
MMTK User’s Guide

Konrad Hinsen
Centre de Biophysique Molculaire

Centre National de la Recherche Scientifique
Rue Charles Sadron

45071 Orlans Cedex 2
France

E-Mail: hinsen@cnrs-orleans.fr

2002-6-14

2

Contents

1 Introduction 5

2 Overview 7
Modules . 8

3 Constructing a molecular system 17

4 Minimization and Molecular Dynamics 27

5 Normal modes 39

6 Analysis operations 41

7 Miscellaneous operations 45

8 Constructing the database 51

9 Threads and parallelization 59

10 Reference for Module MMTK 63
Module MMTK.Biopolymers . 72
Module MMTK.ChargeFit . 73
Module MMTK.ChemicalObjects 75
Module MMTK.Collection . 78
Module MMTK.DCD . 83
Module MMTK.Deformation . 85
Module MMTK.Dynamics . 90
Module MMTK.Environment . 94
Module MMTK.Field . 95

3

CONTENTS

Module MMTK.ForceFields . 98
Module MMTK.ForceFields.BondFF 101
Module MMTK.ForceFields.ForceFieldTest 101
Module MMTK.ForceFields.Restraints 101
Module MMTK.ForceFields.SPCEFF 103

Module MMTK.FourierBasis . 104
Module MMTK.Geometry . 105
Module MMTK.Minimization . 111
Module MMTK.MolecularSurface 113
Module MMTK.NormalModes . 114
Module MMTK.NucleicAcids . 120
Module MMTK.PDB . 123
Module MMTK.ParticleProperties 127
Module MMTK.Proteins . 128
Module MMTK.Random . 133
Module MMTK.Solvation . 135
Module MMTK.Subspace . 136
Module MMTK.Trajectory . 138
Module MMTK.Units . 146
Module MMTK.Universe . 147
Module MMTK.Visualization . 156
Module MMTK.Visualization win32 159

11 Examples 163

12 Glossary 167

13 References 169

4

Chapter 1

Introduction

The Molecular Modelling Toolkit (MMTK) presents a new approach to
molecular simulations. It is not a ”simulation program” with a certain set
of functions that can be used by writing more or less flexible ”input files”,
but a collection of library modules written in an easy-to-learn high-level
programming language, Python. This approach offers three important
advantages:

• Application programs can use the full power of a general and
well-designed programming language.

• Application programs can profit from the large set of other libraries
that are available for Python. These may be scientific or
non-scientific; for example, it is very easy to write simulation or
analysis programs with graphical user interfaces (using the module
Tkinter in the Python standard library), or couple scientific
calculations with a Web server.

• Any user can provide useful additions in separate modules, whereas
adding features to a monolithic program requires at least the
cooperation of the original author.

To further encourage collaborative code development, MMTK uses a very
unrestrictive licensing policy, just like Python. Although MMTK is
copyrighted, anyone is allowed to use it for any purpose, including
commercial ones, as well as to modify and redistribute it (a more precise
description is given in the copyright statement that comes with the code).

5

Introduction

This manual describes version 2.2 of MMTK. The 2.x versions contain some
incompatible changes with respect to earlier versions (1.x), most
importantly a package structure that reduces the risk of name conflicts with
other Python packages, and facilitates future enhancements. There are also
many new features and improvements to existing functions.
Using MMTK requires a basic knowledge of object-oriented programming
and Python. Newcomers to this subject should have a look at the
introductory section in this manual and at the Python tutorial (which also
comes with the Python interpreter). There are also numerous books on
Pythonthat are useful in getting started. Even without MMTK, Python is
a very useful programming language for scientific use, allowing rapid
development and testing and easy interfacing to code written in low-level
languages such as Fortran or C.
This manual consists of several introductory chapters and a Module
Reference. The introductory chapters explain how common tasks are
handled with MMTK, but they do not describe all of its features, nor do
they contain a full documentation of functions or classes. This information
can be found in the Module Reference, which describes all classes and
functions intended for end-user applications module by module, using
documentation extracted directly from the source code. References from
the introductory sections to the module reference facilitate finding the
relevant documentation.

6

Chapter 2

Overview

This chapter explains the basic structure of MMTK and its view of
molecular systems. Every MMTK user should read it at least once.

Using MMTK

MMTK applications are ordinary Python programs, and can be written
using any standard text editor. For interactive use it is recommended to
use either the special Python mode for the Emacs editor, or one of the
Tk-based graphical user interfaces for Python, IDLE (comes with the
Python interpreter from version 1.5.2) or PTUI.
MMTK tries to be as user-friendly as possible for interactive use. For
example, lengthy calculations can usually be interrupted by typing
Control-C. This will result in an error message (”Keyboard Interrupt”), but
you can simply go on typing other commands. Interruption is particularly
useful for energy minimization and molecular dynamics: you can interrupt
the calculation at any time, look at the current state or do some analysis,
and then continue.

7

Overview

Modules

MMTK is a package consisting of various modules, most of them written in
Python, and some in C for efficiency. The individual modules are described
in the Module Reference. The basic definitions that almost every
application needs are collected in the top-level module, MMTK. The first
line of most applications is therefore

from MMTK import *

The definitions that are specific to particular applications reside in
submodules within the package MMTK. For example, force fields are
defined in MMTK.ForceFields (page 98), and peptide chain and protein
objects are defined in MMTK.Proteins (page 128).
Python provides two ways to access objects in modules and submodules.
The first one is importing a module and referring to objects in it, e.g.:

import MMTK

import MMTK.ForceFields

universe = MMTK.InfiniteUniverse(MMTK.ForceFields.Amber94ForceField())

The second method is importing all or some objects froma module:

from MMTK import InfiniteUniverse

from MMTK.ForceFields import Amber94ForceField

universe = InfiniteUniverse(Amber94ForceField())

These two import styles can also be mixed according to convience. In order
to prevent any confusion, all objects are referred to by their full names in
this manual. The Amber force field object is thus called
MMTK.ForceFields.Amber94ForceField (page 99). Of course the user is
free to use selective imports in order to be able to use such objects with
shorter names.

8

Overview

Objects

MMTK is an object-oriented system. Since objects are everywhere and
everything is an object, it is useful to know the most important object
types and what can be done with them. All object types in MMTK have
meaningful names, so it is easy to identify them in practice. The following
overview contains only those objects that a user will see directly. There are
many more object types used by MMTK internally, and also some less
common user objects that are not mentioned here.

Chemical objects

These are the objects that represent the parts of a molecular system:

• atoms

• groups

• molecules

• molecular complexes

These objects form a simple hierarchy: complexes consist of molecules,
molecules consist of groups and atoms, groups consist of smaller groups and
atoms. All of these, except for groups, can be used directly to construct a
molecular system. Groups can only be used in the definitions of other
groups and molecules in the chemical database.
A number of operations can be performed on chemical objects, which can
roughly be classified into inquiry (constituent atoms, bonds, center of mass
etc.) and modification (translate, rotate).
There are also specialized versions of some of these objects. For example,
MMTK defines proteins as special complexes, consisting of peptide chains,
which are special molecules. They offer a range of special operations (such
as selecting residues or constructing the positions of missing hydrogen
atoms) that do not make sense for molecules in general.

Collections

Collection objects represent arbitrary collections of chemical objects. They
are used to be able to refer to collections as single entities. For example,

9

Overview

you might want to call all water molecules collectively ”solvent”. Most of
the operations on chemical objects are also available for collections.

Force fields

Force field objects represent a precise description of force fields, i.e. a
complete recipe for calculating the potential energy (and its derivatives) for
a given molecular system. In other words, they specify not only the
functional form of the various interactions, but also all parameters and the
prescriptions for applying these parameters to an actual molecular system.

Universes

Universes define complete molecular systems, i.e. they contain chemical
objects. In addition, they describe interactions within the system (by a
force field), boundary conditions, external fields, etc. Many of the
operations that can be used on chemical objects can also be applied to
complete universes.

Minimizers and integrators

A minimizer object is a special ”machine” that can find local minima in the
potential energy surface of a universe. You may consider this a function, if
you wish, but of course functions are just special objects. Similarly, an
integrator is a special ”machine” that can determine a dynamical trajectory
for a system on a given potential energy surface.

Trajectories

Minimizers and integrators can produce trajectories, which are special files
containing a sequence of configurations and/or other related information.
Of course trajectory objects can also be read for analysis.

Variables

Variable objects (not to be confused with standard Python variables)
describe quantities that have a value for each atom in a system, for example

10

Overview

positions, masses, or energy gradients. Their most common use is for
storing various configurations of a system.

Normal modes

Normal mode objects contain normal mode frequencies and atomic
displacements for a given universe.

Non-MMTK objects

An MMTK application program will typically also make use of objects
provided by Python or Python library modules. A particularly useful
library is the package Scientific, which is also used by MMTK itself. The
most important objects are

• numbers (integers, real number, complex numbers), provided by
Python

• vectors (in 3D coordinate space) provided by the module
Scientific.Geometry.

• character strings, provided by Python

• files, provided by Python

Of course MMTK applications can make use of the Python standard library
or any other Python modules. For example, it is possible to write a
simulation program that provides status reports via an integrated Web
server, using the Python standard module SimpleHTTPServer.

11

Overview

The chemical database

For defining the chemical objects described above, MMTK uses a database
of descriptions. There is a database for atoms, one for groups, etc. When
you ask MMTK to make a specific chemical object, for example a water
molecule, MMTK looks for the definition of water in the molecule database.
A database entry contains everything there is to know about the object it
defines: its constituents and their names, configurations, other names used
e.g. for I/O, and all information force fields might need about the objects.
MMTK comes with database entries for many common objects (water,
amino acids, etc.). For other objects you will have to write the definitions
yourself, as described in the section on the database.

12

Overview

Force fields

MMTK contains everything necessary to use the Amber 94 force field on
proteins, DNA, and water molecules. It uses the standard Amber
parameter and modification file format. In addition to the Amber force
field, there is a simple Lennard-Jones force field for noble gases, and a
deformation force field for normal mode calculations on large proteins.
MMTK was designed to make the addition of force field terms and the
implementation of other force fields as easy as possible. Force field terms
can be defined in Python (for ease of implementation) or in C or Fortran
(for efficiency). This is described in the developer’s guide.

13

Overview

Units

Since MMTK is not a black-box program, but a modular library, it is
essential for it to use a consistent unit system in which, for example, the
inverse of a frequency is a time, and the product of a mass and the square
of a velocity is an energy, without additional conversion factors. Black-box
programs can (and usually do) use a consistent unit system internally and
convert to ”conventional” units for input and output.
The unit system of MMTK consists mostly of SI units of appropriate
magnitude for molecular systems:

• nm for lengths

• ps for times

• atomic mass units (g/mol) for masses

• kJ/mol for energies

• THz (1/ps) for frequencies

• K for temperatures

• elementary charges

The module MMTK.Units (page 146) contains convenient conversion
constants for the units commonly used in computational chemistry. For
example, a length of 2 ngstrm can be written as 2*Units.Ang, and a
frequency can be printed in wavenumbers with print

frequency/Units.invcm.

14

Overview

A simple example

The following simple example shows how a typical MMTK application
might look like. It constructs a system consisting of a single water molecule
and runs a short molecular dynamics trajectory. There are many
alternative ways to do this; this particular one was chosen because it makes
each step explicit and clear. The individual steps are explained in the
remaining chapters of the manual.

Import the necessary MMTK definitions.

from MMTK import *

from MMTK.ForceFields import Amber94ForceField

from MMTK.Trajectory import Trajectory, TrajectoryOutput, \

StandardLogOutput

from MMTK.Dynamics import VelocityVerletIntegrator

Create an infinite universe (i.e. no boundaries, non-periodic).

universe = InfiniteUniverse(Amber94ForceField())

Create a water molecule in the universe.

Water is defined in the database.

universe.molecule = Molecule(’water’)

Generate random velocities.

universe.initializeVelocitiesToTemperature(300*Units.K)

Create an integrator.

integrator = VelocityVerletIntegrator(universe)

Generate a trajectory

trajectory = Trajectory(universe, "water.nc", "w")

Run the integrator for 50 steps of 1 fs, printing time and energy

every fifth step and writing time, energy, temperature, and the positions

of all atoms to the trajectory at each step.

integrator(delta_t = 1.*Units.fs, steps = 50,

actions = [StandardLogOutput(5),

TrajectoryOutput(trajectory, ("time", "energy",

"thermodynamic",

"configuration"),

0, None, 1)])

Close the trajectory

trajectory.close()

15

Overview

16

Chapter 3

Constructing a molecular
system

The construction of a complete system for simulation or analysis involves
some or all of the following operations:

• Creating molecules and other chemical objects.

• Defining the configuration of all objects.

• Defining the ”surroundings” (e.g. boundary conditions).

• Choosing a force field.

MMTK offers a large range of functions to deal with these tasks.

Creating chemical objects

Chemical objects (atoms, molecules, complexes) are created from definitions
in the database. Since these definitions contain most of the necessary
information, the subsequent creation of the objects is a simple procedure.
All objects are created by their class name (MMTK.Atom (page 65),
MMTK.Molecule (page 67), and MMTK.Complex (page 69)) with the
name of the definition file as first parameter. Additional optional
parameters can be specified to modify the object being created. The
following optional parameters can be used for all object types:

17

Constructing a molecular system

• name=string Specifies a name for the object. The default name is the
one given in the definition file.

• position=vector Specifies the position of the center of mass. The
default is the origin.

• configuration=string Indicates a configuration from the
configuration dictionary in the definition file. The default is ’default’
if such an entry exists in the configuration dictionary. Otherwise the
object is created without atomic positions.

Some examples with additional explanations for specific types:

• Atom(’C’) creates a carbon atom.

• Molecule(’water’, position=Vector(0.,0.,1.))creates a water
molecule using configuration ’default’ and moves the center of mass to
the indicated position.

Proteins, peptide chains, and nucleotide chains

MMTK contains special support for working with proteins, peptide chains,
and nucleotide chains. As described in the chapter on the database,
proteins can be described by a special database definition file. However, it
is often simpler to create protein objects directly in an application program.
The classes are MMTK.Proteins.PeptideChain (page 128),
MMTK.Proteins.Protein (page 130), and
MMTK.NucleicAcids.NucleotideChain (page 120).
Proteins can be created from definition files in the database, from
previously constructed peptide chain objects, or directly from PDB files if
no special manipulations are necessary.
Examples: Protein(’insulin’) creates a protein object for insulin from a
database file. Protein(’1mbd.pdb’) creates a protein object for myoglobin
directly from a PDB file, but leaving out the heme group, which is not a
peptide chain.
Peptide chains are created from a sequence of residues, which can be a
MMTK.PDB.PDBPeptideChain (page 123) object, a list of three-letter
residue codes, or a string containing one-letter residue codes. In the last
two cases the atomic positions are not defined. MMTK provides several

18

Constructing a molecular system

models for the residues which provide different levels of detail: an all-atom
model, a model without hydrogen atoms, two models containing only polar
hydrogens (using different definitions of polar hydrogens), and a model
containing only the C-alpha atoms, with each C-alpha atom having the
mass of the entire residue. The last model is useful for conformational
analyses in which only the backbone conformations are important.
The construction of nucleotide chains is very similar. The residue list can
be either a MMTK.PDB.PDBNucleotideChain (page 123) object or a list of
two-letter residue names. The first letter of a residue name indicates the
sugar type (’R’ for ribose and ’D’ for desoxyribose), and the second letter
defines the base (’A’, ’C’, and ’G’, plus ’T’ for DNA and ’U’ for RNA).
The models are the same as for peptide chains, except that the C-alpha
model does not exist.
Most frequently proteins and nucleotide chains are created from a PDB file.
The PDB files often contain solvent (water) as well, and perhaps some
other molecules. MMTK provides convenient functions for extracting
information from PDB files and for building molecules from them in the
module MMTK.PDB (page 123). The first step is the creation of a
MMTK.PDB.PDBConfiguration (page 124)object from the PDB file:

from MMTK.PDB import PDBConfiguration

configuration = PDBConfiguration(’some_file.pdb’)

The easiest way to generate MMTK objects for all molecules in the PDB
file is then

molecules = configuration.createAll()

The result is a collection of molecules, peptide chains, and nucleotide
chains, depending on the contents of the PDB files. There are also methods
for modifying the PDBConfiguration before creating MMTK objects from
it, and for creating objects selectively. See the documentation for the
modules MMTK.PDB (page 123) and Scientific.IO.PDB for details, as well
as the protein and DNA examples.

Lattices

Sometimes it is necessary to generate objects (atoms or molecules)
positioned on a lattice. To facilitate this task, MMTK defines lattice

19

Constructing a molecular system

objects which are essentially sequence objects containing points or objects
at points. Lattices can therefore be used like lists with indexing and
for-loops. The lattice classes are MMTK.Geometry.RhombicLattice (page
107), MMTK.Geometry.BravaisLattice (page 108), and
MMTK.Geometry.SCLattice (page 108).

Random numbers

The Python standard library and the Numerical Python package provide
random number generators, and more are available in seperate packages.
MMTK provides some convenience functions that return more specialized
random quantities: random points in a universe, random velocities, random
particle displacement vectors, random orientations. These functions are
defined in module MMTK.Random (page 133).

Collections

Often it is useful to treat a collection of several objects as a single entity.
Examples are a large number of solvent molecules surrounding a solute, or
all sidechains of a protein. MMTK has special collection objects for this
purpose, defined as class MMTK.Collection (page 66). Most of the methods
available for molecules can also be used on collections.
A variant of a collection is the partitioned collection, implemented in class
MMTK.PartitionedCollection (page 68). This class acts much like a
standard collection, but groups its elements by geometrical position in
small sub-boxes. As a consequence, some geometrical algorithms (e.g. pair
search within a cutoff) are much faster, but other operations become
somewhat slower.

Creating universes

A universe describes a complete molecular system consisting of any number
of chemical objects and a specification of their interactions (i.e. a force
field) and surroundings: boundary conditions, external fields, thermostats,
etc. The universe classes are defined in module MMTK:

• MMTK.InfiniteUniverse (page 69) represents an infinite universe,
without any boundary or periodic boundary conditions.

20

Constructing a molecular system

• MMTK.OrthorhombicPeriodicUniverse (page 70) represents a
periodic universe with an orthorhombic elementary cell, whose size is
defined by the three edge lengths.

• MMTK.CubicPeriodicUniverse (page 71) is a special case of
MMTK.OrthorhombicPeriodicUniverse (page 70) in which the
elementary cell is cubic.

Universes are created empty; the contents are then added to them. Three
types of objects can be added to a universe: chemical objects (atoms,
molecules, etc.), collections, and environment objects (thermostats etc.). It
is also possible to remove objects from a universe.

Force fields

MMTK comes with several force fields, and permits the definition of
additional force fields. Force fields are defined in module
MMTK.ForceFields (page 98). The most import built-in force field is the
Amber 94 force field, represented by the class
MMTK.ForceFields.Amber94ForceField (page 99). It offers several
strategies for electrostatic interactions, including Ewald summation, a fast
multipole method [DPMTA], and cutoff with charge neutralization and
optional screening [Wolf1999].
In addition to the Amber 94 force field, there is a Lennard-Jones force field
for noble gases (Class MMTK.ForceFields.LennardJonesForceField (page
99)) and a deformation force field for protein normal mode calculations
(Class MMTK.ForceFields.DeformationForceField (page 98)).

21

Constructing a molecular system

Referring to objects and parts of objects

Most MMTK objects (in fact all except for atoms) have a hierarchical
structure of parts of which they consist. For many operations it is necessary
to access specific parts in this hierarchy.
In most cases, parts are attributes with a specific name. For example, the
oxygen atom in every water molecule is an attribute with the name ”O”.
Therefore if w refers to a water molecule, then w.O refers to its oxygen
atom. For a more complicated example, if mrefers to a molecule that has a
methyl group called ”M1”, then m.M1.Crefers to the carbon atom of that
methyl group. The names of attributes are defined in the database.
Some objects consist of parts that need not have unique names, for example
the elements of a collection, the residues in a peptide chain, or the chains in
a protein. Such parts are accessed by indices; the objects that contain them
are Python sequence types. Some examples:

• Asking for the number of items: if crefers to a collection, then len(c)

is the number of its elements.

• Extracting an item: if p refers to a protein, then p[0] is its first
peptide chain.

• Iterating over items: if p refers to a peptide chain, then for residue

in p: print residue.position() will print the center of mass
positions of all its residues.

Peptide and nucleotide chains also allow the operation of slicing: if prefers
to a peptide chain, then p[1:-1]is a subchain extending from the second to
the next-to-last residue.

The structure of peptide and nucleotide chains

Since peptide and nucleotide chains are not constructed from an explicit
definition file in the database, it is not evident where their hierarchical
structure comes from. But it is only the top-level structure that is treated
in a special way. The constituents of peptide and nucleotide chains,
residues, are normal group objects. The definition files for these group
objects are in the MMTK standard database and can be freely inspected
and even modified or overriden by an entry in a database that is listed
earlier in MMTKDATABASE.

22

Constructing a molecular system

Peptide chains are made up of amino acid residues, each of which is a group
consisting of two other groups, one being called ”peptide” and the other
”sidechain”. The first group contains the peptide group and the C and H
atoms; everything else is contained in the sidechain. The C atom of the fifth
residue of peptide chain pis therefore referred to as p[4].peptide.C alpha.
Nucleotide chains are made up of nucleotide residues, each of which is a
group consisting of two or three other groups. One group is called ”sugar”
and is either a ribose or a desoxyribose group, the second one is called
”base” and is one the five standard bases. All but the first residue in a
nucleotide chain also have a subgroup called ”phosphate” describing the
phosphate group that links neighbouring residues.

23

Constructing a molecular system

Analyzing and modifying atom properties

General operations

Many inquiry and modification operations act at the atom level and can
equally well be applied to any object that is made up of atoms, i.e. atoms,
molecules, collections, universes, etc. These operations are defined once in a
mix-in classcalled MMTK.Collection.GroupOfAtoms (page 78), but are
available for all objects for which they make sense. They include
inquiry-type functions (total mass, center of mass, moment of inertia,
bounding box, total kinetic energy etc.), coordinate modifications
(translation, rotation, application of transformation objects) and coordinate
comparisons (RMS difference, optimal fits).

Coordinate transformations

The most common coordinate manipulations involve translations and
rotations of specific parts of a system. It is often useful to refer to such an
operation by a special kind of object, which permits the combination and
analysis of transformations as well as its application to atomic positions.

Transformation objects specify a general displacement consisting of a
rotation around the origin of the coordinate system followed by a
translation. They are defined in the module Scientific.Geometry, but for
convenience the module MMTK contains a reference to them as well.
Transformation objects corresponding to pure translations can be created
with Translation(displacement); transformation objects describing pure
rotations with Rotation(axis, angle) or Rotation(rotation matrix).
Multiplication of transformation objects returns a composite
transformation.

The translational component of any transformation can be obtained by
calling the method translation(); the rotational component is obtained
analogously with rotation(). The displacement vector for a pure
translation can be extracted with the method displacement(), a tuple of
axis and angle can be extracted from a pure rotation by calling
axisAndAngle().

24

Constructing a molecular system

Atomic property objects

Many properties in a molecular system are defined for each individual
atom: position, velocity, mass, etc. Such properties are represented in
special objects, defined in module MMTK: MMTK.ParticleScalar (page
63)for scalar quantities, MMTK.ParticleVector (page 64) for vector
quantities, and MMTK.ParticleTensor (page 65) for rank-2 tensors. All
these objects can be indexed with an atom object to retrieve or change the
corresponding value. Standard arithmetic operations are also defined, as
well as some useful methods.

Configurations

A configuration object, represented by the class MMTK.Configuration
(page 65) is a special variant of a MMTK.ParticleVector (page 64) object.
In addition to the atomic coordinates of a universe, it stores geometric
parameters of a universe that are subject to change, e.g. the edge lengths of
the elementary cell of a periodic universe. Every universe has a current
configuration, which is what all operations act on by default. It is also the
configuration that is updated by minimizations, molecular dynamics, etc.
The current configuration can be obtained by calling the method
configuration().
There are two ways to create configuration objects: by making a copy of
the current configuration (with copy(universe.configuration()), or by
reading a configuration from a trajectory file.

25

Constructing a molecular system

26

Chapter 4

Minimization and Molecular
Dynamics

Trajectories

Minimization and dynamics algorithms produce sequences of configurations
that are often stored for later analysis. In fact, they are often the most
valuable result of a lengthy simulation run. To make sure that the use of
trajectory files is not limited by machine compatibility, MMTK stores
trajectories in netCDFfiles. These files contain binary data, minimizing
disk space usage, but are freely interchangeable between different machines.
In addition, there are a number of programs that can perform standard
operations on arbitrary netCDF files, and which can therefore be used
directly on MMTK trajectory files. Finally, netCDF files are self-describing,
i.e. contain all the information needed to interpret their contents. An
MMTK trajectory file can thus be inspected and processed without
requiring any further information.

For illustrations of trajectory operations, see the trajectory examples.

Trajectory file objects are represented by the class
MMTK.Trajectory.Trajectory (page 138). They can be opened for reading,
writing, or modification. The data in trajectory files can be stored in single
precision or double precision; single-precision is usually sufficient, but
double-precision files are required to reproduce a given state of the system
exactly.

A trajectory is closed by calling the method close(). If anything has been

27

Minimization and Molecular Dynamics

written to a trajectory, closing it is required to guarantee that all data has
been written to the file. Closing a trajectory after reading is recommended
in order to prevent memory leakage, but is not strictly required.
Newly created trajectories can contain all objects in a universe or any
subset; this is useful for limiting the amount of disk space occupied by the
file by not storing uninteresting parts of the system, e.g. the solvent
surrounding a protein. It is even possible to create a trajectory for a subset
of the atoms in a molecule, e.g. for only the C-alpha atoms of a protein.
The universe description that is stored in the trajectory file contains all
chemical objects of which at least one atom is represented.
When a trajectory is opened for reading, no universe object needs to be
specified. In that case, MMTK creates a universe from the description
contained in the trajectory file. This universe will contain the same objects
as the one for which the trajectory file was created, but not necessarily
have all the properties of the original universe (the description contains
only the names and types of the objects in the universe, but not, for
example, the force field). The universe can be accessed via the attribute
universeof the trajectory.
If the trajectory was created with partial data for some of the objects,
reading data from it will set the data for the missing parts to ”undefined”.
Analysis operations on such systems must be done very carefully. In most
cases, the trajectory data will contain the atomic configurations, and in
that case the ”defined” atoms can be extracted with the method
atomsWithDefinedPositions().
MMTK trajectory files can store various data: atomic positions, velocities,
energies, energy gradients etc. Each trajectory-producing algorithm offers a
set of quantities from which the user can choose what to put into the
trajectory. Since a detailed selection would be tedious, the data is divided
into classes, e.g. the class ”energy” stands for potential energy, kinetic
energy, and whatever other energy-related quantities an algorithm produces.
For optimizing I/O efficiency, the data layout in a trajectory file can be
modified by the block size parameter. Small block sizes favour reading or
writing all data for one time step, whereas large block sizes (up to the
number of steps in the trajectory) favour accessing a few values for all time
steps, e.g. scalar variables like energies or trajectories for individual atoms.
The default value of the block size is one.
Every trajectory file contains a history of its creation. The creation of the
file is logged with time and date, as well as each operation that adds data

28

Minimization and Molecular Dynamics

to it with parameters and the time/date of start and end. This information,
together with the comment and the number of atoms and steps contained
in the file, can be obtained with the function
MMTK.Trajectory.trajectoryInfo.
It is possible to read data from a trajectory file that is being written to by
another process. For efficiency, trajectory data is not written to the file at
every time step, but only approximately every 15 minutes. Therefore the
amount of data available for reading may be somewhat less than what has
been produced already.

29

Minimization and Molecular Dynamics

Options for minimization and dynamics

Minimizers and dynamics integrators accept various optional parameter
specifications. All of them are selected by keywords, have reasonable
default values, and can be specified when the minimizer or integrator is
created or when it is called. In addition to parameters that are specific to
each algorithm, there is a general parameter actions that specifies actions
that are executed periodically, including trajectory and console output.

Periodic actions

Periodic actions are specified by the keyword parameter actions whose value
is a list of periodic actions, which defaults to an empty list. Some of these
actions are applicable to any trajectory-generating algorithm, especially the
output actions. Others make sense only for specific algorithms or specific
universes, e.g. the periodic rescaling of velocities during a Molecular
Dynamics simulation.
Each action is described by an action object. The step numbers for which
an action is executed are specified by three parameters. The parameter first
indicates the number of the first step for which the action is executed, and
defaults to 0. The parameter last indicates the last step for which the
action is executed, and default to None, meaning that the action is executed
indefinitely. The parameter skip speficies how many steps are skipped
between two executions of the action. The default value of 1 means that
the action is executed at each step. Of course an action object may have
additional parameters that are specific to its action.
The output actions are defined in the module MMTK.Trajectory (page
138) and can be used with any trajectory-generating algorithm. They are:

• MMTK.Trajectory.TrajectoryOutput (page 142) for writing data to a
trajectory. Note that it is possible to use several trajectory output
actions simultaneously to write to multiple trajectories. It is thus
possible, for example, to write a short dense trajectory during a
dynamics run for analyzing short-time dynamics, and simultaneously
a long-time trajectory with a larger step spacing, for analyzing
long-time dynamics.

• MMTK.Trajectory.RestartTrajectoryOutput (page 143), which is a
specialized version of MMTK.Trajectory.TrajectoryOutput (page

30

Minimization and Molecular Dynamics

142). It writes the data that the algorithm needs in order to be
restarted to a restart trajectory file. A restart trajectory is a
trajectory that stores a fixed number of steps which are reused
cyclically, such that it always contain the last few steps of a trajectory.

• MMTK.Trajectory.LogOutput (page 143) for text output of data to a
file.

• MMTK.Trajectory.StandardLogOutput (page 144), a specialized
version of MMTK.Trajectory.LogOutput (page 143) that writes the
data classes ”time” and ”energy” during the whole simulation run to
standard output.

The other periodic actions are meaningful only for Molecular Dynamics
simulations:

• MMTK.Dynamics.VelocityScaler (page 91) is used for rescaling the
velocities to force the kinetic energy to the value defined by some
temperature. This is usually done during initial equilibration.

• MMTK.Dynamics.BarostatReset (page 92) resets the barostat
coordinate to zero and is during initial equilibration of systems in the
NPT ensemble.

• MMTK.Dynamics.Heater (page 91) rescales the velocities like
MMTK.Dynamics.VelocityScaler (page 91), but increases the
temperature step by step.

• MMTK.Dynamics.TranslationRemover (page 92) subtracts the global
translational velocity of the system from all individual atomic
velocities. This prevents a slow but systematic energy flow into the
degrees of freedom of global translation, which occurs with most MD
integrators due to non-perfect conservation of momentum.

• MMTK.Dynamics.RotationRemover (page 93) subtracts the global
angular velocity of the system from all individual atomic velocities.
This prevents a slow but systematic energy flow into the degrees of
freedom of global rotation, which occurs with most MD integrators
due to non-perfect conservation of angular momentum.

31

Minimization and Molecular Dynamics

Fixed atoms

During the course of a minimization or molecular dynamics algorithm, the
atoms move to different positions. It is possible to exclude specific atoms
from this movement, i.e. fixing them at their initial positions. This has no
influence whatsoever on energy or force calculations; the only effect is that
the atoms’ positions never change. Fixed atoms are specified by giving
them an attribute fixedwith a value of one. Atoms that do not have an
attribute fixed, or one with a value of zero, move according to the selected
algorithm.

32

Minimization and Molecular Dynamics

Energy minimization

MMTK has two energy minimizers using different algorithms: steepest
descent (MMTK.Minimization.SteepestDescentMinimizer (page 111)) and
conjugate gradient (MMTK.Minimization.ConjugateGradientMinimizer
(page 112)) . Steepest descent minimization is very inefficient if the goal is
to find a local minimum of the potential energy. However, it has the
advantage of always moving towards the minimum that is closest to the
starting point and is therefore ideal for removing bad contacts in a
unreasonably high energy configuration. For finding local minima, the
conjugate gradient algorithm should be used.
Both minimizers accept three specific optional parameters:

• steps (an integer) to specify the maximum number of steps (default is
100)

• step size (a number) to specify an initial step length used in the
search for a minimum (default is 2 pm)

• convergence (a number) to specify the gradient norm (more precisely
the root-mean-square length) at which the minimization should stop
(default is 0.01 kJ/mol/nm)

There are three classes of trajectory data: ”energy” includes the potential
energy and the norm of its gradient, ”configuration” stands for the atomic
positions, and ”gradients” stands for the energy gradients at each atom
position.
The following example performs 100 steps of steepest descent minimization
without producing any trajectory or printed output:

from MMTK import *

from MMTK.ForceFields import Amber94ForceField

from MMTK.Minimization import SteepestDescentMinimizer

universe = InfiniteUniverse(Amber94ForceField())

universe.protein = Protein(’insulin’)

minimizer = SteepestDescentMinimizer(universe)

minimizer(steps = 100)

See also the example file NormalModes/modes.py.

33

Minimization and Molecular Dynamics

Molecular dynamics

The techniques described in this section are illustrated by several Molecular
Dynamics examples.

Velocities

The integration of the classical equations of motion for an atomic system
requires not only positions, but also velocities for all atoms. Usually the
velocities are initialized to random values drawn from a normal distribution
with a variance corresponding to a certain temperature. This is done by
calling the method
initializeVelocitiesToTemperature(temperature)on a universe. Note
that the velocities are assigned atom by atom; no attempt is made to
remove global translation or rotation of the total system or any part of the
system.

During equilibration of a system, it is common to multiply all velocities by
a common factor to restore the intended temperature. This can done
explicitly by calling the method
scaleVelocitiesToTemperature(temperature)on a universe, or by using
the action object MMTK.Dynamics.VelocityScaler (page 91).

Distance constraints

A common technique to eliminate the fastest (usually uninteresting)
degrees of freedom, permitting a larger integration time step, is the use of
distance constraints on some or all chemical bonds. MMTK allows the use
of distance constraints on any pair of atoms, even though constraining
anything but chemical bonds is not recommended due to considerable
modifications of the dynamics of the system [vanGunsteren1982,
Hinsen1995].

MMTK permits the definition of distance constraints on all atom pairs in
an object that are connected by a chemical bond by calling the method
setBondConstraints. Usually this is called for a complete universe, but it
can also be called for a chemical object or a collection of chemical objects.
The method removeDistanceConstraints removes all distance constraints
from the object for which it is called.

34

Minimization and Molecular Dynamics

Constraints defined as described above are automatically taken into
account by Molecular Dynamics integrators. It is also possible to enforce
the constraints explicitly by calling the method enforceConstraints for a
universe. This has the effect of modifying the configuration and the
velocities (if velocities exist) in order to make them compatible with the
constraints.

Thermostats and barostats

A standard Molecular Dynamics integration allows time averages
corresponding to the NVE ensemble, in which the number of molecules, the
system volume, and the total energy are constant. This ensemble does not
represent typical experimental conditions very well. Alternative ensembles
are the NVT ensemble, in which the temperature is kept constant by a
thermostat, and the NPT ensemble, in which temperature and pressure are
kept constant by a thermostat and a barostat. To obtain these ensembles in
MMTK, thermostat and barostat objects must be added to a universe. In
the presence of these objects, the Molecular Dynamics integrator will use
the extended-systems method for producing the correct ensemble. The
classes to be used are MMTK.Environment.NoseThermostat (page 94) and
MMTK.Environment.AndersenBarostat (page 94).

Integration

A Molecular Dynamics integrator based on the ”Velocity Verlet” algorithm
[Swope1982], which was extended to handle distance constraints as well as
thermostats and barostats [Kneller1996], is implemented by the class
MMTK.Dynamics.VelocityVerletIntegrator (page 90). It has two optional
keyword parameters:

• steps (an integer) to specify the number of steps (default is 100)

• delta t (a number) to specify the time step (default 1 fs)

There are three classes of trajectory data: ”energy” includes the potential
energy and the kinetic energy, as well as the energies of thermostat and
barostat coordinates if they exist, ”time” stands for the time,
”thermodynamic” stand for temperature and pressure, ”configuration”

35

Minimization and Molecular Dynamics

stands for the atomic positions, ”velocities” stands for the atomic velocities,
and ”gradients” stands for the energy gradients at each atom position.
The following example performs a 1000 step dynamics integration, storing
every 10th step in a trajectory file and removing the total translation and
rotation every 50th step:

from MMTK import *

from MMTK.ForceFields import Amber94ForceField

from MMTK.Dynamics import VelocityVerletIntegrator, TranslationRemover, \

RotationRemover

from MMTK.Trajectory import TrajectoryOutput

universe = InfiniteUniverse(Amber94ForceField())

universe.protein = Protein(’insulin’)

universe.initializeVelocitiesToTemperature(300.*Units.K)

actions = [TranslationRemover(0, None, 50),

RotationRemover(0, None, 50),

TrajectoryOutput("insulin.nc",

("configuration", "energy", "time"),

0, None, 10)]

integrator = VelocityVerletIntegrator(universe, delta_t = 1.*Units.fs,

actions = actions)

integrator(steps = 1000)

36

Minimization and Molecular Dynamics

Snapshots

A snapshot generator allows writing the current system state to a
trajectory. It works much like a zero-step minimization or dynamics run,
i.e. it takes the same optional arguments for specifying the trajectory and
protocol output. A snapshot generator is created using the class
MMTK.Trajectory.SnapshotGenerator (page 144).

37

Minimization and Molecular Dynamics

38

Chapter 5

Normal modes

Normal mode analysis provides an analytic description of the dynamics of a
system near a minimum using an harmonic approximation to the potential.
Before a normal mode analysis can be started, the system must be brought
to a local minimum of the potential energy by energy minimization, except
when special force fields designed only for normal mode analysis are used
(e.g. MMTK.ForceFields.DeformationForceField (page 98)). See also the
normal mode examples.

A standard normal mode analysis is performed by creating a normal mode
object, implemented in class MMTK.NormalModes.NormalModes (page
114). A normal mode object behaves like a sequence of
MMTK.NormalModes.Mode (page 114)objects which store the atomic
displacement vectors corresponding to each mode and its vibrational
frequency.

For short-ranged potentials, it is advantageous to store the second
derivatives of the potential in a sparse-matrix form and to use an iterative
method to determine some or all modes. This permits the treatments of
larger systems that would normally require huge amounts of memory. A
sparse-matrix method is implemented in class
MMTK.NormalModes.SparseMatrixNormalModes (page 115).

Another approach to deal with large systems is the restriction to
low-frequency modes which are supposed to be well representable by linear
combinations of a given set of basis vectors. The basis vectors can be
obtained from a basis for the full Cartesian space by elimination of known
fast degrees of freedom (e.g. bonds); the module MMTK.Subspace (page
136) contains support classes for this approach. It is also possible to

39

Normal modes

construct a suitable basis vector set from small-deformation vector fields
(e.g. MMTK.FourierBasis.FourierBasis (page 104)). The normal mode
analysis for a given set of basis vectors is performed by the class
MMTK.NormalModes.SubspaceNormalModes (page 116). There is also a
variant using finite difference differentiation
(MMTK.NormalModes.FiniteDifferenceSubspaceNormalModes (page 117))
and another one using a sparse-matrix representation of the second
derivatives (MMTK.NormalModes.SparseMatrixSubspaceNormalModes
(page 118)).

40

Chapter 6

Analysis operations

Analysis is the most non-standard part of molecular simulations. The
quantities that must be calculated depend strongly on the system and the
problem under study. MMTK provides a wide range of elementary
operations that inquire the state of the system, as well as several more
complex analysis tools. Some of them are demonstrated in the examples
section.

Properties of chemical objects and universes

Many operations access and modify various properties of an object. They
are defined for the most general type of object: anything that can be
broken down to atoms, i.e. atoms, molecules, collections, universes, etc., i.e.
in the class MMTK.Collection.GroupOfAtoms (page 78).

The most elementary operations are inquiries about specific properties of
an object: number of atoms, total mass, center of mass, total momentum,
total charge, etc. There are also operations that compare two different
conformations of a system. Finally, there are special operations for
analyzing conformations of peptide chains and proteins.

Geometrical operations in periodic universes require special care. Whenever
a distance vector between two points in a systems is evaluated, the
minimum-image convention must be used in order to obtain consistent
results. MMTK provides routines for finding these distance vectors as well
as distances, angles, and dihedral angles between any points. Because these
operations depend on the topology and geometry of the universe, they are

41

Analysis operations

implemented as methods in class MMTK.Universe.Universe (page 147)and
its subclasses. Of course they are available for non-periodic universes as
well.
Universes also provide methods for obtaining atom propertyobjects that
describe the state of the system (configurations, velocities, masses), and for
restoring the system state from a trajectoryfile.

42

Analysis operations

Energy evaluation

Energy evaluation requires a force field, and therefore all the methods in
this section are defined only for universe objects, i.e. in class
MMTK.Universe.Universe (page 147). However, they all take an optional
arguments (anything that can be broken down into atoms) that indicates
for which subset of the universe the energy is to be evaluated. In addition
to the potential energy, energy gradients and second derivatives (force
constants) can be obtained, if the force field implements them. There is
also a method that returns a dictionary containing the values for all the
individual force field terms, which is often useful for analysis.

43

Analysis operations

Surfaces and volumes

Surfaces and volumes can be analyzed for anything consisting of atoms.
Both quantities are defined by assigning a radius to each atom; the surface
of the resulting conglomerate of overlapping spheres is taken to be the
surface of the atom group. Atom radii for surface determination are usually
called ”van der Waals radii”, but there is no unique method for determining
them. MMTK uses the values from [Bondi1964]. However, users can change
these values for each individual atom by assigning a new value to the
attribute ”vdW radius”.
Surface and volume calculations are implemented in the module
MMTK.MolecularSurface (page 113) and make use of the NSC library by
Frank Eisenhabes [Eisenhaber1993, Eisenhaber1995]. Because this library is
subject to stricter copyright conditions than MMTK (it can be freely used
only for non-commercial purposes), the whole molecular surface package
(NSC and the module MolecularSurface) is distributed separately from the
main MMTK distribution. If you get error messages when trying to
evaluate surfaces or values, please verify that you have installed this
separate package.
The operations provided in MMTK.MolecularSurface (page 113)include
basic surface and volume calculation, determination of exposed atoms, and
identification of contacts between two objects.

44

Chapter 7

Miscellaneous operations

Saving, loading, and copying objects

MMTK provides an easy way to store (almost) arbitrary objects in files and
retrieve them later. All objects of interest to users can be stored, including
chemical objects, collections, universes, normal modes, configurations, etc.
It is also possible to store standard Python objects such as numbers, lists,
dictionaries etc., as well as practically any user-defined objects. Storage is
based on the standard Python module pickle.

Objects are saved with MMTK.save and restored with MMTK.load. If
several objects are to be stored in a single file, use tuples: save((object1,
object2), filename) and object1, object2 = load(filename) to
retrieve the objects.

Note that storing an object in a file implies storing all objects referenced by
it as well, such that the size of the file can become larger than expected.
For example, a configuration object contains a reference to the universe for
which it is defined. Therefore storing a configuration object means storing
the whole universe as well. However, nothing is ever written twice to the
same file. If you store a list or a tuple containing a universe and a
configuration for it, the universe is written only once.

It should be noted that when saving an object, all objects that this object
refers to are also saved in the same file (otherwise the restored object would
be missing some references). In practice this means that saving any
chemical object, even a single atom, involves saving the whole universe that
this object is part of. However, when saving several objects in one file,

45

Miscellaneous operations

objects referenced several times are saved only once.
Frequently it is also useful to copy an object, such as a molecule or a
configuration. There are two functions (which are actually taken from the
Python standard library module copy) for this purpose, which have a
somewhat different behaviour for container-type objects (lists, dictionaries,
collections etc.). MMTK.copy(object) returns a copy of the given object.
For a container object, it returns a new container object which contains the
same objects as the original one. If the intention is to get a container object
which contains copies of the original contents, then
MMTK.deepcopy(object) should be used. For objects that are not
container-type objects, there is no difference between the two functions.

46

Miscellaneous operations

Exporting to specific file formats and

visualization

MMTK can write objects in specific file formats that can be used by other
programs. Three file formats are supported: the PDB format, widely used
in computational chemistry, the DCD format for trajectories, written by
the programs CHARMM and X-Plor and read by many visualization
programs, and the VRML format, understood by VRML browsers as a
representation of a three-dimensional scene for visualization. MMTK also
provides a more general interface that can generate graphics objects in any
representation if a special module for that representation exists. In addition
to facilitating the implementation of new graphics file formats, this
approach also permits the addition of custom graphics elements (lines,
arrows, spheres, etc.) to molecular representations.

PDB, VRML, and DCD files

Any chemical object, collection, or universe can be written to a PDB or
VRML file by calling the method writeToFile, defined in class
MMTK.Collection.GroupOfAtoms (page 78). PDB files are read via the
class MMTK.PDB.PDBConfiguration (page 124). DCD files can be read by
a MMTK.DCD.DCDReader (page 83) object. For writing DCD files, there
is the function MMTK.DCD.writeDCDPDB, which also creates a
compatible PDB file without which the DCD file could not be interpreted.

Special care must be taken to ensure a correct mapping of atom numbers
when reading from a DCD file. In MMTK, each atom object has a unique
identity and atom numbers, also used internally for efficiency, are not
strictly necessary and are not used anywhere in MMTK’s application
programming interface. DCD file, however, simply list coordinates sorted
by atom number. For interpreting DCD files, another file must be available
which allows the identification of atoms from their number and vice versa;
this can for example be a PDB file.

When reading DCD files, MMTK assumes that the atom order in the DCD
file is identical to the internal atom numbering of the universe for which the
DCD file is read. This assumption is in general valid only if the universe
has been created from a PDB file that is compatible with the DCD file,
without any additions or removals.

47

Miscellaneous operations

Visualization and animation

The most common need for file export is visualization. All objects that can
be visualized (chemical systems and subsets thereof, normal mode objects,
trajectories) provide a method viewwhich creates temporary export files,
starts a visualization program, and deletes the temporary files. Depending
on the object type there are various optional parameters.
MMTK also allows visualization of normal modes and trajectories using
animation. Since not all visualization programs permit animation, and
since there is no standard way to ask for it, animation is implemented only
for the programs XMoland VMD. Animation is available for normal modes,
trajectories, and arbitrary sequences of configurations (see function
MMTK.Visualization.viewSequence).
For more specialized needs, MMTK permits the creation of graphical
representations of most of its objects via general graphics modules that
have to be provided externally. Suitable modules are provided in the
package Scientific.Visualization and cover VRML (version 1), VRML2 (aka
VRML97), and the molecular visualization program VMD. Modules for
other representations (e.g. rendering programs) can be written easily; it is
recommended to use the existing modules as an example. The generation of
graphics objects is handled by the method graphicsObjects, defined in
the class MMTK.Visualization.Viewable (page 156), which is a mix-in class
that makes graphics objects generation available for all objects that define
chemical systems or parts thereof, as well as for certain other objects that
are viewable.
The explicit generation of graphics objects permits the mixture of different
graphical representations for various parts of a system, as well as the
combination of MMTK-generated graphics objects with arbitrary other
graphics objects, such as lines, arrows, or spheres. All graphics objects are
finally combined into a scene object (also defined in the various graphics
modules) in order to be displayed. See also the visualization examples.

48

Miscellaneous operations

Fields

For analyzing or visualizing atomic properties that change little over short
distances, it is often convenient to represent these properties as functions of
position instead of one value per atom. Functions of position are also
known as fields, and mathematical techniques for the analysis of fields have
proven useful in many branches of physics. Such a field can be obtained by
averaging over the values corresponding to the atoms in a small region of
space. MMTK provides classes for scalar and vector field in module
MMTK.Field (page 95). See also the example Miscellaneous/vector field.py.

49

Miscellaneous operations

Charge fitting

A frequent problem in determining force field parameters is the
determination of partial charges for the atoms of a molecule by fitting to
the electrostatic potential around the molecule, which is obtained from
quantum chemistry programs. Although this is essentially a straightforward
linear least-squares problem, many procedures that are in common use do
not use state-of-the-art techniques and may yield erroneous results. MMTK
provides a charge fitting method that is numerically stable and allows the
imposition of constraints on the charges. It is implemented in module
MMTK.ChargeFit (page 73). See also the example
Miscellaneous/charge fit.py.

50

Chapter 8

Constructing the database

MMTK uses a database of chemical entities to define the properties of
atoms, molecules, and related objects. This database consists of plain text
files, more precisely short Python programs, whose names are the names of
the object types. This chapter explains how to construct and manage these
files. Note that the standard database already contains many definitions, in
particular for proteins and nucleic acids. You do not need to read this
chapter unless you want to add your own molecule definitions.

MMTK’s database does not have to reside in a single place. It can consist
of any number of subdatabases, each of which can be a directory or a URL.
Typically the database consists of at least two parts: MMTK’s standard
definitions and a user’s personal definitions. When looking up an object
type in the database, MMTK checks the value of the environment variable
MMTKDATABASE. The value of this variable must be a list of subdatabase
locations seperated by white space. If the variable MMTKDATABASE is not
defined, MMTK uses a default value that contains the path
”.mmtk/Database” in the user’s home directory followed by MMTK’s
standard database, which resides in the directory Database within the
MMTK package directory (on many Unix systems this is
/usr/local/lib/python2.2/site-packages/MMTK). MMTK checks the
subdatabases in the order in which they are mentioned in MMTKDATABASE.

Each subdatabase contains directories corresponding to the object classes,
i.e. Atoms (atom definitions), Groups (group definitions), Molecules
(molecule definitions), Complexes (complex definitions), Proteins (protein
definitions), and PDB (Protein Data Bank files). These directories contain
the definition files, whose names may not contain any upper-case letters.

51

Constructing the database

These file names correspond to the object types, e.g. the call
MMTK.Molecule(’Water’)will cause MMTK to look for the file
Molecules/water in the database (note that the names are converted to
lower case).
The remaining sections of this chapter explain how the individual definition
files are constructed. Keep in mind that each file is actually a Python
program, so of course standard Python syntax rules apply.

Atom definitions

An atom definition in MMTK describes a chemical element, such as
”hydrogen”. This should not be confused with the ”atom types” used in
force field descriptions and in some modelling programs. As a consequence,
it is rarely necessary to add atom definitions to MMTK.
Atom definition files are short and of essentially identical format. This is
the definition for carbon:

name = ’carbon’

symbol = ’C’

mass = [(12, 98.90), (13.003354826, 1.10)]

color = ’black’

vdW_radius = 0.17

The name should be meaningful to users, but is not used by MMTK itself.
The symbol, however, is used to identify chemical elements. It must be
exactly equal to the symbol defined by IUPAC, including capitalization
(e.g. ’Cl’ for chlorine). The mass can be either a number or a list of tuples,
as shown above. Each tuple defines an isotope by its mass and its
percentage of occurrence; the percentages must add up to 100. The color is
used for VRML output and must equal one of the color names defined in
the module VRML. The van der Waals radius is used for the calculation of
molecular volumes and surfaces; the values are taken from [Bondi1964].
An application program can create an isolated atom with Atom(’c’) or,
specifying an initial position, with Atom(’c’,

position=Vector(0.,1.,0.)). The element name can use any
combination of upper and lower case letters, which are considered
equivalent.

52

Constructing the database

Group definitions

Group definitions in MMTK exist to facilitate the definition of molecules by
avoiding the frequent repetition of common combinations. MMTK doesn’t
give any physical meaning to groups. Groups can contain atoms and other
groups. Their definitions look exactly like molecule definitions; the only
difference between groups and molecules is the way they are used.
This is the definition of a methyl group:

name = ’methyl group’

C = Atom(’C’)

H1 = Atom(’H’)

H2 = Atom(’H’)

H3 = Atom(’H’)

bonds = [Bond(C, H1), Bond(C, H2), Bond(C, H3)]

pdbmap = [(’MTH’, {’C’: C, ’H1’: H1, ’H2’: H2, ’H3’: H3})]

amber_atom_type = {C: ’CT’, H1: ’HC’, H2: ’HC’, H3: ’HC’}

amber_charge = {C: 0., H1: 0.1, H2: 0.1, H3: 0.1}

The name should be meaningful to users, but is not used by MMTK itself.
The following lines create the atoms in the group and assign them to
variables. These variables become attributes of whatever object uses this
group; their names can be anything that is a legal Python name. The list of
bonds, however, must be assigned to the variable ”bonds”. The bond list is
used by force fields and for visualization.
The variable ”pdbmap” is used for reading and writing PDB files. Its value
must be a list of tuples, where each tuple defines one PDB residue. The first
element of the tuple is the residue name, which is used only for output. The
second element is a dictionary that maps PDB atom names to the actual
atoms. The pdbmap entry of any object can be overridden by an entry in a
higher-level object. Therefore the entry for a group is only used for atoms
that do not occur in the entry for a molecule that contains this group.
The remaining lines in the definition file contain information specific to
force fields, in this case the Amber force field. The dictionary
”amber atom type” defines the atom type for each atom; the dictionary
”amber charge” defines the partial charges. As for pdbmap entries, these
definitions can be overridden by higher-level definitions.

53

Constructing the database

Molecule definitions

Molecules are typically used directly in application programs, but they can
also be used in the definition of complexes. Molecule definitions can use
atoms and groups.
This is the definition of a water molecule:

name = ’water’

structure = \

" O\n" + \

" / \\\n" + \

"H H\n"

O = Atom(’O’)

H1 = Atom(’H’)

H2 = Atom(’H’)

bonds = [Bond(O, H1), Bond(O, H2)]

pdbmap = [(’HOH’, {’O’: O, ’H1’: H1, ’H2’: H2})]

pdb_alternative = {’OH2’: ’O’}

amber_atom_type = {O: ’OW’, H1: ’HW’, H2: ’HW’}

amber_charge = {O: -0.83400, H1: 0.41700, H2: 0.41700}

configurations = {

’default’: ZMatrix([[H1],

[O, H1, 0.9572*Ang],

[H2, O, 0.9572*Ang, H1, 104.52*deg]])

}

The name should be meaningful to users, but is not used by MMTK itself.
The structure is optional and not used by MMTK either. The following
lines create the atoms in the group and assign them to variables. These
variables become attributes of the molecule, i.e. when a water molecule is
created in an application program by w = Molecule(’water’), then
w.H1will refer to its first hydrogen atom. The names of these variables can
be any legal Python names. The list of bonds, however, must be assigned
to the variable ”bonds”. The bond list is used by force fields and for
visualization.
The variable ”pdbmap” is used for reading and writing PDB files. Its value
must be a list of tuples, where each tuple defines one PDB residue. The first
element of the tuple is the residue name, which is used only for output. The
second element is a dictionary that maps PDB atom names to the actual

54

Constructing the database

atoms. The pdbmap entry of any object can be overridden by an entry in a
higher-level object, i.e. in the case of a molecule a complex containing it.
The variable ”pdb alternative” allows to read PDB files that use
non-standard names. When a PDB atom name is not found in the pdbmap,
an attempt is made to translate it to another name using pdb alternative.
The two following lines in the definition file contain information specific to
force fields, in this case the Amber force field. The dictionary
”amber atom type” defines the atom type for each atom; the dictionary
”amber charge” defines the partial charges. As for pdbmap entries, these
definitions can be overridden by higher-level definitions.
The variable ”configurations” can be defined to be a dictionary of
configurations for the molecule. During the construction of a molecule, a
configuration can be specified via an optional parameter, e.g. w =

Molecule(’water’, configuration=’default’). The names of the
configurations can be arbitrary; only the name ”default” has a special
meaning; it is applied by default if no other configuration is specified when
constructing the molecule. If there is no default configuration, and no other
configuration is explicitly specified, then the molecule is created with
undefined atomic positions.
There are three ways of describing configurations:

• By a Z-Matrix:

ZMatrix([[H1],

[O, H1, 0.9572*Ang],

[H2, O, 0.9572*Ang, H1, 104.52*deg]])

• By Cartesian coordinates:

Cartesian({O: (0.004, -0.00518, 0.0),

H1: (-0.092, -0.00518, 0.0),

H2: (0.028, 0.0875, 0.0)})

• By a PDB file:

PDBFile(’water.pdb’)

The PDB file must be in the database subdirectory PDB, unless a full
path name is specified for it.

55

Constructing the database

Complex definitions

Complexes are defined much like molecules, except that they are composed
of molecules and atoms; no groups are allowed, and neither are bonds.

56

Constructing the database

Protein definitions

Protein definitions can take many different forms, depending on the source
of input data and the type of information that is to be stored. For proteins
it is particularly useful that database definition files are Python programs
with all their flexibility.
The most common way of constructing a protein is from a PDB file. This is
an example for a protein definition:

name = ’insulin’

Read the PDB file.

conf = PDBConfiguration(’insulin.pdb’)

Construct the peptide chains.

chains = conf.createPeptideChains()

Clean up

del conf

The name should be meaningful to users, but is not used by MMTK itself.
The second command reads the sequences of all peptide chains from a PDB
file. Everything which is not a peptide chain is ignored. The following line
constructs a PeptideChain object (a special molecule) for each chain from
the PDB sequence. This involves constructing positions for any missing
hydrogen atoms. Finally, the temporary data (”conf”) is deleted, otherwise
it would remain in memory forever.
The net result of a protein definition file is the assignment of a list of
molecules (usually PeptideChain objects) to the variable ”chains”. MMTK
then constructs a protein object from it. To use the above example, an
application program would use the command p = Protein(’insulin’).
The construction of the protein involves one nontrivial (but automatic)
step: the construction of disulfide bridges for pairs of cystein residues whose
sulfur atoms have a distance of less then 2.5 Angstrom.

57

Constructing the database

58

Chapter 9

Threads and parallelization

This chapter explains the use of threads by MMTK and MMTK’s
parallelization support. This is an advanced topic, and not essential for the
majority MMTK applications. You need to read this chapter only if you
use multiprocessor computers, or if you want to implement multi-threaded
programs that use MMTK.

Threads are different execution paths through a program that are executed
in parallel, at least in principle; real parallel execution is possible only on
multiprocessor systems. MMTK makes use of threads in two ways, which
are conceptually unrelated: parallelization of energy evaluation on
shared-memory multiprocessor computers, and support for multithreaded
applications. Thread support is not available on all machines; you can
check if yous system supports threads by starting a Python interpreter and
typing import threading. If this produces an error message, then your
system does not support threads, otherwise it is available in Python and
also in MMTK. If you do not have thread support in Python although you
know that your operating system supports threads, you might have
compiled your Python interpreter without thread support; in that case,
MMTK does not have thread support either.

Another approach to parallelization is message passing: several processors
work on a program and communicate via a fast network to share results. A
standard library, called MPI (Message Passing Interface), has been
developped for sharing data by message passing, and implementations are
available for all parallel computers currently on the market. MMTK
contains elementary support for parallelization by message passing: only
the energy evaluation has been paralellized, using a data-replication

59

Threads and parallelization

strategy, which is simple but not the most efficient for large systems. MPI
support is disabled by default. Enabling it involves modifying the file
Src/Setup.template prior to compilation of MMTK. Furthermore, an
MPI-enabled installation of ScientificPython is required, and the mpipython
executable must be used instead of the standard Python interpreter.
Threads and message passing can be used together to use a cluster of
shared-memory machines most efficiently. However, this requires that the
thread and MPI implementations being used work together; sometimes
there are conflicts, for example due to the use of the same signal in both
libraries. Refer to your system documentation for details.
The use of threads for parallelization on shared-memory systems is very
simple: Just set the environment variable MMTK ENERGY THREADS to the
desired value. If this variable is not defined, the default value is 1, i.e.
energy evaluations are performed serially. For choosing an appropriate value
for this environment variable, the following points should be considered:

• The number of energy evaluation threads should not be larger than
the number of processors that are fully dedicated to the MMTK
application. A larger number of threads does not lead to wrong
results, but it can increase the total execution time.

• MMTK assumes that all processors are equally fast. If you use a
heteregenous multiprocessor machine, in which the processors have
different speeds, you might find that the total execution time is larger
than without threads.

• The use of threads incurs some computational overhead. For very
small systems, it might be faster not to use threads.

• Not all energy terms necessarily support threads. Of the force field
terms that part of MMTK, only the multipole algorithms for
electrostatic interactions does not support threads, but additional
force fields defined outside MMTK might also be affected. MMTK
automatically evaluates such energy terms with a single thread, such
that there is no risk of getting wrong results. However, you might not
get the performance you expect.

• If second derivatives of the potential energy are requested, energy
evaluation is handled by a single thread. An efficient implementation

60

Threads and parallelization

of multi-threaded energy evaluation would require a separate copy of
the second-derivative matrix per thread. This approach needs too
much memory for big systems to be feasible. Since second derivatives
are almost exclusively used for normal mode calculations, which need
only a single energy evaluation, multi-thread support is not
particularly important anyway.

Parallelization via message passing is somewhat more complicated. In the
current MMTK parallelization model, all processors execute the same
program and replicate all tasks, with the important exception of energy
evaluation. Energy terms are divided evenly between the processors, and at
the end the energy and gradient values are shared by all machines. This is
the only step involving network communication. Like thread-based
parallelization, message-passing parallelization does not support the
evaluation of second derivatives.

A special problem with message-passing systems is input and output. The
MMTK application must ensure that output files are written by only one
processor, and that all processors correctly access input files, especially in
the case of each processor having its own disk space. See the example
MPI/md.pyfor illustration.

Multithreaded applications are applications that use multiple threads in
order to simplify the implementation of certain algorithms, i.e. not
necessarily with the goal of profiting from multiple processors. If you plan
to write a multithreaded application that uses MMTK, you should first
make sure you understand threading support in Python. In particular, you
should keep in mind that the global interpreter lock prevents the effective
use of multiple processors by Python code; only one thread at a time can
execute interpreted Python code. C code called from Python can permit
other threads to execute simultaneously; MMTK does this for energy
evaluation, molecular dynamics integration, energy minimization, and
normal mode calculation.

A general problem in multithreaded applications is access to resources that
are shared among the threads. In MMTK applications, the most important
shared resource is the description of the chemical systems, i.e. universe
objects and their contents. Chaos would result if two threads tried to
modify the state of a universe simultaneously, or even if one thread uses
information that is simultaneously being modified by another thread.
Synchronization is therefore a critical part of multithreaded application.

61

Threads and parallelization

MMTK provides two synchronization aids, both of which described in the
documentation of the class MMTK.Universe.Universe (page 147): the
configuration change lock (methods acquireConfigurationChangeLock

and releaseConfigurationChangeLock), and the universe state lock
(methods acquireReadStateChangeLock, releaseReadStateChangeLock,
acquireWriteStateChangeLock, and releaseWriteStateChangeLock).
Only a few common universe operations manipulate the universe state lock
in order to avoid conflicts with other threads; these methods are marked as
thread-safe in the description. All other operations should only be used
inside a code section that is protected by the appropriate manipulation of
the state lock. The configuration change lock is less critical; it is used only
by the molecular dynamics and energy minimization algorithms in MMTK.

62

Chapter 10

Reference for Module MMTK

MMTK is the base module of the Molecular Modelling Toolkit. It contains
the most common objects and all submodules. As a convenience to the
user, it also imports some commonly used objects from other libraries:

• Vector from Scientific.Geometry

• Translation and Rotation from
Scientific.Geometry.Transformation

• copy and deepcopy from copy

• stdin, stdout, and stderr from sys

Class ParticleScalar: Scalar property defined

for each particle

A subclass of MMTK.ParticleProperties.ParticleProperty (page 127).
ParticleScalar objects can be added to each other and multiplied with
scalars.

Methods:

• maximum()
Returns the highest value for any particle.

63

Reference for Module MMTK

• minimum()
Returns the smallest value for any particle.

• applyFunction(function)
Applies function to each value and returns the result as a new
ParticleScalar object.

Class ParticleVector: Vector property defined

for each particle

A subclass of MMTK.ParticleProperties.ParticleProperty (page 127).
ParticleVector objects can be added to each other and multiplied with
scalars or MMTK.ParticleScalar (page 63) objects; all of these operations
result in another ParticleVector object. Multiplication with a vector or
another ParticleVector object yields a MMTK.ParticleScalar (page 63)
object containing the dot products for each particle. Multiplications that
treat ParticleVectors as vectors in a 3N-dimensional space are implemented
as methods.

Methods:

• length()
Returns a ParticleScalar containing the length of the vector for each
particle.

• norm()
Returns the norm of the ParticleVector seen as a 3N-dimensional
vector.

• dotProduct(other)
Returns the dot product with other (a ParticleVector) treating both
operands as 3N-dimensional vectors.

• massWeightedDotProduct(other)
Returns the mass-weighted dot product with other(a ParticleVector
object) treating both operands as 3N-dimensional vectors.

• dyadicProduct(other)
Returns a MMTK.ParticleTensor (page 65) object representing the
dyadic product with other (a ParticleVector).

64

Reference for Module MMTK

Class Configuration: Configuration of a

universe

A subclass of MMTK.ParticleVector (page 64).
Its instances represent a configuration of a universe, consisting of positions
for all atoms (like in a ParticleVector) plus the geometry of the universe
itself, e.g. the cell shape for periodic universes.

Class ParticleTensor: Rank-2 tensor property

defined for each particle

A subclass of MMTK.ParticleProperties.ParticleProperty (page 127).
ParticleTensor objects can be added to each other and multiplied with
scalars or MMTK.ParticleScalar (page 63) objects; all of these operations
result in another ParticleTensor object.

Class Atom: Atom

A subclass of MMTK.ChemicalObjects.ChemicalObject (page 75).
Constructor: Atom(element, **—properties—)

element a string (not case sensitive) specifying the chemical element

properties optional keyword properties:

• position: the atom position (a vector)

• name: the atom name (a string)

Methods:

• setPosition(position)
Changes the position to position.

• position(conf=None)
Returns the position in configuration conf. If conf is None, use the
current configuration. If the atom has not been assigned a position,
the return value is None.

65

Reference for Module MMTK

• setMass(mass)
Set the atom mass to mass.

• bondedTo()
Returns a list of all atoms to which a chemical bond exists.

Class Collection: Collection of chemical

objects

A subclass of MMTK.Collection.GroupOfAtoms (page 78)and
MMTK.Visualization.Viewable (page 156).
Collections permit the grouping of arbitrary chemical objects (atoms,
molecules, etc.) into one object for the purpose of analysis or manipulation.
Constructor: Collection(objects=None)

objects a chemical object or a sequence of chemical objects that define the
initial content of the collection.

Collections permit length inquiry, item extraction by indexing, and
iteration, like any Python sequence object. Two collections can be added to
yield a collection that contains the combined elements.

Methods:

• addObject(object)
Adds object to the collection. If object is another collection or a list,
all of its elements are added.

• removeObject(object)
Removes object from the collection. If object is a collection or a list,
each of its elements is removed. The object to be removed must be an
element of the collection.

• selectShell(point, r1, r2=0.0)
Return a collection of all elements whose distance from point is
between r1 and r2.

• selectBox(p1, p2)
Return a collection of all elements that lie within a box whose corners
are given by p1 and p2.

66

Reference for Module MMTK

• objectList(klass=None)
Returns a list of all objects in the collection. If klass is not None, only
objects whose class is equal to klass are returned.

• atomList()
Returns a list containing all atoms of all objects in the collection.

• numberOfAtoms()
Returns the total number of atoms in the objects of the collection.

• universe()
Returns the universe of which the objects in the collection are part. If
no such universe exists, the return value is None.

• map(function)
Applies function to all objects in the collection and returns the list of
the results. If the results are chemical objects, a Collection object is
returned instead of a list.

• distanceConstraintList()
Returns the list of distance constraints.

• numberOfDistanceConstraints()
Returns the number of distance constraints.

• setBondConstraints(universe=None)
Sets distance constraints for all bonds.

• removeDistanceConstraints(universe=None)
Removes all distance constraints.

Class Molecule: Molecule

A subclass of MMTK.ChemicalObjects.ChemicalObject (page 75).
Molecules consist of atoms and groups linked by bonds.
Constructor: Molecule(species, **—properties—)

species a string (not case sensitive) that specifies the molecule name in the
chemical database

67

Reference for Module MMTK

properties optional keyword properties:

• position: the center-of-mass position (a vector)

• configuration: the name of a configuration listed in the database
definition of the molecule, which is used to initialize the atom
positions. If no configuration is specified, the configuration
named ”default” will be used, if it exists. Otherwise the atom
positions are undefined.

• name: the atom name (a string)

Methods:

• findHydrogenPositions()
Find reasonable positions for hydrogen atoms that have no position
assigned.

This method uses a heuristic approach based on standard geometry
data. It was developed for proteins and DNA and may not give good
results for other molecules. It raises an exception if presented with a
topology it cannot handle.

Class PartitionedCollection: Collection with

cubic partitions

A subclass of MMTK.Collection (page 66).
A PartitionedCollection differs from a plain Collection by sorting its
elements into small cubic cells. This makes adding objects slower, but
geometrical operations like selectShell become much faster for a large
number of objects.
Constructor: PartitionedCollection(partition size, objects=None)

partition size the edge length of the cubic cells

objects a chemical object or a sequence of chemical objects that define the
initial content of the collection.

Methods:

68

Reference for Module MMTK

• partitions()
Returns a list of cubic partitions. Each partition is specified by a
tuple containing two vectors (describing the diagonally opposite
corners) and the list of objects in the partition.

• pairsWithinCutoff(cutoff)
Returns a list containing all pairs of objects in the collection whose
center-of-mass distance is less than cutoff.

Class PartitionedAtomCollection: Partitioned

collection of atoms

A subclass of MMTK.PartitionedCollection (page 68).
PartitionedAtomCollection objects behave like PartitionedCollection atoms,
except that they store only atoms. When a composite chemical object is
added, its atoms are stored instead.
Constructor: PartitionedAtomCollection(partition size, objects=None)

partition size the edge length of the cubic cells

objects a chemical object or a sequence of chemical objects that define the
initial content of the collection.

Class InfiniteUniverse: Infinite (unbounded

and nonperiodic) universe.

A subclass of MMTK.Universe.Universe (page 147).
Constructor: InfiniteUniverse(forcefield=None)

forcefield a force field object, or None for no force field

Class Complex: Complex

A subclass of MMTK.ChemicalObjects.ChemicalObject (page 75).
A complex is an assembly of molecules that are not connected by chemical
bonds.
Constructor: Complex(species, **—properties—)

69

Reference for Module MMTK

species a string (not case sensitive) that specifies the complex name in the
chemical database

properties optional keyword properties:

• position: the center-of-mass position (a vector)

• configuration: the name of a configuration listed in the database
definition of the complex

• name: the atom name (a string)

Class AtomCluster: An agglomeration of

atoms

A subclass of MMTK.ChemicalObjects.ChemicalObject (page 75).
An atom cluster acts like a molecule without any bonds or atom properties.
It can be used to represent a group of atoms that are known to form a
chemical unit but whose chemical properties are not sufficiently known to
define a molecule.
Constructor: AtomCluster(atoms, **—properties—)

atoms a list of atom objects

properties optional keyword properties:

• position: the center-of-mass position (a vector)

• name: the atom name (a string)

Class OrthorhombicPeriodicUniverse:

Periodic universe with orthorhombic

elementary cell.

A subclass of MMTK.Universe.Universe (page 147).
Constructor: OrthorhombicPeriodicUniverse(shape, forcefield=None)

shape a sequence of length three specifying the edge lengths along the x, y,
and z directions

70

Reference for Module MMTK

forcefield a force field object, or None for no force field

Methods:

• scaleSize(factor)
Multiplies all edge lengths by factor.

• setVolume(volume)
Multiplies all edge lengths by the same factor such that the cell
volume becomes volume.

Class CubicPeriodicUniverse: Periodic

universe with cubic elementary cell.

A subclass of MMTK.Universe.Universe (page 147).

shape a number specifying the edge length along the x, y, and z directions

forcefield a force field object, or None for no force field Constructor:
CubicPeriodicUniverse(shape, forcefield=None)

Functions

• save()
Writes object to a newly created file with the name filename, for later
retrieval by load().

• load()
Loads the file indicated by filename, which must have been produced
by save(), and returns the object stored in that file.

71

Reference for Module MMTK

Module MMTK.Biopolymers

Class ResidueChain: A chain of residues

A subclass of MMTK.Molecule (page 67).
This is an abstract base class that defines operations common to peptide
chains and nucleic acid chains.

Methods:

• residuesOfType(*types)
Returns a collection that contains all residues whose type (residue
code) is contained in types.

• residues()
Returns a collection containing all residues.

• sequence()
Returns the sequence as a list of residue code.

Functions

• defineAminoAcidResidue()
Adds a non-standard amino acid residue to the residue table. The
definition of the residue must be accesible by full namein the chemical
database. The three-letter code is specified by code3, and an optional
one-letter code can be specified by code1.

Once added to the residue table, the new residue can be used like any
of the standard residues in the creation of peptide chains.

• defineNucleicAcidResidue()
Adds a non-standard nucleic acid residue to the residue table. The
definition of the residue must be accesible by full namein the chemical
database. The residue code is specified by code.

Once added to the residue table, the new residue can be used like any
of the standard residues in the creation of nucleotide chains.

72

Reference for Module MMTK

Module MMTK.ChargeFit

This module implements a numerically stable method (based on Singular
Value Decomposition) to fit point charges to values of an electrostatic
potential surface. Two types of constraints are avaiable: a constraint on the
total charge of the system or a subset of the system, and constraints that
force the charges of several atoms to be equal. There is also a utility
function that selects suitable evaluation points for the electrostatic
potential surface. For the potential evaluation itself, some quantum
chemistry program is needed.
The charge fitting method is described in [Hinsen1997]. See also
Miscellaneous/charge fit.py.

Class ChargeFit: Fit of point charges to an
electrostatic potential surface

Constructor: ChargeFit(system, points, constraints=None)

system any chemical object, usually a molecule

points a list of point/potential pairs (a vector for the evaluation point, a
number for the potential), or a dictionary whose keys are
Configuration objects and whose values are lists of point/potential
pairs. The latter case permits combined fits for several conformations
of the system.

constraints a list of constraint objects (TotalChargeConstraint and/or
EqualityConstraint objects). If the constraints are inconsistent, a
warning is printed and the result will satisfy the constraints only in a
least-squares sense.

A ChargeFit object acts like a dictionary that stores the fitted charge value
for each atom in the system.

Class TotalChargeConstraint: Constraint on the total
system charge

To be used with MMTK.ChargeFit.ChargeFit (page 73).

73

Reference for Module MMTK

Constructor: TotalChargeConstraint(object, charge)

object any object whose total charge is to be constrained

charge the total charge value

Class EqualityConstraint: Constraint forcing two
charges to be equal

To be used with MMTK.ChargeFit.ChargeFit (page 73).
Constructor: EqualityConstraint(atom1, atom2), where atom1 and atom2
are the two atoms whose charges should be equal.
Any atom may occur in more than one EqualityConstraint object, in order
to keep the charges of more than two atoms equal.

Functions

• evaluationPoints()
Returns a list of n points suitable for the evaluation of the
electrostatic potential around object. The points are chosen at
random and uniformly in a shell around the object such that no point
has a distance larger than largest from any atom or smaller than
smallest from any non-hydrogen atom.

74

Reference for Module MMTK

Module MMTK.ChemicalObjects

Class ChemicalObject: General chemical object

A subclass of MMTK.Collection.GroupOfAtoms (page 78)and
MMTK.Visualization.Viewable (page 156).
This is an Glossary:abstract-base-class that implements methods which are
applicable to any chemical object (atom, molecule, etc.).

Methods:

• topLevelChemicalObject()
Returns the highest-level chemical object of which the current object
is a part.

• universe()
Returns the universe to which the object belongs.

• bondedUnits()
Returns a list containing the subobjects which can contain bonds.
There are no bonds between any of the subobjects in the list.

• fullName()
Returns the full name of the object. The full name consists of the
proper name of the object preceded by the full name of its parent
separated by a dot.

• distanceConstraintList()
Returns the list of distance constraints.

• numberOfDistanceConstraints()
Returns the number of distance constraints.

• setBondConstraints(universe=None)
Sets distance constraints for all bonds.

• removeDistanceConstraints(universe=None)
Removes all distance constraints.

75

Reference for Module MMTK

• setRigidBodyConstraints(universe=None)
Sets distance constraints that make the object fully rigid.

• getAtomProperty(atom, property)
Returns the value of the specified property for the given atom from the
chemical database.

Note: the property is first looked up in the database entry for the
object on which the method is called. If the lookup fails, the complete
hierarchy from the atom to the top-level object is constructed and
traversed starting from the top-level object until the property is
found. This permits database entries for higher-level objects to
override property definitions in its constituents.

At the atom level, the property is retrieved from an attribute with the
same name. This means that properties at the atom level can be
defined both in the chemical database and for each atom individually
by assignment to the attribute.

Class CompositeChemicalObject: Chemical object
with subobjects

This is an Glossary:abstract-base-class that implements methods which can
be used with any composite chemical object, i.e. any chemical object that
is not an atom.

Methods:

• atomList()
Returns a list containing all atoms in the object.

Class Group: Group of bonded atoms

A subclass of MMTK.ChemicalObjects.ChemicalObject (page 75).
Groups can contain atoms and other groups, and link them by chemical
bonds. They are used to represent functional groups or any other part of a
molecule that has a well-defined identity.
Groups cannot be created in application programs, but only in database
definitions for molecules.
Constructor: Group(species, **—properties—)

76

Reference for Module MMTK

species a string (not case sensitive) that specifies the group name in the
chemical database

properties optional keyword properties:

• position: the center-of-mass position (a vector)

• name: the atom name (a string)

Functions

• isChemicalObject()
Returns 1 if object is a chemical object.

77

Reference for Module MMTK

Module MMTK.Collection

Class GroupOfAtoms: Anything that consists of atoms

This class is a mix-in class that defines a large set of operations which are
common to all objects that consist of atoms, i.e. any subset of a chemical
system. Examples are atoms, molecules, collections, or universes.

Methods:

• numberOfAtoms()
Returns the number of atoms.

• numberOfPoints()
Returns the number of geometrical points that define the object. It is
currently always equal to the number of atoms, but could be different
e.g. for quantum systems, in which each atom is described by a wave
function or a path integral.

• numberOfFixedAtoms()
Returns the number of atoms that are fixed, i.e. cannot move.

• degreesOfFreedom()
Returns the number of mechanical degrees of freedom.

• atomCollection()
Returns a collection containing all atoms in the object.

• atomsWithDefinedPositions(conf=None)
Returns a collection of all atoms that have a definite position.

• mass()
Returns the total mass.

• centerOfMass(conf=None)
Returns the center of mass.

• centerAndMomentOfInertia(conf=None)
Returns the center of mass and the moment of inertia tensor.

78

Reference for Module MMTK

• rotationalConstants(conf=None)
Returns a sorted array of rotational constants A, B, C in internal
units.

• boundingBox(conf=None)
Returns two opposite corners of a bounding box around the object.
The bounding box is the smallest rectangular bounding box with
edges parallel to the coordinate axes.

• boundingSphere(conf=None)
Returns a sphere that contains all atoms in the object. This is not the
minimal bounding sphere, just somebounding sphere.

• rmsDifference(conf1, conf2=None)
Returns the RMS (root-mean-square) difference between the
conformations of the object in two universe configurations, conf1and
conf2 (the latter defaults to the current configuration).

• findTransformation(conf1, conf2=None)
Returns the linear transformation that, when applied to the object in
configuration conf1, minimizes the RMS distance to the conformation
in conf2, and the minimal RMS distance. If conf2 is None, returns the
transformation from the current configuration to conf1 and the
associated RMS distance. The algorithm is described in [Kneller1990].

• translateBy(vector)
Translates the object by the displacement vector.

• translateTo(position)
Translates the object such that its center of mass is at position.

• normalizeConfiguration(repr=None)
Applies a linear transformation such that the coordinate origin
becomes the center of mass of the object and its principal axes of
inertia are parallel to the three coordinate axes.

A specific representation can be chosen by setting repr to Ir : x y z ¡–¿
b c a IIr : x y z ¡–¿ c a b IIIr : x y z ¡–¿ a b c Il : x y z ¡–¿ c b a IIl :
x y z ¡–¿ a c b IIIl : x y z ¡–¿ b a c

79

Reference for Module MMTK

• applyTransformation(t)
Applies the transformation t to the object.

• displacementUnderTransformation(t)
Returns the displacement vectors (in a ParticleVector) for the atoms
in the object that correspond to the transformation t.

• rotateAroundCenter(axis direction, angle)
Rotates the object by the given angle around an axis that passes
through its center of mass and has the given direction.

• rotateAroundOrigin(axis, angle)
Rotates the object by the given angle around an axis that passes
through the coordinate origin and has the given direction.

• rotateAroundAxis(point1, point2, angle)
Rotates the object by the given angle around the axis that passes
through point1 and point2

• writeToFile(filename, configuration=None, format=None)
Writes a representation of the object in the given configuration to the
file identified by filename. The format can be either ”pdb” or ”vrml”;
if no format is specified, it is deduced from the filename. An optional
subformat specification can be added to the format name, separated
by a dot. The subformats of ”pdb” are defined by the module
Scientific.IO.PDB, the subformats of ”vrml” are ”wireframe” (the
default, yielding a wireframe representation), ”ball and stick”
(yielding a ball-and-stick representation), ”highlight” (like wireframe,
but with a small sphere for all atoms that have an attribute
”highlight” with a non-zero value), and ”charge” (wireframe plus
small spheres for the atoms with colors from a red-to-green color scale
to indicate the charge).

• view(configuration=None, format=’pdb’)
Starts an external viewer for the object in the given configuration.
The optional parameter format indicates which format (and hence
which viewer) should be used; the formats are ”pdb” and ”vrml”. An
optional subformat specification can be added to the format name,
separated by a dot. The subformats of ”pdb” are defined by the
module Scientific.IO.PDB, the subformats of ”vrml” are

80

Reference for Module MMTK

”wireframe” (the default, yielding a wireframe representation),
”ball and stick” (yielding a ball-and-stick representation), ”highlight”
(like wireframe, but with a small sphere for all atoms that have an
attribute ”highlight” with a non-zero value), and ”charge” (wireframe
plus small spheres for the atoms with colors from a red-to-green color
scale to indicate the charge).

• kineticEnergy(velocities=None)
Returns the kinetic energy.

• temperature(velocities=None)
Returns the temperature.

• momentum(velocities=None)
Returns the momentum.

• angularMomentum(velocities=None, conf=None)
Returns the angular momentum.

• angularVelocity(velocities=None, conf=None)
Returns the angular velocity.

• universe()
Returns the universe of which the object is part. For an object that is
not part of a universe, the result is None.

• charge()
Returns the total charge of the object. This is defined only for objects
that are part of a universe with a force field that defines charges.

• dipole(reference=None)
Returns the total dipole moment of the object. This is defined only
for objects that are part of a universe with a force field that defines
charges.

• booleanMask()
Returns a ParticleScalar object that contains a value of 1 for each
atom that is in the object and a value of 0 for all other atoms in the
universe.

81

Reference for Module MMTK

Functions

• isCollection()
Return 1 if object is a Collection.

82

Reference for Module MMTK

Module MMTK.DCD

Class DCDReader: Reader for DCD trajectories
(CHARMM/X-Plor)

A DCDReader reads a DCD trajectory and ”plays back” the data as if it
were generated directly by an integrator. The universe for which the DCD
file is read must be perfectly compatible with the data in the file, including
an identical internal atom numbering. This can be guaranteed only if the
universe was created from a PDB file that is compatible with the DCD file
without leaving out any part of the system.
Constructor: DCDReader(universe, **options)

universe the universe for which the information from the trajectory file is
read

options keyword options:

• dcd file: the name of the DCD trajecory file to be read

• actions: a list of actions to be executed periodically (default is
none)

Reading is started by calling the reader object. All the keyword options
listed above can be specified either when creating the reader or when
calling it.
The following data categories and variables are available for output:

• category ”time”: time

• category ”configuration”: configuration

Functions

• writeDCDPDB()
Write the configurations in conf list (any sequence of Configuration
objects) to a newly created DCD trajectory file with the name
dcd file name. Also write the first configuration to a PDB file with the

83

Reference for Module MMTK

name pdb file name; this PDB file has the same atom order as the
DCD file. The time step between configurations can be specified by
delta t.

• writeVelocityDCDPDB()
Write the velocities in vel list (any sequence of ParticleVector objects)
to a newly created DCD trajectory file with the name dcd file name.
Also write the first configuration to a PDB file with the name
pdb file name; this PDB file has the same atom order as the DCD file.
The time step between configurations can be specified by delta t.

84

Reference for Module MMTK

Module MMTK.Deformation

This module implements deformational energies for use in the analysis of
motions and conformational changes in macromolecules. A description of
the techniques can be found in [Hinsen1998] and [Hinsen1999].

Class DeformationFunction: Infinite-displacement
deformation function

Constructor: DeformationFunction(universe, range=0.7, cutoff=1.2,
factor=46402.)

universe the universe for which the deformation function should be defined

range the range parameter r 0 in the pair interaction term

cutoff the cutoff used in the deformation calculation

factor a global scaling factor

The default values are appropriate for a C alpha model of a protein with
the global scaling described in the reference cited above.
A DeformationFunction object must be called with a single parameter,
which is a ParticleVector object containing the infinitesimal displacements
of the atoms for which the deformation is to be evaluated. The return value
is a ParticleScalar object containing the deformation value for each atom.

Class NormalizedDeformationFunction: Normalized
infinite-displacement deformation function

Constructor: NormalizedDeformationFunction(universe, range=0.7,
cutoff=1.2, factor=46402.)

universe the universe for which the deformation function should be defined

range the range parameter r 0 in the pair interaction term

cutoff the cutoff used in the deformation calculation

85

Reference for Module MMTK

factor a global scaling factor

The default values are appropriate for a C alpha model of a protein with
the global scaling described in the reference cited above. The normalization
is defined by equation 10 of reference 1.
A NormalizedDeformationFunction object must be called with a single
parameter, which is a ParticleVector object containing the infinitesimal
displacements of the atoms for which the deformation is to be evaluated.
The return value is a ParticleScalar object containing the deformation value
for each atom.

Class FiniteDeformationFunction: Finite-displacement
deformation function

Constructor: FiniteDeformationFunction(universe, range=0.7, cutoff=1.2,
factor=46402.)

universe the universe for which the deformation function should be defined

range the range parameter r 0 in the pair interaction term

cutoff the cutoff used in the deformation calculation

factor a global scaling factor

The default values are appropriate for a C alpha model of a protein with
the global scaling described in the reference cited above.
A FiniteDeformationFunction object must be called with a single
parameter, which is a Configuration or a ParticleVector object containing
the alternate configuration of the universe for which the deformation is to
be evaluated. The return value is a ParticleScalar object containing the
deformation value for each atom.

Class DeformationEnergyFunction:
Infinite-displacement deformation energy function

The deformation energy is the sum of the deformation values over all atoms
of a system.
Constructor: DeformationEnergyFunction(universe, range=0.7, cutoff=1.2,
factor=46402.)

86

Reference for Module MMTK

universe the universe for which the deformation energy should be defined

range the range parameter r 0 in the pair interaction term

cutoff the cutoff used in the deformation energy calculation

factor a global scaling factor

The default values are appropriate for a C alpha model of a protein with
the global scaling described in the reference cited above.
A DeformationEnergyFunction is called with one or two parameters. The
first parameter is a ParticleVector object containing the infinitesimal
displacements of the atoms for which the deformation energy is to be
evaluated. The optional second argument can be set to a non-zero value to
request the gradients of the energy in addition to the energy itself. In that
case there are two return values (energy and the gradients in a
ParticleVector object), otherwise only the energy is returned.

Class NormalizedDeformationEnergyFunction:
Normalized infinite-displacement deformation energy
function

The normalized deformation energy is the sum of the normalized
deformation values over all atoms of a system.
Constructor: NormalizedDeformationEnergyFunction(universe, range=0.7,
cutoff=1.2, factor=46402.)

universe the universe for which the deformation energy should be defined

range the range parameter r 0 in the pair interaction term

cutoff the cutoff used in the deformation energy calculation

factor a global scaling factor

The default values are appropriate for a C alpha model of a protein with
the global scaling described in the reference cited above. The normalization
is defined by equation 10 of reference 1.
A NormalizedDeformationEnergyFunction is called with one or two
parameters. The first parameter is a ParticleVector object containing the

87

Reference for Module MMTK

infinitesimal displacements of the atoms for which the deformation energy
is to be evaluated. The optional second argument can be set to a non-zero
value to request the gradients of the energy in addition to the energy itself.
In that case there are two return values (energy and the gradients in a
ParticleVector object), otherwise only the energy is returned.

Class FiniteDeformationEnergyFunction:
Finite-displacement deformation energy function

The deformation energy is the sum of the deformation values over all atoms
of a system.
Constructor: FiniteDeformationEnergyFunction(universe, range=0.7,
cutoff=1.2, factor=46402.)

universe the universe for which the deformation energy should be defined

range the range parameter r 0 in the pair interaction term

cutoff the cutoff used in the deformation energy calculation

factor a global scaling factor

The default values are appropriate for a C alpha model of a protein with
the global scaling described in the reference cited above.
A FiniteDeformationEnergyFunction is called with one or two parameters.
The first parameter is a ParticleVector object containing the alternate
configuration of the universe for which the deformation energy is to be
evaluated. The optional second argument can be set to a non-zero value to
request the gradients of the energy in addition to the energy itself. In that
case there are two return values (energy and the gradients in a
ParticleVector object), otherwise only the energy is returned.

Class DeformationReducer: Iterative reduction of the
deformation energy

Constructor: DeformationReducer(universe, range=0.7, cutoff=1.2,
factor=46402.)

universe the universe for which the deformation function should be defined

88

Reference for Module MMTK

range the range parameter r 0 in the pair interaction term

cutoff the cutoff used in the deformation calculation

factor a global scaling factor

The default values are appropriate for a C alpha model of a protein with
the global scaling described in the reference cited above.
A DeformationReducer is called with two arguments. The first is a
ParticleVector containing the initial infinitesimal displacements for all
atoms. The second is an integer indicating the number of iterations. The
result is a modification of the displacements by steepest-descent
minimization of the deformation energy.

Class FiniteDeformationReducer: Iterative reduction
of the finite-displacement deformation energy

Constructor: FiniteDeformationReducer(universe, range=0.7, cutoff=1.2,
factor=46402.)

universe the universe for which the deformation function should be defined

range the range parameter r 0 in the pair interaction term

cutoff the cutoff used in the deformation calculation

factor a global scaling factor

The default values are appropriate for a C alpha model of a protein with
the global scaling described in the reference cited above.
A FiniteDeformationReducer is called with two arguments. The first is a
ParticleVector or Configuration containing the alternate configuration for
which the deformation energy is evaluated. The second is the RMS distance
that defines the termination condition. The return value a configuration
that differs from the input configuration by approximately the specified
RMS distance, and which is obtained by iterative steepest-descent
minimization of the finite-displacement deformation energy.

89

Reference for Module MMTK

Module MMTK.Dynamics

See also the Molecular Dynamics example applications.

Class VelocityVerletIntegrator: Velocity-Verlet
molecular dynamics integrator

The integrator can handle fixed atoms, distance constraints, a thermostat,
and a barostat, as well as any combination. It is fully thread-safe.
Constructor: VelocityVerletIntegrator(universe, **options)

universe the universe on which the integrator acts

options keyword options:

• steps: the number of integration steps (default is 100)

• delta t: the time step (default is 1 fs)

• actions: a list of actions to be executed periodically (default is
none)

• threads: the number of threads to use in energy evaluation
(default set by MMTK ENERGY THREADS)

• background: if true, the integration is executed as a separate
thread (default: 0)

• mpi communicator: an MPI communicator object, or None,
meaning no parallelization (default: None)

The integration is started by calling the integrator object. All the keyword
options listed above can be specified either when creating the integrator or
when calling it.
The following data categories and variables are available for output:

• category ”time”: time

• category ”configuration”: configuration and box size (for periodic
universes)

• category ”velocities”: atomic velocities

90

Reference for Module MMTK

• category ”gradients”: energy gradients for each atom

• category ”energy”: potential and kinetic energy, plus extended-system
energy terms if a thermostat and/or barostat are used

• category ”thermodynamic”: temperature, volume (if a barostat is
used) and pressure

• category ”auxiliary”: extended-system coordinates if a thermostat
and/or barostat are used

Class VelocityScaler: Periodic velocity scaling action

A VelocityScaler object is used in the action list of a
VelocityVerletIntegrator. It rescales all atomic velocities by a common
factor to make the temperature of the system equal to a predefined value.
Constructor: VelocityScaler(temperature, temperature window=0., first=0,
last=None, skip=1)

temperature the temperature value to which the velocities should be scaled

temperature window the deviation from the ideal temperature that is
tolerated in either direction before rescaling takes place

first the number of the first step at which the action is executed

last the number of the last step at which the action is executed. A value of
None indicates that the action should be executed indefinitely.

skip the number of steps to skip between two applications of the action

Class Heater: Periodic heating action

A Heater object us used in the action list of a VelocityVerletIntegrator. It
scales the velocities to a temperature that increases with time.
Constructor: Heater(temperature1, temperature2, gradient, first=0,
last=None, skip=1)

temperature1 the temperature value to which the velocities should be scaled
initially

91

Reference for Module MMTK

temperature2 the final temperature value to which the velocities should be
scaled

gradient the temperature gradient (in K/ps)

first the number of the first step at which the action is executed

last the number of the last step at which the action is executed. A value of
None indicates that the action should be executed indefinitely.

skip the number of steps to skip between two applications of the action

Class BarostatReset: Barostat reset action

A BarostatReset object is used in the action list of a
VelocityVerletIntegrator. It resets the barostat coordinate to zero.
Constructor: BarostatReset(first=0, last=None, skip=1)

first the number of the first step at which the action is executed

last the number of the last step at which the action is executed. A value of
None indicates that the action should be executed indefinitely.

skip the number of steps to skip between two applications of the action

Class TranslationRemover: Action that eliminates
global translation

A TranslationRemover object is used in the action list of a
VelocityVerletIntegrator. It subtracts the total velocity from the system
from each atomic velocity.
Constructor: TranslationRemover(first=0, last=None, skip=1)

first the number of the first step at which the action is executed

last the number of the last step at which the action is executed. A value of
None indicates that the action should be executed indefinitely.

skip the number of steps to skip between two applications of the action

92

Reference for Module MMTK

Class RotationRemover: Action that eliminates global
rotation

A RotationRemover object is used in the action list of a
VelocityVerletIntegrator. It adjusts the atomic velocities such that the total
angular momentum is zero.
Constructor: RotationRemover(first=0, last=None, skip=1)

first the number of the first step at which the action is executed

last the number of the last step at which the action is executed. A value of
None indicates that the action should be executed indefinitely.

skip the number of steps to skip between two applications of the action

93

Reference for Module MMTK

Module MMTK.Environment

Class NoseThermostat: Nose thermostat for Molecular
Dynamics

A thermostat object can be added to a universe and will then modify the
integration algorithm to a simulation of an NVT ensemble.
Constructor: NoseThermostat(temperature, relaxation time=0.2)

temperature the temperature set by the thermostat

relaxation time the relaxation time of the thermostat coordinate

Class AndersenBarostat: Andersen barostat for
Molecular Dynamics

A barostat object can be added to a universe and will then together with a
thermostat object modify the integration algorithm to a simulation of an
NPT ensemble.
Constructor: AndersenBarostat(pressure, relaxation time=1.5)

pressure the pressure set by the barostat

relaxation time the relaxation time of the barostat coordinate

94

Reference for Module MMTK

Module MMTK.Field

This module defines field objects that are useful in the analysis and
visualization of collective motions in molecular systems. Atomic quantities
characterizing collective motions vary slowly in space, and can be
considered functions of position instead of values per atom. Functions of
position are called fields, and mathematical techniques for the analysis of
fields have proven useful in many branches of physics. Fields can be
described numerically by values on a regular grid. In addition to permitting
the application of vector analysis methods to atomic quantities, the
introduction of fields is a valuable visualization aid, because information
defined on a coarse regular grid can be added to a picture of a molecular
system without overloading it. See also the example
Miscellaneous/vector field.py.

Class AtomicField: A field whose values are
determined by atomic quantities

This is an Glossary:abstract-base-class. To create field objects, use one of
its subclasses.

Methods:

• particleValues()
Returns the values of the field at the positions of the atoms in an
appropriate subclass of MMTK.ParticleProperties.ParticleProperty
(page 127).

• writeToFile(filename, scale=1.0, color=None)
Writes a graphical representation of the field to the VRML file named
by filename, multiplying all values by scale. color permits the choice of
a color for the graphics objects.

• view(scale=1.0, color=None)
Shows a graphical representation of the field using a VRML viewer.
All values are multiplied by scale. colorpermits the choice of a color
for the graphics objects.

95

Reference for Module MMTK

Class AtomicScalarField: Scalar field defined by
atomic quantities

A subclass of MMTK.Field.AtomicField (page 95) and
MMTK.Visualization.Viewable (page 156).
Constructor: AtomicScalarField(system, grid size, values)

system any subset of a molecular system

grid size the spacing of a cubic grid on which the field values are stored

values an object of class MMTK.ParticleScalar (page 63) containing the
atomic values that define the field

The field values are obtained by averaging the atomic quantities over all
atoms in a cube of edge length grid size surrounding each grid point.
The method graphicsObjects, defined in class
MMTK.Visualization.Viewable (page 156), returns a small cube for each
grid point, whose color indicates the field’s value on a symmetric
red-to-green color scale defined by the range of the field values. Additional
keyword options are:
– scale=factor, to multiply all field values by a factor
– range=(min, max), to eliminate graphics objects for values that are
smaller than min or larger than max

Methods:

• gradient()
Returns an MMTK.Field.AtomicVectorField (page 96) object
representing the gradient of the field.

• laplacian()
Returns an MMTK.Field.AtomicScalarField (page 96) object
representing the laplacian of the field.

Class AtomicVectorField: Vector field defined by
atomic quantities

A subclass of MMTK.Field.AtomicField (page 95) and
MMTK.Visualization.Viewable (page 156).
Constructor: AtomicVectorField(system, grid size, values)

96

Reference for Module MMTK

system any subset of a molecular system

grid size the spacing of a cubic grid on which the field values are stored

values an object of class MMTK.ParticleVector (page 64) containing the
atomic values that define the field

The field values are obtained by averaging the atomic quantities over all
atoms in a cube of edge length grid size surrounding each grid point.
The method graphicsObjects, defined in class
MMTK.Visualization.Viewable (page 156), returns a small arrow for each
grid point. The arrow starts at the grid point and represents the vector
value at that point. Additional keyword options are:
– scale=factor, to multiply all field values by a factor
– diameter=number, to define the diameter of the arrow objects (default: 1.)
– range=(min, max), to eliminate graphics objects for values whose lengths
are smaller than min or larger than max
– color=string, to define the color of the arrows

Methods:

• length()
Returns an MMTK.Field.AtomicScalarField (page 96) object
representing the length of the field vectors.

• divergence()
Returns an MMTK.Field.AtomicScalarField (page 96) object
representing the divergence of the field.

• curl()
Returns an MMTK.Field.AtomicVectorField (page 96) object
representing the curl of the field.

• laplacian()
Returns an MMTK.Field.AtomicVectorField (page 96) object
representing the laplacian of the field.

97

Reference for Module MMTK

Module MMTK.ForceFields

Class CalphaForceField: Effective harmonic force field
for a C-alpha protein model

Constructor: CalphaForceField(cutoff=None, scale factor=1.)

cutoff the cutoff for pair interactions, should be at least 2.5 nm

scale factor a global scaling factor.

Pair interactions in periodic systems are calculated using the
minimum-image convention; the cutoff should therefore never be larger
than half the smallest edge length of the elementary cell.
See [Hinsen2000] for a description of this force field.

Class DeformationForceField: Deformation force field
for protein normal mode calculations

Constructor: DeformationForceField(range=0.7, cutoff=1.2, factor=46402.)

range the range parameter

cutoff the cutoff for pair interactions, should be significantly larger than
range.

factor a global scaling factor.

Pair interactions in periodic systems are calculated using the
minimum-image convention; the cutoff should therefore never be larger
than half the smallest edge length of the elementary cell.
The pair interaction energy has the form
U(r)=—factor—*exp(-(r-0.01)**2/—range—**2). The default value for
range is appropriate for a C-alpha model of a protein. See [Hinsen1998] for
details.

98

Reference for Module MMTK

Class LennardJonesForceField: Lennard-Jones force
field for noble gases

Constructor: LennardJonesForceField(cutoff)

cutoff a cutoff value or None, meaning no cutoff

Pair interactions in periodic systems are calculated using the
minimum-image convention; the cutoff should therefore never be larger
than half the smallest edge length of the elementary cell.
The Lennard-Jones parameters are taken from the atom attributes
LJ radius and LJ energy. The pair interaction energy has the form
U(r)=4*LJ energy*((LJ radius/r)**12-(LJ radius/r)**6).

Class Amber94ForceField: Amber 94 force field

Constructor: Amber94ForceField(lennard jones options, electrostatic options)

lennard jones options parameters for Lennard-Jones interactions; one of:

• a number, specifying the cutoff

• None, meaning the default method (no cutoff; inclusion of all
pairs, using the minimum-image conventions for periodic
universes)

• a dictionary with an entry ”method” which specifies the
calculation method as either ”direct” (all pair terms) or ”cutoff”,
with the cutoff specified by the dictionary entry ”cutoff”.

electrostatic options parameters for electrostatic interactions; one of:

• a number, specifying the cutoff

• None, meaning the default method (all pairs without cutoff for
non-periodic system, Ewald summation for periodic systems)

• a dictionary with an entry ”method” which specifies the
calculation method as either ”direct” (all pair terms), ”cutoff”
(with the cutoff specified by the dictionary entry ”cutoff”),
”ewald” (Ewald summation, only for periodic universes),
”screened” (see below), or ”multipole” (fast-multipole method).

99

Reference for Module MMTK

Pair interactions in periodic systems are calculated using the
minimum-image convention; the cutoff should therefore never be larger
than half the smallest edge length of the elementary cell.
For Lennard-Jones interactions, all terms for pairs whose distance exceeds
the cutoff are set to zero, without any form of correction. For electrostatic
interactions, a charge-neutralizing surface charge density is added around
the cutoff sphere in order to reduce cutoff effects [Wolf1999].
For Ewald summation, there are some additional parameters that can be
specified by dictionary entries:

• ”beta” specifies the Ewald screening parameter

• ”real cutoff” specifies the cutoff for the real-space sum. It should be
significantly larger than 1/beta to ensure that the neglected terms are
small.

• ”reciprocal cutoff” specifies the cutoff for the reciprocal-space sum.
Note that, like the real-space cutoff, this is a distance; it describes the
smallest wavelength of plane waves to take into account.
Consequently, a smaller value means a more precise (and more
expensive) calculation.

MMTK provides default values for these parameter which are calculated as
a function of the system size. However, these parameters are exaggerated in
most cases of practical interest and can lead to excessive calculation times
for large systems. It is preferable to determine suitable values empirically
for the specific system to be simulated.
The method ”screened” uses the real-space part of the Ewald sum with a
charge-neutralizing surface charge density around the cutoff sphere, and no
reciprocal sum [Wolf1999]. It requires the specification of the dictionary
entries ”cutoff” and ”beta”.
The fast-multipole method uses the DPMTA library [DPMTA]. Note that
this method provides only energy and forces, but no second-derivative
matrix. There are several optional dictionary entries for this method, all of
which are set to reasonable default values. The entries are
”spatial decomposition levels”, ”multipole expansion terms”, ”use fft”,
”fft blocking factor”, ”macroscopic expansion terms”, and
”multipole acceptance”. For an explanation of these options, refer to the
DPMTA manual [DPMTA].

100

Reference for Module MMTK

Module MMTK.ForceFields.BondFF

Class HarmonicForceField: Simplified harmonic force field for
normal mode calculations

Constructor: HarmonicForceField()
This force field is made up of the bonded terms from the Amber 94 force
field with the equilibrium positions of all terms changed to the
corresponding values in the input configuration, such that the input
configuration becomes an energy minimum by construction. The
nonbonded terms are replaced by a generic short-ranged deformation term.
See [Hinsen1999b] for a description of this force field, and [Viduna2000] for
an application to DNA.

Module MMTK.ForceFields.ForceFieldTest

Force field consistency tests
To be documented later!

Module MMTK.ForceFields.Restraints

This module contains harmonic restraint terms that can be added to any
force field.
Example:
from MMTK import * from MMTK.ForceFields import Amber94ForceField
from MMTK.ForceFields.Restraints import HarmonicDistanceRestraint
universe = InfiniteUniverse() universe.protein = Protein(bala1) force field
= Amber94ForceField() +
HarmonicDistanceRestraint(universe.protein[0][1].peptide.N,
universe.protein[0][1].peptide.O, 0.5, 10.) universe.setForceField(force field)

Class HarmonicDistanceRestraint: Harmonic distance restraint
between two atoms

Constructor: HarmonicDistanceRestraint(atom1, atom2, distance,
force constant)

atom1, atom2 the two atoms whose distance is restrained

101

Reference for Module MMTK

distance the distance at which the restraint is zero

force constant the force constant of the restraint term

The functional form of the restraint is
—force constant—*((r1-r2).length()-—distance—)**2, where r1 and r2 are
the positions of the two atoms.

Class HarmonicAngleRestraint: Harmonic angle restraint
between three atoms

Constructor: HarmonicAngleRestraint(atom1, atom2, atom3, angle,
force constant)

atom1, atom2, atom3 the three atoms whose angle is restrained; atom2 is
the central atom

angle the angle at which the restraint is zero

force constant the force constant of the restraint term

The functional form of the restraint is
—force constant—*(phi-—angle—)**2, where phi is the angle
—atom1—-—atom2—-—atom3—.

Class HarmonicDihedralRestraint: Harmonic dihedral angle
restraint between three atoms

Constructor: HarmonicDihedralRestraint(atom1, atom2, atom3, atom4,
angle, force constant)

atom1, atom2, atom3, atom4 the four atoms whose dihedral angle is
restrained; atom2 and atom3 are on the common axis

angle the dihedral angle at which the restraint is zero

force constant the force constant of the restraint term

The functional form of the restraint is
—force constant—*(phi-—distance—)**2, where phi is the dihedral angle
—atom1—-—atom2—-—atom3—-—atom4—.

102

Reference for Module MMTK

Module MMTK.ForceFields.SPCEFF

Class SPCEForceField: Force field for water simulations with the
SPC/E model

Constructor: SPCEForceField(lennard jones options, electrostatic options)
The meaning of the arguments is the same as for the class
[MMTK.ForceFields.Amber94ForceField (page 99)]

103

Reference for Module MMTK

Module MMTK.FourierBasis

This module provides a basis that is suitable for the calculation of
low-frequency normal modes. The basis is derived from vector fields whose
components are stationary waves in a box surrounding the system. For a
description see [Hinsen1998].

Class FourierBasis: Collective-motion basis for
low-frequency normal mode calculations

To be used with MMTK.NormalModes.SubspaceNormalModes (page 116).
Constructor: FourierBasis(universe, cutoff)

universe the universe for which the basis will be used

cutoff the wavelength cutoff. A smaller value means a larger basis.

A FourierBasis object behaves like a sequence of MMTK.ParticleVector
(page 64) objects. The vectors are notorthonormal, because
orthonormalization is handled automatically by the class
MMTK.NormalModes.SubspaceNormalModes (page 116).

Functions

• countBasisVectors()
Returns the number of basis vectors in a FourierBasis for the given
universe and cutoff.

• estimateCutoff()
Returns an estimate for the cutoff that will yield a basis of nmodes
vectors for the given universe. The two return values are the cutoff
and the precise number of basis vectors for this cutoff.

104

Reference for Module MMTK

Module MMTK.Geometry

This module defines several elementary geometrical objects, which can be
useful in the construction and analysis of molecular systems. There are
essentially two kinds of geometrical objects: shape objects (spheres, planes,
etc.), from which intersections can be calculated, and lattice objects, which
define a regular arrangements of points.

Class GeometricalObject3D: 3D shape object

This is an Glossary:abstract-base-class. To create 3D objects, use one of its
subclasses.

Methods:

• intersectWith(other)
Return a 3D object that represents the intersection with
other(another 3D object).

Class Box: Box

A subclass of MMTK.Geometry.GeometricalObject3D (page 105).

Constructor: Box(corner1, corner2)

corner1, corner2 diagonally opposite corner points

Class Sphere: Sphere

A subclass of MMTK.Geometry.GeometricalObject3D (page 105).

Constructor: Sphere(center, radius)

center the center of the sphere (a vector)

radius the radius of the sphere (a number)

105

Reference for Module MMTK

Class Cylinder: Cylinder

A subclass of MMTK.Geometry.GeometricalObject3D (page 105).
Constructor: Cylinder(center1, center2, radius)

center1 the center of the bottom circle (a vector)

center2 the center of the top circle (a vector)

radius the radius (a number)

Class Plane: 2D plane in 3D space

A subclass of MMTK.Geometry.GeometricalObject3D (page 105).
Constructor: Plane(point, normal) or Plane(point1, point2, point3)

point any point in the plane

normal the normal vector of the plane

point1, point2, point3 three points in the plane that are not collinear.

Class Cone: Cone

A subclass of MMTK.Geometry.GeometricalObject3D (page 105).
Constructor: Cone(center, axis, angle)

center the center (tip) of the cone (a vector)

axis the direction of the axis of rotational symmetry (a vector)

angle the angle between any straight line on the cone surface and the axis
of symmetry (a number)

Class Circle: 2D circle in 3D space

A subclass of MMTK.Geometry.GeometricalObject3D (page 105).
Constructor: Circle(center, normal, radius)

center the center of the circle (a vector)

normal the normal vector of the plane of the sphere (vector)

radius the radius of the circle (a number)

106

Reference for Module MMTK

Class Line: Line

A subclass of MMTK.Geometry.GeometricalObject3D (page 105).
Constructor: Line(point, direction)

point any point on the line (a vector)

direction the direction of the line (a vector)

Methods:

• distanceFrom(point)
Returns the smallest distance of point from the line.

• projectionOf(point)
Returns the orthogonal projection of point onto the line.

Class Lattice: General lattice

Lattices are special sequence objects that contain vectors (points on the
lattice) or objects that are constructed as functions of these vectors.
Lattice objects behave like lists, i.e. they permit indexing, length inquiry,
and iteration by ’for’-loops. See also the example Miscellaneous/lattice.py.
This is an Glossary:abstract-base-class. To create lattice objects, use one of
its subclasses.

Class RhombicLattice: Rhombic lattice

A subclass of MMTK.Geometry.Lattice (page 107).
Constructor: RhombicLattice(elementary cell, lattice vectors, cells,
function=None)

elementary cell a list of points (vectors) in the elementary cell

lattice vectors a list of lattice vectors. Each lattice vector defines a lattice
dimension (only values from one to three make sense) and indicates
the displacement along this dimension from one cell to the next.

cells a list of integers, whose length must equal the number of dimensions.
Each entry specifies how often a cell is repeated along this dimension.

107

Reference for Module MMTK

function a function that is called for every lattice point with the vector
describing the point as argument. The return value of this function is
stored in the lattice object. If the function is None, the vector is
directly stored in the lattice object.

The number of objects in the lattice is equal to the product of the values in
cells times the number of points in elementary cell.

Class BravaisLattice: Bravais lattice

A subclass of MMTK.Geometry.Lattice (page 107).
A Bravais lattice is a special case of a general rhombic lattice in which the
elementary cell contains only one point.
Constructor: BravaisLattice(lattice vectors, cells, function=None)

lattice vectors a list of lattice vectors. Each lattice vector defines a lattice
dimension (only values from one to three make sense) and indicates
the displacement along this dimension from one cell to the next.

cells a list of integers, whose length must equal the number of dimensions.
Each entry specifies how often a cell is repeated along this dimension.

function a function that is called for every lattice point with the vector
describing the point as argument. The return value of this function is
stored in the lattice object. If the function is None, the vector is
directly stored in the lattice object.

The number of objects in the lattice is equal to the product of the values in
cells.

Class SCLattice: Simple Cubic lattice

A subclass of MMTK.Geometry.Lattice (page 107).
A Simple Cubic lattice is a special case of a Bravais lattice in which the
elementary cell is a cube.
Constructor: SCLattice(cell size, cells, function=None)

cell size the edge length of the elementary cell

108

Reference for Module MMTK

cells a list of integers, whose length must equal the number of dimensions.
Each entry specifies how often a cell is repeated along this dimension.

function a function that is called for every lattice point with the vector
describing the point as argument. The return value of this function is
stored in the lattice object. If the function is None, the vector is
directly stored in the lattice object.

The number of objects in the lattice is equal to the product of the values in
cells.

Class BCCLattice: Body-Centered Cubic lattice

A subclass of MMTK.Geometry.Lattice (page 107).
A Body-Centered Cubic lattice has two points per elementary cell.
Constructor: BCCLattice(cell size, cells, function=None)

cell size the edge length of the elementary cell

cells a list of integers, whose length must equal the number of dimensions.
Each entry specifies how often a cell is repeated along this dimension.

function a function that is called for every lattice point with the vector
describing the point as argument. The return value of this function is
stored in the lattice object. If the function is None, the vector is
directly stored in the lattice object.

The number of objects in the lattice is equal to the product of the values in
cells.

Class FCCLattice: Face-Centered Cubic lattice

A subclass of MMTK.Geometry.Lattice (page 107).
A Face-Centered Cubic lattice has four points per elementary cell.
Constructor: FCCLattice(cell size, cells, function=None)

cell size the edge length of the elementary cell

cells a list of integers, whose length must equal the number of dimensions.
Each entry specifies how often a cell is repeated along this dimension.

109

Reference for Module MMTK

function a function that is called for every lattice point with the vector
describing the point as argument. The return value of this function is
stored in the lattice object. If the function is None, the vector is
directly stored in the lattice object.

The number of objects in the lattice is equal to the product of the values in
cells.

110

Reference for Module MMTK

Module MMTK.Minimization

Class SteepestDescentMinimizer: Steepest-descent
minimizer

The minimizer can handle fixed atoms, but no distance constraints. It is
fully thread-safe.
Constructor: SteepestDescentMinimizer(universe, **options)

universe the universe on which the minimizer acts

options keyword options:

• steps: the number of minimization steps (default is 100)

• step size: the initial size of a minimization step (default is 0.002
nm)

• convergence: the root-mean-square gradient length at which
minimization stops (default is 0.01 kJ/mol/nm)

• actions: a list of actions to be executed periodically (default is
none)

• threads: the number of threads to use in energy evaluation
(default set by MMTK ENERGY THREADS)

• background: if true, the minimization is executed as a separate
thread (default: 0)

• mpi communicator: an MPI communicator object, or None,
meaning no parallelization (default: None)

The minimization is started by calling the minimizer object. All the
keyword options listed above can be specified either when creating the
minimizer or when calling it.
The following data categories and variables are available for output:

• category ”configuration”: configuration and box size (for periodic
universes)

111

Reference for Module MMTK

• category ”gradients”: energy gradients for each atom

• category ”energy”: potential energy and norm of the potential energy
gradient

Class ConjugateGradientMinimizer: Conjugate
gradient minimizer

The minimizer can handle fixed atoms, but no distance constraints. It is
fully thread-safe.
Constructor: ConjugateGradientMinimizer(universe, **options)

universe the universe on which the minimizer acts

options keyword options:

• steps: the number of minimization steps (default is 100)

• step size: the initial size of a minimization step (default is 0.002
nm)

• convergence: the root-mean-square gradient length at which
minimization stops (default is 0.01 kJ/mol/nm)

• actions: a list of actions to be executed periodically (default is
none)

• threads: the number of threads to use in energy evaluation
(default set by MMTK ENERGY THREADS)

• background: if true, the minimization is executed as a separate
thread (default: 0)

The minimization is started by calling the minimizer object. All the
keyword options listed above can be specified either when creating the
minimizer or when calling it.
The following data categories and variables are available for output:

• category ”configuration”: configuration and box size (for periodic
universes)

• category ”gradients”: energy gradients for each atom

• category ”energy”: potential energy and norm of the potential energy
gradient

112

Reference for Module MMTK

Module MMTK.MolecularSurface

This module provides functions that calculate molecular surfaces and
volumes.

Functions

• surfaceAndVolume()
Returns the molecular surface and volume of object, defining the
surface at a distance of probe radius from the van-der-Waals surfaces
of the atoms.

• surfaceAtoms()
Returns a dictionary that maps the surface atoms to their exposed
surface areas.

• surfacePointsAndGradients()
Returns a dictionary that maps the surface atoms to a tuple
containing three surface-related quantities: the exposed surface are, a
list of points in the exposed surface, and a gradient vector pointing
outward from the surface.

• findContacts()
Returns a list of MMTK.MolecularSurface.Contact objects that
describe atomic contacts between object1 and object2. A contact is
defined as a pair of atoms whose distance is less than
—contact factor—*(r1+r2+—cutoff—) where r1 and r2 are the
atomic van-der-Waals radii.

113

Reference for Module MMTK

Module MMTK.NormalModes

See also the normal mode example applications.

Class Mode: Single normal mode

A subclass of MMTK.ParticleVector (page 64).
Mode objects are created by indexing a NormalModes object. They contain
the atomic displacements corresponding to a single mode.
Mode objects are specializations of MMTK.ParticleVector (page 64)objects
and support all their operations. In addition, the frequency corresponding
to the mode is stored in the attribute ”frequency”.
Note: the normal mode vectors are not mass weighted, and therefore not
orthogonal to each other.

Methods:

• view(factor=1.0, subset=None)
Start an animation of the mode. The displacements can be scaled by
a factor to make them better visible, and a subset of the total system
can be specified as well. This function requires an external viewer, see
module MMTK.Visualization (page 156) for details.

Class NormalModes: Normal modes

Constructor: NormalModes(universe, temperature=300)

universe the system for which the normal modes are calculated; it must
have a force field which provides the second derivatives of the
potential energy

temperature the temperature for which the amplitudes of the atomic
displacement vectors are calculated. A value of None can be specified
to have no scaling at all. In that case the mass-weighted norm of each
normal mode is one.

In order to obtain physically reasonable normal modes, the configuration of
the universe must correspond to a local minimum of the potential energy.

114

Reference for Module MMTK

A NormalModes object behaves like a sequence of modes. Individual modes
(see class MMTK.NormalModes.Mode (page 114)) can be extracted by
indexing with an integer. Looping over the modes is possible as well.

Methods:

• reduceToRange(first, last)
Discards all modes except for those whose numbers are between first
(inclusive) and last (exclusive). This is done to reduce memory
requirements, especially before saving the modes to a file.

• fluctuations()
Returns a MMTK.ParticleScalar (page 63) containing the thermal
fluctuations for each atom in the universe.

Class SparseMatrixNormalModes: Normal modes
using a sparse matrix

A subclass of MMTK.NormalModes.NormalModes (page 114).
This class differs from the class NormalModes in that it obtains the
Cartesian force constant matrix in a sparse-matrix format and uses a
sparse-matrix eigenvalue solver from the ARPACK library. This is
advantageous if the Cartesian force constant matrix is sparse (as it is for
force fields without long-range terms), but for non-sparse matrices the
memory requirements are higher than for NormalModes. Note that the
calculation time depends not only on the size of the system, but also on its
frequency spectrum, because an iterative algorithm is used.
Constructor: SparseMatrixNormalModes(universe, nmodes,
temperature=300)

universe the system for which the normal modes are calculated; it must
have a force field which provides the second derivatives of the
potential energy

nmodes the number of modes that is calculated. The calculation time can
grow significantly with an increasing number of modes.

temperature the temperature for which the amplitudes of the atomic
displacement vectors are calculated. A value of None can be specified
to have no scaling at all. In that case the mass-weighted norm of each
normal mode is one.

115

Reference for Module MMTK

In order to obtain physically reasonable normal modes, the configuration of
the universe must correspond to a local minimum of the potential energy.

A SparseMatrixNormalModes object behaves like a sequence of modes.
Individual modes (see class MMTK.NormalModes.Mode (page 114)) can be
extracted by indexing with an integer. Looping over the modes is possible
as well.

Class SubspaceNormalModes: Normal modes in a
subspace

A subclass of MMTK.NormalModes.NormalModes (page 114).

Constructor: SubspaceNormalModes(universe, basis, temperature=300)

universe the system for which the normal modes are calculated; it must
have a force field which provides the second derivatives of the
potential energy

basis the basis for the subspace in which the normal modes are calculated
(or, more precisely, a set of vectors spanning the subspace; it does not
have to be orthogonal). This can either be a sequence of
MMTK.ParticleVector (page 64) objects or a tuple of two such
sequences. In the second case, the subspace is defined by the space
spanned by the first set of vectors projected on the complement of the
space spanned by the second set of vectors. The second set thus
defines directions that are excluded from the subspace.

temperature the temperature for which the amplitudes of the atomic
displacement vectors are calculated. A value of None can be specified
to have no scaling at all. In that case the mass-weighted norm of each
normal mode is one.

In order to obtain physically reasonable normal modes, the configuration of
the universe must correspond to a local minimum of the potential energy.

A SubspaceNormalModes object behaves like a sequence of modes.
Individual modes (see class MMTK.NormalModes.Mode (page 114)) can be
extracted by indexing with an integer. Looping over the modes is possible
as well.

116

Reference for Module MMTK

Class FiniteDifferenceSubspaceNormalModes: Normal
modes in a subspace with numerical differentiation

A subclass of MMTK.NormalModes.SubspaceNormalModes (page 116).
This class differs from SubspaceNormalModes in the way it obtains the
force constant matrix. Instead of obtaining the full Cartesian force constant
matrix from the force field and projecting it on the subspace, it performs a
numerical differentiation of the gradients along the basis vectors of the
subspace. This is useful in two cases:

• for small subspaces this approach uses less memory, because the full
Cartesian force constant matrix is not needed

• it can be used even if the force field does not provide second
derivatives

Constructor: FiniteDifferenceSubspaceNormalModes(universe, basis,
delta=0.0001, temperature=300)

universe the system for which the normal modes are calculated

basis the basis for the subspace in which the normal modes are calculated
(or, more precisely, a set of vectors spanning the subspace; it does not
have to be orthogonal). This can either be a sequence of
ParticleVector objects or a tuple of two such sequences. In the second
case, the subspace is defined by the space spanned by the first set of
vectors projected on the complement of the space spanned by the
second set of vectors. The second set thus defines directions that are
excluded from the subspace.

delta the length of the displacement used for numerical differentiation

temperature the temperature for which the amplitudes of the atomic
displacement vectors are calculated. A value of None can be specified
to have no scaling at all. In that case the mass-weighted norm of each
normal mode is one.

In order to obtain physically reasonable normal modes, the configuration of
the universe must correspond to a local minimum of the potential energy.

117

Reference for Module MMTK

A FiniteDifferenceSubspaceNormalModes object behaves like a sequence of
modes. Individual modes (see class MMTK.NormalModes.Mode (page
114)) can be extracted by indexing with an integer. Looping over the
modes is possible as well.

Class SparseMatrixSubspaceNormalModes: Normal
modes in a subspace using a sparse matrix

A subclass of MMTK.NormalModes.SubspaceNormalModes (page 116).
This class differs from SubspaceNormalModes in that it obtains the
Cartesian force constant matrix in a sparse-matrix format. This is
advantageous if the Cartesian force constant matrix is sparse (as it is for
force fields without long-range terms), but for non-sparse matrices the
memory requirements are higher than for SubspaceNormalModes.
Constructor: SparseMatrixSubspaceNormalModes(universe, basis,
temperature=300)

universe the system for which the normal modes are calculated; it must
have a force field which provides the second derivatives of the
potential energy

basis the basis for the subspace in which the normal modes are calculated
(or, more precisely, a set of vectors spanning the subspace; it does not
have to be orthogonal). This can either be a sequence of
ParticleVector objects or a tuple of two such sequences. In the second
case, the subspace is defined by the space spanned by the first set of
vectors projected on the complement of the space spanned by the
second set of vectors. The second set thus defines directions that are
excluded from the subspace.

temperature the temperature for which the amplitudes of the atomic
displacement vectors are calculated. A value of None can be specified
to have no scaling at all. In that case the mass-weighted norm of each
normal mode is one.

In order to obtain physically reasonable normal modes, the configuration of
the universe must correspond to a local minimum of the potential energy.
A SparseMatrixSubspaceNormalModes object behaves like a sequence of
modes. Individual modes (see class MMTK.NormalModes.Mode (page

118

Reference for Module MMTK

114)) can be extracted by indexing with an integer. Looping over the
modes is possible as well.

119

Reference for Module MMTK

Module MMTK.NucleicAcids

Class Nucleotide: Nucleic acid residue

A subclass of MMTK.ChemicalObjects.Group (page 76).
Nucleotides are a special kind of group. Like any other group, they are
defined in the chemical database. Each residue has two or three subgroups
(sugar and base, plus phosphateexcept for 5’-terminal residues) and is
usually connected to other residues to form a nucleotide chain. The
database contains three variants of each residue (5’-terminal, 3’-terminal,
non-terminal).
Constructor: Nucleotide(kind, model=”all”)

kind the name of the nucleotide in the chemical database. This is the full
name of the residue plus the suffix ” 5ter” or ” 3ter” for the terminal
variants.

model one of ”all” (all-atom), ”none” (no hydrogens), ”polar” (united-atom
with only polar hydrogens), ”polar charmm” (like ”polar”, but
defining polar hydrogens like in the CHARMM force field). Currently
the database has definitions only for ”all”.

Methods:

• backbone()
Returns the sugar and phosphate groups.

• bases()
Returns the base group.

Class NucleotideChain: Nucleotide chain

A subclass of MMTK.Biopolymers.ResidueChain (page 72).
Nucleotide chains consist of nucleotides that are linked together. They are
a special kind of molecule, i.e. all molecule operations are available.
Constructor: NucleotideChain(sequence, **—properties—)

120

Reference for Module MMTK

sequence the nucleotide sequence. This can be a list of two-letter codes (a
”d” or ”r” for the type of sugar, and the one-letter base code), or a
PDBNucleotideChain object. If a PDBNucleotideChain object is
supplied, the atomic positions it contains are assigned to the atoms of
the newly generated nucleotide chain, otherwise the positions of all
atoms are undefined.

properties optional keyword properties:

• model: one of ”all” (all-atom), ”no hydrogens” or ”none” (no
hydrogens), ”polar hydrogens” or ”polar” (united-atom with only
polar hydrogens), ”polar charmm” (like ”polar”, but defining polar
hydrogens like in the CHARMM force field). Default is ”all”.
Currently the database contains definitions only for ”all”.

• terminus 5: 1 if the first nucleotide should be constructed using the
5’-terminal variant, 0 if the non-terminal version should be used.
Default is 1.

• terminus 3: 1 if the last residue should be constructed using the
3’-terminal variant, 0 if the non-terminal version should be used.
Default is 1.

• circular: 1 if a bond should be constructed between the first and the
last residue. Default is 0.

• name: a name for the chain (a string)

Nucleotide chains act as sequences of residues. If n is a NucleotideChain
object, then

• len(n) yields the number of nucleotides

• n[i] yields nucleotide number i (counting from zero)

• n[i:j] yields the subchain from nucleotide number i up to but
excluding nucleotide number j

Methods:

121

Reference for Module MMTK

• backbone()
Returns a collection containing the sugar and phosphate groups of all
nucleotides.

• bases()
Returns a collection containing the base groups of all nucleotides.

Class NucleotideSubChain: A contiguous part of a
nucleotide chain

NucleotideSubChain objects are the result of slicing operations on
NucleotideChain objects. They cannot be created directly.
NucleotideSubChain objects permit all operations of NucleotideChain
objects, but cannot be added to a universe.

Functions

• isNucleotideChain()
Returns 1 if x is a NucleotideChain.

122

Reference for Module MMTK

Module MMTK.PDB

This module provides classes that represent molecules in PDB file. They
permit various manipulations and the creation of MMTK objects. Note
that the classes defined in this module are specializations of classed defined
in Scientific.IO.PDB; the methods defined in that module are also available.

Class PDBPeptideChain: Peptide chain in a PDB file

A subclass of Scientific.IO.PDB.PeptideChain. See the description of that
class for the constructor and additional methods. In MMTK,
PDBPeptideChain objects are usually obtained from a PDBConfiguration
object via its attribute peptide chains (see the documentation of
Scientific.IO.PDB.Structure).

Methods:

• createPeptideChain(model=’all’, n terminus=None, c terminus=None)
Returns a PeptideChain object corresponding to the peptide chain in
the PDB file. The parameter modelhas the same meaning as for the
PeptideChain constructor.

Class PDBNucleotideChain: Nucleotide chain in a
PDB file

A subclass of Scientific.IO.PDB.NucleotideChain. See the description of
that class for the constructor and additional methods. In MMTK,
PDBNucleotideChain objects are usually obtained from a
PDBConfiguration object via its attribute nucleotide chains (see the
documentation of Scientific.IO.PDB.Structure).

Methods:

• createNucleotideChain(model=’all’)
Returns a NucleotideChain object corresponding to the nucleotide
chain in the PDB file. The parameter modelhas the same meaning as
for the NucleotideChain constructor.

123

Reference for Module MMTK

Class PDBMolecule: Molecule in a PDB file

A subclass of Scientific.IO.PDB.Molecule. See the description of that class
for the constructor and additional methods. In MMTK, PDBMolecule
objects are usually obtained from a PDBConfiguration object via its
attribute molecules (see the documentation of Scientific.IO.PDB.Structure).
A molecule is by definition any residue in a PDB file that is not an amino
acid or nucleotide residue.

Methods:

• createMolecule(name=None)
Returns a Molecule object corresponding to the molecule in the PDB
file. The parameter name specifies the molecule name as defined in
the chemical database. It can be left out for known molecules
(currently only water).

Class PDBConfiguration: Everything in a PDB file

A PDBConfiguration object represents the full contents of a PDB file. It
can be used to create MMTK objects for all or part of the molecules, or to
change the configuration of an existing system.
Constructor: PDBConfiguration(filename)

filename the name of a PDB file

Methods:

• createPeptideChains(model=’all’)
Returns a list of PeptideChain objects, one for each peptide chain in
the PDB file. The parameter modelhas the same meaning as for the
PeptideChain constructor.

• createNucleotideChains(model=’all’)
Returns a list of NucleotideChain objects, one for each nucleotide
chain in the PDB file. The parameter modelhas the same meaning as
for the NucleotideChain constructor.

• createMolecules(names=None, permit undefined=1)

124

Reference for Module MMTK

Returns a collection of Molecule objects, one for each molecule in the
PDB file. Each PDB residue not describing an amino acid or
nucleotide residue is considered a molecule.

The parameter names allows the selective construction of certain
molecule types and the construction of unknown molecules. If its
value is a list of molecule names (as defined in the chemical database)
and/or PDB residue names, only molecules mentioned in this list will
be constructed. If its value is a dictionary, it is used to map PDB
residue names to molecule names. By default only water molecules
are recognizes (under various common PDB residue names); for all
other molecules a molecule name must be provided by the user.

The parameter permit undefined determines how PDB residues
without a corresponding molecule name are handled. A value of 0
causes an exception to be raised. A value of 1 causes an AtomCluster
object to be created for each unknown residue.

• createAll(molecule names=None, permit undefined=1)
Returns a collection containing all objects contained in the PDB file,
i.e. the combination of the objects returned by createPeptideChains(),
createNucleotideChains(), and createMolecules(). The parameters
have the same meaning as for createMolecules().

• applyTo(object)
Sets the configuration of object from the coordinates in the PDB file.
The object must be compatible with the PDB file, i.e. contain the
same subobjects and in the same order. This is usually only
guaranteed if the object was created by the method createAll() from a
PDB file with the same layout.

Class PDBOutputFile: PDB file for output

Constructor: PDBOutputFile(filename, subformat=None)

filename the name of the PDB file that is created

subformat a variant of the PDB format; these subformats are defined in
module Scientific.IO.PDB. The default is the standard PDB format.

Methods:

125

Reference for Module MMTK

• write(object, configuration=None, tag=None)
Writes object to the file, using coordinates from configuration (defaults
to the current configuration). The parameter tag is reserved for
internal use.

• close()
Closes the file. Must be called in order to prevent data loss.

126

Reference for Module MMTK

Module MMTK.ParticleProperties

Class ParticleProperty: Property defined for each
particle

This is an abstract base class; for creating instances, use one of its
subclasses: MMTK.ParticleScalar (page 63), MMTK.ParticleVector (page
64), MMTK.ParticleTensor (page 65).
ParticleProperty objects store properties that are defined per particle, such
as mass, position, velocity, etc. The value corresponding to a particular
atom can be retrieved or changed by indexing with the atom object.

Methods:

• zero()
Returns an object of the element type (scalar, vector, etc.) with the
value 0.

• sumOverParticles()
Returns the sum of the values for all particles.

• assign(other)
Copy all values from other, which must be a compatible
ParticleProperty object.

• scaleBy(factor)
Multiply all values by factor (a number).

Functions

• isParticleProperty()
Returns 1 if object is a ParticleProperty.

• isConfiguration()
Returns 1 if object is a Configuration.

127

Reference for Module MMTK

Module MMTK.Proteins

Class Residue: Amino acid residue

A subclass of MMTK.ChemicalObjects.Group (page 76).
Amino acid residues are a special kind of group. Like any other group, they
are defined in the chemical database. Each residue has two subgroups
(peptide and sidechain) and is usually connected to other residues to
form a peptide chain. The database contains three variants of each residue
(N-terminal, C-terminal, non-terminal) and various models (all-atom,
united-atom, C alpha).
Constructor: Residue(kind, model=”all”)

kind the name of the residue in the chemical database. This is the full name
of the residue plus the suffix ” nt” or ” ct” for the terminal variants.

model one of ”all” (all-atom), ”none” (no hydrogens), ”polar” (united-atom
with only polar hydrogens), ”polar charmm” (like ”polar”, but
defining polar hydrogens like in the CHARMM force field),
”polar opls” (like ”polar”, but defining polar hydrogens like in the
latest OPLS force field), ”calpha” (only the C alpha atom)

Methods:

• backbone()
Returns the peptide group.

• sidechains()
Returns the sidechain group.

• phiPsi(conf=None)
Returns the values of the backbone dihedral angles phi and psi.

Class PeptideChain: Peptide chain

A subclass of MMTK.Biopolymers.ResidueChain (page 72).

128

Reference for Module MMTK

Peptide chains consist of amino acid residues that are linked by peptide
bonds. They are a special kind of molecule, i.e. all molecule operations are
available.
Constructor: PeptideChain(sequence, **—properties—)

sequence the amino acid sequence. This can be a string containing the
one-letter codes, or a list of three-letter codes, or a PDBPeptideChain
object. If a PDBPeptideChain object is supplied, the atomic positions
it contains are assigned to the atoms of the newly generated peptide
chain, otherwise the positions of all atoms are undefined.

properties optional keyword properties:

• model: one of ”all” (all-atom), ”no hydrogens” or ”none” (no
hydrogens), ”polar hydrogens” or ”polar” (united-atom with only
polar hydrogens), ”polar charmm” (like ”polar”, but defining polar
hydrogens like in the CHARMM force field), ”polar opls” (like
”polar”, but defining polar hydrogens like in the latest OPLS force
field), ”calpha” (only the C alpha atom of each residue). Default is
”all”.

• n terminus: 1 if the first residue should be constructed using the
N-terminal variant, 0 if the non-terminal version should be used.
Default is 1.

• c terminus: 1 if the last residue should be constructed using the
C-terminal variant, 0 if the non-terminal version should be used.
Default is 1.

• circular: 1 if a peptide bond should be constructed between the first
and the last residue. Default is 0.

• name: a name for the chain (a string)

Peptide chains act as sequences of residues. If p is a PeptideChain object,
then

• len(p) yields the number of residues

• p[i] yields residue number i (counting from zero)

129

Reference for Module MMTK

• p[i:j] yields the subchain from residue number i up to but
excluding residue number j

Methods:

• sequence()
Returns the primary sequence as a list of three-letter residue codes.

• backbone()
Returns a collection containing the peptide groups of all residues.

• sidechains()
Returns a collection containing the sidechain groups of all residues.

• phiPsi(conf=None)
Returns a list of the (phi, psi) backbone angle pairs for each residue.

• replaceResidue(r old, r new)
Replaces residue r old, which must be a residue object that is part of
the chain, by the residue object r new.

Class SubChain: A contiguous part of a peptide chain

SubChain objects are the result of slicing operations on PeptideChain
objects. They cannot be created directly. SubChain objects permit all
operations of PeptideChain objects, but cannot be added to a universe.

Class Protein: Protein

A subclass of MMTK.Complex (page 69).

A Protein object is a special kind of a Complex object which is made up of
peptide chains.

Constructor: Protein(specification, **—properties—)

specification one of:

• a list of peptide chain objects

130

Reference for Module MMTK

• a string, which is interpreted as the name of a database definition for
a protein. If that definition does not exist, the string is taken to be
the name of a PDB file, from which all peptide chains are constructed
and assembled into a protein.

properties optional keyword properties:

• model: one of ”all” (all-atom), ”no hydrogens” or ”none” (no
hydrogens), ”polar hydrogens” or ”polar” (united-atom with only
polar hydrogens), ”polar charmm” (like ”polar”, but defining polar
hydrogens like in the CHARMM force field), ”polar opls” (like
”polar”, but defining polar hydrogens like in the latest OPLS force
field), ”calpha” (only the C alpha atom of each residue). Default is
”all”.

• position: the center-of-mass position of the protein (a vector)

• name: a name for the protein (a string)

If the atoms in the peptide chains that make up a protein have defined
positions, sulfur bridges within chains and between chains will be
constructed automatically during protein generation based on a distance
criterion between cystein sidechains.
Proteins act as sequences of chains. If p is a Protein object, then

• len(p) yields the number of chains

• p[i] yields chain number i (counting from zero)

Methods:

• residuesOfType(*types)
Returns a collection that contains all residues whose type (one- or
three-letter code) is contained in types.

• backbone()
Returns a collection containing the peptide groups of all residues in
all chains.

131

Reference for Module MMTK

• sidechains()
Returns a collection containing the sidechain groups of all residues in
all chains.

• residues()
Returns a collection containing all residues in all chains.

• phiPsi(conf=None)
Returns a list containing the phi/psi backbone dihedrals for all chains.

Functions

• isPeptideChain()
Returns 1 f x is a peptide chain.

• isProtein()
Returns 1 f x is a protein.

132

Reference for Module MMTK

Module MMTK.Random

This module defines various random quantities that are useful in molecular
simulations. For obtaining random numbers, it tries to use the RNG
module, which is part of the LLNL package distribution, which also
contains Numerical Python. If RNG is not available, it uses the random
number generators in modules RandomArray (part of Numerical Python)
and whrandom (in the Python standard library).

Functions

• randomPointInBox()
Returns a vector drawn from a uniform distribution within a
rectangular box with edge lengths a, b, c. If b and/or care omitted,
they are taken to be equal to a.

• randomPointInSphere()
Returns a vector drawn from a uniform distribution within a sphere
of radius r.

• randomDirection()
Returns a vector drawn from a uniform distribution on the surface of
a unit sphere.

• randomDirections()
Returns a list of n vectors drawn from a uniform distribution on the
surface of a unit sphere. If n is negative, return a deterministic list of
not more than -—n— vectors of unit length (useful for testing
purposes).

• randomRotation()
Returns a Rotation object describing a random rotation with a
uniform axis distribution and angles drawn from a uniform
distribution between -—max angle— and max angle.

• randomVelocity()
Returns a random velocity vector for a particle of a given mass, drawn
from a Boltzmann distribution for the given temperature.

133

Reference for Module MMTK

• randomParticleVector()
Returns a ParticleVector object in which each vector is drawn from a
Gaussian distribution with a given width centered around zero.

134

Reference for Module MMTK

Module MMTK.Solvation

See also the example MolecularDynamics/solvation.py.

Functions

• numberOfSolventMolecules()
Returns the number of solvent molecules of type solventthat must be
added to universe, in addition to whatever it contains already, to
obtain the specified solvent density.

• addSolvent()
Scales up the universe by scale factor and adds as many molecules of
type solvent (a molecul object or a string) as are necessary to obtain
the specified solvent density, taking account of the solute molecules
that are already present in the universe. The molecules are placed at
random positions in the scaled-up universe, but without overlaps
between any two molecules.

• shrinkUniverse()
Shrinks universe, which must have been scaled up by
Function:MMTK.Solvation.addSolvent, back to its original size. The
compression is performed in small steps, in between which some
energy minimization and molecular dynamics steps are executed. The
molecular dynamics is run at the given temperature, and an optional
trajectory (a MMTK.Trajectory.Trajectory object or a string,
interpreted as a file name) can be specified in which intermediate
configurations are stored.

135

Reference for Module MMTK

Module MMTK.Subspace

This module implements subspaces for infinitesimal (or finite
small-amplitude) atomic motions. They can be used in normal mode
calculations (see example NormalModes/constrained modes.py) or for
analyzing complex motions [Hinsen1999a].

Class Subspace: Subspace of infinitesimal atomic
motions

Constructor: Subspace(universe, vectors)

universe the universe for which the subspace is created

vectors a list of MMTK.ParticleVector (page 64) objects that define the
subspace. They need not be orthogonal or linearly independent.

Methods:

• getBasis()
Returns a basis for the subspace, which is obtained by
orthonormalization of the input vectors using Singular Value
Decomposition. The basis consists of a sequence of
MMTK.ParticleVector (page 64) objects that are orthonormal in
configuration space.

• projectionOf(vector)
Returns the projection of vector (a MMTK.ParticleVector (page
64)object) onto the subspace.

• projectionComplementOf(vector)
Returns the projection of vector (a MMTK.ParticleVector (page
64)object) onto the orthogonal complement of the subspace.

Class RigidMotionSubspace: Subspace of rigid-body
motions

A subclass of MMTK.Subspace.Subspace (page 136).

136

Reference for Module MMTK

A rigid-body motion subspace is the subspace which contains the
rigid-body motions of any number of chemical objects.
Constructor: RigidMotionSubspace(universe, objects)

universe the universe for which the subspace is created

objects a sequence of objects whose rigid-body motion is included in the
subspace

Class PairDistanceSubspace: Subspace of pair-distance
motions

A subclass of MMTK.Subspace.Subspace (page 136).
A pair-distance motion subspace is the subspace which contains the relative
motions of any number of atom pairs along their distance vector, e.g. bond
elongation between two bonded atoms.
Constructor: PairDistanceSubspace(universe, atom pairs)

universe the universe for which the subspace is created

atom pairs a sequence of atom pairs whose distance-vector motion is
included in the subspace

137

Reference for Module MMTK

Module MMTK.Trajectory

Class Trajectory: Trajectory file

Constructor: Trajectory(object, filename, mode=”r”, comment=None,
double precision=0, cycle=0, block size=1)

object the object whose data is stored in the trajectory file. This can be
None when opening a file for reading; in that case, a universe object is
constructed from the description stored in the trajectory file. This
universe object can be accessed via the attribute universe of the
trajectory object.

filename the name of the trajectory file

mode one of ”r” (read-only), ”w” (create new file for writing), or ”a”
(append to existing file or create if the file does not exist)

comment optional comment that is stored in the file; allowed only with
mode=”r”

double precision if non-zero, data in the file is stored using double precision;
default is single precision. Note that all I/O via trajectory objects is
double precision; conversion from and to single precision file variables
is handled automatically.

cycle if non-zero, a trajectory is created for a fixed number of steps equal to
the value of cycle, and these steps are used cyclically. This is meant
for restart trajectories.

block size an optimization parameter that influences the file structure and
the I/O performance for very large files. A block size of 1 is optimal
for sequential access to configurations etc., whereas a block size equal
to the number of steps is optimal for reading coordinates or scalar
variables along the time axis. The default value is 1. Note that older
MMTK releases always used a block size of 1 and cannot handle
trajectories with different block sizes.

138

Reference for Module MMTK

The data in a trajectory file can be accessed by step or by variable. If t is a
Trajectory object, then:

• len(t) is the number of steps

• t[i] is the data for step i, in the form of a dictionary that maps
variable names to data

• t[i:j] and t[i:j:n] return a SubTrajectory object that refers to a
subset of the total number of steps (no data is copied)

• t.variable returns the value of the named variable at all time steps.
If the variable is a simple scalar, it is read completely and returned as
an array. If the variable contains data for each atom, a
TrajectoryVariable object is returned from which data at specific
steps can be obtained by further indexing operations.

The routines that generate trajectories decide what variables are used and
what they contain. The most frequently used variable is ”configuration”,
which stores the positions of all atoms. Other common variables are
”time”, ”velocities”, ”temperature”, ”pressure”, and various energy terms
whose name end with ” energy”.

Methods:

• close()
Close the trajectory file. Must be called after writing to ensure that
all buffered data is written to the file. No data access is possible after
closing a file.

• readParticleTrajectory(atom, first=0, last=None, skip=1,
variable=’configuration’)
Read the values of the specified variable for the specified atom at all
time steps from first to last with an increment of skip. The result is a
ParticleTrajectory object. If the variable is ”configuration”, the
resulting trajectory is made continuous by eliminating all jumps
caused by periodic boundary conditions. The pseudo-variable
”box coordinates” can be read to obtain the values of the variable
”configuration” scaled to box coordinates. For non-periodic universes
there is no difference between box coordinates and real coordinates.

139

Reference for Module MMTK

• readRigidBodyTrajectory(object, first=0, last=None, skip=1,
reference=None)
Read the positions for the specified object at all time steps from first
to last with an increment of skip and extract the rigid-body motion
(center-of-mass position plus orientation as a quaternion) by an
optimal-transformation fit. The result is a RigidBodyTrajectory
object.

• variables()
Returns a list of the names of all variables that are stored in the
trajectory.

• view(first=0, last=None, step=1, object=None)
Show an animation of object using the positions in the trajectory at
all time steps from first to last with an increment of skip. object
defaults to the entire universe.

Class SubTrajectory: Reference to a subset of a
trajectory

A SubTrajectory object is created by slicing a Trajectory object or another
SubTrajectory object. It provides all the operations defined on Trajectory
objects.

Class TrajectoryVariable: Variable in a trajectory

A TrajectoryVariable object is created by extracting a variable from a
Trajectory object if that variable contains data for each atom and is thus
potentially large. No data is read from the trajectory file when a
TrajectoryVariable object is created; the read operation takes place when
the TrajectoryVariable is indexed with a specific step number.
If t is a TrajectoryVariable object, then:

• len(t) is the number of steps

• t[i] is the data for step i, in the form of a ParticleScalar, a
ParticleVector, or a Configuration object, depending on the variable

• t[i:j] and t[i:j:n] return a SubVariable object that refers to a
subset of the total number of steps

140

Reference for Module MMTK

Class SubVariable: Reference to a subset of a
TrajectoryVariable

A subclass of MMTK.Trajectory.TrajectoryVariable (page 140).
A SubVariable object is created by slicing a TrajectoryVariable object or
another SubVariable object. It provides all the operations defined on
TrajectoryVariable objects.

Class TrajectorySet: Trajectory file set

A trajectory set permits to treat a sequence of trajectory files like a single
trajectory for reading data. It behaves like an object of the class
MMTK.Trajectory.Trajectory (page 138). The trajectory files must all
contain data for the same system. The variables stored in the individual
files need not be the same, but only variables common to all files can be
accessed.
Constructor: TrajectorySet(object, filename list)

object the object whose data is stored in the trajectory files. This can be
(and usually is) None; in that case, a universe object is constructed
from the description stored in the first trajectory file. This universe
object can be accessed via the attribute universe of the trajectory
set object.

filename list a list of trajectory file names or (filename, first step, last step,
increment) tuples.

Note: depending on how the sequence of trajectories was constructed, the
first configuration of each trajectory might be the same as the last one in
the preceding trajectory. To avoid counting it twice, specify (filename, 1,
None, 1) for all but the first trajectory in the set.

Class TrajectorySetVariable: Variable in a trajectory
set

A TrajectorySetVariable object is created by extracting a variable from a
TrajectorySet object if that variable contains data for each atom and is
thus potentially large. It behaves exactly like a TrajectoryVariable object.

141

Reference for Module MMTK

Class ParticleTrajectory: Trajectory data for a single
particle

A ParticleTrajectory object is created by calling the method
readParticleTrajectory on a Trajectory object. If pt is a
ParticleTrajectory object, then

• len(pt) is the number of steps stored in it

• pt[i] is the value at step i (a vector)

Methods:

• translateBy(vector)
Adds vector to the values at all steps. This does notchange the data
in the trajectory file.

Class RigidBodyTrajectory: Rigid-body trajectory
data

A RigidBodyTrajectory object is created by calling the method
readRigidBodyTrajectory on a Trajectory object. If rbt is a
RigidBodyTrajectory object, then

• len(rbt) is the number of steps stored in it

• rbt[i] is the value at step i (a vector for the center of mass and a
quaternion for the orientation)

Class TrajectoryOutput: Trajectory output action

A TrajectoryOutput object is used in the action list of any
trajectory-generating operation. It writes any of the available data to a
trajectory file. It is possible to use several TrajectoryOutput objects at the
same time in order to produce multiple trajectories from a single run.
Constructor: TrajectoryOutput(trajectory, data=None, first=0, last=None,
skip=1)

trajectory a trajectory object or a string, which is interpreted as the name
of a file that is opened as a trajectory in append mode

142

Reference for Module MMTK

data a list of data categories. All variables provided by the trajectory
generator that fall in any of the listed categories are written to the
trajectory file. See the descriptions of the trajectory generators for a
list of variables and categories. By default (data = None) the
categories ”configuration”, ”energy”, ”thermodynamic”, and ”time”
are written.

first the number of the first step at which the action is executed

last the number of the last step at which the action is executed. A value of
None indicates that the action should be executed indefinitely.

skip the number of steps to skip between two applications of the action

Class RestartTrajectoryOutput: Restart trajectory
output action

A RestartTrajectoryOutput object is used in the action list of any
trajectory-generating operation. It writes those variables to a trajectory
that the trajectory generator declares as necessary for restarting.
Constructor: RestartTrajectoryOutput(trajectory, skip=100, length=3)

trajectory a trajectory object or a string, which is interpreted as the name
of a file that is opened as a trajectory in append mode with a cycle
length of length and double-precision variables

skip the number of steps between two write operations to the restart
trajectory

length the number of steps stored in the restart trajectory; used only if
trajectory is a string

Class LogOutput: Protocol file output action

A LogOutput object is used in the action list of any trajectory-generating
operation. It writes any of the available data to a text file.
Constructor: LogOutput(file, data, first=0, last=None, skip=1)

file a file object or a string, which is interpreted as the name of a file that is
opened in write mode

143

Reference for Module MMTK

data a list of data categories. All variables provided by the trajectory
generator that fall in any of the listed categories are written to the
trajectory file. See the descriptions of the trajectory generators for a
list of variables and categories. By default (data = None) the
categories ”energy” and ”time” are written.

first the number of the first step at which the action is executed

last the number of the last step at which the action is executed. A value of
None indicates that the action should be executed indefinitely.

skip the number of steps to skip between two applications of the action

Class StandardLogOutput: Standard protocol output
action

A StandardLogOutput object is used in the action list of any
trajectory-generating operation. It is a specialization of LogOutput to the
most common case and writes data in the categories ”time” and ”energy”
to the standard output stream.
Constructor: StandardLogOutput(skip=50)

skip the number of steps to skip between two applications of the action

Class SnapshotGenerator: Trajectory generator for
single steps

A SnapshotGenerator is used for manual assembly of trajectory files. At
each call it writes one step to the trajectory, using the current state of the
universe (configuration, velocities, etc.) and data provided explicitly with
the call.
Constructor: SnapshotGenerator(universe, **options)

universe the universe on which the integrator acts

options keyword options:

• data: a dictionary that supplies values for variables that are not
part of the universe state (e.g. potential energy)

144

Reference for Module MMTK

• actions: a list of actions to be executed periodically (default is
none)

Each call to the SnapshotGenerator object produces one step. All the
keyword options listed above can be specified either when creating the
generator or when calling it.

Functions

• isTrajectory()
Returns 1 if object is a trajectory.

• trajectoryInfo()
Return a string with summarial information about the trajectory file
identified by filename.

145

Reference for Module MMTK

Module MMTK.Units

This module defines constants and prefactors that convert between
MMTK’s internal unit system and other units. There are also some
common physical constants.
SI Prefixes: ato, femto, pico, nano, micro, milli, centi, deci, deca, hecto,
kilo, mega, giga, tera, peta
Length units: m, cm, mm, nm, pm, fm, Ang, Bohr
Angle units: rad, deg
Volume units: l
Time units: s, ns, ps, fs
Frequency units: Hz, invcm (wavenumbers)
Mass units: amu, g, kg
Quantity-of-matter units: mol
Energy units: J, kJ, cal, kcal, Hartree
Temperature units: K
Pressure units: Pa, bar, atm
Electrostatic units: C, A, V, D, eV, e
Physical constants: c (speed of light), Nav (Avogadro number), h = (Planck
constant), hbar = (Planck constant divided by 2*Pi), k B = (Boltzmann
constant), eps0 = (permittivity of vacuum), me = (electron mass)

146

Reference for Module MMTK

Module MMTK.Universe

Class Universe: Complete model of chemical system

A subclass of MMTK.Collection.GroupOfAtoms (page 78)and
MMTK.Visualization.Viewable (page 156).
A universe represents a complete model of a chemical system, i.e. the
molecules, their environment (topology, boundary conditions, thermostats,
etc.), and optionally a force field.
The class Universe is an Glossary:abstract-base-class that defines properties
common to all kinds of universes. To create universe objects, use one of its
subclasses.
In addition to the methods listed below, universe objects support the
following operations (u is any universe object, o is any chemical object):

• len(u) yields the number of chemical objects in the universe

• u[i] returns object number i

• u.name = o adds o to the universe and also makes it accessible as an
attribute

• del u.name removes the object that was assigned to u.name from the
universe

Methods:

• objectList(klass=None)
Returns a list of all chemical objects in the universe. If klass is not
None, only objects whose class is equal to klass are returned.

• environmentObjectList(klass=None)
Returns a list of all environment objects in the universe. If klass is not
None, only objects whose class is equal to klass are returned.

• atomList()
Returns a list of all atoms in the universe. This includes atoms that
make up the compound chemical objects (molecules etc.).

147

Reference for Module MMTK

• universe()
Returns the universe itself.

• addObject(object)
Adds object to the universe. If object is a Collection, all elements of
the Collection are added to the universe. An object can only be
added to a universe if it is not already part of another universe.

• removeObject(object)
Removes object from the universe. If object is a Collection, each of its
elements is removed. The object to be removed must be in the
universe.

• selectShell(point, r1, r2=0.0)
Return a Collection of all objects in the universe whose distance from
point is between r1 and r2.

• selectBox(p1, p2)
Return a Collection of all objects in the universe that lie within a box
whose corners are given by p1 and p2.

• acquireReadStateLock()
Acquire the universe read state lock. Any application that uses
threading must acquire this lock prior to accessing the current state of
the universe, in particular its configuration (particle positions). This
guarantees the consistency of the data; while any thread holds the
read state lock, no other thread can obtain the write state lock that
permits modifying the state. The read state lock should be released
as soon as possible.

The read state lock can be acquired only if no thread holds the write
state lock. If the read state lock cannot be acquired immediately, the
thread will be blocked until it becomes available. Any number of
threads can acquire the read state lock simultaneously.

• acquireWriteStateLock()
Acquire the universe write state lock. Any application that uses
threading must acquire this lock prior to modifying the current state
of the universe, in particular its configuration (particle positions).
This guarantees the consistency of the data; while any thread holds

148

Reference for Module MMTK

the write state lock, no other thread can obtain the read state lock
that permits accessing the state. The write state lock should be
released as soon as possible.

The write state lock can be acquired only if no other thread holds
either the read state lock or the write state lock. If the write state
lock cannot be acquired immediately, the thread will be blocked until
it becomes available.

• releaseReadStateLock(write=0)
Release the universe read state lock.

• releaseWriteStateLock(write=0)
Release the universe write state lock.

• acquireConfigurationChangeLock(waitflag=1)
Acquire the configuration change lock. This lock should be acquired
before starting an algorithm that changes the configuration
continuously, e.g. minimization or molecular dynamics algorithms.
This guarantees the proper order of execution when several such
operations are started in succession. For example, when a
minimization should be followed by a dynamics run, the use of this
flag permits both operations to be started as background tasks which
will be executed one after the other, permitting other threads to run
in parallel.

The configuration change lock should not be confused with the
universe state lock. The former guarantees the proper sequence of
long-running algorithms, whereas the latter guarantees the
consistency of the data. A dynamics algorithm, for example, keeps
the configuration change lock from the beginning to the end, but
acquires the universe state lock only immediately before modifying
configuration and velocities, and releases it immediately afterwards.

If waitflag is true, the method waits until the lock becomes available;
this is the most common operation. If waitflag is false, the method
returns immediately even if another thread holds the lock. The return
value indicates if the lock could be acquired (1) or not (0).

• releaseConfigurationChangeLock()
Releases the configuration change lock.

149

Reference for Module MMTK

• setForceField(forcefield)
Assign a new forcefield to the universe.

• configuration()
Return the configuration object describing the current configuration
of the universe. Note that this is not a copy of the current state; the
positions in the configuration object will change when coordinate
changes are applied to the universe in whatever way.

• copyConfiguration()
Returns a copy of the current configuration.

This operation is thread-safe; it won’t return inconsistent data even
when another thread is modifying the configuration.

• setConfiguration(configuration, block=1)
Copy all positions are from configuration (which must be a
Configuration object) to the current universe configuration.

This operation is thread-safe; it blocks other threads that want to
access the configuration while the data is being updated. If this is not
desired (e.g. when calling from a routine that handles locking itself),
the optional parameter block should be set to 0.

• addToConfiguration(displacement, block=1)
Add displacement (a ParticleVector object) to the current
configuration of the universe.

This operation is thread-safe; it blocks other threads that want to
access the configuration while the data is being updated. If this is not
desired (e.g. when calling from a routine that handles locking itself),
the optional parameter block should be set to 0.

• getParticleScalar(name, datatype=’d’)
Return a ParticleScalar object containing the values of the attribute
name for each atom in the universe.

• getParticleBoolean(name)
Return a ParticleScalar object containing the boolean values (0 or 1)
of the attribute name for each atom in the universe. An atom that
does not have the attribute name is assigned a value of zero.

150

Reference for Module MMTK

• masses()
Return a ParticleScalar object containing the atom masses.

• charges()
Return a ParticleScalar object containing the atom charges. Since
charges are parameters defined by a force field, this method will raise
an exception if no force field is defined or if the current force field
defines no charges.

• velocities()
Returns ParticleVector object containing the current velocities of all
atoms. If no velocities are defined, the return value is None. Note that
the return value is not a copy of the current state but a reference to
it; its data will change when any changes are made to the current
velocities.

• setVelocities(velocities, block=1)
Set the current atom velocities to the values contained in the
ParticleVector object velocities. If velocities is None, the velocity
information is removed from the universe.

This operation is thread-safe; it blocks other threads that want to
access the velocities while the data is being updated. If this is not
desired (e.g. when calling from a routine that handles locking itself),
the optional parameter block should be set to 0.

• initializeVelocitiesToTemperature(temperature)
Generate random velocities for all atoms from a Boltzmann
distribution at the given temperature.

• scaleVelocitiesToTemperature(temperature, block=1)
Scale all velocities by a common factor in order to obtain the specified
temperature.

This operation is thread-safe; it blocks other threads that want to
access the velocities while the data is being updated. If this is not
desired (e.g. when calling from a routine that handles locking itself),
the optional parameter block should be set to 0.

• distanceConstraintList()
Returns the list of distance constraints.

151

Reference for Module MMTK

• numberOfDistanceConstraints()
Returns the number of distance constraints.

• setBondConstraints()
Sets distance constraints for all bonds.

• removeDistanceConstraints()
Removes all distance constraints.

• enforceConstraints(configuration=None, velocities=None)
Enforces the previously defined distance constraints by modifying the
configuration and velocities.

• adjustVelocitiesToConstraints(velocities=None, block=1)
Modifies the velocities to be compatible with the distance constraints,
i.e. projects out the velocity components along the constrained
distances.

This operation is thread-safe; it blocks other threads that want to
access the velocities while the data is being updated. If this is not
desired (e.g. when calling from a routine that handles locking itself),
the optional parameter block should be set to 0.

• forcefield()
Returns the force field.

• energy(subset1=None, subset2=None, small change=0)
Returns the energy. Without any parameters, the energy is calculated
for the whole universe. If subset1 is given, only the energy terms
within the atoms in subset1 are calculated. If subset1 and subset2 are
given, only the energy terms between atoms of the two subsets are
evaluated. The parameter small change can be set to one in order to
obtain a faster energy evaluation when the current configuration
differs from the one during the last energy evaluation only by small
displacements.

• energyAndGradients(subset1=None, subset2=None, small change=0)
Returns the energy and the energy gradients (a ParticleVector).

• energyAndForceConstants(subset1=None, subset2=None,
small change=0)

152

Reference for Module MMTK

Returns the energy and the force constants (a
SymmetricParticleTensor).

• energyGradientsAndForceConstants(subset1=None, subset2=None,
small change=0)
Returns the energy, the energy gradients (a ParticleVector), and the
force constants (a SymmetricParticleTensor).

• energyTerms(subset1=None, subset2=None, small change=0)
Returns a dictionary containing the energy values for each energy
term separately. The energy terms are defined by the force field.

• distanceVector(p1, p2, conf=None)
Returns the distance vector between p1 and p2 (i.e. the vector from
p1 to p2) in the configuration conf. p1 and p2 can be vectors or
subsets of the universe, in which case their center-of-mass positions
are used. If conf is None, the current configuration of the universe is
used. The result takes the universe topology (periodic boundary
conditions etc.) into account.

• distance(p1, p2, conf=None)
Returns the distance between p1 and p2, i.e. the length of the
distance vector.

• angle(p1, p2, p3, conf=None)
Returns the angle between the distance vectors —p1—-—p2— and
—p3—-—p2—.

• dihedral(p1, p2, p3, p4, conf=None)
Returns the dihedral angle between the plane containing the distance
vectors —p1—-—p2— and —p3—-—p2— and the plane containing
the distance vectors —p2—-—p3— and —p4—-—p3—.

• basisVectors()
Returns the basis vectors of the elementary cell of a periodic universe.
For a non-periodic universe the return value is None.

• reciprocalBasisVectors()
Returns the reciprocal basis vectors of the elementary cell of a
periodic universe. For a non-periodic universe the return value is
None.

153

Reference for Module MMTK

• cellVolume()
Returns the volume of the elementary cell of a periodic universe. For
a non-periodic universe the return value is None.

• largestDistance()
Returns the largest possible distance that any two points can have in
the universe. Returns None if no such upper limit exists.

• contiguousObjectOffset(objects=None, conf=None, box coordinates=0)
Returns a ParticleVector with displacements relative to the
configuration conf which when added to the configuration create a
configuration in which none of the objects is split across the edge of
the elementary cell. For nonperiodic universes the return value is
None. If no object list is specified, the list of elements of the universe
is used. The configuration defaults to the current configuration of the
universe.

• contiguousObjectConfiguration(objects=None, conf=None)
Returns configuration conf (default: current configuration) corrected
by the contiguous object offsets for that configuration.

• realToBoxCoordinates(vector)
Returns the box coordinate equivalent of vector. Box coordinates are
defined only for periodic universes; their components have values
between -0.5 and 0.5; these extreme values correspond to the walls of
the simulation box. For a nonperiodic universe, vector is returned
unchanged.

• boxToRealCoordinates(vector)
Returns the real-space equivalent of the box coordinate vector.

• randomPoint()
Returns a random point from a uniform distribution within the
universe. This operation is defined only for finite-volume universes,
e.g. periodic universes.

• map(function)
Applies function to all objects in the universe and returns the list of
the results. If the results are chemical objects, a Collection is
returned instead of a list.

154

Reference for Module MMTK

• setFromTrajectory(trajectory, step=None)
Set the state of the universe to the one stored in the given step of the
given trajectory. If no step number is given, the most recently written
step is used for a restart trajectory, and the first step (number zero)
for a normal trajectory.

This operation is thread-safe; it blocks other threads that want to
access the configuration or velocities while the data is being updated.

Functions

• isUniverse()
Returns 1 if object is a Universe.

155

Reference for Module MMTK

Module MMTK.Visualization

This module provides visualization of chemical objects and animated
visualization of normal modes and sequences of configurations, including
trajectories. Visualization depends on external visualization programs. On
Unix systems, these programs are defined by environment variables. Under
Windows NT, the system definitions for files with extension ”pdb” and
”wrl” are used.
A viewer for PDB files can be defined by the environment variable
PDBVIEWER. For showing a PDB file, MMTK will execute a command
consisting of the value of this variable followed by a space and the name of
the PDB file.
A viewer for VRML files can be defined by the environment variable
VRMLVIEWER. For showing a VRML file, MMTK will execute a command
consisting of the value of this variable followed by a space and the name of
the VRML file.
Since there is no standard for launching viewers for animation, MMTK
supports only two programs: VMD and XMol. MMTK detects these
programs by inspecting the value of the environment variable PDBVIEWER.
This value must be the file name of the executable, and must give ”vmd” or
”xmol” after stripping off an optional directory specification.

Class Viewable: Any viewable chemical object

This class is a mix-in class that defines a general visualization method for
all viewable objects, i.e. chemical objects (atoms, molecules, etc.),
collections, and universes.

Methods:

• graphicsObjects(**options)
Returns a list of graphics objects that represent the object for which
the method is called. All options are specified as keyword arguments:

configuration the configuration in which the objects are drawn
(default: the current configuration)

model a string specifying one of several graphical representations
(”wireframe”, ”tube”, ”ball and stick”). Default is ”wireframe”.

156

Reference for Module MMTK

ball radius the radius of the balls representing the atoms in a
ball-and-stick model, default: 0.03

stick radius the radius of the sticks representing the bonds in a
ball-and-stick or tube model, default: 0.02 for the tube model,
0.01 for the ball-and-stick model

graphics module the module in which the elementary graphics objects
are defined (default: Scientific.Visualization.VRML)

color values a MMTK.ParticleScalar (page 63) object that defines a
value for each atom which defines that atom’s color via the color
scale object specified by the option color scale. If no value is
given for color values, the atoms’ colors are taken from the
attribute color of each atom object (default values for each
chemical element are provided in the chemical database).

color scale an object that returns a color object (as defined in the
module Scientific.Visualization.Color) when called with a
number argument. Suitable objects are defined by
Scientific.Visualization.Color.ColorScale and
Scientific.Visualization.Color.SymmetricColorScale. The object
is used only when the option color values is specified as well. The
default is a blue-to-red color scale that covers the range of the
values given in color values.

color a color name predefined in the module
Scientific.Visualization.Color. The corresponding color is applied
to all graphics objects that are returned.

Functions

• view()
Equivalent to object.view(parameters).

• viewTrajectory()
Launches an external viewer with animation capabilities to display
the configurations from first to last in increments of step in trajectory.
The trajectory can be specified by a MMTK.Trajectory.Trajectory
(page 138) object or by a string which is interpreted as the file name
of a trajectory file. An optional parameter subset can specify an

157

Reference for Module MMTK

object which is a subset of the universe contained in the trajectory, in
order to restrict visualization to this subset.

• viewSequence()
Launches an external viewer with animation capabilities to display
object in the configurations given in conf list, which can be any
sequence of configurations, including the variable ”configuration”
from a MMTK.Trajectory.Trajectory (page 138) object. If periodicis
1, the configurations will be repeated periodically, provided that the
external viewers supports this operation.

158

Reference for Module MMTK

Module MMTK.Visualization win32

This module provides visualization of chemical objects and animated
visualization of normal modes and sequences of configurations, including
trajectories. Visualization depends on external visualization programs. On
Unix systems, these programs are defined by environment variables. Under
Windows NT, the system definitions for files with extension ”pdb” and
”wrl” are used.
A viewer for PDB files can be defined by the environment variable
PDBVIEWER. For showing a PDB file, MMTK will execute a command
consisting of the value of this variable followed by a space and the name of
the PDB file.
A viewer for VRML files can be defined by the environment variable
VRMLVIEWER. For showing a VRML file, MMTK will execute a command
consisting of the value of this variable followed by a space and the name of
the VRML file.
Since there is no standard for launching viewers for animation, MMTK
supports only two programs: VMD and XMol. MMTK detects these
programs by inspecting the value of the environment PDBVIEWER. This value
must be the file name of the executable, and must give ”vmd” or ”xmol”
after stripping off an optional directory specification.

Class Viewable: Any viewable chemical object

This class is a mix-in class that defines a general visualization method for
all viewable objects, i.e. chemical objects (atoms, molecules, etc.),
collections, and universes.

Methods:

• graphicsObjects(**options)
Returns a list of graphics objects that represent the object for which
the method is called. All options are specified as keyword arguments:

configuration the configuration in which the objects are drawn
(default: the current configuration)

model a string specifying one of several graphical representations
(”wireframe”, ”tube”, ”ball and stick”). Default is ”wireframe”.

159

Reference for Module MMTK

ball radius the radius of the balls representing the atoms in a
ball-and-stick model, default: 0.03

stick radius the radius of the sticks representing the bonds in a
ball-and-stick or tube model, default: 0.02 for the tube model,
0.01 for the ball-and-stick model

graphics module the module in which the elementary graphics objects
are defined (default: Scientific.Visualization.VRML)

color values a MMTK.ParticleScalar (page 63) object that defines a
value for each atom which defines that atom’s color via the color
scale object specified by the option color scale. If no value is
given for color values, the atoms’ colors are taken from the
attribute color of each atom object (default values for each
chemical element are provided in the chemical database).

color scale an object that returns a color object (as defined in the
module Scientific.Visualization.Color) when called with a
number argument. Suitable objects are defined by
Scientific.Visualization.Color.ColorScale and
Scientific.Visualization.Color.SymmetricColorScale. The object
is used only when the option color values is specified as well. The
default is a blue-to-red color scale that covers the range of the
values given in color values.

color a color name predefined in the module
Scientific.Visualization.Color. The corresponding color is applied
to all graphics objects that are returned.

Functions

• view()
Equivalent to object.view(parameters).

• viewTrajectory()
Launches an external viewer with animation capabilities to display
the configurations from first to last in increments of step in trajectory.
The trajectory can be specified by a MMTK.Trajectory.Trajectory
(page 138) object or by a string which is interpreted as the file name
of a trajectory file. An optional parameter subset can specify an

160

Reference for Module MMTK

object which is a subset of the universe contained in the trajectory, in
order to restrict visualization to this subset.

• viewSequence()
Launches an external viewer with animation capabilities to display
object in the configurations given in conf list, which can be any
sequence of configurations, including the variable ”configuration”
from a MMTK.Trajectory.Trajectory (page 138) object. If periodicis
1, the configurations will be repeated periodically, provided that the
external viewers supports this operation.

161

Reference for Module MMTK

162

Chapter 11

Examples

One of the best ways to learn how to use a new tool is to look at examples.
The examples given in this manual were adapted from real-life MMTK
applications. They are also contained in the MMTK distribution (directory
”Examples”) for direct use and modification.
The example molecules, system sizes, parameters, etc., were chosen to
reduce execution time as much as possible, in order to enable you to run
the examples interactively step by step to see how they work. If you plan to
modify an example program for your own use, don’t forget to check all
parameters carefully to make sure that you obtain reasonable results.

• Molecular Dynamics examples

– The file argon.py contains a simulation of liquid argon at
constant temperature and pressure.

– The file protein.py contains a simulation of a small (very small)
protein in vacuum.

– The file restart.py shows how the simulation started in
protein.py can be continued.

– The file solvation.py contains the solvation of a protein by water
molecules.

• Monte-Carlo examples

– The program backbone.py generates an ensemble of backbone
configuration (C-alpha atoms only) for a protein.

163

Examples

• Trajectory examples

– The file snapshot.py shows how a trajectory can be built up step
by step from arbitrary data.

– The file dcd import.py converts a trajectory in DCD format
(used by the programs CHARMM and X-Plor) to MMTK’s
format.

– The file dcd export.py converts an MMTK trajectory to DCD
format (used by the programs CHARMM and X-Plor).

– The file trajectory average.py calculates an average structure
from a trajectory.

– The file trajectory extraction.py reads a trajectory and writes a
new one containing only a subset of the original universe.

– The file view trajectory.py shows an animation of a trajectory,
provided that an external molecule viewer with animation is
available.

– The file calpha trajectory.py shows how a much smaller
C alpha-only trajectory can be extracted from a trajectory
containing one or more proteins.

• Normal mode examples

– The file modes.py contains a standard normal mode calculation
for a small protein.

– The file constrained modes.py contains a normal mode
calculation for a small protein using a model in which each
amino acid residue is rigid.

– The file deformation modes.py contains a normal mode
calculation for a mid-size protein using a simplified model and a
deformation force field.

– The file harmonic force field.py contains a normal mode
calculation for a protein using a detailed but still simple
harmonic force field.

• Protein examples

164

Examples

– The file construction.py shows some more complex examples of
protein construction from PDB files.

– The file analysis.py demonstrates a few analysis techniques for
comparing protein conformations.

• DNA examples

– The file construction.py contains the construction of a DNA
strand with a ligand.

• MPI examples (parallelization)

– The file md.py contains a parallelized version of
MolecularDynamics/solvation.py.

• Langevin dynamics integrator

The files LangevinDynamics.py and MMTK langevinmodule.c
implement a simple integrator for Langevin dynamics. It is meant as
an example of how to write integrators etc. in C, but of course it can
also be used directly.

• Visualization examples

– The file additional objects.py describes the addition of custom
graphics objects to the representation of a molecular system.

• Micellaneous examples

– The example charge fit.py demonstrates fitting point charges to
an electrostatic potential energy surface.

– The file construct from pdb.py shows how a universe can be
built from a PDB file in such a way that the internal atom
ordering is compatible. This is important for exchanging data
with other programs.

– The file lattice.py constructs molecules placed on a lattice.

– The file vector field.py shows how vector fields can be used in
the analysis and visualization of collective motions.

165

Examples

166

Chapter 12

Glossary

Abstract base class
A base class that is not directly usable by itself, but which defines the
common properties of several subclasses. Example: the class
MMTK.ChemicalObjects.ChemicalObject (page 75) is an abstract base
class which defines the common properties of its subclasses MMTK.Atom
(page 65), MMTK.ChemicalObjects.Group (page 76), MMTK.Molecule
(page 67), MMTK.Complex (page 69), and MMTK.AtomCluster (page 70).
A mix-in class is a special kind of abstract base class.
Base class
A class from which another class inherits. In most cases, the inheriting
class is a specialization of the base class. For example, the class
MMTK.Molecule (page 67) is a base class of MMTK.Proteins.PeptideChain
(page 128), because peptide chains are special molecules. Another common
application is the abstract base class.
Mix-in class
A class that is used as a base class in other classes with the sole intention of
providing methods that are common to these classes. Mix-in classes cannot
be used to create instances. They are a special kind of abstract base class.
Example: class MMTK.Collection.GroupOfAtoms (page 78).
Subclass
A class that has another class as its base class. The subclass is usually a
specialization of the base class, and can use all of the methods defined in
the base class. Example: class MMTK.Proteins.Residue (page 128) is a
subclass of MMTK.ChemicalObjects.Group (page 76).

167

Glossary

168

Chapter 13

References

[Bondi1964] A. Bondi
van der Waals Volumes and Radii
J. Phys. Chem. 68, 441-451 (1964)

[DPMTA] William T. Rankin
DPMTA - A Distributed Implementation of the Parallel Multipole
Tree Algorithm - Version 3.0
http://www.ee.duke.edu/Research/SciComp/Docs/Dpmta/users guide/dpmta.html

[Eisenhaber1993] F. Eisenhaber, P. Argos
Improved Strategy in Analytic Surface Calculation for Molecular
Systems: Handling of Singularities and Computational Efficiency
J. Comp. Chem. 14(11), 1272-1280 (1993)

[Eisenhaber1995] F. Eisenhaber, P. Lijnzaad, P. Argos, M. Scharf
The Double Cubic Lattice Method: Efficient Approaches to
Numerical Integration of Surface Area and Volume and to Dot
Surface Contouring of Molecular Assemblies
J. Comp. Chem. 16(3), 273-284 (1995)

[Hinsen1995] Konrad Hinsen, Gerald R. Kneller
Influence of constraints on the dynamics of polypeptide chains
Phys. Rev. E 52, 6868 (1995)

[Hinsen1997] Konrad Hinsen, Benoit Roux
An accurate potential for simulating proton transfer in acetylacetone
J. Comp. Chem. 18, 368 (1997)

169

References

[Hinsen1998] Konrad Hinsen
Analysis of domain motions by approximate normal mode calculations
Proteins 33(3), 417-429 (1998)

[Hinsen1999] Konrad Hinsen, Aline Thomas, Martin J. Field
Analysis of domain motions in large proteins
Proteins 34(3), 369-382 (1999)

[Hinsen1999a] Konrad Hinsen, Gerald R. Kneller
Projection methods for the analysis of complex motions in
macromolecules
Molecular Simulations 23(3), 203-241 (1999)

[Hinsen1999b] Konrad Hinsen, Gerald R. Kneller
A simplified force field for describing vibrational protein dynamics
over the whole frequency range
J. Chem. Phys. 111(24), 10766-10769 (1999)

[Hinsen2000] Konrad Hinsen, Andrei J. Petrescu, Serge Dellerue,
Marie-Claire Bellissent-Funel, Gerald R. Kneller
Harmonicity in slow protein dynamics
submitted

[Kneller1990] Gerald R. Kneller
Superposition of molecular structures using quaternions
Mol. Sim. 7, 113-119 (1990)

[Kneller1996] Gerald R. Kneller, Thomas Mülders
Nosé-Andersen dynamics of partially rigid molecules: Coupling of all
degrees of freedom to heat and pressure baths
Phys. Rev. E 54, 6825-6837 (1996)

[Swope1982] W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson
A computer simulation method for the calculation of equilibrium
constants for the formation of physical clusters of molecules:
application to small water clusters
J. Chem. Phys. 76, 637–649 (1982)

[vanGunsteren1982] Wilfred F. van Gunsteren, Martin Karplus
Effect of Constraints on the Dynamics of Macromolecules
Macromolecules 15, 1528-1544 (1982)

170

References

[Viduna2000] David Viduna, Konrad Hinsen, Gerald R. Kneller
The influence of molecular flexibility on DNA radiosensitivity: A
simulation study
Phys. Rev. E, in print

[Wolf1999] D. Wolf, P. Keblinski, S.R. Philpot, J. Eggebrecht
Exact method for the simulation of Coulombic systems by spherically
truncated, pairwise r−1 summation
J. Chem. Phys. 110(17), 8254-8282 (1999)

171

	Introduction
	Overview
	Using MMTK
	Modules
	Objects
	Chemical objects
	Collections
	Force fields
	Universes
	Minimizers and integrators
	Trajectories
	Variables
	Normal modes
	Non-MMTK objects

	The chemical database
	Force fields
	Units
	A simple example

	Constructing a molecular system
	Creating chemical objects
	Proteins, peptide chains, and nucleotide chains
	Lattices
	Random numbers
	Collections
	Creating universes
	Force fields

	Referring to objects and parts of objects
	The structure of peptide and nucleotide chains

	Analyzing and modifying atom properties
	General operations
	Coordinate transformations
	Atomic property objects
	Configurations

	Minimization and Molecular Dynamics
	Trajectories
	Options for minimization and dynamics
	Periodic actions
	Fixed atoms

	Energy minimization
	Molecular dynamics
	Velocities
	Distance constraints
	Thermostats and barostats
	Integration

	Snapshots

	Normal modes
	Analysis operations
	Properties of chemical objects and universes
	Energy evaluation
	Surfaces and volumes

	Miscellaneous operations
	Saving, loading, and copying objects
	Exporting to specific file formats and visualization
	PDB, VRML, and DCD files
	Visualization and animation

	Fields
	Charge fitting

	Constructing the database
	Atom definitions
	Group definitions
	Molecule definitions
	Complex definitions
	Protein definitions

	Threads and parallelization
	Reference for Module MMTK
	Class ParticleScalar: Scalar property defined for each particle
	Class ParticleVector: Vector property defined for each particle
	Class Configuration: Configuration of a universe
	Class ParticleTensor: Rank-2 tensor property defined for each particle
	Class Atom: Atom
	Class Collection: Collection of chemical objects
	Class Molecule: Molecule
	Class PartitionedCollection: Collection with cubic partitions
	Class PartitionedAtomCollection: Partitioned collection of atoms
	Class InfiniteUniverse: Infinite (unbounded and nonperiodic) universe.
	Class Complex: Complex
	Class AtomCluster: An agglomeration of atoms
	Class OrthorhombicPeriodicUniverse: Periodic universe with orthorhombic elementary cell.
	Class CubicPeriodicUniverse: Periodic universe with cubic elementary cell.
	Functions
	Module MMTK.Biopolymers
	Class ResidueChain: A chain of residues
	Functions

	Module MMTK.ChargeFit
	Class ChargeFit: Fit of point charges to an electrostatic potential surface
	Class TotalChargeConstraint: Constraint on the total system charge
	Class EqualityConstraint: Constraint forcing two charges to be equal
	Functions

	Module MMTK.ChemicalObjects
	Class ChemicalObject: General chemical object
	Class CompositeChemicalObject: Chemical object with subobjects
	Class Group: Group of bonded atoms
	Functions

	Module MMTK.Collection
	Class GroupOfAtoms: Anything that consists of atoms
	Functions

	Module MMTK.DCD
	Class DCDReader: Reader for DCD trajectories (CHARMM/X-Plor)
	Functions

	Module MMTK.Deformation
	Class DeformationFunction: Infinite-displacement deformation function
	Class NormalizedDeformationFunction: Normalized infinite-displacement deformation function
	Class FiniteDeformationFunction: Finite-displacement deformation function
	Class DeformationEnergyFunction: Infinite-displacement deformation energy function
	Class NormalizedDeformationEnergyFunction: Normalized infinite-displacement deformation energy function
	Class FiniteDeformationEnergyFunction: Finite-displacement deformation energy function
	Class DeformationReducer: Iterative reduction of the deformation energy
	Class FiniteDeformationReducer: Iterative reduction of the finite-displacement deformation energy

	Module MMTK.Dynamics
	Class VelocityVerletIntegrator: Velocity-Verlet molecular dynamics integrator
	Class VelocityScaler: Periodic velocity scaling action
	Class Heater: Periodic heating action
	Class BarostatReset: Barostat reset action
	Class TranslationRemover: Action that eliminates global translation
	Class RotationRemover: Action that eliminates global rotation

	Module MMTK.Environment
	Class NoseThermostat: Nose thermostat for Molecular Dynamics
	Class AndersenBarostat: Andersen barostat for Molecular Dynamics

	Module MMTK.Field
	Class AtomicField: A field whose values are determined by atomic quantities
	Class AtomicScalarField: Scalar field defined by atomic quantities
	Class AtomicVectorField: Vector field defined by atomic quantities

	Module MMTK.ForceFields
	Class CalphaForceField: Effective harmonic force field for a C-alpha protein model
	Class DeformationForceField: Deformation force field for protein normal mode calculations
	Class LennardJonesForceField: Lennard-Jones force field for noble gases
	Class Amber94ForceField: Amber 94 force field
	Module MMTK.ForceFields.BondFF
	Module MMTK.ForceFields.ForceFieldTest
	Module MMTK.ForceFields.Restraints
	Module MMTK.ForceFields.SPCEFF

	Module MMTK.FourierBasis
	Class FourierBasis: Collective-motion basis for low-frequency normal mode calculations
	Functions

	Module MMTK.Geometry
	Class GeometricalObject3D: 3D shape object
	Class Box: Box
	Class Sphere: Sphere
	Class Cylinder: Cylinder
	Class Plane: 2D plane in 3D space
	Class Cone: Cone
	Class Circle: 2D circle in 3D space
	Class Line: Line
	Class Lattice: General lattice
	Class RhombicLattice: Rhombic lattice
	Class BravaisLattice: Bravais lattice
	Class SCLattice: Simple Cubic lattice
	Class BCCLattice: Body-Centered Cubic lattice
	Class FCCLattice: Face-Centered Cubic lattice

	Module MMTK.Minimization
	Class SteepestDescentMinimizer: Steepest-descent minimizer
	Class ConjugateGradientMinimizer: Conjugate gradient minimizer

	Module MMTK.MolecularSurface
	Functions

	Module MMTK.NormalModes
	Class Mode: Single normal mode
	Class NormalModes: Normal modes
	Class SparseMatrixNormalModes: Normal modes using a sparse matrix
	Class SubspaceNormalModes: Normal modes in a subspace
	Class FiniteDifferenceSubspaceNormalModes: Normal modes in a subspace with numerical differentiation
	Class SparseMatrixSubspaceNormalModes: Normal modes in a subspace using a sparse matrix

	Module MMTK.NucleicAcids
	Class Nucleotide: Nucleic acid residue
	Class NucleotideChain: Nucleotide chain
	Class NucleotideSubChain: A contiguous part of a nucleotide chain
	Functions

	Module MMTK.PDB
	Class PDBPeptideChain: Peptide chain in a PDB file
	Class PDBNucleotideChain: Nucleotide chain in a PDB file
	Class PDBMolecule: Molecule in a PDB file
	Class PDBConfiguration: Everything in a PDB file
	Class PDBOutputFile: PDB file for output

	Module MMTK.ParticleProperties
	Class ParticleProperty: Property defined for each particle
	Functions

	Module MMTK.Proteins
	Class Residue: Amino acid residue
	Class PeptideChain: Peptide chain
	Class SubChain: A contiguous part of a peptide chain
	Class Protein: Protein
	Functions

	Module MMTK.Random
	Functions

	Module MMTK.Solvation
	Functions

	Module MMTK.Subspace
	Class Subspace: Subspace of infinitesimal atomic motions
	Class RigidMotionSubspace: Subspace of rigid-body motions
	Class PairDistanceSubspace: Subspace of pair-distance motions

	Module MMTK.Trajectory
	Class Trajectory: Trajectory file
	Class SubTrajectory: Reference to a subset of a trajectory
	Class TrajectoryVariable: Variable in a trajectory
	Class SubVariable: Reference to a subset of a TrajectoryVariable
	Class TrajectorySet: Trajectory file set
	Class TrajectorySetVariable: Variable in a trajectory set
	Class ParticleTrajectory: Trajectory data for a single particle
	Class RigidBodyTrajectory: Rigid-body trajectory data
	Class TrajectoryOutput: Trajectory output action
	Class RestartTrajectoryOutput: Restart trajectory output action
	Class LogOutput: Protocol file output action
	Class StandardLogOutput: Standard protocol output action
	Class SnapshotGenerator: Trajectory generator for single steps
	Functions

	Module MMTK.Units
	Module MMTK.Universe
	Class Universe: Complete model of chemical system
	Functions

	Module MMTK.Visualization
	Class Viewable: Any viewable chemical object
	Functions

	Module MMTK.Visualization_win32
	Class Viewable: Any viewable chemical object
	Functions

	Examples
	Glossary
	References

