SYMF::Toe
--
converts any symmetric function into a e
-polynomial
SYMF::Toe(sf <,b> <,Collect> <,NoExpand>)
sf | - | any symmetric function |
b | - | converts only b -polynomials appearing in sf |
NoExpand | - | keeps the recursive structure of sf |
Collect | - | expresses the result on the e -basis |
The SYMF::Toe
function converts any symmetric function into a
e
-polynomial.
The symmetric function sf is expanded and the result is not collected.
One may convert only b
-polynomials of sf
by adding
the base b
in the arguments.
One may preserve the recursive structure of sf
by adding
the argument NoExpand
.
One may collect the result by adding the argument Collect
.
The result will be collected in all e
-polynomials
appearing in sf
.
>> muEC::SYMF::Toe( (s[2,1] - k*h[2,1])^2 * q - p[1]^3 );
q e[3, 3] - 2 q e[3, 2, 1] + q e[2, 2, 1, 1] - 2 k q e[3, 2, 1] + 2 k q e[2, 2, 1, 1] + 2 k q e[3, 1, 1, 1] - 2 k q e[2, 1, 1, 1, 1] + 2 2 k q e[2, 2, 1, 1] - 2 k q e[2, 1, 1, 1, 1] + 2 k q e[1, 1, 1, 1, 1, 1] - e[1, 1, 1]
>> muEC::SYMF::Toe( (s[2,1] - k*h[2,1])^2 * q - p[1]^3, Collect );
2 (q + k q + 2 k q) e[2, 2, 1, 1] - 2 (2 k q + 2 k q) e[2, 1, 1, 1, 1] + q e[3, 3] - (2 q + 2 k q) e[3, 2, 1] + 2 k q e[3, 1, 1, 1] + 2 k q e[1, 1, 1, 1, 1, 1] - e[1, 1, 1]
>> muEC::SYMF::Toe( (s[2,1] - k*h[2,1])^2 * q - p[1]^3, Collect, NoExpand );
2 3 q (k e[1, 1, 1] - (k + 1) e[2, 1] + e[3]) - e[1]
>> muEC::SYMF::Toe( (s[2,1] - k*h[2,1])^2 * q - p[1]^3, NoExpand, s );
2 3 q (k h[2, 1] + e[3] - e[2, 1]) - p[1]
Toh
, Tom
, Top
, Tos
, SfAddBasis
, Sf
MuPAD Combinat, an open source algebraic combinatorics package