Scot Gardner 1

Xaraya Module Developers Guide

Xa rayq‘

Submitted to
Xaraya Development Community

Prepared by
Scot R. Gardner
Xaraya Development Team
September 21, 2003

revised August 15, 2004

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 2

« Xaraya Developers Guide
Table of Contents

Xaraya DevelopersS GUIAEC. u . e e et eeeeeeeeeeeeeeneeneenns 2
AW o = i X o 3
TNt rOAUCE I ON e v v e e e e e e e e e e e e e e e et e e e et et et 4
DI SCUSSION . v e e v et e et ettt e et e ettt e s et aes et aes et aeseeaeneeas 5
What 15 @ MOAULE? . o v v i i it et et e et et ettt eeseeseeeeeeans 5
Why write a moOdUlE?. .. . ittt e e e e e e et e e et eeee e 6
Related DOCUMENETS . « v v vttt et et e et e e e et ettt aesesaenenas 6
Suggestions and UpPdateS . .. v e e e e et eeeeeeeeeeeeeeeeeeeeeens 6
Xaraya ArChIiteCtUrE. @ v it et e i e e e e e e et et ettt ettt et e eeeeens 6
Variable RandlINg. ee e e e e e oo eeeeeeeeeeeeeeeeeeeeeeeeans 6
USELr VaArIablesS . .uuu ettt e ettt eeensssesseeeeeeas 6
Variable validation. et eeeeeeeeeeneeeeeeeeeans 8
Error RAandling. . . e . e e e e e e e e e e oo eeeeeeeeeeeeeeeeeeeeeeneeas 10
Xaraya Module DeSIgN. e e e e e e e eeeeeeeeeeeeeeeen 12
Separation of User and Administrator FunctionsS............ 13
Separation of Display and Operational FunctionsS........... 13
Single Directory Installation...........euiieieeeeenenenn. 13
External Access to Module FUNCEIONS. ... uuu e eeeeeeeneeenens 13
Xaraya Module OpPErationsS e e e e e e e e eeeeeeeeeeeeen 13
Locating MOAUILES . v v o v ittt et e et e ettt ee et eeeeeeaeeaens 14
Working out Module FUuncCtionality........eeeeeeeeeeeeeeeesas 14
Initializing MOAUILES . . v v e i ittt ettt ettt et eeneeeeeeans 14
Activating/Deactivating MOAULESt eeeeeeeneeeeeens 14
Calling Module FUNCEIONS . v o v v ettt ettt e eeeeeeeseeneeeeeeans 14
Creating MOAULE URLS . . v v e et eeeeeeeeeeeeeeeeeeeeeeneenns 14
Direct URLS tO fUNCEIONS . v v vttt ittt et aeeesesnoeneeseesas 14
Before Starting Your MOAULE. et eeeeeeeeeeneeeneeas 15
Choosing a Name for Your Module€..........eeeeeeeeeeeeeeenen. 15
Decide on the Type of Your MOAULE.ee e eeeeeneeeeenns 15
Register Your Module NamMe.t uueeeeeneeeeneeaens 16
Obtain a Copy of the Xaraya API Reference Guide........... 16
Read the Notes on Developing Modules Section.............. 16
Understand the FOollOWINg AIrEaS e e e e eeeeeeeeeeeeeeeeen 16
Difference between GUI and Operational Functions.......... 16
The Xaraya Security Model. e eeeeeeeeeeeeeeneenens 17
Function RetUrn COAES . .. vttt u et eeeeeeeeeeneeneeeeeeas 17

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 3

Where Modules Fit 1IN XAFXAV . et e et o eteeeeeeeeeeeeeeneeneen 17
Design Your MOAULE. ... v v ittt e e et eeeeeeeeeeneeneeeeeeas 18
Consider Including the Standard Module FunctionsS.......... 18
Use Standard FUNCtion NAMES. ee oo eeeeeeessoeseesnesas 18
User DisSplay FUNCEIONS . .« o v v i ettt ettt ee e eeeeeeeeeeneeeeeeas 19
USEr APIT FUNCEIONS . v v v v v o et ottt et ee o ae o eeossossoeseeseesas 19
Administration Display FUNCEIONS. .. . v e e e e eeeeeeeeeeeeans 19
Administration API FUNCEIONS . v v v et v ettt et et eeeenennas 20
Find out What Utility Modules are Available............... 20
Module DireCtory SErUCEULE. . v v v i i et ettt e et ettt eeeeenns 20
Building Your MOAUILE. i u ettt ettt ettt eeeeeeeeeen 29
Make Your Initial DIreCEOL Y. . e e e e et oo oo eeeeseeeeeeaeeans 29
Copy the Module EXampPle.u e e e e eeeeeeeeeeeeeeeeeen. 29
Code your Database TableS. eeeeeeeeeeeeeseeeeeeans 29
Write your Initialization FUNCEIONS. ... e e v e eeeeeeeeneen. 30
Test Your Initialization ROULINES. e eeeeeeeneeeeeeness 30
Write Your Administration FUNCEIONS. ... e eeeeeeeeeeeeeens 30
Test Your Administration FUNCEIONS. eieeeeeeeeeeenns 31
Write Your USer FUNCEIONS. .. vt e ittt eeeeeeeeeeneeneeeeeeas 31
Test Your USE€r FUNCEIONS .« v v e ittt ettt ettt eeeeeneenens 31
WEItE@ YOUL BlOCKS . oo v ittt ottt et et ee e eeeeseeneeneeseesas 32
TeSt YOUIr BlOCKS . . i i ittt e e e e e e e e e e e e et e e e eeeeaeeeans 32
Document Your ModULe.t ieteeeeeeeeeenoeneesnesas 32
Packaging Your MOAULE. ... v e v et ee e eeeeeeeeeeneeneeeaeeas 32
Interacting With Other MOAULES.ot e et et eeeeeeeeneenns 33
(@7 a7 I 33
o ¥ <= 1 33
Calling HOOKS . o v i v it et ettt eeeeeeenn 34
WEItIing HOOKS . oo v i e e e e e e e e e e e e e et e et ettt eeeeneeeaeea 35

Writing HOOK FUNCEIONS . v v v i e i et et et et et ettt et e eeeeeeeeeas 36
Registering HOOKS . o v v oo ittt ettt ettt eeeeeeeneeneeeaeeas 36
Un—registering HOOKS . . o v v i ittt et e e e e e et e e e e et e eeee e 37
FUnction CallsS .. .e . e e e et e et eeeeeeeeeeeeeseeseeseeseesas 38
Upgrading Your MOAULE. ... v e i et et eeeeeeeeeeeeeeeeeneeas 38
Notes in Developing MOAUILES. v e e e e eeeeeeeeeeeen. 39
USE XAT AP i i e et e e e e e e et e et et e et ettt eeeeeeeeeeseeneeeaeea 39
RS Y ok ol 1 7 39
Variable HandlINgG. e e e e e oo e oo e eeeeeeeeeeseeseeeeeeaeeas 39
R0kl o Yo Xl 4= K i e o 1P 40
Reserved Variable NAmMES u e et eeeeeeeeeeseeseeneeseesas 40
Page Path. ... it e 40
(35 oy o 5 40
Using Object Oriented Code.t eeeeeeeeeeeeeneeeeeeas 41
RECOmMMENAAE 10MS . v v e e e e e e e e e e e e e et e e ettt e et eeeeeeeeeneen 41

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 4

(R 7= 1 7 42
APPENAIX Bu et i et e et e et et et et et e et 43
Module Developers CheCK LISt e e e ee e eeeeeeeeneenns 43
[]
e Abstract

Xaraya is currently in beta production and rapidly
approaching a final release. The initial installation
package includes core functionality for a basic content
management solution 1listing of registered modules on
Xaraya.com includes sixty-two content-based modules
registered for a certified Xaraya identification number.
Thirty-nine of those modules are currently completed or
under development by members of the Xaraya development
team.

Third party developers have a concept or idea that
they want to contribute to the project, but lack the proper
tools that will allow them to submit API' compliant modules
for certification. A series of polls posted on Xaraya
websites have revealed the need for this type of training
document and have produced a list of suggested modules to
choose from for use as examples in the development guide.
Current research for this project was conducted by reading
through the Xaraya code, developer comments and notes as
well as existing documentation located in the beta
repositories.

e Introduction

Xaraya 1s an extensible, open source platform written
in PHP’ and licensed under the GNU General Public License.
Xaraya utilizes permissions, data management, and modular
systems to dynamically integrate and manage content.
Xaraya's modular, database independent architecture
introduces the need for add-on modules that will enhance

! application program interface (API): A formalized set of software

calls and routines that can be referenced by an application program in
order to access supporting network services

2 PHP is a widely used general-purpose scripting language that is
especially suited for Web development and can be embedded into HTML.

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 5

its functionality and produce a customizable solution that
will meet any web masters needs.

Xaraya's modular, database—-independent architecture
provides tools, which separate form, function, content, and
design on the site. Xaraya delivers the requisite
infrastructure for a fully dynamic multi-platform Content
Management Solution (CMS).

* Database-driven website engine (PHP-ADODB compliant)
* Extensible through a variety of third-party modules

* Powerful security module for multi-level
user/administrator logins

* Distribute workload using User/Administrator
management tools

* Robust article management system

* Fully editable & manageable News, Links, Downloads,
and FAQ Sections

* BlockLayout Theme Engine: Display your site your way

* News Feed Manager: Access thousands of RSS-compliant
news feeds

* Site Statistics: Tracks browser & operating system,
top news & articles, and more

* Easy install on most Unix/Linux and Windows
platforms

* Import information from PostNuke, PHP-Nuke, phpBB2
and Moveable Type installations

Xaraya reduces web site development costs by
introducing sophisticated administration tools & services,
which separate form, function, content, and design. With
Xaraya, you work in a simple, structured environment so you
can rapidly develop your website with diverse content,
including:

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 6

* News Articles

* Web Links Directory

* Job Boards

* Frequently Asked Questions
* File Downloads

* Photo Gallery

* Member profiles

* Web forums (message boards)

* Articles Repository (i.e.: Knowledge base, cooking
recipes, product reviews, news articles, etc.)

With more than forty active developers spanning five
continents and ten languages, the Xaraya Development Team
is a blend of some of the best and brightest developers 1in
the open source community. We expect the best of one
another. As a result, you can expect the best from Xaraya.

Discussion

« What is a module?

The Xaraya system allows for expansion of its
functionality using modules. A module is a set of files
containing functions with predefined names and roles that
integrate very easily with a standard deployment of Xaraya.
A module can also include blocks, images, plain HTML files
etc.

* Why write a module?

There are a number of reasons to write a module. The
main reason 1s that Xaraya does not provide a specific
function that you would like. Examples of modules that are
currently available for Xaraya include bulletin boards,
photo galleries, address books, and personal information
managers.

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner

 Related Documents

Other documents that might be of use in conjunction
with this guide are the API Reference Command Reference,
the Theme Development guide, and the Output Functions
Guide. Note that the Theme and Output guide remain
unwritten at this point.

» Suggestions and Updates

The Xaraya module system 1is a work—-in-progress. There
are no doubt many good ideas out there that have not been
incorporated into the Xaraya module system, and if a
developer has a request for a particular set of
functionality then they can submit it to the Xaraya
features request 1list at the Xaraya Homepage. If you have
found a bug within the current module system then you can
submit it to the bug list at the same address.

Please note that the main requirement for the Xaraya
module design 1is stability. Due to this, it 1is possible
that your request for new or updated functionality will be
refused because it 1is too specific, can easily be built
from core API functions, or carries out work that should
rightly be done by a module. In such situations, the Xaraya
team will always try to provide a simple alternative, but
please remember that submission of a new or updated
addition to the module design does not guarantee inclusion.

« Xaraya Architecture

This chapter describes the basic architecture of
Xaraya, explains the major parts, and contains information
on the design choices made for the system.

« Variable handling

Variables are loaded through xarVarFetch calls in
order to be processed, checked for validity, as well as
proper handling on unset vars, etc. Instead of relying on
S5 _POST or & _GET calls throughout your module and then
cleaning the input, Xaraya has a very robust way of
handling the variable.

An example call would be:

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 8

if (!xarVarFetch('itemsperpage', 'int', Sitemsperpage,
10, XARVAR NOT REQUIRED)) return;

Fetches the Sname variable from input variables and
validates it by applying the Svalidation rules.

Ist try to use the variable provided, if this is not set
(Or the XARVAR DONT REUSE flag is used) then it try to get
the variable from the input (POST/GET methods for now)

Then tries to validate the variable through xarVarValidate.

After the call the Svalue parameter passed by reference is
set to the variable value converted to the proper type
according to the validation applied.

The SdefaultValue provides a default value that is returned
when the variable is not present or doesn't validate
correctly.

The S$flag parameter is a bitmask between the following
constants: XARVAR GEIT OR_POST, XARVAR GET ONLY,
XARVAR _POST ONLY, XARVAR NOT REQUIRED.

You can force to get the variable only from GET parameters
or POST parameters by setting the Sflag parameter to one of
XARVAR_GET _ONLY or XARVAR _POST ONLY.

You can force xarVarFetch not to reuse the variable by
setting the Sflag parameter to XARVAR DON_REUSE.

By default Sflag is XARVAR GET_OR _POST which means that
xarVarFetch will lookup both GET and POST parameters and
that if the variable is not present or doesn't validate
correctly an exception will be raised.

The Sprep flag will prepare Svalue by passing it to one of
the following:

XARVAR _PREP_FOR_NOTHING: no prep (default)

XARVAR _PREP _FOR_DISPLAY: xarVarPrepForDisplay (Svalue)
XARVAR PREP FOR HTML: xarVarPrepHTMLDisplay (Svalue)
XARVAR _PREP TRIM: trim(Svalue)

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 9

» User Variables

A user variable 1is an entity identified by a name that
stores a value owned by exactly one user. Xaraya offers two
API functions to manipulate user variables, they are
xarUserGetVar () and xarUserSetVar (). The purpose of xarUserGetVar ()
is to allow read access to one user variable. In contrast
to that, =xarUserSetVar() allows write access to one user
variable. The Sname parameter is checked against metadata
to make sure the variable is registered. Xaraya keeps some
metadata about every user variable, so you cannot access
the Sname user variable 1if its metadata is not registered.

A module can register a new user variable by providing
its metadata only if it has the right permissions
(permissions are checked by the registration function).
Usually the registration process should take place at
initialization time for a module that wants to use the
Sname user variable during its life cycle.

Xaraya does not impose any restriction on the value of
Sname except for duplicate and reserved names. As of this
writing, the list of reserved names consists of

uid
The user 1id.

name
The user display name on the system. “Name” should be
used in any case that you are displaying the user
name, IE author fields, etc.

uname
The user name is the system variable used to
differentiate one user from another in string vice
integer format. This variable should not be used to
display information about the user for consistency and
security reasons.

email
The email address of the user.

status

The status of the user (active, inactive, deleted
etc).

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 10

auth _module
The authentication module last used for this user.

You are advised (even for performance reasons) to use the
following naming convention: Sname := Smodule_name . '_'
Sreal_name

To register the Sname user variable you have to use the
module API function register_user_var() exported by the Modules
module. Here 1is an example:

Smodule_name = 'MyModule';

Svariable_name = 'MaxLinesPerPage';

Smetadata['label'] = $module_name . '_' . Svariable_name;
Smetadata['dtype'] = _UDCONST_INTEGER;

Smetadata['default'] = 20;
Smetadata['validation'] = 'num:>=:10&num:<=:100";

xarModAPILoad ('Modules', 'admin');

Sresult = xarModAPIFunc ('Modules', 'admin', 'register_user_var', S$metadata);
if (!isset ($result)) {

} elseif (Sresult == false)
} else {

}

As you can see 1in this example, a descriptive array
for the new user variable 1s created first, and later
register_user_var 1is called with that array as parameter.
Meaningful keys for the array are label, dtype, default and
validation. The label field is mandatory; it specifies the
user variable name as you'll refer later 1in xarUserGetVar ()
and xarUserSetVar () Sname parameter. The dtype field is
mandatory; it can take one of the following values:
_UDCONST_STRING, _UDCONSI_TEXT, _UDCONST_FLOAT,

UDCONST INTEGER.

You should obviously choose the right value for the
data type that the new user variable would contain. The
default field is optional; Used when the user has not yet
set a value for the new user variable. The validation field
is optional; refer to the next section to get an overview
of variable validation. To unregister a user variable you
have to call the unregister_user_var(), which is located in the
users module admin API. You should call that API only at
uninstallation time for your modules. Keep in mind that by

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 11

calling unregister_user_var() all the existing values for that
user variable will be deleted from user data.

As described in this document, Xaraya offers support
for module variables too. If you get confused from that,
and cannot see the distinction between these different
things, here is a little explanation.

Module variables are system-wide variables, shared
between each module user, like configuration variables. No
particular user owns them, and even if they do they are
protected by permissions for write access, they are
typically administrative-side variables. You are encouraged
to use them when you have a need to give administrators the
possibility to choose some behaviors of your module.
However, when those behaviors are related to user
preferences you should avoid using module variables and
register a new user variable to be used in your code.

As an example, you can consider the above code
listing, where a new user variable is registered to allow
every single module user to choose his own MaxLinePerPage
setting. Now it 1is reasonable to have selected this choice,
but here we could have chosen a unique shared module var as
well. On the other hand, you do not have this kind of
freedom, for example consider the authldap module in some
cases. It needs to access a LDAP server, so 1t needs a
variable that contains the LDAP server hostname. Obviously
this variable should be a module variable, and access to it
should be granted only to administrators with the right
permissions. We invite you to ponder this issue for a while
before you settle on module vars or user vars.

« Setting xarUser*Vars

All user vars should be set from adding Dynamic Data
on the roles module. This will give you the greatest
benefit and will present the variables to all modules on
the system.

« Error handling

Xaraya 1is capable of error handling through a powerful
exception handling system. Since the PHP language does not

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 12

support language-level exceptions, Xaraya provides an
artificial mechanism to deal with exceptions. Xaraya
divides exceptions into two types: system exceptions and
user exceptions. System exceptions are used by Xaraya API
functions, but you can use them if it's meaningful in that
such situation; for example consider the DATABASE_ERROR
exception, you are strongly encouraged to use this
exception when a database error occurs and not to use your
own exception.

As another example considers the BAD _PARAM exception,
you should choose to use that exception in your module
functions and API functions when passed parameters are
wrong. Finally, system exceptions are well known exceptions
for which Xaraya can undertake. Xaraya does not know
particular actions 1like logging, emailing, oOr user
exceptions, and since they are indistinguishable, Xaraya
will treat them, as they were all the same thing.

Another good point of distinction between system and
user exceptions 1is the fact that you should not leave
uncaught user exceptions as you can do for system
exceptions. Hence, you should catch all user exceptions
instead of throwing them back to Xaraya, this 1is because
user exceptions are the same as soft exceptions, SO you
could be in the position of doing other actions and/or
returning a properly formatted error message that will look
better than the default Xaraya exception caught error
message. However, it 1is not illegal to throw back user
exceptions to Xaraya, so fell free to do that if it 1is the
case.

You should avoid catching system exceptions, except 1in
particular cases. A system exception is a hard exception,
this means that something very wrong happened and Xaraya
should be notified. You can achieve this simply by throwing
back system exceptions. In addition, there are particular
circumstances in which you could and perhaps should catch
system exceptions.

For example consider the xarUserGetVar() API function: it
raises a NO_PERMISSION system exception in the case you
don't have right permission, however you weren't in the
position to get access level for user variables, so it's

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 13

perfectly acceptable here to catch this exception and go
ahead when it's meaningful to do so.

Now is the moment to explore
deal with exceptions.
catch exceptions. When a function
raise exceptions, outcomes with a
if some exception was raised. You

how Xaraya permits you to

Here we begin by exposing how to

that potentially can
void value you MUST check
can do that by calling

the xarExceptionMajor() function and comparing its return value
with the XAR _NO _EXCEPTION constant. If they are different,
you know that an exception has been raised.

The xarExceptioMajor() return value can assume one of
these values: XAR NO_EXCEPTION, XAR USER _EXCEPTION,
XAR _SYSTEM EXCEPTION. The value XAR NO _EXCEPTION indicates
that no exception was raised, and XAR USER _EXCEPTION stands
for user exception was raised and XAR SYSTEM EXCEPTION
stands for system exception was raised.

When you see that an exception was raised you have two
options: throw it back or handle it. To throw back an
exception you have only to return with a void value. To
handle an exception you have to check for the exception
type, id and value if one.

Consider the following example:

xarModFunc ("MyModule', 'user',

&& xarExceptionMajor ()

'MyFunc') ;
I= XAR_NO_EXCEPTION) {

Sres =
if (!'isset (Sres)

if (xarExcepionMajor () == XAR_SYSTEM_ EXCEPTION) ({
return;
}
if (xarExceptionId() == 'MyExceptionl') {
Svalue = xarExceptionValue();
Soutput->Text ("Syntax error at line: ".$value->lineNumber) ;
} elseif (xarExceptionId() == 'MyException2') {
} else {

}

xarExceptionFree () ;
return S$Soutput->GetOutput () ;

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 14

To throw exception you use a unique function: xarExceptionSet
(). You simply call it by passing the exception major, id
and value 1if one; and after this call, you return void.

Consider the following example:

class MyExceptionl

var S$lineNumber;

MyModule_user_MyFunc ()
{

if ($Ssyntax == false) {

Sexc = new MyExceptionl;

Sexc—>lineNumber = $line;

xarExceptionSet (XAR_USER_EXCEPTION, 'MyExceptionl', S$exc);return;
}

xarExceptionSet (XAR_USER_EXCEPTION, 'MyException2');

xarExceptionSet (XAR_USER_EXCEPTION, 'MyException3');
return true;

Note that no value is associated to MyExceptionZ and
MyException3, so there is no need to create a class for
exception value. As you can see exception, handling is very
powerful but also boring and tedious. However, you can
always choose not to use user exceptions and always throw
back system exceptions.

Keep in mind that good error handling is not something
that to leave for last. It should be part of the
development process. Note that it is wrong not to check
exception status after a call to a function that can
potentially raise something. And note also that if you
choose to handle one or more exceptions you MUST call
xarExceptionFree() before exiting, otherwise the trust
relationship on which the exception handling mechanism is
based won't work and you will produce very bad things.

An ulterior thing for those of you wanting to code an
official Xaraya module: you MUST always check for possibly
raised exceptions and not code with the thought that
something will never happen; you MUST also raise
DATABASE_ERROR in every function that does queries. To get

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 15

a better understanding of exception handling functions you
should refer to the Xaraya API Command Reference.

« Xaraya Module Design

The Xaraya module system design allows for the maximum
flexibility to developers whilst ensuring that the module
can be accessed in a generic fashion by the Xaraya core,
other modules, and remote systems given access through
other interfaces such as XML-RPC. The main design
characteristics of the module system are listed below.

» Separation of User and Administrator Functions

Separation of user and administrator functions allows
for a much cleaner module. It speeds up the responsiveness
of the module in the most-often used cases (i.e. user
actions) as the module only needs to load the code that 1is
required of it. It allows for work one area of the code
(e.g. an admin GUI redesign) to take place without
affecting the other areas. In addition, 1t gives an extra
layer of security to help ensure that privileged functions
cannot be executed inadvertently from user areas.

« Separation of Display and Operational Functions

Separation of display and operational functions allows
for areas within and without Xaraya to use the
functionality supplied with a module. This 1is most obvious
in the case of modules with blocks. Where the block might
display its own information but use the module functions to
gather that information. Other modules where this is hugely
important are the utility modules; things like comments and
rating systems, that have no real use on their own but can
be coupled with other modules to provide generic and site-
wide functionality at very little cost to the module
developer.

» Single Directory Installation

Having a single install directory allows for much
easier maintenance of large Xaraya systems, and far easier
install and removal of modules both for the module
developer and for the site administrator. Dependencies of
the layout on the file system are no longer required, and

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 16

as such, the module designer does not need to worry about
on which systems his module might be deployed, and how it
needs to interact with the underlying operating system to
function correctly.

 External Access to Module Functions

Allowing access to module functions from external
(i.e. non-Xaraya) systems is a very desirable thing to do.
By allowing this, the Xaraya system becomes a content
repository, where information can be accessed in ways other
than through the standard web interface. An example of this
power can be seen through use of the XML-RPC interface that
is provided with Xaraya and which allow for such tools as
the Google API to be used, or other webservice events.

« Xaraya Module Operations

This chapter covers how modules interact with Xaraya.
The information in this section is correct for the 0.92
release of Xaraya, for other releases please get the most
recent copy of the Xaraya Module Developers Guide.

* Locating Modules

All Xaraya modules must be placed within their own
subdirectory of the 'modules' directory to be recognized.
Modules placed anywhere else within the file-system will
not be located correctly.

« Working out Module Functionality

A module might have administration or user functionality,
or both. Xaraya works out which functionality each module
has by looking for the files in 'xaradmin' or 'xaradminapi’
directories to confirm administration functionality, and in
'xaruser' or 'xaruserapli' directories to confirm user
functionality. Lack of these directories results in Xaraya
assuming that this specific module functionality does not
exist.

« Initializing Modules

Initialization of modules 1is accomplished through the
modname_init () in the 'xarinit.php' file within the module's

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 17

directory function. No other functions are called when the
module is initialized.

» Activating/Deactivating Modules

Activation and deactivation of modules 1is accomplished
through field settings within the appropriate database
table. Unlike earlier versions of Xaraya, no physical
changes to the module directories are made to infer the
activation status of the module.

« Calling Module Functions

Module functions are called through the xarModFunc() and
xarModAPIFunc() functions. No direct calling of module
functions 1is allowed, even from within the same module.

* Creating Module URLs

 Direct URLs to functions

URLs for new-style modules go through the 'index.php'
entry point, and are defined by a number of parameters. The
parameters that currently decide which particular module
function to call are as follows:

e module

1.The name of the module. This corresponds to the well-
known name of the module, which can be found through the
modules administration interface

* type

1.The type of the module function. This 1is currently

either 'user' for user functions or 'admin' for
administrative functions.

e func

1.The name of the function itself. This 1s module-
dependent.

If any of these parameters are undefined within a URL
Xaraya will apply defaults to them. Note that both the

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 18

names of the parameters and their default values might
change, and as such it is not recommended to create direct
URLs for anything but to either go through the Xaraya main
page or to use the xarModURL() function to generate URLs that
will always be internally consistent for any given version
of Xaraya.

You can also extend the xarModUrl call by adding a
parameter call to the function in the form of an array.
xarModURL ('module’', 'type', 'function', array('foo' => $bar)) will
create the input parameter of 'foo' having the value of
Shar.

» Before Starting Your Module

There are a number of steps to follow before you can start
building your module.

» Choosing a Name for Your Module

Choosing a name for your module is important, as this
is the main way that your module will be known throughout
the Xaraya community. The name should relate to the
functionality that the module provides, but also be
specific enough to be able to discern it from separate
modules that might offer similar functionality.

Module names are case—-sensitive. For this reason, it 1is
highly recommended that all modules names are lower-case
only.

* Decide on the Type of Your Module

There are two broad types of module available 1in
Xaraya. Item modules are modules, which contain their own
content and operate on that content, whereas utility
modules are modules, which contain additional information
or functionality for the content of other modules. Examples
of item modules are news, FAQ, and download. Examples of
utility modules are comments, ratings, and global index.
Either utility modules work in the same way as item
modules, or they can operate with hooks, which allow module
functions to be acted upon without being explicitly called

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 19

by other modules. Hooks are used for items that are not
part of a piece of content but directly related to it

* Register Your Module Name

Registering your module is not compulsory, but it is a
very good idea. By registering your module, you can ensure
that no other official Xaraya module will take the name
that you have chosen for your module. Two modules with the
same name will not operate correctly on a single Xaraya
site, so it is beneficial to both yourself and the Xaraya
community in general to have a unique name.

You may register your module via the release module on
xaraya.com

« Obtain a Copy of the Xaraya APl Reference Guide

The Xaraya API Reference Guide has been moved to the PHP-Doc Style of
documentation. No separate entry will be created for the API guide. Please
reference http://docs.xaraya.com/index.php/documentation/c80/ for more
information.

* Read the Notes on Developing Modules Section

The section entitled 'Notes on Developing Modules'
includes a lot of miscellaneous information that does not
fit in other sections of this document. It should be read
fully before any attempt to design or develop a module 1is
started.

* Understand the Following Areas

« Difference between GUI and Operational
Functions

Understanding the difference between GUI and
operational functions is critical when building a good
module. Proper separation of these functions will allow
other modules to be able to access the functionality of
your module and incorporate it into their modules. It will
also allow methods of access apart from those that the
standard web-based Xaraya system.

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 20

Difference between User and Administrative Functions
Understanding the difference between user and
administrative functions 1is very important when building a
good module. The separation of these types of actions
allows for

» The Xaraya Security Model

The Xaraya security model 1is a very important area to
understand before coding a module. Developers should
understand which parts of their module need protected, and
exactly how this is accomplished.

The entire Xaraya security model is beyond the scope
of this document. The Security System RFC30 is located at
http://docs.xarayva.com//docs/rfcs/rfc0030.html

 Function Return Codes

Every well-defined module function must return the
appropriate return codes. Return codes are the main way 1in
which a module communicates with the Xaraya core, and as
such, 1t is vital that the correct return codes are used.

The following return codes should be used when returning
control to the Xaraya core from any module function:

text string

Returning a text string implies that the modules
function has finished its work and has output to be
displayed in the appropriate place on the Xaraya web
page. Xaraya will take the returned output and display
it as appropriate. Note that all output from modules
is displayed verbatim, with no escaping of HTML
characters. This is to allow for formatted output from
the module functions.

true

Returning boolean true implies that the module
function has finished its work and set up an
appropriate redirect to send the user to a page that
will have display output. The Xaraya core will take no
further action as far as this module is concerned.

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 21

false

Returning boolean false implies that the module
function has finished its work but not set up an
appropriate redirect to send the user to a page that
will have display output. The Xaraya core will set an
appropriate redirect for this module.

Note that none of these functions carries any information
about the success or failure of the attempted operation
that the module function was undertaking.

 Where Modules Fit in Xaraya

Modules cover two separate areas of Xaraya. The first
is administration of core functions, (e.g. users,
permissions), and the second is extension of system
functionality (e.g. downloads, web links). As each of these
areas 1is not core this implies two things. First is that no
module is actually required - the Xaraya system would work
without anything in its modules directory, although its
functionality would be severely limited and there would be
no configuration options available. Second, 1is that modules
should not remove any core functionality when installed, in
operation, or removed.

* Design Your Module

An often-overlooked point is that the module should be
designed before being coded. This will allow for far easier
coding later on, and an understanding of how the module
fits into the generic Xaraya module structure. Some of the
points that should be considered are:

What data does the module store? How should the module data
best be stored? Is the data hierarchical or flat?

What does the module do with the stored data? How 1is the
data displayed, how much data is displayed at any one time?
What options should the user have to view the data in
different ways?

How does the module interact with other modules? Does it
compete directly with other modules? If so, does it make

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 22

sense to follow their module API to allow for greater
interoperability between similar modules? Can it use other
modules for part of its functionality? Is it better written
as an extension to a current module rather than starting
again from scratch?

« Consider Including the Standard Module Functions

There are a number of standard module functions that
allow a module to interface with parts of the Xaraya
system. These functions have predefined inputs and outputs,
allowing external modules and core functions to use them
effectively without needing to tailor their operation to
each separate module. The best example of these functions
is the 'search' function, which passes in a simple text
string and requires that an array 1is passed back about all
items within the module that match the string.

If your module does not have these functions then it
will not integrate fully with the other parts of the Xaraya
system. It is recommended that these functions be supplied
if they make any sense in the context of your module.

 Use Standard Function Names

There are a number of function names that are
considered standard i.e. they have well-known meanings and
are used in a number of modules. Using the standard
function names makes it easier for other module developers
to use your module. Some of the standard functions are
shown below.

The 1ist below is subject to addition as more
functions that are standard are introduced - the example
module supplied with your copy of Xaraya should have the
most up-to-date set of standard functions available.

» User Display Functions

main () - the default function to call, normally just
presents the user menu

view() - display an overview of all items, normally paged
output

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 23

display () - display a single item in detail, given an
identifier for that item

 User API Functions

getall() — get basic information on all items, can take
optional parameters to obtain a subset of all items

get() — get detailed information on a specific item

« Administration Display Functions

main() — the default function to call, normally just
presents the user menu

view() — display an overview of all items, normally paged
output, with relevant administrative options. Note that it
is possible to combine this function with the user view()
function

new() — display a form to obtain enough information from the
user to create a new item

create() — take the information from the form displayed by
the administration new() function and pass 1t on to the
administration API for creating the item

modify() — display the details of a current item given the
item description, and present the relevant fields for
modification

update() — take the information from the form displayed by
the administration modify() function and pass it on to the
administration API for modifying the item

delete() — display confirmation for deletion of an item, and
1f confirmed pass the relevant information on to the
administration API for deleting the item

modifyconfig() — display the details of the module's current
configuration, and present the relevant fields for
modification

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 24

updateconfig() — take the information from the form displayed
by the administration modifyconfig() function and update the
relevant module configuration variables

e Administration API Functions

create() — create a new item
delete() — delete a current item
update () — update the information about a current item

* Find out What Utility Modules are Available

There are a number of utility modules available to
carry out features that are required by many item modules
within Xaraya. Examples of available utility modules are
comments, ratings, and categorization. Look at xaraya.com
to find out what other utility modules are available and if
they can be used in lieu of parts of the code that you
would otherwise be writing for your own module.

* Module Directory Structure

Xaraya modules have a very specific directory
structure. This allows the Xaraya system to use a generic
system to access all modules without needing to know
specific information about each separate module that 1is
built. Following the directory structure as laid out below
is an absolute requirement of any Xaraya-compliant module.

Extra files and directories in addition to those shown
below are allowed. In addition, 1f any of the files below
are not required (e.g. the module does not have database
tables of its own so it does not require the xartables.php
file) then they do not need to exist. However, files that
perform the functions outlined below must comply with the
file naming convention to allow the Xaraya system to load
the suitable files at the appropriate times to ensure
correct operation of the module.

This shows the layout of the example module directory.
Other modules will have different names for their top-level

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 25

directory and blocks as appropriate for their specific
functionality

modules/
example/
xaradmin/
create.php
delete.php
main.php
modify.php
modifyconfig.php
new.php
update.php
updateconfig.php
view.php
index.html
xaradminapi/
create.php
delete.php
getmenulinks.php
menu.php
update.php
index.html
xarblocks/
first.php
others.php
index.html
xarimages/
admin.gif
admin_generic.gif
preferences.gif
index.html
xartemplates/
blocks/
first.xd
firstAdmin.xd
othersAdmin.xd
example—-firstblock-modify.xd (
admin-delete.xd
admin-main.xd
admin-menu.xd
admin-modify.xd
admin-modifyconfig.xd
admin-new.xd
admin-view.xd
index.html
user—-display.xd
user-main.xd
user-menu.xd
user—-usermenu_icon.xd
user-view.xd
user—-usermenu_form.xd
xaruser/
display.php
main.php
usermenu.php
view.php
index.html

B WNRP OWO-JO U™ WNREOWOWIOO U R WNR O———— — — — — —

WWWWWNDNMNODNDNNDNNNDMNNDNNNDMNNRERRRERRRERRPRERRRE OIS U WNDR

N~~~ o~~~ o~~~ o~~~ o~~~ o~~~ o~~~ o~~~ o~~~ o~~~

w
(€]

)

OrO1 O O1 O O s b DD DD D D DD W WwwWw
O WNEF OWO-JOU P WNDE O WOWJOo

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 26

xaruserapi/

encode_shorturl.php
countitems.php
decode_shorturl.php
get.php
getall.php
getmenulinks.php
menu.php
validateitem.php
index.html
getitemlinks.php

xareventapi.php

xarinit.php

xartables.php

example.wsdl

index.html

xaradmin.php

xaradminapi.php

xaruser .php

xaruserapi.php

xarversion.php

4 JJJJJJ3DHDOOHOOOoOooyoyoy oy uragr ool
NUT i WNDEFE OWOOW-JIDU P WNE OWOoW-JOo

(1) The top-level directory in Xaraya for modules

(2) The directory that contains all of the module code
(in this case the module is named 'example')

(3) The directory that contains all administrative GUI
functions for the module

(4) create.php

This a standard function that is called with the
results of the form supplied by xarModFunc

(‘example’, "admin’, "new’) to create a new item.

Syntax: @param $’name’ - The name of the item to be
created

@param $’number’ - The number of the item to be
created

(5) delete.php

This standard function is called whenever an
administrator wishes to delete a current module item.
Note that this function is the equivalent of both the
modify () and update() functions as it operates a form
and processes its output. This is fine for simpler
functions, but for complex operations such as creation

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 27

and modification it is generally easier to separate
them into separate functions. There is no requirement
in the Xaraya MDG to use one or the other, so either
or both can be used as seen appropriate by the module
developer.

Syntax: @param $’exid’ - The 1id of the item to be
deleted

@param $’confirm’ — Confirm that this item can
be deleted

(6) main.php

This function is the default function, and is called
whenever the module is initiated without defining
arguments. As such, it can be used for a number of
things, but most commonly, it either shows the module
menu and returns or calls whatever the module designer
feels should be the default function. (This is often
the view function)

(7) modify.php

This 1is a standard admin function that is called
whenever an administrator whishes to modify a current
module item.

Syntax: @param $’exid’ the id of the item to be
modified

(8) modifyconfig.php
This is the standard function to modify the
configuration parameters for the module.

(9) new.php
This standard function is called whenever the
administrator wishes to create a new module item.

(10) update.php
This is the standard function that is called with the
results of the form supplied by xarModFunc (‘example’,
‘admin’, "modify’) to update a current item.
Syntax: @param $ ‘exid’ - The id of the item to be
updated

@param $§ ‘name’ - The name of the item to be
updated

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 28

@param $ ‘number’ - The number of the item to be
updated

(11) updateconfig.php

This standard function updates the configuration
parameters of the module given the information passed
back by the modification form.

(12) view.php
This standard function is called whenever the
administrator wishes to view a module item.

(13) index.html

This 1is a blank index.html file to prevent someone
from viewing the directory contents when access this
directory via a url.

(14) xaradminapi
The directory that contains all administrative
database functions for the module.

(15) create.php

This standard function creates an item when the
administrator wants to create an item in the database.
Parameters are passed from the xaradmin/create.php.
This function returns the example item upon success,
or raises an exception error upon failing.

Syntax: @param Sargs ['exid'] the ID of the item
@param Sargs [‘name’] name of the item
@param Sargs|[‘number’] number of the item

Returns the example item ID as integer on success,

returns false on failure and raises BAD PARAM,

NO_PERMISSION, DATABASE _FERROR

(16) delete.php

This standard function deletes an item in the
database. Parameters are passed from the
xaradmin/delete.php. This function returns true upon
success, or raises an exception error upon failing.

Syntax: (@param Sargs [‘exid’] name of the item

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 29

Returns the example item ID as integer on success,
returns false on failure and raises BAD_ PARAM,
NO_PERMISSION, DATABASE_ERROR

(17) getmenulinks.php

This is a utility function that passes individual menu
items to the main menu.

Returns array containing the menulinks for the admin
menu items.

(18) menu.php
This function generates the common admin menu
configuration

(19) update.php

This standard function updates an item when the
administrator wants to change an item in the database.
Parameters are passed from the xaradmin/update.php.
This function returns the example item upon success,
or raises an exception error upon failing.

Syntax: @param Sargs ['exid'] the ID of the item
@param Sargs [‘name’] name of the item
@param Sargs|[‘number’] number of the item

Returns the example item ID as integer on success,
returns false on failure and raises BAD_ PARAM,
NO_PERMISSION, DATABASE ERROR

(20) index.html

This 1is a blank index.html file to prevent someone
from viewing the directory contents when access this
directory via a url.

(21) xarblocks/
This directory contains the files for generating
blocks for the module.

(22) first.php
This is the code for the example block for the example

module.

(23) others.php

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 30

This is the code for the example block for the example
module.

(24) index.html

This is a blank index.html file to prevent someone
from viewing the directory contents when access this
directory via a url.

(25) xarimages/
This directory contains image files that are
associated with the example module.

(26) admin.gif
This is the image that is displayed in the example
module administration overview.

(27) admin generic.gif
This 1is an optional image that can be displayed in the
example module administration overview.

(28) preferences.gif
This preferences image is used in the example module.

(29) index.html

This 1is a blank index.html file to prevent someone
from viewing the directory contents when access this
directory via a url.

(30) xartemplates/

This directory contains the template files used by
blocklayout for displaying pages within the example
module.

(31) blocks/

This directory contains the template files used by
blocklayout to display the blocks for the example
module.

(32) first.xd
Templates file for the first block in the example

module.

(33) firstAdmin.xd

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 31

Templates file for the first block administration page

for the example module.

(34) othersAdmin.xd
Templates file for the others block administration

page for the example module.

(35) example—-firstblock-modify.xd
Templates file for the first block administration

modify settings page.

(36) admin-delete.xd
Templates file for administration delete function.

(37) admin-main.xd
Templates file for administration main function.

(38) admin-menu.xd
Templates file for the administration menu for Example

module.

(39) admin-modify.xd
Templates file for administration modify item page.

(40) admin-modifyconfig.xd
Templates file for administration modify configuration

page.

(41) admin—-new.xd
Templates file for administration new item page.

(42) admin-view.xd
Templates file for administration view item page.

(43) index.html
This is a blank index.html file to prevent someone

from viewing the directory contents when access this

directory via a url.

(44) user-display.xd
Templates file for the user display page.

(45) user—-main.xd

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 32

Templates file for the users main page.

(46) user—-menu.xd
Templates file for the users menu.

(47) user-usermenu_icon.xd
Template file for example user menu hook.

(48) user-view.xd
Templates file for the user display items page.

(49) user—-usermenu_form.xd
Templates file for example hook for user menu.

(50) xaruser/
The directory that contains all users GUI functions
for the module.

(51) display.php
This standard function provides detailed information
on a single item available from the module.

Syntax: @param Sargs an array of arguments (if called
by other modules)

@param Sargs [‘objectid’] - A generic objected
(1f called by other modules)

@param Sargs [‘exid’] - The item id used for
this module

(52) main.php

This standard function is the default function, and 1is
called whenever the module is initiated without
defining arguments. As such, it can be used for a
number of things, most commonly, it either shoes the
module menu and returns or calls whatever the module
designer feels should be the default function. (This
is often the view() function)

(53) user—-menu.php
This standard function is used to display the user

menu hook.

(54) view.php

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 33

This standard function is used to provide an overview
of all the items available from the module.

(55) index.html
This is a blank index.html file to prevent someone
from viewing the directory contents when access this

directory via a url.

(56) xaruserapi/
The directory that contains all user database

functions for the module.

(57) encode_shorturl.php

The standard functions that encode module parameters
into some virtual path that will be added to
index.php, and decode a virtual path back to the
original module parameters.

(58) countitems.php
This utility function counts the number of items held

by the module.
Returns the number of items as an integer type with
the number of items held by this module.

(59) decode_shorturl.php
This function extracts arguments from short urls and

passes them back to the xarGetRequestInfo() api
function.

(60) get.php
This standard function retrieves a specific example

item from the database.

Syntax: @param Sargs [‘exid’ - Id of example item to
get

Returns item array, or false on failure

Raises exceptions BAD_PARAM, NO_PERMISSION,
DATABASE_ERROR

(61) getall.php

This standard function retrieves all example items
from the database.

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 34

Syntax: @param $ numitems - The number of items to
retrieve (default -1 = all)
@param $§ startnum - Start with this item number

(default 1)

Returns an array of items, or false on failure
Raises exceptions BAD_PARAM, NO_PERMISSION,
DATABASE_ERROR

(62) getmenulinks.php

This utility function will pass individual menu items
to the main menu.

Returns an array containing the menu links for the
main menu.

(63) menu.php
This standard function will generate the common menu
configuration.

(64) validateitem.php
This standard function validates argument arrays that
are passed for writing to the database.

(65) index.html

This 1is a blank index.html file to prevent someone
from viewing the directory contents when access this
directory via a url.

(66) getitemlinks.php
This utility function passes individual item links to

other calling functions

Syntax: (@param Sargs [‘itemtype’] - Item type

(optional)

@param Sargs [‘itemids’] - array of item ids to
get
Returns an array containing the itemlink(s) for the
item(s)

(67) xareventapi.php

This standard function is the event handler for the
system event ServerRequest

Returns bool

(68) xarinit.php

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 35

This file contains the initialization, upgrade, and
delete functions for the example module. Functions
include

example init () - example upgrade () - example delete()

(69) xartables.php
This file contains the table definitions for the
example module/

(70) example.wsdl

This file contains an example soap xml schema that
connects and returns the number of items in the
example database.

(71) index.html

This is a blank index.html file to prevent someone
from viewing the directory contents when access this
directory via a url.

(72) xaradmin.php

A depreciated file; all admin functions should be
separated into individual files and placed into the
xaradmin/ directory.

(73) xaradminapi.php

A depreciated file; all adminapi functions should be
separated into individual files and placed into the
xaradminapi/ directory.

(74) xaruser.php

A depreciated file; all user functions should be
separated into individual files and placed into the
xaruser/ directory.

(75) xaruserapi.php
A depreciated file; all userapi functions should be

separated into individual files and placed into the
xaruserapi/ directory.

(76) xarversion.php

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 36

This file contains the module ID number, author, and
version information for the example module.

» Building Your Module

« Make Your Initial Directory

Create the directory to hold the module files. This
directory must be created under the 'modules' directory in
the Xaraya install, and must be created with the name of
your module as registered at the Xaraya modules site.

» Copy the Module Example

Copy over all of the files from the example module
directory into you newly created module directory. These
files set up the basic structure for your module and allow
you to get to work creating your module very quickly.

« Code your Database Tables

Coding your database tables requires you to edit the
xartables.php file in your module directory. This file
gives information on the structure of the tables used by
this module, although it does not carry out any actions
itself. The structure information is wrapped in a function
(modname_xartables()) for easy access by the Xaraya system. An
annotated copy of the template xartables.php file 1is
available in the standard Xaraya distribution as part of
the Template module.

If your module uses tables specified by another module
then you can either remove the xartables.php file
completely from your module directory, or have a suitably
named function that just returns an empty array.

If you attempt to use the same table name as another
module or the Xaraya core then your module will fail in
unexpected ways. Try to give your tables unique names,
preferably based on your module name

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 37

« Write your Initialization Functions

Module initialization functions are required for three
separate actions. These actions are initialization of the
module's tables and configuration, upgrade of the module's
tables and configuration, and deletion of the module's
tables and configuration. Each of these items are generally
only called once, although if a site administrator desires
they should be able to initialize and delete a module as
many times as they wish. It should be assumed that whenever
these functions are called the Xaraya system has already
loaded the relevant information from xartables.php and it is
available in the information returned by xarDBGetTables() .

An annotated copy of the template xarinit.php file is
available in the standard Xaraya distribution as part of
the Example solution.

 Test Your Initialization Routines

Once the database structure and initialization files
are in place they should be tested by using the modules
administration area of your Xaraya system to test
initializing and deleting your module. You should manually
check that the database table created 1is correct, and that
deleting a module removes all of the relevant configuration
variables and database tables. Once you are happy that the
module initialization functions are working correctly you
should carry out an initialization so that work on the
administration and user functions can proceed with suitable
database tables in place.

e Write Your Administration Functions

With your database tables in place, the next step 1is
to write some administration functions. The administration
functions that you will write depend on the nature of your
module, however most modules have at least the following
items:

add a new item

modify an existing item

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 38

delete an existing item

Each of these items is normally broken down into three
separate pieces. The first piece is part of the GUI and
displays a form with suitable fields for user input. The
second piece is part of the API and carries out the
requested operation. The third piece is another part of the
GUI, gathers information from the form displayed by the
first piece, and passes it as arguments to the second
piece.

As mentioned earlier in the document, it is vital that
the separation between the GUI and API functions 1is clear.
If you are unsure about whether part of a function should
be in the GUI or the API, look at what it does. If it 1is
directly involved with user interaction (gathering
information from the user or displaying information to the
user) then it is a GUI function. If it is involved with
obtaining or updating information in the Xaraya system
itself (normally in a database table) then it is an API
function.

Annotated copies of the template xaruser and
xaruserapl function files are available in the standard
Xaraya distribution as part of the Example module.

e Test Your Administration Functions

Once the administration functions are in place, they
need testing by using the administration area of your
module to carry out the basic functionality that you have
created. The operation of the module functions need
checking against the information in the database to ensure
that they are storing and displaying the data correctly.

 Write Your User Functions

Once the administration functions are in place to

manipulate your module's data then you can write the user
functions to display the data. As with the administration
functions the user functions that you will write depend on

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 39

the nature of your module, however most modules have at
least the following items:

overview of a number of items
detailed view of a single item

Each of these items is normally broken down into two
separate pieces. The first piece is part of the GUI and
gathers information from the user as to which item they
wish to view, passes it on to the API piece, and displays
the resultant information. The second piece is part of the
API and obtains the required information for the display
piece.

Annotated copies of the template xaruser and xaruserapi
function files are available in the standard Xaraya
distribution as part of the Example module.

 Test Your User Functions

Once the user functions are in place they need testing by
operating the module in the same way that a normal user
would. The operation of the module functions need checking
against the information in the database to ensure that they
are displaying the data correctly.

 Write Your Blocks

You might want your module to include blocks. Blocks
are smaller functional units of a module that display
specific information, and generally show up down the left
and right hand sides of a page. Blocks are relatively
simplistic items, and can either use their module's API
functions to obtain information or use their own direct SQL
query. Although they are packaged as part of the module
they are not directly related to it except that they use
the same database tables, and as such they might have to
load the module's database table information directly
through the use of the xarModDBInfoload() function if they
intend to access the module's tables directly.

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 40

An annotated copy of the template first.php block 1is
available in the standard Xaraya distribution as part of
the Example module.

 Test Your Blocks

Once the blocks are in place, they need testing by
displaying them through the Blocks administration system.
The blocks need checking against the database and the user
functions to ensure that they are displaying the data
correctly.

e Document Your Module

Documenting your module is a vital step. There are two
areas your module needs documentation: user information and
API information. The first area is covered by producing a
manual and placing it in the appropriate place in the
directory hierarchy. The second area by writing a short
description of each API function, noting the parameters and
return values that it has, and placing that at the head of
the function. Coding the documentation in the style of
PHPDoc will allow for automatic parsing of the
documentation by other developers who wish to use your
module.

« Packaging Your Module

At this stage, the module should be ready for
packaging. The two most widely used packaging formats are
WinZip (.zip extension) and compressed TAR (.tar.gz
extension). If possible, package the module with both
formats. If not then just, package it with the format that
you have and ask on the Xaraya site if someone can package
it in the other format.

 Interacting With Other Modules

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 41

« Overview

When designing your module you may well find there 1is
functionality that you require in a module already
available. Utility modules are designed specifically to
provide additional often-used functionality for modules 1in
a standard way, and sometimes the functionality of an
entire module might be used as part of your module.
Functionality can be obtained either from the display part
of the module or the API itself, depending on the specific
requirements in the new module. Interaction with other
modules 1is carried out in different ways depending on the
type of module being written and the level of specific
control the module requires over the function being called.

» Hooks

Hooks are a way of adding functionality to modules without
the modules themselves knowing what the functions might be.
The site administrator controls the operations of hooks, so
the decision as to which pieces of extra functionality to
use and which not is in their hands rather than the module
developer.

Hooks are called for specific actions that take place in a
module. At current, the actions that hooks are enabled for
are as follows:

Addition of a category
Deletion of a category

Transformation of category data into a standard Xaraya
format

Display of a category

Addition of an item

Deletion of an item

Transformation of item data into a standard Xaraya format

Display of an item

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 42

The terms category and item are quite broad. Category is
used to define any database entity that contains other
categories or items, whilst item is used to define any
database entity that holds content. Due to this
definition it is possible for an item to be a category as
well, although this is an unlikely state of affairs and
it should be obvious to a module developer which parts of
the system deal with categories and which with items.

Hooks are the recommended way of extending the
functionality of your module, and use of the appropriate
xarAPI hook functions as described below 1is mandatory for a
compliant module.

e Calling Hooks

You are developing an item module then you should
allow utility modules to add functionality to the item
module. This is carried out through use of the xarModCallHooks
() function. This function placed wherever a specific action
is required by the item module, where the current specific
actions that the hooks system is able to operate on are:

The hook calls made at the appropriate level depending
on the action taken. With the current hooks, addition and
deletion hooks called at the API level, and display hooks
called at the GUI level.

The xarModCallHooks() function takes a number of parameters,
which are explained below:
hookob ject

The object for which the hooks are called - currently
either category, or item, as described above

hookaction

The action for which the hooks are to be called -
currently one of create, delete, transform, or display

obid

An ID that, within the scope of the module and object,
uniquely defines the entity for which the hook 1is
called

extrainfo

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 43

This is extra information that is required by the hook
function, and 1is dependent on the hook action being
called. Information on the information required by
each hook is covered below.

For create hooks a string that can be used 1in
conjunction with the obid as part of a URL to access
the object. For example, 1f your example_user_display()
function uses a variable picid to define the
particular picture that a user wishes to look at then
the URL would be something like
'"index.php?module=example&func=displayé&picid=4"' and
the identification part of the URL would be something
like 'picid=4' so you would pass 'picid' to this hook.

For display() hooks a URL that can be used by the hooks
to return to a suitable page once they have finished
any work that they might have to do. This is normally
just the standard display URL for this function.

For transform() hooks an array of items that contain
text-based content that can be transformed. This 1is
normally all text-based items.

The xarModCallHooks() function returns different
information depending on value of hookaction. If hookaction
is display then the hook will return extra output to
display directly following the display for the item itself.
If hookaction is create or delete then the function will
return either true or false depending on the success or
failure of the hooks. If hookaction is transform then the
hook will return an equivalent array to that which was
passed in, with the items suitable transformed.

As an example of calling hooks, 1if you were developing
the 'Example' module and were displaying a picture, after
the display of the picture you would want to call the hooks
to add any other functionality available and required by
the site administrator. To do this you would use the
following lines:

Soutput->Text (xarModCallHooks ('item',
'display',
Spictureid,
xarModURL ('example',
'user',
'display',
array('pictureid' => $pictureid))));

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 44

This would add the verbatim output of the hooks to the
current output. It is worth noting again here the from this
code it can be seen that the module itself needs no
information on what hooks, 1if any, exist, it just calls the
function and lets the Xaraya core deal with what extra
output should be added to this item.

One important area to understand 1is where exactly 1in
your code to call hooks. For example, 1f you were
displaying a thumbnail view of 100 pictures from your
Example module, should you call an item display hook for
each picture? The answer to this is somewhat dependent on
the nature of your module. In general you should only call
display hooks when you are displaying the details of a
single item rather than an overview of a large number of
items (of course, if all of those items are in a single
category then you should call a display hook for that
category). However, the transform hook should be called
whenever you are displaying content regardless of it if is
just an overview, as the overview information could require
transformation before display.

The annotated Example module in the standard Xaraya
distribution contains notes on calling hooks within an item
module.

» Writing Hooks

If you are developing a utility module then you
probably want to allow your module to be called as a hook.
This requires the module functions to be able to be called
as hooks, and the module to register and unregistered its
hooks as required.

. Writing Hook Functions

Hook functions are very similar to standard module
functions, but they have a number of extra restrictions
placed on them to be able to work as hooks:

Hook functions must be able to operate correctly given only
two arguments in their arguments array — obid and
returnurl, as these are the only parameters that are passed

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 45

to the function if it is called as a hook. Other parameters
are allowed by the function but they must be optional, and
default to suitable values if not present such that the
function will work appropriately.

Hook functions must not rely on other hooks to exist, or to
have been called already or in future. The order of calling
a 1list of hooks is undefined, and depending on the site
administrator's preferences, particular hooks may never be
called.

Hook functions must not call the xarModCallHooks() function,
or functions that might themselves call xarModCallHooks(). If
a hook does this, it risks getting the code into an
infinite loop.

The Ratings module that comes with the core Xaraya
distribution has an example hook function that shows how to
fit within these guidelines whilst still producing a
general-purpose function.

» Registering Hooks

Once your module has hook-capable functions in place
they need to be registered on initialization of the module
so that the administrator can configure their
applicability, and other modules can access them through
the xarModCallHooks() function. This is carried out through
use of the xarModRegisterHook() function. This function should
be placed within the modname_init() function of your module
and given appropriate parameters to register the relevant
hook—-capable module functions within your module as hooks.

The xarModRegisterHook() function takes a number of parameters,
which are explained below:
hookobject

The object for which the hook is to be registered -
currently either category, or item, as described above

hookaction

The action for which the hook is to be registered -
currently one of create, delete, transform, or display

hookarea

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 46

The area that the hook function covers — currently
either GUI (for functions that are in xaruser.php and
xaradmin.php) or API (for functions that are 1in
xaruserapi.php and xaradminapi.php)

hookmodule

The name of the module in which the hook function
exists — normally the name of the module calling this
function

hooktype

The type of the hook function - currently either user
Oor admin

hookfunc

The name of the hook function

The xarModRegisterHook () function returns true 1f the
registration was successful, and false 1f the registration
is unsuccessful.

As an example of registering hooks, if you were developing
the 'globalid' utility module (which gives every piece of
content in Xaraya a separate ID) and had a
globalid_admin_create() function which created an entry in the
global ID table for this particular piece of content then
you would register this as a creation hook. To do this you
would use the following lines within globalid_init() :
if (!xarModRegisterHook('item',

'create’',

'"API',

'globalid"',

'admin',

'create)) {

return false;

Which would register this hook to be called every time
a hook—-enabled module someone creates an item (a similar
but separate call would be needed to register this hook for
the creation of categories as well).

The Ratings module that comes with the core Xaraya
distribution has detailed comments on registering hooks
within a utility module.

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 47

* Un-registering Hooks

If your module has hook-capable functions that are
registered when the module is initialized they need to be
unregistered when the module is deleted. This 1is carried
out through use of the xarModUnregisterHook () function. This
function should be placed within the modname_delete() function
of your module and given appropriate parameters to
unregister the functions that were previously registered
hooks when the module was initialized.

The xarModUnregisterHook () function takes the same parameters
as the xarModUnregisterHook () function.

The Ratings module that comes with the core Xaraya
distribution has detailed comments on unregistering hooks
within a utility module.

 Function Calls

Another way of accessing the functionality of other
modules is by calling their functions directly with the
xarModFunc () function. Doing this allows a number of
advantages over hooks, but also a number of disadvantages.
In general, calling functions directly is more flexible as
the module developer understands exactly which functions
they are calling and can pass additional arguments to the
function to customize its abilities. The disadvantages are
that the module named in the function call needs to be
installed and active on the system for the calls to work,
and 1f this is replace by a different module providing
similar functionality it will not work correctly.

Using direct function calls to other modules 1is fine
within a module, but the developer should consider the
implications of this on systems that might not have the
modules that they are using installed. Also, even 1if direct
function calls are used then the module developer should
still call hooks at the appropriate places in the code to
allow for other extended functionality to be added to the
module.

An example of where direct function calls might be
used within the Example module would be if the module

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner

developer wanted users to be able to rate various aspects
of the picture displayed such as 'use of color' and
'originality'. In this case, a simple hook would not be
able to accommodate this requirement, so the developer
would instead make explicit calls to the 'Ratings' utility
module to display a number of separate ratings, each with
its own identifier. The hook call would still be made,
which might also add a rating to the picture, but in this
case, the value could be considered as the overall rating
for the picture rather than that just for a specific part.

« Upgrading Your Module

Add information how module upgrades interact with the
installer

* Notes in Developing Modules

xarAPI is the Xaraya Application Programming
Interface, a way for modules to interact with the Xaraya
core without needing to access tables and internal
structures directly. The API also allows for the underlyin
implementation details of Xaraya to be hidden from
developer so that they can write modules in a standard
fashion and not worry about what might change under the
hood. This is very important for a system such as Xaraya,
which has undergone, and continues to undergo, radical
changes in the core design to allow it to be faster, more
secure, and more flexible.

xarAPI is the only supported way of accessing core
information. Module developers must use these methods of
obtaining information from the Xaraya core system; failure
to do so will very likely result in their module not
working when the next version of Xaraya 1s released.

All boldface terms are defined in the Glossary beginning on page 42

48

g

Scot Gardner 49

 Use xarAPI

» Security

Security 1is a very Iimportant part of Xaraya. All
modules should subscribe to the Xaraya Security model to
ensure that they operate correctly within all environments.
For full information on security refer to the Xaraya
Security Model documentation, however the main points as
regards modules are covered briefly below.

» Variable Handling

All variables that come in to or go out of Xaraya
should be handled by the relevant xarVar*() functions to
ensure that they are safe. Failure to do this could result
in opening security holes at the web, file-system, display,
or the database layers. Full information on these functions
is in the Xaraya API Guide, and examples of their use are
shown throughout the example module.

It can be assumed that any variables passed to
functions in the Xaraya API will be handled correctly, and
as such these variables do not need to be prepared with the
xarVar* () functions.

 Authorization

All items displayed for users and actions carried out
by administrators must be authorized through use of the
xarSecAuthAction() function. This function underlies the
entire Xaraya permissions system and as such must be used
wherever an access check is required.

 Reserved Variable Names

Xaraya has a number of variables, which are reserved. These
variables are not be used within modules as they can

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 50

conflict with the Xaraya core and cause unpredictable
results.

The current 1lists of variables, which are reserved, are as
follows:

e file

e func

e Jloadedmod
* module

* name

e op

* pagerstart
* pagertotal

* type

In addition, all one—-letter variables are reserved.

« Page Path

All input from web pages goes through a two-stage
process. The first part is displaying the information
entered in a form, and the second is obtaining that
information and passing it on to the module API. In
addition to the visible information, there are often a
number of hidden items of information in the first page
that is used in the second page.

To ensure that any attempt to add, delete, or change
information in the Xaraya system goes through the full two-
stage method of gathering and processing the information
the two functions xarSecGenAuthKey() and xarSecConfirmAuthKey ()
must be used in the appropriate places. The Example module
in the standard Xaraya distribution contains a number of
functions that use these API calls, and note where they are
used so that developed modules will have the same level of
protection against fraudulent administrator requests

e Output

All output generated by module functions must be returned
to the Xaraya core. No output of any type pushed directly
from the module; this is not supported and will break 1in
future versions of Xaraya.

All boldface terms are defined in the Glossary beginning on page 42

» Using Object Oriented Code

Modules written as classes 1is allowed,
as described in the rest of this document mu
adhered to. The simplest way of doing this 1
compatibility functions, for example:

function mymod_user_main ()

{

$obj = new myClass();

return S$obj->usermain();

e Recommendations
If you are new to Xaraya, it 1is highly

Scot Gardner 51

however the API
st still be
s to use

recommended

that you familiarize yourself with Xaraya by reading the
Xaraya Installation and Getting Started Guide. The guide 1is

currently available via the BitKeeper reposi
the Xaraya.com Web site. As a side note, the

tory located on
guide 1is

currently a work in progress, once completed the guide will

be available by means that are more accessib

Xaraya News Groups:

The following lists of news groups are
news.xaraya.com. These news groups are also
your web browser at the following Web sites.
http://www.xaraya.com

* Ddf.public - DDF Public List
e Xaraya.announce - Xaraya Announcements

* Xaraya.devel - Xaraya Member List

e Xaraya.bk-notices - Xaraya BitKeeper No
* Xaraya.documentation - Xaraya Documenta
* Xaraya.bugs - Xaraya Bugs List

* Xaraya.ul - Xaraya User Interface Lists

le.

available via
available via

List

tices
tion List

* Xaraya.knowledge-base - Xaraya Knowledge Base List

* Xaraya.marketing - Xaraya Marketing

* Xaraya.patches - Xaraya Patches

* Xaraya.ga - Xaraya Quality Assurance

* Xaraya.user - Xaraya User Discussion Li

st

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 52

* Xaraya.user—arabic - Xaraya Arabic User Discussion
List

* Xaraya.user.chinese - Xaraya Chinese User List

* Xaraya.user.danish - Xaraya Danish User Discussion
List

* Xaraya.user.dutch - Xaraya Dutch User Discussion List

* Xaraya.user.french - Xaraya French User Discussion
List

* Xaraya.user.german - Xaraya German User Discussion
List

* Xaraya.user.greek - Xaraya Greek User Discussion List

* Xaraya.users.hungarian - Xaraya Hungarian User

Discussion List
* Xaraya.user.italian - Xaraya Italian User Discussion

List

* Xaraya.user.polish - Xaraya Polish User Discussion
List

¢ Xaraya.user.portuguese - Xaraya Portuguese User
Discussion List

* Xaraya.user.russian - Xaraya Russian User Discussion
List

* Xaraya.user.spanish - Xaraya Spanish User Discussion
List

[

» Glossary

APT

application program interface (API): A formalized set of
software calls and routines that can be referenced by an
application program in order to access supporting network
services

BitKeeper

BitKeeper: is a scalable configuration management system,
supporting globally distributed development, disconnected
operation, compressed repositories, change sets, and
repositories as branches.

Blocklayout

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 53

Blocklayout: is the theme-rendering engine intended to give
theme developers a maximum of control over the appearance
and functionality of their Xaraya website. The RFC for
Blocklayout 1is located at
http://docs.xaraya.com/docs/rfcs/rfc0010.html.

GUI

gui: Acronym for graphical user interface. A computer
environment or program that displays, or facilitates the
display of, on-screen options, usually in the form of icons
(pictorial symbols) or menus (lists of alphanumeric
characters) by means of which users may enter commands.
Note 1: Options are selected by using the appropriate
hardware (e.g., mouse, designated keyboard keys, or
touchpad) to move a display cursor to, or on top of, the
icon or menu item of interest. The application or function
so represented may then be selected (e.g., by clicking a
mouse button, pressing the "enter" key, or by touching the
touchpad) . Note 2: Pronounced "gooey."

LDAP

LDAP: Abbreviation for lightweight directory access
protocol. A simplified version of the X.500 standard, which
version consists of a set of protocols developed for
accessing information directories. [After Bahorsky]

METADATA

Metadata: is machine understandable information for the
web. The W3C Metadata Activity addressed the combined needs
of several groups for a common framework to express
assertions about information on the Web, and was super
ceded by the W3C Semantic Web Activity.

MOVABLE TYPE
Movable Type: is Six Apart's powerful, customizable
publishing system, which installs on web servers to enable

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 54

individuals or organizations to manage and update weblogs,
journals, and frequently updated website content.

PHP
PHP: is a widely used general-purpose scripting language

that is especially suited for Web development and can be
embedded into HTML.

POSTNUKE
PostNuke: is a community, content, collaborative management
system, a C3MS.

More information 1is located at http://www.postnuke.com
RSS
RDF Site Summary (RSS): - also referred to as Rich Site

Summary — 1s a method of describing news or other Web
content that is available for "feeding" (distribution or
syndication) from an online publisher to Web users. RSS 1is
an application of the Extensible Markup Language (XML) that
adheres to the World Wide Web Consortium's Resource
Description Framework (RDF). Originally developed by
Netscape for its browser's Netcenter channels, the RSS
specification is now available for anyone to use.

XMLRPC

XMLRPC: is a spec and a set of Iimplementations that allow
software running on disparate operating systems, running in
different environments to make procedure calls

over the Internet.

 Appendix A

 Module Developers Check List

The following checklist presents a number of items
that need checking throughout the process of designing,
building, and releasing your module.

e Tnitial

1.Decide on the module type
2.Choose a name for your module

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 55

.Register your module name

.Obtain and read the Module Developers Guide

.Obtain and read the API Documentation
Module Design

S, G SOV

.Separate User and Administration Functions

.Separate GUI and API functions

.Design data tables

.Note, which utility modules are of use

.Note, which standard module functions apply

.Create module security schema
Module Build

.Copy the example module directory

.Create database tables

.Create database initialization routines

.Test database initialization routines

.Write administration functions

.Test administration functions

.Write user functions

.Test user functions

9.Write blocks

10.Test blocks

11.Document module API

12.Package your module

* Module Checks

.No global variables used

.No Xaraya reserved variable names used

.No echo () or print () statements used

.All operations protected by xarSecAuthAction ()

.All form results protected by xarSecConfirmAuthKey ()

.All form variables obtained by xarVarFetch ()

.All output is passed through transform hooks.

.All output parsed through xarVarPrepForDisplay () or

xarVarPrepForHTMLDisplay ()

9.A11 variables in SQL queries protected by using bindvars

10.A11 variables in filesystem access protected by
xarVarPrepFor0OS ()

11.Calls to xarModCallHooks () 1in appropriate locations

oy G i W N =

O O G W N =

© 9oy O W N =

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 56

Sources Cited

SearchiWebServices.

SearchWebServices. 22 Sept 2003

<http://searchwebservices.techtarget.com/sDefinition/0,,sid
26_gci813358, 00.html>

Telecom Glossary 2k.

Telecom Glossary 2k. 29 Feb. 2001

< http: www.atis.org/tgl2k/ irc.html>

W3C Technology and Society Domain.

W3C Technology and Society Domain. 05 April 2001

< http://www.w3.org/Metadata/>

Xaraya Development Team About Xarava
John Cox. 27 April. 2003

< http://www.xaraya.com/index.php/news/c28/>

Xaraya Documentation.

Xaraya Documentation. 15 Auqgust 2004

< http://docs.xaraya.com/index.php/documentation/72>

All boldface terms are defined in the Glossary beginning on page 42

Scot Gardner 57

All boldface terms are defined in the Glossary beginning on page 42

