(* ID: $Id: recon_transfer_proof.ML,v 1.37 2005/09/29 10:45:16 paulson Exp $ Author: Claire Quigley Copyright 2004 University of Cambridge *) structure Recon_Transfer = struct open Recon_Parse infixr 8 ++; infixr 7 >>; infixr 6 ||; val trace_path = Path.basic "transfer_trace"; fun trace s = if !Output.show_debug_msgs then File.append (File.tmp_path trace_path) s else (); (* Versions that include type information *) (* FIXME rename to str_of_thm *) fun string_of_thm thm = setmp show_sorts true (Pretty.str_of o Display.pretty_thm) thm; (* check separate args in the watcher program for separating strings with a * or ; or something *) fun clause_strs_to_string [] str = str | clause_strs_to_string (x::xs) str = clause_strs_to_string xs (str^x^"%") fun thmvars_to_string [] str = str | thmvars_to_string (x::xs) str = thmvars_to_string xs (str^x^"%") fun proofstep_to_string Axiom = "Axiom()" | proofstep_to_string (Binary ((a,b), (c,d)))= "Binary(("^(string_of_int a)^","^(string_of_int b)^"),("^(string_of_int c)^","^(string_of_int d)^"))" | proofstep_to_string (Factor (a,b,c)) = "Factor("^(string_of_int a)^","^(string_of_int b)^","^(string_of_int c)^")" | proofstep_to_string (Para ((a,b), (c,d)))= "Para(("^(string_of_int a)^","^(string_of_int b)^"),("^(string_of_int c)^","^(string_of_int d)^"))" | proofstep_to_string (MRR ((a,b), (c,d))) = "MRR(("^(string_of_int a)^","^(string_of_int b)^"),("^(string_of_int c)^","^(string_of_int d)^"))" (*| proofstep_to_string (Rewrite((a,b),(c,d))) = "Rewrite(("^(string_of_int a)^","^(string_of_int b)^"),("^(string_of_int c)^","^(string_of_int d)^"))"*) fun proof_to_string (num,(step,clause_strs, thmvars)) = (string_of_int num)^(proofstep_to_string step)^ "["^(clause_strs_to_string clause_strs "")^"]["^(thmvars_to_string thmvars "")^"]" fun proofs_to_string [] str = str | proofs_to_string (x::xs) str = let val newstr = proof_to_string x in proofs_to_string xs (str^newstr) end fun init_proofstep_to_string (num, step, clause_strs) = (string_of_int num)^" "^(proofstep_to_string step)^" "^ (clause_strs_to_string clause_strs "")^" " fun init_proofsteps_to_string [] str = str | init_proofsteps_to_string (x::xs) str = let val newstr = init_proofstep_to_string x in init_proofsteps_to_string xs (str^newstr) end (*** get a string representing the Isabelle ordered axioms ***) fun origAx_to_string (num,(meta,thmvars)) = let val clause_strs = ReconOrderClauses.get_meta_lits_bracket meta in (string_of_int num)^"OrigAxiom()["^ (clause_strs_to_string clause_strs "")^"]["^ (thmvars_to_string thmvars "")^"]" end fun origAxs_to_string [] str = str | origAxs_to_string (x::xs) str = let val newstr = origAx_to_string x in origAxs_to_string xs (str^newstr) end (*** get a string representing the Isabelle ordered axioms not used in the spass proof***) fun extraAx_to_string (num, (meta,thmvars)) = let val clause_strs = ReconOrderClauses.get_meta_lits_bracket meta in (string_of_int num)^"ExtraAxiom()["^ (clause_strs_to_string clause_strs "")^"]"^ "["^(thmvars_to_string thmvars "")^"]" end; fun extraAxs_to_string [] str = str | extraAxs_to_string (x::xs) str = let val newstr = extraAx_to_string x in extraAxs_to_string xs (str^newstr) end; fun is_axiom (_,Axiom,str) = true | is_axiom (_,_,_) = false fun get_step_nums [] nums = nums | get_step_nums (( num:int,Axiom, str)::xs) nums = get_step_nums xs (nums@[num]) exception Noassoc; fun assoc_snd a [] = raise Noassoc | assoc_snd a ((x, y)::t) = if a = y then x else assoc_snd a t; (* change to be something using check_order instead of a = y --> returns true if ASSERTION not raised in checkorder, false otherwise *) (*fun get_assoc_snds [] xs assocs= assocs | get_assoc_snds (x::xs) ys assocs = get_assoc_snds xs ys (assocs@[((assoc_snd x ys))]) *) (*FIX - should this have vars in it? *) fun there_out_of_order xs ys = (ReconOrderClauses.checkorder xs ys [] ([],[],[]); true) handle _ => false fun assoc_out_of_order a [] = raise Noassoc | assoc_out_of_order a ((b,c)::t) = if there_out_of_order a c then b else assoc_out_of_order a t; fun get_assoc_snds [] xs assocs= assocs | get_assoc_snds (x::xs) ys assocs = get_assoc_snds xs ys (assocs@[((assoc_out_of_order x ys))]) fun add_if_not_inlist [] xs newlist = newlist | add_if_not_inlist (y::ys) xs newlist = if (not (y mem xs)) then add_if_not_inlist ys xs (y::newlist) else add_if_not_inlist ys xs (newlist) (*Flattens a list of list of strings to one string*) fun onestr ls = String.concat (map String.concat ls); fun is_clasimp_ax clasimp_num n = n <= clasimp_num fun subone x = x - 1 fun numstr [] = "" | numstr (x::xs) = (string_of_int x)^"%"^(numstr xs) (* retrieve the axioms that were obtained from the clasimpset *) fun get_clasimp_cls (clause_arr: (ResClause.clause * thm) array) step_nums = let val clasimp_nums = List.filter (is_clasimp_ax (Array.length clause_arr - 1)) (map subone step_nums) in map (fn x => Array.sub(clause_arr, x)) clasimp_nums end (*****************************************************) (* get names of clasimp axioms used *) (*****************************************************) fun get_axiom_names step_nums clause_arr = let (* not sure why this is necessary again, but seems to be *) val _ = (print_mode := (Library.gen_rems (op =) (! print_mode, ["xsymbols", "symbols"]))) (***********************************************) (* here need to add the clauses from clause_arr*) (***********************************************) val clasimp_names_cls = get_clasimp_cls clause_arr step_nums val clasimp_names = map (ResClause.get_axiomName o #1) clasimp_names_cls val _ = (print_mode := (["xsymbols", "symbols"] @ ! print_mode)) in clasimp_names end fun get_axiom_names_spass proofstr clause_arr = let (* parse spass proof into datatype *) val _ = trace ("\nStarted parsing:\n" ^ proofstr) val proof_steps = parse (#1(lex proofstr)) val _ = trace "\nParsing finished!" (* get axioms as correctly numbered clauses w.r.t. the Spass proof *) in get_axiom_names (get_step_nums (List.filter is_axiom proof_steps) []) clause_arr end; (*String contains multiple lines. A list consisting of the first number in each line is returned. *) fun get_linenums proofstr = let val numerics = String.tokens (not o Char.isDigit) fun firstno [] = NONE | firstno (x::xs) = Int.fromString x val lines = String.tokens (fn c => c = #"\n") proofstr in List.mapPartial (firstno o numerics) lines end fun get_axiom_names_e proofstr clause_arr = get_axiom_names (get_linenums proofstr) clause_arr; (*String contains multiple lines. We want those of the form "*********** [448, input] ***********". A list consisting of the first number in each line is returned. *) fun get_vamp_linenums proofstr = let val toks = String.tokens (not o Char.isAlphaNum) fun inputno [n,"input"] = Int.fromString n | inputno _ = NONE val lines = String.tokens (fn c => c = #"\n") proofstr in List.mapPartial (inputno o toks) lines end fun get_axiom_names_vamp proofstr clause_arr = get_axiom_names (get_vamp_linenums proofstr) clause_arr; (***********************************************) (* get axioms for reconstruction *) (***********************************************) fun numclstr (vars, []) str = str | numclstr ( vars, ((num, thm)::rest)) str = let val newstr = str^(string_of_int num)^" "^(string_of_thm thm)^" " in numclstr (vars,rest) newstr end fun addvars c (a,b) = (a,b,c) fun get_axioms_used proof_steps thms clause_arr = let val _= (print_mode := (Library.gen_rems (op =) (! print_mode, ["xsymbols", "symbols"]))) val axioms = (List.filter is_axiom) proof_steps val step_nums = get_step_nums axioms [] val clauses = make_clauses thms (*FIXME: must this be repeated??*) val vars = map thm_vars clauses val distvars = distinct (fold append vars []) val clause_terms = map prop_of clauses val clause_frees = List.concat (map term_frees clause_terms) val frees = map lit_string_with_nums clause_frees; val distfrees = distinct frees val metas = map Meson.make_meta_clause clauses val ax_strs = map #3 axioms (* literals of -all- axioms, not just those used by spass *) val meta_strs = map ReconOrderClauses.get_meta_lits metas val metas_and_strs = ListPair.zip (metas,meta_strs) val _ = trace ("\nAxioms: " ^ onestr ax_strs) val _ = trace ("\nMeta_strs: " ^ onestr meta_strs) (* get list of axioms as thms with their variables *) val ax_metas = get_assoc_snds ax_strs metas_and_strs [] val ax_vars = map thm_vars ax_metas val ax_with_vars = ListPair.zip (ax_metas,ax_vars) (* get list of extra axioms as thms with their variables *) val extra_metas = add_if_not_inlist metas ax_metas [] val extra_vars = map thm_vars extra_metas val extra_with_vars = if (not (extra_metas = []) ) then ListPair.zip (extra_metas,extra_vars) else [] in (distfrees,distvars, extra_with_vars,ax_with_vars, ListPair.zip (step_nums,ax_metas)) end; (*********************************************************************) (* Pass in spass string of proof and string version of isabelle goal *) (* Get out reconstruction steps as a string to be sent to Isabelle *) (*********************************************************************) fun rules_to_string [] = "NONE" | rules_to_string xs = "[" ^ space_implode ", " xs ^ "]" fun subst_for a b = String.translate (fn c => str (if c=a then b else c)); val remove_linebreaks = subst_for #"\n" #"\t"; val restore_linebreaks = subst_for #"\t" #"\n"; fun prover_lemma_list_aux getax proofstr goalstring toParent ppid clause_arr = let val _ = trace ("\nGetting lemma names. proofstr is " ^ proofstr ^ "\ngoalstr is " ^ goalstring ^ "\nnum of clauses is " ^ string_of_int (Array.length clause_arr)) val axiom_names = getax proofstr clause_arr val ax_str = rules_to_string axiom_names in trace ("\nDone. Lemma list is " ^ ax_str); TextIO.output (toParent, "Success. Lemmas used in automatic proof: " ^ ax_str ^ "\n"); TextIO.output (toParent, "goalstring: "^goalstring^"\n"); TextIO.flushOut toParent; Posix.Process.kill(Posix.Process.K_PROC ppid, Posix.Signal.usr2) end handle exn => (*FIXME: exn handler is too general!*) (trace ("\nprover_lemma_list_aux: In exception handler: " ^ Toplevel.exn_message exn); TextIO.output (toParent, "Translation failed for the proof: " ^ remove_linebreaks proofstr ^ "\n"); TextIO.output (toParent, remove_linebreaks goalstring ^ "\n"); TextIO.flushOut toParent; Posix.Process.kill(Posix.Process.K_PROC ppid, Posix.Signal.usr2)); val e_lemma_list = prover_lemma_list_aux get_axiom_names_e; val vamp_lemma_list = prover_lemma_list_aux get_axiom_names_vamp; val spass_lemma_list = prover_lemma_list_aux get_axiom_names_spass; (**** Full proof reconstruction for SPASS (not really working) ****) fun spass_reconstruct proofstr goalstring toParent ppid thms clause_arr = let val _ = trace ("\nspass_reconstruct. Proofstr is "^proofstr) val tokens = #1(lex proofstr) (* parse spass proof into datatype *) (***********************************) val proof_steps = parse tokens val _ = trace "\nParsing finished" (************************************) (* recreate original subgoal as thm *) (************************************) (* get axioms as correctly numbered clauses w.r.t. the Spass proof *) (* need to get prems_of thm, then get right one of the prems, relating to whichever*) (* subgoal this is, and turn it into meta_clauses *) (* should prob add array and table here, so that we can get axioms*) (* produced from the clasimpset rather than the problem *) val (frees,vars,extra_with_vars ,ax_with_vars,numcls) = get_axioms_used proof_steps thms clause_arr (*val numcls_string = numclstr ( vars, numcls) ""*) val _ = trace "\ngot axioms" (************************************) (* translate proof *) (************************************) val _ = trace ("\nabout to translate proof, steps: " ^ (init_proofsteps_to_string proof_steps "")) val (newthm,proof) = translate_proof numcls proof_steps vars val _ = trace ("translated proof, steps: "^(init_proofsteps_to_string proof_steps "")) (***************************************************) (* transfer necessary steps as strings to Isabelle *) (***************************************************) (* turn the proof into a string *) val reconProofStr = proofs_to_string proof "" (* do the bit for the Isabelle ordered axioms at the top *) val ax_nums = map #1 numcls val ax_strs = map ReconOrderClauses.get_meta_lits_bracket (map #2 numcls) val numcls_strs = ListPair.zip (ax_nums,ax_strs) val num_cls_vars = map (addvars vars) numcls_strs; val reconIsaAxStr = origAxs_to_string (ListPair.zip (ax_nums,ax_with_vars)) "" val extra_nums = if (not (extra_with_vars = [])) then (1 upto (length extra_with_vars)) else [] val reconExtraAxStr = extraAxs_to_string ( ListPair.zip (extra_nums,extra_with_vars)) "" val frees_str = "["^(thmvars_to_string frees "")^"]" val reconstr = (frees_str^reconExtraAxStr^reconIsaAxStr^reconProofStr) val _ = trace ("\nReconstruction:\n" ^ reconstr) in TextIO.output (toParent, reconstr^"\n"); TextIO.output (toParent, goalstring^"\n"); TextIO.flushOut toParent; Posix.Process.kill(Posix.Process.K_PROC ppid, Posix.Signal.usr2); all_tac end handle exn => (*FIXME: exn handler is too general!*) (trace ("\nspass_reconstruct. In exception handler: " ^ Toplevel.exn_message exn); TextIO.output (toParent,"Translation failed for the proof:"^ (remove_linebreaks proofstr) ^"\n"); TextIO.output (toParent, goalstring^"\n"); TextIO.flushOut toParent; Posix.Process.kill(Posix.Process.K_PROC ppid, Posix.Signal.usr2); all_tac) (**********************************************************************************) (* At other end, want to turn back into datatype so can apply reconstruct_proof. *) (* This will be done by the signal handler *) (**********************************************************************************) (* Parse in the string version of the proof steps for reconstruction *) (* Isar format: cl1 [BINARY 0 cl2 0];cl1 [PARAMOD 0 cl2 0]; cl1 [DEMOD 0 cl2];cl1 [FACTOR 1 2];*) val term_numstep = (number ++ (a (Other ",")) ++ number) >> (fn (a, (_, c)) => (a, c)) val extraaxiomstep = (a (Word "ExtraAxiom"))++ (a (Other "(")) ++(a (Other ")")) >> (fn (_) => ExtraAxiom) val origaxiomstep = (a (Word "OrigAxiom"))++ (a (Other "(")) ++(a (Other ")")) >> (fn (_) => OrigAxiom) val axiomstep = (a (Word "Axiom"))++ (a (Other "(")) ++(a (Other ")")) >> (fn (_) => Axiom) val binarystep = (a (Word "Binary")) ++ (a (Other "(")) ++ (a (Other "(")) ++ term_numstep ++ (a (Other ")")) ++ (a (Other ",")) ++ (a (Other "(")) ++ term_numstep ++ (a (Other ")")) ++ (a (Other ")")) >> (fn (_, (_, (_, (c, (_,(_,(_, (e,(_,_))))))))) => Binary (c,e)) val parastep = (a (Word "Para")) ++ (a (Other "(")) ++ (a (Other "(")) ++ term_numstep ++ (a (Other ")")) ++ (a (Other ",")) ++ (a (Other "(")) ++ term_numstep ++ (a (Other ")")) ++ (a (Other ")")) >> (fn (_, (_, (_, (c, (_,(_,(_, (e,(_,_))))))))) => Para(c, e)) val mrrstep = (a (Word "MRR")) ++ (a (Other "(")) ++ (a (Other "(")) ++ term_numstep ++ (a (Other ")")) ++ (a (Other ",")) ++ (a (Other "(")) ++ term_numstep ++ (a (Other ")")) ++ (a (Other ")")) >> (fn (_, (_, (_, (c, (_,(_,(_, (e,(_,_))))))))) => MRR(c, e)) val factorstep = (a (Word "Factor")) ++ (a (Other "(")) ++ number ++ (a (Other ",")) ++ number ++ (a (Other ",")) ++ number ++ (a (Other ")")) >> (fn (_, (_, (c, (_, (e,(_,(f,_))))))) => Factor (c,e,f)) (*val rewritestep = (a (Word "Rewrite")) ++ (a (Other "(")) ++ (a (Other "(")) ++ term_numstep ++ (a (Other ")")) ++ (a (Other ",")) ++ (a (Other "(")) ++ term_numstep ++ (a (Other ")")) ++ (a (Other ")")) >> (fn (_, (_, (_, (c, (_,(_,(_, (e,(_,_))))))))) => Rewrite (c,e))*) val obviousstep = (a (Word "Obvious")) ++ (a (Other "(")) ++ term_numstep ++ (a (Other ")")) >> (fn (_, (_, (c,_))) => Obvious (c)) val methodstep = extraaxiomstep || origaxiomstep || axiomstep ||binarystep || factorstep|| parastep || mrrstep || (*rewritestep ||*) obviousstep val number_list_step = ( number ++ many ((a (Other ",") ++ number)>> #2)) >> (fn (a,b) => (a::b)) val numberlist_step = a (Other "[") ++ a (Other "]") >>(fn (_,_) => ([]:int list)) || a (Other "[") ++ number_list_step ++ a (Other "]") >>(fn (_,(a,_)) => a) (** change this to allow P (x U) *) fun arglist_step input = ( word ++ many word >> (fn (a, b) => (a^" "^(space_implode " " b))) ||word >> (fn (a) => (a)))input fun literal_step input = (word ++ a (Other "(") ++ arglist_step ++ a (Other ")") >>(fn (a, (b, (c,d))) => (a^" ("^(c)^")")) || arglist_step >> (fn (a) => (a)))input (* fun term_step input = (a (Other "~") ++ arglist_step ++ a (Other "%")>> (fn (a,(b,c)) => ("~ "^b)) || arglist_step ++ a (Other "%")>> (fn (a,b) => a ))input *) fun term_step input = (a (Other "~") ++ literal_step ++ a (Other "%")>> (fn (a,(b,c)) => ("~ "^b)) || literal_step ++ a (Other "%")>> (fn (a,b) => a ))input val term_list_step = ( term_step ++ many ( term_step)) >> (fn (a,b) => (a::b)) val term_lists_step = a (Other "[") ++ a (Other "]") >>(fn (_,_) => ([]:string list)) || a (Other "[") ++ term_list_step ++ a (Other "]") >>(fn (_,(a,_)) => a) fun anytoken_step input = (word>> (fn (a) => a) ) input handle NOPARSE_WORD => (number>> (fn (a) => string_of_int a) ) input handle NOPARSE_NUMBER => (other_char >> (fn(a) => a)) input fun goalstring_step input= (anytoken_step ++ many (anytoken_step ) >> (fn (a,b) => (a^" "^(implode b)))) input val linestep = number ++ methodstep ++ term_lists_step ++ term_lists_step >> (fn (a, (b, (c,d))) => (a,(b,c,d))) val lines_step = many linestep val alllines_step = (term_lists_step ++ lines_step ) ++ finished >> #1 val parse_step = #1 o alllines_step (* val reconstr ="[P%x%xa%xb%]1OrigAxiom()[P x%~ P U%][U%]3OrigAxiom()[P U%~ P x%][U%]5OrigAxiom()[~ P xa%~ P U%][U%]7OrigAxiom()[P U%P xb%][U%]1Axiom()[P x%~ P U%][U%]3Axiom()[P U%~ P x%][U%]5Axiom()[~ P U%~ P xa%][U%]7Axiom()[P U%P xb%][U%]9Factor(5,0,1)[~ P xa%][]10Binary((9,0),(3,0))[~ P x%][]11Binary((10,0),(1,0))[~ P U%][U%]12Factor(7,0,1)[P xb%][]14Binary((11,0),(12,0))[][]%(EX x::'a::type. ALL y::'a::type. (P::'a::type => bool) x = P y) -->(EX x::'a::type. P x) = (ALL y::'a::type. P y)" *) (************************************************************) (* Construct an Isar style proof from a list of proof steps *) (************************************************************) (* want to assume all axioms, then do haves for the other clauses*) (* then show for the last step *) (* replace ~ by not here *) val change_nots = String.translate (fn c => if c = #"~" then "¬" else str c); fun clstrs_to_string xs = space_implode "; " (map change_nots xs); fun thmvars_to_quantstring [] str = str | thmvars_to_quantstring (x::[]) str =str^x^". " | thmvars_to_quantstring (x::xs) str = thmvars_to_quantstring xs (str^(x^" ")) fun clause_strs_to_isar clstrs [] = "\"[|"^(clstrs_to_string clstrs)^"|] ==> False\"" | clause_strs_to_isar clstrs thmvars = "\"!!"^(thmvars_to_quantstring thmvars "")^ "[|"^(clstrs_to_string clstrs)^"|] ==> False\"" fun frees_to_isar_str clstrs = space_implode " " (map change_nots clstrs) (***********************************************************************) (* functions for producing assumptions for the Isabelle ordered axioms *) (***********************************************************************) (*val str = "[P%x%xa%xb%]1OrigAxiom()[P x%~ P U%][U%]3OrigAxiom()[P U%~ P x%][U%]5OrigAxiom()[~ P xa%~ P U%][U%]7OrigAxiom()[P U%P xb%][U%]1Axiom()[P x%~ P U%][U%]3Axiom()[P U%~ P x%][U%]5Axiom()[~ P U%~ P xa%][U%]7Axiom()[P U%P xb%][U%]9Factor(5,0,1)[~ P xa%][]10Binary((9,0),(3,0))[~ P x%][]11Binary((10,0),(1,0))[~ P U%][U%]12Factor(7,0,1)[P xb%][]14Binary((11,0),(12,0))[][]"; num, rule, clausestrs, vars*) (* assume the extra clauses - not used in Spass proof *) fun is_extraaxiom_step ( num:int,(ExtraAxiom, str, tstr)) = true | is_extraaxiom_step (num, _) = false fun get_extraaxioms xs = List.filter (is_extraaxiom_step) ( xs) fun assume_isar_extraaxiom [] str = str | assume_isar_extraaxiom ((numb,(step, clstr, thmvars))::xs) str = assume_isar_extraaxiom xs (str^"and cl"^(string_of_int numb)^"': "^(clause_strs_to_isar clstr thmvars)^"\n " ) fun assume_isar_extraaxioms [] = "" |assume_isar_extraaxioms ((numb,(step, clstrs, thmstrs))::xs) = let val str = "assume cl"^(string_of_int numb)^"': "^(clause_strs_to_isar clstrs thmstrs)^"\n" in assume_isar_extraaxiom xs str end (* assume the Isabelle ordered clauses *) fun is_origaxiom_step ( num:int,(OrigAxiom, str, tstr)) = true | is_origaxiom_step (num, _) = false fun get_origaxioms xs = List.filter (is_origaxiom_step) ( xs) fun assume_isar_origaxiom [] str = str | assume_isar_origaxiom ((numb,(step, clstr, thmvars))::xs) str = assume_isar_origaxiom xs (str^"and cl"^(string_of_int numb)^"': "^(clause_strs_to_isar clstr thmvars)^"\n " ) fun assume_isar_origaxioms ((numb,(step, clstrs, thmstrs))::xs) = let val str = "assume cl"^(string_of_int numb)^"': "^(clause_strs_to_isar clstrs thmstrs)^"\n" in assume_isar_origaxiom xs str end fun is_axiom_step ( num:int,(Axiom, str, tstr)) = true | is_axiom_step (num, _) = false fun get_axioms xs = List.filter (is_axiom_step) ( xs) fun have_isar_axiomline (numb,(step, clstrs, thmstrs))="have cl"^(string_of_int numb)^": "^(clause_strs_to_isar clstrs thmstrs)^"\n" fun by_isar_axiomline (numb,(step, clstrs, thmstrs))="by (rule cl"^ (string_of_int numb)^"') \n" fun isar_axiomline (numb, (step, clstrs, thmstrs)) = (have_isar_axiomline (numb,(step,clstrs, thmstrs )))^( by_isar_axiomline(numb,(step,clstrs, thmstrs )) ) fun isar_axiomlines [] str = str | isar_axiomlines (x::xs) str = isar_axiomlines xs (str^(isar_axiomline x)) fun have_isar_line (numb,(step, clstrs, thmstrs))="have cl"^(string_of_int numb)^": "^(clause_strs_to_isar clstrs thmstrs)^"\n" (*FIX: ask Larry to add and mrr attribute *) fun by_isar_line ((Binary ((a,b), (c,d)))) = "by(rule cl"^ (string_of_int a)^" [binary "^(string_of_int b)^" cl"^ (string_of_int c)^" "^(string_of_int d)^"])\n" |by_isar_line ((MRR ((a,b), (c,d)))) = "by(rule cl"^ (string_of_int a)^" [binary "^(string_of_int b)^" cl"^ (string_of_int c)^" "^(string_of_int d)^"])\n" | by_isar_line ( (Para ((a,b), (c,d)))) = "by (rule cl"^ (string_of_int a)^" [paramod "^(string_of_int b)^" cl"^ (string_of_int c)^" "^(string_of_int d)^"])\n" | by_isar_line ((Factor ((a,b,c)))) = "by (rule cl"^(string_of_int a)^" [factor "^(string_of_int b)^" "^ (string_of_int c)^" ])\n" (*| by_isar_line ( (Rewrite ((a,b),(c,d)))) = "by (rule cl"^(string_of_int a)^" [demod "^(string_of_int b)^" "^ (string_of_int c)^" "^(string_of_int d)^" ])\n"*) | by_isar_line ( (Obvious ((a,b)))) = "by (rule cl"^(string_of_int a)^" [obvious "^(string_of_int b)^" ])\n" fun isar_line (numb, (step, clstrs, thmstrs)) = (have_isar_line (numb,(step,clstrs, thmstrs )))^( by_isar_line step) fun isar_lines [] str = str | isar_lines (x::xs) str = isar_lines xs (str^(isar_line x)) fun last_isar_line (numb,( step, clstrs,thmstrs)) = "show \"False\"\n"^(by_isar_line step) fun to_isar_proof (frees, xs, goalstring) = let val extraaxioms = get_extraaxioms xs val extraax_num = length extraaxioms val origaxioms_and_steps = Library.drop (extraax_num, xs) val origaxioms = get_origaxioms origaxioms_and_steps val origax_num = length origaxioms val axioms_and_steps = Library.drop (origax_num + extraax_num, xs) val axioms = get_axioms axioms_and_steps val steps = Library.drop (origax_num, axioms_and_steps) val firststeps = ReconOrderClauses.butlast steps val laststep = List.last steps val goalstring = implode(ReconOrderClauses.butlast(explode goalstring)) val isar_proof = ("show \""^goalstring^"\"\n")^ ("proof (rule ccontr,skolemize, make_clauses) \n")^ ("fix "^(frees_to_isar_str frees)^"\n")^ (assume_isar_extraaxioms extraaxioms)^ (assume_isar_origaxioms origaxioms)^ (isar_axiomlines axioms "")^ (isar_lines firststeps "")^ (last_isar_line laststep)^ ("qed") val _ = trace ("\nto_isar_proof returns " ^ isar_proof) in isar_proof end; (* get fix vars from axioms - all Frees *) (* check each clause for meta-vars and /\ over them at each step*) (*******************************************************) (* This assumes the thm list "numcls" is still there *) (* In reality, should probably label it with an *) (* ID number identifying the subgoal. This could *) (* be passed over to the watcher, e.g. numcls25 *) (*******************************************************) fun apply_res_thm str goalstring = let val tokens = #1 (lex str); val _ = trace ("\napply_res_thm. str is: "^str^" goalstr is: "^goalstring^"\n") val (frees,recon_steps) = parse_step tokens in to_isar_proof (frees, recon_steps, goalstring) end end;