Theory Traces

Up to index of Isabelle/HOLCF/IOA

theory Traces
imports Sequence Automata
uses [Traces.ML]
begin

(*  Title:      HOLCF/IOA/meta_theory/Traces.thy
    ID:         $Id: Traces.thy,v 1.13 2005/09/02 15:24:03 wenzelm Exp $
    Author:     Olaf Müller
*)

header {* Executions and Traces of I/O automata in HOLCF *}

theory Traces
imports Sequence Automata
begin

defaultsort type

types
   ('a,'s)pairs            =    "('a * 's) Seq"
   ('a,'s)execution        =    "'s * ('a,'s)pairs"
   'a trace                =    "'a Seq"

   ('a,'s)execution_module = "('a,'s)execution set * 'a signature"
   'a schedule_module      = "'a trace set * 'a signature"
   'a trace_module         = "'a trace set * 'a signature"

consts

   (* Executions *)

  is_exec_fragC ::"('a,'s)ioa => ('a,'s)pairs -> 's => tr"
  is_exec_frag  ::"[('a,'s)ioa, ('a,'s)execution] => bool"
  has_execution ::"[('a,'s)ioa, ('a,'s)execution] => bool"
  executions    :: "('a,'s)ioa => ('a,'s)execution set"

  (* Schedules and traces *)
  filter_act    ::"('a,'s)pairs -> 'a trace"
  has_schedule  :: "[('a,'s)ioa, 'a trace] => bool"
  has_trace     :: "[('a,'s)ioa, 'a trace] => bool"
  schedules     :: "('a,'s)ioa => 'a trace set"
  traces        :: "('a,'s)ioa => 'a trace set"
  mk_trace      :: "('a,'s)ioa => ('a,'s)pairs -> 'a trace"

  laststate    ::"('a,'s)execution => 's"

  (* A predicate holds infinitely (finitely) often in a sequence *)

  inf_often      ::"('a => bool) => 'a Seq => bool"
  fin_often      ::"('a => bool) => 'a Seq => bool"

  (* fairness of executions *)

  wfair_ex       ::"('a,'s)ioa => ('a,'s)execution => bool"
  sfair_ex       ::"('a,'s)ioa => ('a,'s)execution => bool"
  is_wfair       ::"('a,'s)ioa => 'a set => ('a,'s)execution => bool"
  is_sfair       ::"('a,'s)ioa => 'a set => ('a,'s)execution => bool"
  fair_ex        ::"('a,'s)ioa => ('a,'s)execution => bool"

  (* fair behavior sets *)

  fairexecutions ::"('a,'s)ioa => ('a,'s)execution set"
  fairtraces     ::"('a,'s)ioa => 'a trace set"

  (* Notions of implementation *)
  "=<|" :: "[('a,'s1)ioa, ('a,'s2)ioa] => bool"   (infixr 12)
  fair_implements  :: "('a,'s1)ioa => ('a,'s2)ioa => bool"

  (* Execution, schedule and trace modules *)
  Execs         ::  "('a,'s)ioa => ('a,'s)execution_module"
  Scheds        ::  "('a,'s)ioa => 'a schedule_module"
  Traces        ::  "('a,'s)ioa => 'a trace_module"


defs


(*  ------------------- Executions ------------------------------ *)


is_exec_frag_def:
  "is_exec_frag A ex ==  ((is_exec_fragC A$(snd ex)) (fst ex) ~= FF)"


is_exec_fragC_def:
  "is_exec_fragC A ==(fix$(LAM h ex. (%s. case ex of
      nil => TT
    | x##xs => (flift1
            (%p. Def ((s,p):trans_of A) andalso (h$xs) (snd p))
             $x)
   )))"



executions_def:
  "executions ioa == {e. ((fst e) : starts_of(ioa)) &
                         is_exec_frag ioa e}"


(*  ------------------- Schedules ------------------------------ *)


filter_act_def:
  "filter_act == Map fst"

has_schedule_def:
  "has_schedule ioa sch ==
     (? ex:executions ioa. sch = filter_act$(snd ex))"

schedules_def:
  "schedules ioa == {sch. has_schedule ioa sch}"


(*  ------------------- Traces ------------------------------ *)

has_trace_def:
  "has_trace ioa tr ==
     (? sch:schedules ioa. tr = Filter (%a. a:ext(ioa))$sch)"

traces_def:
  "traces ioa == {tr. has_trace ioa tr}"


mk_trace_def:
  "mk_trace ioa == LAM tr.
     Filter (%a. a:ext(ioa))$(filter_act$tr)"


(*  ------------------- Fair Traces ------------------------------ *)

laststate_def:
  "laststate ex == case Last$(snd ex) of
                      UU  => fst ex
                    | Def at => snd at"

inf_often_def:
  "inf_often P s == Infinite (Filter P$s)"

(*  filtering P yields a finite or partial sequence *)
fin_often_def:
  "fin_often P s == ~inf_often P s"

(* Note that partial execs cannot be wfair as the inf_often predicate in the
   else branch prohibits it. However they can be sfair in the case when all W
   are only finitely often enabled: Is this the right model?
   See LiveIOA for solution conforming with the literature and superseding this one *)
wfair_ex_def:
  "wfair_ex A ex == ! W : wfair_of A.
                      if   Finite (snd ex)
                      then ~Enabled A W (laststate ex)
                      else is_wfair A W ex"

is_wfair_def:
  "is_wfair A W ex == (inf_often (%x. fst x:W) (snd ex)
                     | inf_often (%x.~Enabled A W (snd x)) (snd ex))"

sfair_ex_def:
  "sfair_ex A ex == ! W : sfair_of A.
                      if   Finite (snd ex)
                      then ~Enabled A W (laststate ex)
                      else is_sfair A W ex"

is_sfair_def:
  "is_sfair A W ex ==  (inf_often (%x. fst x:W) (snd ex)
                      | fin_often (%x. Enabled A W (snd x)) (snd ex))"

fair_ex_def:
  "fair_ex A ex == wfair_ex A ex & sfair_ex A ex"

fairexecutions_def:
  "fairexecutions A == {ex. ex:executions A & fair_ex A ex}"

fairtraces_def:
  "fairtraces A == {mk_trace A$(snd ex) | ex. ex:fairexecutions A}"


(*  ------------------- Implementation ------------------------------ *)

ioa_implements_def:
  "ioa1 =<| ioa2 ==
    (((inputs(asig_of(ioa1)) = inputs(asig_of(ioa2))) &
     (outputs(asig_of(ioa1)) = outputs(asig_of(ioa2)))) &
      traces(ioa1) <= traces(ioa2))"

fair_implements_def:
  "fair_implements C A == inp(C) = inp(A) &  out(C)=out(A) &
                          fairtraces(C) <= fairtraces(A)"

(*  ------------------- Modules ------------------------------ *)

Execs_def:
  "Execs A  == (executions A, asig_of A)"

Scheds_def:
  "Scheds A == (schedules A, asig_of A)"

Traces_def:
  "Traces A == (traces A,asig_of A)"

ML {* use_legacy_bindings (the_context ()) *}

end

recursive equations of operators

theorem filter_act_UU:

  filter_act·UU = UU

theorem filter_act_nil:

  filter_act·nil = nil

theorem filter_act_cons:

  filter_act·(x>>xs) = fst x>>filter_act·xs

theorem mk_trace_UU:

  mk_trace A·UU = UU

theorem mk_trace_nil:

  mk_trace A·nil = nil

theorem mk_trace_cons:

  mk_trace A·(at>>xs) =
  (if fst at ∈ ext A then fst at>>mk_trace A·xs else mk_trace A·xs)

theorem is_exec_fragC_unfold:

  is_exec_fragC A =
  (LAM ex.
      (%s. case ex of nil => TT
           | x ## xs =>
               (FLIFT p.
                   Def ((s, p)
                        ∈ trans_of A) andalso (is_exec_fragC A·xs) (snd p))·x))

theorem is_exec_fragC_UU:

  (is_exec_fragC A·UU) s = UU

theorem is_exec_fragC_nil:

  (is_exec_fragC A·nil) s = TT

theorem is_exec_fragC_cons:

  (is_exec_fragC A·(pr>>xs)) s =
  (Def ((s, pr) ∈ trans_of A) andalso (is_exec_fragC A·xs) (snd pr))

theorem is_exec_frag_UU:

  is_exec_frag A (s, UU)

theorem is_exec_frag_nil:

  is_exec_frag A (s, nil)

theorem is_exec_frag_cons:

  is_exec_frag A (s, (a, t)>>ex) = (s -a--A-> t ∧ is_exec_frag A (t, ex))

laststate

theorem laststate_UU:

  laststate (s, UU) = s

theorem laststate_nil:

  laststate (s, nil) = s

theorem laststate_cons:

  Finite ex ==> laststate (s, at>>ex) = laststate (snd at, ex)

theorem exists_laststate:

  Finite ex ==> ∀s. ∃u. laststate (s, ex) = u

has_trace, mk_trace

theorem has_trace_def2:

  has_trace A b = (∃ex∈executions A. b = mk_trace A·(snd ex))

signatures and executions, schedules

theorem execfrag_in_sig:

  is_trans_of A
  ==> ∀s. is_exec_frag A (s, xs) --> Forall (%a. a ∈ act A) (filter_act·xs)

theorem exec_in_sig:

  [| is_trans_of A; x ∈ executions A |]
  ==> Forall (%a. a ∈ act A) (filter_act·(snd x))

theorem scheds_in_sig:

  [| is_trans_of A; x ∈ schedules A |] ==> Forall (%a. a ∈ act A) x

executions are prefix closed

theorem execfrag_prefixclosed:

x s. is_exec_frag A (s, x) ∧ y << x --> is_exec_frag A (s, y)

theorem exec_prefixclosed:

  [| is_exec_frag A (x, xa); y << xa |] ==> is_exec_frag A (x, y)

theorem exec_prefix2closed:

  is_exec_frag A (s, x @@ y) ==> is_exec_frag A (s, x)