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0  Recent changes and bug fixes (since 3.0a) 

(3) 3.0c, 30 October 2000 

Changed parameterization of clock models (clock = 1, 2, or 3), so that the output now lists node ages, and the 
SEs are for node ages as well.  Node ages are measured by the expected number of nucleotide or amino acid 
substitutions per site (nucleotide, amino acid, or codon) from the node to the present time, and are 
proportional to the divergence times.  In earlier versions, the output list proportions. 

(2) codonml: problem with NSsites model with multiple gene data (Mgene=1) is now fixed(?).  In the earlier 
version, the likelihood calculation was o.k., but identification of sites under positive selection was incorrect 
as the program attempted to list sites in another gene  when it was analyzing data for one gene. 

Mgene options for codons and amino acids: 
For codons (see Yang 1996 JME; Yang and Swanson in preparation): 

Sequence file  Control file  Parameters across genes 

No G  Mgene = 0  everything equal 
Option G  Mgene = 0  the same (k, w) and p, but different cs (proportional branch 
lengths) 
Option G  Mgene = 2  the same (k, w), but different ps and cs 
Option G  Mgene = 3  the same p , but different (k, w) and cs 
Option G  Mgene = 4  different (k, w), ps, and cs 
Option G  Mgene = 1  separate analysis 

 

For amino acids (see Yang 1996 JME for nucleotides): 

Sequence file  Control file  Parameters across genes 

No G  Mgene = 0  everything equal 
Option G  Mgene = 0  the same p, but different cs (proportional branch lengths) 
Option G  Mgene = 2  different ps and cs 
Option G  Mgene = 1  separate analysis 

 

1  Introduction 

PAML is a package of programs for phylogenetic analyses of DNA or protein sequences using maximum 
likelihood (ML). The PAML web page explains what the programs can and cannot do, how to download and 
compile the programs, and how to report bugs. Those will not be duplicated in this documentation.  

The program baseml is for analyzing nucleotide sequences. The program codeml is formed by merging two 
old programs: codonml, which implements the codon substitution model of Goldman and Yang (1994) for 
protein-coding DNA sequences, and aaml, which implements models for amino acid sequences. These two 
are now distinguished by a variable named seqtype in the control file codeml.ctl, that is, 1 for codon 
sequences and 2 for amino acid sequences.  In this document I use codonml and aaml to mean codeml with 
seqtype = 1 and 2, respectively. The programs baseml, codonml, and aaml use similar algorithms to fit 
models, the difference being that the unit of evolution in the substitution model, referred to as a "site" in the 
sequence, is a nucleotide, a codon, or an amino acid for the three programs, respectively. Markov process 
models are used to describe substitutions between nucleotides, codons or amino acids, with substitution rates 
assumed to be either constant or variable among sites. A discrete-gamma model (Yang, 1994c) is used in 
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baseml, codonml and aaml to accommodate rate variation among sites, by which rates for sites come from 
several (say, four or eight) categories used to approximate the continuous gamma distribution. When rates 
are variable at sites, the auto-discrete-gamma model (Yang, 1995) accounts for correlation of rates between 
adjacent sites.  

The program basemlg implements the continuous gamma model of Yang (1993). It is slow and unfeasible 
for data of >6 or 7 species. The discrete-gamma model in baseml is recommended.  

General assumptions of the models (programs) are  

• Substitutions occur independently in different lineages; 
• Substitutions occur independently among sites (except for the auto-discrete-gamma model which 

account for correlated substitution rates at neighboring sites); 
• The process of substitution is described by a time-homogeneous Markov process. Further 

restrictions may be placed on the structure of the rate matrix of the process and lead to different 
substitution models; 

The process of substitution is stationary. In other words, the frequencies of nucleotides (baseml), codons 
(codonml), or amino acids (aaml) have remained constant over the time period covered by the data. 

The existence of a molecular clock (rate constancy among lineages) is not necessary but can be imposed. 
Variation (and dependence) of rates at sites is allowed by the discrete-gamma (or auto-discrete-gamma) 
models implemented in baseml, codonml and aaml.  

The sequences must be aligned. If there are alignment gaps, they will either be removed from all sequences 
before analysis, with appropriate adjustment to the sequence length (if cleandata = 1), or treated as 
ambiguity characters (if cleandata = 0).  

Other small programs in the package include evolver for simulating sequence data sets, pamp for 
parsimony-based analysis (Yang and Kumar 1996), and yn00 for estimating synonymous and 
nonsynonymous substitution rates in pairwise comparisons using the method of Yang and Nielsen (2000).   

This document is now mainly an explanation of the control variables in the control files for individual 
programs.  Topics that seem too complicated to explain there are dealt with in a section in the Chapter 
”Models and Methods”. 

2  Files in the Package 

The following files are included in the package:  

Source codes:  

baseml.c: various models for nucleotide sequences 
codeml.c: models for codon (seqtype = 1) and amino acid (seqtype = 2) sequences 
pamp.c: parsimony analyses of nucleotide or amino acid sequences 
mcmctree.c: Markov chain Monte Carlo algorithm for Bayes estimation of phylogenies 
evolver.c:  simulation of sequence data and comparison of trees 
basemlg.c: Nucleotide-based model with (continuous) gamma rates among sites 
yn00.c: Estimation of dN and dS by the method of Yang and Nielsen (2000) 
treesub.c: a few functions 
treespace.c: a few more functions 
tools.c: my toolkit 
tools.h: header file 
eigen.c: routines for calculating eigen values and vectors 

Compiling commands 

Makefile: make file 
paml.cc: batch file for compiling PAML using the cc compiler 
paml.gcc: batch file for compiling PAML using the GNU gcc compiler 
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paml.acc: batch file for compilation PAML using the SUN acc compiler 

Control files:  

baseml.ctl: control file for running baseml and basemlg; 
codeml.ctl: control file for codeml (i.e., codonml and aaml) 
pamp.ctl: control file for pamp 
yn00.ctl: control file yn00 
mcmctree.ctl: control file for mcmctree 

Data files for codeml (see the files for details):  

grantham.dat: amino acid distance matrix (Grantham 1974) 
miyata.dat: amino acid distance matrix (Miyata et al. 1980) 
dayhoff.dat: Empirical amino acid substitution matrix of Dayhoff et al. (1978) 
jones.dat: Empirical amino acid substitution matrix of Jones et al. (1992) 
wag.dat: Empirical amino acid substitution matrix of Whelan and Goldman (in press) 
mtREV24.dat: Empirical amino acid substitution matrix of Adachi and Hasegawa (1996b) 
mtmam.dat: Empirical amino acid substitution matrix for mitochondrial proteins of mammals 

Data files for evolver (see those small files for details):  

MCbase.dat: data file for simulating nucleotide sequences 
MCcodon.dat: data file for simulating codon sequences 
MCaa.dat: data file for simulating amino acid sequences 

Example tree files:  

4s.trees: tree structure file for 4-sequence data 
5s.trees: tree structure file for 5-sequence data 

Documentations:  

paml.readme: readme file 
paml.html: paml web page, serving also as part of the manual (html file) 
pamlDOC.pdf: this document 

Example data sets:  

Several example data sets are included. They were used in our papers to test new methods, and are 
included in the package for error-checking.  

brown.nuc: the 895-bp mtDNA data of Brown et al. (1982), used in Yang et al. (1994) and Yang 
(1994c) to test models of variable rates among sites. 

mtprim9.nuc: mitochondrial segment consisting 888 aligned sites from 9 primate species 
(Hayasaka et al. 1988), used by Yang (1994c) to test the discrete-gamma model and Yang (1995) to 
test the auto-discrete-gamma models.  

abglobin.nuc: the concatenated alpha and beta globin genes, example data for condonml  
exampleTipDate.phy (phylip format), exampleTipDate.trees: data set of 17 dengo viral strains 

sequenced at different dates from Andrew Rambaut’s TipDate program.  This is used for testing 
the TipDate models of Rambaut (2000).  Run baseml by specifying clock = 3.  The results are 
included in the file exampleTipDate.rst. 

HIVenvSweden.paup (paup* format), HIVenvSweden.trees, HIVenvSweden.ctl: 13 HIV env 
genes used by Yang et al. (2000) in developing models of variable selective pressures among sites 
(the Nssites models).  (Use command: codemlsites HIVenvSweden.ctl)

hummt25.nuc: 25 human D-loop sequences used in Yang and Kumar (1995).  Run baseml by 
specifying fix_alpha = 0, or run pamp. 

lysozymeSmall.nuc, lysozymeSmall.trees, lysozyme.ctl: primate lysozyme genes of 
Messier and Stewart 1997, used by Yang (1998) in developing tests of positive selection along 
lineages. This is the "small data set" analyzed in that paper.  See the control file lysozyme.ctl 
for details for specifying the different models.  Run the analysis by         codeml lysozyme.ctl  

stewart.aa, stewart.trees: lysozyme sequences of six mammals (Stewart et al. 1987), used by 
Yang et al. (1995) to test methods for reconstructing ancestral amino acid sequences.  

abglobin.aa: the concatenated alpha- and beta-globins, translated from abglobin.nuc  
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Which files are needed? 

You may copy the executables to a directory containing your data files. Please note that the program 
codeml may need some of the data files in the package such as grantham.dat, dayhoff.dat, 
jones.dat, wag.dat, mtREV24.dat, or mtmam.dat. You should probably copy these files together. 
Other programs do not need such data files apart from the sequence and tree files you specify in the control 
file.  

Note also that the programs produce result files. Some other files with names rub, lnf, rst, or rates 
may also be created. You should not use these names for your files.  

3  Using Programs in the Package 

Sequence data format 
Have a look at the example data files in the package (*.nuc, *.aa, and *.paup).  As long as you get your data 
file into one of the formats, PAML programs should be able to read it.  PAML now has limited support for 
the NEXUS file format used by PAUP and MacClade.  Only the sequence data or trees are read, and 
command blocks are all ignored.  PAML does not deal with comment blocks in the sequence data block, so 
try to avoid them. 

Below is an example of the PHYLIP format (Felsenstein, 1993).  The first line contains the number of species 
and the sequence length (possibly followed by option characters). With codonml (codeml with seqtype 
= 1), the sequence length in the sequence file refers to the number of nucleotides rather than the number of 
codons. The only options allowed in the sequence file are I, S, C and G. The sequences may be in either 
interleaved format (option I, example data file abglobin.nuc), or sequential format (option S, example data 
file brown.nuc). The default option is S. (Option G is used for combined analysis of multiple gene data and 
is explained below.) The following is an example data set in the sequential format. It has 4 sequences each of 
60 nucleotides.  

4 60
sequence 1
AAGCTTCACCGGCGCAGTCATTCTCATAAT
CGCCCACGGACTTACATCCTCATTACTATT
sequence 2
AAGCTTCACCGGCGCAATTATCCTCATAAT
CGCCCACGGACTTACATCCTCATTATTATT
sequence 3
AAGCTTCACCGGCGCAGTTGTTCTTATAAT
TGCCCACGGACTTACATCATCATTATTATT
sequence 4
AAGCTTCACCGGCGCAACCACCCTCATGAT
TGCCCATGGACTCACATCCTCCCTACTGTT

 

Species names. Do not use special symbols like , : # ( ) in a species name as they may confuse the programs. 
The maximum number of characters in a species name (LSPNAME) is specifed at the beginning of the main 
programs baseml.c and codeml.c. The default value is 30. In PHYLIP, exactly 10 characters are used for 
a species name.  To make this discrepancy less a problem, PAML considers two consecutive spaces as the end 
of a species name, so that the species name does not have to have exactly 30 (or 10) characters. To make this 
rule work, you should not have two consecutive spaces within a species name. For example the above data set 
can have the following format too.  

  
4 60

sequence 1 AAGCTTCACCGGCGCAGTCATTCTCATAAT
CGCCCACGGACTTACATCCTCATTACTATT
sequence 2 AAGCTTCACCGGCGCAATTATCCTCATAAT
CGCCCACGGACTTACATCCTCATTATTATT
sequence 3 AAGCTTCACC GGCGCAGTTG TTCTTATAAT
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TGCCCACGGACTTACATCATCATTATTATT
sequence 4 AAGCTTCACCGGCGCAACCACCCTCATGAT
TGCCCATGGACTCACATCCTCCCTACTGTT

 

Another thing you can do is to patch a few spaces after the species name in your PHYLIP data file, which will 
then be readable by both PHYLIP and PAML.   

In a sequence, three special characters ".", "-", and "?" may be used: a dot means the same character as in the 
first sequence, a dash means an alignment gap, and a question mark means an undetermined site. Sites at 
which at least one sequence involves a "-" or "?" are excluded from all sequences before analysis, with the 
sequence length adjusted. For codon sequences, the whole codon is removed. Characters T, C, A, G, U, t, c, a, 
g, u are recognized as nucleotides (for baseml, basemlg and codonml), while the standard one-letter 
codes (A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V or their lowercase equivalents) are used for 
amino acids. Other alphabetic characters cause errors. Non-alphabetic symbols such as ><!"£$%^0123456789 
are simply ignored and can be freely used as landmarks. Lines do not have to be equally long and you can 
put the whole sequence on one line.  

Notes may be placed at the end of the sequence file and will be ignored by the programs.  

Option G: This option is for combined analyses of heterogeneous data sets such as data of multiple genes or 
data of the three codon positions. The sequences must be concatenated and the option is used to specify 
which gene or codon position each site is from.  

There are three formats with this option. The first is illustrated by an excerpt of a sequence file listed below. 
The example data of Brown et al. (1982) are an 895-bp segment from the mitochondrial genome, which codes 
for parts of two proteins (ND4 and ND5) at the two ends and three tRNAs in the middle. Sites in the 
sequence fall naturally into 4 classes: the three codon positions and the tRNA coding region. The first line of 
the file contains the option character G. The second line begins with a G at the first column, followed by the 
number of site classes. The following lines contain the site marks, one for each site in the sequence (or each 
codon in the case of codonml). The site mark specifies which class each site is from. If there are g classes, 
the marks should be 1, 2, ..., g, and if g > 9, the marks need to be separated by spaces. The total number of 
marks must be equal to the total number of sites in each sequence. 

5 895 G
G 4
3
123123123123123123123123123123123123123123123123123123123123
123123123123123123123123123123123123123123123123123123123123
123123123123123123123123123123123123123123123123123123123123
123123123123123123123123123123123123123123123123123123123123
123123123123123123123123123123123123123123123123123123123123
123123123123123123123123123123123123123123123123123123123123
123123123123123123123123123123123123123123123123123123123123
1231231231231231231231231231231231231
444444444444444444444444444444444444444444444444444444444444
444444444444444444444444444444444444444444444444444444444444
444444444444444444444444444444444444444444444444444444444444
444444444444444444
123123123123123123123123123123123123123123123123123123123123
123123123123123123123123123123123123123123123123123123123123
123123123123123123123123123123123123123123123123123123123123
12312312312312312312312312312312312312312312312312312312312
Human
AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGACTTACATCCTCATTACTATT
CTGCCTAGCAAACTCAAACTACGAACGCACTCACAGTCGCATCATAATC........
Chimpanzee
.........

 

The second format is useful if the data are concatenated sequences of multiple genes, shown below for an 
example data set. This sequence has 1000 nucleotides from 4 genes, obtained from concatenating four genes 
with 100, 200, 300, and 400 nucleotides from genes 1, 2, 3, and 4, respectively. The "lengths" for the genes 
must be on the line that starts with G, i.e., on the second line of the sequence file. (This requirement allows 
the program to determine which of the two formats is being used.) The sum of the lengths for the genes 
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should be equal to the number of nucleotides, amino acids, or codons in the combined sequence for baseml 
(or basemlg), aaml, and codonml, respectively.  

5 1000 G
G 4 100 200 300 400
Sequence 1
TCGATAGATAGGTTTTAGGGGGGGGGGTAAAAAAAAA.......

 

The third format applies to protein-coding DNA sequences only (for baseml). You use option characters 
GC on the first line instead of G alone. The program will then treat the three codon positions differently in 
the nucleotide-based analysis. It is assumed that the sequence length is an exact multiple of three.  

 
5 855 GC

human GTG CTG TCT CCT ...

Tree file and representations of tree topology 
A tree structure file is used when runmode = 0 or 1. The file name is specified in the appropriate control file. 
Two methods for representing a tree topology are used in PAML.  

Parenthesis notation: The first is the familiar parenthesis representation, that is used in virtually every 
phylogenetic software. The species can be represented using either their names or their indexes 
corresponding to the order of their occurrences in the sequence data file. If species names are used, they have 
to match exactly those in the sequence data file (including spaces or strange characters). Branch lengths are 
allowed. The following is a possible tree structure file for a data set of four species (human, chimpanzee, 
gorilla, and orangutan, occurring in this order in the data file). The first tree is a star tree, while the next four 
trees are the same.  

4 5 // 4 species, 5 trees
(1234) // the star tree
((12)34) // species 1 and 2 are clustered together
((1,2),3,4) // Commas are needed with more than 9 species
((human,chimpanzee),gorilla,orangutan);
((human:.1,chimpanzee:.2):.05,gorilla:.3,orangutan:.5);

 

If the tree has branch lengths, some programs may ask you whether you want to use those branch lengths as 
fixed and estimate other parameters in the substitution model only. You will then have three options: ignore 
the branch lengths, use them as initial values, and fix them and estimate other parameters.  

Whether the tree will be considered rooted or unrooted depends on whether a molecular clock is assumed. 
Without the clock, the trees are unrooted, and so ((12)34) is the same as (12(34)); with the clock, the trees are 
rooted and these two trees are different and both are different from (((12)3)4).  

Branch labels:  Sometimes (such as the local clock models specified by clock = 2 in baseml and codeml and 
codon models with different ωs for branches), we need to label the branches.  Branch labels are specified in 
the same way as branch lengths except that the symbol preceding the branch label is # or $ rather than : 
which indicates a branch length.  The branch labels are consecutive integers starting from 0, which is the 
default label and does not have to be specified.  For example, the following tree 

((Hsa_Human, Hla_gibbon) #1, ((Cgu/Can_colobus, Pne_langur), Mmu_rhesus), (Ssc_squirrelM,
Cja_marmoset));  

is from the tree file lysozyme.trees, with branch labels for fitting models of different dN/dS ratios (ω) for 
branches.  The internal branch ancestral to human and gibbon has the ratio ω1 while all other branches have 
the background ratio ω0.  This fits the model in table 1C for the small data set of lysozyme genes in Yang 
(1998).  I have found it convenient to create the tree file with labels and read the tree in using Rod page’s 
TreeView to check that the tree is right.  However, TreeView recognizes labels for internal branches (nodes) 
only and do not allow the user to add labels.  If you don’t specify the labels in the tree structure, the program 
will ask for input from the keyboard.  For large trees, this may be hard to use.  Another program that you can 
use to create branch or node labels is Andrew Rambaut’s TreeEdit, available for the Mac. 

http://taxonomy.zoology.gla.ac.uk/rod/rod.html
http://evolve.zoo.ox.ac.uk/software/TreeEdit/main.html
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If the model requires labelling branches but the tree does not has any branch labels, the program will ask for 
input from the keyboard.  See the explanations of the variable model for the program codonml. 

Representation of tree topology by branches:  A second way of representing the tree topology used in 
PAML is by enumerating its branches. This is mainly used in the result files for outputting the estimated 
branch lengths. For example, the tree ((12)34) is specified by its 5 branches:  

5 6, 6 1, 6 2, 5 3, 5 4

The nodes in a tree are marked with consecutive natural numbers, with 1, 2, ..., s representing the s known 
sequences, in the same order as in the data. A number larger than s means an interior node, at which the 
sequence is unknown.  In case some sequences in the data are ancestral to some others, this method is 
convenient. To use this format in the tree structure file, give the number of branches, and then the branches 
as specified by the end nodes. For example, the tree in the following 5s.trees file has 4 branches, with 
taxon 5 to be the common ancestor of taxa 1, 2, 3, and 4:  

5 1
4 5 1 5 2 5 3 5 4

baseml 
The default control file for baseml is baseml.ctl, and an example is shown below. Note that spaces are 
required on both sides of the equal sign, and blank lines or lines beginning with "*" are treated as comments. 
Options not used can be deleted from the control file.  

seqfile = brown.nuc * sequence data file name
outfile = mlb * main result file
treefile = brown.trees * tree structure file name

noisy = 3 * 0,1,2,3: how much rubbish on the screen
verbose = 0 * 1: detailed output, 0: concise output
runmode = 0 * 0: user tree; 1: semi-automatic; 2: automatic

* 3: StepwiseAddition; (4,5):PerturbationNNI

model = 4 * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85, 5:TN93, 6:REV, 7:UNREST
Mgene = 0 * 0:rates, 1:separate; 2:diff pi, 3:diff kapa, 4:all diff

fix_kappa = 0 * 0: estimate kappa; 1: fix kappa at value below
kappa = 2.5 * initial or fixed kappa

fix_alpha = 1 * 0: estimate alpha; 1: fix alpha at value below
alpha = 0. * initial or fixed alpha, 0:infinity (constant rate)
Malpha = 0 * 1: different alpha's for genes, 0: one alpha
ncatG = 5 * # of categories in the dG, AdG, or nparK models of rates

fix_rho = 1 * 0: estimate rho; 1: fix rho at value below
rho = 0. * initial or fixed rho, 0:no correlation

nparK = 0 * rate-class models. 1:rK, 2:rK&fK, 3:rK&MK(1/K), 4:rK&MK

clock = 0 * 0:no clock, 1:clock; 2:local clock; 3:TipDate
nhomo = 0 * 0 & 1: homogeneous, 2: kappa for branches, 3: N1, 4: N2
getSE = 0 * 0: don't want them, 1: want S.E.s of estimates

RateAncestor = 0 * (0,1,2): rates (alpha>0) or ancestral states

Small_Diff = 9e-6
* cleandata = 1 * remove sites with ambiguity data (1:yes, 0:no)?
* ndata = 1

method = 0 * 0: simultaneous; 1: one branch at a time

 

The control variables are described below.  

seqfile, outfile, and treefile specifies the names of the sequence data file, main result file, and the 
tree structure file, respectively.  

noisy controls how much output you want on the screen. If the model being fitted involves much 
computation, you can choose a large number for noisy to avoid loneliness. verbose controls how much 
output in the result file.  
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runmode = 0 means evaluation of the tree topologies specified in the tree structure file, and runmode = 1 
or 2 means heuristic tree search by the star-decomposition algorithm. With runmode = 2, the algorithm 
starts from the star tree, while if runmode = 1, the program will read a multifurcating tree from the tree 
structure file and try to estimate the best bifurcating tree compatible with it. runmode = 3 means stepwise 
addition. runmode = 4 means NNI perturbation with the starting tree obtained by a parsimony algorithm, 
while runmode = 5 means NNI perturbation with the starting tree read from the tree structure file. The tree 
search options do not work well, and so use runmode = 0 as much as you can.  For relatively small data set, 
the stepwise addition algorithm seems usable. 

model specifies the model of nucleotide substitution. 

Mgene is used in combination with option G in the sequence data file, for combined analysis of data from 
multiple genes or the three codon positions. More details are given later in the Models and Methods section.  
Choose 0 if option G is not used in the data file.  

fix_kappa specifies whether κ in K80, F84, or HKY85 is given at a fixed value or is to be estimated by 
iteration from the data. If fix_kappa = 1, the value of another variable, kappa, is the given value, and 
otherwise the value of kappa is used as the initial estimate for iteration. The variables fix_kappa and 
kappa have no effect with JC69 or F81 which does not involve such a parameter, or with TN93 and REV 
which have two and five rate parameters respectively, when all of them are estimated from the data.  

fix_alpha and alpha work in a similar way, where alpha refers to the shape parameter α of the 
gamma distribution for variable substitution rates across sites (Yang 1994c). The model of a single rate for all 
sites is specified as fix_alpha = 1 and alpha = 0 (0 means infinity), while the (discrete-) gamma model is 
specified by a positive value for alpha, and ncatG is then the number of categories for the discrete-gamma 
model (baseml).  

fix_rho and rho work in a similar way and concern independence or correlation of rates at adjacent sites, 
where ρ (rho) is the correlation parameter of the auto-discrete-gamma model (Yang 1995). The model of 
independent rates for sites is specified as fix_rho = 1 and rho = 0; choosing alpha = 0 further means a 
constant rate for all sites. The auto-discrete-gamma model is specified by positive values for both alpha and 
rho. The model of a constant rate for sites is a special case of the (discrete) gamma model with α = ∞ 
(alpha = 0), and the model of independent rates for sites is a special case of the auto-discrete-gamma model 
with ρ = 0 (rho = 0).  

nparK specifies nonparametric models for variable and Markov-dependent rates across sites: nparK = 1 or 
2 means several (ncatG) categories of independent rates for sites, while nparK = 3 or 4 means the rates are 
Markov-dependent at adjacent sites; nparK = 1 and 3 have the restriction that each rate category has equal 
probability while nparK = 2 and 4 do not have this restriction (Yang, 1995). The variable nparK takes 
precedence over alpha or rho. 

clock specifies models concerning rate constancy among lineages. clock = 0 means no clock.  clock = 1 
means the global clock. clock = 2 implements local clock models (Yoder and Yang 2000), which assumes 
that branches in the phylogeny conform with the clock assumption and has the default rate (r0 = 1) except for 
several pre-defined branches which have different rates. Rates for branches are specified using branch marks 
in the tree file.  If you choose noisy = 9, the program will ask for a reference (calibration) node and date and 
calculate dates for other nodes.  clock = 3 implements Rambaut (2000)'s TipDate models.  Evolution 
conforms to a global clock but sequences in the data are determined at different dates.  The dates are 
specified at the end of the sequence names, based on Andrew's format.  This model has one extra parameter 
(the mutation rate) than the global clock model (clock = 1).  

nhomo is for baseml only, and concerns the frequency parameters in the F81, F84, HKY85, TN93, or REV 
models.  The option nhomo = 1 fits a homogeneous model, but estimates the frequency parameters (πT, πC 
and πA; πG is not a free parameter as the frequencies sum to 1) by maximum likelihood iteration. Normally 
(nhomo = 0) these are estimated by the averages of the observed frequencies. In both cases, you should count 
3 free parameters for the base frequencies.  The options nhomo = 3 or 4, in combination with F84 or HKY85, 
fit nonhomogeneous models of Yang and Roberts (1995).  Substitutions are assumed to follow the pattern of 
F84 or HKY85, but with different frequency parameters assigned for different branches in the tree, to allow 
for unequal base frequencies in different sequences. The position of the root then makes a difference to the 
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likelihood, and rooted trees are used. Because of the parameter richness, the model may only be used with 
small data sets when base frequencies are drastically different in different sequences. Choose fix_kappa = 
1, which means one common κ is assumed for all branches. The option nhomo = 4 assigns one set of 
frequency parameters for each node, which are the parameters for the rate matrix along the branch leading to 
the node or are the initial distribution if the node is the root of the tree. In the output, estimates of the 
frequency parameters are shown in the order of nodes n + 1, n + 2, ...., where n is the number of sequences. 

nhomo = 2 uses one transition/transversion rate ratio (κ) for each branch in the tree for the K80, F84, and 
HKY85 models (Yang 1994b; Yang and Yoder 1999).  

getSE tells whether we want estimates of the standard errors of estimated parameters. These are crude 
estimates, calculated by the curvature method, i.e., by inverting the matrix of second derivatives of the log-
likelihood with respect to parameters. The second derivatives are calculated by the difference method, and 
are not always reliable. Even if this approximation is reliable, tests relying on the SE's should be taken with 
caution, as such tests rely on the normal approximation to the maximum likelihood estimates. The likelihood 
ratio test should always be preferred. The option is not available and choose getSE = 0 when tree-search 
is performed.  

RateAncestor = 1 also works with runmode = 0 only.  For models of variable rates across sites, the 
program will calculate rates for sites along the sequence (output in the file rates) and performs marginal 
ancestral reconstruction (output in rst).  For models of one rate for all sites, RateAncestor = 1 does both 
marginal and joint ancestral sequence reconstruction. The program lists results site by site.  You can also use 
the variable verbose to control the amount of output. If you choose verbose = 0, the program will list the 
best nucleotide at each node for the variable sites only and results for constant sites are suppressed. If 
verbose = 1, the program will list all sites for the best nucleotide at each node. If verbose = 2, the 
program also lists the full posterior probability distribution for each site at each ancestral node (for marginal 
reconstruction).  

For nucleotide based (baseml) analysis of protein coding DNA sequences (option GC in the sequence data 
file), I have added the calculation of posterior probabilities of ancestral amino acids. In this analysis, branch 
lengths and other parameters are estimated under a nucleotide substitution model, but the reconstructed 
nucleotide triplets are examined to infer the most likely amino acid encoded by the triplet. Posterior 
probabilities for stop codons are small and reset to zero to scale the posterior probabilities for amino acids. 
To use this option, you need add the control variable icode in the control file baseml.ctl. This is not 
listed in the above. The variable icode can take a value out of 0, 1, ..., 10, corresponding to the 11 genetic 
codes included in paml (See the control file codeml.ctl for the definition of different genetic codes). A 
nucleotide substitution model that is very close to a codon-substitution model can be specified as follows. 
You add the option characters GC at the end of the first line in the data file and choose model = 4 (HKY85) 
and Mgene = 4. The model then assumes different substitution rates, different base frequencies, and different 
transition/transversion rate ratio (kappa) for the three codon positions. Ancestral reconstruction from such a 
nucleotide substitution should be very similar to codon-based reconstruction. (Thanks to Belinda Change for 
many useful suggestions.) 

Small_Diff is a small value used in the difference approximation of derivatives.

cleandata  = 1 means sites involving ambiguity characters or alignment gaps are removed from all 
sequences.  This leads to faster calculation.  cleaddata = 0 (default) uses those sites. 

method :  This variable controls the iteration algorithm for estimating branch lengths under a model of no 
clock.  method = 0 implements the old algorithm in PAML, which updates all parameters including branch 
lengths simultaneously.  method  = 1 specifies an algorithm newly implemented in PAML, which updates 
branch lengths one by one.  method = 1 does not work under the clock models (clock = 1, 2, 3).  

ndata: specifies the number of separate data sets in the file.  This variable is useful for simulation.  You can 
use evolver to generate 200 replicate data sets, and then set ndata = 200 to use baseml to analyze them.   

Output: The output should be self-explanatory. Descriptive statistics are always listed. The observed site 
patterns and their frequencies are listed, together with the proportions of constant patterns. Nucleotide 
frequencies for each species (and for each gene in case of multiple gene data) are counted and listed.  lmax = 
ln(Lmax) is the upper limit of the log likelihood and may be compared with the likelihood for the best (or 
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true) tree under the substitution model to test the model's goodness of fit to data (Goldman, 1993a).  You can 
ignore it if you don’t know what it means. 

With getSE = 1, the S.E.s are calculated as the square roots of the large sample variances and listed exactly 
below the parameter estimates. Zeros on this line mean errors, either caused by divergence of the algorithm 
or zero branch lengths. The S.E.ís of the common parameters measure the reliability of the estimates. For 
example, (κ - 1)/SE(κ), when κ is estimated under K80, can be compared with a normal distribution to see 
whether there is real difference between K80 and JC69. The test can be more reliably performed by 
comparing the log-likelihood values under the two models, using the likelihood ratio test. It has to be 
stressed that the S.E.’s of the estimated branch lengths should not be misinterpreted as an evaluation of the 
reliability of the estimated tree topology (e.g., Yang, 1994b, Goldman and Yang, 1994).  

If the tree file has more than one tree, the programs baseml and codeml will calculate the bootstrap 
proportions using the RELL method (Kishino and Hasegawa 1989), as well as the method of Shimodaira and 
Hasegawa (1999) with a correction for multiple comparison.  The bootstrap resampling accounts for possible 
data partitions (option G in the sequence data file).  I did not bother to deal with ties, so if you include the 
same tree in the tree file more than once, you need to adjust the proportions for those trees yourself. The 
program rell, included in earlier versions, is now removed.  

basemlg 
basemlg uses the same control file baseml.ctl, as baseml.  Tree-search or the assumption of a 
molecular clock are not allowed and so choose runmode = 0 and clock = 0. Substitution models available 
for basemlg are JC69, F81, K80, F84 and HKY85, and a continuous gamma is always assumed for rates at 
sites. The variables ncatG, given_rho, rho, nhomo have no effect.  The S.E.'s of parameter estimates 
are always printed out because they are calculated during the iteration, and so getSE has no effect.  

Because of the intensive computation required by basemlg, the discrete-gamma model implemented in 
baseml is recommended for data analysis. If you choose to use basemlg, you should run baseml first, and 
then run basemlg. This allows baseml to collect initial values into a file named in.basemlg, for use 
by basemlg. Note that basemlg implements only a subset of models in baseml.  

codeml (codonml and aaml) 
Since the codon based analysis and the amino acid based analysis use different models, and some of the 
control variables have different meanings, it may be a good idea to use different control files for codon and 
amino acid sequences. The default control file for codeml is codeml.ctl, as shown below.  

seqfile = stewart.aa * sequence data file name
outfile = mlc * main result file name
treefile = stewart.trees * tree structure file name

noisy = 9 * 0,1,2,3,9: how much rubbish on the screen
verbose = 0 * 1: detailed output, 0: concise output
runmode = 0 * 0: user tree; 1: semi-automatic; 2: automatic

* 3: StepwiseAddition; (4,5):PerturbationNNI; -2: pairwise

seqtype = 2 * 1:codons; 2:AAs; 3:codons-->AAs
CodonFreq = 2 * 0:1/61 each, 1:F1X4, 2:F3X4, 3:codon table

aaDist = 0 * 0:equal, +:geometric; -:linear, 1-6:G1974,Miyata,c,p,v,a
aaRatefile = wag.dat * only used for aa seqs with model=empirical(_F)

* dayhoff.dat, jones.dat, wag.dat, mtmam.dat, or your own

model = 2
* models for codons:

* 0:one, 1:b, 2:2 or more dN/dS ratios for branches
* models for AAs or codon-translated AAs:

* 0:poisson, 1:proportional,2:Empirical,3:Empirical+F
* 6:FromCodon, 7:AAClasses, 8:REVaa_0, 9:REVaa(nr=189)

NSsites = 0 * 0:one w;1:neutral;2:selection; 3:discrete;4:freqs;
* 5:gamma;6:2gamma;7:beta;8:beta&w;9:beta&gamma;
* 10:beta&gamma+1; 11:beta&normal>1; 12:0&2normal>1;
* 13:3normal>0



13 

icode = 0 * 0:universal code; 1:mammalian mt; 2-10:see below
Mgene = 0 * 0:rates, 1:separate;

fix_kappa = 0 * 1: kappa fixed, 0: kappa to be estimated
kappa = 2 * initial or fixed kappa

fix_omega = 0 * 1: omega or omega_1 fixed, 0: estimate
omega = .4 * initial or fixed omega, for codons or codon-based AAs

fix_alpha = 1 * 0: estimate gamma shape parameter; 1: fix it at alpha
alpha = 0. * initial or fixed alpha, 0:infinity (constant rate)
Malpha = 0 * different alphas for genes
ncatG = 3 * # of categories in dG of NSsites models

fix_rho = 1 * 0: estimate rho; 1: fix it at rho
rho = 0. * initial or fixed rho, 0:no correlation

clock = 0 * 0:no clock, 1:clock; 2:local clock; 3:TipDate
getSE = 0 * 0: don't want them, 1: want S.E.s of estimates

RateAncestor = 0 * (0,1,2): rates (alpha>0) or ancestral states (1 or 2)

Small_Diff = .5e-6
* cleandata = 0 * remove sites with ambiguity data (1:yes, 0:no)?
* ndata = 10

method = 0 * 0: simultaneous; 1: one branch at a time

 

The variables seqfile, outfile, treefile, noisy, Mgene, fix_alpha, alpha, Malpha, 
fix_rho, rho, clock, getSE, RateAncestor, Small_Diff, cleandata, ndata, and method  
are used in the same way as in baseml.ctl and are described in the previous section.  The variable 
seqtype specifies the type of sequences in the data; seqtype = 1 means codon sequences (the program is 
then codonml); 2 means amino acid sequences (the program is then aaml); and 3 means codon sequences 
which are to be translated into proteins for analysis.  

Codon sequences (seqtype = 1) 

CodonFreq specifies the equilibrium codon frequencies in codon substitution model. These frequencies can 
be assumed to be equal (1/61 each for the standard genetic code, CodonFreq = 0), calculated from the 
average nucleotide frequencies (CodonFreq = 1), from the average nucleotide frequencies at the three 
codon positions (CodonFreq = 2), or used as free parameters (CodonFreq = 3).  The number of 
parameters involved in those models of codon frequencies is 0, 3, 9, and 60 (under the universal code), for 
CodonFreq = 0, 1, 2, and 3 respectively. 

aaDist specifies whether equal amino acid distances are assumed (= 0) or Grantham's matrix is used (= 1) 
(Yang et al. 1998).  

runmode = -2 performs ML estimation of dS and dN in pairwise comparisons.  The program will collect 
estimates of dS and dN into the files 2ML.dS and 2ML.dN.  Since many users seem interested in looking at 
dN/dS ratios among lineages, examination of the tree shapes indicated by branch lengths calculated from the 
two rates may be interesting although the analysis is ad hoc.  If your species names have no more than 10 
characters, you can use the output distance matrices as input to Phylip programs such as neighbor without 
change.  Otherwise you need to edit the files to cut the names short.  

The variable model concerns assumptions about the dN/dS rate ratios (or the ω parameters) among branches 
(Yang 1998; Yang and Nielsen 1998).  model = 0 means one dN/dS ratio for all lineages (branches), 1 means 
one ratio for each branch (the free-ratio model), and 2 means an arbitrary number of ratios (such as the 2-
ratios or 3-ratios models). When model = 2, you may specify the ω ratios for branches using branch labels 
(see the section on tree structure file).  This option seems rather easy to use.  Otherwise, the program will ask 
the user to input a branch mark for the dN/dS ratio assumed for each branch. This should be an integral 
number between 0 to k - 1 if k different dN/dS ratios (ω0 - ωk - 1) are assumed for the branches of the tree. This 
process may be frustrating if the tree is not very small.  I run the program first to let it output the tree 
topology using the branch representation on the screen.  I then prepare the branch labels in a file, say, in. 
Finally I run the program using redirection so that it will read the input from the prepared file  
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codeml < in

Redirection is not permitted on a MAC, but you can prepare the branch labels in a file and then copy and 
paste them into the session running the program. Furthermore, under this model, the variable fix_omega
fixes the lastdN/dS ratio (ωk - 1) at the value of omega specified in the file. This option can be used to test, for 
example, whether the ratio for a specific lineage is significantly different from one.  It should, however, be 
noted that it is not proper to use the option model = 1 to estimate dN/dS ratios for all branches to find out 
which ratios are greater than one, and then to use model = 2 to test whether that difference is significant. This 
way the hypothesis is derived from the data and is tested using the same data.  As a result, you tend to get 
significant results too often.  Check the example data file lysozymeSmall.nuc and the control file 
lysozyme.ctl and try to reproduce results published in Yang (1998). 

Nssites specifies models that allow the dN/dS ratio (ω) to vary among sites (Nielsen and Yang 1998; Yang 
et al. 2000).  Nssites = m corresponds to model Mm in Yang et al. (2000).  The variable ncatG is used to 
specify the number of categories in the ω distribution under some models.  The values of ncatG used to 
perform our analyses are 3 for M3 (discrete), 5 for M4 (freq), 10 for the continuous distributions (M5: gamma, 
M6: 2gamma, M7: beta, M8:beta&w, M9:beta&gamma, M10: beta&gamma+1, M11:beta&normal>1, and 
M12:0&2normal>1, M13:3normal>0).  This means M8 will have 11 site classes (10 from the beta distribution 
plus 1 additional class).  The posterior probabilities for site classes as well as the expected ω values for sites 
are listed in the file rst, which may be useful to pinpoint sites under positive selection, if they exist.  To 
make it easy to run several Nssites models in one go, I compiled the executable codemlsites, which asks 
you how many and which models to run at the start of the program.  The number of categories used will 
then match those used in Yang et al. (2000).  The HIV env data set used in Yang et al. (2000) is included in the 
package.  Try 

codemlsites HIVenvSweden.ctl 

and duplicate our analysis of the 4 models, M0, 1, 2, 3, by 

4 0 1 2 3

As noted in that paper, some of the models are hard to use, including M12 and M13.  Recommended models 
are 0 (one-ratio), 1 (neutral), 2 (selection), 3 (discrete), 7 (beta), and 8 (beta&ω).  Some of the models like M2 
and M8 are noted to be prone to the problem of multiple local optima. You are advised to run the program at 
least twice, once with a starting omega value <1 and a second time with a value > 1, and use the results 
corresponding to the highest likelihood.    

The continuous neutral and selection models of Nielsen and Yang (1998) are not implemented in the 
program.   

icode specifies the genetic code.  About a dozen genetic code tables are implemented.  These are 0 for the 
universal code; 1 for the mammalian mitochondrial code; 3 for mold mt., 4 for invertebrate mt.; 5 for ciliate 
nuclear code; 6 for echinoderm mt.; 7 for euplotid mt.; 8 for alternative yeast nuclear; 9 for ascidian mt.; and 
10 for blepharisma nuclear.  icode = 0 to 10 correspond to transl_table 1 to 11 in GenBank.  

RateAncestor:  For codon sequences, ancestral reconstruction is not implemented for the models of variable 
dN/dS ratios among sites. The output under codon-based models usually shows the encoded amino acid for 
each codon. The output under "Prob of best character at each node, listed by site" has two posterior 
probabilities for each node at each codon (amino acid) site. The first is for the best codon. The second, in 
parentheses, is for the most likely amino acid under the codon substitution model. This is a sum of posterior 
probabilities across synonymous codons.  In theory it is possible although rare for the most likely amino acid 
not to match the most likely codon. 

Output for codon sequences (seqtype = 1): The codon frequencies in each sequence are counted and listed 
in a genetic code table, together with their sums across species.  Each table contains six or fewer species.  For 
data of multiple genes (option G in the sequence file), codon frequencies in each gene (summed over species) 
are also listed. The nucleotide distributions at the three codon positions are also listed. The method of Nei 
and Gojobori (1986) is used to calculate the number of synonymous substitutions per synonymous site (dS) 
and the number of nonsynonymous substitutions per nonsynonymous site (dN) and their ratio (dN/dS). These 
are used to construct initial estimates of branch lengths for the likelihood analysis but are not MLEs 
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themselves. Note that the estimates of these quantities for the a- and b-globin genes shown in Table 2 of 
Goldman and Yang (1994), calculated using the MEGA package (Kumar et al., 1993), are not accurate.   

Results of ancestral reconstructions (RateAncestor = 1) are collected in the file rst.  Under models of 
variable dN/dS ratios among sites (NSsites models), the posterior probabilities for site classes as well as 
positively selected sites are listed in rst.  

Amino acid sequences (seqtype = 2) 

model specifies the model of amino acid substitution: 0 for the Poisson model assuming equal rates for any 
amino acid substitutions (Bishop and Friday, 1987); 1 for the proportional model in which the rate of change 
to an amino acid is proportional to the frequency of that amino acid. Model = 2 specifies a class of empirical 
models, and the empirical amino acid substitution rate matrix is given in the file specified by aaRatefile. 
Files included in the package are for the empirical models of Dayhoff et al. (1978) (dayhoff.dat), Jones et al. 
1992 (jones.dat) (see Kishino et al., 1990 for the construction), and Whelan and Goldman (wag.dat). The 
file mtmam.dat has a matrix for mitochondrial proteins estimated by maximum likelihood from a data set of 
20 mammals. The mtREV24 model of the MOLPHY package is also provided (the file mtREV24.dat). These 
two are similar, and the difference is that the former is derived from proteins from mammals only while the 
latter came from more-diverse species including chicken, fish, frog, and lamprey. Due to differences in the 
implementation, you may see small differences in log-likelihood values and branch lengths between aaml 
and protml in the MOLPHY package. Such differences are normal and you should use the same program to 
compare different trees. Under the mtREV24 model, the two programs should give almost identical results.  

If you want to specify your own substitution rate matrix, have a look at one of those files, which has notes 
about the file structure. Other options for amino acid substitution models should be ignored.  To summarize, 
the variables model, aaDist, CodonFreq, NSsites, and icode are used for codon sequences (seqtype = 
1), while model, alpha,  and aaRatefile are used for amino acid sequences.  

runmode also works in the same way as in baseml.ctl.  Specifying runmode = -2 will forces the program to 
calculate the ML distances in pairwise comparisons. You can change the following variables in the control 
file codeml.ctl: aaRatefile, model, and alpha.  

If you do pairwise ML comparison (runmode = -2) and the data contain ambiguity characters or alignment 
gaps, the program will remove all sites which have such characters from all sequences before the pairwise 
comparison if cleandata = 1. This is known as "complete deletion". It will remove alignment gaps and 
ambiguity characters in each pairwise comparsion ("pairwise" deletion) if cleandata = 0. (In a likelihood 
analysis of multiple sequences on a phylogeny, alignment gaps are treated as ambiguity characters if 
cleandata = 0, and both alignment gaps and ambiguity characters are deleted if cleandata = 1.  Note that 
removing alignment gaps and treating them as ambiguity characters both underestimate sequence 
divergences. Ambiguity characters in the data (cleandata = 0) make the likelihood calculation slower. 

Output for amino acid sequences (seqtype = 2):  The output file is self-explanatory and very similar to the 
result files for the nucleotide- and codon-based analyses.  The empirical models of amino acid substitution 
(specified by dayhoff.dat, jones.dat, wag.dat, mtmam.dat, or mtREV24.dat) do not involve any parameters in 
the substitution rate matrix.  When RateAncestor = 1, results for ancestral reconstruction are in the file 
rst. Calculated substitution rates for sites under models of variable rates for sites are in rates.   

evolver 
The program evolver simulates nucleotide, codon, and amino acid sequences with user-specified tree 
topology and branch lengths.  The user specifies the substitution model and parameters.  The program 
generates multiple data sets in one file in either PAML (output mc.paml) or PAUP* (output mc.paup) 
format. If you choose the PAUP* format, the program will look for files with the following names: 
paupstart (which the program copies to the start of the data file), paupblock (which the program copies 
to the end of each simulated data set), and paupend (which the program incorporates at the end of the file.  
This makes it possible to use PAUP* to analyze all data sets in one run.  Parameters for simulation are 
specified in three files: MCbase.dat, MCcodon.dat, and MCaa.dat for simulating nucleotide, codon, and 
amino acid sequences, respectively.  Run the default options while watching out for screen output.  Then 
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have a look at the appropriate .dat files.  As an example, the MCbase.dat file is reproduced below, with 
some notes.  Note that the first block of the file has the inputs for evolver, while the rest is notes.  The tree 
length is the expected number of substitutions per site along all branches in the phylogeny, calculated as the 
sum of the branch lengths.  This variable was introduced when I was doing simulations to evaluate the effect 
of sequence divergence while keeping the shape of the tree fixed.  evolver will scale the tree so that the 
branch lengths sum up to the specified tree length.  If you use –1 for the tree length, the program will use the 
branch lengths given in the tree.  In the example, the sum of branch lengths is 1.12, and so using either 1.12 or 
–1 for the tree length has the same effect.  Also note that the base frequencies have to be in a fixed order; this 
is the same for the amino acid and codon frequencies in MCaa.dat and MCcodon.dat. 

0
234567
4 200 2
-1
((1:.1, 2:.2):.12, 3:.3, 4:.4);
6
1 2 3 4 5
.5 4

0.25 0.25 0.25 0.25
T C A G (fixed order)

==================================================
The rest of this data file are notes, ignored by the program evolver.
evolver simulates nucleotide sequences under the REV+Gamma model
and its simpler forms.
The variables in this file are defined below:

==================================================
<format,0=paml,1=paup>
<random number seed>
<# seqs> <# nucleotide sites> <# replicates>
<tree length, use -1 if tree has absolute branch lengths>
<tree with relative branch lengthes>
<model: 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85, 5:TN93, 6:REV>
<kappa or rate parameters in model>
<alpha> <#categories for discrete gamma>
<base frequencies>
================================================== 

 

The simulation options (5, 6, 7) of evolver can be run using a command line format.  So here are all the 
possible ways of running evolver: 

evolver
evolver 5 MyMCbaseFile
evolver 6 MyMCcodonFile
evolver 7 MyMCaaFile

This evolver program evolved from the old boring program listtree and still has the options for listing all 
trees for a specified small number of species, and for generating random trees from a model of cladogenesis, 
the birth-death process with species sampling (Yang and Rannala, 1997).  It also has an option for calculating 
the partition distance between tree topologies. 

yn00 
The program yn00 implements the method of Yang and Nielsen (2000) for estimating synonymous and 
nonsynonymous substitution rates between two sequences (dS and dN).  The method of Nei and Gojobori 
(1986) is also included.  The ad hoc method implemented in the program accounts for the 
transition/transversion rate bias and codon usage bias, and is an approximation to the ML method 
accounting for the transition/transversion rate ratio and assuming the F3x4 codon frequency model. We 
recommend that you use the ML method (runmode= -2, CodonFreq = 2 in codeml.ctl) as much as 
possible even for pairwise sequence comparison.  

seqfile = abglobin.nuc * sequence data file name
outfile = yn * main result file
verbose = 0 * 1: detailed output (list sequences), 0: concise output
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icode = 0 * 0:universal code; 1:mammalian mt; 2-10:see below
weighting = 0 * weighting pathways between codons (0/1)?
commonf3x4 = 0 * use one set of codon freqs for all pairs (0/1)?

 

The control file yn00.ctl, an example of which is shown above, specifies the sequence data file name 
(seqfile), output file name (outfile), and the genetic code (icode).  Sites (codons) involving alignment 
gaps or ambiguity nucleotides in any sequence are removed from all sequences.  The variable weighting 
decides whether equal weighting or unequal weighting will be used when counting differences between 
codons. The two approaches will be different for divergent sequences, and unequal weighting is much 
slower computationally.  The transition/transversion rate ratio κ is estimated for all sequences in the data file 
and used in subsequent pairwise comparisons.  I hope to add an option to allow κ to be estimated for each 
pair.  commonf3x4 specifies whether codon frequencies (based on the F3x4 model of codonml) should be 
estimated for each pair or for all sequences in the data.  Besides the main result file, the program also 
generates three distance matrices: 2YN.dS for synonymous rates, 2YN.dN for nonsynonymous rates, 2YN.t 
for the combined codon rate (t is measured as the number of nucleotide substitutions per codon).  It should 
be possible to use those files directly with distance programs such as NEIGHBOR in Felesenstein's PHYLIP 
package.   

mcmctree 
The program mcmctree performs Bayesian estimation of phylogenies (Rannala and Yang, 1996; Yang and 
Rannala, 1997).  The birth-death process with species sampling is used to specify the prior distribution of 
phylogenies ("labeled histories", which are rooted tree topologies with the interior nodes ordered according 
their associated speciaiton times), and the posterior probabilities of the labeled histories are compared to 
select the maximum posterior probability tree. The program implementing the method of Rannala and Yang 
(1996) is not distributed as the algorithm involves extensive computation. Instead, mcmctree implements a 
refined method (Yang and Rannala 1997), which uses Markov chain Monte Carlo to select candidate labeled 
histories, and Monte Carlo integration to integrate over the distribution of the ancestral speciation times. 

The default control file name is mcmctree.ctl, and a sample copy is shown below. 

seqfile = mtprim9.nuc * sequence data file name
outfile = mcmctree.out * main result file name
treefile = 9s.trees * tree structure file name
LHfile = Lhs * LH file name. read (MCMC=0) or overwritten (MCMC=1)
MCMC = 0 *0: read LHs from LHfile, 1: use MCMC to generate Lhs
beta = 0.15 * prob{change labeled history}, used only if MCMC=1

delta0 = 1 * small number for MCMC, used only if MCMC=1
delta1 = .2 * smaller number for comparing candidate LHs

model = 2 * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85

kappa = 2. * given kappa and omega in GY94.
alpha = 0 * given alpha, 0:infinity
ncatG = 8 * # of categories in the dG or AdG models of rates

hierarch = 0 * 1:hierarchical; 0:empirical Bayes analysis
birth = 6.7 * lineage birth rate
death = 2.5 * lineage death rate
sample = .06 * sampling proportion
mutate = .24 * mutation rate (# of mutations from root to present) 

 

The variables seqfile, outfile, treefile, model, kappa, alpha, and ncatG are defined as in 
baseml.ctl for program baseml. The program first collects a set of candidate labeled histories. If MCMC = 0, 
the candidate labelled histories are read from the file LHfile, while if MCMC = 1, they are generated from the 
Markov chain Monte Carlo, with the Monte Carlo integration over ancestral speciation times evaluated at a 
low accuracy level (controled by delta0). The program then calculates the (relative) posterior probabilities 
of these candidate labelled histories, with the Monte Carlo integration evaluated at a higher accuracy level 
(controlled by delta1). The Markov chain moves with probability beta to another labelled history of the 
same tree topology, or to a labelled history of a different tree topology through a nearest neighbor 
interchange. hierarch controls whether an empirical Bayes analysis or a hierarchical Bayes analysis is to be 
performed. birth, death, and sample are parameters of the prior distribution specified by the birth-death 
process with species sampling. 
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4  Models and Methods 

This section provides some background information about the analysis that the programs in the paml 
package perform. 

Nucleotide substitution models 
Markov process models of nucleotide substitution implemented in PAML include JC69 (Jukes and Cantor, 
1969), K80 (Kimura, 1980), F81 (Felsenstein, 1981), F84 (Felsenstein, DNAML program since 1984, PHYLIP 
Version 2.6), HKY85 (Hasegawa et al., 1985), Tamura and Nei (1993), and REV (Yang, 1994a). The rate 
matrices of these models are given below 

JC69 : Q = 


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K80 :  Q = 
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F81 : Q = 
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F84: Q = 



















+
+

+
+

.)/1(
)/1(.

.)/1(
)/1(.

ARCT

GRCT

GATY

GACY

ππκππ
ππκππ

ππππκ
ππππκ

 

with πY = πT + πC and πR = πA + πG. 

HKY85: Q = 


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TN93: Q =  
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REV (GTR):  Q =  


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The element qij (i ≠ j) represents the rate of substitution from nucleotide i to j, with the diagonals qii specified 
by the mathematical requirement that each row of Q sums to zero.  The nucleotides are ordered T, C, A, G.  
The transition probability matrix over time t is then given as P(t) = {pij(t)} = exp(Qt), where pij(t) is the 
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probability that nucleotide i will become nucleotide j after time t. The sequence data does not permit 
separation of rate (Q) and time (t), and so Q specifies relative rates only.  In the programs, Q is multiplied by 
a constant so that the average rate of substitution is 1 when the process is in equilibrium. This scaling means 
that time t, or the branch length in a tree, is measured by the expected number of nucleotide substitutions per 
site.  Q thus represents the pattern of substitution, while the amount of evolution is reflected in time or the 
branch length. The frequency parameters πT, πC, πA, πG (with the sum to be 1) give the equilibrium 
distribution of the process for the F81, F84, HKY85, TN93 and REV models; the equilibrium distribution 
under the JC69 and K80 models has equal frequencies (1/4) for the four nucleotides. Parameters a, b, c, d, e in 
REV, κ in F84 or HKY85, and κ1 and κ2 in TN93 may be termed rate ratio parameters. So the JC69, K80, F81, 
F84, HKY85, TN93 and REV models contain 0, 1, 0, 1, 1, 2, 5 rate ratio parameters respectively, and 0, 0, 3, 3, 
3, 3, 3 frequency parameters respectively. Normally the frequency parameters are estimated using the 
averages of the observed frequencies, which should be very close to the true maximum likelihood estimates if 
the assumptions of homogeneity and stationarity are acceptable.  

Parameter κ in the K80 and HKY85 models is equivalent to α/β in the notation of Kimura (1980) and 
Hasegawa et al. (1985).  The present notation is more convenient in a maximum likelihood analysis as the 
ratio is assumed to be constant for different branches of the tree. F84 is the model implemented in J. 
Felsenstein's DNAML program. The rate matrix for this model was given by Hasegawa and Kishino (1989), 
Kishino and Hasegawa (1989), Yang (1994b, 1994c) and Tateno et al. (1994).  Thorne et al. (1992) described the 
transition probability matrix, and Yang (1994c) and Tateno et al. (1994) derived formulae for estimating 
sequence distances under the model.  REV is the general time-reversible process model (also known as GTR; 
Yang, 1994a; see also Tavare, 1986; Zharkikh, 1994).  It is used in baseml only.  It seems sufficiently general 
to enable accurate estimation of the substitution pattern from real data. See Gillespie (1986), Tavare (1986), 
Rodriguez et al. (1990), Yang (1994a), and Zharkikh (1994) for reviews of substitution models.  

Unfortunately there are a few different definitions of the “transition/transversion rate ratio”.  The worst is 
the ratio of the observed numbers of transitional and transversional differences between two sequences, 
without correcting for multiple hits, also known as P/Q in Kimura’s (1980) notation (see, e.g., Wakeley 1994).  
The measure used in baseml is κ as specified in the above formulas for K80 or HKY95.  In Kimura’s (1980) 
notation, κ = α/β.  A third measure (R) is the ratio averaged over base frequencies; this is the ratio of the 
expected number of transitions to the expected number of transversions if one observes the substitution 
process over time.  In Kimura’s (2000) notation, R = α/(2β).  PHYLIP and PAUP* use R and name it the 
“transition/transversion rate ratio”, while referred to κ as the “transition/transversion rate parameter”.  For 
a general substitution model Q = {qij}, κ and R are related by the formula 

 R = (πTqTC+ πCqCT+πAqAG+πGqGA)/(πTqTA + πTqTG + πCqCA + πCqCG + πAqAT + πAqAC + πGqGT + πGqGC). 

Special examples are listed in the following table.  

Model Average transition/transversion rate ratio (R) 

JC69 ½ 
K80 κ/2 
F81 (πTπC + πAπG)/(πYπR) 
F84 [πTπC(1 + κ/πY) + πAπG(1 + κ/πR)] / (πYπR) 
HKY85 (πTπC + πAπG)κ/(πYπR) 
TN93 (πTπCκ1 + πAπGκ2)/(πYπR) 
REV (GTR) (πTπCa + πAπG)/(πTπAb + πTπGc + πCπAd + πCπGe) 

 

The case of no transition-transversion bias is represented by κ = 1 and R = ½ under K80; κ = 1 and R = (πTπC + 
πAπG)/(πYπR) under HKY85; and κ = 0 and R = (πTπC + πAπG)/(πYπR) under F84. 

Codon substitution models 
The model of Goldman and Yang (1994) specifies the probability of substitution between the sense codons, 
by using the matrix of amino acid distances of Grantham (1974). The model does not seem to fit real data 
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well, however, and the user is advised to use the following simpler version, which is equivalent to use equal 
distances for any pair of amino acids. The substitution rate from codon i to codon j is given as 

 














=

,transition ousnonsynonym for,
on,transversi ousnonsynonym for,

,transition synonymous for,
on,transversi synonymous for,

position, onethan  more at differ codons two the if ,0

j

j

j

j

ijq

ωκπ
ωπ
κπ
π

 

The equilibrium frequency of codon j (πj) can be considered a free parameter, but can also be calculated from 
the nucleotide frequencies at the three codon positions (control variable CodonFreq).  Under this model, the 
relationship holds that ω = dN/dS, the ratio of nonsynonymous/synonymous substitution rates. This model 
forms the basis for more sophisticated models implemented in codeml, such as those that allow the ω ratio to 
vary among branches in the phylogeny (Yang 1998; Yang and Nielsen 1998) implemented through the 
variable model, and those that allow the ω ratio to vary among sites (among codons or amino acids in the 
protein), implemented through the variable Nssites. 

Amino acid substitution models 
“Empirical” models based on the Dayhoff substitution matrix (model = 2) or its updated version of Jones et 
al. (1992) are constructed using the same strategy. The transition probability matrix over a very short time 
period such as one PAM, i.e., P(0.01), is used to approximate the matrix of instantaneous rates (Q). The 
empirical matrices of Dayhoff et al. (1978) and Jones et al. (1992) were made to satisfy the reversibility 
condition, that is, 

 πiqij = πjqji 

for any i and j, so that my implementations may be slightly different from that of Kishino et al. (1990). These 
models assume a fixed pattern of amino acid substitution. The package also include an empirical model for 
globular proteins, the WAG model of Whelan and Goldman (in press) which is given by the file wag.dat, and  
two similar empirical models for mitochondrial proteins. The first of these is given by the file mtREV24.dat 
and is the mtREV24 model of Adachi and Hasegawa (1996a, b) estimated from a diverse range of species 
including mammals, chicken, frog, fish, and lamprey. The matrix was estimated by maximum likelihood 
from real data. The second is given by the file mtmam.dat and is estimated from 20 mammalian species 
using maximum likelihood under the REV model with variable rates among sites (Yang et al. 1998). You can 
check those files for more details, or if you want to supply your own empirical matrix. 

"Mechanistic" models of amino acid substitution requires consideration of both the mutational distance 
between the amino acids as determined by the locations of their encoding codons in the genetic code table, 
and the effects that the potential change may have on the structure and function of the protein, which may be 
related to the physical, chemical and structural differences between amino acids. It seems natural that such a 
model should be formulated at the level of codons. The program aaml implements a few such models, 
specified by the variable aaDist. 

Models of variable substitution rates across site (see Yang 1996b for review) are implemented for both 
nucleotide (baseml) and amino acid (aaml) sequences.  Although the option variables such as fix_alpha 
and alpha are also available for codon models (codonml) , the gamma model for codons is unrealistic as it 
applies the same gamma rate to both synonymous and nonsynonymous substitutions, with their rate ratio 
held constant among sites.  You are recommended to use the Nssites models instead, which assume 
homogeneous synonymous rates but variable nonsynonymous rates. 

Models for combined analyses of heterogeneous data (multiple 
genes or codon positions) 
Several models are described by Yang (1996a) and implemented in programs baseml and codeml 
(codonml and aaml) for analyzing heterogeneous data sets (such as those of multiple genes or different 
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codon positions). The implementation and description below refer to the case of multiple genes, but in the 
case of nucleotide-based models (baseml), the method can be used to analysed data of different codon 
positions. These models account for different aspects of heterogeneity among the different data sets and are 
useful for testing hypotheses concerning the similarities and differences in the evolutionary process of 
different data sets.  

The simplest model which assumes complete homogeneity among genes can be fitted by concatenating 
different genes into one sequence without using the option G (and by specifying Mgene = 0 in the control 
file). The most general model is equavilent to a separate analysis. This can be done by fitting the same model 
to each data set (each gene), but can also be done by specifying Mgene = 1 with the option G in the combined 
data file. The sum of the log-likelihood values over different genes is then the log likelihood of the most 
general model considered here. Models accounting for some aspects of the heterogeneity of multiple genes 
are fitted by specifying Mgene in combination with the option G in the sequence data file. Mgene = 0 means a 
model that asumes different substitution rates but the same pattern of nucleotide substitution for different 
genes. Mgene = 2 means different frequency parameters for different genes but the same rate ratio 
parameters (κ in the K80, F84, HKY85 models or the rate parameters in the TN93 and REV models). Mgene = 
3 means different rate ratio parameters and the same frequency parameters. Mgene = 4 means both different 
rate ratio parameters and different frequency parameters for different genes. Parameters and assumptions 
made in these models are summarized in the following table, with the HKY85 model used as an example. 
When substitution rates are assumed to vary from site to site, the control variable Malpha specifies whether 
one gamma distribution will be applied across all sites (Malpha = 0) or a different gamma distribution is 
used for each gene (or codon position).  

Sequence file  Control file  Parameters across genes 

No G  Mgene = 0  everything equal 
Option G  Mgene = 0  the same k and p, but different cs (proportional branch lengths) 
Option G  Mgene = 2  the same k, but different ps and cs 
Option G  Mgene = 3  the same p, but different ks and cs 
Option G  Mgene = 4  different k , ps, and cs 
Option G  Mgene = 1  different k, ps, and different (unproportional) branch lengths 

 

The different cs for different genes mean that branch lengths estimated for different genes are proportional. 
Parameters π represent the equilibrium nucleotide frequencies, which are estimated using the observed 
frequencies (nhomo = 0). The transition/transversion rate ratio κ in HKY85 can be replaced by the two or five 
rate ratio parameters under the TN93 or REV models, respectively. The likelihood ratio test can be used to 
compare these models, using an approach called the analysis of deviance, which is very similar to the more 
familiar analysis of variance.  

Global and local clocks, and dated sequences 
PAML (baseml and codeml) implements three ML models regarding rate constancy among lineages.  clock 
= 0 means no clock and each branch has an independent rate.  For a binary tree with n species (sequences), 
this model has (2n – 3) parameters (branch lengths).  clock = 1 means the global clock, and all branches 
have the same rate.  This model has (n – 1) parameters corresponding to the (n – 1) internal nodes in the 
binary tree.  So a test of the molecular clock assumption, which compares those two models, should have d.f. 
= n – 2. 

Between those two extremes are the local clock models, specified by clock = 2 (Yoder and Yang 2000), 
which assume that branches in the phylogeny conform with the clock assumption and has the default rate (r0 
= 1) except for several pre-defined branches, which have different rates.  Rates for branches are specified 
using branch labels in the tree file, and, if they are not, can be inputted from the keyboard.  For example, the 
tree (((1,2) #1, 3), 4) specifies rate r1 for the branch ancestral to species 1 and 2 while all other branches have 
the default rate r0, which does not have to be specified.  The user need to specify which branch has which 
rate, and the program estimates the unknown rates (such as r1 in the above example; r0 = 1 is the default rate).  
You need to be careful when specifying rates for branches to make sure that all rates can be estimated by the 
model; if you specify too many rate parameters, especially for branches around the root, it may not be 
possible to estimate all of them and you will have a problem with identifiability.  The number of parameters 
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for a binary tree in the local clock model is (n – 1) plus the number of extra rate parameters for branches.  In 
the above tree of 4 species, you have only one extra rate parameter r1, and so the local clock model has (n – 1) 
+ 1 = n = 4 parameters.  The no-clock model has 5 parameters while the global clock has 3 parameters for that 
tree. 

The option clock = 3 implements Andrew Rambaut's TipDate models (Rambaut 2000; see also the 
TipDate program web page at <http://evolve.zps.ox.ac.uk/software/TipDate/main.html>).  For 
viral sequences determined in different years, a global molecular clock can be fitted to the data with the dates 
of sequence determination used in the likelihood calculation.  I have used Andrew's format, which specifies 
the dates at the end of the sequence names; see exampleTipDate.phy, which is the example file in 
Rambaut's package.  This model has one extra parameter (the mutation rate) than the global clock model 
(clock = 1).  Thanks to Andrew for help with the implementation.  

Reconstruction of ancestral sequences 
Nucleotides or amino acids of extinct ancestors can be reconstructed using information of the present-day 
sequences. Parsimony reconstructs ancestral character states by the criterion that the number of changes 
along the tree at the site is minimized. Algorithms based on this criterion were developed by Fitch (1971) and 
Hartigan (1973), and are implemented in the program pamp.  The likelihood approach uses branch lengths 
and the substitution pattern for ancestral reconstruction. It was developed by Yang et al. (1995) and is 
implemented in baseml for nucleotide sequences and in aaml (codeml.c with seqtype = 2) for amino 
acid sequences. Results are collected in the file rst. 

Marginal reconstruction: This approach compares the probabilities of different character assignments to an 
interior node at a site and select the character that has the highest posterior probability (eq. 4 in Yang et al. 
1995). The algorithm implemented in paml works under both the model of a constant rate for all sites and the 
gamma model of rates at sites.  If verbose = 1, the output will include the full probability distribution at each 
node at each site.  

Joint reconstruction: This approach considers the assignment of a set of characters to all interior nodes at a 
site as a reconstruction and select the reconstruction that has the highest posterior probability (eq. 2 in Yang 
et al. 1995).  The implementation in paml now is based on the algorithm of Pupko et al. (2000), which gives 
the best reconstruction at each site and its posterior probability.  The algorithm works under the model of a 
constant rate for sites only and does not work for the gamma model.  (It works under models for multiple 
genes or data partitions as well.  My old algorithm looks at alternatives (sub-optimal reconstructions) 
although it is inefficient and may miss important reconstructions.  I have taken that algorithm out, as well as 
the old option (RateAncestor = 2) of allowing the user to specify the reconstruction to be evaluated.  If you 
need those options, let me know. 

The marginal and joint approaches use slightly different criteria, and none is better than the other.  They are 
expected to produce very similar results; that is, the most probable joint reconstruction for a site should 
almost always consist of characters that are also the best in the marginal reconstruction.  Differences may 
arise when the competing reconstructions have similar probabilities.  Since the marginal reconstruction 
works with models of variable rates among sites, it is recommended for data analysis.  

Analysing large data sets and iteration algorithms for parameter 
estimation 
The maximum likelihood method estimates parameters by maximizing the likelihood function.  This is multi-
dimensional optimisation problem that has to be solved numerically (except for the simplest possible case; 
see Yang 2000).  PAML implements two iteration algorithms.  The first one (method = 0) is a general-purpose 
minimization algorithm that deals with upper and lower bounds for parameters but not general equality or 
inequality constraints.  The algorithm requires first derivatives, which are calculated using the difference 
approximation, and accumulates information about the curvature (second derivatives) during the iteration 
using the BFGS updating scheme.  At each iteration step, it calculates a search direction, and does a one-
dimensional search along that direction to determine how far to go.  At the new point, the process is 

http://evolve.zps.ox.ac.uk/software/TipDate/main.html
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repeated, until there is no improvement in the log-likelihood value, and changes to the parameters are very 
small.  The algorithm updates all parameters including branch lengths simultaneously. 

Another algorithm (method = 1) works if an independent rate is assumed for each branch (clock = 0) (Yang 
submitted).  This algorithm cycles through two phases.  Phase I estimates branch lengths with substitution 
parameters (such as the transition/transversion rate ratio κ and the gamma shape parameter α) fixed.  Phase 
II estimates substitution parameters using the BFGS algorithm, mentioned above, with branch lengths fixed.  
The procedure is repeated until the algorithm converges.  In phase I of the algorithm, branch lengths are 
optimized one at a time.  The advantage of the algorithm is that when the likelihood is calculated for 
different values of one single branch length, as is required when that branch length only is optimised, much 
of likelihood calculations on the phylogeny is the same and can be avoided by storing intermediate results in 
the computer memory.  A cycle is completed after all branch lengths are optimized.  As estimates of branch 
lengths are correlated, several cycles are needed to achieve convergence of all branch lengths in the tree, that 
is, to complete phase I of the algorithm. 

If branch lengths are the only parameters to be estimated, that is, if substitution parameters are fixed, the 
second algorithm (method = 1) is much more efficient.  Thus to perform heuristic tree search using stepwise 
addition, for example, you are advised to fix substitution parameters (such as κ and α).  The second 
algorithm is also more efficient if the data contain many sequences so that the tree has many branch lengths.  

Tip: To get good initial values for large data sets of protein coding DNA sequences, you can use baseml.  
Add the options characters “GC” at the end of the first line in the sequence data file.  Then run the data with 
baseml.  In the result file generated by baseml (say mlb), look for “branch lengths for codon models” and 
copy the tree with branch lengths into the tree file.  Then run codeml and choose “1: initial values” when 
asked about what to do with the branch lengths in the tree. 

 

Tree search algorithms 
One heuristic tree search algorithm implemented in baseml, codonml and aaml is a divisive algorithm, 
called "star-decomposition" by Adachi and Hasegawa (1996a). The algorithm starts from either the star tree 
(runmode = 2) or a multifurcating tree read from the tree structure file (runmode = 1). The algorithm joins 
two taxa to achieve the greatest increase in log-likelihood over the star-like tree. This will reduce the number 
of OTUs by one. The process is repeated to reduce the number of OTUs by one at each stage, until no 
multifurcation exists in the tree. This algorithm works either with or without the clock assumption.  The 
stepwise addition algorithm is implemented with the option runmode = 3. Options runmode = 4 or 5 are 
used for nearest neighbor interchanges , with the intial tree determined with  stepwise addition under the 
parsimony criterion (runmode = 4) or read from the tree structure file (runmode = 5). The results are self-
explanatory.  

Besides the fact that ML calculations are slow, my implementations of these algorithms are crude.  If the data 
set is small (say, with <20 or 30 species), the stepwise addition algorithm (runmode = 3) appears usable.  
Choose clock = 0, and method = 1 to use the algorithm that updates one branch at a time, and fix 
substitution parameters in the model (such as κ and α) so that only branch lengths are optimized.  
Parameters κ and α can be fixed in the tree search using fix_kappa and fix_alpha in the control files.  
Other parameters (such as substitution rates for genes or codon positions or site partitions) cannot be fixed 
this way; they can instead be specified in the file of initial values (in.baseml or in.codeml).  Suppose you 
use a candidate tree to estimate branch lengths and substitution parameters with runmode = 0.  You can then 
move the substitution parameters (but not the branch lengths) into the file of initial values.  You then change 
the following variables for tree search: runmode = 3, method = 1.  The program will use the substitution 
parameters as fixed in the tree search, and optimizes branch lengths only.  It is important that the 
substitution parameters are in the right order in the file; so copy-and-paste from paml output is probably the 
safest.  It is also important that you do not change the parameter specifications in the control file; the control 
file should indicate that you want to estimate the substitution parameters, but when the program detects the 
file of initial values, fixed parameter values are used instead. 
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Simulation 
Computer simulation is a widely used approach to evaluating estimation procedures.  In molecular 
phylogenetics, there are two major methods for simulating sequence data.  The first approach samples data 
at different sites (nucleotide, amino acid, or codon sites) from the multinomial distribution.  Under most 
models of sequence evolution, data at different sites are independently and identically distributed.  This 
approach thus calculates the probability of observing each site pattern, and then sample from sites according 
to those site pattern probabilities.  The number of categories in the multinomial distribution, that is, the 
number of distinct site patterns, is the number of character states raised to the power of the number of 
sequences.  To simulate nucleotide sequences on a tree of 5 species, the multinomial will have 45 = 1024 
categories, and to simulate a pair of codon sequences under the universal code (with 61 sense codons), the 
multinomial will have 612 = 3721 categories.  This approach is faster for simulating data sets on small trees 
but impractical on large trees as the number of categories may be too large. 

A second approach is to generates an ancestral sequence for the root of the tree, and then “evolve” the 
sequence along the tree according to the specified substitution model and using the specified branch lengths 
and substitution parameters.  The evolver program implements this approach.  The ancestral sequence is 
generated according to the equilibrium distribution of the characters, that is, by sampling characters 
repeatedly according to the equilibrium distribution.  The program then evolves the sequence along branches 
of the tree, according to the transition probabilities calculated for each branch.  For site-heterogeneous 
models, the substitution pattern may be different from site to site and the different sites may have different 
transition probabilities.   See, for example, Huelsenbeck (1995) and Yang (1996c), for more details.   

Tips: 

1. For analyzing multiple simulated data sets, it is advisable that you copy the tree topology from the 
Mcbase.dat or Mcaa.dat file into the tree file for baseml or codeml.  Then when you run baseml or codeml, 
the program will ask you what to do about the branch lengths in the tree topology and you choose “using 
them as initial values”.  This should speed up the iteration since the true parameter values should be good 
initial values.  

2. A good test of the simulation as well as the analysis program is to use a small tree to simulate a large data 
set of very long sequences (say 1 million nucleotides or amino acids) and then use baseml or codeml to 
analyse the data to see whether you get estimates very close to the true values.  As ML is consistent, it should 
return the correct values with infinitely long sequences. 

3. Programs baseml and codeml output one line of results for each data set in a file named rst1.  The output 
typically includes the log likelihood, the estimated substitution parameters but not branch lengths.  If you 
can modify the source codes, you can go into baseml.c or codeml.c and search for frst1, and add or remove 
output.  However, this may require familiarity with the program, especially about how the variables are 
arranged during the iteration. 

5  Technical Notes 

This section contains some technical notes for running PAML programs.  Also see the FAQs. 

The rub file recording the progress of iteration 
If you use a large value for the variable noisy (say >2), the programs baseml and codeml will log output to 
the screen, indicating the progress of the iteration process, i.e., the minimization of the negative log-
likelihood. They will also print in the rub file, the size (norm) of the gradient or search direction (h), the 
negative log likelihood, and the current values of parameters for each round of iteration. A healthy iteration 
is indicated by the decrease of both h and the negative log likelihood, and h is particularly sensitive. If you 
run a complicated model hard to converge or analyzing a large data set with hundreds or thousands of 
sequences, you may switch on the output. You can check this file to see whether the algorithm has 
converged. A typical symptom of failure of the algorithm is that estimates of parameters are at the preset 
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boundaries, with values like 2.00000, 5.00000. When method = 1, the output in the rub file lists the log 
likelihood and parameter estimates only.  

How to specify initial values 
You may change values of parameters in the control file such as kappa, alpha, omega, etc. to start the 
iteration from different initial values. Initial values for the second and later trees are determined by the 
program, and so you do not have much control in this way.  

You can collect initial values into a file called in.baseml if you are running baseml or in.codeml if 
you are running codeml. When this file exists, the program will read initial values from it. This may be 
useful if the iteration is somehow aborted, and then you can collect current values of parameters from the file 
rub into this file of initial values, so that the new iteration can have a better start and may converge faster. 
The file of initial values may also be useful if you experience problems with convergence.  If you have 
already obtained parameter estimates before and do not want the program to re-estimate them and only 
want to do some analysis base on those estimates such as reconstructing ancestral sequences, insert -1 before 
the initial values.  

The rub file records the iteration process and has one line for each round of iteration. Each line lists the 
current parameter values after the symbol x; you can copy those numbers into the file of initial values, and if 
you like, change one or a few of the parameter values too.  

Fine-tuning the iteration algorithm 
The iteration algorithm uses the difference approximation to calculate derivatives. This method changes the 
variable (x) slightly, say by a small number e, and see how the function value changes. One such formula is 
df/dx = [f(x + e) − f(x)]/e. The small number e should be small to allow accurate approximation but should not 
be too small to avoid rounding errors. You can change this value by adding a line in the control files 
baseml.ctl or codeml.ctl  

Small_Diff = 1e-6

The iteration is rather sensitive to the value of this variable, and reasonable values are between 1e-5 and 1e-7. 
This variable also affects the calculation of the SE's for parameters, which are much more difficult to 
approximate than the first derivatives. If the calculated SE's are sensitive to slight change in this variable, 
they are not reliable.  

If you compile the source codes, you can also change the lower and upper bounds for parameters. I have not 
put these variables into the control files (See below). 

Adjustable variables in the source codes 
This section is relevant only if you compile the source codes yourself.  The maximum values of certain 
variables are listed as constants in uppercase at the beginning of the main programs (baseml.c, 
basemlg.c, codeml.c). These values can be raised without increasing the memory requirement by too 
much. 

 NS: maximum number of sequences (species) 
 LSPNAME: maximum number of characters in a species name 
 NGENE: maximum number of "genes" in data of multiple genes (option G) 
 NCATG: maximum number of rate categories in the (auto-) discrete-gamma model (baseml.c, 
codeml.c) 

 

You can change the value of LSPNAME.  Other variables that may be changed include the bounds for 
parameters, specified at the beginning of the function testx or SetxBound in the main programs 
(baseml.c and codeml.c). For example, these variables are defined in the function SetxBound in 
codeml.c: 
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double tb[]={.0001,9}, rgeneb[]={0.1,99}, rateb[]={1e-4,999};
double alphab[]={0.005,99}, rhob[]={0.01,0.99}, omegab[]={.001,99};

 

The pairs of variables specify lower and upper bounds for variables (tb for branch lengths, rgeneb for 
relative rates of genes used in multiple gene analysis, alphab for the gamma shape parameter, rhob for the 
correlation parameter in the auto-discrete-gamma model, and omegab for the dN/dS ratio in codon based 
analysis. 

PowerMAC memory allocation problem 
When your data set is large, you may see a message like "oom ", which stands for "out of memory". If you 
think your data set should be manageable by the program/computer, you can change the memory that is 
allowed by the operating system for the program to use. If you select the file name and choose "File-Get 
information", you should see a pop up window. You can increase numbers in this window.  

MS Windows version window auto-close 
Run the Windows version from a DOS/Windows command box by typing the program names such as 
baseml.  Do not run the programs by double clicking on the file names from Windows 95/98/2000/NT 
Explorer.  Otherwise, the window will close automatically when the programs finish or abort and you won't 
have the chance to see any error messages.  
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