. 0 < mmx --> m dvd N

lemma lemma_hypnat_P_EX:

  (∃x. P x) = (∃f. P (star_n f))

lemma lemma_hypnat_P_ALL:

  (∀x. P x) = (∀f. P (star_n f))

lemma hdvd:

  (star_n X hdvd star_n Y) = ({n. X n dvd Y n} ∈ \<U>)

lemma hypnat_of_nat_le_zero_iff:

  (star_of n ≤ 0) = (n = 0)

lemma hdvd_by_all:

M. ∃N>0. ∀m. 0 < mmM --> m hdvd N

lemmas hdvd_by_all2:

N>0. ∀m. 0 < mmx --> m hdvd N

lemmas hdvd_by_all2:

N>0. ∀m. 0 < mmx --> m hdvd N

lemma hypnat_dvd_all_hypnat_of_nat:

N>0. ∀n∈- {0}. star_of n hdvd N

lemma starprime:

  starprime = {p. 1 < p ∧ (∀m. m hdvd p --> m = 1 ∨ m = p)}

lemma prime_two:

  prime 2

lemma prime_factor_exists:

  Suc 0 < n ==> ∃k. prime kk dvd n

lemma hyperprime_factor_exists:

  1 < n ==> ∃k∈starprime. k hdvd n

lemma NatStar_hypnat_of_nat:

  finite A ==> *s* A = star_of ` A

lemma FreeUltrafilterNat_singleton_not_mem:

  {x} ∉ \<U>

Another characterization of infinite set of natural numbers

lemma finite_nat_set_bounded:

  finite N ==> ∃n. ∀iN. i < n

lemma finite_nat_set_bounded_iff:

  finite N = (∃n. ∀iN. i < n)

lemma not_finite_nat_set_iff:

  infinite N = (∀n. ∃iN. ni)

lemma bounded_nat_set_is_finite2:

iN. in ==> finite N

lemma finite_nat_set_bounded2:

  finite N ==> ∃n. ∀iN. in

lemma finite_nat_set_bounded_iff2:

  finite N = (∃n. ∀iN. in)

lemma not_finite_nat_set_iff2:

  infinite N = (∀n. ∃iN. n < i)

An injective function cannot define an embedded natural number

lemma lemma_infinite_set_singleton:

m n. mn --> f nf m ==> {n. f n = N} = {} ∨ (∃m. {n. f n = N} = {m})

lemma inj_fun_not_hypnat_in_SHNat:

  inj f ==> star_n f ∉ Nats

lemma range_subset_mem_starsetNat:

  range fA ==> star_n f ∈ *s* A

lemma lemmaPow3:

  E ≠ {} ==> ∃x. ∃X∈Pow E - {{}}. xX

lemma choicefun_mem_set:

  E ≠ {} ==> choicefun EE

lemma injf_max_mem_set:

  [| E ≠ {}; ∀x. ∃yE. x < y |] ==> injf_max n EE

lemma injf_max_order_preserving:

x. ∃yE. x < y ==> injf_max n E < injf_max (Suc n) E

lemma injf_max_order_preserving2:

x. ∃yE. x < y ==> ∀n m. m < n --> injf_max m E < injf_max n E

lemma inj_injf_max:

x. ∃yE. x < y ==> inj (%n. injf_max n E)

lemma infinite_set_has_order_preserving_inj:

  [| E ≠ {}; ∀x. ∃yE. x < y |]
  ==> ∃f. range fE ∧ inj f ∧ (∀m. f m < f (Suc m))

lemma hypnat_infinite_has_nonstandard:

  infinite A ==> star_of ` A ⊂ *s* A

lemma starsetNat_eq_hypnat_of_nat_image_finite:

  *s* A = star_of ` A ==> finite A

lemma finite_starsetNat_iff:

  (*s* A = star_of ` A) = finite A

lemma hypnat_infinite_has_nonstandard_iff:

  infinite A = (star_of ` A ⊂ *s* A)

Existence of Infinitely Many Primes: a Nonstandard Proof

lemma lemma_not_dvd_hypnat_one:

  ¬ (∀n∈- {0}. star_of n hdvd 1)

lemma lemma_not_dvd_hypnat_one2:

n∈- {0}. ¬ star_of n hdvd 1

lemma hypnat_gt_zero_gt_one:

  [| 0 < N; N ≠ 1 |] ==> 1 < N

lemma hypnat_add_one_gt_one:

  0 < N ==> 1 < N + 1

lemma zero_not_prime:

  ¬ prime 0

lemma hypnat_of_nat_zero_not_prime:

  star_of 0 ∉ starprime

lemma hypnat_zero_not_prime:

  0 ∉ starprime

lemma one_not_prime:

  ¬ prime 1

lemma one_not_prime2:

  ¬ prime (Suc 0)

lemma hypnat_of_nat_one_not_prime:

  star_of 1 ∉ starprime

lemma hypnat_one_not_prime:

  1 ∉ starprime

lemma hdvd_diff:

  [| k hdvd m; k hdvd n |] ==> k hdvd m - n

lemma dvd_one_eq_one:

  x dvd 1 ==> x = 1

lemma hdvd_one_eq_one:

  x hdvd 1 ==> x = 1

theorem not_finite_prime:

  infinite {p. prime p}