
Quantis User's Guide

Version 2.4

Quantis User's Guide
Version 2.4

Information in this document is subject to change without notice.

Copyright © ID Quantique SA 2004-2010.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means – electronic, mechanical,
photocopying, recording or otherwise – without the written permission of ID Quantique SA.

Trademarks used in this text:

• Intel, Intel Inside (logos), MMX and Pentium are ® trademarks of Intel Corporation in the United States and other countries.

• Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States and other countries.

• Linux is a ® trademark of Linus Torvalds in the United States and other countries.

• Mac, Mac OS and Macintosh are ® trademarks of Apple Computer, Inc., registered in the U.S. and other countries.

• Microsoft, Windows, Windows NT, XP, Visual Studio and the Windows logo are ® trademarks of Microsoft Corporation in the United States
and other countries.

• Nokia, the Nokia logo, Qt and the Qt logo are trademarks of Nokia Corporation and/or its subsidiaries in Finland and other countries.

• UNIX is a registered trademark of The Open Group in the United States and other countries.

Other trademarks and trade names may be used in this document to refer to either the entities claiming the marks and names or their products.
ID Quantique SA disclaims any proprietary interest in trademarks and trade names other than its own. The use of the word partner does not
imply a partnership relationship between ID Quantique SA and any other company.

Revision History

Revision 2.4 16.09.2010

• Added instructions to install Quantis on Red Hat Enterprise Linux and CentOS.

Revision 2.3 25.06.2010

• Added scaling algorithms details.

• Improved EasyQuantis installation description on Linux.

• Added Troubleshooting appendix.

Revision 2.2 30.04.2010

• In Quantis PCI Linux driver installation section: fixed a wrong path and added two sub-sections.

• Updated EasyQuantis installation procedure under Linux.

Revision 2.1 26.04.2010

• Added EasyQuantis command line section.

• Added answers in the FAQ.

Revision 2.0 09.04.2010

• Initial version.

iii

Table of Contents
1. Introduction .. 1

1.1. What You Need ... 1
1.1.1. Additional Requirements .. 2

2. Hardware Installation ... 3
2.1. Quantis PCI and PCI Express Installation .. 3

2.1.1. Unpacking ... 3
2.1.2. Installing the Card .. 3

2.2. Quantis USB Installation .. 4
2.2.1. Unpacking ... 4
2.2.2. Installing the Device ... 4

3. Driver Installation ... 5
3.1. Windows Operating Systems ... 5

3.1.1. Windows XP ... 5
3.1.2. Windows Vista .. 9
3.1.3. Windows 7 .. 13

3.2. Linux Operating System ... 18
3.2.1. Quantis PCI and Quantis PCI Express .. 18
3.2.2. Quantis USB .. 23

4. The EasyQuantis application .. 27
4.1. Installation ... 27

4.1.1. Windows Operating Systems ... 27
4.1.2. Linux Operating Systems ... 27

4.2. Using EasyQuantis .. 28
4.3. The EasyQuantis Command Line ... 30

4.3.1. Options ... 30
4.3.2. Usage Examples ... 31

5. The Quantis Library ... 33
5.1. Device Type ... 33
5.2. Basic Functions .. 33

5.2.1. QuantisCount ... 33
5.2.2. QuantisGetDriverVersion ... 34
5.2.3. QuantisGetLibVersion ... 34
5.2.4. QuantisGetModulesDataRate ... 34
5.2.5. QuantisGetSerialNumber .. 34
5.2.6. QuantisRead .. 34
5.2.7. QuantisStrError .. 38

5.3. Advanced Functions .. 38
5.3.1. QuantisBoardReset .. 38
5.3.2. QuantisGetBoardVersion .. 39
5.3.3. QuantisGetModulesCount ... 39
5.3.4. QuantisGetModulesMask .. 39
5.3.5. QuantisGetModulesPower .. 39
5.3.6. QuantisGetModulesStatus ... 40
5.3.7. QuantisModulesDisable .. 40
5.3.8. QuantisModulesEnable .. 40
5.3.9. QuantisModulesReset .. 41

5.4. Example .. 41
6. Quantis Library Wrappers ... 45

6.1. Example .. 45
A. Troubleshooting .. 47

A.1. EasyQuantis .. 47
B. Frequently Asked Questions (FAQ) .. 49

B.1. Quantis Library .. 49
B.2. EasyQuantis ... 49

C. Migrating to the New API .. 51

iv

C.1. Compatibility Wrapper .. 52
D. Notes .. 53

D.1. Images .. 53
Bibliography ... 55

v

List of Figures
4.1. EasyQuantis Setup Wizard welcome ... 27
4.2. EasyQuantis main window .. 29

vi

vii

List of Tables
1.1. Supported operating systems. .. 1
C.1. API 1.x and 2.0 functions equivalences. .. 51

viii

1

Chapter 1. Introduction
Thank you for purchasing a Quantis Random Number Generator.

A random number generator is a device that produces sequences of numbers, whose outcome is
unpredictable and which cannot subsequentially be reliably reproduced. There exist two main classes
of random number generators: software and physical generators. From a general point of view,
software generators produce so-called pseudo random numbers. Although they may be useful in some
applications, they should not be used in most applications where randomness is required.

Quantis is a physical random number generator exploiting an elementary quantum optics process.
Photons - light particles - are sent one by one onto a semi-transparent mirror and detected. The
exclusive events (reflection - transmission) are associated to "0" - "1" bit values. The operation of
Quantis is continuously monitored. If a failure is detected, the random bit stream is immediately
disabled.

Quantum random number generators have the advantage over conventional randomness sources of
being invulnerable to environmental perturbations and of allowing live status verification.

1.1. What You Need
To use your Quantis, you need:

• A PC with a supported operating system installed (see Table 1.1, “Supported operating systems.”)
and one of the following slots/ports available:

• A PCI 32-bit slot (for Quantis PCI).

• A PCI Express x1 slot (for Quantis PCI Express).

• An USB 2.0 port (for Quantis USB).

• An USB 2.0 port for the USB Flash drive.

• 50MB hard drive space.

Operating System Quantis PCI/PCIe Quantis USB

Microsoft Windows XP (32-bit)

Microsoft Windows XP (64-bit)

Microsoft Windows Server 2003

Microsoft Windows Vista (32-
bit and 64-bit)

Microsoft Windows Server 2008
(32-bit and 64-bit)

Microsoft Windows 7 (32-bit
and 64-bit)

Linux 2.6 (32-bit and 64-bit)

Table 1.1. Supported operating systems.

Additional Requirements

2

1.1.1. Additional Requirements

1.1.1.1. Linux

On Linux systems, you additionally need:

• Xorg 1.0 or higher (only required to use the EasyQuantis application).

3

Chapter 2. Hardware Installation
This chapter provides unpacking and installation information for the Quantis.

2.1. Quantis PCI and PCI Express Installation
Caution

Under ordinary circumstances, the Quantis PCI and Quantis PCI Express (PCIe) cards
will not be affected by static charge as may be received through your body during
handling of the unit. However, there are special circumstances where you may carry an
extraordinarily high static charge and possibly damage the card and/or your computer. To
avoid any damage from static electricity, you should follow some precautions whenever
you work on your computer.

1. Turn off your computer and unplug power supply.

2. Use a grounded wrist strap before handling computer components. If you do not have
one, touch both of your hands to a safely grounded object or to a metal object, such
as the power supply case.

3. Place components on a grounded anti-static pad or on the bag that came with the
components whenever the components are separated from the system.

The card contains sensitive electric components, which can be easily damaged by static
electricity, so the card should be left in its original packing until it is installed.

Unpacking and installation should be done on a grounded anti-static mat. The operator
should be wearing an anti-static wristband, grounded at the same point as the anti-static
mat.

Inspect the card carton for obvious damage. Shipping and handling may cause damage
to your card. Be sure there are no shipping and handling damages on the card before
proceeding.

DO NOT APPLY POWER TO YOUR SYSTEM IF THE QUANTIS CARD IS
DAMAGED.

2.1.1. Unpacking
Open the shipping carton and carefully remove all items, and ascertain that you have:

• Quantis PCI or Quantis PCIe card;

• Quick Install Guide;

• USB Flash Drive with Manual, Drivers and Samples.

If any item is found to be missing or damaged, please contact your local reseller for replacement.

2.1.2. Installing the Card
1. Shut down the computer, unplug its power cord and remove the chassis cover.

2. Locate the PCI 32-bits slot (for Quantis PCI) or the PCI Express x1 slot (for Quantis PCIe). If
necessary, remove the metal cover from this slot, then align your Quantis card with the PCI or PCIe
slot respectively and press it in firmly until the card is fully seated.

Quantis USB Installation

4

3. Install the bracket screw and secure the card to the computer chassis.

4. Cover the computer’s chassis.

5. Switch the computer power on.

6. Install the driver (see next Chapter).

2.2. Quantis USB Installation

2.2.1. Unpacking
Open the shipping carton and carefully remove all items, and ascertain that you have:

• Quantis USB;

• USB cable;

• Quick Install Guide;

• USB Flash Drive with Manual, Drivers and Samples.

If any item is found to be missing or damaged, please contact your local reseller for replacement.

2.2.2. Installing the Device
1. Connect the Quantis device to a USB 2.0 port on your PC using the cable that came with the Quantis

device.

2. Install the driver (see next Chapter).

5

Chapter 3. Driver Installation
To be able to access your Quantis device, you need to install a driver. This chapter contains instructions
on how to install the driver on your operating system.

Important

Quantis PCI Express is software-compatible with Quantis PCI. This means that any
software able to communicate with a Quantis PCI device (e.g driver) is also able to
communicate with the Quantis PCI Express. More specifically:

• Quantis PCIe uses the Quantis PCI driver.

• Quantis PCIe is considered by the software (driver, application) as a Quantis PCI
device.

3.1. Windows Operating Systems
This section contains instructions on how to install Quantis device on Windows Operating Systems.

Please insert the USB flash drive on an available USB port. This drive contains the Quantis drivers
as well as software for your device.

Important

In this section, we assume that the letter of the USB flash drive provided by IDQ is Drive
D:.

3.1.1. Windows XP

When a Quantis RNG is inserted into your computer for the first time, the operating system will detect
the device automatically and display a New Hardware Found message. The following are step-by-
step installation instructions.

3.1.1.1. Found New Hardware Wizard: Welcome

Windows will search for a driver on your computer, on removable media (e.g. CD-ROM) and on the
Windows Update Web site.

The Quantis driver is not available on the Windows Update Web site. If asked, deny access to the
Windows Update Web site and click the Next button.

Windows XP

6

Note

It is harmless to allow the wizard to connect to the Windows Update Web site. The
installation process will only take a bit longer.

3.1.1.2. Found New Hardware Wizard: Quantis

When the wizard asks you what to do, select Install from a list or specific location and click the Next
button.

Windows XP

7

3.1.1.3. Found New Hardware Wizard: Search Location

First select Search for the best driver in these locations. Then activate the option Include this location
in the search. Click the Browse button and select the directory containing the right driver for your
device:

• For the Quantis PCI and Quantis PCIe select D:\Drivers\Windows\QuantisPci.

• For the Quantis USB select D:\Drivers\Windows\QuantisUsb.

Click the Next button to validate.

Windows XP

8

3.1.1.4. Found New Hardware Wizard: Installation

Wait while the wizard installs the Quantis driver.

3.1.1.5. Found New Hardware Wizard: Completed

When the wizard has finished installing the Quantis driver, click the Finish button to finish the
installation. Reboot the computer if asked.

Windows Vista

9

Your Quantis device is now installed. You can go to the next Chapter and install the software.

3.1.2. Windows Vista

When the Quantis RNG is inserted into your computer for the first time, the operating system will
detect the device automatically and display a New Hardware Found message. The following are step-
by-step installation instructions.

Note

One or more intermediate dialog boxes may appear during the process stating Windows
needs your permission to continue. Click Continue to proceed.

3.1.2.1. Found New Hardware Wizard: Welcome

Windows will search for a driver on your computer, on removable media (e.g CD-ROM) and on the
Windows Update Web site.

Let Windows try to locate the driver by clicking on Locate and install driver software.

Windows Vista

10

3.1.2.2. Found New Hardware Wizard: Insert Disc

When the wizard asks you to insert the disc that came with your Quantis USB, choose I don't have
the disc. Show me other options. This allows you to specify the location of the driver available on
the USB flash drive.

3.1.2.3. Found New Hardware Wizard: Search Location

Select Browse my computer for driver software.

Windows Vista

11

On the next dialog, click the Browse button and select the directory D:\Drivers\Windows. This
directory contains all drivers for Windows. Activate the option Include subfolders and validate your
choices by clicking the Next button.

3.1.2.4. Found New Hardware Wizard: Installation

Wait while the wizard installs the Quantis driver.

Windows Vista

12

3.1.2.5. Found New Hardware Wizard: Install

If asked, validate the installation by clicking the Install button.

You can select Always trust software from "ID Quantique SA", to avoid this question in future. All
software signed by ID Quantique will be automatically accepted as valid and will be installed without
prompting.

3.1.2.6. Found New Hardware Wizard: Completed

When the wizard has finished installing the Quantis driver, click the Close button to finish the
installation. Reboot the computer if necessary.

Windows 7

13

Your Quantis device is now installed. You can go to the next Chapter and install the software.

3.1.3. Windows 7

When the Quantis RNG is inserted into your computer for the first time, the operating system will
detect the device automatically and search the Windows Update Web site for a driver.

Note

One or more intermediate dialog boxes may appear during the process stating Windows
needs your permission to continue. Click Continue to proceed.

Since the driver for your Quantis device is not available on this site, the installation will fail.

Windows 7

14

Close the dialog and read the following for the step-by-step installation instructions.

3.1.3.1. Devices and Printers

Open the Start Menu and select Devices and Printers. Scroll down until the Quantis device appears.
Click on the Quantis device with the right button. Select Properties on the menu.

3.1.3.2. Quantis Properties: Hardware

In the Quantis Properties' dialog, click on the Hardware tab and then on the Properties button.

Windows 7

15

3.1.3.3. Quantis Properties: Update Driver

First click on the button Change settings.

This will enable the Update Driver button. Click on it.

Windows 7

16

3.1.3.4. Update Driver Software: Search Driver

Driver is available on the USB flash drive provided. Select Browse my computer for driver software.

3.1.3.5. Update Driver Software: Search Location

Click the button Browse an select the directory D:\Drivers\Windows. This directory contains
all drivers for Windows. Activate the option Include subfolders and validate your choices by clicking
the Next button.

Windows 7

17

3.1.3.6. Update Driver Software: Installation

Wait while the Windows installs the driver.

3.1.3.7. Update Driver Software: Completed

When the wizard has finished installing the Quantis driver, click the Close button to finish the
installation. Reboot the computer if necessary.

Linux Operating System

18

Your Quantis device is now installed. You can go to the next Chapter and install the software.

3.2. Linux Operating System
This section contains instructions on how to install Quantis devices on Linux Operating Systems.

Note

In this section, we assume that the USB flash drive with the software is mounted on /
media/USB_FLASH.

Important note for Ubuntu users

Ubuntu does not include the root user. Instead, administrative access is given to
individual users, who may use the sudo application to perform administrative tasks. To
use sudo on the command line, preface the command with sudo:

$ sudo my_command_requiring_administrative_access

In this document, when a command must be executed as root, preface the command
with sudo.

Please refer to the Ubuntu guide for more details about the command sudo.

3.2.1. Quantis PCI and Quantis PCI Express
The Quantis PCI and Quantis PCIe cards require a kernel module to be compiled and installed to work
correctly. The following are step-by-step installation instructions.

3.2.1.1. Install Pre-Requirements

Before being able to compile a Quantis PCI kernel module, you must install a compiler and the Linux
kernel sources.

Quantis PCI and Quantis PCI
Express

19

Note

Generally, you do not need the full source tree in order to build a module against the
running kernel. Most of the time you just need the kernel headers.

3.2.1.1.1. Debian-based Distributions

Debian-based distributions have an extremely powerful tool for building kernel modules: module-
assistant. Module assistant aims to facilitate the process of building kernel modules from source. Type
following command as root to install module assistant:

apt-get install module-assistant

To download the headers corresponding to the current kernel and other mandatory tools, simply run
(as root):

m-a prepare

This command determines the name of the required kernel-headers package, installs it if needed and
creates the /usr/src/linux symlink if needed. Also installs the build-essential package to ensure
that the same compiler environment is established.

All required software has been installed. You can skip to Section 3.2.1.2, “Compile and Install Driver”.

3.2.1.1.2. Red Hat Enterprise Linux and CentOS Distributions

To build kernel modules on Red Hat Enterprise Linux and CentOS distributions it is not necessary
to download the entire kernel. To build a module for the currently running kernel, only the matching
kernel-devel package is required. Run the following command to install the kernel-devel package
using yum:

yum install kernel-devel

Important

The previous command installs the kernel headers for the latest kernel available in the
repository. If your system is not up-to-date you need first to update the kernel and then
boot the new kernel before installing the kernel-devel package:

yum update kernel*
reboot
yum install kernel-devel

To compile the kernel driver you also need to install the developer tools such as GNU GCC C/C++
compilers, make and others. You can install them with the following command (as root):

yum groupinstall "Development Tools"

All required software has been installed. You can skip to Section 3.2.1.2, “Compile and Install Driver”.

3.2.1.1.3. Other Distributions

Install the GNU GCC compiler and the header corresponding to the current kernel (or the whole source
kernel). Please refer to the guide of your distribution for help on installing packages.

3.2.1.2. Compile and Install Driver

Now that all pre-requirements have been installed you can compile and install the driver.

Quantis PCI and Quantis PCI
Express

20

First copy the driver's source code to /tmp:

$ cp -R /media/USB_FLASH/Drivers/Unix /tmp/

Change to the driver's directory and compile the driver:

$ cd /tmp/Unix/QuantisPci/
$ make

When compilation finish, install and load the driver with following commands (as root):

make install
modprobe quantis_pci

You can verify that the driver has been successfully loaded and all your Quantis PCI and PCIe cards
have been detected with the command dmesg:

$ dmesg | grep quantis_pci
quantis_pci: Initializing Quantis PCI RNG driver version 2.0
quantis_pci: driver build Feb 12 2010 14:26:14
quantis_pci: support enabled up to 10 PCI card(s)
quantis_pci: Found card #0
quantis_pci: core version 0x040a1201
quantis_pci: device registered at /dev/qrandom0
quantis_pci: Driver loaded. Found 1 card(s)

Important

If you update your kernel, you must recompile and reinstall the driver!

3.2.1.3. Autoload the Driver on Boot

Instead of using the modprobe command each time you want to load the driver, you can let the system
to automatically load the driver on boot.

Note

Some distributions already load the driver on boot for each detected device (if available).

Before continue it is thus suggested to reboot your computer and run the command
dmesg as explained in previous section. If the driver has been loaded and all Quantis
devices have been detected, you can skip this section.

3.2.1.3.1. Debian-based Distributions

To automatically load the driver on boot, simply add the driver's name at the end of /etc/modules.
You can type following command (as root) to add the entry:

echo "quantis_pci" >> /etc/modules

3.2.1.3.2. Red Hat Enterprise Linux and CentOS Distributions

Red Hat Enterprise Linux checks for the existence of the /etc/rc.modules file at boot time,
which contains various commands to load modules. The following commands configure loading of
the quantis_pci module at boot time (as root):

echo modprobe quantis_pci >> /etc/rc.modules

Quantis PCI and Quantis PCI
Express

21

chmod +x /etc/rc.modules

3.2.1.3.3. Other Distribution

Please consult your distribution's guide to know how to autoload a driver on boot.

3.2.1.4. Modify the Device's Permissions

Depending on the distribution, the Quantis PCI device might be accessible only to user root. UDEV
(the device manager for the Linux 2.6 kernel series) must be instructed to allow other users to access
the Quantis.

3.2.1.4.1. The plugdev group

IDQ provides a rule for UDEV that allows all users in group plugdev to access the Quantis device.
The group plugdev is generally created on all modern distributions.

First check if your system already has the group plugdev:

$ grep plugdev /etc/group

If previous command display a line beginning as:

plugdev:x:

then your system has the group plugdev. When the grep command do not display any message,
then the plugdev group do not exists on your system. Type following command (as root) to create
the plugdev group:

groupadd --gid 46 plugdev

3.2.1.4.2. Adding users to the plugdev group

Every user who is a member of the plugdev group can access hotpluggable devices (digital cameras,
USB drives etc.).

You can use the command groups to display the groups your user is in:

$ groups
users adm dialout cdrom plugdev lpadmin admin sambashare

If your user is not in the group plugdev, use the usermod command (as root) to add the user
LOGIN to the group plugdev:

usermod -G plugdev -a LOGIN

3.2.1.4.3. UDEV rules

In the directory Drivers/Unix/ on the USB flash there are two files with UDEV rules:

• idq-quantis-rhel.rules for Red Hat Enterprise Linux and CentOS distributions.

• idq-quantis.rules for all other distributions.

Copy (as root) the right file into /etc/udev/rules.d/ directory:

• On Red Hat Enterprise Linux and CentOS distributions:

cp /media/USB_FLASH/Drivers/Unix/idq-quantis-rhel.rules

Quantis PCI and Quantis PCI
Express

22

 /etc/udev/rules.d/

• On all other distributions:

cp /media/USB_FLASH/Drivers/Unix/idq-quantis.rules
 /etc/udev/rules.d/

Note

The files idq-quantis.rules and idq-quantis.rules contain UDEV rules
for both Quantis PCI and Quantis USB devices.

The udev daemon must now reload the rules. Type following command (as root) to reload the rules:

udevadm control --reload-rules

Note

On Red Hat Enterprise Linux and CentOS distributions the udevadm command do not
exists. User following command instead to reaload the rules:

udevcontrol reload_rules

Note

Udev daemon only apply rules when creating the device's node (when the drivers loads).
If the Quantis PCI driver is already loaded you need thus to unload and reload it to have
the right permissions on the device:

rmmod quantis_pci
modprobe quantis_pci

3.2.1.5. Check Your Device

The driver has been installed and the system configured. You can now check if your device works
correctly by reading some random bytes from the device. Following command reads 100 bytes from
the first Quantis PCI device

$ head -c 100 /dev/qrandom0

Important

It is important not to run the head command as root but with the standard user who
will use the Quantis PCI device. This is the only way to verify that permission has been
granted to access the device.

Above command will display some random characters on the console.

Important

If you get one or more Operation not permitted messages, the device doesn't have the
right permissions to access the Quantis device. In such a case:

Quantis USB

23

• Verify that /etc/udev/rules.d/idq-quantis.rules exists and is the
same as the one provided on the USB flash drive.

• Verify that your user is in plugdev group.

• Reboot the system to ensure that the new rules are loaded by the udev daemon.

You Quantis device is now installed. You can go to the next Chapter to install the software.

3.2.2. Quantis USB
Quantis USB only requires USB support enabled in the kernel1. The Quantis USB device is accessed
through the open source library libusb-1.0 .

The following are step-by-step installation instructions.

3.2.2.1. libusb-1.0 Installation

Quantis USB device is accessed through the library libusb-1.02. This library is available on all recent
distributions and can be installed using the package manager of the distribution.

Warning

Do not confuse libusb-0.1 with libusb-1.0! libusb-0.1 is the legacy release and is not
developed any more. As of December 2008, libusb-1.0 is the current stable branch. This
new branch, used to access the Quantis USB, adds features missing from the first release.

3.2.2.1.1. Debian-based Distributions

Note for Debian users

libusb-1.0 is only available on Debian Squeeze and newer releases. It is also available
on Debian Lenny backport. Please refer to the Debian help on how to enable backport
packages. On all other Debian releases, you need to manually install libusb-1.0. Please
refer to Section 3.2.2.1.4, “Manually Compile libusb-1.0”.

Note for Ubuntu users

libusb-1.0 is only available on Ubuntu Jauntry (9.04) and newer releases. On previous
Ubuntu releases you need to manually install libusb-1.0. Please refer to Section 3.2.2.1.4,
“Manually Compile libusb-1.0”.

Type the following command (as root) to install libusb-1.0 and the development package (needed
if you want to write your own application):

apt-get install libusb-1.0-0 libusb-1.0-0-dev

3.2.2.1.2. Red Hat Enterprise Linux and CentOS Distributions

libusb-1.0 is currently not available on Red Hat Enterprise Linux nor CentOS distributions. You need
to manually install libusb-1.0. Please refer to Section 3.2.2.1.4, “Manually Compile libusb-1.0”.

1USB support in the kernel is generally enable on all modern Linux distributions.
2http://libusb.org/wiki/Libusb1.0

Quantis USB

24

3.2.2.1.3. Other Distributions

Use the package manager of your distribution to install the library libusb-1.0. If the package is not
available, please refer to Section 3.2.2.1.4, “Manually Compile libusb-1.0”.

3.2.2.1.4. Manually Compile libusb-1.0

If library libusb-1.0 can not is not available on the list of packages in the package manager of your
distribution, you can easily compile it by hand.

First you need to download the library's sources. Go to the address http://sourceforge.net/
projects/libusb/files/libusb-1.0/ and download latest version.

Open the Terminal application and change the working directory to the one which contains the
downloaded libusb-1.0 archive. Unpack the archive and compile the library (replace x with your
version):

$ tar xvjf libusb-1.0.x.tar.bz2
$ cd libusb-1.0.x/
$./configure --prefix=/usr
$ make

When the library has been compiled, install it with following command (as root):

make install

3.2.2.2. Modify the Device's Permissions

By default, the Quantis USB device is accessible only to user root. UDEV (the device manager for
the Linux 2.6 kernel series) must be instructed to allow other users to access the Quantis. Please follow
instructions on Section 3.2.1.4, “Modify the Device's Permissions”.

Important

If the Quantis USB device was already plugged in before reloading the udev rules,
please unplug and replug the Quantis device, otherwise the device will have the wrong
permissions.

3.2.2.3. Check Your Device

All requirement have been installed. You can now plug your Quantis USB device into your computer.

You can now check if your device works correctly with the lsusb command as following:

$ lsusb -d 0aba:0102 -v

Important

It is important not to run the lsusb command as root but with the standard user who will
use the Quantis USB device. This is the only way to verify that permission has been
granted to access the device.

Note

If above command returns the message:

Quantis USB

25

lsusb: command not found

then the command lsusb is not installed. Install the usbutils package to fix the problem.

The output of above command should be similar to the following:

Bus 002 Device 035: ID 0aba:0102 Ellisys
Device Descriptor:
 bLength 18
 bDescriptorType 1
 bcdUSB 2.00
 bDeviceClass 255 Vendor Specific Class
 bDeviceSubClass 0
 bDeviceProtocol 0
 bMaxPacketSize0 64
 idVendor 0x0aba Ellisys
 idProduct 0x0102
 bcdDevice 2.00
 iManufacturer 1 id Quantique
 iProduct 2 Quantis USB
 iSerial 3 070001A410
 bNumConfigurations 1
 Configuration Descriptor:
 bLength 9
 bDescriptorType 2
 wTotalLength 25
 bNumInterfaces 1
 bConfigurationValue 1
 iConfiguration 0
 bmAttributes 0x80
 (Bus Powered)
 MaxPower 300mA
 Interface Descriptor:
 bLength 9
 bDescriptorType 4
 bInterfaceNumber 0
 bAlternateSetting 0
 bNumEndpoints 1
 bInterfaceClass 255 Vendor Specific Class
 bInterfaceSubClass 0
 bInterfaceProtocol 0
 iInterface 0
 Endpoint Descriptor:
 bLength 7
 bDescriptorType 5
 bEndpointAddress 0x86 EP 6 IN
 bmAttributes 2
 Transfer Type Bulk
 Synch Type None
 Usage Type Data
 wMaxPacketSize 0x0200 1x 512 bytes
 bInterval 0
Device Qualifier (for other device speed):
 bLength 10
 bDescriptorType 6
 bcdUSB 2.00
 bDeviceClass 255 Vendor Specific Class

Quantis USB

26

 bDeviceSubClass 0
 bDeviceProtocol 0
 bMaxPacketSize0 64
 bNumConfigurations 1
Device Status: 0x0000
 (Bus Powered)

Important

Please verify that you have the Device Qualifier and Device Status information sections
and not messages such as:

can't get device qualifier: Operation not permitted
can't get debug descriptor: Operation not permitted
cannot read device status, Operation not permitted

If you get one or more Operation not permitted messages, the device doesn't have the
right permissions to access the Quantis device. In such a case:

• Verify that /etc/udev/rules.d/idq-quantis.rules or /etc/udev/
rules.d/idq-quantis-rhel.rules exist and is the same as the one provided
on the USB flash drive.

• Verify that your user is in plugdev group.

• Reboot the system to ensure that the new rules are loaded by the udev daemon.

You Quantis device is now installed. You can go to the next Chapter to install the software.

27

Chapter 4. The EasyQuantis
application

The Quantis is delivered come with the EasyQuantis application. This application allows you to
quickly generate random data.

Important

Quantis PCI Express is software-compatible with Quantis PCI. EasyQuantis considers
Quantis PCIe devices as Quantis PCI devices.

4.1. Installation

4.1.1. Windows Operating Systems
EasyQuantis is provided as Micrsoft Installer (MSI) package for easy installation. Just double-click
on EasyQuantis.msi file and follow on-screen instructions.

Figure 4.1. EasyQuantis Setup Wizard welcome

To launch the application click on the EasyQuantis icon in Start -> Program.

4.1.2. Linux Operating Systems

4.1.2.1. Install Requirements

EasyQuantis requires libusb-1 and Qt 4 libraries (qt4-core and qt4-gui) to work.

If you installed a Quantis PCI card, plase follow instructions in Section 3.2.2.1, “libusb-1.0
Installation”. If you installed a Quantis USB device, libusb-1 has already been installed on your
system.

Qt libraries are available on all major Linux distributions and they can be installed using the package
manager of the distribution.

Using EasyQuantis

28

4.1.2.1.1. Debian-based Distributions

Open a terminal and install libqt4-core and libqt4-gui with following command (as root):

apt-get install libqt4-core libqt4-gui

4.1.2.1.2. Other Distributions

Install libqt4-core and libqt4-gui with the package manager of your distribution.

4.1.2.2. Install the Application

EasyQuantis as well as Quantis libraries are provided in a bz2 archive.

On 32-bit system, you can install the application with following commands as root (replace x.y with
current version):

cd /mnt/USB_FLASH/
tar xvjf QuantisRNG-2.x.y-Linux-i386.tar.bz2 -C /tmp/
cd /tmp/QuantisRNG-2.x.y-Linux-i386/
mv bin/EasyQuantis /bin/
mv lib/libQuantis* /lib/

On 64-bit system, use following commands as root instead:

cd /mnt/USB_FLASH/
tar xvjf QuantisRNG-2.x.y-Linux-amd64.tar.bz2 -C /tmp/
cd /tmp/QuantisRNG-2.x.y-Linux-amd64/
mv bin/EasyQuantis /bin/
mv lib64/libQuantis* /lib64/

You can run the EasyQuantis application by typing EasyQuantis on a terminal:

$ EasyQuantis

4.1.2.3. Uninstall the Application

To uninstall, manually remove installed files with following commands (as root):

rm -Rf /bin/EasyQuantis
rm -Rf /lib/libQuantis* # on 32-bit systems
rm -Rf /lib64/libQuantis* # on 64-bit systems

4.2. Using EasyQuantis
Figure 4.2, “EasyQuantis main window” shows the main window of the EasyQuantis application.

Using EasyQuantis

29

Figure 4.2. EasyQuantis main window

To generate random data using EasyQuantis:

1. Select a Quantis device from the list.

2. Select a data format:

• Binary data. Data is read from the Quantis and used AS IS

• Integer numbers. Generates 32-bit random numbers ranging between -2'147'483'648 and
2'147'483'647 (inclusive).

• Floating point numbers. Generates a number between 0.0 (inclusive) and 1.0 (exclusive).

3. Select a data separator:

• Comma-separated values (CSV). CSV is a type of delimited text data, which uses a comma
to separate values. The benefit of CSV is that they allow for the transfer of data across different
applications.

The following is an example of CSV:

Value1,Value2,Value3,...,ValueN

• One entry per line. Each values is on a separate line, as following:

Value1
Value2
Value3

The EasyQuantis Command Line

30

...
ValueN

Note

When generating binary data you cannot select data separator.

4. If needed, you can scale the random values to be within a smaller range.

Note

For more details about the scaling algorithms, please refear to Section 5.2.6.2.1.1,
“Integral Values: The Scaling Algorithm”.

5. Select the data destination:

• Display. Data is displayed on screen. You can copy-paste the data to your application.

Use this option for small amounts of random data that you want to use it right away.

Note

This option is not available for binary data.

• Save to file. Data is written on a file. Use this option to generate large amount of random data
or to generate data for further use.

6. Select the amount of data to generate.

7. Click the Generate button and wait while the application generates the random data.

4.3. The EasyQuantis Command Line
EasyQuantis v1.1 and newer includes a command line parser, allowing you to use the application
from the console or in a script.

4.3.1. Options

4.3.1.1. Generic Options

-h [--help] Display a summary of available options.

4.3.1.2. Quantis Options

-l [--list] List all devices available on the system.

-p [--pci] arg Select the given Quantis PCI device as input device. arg is the
number of the Quantis PCI device to use.

-u [--usb] arg Select the given Quantis USB device as input device. arg is
the number of the Quantis USB device to use.

4.3.1.3. Acquisition Options

-n [--size] arg Set the number of bytes or values that should be read. If nothing
is specified 1024 is used.

Usage Examples

31

-b [--binary] arg Generates a binary file. arg designates the filename.

-i [--integers] arg Generates a file of integers numbers. arg designates the
filename.

-f [--floats] arg Generates a file of floating point numbers. arg designates the
filename.

-s [--separator] arg Set the separator string for non-binary files. The default format
is one entry per line.

--min arg Specify the minimal value for integers and floats numbers. If
specified, requires --max to be specified too.

--max arg Specify the maximal value for integers and floats numbers. If
specified, requires --min to be specified too.

4.3.2. Usage Examples
In this section you will find some examples of usage of the EasyQuantis command line.

4.3.2.1. Generate Binary Data

EasyQuantis -p 0 -b random.dat -n 1073741824

Generates a binary file named random.dat of 1Gbyte using the Quantis PCI device number 0.

4.3.2.2. Generate Numbers

EasyQuantis -u 0 -i integers.dat -n 1000

Generates file named integers.dat with 1000 integer numbers.

4.3.2.3. Generate Scaled Numbers

EasyQuantis -u 0 -i integers.dat -n 1000 --min 1 --max 6

Generates file named integers.dat with 1000 integer numbers whose values are between 1 and 6.

32

33

Chapter 5. The Quantis Library
To easily access the Quantis device from your application, IDQ provides an abstraction library on all
supported operating systems. The library allows you to easily write your (multi-platform) application
without knowing how the Quantis devices internally works.

Important

API changed with Quantis library version 2.0. If your application uses a prior Quantis
library version, pleas read to the Appendix C, Migrating to the New API.

Note for C++ users

Each time you request an operation, the Quantis library:

1. Opens the Quantis device;

2. Performs the requested operation;

3. Closes the Quantis device.

The C++ library has been optimized to open the Quantis device in the class constructor
and close it in the class deconstructor. If your application is written in C++, it is suggested
to use the C++ wrapper. Please read Chapter 6, Quantis Library Wrappers for further
information.

5.1. Device Type
Almost all Quantis library functions require the device type to be specified. Currently there are two
types:

• QUANTIS_DEVICE_PCI to specify a Quantis PCI or a Quantis PCI Express.

• QUANTIS_DEVICE_USB to specify a Quantis USB.

Important

Quantis PCI Express is software-compatible with Quantis PCI. There is no distinction
between Quantis PCI and Quantis PCIe devices within the library. They are both
considered as PCI devices.

5.2. Basic Functions
This section introduces minimal functions you need to use to read random data within your application.

5.2.1. QuantisCount

int QuantisCount(QuantisDeviceType deviceType);

Returns the number of devices that have been detected. It returns 0 when no card is installed or on error.

Parameters:

deviceType the type (PCI or USB) of Quantis device.

QuantisGetDriverVersion

34

5.2.2. QuantisGetDriverVersion
float QuantisGetDriverVersion(QuantisDeviceType deviceType);

Returns the version of the driver as a number composed of the major and minor number. Integral value
represent major number. Decimal places after the decimal point represent the minor number.

Returns a QUANTIS_ERROR code (casted to float) on failure.

Parameters:

deviceType the type (PCI or USB) of Quantis device.

5.2.3. QuantisGetLibVersion
float QuantisGetLibVersion();

Returns the version of the library as a number composed of the major and minor number. Integral
value represent major number. Decimal places after the decimal point represent the minor number.

5.2.4. QuantisGetModulesDataRate
int QuantisGetModulesDataRate(QuantisDeviceType deviceType,
 unsigned int deviceNumber);

Returns the data rate (in bytes per second) provided by the Quantis device or a QUANTIS_ERROR
code on failure.

Parameters:

deviceType the type (PCI or USB) of Quantis device.

deviceNumber the number of the Quantis device. Note that first device is 0.

5.2.5. QuantisGetSerialNumber
char* QuantisGetSerialNumber(QuantisDeviceType deviceType,
 unsigned int deviceNumber);

Get a pointer to the serial number string of the Quantis device. Currently only USB support serial
number retrieval. On PCI and PCI Express device, the string "S/N not available" is returned.

On failure the string "S/N not available" is also returned.

Parameters:

deviceType the type (PCI or USB) of Quantis device.

deviceNumber the number of the Quantis device. Note that first device is 0.

5.2.6. QuantisRead
int QuantisRead(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 void* buffer,
 size_t size);

Reads random data from the Quantis device.

Returns QUANTIS_SUCCES on success or a QUANTIS_ERROR code on failure.

QuantisRead

35

Parameters:

deviceType the type (PCI or USB) of Quantis device.

deviceNumber the number of the Quantis device. Note that first device is 0.

buffer a pointer to a destination buffer. The buffer MUST already be
allocated. Its size must be at least size bytes.

size the number of bytes to read (cannot be larger than
QUANTIS_MAX_READ_SIZE).

Warning

If buffer is not allocated or the allocated size of memory is insufficient to store the
whole data, the library will have unexpected results and may even lead to the crash of
the application!

5.2.6.1. Reading Large Amount of Data

QuantisRead is not meant to read large amount of data. The maximal size of a request is defined by
value QUANTIS_MAX_READ_SIZE. If you try reading a larger value QuantisRead will return an
error. To read large amount of data you have to use a loop as in following example:

/* Chunk size. Recommended values are 2048 or 4096 */
chunkSize = CHUNK_SIZE;

remaining = SIZE;

while(remaining > 0u)
{
 /* Chunk size */
 if (remaining < chunkSize)
 {
 chunkSize = remaining;
 }

 /* Read data */
 result = QuantisRead(deviceType, 0, buffer, NUM_BYTES);

 /*
 * TODO:
 * 1. Check result (see example at the end of the chapter)
 * 2. Handle buffer (e.g. store data in a file)
 */

 /* Update info */
 remaining -= chunkSize;
}

5.2.6.2. Reading Basic Data Types

The function QuantiRead is useful to read a high quantity of raw random data. Depending on
the application, it can be useful to be able to directly read basic data types. This section introduces
functions for this purpose.

5.2.6.2.1. Integral Values

int QuantisReadShort(QuantisDeviceType deviceType,

QuantisRead

36

 unsigned int deviceNumber,
 short* value);

int QuantisReadScaledShort(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 short* value,
 short min,
 short max);

int QuantisReadInt(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 int* value);

int QuantisReadScaledInt(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 int* value,
 int min,
 int max);

Reads a random 16-bit or 32-bit integral value. Returns QUANTIS_SUCCES on success or a
QUANTIS_ERROR code on failure.

Parameters:

deviceType the type (PCI or USB) of Quantis device.

deviceNumber the number of the Quantis device. Note that first device is 0.

value a pointer to the destination value.

min the minimal value the random number can take.

max the maximal value the random number can take.

5.2.6.2.1.1. Integral Values: The Scaling Algorithm

Random numbers required by an application are very often in a range (much) smaller than the (fixed)
range of the random number produced by the Quantis.

To perform the scaling, the highest number that is the largest multiple of the output range is
selected. Random values equal or higher this limit are discarded. Following is the (simplified) C
code of QuantisReadScaledInt which produces an unbiased number between minValue and
maxValue (inclusive):

int rnd;

/* Output range */
unsigned long long range = maxValue - minValue + 1;

/* Range of the rnd value */
unsigned long long maxRange = 232;

/* Largest multiple of the output range */
unsigned long long limit = maxRange - (maxRange % range);

/* Read raw random number until it is lower the limit */
do
{
 QuantisReadInt(deviceType, deviceNumber, &rnd);
} while (rnd >= limit);

QuantisRead

37

/* Scale value */
value = (rnd % range) + minValue;

Note

This scaling algorithm waste data when the Quantis generates random values equals or
higher the limit. In the worst case (when range = maxRange / 2 + 1), the
probability to drop a generated value is roughly 50%!

Warning

Raw random values are often scaled using the modulus operator, using something like:

minValue + (rawRndValue % (maxValue - minValue + 1))

where % represents the modulus operator. This formula produces a number between
minValue and maxValue (inclusive), but in certain conditions (when range is not
a multiple of the output range) the distribution of these numbers has a small bias that
favours numbers at the lower end of the output range.

5.2.6.2.2. Floating Point Values

int QuantisReadFloat_01(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 float* value);

int QuantisReadScaledFloat(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 float* value,
 float min,
 float max);

int QuantisReadDouble_01(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 double* value);

int QuantisReadScaledDouble(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 double* value,
 double min,
 double max);

Reads a random floating point value between 0.0 (inclusive) and 1.0 (exclusive). Scaled versions
reads a random floating point value between min (inclusive) and max (exclusive). Returns
QUANTIS_SUCCES on success or a QUANTIS_ERROR code on failure.

Parameters:

deviceType the type (PCI or USB) of Quantis device.

deviceNumber the number of the Quantis device. Note that first device is 0.

value a pointer to the destination value.

min the minimal value the random number can take.

max the maximal value the random number can take.

QuantisStrError

38

Note

Floating point values are computed by dividing a random integral value (32-bit for
floats and 64-bit for double) by the integral's value range (232 and 264 respectively).

Warning

Floating point scaling algorithm in certain conditions the distribution of these numbers
has a small bias that favours numbers at the lower end of the output range. If you need
unbiased random numbers, please consider to use QuantisReadScaledShort or
QuantisReadInt instead:

/* Example: how to generate a random number between
 * 1.001 and 75.5 (inclusive)
 */

float min = 1.001;
float max = 75.5;
float multiplier = 1000.0;

int rndInt;
if (QuantisReadScaledInt(deviceType,
 deviceNumber,
 &rndInt,
 (int)(min * multiplier),
 (int)(max * multiplier)) < 0)
{
 /* Handle error */
}

float randomValue = (float)rndInt / multiplier;

5.2.7. QuantisStrError

char* QuantisStrError(QuantisError errorNumber);

Get a pointer to the error message string. This function interprets the value of errorNumber and
generates a string describing the error. The returned pointer points to a statically allocated string, which
shall not be modified by the program. Further calls to this function will overwrite its content.

Parameters:

errorNumber the error number.

5.3. Advanced Functions
This section introduces advanced functions that allow a high control of the Quantis devices. Most
users don't need to use these functions.

5.3.1. QuantisBoardReset

int QuantisBoardReset(QuantisDeviceType deviceType,
 unsigned int deviceNumber);

QuantisGetBoardVersion

39

Resets the Quantis board. Returns QUANTIS_SUCCESS on success or a QUANTIS_ERROR code on
failure.

Parameters:

deviceType the type (PCI or USB) of Quantis device.

deviceNumber the number of the Quantis device. Note that first device is 0.

Note

You generally don't need to reset the Quantis device: the Quantis library already resets
the device when needed.

5.3.2. QuantisGetBoardVersion
int QuantisGetBoardVersion(QuantisDeviceType deviceType,
 unsigned int deviceNumber);

Get the internal version of the board.

Parameters:

deviceType the type (PCI or USB) of Quantis device.

deviceNumber the number of the Quantis device. Note that first device is 0.

5.3.3. QuantisGetModulesCount
int QuantisGetModulesCount(QuantisDeviceType deviceType,
 unsigned int deviceNumber);

Returns the number of modules that have been detected on a Quantis device or a QUANTIS_ERROR
code on failure.

Parameters:

deviceType the type (PCI or USB) of Quantis device.

deviceNumber the number of the Quantis device. Note that first device is 0.

5.3.4. QuantisGetModulesMask
int QuantisGetModulesMask(QuantisDeviceType deviceType,
 unsigned int deviceNumber);

Returns a bitmask of the modules that have been detected on a Quantis device or a QUANTIS_ERROR
code on failure.

Bit n is set in the bitmask if module n is present. For instance 5 (1101 in binary) is returned when
modules 0, 2 and 3 have been detected.

Parameters:

deviceType the type (PCI or USB) of Quantis device.

deviceNumber the number of the Quantis device. Note that first device is 0.

5.3.5. QuantisGetModulesPower
int QuantisGetModulesPower(QuantisDeviceType deviceType,

QuantisGetModulesStatus

40

 unsigned int deviceNumber);

Get the power status of the modules. Returns 1 if the modules are powered, 0 if the modules are not
powered and a QUANTIS_ERROR code on failure.

Note

This function is useful only for Quantis USB devices. Modules of Quantis PCI devices
are always powered, thus the function always returns 1 on such devices.

Parameters:

deviceType the type (PCI or USB) of Quantis device.

deviceNumber the number of the Quantis device. Note that first device is 0.

5.3.6. QuantisGetModulesStatus
int QuantisGetModulesStatus(QuantisDeviceType deviceType,
 unsigned int deviceNumber);

Returns the status of the modules on the device as a bitmask or a QUANTIS_ERROR code on failure.

Bit n is set in the bitmask if module n is enabled and functional. For instance 5 (1101 in binary) is
returned when modules 0, 2 and 3 are enabled and functionals.

Parameters:

deviceType the type (PCI or USB) of Quantis device.

deviceNumber the number of the Quantis device. Note that first device is 0.

5.3.7. QuantisModulesDisable
int QuantisModulesDisable(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 int modulesMask);

Disable one or more modules. Returns QUANTIS_SUCCES on success or a QUANTIS_ERROR code
on failure.

Parameters:

deviceType the type (PCI or USB) of Quantis device.

deviceNumber the number of the Quantis device. Note that first device is 0.

modulesMask a bitmask of the modules (as specified in
QuantisGetModulesMask function) that must be
disabled.

5.3.8. QuantisModulesEnable
int QuantisModulesEnable(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 int modulesMask);

Enable one or more modules. Returns QUANTIS_SUCCES on success or a QUANTIS_ERROR code
on failure.

Parameters:

QuantisModulesReset

41

deviceType the type (PCI or USB) of Quantis device.

deviceNumber the number of the Quantis device. Note that first device is 0.

modulesMask a bitmask of the modules (as specified in
QuantisGetModulesMask function) that must be enabled.

5.3.9. QuantisModulesReset
int QuantisModulesReset(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 int modulesMask);

Reset one or more modules. Returns QUANTIS_SUCCES on success or a QUANTIS_ERROR code
on failure.

Parameters:

deviceType the type (PCI or USB) of Quantis device.

deviceNumber the number of the Quantis device. Note that first device is 0.

modulesMask a bitmask of the modules (as specified in
QuantisGetModulesMask function) that must be reset.

Note

This function executes sequentially QuantisModuleDisable and
QuantisModuleEnabled with the given parameters.

5.4. Example
The following is a simple highly commented example for the Quantis library:

/* Global includes */
#include <stdio.h>
#include <stdlib.h>

/* Includes Quantis library's header */
#include "Quantis.h"

/* Define the number of bytes that should be read */
#define NUM_BYTES 100

int main()
{
 QuantisDeviceType deviceType;
 unsigned char* buffer;
 int result;
 int i;

 /* Select device type */
 if (QuantisCount(QUANTIS_DEVICE_PCI) > 0)
 {
 /* There is one ore more Quantis PCI device... */
 deviceType = QUANTIS_DEVICE_PCI;
 }
 else if (QuantisCount(QUANTIS_DEVICE_USB) > 0)
 {

Example

42

 /* There is one ore more Quantis USB device... */
 deviceType = QUANTIS_DEVICE_USB;
 }
 else
 {
 /* No Quantis device has been found on the system */
 printf("No Quantis device found\n");
 return -1;
 }

 /* Allocate buffer's memory */
 buffer = (unsigned char*)malloc(NUM_BYTES);
 if (!buffer)
 {
 fprintf(stderr, "Unable to allocate memory\n");
 return -1;
 }

 /* Read random data from the Quantis*/
 result = QuantisRead(deviceType, 0, buffer, NUM_BYTES);
 /* Check if there are some errors */
 if (result < 0)
 {
 /* An error occured. Print the error message */
 fprintf(stderr,
 "An error occured when reading random bytes: %s\n",
 QuantisStrError(result));
 goto cleanup;
 }
 else if (result != NUM_BYTES)
 {
 /* Quantis did not return the number of bytes asked */
 fprintf(stderr,
 "Asked to read %d byts but received %d bytes\n",
 NUM_BYTES,
 result);
 goto cleanup;
 }

 /* Display buffer in HEX format */
 printf("Displaying %d random bytes in HEX format:\n",
 NUM_BYTES);
 for(i = 0; i < NUM_BYTES; i++)
 {
 printf("%02x ", buffer[i]);
 }
 printf("\n");

 /* Cleanup */
cleanup:

 if(buffer)
 {
 free(buffer);
 }

 return 0;

Example

43

}

A more detailed example is available on the USB flash drive in the Samples directory.

44

45

Chapter 6. Quantis Library Wrappers
IDQ provides several wrappers to allow you to use the Quantis device with your preferred
programming language.

Currently wrappers for following languages are available:

• C++

• C#

• Java

• VB.NET

Wrappers are for Object-oriented programming languages and they all have the same structure:

• The class is named Quantis.

• On class instantiation, you must provide the deviceType and the deviceNumber.

• Names of public functions are the same as the name of functions of Quantis library without the prefix
Quantis, for instance QuantisCount is named Count in the wrapper. Functions definitions do
not require deviceType and deviceNumber variables since defined globally within the class.
Only exception are static function which have the same definition.

Please refer to the sample available with each wrapper for further details.

Note for wrapper for C++

Since the Quantis device is kept open until the Quantis class is not destroyed, it is
highly recommended to reduce the scope of the Quantis variable as much as possible. n
particular it is discouraged to define the Quantis variable global.

6.1. Example
Here is the example presented in previous chapter modified to use C++ wrapper.

/* Global includes */
#include <iostream>
#include <cstdlib>
#include <string>

/* Includes Quantis library's header */
/* Note the hpp extension! */
#include "Quantis.hpp"

/* Define the number of bytes that should be read */
#define NUM_BYTES 100

using namespace std;

int main()
{
 QuantisDeviceType deviceType;
 int result;

Example

46

 /* Select device type */
 if (Quantis::Count(QUANTIS_DEVICE_PCI) > 0)
 {
 /* There is one ore more Quantis PCI device... */
 deviceType = QUANTIS_DEVICE_PCI;
 }
 else if (Quantis::Count(QUANTIS_DEVICE_USB) > 0)
 {
 /* There is one ore more Quantis USB device... */
 deviceType = QUANTIS_DEVICE_USB;
 }
 else
 {
 /* No Quantis device has been found on the system */
 cout << "No Quantis device found" << endl;
 return -1;
 }

 try
 {

 /* Creates a quantis object */
 Quantis quantis(deviceType, 0);

 /* Read random data from the Quantis*/
 string buffer = quantis.Read(NUM_BYTES);
 if (buffer.length() != NUM_BYTES)
 {
 /* Quantis did not return the number of bytes asked */
 cerr << "Asked to read " << NUM_BYTES
 << " byts but received " << buffer.length()
 << " bytes" << endl;
 return -1;
 }

 // Display buffer in HEX format
 cout << "Displaying " << NUM_BYTES
 << " random bytes in HEX format:" << endl;
 string::iterator it = buffer.begin();

 while (it != buffer.end())
 {
 cout << setw(2) << setfill('0') << hex
 << static_cast<int>(static_cast<unsigned char>(*it++))
 << " ";
 }
 cout << endl;

 catch (runtime_error &ex)
 {
 cerr << "Error while accessing Quantis device: "
 << ex.what() << endl;
 return -1;
 }

 return 0;
}

47

Appendix A. Troubleshooting
A.1. EasyQuantis

A.1.1. EasyQuantis crash on Linux, with one of the following errors:

• Segmentation fault.

• symbol lookup error: EasyQuantis: undefined symbol:
_ZN14QPlainTextEditC1EP7QWidget.

These errors are generally caused by a binary incompatible Qt library. The binary of
EasyQuantis provided by ID Quantique has been linked against Qt version 4.3.4. Or Qt libraries
are only backward compatible, which means that you need to installe QT4 version 4.3.4 or
newer.

To solve this issue please upgrade your Qt libraries to version 4.3.4 or newer.

If Qt version 4.3.4 (or newer) is not available on your system, you can still use EasyQuantis
in command line, which is not affected by this issue. Please refear to Section 4.3, “The
EasyQuantis Command Line” for more help.

This issue can also be solved recompiling the Quantis library and EasyQuantis on your system.

48

49

Appendix B. Frequently Asked
Questions (FAQ)
B.1. Quantis Library

B.1.1. Can I use the 32-bit Quantis library on a 64-bit system?

Yes, you can use the 32-bit Quantis library with a 32-bit application on 64-bit systems. Not
however that you can not use the 32-bit Quantis library with a 64-bit application nor the 64-
bit Quantis library with a 32-bit application.

B.1.2. On Microsoft Windows I must copy the Quantis.dll library on system directory (C:
\Windows\System32)?

No,it is not mandatory. IDQ recommends to install the Quantis.dll library in your
application's directory.

B.1.3. On Microsoft Windows, when I use Quantis.dll within my application I have the error
"The application has failed to start because WINUSB.DLL was not found. Re-installing the
application may fix this problem". What should I do?

This problem occurs with Quantis.dll v2.1 (and older) when the Quantis USB driver
is not installed. This issue has been fixed in Quantis.dll v2.2. Please update your
Quantis.dll to the latest available version.

B.2. EasyQuantis
B.2.1. On Microsoft Windows, when I launch EasyQuantis I have the error "The application has

failed to start because WINUSB.DLL was not found. Re-installing the application may fix this
problem". What should I do?

This problem occurs with EasyQuantis 1.0 when the Quantis USB driver is not installed. This
issue has been fixed in EasyQuantis 1.1. Please update EasyQuantis to the latest available
version.

B.2.2. When I launch EasyQuantis on Microsoft Windows a console appears for a few seconds. What
is wrong?

EasyQuantis integrates a command line interface and a graphical interface. Or on Microsoft
Windows it is not possible to build an hybrid Windows/Console application. EasyQuantis has
been built as a Console application. When launched, the system automatically creates a console
windows and if no argument has been provided to the application, the console window is hidden
and the graphical interface is displayed. There is unfortunately no easy way to avoid this issue.

50

51

Appendix C. Migrating to the New API
Quantis library version 2.0 slightly changed API. This is mainly due to the merge of the old Quantis
library (used to access Quantis PCI devices) and Quantis-USB library (used to access Quantis USB
devices) into a unique library.

Main difference between 1.x and 2.0 versions is the addition of the parameter deviceType, which
allows you to specify the type of device to use (PCI/PCIe or USB). Additionally functions names
have been modified when ambiguous. See Table C.1, “API 1.x and 2.0 functions equivalences.” for
equivalences between API 1.x and 2.0.

API 1.x functions API 2.0 functions

int quantisBoardReset(
 int cardNumber);

int QuantisBoardReset(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber);

int quantisBoardVersion(
 int cardNumber);

int QuantisGetBoardVersion(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber);

int quantisCount(); int QuantisCount(
 QuantisDeviceType deviceType);

int quantisDriverVersion(); float QuantisGetDriverVersion(
 QuantisDeviceType deviceType);

int quantisGetModules(
 int cardNumber);

int QuantisGetModulesMask(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber);

char* quantisGetSerialNumber(
 int cardNumber);

char* QuantisGetSerialNumber(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber);

int quantisLibVersion(); float QuantisGetLibVersion();

int quantisModuleDataRate(
 int cardNumber);

int QuantisGetModulesDataRate(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber);

int quantisModulesDisable(
 int cardNumber,
 int moduleMask);

int QuantisModulesDisable(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 int modulesMask);

int quantisModulesEnable(
 int cardNumber,
 int moduleMask);

int QuantisModulesEnable(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 int modulesMask);

int quantisModulesPower(
 int cardNumber);

int QuantisGetModulesPower(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber);

int quantisModulesReset(
 int cardNumber,
 int moduleMask);

int QuantisModulesReset(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 int modulesMask);

Compatibility Wrapper

52

API 1.x functions API 2.0 functions

int quantisModulesStatus(
 int cardNumber);

int QuantisGetModulesStatus(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber);

int quantisRead(
 int cardNumber,
 void* buffer,
 unsigned int size);

int QuantisRead(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 void* buffer,
 size_t size);

Table C.1. API 1.x and 2.0 functions equivalences.

C.1. Compatibility Wrapper
IDQ provides a compatibility wrapper that allows you to use old API with the new library. This is
meant to facilitate the migration of your application to the new API.

Important

It is highly suggested to update your application to the new API as soon as possible.

To use the compatibility wrapper, define QUANTIS_DEVICE_TYPE and then include Quantis-
Compat.h instead of quantis.h and recompile your application:

/*
 * Define Quantis type:
 * - set QUANTIS_DEVICE_TYPE to 1 for Quantis PCI/PCIe
 * - set QUANTIS_DEVICE_TYPE to 2 for Quantis USB
 */
#define QUANTIS_DEVICE_TYPE 1

/* Includes compatibility wrapper */
#include "Quantis-Compat.h"

Note

On Microsoft Windows systems, you can try to rename QuantisPci-Compat.dll
to Quantis.dll or QuantisUsb-Compat.dll to Quantis-Usb.dll and
replace your old library. This way you normally do not need to recompile your
application.

53

Appendix D. Notes
D.1. Images

Some images used on this manual and on Quantis software are from VistaICO.com.

54

55

Bibliography
Websites
[USB] Official USB website. http://www.usb.org/ .

http://www.usb.org/

56

	Quantis User's Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. What You Need
	1.1.1. Additional Requirements
	1.1.1.1. Linux

	Chapter 2. Hardware Installation
	2.1. Quantis PCI and PCI Express Installation
	2.1.1. Unpacking
	2.1.2. Installing the Card

	2.2. Quantis USB Installation
	2.2.1. Unpacking
	2.2.2. Installing the Device

	Chapter 3. Driver Installation
	3.1. Windows Operating Systems
	3.1.1. Windows XP
	3.1.1.1. Found New Hardware Wizard: Welcome
	3.1.1.2. Found New Hardware Wizard: Quantis
	3.1.1.3. Found New Hardware Wizard: Search Location
	3.1.1.4. Found New Hardware Wizard: Installation
	3.1.1.5. Found New Hardware Wizard: Completed

	3.1.2. Windows Vista
	3.1.2.1. Found New Hardware Wizard: Welcome
	3.1.2.2. Found New Hardware Wizard: Insert Disc
	3.1.2.3. Found New Hardware Wizard: Search Location
	3.1.2.4. Found New Hardware Wizard: Installation
	3.1.2.5. Found New Hardware Wizard: Install
	3.1.2.6. Found New Hardware Wizard: Completed

	3.1.3. Windows 7
	3.1.3.1. Devices and Printers
	3.1.3.2. Quantis Properties: Hardware
	3.1.3.3. Quantis Properties: Update Driver
	3.1.3.4. Update Driver Software: Search Driver
	3.1.3.5. Update Driver Software: Search Location
	3.1.3.6. Update Driver Software: Installation
	3.1.3.7. Update Driver Software: Completed

	3.2. Linux Operating System
	3.2.1. Quantis PCI and Quantis PCI Express
	3.2.1.1. Install Pre-Requirements
	3.2.1.1.1. Debian-based Distributions
	3.2.1.1.2. Red Hat Enterprise Linux and CentOS Distributions
	3.2.1.1.3. Other Distributions

	3.2.1.2. Compile and Install Driver
	3.2.1.3. Autoload the Driver on Boot
	3.2.1.3.1. Debian-based Distributions
	3.2.1.3.2. Red Hat Enterprise Linux and CentOS Distributions
	3.2.1.3.3. Other Distribution

	3.2.1.4. Modify the Device's Permissions
	3.2.1.4.1. The plugdev group
	3.2.1.4.2. Adding users to the plugdev group
	3.2.1.4.3. UDEV rules

	3.2.1.5. Check Your Device

	3.2.2. Quantis USB
	3.2.2.1. libusb-1.0 Installation
	3.2.2.1.1. Debian-based Distributions
	3.2.2.1.2. Red Hat Enterprise Linux and CentOS Distributions
	3.2.2.1.3. Other Distributions
	3.2.2.1.4. Manually Compile libusb-1.0

	3.2.2.2. Modify the Device's Permissions
	3.2.2.3. Check Your Device

	Chapter 4. The EasyQuantis application
	4.1. Installation
	4.1.1. Windows Operating Systems
	4.1.2. Linux Operating Systems
	4.1.2.1. Install Requirements
	4.1.2.1.1. Debian-based Distributions
	4.1.2.1.2. Other Distributions

	4.1.2.2. Install the Application
	4.1.2.3. Uninstall the Application

	4.2. Using EasyQuantis
	4.3. The EasyQuantis Command Line
	4.3.1. Options
	4.3.1.1. Generic Options
	4.3.1.2. Quantis Options
	4.3.1.3. Acquisition Options

	4.3.2. Usage Examples
	4.3.2.1. Generate Binary Data
	4.3.2.2. Generate Numbers
	4.3.2.3. Generate Scaled Numbers

	Chapter 5. The Quantis Library
	5.1. Device Type
	5.2. Basic Functions
	5.2.1. QuantisCount
	5.2.2. QuantisGetDriverVersion
	5.2.3. QuantisGetLibVersion
	5.2.4. QuantisGetModulesDataRate
	5.2.5. QuantisGetSerialNumber
	5.2.6. QuantisRead
	5.2.6.1. Reading Large Amount of Data
	5.2.6.2. Reading Basic Data Types
	5.2.6.2.1. Integral Values
	5.2.6.2.1.1. Integral Values: The Scaling Algorithm

	5.2.6.2.2. Floating Point Values

	5.2.7. QuantisStrError

	5.3. Advanced Functions
	5.3.1. QuantisBoardReset
	5.3.2. QuantisGetBoardVersion
	5.3.3. QuantisGetModulesCount
	5.3.4. QuantisGetModulesMask
	5.3.5. QuantisGetModulesPower
	5.3.6. QuantisGetModulesStatus
	5.3.7. QuantisModulesDisable
	5.3.8. QuantisModulesEnable
	5.3.9. QuantisModulesReset

	5.4. Example

	Chapter 6. Quantis Library Wrappers
	6.1. Example

	Appendix A. Troubleshooting
	A.1. EasyQuantis

	Appendix B. Frequently Asked Questions (FAQ)
	B.1. Quantis Library
	B.2. EasyQuantis

	Appendix C. Migrating to the New API
	C.1. Compatibility Wrapper

	Appendix D. Notes
	D.1. Images

	Bibliography

