
Erlang ODBC application

version 1.0

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 Erlang ODBC User’s Guide 1

1.1 Introduction . 1

1.1.1 Purpose . 1

1.1.2 Pre-requisites . 1

1.1.3 About ODBC . 1

1.1.4 About the Erlang ODBC application . 1

1.2 Getting started . 2

1.2.1 Setting things up . 2

1.2.2 Compiling on Windows . 2

1.2.3 Compiling on Unix . 3

1.2.4 Using the Erlang API . 3

1.3 Databases . 6

1.3.1 Databases . 6

1.3.2 Database independence . 6

1.3.3 Data types . 6

1.4 Error handling . 8

1.4.1 Strategy . 8

1.4.2 The whole picture . 8

2 Erlang ODBC Reference Manual 11

2.1 odbc . 17

2.2 Deprecated odbc . 25

List of Figures 37

List of Tables 39

iiiErlang ODBC application

iv Erlang ODBC application

Chapter 1

Erlang ODBC User’s Guide

The Erlang ODBC Application provides an interface for accessing relational SQL-databases from Erlang.

1.1 Introduction

1.1.1 Purpose

The purpose of the Erlang ODBC application is to provide the programmer with an ODBC interface
that has a Erlang/OTP touch and feel. So that the programmer may concentrate on solving his/her
actual problem instead of struggling with pointers and memory allocation which is not very relevant for
Erlang. This user guide will give you some information about technical issues and provide some
examples of how to use the Erlang ODBC interface.

1.1.2 Pre-requisites

It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP and
has a basic understanding of relational databases and SQL.

1.1.3 About ODBC

Open Database Connectivity (ODBC) is a Microsoft standard for accessing relational databases that has
become widely used. The ODBC standard provides a c-level application programming interface (API)
for database access. It uses Structured Query Language (SQL) as its database access language.

1.1.4 About the Erlang ODBC application

Provides an Erlang interface to communicate with relational SQL-databases. It is built on top of
Microsofts ODBC interface and therefore requires that you have an ODBC driver to the database that
you want to connect to. The Erlang ODBC application is designed using the version 3.0 of the
ODBC-standard, however using the option fscrollable cursors, offg for a connection has been
known to make it work for at least some 2.X drivers.

1Erlang ODBC application

Chapter 1: Erlang ODBC User’s Guide

1.2 Getting started

1.2.1 Setting things up

As the Erlang ODBC application is dependent on third party products there are a few administrative
things that needs to be done before you can get things up and running.

� The first thing you need to do, is to make sure you have an ODBC driver installed for the database
that you want to access. Both the client machine where you plan to run your erlang node and the
server machine running the database needs the the ODBC driver. (In some cases the client and
the server may be the same machine).

� Secondly you might need to set environment variables and paths to appropriate values. This may
differ a lot between different os’s, databases and ODBC drivers. This is a configuration problem
related to the third party product and hence we can not give you a standard solution in this guide.

� The Erlang ODBC application consists of both Erlang and C code. The C code is delivered as a
precompiled executable for windows and solaris. If you for any reason need to recompile the C
code or if you are running some other os and want to compile the code there is a include makefile
to help you do so.

Note:
The Erlang ODBC application should run on all Unix dialects including Linux, Windows 2000,
Windows XP and NT. But currently it is only tested for Solaris, Windows 2000, Windows XP and
NT.

1.2.2 Compiling on Windows

On windows compilers are often distributed in some development environment such as Visual C++,
that is what we use to compile the C code for windows.

If you need to compile the C code open a command prompt. Assume that Erlang/OTP is installed at
“c:\Program Files\erl<erlang-version>”. Change to the directory “c:\Program
Files\erl<erlang-version>\lib\odbc-<odbc-version>\c src” directory. Here you will find a Makefile.
There are three variables in this makefile that you may want to override.

� ODBCLIBS - Path to the ODBC library.

� ODBCINCLUDE - Path to the ODBC header files.

� EIROOT - Path to the root directory of the Erlang application erl interface.

An example of how the make command might look:

nmake EIROOT="..\..\..\lib\erl_interface-3.3.0"

2 Erlang ODBC application

1.2: Getting started

1.2.3 Compiling on Unix

The prefered compiler is gcc version 2.7.2 or higher. Assume that the Erlang/OTP is installed in
/usr/local/erlang then the C code is located in the /usr/local/erlang/lib/odbc-<odbc-version>/c src
directory. In the C code directory you will find a Makefile. There are three variables in this make file
that you may want to override.

� ODBCROOT - Path to the root directory of the ODBC installation.

� ODBCLIBS - Path to the ODBC library.

� EIROOT - Root directory of the Erlang applicationerl interface.

An example of how the make command might look:

gmake EIROOT="../../../lib/erl_interface-3.3.0"

1.2.4 Using the Erlang API

The following dialog within the Erlang shell illustrates the functionality of the Erlang ODBC interface.
The table used in the example does not have any relevance to anything that exist in reality, it is just a
simple example. The example was created using sqlserver 7.0 with servicepack 1 as database and
the ODBC driver for sqlserver with version 2000.80.194.00.

1 > application:start(odbc).
ok

Connect to the database

2 > {ok, Ref} = odbc:connect("DSN=sql-server;UID=aladin;PWD=sesame", []).
{ok,<0.342.0>}

Create a table

3 > odbc:sql_query(Ref, "CREATE TABLE EMPLOYEE (NR integer,
FIRSTNAME char varying(20), LASTNAME char varying(20), GENDER char(1),
PRIMARY KEY(NR))").
{updated,undefined}

Insert some data

4 > odbc:sql_query(Ref, "INSERT INTO EMPLOYEE VALUES(1, ’Jane’, ’Doe’, ’F’)").
{updated,1}

5 >odbc:sql_query(Ref, "INSERT INTO EMPLOYEE VALUES(2, ’John’, ’Doe’, ’M’)").
{updated,1}

6 > odbc:sql_query(Ref, "INSERT INTO EMPLOYEE VALUES(3, ’Monica’, ’Geller’, ’F’)").
{updated,1}

7 > odbc:sql_query(Ref, "INSERT INTO EMPLOYEE VALUES(4, ’Ross’, ’Geller’, ’M’)").
{updated,1}

3Erlang ODBC application

Chapter 1: Erlang ODBC User’s Guide

8 > odbc:sql_query(Ref, "INSERT INTO EMPLOYEE VALUES(5, ’Rachel’, ’Green’, ’F’)").
{updated,1}

9 > odbc:sql_query(Ref, "INSERT INTO EMPLOYEE VALUES(6, ’Piper’, ’Halliwell’, ’F’)").
{updated,1}

10 > odbc:sql_query(Ref, "INSERT INTO EMPLOYEE VALUES(7, ’Prue’, ’Halliwell’, ’F’)").
{updated,1}

11 > odbc:sql_query(Ref, "INSERT INTO EMPLOYEE VALUES(8, ’Louise’, ’Lane’, ’F’)").
{updated,1}

Fetch all data in the table employee

12> odbc:sql_query(Ref, "SELECT * FROM EMPLOYEE").
{selected,["NR","FIRSTNAME","LASTNAME","

[[1,"Jane","Doe","F"],
[2,"John","Doe","M"],
[3,"Monica","Geller","F"],
[4,"Ross","Geller","M"],
[5,"Rachel","Green","F"],
[6,"Piper","Halliwell","F"],
[7,"Prue","Halliwell","F"],
[8,"Louise","Lane","F"]]}

Associate a result set containg the whole table EMPLOYEE to the connection. The number of rows in the
result set is returned.

13 > odbc:select_count(Ref, "SELECT * FROM EMPLOYEE").
{ok,8}

Fetch certain parts of the result set.

14 >
odbc:first(Ref).
{selected,["NR","FIRSTNAME","LASTNAME","GENDER"],[[1,"Jane","Doe","F"]]}

15 > odbc:next(Ref).
{selected,["NR","FIRSTNAME","LASTNAME","GENDER"],[[2,"John","Doe","M"]]}

16 > odbc:last(Ref).
{selected,["NR","FIRSTNAME","LASTNAME","GENDER"],[[8,"Louise","Lane","F"]]}

17 > odbc:prev(Ref).
{selected,["NR","FIRSTNAME","LASTNAME","GENDER"],[[7,"Prue","Halliwell","F"]]}

Fetch the fields FIRSTNAME and NR for all female employees

4 Erlang ODBC application

1.2: Getting started

18 > odbc:sql_query(Ref, "SELECT FIRSTNAME, NR FROM EMPLOYEE WHERE GENDER = ’F’").
{selected,["FIRSTNAME","NR"],

[["Jane",1],
["Monica",3],
["Rachel",5],
["Piper",6],
["Prue",7],
["Louise",8]]}

Fetch the fields FIRSTNAME and NR for all female employees and sort them on the field FIRSTNAME
.

19 > odbc:sql_query(Ref, "SELECT FIRSTNAME, NR FROM EMPLOYEE WHERE GENDER = ’F’
ORDER BY FIRSTNAME").

{selected,["FIRSTNAME","NR"],
[["Jane",1],
["Louise",8],
["Monica",3],
["Piper",6],
["Prue",7],
["Rachel",5]

Associate a result set that contains the fields FIRSTNAME and NR for all female employees to the
connection. The number of rows in the result set is returned.

20 > odbc:select_count(Ref, "SELECT FIRSTNAME, NR FROM EMPLOYEE WHERE GENDER = ’F’").
{ok,6}

Fetch certain parts of the result set.

21 > odbc:select(Ref, {relative, 2}, 3).
{selected,["FIRSTNAME","NR"],[["Monica",3],["Rachel",5],["Piper",6]]}

22 > odbc:select(Ref, next, 2).
{selected,["FIRSTNAME","NR"],[["Prue",7],["Louise",8]]}

23 > odbc:select(Ref, {absolute, 1}, 2).
{selected,["FIRSTNAME","NR"],[["Jane",1],["Monica",3]]}

24 > odbc:select(Ref, next, 2).
{selected,["FIRSTNAME","NR"],[["Rachel",5],["Piper",6]]}

25 > odbc:select(Ref, {absolute, 1}, 4).
{selected,["FIRSTNAME","NR"],

[["Jane",1],["Monica",3],["Rachel",5],["Piper",6]]}

Delete the table EMPLOYEE

26 > odbc:sql_query(Ref, "DROP TABLE EMPLOYEE").
{updated,undefined}

Shout down the connection.

27 > odbc:disconnect(Ref).
ok

5Erlang ODBC application

Chapter 1: Erlang ODBC User’s Guide

1.3 Databases

1.3.1 Databases

If you need to access a relational database such as sqlserver, mysql, postgress, oracle, cybase etc.
from your erlang application using the Erlang ODBC interface is the way to go about it.

The Erlang ODBC application should work for any relational database that has an ODBC driver. But
currently it is only tested for sqlserver and oracle.

1.3.2 Database independence

The Erlang ODBC interface is in principal database independent, e.i. an erlang program using the
interface could be run without changes towards different databases. But as SQL is used it is alas
possible to write database dependent programs. Even though SQL is an ANSI-standard meant to be
database independent, different databases have proprietary extensions to SQL defining their own data
types. If you keep to the ANSI data types you will minimize the problem. But unfortunately there is no
guarantee that all databases actually treats the ANSI data types equivalently. For instance an installation
of Oracle Enterprise release 8.0.5.0.0 for unix will accept that you create a table with the
ANSI data type integer, but internally it will use an oracle data type. This alas is not transparent, so
when retrieving the data it will have a different data type, in this case it will result in that the erlang
user will get the string "1" instead of the value 1.

Another obstacle is that some drivers do not support scrollable cursors which has the effect that the
only way to traverse the result set is sequentially, with next, from the first row to the last, and once you
pass a row you can not go back. This means that some functions in the interface will not work together
with certain drivers. A similar problem is that not all drivers support “row count” for select queries,
hence resulting in that the function select count/[3,4] will return fok, undefinedg instead of fok,
NrRowsg where NrRows is the number of rows in the result set.

1.3.3 Data types

The following is a list of the ANSI data types. For details turn to the ANSI standard documentation.
Usage of other data types is of course possible, but you should be aware that this makes your
application dependent on the database you are using at the moment.

� CHARACTER (size), CHAR (size)

� NUMERIC (precision, scale), DECIMAL (precision, scale), DEC (precision, scale) precision -
total number of digits, scale - total number of decimal places

� INTEGER, INT, SMALLINT

� FLOAT (precision)

� REAL

� DOUBLE PRECISION

� CHARACTER VARYING(size), CHAR VARYING(size)

When inputing data the values will always be in string format as they are part of an SQL-query.
Example:

odbc:sql_query(Ref, "INSERT INTO TEST VALUES(1, 2, 3)").

6 Erlang ODBC application

1.3: Databases

Note:
Note that when the value of the data to input is a string, it has to be quoted with ’. Example:

odbc:sql_query(Ref, "INSERT INTO EMPLOYEE VALUES(1, ’Jane’, ’Doe’, ’F’)").

When selecting data from a table, all data types are returned from the database to the ODBC driver as
an ODBC data type. The tables below shows the mapping between those data types and what is
returned by the Erlang API.

ODBC Data Type Erlang Data Type

SQL CHAR String

SQL NUMERIC Float

SQL DECIMAL String

SQL INTEGER Integer

SQL SMALLINT Integer

SQL FLOAT Float

SQL REAL Float

SQL DOUBLE Float

SQL VARCHAR String

Table 1.1: Mapping of ODBC data types to the Erlang data types returned to the Erlang application.

ODBC Data Type Erlang Data Type

SQL TYPE DATE String

SQL TYPE TIME String

SQL TYPE TIMESTAMP String

SQL LONGVARCHAR String

SQL BINARY String

SQL VARBINARY String

SQL LONGVARBINARY String

SQL BIGINT String

SQL TINYINT Integer

SQL BIT Boolean

Table 1.2: Mapping of extended ODBC data types to the Erlang data types returned to the Erlang
application.

7Erlang ODBC application

Chapter 1: Erlang ODBC User’s Guide

1.4 Error handling

1.4.1 Strategy

On a conceptual level starting a database connection using the Erlang ODBC API is a basic client server
application. The client process uses the API to start and communicate with the server process that
manages the connection. The strategy of the Erlang ODBC application is that programming faults in
the application itself will cause the connection process to terminate abnormally.(When a process
terminates abnormally its supervisor will log relevant error reports.) Calls to API functions during or
after termination of the connection process, will return ferror, connection closedg. Contextual
errors on the other hand will not terminate the connection it will only return ferror, Reasong to the
client, where Reason may be any erlang term.

Clients

The connection is associated with the process that created it and can only be accessed through it. The
reason for this is to preserve the semantics of result sets and transactions when select count/[2,3] is
called or auto commit is turned off. Attempts to use the connection from another process will fail. This
will not effect the connection. On the other hand, if the client process dies the connection will be
terminated.

Timeouts

All request made by the client to the connection are synchronous. If the timeout is used and expires the
client process will exit with reason timeout. Proably the right thing to do is let the client die and
perhaps be restarted by its supervisor. But if the client chooses to catch this timeout, it is a good idea to
wait a little while before trying again. If there are too many consecutive timeouts that are caught the
connection process will conclude that there is something radically wrong and terminate the connection.

Gaurds

All API-functions are guarded and if you pass an argument of the wrong type a runtime error will occur.
All input parameters to internal functions are trusted to be correct. It is a good programming practise to
only distrust input from truly external sources. You are not supposed to catch these errors, it will only
make the code very messy and much more complex, which introduces more bugs and in the worst case
also covers up the actual faults. Put your effort on testing instead, you should trust your own input.

1.4.2 The whole picture

As the Erlang ODBC application relies on third party products and communicates with a database that
proably runs on an other computer in the network there are plenty of things that might go wrong. To
fully understand the things that might happen it facilitate to know the design of the Erlang ODBC
application, hence here follows a short description of the current design.

Note:
Please note that design is something, that not necessarily will, but might change in future releases.
While the semantics of the API will not change as it is independent of the implementation.

8 Erlang ODBC application

1.4: Error handling

E
rl

an
g

po
rt

E
rl

an
g

Su
pe

rv
is

or

re
sp

on
se

re
sp

on
se

re
qu

es
t

E
rl

an
g

co
nt

ro
l p

ro
ce

ss

C
-p

ro
ce

ss

E
rl

an
g

cl
ie

nt

L
in

k

re
qu

es
t

Con
ne

ct
io

n
re

fe
re

nc
e

re
qu

es
t

re
sp

on
se

m
on

ito
r

Con
ne

ct
 re

qu
es

t

Su
pe

rv
is

or
 th

re
ad

D
at

ab
as

e
ha

nd
le

r
th

re
ad

Figure 1.1: Architecture of the Erlang odbc application

When you do application:start(odbc) the only thing that happens is that a supervisor process is started.
For each call to the API function connect/2 a process is spawned and added as a child to the Erlang
ODBC supervisor. The supervisors only tasks are to provide error-log reports, if a child process should
die abnormally, and the possibility to do a code change. Only the client process has the knowledge to
decide if this connection managing process should be restarted.

The erlang connection process spawned by connect/2, will open a port to a c-process that handles the
communication with the database through Microsoft’s ODBC API. The C-process consists of two
threads, the supervisor thread and the database handler thread. The supervisor thread checks for new
messages on the erlang port while the database handler thread talks to the database. This has the effect
that the process will detect if erlang closes the port when the database handler thread seems to hang on
some database call. In this case the c-process will exit. If the c-process crashes/exits it will bring the
erlang-process down too and vice versa i.e. the connection is terminated.

9Erlang ODBC application

Chapter 1: Erlang ODBC User’s Guide

Note:
The function connect/2 will start the odbc application if that is not already done. In this case a
supervisor information log will be produced stating that the odbc application was started as a
temporary application. It is really the responsibility of the application that uses the API too make
sure it is started in the desired way.

Error types

The types of errors that may occur can be divide into the following categories.

� Configuration problems - Everything from that the database was not set up right to that the
c-program that should be run through the erlang port was not compiled for your platform.

� Errors discovered by the ODBC driver - If calls to the ODBC-driver fails due to circumstances
that can not be controlled by the Erlang ODBC application programmer, an error string will be
dug up from the driver. This string will be the Reason in the ferror, Reasong return value.
How good this error message is will of course be driver dependent. Examples of such
circumstances are trying to insert the same key twice, invalid SQL-queries and that the database
has gone off line.

� Connection termination - If a connection is terminated in an abnormal way, or if you try to use a
connection that you have already terminated in a normal way by calling disconnect/1, the return
value will be ferror, connection closedg. A connection could end abnormally because of an
programming error in the Erlang ODBC application, but also if the ODBC driver crashes.

� Contextual errors - If API functions are used in the wrong context, the Reason in the error tuple
will be a descriptive atom. For instance if you try to call the function last/[1,2] without first
calling select count/[2,3] to associate a result set with the connection. If the ODBC-driver
does not support some functions, or if you disabled some functionality for a connection and then
try to use it.

10 Erlang ODBC application

Erlang ODBC Reference Manual

Short Summaries

� Erlang Module odbc [page 17] – Erlang ODBC application

� Erlang Module odbc (deprecated) [page 25] – Deprecated version of the Erlang
ODBC application

odbc

The following functions are exported:

� commit(ConnectionReference, CommitMode) ->
[page 18] Commits or rollbacks a transaction.

� commit(ConnectionReference, CommitMode, TimeOut) -> ok | ferror,
Reasong
[page 18] Commits or rollbacks a transaction.

� connect(ConnectStr, Options) -> fok, ConnectionReferenceg | ferror,
Reasong
[page 18] Opens a connection to the database.

� disconnect(ConnectionReference) -> ok | ferror, Reasong
[page 19] Closes a connection to a database.

� first(ConnectionReference) ->
[page 19] Returns the first row of the result set and positions a cursor at this row.

� first(ConnectionReference, Timeout) -> fselected, ColNames, Rowsg |
ferror, Reasong
[page 19] Returns the first row of the result set and positions a cursor at this row.

� last(ConnectionReference) ->
[page 20] Returns the last row of the result set and positions a cursor at this row.

� last(ConnectionReference, TimeOut) -> fselected, ColNames, Rowsg |
ferror, Reasong
[page 20] Returns the last row of the result set and positions a cursor at this row.

� next(ConnectionReference) ->
[page 20] Returns the next row of the result set relative the current cursor position
and positions the cursor at this row.

� next(ConnectionReference, TimeOut) -> fselected, ColNames, Rowsg |
ferror, Reasong
[page 20] Returns the next row of the result set relative the current cursor position
and positions the cursor at this row.

11Erlang ODBC application

Erlang ODBC Reference Manual

� prev(ConnectionReference) ->
[page 20] Returns the previous row of the result set relative the current cursor
position and positions the cursor at this row.

� prev(ConnectionReference, TimeOut) -> fselected, ColNames, Rowsg |
ferror, Reasong
[page 20] Returns the previous row of the result set relative the current cursor
position and positions the cursor at this row.

� sql query(ConnectionReference, SQLQuery) ->
[page 20] Executes a SQL query. If it is a SELECT query the result set is returned,
on the format fselected, ColNames, Rowsg. For other query types the tuple
fupdated, NRowsg is returned.

� sql query(ConnectionReference, SQLQuery, TimeOut) -> fupdated,
NRowsg | fselected, ColNames, Rowsg | ferror, Reasong
[page 20] Executes a SQL query. If it is a SELECT query the result set is returned,
on the format fselected, ColNames, Rowsg. For other query types the tuple
fupdated, NRowsg is returned.

� select count(ConnectionReference, SelectQuery) ->
[page 21] Executes a SQL SELECT query and associates the result set with the
connection. A cursor is positioned before the first row in the result set and the
tuple fok, NrRowsg is returned.

� select count(ConnectionReference, SelectQuery, TimeOut) -> fok,
NrRowsg | ferror, Reasong
[page 21] Executes a SQL SELECT query and associates the result set with the
connection. A cursor is positioned before the first row in the result set and the
tuple fok, NrRowsg is returned.

� select(ConnectionReference, Position, N) ->
[page 21] Selects N consecutive rows of the result set.

� select(ConnectionReference, Position, N, TimeOut) -> fselected,
ColNames, Rowsg | ferror, Reasong
[page 21] Selects N consecutive rows of the result set.

� start link(Args, Options) ->
[page 22] Depricated function

� start link(ServerName, Args, Options) -> Result
[page 22] Depricated function

� stop(Server) ->
[page 22] Depricated function

� stop(Server, Timeout) -> ok
[page 22] Depricated function

� sqlConnect(Server, DSN, UID, Auth) ->
[page 22] Depricated function

� sqlConnect(Server, DSN, UID, Auth, Timeout) -> Result | ferror,
ErrMsg, ErrCodeg
[page 22] Depricated function

� erl connect(Server, ConnectStr) ->
[page 22] Depricated function

� erl connect(Server, ConnectStr, Timeout) ->
[page 22] Depricated function

� erl connect(Server, DSN, UID, PWD) ->
[page 22] Depricated function

12 Erlang ODBC application

Erlang ODBC Reference Manual

� erl connect(Server, DSN, UID, PWD, Timeout) -> ok, | ferror, ErrMsg,
ErrCodeg
[page 22] Depricated function

� sqlDisConnect(Server) ->
[page 22] Depricated function

� sqlDisConnect(Server, Timeout) -> Result | ferror, ErrMsg, ErrCodeg
[page 22] Depricated function

� erl disconnect(Server) ->
[page 22] Depricated function

� erl disconnect(Server, Timeout) -> ok | ferror, ErrMsg, ErrCodeg
[page 23] Depricated function

� sqlSetConnectAttr(Server, Attr, Value) ->
[page 23] Depricated function

� sqlSetConnectAttr(Server, Attr, Value, Timeout) -> Result | ferror,
ErrMsg, ErrCodeg
[page 23] Depricated function

� erl executeStmt(Server, Stmt) ->
[page 23] Depricated function

� erl executeStmt(Server, Stmt, Timeout) -> fupdated, NRowsg |
fselected, ColNames, Rowsg | ferror, ErrFunc, ErrMsgg
[page 23] Depricated function

� sqlEndTran(Server, ComplType) ->
[page 23] Depricated function

� sqlEndTran(Server, ComplType, Timeout) -> Result | ferror,
ErrorMsg, errCodeg
[page 23] Depricated function

� sqlRowCount(Server) ->
[page 23] Depricated function

� sqlRowCount(Server, Timeout) -> fResult, RowCountg | ferror, ErrMsg,
ErrCodeg
[page 23] Depricated function

� sqlDescribeCol(Server, ColNum) ->
[page 23] Depricated function

� sqlDescribeCol(Server, ColNum, Timeout) -> fResult, ColName,
Nullableg | ferror, ErrMsg, ErrCodeg
[page 23] Depricated function

� sqlNumResultCols(Server) ->
[page 23] Depricated function

� sqlNumResultCols(Server, Timeout) -> fResult, ColCountg | ferror,
ErrMsg, ErrCodeg
[page 23] Depricated function

� sqlCloseHandle(Server) ->
[page 23] Depricated function

� sqlCloseHandle(Server, Timeout) -> Result | ferror, ErrMsg, ErrCodeg
[page 23] Depricated function

� sqlExecDirect(Server, Stmt) ->
[page 23] Depricated functions

13Erlang ODBC application

Erlang ODBC Reference Manual

� sqlExecDirect(Server, Stmt, Timeout) -> Result | ferror, ErrMsg,
ErrCodeg
[page 23] Depricated functions

� columnRef() ->fok, Refg
[page 23] Depricated functions

� sqlBindColumn(Server, ColNum, Ref) ->
[page 23] Depricated functions

� sqlBindColumn(Server, ColNum, Ref, Timeout) -> Result | ferror,
ErrMsg, ErrCodeg
[page 23] Depricated functions

� sqlFetch(Server) ->
[page 23] Depricated functions

� sqlFetch(Server, Timeout) ->
[page 23] Depricated functions

� readData(Server, Ref) ->
[page 23] Depricated functions

� readData(Server, Ref, Timeout) -> fok, Valueg
[page 23] Depricated functions

odbc (deprecated)

The following functions are exported:

� start link(Args, Options) ->
[page 26] Start a new ODBC server process.

� start link(ServerName, Args, Options) -> Result
[page 26] Start a new ODBC server process.

� stop(Server) ->
[page 26] Stop the ODBC server process

� stop(Server, Timeout) -> ok
[page 26] Stop the ODBC server process

� sqlBindColumn(Server, ColNum, Ref) ->
[page 27] Assign a reference to a column in a result set

� sqlBindColumn(Server, ColNum, Ref, Timeout) -> Result | ferror,
ErrMsg, ErrCodeg
[page 27] Assign a reference to a column in a result set

� sqlCloseCursor(Server) ->
[page 27] Close a cursor that has been opened on a statement and discards
pending results

� sqlCloseCursor(Server, Timeout) -> Result | ferror, ErrMsg, ErrCodeg
[page 27] Close a cursor that has been opened on a statement and discards
pending results

� sqlConnect(Server, DSN, UID, Auth) ->
[page 28] Establishes a connection to a database

� sqlConnect(Server, DSN, UID, Auth, Timeout) -> Result | ferror,
ErrMsg, ErrCodeg
[page 28] Establishes a connection to a database

14 Erlang ODBC application

Erlang ODBC Reference Manual

� sqlDescribeCol(Server, ColNum) ->
[page 28] Return the result descriptor

� sqlDescribeCol(Server, ColNum, Timeout) -> fResult, ColName,
Nullableg | ferror, ErrMsg, ErrCodeg
[page 28] Return the result descriptor

� sqlDisConnect(Server) ->
[page 29] Close the connection associated with the Server

� sqlDisConnect(Server, Timeout) -> Result | ferror, ErrMsg, ErrCodeg
[page 29] Close the connection associated with the Server

� sqlEndTran(Server, ComplType) ->
[page 29] Request a commit or rollback operation for all active operations on all
statement handles associated with a connection

� sqlEndTran(Server, ComplType, Timeout) -> Result | ferror,
ErrorMsg, errCodeg
[page 29] Request a commit or rollback operation for all active operations on all
statement handles associated with a connection

� sqlExecDirect(Server, Stmt) ->
[page 30] Execute a statement

� sqlExecDirect(Server, Stmt, Timeout) -> Result | ferror, ErrMsg,
ErrCodeg
[page 30] Execute a statement

� sqlFetch(Server) ->
[page 30] Fetch a row of data from a result set

� sqlFetch(Server, Timeout) -> Result | ferror, ErrMsg, ErrCodeg
[page 30] Fetch a row of data from a result set

� sqlNumResultCols(Server) ->
[page 31] Return the number of columns in a result set

� sqlNumResultCols(Server, Timeout) -> fResult, ColCountg | ferror,
ErrMsg, ErrCodeg
[page 31] Return the number of columns in a result set

� sqlRowCount(Server) ->
[page 31] Returns the number of rows affected by an UPDATE, INSERT, or
DELETE statement

� sqlRowCount(Server, Timeout) -> fResult, RowCountg | ferror, ErrMsg,
ErrCodeg
[page 31] Returns the number of rows affected by an UPDATE, INSERT, or
DELETE statement

� sqlSetConnectAttr(Server, Attr, Value) ->
[page 32] set Connection Attribute

� sqlSetConnectAttr(Server, Attr, Value, Timeout) -> Result | ferror,
ErrMsg, ErrCodeg
[page 32] set Connection Attribute

� readData(Server, Ref) ->
[page 32] Get contents of the associated column.

� readData(Server, Ref, Timeout) -> fok, Valueg
[page 32] Get contents of the associated column.

� columnRef() -> fok, Refg
[page 33] Return a reference.

15Erlang ODBC application

Erlang ODBC Reference Manual

� erl connect(Server, ConnectStr) ->
[page 33] Open a connection to a database

� erl connect(Server, ConnectStr, Timeout) ->
[page 33] Open a connection to a database

� erl connect(Server, DSN, UID, PWD) ->
[page 33] Open a connection to a database

� erl connect(Server, DSN, UID, PWD, Timeout) -> ok, | ferror, ErrMsg,
ErrCodeg
[page 33] Open a connection to a database

� erl disconnect(Server) ->
[page 34] Close the connection to a database

� erl disconnect(Server, Timeout) -> ok | ferror, ErrMsg, ErrCodeg
[page 34] Close the connection to a database

� erl executeStmt(Server, Stmt) ->
[page 34] Execute a single SQL statement

� erl executeStmt(Server, Stmt, Timeout) -> fupdated, NRowsg |
fselected, [ColName], [Row]g | ferror, ErrMsgg
[page 34] Execute a single SQL statement

16 Erlang ODBC application

Erlang ODBC Reference Manual odbc

odbc
Erlang Module

This application provides an Erlang interface to communicate with relational
SQL-databases. It is built on top of Microsofts ODBC interface and therefore requires
that you have an ODBC driver to the database that you want to connect to.

Note:
The functions first/[1,2], last/[1,2], next/[1,2], prev[1,2] and
select/[3,4] assumes there is a result set associated with the connection to work
on. Calling the function select count/[2,3] associates such a result set with the
connection, calling the function sql query/[2,3] will remove the association.
Calling select count again will remove the current result set association and create a
new one. Alas some drivers only support sequential traversal of the result set, e.i.
they do not support what in the ODBC world is known as scrollable cursors. This
will have the effect that functions such as first/[1,2], last/[1,2], prev[1,2], etc
may return ferror, driver does not support functiong

COMMON DATA TYPES

Here follows type definitions that are used by more than one function in the ODBC
API.

Note:
The type TimeOut has the default value infinity, so for instance:
commit(ConnectionReference, CommitMode) is the same as
commit(ConnectionReference, CommitMode, infinity). If the timeout expires the
client will exit with the reason timeout.

ConnectionReference - as returned by connect/2

TimeOut = Milliseconds | infinity

Milliseconds = integer()

CommonReason = connection_closed | term() - some kind of explanation of what went wro

String = list of ASCII characters

ColName = String - Name of column in the result set

ColNames - [ColName] - e.g. a list of the names of the
selected columns in the result set.

17Erlang ODBC application

odbc Erlang ODBC Reference Manual

Row = [Value] | {Value} - List or tuple of column values
e.g. one row of the result set. (Configurable per connection.)

Value = null | term() - A column value.

Rows = [Row] - A list of rows from the result set.

ERROR HANDLING

The error handling strategy and possible errors sources are described in the Erlang
ODBC User’s Guide. [page 8]

Exports

commit(ConnectionReference, CommitMode) ->

commit(ConnectionReference, CommitMode, TimeOut) -> ok | ferror, Reasong

Types:

� CommitMode = commit | rollback
� Reason = not an explicit commit connection |

process not owner of odbc connection | CommonReason
� See also common data types.

Commits or rollbacks a transaction. Needed on connections where automatic commit is
turned off.

connect(ConnectStr, Options) -> fok, ConnectionReferenceg | ferror, Reasong

Types:

� ConnectionReference - should be used to acess the connection.
� ConnectStr

An example of a connection string: "DSN=sql-server;UID=alladin;PWD=sesame"
where DSN is your ODBC Data Source Name, UID is a database user id and PWD is
the password for that user. These are usually the attributes required in the
connection string, but some drivers have other driver specific attributes, for example
"DSN=Oracle8;DBQ=gandalf;UID=alladin;PWD=sesame"where DBQ is your
TNSNAMES.ORA entry name e.g. some Oracle specific configuration attribute.

� Options = [] | [Option]
All options has default values.

� Option = fauto commit, AutoCommitModeg | ftimeout, Millisecondsg |
ftuple row, TupleModeg | fscrollable cursors, UseSrollableCursorsg | ftrace driver,
TraceModeg
The default timeout is infinity

� AutoCommitMode = on | off
Default is on.

� TupleMode = on | off
Default is off.

� UseSrollableCursors = on | off
Default is on.

18 Erlang ODBC application

Erlang ODBC Reference Manual odbc

� TraceMode = on | off
Default is off.

� Reason = port program executable not found | CommonReason
� See also common data types.

Opens a connection to the database. The connection is associated with the process that
created it and can only be accessed through it. This funtion may spawn new processes
to handle the connection. These processes will terminate if the process that created the
connection dies or if you call disconnect/1.

If automatic commit mode is turned on, each query will be considered as an individual
transaction and will be automaticly commited after it has been executed. If you want
more than one query to be part of the same transaction the automatic commit mode
should be turned off. Then you will have to call commit/3 explicitly to end a
transaction.

As default a result set row is returned as a list of values but a connection can be
configured to return a result set row as a tuple of values.

Scrollable cursors are nice but causes some overhead. For some connections speed
might be more important than flexible data access and then you can disable scrollable
cursor for a connection, limiting the API but gaining speed

If trace mode is turned on this tells the ODBC driver to write a trace log to the file
SQL.LOG that is placed in the current directory of the erlang emulator. This
information may be useful if you suspect there might be a bug in the erlang ODBC
application, and it might be relevant for you to send this file to our support. Otherwise
you will probably not have much use of this.

Note:
For more information about the ConnectStr see description of the function
SQLDriverConnect in [1].

disconnect(ConnectionReference) -> ok | ferror, Reasong

Types:

� Reason = process not owner of odbc connection
� See common data types.

Closes a connection to a database. This will also terminate all processes that may have
been spawned when the connection was opened. This call will always succeed. If the
connection can not be disconnected gracefully it will be brutally killed. However you
may receive an error message as result if you try to disconnect a connection started by
another process.

first(ConnectionReference) ->

first(ConnectionReference, Timeout) -> fselected, ColNames, Rowsg | ferror, Reasong

Types:

� Reason = result set does not exist | driver does not support function |
scrollable cursors disabled | process not owner of odbc connection |
CommonReason

� See common data types.

19Erlang ODBC application

odbc Erlang ODBC Reference Manual

Returns the first row of the result set and positions a cursor at this row.

last(ConnectionReference) ->

last(ConnectionReference, TimeOut) -> fselected, ColNames, Rowsg | ferror, Reasong

Types:

� Reason = result set does not exist | driver does not support function |
scrollable cursors disabled | process not owner of odbc connection |
CommonReason

� See common data types.

Returns the last row of the result set and positions a cursor at this row.

next(ConnectionReference) ->

next(ConnectionReference, TimeOut) -> fselected, ColNames, Rowsg | ferror, Reasong

Types:

� Reason = result set does not exist | process not owner of odbc connection |
CommonReason

� See common data types.

Returns the next row of the result set relative the current cursor position and positions
the cursor at this row. If the cursor is positioned at the last row of the result set when
this function is called the returned value will be fselected, ColNames,[]g e.i. the list
of row values is empty indicating that there is no more data to fetch.

prev(ConnectionReference) ->

prev(ConnectionReference, TimeOut) -> fselected, ColNames, Rowsg | ferror, Reasong

Types:

� Reason = result set does not exist | driver does not support function |
scrollable cursors disabled | process not owner of odbc connection |
CommonReason

� See common data types.

Returns the previous row of the result set relative the current cursor position and
positions the cursor at this row.

sql query(ConnectionReference, SQLQuery) ->

sql query(ConnectionReference, SQLQuery, TimeOut) -> fupdated, NRowsg | fselected,
ColNames, Rowsg | ferror, Reasong

Types:

� SQLQuery = String
SQL query.

� NRows = integer()
The number of affected rows for UPDATE, INSERT, or DELETE queries. For other
query types the value is driver defined, and hence should be ignored.

� Reason = process not owner of odbc connection | CommonReason
� See also common data types.

20 Erlang ODBC application

Erlang ODBC Reference Manual odbc

Executes a SQL query. If it is a SELECT query the result set is returned, on the format
fselected, ColNames, Rowsg. For other query types the tuple fupdated, NRowsg is
returned.

Note:
Some drivers may not have the information of the number of affected rows available
and then the return value may be fupdated, undefinedg .

The list of colum names is ordered in the same way as the list of values of a row, e.g.
the first ColName is associated with the first Value in a Row.

select count(ConnectionReference, SelectQuery) ->

select count(ConnectionReference, SelectQuery, TimeOut) -> fok, NrRowsg | ferror,
Reasong

Types:

� SelectQuery = String
SQL SELECT query.

� NrRows = integer() | undefined
Number of row in the result set.

� Reason = process not owner of odbc connection | CommonReason
� See also common data types.

Executes a SQL SELECT query and associates the result set with the connection. A
cursor is positioned before the first row in the result set and the tuple fok, NrRowsg is
returned.

Note:
Some drivers may not have the information of the number of rows in the result set,
then NrRows will have the value undefined.

select(ConnectionReference, Position, N) ->

select(ConnectionReference, Position, N, TimeOut) -> fselected, ColNames, Rowsg |
ferror, Reasong

Types:

� Position = next | frelative, Posg | fabsolute, Posg
Selection strategy, determines at which row in the result set to start the selection.

� Pos = integer()
Should indicate a row number in the result set. When used together with the option
relative it will be used as an offset from the current cursor position, when used
together with the option absolute it will be interpreted as a row number.

� Reason = result set does not exist | driver does not support function |
scrollable cursors disabled | process not owner of odbc connection |
CommonReason

� See also common data types.

21Erlang ODBC application

odbc Erlang ODBC Reference Manual

Selects N consecutive rows of the result set. If Position is next it is semanticly
equivalent of calling next/[1,2] N times. If Position is frelative, Posg, Pos will be
used as an offset from the current cursor position to determine the first selected row. If
Position is fabsolute, Posg, Pos will be the number of the first row selected. After
this function has returned the cursor is positioned at the last selected row. If there is less
then N rows left of the result set the length of Rows will be less than N. If the first row to
select happens to be beyond the last row of the result set, the returned value will be
fselected, ColNames,[]g e.i. the list of row values is empty indicating that there is
no more data to fetch.

DEPRECATED FUNCTIONS

The following functions are deprecated and will disappear in the next release. They are
only kept to maintain a temporary backward compatibility to make the transition to the
new interface less abrupt. However you should not mix the use of the old and the new
interface. This may lead to an unexpected behavior. The deprecated interface also
requires the application programmer to use the include file odbc.hrl, this whole file is
now deprecated. Here follows a short description of the deprecated interface, for details
see odbc (deprecated) documentation. [page 25]

Exports

start link(Args, Options) ->

start link(ServerName, Args, Options) -> Result

Functionality provided by connect/2.

stop(Server) ->

stop(Server, Timeout) -> ok

Functionality provided by disconnect/2.

sqlConnect(Server, DSN, UID, Auth) ->

sqlConnect(Server, DSN, UID, Auth, Timeout) -> Result | ferror, ErrMsg, ErrCodeg

Use connect/2 instead.

erl connect(Server, ConnectStr) ->

erl connect(Server, ConnectStr, Timeout) ->

erl connect(Server, DSN, UID, PWD) ->

erl connect(Server, DSN, UID, PWD, Timeout) -> ok, | ferror, ErrMsg, ErrCodeg

Use connect/2 instead.

sqlDisConnect(Server) ->

sqlDisConnect(Server, Timeout) -> Result | ferror, ErrMsg, ErrCodeg

Use disconnect/1 instead.

erl disconnect(Server) ->

22 Erlang ODBC application

Erlang ODBC Reference Manual odbc

erl disconnect(Server, Timeout) -> ok | ferror, ErrMsg, ErrCodeg

Use disconnect/1 instead.

sqlSetConnectAttr(Server, Attr, Value) ->

sqlSetConnectAttr(Server, Attr, Value, Timeout) -> Result | ferror, ErrMsg, ErrCodeg

Functionality provided by connect/2.

erl executeStmt(Server, Stmt) ->

erl executeStmt(Server, Stmt, Timeout) -> fupdated, NRowsg | fselected, ColNames,
Rowsg | ferror, ErrFunc, ErrMsgg

Use sql query/[2,3] instead.

sqlEndTran(Server, ComplType) ->

sqlEndTran(Server, ComplType, Timeout) -> Result | ferror, ErrorMsg, errCodeg

Use commmit/[2,3] instead.

sqlRowCount(Server) ->

sqlRowCount(Server, Timeout) -> fResult, RowCountg | ferror, ErrMsg, ErrCodeg

Functionality provided by sql query/[2,3] and select count/[2,3]

sqlDescribeCol(Server, ColNum) ->

sqlDescribeCol(Server, ColNum, Timeout) -> fResult, ColName, Nullableg | ferror,
ErrMsg, ErrCodeg

Not needed.

sqlNumResultCols(Server) ->

sqlNumResultCols(Server, Timeout) -> fResult, ColCountg | ferror, ErrMsg, ErrCodeg

Not needed.

sqlCloseHandle(Server) ->

sqlCloseHandle(Server, Timeout) -> Result | ferror, ErrMsg, ErrCodeg

Not needed.

sqlExecDirect(Server, Stmt) ->

sqlExecDirect(Server, Stmt, Timeout) -> Result | ferror, ErrMsg, ErrCodeg

columnRef() ->fok, Refg

sqlBindColumn(Server, ColNum, Ref) ->

sqlBindColumn(Server, ColNum, Ref, Timeout) -> Result | ferror, ErrMsg, ErrCodeg

sqlFetch(Server) ->

sqlFetch(Server, Timeout) ->

readData(Server, Ref) ->

readData(Server, Ref, Timeout) -> fok, Valueg

The semantical benefit of using the above functions can be achived much easier by
using select count/[2,3] followed by next/[1,2].

23Erlang ODBC application

odbc Erlang ODBC Reference Manual

REFERENCES

[1]: Microsoft ODBC 3.0, Programmer’s Reference and SDK Guide
See also http://msdn.microsoft.com/

24 Erlang ODBC application

Erlang ODBC Reference Manual Deprecated odbc

Deprecated odbc
Erlang Module

The Erlang ODBC interface is divided into three parts:

� Start and Stop
Start and stop the Erlang ODBC gen server process.

� Basic API
Consist of most ODBC functions.

� Utility API
Consists of functions that are easier to use than the Basic API. These functions are
on a higher level, do more of the job, but allow less control to the application
programmer.

General information

Erlang ODBC is an Erlang application. An Erlang application allows noramlly code
change in a running Erlang system. Erlang ODBC application does not allow code
upgrade in a running Erlang system.
Erlang ODBC functions are synchronous.
Erlang ODBC functions supports all ODBC defined SQL data types. SQL data types
are mapped to nearest Erlang type, except binaries which are mapped into string(). The
type string() is a list() of integers representing ASCII codes.
When a column in a row has no value then columns is called to be null or contain a
null. The null is mapped to a Erlang atom null.
A SQL question in Erlang is a string. The string is decoded in the Erlang ODBC
C-program as a string. If the SQL questions contains a null character “\0” then the
decode functions think that the string ends there. Do not use null characters in the SQL
question.
In some databases has data in string format been filled out with space until column
length.
The default Timeout for all functions is 5000 ms, unless otherwise stated.

Error handle

Erlang ODBC application may fail for following reasons:
Bad arguments to an Erlang ODBC function.
Failure from ODBC-driver.
Bad arguments to an Erlang ODBC function returns the tuple f’EXIT’,Reasong.
When an Erlang ODBC function receive faliure from ODBC driver, the functions
returns the tuple ferror, ErrMsg, ErrCodeg .

25Erlang ODBC application

Deprecated odbc Erlang ODBC Reference Manual

Start and Stop

Exports

start link(Args, Options) ->

start link(ServerName, Args, Options) -> Result

Types:

� Args = []
� Options = [Opt]
� Opt = This are options which are used by the gen server module.

For information see the module documentation gen server and sys.
� ServerName = flocal, atom()g | fglobal, atom()g

When supplied, causes the server to be registered locally or globally. If the server is
started without a name it can only be called using the returned pid.

� Result = fok, pid()g | ferror, Reasong
The pid of the server or an error tuple.

� Reason = falready started, pid()g | timeout | fno c node, Infog
The server was already started, a timeout has expired, or the C node could not be
started (the program may not have been found or may not have been executable e.g.).

� Info = string()
More information.

Starts a new ODBC server process, registers it with the supervisor, and links it to the
calling process. Opens a port to a new C node on the local host, using the same cookie
as is used by the node of the calling process. Links to the process on the C node.

Note:
There is no default timeout value. Not using the timeout option is equivalent to
having an infinite timeout value.
An expired timeout is reported as an error here, not an exception.
The debug options are described in the sys module documentation.

stop(Server) ->

stop(Server, Timeout) -> ok

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� Timeout = integer() | infinity
Max time (ms) for serving the request.

Stops the ODBC server process as soon as all already submitted requests have been
processed. The C node is also stopped.

26 Erlang ODBC application

Erlang ODBC Reference Manual Deprecated odbc

Basic API

To use the Basic API it is necessary to gain a comprehensive understanding of ODBC by
studying [1].
Erlang ODBC application Basic API function allocate and deallocate memory automatic
and therefore have the ODBC function which allocate or deallocate memory been
excluded.

Exports

sqlBindColumn(Server, ColNum, Ref) ->

sqlBindColumn(Server, ColNum, Ref, Timeout) -> Result | ferror, ErrMsg, ErrCodeg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� ColNum = integer()
Column number from left to right starting at 1.

� Ref = term()
A reference.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO
� ErrMsg = string()

Error message.
� ErrCode = ?SQL INVALID HANDLE | ?SQL ERROR

Assigns a reference to the column with the number ColNum.

Differences from the ODBC Function:
The parameters Server and Timeout have been added. The input parameters
TargetType, TargetValuePtr, BufferLength, and StrLen or IndPtr of the ODBC
function have been replaced with the Ref parameter.

sqlCloseCursor(Server) ->

sqlCloseCursor(Server, Timeout) -> Result | ferror, ErrMsg, ErrCodeg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO
� ErrMsg = string()

Error message.
� ErrCode = ?SQL INVALID HANDLE | ?SQL ERROR

27Erlang ODBC application

Deprecated odbc Erlang ODBC Reference Manual

Closes a cursor that has been opened on a statement and discards pending results. See
SQLCloseCursor in [1].

Differences from the ODBC Function:

The parameters Server and Timeout have been added.

sqlConnect(Server, DSN, UID, Auth) ->

sqlConnect(Server, DSN, UID, Auth, Timeout) -> Result | ferror, ErrMsg, ErrCodeg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� DSN = string()
The name of the database.

� UID = string()
The user ID

� Auth = string()
The user’s password for the database.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO
� ErrMsg -> string()

Error message.
� ErrCode -> ?SQL INVALID HANDLE | ?SQL ERROR

Establishes a connection to a driver and a data source. See SQLConnect in [1].
Differences from the ODBC Function:

Connection pooling is not supported. The parameters Server and Timeout have been
added. The input parameters NameLength1, NameLength2, and NameLength3 of the
ODBC function have been excluded.

sqlDescribeCol(Server, ColNum) ->

sqlDescribeCol(Server, ColNum, Timeout) -> fResult, ColName, Nullableg | ferror,
ErrMsg, ErrCodeg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� ColNum = integer()
The column number from left to right, starting at 1.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO
� ColName = string()

The column name.

28 Erlang ODBC application

Erlang ODBC Reference Manual Deprecated odbc

� Nullable = ?SQL NO NULLS | ?SQL NULLABLE |
?SQL NULLABLE UNKNOWN
Indicates whether the column allows null values or not.

� ErrMsg -> string()
Error message.

� ErrCode -> ?SQL INVALID HANDLE | ?SQL ERROR

Returns the result descriptor – column name, and nullability for one column in the
result set. See SQLDescribeCol in [1].
Differences from the ODBC Function:

The function does not support retrieval of bookmark column data. The parameters
Server and Timeout have been added. The output parameters ColumnName and
NullablePtr of the ODBC function have been changed into the returned values
ColName and Nullable. The output parameters BufferLength, NameLengthPtr,
DataTypePtr, ColumnSizePtr, and DecimalDigitsPtr of the ODBC function hsve
been excluded.

sqlDisConnect(Server) ->

sqlDisConnect(Server, Timeout) -> Result | ferror, ErrMsg, ErrCodeg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO
� ErrMsg -> string()

Error message.
� ErrCode -> ?SQL INVALID HANDLE | ?SQL ERROR

Closes the connection associated with a specific server. See SQLDisconnect in [1].

Differences from the ODBC Function:

Connection pooling is not supported. The parameters Server and Timeout have been
added.

sqlEndTran(Server, ComplType) ->

sqlEndTran(Server, ComplType, Timeout) -> Result | ferror, ErrorMsg, errCodeg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� ComplType = ?SQL COMMIT | ?SQL ROLLBACK
Commit operation or rollback operation.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO

29Erlang ODBC application

Deprecated odbc Erlang ODBC Reference Manual

� ErrMsg -> string()
Error message.

� ErrCode -> ?SQL INVALID HANDLE | ?SQL ERROR

Requests a commit or rollback operation for all active operations on all statement
handles associated with a connection. See SQLEndTran in [1].

Note:
Rollback of transactions may be unsupported by core level drivers.

Differences from the ODBC Function:

The parameter HandleType and Handle of the ODBC function has been excluded. The
parameters Server and Timeout have been added.

sqlExecDirect(Server, Stmt) ->

sqlExecDirect(Server, Stmt, Timeout) -> Result | ferror, ErrMsg, ErrCodeg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� Stmt = string()
An SQL statement.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO | ?SQL NEED DATA |
?SQL NO DATA

� ErrMsg -> string()
Error message.

� ErrCode -> ?SQL INVALID HANDLE | ?SQL ERROR

Executes a statement. See SQLExecDirect in [1].

Differences from the ODBC Function:

?SQL NO DATA is returned only in connection with positioned updates, which are not
supported. The parameters Server and Timeout have been added. The input parameter
StatementHandle and TextLength of the ODBC function has been excluded.

sqlFetch(Server) ->

sqlFetch(Server, Timeout) -> Result | ferror, ErrMsg, ErrCodeg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

30 Erlang ODBC application

Erlang ODBC Reference Manual Deprecated odbc

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO | ?SQL NO DATA
� ErrMsg -> string()

Error message.
� ErrCode -> ?SQL INVALID HANDLE | ?SQL ERROR

Fetches a row of data from a result set. The driver returns data for all columns that were
bound to storage locations with sqlBindCol/[3, 4]. See SQLFetch in [1].

Differences from the ODBC Function:

The parameter StatementHandle of the ODBC function has been excluded. The
parameters Server and Timeout have been added.

sqlNumResultCols(Server) ->

sqlNumResultCols(Server, Timeout) -> fResult, ColCountg | ferror, ErrMsg, ErrCodeg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO
� ColCount = integer()

The number of columns in the result set.
� ErrMsg -> string()

Error message.
� ErrCode -> ?SQL INVALID HANDLE | ?SQL ERROR

Returns the number of columns in a result set. See SQLNumResultCols in [1].

Differences from the ODBC Function:

The parameter StatementHandle of the ODBC function has been excluded. The
parameters Server and Timeout have been added. The output parameter
ColumnCountPtr of the ODBC function has been changed into the returned value
ColCount.

sqlRowCount(Server) ->

sqlRowCount(Server, Timeout) -> fResult, RowCountg | ferror, ErrMsg, ErrCodeg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO
Result macro.

� RowCount = integer()
The number of affected rows. If the number of affected rows is not available -1 is
returned. For exceptions, see SQLRowCount in [1].

31Erlang ODBC application

Deprecated odbc Erlang ODBC Reference Manual

� ErrMsg -> string()
Error message.

� ErrCode -> ?SQL INVALID HANDLE | ?SQL ERROR

Returns the number of rows affected by an UPDATE, INSERT, or DELETE statement.
See SQLRowCount in [1].

Differences from the ODBC Function:

The parameter StatementHandle has been excluded from ODBC function. The
parameters Server and Timeout have been added. The output parameter RowCountPtr
of the ODBC function has been changed into the returned value RowCount.

sqlSetConnectAttr(Server, Attr, Value) ->

sqlSetConnectAttr(Server, Attr, Value, Timeout) -> Result | ferror, ErrMsg, ErrCodeg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� Attr = integer()
One of the attributes described further down are supported. The attributes defined
by ODBC are supplied through macros, but driver-specific attributes are not.

� Value = string() | integer()
The new attribute value.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Result = ?SQL SUCCESS | ?SQL SUCCESS WITH INFO
� ErrMsg -> string()

Error message.
� ErrCode -> ?SQL INVALID HANDLE | ?SQL ERROR

Sets attributes that govern aspects of connections. The following attributes, and their
possible values, are supported (through macros):
?SQL ATTR AUTOCOMMIT
?SQL ATTR TRACE
?SQL ATTR TRACEFILE
These attributes can only be set after a connection. More information can be found
under SQLSetConnectAttr in [1]. Driver-specific attributes are not supported through
macros, but can be retrieved, if they are of character or signed/unsigned long integer
types.

Differences from the ODBC Function:

Only character and signed/unsigned long integer attribute types are supported. The
parameters Server and Timeout have been added. The input parameter
ConnectionHandle and StringLength of the ODBC function has been excluded.

readData(Server, Ref) ->

readData(Server, Ref, Timeout) -> fok, Valueg

Types:

32 Erlang ODBC application

Erlang ODBC Reference Manual Deprecated odbc

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� Ref
A reference to the column.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� Value = string()
Contents of the column associated with Ref.

Returns the contents of a deferred data buffer and its associated length/indicator buffer.
Used in connection with sqlFetch/[1, 2].

columnRef() -> fok, Refg

Types:

� Ref
A reference.

Returns a reference. The reference is assigned to a column in the function
sqlBindColumn/[3,4].

Utility API

Erlang ODBC application Utility API has a few easy-to-use function. The reported
errors are tuples with arity 3.

Exports

erl connect(Server, ConnectStr) ->

erl connect(Server, ConnectStr, Timeout) ->

erl connect(Server, DSN, UID, PWD) ->

erl connect(Server, DSN, UID, PWD, Timeout) -> ok, | ferror, ErrMsg, ErrCodeg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� ConnectStr = string()
Connection string. For syntax see SQLDriverConnect in [1].

� DSN = string()
Name of the database.

� UID = string()
User ID.

� PWD = string()
Password.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

33Erlang ODBC application

Deprecated odbc Erlang ODBC Reference Manual

� ErrMsg = string()
Error message.

� ErrCode = ?SQL INVALID | ?SQL ERROR

Opens a connection to a database. There can be only one open connections to a
database and per server. connect/[2, 3] is used when the information that can be
supplied through connect/[4, 5] does not suffice.

Note:
The syntax to be used for ConnectStr is described under SQLDriverConnect in [1].
The ConnectStr must be complete.

erl disconnect(Server) ->

erl disconnect(Server, Timeout) -> ok | ferror, ErrMsg, ErrCodeg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� ErrMsg = string()
Error message.

� ErrCode = ?SQL INVALID HANDLE | ?SQL ERROR

Closes the connection to a database.

erl executeStmt(Server, Stmt) ->

erl executeStmt(Server, Stmt, Timeout) -> fupdated, NRowsg | fselected, [ColName],
[Row]g | ferror, ErrMsgg

Types:

� Server = pid() | Name | fglobal, Nameg | fName, Nodeg
The pid of the server process, a registered name, a globally registered name, or a
registered name on a remote node.

� Stmt = string()
SQL statement to execute.

� Timeout = integer() | infinity
Maximum time (ms) for serving the request.

� NRows = integer()
The number of updated rows for UPDATE, INSERT, or DELETE statements, or -1 if
the number is not available. For other statement types the value is driver defined, see
[1].

� ColName = string()
The name of a column in the resulting table.

� Row = [Value]
One row of the resulting table.

� Value = string() | null
One value in a row.

34 Erlang ODBC application

Erlang ODBC Reference Manual Deprecated odbc

� ErrMsg = string()
Error message.

Executes a single SQL statement. All changes to the data source are, by default,
automatically committed if successful.

Note:
fupdated, 0g or fupdated, -1g is returned when a statement that does not select
or update any rows is successfully executed.

The ColNames are ordered the same way as the Values in the Rows (the first ColName
is associated with the first Value of each Row etc.). The Rows have no defined order
since they represent a set.

35Erlang ODBC application

Deprecated odbc Erlang ODBC Reference Manual

36 Erlang ODBC application

List of Figures

1.1 Architecture of the Erlang odbc application . 9

37Erlang ODBC application

List of Figures

38 Erlang ODBC application

List of Tables

1.1 Mapping of ODBC data types to the Erlang data types returned to the Erlang application. 7

1.2 Mapping of extended ODBC data types to the Erlang data types returned to the Erlang
application. 7

39Erlang ODBC application

List of Tables

40 Erlang ODBC application

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

columnRef/0
Deprecated odbc , 33
odbc , 23

commit/2
odbc , 18

commit/3
odbc , 18

connect/2
odbc , 18

Deprecated odbc
columnRef/0, 33
erl_connect/2, 33
erl_connect/3, 33
erl_connect/4, 33
erl_connect/5, 33
erl_disconnect/1, 34
erl_disconnect/2, 34
erl_executeStmt/2, 34
erl_executeStmt/3, 34
readData/2, 32
readData/3, 32
sqlBindColumn/3, 27
sqlBindColumn/4, 27
sqlCloseCursor/1, 27
sqlCloseCursor/2, 27
sqlConnect/4, 28
sqlConnect/5, 28
sqlDescribeCol/2, 28
sqlDescribeCol/3, 28
sqlDisConnect/1, 29
sqlDisConnect/2, 29
sqlEndTran/2, 29
sqlEndTran/3, 29
sqlExecDirect/2, 30
sqlExecDirect/3, 30
sqlFetch/1, 30
sqlFetch/2, 30
sqlNumResultCols/1, 31

sqlNumResultCols/2, 31
sqlRowCount/1, 31
sqlRowCount/2, 31
sqlSetConnectAttr/3, 32
sqlSetConnectAttr/4, 32
start_link/2, 26
start_link/3, 26
stop/1, 26
stop/2, 26

disconnect/1
odbc , 19

erl_connect/2
Deprecated odbc , 33
odbc , 22

erl_connect/3
Deprecated odbc , 33
odbc , 22

erl_connect/4
Deprecated odbc , 33
odbc , 22

erl_connect/5
Deprecated odbc , 33
odbc , 22

erl_disconnect/1
Deprecated odbc , 34
odbc , 22

erl_disconnect/2
Deprecated odbc , 34
odbc , 23

erl_executeStmt/2
Deprecated odbc , 34
odbc , 23

erl_executeStmt/3
Deprecated odbc , 34
odbc , 23

41Erlang ODBC application

Index of Modules and Functions

first/1
odbc , 19

first/2
odbc , 19

last/1
odbc , 20

last/2
odbc , 20

next/1
odbc , 20

next/2
odbc , 20

odbc
columnRef/0, 23
commit/2, 18
commit/3, 18
connect/2, 18
disconnect/1, 19
erl_connect/2, 22
erl_connect/3, 22
erl_connect/4, 22
erl_connect/5, 22
erl_disconnect/1, 22
erl_disconnect/2, 23
erl_executeStmt/2, 23
erl_executeStmt/3, 23
first/1, 19
first/2, 19
last/1, 20
last/2, 20
next/1, 20
next/2, 20
prev/1, 20
prev/2, 20
readData/2, 23
readData/3, 23
select/3, 21
select/4, 21
select_count/2, 21
select_count/3, 21
sql_query/2, 20
sql_query/3, 20
sqlBindColumn/3, 23
sqlBindColumn/4, 23
sqlCloseHandle/1, 23
sqlCloseHandle/2, 23
sqlConnect/4, 22
sqlConnect/5, 22

sqlDescribeCol/2, 23
sqlDescribeCol/3, 23
sqlDisConnect/1, 22
sqlDisConnect/2, 22
sqlEndTran/2, 23
sqlEndTran/3, 23
sqlExecDirect/2, 23
sqlExecDirect/3, 23
sqlFetch/1, 23
sqlFetch/2, 23
sqlNumResultCols/1, 23
sqlNumResultCols/2, 23
sqlRowCount/1, 23
sqlRowCount/2, 23
sqlSetConnectAttr/3, 23
sqlSetConnectAttr/4, 23
start_link/2, 22
start_link/3, 22
stop/1, 22
stop/2, 22

prev/1
odbc , 20

prev/2
odbc , 20

readData/2
Deprecated odbc , 32
odbc , 23

readData/3
Deprecated odbc , 32
odbc , 23

select/3
odbc , 21

select/4
odbc , 21

select_count/2
odbc , 21

select_count/3
odbc , 21

sql_query/2
odbc , 20

sql_query/3
odbc , 20

sqlBindColumn/3
Deprecated odbc , 27
odbc , 23

42 Erlang ODBC application

Index of Modules and Functions

sqlBindColumn/4
Deprecated odbc , 27
odbc , 23

sqlCloseCursor/1
Deprecated odbc , 27

sqlCloseCursor/2
Deprecated odbc , 27

sqlCloseHandle/1
odbc , 23

sqlCloseHandle/2
odbc , 23

sqlConnect/4
Deprecated odbc , 28
odbc , 22

sqlConnect/5
Deprecated odbc , 28
odbc , 22

sqlDescribeCol/2
Deprecated odbc , 28
odbc , 23

sqlDescribeCol/3
Deprecated odbc , 28
odbc , 23

sqlDisConnect/1
Deprecated odbc , 29
odbc , 22

sqlDisConnect/2
Deprecated odbc , 29
odbc , 22

sqlEndTran/2
Deprecated odbc , 29
odbc , 23

sqlEndTran/3
Deprecated odbc , 29
odbc , 23

sqlExecDirect/2
Deprecated odbc , 30
odbc , 23

sqlExecDirect/3
Deprecated odbc , 30
odbc , 23

sqlFetch/1
Deprecated odbc , 30
odbc , 23

sqlFetch/2

Deprecated odbc , 30
odbc , 23

sqlNumResultCols/1
Deprecated odbc , 31
odbc , 23

sqlNumResultCols/2
Deprecated odbc , 31
odbc , 23

sqlRowCount/1
Deprecated odbc , 31
odbc , 23

sqlRowCount/2
Deprecated odbc , 31
odbc , 23

sqlSetConnectAttr/3
Deprecated odbc , 32
odbc , 23

sqlSetConnectAttr/4
Deprecated odbc , 32
odbc , 23

start_link/2
Deprecated odbc , 26
odbc , 22

start_link/3
Deprecated odbc , 26
odbc , 22

stop/1
Deprecated odbc , 26
odbc , 22

stop/2
Deprecated odbc , 26
odbc , 22

43Erlang ODBC application

Index of Modules and Functions

44 Erlang ODBC application

