
1

Phylogenetic Analysis by Maximum
Likelihood (PAML)

Version 3.1, July 2001

Ziheng Yang

© Copyright 1993 –2001 by Ziheng Yang. The software package is provided "as is" without warranty of any kind. In no
event shall the author be held responsible for any damage resulting from the use of this software, including but not limited

to the frustration that you may experience in using the package. The program package, including source codes, example
data sets, executables, and this documentation, is distributed free of charge for academic use only. Permission is granted
to copy and use programs in the package provided no fee is charged for it and provided that this copyright notice is not

removed.

Suggested citation:

Yang, Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood.
CABIOS 13:555-556 (http://abacus.gene.ucl.ac.uk/software/paml.html).

The author can be reached at
Ziheng Yang

Department of Biology
Galton Laboratory

University College London
4 Stephenson Way
London NW1 2HE

Email: z.yang@ucl.ac.uk
Phone: +44 (20) 7679 5083

Fax: +44 (20) 7383 2048

http://abacus.gene.ucl.ac.uk/
http://abacus.gene.ucl.ac.uk/
http://abacus.gene.ucl.ac.uk/
http://www.ucl.ac.uk/biology/
http://www.gene.ucl.ac.uk/
http://www.ucl.ac.uk/
mailto:z.yang@ucl.ac.uk

2

Table of Contents

0 Recent changes and bug fixes (since 3.0a)... 3
Mgene options for codons and aminos: .. 3

1 Introduction... 3
2 Files in the Package .. 4

Which files are needed? ... 6
3 Using Programs in the Package.. 6

Sequence data format... 6
Tree file and representations of tree topology ... 8
baseml... 9
basemlg .. 12
codeml (codonml and aaml).. 12

Codon sequences (seqtype = 1).. 13
Amino acid sequences (seqtype = 2)... 15

evolver.. 15
yn00 16
mcmctree .. 17

4 Models and Methods ... 18
Nucleotide substitution models ... 18
Codon substitution models ... 19
Amino acid substitution models .. 20
Models for combined analyses of heterogeneous data (multiple

genes or codon positions).. 20
Global and local clocks, and dated sequences.. 21
Reconstruction of ancestral sequences .. 22
Analysing large data sets and iteration algorithms for parameter

estimation .. 22
Tree search algorithms... 23
Simulation.. 24

5 Technical Notes... 24
The rub file recording the progress of iteration... 24
How to specify initial values... 25
Fine-tuning the iteration algorithm ... 25
Adjustable variables in the source codes .. 25
PowerMAC memory allocation problem.. 26
MS Windows version window auto-close .. 26

6 Acknowledgments.. 26
7 References .. 26

3

0 Recent changes and bug fixes (since 3.0a)

(3) 3.0c, 30 October 2000

Changed parameterization of clock models (clock = 1, 2, or 3), so that the output now lists node ages, and the
SEs are for node ages as well. Node ages are measured by the expected number of nucleotide or amino acid
substitutions per site (nucleotide, amino acid, or codon) from the node to the present time, and are
proportional to the divergence times. In earlier versions, the output list proportions.

(2) codonml: problem with NSsites model with multiple gene data (Mgene=1) is now fixed(?). In the earlier
version, the likelihood calculation was o.k., but identification of sites under positive selection was incorrect
as the program attempted to list sites in another gene when it was analyzing data for one gene.

Mgene options for codons and amino acids:
For codons (see Yang 1996 JME; Yang and Swanson in preparation):

Sequence file Control file Parameters across genes

No G Mgene = 0 everything equal
Option G Mgene = 0 the same (k, w) and p, but different cs (proportional branch
lengths)
Option G Mgene = 2 the same (k, w), but different ps and cs
Option G Mgene = 3 the same p , but different (k, w) and cs
Option G Mgene = 4 different (k, w), ps, and cs
Option G Mgene = 1 separate analysis

For amino acids (see Yang 1996 JME for nucleotides):

Sequence file Control file Parameters across genes

No G Mgene = 0 everything equal
Option G Mgene = 0 the same p, but different cs (proportional branch lengths)
Option G Mgene = 2 different ps and cs
Option G Mgene = 1 separate analysis

1 Introduction

PAML is a package of programs for phylogenetic analyses of DNA or protein sequences using maximum
likelihood (ML). The PAML web page explains what the programs can and cannot do, how to download and
compile the programs, and how to report bugs. Those will not be duplicated in this documentation.

The program baseml is for analyzing nucleotide sequences. The program codeml is formed by merging two
old programs: codonml, which implements the codon substitution model of Goldman and Yang (1994) for
protein-coding DNA sequences, and aaml, which implements models for amino acid sequences. These two
are now distinguished by a variable named seqtype in the control file codeml.ctl, that is, 1 for codon
sequences and 2 for amino acid sequences. In this document I use codonml and aaml to mean codeml with
seqtype = 1 and 2, respectively. The programs baseml, codonml, and aaml use similar algorithms to fit
models, the difference being that the unit of evolution in the substitution model, referred to as a "site" in the
sequence, is a nucleotide, a codon, or an amino acid for the three programs, respectively. Markov process
models are used to describe substitutions between nucleotides, codons or amino acids, with substitution rates
assumed to be either constant or variable among sites. A discrete-gamma model (Yang, 1994c) is used in

4

baseml, codonml and aaml to accommodate rate variation among sites, by which rates for sites come from
several (say, four or eight) categories used to approximate the continuous gamma distribution. When rates
are variable at sites, the auto-discrete-gamma model (Yang, 1995) accounts for correlation of rates between
adjacent sites.

The program basemlg implements the continuous gamma model of Yang (1993). It is slow and unfeasible
for data of >6 or 7 species. The discrete-gamma model in baseml is recommended.

General assumptions of the models (programs) are

• Substitutions occur independently in different lineages;
• Substitutions occur independently among sites (except for the auto-discrete-gamma model which

account for correlated substitution rates at neighboring sites);
• The process of substitution is described by a time-homogeneous Markov process. Further

restrictions may be placed on the structure of the rate matrix of the process and lead to different
substitution models;

The process of substitution is stationary. In other words, the frequencies of nucleotides (baseml), codons
(codonml), or amino acids (aaml) have remained constant over the time period covered by the data.

The existence of a molecular clock (rate constancy among lineages) is not necessary but can be imposed.
Variation (and dependence) of rates at sites is allowed by the discrete-gamma (or auto-discrete-gamma)
models implemented in baseml, codonml and aaml.

The sequences must be aligned. If there are alignment gaps, they will either be removed from all sequences
before analysis, with appropriate adjustment to the sequence length (if cleandata = 1), or treated as
ambiguity characters (if cleandata = 0).

Other small programs in the package include evolver for simulating sequence data sets, pamp for
parsimony-based analysis (Yang and Kumar 1996), and yn00 for estimating synonymous and
nonsynonymous substitution rates in pairwise comparisons using the method of Yang and Nielsen (2000).

This document is now mainly an explanation of the control variables in the control files for individual
programs. Topics that seem too complicated to explain there are dealt with in a section in the Chapter
”Models and Methods”.

2 Files in the Package

The following files are included in the package:

Source codes:

baseml.c: various models for nucleotide sequences
codeml.c: models for codon (seqtype = 1) and amino acid (seqtype = 2) sequences
pamp.c: parsimony analyses of nucleotide or amino acid sequences
mcmctree.c: Markov chain Monte Carlo algorithm for Bayes estimation of phylogenies
evolver.c: simulation of sequence data and comparison of trees
basemlg.c: Nucleotide-based model with (continuous) gamma rates among sites
yn00.c: Estimation of dN and dS by the method of Yang and Nielsen (2000)
treesub.c: a few functions
treespace.c: a few more functions
tools.c: my toolkit
tools.h: header file
eigen.c: routines for calculating eigen values and vectors

Compiling commands

Makefile: make file
paml.cc: batch file for compiling PAML using the cc compiler
paml.gcc: batch file for compiling PAML using the GNU gcc compiler

5

paml.acc: batch file for compilation PAML using the SUN acc compiler

Control files:

baseml.ctl: control file for running baseml and basemlg;
codeml.ctl: control file for codeml (i.e., codonml and aaml)
pamp.ctl: control file for pamp
yn00.ctl: control file yn00
mcmctree.ctl: control file for mcmctree

Data files for codeml (see the files for details):

grantham.dat: amino acid distance matrix (Grantham 1974)
miyata.dat: amino acid distance matrix (Miyata et al. 1980)
dayhoff.dat: Empirical amino acid substitution matrix of Dayhoff et al. (1978)
jones.dat: Empirical amino acid substitution matrix of Jones et al. (1992)
wag.dat: Empirical amino acid substitution matrix of Whelan and Goldman (in press)
mtREV24.dat: Empirical amino acid substitution matrix of Adachi and Hasegawa (1996b)
mtmam.dat: Empirical amino acid substitution matrix for mitochondrial proteins of mammals

Data files for evolver (see those small files for details):

MCbase.dat: data file for simulating nucleotide sequences
MCcodon.dat: data file for simulating codon sequences
MCaa.dat: data file for simulating amino acid sequences

Example tree files:

4s.trees: tree structure file for 4-sequence data
5s.trees: tree structure file for 5-sequence data

Documentations:

paml.readme: readme file
paml.html: paml web page, serving also as part of the manual (html file)
pamlDOC.pdf: this document

Example data sets:

Several example data sets are included. They were used in our papers to test new methods, and are
included in the package for error-checking.

brown.nuc: the 895-bp mtDNA data of Brown et al. (1982), used in Yang et al. (1994) and Yang
(1994c) to test models of variable rates among sites.

mtprim9.nuc: mitochondrial segment consisting 888 aligned sites from 9 primate species
(Hayasaka et al. 1988), used by Yang (1994c) to test the discrete-gamma model and Yang (1995) to
test the auto-discrete-gamma models.

abglobin.nuc: the concatenated alpha and beta globin genes, example data for condonml
exampleTipDate.phy (phylip format), exampleTipDate.trees: data set of 17 dengo viral strains

sequenced at different dates from Andrew Rambaut’s TipDate program. This is used for testing
the TipDate models of Rambaut (2000). Run baseml by specifying clock = 3. The results are
included in the file exampleTipDate.rst.

HIVenvSweden.paup (paup* format), HIVenvSweden.trees, HIVenvSweden.ctl: 13 HIV env
genes used by Yang et al. (2000) in developing models of variable selective pressures among sites
(the Nssites models). (Use command: codemlsites HIVenvSweden.ctl)

hummt25.nuc: 25 human D-loop sequences used in Yang and Kumar (1995). Run baseml by
specifying fix_alpha = 0, or run pamp.

lysozymeSmall.nuc, lysozymeSmall.trees, lysozyme.ctl: primate lysozyme genes of
Messier and Stewart 1997, used by Yang (1998) in developing tests of positive selection along
lineages. This is the "small data set" analyzed in that paper. See the control file lysozyme.ctl
for details for specifying the different models. Run the analysis by codeml lysozyme.ctl

stewart.aa, stewart.trees: lysozyme sequences of six mammals (Stewart et al. 1987), used by
Yang et al. (1995) to test methods for reconstructing ancestral amino acid sequences.

abglobin.aa: the concatenated alpha- and beta-globins, translated from abglobin.nuc

6

Which files are needed?

You may copy the executables to a directory containing your data files. Please note that the program
codeml may need some of the data files in the package such as grantham.dat, dayhoff.dat,
jones.dat, wag.dat, mtREV24.dat, or mtmam.dat. You should probably copy these files together.
Other programs do not need such data files apart from the sequence and tree files you specify in the control
file.

Note also that the programs produce result files. Some other files with names rub, lnf, rst, or rates
may also be created. You should not use these names for your files.

3 Using Programs in the Package

Sequence data format
Have a look at the example data files in the package (*.nuc, *.aa, and *.paup). As long as you get your data
file into one of the formats, PAML programs should be able to read it. PAML now has limited support for
the NEXUS file format used by PAUP and MacClade. Only the sequence data or trees are read, and
command blocks are all ignored. PAML does not deal with comment blocks in the sequence data block, so
try to avoid them.

Below is an example of the PHYLIP format (Felsenstein, 1993). The first line contains the number of species
and the sequence length (possibly followed by option characters). With codonml (codeml with seqtype
= 1), the sequence length in the sequence file refers to the number of nucleotides rather than the number of
codons. The only options allowed in the sequence file are I, S, C and G. The sequences may be in either
interleaved format (option I, example data file abglobin.nuc), or sequential format (option S, example data
file brown.nuc). The default option is S. (Option G is used for combined analysis of multiple gene data and
is explained below.) The following is an example data set in the sequential format. It has 4 sequences each of
60 nucleotides.

4 60
sequence 1
AAGCTTCACCGGCGCAGTCATTCTCATAAT
CGCCCACGGACTTACATCCTCATTACTATT
sequence 2
AAGCTTCACCGGCGCAATTATCCTCATAAT
CGCCCACGGACTTACATCCTCATTATTATT
sequence 3
AAGCTTCACCGGCGCAGTTGTTCTTATAAT
TGCCCACGGACTTACATCATCATTATTATT
sequence 4
AAGCTTCACCGGCGCAACCACCCTCATGAT
TGCCCATGGACTCACATCCTCCCTACTGTT

Species names. Do not use special symbols like , : # () in a species name as they may confuse the programs.
The maximum number of characters in a species name (LSPNAME) is specifed at the beginning of the main
programs baseml.c and codeml.c. The default value is 30. In PHYLIP, exactly 10 characters are used for
a species name. To make this discrepancy less a problem, PAML considers two consecutive spaces as the end
of a species name, so that the species name does not have to have exactly 30 (or 10) characters. To make this
rule work, you should not have two consecutive spaces within a species name. For example the above data set
can have the following format too.

4 60

sequence 1 AAGCTTCACCGGCGCAGTCATTCTCATAAT
CGCCCACGGACTTACATCCTCATTACTATT
sequence 2 AAGCTTCACCGGCGCAATTATCCTCATAAT
CGCCCACGGACTTACATCCTCATTATTATT
sequence 3 AAGCTTCACC GGCGCAGTTG TTCTTATAAT

7

TGCCCACGGACTTACATCATCATTATTATT
sequence 4 AAGCTTCACCGGCGCAACCACCCTCATGAT
TGCCCATGGACTCACATCCTCCCTACTGTT

Another thing you can do is to patch a few spaces after the species name in your PHYLIP data file, which will
then be readable by both PHYLIP and PAML.

In a sequence, three special characters ".", "-", and "?" may be used: a dot means the same character as in the
first sequence, a dash means an alignment gap, and a question mark means an undetermined site. Sites at
which at least one sequence involves a "-" or "?" are excluded from all sequences before analysis, with the
sequence length adjusted. For codon sequences, the whole codon is removed. Characters T, C, A, G, U, t, c, a,
g, u are recognized as nucleotides (for baseml, basemlg and codonml), while the standard one-letter
codes (A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V or their lowercase equivalents) are used for
amino acids. Other alphabetic characters cause errors. Non-alphabetic symbols such as ><!"£$%^0123456789
are simply ignored and can be freely used as landmarks. Lines do not have to be equally long and you can
put the whole sequence on one line.

Notes may be placed at the end of the sequence file and will be ignored by the programs.

Option G: This option is for combined analyses of heterogeneous data sets such as data of multiple genes or
data of the three codon positions. The sequences must be concatenated and the option is used to specify
which gene or codon position each site is from.

There are three formats with this option. The first is illustrated by an excerpt of a sequence file listed below.
The example data of Brown et al. (1982) are an 895-bp segment from the mitochondrial genome, which codes
for parts of two proteins (ND4 and ND5) at the two ends and three tRNAs in the middle. Sites in the
sequence fall naturally into 4 classes: the three codon positions and the tRNA coding region. The first line of
the file contains the option character G. The second line begins with a G at the first column, followed by the
number of site classes. The following lines contain the site marks, one for each site in the sequence (or each
codon in the case of codonml). The site mark specifies which class each site is from. If there are g classes,
the marks should be 1, 2, ..., g, and if g > 9, the marks need to be separated by spaces. The total number of
marks must be equal to the total number of sites in each sequence.

5 895 G
G 4
3
123
123
123
123
123
123
123
1231231231231231231231231231231231231
44
44
44
444444444444444444
123
123
123
12312312312312312312312312312312312312312312312312312312312
Human
AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGACTTACATCCTCATTACTATT
CTGCCTAGCAAACTCAAACTACGAACGCACTCACAGTCGCATCATAATC........
Chimpanzee
.........

The second format is useful if the data are concatenated sequences of multiple genes, shown below for an
example data set. This sequence has 1000 nucleotides from 4 genes, obtained from concatenating four genes
with 100, 200, 300, and 400 nucleotides from genes 1, 2, 3, and 4, respectively. The "lengths" for the genes
must be on the line that starts with G, i.e., on the second line of the sequence file. (This requirement allows
the program to determine which of the two formats is being used.) The sum of the lengths for the genes

8

should be equal to the number of nucleotides, amino acids, or codons in the combined sequence for baseml
(or basemlg), aaml, and codonml, respectively.

5 1000 G
G 4 100 200 300 400
Sequence 1
TCGATAGATAGGTTTTAGGGGGGGGGGTAAAAAAAAA.......

The third format applies to protein-coding DNA sequences only (for baseml). You use option characters
GC on the first line instead of G alone. The program will then treat the three codon positions differently in
the nucleotide-based analysis. It is assumed that the sequence length is an exact multiple of three.

5 855 GC

human GTG CTG TCT CCT ...

Tree file and representations of tree topology
A tree structure file is used when runmode = 0 or 1. The file name is specified in the appropriate control file.
Two methods for representing a tree topology are used in PAML.

Parenthesis notation: The first is the familiar parenthesis representation, that is used in virtually every
phylogenetic software. The species can be represented using either their names or their indexes
corresponding to the order of their occurrences in the sequence data file. If species names are used, they have
to match exactly those in the sequence data file (including spaces or strange characters). Branch lengths are
allowed. The following is a possible tree structure file for a data set of four species (human, chimpanzee,
gorilla, and orangutan, occurring in this order in the data file). The first tree is a star tree, while the next four
trees are the same.

4 5 // 4 species, 5 trees
(1234) // the star tree
((12)34) // species 1 and 2 are clustered together
((1,2),3,4) // Commas are needed with more than 9 species
((human,chimpanzee),gorilla,orangutan);
((human:.1,chimpanzee:.2):.05,gorilla:.3,orangutan:.5);

If the tree has branch lengths, some programs may ask you whether you want to use those branch lengths as
fixed and estimate other parameters in the substitution model only. You will then have three options: ignore
the branch lengths, use them as initial values, and fix them and estimate other parameters.

Whether the tree will be considered rooted or unrooted depends on whether a molecular clock is assumed.
Without the clock, the trees are unrooted, and so ((12)34) is the same as (12(34)); with the clock, the trees are
rooted and these two trees are different and both are different from (((12)3)4).

Branch labels: Sometimes (such as the local clock models specified by clock = 2 in baseml and codeml and
codon models with different ωs for branches), we need to label the branches. Branch labels are specified in
the same way as branch lengths except that the symbol preceding the branch label is # or $ rather than :
which indicates a branch length. The branch labels are consecutive integers starting from 0, which is the
default label and does not have to be specified. For example, the following tree

((Hsa_Human, Hla_gibbon) #1, ((Cgu/Can_colobus, Pne_langur), Mmu_rhesus), (Ssc_squirrelM,
Cja_marmoset));

is from the tree file lysozyme.trees, with branch labels for fitting models of different dN/dS ratios (ω) for
branches. The internal branch ancestral to human and gibbon has the ratio ω1 while all other branches have
the background ratio ω0. This fits the model in table 1C for the small data set of lysozyme genes in Yang
(1998). I have found it convenient to create the tree file with labels and read the tree in using Rod page’s
TreeView to check that the tree is right. However, TreeView recognizes labels for internal branches (nodes)
only and do not allow the user to add labels. If you don’t specify the labels in the tree structure, the program
will ask for input from the keyboard. For large trees, this may be hard to use. Another program that you can
use to create branch or node labels is Andrew Rambaut’s TreeEdit, available for the Mac.

http://taxonomy.zoology.gla.ac.uk/rod/rod.html
http://evolve.zoo.ox.ac.uk/software/TreeEdit/main.html

9

If the model requires labelling branches but the tree does not has any branch labels, the program will ask for
input from the keyboard. See the explanations of the variable model for the program codonml.

Representation of tree topology by branches: A second way of representing the tree topology used in
PAML is by enumerating its branches. This is mainly used in the result files for outputting the estimated
branch lengths. For example, the tree ((12)34) is specified by its 5 branches:

5 6, 6 1, 6 2, 5 3, 5 4

The nodes in a tree are marked with consecutive natural numbers, with 1, 2, ..., s representing the s known
sequences, in the same order as in the data. A number larger than s means an interior node, at which the
sequence is unknown. In case some sequences in the data are ancestral to some others, this method is
convenient. To use this format in the tree structure file, give the number of branches, and then the branches
as specified by the end nodes. For example, the tree in the following 5s.trees file has 4 branches, with
taxon 5 to be the common ancestor of taxa 1, 2, 3, and 4:

5 1
4 5 1 5 2 5 3 5 4

baseml
The default control file for baseml is baseml.ctl, and an example is shown below. Note that spaces are
required on both sides of the equal sign, and blank lines or lines beginning with "*" are treated as comments.
Options not used can be deleted from the control file.

seqfile = brown.nuc * sequence data file name
outfile = mlb * main result file
treefile = brown.trees * tree structure file name

noisy = 3 * 0,1,2,3: how much rubbish on the screen
verbose = 0 * 1: detailed output, 0: concise output
runmode = 0 * 0: user tree; 1: semi-automatic; 2: automatic

* 3: StepwiseAddition; (4,5):PerturbationNNI

model = 4 * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85, 5:TN93, 6:REV, 7:UNREST
Mgene = 0 * 0:rates, 1:separate; 2:diff pi, 3:diff kapa, 4:all diff

fix_kappa = 0 * 0: estimate kappa; 1: fix kappa at value below
kappa = 2.5 * initial or fixed kappa

fix_alpha = 1 * 0: estimate alpha; 1: fix alpha at value below
alpha = 0. * initial or fixed alpha, 0:infinity (constant rate)
Malpha = 0 * 1: different alpha's for genes, 0: one alpha
ncatG = 5 * # of categories in the dG, AdG, or nparK models of rates

fix_rho = 1 * 0: estimate rho; 1: fix rho at value below
rho = 0. * initial or fixed rho, 0:no correlation

nparK = 0 * rate-class models. 1:rK, 2:rK&fK, 3:rK&MK(1/K), 4:rK&MK

clock = 0 * 0:no clock, 1:clock; 2:local clock; 3:TipDate
nhomo = 0 * 0 & 1: homogeneous, 2: kappa for branches, 3: N1, 4: N2
getSE = 0 * 0: don't want them, 1: want S.E.s of estimates

RateAncestor = 0 * (0,1,2): rates (alpha>0) or ancestral states

Small_Diff = 9e-6
* cleandata = 1 * remove sites with ambiguity data (1:yes, 0:no)?
* ndata = 1

method = 0 * 0: simultaneous; 1: one branch at a time

The control variables are described below.

seqfile, outfile, and treefile specifies the names of the sequence data file, main result file, and the
tree structure file, respectively.

noisy controls how much output you want on the screen. If the model being fitted involves much
computation, you can choose a large number for noisy to avoid loneliness. verbose controls how much
output in the result file.

10

runmode = 0 means evaluation of the tree topologies specified in the tree structure file, and runmode = 1
or 2 means heuristic tree search by the star-decomposition algorithm. With runmode = 2, the algorithm
starts from the star tree, while if runmode = 1, the program will read a multifurcating tree from the tree
structure file and try to estimate the best bifurcating tree compatible with it. runmode = 3 means stepwise
addition. runmode = 4 means NNI perturbation with the starting tree obtained by a parsimony algorithm,
while runmode = 5 means NNI perturbation with the starting tree read from the tree structure file. The tree
search options do not work well, and so use runmode = 0 as much as you can. For relatively small data set,
the stepwise addition algorithm seems usable.

model specifies the model of nucleotide substitution.

Mgene is used in combination with option G in the sequence data file, for combined analysis of data from
multiple genes or the three codon positions. More details are given later in the Models and Methods section.
Choose 0 if option G is not used in the data file.

fix_kappa specifies whether κ in K80, F84, or HKY85 is given at a fixed value or is to be estimated by
iteration from the data. If fix_kappa = 1, the value of another variable, kappa, is the given value, and
otherwise the value of kappa is used as the initial estimate for iteration. The variables fix_kappa and
kappa have no effect with JC69 or F81 which does not involve such a parameter, or with TN93 and REV
which have two and five rate parameters respectively, when all of them are estimated from the data.

fix_alpha and alpha work in a similar way, where alpha refers to the shape parameter α of the
gamma distribution for variable substitution rates across sites (Yang 1994c). The model of a single rate for all
sites is specified as fix_alpha = 1 and alpha = 0 (0 means infinity), while the (discrete-) gamma model is
specified by a positive value for alpha, and ncatG is then the number of categories for the discrete-gamma
model (baseml).

fix_rho and rho work in a similar way and concern independence or correlation of rates at adjacent sites,
where ρ (rho) is the correlation parameter of the auto-discrete-gamma model (Yang 1995). The model of
independent rates for sites is specified as fix_rho = 1 and rho = 0; choosing alpha = 0 further means a
constant rate for all sites. The auto-discrete-gamma model is specified by positive values for both alpha and
rho. The model of a constant rate for sites is a special case of the (discrete) gamma model with α = ∞
(alpha = 0), and the model of independent rates for sites is a special case of the auto-discrete-gamma model
with ρ = 0 (rho = 0).

nparK specifies nonparametric models for variable and Markov-dependent rates across sites: nparK = 1 or
2 means several (ncatG) categories of independent rates for sites, while nparK = 3 or 4 means the rates are
Markov-dependent at adjacent sites; nparK = 1 and 3 have the restriction that each rate category has equal
probability while nparK = 2 and 4 do not have this restriction (Yang, 1995). The variable nparK takes
precedence over alpha or rho.

clock specifies models concerning rate constancy among lineages. clock = 0 means no clock. clock = 1
means the global clock. clock = 2 implements local clock models (Yoder and Yang 2000), which assumes
that branches in the phylogeny conform with the clock assumption and has the default rate (r0 = 1) except for
several pre-defined branches which have different rates. Rates for branches are specified using branch marks
in the tree file. If you choose noisy = 9, the program will ask for a reference (calibration) node and date and
calculate dates for other nodes. clock = 3 implements Rambaut (2000)'s TipDate models. Evolution
conforms to a global clock but sequences in the data are determined at different dates. The dates are
specified at the end of the sequence names, based on Andrew's format. This model has one extra parameter
(the mutation rate) than the global clock model (clock = 1).

nhomo is for baseml only, and concerns the frequency parameters in the F81, F84, HKY85, TN93, or REV
models. The option nhomo = 1 fits a homogeneous model, but estimates the frequency parameters (πT, πC
and πA; πG is not a free parameter as the frequencies sum to 1) by maximum likelihood iteration. Normally
(nhomo = 0) these are estimated by the averages of the observed frequencies. In both cases, you should count
3 free parameters for the base frequencies. The options nhomo = 3 or 4, in combination with F84 or HKY85,
fit nonhomogeneous models of Yang and Roberts (1995). Substitutions are assumed to follow the pattern of
F84 or HKY85, but with different frequency parameters assigned for different branches in the tree, to allow
for unequal base frequencies in different sequences. The position of the root then makes a difference to the

11

likelihood, and rooted trees are used. Because of the parameter richness, the model may only be used with
small data sets when base frequencies are drastically different in different sequences. Choose fix_kappa =
1, which means one common κ is assumed for all branches. The option nhomo = 4 assigns one set of
frequency parameters for each node, which are the parameters for the rate matrix along the branch leading to
the node or are the initial distribution if the node is the root of the tree. In the output, estimates of the
frequency parameters are shown in the order of nodes n + 1, n + 2,, where n is the number of sequences.

nhomo = 2 uses one transition/transversion rate ratio (κ) for each branch in the tree for the K80, F84, and
HKY85 models (Yang 1994b; Yang and Yoder 1999).

getSE tells whether we want estimates of the standard errors of estimated parameters. These are crude
estimates, calculated by the curvature method, i.e., by inverting the matrix of second derivatives of the log-
likelihood with respect to parameters. The second derivatives are calculated by the difference method, and
are not always reliable. Even if this approximation is reliable, tests relying on the SE's should be taken with
caution, as such tests rely on the normal approximation to the maximum likelihood estimates. The likelihood
ratio test should always be preferred. The option is not available and choose getSE = 0 when tree-search
is performed.

RateAncestor = 1 also works with runmode = 0 only. For models of variable rates across sites, the
program will calculate rates for sites along the sequence (output in the file rates) and performs marginal
ancestral reconstruction (output in rst). For models of one rate for all sites, RateAncestor = 1 does both
marginal and joint ancestral sequence reconstruction. The program lists results site by site. You can also use
the variable verbose to control the amount of output. If you choose verbose = 0, the program will list the
best nucleotide at each node for the variable sites only and results for constant sites are suppressed. If
verbose = 1, the program will list all sites for the best nucleotide at each node. If verbose = 2, the
program also lists the full posterior probability distribution for each site at each ancestral node (for marginal
reconstruction).

For nucleotide based (baseml) analysis of protein coding DNA sequences (option GC in the sequence data
file), I have added the calculation of posterior probabilities of ancestral amino acids. In this analysis, branch
lengths and other parameters are estimated under a nucleotide substitution model, but the reconstructed
nucleotide triplets are examined to infer the most likely amino acid encoded by the triplet. Posterior
probabilities for stop codons are small and reset to zero to scale the posterior probabilities for amino acids.
To use this option, you need add the control variable icode in the control file baseml.ctl. This is not
listed in the above. The variable icode can take a value out of 0, 1, ..., 10, corresponding to the 11 genetic
codes included in paml (See the control file codeml.ctl for the definition of different genetic codes). A
nucleotide substitution model that is very close to a codon-substitution model can be specified as follows.
You add the option characters GC at the end of the first line in the data file and choose model = 4 (HKY85)
and Mgene = 4. The model then assumes different substitution rates, different base frequencies, and different
transition/transversion rate ratio (kappa) for the three codon positions. Ancestral reconstruction from such a
nucleotide substitution should be very similar to codon-based reconstruction. (Thanks to Belinda Change for
many useful suggestions.)

Small_Diff is a small value used in the difference approximation of derivatives.

cleandata = 1 means sites involving ambiguity characters or alignment gaps are removed from all
sequences. This leads to faster calculation. cleaddata = 0 (default) uses those sites.

method : This variable controls the iteration algorithm for estimating branch lengths under a model of no
clock. method = 0 implements the old algorithm in PAML, which updates all parameters including branch
lengths simultaneously. method = 1 specifies an algorithm newly implemented in PAML, which updates
branch lengths one by one. method = 1 does not work under the clock models (clock = 1, 2, 3).

ndata: specifies the number of separate data sets in the file. This variable is useful for simulation. You can
use evolver to generate 200 replicate data sets, and then set ndata = 200 to use baseml to analyze them.

Output: The output should be self-explanatory. Descriptive statistics are always listed. The observed site
patterns and their frequencies are listed, together with the proportions of constant patterns. Nucleotide
frequencies for each species (and for each gene in case of multiple gene data) are counted and listed. lmax =
ln(Lmax) is the upper limit of the log likelihood and may be compared with the likelihood for the best (or

12

true) tree under the substitution model to test the model's goodness of fit to data (Goldman, 1993a). You can
ignore it if you don’t know what it means.

With getSE = 1, the S.E.s are calculated as the square roots of the large sample variances and listed exactly
below the parameter estimates. Zeros on this line mean errors, either caused by divergence of the algorithm
or zero branch lengths. The S.E.ís of the common parameters measure the reliability of the estimates. For
example, (κ - 1)/SE(κ), when κ is estimated under K80, can be compared with a normal distribution to see
whether there is real difference between K80 and JC69. The test can be more reliably performed by
comparing the log-likelihood values under the two models, using the likelihood ratio test. It has to be
stressed that the S.E.’s of the estimated branch lengths should not be misinterpreted as an evaluation of the
reliability of the estimated tree topology (e.g., Yang, 1994b, Goldman and Yang, 1994).

If the tree file has more than one tree, the programs baseml and codeml will calculate the bootstrap
proportions using the RELL method (Kishino and Hasegawa 1989), as well as the method of Shimodaira and
Hasegawa (1999) with a correction for multiple comparison. The bootstrap resampling accounts for possible
data partitions (option G in the sequence data file). I did not bother to deal with ties, so if you include the
same tree in the tree file more than once, you need to adjust the proportions for those trees yourself. The
program rell, included in earlier versions, is now removed.

basemlg
basemlg uses the same control file baseml.ctl, as baseml. Tree-search or the assumption of a
molecular clock are not allowed and so choose runmode = 0 and clock = 0. Substitution models available
for basemlg are JC69, F81, K80, F84 and HKY85, and a continuous gamma is always assumed for rates at
sites. The variables ncatG, given_rho, rho, nhomo have no effect. The S.E.'s of parameter estimates
are always printed out because they are calculated during the iteration, and so getSE has no effect.

Because of the intensive computation required by basemlg, the discrete-gamma model implemented in
baseml is recommended for data analysis. If you choose to use basemlg, you should run baseml first, and
then run basemlg. This allows baseml to collect initial values into a file named in.basemlg, for use
by basemlg. Note that basemlg implements only a subset of models in baseml.

codeml (codonml and aaml)
Since the codon based analysis and the amino acid based analysis use different models, and some of the
control variables have different meanings, it may be a good idea to use different control files for codon and
amino acid sequences. The default control file for codeml is codeml.ctl, as shown below.

seqfile = stewart.aa * sequence data file name
outfile = mlc * main result file name
treefile = stewart.trees * tree structure file name

noisy = 9 * 0,1,2,3,9: how much rubbish on the screen
verbose = 0 * 1: detailed output, 0: concise output
runmode = 0 * 0: user tree; 1: semi-automatic; 2: automatic

* 3: StepwiseAddition; (4,5):PerturbationNNI; -2: pairwise

seqtype = 2 * 1:codons; 2:AAs; 3:codons-->AAs
CodonFreq = 2 * 0:1/61 each, 1:F1X4, 2:F3X4, 3:codon table

aaDist = 0 * 0:equal, +:geometric; -:linear, 1-6:G1974,Miyata,c,p,v,a
aaRatefile = wag.dat * only used for aa seqs with model=empirical(_F)

* dayhoff.dat, jones.dat, wag.dat, mtmam.dat, or your own

model = 2
* models for codons:

* 0:one, 1:b, 2:2 or more dN/dS ratios for branches
* models for AAs or codon-translated AAs:

* 0:poisson, 1:proportional,2:Empirical,3:Empirical+F
* 6:FromCodon, 7:AAClasses, 8:REVaa_0, 9:REVaa(nr=189)

NSsites = 0 * 0:one w;1:neutral;2:selection; 3:discrete;4:freqs;
* 5:gamma;6:2gamma;7:beta;8:beta&w;9:betaγ
* 10:beta&gamma+1; 11:beta&normal>1; 12:0&2normal>1;
* 13:3normal>0

13

icode = 0 * 0:universal code; 1:mammalian mt; 2-10:see below
Mgene = 0 * 0:rates, 1:separate;

fix_kappa = 0 * 1: kappa fixed, 0: kappa to be estimated
kappa = 2 * initial or fixed kappa

fix_omega = 0 * 1: omega or omega_1 fixed, 0: estimate
omega = .4 * initial or fixed omega, for codons or codon-based AAs

fix_alpha = 1 * 0: estimate gamma shape parameter; 1: fix it at alpha
alpha = 0. * initial or fixed alpha, 0:infinity (constant rate)
Malpha = 0 * different alphas for genes
ncatG = 3 * # of categories in dG of NSsites models

fix_rho = 1 * 0: estimate rho; 1: fix it at rho
rho = 0. * initial or fixed rho, 0:no correlation

clock = 0 * 0:no clock, 1:clock; 2:local clock; 3:TipDate
getSE = 0 * 0: don't want them, 1: want S.E.s of estimates

RateAncestor = 0 * (0,1,2): rates (alpha>0) or ancestral states (1 or 2)

Small_Diff = .5e-6
* cleandata = 0 * remove sites with ambiguity data (1:yes, 0:no)?
* ndata = 10

method = 0 * 0: simultaneous; 1: one branch at a time

The variables seqfile, outfile, treefile, noisy, Mgene, fix_alpha, alpha, Malpha,
fix_rho, rho, clock, getSE, RateAncestor, Small_Diff, cleandata, ndata, and method
are used in the same way as in baseml.ctl and are described in the previous section. The variable
seqtype specifies the type of sequences in the data; seqtype = 1 means codon sequences (the program is
then codonml); 2 means amino acid sequences (the program is then aaml); and 3 means codon sequences
which are to be translated into proteins for analysis.

Codon sequences (seqtype = 1)

CodonFreq specifies the equilibrium codon frequencies in codon substitution model. These frequencies can
be assumed to be equal (1/61 each for the standard genetic code, CodonFreq = 0), calculated from the
average nucleotide frequencies (CodonFreq = 1), from the average nucleotide frequencies at the three
codon positions (CodonFreq = 2), or used as free parameters (CodonFreq = 3). The number of
parameters involved in those models of codon frequencies is 0, 3, 9, and 60 (under the universal code), for
CodonFreq = 0, 1, 2, and 3 respectively.

aaDist specifies whether equal amino acid distances are assumed (= 0) or Grantham's matrix is used (= 1)
(Yang et al. 1998).

runmode = -2 performs ML estimation of dS and dN in pairwise comparisons. The program will collect
estimates of dS and dN into the files 2ML.dS and 2ML.dN. Since many users seem interested in looking at
dN/dS ratios among lineages, examination of the tree shapes indicated by branch lengths calculated from the
two rates may be interesting although the analysis is ad hoc. If your species names have no more than 10
characters, you can use the output distance matrices as input to Phylip programs such as neighbor without
change. Otherwise you need to edit the files to cut the names short.

The variable model concerns assumptions about the dN/dS rate ratios (or the ω parameters) among branches
(Yang 1998; Yang and Nielsen 1998). model = 0 means one dN/dS ratio for all lineages (branches), 1 means
one ratio for each branch (the free-ratio model), and 2 means an arbitrary number of ratios (such as the 2-
ratios or 3-ratios models). When model = 2, you may specify the ω ratios for branches using branch labels
(see the section on tree structure file). This option seems rather easy to use. Otherwise, the program will ask
the user to input a branch mark for the dN/dS ratio assumed for each branch. This should be an integral
number between 0 to k - 1 if k different dN/dS ratios (ω0 - ωk - 1) are assumed for the branches of the tree. This
process may be frustrating if the tree is not very small. I run the program first to let it output the tree
topology using the branch representation on the screen. I then prepare the branch labels in a file, say, in.
Finally I run the program using redirection so that it will read the input from the prepared file

14

codeml < in

Redirection is not permitted on a MAC, but you can prepare the branch labels in a file and then copy and
paste them into the session running the program. Furthermore, under this model, the variable fix_omega
fixes the lastdN/dS ratio (ωk - 1) at the value of omega specified in the file. This option can be used to test, for
example, whether the ratio for a specific lineage is significantly different from one. It should, however, be
noted that it is not proper to use the option model = 1 to estimate dN/dS ratios for all branches to find out
which ratios are greater than one, and then to use model = 2 to test whether that difference is significant. This
way the hypothesis is derived from the data and is tested using the same data. As a result, you tend to get
significant results too often. Check the example data file lysozymeSmall.nuc and the control file
lysozyme.ctl and try to reproduce results published in Yang (1998).

Nssites specifies models that allow the dN/dS ratio (ω) to vary among sites (Nielsen and Yang 1998; Yang
et al. 2000). Nssites = m corresponds to model Mm in Yang et al. (2000). The variable ncatG is used to
specify the number of categories in the ω distribution under some models. The values of ncatG used to
perform our analyses are 3 for M3 (discrete), 5 for M4 (freq), 10 for the continuous distributions (M5: gamma,
M6: 2gamma, M7: beta, M8:beta&w, M9:beta&gamma, M10: beta&gamma+1, M11:beta&normal>1, and
M12:0&2normal>1, M13:3normal>0). This means M8 will have 11 site classes (10 from the beta distribution
plus 1 additional class). The posterior probabilities for site classes as well as the expected ω values for sites
are listed in the file rst, which may be useful to pinpoint sites under positive selection, if they exist. To
make it easy to run several Nssites models in one go, I compiled the executable codemlsites, which asks
you how many and which models to run at the start of the program. The number of categories used will
then match those used in Yang et al. (2000). The HIV env data set used in Yang et al. (2000) is included in the
package. Try

codemlsites HIVenvSweden.ctl

and duplicate our analysis of the 4 models, M0, 1, 2, 3, by

4 0 1 2 3

As noted in that paper, some of the models are hard to use, including M12 and M13. Recommended models
are 0 (one-ratio), 1 (neutral), 2 (selection), 3 (discrete), 7 (beta), and 8 (beta&ω). Some of the models like M2
and M8 are noted to be prone to the problem of multiple local optima. You are advised to run the program at
least twice, once with a starting omega value <1 and a second time with a value > 1, and use the results
corresponding to the highest likelihood.

The continuous neutral and selection models of Nielsen and Yang (1998) are not implemented in the
program.

icode specifies the genetic code. About a dozen genetic code tables are implemented. These are 0 for the
universal code; 1 for the mammalian mitochondrial code; 3 for mold mt., 4 for invertebrate mt.; 5 for ciliate
nuclear code; 6 for echinoderm mt.; 7 for euplotid mt.; 8 for alternative yeast nuclear; 9 for ascidian mt.; and
10 for blepharisma nuclear. icode = 0 to 10 correspond to transl_table 1 to 11 in GenBank.

RateAncestor: For codon sequences, ancestral reconstruction is not implemented for the models of variable
dN/dS ratios among sites. The output under codon-based models usually shows the encoded amino acid for
each codon. The output under "Prob of best character at each node, listed by site" has two posterior
probabilities for each node at each codon (amino acid) site. The first is for the best codon. The second, in
parentheses, is for the most likely amino acid under the codon substitution model. This is a sum of posterior
probabilities across synonymous codons. In theory it is possible although rare for the most likely amino acid
not to match the most likely codon.

Output for codon sequences (seqtype = 1): The codon frequencies in each sequence are counted and listed
in a genetic code table, together with their sums across species. Each table contains six or fewer species. For
data of multiple genes (option G in the sequence file), codon frequencies in each gene (summed over species)
are also listed. The nucleotide distributions at the three codon positions are also listed. The method of Nei
and Gojobori (1986) is used to calculate the number of synonymous substitutions per synonymous site (dS)
and the number of nonsynonymous substitutions per nonsynonymous site (dN) and their ratio (dN/dS). These
are used to construct initial estimates of branch lengths for the likelihood analysis but are not MLEs

15

themselves. Note that the estimates of these quantities for the a- and b-globin genes shown in Table 2 of
Goldman and Yang (1994), calculated using the MEGA package (Kumar et al., 1993), are not accurate.

Results of ancestral reconstructions (RateAncestor = 1) are collected in the file rst. Under models of
variable dN/dS ratios among sites (NSsites models), the posterior probabilities for site classes as well as
positively selected sites are listed in rst.

Amino acid sequences (seqtype = 2)

model specifies the model of amino acid substitution: 0 for the Poisson model assuming equal rates for any
amino acid substitutions (Bishop and Friday, 1987); 1 for the proportional model in which the rate of change
to an amino acid is proportional to the frequency of that amino acid. Model = 2 specifies a class of empirical
models, and the empirical amino acid substitution rate matrix is given in the file specified by aaRatefile.
Files included in the package are for the empirical models of Dayhoff et al. (1978) (dayhoff.dat), Jones et al.
1992 (jones.dat) (see Kishino et al., 1990 for the construction), and Whelan and Goldman (wag.dat). The
file mtmam.dat has a matrix for mitochondrial proteins estimated by maximum likelihood from a data set of
20 mammals. The mtREV24 model of the MOLPHY package is also provided (the file mtREV24.dat). These
two are similar, and the difference is that the former is derived from proteins from mammals only while the
latter came from more-diverse species including chicken, fish, frog, and lamprey. Due to differences in the
implementation, you may see small differences in log-likelihood values and branch lengths between aaml
and protml in the MOLPHY package. Such differences are normal and you should use the same program to
compare different trees. Under the mtREV24 model, the two programs should give almost identical results.

If you want to specify your own substitution rate matrix, have a look at one of those files, which has notes
about the file structure. Other options for amino acid substitution models should be ignored. To summarize,
the variables model, aaDist, CodonFreq, NSsites, and icode are used for codon sequences (seqtype =
1), while model, alpha, and aaRatefile are used for amino acid sequences.

runmode also works in the same way as in baseml.ctl. Specifying runmode = -2 will forces the program to
calculate the ML distances in pairwise comparisons. You can change the following variables in the control
file codeml.ctl: aaRatefile, model, and alpha.

If you do pairwise ML comparison (runmode = -2) and the data contain ambiguity characters or alignment
gaps, the program will remove all sites which have such characters from all sequences before the pairwise
comparison if cleandata = 1. This is known as "complete deletion". It will remove alignment gaps and
ambiguity characters in each pairwise comparsion ("pairwise" deletion) if cleandata = 0. (In a likelihood
analysis of multiple sequences on a phylogeny, alignment gaps are treated as ambiguity characters if
cleandata = 0, and both alignment gaps and ambiguity characters are deleted if cleandata = 1. Note that
removing alignment gaps and treating them as ambiguity characters both underestimate sequence
divergences. Ambiguity characters in the data (cleandata = 0) make the likelihood calculation slower.

Output for amino acid sequences (seqtype = 2): The output file is self-explanatory and very similar to the
result files for the nucleotide- and codon-based analyses. The empirical models of amino acid substitution
(specified by dayhoff.dat, jones.dat, wag.dat, mtmam.dat, or mtREV24.dat) do not involve any parameters in
the substitution rate matrix. When RateAncestor = 1, results for ancestral reconstruction are in the file
rst. Calculated substitution rates for sites under models of variable rates for sites are in rates.

evolver
The program evolver simulates nucleotide, codon, and amino acid sequences with user-specified tree
topology and branch lengths. The user specifies the substitution model and parameters. The program
generates multiple data sets in one file in either PAML (output mc.paml) or PAUP* (output mc.paup)
format. If you choose the PAUP* format, the program will look for files with the following names:
paupstart (which the program copies to the start of the data file), paupblock (which the program copies
to the end of each simulated data set), and paupend (which the program incorporates at the end of the file.
This makes it possible to use PAUP* to analyze all data sets in one run. Parameters for simulation are
specified in three files: MCbase.dat, MCcodon.dat, and MCaa.dat for simulating nucleotide, codon, and
amino acid sequences, respectively. Run the default options while watching out for screen output. Then

16

have a look at the appropriate .dat files. As an example, the MCbase.dat file is reproduced below, with
some notes. Note that the first block of the file has the inputs for evolver, while the rest is notes. The tree
length is the expected number of substitutions per site along all branches in the phylogeny, calculated as the
sum of the branch lengths. This variable was introduced when I was doing simulations to evaluate the effect
of sequence divergence while keeping the shape of the tree fixed. evolver will scale the tree so that the
branch lengths sum up to the specified tree length. If you use –1 for the tree length, the program will use the
branch lengths given in the tree. In the example, the sum of branch lengths is 1.12, and so using either 1.12 or
–1 for the tree length has the same effect. Also note that the base frequencies have to be in a fixed order; this
is the same for the amino acid and codon frequencies in MCaa.dat and MCcodon.dat.

0
234567
4 200 2
-1
((1:.1, 2:.2):.12, 3:.3, 4:.4);
6
1 2 3 4 5
.5 4

0.25 0.25 0.25 0.25
T C A G (fixed order)

==
The rest of this data file are notes, ignored by the program evolver.
evolver simulates nucleotide sequences under the REV+Gamma model
and its simpler forms.
The variables in this file are defined below:

==
<format,0=paml,1=paup>
<random number seed>
<# seqs> <# nucleotide sites> <# replicates>
<tree length, use -1 if tree has absolute branch lengths>
<tree with relative branch lengthes>
<model: 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85, 5:TN93, 6:REV>
<kappa or rate parameters in model>
<alpha> <#categories for discrete gamma>
<base frequencies>
==

The simulation options (5, 6, 7) of evolver can be run using a command line format. So here are all the
possible ways of running evolver:

evolver
evolver 5 MyMCbaseFile
evolver 6 MyMCcodonFile
evolver 7 MyMCaaFile

This evolver program evolved from the old boring program listtree and still has the options for listing all
trees for a specified small number of species, and for generating random trees from a model of cladogenesis,
the birth-death process with species sampling (Yang and Rannala, 1997). It also has an option for calculating
the partition distance between tree topologies.

yn00
The program yn00 implements the method of Yang and Nielsen (2000) for estimating synonymous and
nonsynonymous substitution rates between two sequences (dS and dN). The method of Nei and Gojobori
(1986) is also included. The ad hoc method implemented in the program accounts for the
transition/transversion rate bias and codon usage bias, and is an approximation to the ML method
accounting for the transition/transversion rate ratio and assuming the F3x4 codon frequency model. We
recommend that you use the ML method (runmode= -2, CodonFreq = 2 in codeml.ctl) as much as
possible even for pairwise sequence comparison.

seqfile = abglobin.nuc * sequence data file name
outfile = yn * main result file
verbose = 0 * 1: detailed output (list sequences), 0: concise output

17

icode = 0 * 0:universal code; 1:mammalian mt; 2-10:see below
weighting = 0 * weighting pathways between codons (0/1)?
commonf3x4 = 0 * use one set of codon freqs for all pairs (0/1)?

The control file yn00.ctl, an example of which is shown above, specifies the sequence data file name
(seqfile), output file name (outfile), and the genetic code (icode). Sites (codons) involving alignment
gaps or ambiguity nucleotides in any sequence are removed from all sequences. The variable weighting
decides whether equal weighting or unequal weighting will be used when counting differences between
codons. The two approaches will be different for divergent sequences, and unequal weighting is much
slower computationally. The transition/transversion rate ratio κ is estimated for all sequences in the data file
and used in subsequent pairwise comparisons. I hope to add an option to allow κ to be estimated for each
pair. commonf3x4 specifies whether codon frequencies (based on the F3x4 model of codonml) should be
estimated for each pair or for all sequences in the data. Besides the main result file, the program also
generates three distance matrices: 2YN.dS for synonymous rates, 2YN.dN for nonsynonymous rates, 2YN.t
for the combined codon rate (t is measured as the number of nucleotide substitutions per codon). It should
be possible to use those files directly with distance programs such as NEIGHBOR in Felesenstein's PHYLIP
package.

mcmctree
The program mcmctree performs Bayesian estimation of phylogenies (Rannala and Yang, 1996; Yang and
Rannala, 1997). The birth-death process with species sampling is used to specify the prior distribution of
phylogenies ("labeled histories", which are rooted tree topologies with the interior nodes ordered according
their associated speciaiton times), and the posterior probabilities of the labeled histories are compared to
select the maximum posterior probability tree. The program implementing the method of Rannala and Yang
(1996) is not distributed as the algorithm involves extensive computation. Instead, mcmctree implements a
refined method (Yang and Rannala 1997), which uses Markov chain Monte Carlo to select candidate labeled
histories, and Monte Carlo integration to integrate over the distribution of the ancestral speciation times.

The default control file name is mcmctree.ctl, and a sample copy is shown below.

seqfile = mtprim9.nuc * sequence data file name
outfile = mcmctree.out * main result file name
treefile = 9s.trees * tree structure file name
LHfile = Lhs * LH file name. read (MCMC=0) or overwritten (MCMC=1)
MCMC = 0 *0: read LHs from LHfile, 1: use MCMC to generate Lhs
beta = 0.15 * prob{change labeled history}, used only if MCMC=1

delta0 = 1 * small number for MCMC, used only if MCMC=1
delta1 = .2 * smaller number for comparing candidate LHs

model = 2 * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85

kappa = 2. * given kappa and omega in GY94.
alpha = 0 * given alpha, 0:infinity
ncatG = 8 * # of categories in the dG or AdG models of rates

hierarch = 0 * 1:hierarchical; 0:empirical Bayes analysis
birth = 6.7 * lineage birth rate
death = 2.5 * lineage death rate
sample = .06 * sampling proportion
mutate = .24 * mutation rate (# of mutations from root to present)

The variables seqfile, outfile, treefile, model, kappa, alpha, and ncatG are defined as in
baseml.ctl for program baseml. The program first collects a set of candidate labeled histories. If MCMC = 0,
the candidate labelled histories are read from the file LHfile, while if MCMC = 1, they are generated from the
Markov chain Monte Carlo, with the Monte Carlo integration over ancestral speciation times evaluated at a
low accuracy level (controled by delta0). The program then calculates the (relative) posterior probabilities
of these candidate labelled histories, with the Monte Carlo integration evaluated at a higher accuracy level
(controlled by delta1). The Markov chain moves with probability beta to another labelled history of the
same tree topology, or to a labelled history of a different tree topology through a nearest neighbor
interchange. hierarch controls whether an empirical Bayes analysis or a hierarchical Bayes analysis is to be
performed. birth, death, and sample are parameters of the prior distribution specified by the birth-death
process with species sampling.

18

4 Models and Methods

This section provides some background information about the analysis that the programs in the paml
package perform.

Nucleotide substitution models
Markov process models of nucleotide substitution implemented in PAML include JC69 (Jukes and Cantor,
1969), K80 (Kimura, 1980), F81 (Felsenstein, 1981), F84 (Felsenstein, DNAML program since 1984, PHYLIP
Version 2.6), HKY85 (Hasegawa et al., 1985), Tamura and Nei (1993), and REV (Yang, 1994a). The rate
matrices of these models are given below

JC69 : Q =



















.111
1.11
11.1
111.

K80 : Q =



















.11
.11

11.
11.

κ
κ

κ
κ

F81 : Q =



















.
.

.
.

ACT

GCT

GAT

GAC

πππ
πππ
πππ
πππ

F84: Q =



















+
+

+
+

.)/1(
)/1(.

.)/1(
)/1(.

ARCT

GRCT

GATY

GACY

ππκππ
ππκππ

ππππκ
ππππκ

with πY = πT + πC and πR = πA + πG.

HKY85: Q =



















.
.

.
.

ACT

GCT

GAT

GAC

κπππ
κπππ
ππκπ
ππκπ

TN93: Q =

















.
.

.
.

2

2

1

1

ACT

GCT

GAT

GAC

πκππ
πκππ

πππκ
πππκ

REV (GTR): Q =



















.
.

.
.

ACT

GCT

GAT

GAC

ec
db

eda
cba

πππ
πππ
πππ
πππ

The element qij (i ≠ j) represents the rate of substitution from nucleotide i to j, with the diagonals qii specified
by the mathematical requirement that each row of Q sums to zero. The nucleotides are ordered T, C, A, G.
The transition probability matrix over time t is then given as P(t) = {pij(t)} = exp(Qt), where pij(t) is the

19

probability that nucleotide i will become nucleotide j after time t. The sequence data does not permit
separation of rate (Q) and time (t), and so Q specifies relative rates only. In the programs, Q is multiplied by
a constant so that the average rate of substitution is 1 when the process is in equilibrium. This scaling means
that time t, or the branch length in a tree, is measured by the expected number of nucleotide substitutions per
site. Q thus represents the pattern of substitution, while the amount of evolution is reflected in time or the
branch length. The frequency parameters πT, πC, πA, πG (with the sum to be 1) give the equilibrium
distribution of the process for the F81, F84, HKY85, TN93 and REV models; the equilibrium distribution
under the JC69 and K80 models has equal frequencies (1/4) for the four nucleotides. Parameters a, b, c, d, e in
REV, κ in F84 or HKY85, and κ1 and κ2 in TN93 may be termed rate ratio parameters. So the JC69, K80, F81,
F84, HKY85, TN93 and REV models contain 0, 1, 0, 1, 1, 2, 5 rate ratio parameters respectively, and 0, 0, 3, 3,
3, 3, 3 frequency parameters respectively. Normally the frequency parameters are estimated using the
averages of the observed frequencies, which should be very close to the true maximum likelihood estimates if
the assumptions of homogeneity and stationarity are acceptable.

Parameter κ in the K80 and HKY85 models is equivalent to α/β in the notation of Kimura (1980) and
Hasegawa et al. (1985). The present notation is more convenient in a maximum likelihood analysis as the
ratio is assumed to be constant for different branches of the tree. F84 is the model implemented in J.
Felsenstein's DNAML program. The rate matrix for this model was given by Hasegawa and Kishino (1989),
Kishino and Hasegawa (1989), Yang (1994b, 1994c) and Tateno et al. (1994). Thorne et al. (1992) described the
transition probability matrix, and Yang (1994c) and Tateno et al. (1994) derived formulae for estimating
sequence distances under the model. REV is the general time-reversible process model (also known as GTR;
Yang, 1994a; see also Tavare, 1986; Zharkikh, 1994). It is used in baseml only. It seems sufficiently general
to enable accurate estimation of the substitution pattern from real data. See Gillespie (1986), Tavare (1986),
Rodriguez et al. (1990), Yang (1994a), and Zharkikh (1994) for reviews of substitution models.

Unfortunately there are a few different definitions of the “transition/transversion rate ratio”. The worst is
the ratio of the observed numbers of transitional and transversional differences between two sequences,
without correcting for multiple hits, also known as P/Q in Kimura’s (1980) notation (see, e.g., Wakeley 1994).
The measure used in baseml is κ as specified in the above formulas for K80 or HKY95. In Kimura’s (1980)
notation, κ = α/β. A third measure (R) is the ratio averaged over base frequencies; this is the ratio of the
expected number of transitions to the expected number of transversions if one observes the substitution
process over time. In Kimura’s (2000) notation, R = α/(2β). PHYLIP and PAUP* use R and name it the
“transition/transversion rate ratio”, while referred to κ as the “transition/transversion rate parameter”. For
a general substitution model Q = {qij}, κ and R are related by the formula

 R = (πTqTC+ πCqCT+πAqAG+πGqGA)/(πTqTA + πTqTG + πCqCA + πCqCG + πAqAT + πAqAC + πGqGT + πGqGC).

Special examples are listed in the following table.

Model Average transition/transversion rate ratio (R)

JC69 ½
K80 κ/2
F81 (πTπC + πAπG)/(πYπR)
F84 [πTπC(1 + κ/πY) + πAπG(1 + κ/πR)] / (πYπR)
HKY85 (πTπC + πAπG)κ/(πYπR)
TN93 (πTπCκ1 + πAπGκ2)/(πYπR)
REV (GTR) (πTπCa + πAπG)/(πTπAb + πTπGc + πCπAd + πCπGe)

The case of no transition-transversion bias is represented by κ = 1 and R = ½ under K80; κ = 1 and R = (πTπC +
πAπG)/(πYπR) under HKY85; and κ = 0 and R = (πTπC + πAπG)/(πYπR) under F84.

Codon substitution models
The model of Goldman and Yang (1994) specifies the probability of substitution between the sense codons,
by using the matrix of amino acid distances of Grantham (1974). The model does not seem to fit real data

20

well, however, and the user is advised to use the following simpler version, which is equivalent to use equal
distances for any pair of amino acids. The substitution rate from codon i to codon j is given as














=

,transition ousnonsynonym for,
on,transversi ousnonsynonym for,

,transition synonymous for,
on,transversi synonymous for,

position, onethan more at differ codons two the if ,0

j

j

j

j

ijq

ωκπ
ωπ
κπ
π

The equilibrium frequency of codon j (πj) can be considered a free parameter, but can also be calculated from
the nucleotide frequencies at the three codon positions (control variable CodonFreq). Under this model, the
relationship holds that ω = dN/dS, the ratio of nonsynonymous/synonymous substitution rates. This model
forms the basis for more sophisticated models implemented in codeml, such as those that allow the ω ratio to
vary among branches in the phylogeny (Yang 1998; Yang and Nielsen 1998) implemented through the
variable model, and those that allow the ω ratio to vary among sites (among codons or amino acids in the
protein), implemented through the variable Nssites.

Amino acid substitution models
“Empirical” models based on the Dayhoff substitution matrix (model = 2) or its updated version of Jones et
al. (1992) are constructed using the same strategy. The transition probability matrix over a very short time
period such as one PAM, i.e., P(0.01), is used to approximate the matrix of instantaneous rates (Q). The
empirical matrices of Dayhoff et al. (1978) and Jones et al. (1992) were made to satisfy the reversibility
condition, that is,

 πiqij = πjqji

for any i and j, so that my implementations may be slightly different from that of Kishino et al. (1990). These
models assume a fixed pattern of amino acid substitution. The package also include an empirical model for
globular proteins, the WAG model of Whelan and Goldman (in press) which is given by the file wag.dat, and
two similar empirical models for mitochondrial proteins. The first of these is given by the file mtREV24.dat
and is the mtREV24 model of Adachi and Hasegawa (1996a, b) estimated from a diverse range of species
including mammals, chicken, frog, fish, and lamprey. The matrix was estimated by maximum likelihood
from real data. The second is given by the file mtmam.dat and is estimated from 20 mammalian species
using maximum likelihood under the REV model with variable rates among sites (Yang et al. 1998). You can
check those files for more details, or if you want to supply your own empirical matrix.

"Mechanistic" models of amino acid substitution requires consideration of both the mutational distance
between the amino acids as determined by the locations of their encoding codons in the genetic code table,
and the effects that the potential change may have on the structure and function of the protein, which may be
related to the physical, chemical and structural differences between amino acids. It seems natural that such a
model should be formulated at the level of codons. The program aaml implements a few such models,
specified by the variable aaDist.

Models of variable substitution rates across site (see Yang 1996b for review) are implemented for both
nucleotide (baseml) and amino acid (aaml) sequences. Although the option variables such as fix_alpha
and alpha are also available for codon models (codonml) , the gamma model for codons is unrealistic as it
applies the same gamma rate to both synonymous and nonsynonymous substitutions, with their rate ratio
held constant among sites. You are recommended to use the Nssites models instead, which assume
homogeneous synonymous rates but variable nonsynonymous rates.

Models for combined analyses of heterogeneous data (multiple
genes or codon positions)
Several models are described by Yang (1996a) and implemented in programs baseml and codeml
(codonml and aaml) for analyzing heterogeneous data sets (such as those of multiple genes or different

21

codon positions). The implementation and description below refer to the case of multiple genes, but in the
case of nucleotide-based models (baseml), the method can be used to analysed data of different codon
positions. These models account for different aspects of heterogeneity among the different data sets and are
useful for testing hypotheses concerning the similarities and differences in the evolutionary process of
different data sets.

The simplest model which assumes complete homogeneity among genes can be fitted by concatenating
different genes into one sequence without using the option G (and by specifying Mgene = 0 in the control
file). The most general model is equavilent to a separate analysis. This can be done by fitting the same model
to each data set (each gene), but can also be done by specifying Mgene = 1 with the option G in the combined
data file. The sum of the log-likelihood values over different genes is then the log likelihood of the most
general model considered here. Models accounting for some aspects of the heterogeneity of multiple genes
are fitted by specifying Mgene in combination with the option G in the sequence data file. Mgene = 0 means a
model that asumes different substitution rates but the same pattern of nucleotide substitution for different
genes. Mgene = 2 means different frequency parameters for different genes but the same rate ratio
parameters (κ in the K80, F84, HKY85 models or the rate parameters in the TN93 and REV models). Mgene =
3 means different rate ratio parameters and the same frequency parameters. Mgene = 4 means both different
rate ratio parameters and different frequency parameters for different genes. Parameters and assumptions
made in these models are summarized in the following table, with the HKY85 model used as an example.
When substitution rates are assumed to vary from site to site, the control variable Malpha specifies whether
one gamma distribution will be applied across all sites (Malpha = 0) or a different gamma distribution is
used for each gene (or codon position).

Sequence file Control file Parameters across genes

No G Mgene = 0 everything equal
Option G Mgene = 0 the same k and p, but different cs (proportional branch lengths)
Option G Mgene = 2 the same k, but different ps and cs
Option G Mgene = 3 the same p, but different ks and cs
Option G Mgene = 4 different k , ps, and cs
Option G Mgene = 1 different k, ps, and different (unproportional) branch lengths

The different cs for different genes mean that branch lengths estimated for different genes are proportional.
Parameters π represent the equilibrium nucleotide frequencies, which are estimated using the observed
frequencies (nhomo = 0). The transition/transversion rate ratio κ in HKY85 can be replaced by the two or five
rate ratio parameters under the TN93 or REV models, respectively. The likelihood ratio test can be used to
compare these models, using an approach called the analysis of deviance, which is very similar to the more
familiar analysis of variance.

Global and local clocks, and dated sequences
PAML (baseml and codeml) implements three ML models regarding rate constancy among lineages. clock
= 0 means no clock and each branch has an independent rate. For a binary tree with n species (sequences),
this model has (2n – 3) parameters (branch lengths). clock = 1 means the global clock, and all branches
have the same rate. This model has (n – 1) parameters corresponding to the (n – 1) internal nodes in the
binary tree. So a test of the molecular clock assumption, which compares those two models, should have d.f.
= n – 2.

Between those two extremes are the local clock models, specified by clock = 2 (Yoder and Yang 2000),
which assume that branches in the phylogeny conform with the clock assumption and has the default rate (r0
= 1) except for several pre-defined branches, which have different rates. Rates for branches are specified
using branch labels in the tree file, and, if they are not, can be inputted from the keyboard. For example, the
tree (((1,2) #1, 3), 4) specifies rate r1 for the branch ancestral to species 1 and 2 while all other branches have
the default rate r0, which does not have to be specified. The user need to specify which branch has which
rate, and the program estimates the unknown rates (such as r1 in the above example; r0 = 1 is the default rate).
You need to be careful when specifying rates for branches to make sure that all rates can be estimated by the
model; if you specify too many rate parameters, especially for branches around the root, it may not be
possible to estimate all of them and you will have a problem with identifiability. The number of parameters

22

for a binary tree in the local clock model is (n – 1) plus the number of extra rate parameters for branches. In
the above tree of 4 species, you have only one extra rate parameter r1, and so the local clock model has (n – 1)
+ 1 = n = 4 parameters. The no-clock model has 5 parameters while the global clock has 3 parameters for that
tree.

The option clock = 3 implements Andrew Rambaut's TipDate models (Rambaut 2000; see also the
TipDate program web page at <http://evolve.zps.ox.ac.uk/software/TipDate/main.html>). For
viral sequences determined in different years, a global molecular clock can be fitted to the data with the dates
of sequence determination used in the likelihood calculation. I have used Andrew's format, which specifies
the dates at the end of the sequence names; see exampleTipDate.phy, which is the example file in
Rambaut's package. This model has one extra parameter (the mutation rate) than the global clock model
(clock = 1). Thanks to Andrew for help with the implementation.

Reconstruction of ancestral sequences
Nucleotides or amino acids of extinct ancestors can be reconstructed using information of the present-day
sequences. Parsimony reconstructs ancestral character states by the criterion that the number of changes
along the tree at the site is minimized. Algorithms based on this criterion were developed by Fitch (1971) and
Hartigan (1973), and are implemented in the program pamp. The likelihood approach uses branch lengths
and the substitution pattern for ancestral reconstruction. It was developed by Yang et al. (1995) and is
implemented in baseml for nucleotide sequences and in aaml (codeml.c with seqtype = 2) for amino
acid sequences. Results are collected in the file rst.

Marginal reconstruction: This approach compares the probabilities of different character assignments to an
interior node at a site and select the character that has the highest posterior probability (eq. 4 in Yang et al.
1995). The algorithm implemented in paml works under both the model of a constant rate for all sites and the
gamma model of rates at sites. If verbose = 1, the output will include the full probability distribution at each
node at each site.

Joint reconstruction: This approach considers the assignment of a set of characters to all interior nodes at a
site as a reconstruction and select the reconstruction that has the highest posterior probability (eq. 2 in Yang
et al. 1995). The implementation in paml now is based on the algorithm of Pupko et al. (2000), which gives
the best reconstruction at each site and its posterior probability. The algorithm works under the model of a
constant rate for sites only and does not work for the gamma model. (It works under models for multiple
genes or data partitions as well. My old algorithm looks at alternatives (sub-optimal reconstructions)
although it is inefficient and may miss important reconstructions. I have taken that algorithm out, as well as
the old option (RateAncestor = 2) of allowing the user to specify the reconstruction to be evaluated. If you
need those options, let me know.

The marginal and joint approaches use slightly different criteria, and none is better than the other. They are
expected to produce very similar results; that is, the most probable joint reconstruction for a site should
almost always consist of characters that are also the best in the marginal reconstruction. Differences may
arise when the competing reconstructions have similar probabilities. Since the marginal reconstruction
works with models of variable rates among sites, it is recommended for data analysis.

Analysing large data sets and iteration algorithms for parameter
estimation
The maximum likelihood method estimates parameters by maximizing the likelihood function. This is multi-
dimensional optimisation problem that has to be solved numerically (except for the simplest possible case;
see Yang 2000). PAML implements two iteration algorithms. The first one (method = 0) is a general-purpose
minimization algorithm that deals with upper and lower bounds for parameters but not general equality or
inequality constraints. The algorithm requires first derivatives, which are calculated using the difference
approximation, and accumulates information about the curvature (second derivatives) during the iteration
using the BFGS updating scheme. At each iteration step, it calculates a search direction, and does a one-
dimensional search along that direction to determine how far to go. At the new point, the process is

http://evolve.zps.ox.ac.uk/software/TipDate/main.html

23

repeated, until there is no improvement in the log-likelihood value, and changes to the parameters are very
small. The algorithm updates all parameters including branch lengths simultaneously.

Another algorithm (method = 1) works if an independent rate is assumed for each branch (clock = 0) (Yang
submitted). This algorithm cycles through two phases. Phase I estimates branch lengths with substitution
parameters (such as the transition/transversion rate ratio κ and the gamma shape parameter α) fixed. Phase
II estimates substitution parameters using the BFGS algorithm, mentioned above, with branch lengths fixed.
The procedure is repeated until the algorithm converges. In phase I of the algorithm, branch lengths are
optimized one at a time. The advantage of the algorithm is that when the likelihood is calculated for
different values of one single branch length, as is required when that branch length only is optimised, much
of likelihood calculations on the phylogeny is the same and can be avoided by storing intermediate results in
the computer memory. A cycle is completed after all branch lengths are optimized. As estimates of branch
lengths are correlated, several cycles are needed to achieve convergence of all branch lengths in the tree, that
is, to complete phase I of the algorithm.

If branch lengths are the only parameters to be estimated, that is, if substitution parameters are fixed, the
second algorithm (method = 1) is much more efficient. Thus to perform heuristic tree search using stepwise
addition, for example, you are advised to fix substitution parameters (such as κ and α). The second
algorithm is also more efficient if the data contain many sequences so that the tree has many branch lengths.

Tip: To get good initial values for large data sets of protein coding DNA sequences, you can use baseml.
Add the options characters “GC” at the end of the first line in the sequence data file. Then run the data with
baseml. In the result file generated by baseml (say mlb), look for “branch lengths for codon models” and
copy the tree with branch lengths into the tree file. Then run codeml and choose “1: initial values” when
asked about what to do with the branch lengths in the tree.

Tree search algorithms
One heuristic tree search algorithm implemented in baseml, codonml and aaml is a divisive algorithm,
called "star-decomposition" by Adachi and Hasegawa (1996a). The algorithm starts from either the star tree
(runmode = 2) or a multifurcating tree read from the tree structure file (runmode = 1). The algorithm joins
two taxa to achieve the greatest increase in log-likelihood over the star-like tree. This will reduce the number
of OTUs by one. The process is repeated to reduce the number of OTUs by one at each stage, until no
multifurcation exists in the tree. This algorithm works either with or without the clock assumption. The
stepwise addition algorithm is implemented with the option runmode = 3. Options runmode = 4 or 5 are
used for nearest neighbor interchanges , with the intial tree determined with stepwise addition under the
parsimony criterion (runmode = 4) or read from the tree structure file (runmode = 5). The results are self-
explanatory.

Besides the fact that ML calculations are slow, my implementations of these algorithms are crude. If the data
set is small (say, with <20 or 30 species), the stepwise addition algorithm (runmode = 3) appears usable.
Choose clock = 0, and method = 1 to use the algorithm that updates one branch at a time, and fix
substitution parameters in the model (such as κ and α) so that only branch lengths are optimized.
Parameters κ and α can be fixed in the tree search using fix_kappa and fix_alpha in the control files.
Other parameters (such as substitution rates for genes or codon positions or site partitions) cannot be fixed
this way; they can instead be specified in the file of initial values (in.baseml or in.codeml). Suppose you
use a candidate tree to estimate branch lengths and substitution parameters with runmode = 0. You can then
move the substitution parameters (but not the branch lengths) into the file of initial values. You then change
the following variables for tree search: runmode = 3, method = 1. The program will use the substitution
parameters as fixed in the tree search, and optimizes branch lengths only. It is important that the
substitution parameters are in the right order in the file; so copy-and-paste from paml output is probably the
safest. It is also important that you do not change the parameter specifications in the control file; the control
file should indicate that you want to estimate the substitution parameters, but when the program detects the
file of initial values, fixed parameter values are used instead.

24

Simulation
Computer simulation is a widely used approach to evaluating estimation procedures. In molecular
phylogenetics, there are two major methods for simulating sequence data. The first approach samples data
at different sites (nucleotide, amino acid, or codon sites) from the multinomial distribution. Under most
models of sequence evolution, data at different sites are independently and identically distributed. This
approach thus calculates the probability of observing each site pattern, and then sample from sites according
to those site pattern probabilities. The number of categories in the multinomial distribution, that is, the
number of distinct site patterns, is the number of character states raised to the power of the number of
sequences. To simulate nucleotide sequences on a tree of 5 species, the multinomial will have 45 = 1024
categories, and to simulate a pair of codon sequences under the universal code (with 61 sense codons), the
multinomial will have 612 = 3721 categories. This approach is faster for simulating data sets on small trees
but impractical on large trees as the number of categories may be too large.

A second approach is to generates an ancestral sequence for the root of the tree, and then “evolve” the
sequence along the tree according to the specified substitution model and using the specified branch lengths
and substitution parameters. The evolver program implements this approach. The ancestral sequence is
generated according to the equilibrium distribution of the characters, that is, by sampling characters
repeatedly according to the equilibrium distribution. The program then evolves the sequence along branches
of the tree, according to the transition probabilities calculated for each branch. For site-heterogeneous
models, the substitution pattern may be different from site to site and the different sites may have different
transition probabilities. See, for example, Huelsenbeck (1995) and Yang (1996c), for more details.

Tips:

1. For analyzing multiple simulated data sets, it is advisable that you copy the tree topology from the
Mcbase.dat or Mcaa.dat file into the tree file for baseml or codeml. Then when you run baseml or codeml,
the program will ask you what to do about the branch lengths in the tree topology and you choose “using
them as initial values”. This should speed up the iteration since the true parameter values should be good
initial values.

2. A good test of the simulation as well as the analysis program is to use a small tree to simulate a large data
set of very long sequences (say 1 million nucleotides or amino acids) and then use baseml or codeml to
analyse the data to see whether you get estimates very close to the true values. As ML is consistent, it should
return the correct values with infinitely long sequences.

3. Programs baseml and codeml output one line of results for each data set in a file named rst1. The output
typically includes the log likelihood, the estimated substitution parameters but not branch lengths. If you
can modify the source codes, you can go into baseml.c or codeml.c and search for frst1, and add or remove
output. However, this may require familiarity with the program, especially about how the variables are
arranged during the iteration.

5 Technical Notes

This section contains some technical notes for running PAML programs. Also see the FAQs.

The rub file recording the progress of iteration
If you use a large value for the variable noisy (say >2), the programs baseml and codeml will log output to
the screen, indicating the progress of the iteration process, i.e., the minimization of the negative log-
likelihood. They will also print in the rub file, the size (norm) of the gradient or search direction (h), the
negative log likelihood, and the current values of parameters for each round of iteration. A healthy iteration
is indicated by the decrease of both h and the negative log likelihood, and h is particularly sensitive. If you
run a complicated model hard to converge or analyzing a large data set with hundreds or thousands of
sequences, you may switch on the output. You can check this file to see whether the algorithm has
converged. A typical symptom of failure of the algorithm is that estimates of parameters are at the preset

25

boundaries, with values like 2.00000, 5.00000. When method = 1, the output in the rub file lists the log
likelihood and parameter estimates only.

How to specify initial values
You may change values of parameters in the control file such as kappa, alpha, omega, etc. to start the
iteration from different initial values. Initial values for the second and later trees are determined by the
program, and so you do not have much control in this way.

You can collect initial values into a file called in.baseml if you are running baseml or in.codeml if
you are running codeml. When this file exists, the program will read initial values from it. This may be
useful if the iteration is somehow aborted, and then you can collect current values of parameters from the file
rub into this file of initial values, so that the new iteration can have a better start and may converge faster.
The file of initial values may also be useful if you experience problems with convergence. If you have
already obtained parameter estimates before and do not want the program to re-estimate them and only
want to do some analysis base on those estimates such as reconstructing ancestral sequences, insert -1 before
the initial values.

The rub file records the iteration process and has one line for each round of iteration. Each line lists the
current parameter values after the symbol x; you can copy those numbers into the file of initial values, and if
you like, change one or a few of the parameter values too.

Fine-tuning the iteration algorithm
The iteration algorithm uses the difference approximation to calculate derivatives. This method changes the
variable (x) slightly, say by a small number e, and see how the function value changes. One such formula is
df/dx = [f(x + e) − f(x)]/e. The small number e should be small to allow accurate approximation but should not
be too small to avoid rounding errors. You can change this value by adding a line in the control files
baseml.ctl or codeml.ctl

Small_Diff = 1e-6

The iteration is rather sensitive to the value of this variable, and reasonable values are between 1e-5 and 1e-7.
This variable also affects the calculation of the SE's for parameters, which are much more difficult to
approximate than the first derivatives. If the calculated SE's are sensitive to slight change in this variable,
they are not reliable.

If you compile the source codes, you can also change the lower and upper bounds for parameters. I have not
put these variables into the control files (See below).

Adjustable variables in the source codes
This section is relevant only if you compile the source codes yourself. The maximum values of certain
variables are listed as constants in uppercase at the beginning of the main programs (baseml.c,
basemlg.c, codeml.c). These values can be raised without increasing the memory requirement by too
much.

 NS: maximum number of sequences (species)
 LSPNAME: maximum number of characters in a species name
 NGENE: maximum number of "genes" in data of multiple genes (option G)
 NCATG: maximum number of rate categories in the (auto-) discrete-gamma model (baseml.c,
codeml.c)

You can change the value of LSPNAME. Other variables that may be changed include the bounds for
parameters, specified at the beginning of the function testx or SetxBound in the main programs
(baseml.c and codeml.c). For example, these variables are defined in the function SetxBound in
codeml.c:

26

double tb[]={.0001,9}, rgeneb[]={0.1,99}, rateb[]={1e-4,999};
double alphab[]={0.005,99}, rhob[]={0.01,0.99}, omegab[]={.001,99};

The pairs of variables specify lower and upper bounds for variables (tb for branch lengths, rgeneb for
relative rates of genes used in multiple gene analysis, alphab for the gamma shape parameter, rhob for the
correlation parameter in the auto-discrete-gamma model, and omegab for the dN/dS ratio in codon based
analysis.

PowerMAC memory allocation problem
When your data set is large, you may see a message like "oom ", which stands for "out of memory". If you
think your data set should be manageable by the program/computer, you can change the memory that is
allowed by the operating system for the program to use. If you select the file name and choose "File-Get
information", you should see a pop up window. You can increase numbers in this window.

MS Windows version window auto-close
Run the Windows version from a DOS/Windows command box by typing the program names such as
baseml. Do not run the programs by double clicking on the file names from Windows 95/98/2000/NT
Explorer. Otherwise, the window will close automatically when the programs finish or abort and you won't
have the chance to see any error messages.

6 Acknowledgments

I thank Nick Goldman, Adrian Friday, and Sudhir Kumar for many useful comments on different versions of
the program package. I thank Tianlin Wang for the eigen routine used in the package. I also thank a number
of users for reporting bugs and/or suggesting changes, especially Liz Bailes, Thomas Buckley, Belinda
Chang, Adrian Friday, Nicolas Galtier, Nick Goldman, John Heulsenbeck, Sudhir Kumar, Robert D. Reed,
Fransisco Rodriguez-Trelles, John Heulsenbeck, John Mercer, and Xuhua Xia.

7 References
Adachi, J., and M. Hasegawa. 1996a. MOLPHY Version 2.3: Programs for molecular phylogenetics based on

maximum likelihood. Computer science monographs, 28:1-150. Institute of Statistical Mathematics, Tokyo.
Adachi, J., and M. Hasegawa. 1996b. Model of amino acid substitution in proteins encoded by mitochondrial

DNA. Journal of Molecular Evolution 42:459-468.
Brown, W. M., E. M. Prager, A. Wang, and A. C. Wilson. 1982. Mitochondrial DNA sequences of primates,

tempo and mode of evolution. Journal of Molecular Evolution 18:225-239.
Dayhoff, M. O., R. M. Schwartz, and B. C. Orcutt. 1978. A model of evolutionary change in proteins. In Atlas

of Protein Sequence and Structure, Vol 5, Suppl. 3 (ed M. O. Dayhoff), National Biomedical Research
Foundation, Washington D.C., pp. 345-352.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of
Molecular Evolution 17:368-376.

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791.
Felsenstein, J. 1993. Phylogenetic Inference Package (PHYLIP), Version 3.5. University of Washington, Seattle.
Goldman, N. 1993a. Statistical tests of models of DNA substitution. Journal of Molecular Evolution 36:182-198.
Goldman, N. 1993b. Simple diagnostic statistical tests of models for DNA substitution. Journal of Molecular

Evolution 37:650-661.
Goldman, N., and Z. Yang. 1994. A codon-based model of nucleotide substitution for protein-coding DNA

sequences. Molecular Biology and Evolution 11:725-736.
Grantham, R. 1974. Amino acid difference formula to help explain protein evolution. Science 185:862-864.
Hartigan, J. A. 1973. Minimum evolution fits to a given tree. Biometrics 29: 53-65.

27

Hasegawa, M., and H. Kishino. 1989. Confidence limits on the maximum likelihood estimation of the
hominoid tree from mitochondrial DNA sequences. Evolution 43:672-677.

Hasegawa, M., H. Kishino, and T. Yano. 1985. Dating the human-ape splitting by a molecular clock of
mitochondrial DNA. Journal of Molecular Evolution 22:160-174.

Hayasaka, K., T. Gojobori, and S. Horai. 1988. Molecular phylogeny and evolution of primate mitochondrial
DNA. Molecular Biology and Evolution 5:626-644.

Huelsenbeck, J. P. 1995. The performance of phylogenetic methods in simulation. Systematic Biology 44:17-48.
Jones, D.T., W. R. Taylor, and J. M. Thornton. 1992. The rapid generation of mutation data matrices from

protein sequences. Computer Application in Biosciences 8:275-282.
Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through

comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.
Kishino, H., and M. Hasegawa. 1989. Evaluation of maximum likelihood estimate of the evolutionary tree

topologies from DNA sequence data, and the branching order in Hominoidea. Journal of Molecular
Evolution 29:170-179.

Kishino, H., T. Miyata, and M. Hasegawa. 1990. Maximum likelihood inference of protein phylogeny and the
origin of chloroplasts. Journal of Molecular Evolution 31:151-160.

Kumar, S., K. Tamura, and M. Nei. 1993. MEGA: Molecular Evolutionary Genetics Analysis. The Pennsylvania
State University, University Park, PA 16802.

Messier W. and C.-B. Stewart. 1997. Episodic adaptive evolution of primate lysozymes. Nature 385:151-154.
Nei, M., and T. Gojobori. 1986. Simple methods for estimating the numbers of synonymous and

nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3:418-426.
Nielsen, R., and Z. Yang. 1998. Likelihood models for detecting positively selected amino acid sites and

applications to the HIV-1 envelope gene. Genetics 148:929-936.
Pupko, T., I. Pe, et al. 2000. A fast algorithm for joint reconstruction of ancestral amino acid sequences.

Molecular Biology and Evolution 17: 890-896.
Rambaut, A. (2000) Estimating the rate of molecular evolution: incorporating non-comptemporaneous

sequences into maximum likelihood phylogenetics. Bioinformatics 16:395-399.
Rannala, B. and Z. Yang. 1996. Probability distributions of molecular evolutionary trees: a new method of

phylogenetic inference. Journal of Molecular Evolution 43:304-311.
Rodriguez, F., J. F. Oliver, A. Marin, and J. R. Medina. 1990. The general stochastic model of nucleotide

substituions. Journal of Theoretical Biology 142:485-501.
Stewart, C.-B., J. W. Schilling, and A. C. Wilson. 1987. Adaptive evolution in the stomach lysozymes of

foregut fermenters. Nature 330:401-404.
Swanson, W. J., Z. Yang, M. F. Wolfner and C. F. Aquadro. 2001. Positive Darwinian selection in the

evolution of mammalian female reproductive proteins. Proceedings of the National Academy of Sciences of
U.S.A. 98:2509-2514.

Swofford, D. L. 1993. Phylogenetic Analysis Using Parsimony (PAUP), Version 3.2. University of Illinois,
Champaign.

Swofford, D. L., G. J. Olsen, P. J. Waddel, and D. M. Hillis. 1996. Phylogeny Inference. Pp. 411-501 in D. M.
Hillis, C. Moritz, and B. K. Mable eds. Molecular Systematics, 2nd ed. Sinauer Associates, Sunderland,
Massachusetts.

Tamura, K., and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the control region of
mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10:512-526.

Tavare, S. 1986. Some probabilistic and statistical problems on the analysis of DNA sequences. In Lectures in
Mathematics in the Life Sciences, Vol. 17, pp. 57-86.

Thorne, J. L., H. Kishino, and J. Felsenstein. 1991. An evolutionary model for maximum likelihood alignment
of DNA sequences. Journal of Molecular Evolution 33:114-124. (Erratum: Journal of Molecular Evolution 34:91
[1992].)

Thorne, J. L., H. Kishino, and J. Felsenstein. 1992. Inching toward reliability: An improved likelihood model
of sequence evolution. Journal of Molecular Evolution 34:3-16.

Wakeley, J. 1993. Substitution rate variation among sites in hypervariable region 1 of human mitochondrial
DNA. Journal of Molecular Evolution 37:613-623.

Wakeley, J. 1996. The excess of transitions among nucleotide substitutions: new methods of estimating
transition bias underscore its significance. Trends in Ecology and Evolution11:158-163.

Whelan, S. and N. Goldman, in press. A general empirical model of protein evolution derived from multiple
protein families using a maximum likelihood approach. Molecular Biology and Evolution

Yang, Z. 1993. Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates
differ over sites. Molecular Biology and Evolution 10:1396-1401.

28

Yang, Z. 1994a. Estimating the pattern of nucleotide substitution. Journal of Molecular Evolution 39:105-111.
Yang, Z. 1994b. Statistical properties of the maximum likelihood method of phylogenetic estimation and

comparison with distance matrix methods. Systematic Biology 43:329-342.
Yang, Z. 1994c. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over

sites: approximate methods. Journal of Molecular Evolution 39:306-314.
Yang, Z. 1995. A space-time process model for the evolution of DNA sequences. Genetics 139:993-1005.
Yang, Z. 1996a. Maximum likelihood models for combined analyses of multiple sequence data. Journal of

Molecular Evolution 42:587-596.
Yang, Z. 1996b. Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology and

Evolution 11:367-372.
Yang, Z. 1996c. Phylogenetic analysis using parsimony and likelihood methods. Journal of Molecular Evolution

42:294-307.
Yang, Z. 1998. Likelihood ratio tests for detecting positive selection and application to primate lysozyme

evolution. Molecular Biology and Evolution 15:568-573
Yang, Z. 2000. Complexity of the simplest phylogenetic estimation problem. Proceedings of the Royal Society B:

Biological Sciences 267:109-116.
Yang, Z. 2000. Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in

human influenza virus A. Journal of Molecular Evolution 51: 423-432.
Yang, Z. 2001. Adaptive molecular evolution, Chapter 12 (pp. 327-350) in Handbook of statistical genetics, eds.

D. Balding, M. Bishop, and C. Cannings. Wiley, New York.
Yang, Z., and B. Bielawski. 2000. Statistical methods for detecting molecular adaptation. TREE 15:496-503.
Yang, Z., and S. Kumar. 1996. New parsimony-based methods for estimating the pattern of nucleotide

substitution and the variation of substitution rates among sites and comparison with likelihood
methods. Molecular Biology and Evolution 13:650-659.

Yang, Z., and R. Nielsen. 1998. Synonymous and nonsynonymous rate variation in nuclear genes of
mammals. Journal of Molecular Evolution 46:409-418.

Yang, Z., and B. Rannala. 1997. Bayesian phylogenetic inference using DNA sequences: Markov chain Monte
Carlo methods. Molecular Biology and Evolution 14:717-724.

Yang, Z., and D. Roberts. 1995. On the use of nucleic acid sequences to infer early branchings in the tree of
life. Molecular Biology and Evolution 12:451-458.

Yang, Z., and T. Wang. 1995. Mixed model analysis of DNA sequence evolution. Biometrics 51:552-561.
Yang, Z., and A. D. Yoder. 1999. Estimation of the transition/transversion rate bias and species sampling.

Journal of Molecular Evolution 48:274-283.
Yang, Z., N. Goldman, and A. E. Friday. 1994. Comparison of models for nucleotide substitution used in

maximum likelihood phylogenetic estimation. Molecular Biology and Evolution 11:316-324.
Yang, Z., N. Goldman, and A. E. Friday. 1995. Maximum likelihood trees from DNA sequences: a peculiar

statistical estimation problem. Systematic Biology 44:384-399.
Yang, Z., S. Kumar, and M. Nei. 1995. A new method of inference of ancestral nucleotide and amino acid

sequences. Genetics141:1641-1650.
Yang, Z. and R. Nielsen. 2000. Estimating synonymous and nonsynonymous substitution rates under realistic

evolutionary models. Molecular Biology and Evolution 17: 32-43.
Yang, Z., N. Nielsen, and M. Hasegawa. 1998. Models of amino acid substitution and applications to

mitochondrial protein evolution. Molecular Biology and Evolution 15:1600-1611.
Yang, Z., N. Nielsen, N. Goldman, and A.-M. Pedersen. 2000. Codon-substitution models for heterogeneous

selection pressure at amino acid sites. Genetics 155:431-449.
Yoder, A. D., and Z. Yang. 2000. Estimation of primate speciation dates using local molecular clocks.

Molecular Biology and Evolution 17: 1081-1090.
Zharkikh, A. 1994. Estimation of evolutionary distances between nucleotide sequences. Journal of Molecular

Evolution 39:315-329.

	0 Recent changes and bug fixes (since 3.0a)
	Mgene options for codons and amino acids:

	1 Introduction
	2 Files in the Package
	
	Which files are needed?

	3 Using Programs in the Package
	Sequence data format
	Tree file and representations of tree topology
	baseml
	basemlg
	codeml (codonml and aaml)
	Codon sequences (seqtype = 1)
	Amino acid sequences (seqtype = 2)

	evolver
	yn00
	mcmctree

	4 Models and Methods
	Nucleotide substitution models
	Codon substitution models
	Amino acid substitution models
	Models for combined analyses of heterogeneous data (multiple genes or codon positions)
	Global and local clocks, and dated sequences
	Reconstruction of ancestral sequences
	Analysing large data sets and iteration algorithms for parameter estimation
	Tree search algorithms
	Simulation

	5 Technical Notes
	The rub file recording the progress of iteration
	How to specify initial values
	Fine-tuning the iteration algorithm
	Adjustable variables in the source codes
	PowerMAC memory allocation problem
	MS Windows version window auto-close

	6 Acknowledgments
	7 References

