Theory HyperDef

Up to index of Isabelle/HOL/HOL-Complex

theory HyperDef
imports StarClasses Real
uses (fuf.ML)
begin

(*  Title       : HOL/Real/Hyperreal/HyperDef.thy
    ID          : $Id: HyperDef.thy,v 1.49 2005/09/15 21:46:22 huffman Exp $
    Author      : Jacques D. Fleuriot
    Copyright   : 1998  University of Cambridge
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
*)

header{*Construction of Hyperreals Using Ultrafilters*}

theory HyperDef
imports StarClasses "../Real/Real"
uses ("fuf.ML")  (*Warning: file fuf.ML refers to the name Hyperdef!*)
begin

types hypreal = "real star"

syntax hypreal_of_real :: "real => real star"
translations "hypreal_of_real" => "star_of :: real => real star"

constdefs

  omega   :: hypreal   -- {*an infinite number @{text "= [<1,2,3,...>]"} *}
  "omega == star_n (%n. real (Suc n))"

  epsilon :: hypreal   -- {*an infinitesimal number @{text "= [<1,1/2,1/3,...>]"} *}
  "epsilon == star_n (%n. inverse (real (Suc n)))"

syntax (xsymbols)
  omega   :: hypreal   ("ω")
  epsilon :: hypreal   ("ε")

syntax (HTML output)
  omega   :: hypreal   ("ω")
  epsilon :: hypreal   ("ε")


subsection{*Existence of Free Ultrafilter over the Naturals*}

text{*Also, proof of various properties of @{term FreeUltrafilterNat}: 
an arbitrary free ultrafilter*}

lemma FreeUltrafilterNat_Ex: "∃U::nat set set. freeultrafilter U"
by (rule nat_infinite [THEN freeultrafilter_Ex])

lemma FreeUltrafilterNat_mem: "freeultrafilter FreeUltrafilterNat"
apply (unfold FreeUltrafilterNat_def)
apply (rule someI_ex)
apply (rule FreeUltrafilterNat_Ex)
done

lemma UltrafilterNat_mem: "ultrafilter FreeUltrafilterNat"
by (rule FreeUltrafilterNat_mem [THEN freeultrafilter.ultrafilter])

lemma FilterNat_mem: "filter FreeUltrafilterNat"
by (rule FreeUltrafilterNat_mem [THEN freeultrafilter.filter])

lemma FreeUltrafilterNat_finite: "finite x ==> x ∉ FreeUltrafilterNat"
by (rule FreeUltrafilterNat_mem [THEN freeultrafilter.finite])

lemma FreeUltrafilterNat_not_finite: "x ∈ FreeUltrafilterNat ==> ~ finite x"
by (rule FreeUltrafilterNat_mem [THEN freeultrafilter.infinite])

lemma FreeUltrafilterNat_empty [simp]: "{} ∉ FreeUltrafilterNat"
by (rule FilterNat_mem [THEN filter.empty])

lemma FreeUltrafilterNat_Int:
     "[| X ∈ FreeUltrafilterNat;  Y ∈ FreeUltrafilterNat |]   
      ==> X Int Y ∈ FreeUltrafilterNat"
by (rule FilterNat_mem [THEN filter.Int])

lemma FreeUltrafilterNat_subset:
     "[| X ∈ FreeUltrafilterNat;  X ⊆ Y |]  
      ==> Y ∈ FreeUltrafilterNat"
by (rule FilterNat_mem [THEN filter.subset])

lemma FreeUltrafilterNat_Compl:
     "X ∈ FreeUltrafilterNat ==> -X ∉ FreeUltrafilterNat"
apply (erule contrapos_pn)
apply (erule UltrafilterNat_mem [THEN ultrafilter.not_mem_iff, THEN iffD2])
done

lemma FreeUltrafilterNat_Compl_mem:
     "X∉ FreeUltrafilterNat ==> -X ∈ FreeUltrafilterNat"
by (rule UltrafilterNat_mem [THEN ultrafilter.not_mem_iff, THEN iffD1])

lemma FreeUltrafilterNat_Compl_iff1:
     "(X ∉ FreeUltrafilterNat) = (-X ∈ FreeUltrafilterNat)"
by (rule UltrafilterNat_mem [THEN ultrafilter.not_mem_iff])

lemma FreeUltrafilterNat_Compl_iff2:
     "(X ∈ FreeUltrafilterNat) = (-X ∉ FreeUltrafilterNat)"
by (auto simp add: FreeUltrafilterNat_Compl_iff1 [symmetric])

lemma cofinite_mem_FreeUltrafilterNat: "finite (-X) ==> X ∈ FreeUltrafilterNat"
apply (drule FreeUltrafilterNat_finite)  
apply (simp add: FreeUltrafilterNat_Compl_iff2 [symmetric])
done

lemma FreeUltrafilterNat_UNIV [iff]: "UNIV ∈ FreeUltrafilterNat"
by (rule FilterNat_mem [THEN filter.UNIV])

lemma FreeUltrafilterNat_Nat_set_refl [intro]:
     "{n. P(n) = P(n)} ∈ FreeUltrafilterNat"
by simp

lemma FreeUltrafilterNat_P: "{n::nat. P} ∈ FreeUltrafilterNat ==> P"
by (rule ccontr, simp)

lemma FreeUltrafilterNat_Ex_P: "{n. P(n)} ∈ FreeUltrafilterNat ==> ∃n. P(n)"
by (rule ccontr, simp)

lemma FreeUltrafilterNat_all: "∀n. P(n) ==> {n. P(n)} ∈ FreeUltrafilterNat"
by (auto)


text{*Define and use Ultrafilter tactics*}
use "fuf.ML"

method_setup fuf = {*
    Method.ctxt_args (fn ctxt =>
        Method.METHOD (fn facts =>
            fuf_tac (local_clasimpset_of ctxt) 1)) *}
    "free ultrafilter tactic"

method_setup ultra = {*
    Method.ctxt_args (fn ctxt =>
        Method.METHOD (fn facts =>
            ultra_tac (local_clasimpset_of ctxt) 1)) *}
    "ultrafilter tactic"


text{*One further property of our free ultrafilter*}
lemma FreeUltrafilterNat_Un:
     "X Un Y ∈ FreeUltrafilterNat  
      ==> X ∈ FreeUltrafilterNat | Y ∈ FreeUltrafilterNat"
by (auto, ultra)


subsection{*Properties of @{term starrel}*}

text{*Proving that @{term starrel} is an equivalence relation*}

lemma starrel_iff: "((X,Y) ∈ starrel) = ({n. X n = Y n} ∈ FreeUltrafilterNat)"
by (rule StarDef.starrel_iff)

lemma starrel_refl: "(x,x) ∈ starrel"
by (simp add: starrel_def)

lemma starrel_sym [rule_format (no_asm)]: "(x,y) ∈ starrel --> (y,x) ∈ starrel"
by (simp add: starrel_def eq_commute)

lemma starrel_trans: 
      "[|(x,y) ∈ starrel; (y,z) ∈ starrel|] ==> (x,z) ∈ starrel"
by (simp add: starrel_def, ultra)

lemma equiv_starrel: "equiv UNIV starrel"
by (rule StarDef.equiv_starrel)

(* (starrel `` {x} = starrel `` {y}) = ((x,y) ∈ starrel) *)
lemmas equiv_starrel_iff =
    eq_equiv_class_iff [OF equiv_starrel UNIV_I UNIV_I, simp] 

lemma starrel_in_hypreal [simp]: "starrel``{x}:star"
by (simp add: star_def starrel_def quotient_def, blast)

declare Abs_star_inject [simp] Abs_star_inverse [simp]
declare equiv_starrel [THEN eq_equiv_class_iff, simp]

lemmas eq_starrelD = eq_equiv_class [OF _ equiv_starrel]

lemma lemma_starrel_refl [simp]: "x ∈ starrel `` {x}"
by (simp add: starrel_def)

lemma hypreal_empty_not_mem [simp]: "{} ∉ star"
apply (simp add: star_def)
apply (auto elim!: quotientE equalityCE)
done

lemma Rep_hypreal_nonempty [simp]: "Rep_star x ≠ {}"
by (insert Rep_star [of x], auto)

subsection{*@{term hypreal_of_real}: 
            the Injection from @{typ real} to @{typ hypreal}*}

lemma inj_hypreal_of_real: "inj(hypreal_of_real)"
by (rule inj_onI, simp)

lemma Rep_star_star_n_iff [simp]:
  "(X ∈ Rep_star (star_n Y)) = ({n. Y n = X n} ∈ \<U>)"
by (simp add: star_n_def)

lemma Rep_star_star_n: "X ∈ Rep_star (star_n X)"
by simp

subsection{* Properties of @{term star_n} *}

lemma star_n_add:
  "star_n X + star_n Y = star_n (%n. X n + Y n)"
by (simp only: star_add_def starfun2_star_n)

lemma star_n_minus:
   "- star_n X = star_n (%n. -(X n))"
by (simp only: star_minus_def starfun_star_n)

lemma star_n_diff:
     "star_n X - star_n Y = star_n (%n. X n - Y n)"
by (simp only: star_diff_def starfun2_star_n)

lemma star_n_mult:
  "star_n X * star_n Y = star_n (%n. X n * Y n)"
by (simp only: star_mult_def starfun2_star_n)

lemma star_n_inverse:
      "inverse (star_n X) = star_n (%n. inverse(X n))"
by (simp only: star_inverse_def starfun_star_n)

lemma star_n_le:
      "star_n X ≤ star_n Y =  
       ({n. X n ≤ Y n} ∈ FreeUltrafilterNat)"
by (simp only: star_le_def starP2_star_n)

lemma star_n_less:
      "star_n X < star_n Y = ({n. X n < Y n} ∈ FreeUltrafilterNat)"
by (simp only: star_less_def starP2_star_n)

lemma star_n_zero_num: "0 = star_n (%n. 0)"
by (simp only: star_zero_def star_of_def)

lemma star_n_one_num: "1 = star_n (%n. 1)"
by (simp only: star_one_def star_of_def)

lemma star_n_abs:
     "abs (star_n X) = star_n (%n. abs (X n))"
by (simp only: star_abs_def starfun_star_n)

subsection{*Misc Others*}

lemma hypreal_not_refl2: "!!(x::hypreal). x < y ==> x ≠ y"
by (auto)

lemma hypreal_eq_minus_iff: "((x::hypreal) = y) = (x + - y = 0)"
by auto

lemma hypreal_mult_left_cancel: "(c::hypreal) ≠ 0 ==> (c*a=c*b) = (a=b)"
by auto
    
lemma hypreal_mult_right_cancel: "(c::hypreal) ≠ 0 ==> (a*c=b*c) = (a=b)"
by auto

lemma hypreal_omega_gt_zero [simp]: "0 < omega"
by (simp add: omega_def star_n_zero_num star_n_less)

subsection{*Existence of Infinite Hyperreal Number*}

text{*Existence of infinite number not corresponding to any real number.
Use assumption that member @{term FreeUltrafilterNat} is not finite.*}


text{*A few lemmas first*}

lemma lemma_omega_empty_singleton_disj: "{n::nat. x = real n} = {} |  
      (∃y. {n::nat. x = real n} = {y})"
by force

lemma lemma_finite_omega_set: "finite {n::nat. x = real n}"
by (cut_tac x = x in lemma_omega_empty_singleton_disj, auto)

lemma not_ex_hypreal_of_real_eq_omega: 
      "~ (∃x. hypreal_of_real x = omega)"
apply (simp add: omega_def)
apply (simp add: star_of_def star_n_eq_iff)
apply (auto simp add: real_of_nat_Suc diff_eq_eq [symmetric] 
            lemma_finite_omega_set [THEN FreeUltrafilterNat_finite])
done

lemma hypreal_of_real_not_eq_omega: "hypreal_of_real x ≠ omega"
by (insert not_ex_hypreal_of_real_eq_omega, auto)

text{*Existence of infinitesimal number also not corresponding to any
 real number*}

lemma lemma_epsilon_empty_singleton_disj:
     "{n::nat. x = inverse(real(Suc n))} = {} |  
      (∃y. {n::nat. x = inverse(real(Suc n))} = {y})"
by auto

lemma lemma_finite_epsilon_set: "finite {n. x = inverse(real(Suc n))}"
by (cut_tac x = x in lemma_epsilon_empty_singleton_disj, auto)

lemma not_ex_hypreal_of_real_eq_epsilon: "~ (∃x. hypreal_of_real x = epsilon)"
by (auto simp add: epsilon_def star_of_def star_n_eq_iff
                   lemma_finite_epsilon_set [THEN FreeUltrafilterNat_finite])

lemma hypreal_of_real_not_eq_epsilon: "hypreal_of_real x ≠ epsilon"
by (insert not_ex_hypreal_of_real_eq_epsilon, auto)

lemma hypreal_epsilon_not_zero: "epsilon ≠ 0"
by (simp add: epsilon_def star_zero_def star_of_def star_n_eq_iff
         del: star_of_zero)

lemma hypreal_epsilon_inverse_omega: "epsilon = inverse(omega)"
by (simp add: epsilon_def omega_def star_n_inverse)


ML
{*
val omega_def = thm "omega_def";
val epsilon_def = thm "epsilon_def";

val FreeUltrafilterNat_Ex = thm "FreeUltrafilterNat_Ex";
val FreeUltrafilterNat_mem = thm "FreeUltrafilterNat_mem";
val FreeUltrafilterNat_finite = thm "FreeUltrafilterNat_finite";
val FreeUltrafilterNat_not_finite = thm "FreeUltrafilterNat_not_finite";
val FreeUltrafilterNat_empty = thm "FreeUltrafilterNat_empty";
val FreeUltrafilterNat_Int = thm "FreeUltrafilterNat_Int";
val FreeUltrafilterNat_subset = thm "FreeUltrafilterNat_subset";
val FreeUltrafilterNat_Compl = thm "FreeUltrafilterNat_Compl";
val FreeUltrafilterNat_Compl_mem = thm "FreeUltrafilterNat_Compl_mem";
val FreeUltrafilterNat_Compl_iff1 = thm "FreeUltrafilterNat_Compl_iff1";
val FreeUltrafilterNat_Compl_iff2 = thm "FreeUltrafilterNat_Compl_iff2";
val FreeUltrafilterNat_UNIV = thm "FreeUltrafilterNat_UNIV";
val FreeUltrafilterNat_Nat_set_refl = thm "FreeUltrafilterNat_Nat_set_refl";
val FreeUltrafilterNat_P = thm "FreeUltrafilterNat_P";
val FreeUltrafilterNat_Ex_P = thm "FreeUltrafilterNat_Ex_P";
val FreeUltrafilterNat_all = thm "FreeUltrafilterNat_all";
val FreeUltrafilterNat_Un = thm "FreeUltrafilterNat_Un";
val starrel_iff = thm "starrel_iff";
val starrel_in_hypreal = thm "starrel_in_hypreal";
val Abs_star_inverse = thm "Abs_star_inverse";
val lemma_starrel_refl = thm "lemma_starrel_refl";
val hypreal_empty_not_mem = thm "hypreal_empty_not_mem";
val Rep_hypreal_nonempty = thm "Rep_hypreal_nonempty";
val inj_hypreal_of_real = thm "inj_hypreal_of_real";
(* val eq_Abs_star = thm "eq_Abs_star"; *)
val star_n_minus = thm "star_n_minus";
val star_n_add = thm "star_n_add";
val star_n_diff = thm "star_n_diff";
val star_n_mult = thm "star_n_mult";
val star_n_inverse = thm "star_n_inverse";
val hypreal_mult_left_cancel = thm "hypreal_mult_left_cancel";
val hypreal_mult_right_cancel = thm "hypreal_mult_right_cancel";
val hypreal_not_refl2 = thm "hypreal_not_refl2";
val star_n_less = thm "star_n_less";
val hypreal_eq_minus_iff = thm "hypreal_eq_minus_iff";
val star_n_le = thm "star_n_le";
val star_n_zero_num = thm "star_n_zero_num";
val star_n_one_num = thm "star_n_one_num";
val hypreal_omega_gt_zero = thm "hypreal_omega_gt_zero";

val lemma_omega_empty_singleton_disj = thm"lemma_omega_empty_singleton_disj";
val lemma_finite_omega_set = thm"lemma_finite_omega_set";
val not_ex_hypreal_of_real_eq_omega = thm"not_ex_hypreal_of_real_eq_omega";
val hypreal_of_real_not_eq_omega = thm"hypreal_of_real_not_eq_omega";
val not_ex_hypreal_of_real_eq_epsilon = thm"not_ex_hypreal_of_real_eq_epsilon";
val hypreal_of_real_not_eq_epsilon = thm"hypreal_of_real_not_eq_epsilon";
val hypreal_epsilon_not_zero = thm"hypreal_epsilon_not_zero";
val hypreal_epsilon_inverse_omega = thm"hypreal_epsilon_inverse_omega";
*}

end

Existence of Free Ultrafilter over the Naturals

lemma FreeUltrafilterNat_Ex:

U. freeultrafilter U

lemma FreeUltrafilterNat_mem:

  freeultrafilter \<U>

lemma UltrafilterNat_mem:

  ultrafilter \<U>

lemma FilterNat_mem:

  Filter.filter \<U>

lemma FreeUltrafilterNat_finite:

  finite x ==> x ∉ \<U>

lemma FreeUltrafilterNat_not_finite:

  x ∈ \<U> ==> infinite x

lemma FreeUltrafilterNat_empty:

  {} ∉ \<U>

lemma FreeUltrafilterNat_Int:

  [| X ∈ \<U>; Y ∈ \<U> |] ==> XY ∈ \<U>

lemma FreeUltrafilterNat_subset:

  [| X ∈ \<U>; XY |] ==> Y ∈ \<U>

lemma FreeUltrafilterNat_Compl:

  X ∈ \<U> ==> - X ∉ \<U>

lemma FreeUltrafilterNat_Compl_mem:

  X ∉ \<U> ==> - X ∈ \<U>

lemma FreeUltrafilterNat_Compl_iff1:

  (X ∉ \<U>) = (- X ∈ \<U>)

lemma FreeUltrafilterNat_Compl_iff2:

  (X ∈ \<U>) = (- X ∉ \<U>)

lemma cofinite_mem_FreeUltrafilterNat:

  finite (- X) ==> X ∈ \<U>

lemma FreeUltrafilterNat_UNIV:

  UNIV ∈ \<U>

lemma FreeUltrafilterNat_Nat_set_refl:

  {n. P n = P n} ∈ \<U>

lemma FreeUltrafilterNat_P:

  {n. P} ∈ \<U> ==> P

lemma FreeUltrafilterNat_Ex_P:

  {n. P n} ∈ \<U> ==> ∃n. P n

lemma FreeUltrafilterNat_all:

n. P n ==> {n. P n} ∈ \<U>

lemma FreeUltrafilterNat_Un:

  XY ∈ \<U> ==> X ∈ \<U> ∨ Y ∈ \<U>

Properties of @{term starrel}

lemma starrel_iff:

  ((X, Y) ∈ starrel) = ({n. X n = Y n} ∈ \<U>)

lemma starrel_refl:

  (x, x) ∈ starrel

lemma starrel_sym:

  (x, y) ∈ starrel ==> (y, x) ∈ starrel

lemma starrel_trans:

  [| (x, y) ∈ starrel; (y, z) ∈ starrel |] ==> (x, z) ∈ starrel

lemma equiv_starrel:

  equiv UNIV starrel

lemmas equiv_starrel_iff:

  (starrel `` {x} = starrel `` {y}) = ((x, y) ∈ starrel)

lemmas equiv_starrel_iff:

  (starrel `` {x} = starrel `` {y}) = ((x, y) ∈ starrel)

lemma starrel_in_hypreal:

  starrel `` {x} ∈ star

lemmas eq_starrelD:

  [| starrel `` {a} = starrel `` {b}; b ∈ UNIV |] ==> (a, b) ∈ starrel

lemmas eq_starrelD:

  [| starrel `` {a} = starrel `` {b}; b ∈ UNIV |] ==> (a, b) ∈ starrel

lemma lemma_starrel_refl:

  x ∈ starrel `` {x}

lemma hypreal_empty_not_mem:

  {} ∉ star

lemma Rep_hypreal_nonempty:

  Rep_star x ≠ {}

@{term hypreal_of_real}: the Injection from @{typ real} to @{typ hypreal}

lemma inj_hypreal_of_real:

  inj star_of

lemma Rep_star_star_n_iff:

  (X ∈ Rep_star (star_n Y)) = ({n. Y n = X n} ∈ \<U>)

lemma Rep_star_star_n:

  X ∈ Rep_star (star_n X)

Properties of @{term star_n}

lemma star_n_add:

  star_n X + star_n Y = star_n (%n. X n + Y n)

lemma star_n_minus:

  - star_n X = star_n (%n. - X n)

lemma star_n_diff:

  star_n X - star_n Y = star_n (%n. X n - Y n)

lemma star_n_mult:

  star_n X * star_n Y = star_n (%n. X n * Y n)

lemma star_n_inverse:

  inverse (star_n X) = star_n (%n. inverse (X n))

lemma star_n_le:

  (star_n X ≤ star_n Y) = ({n. X nY n} ∈ \<U>)

lemma star_n_less:

  (star_n X < star_n Y) = ({n. X n < Y n} ∈ \<U>)

lemma star_n_zero_num:

  0 = star_n (%n. 0::'a)

lemma star_n_one_num:

  1 = star_n (%n. 1::'a)

lemma star_n_abs:

  ¦star_n X¦ = star_n (%n. ¦X n¦)

Misc Others

lemma hypreal_not_refl2:

  x < y ==> xy

lemma hypreal_eq_minus_iff:

  (x = y) = (x + - y = 0)

lemma hypreal_mult_left_cancel:

  c ≠ 0 ==> (c * a = c * b) = (a = b)

lemma hypreal_mult_right_cancel:

  c ≠ 0 ==> (a * c = b * c) = (a = b)

lemma hypreal_omega_gt_zero:

  0 < ω

Existence of Infinite Hyperreal Number

lemma lemma_omega_empty_singleton_disj:

  {n. x = real n} = {} ∨ (∃y. {n. x = real n} = {y})

lemma lemma_finite_omega_set:

  finite {n. x = real n}

lemma not_ex_hypreal_of_real_eq_omega:

  ¬ (∃x. star_of x = ω)

lemma hypreal_of_real_not_eq_omega:

  star_of x ≠ ω

lemma lemma_epsilon_empty_singleton_disj:

  {n. x = inverse (real (Suc n))} = {} ∨
  (∃y. {n. x = inverse (real (Suc n))} = {y})

lemma lemma_finite_epsilon_set:

  finite {n. x = inverse (real (Suc n))}

lemma not_ex_hypreal_of_real_eq_epsilon:

  ¬ (∃x. star_of x = ε)

lemma hypreal_of_real_not_eq_epsilon:

  star_of x ≠ ε

lemma hypreal_epsilon_not_zero:

  ε ≠ 0

lemma hypreal_epsilon_inverse_omega:

  ε = inverse ω