SYMF::Tom
--
converts any symmetric function into a m
-polynomial
SYMF::Tom(sf <,b> <,Collect> <,NoExpand>)
sf | - | any symmetric function |
b | - | converts only b -polynomials appearing in sf |
NoExpand | - | keeps the recursive structure of sf |
Collect | - | expresses the result on the m -basis |
The SYMF::Tom
function converts any symmetric function into a
m
-polynomial.
The symmetric function sf is expanded and the result is not collected.
One may convert only b
-polynomials of sf
by adding
the base b
in the arguments.
One may preserve the recursive structure of sf
by adding
the argument NoExpand
.
One may collect the result by adding the argument Collect
.
The result will be collected in all m
-polynomials
appearing in sf
.
>> muEC::SYMF::Tom( (s[2] - k*e[2])^2 * q - p[1]^3 );
q m[4] + 3 q m[2, 2] + 2 q m[3, 1] + 4 q m[2, 1, 1] + 6 q m[1, 1, 1, 1] - m[3] - 2 k q (m[3, 1] + m[2, 1, 1]) - 2 k q (m[2, 2] + 2 m[2, 1, 1] + 6 m[1, 1, 1, 1]) + 2 2 2 k q m[2, 2] + 2 k q m[2, 1, 1] + 6 k q m[1, 1, 1, 1] - 3 m[2, 1] - 6 m[1, 1, 1]
>> muEC::SYMF::Tom( (s[2] - k*e[2])^2 * q - p[1]^3, Collect );
2 q m[4] + (3 q + k q - 2 k q) m[2, 2] + 2 (4 q + 2 k q - 6 k q) m[2, 1, 1] + 2 (6 q + 6 k q - 12 k q) m[1, 1, 1, 1] + (2 q - 2 k q) m[3, 1] - m[3] - 3 m[2, 1] - 6 m[1, 1, 1]
>> muEC::SYMF::Tom( (s[2] - k*e[2])^2 * q - p[1]^3, Collect, NoExpand );
2 3 q ((k - 1) m[1, 1] - m[2]) - m[1]
>> muEC::SYMF::Tom( (s[2] - k*e[2])^2 * q - p[1]^3, NoExpand, s );
2 3 q (m[2] - k e[2] + m[1, 1]) - p[1]
Toe
, Toh
, Top
, Tos
, SfAddBasis
, Sf
MuPAD Combinat, an open source algebraic combinatorics package