
User Guide

ReportLab Version 1.09

Lombard Business Park
8 Lombard Road
Wimbledon
London, ENGLAND SW19 3TZ

103 Bayard Street
New Brunswick

New Jersey, 08904)
USA

Chapter 1 Introduction

1.1 About this document

This document is intended to be a conversational introduction to the use of the ReportLab packages. Some
previous programming experience is presumed and familiarity with the Python Programming language is
recommended. If you are new to Python, we tell you in the next section where to go for orientation.

After working your way throught this, you should be ready to begin writing programs to produce
sophisticated reports.

In this chapter, we will cover the groundwork:
• What is ReportLab all about, and why should I use it?
• What is Python?
• How do I get everything set up and running?

Be warned! This document is in a very preliminary form. We need your help to make sure it is complete and
helpful. Please send any feedback to our user mailing list, reportlab-users@egroups.com.

1.2 What is ReportLab?

ReportLab is a software library that lets you directly create documents in Adobe's Portabe Document Format
(PDF) using the Python programming language.

PDF is the global standard for electronic documents. It supports high-quality printing yet is totally portable
across platforms, thanks to the freely available Acrobat Reader. Any application which previously generated
hard copy reports can benefit from making PDF documents instead; these can be archived, emailed, placed
on the web, or printed out the old-fashioned way. However, the PDF file format is a complex indexed binary
format which is impossible to type directly. The PDF format specification is more than 600 pages long and
PDF files must provide precise byte offsets -- a single extra character placed anywhere in a valid PDF
document can render it invalid. Until now, most of the world's PDF documents have been produced by
Adobe's Acrobat tools, which act as a 'print driver'.

The ReportLab library directly creates PDF based on your graphics commands. There are no intervening
steps. Your applications can generate reports extremely fast - sometimes orders of magnitude faster than
traditional report-writing tools.

By contrast, many other methods for generating PDF documents involve "pipelines" of several processes,
which make the generation process slow, and very difficult to manage and maintain.

In addition, because you are writing a program in a powerful general purpose language, there are no
restrictions at all on where you get your data from, how you transform it, and the the kind of output you can
create. And you can reuse code across whole families of reports.

The ReportLab library is expected to be useful in at least the following contexts:
• Dynamic PDF generation on the web
• High-volume corporate reporting and database publishing
• An embeddable print engine for other applications, including a 'report language' so that users can

customize their own reports. This is particularly relevant to cross-platform apps which cannot rely
on a consistent printing or previewing API on each operating system.

• A 'build system' for complex documents with charts, tables and text such as management accounts,
statistical reports and scientific papers

• Going from XML to PDF in one step!

1.3 What is Python?

python, (Gr. Myth. An enormous serpent that lurked in the cave of Mount Parnassus and was slain
by Apollo) 1. any of a genus of large, non-poisonous snakes of Asia, Africa and Australia that
suffocate their prey to death. 2. popularly, any large snake that crushes its prey. 3. totally awesome,

User Guide Chapter 1 Introduction

Page 2

bitchin' very high level programming language (which in our exceedingly humble opinions (for
what they are worth) whallops the snot out of all the other contenders (but your mileage may vary
real soon now, as far as we know).

Python is an interpreted, interactive, object-oriented programming language. It is often compared to Tcl,
Perl, Scheme or Java.

Python combines remarkable power with very clear syntax. It has modules, classes, exceptions, very high
level dynamic data types, and dynamic typing. There are interfaces to many system calls and libraries, as
well as to various windowing systems (X11, Motif, Tk, Mac, MFC). New built-in modules are easily written
in C or C++. Python is also usable as an extension language for applications that need a programmable
interface.

The Python implementation is portable: it runs on most brands of UNIX (including clones such as Linux), on
Windows, DOS, OS/2, Mac, Amiga, DEC/VMS, IBM operating systems, VxWorks, PSOS, ... If your
favorite system isn't listed here, it may still be supported, if there's a C programming language compiler for
it. Ask around on comp.lang.python -- or just try compiling Python yourself.

Python is copyrighted but freely usable and distributable, even for commercial use. The ReportLab core
modules share the same copyright with the name of the copyright holder modified. Both packages use the
"Berkeley Standard Distribution (BSD) style" free software copyright.

1.4 Installation and Setup

Below we provide an abbreviated setup procedure for Python experts and a more verbose procedure for
people who are new to Python.

Installation for experts

First of all, we'll give you the high-speed version for experienced Python developers:
1. Install Python 1.5.1 or later
2. If you want to produce compressed PDF files (recommended), check that zlib is installed.
3. If you want to work with bitmap images, install and test the Python Imaging Library
4. Unpack the reportlab package (reportlab.zip or reportlab.tgz) into a directory on your path
5. cd to reportlab/pdfgen/test and execute testpdfgen.py, which will create a file

'testpdfgen.pdf'.

If you have any problems, check the 'Detailed Instructions' section below.

A note on available versions

The reportlab library can be found at ftp.reportlab.com in the top-level directory. Each
successive version is stored in both zip and tgz format, but the contents are identical. Versions are numbered:
ReportLab_0_85.zip, ReportLab_0_86.zip and so on. The latest stable version is also available
as just reportlab.zip (or reportlab.tgz), which is actually a symbolic link to the latest numbered
version.

We also make nightly snapshots of our CVS (version control) tree available. In general, these are very stable
because we have a comprehensive test suite that all developers can run at any time. New modules and
functions within the overall package may be in a state of flux, but stable features can be assumed to be stable.
If a bug is reported and fixed, we assume people who need the fix in a hurry will get current.zip

Instructions for novices: Windows

This section assumes you don't know much about Python. We cover all of the steps for three common
platforms, including how to verify that each one is complete. While this may seem like a long list, everything
takes 5 minutes if you have the binaries at hand.

User Guide Chapter 1 Introduction

Page 3

1. Get and install Python from http://www.python.org/. Follow the links to 'Download' and
get the latest official version. Currently this is Python 1.5.2 in the file py152.exe. It will prompt
you for a directory location, which by default is C:\Program Files\Python. This works, but
we recommend entering C:\Python15. Python 1.6 will be out shortly and will adopt
C:\Python16 as its default; and quite often one wants to change directory into the Python
directory from a command prompt, so a path without spaces saves a lot of typing! After installing,
you should be able to run the 'Python (command line)' option from the Start Menu.

2. If on Win9x, we recommend either copying python.exe to a location on your path, or adding your
Python directory to the path, so that you can execute Python from any directory.

3. If you want a nice editing environment or might need to access Microsoft applications, get the
Pythonwin add-on package from the same page. Once this is installed, you can start Pythonwin from
the Start Menu and get a GUI application.

The next step is optional and only necessary if you want to include images in your reports; it can also be
carried out later.

4. Install the Python Imaging Library (PIL). (todo: make up a bundle that works)
5. Add the DLLs in PIL to your Python\DLLs directory
6. To verify, start the Python interpreter (command line) and type from PIL import Image,

followed by import _imaging. If you see no error messages, all is well.

Now you are ready to install reportlab itself.
7. Unzip the archive straight into your Python directory; it creates a subdirectory named reportlab.

You should now be able to go to a Python command line interpreter and type import
reportlab without getting an error message.

8. Open up a MS-DOS command prompt and CD to "..\reportlab\pdfgen\test". On NT, enter
"testpdfgen.py"; on Win9x, enter "python testpdfgen.py". After a couple of seconds, the script
completes and the file testpdfgen.pdf should be ready for viewing. If PIL is installed, there should
be a "Python Powered" image on the last page. You're done!

[Note: the "couple of seconds" delay is mainly due to compilation of the python scripts in the ReportLab
package. The next time the ReportLab modules are used the execution will be noticably faster because the
pyc compiled python files will be used in place of the py python source files.]

Instructions for Python novices: Unix

1. First you need to decide if you want to install the Python sources and compile these yourself or if
you only want to install a binary package for one of the many variants of Linux or Unix. If you want
to compile from source download the latest sources from http://www.python.org (currently the latest
source is in http://www.python.org/ftp/python/src/py152.tgz). If you wish to use binaries get the
latest RPM or DEB or whatever package and install (or get your super user (system administrator) to
do the work).

2. If you are building Python yourself, unpack the sources into a temporary directory using a tar
command e.g. tar xzvf py152.tgz; this will create a subdirectory called Python-1.5.2 (or
whatever) cd into this directory. Then read the file README! It contains the latest information on
how to install Python.

3. If your system has the gzip libz library installed check that the zlib extension will be installed by
default by editing the file Modules/Setup.in and ensuring that (near line 405) the line containing zlib
zlibmodule.c is uncommented i.e. has no hash '#' character at the beginning. You also need to decide
if you will be installing in the default location (/usr/local/) or in some other place. The zlib module
is needed if you want compressed PDF and for some images.

4. Invoke the command ./configure --prefix=/usr/local this should configure the
source directory for building. Then you can build the binaries with a make command. If your
make command is not up to it try building with make MAKE=make. If all goes well install with
make install.

5. If all has gone well and python is in the execution search path you should now be able to type
python and see a Python prompt. Once you can do that it's time to try and install ReportLab. First
get the latest reportlab.tgz. If ReportLab is to be available to all then the reportlab archive should be
unpacked in the lib/site-python directory (typically /usr/local/lib/site-python) if neccessary by a

User Guide Chapter 1 Introduction

Page 4

superuser. Otherwise unpack in a directory of your choice and arrange for that directory to be on
your PYTHONPATH variable.

#put something like this in your
#shell rcfile
PYTHONPATH=$HOME/mypythonpackages
export PYTHONPATH

You should now be able to run python and execute the python statement

import reportlab

6. If you want to use images you should certainly consider getting & installing the Python Imaging
Library from http://www.pythonware.com/products/pil.

Instructions for Python novices: Mac

First install Python, the latest stable release is 1.52, but it is also possible to run Reportlab with 1.6a2 and
probably with 1.6b1/b2. You get the software (ready to run) at font color=blue>http://www.python.org When
this is successful done you should have the following folder structure.

Now you can put Extensions in the Extensions-Folder; which is where you should unpack the reportlab.zip
with your favorite unpack-utility. You'll get a subfolder named reportlab.

After this step, you have to tell the PythonInterpreter, where to look for extensions. Start EditPythonPrefs (by
double-clicking the icon).

User Guide Chapter 1 Introduction

Page 5

You should get the following modal dialog. This is the point, where your special data goes in. Reportlab is on
the path in Extensions. So all you have to do is add the last line $(PYTHON):Extensions.

Now you should test one or more of the demo scripts include with with the sources; eg
reportlab:demos:pythonpoint:pythonpoint.py. One Problem on the Mac is solved gracefully in Python: if
you want a script that takes some arguments, hold down the alt or option-key, while activating Python.

1.5 Getting Involved

ReportLab is an Open Source project. Although we are a commercial company we provide the core PDF
generation sources freely, even for commercial purposes, and we make no income directly from these
modules. We also welcome help from the community as much as any other Open Source project. There are
many ways in which you can help:

• General feedback on the core API. Does it work for you? Are there any rough edges? Does anything
feel clunky and awkward?

User Guide Chapter 1 Introduction

Page 6

• New objects to put in reports, or useful utilities for the library. We have an open standard for report
objects, so if you have written a nice chart or table class, why not contribute it?

• Demonstrations and Case Studies: If you have produced some nice output, send it to us (with or
without scripts). If ReportLab solved a problem for you at work, write a little 'case study' and send it
in. And if your web site uses our tools to make reports, let us link to it. We will be happy to display
your work (and credit it with your name and company) on our site!

• Working on the core code: we have a long list of things to refine or to implement. If you are missing
some features or just want to help out, let us know!

The first step for anyone wanting to learn more or get involved is to join the mailing list. Just send an email
with the subject "Subscribe" to reportlab-users-subscribe@egroups.com. You can also browse
through the group's archives and contributions at
http://www.egroups.com/group/reportlab-users. This list is the place to report bugs and get
support.

1.6 Site Configuration

There are a number of options which most likely need to be configured globally for a site. The python script
module reportlab/rl_config.py may be edited to change the values of several important sitewide
properties.

• shapeChecking: set this to zero to turn off a lot of error checking in the graphis modules
• defaultEncoding: set this to WinAnsiEncoding or MacRomanEncoding.
• defaultPageSize: set this to one of the values defined in reportlab/lib/pagesizes.py; as delivered it is

set to pagesizes.A4; other values are pagesizes.letter etc.
• defaultImageCaching: set to zero to inhibit the creation of .a85 files on your hard-drive. The default

is to create these preprocessed PDF compatible image files for faster loading
• T1SearchPathPath: this is a python list of strings representing directories that may be queried for

information on Type 1 fonts

User Guide Chapter 1 Introduction

Page 7

Chapter 2 Graphics and Text with pdfgen

2.1 Basic Concepts

The pdfgen package is the lowest level interface for generating PDF documents. A pdfgen program is
essentially a sequence of instructions for "painting" a document onto a sequence of pages. The interface
object which provides the painting operations is the pdfgen canvas.

The canvas should be thought of as a sheet of white paper with points on the sheet identified using Cartesian
(X,Y) coordinates which by default have the (0,0) origin point at the lower left corner of the page.
Furthermore the first coordinate x goes to the right and the second coordinate y goes up, by default.

A simple example program that uses a canvas follows.

 from reportlab.pdfgen import canvas
 c = canvas.Canvas("hello.pdf")
 hello(c)
 c.showPage()
 c.save()

The above code creates a canvas object which will generate a PDF file named hello.pdf in the
current working directory. It then calls the hello function passing the canvas as an argument. Finally
the showPage method saves the current page of the canvas and the save method stores the file and
closes the canvas.

The showPage method causes the canvas to stop drawing on the current page and any further operations
will draw on a subsequent page (if there are any further operations -- if not no new page is created). The
save method must be called after the construction of the document is complete -- it generates the PDF
document, which is the whole purpose of the canvas object.

2.2 More about the Canvas

Before describing the drawing operations, we will digress to cover some of the things which can be done to
configure a canvas. There are many different settings available. If you are new to Python or can't wait to
produce some output, you can skip ahead, but come back later and read this!

First of all, we will look at the constructor arguments for the canvas:

 def __init__(self,filename,
 pagesize=(595.27,841.89),
 bottomup = 1,
 pageCompression=0,
 encoding=rl_config.defaultEncoding,
 verbosity=0):

The filename argument controls the name of the final PDF file. You may also pass in any open file object
(such as sys.stdout, the python process standard output) and the PDF document will be written to that.
Since PDF is a binary format, you should take care when writing other stuff before or after it; you can't
deliver PDF documents inline in the middle of an HTML page!

The pagesize argument is a tuple of two numbers in points (1/72 of an inch). The canvas defaults to A4
(an international standard page size which differs from the American standard page size of letter), but it is
better to explicitly specify it. Most common page sizes are found in the library module
reportlab.lib.pagesizes, so you can use expressions like

from reportlab.lib.pagesizes import letter, A4
myCanvas = Canvas('myfile.pdf', pagesize=letter)
width, height = letter #keep for later

NOTE If you have problems printing your document make sure you are using the right page size (usually either A4
or letter). Some printers do not work well with pages that are too large or too small.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 8

Very often, you will want to calculate things based on the page size. In the example above we extracted the
width and height. Later in the program we may use the width variable to define a right margin as width
- inch rather than using a constant. By using variables the margin will still make sense even if the page
size changes.

The bottomup argument switches coordinate systems. Some graphics systems (like PDF and PostScript)
place (0,0) at the bottom left of the page others (like many graphical user interfaces [GUI's]) place the origen
at the top left. The bottomup argument is deprecated and may be dropped in future
Need to see if it really works for all tasks, and if not then get rid of it

The pageCompression option determines whether the stream of PDF operations for each page is
compressed. By default page streams are not compressed, because the compression slows the file generation
process. If output size is important set pageCompression=1, but remember that, compressed documents
will be smaller, but slower to generate. Note that images are always compressed, and this option will only
save space if you have a very large amount of text and vector graphics on each page.

The encoding argument determines which font encoding is used for the standard fonts; this should
correspond to the encoding on your system. It has two values at present: 'WinAnsiEncoding' or
'MacRomanEncoding'. The variable rl_config.defaultEncoding above points to the former,
which is standard on Windows and many Unices (including Linux). If you are a Mac user and want to make a
global change, modify the line at the top of reportlab/pdfbase/pdfdoc.py to switch it over.

We plan to add support for encodings on a per-font basis in future, so you can explicitly add in new fonts and
say how the data is to be encoded. It is your responsibility to ensure that your string data is in an encoding
matching that of the font. If conversions are needed, the Unicode library in Python 1.6 can be of great help.

The demo script reportlab/demos/stdfonts.py will print out two test documents showing all code
points in all fonts, so you can look up characters. Special characters can be inserted into string commands
with the usual octal escape sequence; for example \101 = 'A'.

The verbosity argument determines how much log information is printed. By default, it is zero to assist
applications which want to capture PDF from standard output. With a value of 1, you will get a confirmation
message each time a document is generated. Higher numbers may give more output in future.
to do - all the info functions and other non-drawing stuff
Cover all constructor arguments, and setAuthor etc.

2.3 Drawing Operations

Suppose the hello function referenced above is implemented as follows (we will not explain each of the
operations in detail yet).

def hello(c):
	from reportlab.lib.units import inch
	# move the origin up and to the left
	c.translate(inch,inch)
	# define a large font
	c.setFont("Helvetica", 14)
	# choose some colors
	c.setStrokeColorRGB(0.2,0.5,0.3)
	c.setFillColorRGB(1,0,1)
	# draw some lines
	c.line(0,0,0,1.7*inch)
	c.line(0,0,1*inch,0)
	# draw a rectangle
	c.rect(0.2*inch,0.2*inch,1*inch,1.5*inch, fill=1)
	# make text go straight up
	c.rotate(90)
	# change color
	c.setFillColorRGB(0,0,0.77)
	# say hello (note after rotate the y coord needs to be negative!)
	c.drawString(0.3*inch, -inch, "Hello World")

Examining this code notice that there are essentially two types of operations performed using a canvas. The
first type draws something on the page such as a text string or a rectangle or a line. The second type changes
the state of the canvas such as changing the current fill or stroke color or changing the current font type and

User Guide Chapter 2 Graphics and Text with pdfgen

Page 9

size.

If we imagine the program as a painter working on the canvas the "draw" operations apply paint to the canvas
using the current set of tools (colors, line styles, fonts, etcetera) and the "state change" operations change one
of the current tools (changing the fill color from whatever it was to blue, or changing the current font to
Times-Roman in 15 points, for example).

The document generated by the "hello world" program listed above would contain the following graphics.

Figure 2-1: "Hello World" in pdfgen

H
el

lo
 W

or
ld

About the demos in this document

This document contains demonstrations of the code discussed like the one shown in the rectangle above.
These demos are drawn on a "tiny page" embedded within the real pages of the guide. The tiny pages are 5.5
inches wide and 3 inches tall. The demo displays show the actual output of the demo code. For convenience
the size of the output has been reduced slightly.

2.4 The tools: the "draw" operations

This section briefly lists the tools available to the program for painting information onto a page using the
canvas interface. These will be discussed in detail in later sections. They are listed here for easy reference
and for summary purposes.

Line methods

canvas.line(x1,y1,x2,y2)

canvas.lines(linelist)

The line methods draw straight line segments on the canvas.

Shape methods

canvas.grid(xlist, ylist)

canvas.bezier(x1, y1, x2, y2, x3, y3, x4, y4)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 10

canvas.arc(x1,y1,x2,y2)

canvas.rect(x, y, width, height, stroke=1, fill=0)

canvas.ellipse(x1,y1, x2,y2, stroke=1, fill=0)

canvas.wedge(x1,y1, x2,y2, startAng, extent, stroke=1, fill=0)

canvas.circle(x_cen, y_cen, r, stroke=1, fill=0)

canvas.roundRect(x, y, width, height, radius, stroke=1, fill=0)

The shape methods draw common complex shapes on the canvas.

String drawing methods

canvas.drawString(x, y, text):

canvas.drawRightString(x, y, text)

canvas.drawCentredString(x, y, text)

The draw string methods draw single lines of text on the canvas.

The text object methods

textobject = canvas.beginText(x, y)

canvas.drawText(textobject)

Text objects are used to format text in ways that are not supported directly by the canvas interface. A
program creates a text object from the canvas using beginText and then formats text by invoking
textobject methods. Finally the textobject is drawn onto the canvas using drawText.

The path object methods

path = canvas.beginPath()

canvas.drawPath(path, stroke=1, fill=0)

canvas.clipPath(path, stroke=1, fill=0)

Path objects are similar to text objects: they provide dedicated control for performing complex graphical
drawing not directly provided by the canvas interface. A program creates a path object using beginPath
populates the path with graphics using the methods of the path object and then draws the path on the canvas
using drawPath.

It is also possible to use a path as a "clipping region" using the clipPath method -- for example a circular
path can be used to clip away the outer parts of a rectangular image leaving only a circular part of the image
visible on the page.

Image methods

canvas.drawInlineImage(self, image, x,y, width=None,height=None)

The drawInlineImage method places an image on the canvas.

NOTE You need the Python Imaging Library (PIL) to use images with the ReportLab package.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 11

Ending a page

canvas.showPage()

The showPage method finishes the current page. All additional drawing will be done on another page.

NOTE Warning! All state changes (font changes, color settings, geometry transforms, etcetera) are FORGOTTEN
when you advance to a new page in pdfgen. Any state settings you wish to preserve must be set up again
before the program proceeds with drawing!

2.5 The toolbox: the "state change" operations

This section briefly lists the ways to switch the tools used by the program for painting information onto a
page using the canvas interface. These too will be discussed in detail in later sections.

Changing Colors

canvas.setFillColorCMYK(c, m, y, k)

canvas.setStrikeColorCMYK(c, m, y, k)

canvas.setFillColorRGB(r, g, b)

canvas.setStrokeColorRGB(r, g, b)

canvas.setFillColor(acolor)

canvas.setStrokeColor(acolor)

canvas.setFillGray(gray)

canvas.setStrokeGray(gray)

PDF supports three different color models: gray level, additive (red/green/blue or RGB), and subtractive with
darkness parameter (cyan/magenta/yellow/darkness or CMYK). The ReportLab packages also provide named
colors such as lawngreen. There are two basic color parameters in the graphics state: the Fill color for
the interior of graphic figures and the Stroke color for the boundary of graphic figures. The above
methods support setting the fill or stroke color using any of the four color specifications.

Changing Fonts

canvas.setFont(psfontname, size, leading = None)

The setFont method changes the current text font to a given type and size. The leading parameter
specifies the distance down to move when advancing from one text line to the next.

Changing Graphical Line Styles

canvas.setLineWidth(width)

canvas.setLineCap(mode)

canvas.setLineJoin(mode)

canvas.setMiterLimit(limit)

canvas.setDash(self, array=[], phase=0)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 12

Lines drawn in PDF can be presented in a number of graphical styles. Lines can have different widths, they
can end in differing cap styles, they can meet in different join styles, and they can be continuous or they can
be dotted or dashed. The above methods adjust these various parameters.

Changing Geometry

canvas.setPageSize(pair)

canvas.transform(a,b,c,d,e,f):

canvas.translate(dx, dy)

canvas.scale(x, y)

canvas.rotate(theta)

canvas.skew(alpha, beta)

All PDF drawings fit into a specified page size. Elements drawn outside of the specified page size are not
visible. Furthermore all drawn elements are passed through an affine transformation which may adjust their
location and/or distort their appearence. The setPageSize method adjusts the current page size. The
transform, translate, scale, rotate, and skew methods add additional transformations to the
current transformation. It is important to remember that these transformations are incremental -- a new
transform modifies the current transform (but does not replace it).

State control

canvas.saveState()

canvas.restoreState()

Very often it is important to save the current font, graphics transform, line styles and other graphics state in
order to restore them later. The saveState method marks the current graphics state for later restoration by
a matching restoreState. Note that the save and restore method invokation must match -- a restore call
restores the state to the most recently saved state which hasn't been restored yet. You cannot save the state on
one page and restore it on the next, however -- no state is preserved between pages.

2.6 Other canvas methods.

Not all methods of the canvas object fit into the "tool" or "toolbox" categories. Below are some of the
misfits, included here for completeness.

 canvas.setAuthor()
 canvas.addOutlineEntry(title, key, level=0, closed=None)
 canvas.setTitle(title)
 canvas.setSubject(subj)
 canvas.pageHasData()
 canvas.showOutline()
 canvas.bookmarkPage(name)
 canvas.bookmarkHorizontalAbsolute(name, yhorizontal)
 canvas.doForm()
 canvas.beginForm(name, lowerx=0, lowery=0, upperx=None, uppery=None)
 canvas.endForm()
 canvas.linkAbsolute(contents, destinationname, Rect=None, addtopage=1, name=None, **kw)
 canvas.getPageNumber()
 canvas.addLiteral()
 canvas.getAvailableFonts()
 canvas.stringWidth(self, text, fontName, fontSize, encoding=None)
 canvas.setPageCompression(onoff=1)
 canvas.setPageTransition(self, effectname=None, duration=1,
 direction=0,dimension='H',motion='I')

User Guide Chapter 2 Graphics and Text with pdfgen

Page 13

2.7 Coordinates (default user space)

By default locations on a page are identified by a pair of numbers. For example the pair (4.5*inch,
1*inch) identifies the location found on the page by starting at the lower left corner and moving to the
right 4.5 inches and up one inch.

For example, the following function draws a number of elements on a canvas.

def coords(canvas):
	from reportlab.lib.units import inch
	from reportlab.lib.colors import pink, black, red, blue, green
	c = canvas
	c.setStrokeColor(pink)
	c.grid([inch, 2*inch, 3*inch, 4*inch], [0.5*inch, inch, 1.5*inch, 2*inch, 2.5*inch])
	c.setStrokeColor(black)
	c.setFont("Times-Roman", 20)
	c.drawString(0,0, "(0,0) the Origin")
	c.drawString(2.5*inch, inch, "(2.5,1) in inches")
	c.drawString(4*inch, 2.5*inch, "(4, 2.5)")
	c.setFillColor(red)
	c.rect(0,2*inch,0.2*inch,0.3*inch, fill=1)
	c.setFillColor(green)
	c.circle(4.5*inch, 0.4*inch, 0.2*inch, fill=1)

In the default user space the "origin" (0,0) point is at the lower left corner. Executing the coords
function in the default user space (for the "demo minipage") we obtain the following.

Figure 2-2: The Coordinate System
(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

Moving the origin: the translate method

Often it is useful to "move the origin" to a new point off the lower left corner. The
canvas.translate(x,y) method moves the origin for the current page to the point currently identified
by (x,y).

For example the following translate function first moves the origin before drawing the same objects as shown
above.

def translate(canvas):
	from reportlab.lib.units import cm
	canvas.translate(2.3*cm, 0.3*cm)
	coords(canvas)

This produces the following.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 14

Figure 2-3: Moving the origin: the translate method

(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

NOTE Note: As illustrated in the example it is perfectly possible to draw objects or parts of objects "off the page".
In particular a common confusing bug is a translation operation that translates the entire drawing off the
visible area of the page. If a program produces a blank page it is possible that all the drawn objects are off the
page.

Shrinking and growing: the scale operation

Another important operation is scaling. The scaling operation canvas.scale(dx,dy) stretches or
shrinks the x and y dimensions by the dx, dy factors respectively. Often dx and dy are the same -- for
example to reduce a drawing by half in all dimensions use dx = dy = 0.5. However for the purposes of
illustration we show an example where dx and dy are different.

def scale(canvas):
	canvas.scale(0.75, 0.5)
	coords(canvas)

This produces a "short and fat" reduced version of the previously displayed operations.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 15

Figure 2-4: Scaling the coordinate system
(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

NOTE Note: scaling may also move objects or parts of objects off the page, or may cause objects to "shrink to
nothing."

Scaling and translation can be combined, but the order of the operations are important.

def scaletranslate(canvas):
	from reportlab.lib.units import inch
	canvas.setFont("Courier-BoldOblique", 12)
	# save the state
	canvas.saveState()
	# scale then translate
	canvas.scale(0.3, 0.5)
	canvas.translate(2.4*inch, 1.5*inch)
	canvas.drawString(0, 2.7*inch, "Scale then translate")
	coords(canvas)
	# forget the scale and translate...
	canvas.restoreState()
	# translate then scale
	canvas.translate(2.4*inch, 1.5*inch)
	canvas.scale(0.3, 0.5)
	canvas.drawString(0, 2.7*inch, "Translate then scale")
	coords(canvas)

This example function first saves the current canvas state and then does a scale followed by a
translate. Afterward the function restores the state (effectively removing the effects of the scaling and
translation) and then does the same operations in a different order. Observe the effect below.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 16

Figure 2-5: Scaling and Translating

Scale then translate

(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

Translate then scale

(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

NOTE Note: scaling shrinks or grows everything including line widths so using the canvas.scale method to render a
microscopic drawing in scaled microscopic units may produce a blob (because all line widths will get
expanded a huge amount). Also rendering an aircraft wing in meters scaled to centimeters may cause the
lines to shrink to the point where they disappear. For engineering or scientific purposes such as these scale
and translate the units externally before rendering them using the canvas.

Saving and restoring the canvas state: saveState and restoreState

The scaletranslate function used an important feature of the canvas object: the ability to save and
restore the current parameters of the canvas. By enclosing a sequence of operations in a matching pair of
canvas.saveState() an canvas.restoreState() operations all changes of font, color, line
style, scaling, translation, or other aspects of the canvas graphics state can be restored to the state at the
point of the saveState(). Remember that the save/restore calls must match: a stray save or restore
operation may cause unexpected and undesirable behavior. Also, remember that no canvas state is
preserved across page breaks, and the save/restore mechanism does not work across page breaks.

Mirror image

It is interesting although perhaps not terribly useful to note that scale factors can be negative. For example
the following function

def mirror(canvas):
	from reportlab.lib.units import inch
	canvas.translate(5.5*inch, 0)
	canvas.scale(-1.0, 1.0)
	coords(canvas)

creates a mirror image of the elements drawn by the coord function.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 17

Figure 2-6: Mirror Images
(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

Notice that the text strings are painted backwards.

2.8 Colors

There are four ways to specify colors in pdfgen: by name (using the color module, by red/green/blue
(additive, RGB) value, by cyan/magenta/yellow/darkness (subtractive, CMYK), or by gray level. The
colors function below exercises each of the four methods.

def colors(canvas):
	from reportlab.lib import colors
	from reportlab.lib.units import inch
	black = colors.black
	y = x = 0; dy=inch*3/4.0; dx=inch*5.5/5; w=h=dy/2; rdx=(dx-w)/2
	rdy=h/5.0; texty=h+2*rdy
	canvas.setFont("Helvetica",10)
	for [namedcolor, name] in (
		 [colors.lavenderblush, "lavenderblush"],
		 [colors.lawngreen, "lawngreen"],
		 [colors.lemonchiffon, "lemonchiffon"],
		 [colors.lightblue, "lightblue"],
		 [colors.lightcoral, "lightcoral"]):
		canvas.setFillColor(namedcolor)
		canvas.rect(x+rdx, y+rdy, w, h, fill=1)
		canvas.setFillColor(black)
		canvas.drawCentredString(x+dx/2, y+texty, name)
		x = x+dx
	y = y + dy; x = 0
	for rgb in [(1,0,0), (0,1,0), (0,0,1), (0.5,0.3,0.1), (0.4,0.5,0.3)]:
		r,g,b = rgb
		canvas.setFillColorRGB(r,g,b)
		canvas.rect(x+rdx, y+rdy, w, h, fill=1)
		canvas.setFillColor(black)
		canvas.drawCentredString(x+dx/2, y+texty, "r%s g%s b%s"%rgb)
		x = x+dx
	y = y + dy; x = 0
	for cmyk in [(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (0,0,0,0)]:
		c,m,y1,k = cmyk
		canvas.setFillColorCMYK(c,m,y1,k)
		canvas.rect(x+rdx, y+rdy, w, h, fill=1)
		canvas.setFillColor(black)
		canvas.drawCentredString(x+dx/2, y+texty, "c%s m%s y%s k%s"%cmyk)
		x = x+dx
	y = y + dy; x = 0
	for gray in (0.0, 0.25, 0.50, 0.75, 1.0):
		canvas.setFillGray(gray)
		canvas.rect(x+rdx, y+rdy, w, h, fill=1)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 18

		canvas.setFillColor(black)
		canvas.drawCentredString(x+dx/2, y+texty, "gray: %s"%gray)
		x = x+dx

The RGB or additive color specification follows the way a computer screen adds different levels of the red,
green, or blue light to make any color, where white is formed by turning all three lights on full (1,1,1).

The CMYK or subtractive method follows the way a printer mixes three pigments (cyan, magenta, and
yellow) to form colors. Because mixing chemicals is more difficult than combining light there is a fourth
parameter for darkness. For example a chemical combination of the CMY pigments generally never makes a
perfect black -- instead producing a muddy color -- so, to get black printers don't use the CMY pigments but
use a direct black ink. Because CMYK maps more directly to the way printer hardware works it may be the
case that colors specified in CMYK will provide better fidelity and better control when printed.

Figure 2-7: Color Models

lavenderblush lawngreen lemonchiffon lightblue lightcoral

r1 g0 b0 r0 g1 b0 r0 g0 b1 r0.5 g0.3 b0.1 r0.4 g0.5 b0.3

c1 m0 y0 k0 c0 m1 y0 k0 c0 m0 y1 k0 c0 m0 y0 k1 c0 m0 y0 k0

gray: 0.0 gray: 0.25 gray: 0.5 gray: 0.75 gray: 1.0

2.9 Painting back to front

Objects may be painted over other objects to good effect in pdfgen. As in painting with oils the object
painted last will show up on top. For example, the spumoni function below paints up a base of colors and
then paints a white text over the base.

def spumoni(canvas):
	from reportlab.lib.units import inch
	from reportlab.lib.colors import pink, green, brown, white
	x = 0; dx = 0.4*inch
	for i in range(4):
		for color in (pink, green, brown):
			canvas.setFillColor(color)
			canvas.rect(x,0,dx,3*inch,stroke=0,fill=1)
			x = x+dx
	canvas.setFillColor(white)
	canvas.setStrokeColor(white)
	canvas.setFont("Helvetica-Bold", 85)
	canvas.drawCentredString(2.75*inch, 1.3*inch, "SPUMONI")

The word "SPUMONI" is painted in white over the colored rectangles, with the apparent effect of
"removing" the color inside the body of the word.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 19

Figure 2-8: Painting over colors

SPUMONI

The last letters of the word are not visible because the default canvas background is white and painting
white letters over a white background leaves no visible effect.

This method of building up complex paintings in layers can be done in very many layers in pdfgen -- there
are fewer physical limitations than there are when dealing with physical paints.

def spumoni2(canvas):
	from reportlab.lib.units import inch
	from reportlab.lib.colors import pink, green, brown, white, black
	# draw the previous drawing
	spumoni(canvas)
	# now put an ice cream cone on top of it:
	# first draw a triangle (ice cream cone)
	p = canvas.beginPath()
	xcenter = 2.75*inch
	radius = 0.45*inch
	p.moveTo(xcenter-radius, 1.5*inch)
	p.lineTo(xcenter+radius, 1.5*inch)
	p.lineTo(xcenter, 0)
	canvas.setFillColor(brown)
	canvas.setStrokeColor(black)
	canvas.drawPath(p, fill=1)
	# draw some circles (scoops)
	y = 1.5*inch
	for color in (pink, green, brown):
		canvas.setFillColor(color)
		canvas.circle(xcenter, y, radius, fill=1)
		y = y+radius

The spumoni2 function layers an ice cream cone over the spumoni drawing. Note that different parts of
the cone and scoops layer over eachother as well.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 20

Figure 2-9: building up a drawing in layers

SPUMONI

2.10 Standard fonts and text objects

Text may be drawn in many different colors, fonts, and sizes in pdfgen. The textsize function
demonstrates how to change the color and font and size of text and how to place text on the page.

def textsize(canvas):
	from reportlab.lib.units import inch
	from reportlab.lib.colors import magenta, red
	canvas.setFont("Times-Roman", 20)
	canvas.setFillColor(red)
	canvas.drawCentredString(2.75*inch, 2.5*inch, "Font size examples")
	canvas.setFillColor(magenta)
	size = 7
	y = 2.3*inch
	x = 1.3*inch
	for line in lyrics:
		canvas.setFont("Helvetica", size)
		canvas.drawRightString(x,y,"%s points: " % size)
		canvas.drawString(x,y, line)
		y = y-size*1.2
		size = size+1.5

The textsize function generates the following page.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 21

Figure 2-10: text in different fonts and sizes

Font size examples
7 points: well she hit Net Solutions

8.5 points: and she registered her own .com site now
10.0 points: and filled it up with yahoo profile pics

11.5 points: she snarfed in one night now
13.0 points: and she made 50 million when Hugh Hefner

14.5 points: bought up the rights now
16.0 points: and she'll have fun fun fun

17.5 points: til her Daddy takes the keyboard away

A number of different fonts are always available in pdfgen.

def fonts(canvas):
	from reportlab.lib.units import inch
	text = "Now is the time for all good men to..."
	x = 1.8*inch
	y = 2.7*inch
	for font in canvas.getAvailableFonts():
		canvas.setFont(font, 10)
		canvas.drawString(x,y,text)
		canvas.setFont("Helvetica", 10)
		canvas.drawRightString(x-10,y, font+":")
		y = y-13

The fonts function lists the fonts that are always available. These don't need to be stored in a PDF
document, since they are guaranteed to be present in Acrobat Reader.

Figure 2-11: the 14 standard fonts

Now is the time for all good men to...Courier:
Now is the time for all good men to...Courier-Bold:
Now is the time for all good men to...Courier-BoldOblique:
Now is the time for all good men to...Courier-Oblique:
Now is the time for all good men to...Helvetica:
Now is the time for all good men to...Helvetica-Bold:
Νοω ισ τηε τιµε φορ αλλ γοοδ µεν το...Symbol:
Now is the time for all good men to...Times-Bold:
Now is the time for all good men to...Times-BoldItalic:
Now is the time for all good men to...Times-Italic:
Now is the time for all good men to...Times-Roman:

The next section explains how you can use arbitrary fonts, which will increase slightly the document size
because these fonts need to be embedded within the document.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 22

2.11 Arbitrary fonts

You can use the following mechanism described below to include arbitrary fonts in your documents. Just van
Rossum has kindly donated a font named LettErrorRobot-Chrome which we may use for testing and/or
documenting purposes (and which you may use as well). It comes bundled with the ReportLab distribution in
the directory reportlab/test.

Right now font-embedding relies on font description files in the Adobe AFM and PFB format. The former is
an ASCII file and contains font metrics information while the latter is a binary file that describes the shapes
of the font. The reportlab/test directory contains the files 'LeERC___.AFM' and
'LeERC___.PFB' that are used as an example font.

In the following example we first set to suppress any warnings during the font-emdedding as a result of
missing glyphs (sometime the case for the Euro character, say). Then we locate the folder containing the test
font and register it for future use with the pdfmetrics module, after which we can use it like any other
standard font.

we know some glyphs are missing, suppress warnings
import reportlab.rl_config
reportlab.rl_config.warnOnMissingFontGlyphs = 0

import os
import reportlab.test
folder = os.path.dirname(reportlab.test.__file__)
afmFile = os.path.join(folder, 'LeERC___.AFM')
pfbFile = os.path.join(folder, 'LeERC___.PFB')

from reportlab.pdfbase import pdfmetrics
justFace = pdfmetrics.EmbeddedType1Face(afmFile, pfbFile)
faceName = 'LettErrorRobot-Chrome' # pulled from AFM file
pdfmetrics.registerTypeFace(justFace)
justFont = pdfmetrics.Font('LettErrorRobot-Chrome',
 faceName,
 'WinAnsiEncoding')
pdfmetrics.registerFont(justFont)

canvas.setFont('LettErrorRobot-Chrome', 32)
canvas.drawString(10, 150, 'This should be in')
canvas.drawString(10, 100, 'LettErrorRobot-Chrome')

Figure 2-12: Using a very non-standard font

This should be in

LettErrorRobot-Chrome

The font's facename comes from the AFM file's FontName field. In the example above we knew the name
in advance, but quite often the names of font description files are pretty cryptic and then you might want to
retrieve the name from an AFM file automatically. When lacking a more sophisticated method you can use

User Guide Chapter 2 Graphics and Text with pdfgen

Page 23

some code as simple as this:

class FontNameNotFoundError(Exception):
 pass

def findFontName(path):
 "Extract a font name from an AFM file."

 f = open(path)

 found = 0
 while not found:
 line = f.readline()[:-1]
 if not found and line[:16] == 'StartCharMetrics':
 raise FontNameNotFoundError, path
 if line[:8] == 'FontName':
 fontName = line[9:]
 found = 1

 return fontName

In the LettErrorRobot-Chrome example we explicitely specified the place of the font description files to be
loaded. In general, you'll prefer to store your fonts in some canonic locations and make the embedding
mechanism aware of them. Using the same configuration mechanism we've already seen at the beginning of
this section we can indicate a default search path for Type-1 fonts.

Unfortunately, there is no reliable standard yet for such locations (not even on the same platform) and, hence,
you might have to edit the file reportlab/rl_config.py to modify the value of the
T1SearchPath identifier to contain additional directories.

2.12 Text object methods

For the dedicated presentation of text in a PDF document, use a text object. The text object interface provides
detailed control of text layout parameters not available directly at the canvas level. In addition, it results in
smaller PDF that will render faster than many separate calls to the drawString methods.

textobject.setTextOrigin(x,y)

textobject.setTextTransform(a,b,c,d,e,f)

textobject.moveCursor(dx, dy) # from start of current LINE

(x,y) = textobject.getCursor()

x = textobject.getX(); y = textobject.getY()

textobject.setFont(psfontname, size, leading = None)

textobject.textOut(text)

textobject.textLine(text='')

textobject.textLines(stuff, trim=1)

The text object methods shown above relate to basic text geometry.

A text object maintains a text cursor which moves about the page when text is drawn. For example the
setTextOrigin places the cursor in a known position and the textLine and textLines methods
move the text cursor down past the lines that have been missing.

def cursormoves1(canvas):
	from reportlab.lib.units import inch
	textobject = canvas.beginText()
	textobject.setTextOrigin(inch, 2.5*inch)
	textobject.setFont("Helvetica-Oblique", 14)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 24

	for line in lyrics:
		textobject.textLine(line)
	textobject.setFillGray(0.4)
	textobject.textLines('''
	With many apologies to the Beach Boys
	and anyone else who finds this objectionable
	''')
	canvas.drawText(textobject)

The cursormoves function relies on the automatic movement of the text cursor for placing text after the
origin has been set.

Figure 2-13: How the text cursor moves

well she hit Net Solutions
and she registered her own .com site now
and filled it up with yahoo profile pics
she snarfed in one night now
and she made 50 million when Hugh Hefner
bought up the rights now
and she'll have fun fun fun
til her Daddy takes the keyboard away
With many apologies to the Beach Boys
and anyone else who finds this objectionable

It is also possible to control the movement of the cursor more explicitly by using the moveCursor method
(which moves the cursor as an offset from the start of the current line NOT the current cursor, and which also
has positive y offsets move down (in contrast to the normal geometry where positive y usually moves up.

def cursormoves2(canvas):
	from reportlab.lib.units import inch
	textobject = canvas.beginText()
	textobject.setTextOrigin(2, 2.5*inch)
	textobject.setFont("Helvetica-Oblique", 14)
	for line in lyrics:
		textobject.textOut(line)
		textobject.moveCursor(14,14) # POSITIVE Y moves down!!!
	textobject.setFillColorRGB(0.4,0,1)
	textobject.textLines('''
	With many apologies to the Beach Boys
	and anyone else who finds this objectionable
	''')
	canvas.drawText(textobject)

Here the textOut does not move the down a line in contrast to the textLine function which does move
down.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 25

Figure 2-14: How the text cursor moves again

well she hit Net Solutions
and she registered her own .com site now

and filled it up with yahoo profile pics
she snarfed in one night now

and she made 50 million when Hugh Hefner
bought up the rights now

and she'll have fun fun fun
til her Daddy takes the keyboard away

With many apologies to the Beach Boys
and anyone else who finds this objectionable

Character Spacing

textobject.setCharSpace(charSpace)

The setCharSpace method adjusts one of the parameters of text -- the inter-character spacing.

def charspace(canvas):
	from reportlab.lib.units import inch
	textobject = canvas.beginText()
	textobject.setTextOrigin(3, 2.5*inch)
	textobject.setFont("Helvetica-Oblique", 10)
	charspace = 0
	for line in lyrics:
		textobject.setCharSpace(charspace)
		textobject.textLine("%s: %s" %(charspace,line))
		charspace = charspace+0.5
	textobject.setFillGray(0.4)
	textobject.textLines('''
	With many apologies to the Beach Boys
	and anyone else who finds this objectionable
	''')
	canvas.drawText(textobject)

The charspace function exercises various spacing settings. It produces the following page.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 26

Figure 2-15: Adjusting inter-character spacing

0: well she hit Net Solutions
0.5: and she registered her own .com site now
1.0: and f i l led i t up wi th yahoo prof i le pics
1 . 5 : s h e s n a r f e d i n o n e n i g h t n o w
2 . 0 : a n d s h e m a d e 5 0 m i l l i o n w h e n H u g h H e f n e r
2 . 5 : b o u g h t u p t h e r i g h t s n o w
3 . 0 : a n d s h e ' l l h a v e f u n f u n f u n
3 . 5 : t i l h e r D a d d y t a k e s t h e k e y b o a r d a w a y
W i t h m a n y a p o l o g i e s t o t h e B e a c h B o y s
a n d a n y o n e e l s e w h o f i n d s t h i s o b j e c t i o n a b l e

Word Spacing

textobject.setWordSpace(wordSpace)

The setWordSpace method adjusts the space between words.

def wordspace(canvas):
	from reportlab.lib.units import inch
	textobject = canvas.beginText()
	textobject.setTextOrigin(3, 2.5*inch)
	textobject.setFont("Helvetica-Oblique", 12)
	wordspace = 0
	for line in lyrics:
		textobject.setWordSpace(wordspace)
		textobject.textLine("%s: %s" %(wordspace,line))
		wordspace = wordspace+2.5
	textobject.setFillColorCMYK(0.4,0,0.4,0.2)
	textobject.textLines('''
	With many apologies to the Beach Boys
	and anyone else who finds this objectionable
	''')
	canvas.drawText(textobject)

The wordspace function shows what various word space settings look like below.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 27

Figure 2-16: Adjusting word spacing

0: well she hit Net Solutions
2.5: and she registered her own .com site now
5.0: and filled it up with yahoo profile pics
7.5: she snarfed in one night now
10.0: and she made 50 million when Hugh Hefner
12.5: bought up the rights now
15.0: and she'll have fun fun fun
17.5: til her Daddy takes the keyboard away
With many apologies to the Beach Boys
and anyone else who finds this objectionable

Horizontal Scaling

textobject.setHorizScale(horizScale)

Lines of text can be stretched or shrunken horizontally by the setHorizScale method.

def horizontalscale(canvas):
	from reportlab.lib.units import inch
	textobject = canvas.beginText()
	textobject.setTextOrigin(3, 2.5*inch)
	textobject.setFont("Helvetica-Oblique", 12)
	horizontalscale = 80 # 100 is default
	for line in lyrics:
		textobject.setHorizScale(horizontalscale)
		textobject.textLine("%s: %s" %(horizontalscale,line))
		horizontalscale = horizontalscale+10
	textobject.setFillColorCMYK(0.0,0.4,0.4,0.2)
	textobject.textLines('''
	With many apologies to the Beach Boys
	and anyone else who finds this objectionable
	''')
	canvas.drawText(textobject)

The horizontal scaling parameter horizScale is given in percentages (with 100 as the default), so the 80
setting shown below looks skinny.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 28

Figure 2-17: adjusting horizontal text scaling

80: well she hit Net Solutions
90: and she registered her own .com site now
100: and filled it up with yahoo profile pics
110: she snarfed in one night now
120: and she made 50 million when Hugh Hefner
130: bought up the rights now
140: and she'll have fun fun fun
150: til her Daddy takes the keyboard away
With many apologies to the Beach Boys
and anyone else who finds this objectionable

Interline spacing (Leading)

textobject.setLeading(leading)

The vertical offset between the point at which one line starts and where the next starts is called the leading
offset. The setLeading method adjusts the leading offset.

def leading(canvas):
	from reportlab.lib.units import inch
	textobject = canvas.beginText()
	textobject.setTextOrigin(3, 2.5*inch)
	textobject.setFont("Helvetica-Oblique", 14)
	leading = 8
	for line in lyrics:
		textobject.setLeading(leading)
		textobject.textLine("%s: %s" %(leading,line))
		leading = leading+2.5
	textobject.setFillColorCMYK(0.8,0,0,0.3)
	textobject.textLines('''
	With many apologies to the Beach Boys
	and anyone else who finds this objectionable
	''')
	canvas.drawText(textobject)

As shown below if the leading offset is set too small characters of one line my write over the bottom parts of
characters in the previous line.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 29

Figure 2-18: adjusting the leading

8: well she hit Net Solutions 10.5: and she registered her own .com site now
13.0: and filled it up with yahoo profile pics
15.5: she snarfed in one night now
18.0: and she made 50 million when Hugh Hefner
20.5: bought up the rights now

23.0: and she'll have fun fun fun

25.5: til her Daddy takes the keyboard away

With many apologies to the Beach Boys

and anyone else who finds this objectionable

Other text object methods

textobject.setTextRenderMode(mode)

The setTextRenderMode method allows text to be used as a forground for clipping background
drawings, for example.

textobject.setRise(rise)

The setRise method raises or
lowers

text on the line (for creating superscripts or subscripts, for example).

textobject.setFillColor(aColor);
textobject.setStrokeColor(self, aColor)
and similar

These color change operations change the color of the text and are otherwise similar to the color methods for
the canvas object.

2.13 Paths and Lines

Just as textobjects are designed for the dedicated presentation of text, path objects are designed for the
dedicated construction of graphical figures. When path objects are drawn onto a canvas they are drawn as
one figure (like a rectangle) and the mode of drawing for the entire figure can be adjusted: the lines of the
figure can be drawn (stroked) or not; the interior of the figure can be filled or not; and so forth.

For example the star function uses a path object to draw a star

def star(canvas, title="Title Here", aka="Comment here.",
		 xcenter=None, ycenter=None, nvertices=5):
	from math import pi
	from reportlab.lib.units import inch
	radius=inch/3.0
	if xcenter is None: xcenter=2.75*inch
	if ycenter is None: ycenter=1.5*inch
	canvas.drawCentredString(xcenter, ycenter+1.3*radius, title)
	canvas.drawCentredString(xcenter, ycenter-1.4*radius, aka)
	p = canvas.beginPath()
	p.moveTo(xcenter,ycenter+radius)
	from math import pi, cos, sin
	angle = (2*pi)*2/5.0
	startangle = pi/2.0
	for vertex in range(nvertices-1):

User Guide Chapter 2 Graphics and Text with pdfgen

Page 30

		nextangle = angle*(vertex+1)+startangle
		x = xcenter + radius*cos(nextangle)
		y = ycenter + radius*sin(nextangle)
		p.lineTo(x,y)
	if nvertices==5:
	 p.close()
	canvas.drawPath(p)

The star function has been designed to be useful in illustrating various line style parameters supported by
pdfgen.

Figure 2-19: line style parameters

Title Here

Comment here.

Line join settings

The setLineJoin method can adjust whether line segments meet in a point a square or a rounded vertex.

def joins(canvas):
	from reportlab.lib.units import inch
	# make lines big
	canvas.setLineWidth(5)
	star(canvas, "Default: mitered join", "0: pointed", xcenter = 1*inch)
	canvas.setLineJoin(1)
	star(canvas, "Round join", "1: rounded")
	canvas.setLineJoin(2)
	star(canvas, "Bevelled join", "2: square", xcenter=4.5*inch)

The line join setting is only really of interest for thick lines because it cannot be seen clearly for thin lines.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 31

Figure 2-20: different line join styles

Default: mitered join

0: pointed

Round join

1: rounded

Bevelled join

2: square

Line cap settings

The line cap setting, adjusted using the setLineCap method, determines whether a terminating line ends
in a square exactly at the vertex, a square over the vertex or a half circle over the vertex.

def caps(canvas):
	from reportlab.lib.units import inch
	# make lines big
	canvas.setLineWidth(5)
	star(canvas, "Default", "no projection",xcenter = 1*inch,
		 nvertices=4)
	canvas.setLineCap(1)
	star(canvas, "Round cap", "1: ends in half circle", nvertices=4)
	canvas.setLineCap(2)
	star(canvas, "Square cap", "2: projects out half a width", xcenter=4.5*inch,
	 nvertices=4)

The line cap setting, like the line join setting, is only clearly visible when the lines are thick.

Figure 2-21: line cap settings

Default

no projection

Round cap

1: ends in half circle

Square cap

2: projects out half a width

User Guide Chapter 2 Graphics and Text with pdfgen

Page 32

Dashes and broken lines

The setDash method allows lines to be broken into dots or dashes.

def dashes(canvas):
	from reportlab.lib.units import inch
	# make lines big
	canvas.setDash(6,3)
	star(canvas, "Simple dashes", "6 points on, 3 off", xcenter = 1*inch)
	canvas.setDash(1,2)
	star(canvas, "Dots", "One on, two off")
	canvas.setDash([1,1,3,3,1,4,4,1], 0)
	star(canvas, "Complex Pattern", "[1,1,3,3,1,4,4,1]", xcenter=4.5*inch)

The patterns for the dashes or dots can be in a simple on/off repeating pattern or they can be specified in a
complex repeating pattern.

Figure 2-22: some dash patterns

Simple dashes

6 points on, 3 off

Dots

One on, two off

Complex Pattern

[1,1,3,3,1,4,4,1]

Creating complex figures with path objects

Combinations of lines, curves, arcs and other figures can be combined into a single figure using path objects.
For example the function shown below constructs two path objects using lines and curves. This function will
be used later on as part of a pencil icon construction.

def penciltip(canvas, debug=1):
	from reportlab.lib.colors import tan, black, green
	from reportlab.lib.units import inch
	u = inch/10.0
	canvas.setLineWidth(4)
	if debug:
		canvas.scale(2.8,2.8) # make it big
		canvas.setLineWidth(1) # small lines
	canvas.setStrokeColor(black)
	canvas.setFillColor(tan)
	p = canvas.beginPath()
	p.moveTo(10*u,0)
	p.lineTo(0,5*u)
	p.lineTo(10*u,10*u)
	p.curveTo(11.5*u,10*u, 11.5*u,7.5*u, 10*u,7.5*u)
	p.curveTo(12*u,7.5*u, 11*u,2.5*u, 9.7*u,2.5*u)
	p.curveTo(10.5*u,2.5*u, 11*u,0, 10*u,0)
	canvas.drawPath(p, stroke=1, fill=1)
	canvas.setFillColor(black)
	p = canvas.beginPath()
	p.moveTo(0,5*u)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 33

	p.lineTo(4*u,3*u)
	p.lineTo(5*u,4.5*u)
	p.lineTo(3*u,6.5*u)
	canvas.drawPath(p, stroke=1, fill=1)
	if debug:
		canvas.setStrokeColor(green) # put in a frame of reference
		canvas.grid([0,5*u,10*u,15*u], [0,5*u,10*u])

Note that the interior of the pencil tip is filled as one object even though it is constructed from several lines
and curves. The pencil lead is then drawn over it using a new path object.

Figure 2-23: a pencil tip

2.14 Rectangles, circles, ellipses

The pdfgen module supports a number of generally useful shapes such as rectangles, rounded rectangles,
ellipses, and circles. Each of these figures can be used in path objects or can be drawn directly on a canvas.
For example the pencil function below draws a pencil icon using rectangles and rounded rectangles with
various fill colors and a few other annotations.

def pencil(canvas, text="No.2"):
	from reportlab.lib.colors import yellow, red, black,white
	from reportlab.lib.units import inch
	u = inch/10.0
	canvas.setStrokeColor(black)
	canvas.setLineWidth(4)
	# draw erasor
	canvas.setFillColor(red)
	canvas.circle(30*u, 5*u, 5*u, stroke=1, fill=1)
	# draw all else but the tip (mainly rectangles with different fills)
	canvas.setFillColor(yellow)
	canvas.rect(10*u,0,20*u,10*u, stroke=1, fill=1)
	canvas.setFillColor(black)
	canvas.rect(23*u,0,8*u,10*u,fill=1)
	canvas.roundRect(14*u, 3.5*u, 8*u, 3*u, 1.5*u, stroke=1, fill=1)
	canvas.setFillColor(white)
	canvas.rect(25*u,u,1.2*u,8*u, fill=1,stroke=0)
	canvas.rect(27.5*u,u,1.2*u,8*u, fill=1, stroke=0)
	canvas.setFont("Times-Roman", 3*u)
	canvas.drawCentredString(18*u, 4*u, text)
	# now draw the tip
	penciltip(canvas,debug=0)
	# draw broken lines across the body.
	canvas.setDash([10,5,16,10],0)
	canvas.line(11*u,2.5*u,22*u,2.5*u)
	canvas.line(22*u,7.5*u,12*u,7.5*u)

NOTE

User Guide Chapter 2 Graphics and Text with pdfgen

Page 34

Note that this function is used to create the "margin pencil" to the left. Also note that the order in which the
elements are drawn are important because, for example, the white rectangles "erase" parts of a black
rectangle and the "tip" paints over part of the yellow rectangle.

Figure 2-24: a whole pencil

No.2

2.15 Bezier curves

Programs that wish to construct figures with curving borders generally use Bezier curves to form the borders.

def bezier(canvas):
	from reportlab.lib.colors import yellow, green, red, black
	from reportlab.lib.units import inch
	i = inch
	d = i/4
	# define the bezier curve control points
	x1,y1, x2,y2, x3,y3, x4,y4 = d,1.5*i, 1.5*i,d, 3*i,d, 5.5*i-d,3*i-d
	# draw a figure enclosing the control points
	canvas.setFillColor(yellow)
	p = canvas.beginPath()
	p.moveTo(x1,y1)
	for (x,y) in [(x2,y2), (x3,y3), (x4,y4)]:
		p.lineTo(x,y)
	canvas.drawPath(p, fill=1, stroke=0)
	# draw the tangent lines
	canvas.setLineWidth(inch*0.1)
	canvas.setStrokeColor(green)
	canvas.line(x1,y1,x2,y2)
	canvas.setStrokeColor(red)
	canvas.line(x3,y3,x4,y4)
	# finally draw the curve
	canvas.setStrokeColor(black)
	canvas.bezier(x1,y1, x2,y2, x3,y3, x4,y4)

A Bezier curve is specified by four control points (x1,y1), (x2,y2), (x3,y3), (x4,y4). The curve
starts at (x1,y1) and ends at (x4,y4) and the line segment from (x1,y1) to (x2,y2) and the line
segment from (x3,y3) to (x4,y4) both form tangents to the curve. Furthermore the curve is entirely
contained in the convex figure with vertices at the control points.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 35

Figure 2-25: basic bezier curves

The drawing above (the output of testbezier) shows a bezier curves, the tangent lines defined by the
control points and the convex figure with vertices at the control points.

Smoothly joining bezier curve sequences

It is often useful to join several bezier curves to form a single smooth curve. To construct a larger smooth
curve from several bezier curves make sure that the tangent lines to adjacent bezier curves that join at a
control point lie on the same line.

def bezier2(canvas):
	from reportlab.lib.colors import yellow, green, red, black
	from reportlab.lib.units import inch
	# make a sequence of control points
	xd,yd = 5.5*inch/2, 3*inch/2
	xc,yc = xd,yd
	dxdy = [(0,0.33), (0.33,0.33), (0.75,1), (0.875,0.875),
			(0.875,0.875), (1,0.75), (0.33,0.33), (0.33,0)]
	pointlist = []
	for xoffset in (1,-1):
		yoffset = xoffset
		for (dx,dy) in dxdy:
			px = xc + xd*xoffset*dx
			py = yc + yd*yoffset*dy
			pointlist.append((px,py))
		yoffset = -xoffset
		for (dy,dx) in dxdy:
			px = xc + xd*xoffset*dx
			py = yc + yd*yoffset*dy
			pointlist.append((px,py))
	# draw tangent lines and curves
	canvas.setLineWidth(inch*0.1)
	while pointlist:
		[(x1,y1),(x2,y2),(x3,y3),(x4,y4)] = pointlist[:4]
		del pointlist[:4]
		canvas.setLineWidth(inch*0.1)
		canvas.setStrokeColor(green)
		canvas.line(x1,y1,x2,y2)
		canvas.setStrokeColor(red)
		canvas.line(x3,y3,x4,y4)
		# finally draw the curve
		canvas.setStrokeColor(black)
		canvas.bezier(x1,y1, x2,y2, x3,y3, x4,y4)

The figure created by testbezier2 describes a smooth complex curve because adjacent tangent lines
"line up" as illustrated below.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 36

Figure 2-26: bezier curves

2.16 Path object methods

Path objects build complex graphical figures by setting the "pen" or "brush" at a start point on the canvas and
drawing lines or curves to additional points on the canvas. Most operations apply paint on the canvas starting
at the end point of the last operation and leave the brush at a new end point.

pathobject.moveTo(x,y)

The moveTo method lifts the brush (ending any current sequence of lines or curves if there is one) and
replaces the brush at the new (x,y) location on the canvas to start a new path sequence.

pathobject.lineTo(x,y)

The lineTo method paints straight line segment from the current brush location to the new (x,y)
location.

pathobject.curveTo(x1, y1, x2, y2, x3, y3)

The curveTo method starts painting a Bezier curve beginning at the current brush location, using
(x1,y1), (x2,y2), and (x3,y3) as the other three control points, leaving the brush on (x3,y3).

pathobject.arc(x1,y1, x2,y2, startAng=0, extent=90)

pathobject.arcTo(x1,y1, x2,y2, startAng=0, extent=90)

The arc and arcTo methods paint partial ellipses. The arc method first "lifts the brush" and starts a
new shape sequence. The arcTo method joins the start of the partial ellipse to the current shape sequence
by line segment before drawing the partial ellipse. The points (x1,y1) and (x2,y2) define opposite
corner points of a rectangle enclosing the ellipse. The startAng is an angle (in degrees) specifying where
to begin the partial ellipse where the 0 angle is the midpoint of the right border of the enclosing rectangle
(when (x1,y1) is the lower left corner and (x2,y2) is the upper right corner). The extent is the
angle in degrees to traverse on the ellipse.

def arcs(canvas):
	from reportlab.lib.units import inch
	canvas.setLineWidth(4)
	canvas.setStrokeColorRGB(0.8, 1, 0.6)
	# draw rectangles enclosing the arcs
	canvas.rect(inch, inch, 1.5*inch, inch)
	canvas.rect(3*inch, inch, inch, 1.5*inch)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 37

	canvas.setStrokeColorRGB(0, 0.2, 0.4)
	canvas.setFillColorRGB(1, 0.6, 0.8)
	p = canvas.beginPath()
	p.moveTo(0.2*inch, 0.2*inch)
	p.arcTo(inch, inch, 2.5*inch,2*inch, startAng=-30, extent=135)
	p.arc(3*inch, inch, 4*inch, 2.5*inch, startAng=-45, extent=270)
	canvas.drawPath(p, fill=1, stroke=1)

The arcs function above exercises the two partial ellipse methods. It produces the following drawing.

Figure 2-27: arcs in path objects

pathobject.rect(x, y, width, height)

The rect method draws a rectangle with lower left corner at (x,y) of the specified width and
height.

pathobject.ellipse(x, y, width, height)

The ellipse method draws an ellipse enclosed in the rectange with lower left corner at (x,y) of the
specified width and height.

pathobject.circle(x_cen, y_cen, r)

The circle method draws a circle centered at (x_cen, y_cen) with radius r.

def variousshapes(canvas):
	from reportlab.lib.units import inch
	inch = int(inch)
	canvas.setStrokeGray(0.5)
	canvas.grid(range(0,11*inch/2,inch/2), range(0,7*inch/2,inch/2))
	canvas.setLineWidth(4)
	canvas.setStrokeColorRGB(0, 0.2, 0.7)
	canvas.setFillColorRGB(1, 0.6, 0.8)
	p = canvas.beginPath()
	p.rect(0.5*inch, 0.5*inch, 0.5*inch, 2*inch)
	p.circle(2.75*inch, 1.5*inch, 0.3*inch)
	p.ellipse(3.5*inch, 0.5*inch, 1.2*inch, 2*inch)
	canvas.drawPath(p, fill=1, stroke=1)

The variousshapes function above shows a rectangle, circle and ellipse placed in a frame of reference
grid.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 38

Figure 2-28: rectangles, circles, ellipses in path objects

pathobject.close()

The close method closes the current graphical figure by painting a line segment from the last point of the
figure to the starting point of the figure (the the most recent point where the brush was placed on the paper by
moveTo or arc or other placement operations).

def closingfigures(canvas):
	from reportlab.lib.units import inch
	h = inch/3.0; k = inch/2.0
	canvas.setStrokeColorRGB(0.2,0.3,0.5)
	canvas.setFillColorRGB(0.8,0.6,0.2)
	canvas.setLineWidth(4)
	p = canvas.beginPath()
	for i in (1,2,3,4):
		for j in (1,2):
			xc,yc = inch*i, inch*j
			p.moveTo(xc,yc)
			p.arcTo(xc-h, yc-k, xc+h, yc+k, startAng=0, extent=60*i)
			# close only the first one, not the second one
			if j==1:
				p.close()
	canvas.drawPath(p, fill=1, stroke=1)

The closingfigures function illustrates the effect of closing or not closing figures including a line
segment and a partial ellipse.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 39

Figure 2-29: closing and not closing pathobject figures

Closing or not closing graphical figures effects only the stroked outline of a figure, not the filling of the
figure as illustrated above.

For a more extensive example of drawing using a path object examine the hand function.

def hand(canvas, debug=1, fill=0):
	(startx, starty) = (0,0)
	curves = [
	 (0, 2), (0, 4), (0, 8), # back of hand
	 (5, 8), (7,10), (7,14),
	 (10,14), (10,13), (7.5, 8), # thumb
	 (13, 8), (14, 8), (17, 8),
	 (19, 8), (19, 6), (17, 6),
	 (15, 6), (13, 6), (11, 6), # index, pointing
	 (12, 6), (13, 6), (14, 6),
	 (16, 6), (16, 4), (14, 4),
	 (13, 4), (12, 4), (11, 4), # middle
	 (11.5, 4), (12, 4), (13, 4),
	 (15, 4), (15, 2), (13, 2),
	 (12.5, 2), (11.5, 2), (11, 2), # ring
	 (11.5, 2), (12, 2), (12.5, 2),
	 (14, 2), (14, 0), (12.5, 0),
	 (10, 0), (8, 0), (6, 0), # pinky, then close
]
	from reportlab.lib.units import inch
	if debug: canvas.setLineWidth(6)
	u = inch*0.2
	p = canvas.beginPath()
	p.moveTo(startx, starty)
	ccopy = list(curves)
	while ccopy:
		[(x1,y1), (x2,y2), (x3,y3)] = ccopy[:3]
		del ccopy[:3]
		p.curveTo(x1*u,y1*u,x2*u,y2*u,x3*u,y3*u)
	p.close()
	canvas.drawPath(p, fill=fill)
	if debug:
		from reportlab.lib.colors import red, green
		(lastx, lasty) = (startx, starty)
		ccopy = list(curves)
		while ccopy:
			[(x1,y1), (x2,y2), (x3,y3)] = ccopy[:3]
			del ccopy[:3]
			canvas.setStrokeColor(red)
			canvas.line(lastx*u,lasty*u, x1*u,y1*u)
			canvas.setStrokeColor(green)
			canvas.line(x2*u,y2*u, x3*u,y3*u)
			(lastx,lasty) = (x3,y3)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 40

In debug mode (the default) the hand function shows the tangent line segments to the bezier curves used to
compose the figure. Note that where the segments line up the curves join smoothly, but where they do not
line up the curves show a "sharp edge".

Figure 2-30: an outline of a hand using bezier curves

Used in non-debug mode the hand function only shows the Bezier curves. With the fill parameter set
the figure is filled using the current fill color.

def hand2(canvas):
	canvas.translate(20,10)
	canvas.setLineWidth(3)
	canvas.setFillColorRGB(0.1, 0.3, 0.9)
	canvas.setStrokeGray(0.5)
	hand(canvas, debug=0, fill=1)

Note that the "stroking" of the border draws over the interior fill where they overlap.

Figure 2-31: the finished hand, filled

User Guide Chapter 2 Graphics and Text with pdfgen

Page 41

2.17 Further Reading: The ReportLab Graphics Library

So far the graphics we have seen was created on a fairly low level. It should be noted, though, that there is
another way of creating much more sophisticated graphics using the emerging dedicated high-level
ReportLab Graphics Library.

It can be used to produce high-quality, platform-independant, reusable graphics for different output formats
(vector and bitmap) like PDF, EPS and soon others like SVG.

A thorough description of its philsophy and features is beyond the scope of this general user guide and the
reader is recommended to continue with the "ReportLab Graphics Guide". There she will find information
about the existing components and how to create customized ones.

Also, the graphics guide contains a presentation of an emerging charting package and its components (labels,
axes, legends and different types of charts like bar, line and pie charts) that builds directly on the graphics
library.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 42

Chapter 3 Exposing PDF Special Capabilities

PDF provides a number of features to make electronic document viewing more efficient and comfortable,
and our library exposes a number of these.

3.1 Forms

The Form feature lets you create a block of graphics and text once near the start of a PDF file, and then
simply refer to it on subsequent pages. If you are dealing with a run of 5000 repetitive business forms - for
example, one-page invoices or payslips - you only need to store the backdrop once and simply draw the
changing text on each page. Used correctly, forms can dramatically cut file size and production time, and
apparently even speed things up on the printer.

Forms do not need to refer to a whole page; anything which might be repeated often should be placed in a
form.

The example below shows the basic sequence used. A real program would probably define the forms up front
and refer to them from another location.

def forms(canvas):
	#first create a form...
	canvas.beginForm("SpumoniForm")
	#re-use some drawing functions from earlier
	spumoni(canvas)
	canvas.endForm()

	#then draw it
	canvas.doForm("SpumoniForm")	

3.2 Links and Destinations

PDF supports internal hyperlinks. There is a very wide range of link types, destination types and events
which can be triggered by a click. At the moment we just support the basic ability to jump from one part of a
document to another. The bookmark methods define a destination that is the endpoint of a jump.

 canvas.bookmarkPage(name)
 canvas.bookmarkHorizontalAbsolute(name, yhorizontal)

The bookmarkPage method bookmarks the entire page. After jumping to an endpoint defined by
bookmarkPage the PDF browser will display the whole page on the screen.

By contrast, bookmarkHorizontalAbsolute defines a destination associated with a horizontal
position on a page. When the PDF browser jumps to a destination defined by
bookmarkHorizontalAbsolute the screen will show a part of the page with the horizontal line at
y=yhorizontal near the top, omitting parts of the rest of the page if appropriate.

NOTE Note: The horizontal position yhorizontal must be specified in terms of the default user space. In
particular bookmarkHorizontalAbsolute ignores any modified geometric transform in effect in the
canvas graphics state.

 canvas.linkAbsolute(contents, destinationname, Rect=None, addtopage=1, name=None, **kw)

The linkAbsolute method defines a starting point for a jump. When the user is browsing the generated
document using a dynamic viewer (such as Acrobat Reader) when the mouse is clicked when the pointer is
within the rectangle specified by Rect the viewer will jump to the endpoint associated with
destinationname. As in the case with bookmarkHorizontalAbsolute the rectangle Rect must
be specified in terms of the default user space. The contents parameter specifies a chunk of text which
displays in the viewer if the user left-clicks on the region.

The rectangle Rect must be specified in terms of a tuple (x1,y1,x2,y2) identifying the lower left and
upper right points of the rectangle in default user space.

User Guide Chapter 3 Exposing PDF Special Capabilities

Page 43

For example the code

 canvas.bookmarkHorizontalAbsolute("Meaning_of_life", 5*inch)

defines horizontal location on the currently drawn page with the identifier Meaning_of_life. And the
invocation (???)

 canvas.linkAbsolute("Find the Meaning of Life", "Meaning_of_life",
 (inch, inch, 6*inch, 2*inch))

By default during interactive viewing a rectangle appears around the link. Use the keyword argument
Border='[0 0 0]' to suppress the visible rectangle around the during viewing link. For example

 canvas.linkAbsolute("Meaning of Life", "Meaning_of_life",
 (inch, inch, 6*inch, 2*inch), Border='[0 0 0]')

3.3 Outline Trees

Acrobat Reader has a navigation page which can hold a document outline; it should normally be visible when
you open this guide. We provide some simple methods to add outline entries. Typically, a program to make a
document (such as this user guide) will call the method canvas.addOutlineEntry(self, title,
key, level=0, closed=None) as it reaches each heading in the document.

title is the caption which will be displayed in the left pane. The key must be a string which is unique
within the document and which names a bookmark, as with the hyperlinks. The level is zero - the
uppermost level - unless otherwise specified, and it is an error to go down more than one level at a time (for
example to follow a level 0 heading by a level 2 heading). Finally, the closed argument specifies whether
the node in the outline pane is closed or opened by default.

The snippet below is taken from the document template that formats this user guide. A central processor
looks at each paragraph in turn, and makes a new outline entry when a new chapter occurs, taking the chapter
heading text as the caption text. The key is obtained from the chapter number (not shown here), so Chapter 2
has the key 'ch2'. The bookmark to which the outline entry points aims at the whole page, but it could as
easily have been an individual paragraph.

#abridged code from our document template
if paragraph.style == 'Heading1':
 self.chapter = paragraph.getPlainText()
 key = 'ch%d' % self.chapterNo
 self.canv.bookmarkPage(key)
 self.canv.addOutlineEntry(paragraph.getPlainText(),
 key, 0, 0)

3.4 Page Transition Effects

 canvas.setPageTransition(self, effectname=None, duration=1,
 direction=0,dimension='H',motion='I')

The setPageTransition method specifies how one page will be replaced with the next. By setting the
page transition effect to "dissolve" for example the current page will appear to melt away when it is replaced
by the next page during interactive viewing. These effects are useful in spicing up slide presentations, among
other places. Please see the reference manual for more detail on how to use this method.

3.5 Internal File Annotations

 canvas.setAuthor(name)
 canvas.setTitle(title)
 canvas.setSubject(subj)

These methods have no automatically seen visible effect on the document. They add internal annotations to
the document. These annotations can be viewed using the "Document Info" menu item of the browser and

User Guide Chapter 3 Exposing PDF Special Capabilities

Page 44

they also can be used as a simple standard way of providing basic information about the document to
archiving software which need not parse the entire file. To find the annotations view the *.pdf output file
using a standard text editor (such as notepad on MS/Windows or vi or emacs on unix) and look for
the string /Author in the file contents.

def annotations(canvas):
	from reportlab.lib.units import inch
	canvas.drawString(inch, 2.5*inch,
	 "setAuthor, setTitle, setSubject have no visible effect")
	canvas.drawString(inch, inch, "But if you are viewing this document dynamically")
	canvas.drawString(inch, 0.5*inch, "please look at File/Document Info")
	canvas.setAuthor("the ReportLab Team")
	canvas.setTitle("ReportLab PDF Generation User Guide")
	canvas.setSubject("How to Generate PDF files using the ReportLab modules")

If you want the subject, title, and author to automatically display in the document when viewed and printed
you must paint them onto the document like any other text.

Figure 3-1: Setting document internal annotations

setAuthor, setTitle, setSubject have no visible effect

But if you are viewing this document dynamically

please look at File/Document Info

User Guide Chapter 3 Exposing PDF Special Capabilities

Page 45

Chapter 4 PLATYPUS - Page Layout and Typography
Using Scripts

4.1 Design Goals

Platypus stands for "Page Layout and Typography Using Scripts". It is a high level page layout library which
lets you programmatically create complex documents with a minimum of effort.

The design of Platypus seeks to separate "high level" layout decisions from the document content as much as
possible. Thus, for example, paragraphs are constructed using paragraph styles and pages are constructed
using page templates with the intention that hundreds of documents with thousands of pages can be
reformatted to different style specifications with the modifications of a few lines in a single shared file which
contains the paragraph styles and page layout specifications.

The overall design of Platypus can be thought of has having several layers, top down, these are

DocTemplates the outermost container for the document;

PageTemplates specifications for layouts of pages of various kinds;

Frames specifications of regions in pages that can contain flowing text or graphics.

Flowables text or graphic elements that should be "flowed into the document (i.e. things like images,
paragraphs and tables, but not things like page footers or fixed page graphics).

pdfgen.Canvas the lowest level which ultimately receives the painting of the document from the other
layers.

Figure 4-1: Illustration of DocTemplate structure

DocTemplate

PageTemplate

two column

PageTemplate

chapter page

PageTemplate

title page

le
ft

F
ra

m
e

rig
ht

 F
ra

m
e

flowable 157

flowable 156

flowable 155 First Flowable

Chapter 6: Lubricants
College Life

The illustration above graphically illustrates the concepts of DocTemplates, PageTemplates and
Flowables. It is deceptive, however, because each of the PageTemplates actually may specify the
format for any number of pages (not just one as might be inferred from the diagram).

DocTemplates contain one or more PageTemplates each of which contain one or more Frames.
Flowables are things which can be flowed into a Frame e.g. a Paragraph or a Table.

To use platypus you create a document from a DocTemplate class and pass a list of Flowables to its
build method. The document build method knows how to process the list of flowables into something
reasonable.

User Guide Chapter 4 PLATYPUS - Page Layout and Typography Using Scripts

Page 46

Internally the DocTemplate class implements page layout and formatting using various events. Each of
the events has a corresponding handler method called handle_XXX where XXX is the event name. A
typical event is frameBegin which occurs when the machinery begins to use a frame for the first time.

A Platypus story consists of a sequence of basic elements called Flowables and these elements drive the
data driven Platypus formatting engine. To modify the behavior of the engine a special kind of flowable,
ActionFlowables, tell the layout engine to, for example, skip to the next column or change to another
PageTemplate.

4.2 Getting started

Consider the following code sequence which provides a very simple "hello world" example for Platypus.

from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.rl_config import defaultPageSize
from reportlab.lib.units import inch
PAGE_HEIGHT=defaultPageSize[1]; PAGE_WIDTH=defaultPageSize[0]
styles = getSampleStyleSheet()

First we import some constructors, some paragraph styles and other conveniences from other modules.

Title = "Hello world"
pageinfo = "platypus example"
def myFirstPage(canvas, doc):
	canvas.saveState()
	canvas.setFont('Times-Bold',16)
	canvas.drawCentredString(PAGE_WIDTH/2.0, PAGE_HEIGHT-108, Title)
	canvas.setFont('Times-Roman',9)
	canvas.drawString(inch, 0.75 * inch, "First Page / %s" % pageinfo)
	canvas.restoreState()

We define the fixed features of the first page of the document with the function above.

def myLaterPages(canvas, doc):
	canvas.saveState()
	canvas.setFont('Times-Roman',9)
	canvas.drawString(inch, 0.75 * inch, "Page %d %s" % (doc.page, pageinfo))
	canvas.restoreState()

Since we want pages after the first to look different from the first we define an alternate layout for the fixed
features of the other pages. Note that the two functions above use the pdfgen level canvas operations to
paint the annotations for the pages.

def go():
	doc = SimpleDocTemplate("phello.pdf")
	Story = [Spacer(1,2*inch)]
	style = styles["Normal"]
	for i in range(100):
		bogustext = ("This is Paragraph number %s.	" % i) *20
		p = Paragraph(bogustext, style)
		Story.append(p)
		Story.append(Spacer(1,0.2*inch))
	doc.build(Story, onFirstPage=myFirstPage, onLaterPages=myLaterPages)

Finally, we create a story and build the document. Note that we are using a "canned" document template here
which comes pre-built with page templates. We are also using a pre-built paragraph style. We are only using
two types of flowables here -- Spacers and Paragraphs. The first Spacer ensures that the
Paragraphs skip past the title string.

To see the output of this example program run the module docs/userguide/examples.py (from the
ReportLab docs distribution) as a "top level script". The script interpretation python examples.py
will generate the Platypus output phello.pdf.

User Guide Chapter 4 PLATYPUS - Page Layout and Typography Using Scripts

Page 47

4.3 Flowables

Flowables are things which can be drawn and which have wrap, draw and perhaps split methods.
Flowable is an abstract base class for things to be drawn and an instance knows its size and draws in its
own coordinate system (this requires the base API to provide an absolute coordinate system when the
Flowable.draw method is called). To get an instance use f=Flowable().

It should be noted that the Flowable class is an abstract class and is normally only used as a base class.

To illustrate the general way in which Flowables are used we show how a derived class Paragraph is
used and drawn on a canvas. Paragraphs are so important they will get a whole chapter to themselves.

 from reportlab.lib.styles import getSampleStyleSheet
 from reportlab.platypus import Paragraph
 from reportlab.pdfgen.canvas import Canvas
 styleSheet = getSampleStyleSheet()
 style = styleSheet['BodyText']
 P=Paragraph('This is a very silly example',style)
 canv = Canvas('doc.pdf')
 aW = 460 # available width and height
 aH = 800
 w,h = P.wrap(aW, aH) # find required space
 if w<=aW and h<=aH:
 P.drawOn(canv,0,aH)
 aH = aH - h # reduce the available height
 canv.save()
 else:
 raise ValueError, "Not enough room"

Flowable User Methods

	Flowable.draw()

This will be called to ask the flowable to actually render itself. The Flowable class does not implement
draw. The calling code should ensure that the flowable has an attribute canv which is the
pdfgen.Canvas which should be drawn to an that the Canvas is in an appropriate state (as regards
translations rotations, etc). Normally this method will only be called internally by the drawOn method.
Derived classes must implement this method.

	Flowable.drawOn(canvas,x,y)

This is the method which controlling programs use to render the flowable to a particular canvas. It handles
the translation to the canvas coordinate (x,y) and ensuring that the flowable has a canv attribute so that the
draw method (which is not implemented in the base class) can render in an absolute coordinate frame.

	Flowable.wrap(availWidth, availHeight)

This will be called by the enclosing frame before objects are asked their size, drawn or whatever. It returns
the size actually used.

	Flowable.split(self, availWidth, availheight):

This will be called by more sophisticated frames when wrap fails. Stupid flowables should return [] meaning
that they are unable to split. Clever flowables should split themselves and return a list of flowables. It is up to
the client code to ensure that repeated attempts to split are avoided. If the space is sufficient the split method
should return [self]. Otherwise the flowable should rearrange itself and return a list [f0,...] of flowables
which will be considered in order. The implemented split method should avoid changing self as this will
allow sophisticated layout mechanisms to do multiple passes over a list of flowables.

	Flowable.getSpaceAfter(self):
	Flowable.getSpaceBefore(self):

These methods return how much space should follow or precede the flowable. The space doesn't belong to
the flowable itself i.e. the flowable's draw method shouldn't consider it when rendering. Controlling

User Guide Chapter 4 PLATYPUS - Page Layout and Typography Using Scripts

Page 48

programs will use the values returned in determining how much space is required by a particular flowable in
context.

The chapters which follow will cover the most important specific types of flowables: Paragraphs and Tables.

4.4 Frames

Frames are active containers which are themselves contained in PageTemplates. Frames have a
location and size and maintain a concept of remaining drawable space. The command

	Frame(x1, y1, width,height, leftPadding=6, bottomPadding=6,
			rightPadding=6, topPadding=6, id=None, showBoundary=0)

creates a Frame instance with lower left hand corner at coordinate (x1,y1) (relative to the canvas at use
time) and with dimensions width x height. The Padding arguments are positive quantities used to
reduce the space available for drawing. The id argument is an identifier for use at runtime e.g. 'LeftColumn'
or 'RightColumn' etc. If the showBoundary argument is non-zero then the boundary of the frame will get
drawn at run time (this is useful sometimes).

Frame User Methods

	Frame.addFromList(drawlist, canvas)

consumes Flowables from the front of drawlist until the frame is full. If it cannot fit one object,
raises an exception.

	Frame.split(flowable,canv)

Asks the flowable to split using up the available space and return the list of flowables.

	Frame.drawBoundary(canvas)

draws the frame boundary as a rectangle (primarily for debugging).

Using Frames

Frames can be used directly with canvases and flowables to create documents. The
Frame.addFromList method handles the wrap & drawOn calls for you. You don't need all of the
Platypus machinery to get something useful into PDF.

from reportlab.pdfgen.canvas import Canvas
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib.units import inch
from reportlab.platypus import Paragraph, Frame
styles = getSampleStyleSheet()
styleN = styles['Normal']
styleH = styles['Heading1']
story = []

#add some flowables
story.append(Paragraph("This is a Heading",styleH))
story.append(Paragraph("This is a paragraph in <i>Normal</i> style.",
	styleN))
c = Canvas('mydoc.pdf')
f = Frame(inch, inch, 6*inch, 9*inch, showBoundary=1)
f.addFromList(story,c)
c.save()

4.5 Documents and Templates

The BaseDocTemplate class implements the basic machinery for document formatting. An instance of
the class contains a list of one or more PageTemplates that can be used to describe the layout of
information on a single page. The build method can be used to process a list of Flowables to produce

User Guide Chapter 4 PLATYPUS - Page Layout and Typography Using Scripts

Page 49

a PDF document.

The BaseDocTemplate class

 BaseDocTemplate(self, filename,
					pagesize=defaultPageSize,
					pageTemplates=[],
					showBoundary=0,
					leftMargin=inch,
					rightMargin=inch,
					topMargin=inch,
					bottomMargin=inch,
					allowSplitting=1,
					title=None,
					author=None,
					_pageBreakQuick=1)

creates a document template suitable for creating a basic document. It comes with quite a lot of internal
machinery, but no default page templates. The required filename can be a string, the name of a file to
receive the created PDF document; alternatively it can be an object which has a write method such as a
StringIO or file or socket.

The allowed arguments should be self explanatory, but showBoundary controls whether or not Frame
boundaries are drawn which can be useful for debugging purposes. The allowSplitting argument
determines whether the builtin methods should try to split individual Flowables across Frames. The
_pageBreakQuick argument determines whether an attempt to do a page break should try to end all the
frames on the page or not, before ending the page.

User BaseDocTemplate Methods

These are of direct interest to client programmers in that they are normally expected to be used.

 BaseDocTemplate.addPageTemplates(self,pageTemplates)

This method is used to add one or a list of PageTemplates to an existing documents.

 BaseDocTemplate.build(self, flowables, filename=None, canvasmaker=canvas.Canvas)

This is the main method which is of interest to the application programmer. Assuming that the document
instance is correctly set up the build method takes the story in the shape of the list of flowables (the
flowables argument) and loops through the list forcing the flowables one at a time through the formatting
machinery. Effectively this causes the BaseDocTemplate instance to issue calls to the instance
handle_XXX methods to process the various events.

User Virtual BaseDocTemplate Methods

These have no semantics at all in the base class. They are intended as pure virtual hooks into the layout
machinery. Creators of immediately derived classes can override these without worrying about affecting the
properties of the layout engine.

 BaseDocTemplate.afterInit(self)

This is called after initialisation of the base class; a derived class could overide the method to add default
PageTemplates.

 BaseDocTemplate.afterPage(self)

This is called after page processing, and immediately after the afterDrawPage method of the current page
template. A derived class could use this to do things which are dependent on information in the page such as
the first and last word on the page of a dictionary.

 BaseDocTemplate.beforeDocument(self)

User Guide Chapter 4 PLATYPUS - Page Layout and Typography Using Scripts

Page 50

This is called before any processing is done on the document, but after the processing machinery is ready. It
can therefore be used to do things to the instance's pdfgen.canvas and the like.

 BaseDocTemplate.beforePage(self)

This is called at the beginning of page processing, and immediately before the beforeDrawPage method of
the current page template. It could be used to reset page specific information holders.

 BaseDocTemplate.filterFlowables(self,flowables)

This is called to filter flowables at the start of the main handle_flowable method. Upon return if flowables[0]
has been set to None it is discarded and the main method returns immediately.

 BaseDocTemplate.afterFlowable(self, flowable)

Called after a flowable has been rendered. An interested class could use this hook to gather information about
what information is present on a particular page or frame.

BaseDocTemplate Event handler Methods

These methods constitute the greater part of the layout engine. Programmers shouldn't have to call or
override these methods directly unless they are trying to modify the layout engine. Of course, the
experienced programmer who wants to intervene at a particular event, XXX, which does not correspond to
one of the virtual methods can always override and call the base method from the drived class version. We
make this easy by providing a base class synonym for each of the handler methods with the same name
prefixed by an underscore '_'.

 def handle_pageBegin(self):
 doStuff()
 BaseDocTemplate.handle_pageBegin(self)
 doMoreStuff()

 #using the synonym
 def handle_pageEnd(self):
 doStuff()
 self._handle_pageEnd()
 doMoreStuff()

Here we list the methods only as an indication of the events that are being handled. Interested programmers
can take a look at the source.

 handle_currentFrame(self,fx)
 handle_documentBegin(self)
 handle_flowable(self,flowables)
 handle_frameBegin(self,*args)
 handle_frameEnd(self)
 handle_nextFrame(self,fx)
 handle_nextPageTemplate(self,pt)
 handle_pageBegin(self)
 handle_pageBreak(self)
 handle_pageEnd(self)

Using document templates can be very easy; SimpleDoctemplate is a class derived from
BaseDocTemplate which provides its own PageTemplate and Frame setup.

from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib.pagesizes import letter
from reportlab.platypus import Paragraph, SimpleDocTemplate
styles = getSampleStyleSheet()
styleN = styles['Normal']
styleH = styles['Heading1']
story = []

#add some flowables
story.append(Paragraph("This is a Heading",styleH))
story.append(Paragraph("This is a paragraph in <i>Normal</i> style.",
	styleN))
doc = SimpleDocTemplate('mydoc.pdf',pagesize = letter)
doc.build(story)

User Guide Chapter 4 PLATYPUS - Page Layout and Typography Using Scripts

Page 51

PageTemplates

The PageTemplate class is a container class with fairly minimal semantics. Each instance contains a list
of Frames and has methods which should be called at the start and end of each page.

PageTemplate(id=None,frames=[],onPage=_doNothing,onPageEnd=_doNothing)

is used to initialize an instance, the frames argument should be a list of Frames whilst the optional
onPage and onPageEnd arguments are callables which should have signature def
XXX(canvas,document) where canvas and document are the canvas and document being drawn.
These routines are intended to be used to paint non-flowing (i.e. standard) parts of pages. These attribute
functions are exactly parallel to the pure virtual methods PageTemplate.beforPage and
PageTemplate.afterPage which have signature beforPage(self,canvas,document). The
methods allow class derivation to be used to define standard behaviour, whilst the attributes allow instance
changes. The id argument is used at run time to perform PageTemplate switching so
id='FirstPage' or id='TwoColumns' are typical.

User Guide Chapter 4 PLATYPUS - Page Layout and Typography Using Scripts

Page 52

Chapter 5 Paragraphs

The reportlab.platypus.Paragraph class is one of the most useful of the Platypus Flowables;
it can format fairly arbitrary text and provides for inline font style and colour changes using an XML style
markup. The overall shape of the formatted text can be justified, right or left ragged or centered. The XML
markup can even be used to insert greek characters or to do subscripts.

The following text creates an instance of the Paragraph class:

Paragraph(text, style, bulletText=None)

The text argument contains the text of the paragraph; excess white space is removed from the text at the
ends and internally after linefeeds. This allows easy use of indented triple quoted text in Python scripts. The
bulletText argument provides the text of a default bullet for the paragraph. The font and other properties
for the paragraph text and bullet are set using the style argument.

The style argument should be an instance of class ParagraphStyle obtained typically using

from reportlab.lib.styles import ParagraphStyle

this container class provides for the setting of multiple default paragraph attributes in a structured way. The
styles are arranged in a dictionary style object called a stylesheet which allows for the styles to be
accessed as stylesheet['BodyText']. A sample style sheet is provided.

from reportlab.lib.styles import getSampleStyleSheet
stylesheet=getSampleStyleSheet()
normalStyle = stylesheet['Normal']

The options which can be set for a Paragraph can be seen from the ParagraphStyle defaults.

class ParagraphStyle

class ParagraphStyle(PropertySet):
 defaults = {
 'fontName':'Times-Roman',
 'fontSize':10,
 'leading':12,
 'leftIndent':0,
 'rightIndent':0,
 'firstLineIndent':0,
 'alignment':TA_LEFT,
 'spaceBefore':0,
 'spaceAfter':0,
 'bulletFontName':'Times-Roman',
 'bulletFontSize':10,
 'bulletIndent':0,
 'textColor': black
 }

5.1 Using Paragraph Styles

The Paragraph and ParagraphStyle classes together handle most common formatting needs. The
following examples draw paragraphs in various styles, and add a bounding box so that you can see exactly
what space is taken up.

User Guide Chapter 5 Paragraphs

Page 53

Figure 5-1: The default ParagraphStyle

You are hereby charged that on the 28th
day of May, 1970, you did willfully,
unlawfully, and with malice of forethought,
publish an alleged English-Hungarian
phrase book with intent to cause a breach
of the peace. How do you plead?

alignment = 0
textColor = Color(0,0,0)
firstLineIndent = 0
backColor = None
spaceAfter = 0
fontSize = 10
rightIndent = 0
bulletFontSize = 10
leftIndent = 0
bulletIndent = 0
leading = 12
bulletFontName = Times-Roman
fontName = Times-Roman
spaceBefore = 0

The two attributes spaceBefore and spaceAfter do what they say, except at the top or bottom of a
frame. At the top of a frame, spaceBefore is ignored, and at the bottom, spaceAfter is ignored. This
means that you could specify that a 'Heading2' style had two inches of space before when it occurs in
mid-page, but will not get acres of whitespace at the top of a page. These two attributes should be thought of
as 'requests' to the Frame and are not part of the space occupied by the Paragraph itself.

The fontSize and fontName tags are obvious, but it is important to set the leading. This is the
spacing between adjacent lines of text; a good rule of thumb is to make this 20% larger than the point size.
To get double-spaced text, use a high leading.

The figure below shows space before and after and an increased leading:

Figure 5-2: Space before and after and increased leading

You are hereby charged that on the 28th

day of May, 1970, you did willfully,

unlawfully, and with malice of forethought,

publish an alleged English-Hungarian

phrase book with intent to cause a breach

of the peace. How do you plead?

alignment = 0
textColor = Color(0,0,0)
firstLineIndent = 0
backColor = None
spaceAfter = 6
fontSize = 10
rightIndent = 0
bulletFontSize = 10
leftIndent = 0
bulletIndent = 0
leading = 16
bulletFontName = Times-Roman
fontName = Times-Roman
spaceBefore = 6

The leftIndent and rightIndent attributes do exactly what you would expect;
firstLineIndent is added to the leftIndent of the first line. If you want a straight left edge,
remember to set firstLineIndent equal to 0.

User Guide Chapter 5 Paragraphs

Page 54

Figure 5-3: one third inch indents at left and right, two thirds on first line

You are hereby charged
that on the 28th day of May,
1970, you did willfully,
unlawfully, and with malice of
forethought, publish an alleged
English-Hungarian phrase book
with intent to cause a breach of
the peace. How do you plead?

alignment = 0
textColor = Color(0,0,0)
firstLineIndent = 24
backColor = None
spaceAfter = 0
fontSize = 10
rightIndent = 24
bulletFontSize = 10
leftIndent = 24
bulletIndent = 0
leading = 12
bulletFontName = Times-Roman
fontName = Times-Roman
spaceBefore = 0

Setting firstLineIndent equal to a negative number, leftIndent much higher, and using a
different font (we'll show you how later!) can give you a definition list:.

Figure 5-4: Definition Lists

Judge Pickles: You are hereby
charged that on the 28th day of
May, 1970, you did willfully,
unlawfully, and with malice of
forethought, publish an alleged
English-Hungarian phrase book
with intent to cause a breach of the
peace. How do you plead?

alignment = 0
textColor = Color(0,0,0)
firstLineIndent = 0
backColor = None
spaceAfter = 0
fontSize = 10
rightIndent = 0
bulletFontSize = 10
leftIndent = 36
bulletIndent = 0
leading = 12
bulletFontName = Times-Roman
fontName = Times-Roman
spaceBefore = 0

There are four possible values of alignment, defined as constants in the module reportlab.lib.enums.
These are TA_LEFT, TA_CENTER or TA_CENTRE, TA_RIGHT and TA_JUSTIFY, with values of 0, 1, 2
and 4 respectively. These do exactly what you would expect.

5.2 Paragraph XML Markup Tags

XML markup can be used to modify or specify the overall paragraph style, and also to specify intra-
paragraph markup.

The outermost < para > tag

The paragraph text may optionally be surrounded by <para attributes....> </para> tags. The attributes if any
of the opening <para> tag affect the style that is used with the Paragraph text and/or bulletText.

Attribute Synonyms

alignment align, alignment

backColor backcolor, bgcolor, bg

bulletColor bulletcolor, bcolor

bulletFontName bfont, bulletfontname

bulletFontSize bfontsize, bulletfontsize

bulletIndent bindent, bulletindent

firstLineIndent findent, firstlineindent

User Guide Chapter 5 Paragraphs

Page 55

fontName font, face, fontname

fontSize size, fontsize

leading leading

leftIndent leftindent, lindent

rightIndent rightindent, rindent

spaceAfter spaceafter, spacea

spaceBefore spacebefore, spaceb

textColor fg, textcolor, color

Table 5-1 - Synonyms for style attributes

Some useful synonyms have been provided for our Python attribute names, including lowercase versions, and
the equivalent properties from the HTML standard where they exist. These additions make it much easier to
build XML-printing applications, since much intra-paragraph markup may not need translating. The table
below shows the allowed attributes and synonyms in the outermost paragraph tag.

5.3 Intra-paragraph markup

'Within each paragraph, we use a basic set of XML tags to provide markup. The most basic of these are bold
(...) and italic (<i>...</i>). It is also legal to use an underline tag (<u>...</u> but it has no effect;
PostScript fonts don't support underlining, and neither do we, yet.

Figure 5-5: Simple bold and italic tags

You are hereby charged
that on the 28th day of May,
1970, you did willfully,
unlawfully, and <i>with malice
of forethought</i>, publish an
alleged English-Hungarian phrase
book with intent to cause a
breach of the peace. <u>How do
you plead</u>?

You are hereby charged that on the
28th day of May, 1970, you did
willfully, unlawfully, and with malice
of forethought, publish an alleged
English-Hungarian phrase book with
intent to cause a breach of the peace.
How do you plead?

The tag

The tag can be used to change the font name, size and text color for any substring within the
paragraph. Legal attributes are size, face, name (which is the same as face), color, and fg (which
is the same as color). The name is the font family name, without any 'bold' or 'italic' suffixes. Colors may
be HTML color names or a hex string encoded in a variety of ways; see reportlab.lib.colors for
the formats allowed.

Figure 5-6: The font tag

You are hereby charged
that on the 28th day of May,
1970, you did willfully,
unlawfully, and with malice of
forethought, publish an
alleged English-Hungarian phrase
book with intent to cause a
breach of the peace. How do you
plead?

You are hereby charged that on the
28th day of May, 1970, you did
willfully, unlawfully, and with
malice of forethought, publish
an alleged English-Hungarian phrase
book with intent to cause a breach of
the peace. How do you plead?

User Guide Chapter 5 Paragraphs

Page 56

Superscripts and Subscripts

Superscripts and subscripts are supported with the <super> and <sub> tags, which work exactly as you might
expect. In addition, most greek letters can be accessed by using the <greek></greek> tag, or with mathML
entity names.

Figure 5-7: Greek letters and superscripts

Equation (α):
<greek>e</greek>
<super><greek>ip</greek></super>
= -1

Equation (α): ε ιπ = -1

Numbering Paragraphs and Lists

The <seq> tag provides comprehensive support for numbering lists, chapter headings and so on. It acts as
an interface to the Sequencer class in reportlab.lib.sequencer. These are used to number
headings and figures throughout this document. You may create as many separate 'counters' as you wish,
accessed with the id attribute; these will be incremented by one each time they are accessed. The
seqreset tag resets a counter. If you want it to resume from a number other than 1, use the syntax
<seqreset id="mycounter" base="42">. Let's have a go:

Figure 5-8: Basic sequences

<seq id="spam"/>, <seq
id="spam"/>, <seq id="spam"/>.
Reset<seqreset id="spam"/>. <seq
id="spam"/>, <seq id="spam"/>,
<seq id="spam"/>.

1, 2, 3. Reset. 1, 2, 3.

You can save specifying an ID by designating a counter ID as the default using the <seqdefault
id="Counter"> tag; it will then be used whenever a counter ID is not specified. This saves some typing,
especially when doing multi-level lists; you just change counter ID when stepping in or out a level.

Figure 5-9: The default sequence

<seqdefault
id="spam"/>Continued... <seq/>,
<seq/>, <seq/>, <seq/>, <seq/>,
<seq/>, <seq/>.

Continued... 4, 5, 6, 7, 8, 9, 10.

Finally, one can access multi-level sequences using a variation of Python string formatting and the
template attribute in a <seq> tags. This is used to do the captions in all of the figures, as well as the level
two headings. The substring %(counter)s extracts the current value of a counter without incrementing it;
appending a plus sign as in %(counter)s increments the counter. The figure captions use a pattern like
the one below:

Figure 5-10: Multi-level templates

Figure <seq
template="%(Chapter)s-%(FigureNo+)s"/>
- Multi-level templates

Figure 5-1 - Multi-level templates

We cheated a little - the real document used 'Figure', but the text above uses 'FigureNo' - otherwise we would
have messed up our numbering!

User Guide Chapter 5 Paragraphs

Page 57

5.4 Bullets and Paragraph Numbering

In addition to the three indent properties, some other parameters are needed to correctly handle bulleted and
numbered lists. We discuss this here because you have now seen how to handle numbering. A paragraph may
have an optional bulletText argument passed to its constructor; alternatively, bullet text may be placed
in a <bullet>..</bullet> tag at its head. The text will be drawn on the first line of the paragraph,
with its x origin determined by the bulletIndent attribute of the style, and in the font given in the
bulletFontName attribute. For genuine bullets, a good idea is to select the Symbol font in the style, and
use a character such as \267):

Attribute Synonyms

bulletColor fg, color, bulletcolor

bulletFontName font, face, bulletfontname

bulletFontSize size, fontsize, bulletfontsize

bulletIndent bulletindent, indent

Table 5-2 - <bullet> attributes & synonyms

The <bullet> tag is only allowed once in a given paragraph and its use overrides the implied bullet style and
bulletText specified in the Paragraph creation.

Figure 5-11: Basic use of bullet points

• this is a bullet point. Spam spam
spam spam spam spam spam spam
spam spam spam spam spam spam
spam spam spam spam spam spam
spam spam

alignment = 0
textColor = Color(0,0,0)
firstLineIndent = 0
backColor = None
spaceAfter = 0
fontSize = 10
rightIndent = 0
bulletFontSize = 10
leftIndent = 36
bulletIndent = 18
leading = 12
bulletFontName = Symbol
fontName = Times-Roman
spaceBefore = 0

Exactly the same technique is used for numbers, except that a sequence tag is used. It is also possible to put a
multi-character string in the bullet; with a deep indent and bold bullet font, you can make a compact
definition list.

User Guide Chapter 5 Paragraphs

Page 58

Chapter 6 Tables and TableStyles

The Table class is derived from the Flowable class and is intended as a simple textual gridding
mechanism. Table cells can hold anything which can be converted to a Python string.

Tables are created by passing the constructor a sequence of column widths, a sequence of row heights and
the data in row order. Drawing of the table can be controlled by using a TableStyle instance. This allows
control of the color and weight of the lines (if any), and the font, alignment and padding of the text. A
primitive automatic row height and or column width calculation mechanism is provided for.

6.1 Table User Methods

These are the main methods which are of interest to the client programmer.

Table(data, colWidths=None, rowHeights=None, style=None, splitByRow=1,
repeatRows=0, repeatCols=0)

The data argument is a sequence of sequences of cell values each of which should be convertible to a
string value using the str function or should be a Flowable instance (such as a Paragraph) or a list (or
tuple) of such instances. If a cell value is a Flowable or list of Flowables these must either have a
determined width or the containing column must have a fixed width. The first row of cell values is in
data[0] i.e. the values are in row order. The i, jth. cell value is in data[i][j]. Newline characters
'\n' in cell values are treated as line split characters and are used at draw time to format the cell into lines.

The other arguments are fairly obvious, the colWidths argument is a sequence of numbers or possibly
None, representing the widths of the columns. The number of elements in colWidths determines the
number of columns in the table. A value of None means that the corresponding column width should be
calculated automatically.

The rowHeights argument is a sequence of numbers or possibly None, representing the heights of the
rows. The number of elements in rowHeights determines the number of rows in the table. A value of
None means that the corresponding row height should be calculated automatically.

The style argument can be an initial style for the table.

The splitByRow argument is a Boolean indicating that the Table should split itself by row before
attempting to split itself by column when too little space is available in the current drawing area and the
caller wants the Table to split.

The repeatRows and repeatCols arguments specify the number of leading rows and columns that
should be repeated when the Table is asked to split itself.

Table.setStyle(tblStyle)

This method applies a particular instance of class TableStyle (discussed below) to the Table instance.
This is the only way to get tables to appear in a nicely formatted way.

Successive uses of the setStyle method apply the styles in an additive fashion. That is, later applications
override earlier ones where they overlap.

6.2 TableStyle

This class is created by passing it a sequence of commands, each command is a tuple identified by its first
element which is a string; the remaining elements of the command tuple represent the start and stop cell
coordinates of the command and possibly thickness and colors, etc.

User Guide Chapter 6 Tables and TableStyles

Page 59

6.3 TableStyle User Methods

TableStyle(commandSequence)

The creation method initializes the TableStyle with the argument command sequence as an example:

 LIST_STYLE = TableStyle(
 [('LINEABOVE', (0,0), (-1,0), 2, colors.green),
 ('LINEABOVE', (0,1), (-1,-1), 0.25, colors.black),
 ('LINEBELOW', (0,-1), (-1,-1), 2, colors.green),
 ('ALIGN', (1,1), (-1,-1), 'RIGHT')]
)

TableStyle.add(commandSequence)

This method allows you to add commands to an existing TableStyle, i.e. you can build up
TableStyles in multiple statements.

 LIST_STYLE.add([('BACKGROUND', (0,0), (-1,0), colors.Color(0,0.7,0.7))])

TableStyle.getCommands()

This method returns the sequence of commands of the instance.

 cmds = LIST_STYLE.getCommands()

6.4 TableStyle Commands

The commands passed to TableStyles come in three main groups which affect the table background,
draw lines, or set cell styles.

The first element of each command is its identifier, the second and third arguments determine the cell
coordinates of the box of cells which are affected with negative coordinates counting backwards from the
limit values as in Python indexing. The coordinates are given as (column, row) which follows the
spreadsheet 'A1' model, but not the more natural (for mathematicians) 'RC' ordering. The top left cell is (0, 0)
the bottom right is (-1, -1). Depending on the command various extra (???) occur at indices beginning at 3
on.

TableStyle Cell Formatting Commands

The cell formatting commands all begin with an identifier, followed by the start and stop cell definitions and
the perhaps other arguments. the cell formatting commands are:

FONT - takes fontname, optional fontsize and optional leading.
FONTNAME (or FACE) - takes fontname.
FONTSIZE (or SIZE) - takes fontsize in points; leading may get out of sync.
LEADING - takes leading in points.
TEXTCOLOR - takes a color name or (R,G,B) tuple.
ALIGNMENT (or ALIGN) - takes one of LEFT, RIGHT and CENTRE (or CENTER).
LEFTPADDING - takes an integer, defaults to 6.
RIGHTPADDING - takes an integer, defaults to 6.
BOTTOMPADDING - takes an integer, defaults to 3.
TOPPADDING - takes an integer, defaults to 3.
BACKGROUND - takes a color.
VALIGN - takes one of TOP, MIDDLE or the default BOTTOM

This sets the background cell color in the relevant cells. The following example shows the BACKGROUND,
and TEXTCOLOR commands in action:

data= [['00', '01', '02', '03', '04'],
 ['10', '11', '12', '13', '14'],

User Guide Chapter 6 Tables and TableStyles

Page 60

 ['20', '21', '22', '23', '24'],
 ['30', '31', '32', '33', '34']]
t=Table(data)
t.setStyle(TableStyle([('BACKGROUND',(1,1),(-2,-2),colors.green),
 ('TEXTCOLOR',(0,0),(1,-1),colors.red)]))

produces

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

To see the effects of the alignment styles we need some widths and a grid, but it should be easy to see where
the styles come from.

data= [['00', '01', '02', '03', '04'],
 ['10', '11', '12', '13', '14'],
 ['20', '21', '22', '23', '24'],
 ['30', '31', '32', '33', '34']]
t=Table(data,5*[0.4*inch], 4*[0.4*inch])
t.setStyle(TableStyle([('ALIGN',(1,1),(-2,-2),'RIGHT'),
 ('TEXTCOLOR',(1,1),(-2,-2),colors.red),
 ('VALIGN',(0,0),(0,-1),'TOP'),
 ('TEXTCOLOR',(0,0),(0,-1),colors.blue),
 ('ALIGN',(0,-1),(-1,-1),'CENTER'),
 ('VALIGN',(0,-1),(-1,-1),'MIDDLE'),
 ('TEXTCOLOR',(0,-1),(-1,-1),colors.green),
 ('INNERGRID', (0,0), (-1,-1), 0.25, colors.black),
 ('BOX', (0,0), (-1,-1), 0.25, colors.black),
]))

produces

00
01 02 03 04

10
11 12 13 14

20
21 22 23 24

30 31 32 33 34

TableStyle Line Commands

Line commands begin with the identifier, the start and stop cell coordinates and always follow this with the
thickness (in points) and color of the desired lines. Colors can be names, or they can be specified as a (R, G,
B) tuple, where R, G and B are floats and (0, 0, 0) is black. The line command names are: GRID, BOX,
OUTLINE, INNERGRID, LINEBELOW, LINEABOVE, LINEBEFORE and LINEAFTER. BOX and
OUTLINE are equivalent, and GRID is the equivalent of applying both BOX and INNERGRID.

User Guide Chapter 6 Tables and TableStyles

Page 61

We can see some line commands in action with the following example.

data= [['00', '01', '02', '03', '04'],
 ['10', '11', '12', '13', '14'],
 ['20', '21', '22', '23', '24'],
 ['30', '31', '32', '33', '34']]
t=Table(data,style=[('GRID',(1,1),(-2,-2),1,colors.green),
 ('BOX',(0,0),(1,-1),2,colors.red),
					('LINEABOVE',(1,2),(-2,2),1,colors.blue),
					('LINEBEFORE',(2,1),(2,-2),1,colors.pink),
])

produces

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

Line commands cause problems for tables when they split; the following example shows a table being split in
various positions

data= [['00', '01', '02', '03', '04'],
		['10', '11', '12', '13', '14'],
		['20', '21', '22', '23', '24'],
		['30', '31', '32', '33', '34']]
t=Table(data,style=[
				('GRID',(0,0),(-1,-1),0.5,colors.grey),
				('GRID',(1,1),(-2,-2),1,colors.green),
				('BOX',(0,0),(1,-1),2,colors.red),
				('BOX',(0,0),(-1,-1),2,colors.black),
				('LINEABOVE',(1,2),(-2,2),1,colors.blue),
				('LINEBEFORE',(2,1),(2,-2),1,colors.pink),
				('BACKGROUND', (0, 0), (0, 1), colors.pink),
				('BACKGROUND', (1, 1), (1, 2), colors.lavender),
				('BACKGROUND', (2, 2), (2, 3), colors.orange),
])

produces

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

When unsplit and split at the first or second row.

User Guide Chapter 6 Tables and TableStyles

Page 62

Complex Cell Values

As mentioned above we can have complicated cell values including Paragraphs, Images and other
Flowables or lists of the same. To see this in operation consider the following code and the table it
produces. Note that the Image has a white background which will obscure any background you choose for
the cell. To get better results you should use a transparent background.

I = Image('../images/replogo.gif')
I.drawHeight = 1.25*inch*I.drawHeight / I.drawWidth
I.drawWidth = 1.25*inch
P0 = Paragraph('''
 A para<i>graph</i>
 <super>1</super>''',
 styleSheet["BodyText"])
P = Paragraph('''
 <para align=center spaceb=3>The ReportLab Left
 Logo
 Image</para>''',
 styleSheet["BodyText"])
data= [['A', 'B', 'C', P0, 'D'],
		['00', '01', '02', [I,P], '04'],
		['10', '11', '12', [P,I], '14'],
		['20', '21', '22', '23', '24'],
		['30', '31', '32', '33', '34']]

t=Table(data,style=[('GRID',(1,1),(-2,-2),1,colors.green),
					('BOX',(0,0),(1,-1),2,colors.red),
					('LINEABOVE',(1,2),(-2,2),1,colors.blue),
					('LINEBEFORE',(2,1),(2,-2),1,colors.pink),
					('BACKGROUND', (0, 0), (0, 1), colors.pink),
					('BACKGROUND', (1, 1), (1, 2), colors.lavender),
					('BACKGROUND', (2, 2), (2, 3), colors.orange),
					('BOX',(0,0),(-1,-1),2,colors.black),
					('GRID',(0,0),(-1,-1),0.5,colors.black),
					('VALIGN',(3,0),(3,0),'BOTTOM'),
					('BACKGROUND',(3,0),(3,0),colors.limegreen),
					('BACKGROUND',(3,1),(3,1),colors.khaki),
					('ALIGN',(3,1),(3,1),'CENTER'),
					('BACKGROUND',(3,2),(3,2),colors.beige),
					('ALIGN',(3,2),(3,2),'LEFT'),
])

t._argW[3]=1.5*inch

produces

A B C A paragraph 1 D

00 01 02
The ReportLab Left

Logo Image 04

10 11 12

The ReportLab Left
Logo Image

14

20 21 22 23 24

30 31 32 33 34

User Guide Chapter 6 Tables and TableStyles

Page 63

Chapter 7 Other Useful Flowables

7.1 Preformatted(text, style, bulletText = None,
dedent=0)

Creates a preformatted paragraph which does no wrapping, line splitting or other manipulations. No XML
style tags are taken account of in the text. If dedent is non zero dedent common leading spaces will be
removed from the front of each line.

7.2 XPreformatted(text, style, bulletText = None,
dedent=0, frags=None)

This is a non rearranging form of the Paragraph class; XML tags are allowed in text and have the
same meanings as for the Paragraph class. As for Preformatted, if dedent is non zero dedent
common leading spaces will be removed from the front of each line.

from reportlab.lib.styles import getSampleStyleSheet
stylesheet=getSampleStyleSheet()
normalStyle = stylesheet['Normal']
text='''

 This is a non rearranging form of the Paragraph class;
 XML tags are allowed in <i>text</i> and have the same

 meanings as for the Paragraph class.
 As for Preformatted, if dedent is non zero dedent
 common leading spaces will be removed from the
 front of each line.
 You can have &amp; style entities as well for & < > and ".

'''
t=XPreformatted(text,normalStyle,dedent=3)

produces
This is a non rearranging form of the Paragraph class;
XML tags are allowed in text and have the same

 meanings as for the Paragraph class.
As for Preformatted, if dedent is non zero dedent
 common leading spaces will be removed from the
front of each line.
You can have & style entities as well for & < > and ".

7.3 Image(filename, width=None, height=None)

Create a flowable which will contain the image defined by the data in file filename. The default PDF
image type jpeg is supported and if the PIL extension to Python is installed the other image types can also be
handled. If width and or height are specified then they determine the dimension of the displayed image
in points. If either dimension is not specified (or specified as None) then the corresponding pixel dimension
of the image is assumed to be in points and used.

Image("lj8100.jpg")

will display as

User Guide Chapter 7 Other Useful Flowables

Page 64

whereas

Image("lj8100.jpg", width=2*inch, height=2*inch)

produces

7.4 Spacer(width, height)

This does exactly as would be expected; it adds a certain amount of space into the story. At present this only
works for vertical space.

7.5 PageBreak()

This Flowable represents a page break. It works by effectively consuming all vertical space given to it.
This is sufficient for a single Frame document, but would only be a frame break for multiple frames so the
BaseDocTemplate mechanism detects pageBreaks internally and handles them specially.

7.6 CondPageBreak(height)

This Flowable attempts to force a Frame break if insufficient vertical space remains in the current
Frame. It is thus probably wrongly named and should probably be renamed as CondFrameBreak.

7.7 KeepTogether(flowables)

This compound Flowable takes a list of Flowables and attempts to keep them in the same Frame. If
the total height of the Flowables in the list flowables exceeds the current frame's available space
then all the space is used and a frame break is forced.

User Guide Chapter 7 Other Useful Flowables

Page 65

Chapter 8 Writing your own Flowable Objects

Flowables are intended to be an open standard for creating reusable report content, and you can easily create
your own objects. We hope that over time we will build up a library of contributions, giving reportlab users a
rich selection of charts, graphics and other "report widgets" they can use in their own reports. This section
shows you how to create your own flowables.
we should put the Figure class in the standard library, as it is a very useful base.

8.1 A very simple Flowable

Recall the hand function from the pdfgen section of this user guide which generated a drawing of a hand
as a closed figure composed from Bezier curves.

Figure 8-1: a hand

To embed this or any other drawing in a Platypus flowable we must define a subclass of Flowable with at
least a wrap method and a draw method.

from reportlab.platypus.flowables import Flowable
from reportlab.lib.colors import tan, green
class HandAnnotation(Flowable):
	'''A hand flowable.'''
	def __init__(self, xoffset=0, size=None, fillcolor=tan, strokecolor=green):
		from reportlab.lib.units import inch
		if size is None: size=4*inch
		self.fillcolor, self.strokecolor = fillcolor, strokecolor
		self.xoffset = xoffset
		self.size = size
		# normal size is 4 inches
		self.scale = size/(4.0*inch)
	def wrap(self, *args):
		return (self.xoffset, self.size)
	def draw(self):
		canvas = self.canv
		canvas.setLineWidth(6)
		canvas.setFillColor(self.fillcolor)
		canvas.setStrokeColor(self.strokecolor)
		canvas.translate(self.xoffset+self.size,0)
		canvas.rotate(90)
		canvas.scale(self.scale, self.scale)
		hand(canvas, debug=0, fill=1)

User Guide Chapter 8 Writing your own Flowable Objects

Page 66

The wrap method must provide the size of the drawing -- it is used by the Platypus mainloop to decide
whether this element fits in the space remaining on the current frame. The draw method performs the
drawing of the object after the Platypus mainloop has translated the (0,0) origin to an appropriate location
in an appropriate frame.

Below are some example uses of the HandAnnotation flowable.

The default.

Just one inch high.

One inch high and shifted to the left with blue and cyan.

8.2 Modifying a Built in Flowable

To modify an existing flowable, you should create a derived class and override the methods you need to
change to get the desired behaviour

As an example to create a rotated image you need to override the wrap and draw methods of the existing
Image class

class RotatedImage(Image):
	def wrap(self,availWidth,availHeight):

User Guide Chapter 8 Writing your own Flowable Objects

Page 67

		h, w = Image.wrap(self,availHeight,availWidth)
		return w, h
	def draw(self):
		self.canv.rotate(90)
		Image.draw(self)
I = RotatedImage('../images/replogo.gif')

produces

User Guide Chapter 8 Writing your own Flowable Objects

Page 68

Chapter 9 Future Directions

We have a very long list of things we plan to do and what we do first will most likely be inspired by
customer or user interest.

We plan to provide a large number of pre-designed Platypus example document types -- brochure, newsletter,
business letter, thesis, memo, etcetera, to give our users a better boost towards the solutions they desire.

We plan to fully support adding fonts and internationalization, which are not well supported in the current
release.

We plan to fully support some of the more obscure features of PDF such as general hyperlinks, which are not
yet well supported.

We are also open for suggestions. Please let us know what you think is missing. You can also offer patches
or contributions. Please look to http://www.reportlab.com for the latest mailing list and contact
information.

User Guide Chapter 9 Future Directions

Page 69

Appendix A ReportLab Demos

In the subdirectories of reportlab/demos there are a number of working examples showing almost all
aspects of reportlab in use.

A.1 Odyssey

The three scripts odyssey.py, dodyssey.py and fodyssey.py all take the file odyssey.txt and produce PDF
documents. The included odyssey.txt is short; a longer and more testing version can be found at
ftp://ftp.reportlab.com/odyssey.full.zip.

Windows
cd reportlab\demos\odyssey
python odyssey.py
start odyssey.pdf

Linux
cd reportlab/demos/odyssey
python odyssey.py
acrord odyssey.pdf

Simple formatting is shown by the odyssey.py script. It runs quite fast, but all it does is gather the text and
force it onto the canvas pages. It does no paragraph manipulation at all so you get to see the XML < & > tags.

The scripts fodyssey.py and dodyssey.py handle paragraph formatting so you get to see colour changes etc.
Both scripts use the document template class and the dodyssey.py script shows the ability to do dual column
layout and uses multiple page templates.

A.2 Standard Fonts and Colors

In reportlab/demos/stdfonts the script stdfonts.py can be used to illustrate ReportLab's standard
fonts. Run the script using

cd reportlab\demos\stdfonts
python stdfonts.py

to produce two PDF documents, StandardFonts_MacRoman.pdf & StandardFonts_WinAnsi.pdf which show
the two most common built in font encodings.

The colortest.py script in reportlab/demos/colors demonstrates the different ways in which
reportlab can set up and use colors.

Try running the script and viewing the output document, colortest.pdf. This shows different color spaces and
a large selection of the colors which are named in the reportlab.lib.colors module.

A.3 Py2pdf

Dinu Gherman (<gherman@europemail.com>) contributed this useful script which uses reportlab to produce
nicely colorized PDF documents from Python scripts including bookmarks for classes, methods and
functions. To get a nice version of the main script try

cd reportlab/demos/py2pdf
python py2pdf.py py2pdf.py
acrord py2pdf.pdf

i.e. we used py2pdf to produce a nice version of py2pdf.py in the document with the same rootname and a
.pdf extension.

The py2pdf.py script has many options which are beyond the scope of this simple introduction; consult the
comments at the start of the script.

User Guide Appendix A ReportLab Demos

Page 70

A.4 Gadflypaper

The Python script, gfe.py, in reportlab/demos/gadflypaper uses an inline style of document
preparation. The script almost entirely produced by Aaron Watters produces a document describing Aaron's
gadfly in memory database for Python. To generate the document use

cd reportlab\gadflypaper
python gfe.py
start gfe.pdf

everything in the PDF document was produced by the script which is why this is an inline style of document
production. So, to produce a header followed by some text the script uses functions header and p which
take some text and append to a global story list.

header("Conclusion")

p("""The revamped query engine design in Gadfly 2 supports
..........
and integration.""")

A.5 Pythonpoint

Andy Robinson has refined the pythonpoint.py script (in reportlab\demos\pythonpoint) until it is a
really useful script. It takes an input file containing an XML markup and uses an xmllib style parser to map
the tags into PDF slides. When run in its own directory pythonpoint.py takes as a default input the file
pythonpoint.xml and produces pythonpoint.pdf which is documentation for Pythonpoint! You can also see it
in action with an older paper

cd reportlab\demos\pythonpoint
python pythonpoint.py monterey.xml
start monterey.pdf

Not only is pythonpoint self documenting, but it also demonstrates reportlab and PDF. It uses many features
of reportlab (document templates, tables etc). Exotic features of PDF such as fadeins and bookmarks are also
shown to good effect. The use of an XML document can be contrasted with the inline style of the
gadflypaper demo; the content is completely separate from the formatting

User Guide Appendix A ReportLab Demos

Page 71

	Chapter 1 Introduction
	1.1 About this document
	1.2 What is ReportLab?
	1.3 What is Python?
	1.4 Installation and Setup
	1.5 Getting Involved
	1.6 Site Configuration

	Chapter 2 Graphics and Text with pdfgen
	2.1 Basic Concepts
	2.2 More about the Canvas
	2.3 Drawing Operations
	2.4 The tools: the "draw" operations
	2.5 The toolbox: the "state change" operations
	2.6 Other canvas methods.
	2.7 Coordinates (default user space)
	2.8 Colors
	2.9 Painting back to front
	2.10 Standard fonts and text objects
	2.11 Arbitrary fonts
	2.12 Text object methods
	2.13 Paths and Lines
	2.14 Rectangles, circles, ellipses
	2.15 Bezier curves
	2.16 Path object methods
	2.17 Further Reading: The ReportLab Graphics Library

	Chapter 3 Exposing PDF Special Capabilities
	3.1 Forms
	3.2 Links and Destinations
	3.3 Outline Trees
	3.4 Page Transition Effects
	3.5 Internal File Annotations

	Chapter 4 PLATYPUS - Page Layout and Typography Using Scripts
	4.1 Design Goals
	4.2 Getting started
	4.3 Flowables
	4.4 Frames
	4.5 Documents and Templates

	Chapter 5 Paragraphs
	5.1 Using Paragraph Styles
	5.2 Paragraph XML Markup Tags
	5.3 Intra-paragraph markup
	5.4 Bullets and Paragraph Numbering

	Chapter 6 Tables and TableStyles
	6.1 Table User Methods
	6.2 TableStyle
	6.3 TableStyle User Methods
	6.4 TableStyle Commands

	Chapter 7 Other Useful Flowables
	7.1 Preformatted(text, style, bulletText = None, dedent=0)
	7.2 XPreformatted(text, style, bulletText = None, dedent=0, frags=None)
	7.3 Image(filename, width=None, height=None)
	7.4 Spacer(width, height)
	7.5 PageBreak()
	7.6 CondPageBreak(height)
	7.7 KeepTogether(flowables)

	Chapter 8 Writing your own Flowable Objects
	8.1 A very simple Flowable
	8.2 Modifying a Built in Flowable

	Chapter 9 Future Directions
	Appendix A ReportLab Demos
	A.1 Odyssey
	A.2 Standard Fonts and Colors
	A.3 Py2pdf
	A.4 Gadflypaper
	A.5 Pythonpoint

