
Oracle Berkeley DB

Installation and Build
Guide

11g Release 2

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at: http://
www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

Other names may be trademarks of their respective owners.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forumID=271

Published 11/8/2010

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

11/8/2010 DB Installation Guide Page iii

Table of Contents
Preface .. xv

Conventions Used in this Book ... xv
For More Information ... xv

1. Introduction .. 1
Installation Overview .. 1

2. System Installation Notes .. 2
File utility /etc/magic information ... 2

Magic information ... 2
Big-endian magic information ... 3
Little-endian magic information .. 6

Building with multiple versions of Berkeley DB .. 8
3. Debugging Applications .. 10

Introduction to debugging .. 10
Compile-time configuration .. 10
Run-time error information ... 11
Reviewing Berkeley DB log files ... 11

Augmenting the Log for Debugging ... 14
Extracting Committed Transactions and Transaction Status 15
Extracting Transaction Histories ... 15
Extracting File Histories .. 15
Extracting Page Histories ... 15
Other log processing tools ... 15

4. Building Berkeley DB for Windows .. 17
Building Berkeley DB for 32 bit Windows .. 17

Visual C++ .NET 2008 .. 17
Visual C++ .NET 2005 .. 17
Build results .. 18

Building Berkeley DB for 64-bit Windows .. 18
x64 build with Visual Studio 2005 or newer ... 18

Building Berkeley DB with Cygwin ... 18
Building the C++ API ... 18
Building the C++ STL API ... 19
Building the Java API .. 19
Building the C# API .. 19
Building the SQL API ... 20

Binary Compatibility With SQLite ... 20
Enabling Extensions ... 20
Building the JDBC Driver ... 20
Building the ODBC Driver ... 21

Configuring Your System ... 21
Building the Library ... 21
Installing the Library ... 22
Testing the ODBC Install ... 22

Building the Tcl API .. 22
Distributing DLLs ... 23
Building a small memory footprint library ... 23

11/8/2010 DB Installation Guide Page iv

Running the test suite under Windows ... 24
Building the software needed by the tests .. 24

Visual Studio 2005 or newer .. 24
Running the test suite under Windows ... 24
Building the software needed by the SQL tests .. 25

Visual Studio 2005 or newer .. 25
Windows notes .. 25
Windows FAQ .. 26

5. Building Berkeley DB for Windows Mobile .. 28
Building for Windows Mobile ... 28

Building Berkeley DB for Windows Mobile ... 28
Visual Studio 2005 .. 28
Build results .. 28

Changing Build Configuration Type ... 28
Building Berkeley DB for different target platforms 29

Visual Studio 2005 .. 29
Windows Mobile notes ... 29
Windows Mobile FAQ ... 30

6. Building Berkeley DB for UNIX/POSIX ... 32
Building for UNIX/POSIX ... 32

Building the Berkeley DB SQL Interface .. 32
Configuring Berkeley DB .. 33
Configuring the SQL Interface ... 38

Enabling Extensions ... 39
Building the JDBC Driver .. 39
Building the ODBC Driver ... 40

Configuring Your System ... 40
Building the Library ... 40
Testing the ODBC Driver ... 40

Building a small memory footprint library ... 41
Changing compile or load options ... 42
Installing Berkeley DB ... 43
Dynamic shared libraries .. 44
Running the test suite under UNIX .. 45

Building SQL Test Suite on Unix ... 46
Architecture independent FAQ ... 46
AIX .. 49
FreeBSD .. 51
HP-UX ... 51
IRIX ... 53
Linux .. 53
Mac OS X .. 54
OSF/1 ... 54
QNX ... 55
SCO ... 56
Solaris .. 56
SunOS ... 58
Ultrix ... 58

7. Building Berkeley DB for VxWorks ... 59

11/8/2010 DB Installation Guide Page v

Building for VxWorks 5.4 and 5.5 ... 59
Building With Tornado 2.0 or Tornado 2.2 ... 59

Building for VxWorks 6.x .. 60
Building With Wind River Workbench using the Makefile 60

VxWorks notes .. 61
Building and Running the Demo Program .. 61
Building and Running the Utility Programs .. 61
VxWorks 5.4/5.5: shared memory .. 62
VxWorks 5.4/5.5: building a small memory footprint library 62
Support for Replication Manager .. 62

VxWorks FAQ .. 62
8. Upgrading from previous versions of Berkeley DB .. 66

Library version information ... 66
Upgrading Berkeley DB installations .. 66

9. Upgrading Berkeley DB 4.8 applications to Berkeley DB 11gR2 71
Introduction ... 71
db_sql Renamed to db_sql_codegen .. 71
DB_REP_CONF_NOAUTOINIT Replaced ... 71
Support for Multiple Client-to-Client Peers .. 71
Cryptography Support ... 71
DB_NOSYNC Flag to Flush Files .. 72
Dropped Support ... 72
Changing Stack Size .. 72
Berkeley DB 11g Release 2 Change Log .. 72

Changes between 11.2.5.0.26 and 11.2.5.0.32 ... 72
Changes between 11.2.5.0.21 and 11.2.5.0.26 ... 74
Changes between 4.8 and 11.2.5.0.21 ... 75

Database or Log File On-Disk Format Changes 75
New Features .. 75
Database Environment Changes ... 76
Access Method Changes .. 77
Locking Subsystem Changes ... 78
Logging Subsystem Changes ... 78
Memory Pool Subsystem Changes ... 78
Mutex Subsystem Changes ... 78
Tcl-specific API Changes ... 79
C#-specific API Changes .. 79
API Changes .. 79
Replication Changes .. 79
Transaction Subsystem Changes ... 80
Utility Changes .. 80
Example Changes .. 81
Deprecated Features ... 81
Configuration, Documentation, Sample Apps, Portability and Build
Changes ... 81

Known Bugs ... 82
10. Upgrading Berkeley DB 4.7 applications to Berkeley DB 4.8 83

Introduction ... 83
Registering DPL Secondary Keys ... 83

11/8/2010 DB Installation Guide Page vi

Minor Change in Behavior of DB_MPOOLFILE->get .. 83
Dropped Support for fcntl System Calls .. 83
Upgrade Requirements .. 84
Berkeley DB 4.8.28 Change Log ... 84

Changes between 4.8.26 and 4.8.28: ... 84
Known bugs in 4.8 ... 84
Changes between 4.8.24 and 4.8.26: ... 84
Changes between 4.8.21 and 4.8.24: ... 85
Changes between 4.7 and 4.8.21: ... 85
Database or Log File On-Disk Format Changes: .. 85
New Features: ... 85
Database Environment Changes: ... 86
Concurrent Data Store Changes: ... 86
General Access Method Changes: .. 86
Btree Access Method Changes: ... 87
Hash Access Method Changes: .. 87
Queue Access Method Changes: .. 88
Recno Access Method Changes: .. 88
C-specific API Changes: .. 88
C++-specific API Changes: ... 88
Java-specific API Changes: .. 88
Direct Persistence Layer (DPL), Bindings and Collections API: 89
Tcl-specific API Changes: .. 90
RPC-specific Client/Server Changes: .. 90
Replication Changes: ... 90
XA Resource Manager Changes: .. 92
Locking Subsystem Changes: .. 92
Logging Subsystem Changes: .. 93
Memory Pool Subsystem Changes: ... 93
Mutex Subsystem Changes: .. 93
Test Suite Changes ... 94
Transaction Subsystem Changes: ... 94
Utility Changes: ... 94
Configuration, Documentation, Sample Application, Portability and Build
Changes: ... 95

11. Upgrading Berkeley DB 4.6 applications to Berkeley DB 4.7 97
Introduction ... 97
Run-time configuration .. 97
Replication API .. 97
Tcl API .. 97
DB_ENV->set_intermediate_dir ... 98
Log configuration ... 98
Upgrade Requirements .. 98
Berkeley DB 4.7.25 Change Log ... 98

Database or Log File On-Disk Format Changes: ... 98
New Features: .. 98
Database Environment Changes: .. 99
Concurrent Data Store Changes: .. 99
General Access Method Changes: ... 99

11/8/2010 DB Installation Guide Page vii

Btree Access Method Changes: ... 100
Hash Access Method Changes: ... 100
Queue Access Method Changes: .. 100
Recno Access Method Changes: .. 100
C-specific API Changes: ... 100
Java-specific API Changes: ... 100
Direct Persistence Layer (DPL), Bindings and Collections API: 101
Tcl-specific API Changes: .. 101
RPC-specific Client/Server Changes: .. 102
Replication Changes: ... 102
XA Resource Manager Changes: .. 103
Locking Subsystem Changes: ... 103
Logging Subsystem Changes: ... 103
Memory Pool Subsystem Changes: ... 104
Mutex Subsystem Changes: ... 104
Transaction Subsystem Changes: ... 104
Utility Changes: ... 104
Configuration, Documentation, Sample Application, Portability and Build
Changes: ... 105

12. Upgrading Berkeley DB 4.5 applications to Berkeley DB 4.6 106
Introduction .. 106
C API cursor handle method names .. 106
DB_MPOOLFILE->put .. 106
B_MPOOLFILE->set .. 106
Replication Events .. 107
DB_REP_FULL_ELECTION ... 107
Verbose Output .. 107
DB_VERB_REPLICATION ... 108
Windows 9X .. 108
Upgrade Requirements ... 108
Berkeley DB 4.6.21 Change Log .. 108

4.6.21 Patches: ... 108
4.6.19 Patches .. 109
Database or Log File On-Disk Format Changes: 109
New Features: .. 109
Database Environment Changes: ... 110
Concurrent Data Store Changes: ... 111
General Access Method Changes: .. 111
Btree Access Method Changes: ... 112
Hash Access Method Changes: ... 112
Queue Access Method Changes: .. 112
Recno Access Method Changes: .. 112
C++-specific API Changes: .. 112
Java-specific API Changes: ... 112
Java collections and bind API Changes: .. 113
Tcl-specific API Changes: .. 113
RPC-specific Client/Server Changes: .. 113
Replication Changes: ... 113
XA Resource Manager Changes: .. 115

11/8/2010 DB Installation Guide Page viii

Locking Subsystem Changes: ... 115
Logging Subsystem Changes: ... 115
Memory Pool Subsystem Changes: ... 115
Transaction Subsystem Changes: ... 115
Utility Changes: ... 115
Configuration, Documentation, Portability and Build Changes: 116

13. Upgrading Berkeley DB 4.4 applications to Berkeley DB 4.5 117
Introduction .. 117
deprecated interfaces .. 117
DB->set_isalive .. 117
DB_ENV->rep_elect ... 117
Replication method naming ... 118
Replication events .. 118
Memory Pool API .. 118
DB_ENV->set_paniccall ... 118
DB->set_pagesize .. 118
Collections API .. 119
--enable-pthread_self .. 119
Recno backing text source files .. 119
Application-specific logging ... 119
Upgrade Requirements ... 120
Berkeley DB 4.5.20 Change Log .. 120

Database or Log File On-Disk Format Changes: 120
New Features: .. 120
Database Environment Changes: ... 120
Concurrent Data Store Changes: ... 121
General Access Method Changes: .. 121
Btree Access Method Changes: ... 121
Hash Access Method Changes: ... 122
Queue Access Method Changes: .. 122
Recno Access Method Changes: .. 122
C++-specific API Changes: .. 122
Java-specific API Changes: ... 122
Java collections and bind API Changes: .. 122
Tcl-specific API Changes: .. 123
RPC-specific Client/Server Changes: .. 123
Replication Changes: ... 123
XA Resource Manager Changes: .. 123
Locking Subsystem Changes: ... 123
Logging Subsystem Changes: ... 124
Memory Pool Subsystem Changes: ... 124
Transaction Subsystem Changes: ... 124
Utility Changes: ... 125
Configuration, Documentation, Portability and Build Changes: 125

14. Upgrading Berkeley DB 4.3 applications to Berkeley DB 4.4 126
Introduction .. 126
DB_AUTO_COMMIT .. 126
DB_DEGREE_2, DB_DIRTY_READ .. 126
DB_JOINENV .. 126

11/8/2010 DB Installation Guide Page ix

mutexes .. 127
DB_MPOOLFILE->set_clear_len .. 127
lock statistics .. 128
Upgrade Requirements ... 128
Berkeley DB 4.4.16 Change Log .. 128

Database or Log File On-Disk Format Changes: 128
New Features: .. 128
Database Environment Changes: ... 129
Concurrent Data Store Changes: ... 129
General Access Method Changes: .. 130
Btree Access Method Changes: ... 130
Hash Access Method Changes: ... 131
Queue Access Method Changes: .. 131
Recno Access Method Changes ... 131
C++-specific API Changes: .. 131
Java-specific API Changes: ... 131
Java collections and bind API Changes: .. 132
Tcl-specific API Changes: .. 133
RPC-specific Client/Server Changes: .. 133
Replication Changes: ... 133
XA Resource Manager Changes: .. 134
Locking Subsystem Changes: ... 134
Logging Subsystem Changes: ... 134
Memory Pool Subsystem Changes: ... 135
Transaction Subsystem Changes: ... 135
Utility Changes: ... 136
Configuration, Documentation, Portability and Build Changes: 136

Berkeley DB 4.4.20 Change Log .. 137
Changes since Berkeley DB 4.4.16: .. 137

15. Upgrading Berkeley DB 4.2 applications to Berkeley DB 4.3 138
Introduction .. 138
Java ... 138
DB_ENV->set_errcall, DB->set_errcall ... 139
DBcursor->c_put ... 139
DB->stat .. 139
DB_ENV->set_verbose .. 139
Logging ... 140
DB_FILEOPEN ... 140
ENOMEM and DbMemoryException ... 140
Replication ... 140
Run-time configuration .. 141
Upgrade Requirements ... 141
Berkeley DB 4.3.29 Change Log .. 141

Database or Log File On-Disk Format Changes: 141
New Features: .. 141
Database Environment Changes: ... 141
Concurrent Data Store Changes: ... 143
General Access Method Changes: .. 143
Btree Access Method Changes: ... 144

11/8/2010 DB Installation Guide Page x

Hash Access Method Changes: ... 144
Queue Access Method Changes: .. 145
Recno Access Method Changes ... 145
C++-specific API Changes: .. 145
Java-specific API Changes: ... 146
Tcl-specific API Changes: .. 146
RPC-specific Client/Server Changes: .. 147
Replication Changes: ... 147
XA Resource Manager Changes: .. 148
Locking Subsystem Changes: ... 148
Logging Subsystem Changes: ... 149
Memory Pool Subsystem Changes: ... 149
Transaction Subsystem Changes: ... 149
Utility Changes: ... 150
Configuration, Documentation, Portability and Build Changes: 151

16. Upgrading Berkeley DB 4.1 applications to Berkeley DB 4.2 153
Introduction .. 153
Java ... 153
Queue access method .. 154
DB_CHKSUM_SHA1 ... 155
DB_CLIENT .. 155
DB->del ... 155
DB->set_cache_priority ... 155
DB->verify .. 155
DB_LOCK_NOTGRANTED .. 156
Replication ... 156

Replication initialization .. 156
Database methods and replication clients ... 156
DB_ENV->rep_process_message() .. 157

Client replication environments .. 157
Tcl API .. 157
Upgrade Requirements ... 157
Berkeley DB 4.2.52 Change Log .. 157

Database or Log File On-Disk Format Changes: 157
New Features: .. 157
Database Environment Changes: ... 158
Concurrent Data Store Changes: ... 160
General Access Method Changes: .. 160
Btree Access Method Changes: ... 161
Hash Access Method Changes: ... 162
Queue Access Method Changes: .. 162
Recno Access Method Changes: .. 163
C++-specific API Changes: .. 164
Java-specific API Changes: ... 164
Tcl-specific API Changes: .. 165
RPC-specific Client/Server Changes: .. 166
Replication Changes: ... 166
XA Resource Manager Changes: .. 169
Locking Subsystem Changes: ... 169

11/8/2010 DB Installation Guide Page xi

Logging Subsystem Changes: ... 170
Memory Pool Subsystem Changes: ... 171
Transaction Subsystem Changes: ... 171
Utility Changes: ... 172
Configuration, Documentation, Portability and Build Changes: 172

17. Upgrading Berkeley DB 4.0 applications to Berkeley DB 4.1 175
Introduction .. 175
DB_EXCL .. 175
DB->associate, DB->open, DB->remove, DB->rename 175
DB_ENV->log_register ... 177
st_flushcommit .. 177
DB_CHECKPOINT, DB_CURLSN ... 177
DB_INCOMPLETE ... 178
DB_ENV->memp_sync ... 178
DB->stat.hash_nelem ... 178
Java exceptions ... 178
C++ exceptions .. 178
Application-specific logging and recovery .. 179
Upgrade Requirements ... 179
Berkeley DB 4.1.24 and 4.1.25 Change Log .. 179

Database or Log File On-Disk Format Changes: 179
Major New Features: .. 179
General Environment Changes: .. 180
General Access Method Changes: .. 181
Btree Access Method Changes: ... 182
Hash Access Method Changes: ... 182
Queue Access Method Changes: .. 183
Recno Access Method Changes: .. 183
C++-specific API Changes: .. 183
Java-specific API Changes: ... 184
Tcl-specific API Changes: .. 184
RPC-specific Client/Server Changes: .. 184
Replication Changes: ... 184
XA Resource Manager Changes: .. 184
Locking Subsystem Changes: ... 185
Logging Subsystem Changes: ... 185
Memory Pool Subsystem Changes: ... 185
Transaction Subsystem Changes: ... 186
Utility Changes: ... 186
Configuration, Documentation, Portability and Build Changes: 186

Berkeley DB 4.1.25 Change Log .. 188
18. Upgrading Berkeley DB 3.3 applications to Berkeley DB 4.0 189

Introduction .. 189
db_deadlock ... 189
lock_XXX .. 189
log_XXX ... 189
memp_XXX ... 190
txn_XXX ... 191
db_env_set_XXX ... 192

11/8/2010 DB Installation Guide Page xii

DB_ENV->set_server .. 193
DB_ENV->set_lk_max ... 193
DB_ENV->lock_id_free .. 193
Java CLASSPATH environment variable .. 193
C++ ostream objects ... 194
application-specific recovery ... 194
Upgrade Requirements ... 195
4.0.14 Change Log .. 195

Major New Features: .. 195
General Environment Changes: .. 195
General Access Method Changes: .. 196
Btree Access Method Changes: ... 196
Hash Access Method Changes: ... 196
Queue Access Method Changes: .. 196
Recno Access Method Changes: .. 196
C++ API Changes: ... 196
Java API Changes: .. 196
Tcl API Changes: .. 196
RPC Client/Server Changes: .. 197
XA Resource Manager Changes: .. 197
Locking Subsystem Changes: ... 197
Logging Subsystem Changes: ... 197
Memory Pool Subsystem Changes: ... 197
Transaction Subsystem Changes: ... 198
Utility Changes: ... 198
Database or Log File On-Disk Format Changes: 198
Configuration, Documentation, Portability and Build Changes: 198

19. Upgrading Berkeley DB 3.2 applications to Berkeley DB 3.3 200
introduction .. 200
DB_ENV->set_server .. 200
DB->get_type .. 200
DB->get_byteswapped .. 200
DB->set_malloc, DB->set_realloc ... 200
DB_LOCK_CONFLICT .. 201
memp_fget, EIO ... 201
txn_prepare .. 202
--enable-dynamic, --enable-shared .. 202
--disable-bigfile ... 202
Upgrade Requirements ... 202

20. Upgrading Berkeley DB 3.1 applications to Berkeley DB 3.2 203
introduction .. 203
DB_ENV->set_flags .. 203
DB callback functions, app_private field ... 203
Logically renumbering records .. 203
DB_INCOMPLETE ... 204
DB_ENV->set_tx_recover ... 204
DB_ENV->set_mutexlocks .. 204
Java and C++ object reuse .. 205
Java java.io.FileNotFoundException ... 205

11/8/2010 DB Installation Guide Page xiii

db_dump ... 205
Upgrade Requirements ... 205

21. Upgrading Berkeley DB 3.0 applications to Berkeley DB 3.1 206
introduction .. 206
DB_ENV->open, DB_ENV->remove .. 206
DB_ENV->set_tx_recover ... 206
DB_ENV->set_feedback, DB->set_feedback ... 206
DB_ENV->set_paniccall, DB->set_paniccall ... 207
DB->put ... 207
identical duplicate data items ... 208
DB->stat .. 208
DB_SYSTEM_MEM .. 208
log_register .. 209
memp_register .. 209
txn_checkpoint .. 209
environment configuration .. 209
Tcl API .. 210
DB_TMP_DIR .. 210
log file pre-allocation .. 210
Upgrade Requirements ... 211

22. Upgrading Berkeley DB 2.X applications to Berkeley DB 3.0 212
introduction .. 212
environment open/close/unlink .. 212
function arguments ... 215
DB_ENV structure ... 216
database open/close ... 217
db_xa_open .. 218
DB structure ... 218
DBINFO structure .. 219
DB->join .. 220
DB->stat .. 221
DB->sync and DB->close ... 221
lock_put .. 221
lock_detect .. 221
lock_stat .. 221
log_register .. 221
log_stat ... 221
memp_stat ... 222
txn_begin ... 222
txn_commit .. 222
txn_stat ... 222
DB_RMW .. 222
DB_LOCK_NOTHELD ... 222
EAGAIN .. 223
EACCES .. 223
db_jump_set ... 223
db_value_set ... 224
DbEnv class for C++ and Java .. 224
Db class for C++ and Java .. 226

11/8/2010 DB Installation Guide Page xiv

additional C++ changes .. 226
additional Java changes ... 226
Upgrade Requirements ... 227

23. Upgrading Berkeley DB 1.85 or 1.86 applications to Berkeley DB 2.0 228
Introduction .. 228
System Integration .. 228
Converting Applications .. 229
Upgrade Requirements ... 230

24. Test Suite ... 231
Running the test suite ... 231

Running SQL Test Suite on Unix .. 231
Running SQL Test Suite on Windows .. 232

Test suite FAQ ... 232

11/8/2010 DB Installation Guide Page xv

Preface
Welcome to Berkeley DB (DB). This document describes how to build, install and upgrade
Berkeley DB

This document reflects Berkeley DB 11g Release 2, which provides DB library version 11.2.5.0.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Structure names are represented in monospaced font, as are method names. For example:
"DB->open() is a method on a DB handle."

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory."

Program examples are displayed in a monospaced font on a shaded background. For example:

/* File: gettingstarted_common.h */
typedef struct stock_dbs {
 DB *inventory_dbp; /* Database containing inventory information */
 DB *vendor_dbp; /* Database containing vendor information */

 char *db_home_dir; /* Directory containing the database files */
 char *inventory_db_name; /* Name of the inventory database */
 char *vendor_db_name; /* Name of the vendor database */
} STOCK_DBS;

Note

Finally, notes of interest are represented using a note block such as this.

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a DB application:

• Getting Started with Transaction Processing for C

• Berkeley DB Getting Started with Replicated Applications for C

• Berkeley DB C API

• Berkeley DB C++ API

• Berkeley DB STL API

• Berkeley DB TCL API

• Berkeley DB Programmer's Reference Guide

http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/C/Replication_C_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/C/BDB-C_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/CXX/BDB-CXX_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/STL/BDB-STL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/TCL/BDB-TCL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf

11/8/2010 DB Installation Guide Page xvi

• Berkeley DB Getting Started with the SQL APIs

http://www.oracle.com/technology/documentation/berkeley-db/db/bdb-sql/BDB-SQL-Guide.pdf

11/8/2010 DB Installation Guide Page 1

Chapter 1. Introduction
Welcome to the Berkeley DB. This manual describes how to configure, build and install
Berkeley DB. Installation of DB for all of the platforms it officially supports is described in this
manual. Upgrade instructions and release notes for every major version of this product are
also described here.

Note that some operating systems and distributions might provide DB, either by default or
as part of an installation option. If so, those platforms will have installation instructions for
DB specific to them. In this situation, you should see the documentation for your operating
system or distribution provider for information on how to get DB on your platform.

Installation Overview

Berkeley DB is an open-source product, and as such it is usually offered in source-code format.
This means that placing DB on your platform requires you to configure the build scripts,
compile it, and then install the product onto your host system. The exception to this are
Microsoft Windows platforms for which a binary installer is available. Note that for Windows
platforms, you can still compile the product from source if you desire.

For *nix systems, including the BSD and Linux systems, the usual configure, make and make
install installation process is used to place DB on your platform.

For information on building and installing Berkeley DB on:

• Microsoft Windows, see Building Berkeley DB for Windows (page 17) or Building Berkeley
DB for Windows Mobile (page 28).

• Unix/POSIX — including Linux, BSD, and Mac OS X — see Building Berkeley DB for UNIX/
POSIX (page 32).

• VxWorks, see Building Berkeley DB for VxWorks (page 59).

11/8/2010 DB Installation Guide Page 2

Chapter 2. System Installation Notes
File utility /etc/magic information

The file(1) utility is a UNIX utility that examines and classifies files, based on information
found in its database of file types, the /etc/magic file. The following information may be
added to your system's /etc/magic file to enable file(1) to correctly identify Berkeley DB
database files.

The file(1) utility magic(5) information for the standard System V UNIX implementation
of the file(1) utility is included in the Berkeley DB distribution for both big-endian (for
example, Sparc) and little-endian (for example, x86) architectures. See Big-endian magic
information (page 3) and Little-endian magic information (page 6) respectively for this
information.

The file(1) utility magic(5) information for Release 3.X of Ian Darwin's implementation of the
file utility (as distributed by FreeBSD and most Linux distributions) is included in the Berkeley
DB distribution. This magic.txt information is correct for both big-endian and little-endian
architectures. See the next section for this information.

Magic information
Berkeley DB
#
Ian Darwin's file /etc/magic files: big/little-endian version.
#
Hash 1.85/1.86 databases store metadata in network byte order.
Btree 1.85/1.86 databases store the metadata in host byte order.
Hash and Btree 2.X and later databases store the metadata in
host byte order.

0 long 0x00061561 Berkeley DB
>8 belong 4321
>>4 belong >2 1.86
>>4 belong <3 1.85
>>4 belong >0 (Hash, version %d, native byte-order)
>8 belong 1234
>>4 belong >2 1.86
>>4 belong <3 1.85
>>4 belong >0 (Hash, version %d, little-endian)

0 belong 0x00061561 Berkeley DB
>8 belong 4321
>>4 belong >2 1.86
>>4 belong <3 1.85
>>4 belong >0 (Hash, version %d, big-endian)
>8 belong 1234
>>4 belong >2 1.86
>>4 belong <3 1.85
>>4 belong >0 (Hash, version %d, native byte-order)

System Installation Notes

11/8/2010 DB Installation Guide Page 3

0 long 0x00053162 Berkeley DB 1.85/1.86
>4 long >0 (Btree, version %d, native byte-order)
0 belong 0x00053162 Berkeley DB 1.85/1.86
>4 belong >0 (Btree, version %d, big-endian)
0 lelong 0x00053162 Berkeley DB 1.85/1.86
>4 lelong >0 (Btree, version %d, little-endian)

12 long 0x00061561 Berkeley DB
>16 long >0 (Hash, version %d, native byte-order)
12 belong 0x00061561 Berkeley DB
>16 belong >0 (Hash, version %d, big-endian)
12 lelong 0x00061561 Berkeley DB
>16 lelong >0 (Hash, version %d, little-endian)

12 long 0x00053162 Berkeley DB
>16 long >0 (Btree, version %d, native byte-order)
12 belong 0x00053162 Berkeley DB
>16 belong >0 (Btree, version %d, big-endian)
12 lelong 0x00053162 Berkeley DB
>16 lelong >0 (Btree, version %d, little-endian)

12 long 0x00042253 Berkeley DB
>16 long >0 (Queue, version %d, native byte-order)
12 belong 0x00042253 Berkeley DB
>16 belong >0 (Queue, version %d, big-endian)
12 lelong 0x00042253 Berkeley DB
>16 lelong >0 (Queue, version %d, little-endian)

12 long 0x00040988 Berkeley DB
>16 long >0 (Log, version %d, native byte-order)
12 belong 0x00040988 Berkeley DB
>16 belong >0 (Log, version %d, big-endian)
12 lelong 0x00040988 Berkeley DB
>16 lelong >0 (Log, version %d, little-endian)

Big-endian magic information
Berkeley DB
#
System V /etc/magic files: big-endian version.
#
Hash 1.85/1.86 databases store metadata in network byte order.
Btree 1.85/1.86 databases store the metadata in host byte order.
Hash and Btree 2.X and later databases store the metadata in
host byte order.

0 long 0x00053162 Berkeley DB 1.85/1.86 (Btree,
>4 long 0x00000002 version 2,
>4 long 0x00000003 version 3,

System Installation Notes

11/8/2010 DB Installation Guide Page 4

>0 long 0x00053162 native byte-order)

0 long 0x62310500 Berkeley DB 1.85/1.86 (Btree,
>4 long 0x02000000 version 2,
>4 long 0x03000000 version 3,
>0 long 0x62310500 little-endian)

12 long 0x00053162 Berkeley DB (Btree,
>16 long 0x00000004 version 4,
>16 long 0x00000005 version 5,
>16 long 0x00000006 version 6,
>16 long 0x00000007 version 7,
>16 long 0x00000008 version 8,
>16 long 0x00000009 version 9,
>12 long 0x00053162 native byte-order)

12 long 0x62310500 Berkeley DB (Btree,
>16 long 0x04000000 version 4,
>16 long 0x05000000 version 5,
>16 long 0x06000000 version 6,
>16 long 0x07000000 version 7,
>16 long 0x08000000 version 8,
>16 long 0x09000000 version 9,
>12 long 0x62310500 little-endian)

0 long 0x00061561 Berkeley DB
>4 long >2 1.86
>4 long <3 1.85
>0 long 0x00061561 (Hash,
>4 long 2 version 2,
>4 long 3 version 3,
>8 long 0x000004D2 little-endian)
>8 long 0x000010E1 native byte-order)

12 long 0x00061561 Berkeley DB (Hash,
>16 long 0x00000004 version 4,
>16 long 0x00000005 version 5,
>16 long 0x00000006 version 6,
>16 long 0x00000007 version 7,
>16 long 0x00000008 version 8,
>16 long 0x00000009 version 9,
>12 long 0x00061561 native byte-order)

12 long 0x61150600 Berkeley DB (Hash,
>16 long 0x04000000 version 4,
>16 long 0x05000000 version 5,
>16 long 0x06000000 version 6,
>16 long 0x07000000 version 7,
>16 long 0x08000000 version 8,

System Installation Notes

11/8/2010 DB Installation Guide Page 5

>16 long 0x09000000 version 9,
>12 long 0x61150600 little-endian)

12 long 0x00042253 Berkeley DB (Queue,
>16 long 0x00000001 version 1,
>16 long 0x00000002 version 2,
>16 long 0x00000003 version 3,
>16 long 0x00000004 version 4,
>16 long 0x00000005 version 5,
>16 long 0x00000006 version 6,
>16 long 0x00000007 version 7,
>16 long 0x00000008 version 8,
>16 long 0x00000009 version 9,
>12 long 0x00042253 native byte-order)

12 long 0x53220400 Berkeley DB (Queue,
>16 long 0x01000000 version 1,
>16 long 0x02000000 version 2,
>16 long 0x03000000 version 3,
>16 long 0x04000000 version 4,
>16 long 0x05000000 version 5,
>16 long 0x06000000 version 6,
>16 long 0x07000000 version 7,
>16 long 0x08000000 version 8,
>16 long 0x09000000 version 9,
>12 long 0x53220400 little-endian)

12 long 0x00040988 Berkeley DB (Log,
>16 long 0x00000001 version 1,
>16 long 0x00000002 version 2,
>16 long 0x00000003 version 3,
>16 long 0x00000004 version 4,
>16 long 0x00000005 version 5,
>16 long 0x00000006 version 6,
>16 long 0x00000007 version 7,
>16 long 0x00000008 version 8,
>16 long 0x00000009 version 9,
>16 long 0x0000000a version 10,
>16 long 0x0000000b version 11,
>16 long 0x0000000c version 12,
>16 long 0x0000000d version 13,
>16 long 0x0000000e version 14,
>16 long 0x0000000f version 15,
>12 long 0x00040988 native byte-order)

12 long 0x88090400 Berkeley DB (Log,
>16 long 0x01000000 version 1,
>16 long 0x02000000 version 2,
>16 long 0x03000000 version 3,

System Installation Notes

11/8/2010 DB Installation Guide Page 6

>16 long 0x04000000 version 4,
>16 long 0x05000000 version 5,
>16 long 0x06000000 version 6,
>16 long 0x07000000 version 7,
>16 long 0x08000000 version 8,
>16 long 0x09000000 version 9,
>16 long 0x0a000000 version 10,
>16 long 0x0b000000 version 11,
>16 long 0x0c000000 version 12,
>16 long 0x0d000000 version 13,
>16 long 0x0e000000 version 14,
>16 long 0x0f000000 version 15,
>12 long 0x88090400 little-endian)

Little-endian magic information
Berkeley DB
#
System V /etc/magic files: little-endian version.
#
Hash 1.85/1.86 databases store metadata in network byte order.
Btree 1.85/1.86 databases store the metadata in host byte order.
Hash and Btree 2.X and later databases store the metadata in
host byte order.

0 long 0x00053162 Berkeley DB 1.85/1.86 (Btree,
>4 long 0x00000002 version 2,
>4 long 0x00000003 version 3,
>0 long 0x00053162 native byte-order)

0 long 0x62310500 Berkeley DB 1.85/1.86 (Btree,
>4 long 0x02000000 version 2,
>4 long 0x03000000 version 3,
>0 long 0x62310500 big-endian)

12 long 0x00053162 Berkeley DB (Btree,
>16 long 0x00000004 version 4,
>16 long 0x00000005 version 5,
>16 long 0x00000006 version 6,
>16 long 0x00000007 version 7,
>16 long 0x00000008 version 8,
>16 long 0x00000009 version 9,
>12 long 0x00053162 native byte-order)

12 long 0x62310500 Berkeley DB (Btree,
>16 long 0x04000000 version 4,
>16 long 0x05000000 version 5,
>16 long 0x06000000 version 6,
>16 long 0x07000000 version 7,
>16 long 0x08000000 version 8,

System Installation Notes

11/8/2010 DB Installation Guide Page 7

>16 long 0x09000000 version 9,
>12 long 0x62310500 big-endian)

0 long 0x61150600 Berkeley DB
>4 long >0x02000000 1.86
>4 long <0x03000000 1.85
>0 long 0x00061561 (Hash,
>4 long 0x02000000 version 2,
>4 long 0x03000000 version 3,
>8 long 0xD2040000 native byte-order)
>8 long 0xE1100000 big-endian)

12 long 0x00061561 Berkeley DB (Hash,
>16 long 0x00000004 version 4,
>16 long 0x00000005 version 5,
>16 long 0x00000006 version 6,
>16 long 0x00000007 version 7,
>16 long 0x00000008 version 8,
>16 long 0x00000009 version 9,
>12 long 0x00061561 native byte-order)

12 long 0x61150600 Berkeley DB (Hash,
>16 long 0x04000000 version 4,
>16 long 0x05000000 version 5,
>16 long 0x06000000 version 6,
>16 long 0x07000000 version 7,
>16 long 0x08000000 version 8,
>16 long 0x09000000 version 9,
>12 long 0x61150600 big-endian)

12 long 0x00042253 Berkeley DB (Queue,
>16 long 0x00000001 version 1,
>16 long 0x00000002 version 2,
>16 long 0x00000003 version 3,
>16 long 0x00000004 version 4,
>16 long 0x00000005 version 5,
>16 long 0x00000006 version 6,
>16 long 0x00000007 version 7,
>16 long 0x00000008 version 8,
>16 long 0x00000009 version 9,
>12 long 0x00042253 native byte-order)

12 long 0x53220400 Berkeley DB (Queue,
>16 long 0x01000000 version 1,
>16 long 0x02000000 version 2,
>16 long 0x03000000 version 3,
>16 long 0x04000000 version 4,
>16 long 0x05000000 version 5,
>16 long 0x06000000 version 6,

System Installation Notes

11/8/2010 DB Installation Guide Page 8

>16 long 0x07000000 version 7,
>16 long 0x08000000 version 8,
>16 long 0x09000000 version 9,
>12 long 0x53220400 big-endian)

12 long 0x00040988 Berkeley DB (Log,
>16 long 0x00000001 version 1,
>16 long 0x00000002 version 2,
>16 long 0x00000003 version 3,
>16 long 0x00000004 version 4,
>16 long 0x00000005 version 5,
>16 long 0x00000006 version 6,
>16 long 0x00000007 version 7,
>16 long 0x00000008 version 8,
>16 long 0x00000009 version 9,
>16 long 0x0000000a version 10,
>16 long 0x0000000b version 11,
>16 long 0x0000000c version 12,
>16 long 0x0000000d version 13,
>16 long 0x0000000e version 14,
>16 long 0x0000000f version 15,
>12 long 0x00040988 native byte-order)

12 long 0x88090400 Berkeley DB (Log,
>16 long 0x01000000 version 1,
>16 long 0x02000000 version 2,
>16 long 0x03000000 version 3,
>16 long 0x04000000 version 4,
>16 long 0x05000000 version 5,
>16 long 0x06000000 version 6,
>16 long 0x07000000 version 7,
>16 long 0x08000000 version 8,
>16 long 0x09000000 version 9,
>16 long 0x0a000000 version 10,
>16 long 0x0b000000 version 11,
>16 long 0x0c000000 version 12,
>16 long 0x0d000000 version 13,
>16 long 0x0e000000 version 14,
>16 long 0x0f000000 version 15,
>12 long 0x88090400 big-endian)

Building with multiple versions of Berkeley DB

In some cases it may be necessary to build applications which include multiple versions of
Berkeley DB. Examples include applications which include software from other vendors, or
applications running on a system where the system C library itself uses Berkeley DB. In such
cases, the two versions of Berkeley DB may be incompatible, that is, they may have different
external and internal interfaces, and may even have different underlying database formats.

System Installation Notes

11/8/2010 DB Installation Guide Page 9

To create a Berkeley DB library whose symbols won't collide with other Berkeley DB libraries
(or other application or library modules, for that matter), configure Berkeley DB using the
--with-uniquename=NAME configuration option, and then build Berkeley DB as usual. (Note
that --with-uniquename=NAME only affects the Berkeley DB C language library build; loading
multiple versions of the C++ or Java APIs will require additional work.) The modified symbol
names are hidden from the application in the Berkeley DB header files, that is, there is
no need for the application to be aware that it is using a special library build as long as it
includes the appropriate Berkeley DB header file.

If "NAME" is not specified when configuring with --with-uniquename=NAME, a default value
built from the major and minor numbers of the Berkeley DB release will be used. It is rarely
necessary to specify NAME; using the major and minor release numbers will ensure that only
one copy of the library will be loaded into the application unless two distinct versions really
are necessary.

When distributing any library software that uses Berkeley DB, or any software which will
be recompiled by users for their systems, we recommend two things: First, include the
Berkeley DB release as part of your release. This will insulate your software from potential
Berkeley DB API changes as well as simplifying your coding because you will only have to code
to a single version of the Berkeley DB API instead of adapting at compile time to whatever
version of Berkeley DB happens to be installed on the target system. Second, use --with-
uniquename=NAME when configuring Berkeley DB, because that will insure that you do not
unexpectedly collide with other application code or a library already installed on the target
system.

11/8/2010 DB Installation Guide Page 10

Chapter 3. Debugging Applications
Introduction to debugging

Because Berkeley DB is an embedded library, debugging applications that use Berkeley DB is
both harder and easier than debugging a separate server. Debugging can be harder because
when a problem arises, it is not always readily apparent whether the problem is in the
application, is in the database library, or is a result of an unexpected interaction between
the two. Debugging can be easier because it is easier to track down a problem when you can
review a stack trace rather than deciphering interprocess communication messages. This
chapter is intended to assist you with debugging applications and reporting bugs to us so that
we can provide you with the correct answer or fix as quickly as possible.

When you encounter a problem, there are a few general actions you can take:
Review the Berkeley DB error output:

If an error output mechanism has been configured in the Berkeley DB environment,
additional run-time error messages are made available to the applications. If
you are not using an environment, it is well worth modifying your application to
create one so that you can get more detailed error messages. See Run-time error
information (page 11) for more information on configuring Berkeley DB to output
these error messages.

Review the options available for the DB_ENV->set_verbose() method:
Look to see if it offers any additional informational and/or debugging messages that
might help you understand the problem.

Add run-time diagnostics:
You can configure and build Berkeley DB to perform run-time diagnostics. (By default,
these checks are not done because they can seriously impact performance.) See
Compile-time configuration (page 10) for more information.

Apply all available patches:
Before reporting a problem in Berkeley DB, please upgrade to the latest Berkeley DB
release, if possible, or at least make sure you have applied any updates available for
your release from the Berkeley DB web site .

Run the test suite:
If you see repeated failures or failures of simple test cases, run the Berkeley DB test
suite to determine whether the distribution of Berkeley DB you are using was built and
configured correctly.

Compile-time configuration

There are three compile-time configuration options that assist in debugging Berkeley DB and
Berkeley DB applications:
--enable-debug

If you want to build Berkeley DB with -g as the C and C++ compiler flag, enter
--enable-debug as an argument to configure. This will create Berkeley DB with
debugging symbols, as well as load various Berkeley DB routines that can be called
directly from a debugger to display database page content, cursor queues, and so
forth. (Note that the -O optimization flag will still be specified. To compile with only
the -g, explicitly set the CFLAGS environment variable before configuring.)

../api_reference/C/envset_verbose.html
http://www.oracle.com/technology/software/products/berkeley-db/db/index.html

Debugging Applications

11/8/2010 DB Installation Guide Page 11

--enable-diagnostic
If you want to build Berkeley DB with debugging run-time sanity checks and with
DIAGNOSTIC #defined during compilation, enter --enable-diagnostic as an argument to
configure. This will cause a number of special checks to be performed when Berkeley
DB is running. This flag should not be defined when configuring to build production
binaries because it degrades performance.

--enable-umrw
When compiling Berkeley DB for use in run-time memory consistency checkers (in
particular, programs that look for reads and writes of uninitialized memory), use --
enable-umrw as an argument to configure. This guarantees, among other things, that
Berkeley DB will completely initialize allocated pages rather than initializing only the
minimum necessary amount.

Run-time error information

Normally, when an error occurs in the Berkeley DB library, an integer value (either a Berkeley
DB specific value or a system errno value) is returned by Berkeley DB. In some cases,
however, this value may be insufficient to completely describe the cause of the error,
especially during initial application debugging.

Most Berkeley DB errors will result in additional information being written to a standard file
descriptor or output stream. Additionally, Berkeley DB can be configured to pass these verbose
error messages to an application function. There are four methods intended to provide
applications with additional error information: DB_ENV->set_errcall(), DB_ENV->set_errfile(),
DB_ENV->set_errpfx() and DB_ENV->set_verbose().

The Berkeley DB error-reporting facilities do not slow performance or significantly increase
application size, and may be run during normal operation as well as during debugging. Where
possible, we recommend these options always be configured and the output saved in the
filesystem. We have found that this often saves time when debugging installation or other
system-integration problems.

In addition, there are three methods to assist applications in displaying their own error
messages: db_strerror(), DB_ENV->err(), and DB_ENV->errx(). The first is a superset of
the ANSI C strerror function, and returns a descriptive string for any error return from the
Berkeley DB library. The DB_ENV->err() and DB_ENV->errx() methods use the error message
configuration options described previously to format and display error messages to appropriate
output devices.

Reviewing Berkeley DB log files

If you are running with transactions and logging, the db_printlog utility can be a useful
debugging aid. The db_printlog utility will display the contents of your log files in a human
readable (and machine-readable) format.

The db_printlog utility will attempt to display any and all log files present in a designated
db_home directory. For each log record, the db_printlog utility will display a line of the form:

[22][28]db_big: rec: 43 txnid 80000963 prevlsn [21][10483281]

../api_reference/C/envset_errcall.html
../api_reference/C/envset_errfile.html
../api_reference/C/envset_errpfx.html
../api_reference/C/envset_verbose.html
../api_reference/C/envstrerror.html
../api_reference/C/enverr.html
../api_reference/C/enverr.html
../api_reference/C/db_printlog.html
../api_reference/C/db_printlog.html
../api_reference/C/db_printlog.html
../api_reference/C/db_printlog.html

Debugging Applications

11/8/2010 DB Installation Guide Page 12

The opening numbers in square brackets are the log sequence number (LSN) of the log record
being displayed. The first number indicates the log file in which the record appears, and the
second number indicates the offset in that file of the record.

The first character string identifies the particular log operation being reported. The log
records corresponding to particular operations are described following. The rest of the line
consists of name/value pairs.

The rec field indicates the record type (this is used to dispatch records in the log to
appropriate recovery functions).

The txnid field identifies the transaction for which this record was written. A txnid of 0 means
that the record was written outside the context of any transaction. You will see these most
frequently for checkpoints.

Finally, the prevlsn contains the LSN of the last record for this transaction. By following
prevlsn fields, you can accumulate all the updates for a particular transaction. During
normal abort processing, this field is used to quickly access all the records for a particular
transaction.

After the initial line identifying the record type, each field of the log record is displayed, one
item per line. There are several fields that appear in many different records and a few fields
that appear only in some records.

The following table presents each currently written log record type with a brief description of
the operation it describes. Any of these record types may have the string "_debug" appended
if they were written because DB_TXN_NOT_DURABLE was specified and the system was
configured with --enable-diagnostic.

Log Record Type Description

bam_adj Used when we insert/remove an index into/
from the page header of a Btree page.

bam_cadjust Keeps track of record counts in a Btree or
Recno database.

bam_cdel Used to mark a record on a page as deleted.

bam_curadj Used to adjust a cursor location when a
nearby record changes in a Btree database.

bam_merge Used to merge two Btree database pages
during compaction.

bam_pgno Used to replace a page number in a Btree
record.

bam_rcuradj Used to adjust a cursor location when a
nearby record changes in a Recno database.

bam_relink Fix leaf page prev/next chain when a page is
removed.

bam_repl Describes a replace operation on a record.

bam_root Describes an assignment of a root page.

../api_reference/C/dbset_flags.html#dbset_flags_DB_TXN_NOT_DURABLE

Debugging Applications

11/8/2010 DB Installation Guide Page 13

Log Record Type Description

bam_rsplit Describes a reverse page split.

bam_split Describes a page split.

crdel_inmem_create Record the creation of an in-memory named
database.

crdel_inmem_remove Record the removal of an in-memory named
database.

crdel_inmem_rename Record the rename of an in-memory named
database.

crdel_metasub Describes the creation of a metadata page for
a subdatabase.

db_addrem Add or remove an item from a page of
duplicates.

db_big Add an item to an overflow page (overflow
pages contain items too large to place on the
main page)

db_cksum Unable to checksum a page.

db_debug Log debugging message.

db_noop This marks an operation that did nothing but
update the LSN on a page.

db_ovref Increment or decrement the reference count
for a big item.

db_pg_alloc Indicates we allocated a page to a database.

db_pg_free Indicates we freed a page (freed pages are
added to a freelist and reused).

db_pg_freedata Indicates we freed a page that still contained
data entries (freed pages are added to a
freelist and reused.)

db_pg_init Indicates we reinitialized a page during a
truncate.

db_pg_sort Sort the free page list and free pages at the
end of the file.

dbreg_register Records an open of a file (mapping the
filename to a log-id that is used in subsequent
log operations).

fop_create Create a file in the file system.

fop_file_remove Remove a name in the file system.

fop_remove Remove a file in the file system.

fop_rename Rename a file in the file system.

fop_write Write bytes to an object in the file system.

Debugging Applications

11/8/2010 DB Installation Guide Page 14

Log Record Type Description

ham_chgpg Used to adjust a cursor location when a Hash
page is removed, and its elements are moved
to a different Hash page.

ham_copypage Used when we empty a bucket page, but
there are overflow pages for the bucket;
one needs to be copied back into the actual
bucket.

ham_curadj Used to adjust a cursor location when a
nearby record changes in a Hash database.

ham_groupalloc Allocate some number of contiguous pages to
the Hash database.

ham_insdel Insert/delete an item on a Hash page.

ham_metagroup Update the metadata page to reflect the
allocation of a sequence of contiguous pages.

ham_newpage Adds or removes overflow pages from a Hash
bucket.

ham_replace Handle updates to records that are on the
main page.

ham_splitdata Record the page data for a split.

qam_add Describes the actual addition of a new record
to a Queue.

qam_del Delete a record in a Queue.

qam_delext Delete a record in a Queue with extents.

qam_incfirst Increments the record number that refers to
the first record in the database.

qam_mvptr Indicates we changed the reference to either
or both of the first and current records in the
file.

txn_child Commit a child transaction.

txn_ckp Transaction checkpoint.

txn_recycle Transaction IDs wrapped.

txn_regop Logs a regular (non-child) transaction commit.

txn_xa_regop Logs a prepare message.

Augmenting the Log for Debugging

When debugging applications, it is sometimes useful to log not only the actual operations
that modify pages, but also the underlying Berkeley DB functions being executed. This form
of logging can add significant bulk to your log, but can permit debugging application errors
that are almost impossible to find any other way. To turn on these log messages, specify the --

Debugging Applications

11/8/2010 DB Installation Guide Page 15

enable-debug_rop and --enable-debug_wop configuration options when configuring Berkeley
DB. See Configuring Berkeley DB (page 33) for more information.

Extracting Committed Transactions and Transaction Status

Sometimes, it is helpful to use the human-readable log output to determine which
transactions committed and aborted. The awk script, commit.awk, (found in the db_printlog
directory of the Berkeley DB distribution) allows you to do just that. The following command,
where log_output is the output of db_printlog, will display a list of the transaction IDs of all
committed transactions found in the log:

awk -f commit.awk log_output

If you need a complete list of both committed and aborted transactions, then the script
status.awk will produce it. The syntax is as follows:

awk -f status.awk log_output

Extracting Transaction Histories

Another useful debugging aid is to print out the complete history of a transaction. The awk
script txn.awk allows you to do that. The following command line, where log_output is the
output of the db_printlog utility and txnlist is a comma-separated list of transaction IDs, will
display all log records associated with the designated transaction ids:

awk -f txn.awk TXN=txnlist log_output

Extracting File Histories

The awk script fileid.awk allows you to extract all log records that refer to a designated
file. The syntax for the fileid.awk script is the following, where log_output is the output of
db_printlog and fids is a comma-separated list of fileids:

awk -f fileid.awk PGNO=fids log_output

Extracting Page Histories

The awk script pgno.awk allows you to extract all log records that refer to designated page
numbers. However, because this script will extract records with the designated page numbers
for all files, it is most useful in conjunction with the fileid script. The syntax for the pgno.awk
script is the following, where log_output is the output of db_printlog and pgnolist is a comma-
separated list of page numbers:

awk -f pgno.awk PGNO=pgnolist log_output

Other log processing tools

The awk script count.awk prints out the number of log records encountered that belonged to
some transaction (that is, the number of log records excluding those for checkpoints and non-
transaction-protected operations).

The script range.awk will extract a subset of a log. This is useful when the output of
db_printlog utility is too large to be reasonably manipulated with an editor or other tool. The

../api_reference/C/db_printlog.html
../api_reference/C/db_printlog.html

Debugging Applications

11/8/2010 DB Installation Guide Page 16

syntax for range.awk is the following, where sf and so represent the LSN of the beginning of
the sublog you want to extract, and ef and eo represent the LSN of the end of the sublog you
want to extract:

 awk -f range.awk START_FILE=sf START_OFFSET=so END_FILE=ef \
 END_OFFSET=eo log_output

11/8/2010 DB Installation Guide Page 17

Chapter 4. Building Berkeley DB for Windows
This chapter contains general instructions on building Berkeley DB for specific windows
platforms using specific compilers. The Windows FAQ (page 26) also contains helpful
information.

The build_windows directory in the Berkeley DB distribution contains project files for
Microsoft Visual Studio:

Project File Description

Berkeley_DB.sln Visual Studio 2005 (8.0) workspace

*.vcproj Visual Studio 2005 (8.0) projects

These project files can be used to build Berkeley DB for the following platforms: Windows
NT/2K/XP/2003/Vista, and 64-bit Windows XP/2003/Vista.

Building Berkeley DB for 32 bit Windows

Visual C++ .NET 2008

1. Choose File -> Open -> Project/Solution.... In the build_windows directory, select
Berkeley_DB.sln and click Open.

2. The Visual Studio Conversion Wizard will open automatically. Click the Finish button.

3. On the next screen click the Close button.

4. Choose the desired project configuration from the drop-down menu on the tool bar
(either Debug or Release).

5. Choose the desired platform configuration from the drop-down menu on the tool bar
(usually Win32 or x64).

6. To build, right-click on the Berkeley_DB solution and select Build Solution.

Visual C++ .NET 2005

1. Choose File -> Open -> Project/Solution.... In the build_windows directory, select
Berkeley_DB.sln and click Open

2. Choose the desired project configuration from the drop-down menu on the tool bar
(either Debug or Release).

3. Choose the desired platform configuration from the drop-down menu on the tool bar
(usually Win32 or x64).

4. To build, right-click on the Berkeley_DB solution and select Build Solution.

Building Berkeley DB for Windows

11/8/2010 DB Installation Guide Page 18

Build results

The results of your build will be placed in one of the following Berkeley DB subdirectories,
depending on the configuration that you chose:

build_windows\Win32\Debug
build_windows\Win32\Release
build_windows\Win32\Debug_static
build_windows\Win32\Release_static

When building your application during development, you should normally use compile options
"Debug Multithreaded DLL" and link against build_windows\Debug\libdb50d.lib. You can
also build using a release version of the Berkeley DB libraries and tools, which will be placed
in build_windows\Win32\Release\libdb50.lib. When linking against the release build,
you should compile your code with the "Release Multithreaded DLL" compile option. You
will also need to add the build_windows directory to the list of include directories of your
application's project, or copy the Berkeley DB include files to another location.

Building Berkeley DB for 64-bit Windows

The following procedure can be used to build natively on a 64-bit system or to cross-compile
from a 32-bit system.

When building 64-bit binaries, the output directory will be one of the following Berkeley DB
subdirectories, depending upon the configuration that you chose:

build_windows\x64\Debug
build_windows\x64\Release
build_windows\x64\Debug_static
build_windows\x64\Release_static

x64 build with Visual Studio 2005 or newer

1. Follow the build instructions for your version of Visual Studio, as described in Building
Berkeley DB for 32 bit Windows (page 17).

2. Select x64 from the Platform Configuration dropdown.

3. Right click on Solution 'Berkeley_DB' in the solution explorer, and select Build Solution

Building Berkeley DB with Cygwin

To build Berkeley DB with Cygwin, follow the instructions in Building for UNIX/POSIX (page
32).

Building the C++ API

C++ support is built automatically on Windows.

Building Berkeley DB for Windows

11/8/2010 DB Installation Guide Page 19

Building the C++ STL API

In the project list of the Berkeley_DB.sln solution, build the "db_stl" project and
"db_stl_static" project to build STL API as a dynamic or static library respectively. And in
your application, you should link this library file as well as the Berkeley DB library file to
your application. The STL API library file is by default always put at the same location as the
Berkeley DB library file.

And you need to include the STL API header files in your application code. If you are using the
Berkeley DB source tree, the header files are in <Berkeley DB Source Root >/stl directory; If
you are using the pre-built installed version, these header files are in < Berkeley DB Installed
Directory>/include, as well as the db.h and db_cxx.h header files.

Building the Java API

Java support is not built automatically. The following instructions assume that you have
installed the Sun Java Development Kit in d:\java. Of course, if you installed elsewhere or
have different Java software, you will need to adjust the pathnames accordingly.

1. Set your include directories. Choose Tools -> Options -> Projects -> VC++ Directories.
Under the "Show directories for" pull-down, select "Include files". Add the full pathnames
for the d:\java\include and d:\java\include\win32 directories. Then click OK. These
are the directories needed when including jni.h.

2. Set the executable files directories. Choose Tools -> Options -> Projects -> VC++
Directories. Under the "Show directories for" pull-down, select "Executable files". Add the
full pathname for the d:\java\bin directory, then click OK. This is the directory needed
to find javac.

3. Set the build type to Release or Debug in the drop-down on the tool bar.

4. To build, right-click on db_java and select Build. This builds the Java support library
for Berkeley DB and compiles all the java files, placing the resulting db.jar and
dbexamples.jar files in one of the following Berkeley DB subdirectories, depending on
the configuration that you chose:

build_windows\Win32\Debug
build_windows\Win32\Release

Building the C# API

The C# support is built by a separate Visual Studio solution, build_windows
\BDB_dotnet.sln, and requires version 2.0 (or higher) of the .NET platform.

By default, the solution will build the native libraries, the managed assembly and all example
programs. The NUnit tests need to be built explicitly because of their dependence upon the
NUnit assembly. The native libraries will be placed in one of the following subdirectories,
depending upon the chosen configuration:

build_windows\Win32\Debug

Building Berkeley DB for Windows

11/8/2010 DB Installation Guide Page 20

build_windows\Win32\Release
build_windows\x64\Debug
build_windows\x64\Release

The managed assembly and all C# example programs will be placed in one of the following
subdirectories, depending upon the chosen configuration:

build_windows\AnyCPU\Debug
build_windows\AnyCPU\Release

The native libraries need to be locatable by the .NET platform, meaning they must be copied
into an application's directory, the Windows or System directory, or their location must
be added to the PATH environment variable. The example programs demonstrate how to
programmatically edit the PATH variable.

Building the SQL API

SQL support is built as part of the default build on Windows. For information on the build
instructions, see Building Berkeley DB for Windows (page 17).

The SQL library is built as libdb_sql50.dll in the Release mode or libdb_sql50d.dll in the
Debug mode. An SQL command line interpreter called db_sql_shell.exe is also built.

Binary Compatibility With SQLite

Both libdb_sql50.dll and libdb_sql50d.dll are compatible with sqlite3.dll. You can
rename libdb_sql50.dll to sqlite3.dll and db_sql_shell.exe to sqlite3.exe, and use
these applications as a replacement for the standard SQLite binaries with same names.

Enabling Extensions

The Berkeley DB SQL API provides extensions such as full text search and R-Tree index. To
enable these extensions, do the following:

1. Open the Berkeley DB solution in Visual Studio.

2. Specify SQLITE_ENABLE_FTS3 or SQLITE_ENABLE_RTREE in Preprocessor Definitions of
the db_sql project.

3. Re-build the db_sql project.

See the SQLite Documentation for more information on full text search and R-Tree.

Building the JDBC Driver

This section describes the steps to build the JDBC driver.

1. Configure your build environment. For information on how to configure to build Java
applications, see Building the Java API (page 19).

http://www.sqlite.org/fts3.html
http://www.sqlite.org/rtree.html

Building Berkeley DB for Windows

11/8/2010 DB Installation Guide Page 21

2. Build the SQL project in Debug mode.

3. Open Visual Studio.

4. Select File->Add->Existing Project.

5. Select build_windows/db_sql_jdbc.vcproj and add it to the Berkeley_DB solution. This
adds the db_sql_jdbc Visual Studio project to the Berkeley_DB solution file.

6. Build the db_sql_jdbc project in Visual Studio.

You can test the build by entering the following commands from the db\build_windows
\Win32\Debug directory:

javac -cp ".;jdbc.jar" -d . ..\..\..\sql\jdbc\test3.java
java -cp ".;jdbc.jar" test3

Building the ODBC Driver

This section describes the steps required to build the ODBC driver.

Configuring Your System

To configure your system prior to building the ODBC driver, do the following:

1. Download and install the latest SQLite ODBC driver Windows installer package for 32 bit
Windows or 64 bit Windows.

2. Download and install the latest Microsoft Data Access Components (MDAC) SDK. The MDAC
SDK is only required for testing the installation.

Building the Library

1. Build the SQL project in Release mode. See Building the SQL API (page 20).

2. Open Visual Studio.

3. Load the Berkeley_DB solution file into Visual Studio.

4. Set the build target to Release

5. Build the solution.

6. Select File->Add->Existing Project.

7. Select build_windows/db_sql_odbc.vcproj and add it to the Berkeley_DB solution. This
adds the db_sql_odbc Visual Studio project to the Berkeley_DB solution file.

8. Build the db_sql_odbc project. This can be done by right-clicking the db_sql_odbc
project in the project explorer panel, and selecting build.

The sqlite3odbc.dll, libdb_sql50.dll and libdb50.dll files are now built.

http://www.ch-werner.de/sqliteodbc/sqliteodbc.exe
http://www.ch-werner.de/sqliteodbc/sqliteodbc.exe
http://www.ch-werner.de/sqliteodbc/sqliteodbc_w64.exe
http://www.microsoft.com/downloads/details.aspx?familyid=5067faf8-0db4-429a-b502-de4329c8c850

Building Berkeley DB for Windows

11/8/2010 DB Installation Guide Page 22

Installing the Library

Copy the dll files built in the Building the Library section to the Windows system folder.

The Windows system folder is different on different systems, but is often C:\WINDOWS
\System32.

Testing the ODBC Install

The steps to verify that the installed driver works are as follows:

1. Open the Unicode ODBCTest application. On Windows XP: Windows start->Microsoft
Data Access SDK 2.8->ODBCTest (Unicode, x86).

2. Select the Conn->Full Connect... menu item.

3. Select SQLite3 Datasource and click OK.

4. Select the Stmt->SQLExecDirect... menu item.

5. Enter CREATE TABLE t1(x); in the Statement text box and click OK.

6. Verify that no error messages were output to the error window.

Building the Tcl API

Tcl support is not built automatically. See Loading Berkeley DB with Tcl for information on
sites from which you can download Tcl and which Tcl versions are compatible with Berkeley
DB. These notes assume that Tcl is installed as d:\tcl, but you can change that if you want.

The Tcl library must be built as the same build type as the Berkeley DB library (both Release
or both Debug). We found that the binary release of Tcl can be used with the Release
configuration of Berkeley DB, but you will need to build Tcl from sources for the Debug
configuration. Before building Tcl, you will need to modify its makefile to make sure that you
are building a debug version, including thread support. This is because the set of DLLs linked
into the Tcl executable must match the corresponding set of DLLs used by Berkeley DB.

1. Set the include directories. Choose Tools -> Options -> Projects -> VC++ Directories.
Under the "Show directories for" pull-down, select "Include files". Add the full pathname
for d:\tcl\include, then click OK. This is the directory that contains tcl.h.

2. Set the library files directory. Choose Tools -> Options -> Projects -> VC++ Directories.
Under the "Show directories for" pull-down, select "Library files". Add the full pathname
for the d:\tcl\lib directory, then click OK. This is the directory needed to find
tcl84g.lib (or whatever the library is named in your distribution).

3. Set the build type to Release or Debug in the drop-down on the tool bar.

4. To build, right-click on db_tcl and select Build. This builds the Tcl support library for
Berkeley DB, placing the result into one of the following Berkeley DB subdirectories,
depending upon the configuration that you chose:

../programmer_reference/tcl.html#tcl_intro

Building Berkeley DB for Windows

11/8/2010 DB Installation Guide Page 23

build_windows\Win32\Debug\libdb_tcl50d.dll
build_windows\Win32\Release\libdb_tcl50.dll

If you use a version different from Tcl 8.4.x you will need to change the name of the Tcl
library used in the build (for example, tcl84g.lib) to the appropriate name. To do this, right
click on db_tcl, go to Properties -> Linker -> Input -> Additional dependencies and change
tcl84g.lib to match the Tcl version you are using.

Distributing DLLs

When distributing applications linked against the DLL (not static) version of the library, the
DLL files you need will be found in one of the following Berkeley DB subdirectories, depending
upon the configuration that you chose:

build_windows\Win32\Debug
build_windows\Win32\Release
build_windows\Win32\Debug_static
build_windows\Win32\Release_static
build_windows\x64\Debug
build_windows\x64\Release
build_windows\x64\Debug_static
build_windows\x64\Release_static

You may also need to redistribute DLL files needed for the compiler's runtime. Generally,
these runtime DLL files can be installed in the same directory that will contain your installed
Berkeley DB DLLs. This directory may need to be added to your System PATH environment
variable. Check your compiler's license and documentation for specifics on redistributing
runtime DLLs.

Building a small memory footprint library

For applications that don't require all of the functionality of the full Berkeley DB library, an
option is provided to build a static library with certain functionality disabled. In particular,
cryptography, hash and queue access methods, replication and verification are all turned off.
This can reduce the memory footprint of Berkeley DB significantly.

In general on Windows systems, you will want to evaluate the size of the final application, not
the library build. The Microsoft LIB file format (like UNIX archives) includes copies of all of
the object files and additional information. The linker rearranges symbols and strips out the
overhead, and the resulting application is much smaller than the library. There is also a Visual
C++ optimization to "Minimize size" that will reduce the library size by a few percent.

A Visual C++ project file called db_small is provided for this small memory configuration.
During a build, static libraries are created in Release or Debug, respectively. The library
name is libdb_small48sd.lib for the debug build, or libdb_small48s.lib for the release
build.

For assistance in further reducing the size of the Berkeley DB library, or in building small
memory footprint libraries on other systems, please contact Berkeley DB support.

Building Berkeley DB for Windows

11/8/2010 DB Installation Guide Page 24

Running the test suite under Windows

To build the test suite on Windows platforms, you will need to configure Tcl support. You will
also need sufficient main memory (at least 64MB), and disk (around 250MB of disk will be
sufficient).

Building the software needed by the tests
The test suite must be run against a Debug version of Berkeley DB, so you will need a Debug
version of the Tcl libraries. This involves building Tcl from its source. See the Tcl sources for
more information. Then build the Tcl API - see Building the Tcl API (page 22) for details.

Visual Studio 2005 or newer

To build for testing, perform the following steps:

1. Open the Berkeley DB solution.

2. Ensure that the target configuration is Debug

3. Right click the db_tcl project in the Solution Explorer, and select Build.

4. Right click the db_test project in the Solution Explorer, and select Build.

Running the test suite under Windows

Before running the tests for the first time, you must edit the file include.tcl in your build
directory and change the line that reads:

set tclsh_path SET_YOUR_TCLSH_PATH

You will want to use the location of the tclsh program (be sure to include the name of the
executable). For example, if Tcl is installed in d:\tcl, this line should be the following:

set tclsh_path d:\tcl\bin\tclsh84g.exe

If your path includes spaces be sure to enclose it in quotes:

set tclsh_path "c:\Program Files\tcl\bin\tclsh84g.exe"

Make sure that the path to Berkeley DB's tcl library is in your current path. On Windows
NT/2000/XP, edit your PATH using the My Computer -> Properties -> Advanced -> Environment
Variables dialog. On earlier versions of Windows, you may find it convenient to add a line to c:
\AUTOEXEC.BAT:

SET PATH=%PATH%;c:\db\build_windows

Then, in a shell of your choice enter the following commands:

1. cd build_windows

2. run d:\tcl\bin\tclsh84g.exe, or the equivalent name of the Tcl shell for your system.

You should get a "%" prompt.

Building Berkeley DB for Windows

11/8/2010 DB Installation Guide Page 25

3. % source ../test/test.tcl
If no errors occur, you should get a "%" prompt.

You are now ready to run tests in the test suite; see Running the test suite for more
information.

Building the software needed by the SQL tests

The SQL test suite must be run against a Debug version of Berkeley DB, so you need a Debug
version of the Tcl libraries. This involves building Tcl from its source. See the Tcl sources for
more information. Then build the Tcl API - see Building the Tcl API (page 22) for details.

Before building for SQL tests, build the db_tcl and db_sql_testfixture projects. This requires
Tcl 8.4 or above. If you are using a later version of Tcl, edit the Tcl library that db_tcl and
db_sql_testfixture link to.

To do this right click the db_tcl/db_sql_testfixture project, select Properties->Configuration
Properties->Linker->Input->Additional Dependencies and edit the Tcl library, tcl84g.lib, to
match the version you are using.

Building the db_sql_testfixture project builds the testfixture.exe program in ../
build_windows/Win32/Debug. It also builds the projects db and db_sql, on which it depends.

Visual Studio 2005 or newer

To build for testing, perform the following steps:

1. Open the Berkeley DB solution.

2. Ensure that the target configuration is Debug.

3. Right click the db_tcl project in the Solution Explorer, and select Build.

4. Right click the db_sql_testfixture project in the Solution Explorer, and select Build.

To test extensions, specify the following in the Preprocessor Definitions of the
db_sql_testfixture project:

• SQLITE_ENABLE_FTS3 to enable the full text search layer

• SQLITE_ENABLE_RTREE to enable the R-Tree layer

Windows notes

If a system memory environment is closed by all processes, subsequent attempts to open
it will return an error. To successfully open a transactional environment in this state,
recovery must be run by the next process to open the environment. For non-transactional
environments, applications should remove the existing environment and then create a new
database environment.

1. Berkeley DB does not support the Windows/95, Windows/98 or Windows/ME platforms.

Building Berkeley DB for Windows

11/8/2010 DB Installation Guide Page 26

2. On Windows, system paging file memory is freed on last close. For this reason, multiple
processes sharing a database environment created using the DB_SYSTEM_MEM flag must
arrange for at least one process to always have the environment open, or alternatively
that any process joining the environment be prepared to re-create it.

3. When using the DB_SYSTEM_MEM flag, Berkeley DB shared regions are created without
ACLs, which means that the regions are only accessible to a single user. If wider sharing
is appropriate (for example, both user applications and Windows/NT service applications
need to access the Berkeley DB regions), the Berkeley DB code will need to be modified
to create the shared regions with the correct ACLs. Alternatively, by not specifying
the DB_SYSTEM_MEM flag, filesystem-backed regions will be created instead, and the
permissions on those files may be directly specified through the DB_ENV->open() method.

4. Applications that operate on wide character strings can use the Windows function
WideCharToMultiByte with the code page CP_UTF8 to convert paths to the form expected
by Berkeley DB. Internally, Berkeley DB calls MultiByteToWideChar on paths before calling
Windows functions.

5. Various Berkeley DB methods take a mode argument, which is intended to specify the
underlying file permissions for created files. Berkeley DB currently ignores this argument
on Windows systems.

It would be possible to construct a set of security attributes to pass to CreateFile that
accurately represents the mode. In the worst case, this would involve looking up user and
all group names, and creating an entry for each. Alternatively, we could call the _chmod
(partial emulation) function after file creation, although this leaves us with an obvious
race.

Practically speaking, however, these efforts would be largely meaningless on a FAT file
system, which only has a "readable" and "writable" flag, applying to all users.

Windows FAQ

1. My Win* C/C++ application crashes in the Berkeley DB library when Berkeley DB calls
fprintf (or some other standard C library function).

You should be using the "Debug Multithreaded DLL" compiler option in your application
when you link with the build_windows\Debug\libdb48d.lib library (this .lib file is actually
a stub for libdb48d.DLL). To check this setting in Visual C++, choose the Project/Settings
menu item and select Code Generation under the tab marked C/C++; and see the box
marked Use runtime library. This should be set to Debug Multithreaded DLL. If your
application is linked against the static library, build_windows\Debug\libdb48sd.lib; then,
you will want to set Use runtime library to Debug Multithreaded.

Setting this option incorrectly can cause multiple versions of the standard libraries to be
linked into your application (one on behalf of your application, and one on behalf of the
Berkeley DB library). That violates assumptions made by these libraries, and traps can
result.

2. Why are the build options for DB_DLL marked as "Use MFC in a Shared DLL"? Does
Berkeley DB use MFC?

../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html

Building Berkeley DB for Windows

11/8/2010 DB Installation Guide Page 27

Berkeley DB does not use MFC at all. It does however, call malloc and free and other
facilities provided by the Microsoft C runtime library. We found in our work that many
applications and libraries are built assuming MFC, and specifying this for Berkeley DB
solves various interoperation issues, and guarantees that the right runtime libraries are
selected. Note that because we do not use MFC facilities, the MFC library DLL is not
marked as a dependency for libdb.dll, but the appropriate Microsoft C runtime is.

3. How can I build Berkeley DB for MinGW?

Follow the instructions in Building for UNIX/POSIX (page 32), and specify the --enable-
mingw option to the configuration script. This configuration option currently only builds
static versions of the library, it does not yet build a DLL version of the library, and file
sizes are limited to 2GB (2^32 bytes.)

4. How can I build a Berkeley DB for Windows 98/ME?

Windows 98/ME is no longer supported by Berkeley DB. The following is therefore only of
interest to historical users of Berkeley DB.

By default on Windows, Berkeley DB supports internationalized filenames by treating all
directory paths and filenames passed to Berkeley DB methods as UTF-8 encoded strings.
All paths are internally converted to wide character strings and passed to the wide
character variants of Windows system calls.

This allows applications to create and open databases with names that cannot be
represented with ASCII names while maintaining compatibility with applications that work
purely with ASCII paths.

Windows 98 and ME do not support Unicode paths directly. To build for those versions of
Windows, either:

• Follow the instructions at Microsoft's web site.

• Open the workspace or solution file with Visual Studio. Then open the Project
properties/settings section for the project you need to build (at least db_dll). In the C/
C++->Preprocessor->Preprocessor Definitions section, remove _UNICODE and UNICODE
entries. Add in an entry of _MBCS. Build the project as normal.

The ASCII builds will also work on Windows NT/2K/XP and 2003, but will not translate
paths to wide character strings.

http://www.mingw.org
http://msdn.microsoft.com/goglobal/bb688166.aspx

11/8/2010 DB Installation Guide Page 28

Chapter 5. Building Berkeley DB for Windows
Mobile
Building for Windows Mobile

This page contains general instructions on building Berkeley DB for Windows Mobile platforms
using specific compilers.

The build_wince directory in the Berkeley DB distribution contains project files for Microsoft
Visual 2005 with the Mobile SDK installed:

Project File Description

Berkeley_DB.sln Visual Studio 2005 solution

*.vcproj Visual Studio 2005 project files

These project files can be used to build Berkeley DB for the Windows Mobile platform.

Building Berkeley DB for Windows Mobile

Visual Studio 2005

1. Choose File -> Open Workspace.... Navigate to the build_wince directory, select
Berkeley_DB and click Open.

2. Select the desired target platform from the platform drop-down menu.

3. Build the desired projects.

Build results

The results of your build will be placed in a subdirectory of build_windows named after the
configuration you chose (for examples, build_wince\Debug_PocketPC2003_ARMV4

When building your application during development, you should normally link against
libdb_small50sd.lib. You can also build using a release version of the Berkeley DB libraries
and tools, which will be placed in build_windows\Release\libdb_small50s.lib. You
will also need to add the build_wince directory to the list of include directories of your
application's project, or copy the Berkeley DB include files to a location in your Visual Studio
include path.

Changing Build Configuration Type

This section contains information on how to change between a dynamic library (.dll) and static
library (.lib). The library projects and their default output and configuration in the Release
build is as follows:

Project Default Output Default Configuration

db_small_static libdb_small50s.lib Static Library

db_static libdb50s.lib Static Library

Building Berkeley DB for Windows Mobile

11/8/2010 DB Installation Guide Page 29

Project Default Output Default Configuration

db_sql libdb_sql50.dll Dynamic Library

To change a project configuration type in Visual Studio 2005, select a project and do the
following:

1. Choose Project->Properties and navigate to Configuration Properties.

2. Under Project Defaults, change the Configuration Type to your desired type.

Note: After this change, the output file names change to the Visual Studio 2005 defaults based
on the project name.

Building Berkeley DB for different target platforms

There are many possible target CPU architectures for a Windows Mobile application. This
section outlines the process required to add a new target architecture to the project files
supplied with Berkeley DB.

The Visual Studio 2005 project files will by default build for Pocket PC 2003 (ARMV4) and
Smartphone 2003 (ARMV4). If you want to build for other platforms such as Windows Mobile
6.0 or Windows Mobile 6.0 Professional, you need to follow the steps provided in this section.

Different target architectures are available in different Platform SDK downloads from
Microsoft. The appropriate SDK must be installed for your mobile architecture before you can
build for that platform.

Visual Studio 2005

1. Choose File -> Open Workspace.... Navigate to the build_wince directory, select
Berkeley_DB and click Open.

2. From the Solution explorer window, right-click the Solution Berkeley_DB and select
Configuration manager...

3. In the Active solution platform: drop down box select New...

4. From the Type or select the new platform drop-down box, select a configuration
from the ones available and click OK.

5. Click Close from the Configuration Manager dialog box.

6. The target platform drop-down now contains the platform just added.

7. Build as per the instructions given at the beginning of this chapter.

Windows Mobile notes
1. The C++ API is not supported on Windows Mobile. The file stream and exception handling

functionality provided by the Berkeley DB C++ API are not supported by Windows Mobile.
It is possible to build a C++ application against the Berkeley DB C API.

2. The Java API is not currently supported on Windows Mobile.

Building Berkeley DB for Windows Mobile

11/8/2010 DB Installation Guide Page 30

3. Tcl support is not currently supported on Windows Mobile.

4. Berkeley DB is shipped with support for the Pocket PC 2003 and Smartphone 2003 target
platforms. It is possible to build Berkeley DB for different target platforms using Visual
Studio's Configuration Manager.
This can be done using the following steps:

a. Open Visual Studio, and load the build_wince/Berkeley_DB.sln solution file.

b. Select the Build->Configuration Manager... menu item.

c. In the Active Solution Platform... dropdown, select New...

d. Select the desired target platform (you must have the desired Microsoft Platform SDK
installed for it to appear in the list). Choose to copy settings from either the Pocket
PC 2003 or Smartphone 2003 platforms.

Before building the wce_tpcb sample application for the new platform, you will need to
complete the following steps:

a. Open the project properties page for wce_tpcb. Do this by: Right click wce_tpcb in
the Solution Explorer then select Properties

b. Select Configuration Properties->Linker->Input

c. Remove secchk.lib and crtti.lib from the Additional Dependencies field.

NOTE: These steps are based on Visual Studio 2005, and might vary slightly depending on
which version of Visual Studio being used.

Windows Mobile FAQ

1. What if my Windows Mobile device does not support SetFilePointer and/or
SetEndOfFile?

You can manually disable the truncate functionality from the build.

Do that by opening the db-X.X.X/build_wince/db_config.h file, and change the line
that reads

#define HAVE_FTRUCATE 1

to read

#undef HAVE_FTRUNCATE

Making this change disables DB->compact() for btree databases.

2. Why doesn't automatic log archiving work?

The Windows Mobile platform does not have a concept of a working directory. This means
that the DB_ARCH_REMOVE and DB_ARCH_ABS flags do not work properly within Windows
Mobile, because they rely on having a working directory.

../api_reference/C/dbcompact.html
../api_reference/C/logarchive.html#archive_DB_ARCH_REMOVE
../api_reference/C/logarchive.html#archive_DB_ARCH_ABS

Building Berkeley DB for Windows Mobile

11/8/2010 DB Installation Guide Page 31

To work around this issue, you can call log_archive with the DB_ARCH_LOG flag, the list of
returned file handles will not contain absolute paths. Your application can take this list of
files, construct absolute paths, and delete the files.

3. Does Berkeley DB support Windows Mobile?

Yes.

Berkeley DB relies on a subset of the Windows API, and some standard C library APIs.
These are provided by Windows CE. Windows Mobile is built "on top" of Windows CE.

4. Does Berkeley DB support Windows CE?

Yes.

Berkeley DB relies on a subset of the Windows API, and some standard C library APIs.
These are provided by Windows CE.

5. What platforms are the supplied sample applications designed for?

The supplied sample applications were developed for the Pocket PC 2003 emulator. They
are known to work on real pocket PC devices and later versions of the emulator as well.

The supplied applications are not designed to work with Smartphone devices. The screen
size and input mechanisms are not compatible.

6. I see a file mapping error when opening a Berkeley DB environment or database. What
is wrong?

The default behavior of Berkeley DB is to use memory mapped files in the environment.
Windows Mobile does not allow memory mapped files to be created on flash storage.

There are two workarounds:

a. Configure the Berkeley DB environment not to use memory mapped files. The options
are discussed in detail in Shared memory region.

b. Create the Berkeley DB environment on non-flash storage. It is possible to store
database and log files in a different location to using the DB_ENV->set_data_dir() and
DB_ENV->set_lg_dir() APIs.

../api_reference/C/logarchive.html#archive_DB_ARCH_LOG
../programmer_reference/env_region.html
../api_reference/C/envset_data_dir.html
../api_reference/C/envset_lg_dir.html

11/8/2010 DB Installation Guide Page 32

Chapter 6. Building Berkeley DB for UNIX/POSIX

Building for UNIX/POSIX

The Berkeley DB distribution builds up to four separate libraries: the base C API Berkeley DB
library and the optional C++, Java, and Tcl API libraries. For portability reasons, each library is
standalone and contains the full Berkeley DB support necessary to build applications; that is,
the C++ API Berkeley DB library does not require any other Berkeley DB libraries to build and
run C++ applications.

Building for Linux, Mac OS X and the QNX Neutrino release is the same as building for a
conventional UNIX platform.

The Berkeley DB distribution uses the Free Software Foundation's autoconf and libtool tools
to build on UNIX platforms. In general, the standard configuration and installation options for
these tools apply to the Berkeley DB distribution.

To perform a standard UNIX build of Berkeley DB, change to the build_unix directory and then
enter the following two commands:

../dist/configure
make

This will build the Berkeley DB library.

To install the Berkeley DB library, enter the following command:

make install

To rebuild Berkeley DB, enter:

make clean
make

If you change your mind about how Berkeley DB is to be configured, you must start from
scratch by entering the following command:

make realclean
../dist/configure
make

To uninstall Berkeley DB, enter:

make uninstall

To build multiple UNIX versions of Berkeley DB in the same source tree, create a new directory
at the same level as the build_unix directory, and then configure and build in that directory as
described previously.

Building the Berkeley DB SQL Interface

To perform a standard UNIX build of the Berkeley DB SQL interface, go to the build_unix
directory and then enter the following two commands:

http://www.gnu.org/software/autoconf/autoconf.html
http://www.gnu.org/software/libtool/libtool.html

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 33

../dist/configure --enable-sql
make

This creates a library, libdb_sql, and a command line tool, dbsql. You can create and
manipulate SQL databases using the dbsql shell.

You can optionally provide the --enable-sql_compat argument to the configure script.
In addition to creating libdb_sql and dbsql this causes a thin wrapper library called
libsqlite3 and a command line tool called sqlite3 to be built. This library can be used as
a drop-in replacement for SQLite. The sqlite3 command line tool is identical to the dbsql
executable but is named so that existing scripts for SQLite can easily work with Berkeley DB.

../dist/configure --enable-sql_compat
make

There are several arguments you can specify when configuring the Berkeley DB SQL Interface.
See Configuring the SQL Interface (page 38) for more information.

Configuring Berkeley DB

There are several arguments you can specify when configuring Berkeley DB. Although only the
Berkeley DB-specific ones are described here, most of the standard GNU autoconf arguments
are available and supported. To see a complete list of possible arguments, specify the --help
flag to the configure program.

The Berkeley DB specific arguments are as follows:

• --disable-largefile

Some systems, notably versions of HP/UX and Solaris, require special compile-time options
in order to create files larger than 2^32 bytes. These options are automatically enabled
when Berkeley DB is compiled. For this reason, binaries built on current versions of these
systems may not run on earlier versions of the system because the library and system calls
necessary for large files are not available. To disable building with these compile-time
options, enter --disable-largefile as an argument to configure.

• --disable-shared, --disable-static

On systems supporting shared libraries, Berkeley DB builds both static and shared libraries
by default. (Shared libraries are built using the GNU Project's Libtool distribution, which
supports shared library builds on many (although not all) systems.) To not build shared
libraries, configure using the --disable-shared argument. To not build static libraries,
configure using the --disable-static argument.

• --enable-compat185

To compile or load Berkeley DB 1.85 applications against this release of the Berkeley DB
library, enter --enable-compat185 as an argument to configure. This will include Berkeley
DB 1.85 API compatibility code in the library.

• --enable-cxx

http://www.gnu.org/software/libtool/libtool.html

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 34

To build the Berkeley DB C++ API, enter --enable-cxx as an argument to configure.

• --enable-debug

To build Berkeley DB with -g as a compiler flag and with DEBUG #defined during
compilation, enter --enable-debug as an argument to configure. This will create a Berkeley
DB library and utilities with debugging symbols, as well as load various routines that can
be called from a debugger to display pages, cursor queues, and so forth. If installed, the
utilities will not be stripped. This argument should not be specified when configuring to
build production binaries.

• --enable-debug_rop

To build Berkeley DB to output log records for read operations, enter --enable-debug_rop as
an argument to configure. This argument should not be specified when configuring to build
production binaries.

• --enable-debug_wop

To build Berkeley DB to output log records for write operations, enter --enable-debug_wop
as an argument to configure. This argument should not be specified when configuring to
build production binaries.

• --enable-diagnostic

To build Berkeley DB with run-time debugging checks, enter --enable-diagnostic as an
argument to configure. This causes a number of additional checks to be performed when
Berkeley DB is running, and also causes some failures to trigger process abort rather than
returning errors to the application. Applications built using this argument should not share
database environments with applications built without this argument. This argument should
not be specified when configuring to build production binaries.

• --enable-dump185

To convert Berkeley DB 1.85 (or earlier) databases to this release of Berkeley DB, enter --
enable-dump185 as an argument to configure. This will build the db_dump185 utility, which
can dump Berkeley DB 1.85 and 1.86 databases in a format readable by the Berkeley DB
db_load utility.

The system libraries with which you are loading the db_dump185 utility must already
contain the Berkeley DB 1.85 library routines for this to work because the Berkeley DB
distribution does not include them. If you are using a non-standard library for the Berkeley
DB 1.85 library routines, you will have to change the Makefile that the configuration step
creates to load the db_dump185 utility with that library.

• --enable-java

To build the Berkeley DB Java API, enter --enable-java as an argument to configure. To build
Java, you must also build with shared libraries. Before configuring, you must set your PATH
environment variable to include javac. Note that it is not sufficient to include a symbolic
link to javac in your PATH because the configuration process uses the location of javac to

../api_reference/C/db_dump.html
../api_reference/C/db_load.html
../api_reference/C/db_dump.html
../api_reference/C/db_dump.html

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 35

determine the location of the Java include files (for example, jni.h). On some systems,
additional include directories may be needed to process jni.h; see Changing compile or load
options (page 42) for more information.

• --enable-posixmutexes

To force Berkeley DB to use the POSIX pthread mutex interfaces for underlying mutex
support, enter --enable-posixmutexes as an argument to configure. This is rarely necessary:
POSIX mutexes will be selected automatically on systems where they are the preferred
implementation.

The --enable-posixmutexes configuration argument is normally used in two ways:
First, when there are multiple mutex implementations available and the POSIX mutex
implementation is not the preferred one (for example, on Solaris where the LWP mutexes
are used by default). Second, by default the Berkeley DB library will only select the
POSIX mutex implementation if it supports mutexes shared between multiple processes,
as described for the pthread_condattr_setpshared and pthread_mutexattr_setpshared
interfaces. The --enable-posixmutexes configuration argument can be used to force the
selection of POSIX mutexes in this case, which can improve application performance
significantly when the alternative mutex implementation is a non-blocking one (for example
test-and-set assembly instructions). However, configuring to use POSIX mutexes when the
implementation does not have inter-process support will only allow the creation of private
database environments, that is, environments where the DB_PRIVATE flag is specified to the
DB_ENV->open() method.

Specifying the --enable-posixmutexes configuration argument may require that applications
and Berkeley DB be linked with the -lpthread library.

• --enable-pthread_api

To configure Berkeley DB for a POSIX pthreads application (with the exception that POSIX
pthread mutexes may not be selected as the underlying mutex implementation for the
build), enter --enable-pthread_api as an argument to configure. The build will include the
Berkeley DB replication manager interfaces and will use the POSIX standard pthread_self
and pthread_yield functions to identify threads of control and yield the processor. The --
enable-pthread_api argument requires POSIX pthread support already be installed on your
system.

Specifying the --enable-pthread_api configuration argument may require that applications
and Berkeley DB be linked with the -lpthread library.

• --enable-sql

To build the command tool dbsql, enter --enable-sql as an argument to configure. The
dbsql utility provides access to the Berkeley DB SQL interface. See Configuring the SQL
Interface (page 38) for more information.

• --enable-sql_compat

To build the command tool sqlite3, enter --enable-sql_compat as an argument to configure.
Sqlite3 is a command line tool that enables you to manually enter and execute SQL

../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 36

commands. It is identical to the dbsql executable but named so that existing scripts for
SQLite can easily work with Berkeley DB. See Configuring the SQL Interface (page 38) for
more information.

• --enable-sql_codegen

To build the command line tool db_sql_codegen, enter --enable-sql_codegen as an argument
to configure. The db_sql_codegen utility translates a schema description written in a SQL
Data Definition Language dialect into C code that implements the schema using Berkeley
DB.

• --enable-smallbuild

To build a small memory footprint version of the Berkeley DB library, enter --enable-
smallbuild as an argument to configure. The --enable-smallbuild argument is equivalent to
individually specifying --with-cryptography=no, --disable-hash, --disable-queue, --disable-
replication, --disable-statistics and --disable-verify, turning off cryptography support, the
Hash and Queue access methods, database environment replication support and database
and log verification support. See Building a small memory footprint library (page 41) for
more information.

• --enable-stl

To build the Berkeley DB C++ STL API, enter --enable-stl as an argument to configure.
Setting this argument implies that --enable-cxx is set, and the Berkeley DB C++ API will be
built too.

There will be a libdb_stl-X.X.a and libdb_stl-X.X.so built, which are the static and shared
library you should link your application with in order to make use of Berkeley DB via its STL
API.

If your compiler is not ISO C++ compliant, the configure may fail with this argument
specified because the STL API requires standard C++ template features. In this case, you will
need a standard C++ compiler. So far gcc is the best choice, we have tested and found that
gcc-3.4.4 and all its newer versions can build the Berkeley DB C++ STL API successfully.

And you need to include the STL API header files in your application code. If you are
using the Berkeley DB source tree, the header files are in <Berkeley DB Source Root >/stl
directory; If you are using the installed version, these header files are in < Berkeley DB
Installed Directory>/include, as well as the db.h and db_cxx.h header files.

• --enable-tcl

To build the Berkeley DB Tcl API, enter --enable-tcl as an argument to configure. This
configuration argument expects to find Tcl's tclConfig.sh file in the /usr/local/lib
directory. See the --with-tcl argument for instructions on specifying a non-standard location
for the Tcl installation. See Loading Berkeley DB with Tcl for information on sites from which
you can download Tcl and which Tcl versions are compatible with Berkeley DB. To build Tcl,
you must also build with shared libraries.

• --enable-test

../programmer_reference/tcl.html#tcl_intro

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 37

To build the Berkeley DB test suite, enter --enable-test as an argument to configure. To run
the Berkeley DB test suite, you must also build the Tcl API. This argument should not be
specified when configuring to build production binaries.

• --enable-uimutexes

To force Berkeley DB to use the UNIX International (UI) mutex interfaces for underlying
mutex support, enter --enable-uimutexes as an argument to configure. This is rarely
necessary: UI mutexes will be selected automatically on systems where they are the
preferred implementation.

The --enable-uimutexes configuration argument is normally used when there are multiple
mutex implementations available and the UI mutex implementation is not the preferred one
(for example, on Solaris where the LWP mutexes are used by default).

Specifying the --enable-uimutexes configuration argument may require that applications and
Berkeley DB be linked with the -lthread library.

• --enable-umrw

Rational Software's Purify product and other run-time tools complain about uninitialized
reads/writes of structure fields whose only purpose is padding, as well as when heap
memory that was never initialized is written to disk. Specify the --enable-umrw argument
during configuration to mask these errors. This argument should not be specified when
configuring to build production binaries.

• --with-cryptography

To build Berkeley DB with support for cryptography, enter --with-cryptography=yes as an
argument to configure.

To build Berkeley DB without support for cryptography, enter --with-cryptography=no as an
argument to configure.

To build Berkeley DB with support for cryptography using Intel's Performance Primitive (IPP)
library, enter --with-cryptography=ipp as an argument to configure. Additionally, set the
following arguments:

-L/path/to/ipp/sharedlib to LDFLAGS

-I/path/to/ipp/include to CPPFLAGS

-lippcpem64t -lpthread to LIBS

An example configuration command for IPP encryption is as follows:

 ../dist/configure -with-cryptography=ipp
 CPPFLAGS="-I/opt/intel/ipp/6.1.3.055/em64t/include"
 LDFLAGS="-L/opt/intel/ipp/6.1.3.055/em64t/sharedlib"
 LIBS="-lippcpem64t -lpthread"

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 38

See the Intel Documenation for specific instructions on configuring environment variables.

Note: The --with-cryptography=ipp argument works only on Linux.

• --with-mutex=MUTEX

To force Berkeley DB to use a specific mutex implementation, configure with --with-
mutex=MUTEX, where MUTEX is the mutex implementation you want. For example, --with-
mutex=x86/gcc-assembly will configure Berkeley DB to use the x86 GNU gcc compiler based
test-and-set assembly mutexes. This is rarely necessary and should be done only when the
default configuration selects the wrong mutex implementation. A list of available mutex
implementations can be found in the distribution file dist/aclocal/mutex.m4.

• --with-tcl=DIR

To build the Berkeley DB Tcl API, enter --with-tcl=DIR, replacing DIR with the directory
in which the Tcl tclConfig.sh file may be found. See Loading Berkeley DB with Tcl for
information on sites from which you can download Tcl and which Tcl versions are compatible
with Berkeley DB. To build Tcl, you must also build with shared libraries.

• --with-uniquename=NAME

To build Berkeley DB with unique symbol names (in order to avoid conflicts with other
application modules or libraries), enter --with-uniquename=NAME, replacing NAME with
a string that to be appended to every Berkeley DB symbol. If "=NAME" is not specified,
a default value of "_MAJORMINOR" is used, where MAJORMINOR is the major and minor
release numbers of the Berkeley DB release. See Building with multiple versions of Berkeley
DB (page 8) for more information.

Configuring the SQL Interface

There are a set of configuration options to assist you in building the Berkeley DB SQL
interface. These configuration options include:

To build the command line interpreter dbsql, enter --enable-sql as an argument to
configure. Along with dbsql, this argument also builds the libdb_sqlXX.{so|la} library, a
C API library that mirrors the SQLite C API.

To build the command line tool sqlite3, enter --enable-sql_compat as an argument
to configure. sqlite3 enables you to manually enter and execute SQL commands. The
sqlite3 command line tool is identical to the dbsql executable but named so that
existing scripts for SQLite can easily work with Berkeley DB. Along with sqlite3, this
argument also builds libsqlite3.{so|la}, a C API library. libsqlite3.{so|la} mirrors the
SQLite C API, and has the same name as the library generated by an SQLite build also
for ease of use with existing sripts. In addition to building sqlite3 and libsqlite3.{so|
la}, the --enable-sql_compat argument also builds a libdb_sqlXX.{so|la} and dbsql, as
is done with the --enable-sql argument.

To build the Berkeley DB SQL interface test suite, enter --enable-test as an argument
to configure. This argument can also be used with either --enable-sql or --enable-
sql_compat to build the SQLite Tcl test runner.

http://software.intel.com/en-us/articles/intel-integrated-performance-primitives-documentation/
../programmer_reference/tcl.html#tcl_intro

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 39

The following configuration options are useful when debugging applications:

To build Berkeley DB SQL interface with symbols for debugging enter --enable-debug
as an argument to configure.

To build Berkeley DB SQL interface with run-time debugging checks, enter --enable-
diagnostic as an argument to configure.

Any arguments that you can provide to the standard SQLite configure script can also be
supplied when configuring Berkeley DB SQL interface.

Enabling Extensions

The Berkeley DB SQL API provides extensions such as full text search and R-Tree index. By
default, these two extensions are disabled. To enable an extension in the Berkeley DB SQL
interface, specify the related option as an argument to the configure script using the standard
environment variable, CPPFLAGS.

To enable building the full text search layer in the Berkeley DB interface, add the
SQLITE_ENABLE_FTS3 option to the CPPFLAGS variable.

To enable building the R-Tree layer in the Berkeley DB interface, add the
SQLITE_ENABLE_RTREE option to the CPPFLAGS variable.

See the SQLite Documentation for more information on full text search and R-Tree.

Building the JDBC Driver

This section describes how to build the JDBC driver code using autoconf, which is the only
method supported and tested by the Berkeley DB team.

To build the JDBC driver, you must have Sun Java Development Kit 1.1 or above installed.

cd build_unix
CFLAGS="-fPIC" ../dist/configure --enable-sql_compat --disable-shared
make
cd ../sql/jdbc
CFLAGS="-DHAVE_SQLITE3_MALLOC -DHAVE_ERRNO_H \
 -I../../build_unix -I../../dbinc" \
 LDFLAGS="../../build_unix/libdb-5.0.a" \
 ./configure --with-sqlite3=../generated
make

Note: The defined process is known to generate a link warning during the final step. The
warning is generated by libtool when linking a library without a library information file
present (.la). It is safe to ignore the warning. If you have problems when using the JDBC
driver, use the shared library version of Berkeley DB.

You can test the build by entering the following commands from the sql/jdbc directory:

javac -classpath ./sqlite.jar test3.java

http://www.sqlite.org/fts3.html
http://www.sqlite.org/rtree.html

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 40

java -Djava.library.path=./.libs -classpath ./sqlite.jar:. test3

Building the ODBC Driver

This section describes the steps required to build the ODBC driver.

Configuring Your System

To configure your system prior to building the ODBC driver, do the following:

1. Download and install the latest unixODBC if ODBC is not already installed on your system.

2. Configure the ODBC server to work with SQLite databases. Follow these instructions from
Christian Werner.

Building the Library

To build the library, do the following

$ cd db-5.0.XX/build_unix
$ CFLAGS="-fPIC" ../dist/configure --enable-sql_compat --disable-shared
$ make
$ cd ../sql/odbc
$ CFLAGS="-DHAVE_ERRNO_H -I../../build_unix -I../../dbinc \
 -I../sqlite/src" LDFLAGS="../../build_unix/libdb-5.0.a" \
 ./configure --with-sqlite3=../generated
$ make

The libsqlite3odbc.so library containing a statically linked version of Berkeley DB SQL is
now built.

NOTE: The final make command above is known to generate a warning when using GCC. The
warning states: Warning: Linking the shared library libsqlite3odbc.la against
the static library ../../build_unix/libdb-5.0.a is not portable!. It is generally
safe to ignore the warning when using the generated library.

Testing the ODBC Driver

The steps to verify that the installed driver works are as follows:

1. Alter the /etc/odbcinst.ini and ~/.odbc.ini configuration files to refer to the
libsqlite3odbc.so file built above.

2. Create a data source, and launch a data source viewer application by doing the following:

$ mkdir ~/databases
$ cd ~/databases
$ /path/to/Berkeley DB/build_unix/sqlite3 mytest.db
dbsql> CREATE TABLE t1(x);

http://www.unixodbc.org
http://www.ch-werner.de/sqliteodbc/html/index.html

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 41

dbsql> .quit;
$ DataManager

The final step opens a GUI application that displays ODBC data sources on a system. You
should be able to find the mytest.db data source just created.

Building a small memory footprint library

There are a set of configuration options to assist you in building a small memory footprint
library. These configuration options turn off specific functionality in the Berkeley DB library,
reducing the code size. These configuration options include:

To build Berkeley DB without support for cryptography, enter --with-cryptography=no
as an argument to configure.

To build Berkeley DB without support for the Hash access method, enter --disable-hash
as an argument to configure.

To build Berkeley DB without support for the Queue access method, enter --disable-
queue as an argument to configure.

To build Berkeley DB without support for the database environment replication, enter
--disable-replication as an argument to configure.

To build Berkeley DB without support for the statistics interfaces, enter --disable-
statistics as an argument to configure.

To build Berkeley DB without support for database verification, enter --disable-verify
as an argument to configure.

Equivalent to individually specifying --with-cryptography=no, --disable-hash, --disable-
queue, --disable-replication, --disable-statistics and --disable-verify. In addition, when
compiling building with the GNU gcc compiler, the --enable-smallbuild option uses the
-Os compiler build flag instead of the default -O3.

Note: --disable-cryptography and --enable-cryptography are deprecated in the Berkeley DB
11gR2 release. --with-cryptography=no does the same as --disable-cryptography and --with-
cryptography=yes does the same as --enable-cryptography now.

The following configuration options will increase the size of the Berkeley DB library
dramatically and are only useful when debugging applications:

--enable-debug
Build Berkeley DB with symbols for debugging.

--enable-debug_rop
Build Berkeley DB with read-operation logging.

--enable-debug_wop
Build Berkeley DB with write-operation logging.

--enable-diagnostic
Build Berkeley DB with run-time debugging checks.

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 42

In addition, static libraries are usually smaller than shared libraries. By default Berkeley DB
will build both shared and static libraries. To build only a static library, configure Berkeley DB
with the Configuring Berkeley DB (page 33) option.

The size of the Berkeley DB library varies depending on the compiler, machine architecture,
and configuration options. As an estimate, production Berkeley DB libraries built with GNU
gcc version 3.X compilers have footprints in the range of 400KB to 1.2MB on 32-bit x86
architectures, and in the range of 500KB to 1.4MB on 64-bit x86 architectures.

For assistance in further reducing the size of the Berkeley DB library, or in building small
memory footprint libraries on other systems, please contact Berkeley DB support.

Changing compile or load options

You can specify compiler and/or compile and load time flags by using environment variables
during Berkeley DB configuration. For example, if you want to use a specific compiler, specify
the CC environment variable before running configure:

prompt: env CC=gcc ../dist/configure

Using anything other than the native compiler will almost certainly mean that you'll want to
check the flags specified to the compiler and loader, too.

To specify debugging and optimization options for the C compiler, use the CFLAGS environment
variable:

prompt: env CFLAGS=-O2 ../dist/configure

To specify header file search directories and other miscellaneous options for the C
preprocessor and compiler, use the CPPFLAGS environment variable:

prompt: env CPPFLAGS=-I/usr/contrib/include ../dist/configure

To specify debugging and optimization options for the C++ compiler, use the CXXFLAGS
environment variable:

prompt: env CXXFLAGS=-Woverloaded-virtual ../dist/configure

To specify miscellaneous options or additional library directories for the linker, use the
LDFLAGS environment variable:

prompt: env LDFLAGS="-N32 -L/usr/local/lib" ../dist/configure

If you want to specify additional libraries, set the LIBS environment variable before running
configure. For example, the following would specify two additional libraries to load, "posix"
and "socket":

prompt: env LIBS="-lposix -lsocket" ../dist/configure

Make sure that you prepend -L to any library directory names and that you prepend -I to
any include file directory names! Also, if the arguments you specify contain blank or tab
characters, be sure to quote them as shown previously; that is with single or double quotes
around the values you are specifying for LIBS.

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 43

The env command, which is available on most systems, simply sets one or more environment
variables before running a command. If the env command is not available to you, you can set
the environment variables in your shell before running configure. For example, in sh or ksh,
you could do the following:

prompt: LIBS="-lposix -lsocket" ../dist/configure

In csh or tcsh, you could do the following:

prompt: setenv LIBS "-lposix -lsocket"
prompt: ../dist/configure

See your command shell's manual page for further information.

Installing Berkeley DB

Berkeley DB installs the following files into the following locations, with the following default
values:

Configuration Variables Default value

--prefix /usr/local/BerkeleyDB.Major.Minor

--exec_prefix $(prefix)

--bindir $(exec_prefix)/bin

--includedir $(prefix)/include

--libdir $(exec_prefix)/lib

docdir $(prefix)/docs

Files Default location

include files $(includedir)

libraries $(libdir)

utilities $(bindir)

documentation $(docdir)

With one exception, this follows the GNU Autoconf and GNU Coding Standards installation
guidelines; please see that documentation for more information and rationale.

The single exception is the Berkeley DB documentation. The Berkeley DB documentation is
provided in HTML format, not in UNIX-style man or GNU info format. For this reason, Berkeley
DB configuration does not support --infodir or --mandir. To change the default installation
location for the Berkeley DB documentation, modify the Makefile variable, docdir.

When installing Berkeley DB on filesystems shared by machines of different architectures,
please note that although Berkeley DB include files are installed based on the value
of $(prefix), rather than $(exec_prefix), the Berkeley DB include files are not always
architecture independent.

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 44

To move the entire installation tree to somewhere besides /usr/local, change the value of
prefix.

To move the binaries and libraries to a different location, change the value of exec_prefix.
The values of includedir and libdir may be similarly changed.

Any of these values except for docdir may be set as part of the configuration:

prompt: ../dist/configure --bindir=/usr/local/bin

Any of these values, including docdir, may be changed when doing the install itself:

prompt: make prefix=/usr/contrib/bdb install

The Berkeley DB installation process will attempt to create any directories that do not already
exist on the system.

Dynamic shared libraries

Warning: the following information is intended to be generic and is likely to be correct for
most UNIX systems. Unfortunately, dynamic shared libraries are not standard between UNIX
systems, so there may be information here that is not correct for your system. If you have
problems, consult your compiler and linker manual pages, or your system administrator.

The Berkeley DB dynamic shared libraries are created with the name libdb-major.minor.so,
where major is the major version number and minor is the minor version number.
Other shared libraries are created if Java and Tcl support are enabled: specifically,
libdb_java-major.minor.so and libdb_tcl-major.minor.so.

On most UNIX systems, when any shared library is created, the linker stamps it with a
"SONAME". In the case of Berkeley DB, the SONAME is libdb-major.minor.so. It is important
to realize that applications linked against a shared library remember the SONAMEs of the
libraries they use and not the underlying names in the filesystem.

When the Berkeley DB shared library is installed, links are created in the install lib directory
so that libdb-major.minor.so, libdb-major.so, and libdb.so all refer to the same library. This
library will have an SONAME of libdb-major.minor.so.

Any previous versions of the Berkeley DB libraries that are present in the install directory
(such as libdb-2.7.so or libdb-2.so) are left unchanged. (Removing or moving old shared
libraries is one drastic way to identify applications that have been linked against those vintage
releases.)

Once you have installed the Berkeley DB libraries, unless they are installed in a directory
where the linker normally looks for shared libraries, you will need to specify the installation
directory as part of compiling and linking against Berkeley DB. Consult your system manuals or
system administrator for ways to specify a shared library directory when compiling and linking
applications with the Berkeley DB libraries. Many systems support environment variables (for
example, LD_LIBRARY_PATH or LD_RUN_PATH), or system configuration files (for example, /
etc/ld.so.conf) for this purpose.

Warning: some UNIX installations may have an already existing /usr/lib/libdb.so, and this
library may be an incompatible version of Berkeley DB.

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 45

We recommend that applications link against libdb.so (for example, using -ldb). Even though
the linker uses the file named libdb.so, the executable file for the application remembers the
library's SONAME (libdb-major.minor.so). This has the effect of marking the applications with
the versions they need at link time. Because applications locate their needed SONAMEs when
they are executed, all previously linked applications will continue to run using the library they
were linked with, even when a new version of Berkeley DB is installed and the file libdb.so is
replaced with a new version.

Applications that know they are using features specific to a particular Berkeley DB release can
be linked to that release. For example, an application wanting to link to Berkeley DB major
release "3" can link using -ldb-3, and applications that know about a particular minor release
number can specify both major and minor release numbers; for example, -ldb-3.5.

If you want to link with Berkeley DB before performing library installation, the "make"
command will have created a shared library object in the .libs subdirectory of the build
directory, such as build_unix/.libs/libdb-major.minor.so. If you want to link a file
against this library, with, for example, a major number of "3" and a minor number of "5", you
should be able to do something like the following:

cc -L BUILD_DIRECTORY/.libs -o testprog testprog.o -ldb-3.5
env LD_LIBRARY_PATH="BUILD_DIRECTORY/.libs:$LD_LIBRARY_PATH" ./testprog

where BUILD_DIRECTORY is the full directory path to the directory where you built Berkeley
DB.

The libtool program (which is configured in the build directory) can be used to set the shared
library path and run a program. For example, the following runs the gdb debugger on the
db_dump utility after setting the appropriate paths:

libtool gdb db_dump

Libtool may not know what to do with arbitrary commands (it is hardwired to recognize
"gdb" and some other commands). If it complains the mode argument will usually resolve the
problem:

libtool --mode=execute my_debugger db_dump

On most systems, using libtool in this way is exactly equivalent to setting the
LD_LIBRARY_PATH environment variable and then executing the program. On other systems,
using libtool has the virtue of knowing about any other details on systems that don't behave in
this typical way.

Running the test suite under UNIX

The Berkeley DB test suite is built if you specify --enable-test as an argument when
configuring Berkeley DB. The test suite also requires that you configure and build the Tcl
interface to the library.

Before running the tests for the first time, you may need to edit the include.tcl file in your
build directory. The Berkeley DB configuration assumes that you intend to use the version of
the tclsh utility included in the Tcl installation with which Berkeley DB was configured to run

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 46

the test suite, and further assumes that the test suite will be run with the libraries prebuilt in
the Berkeley DB build directory. If either of these assumptions are incorrect, you will need to
edit the include.tcl file and change the following line to correctly specify the full path to
the version of tclsh with which you are going to run the test suite:

set tclsh_path ...

You may also need to change the following line to correctly specify the path from the
directory where you are running the test suite to the location of the Berkeley DB Tcl library
you built:

set test_path ...

It may not be necessary that this be a full path if you have configured your system's shared
library mechanisms to search the directory where you built or installed the Tcl library.

All Berkeley DB tests are run from within tclsh. After starting tclsh, you must source the file
test.tcl in the test directory. For example, if you built in the build_unix directory of the
distribution, this would be done using the following command:

% source ../test/test.tcl

If no errors occur, you should get a "%" prompt.

You are now ready to run tests in the test suite; see Running the test suite for more
information.

Building SQL Test Suite on Unix

The Berkeley DB SQL interface test suite is built if you specify --enable-test and --enable-sql
as arguments, when configuring Berkeley DB. The test suite also requires that you build the
Berkeley DB Tcl API.

../dist/configure --enable-sql --enable-test --with-tcl=/usr/lib

This builds the testfixture project in ../build_unix/sql.

To enable extensions like full text search layer and R-Tree layer in the SQL test suite,
configure with --enable-amalgamation.

Architecture independent FAQ

1. I have gcc installed, but configure fails to find it.

Berkeley DB defaults to using the native C compiler if none is specified. That is usually
"cc", but some platforms require a different compiler to build multithreaded code. To
configure Berkeley DB to build with gcc, run configure as follows:

env CC=gcc ../dist/configure ...

2. When compiling with gcc, I get unreferenced symbols; for example the following:

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 47

symbol __muldi3: referenced symbol not found
symbol __cmpdi2: referenced symbol not found

Berkeley DB often uses 64-bit integral types on systems supporting large files, and gcc
performs operations on those types by calling library functions. These unreferenced
symbol errors are usually caused by linking an application by calling "ld" rather than by
calling "gcc": gcc will link in libgcc.a and will resolve the symbols. If that does not help,
another possible workaround is to reconfigure Berkeley DB using the --disable-largefile
configuration option and then rebuild.

3. My C++ program traps during a failure in a DB call on my gcc-based system.

We believe there are some severe bugs in the implementation of exceptions for some
gcc compilers. Exceptions require some interaction between compiler, assembler, and
runtime libraries. We're not sure exactly what is at fault, but one failing combination is
gcc 2.7.2.3 running on SuSE Linux 6.0. The problem on this system can be seen with a
rather simple test case of an exception thrown from a shared library and caught in the
main program.

A variation of this problem seems to occur on AIX, although we believe it does not
necessarily involve shared libraries on that platform.

If you see a trap that occurs when an exception might be thrown by the Berkeley DB
runtime, we suggest that you use static libraries instead of shared libraries. See the
documentation for configuration. If this doesn't work and you have a choice of compilers,
try using a more recent gcc- or a non-gcc based compiler to build Berkeley DB.

Finally, you can disable the use of exceptions in the C++ runtime for Berkeley DB by using
the DB_CXX_NO_EXCEPTIONS flag with the DbEnv or Db constructors. When this flag is on,
all C++ methods fail by returning an error code rather than throwing an exception.

4. I get unexpected results and database corruption when running threaded programs.

I get error messages that mutex (for example, pthread_mutex_XXX or mutex_XXX)
functions are undefined when linking applications with Berkeley DB.

On some architectures, the Berkeley DB library uses the ISO POSIX standard pthreads
and UNIX International (UI) threads interfaces for underlying mutex support; for
example, Solaris and HP-UX. You can specify compilers or compiler flags, or link with
the appropriate thread library when loading your application to resolve the undefined
references:

cc ... -lpthread ...
cc ... -lthread ...
xlc_r ...
cc ... -mt ...

See the appropriate architecture-specific Reference Guide pages for more information.

On systems where more than one type of mutex is available, it may be necessary for
applications to use the same threads package from which Berkeley DB draws its mutexes.

../api_reference/CXX/envcreate.html#env_DB_CXX_NO_EXCEPTIONS
../api_reference/CXX/env.html
../api_reference/CXX/db.html

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 48

For example, if Berkeley DB was built to use the POSIX pthreads mutex calls for mutex
support, the application may need to be written to use the POSIX pthreads interfaces
for its threading model. This is only conjecture at this time, and although we know of no
systems that actually have this requirement, it's not unlikely that some exist.

In a few cases, Berkeley DB can be configured to use specific underlying mutex interfaces.
You can use the --enable-posixmutexes and --enable-uimutexes configuration options to
specify the POSIX and Unix International (UI) threads packages. This should not, however,
be necessary in most cases.

In some cases, it is vitally important to make sure that you load the correct library.
For example, on Solaris systems, there are POSIX pthread interfaces in the C library, so
applications can link Berkeley DB using only C library and not see any undefined symbols.
However, the C library POSIX pthread mutex support is insufficient for Berkeley DB, and
Berkeley DB cannot detect that fact. Similar errors can arise when applications (for
example, tclsh) use dlopen to dynamically load Berkeley DB as a library.

If you are seeing problems in this area after you confirm that you're linking with the
correct libraries, there are two other things you can try. First, if your platform supports
interlibrary dependencies, we recommend that you change the Berkeley DB Makefile to
specify the appropriate threads library when creating the Berkeley DB shared library, as
an interlibrary dependency. Second, if your application is using dlopen to dynamically
load Berkeley DB, specify the appropriate thread library on the link line when you load
the application itself.

5. I get core dumps when running programs that fork children.

Berkeley DB handles should not be shared across process forks, each forked child should
acquire its own Berkeley DB handles.

6. I get reports of uninitialized memory reads and writes when running software analysis
tools (for example, Rational Software Corp.'s Purify tool).

For performance reasons, Berkeley DB does not write the unused portions of database
pages or fill in unused structure fields. To turn off these errors when running software
analysis tools, build with the --enable-umrw configuration option.

7. Berkeley DB programs or the test suite fail unexpectedly.

The Berkeley DB architecture does not support placing the shared memory regions on
remote filesystems -- for example, the Network File System (NFS) or the Andrew File
System (AFS). For this reason, the shared memory regions (normally located in the
database home directory) must reside on a local filesystem. See Shared memory region
for more information.

With respect to running the test suite, always check to make sure that TESTDIR is not on a
remote mounted filesystem.

8. The db_dump utility fails to build.

../programmer_reference/env_region.html
../api_reference/C/db_dump.html

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 49

The db_dump185 utility is the utility that supports the conversion of Berkeley DB 1.85 and
earlier databases to current database formats. If the build errors look something like the
following, it means the db.h include file being loaded is not a Berkeley DB 1.85 version
include file:

db_dump185.c: In function `main':
db_dump185.c:210: warning: assignment makes pointer from integer
without a cast
db_dump185.c:212: warning: assignment makes pointer from integer
without a cast
db_dump185.c:227: structure has no member named `seq'
db_dump185.c:227: `R_NEXT' undeclared (first use in this function)

If the build errors look something like the following, it means that the Berkeley DB 1.85
code was not found in the standard libraries:

cc -o db_dump185 db_dump185.o
ld:
Unresolved:
dbopen

To build the db_dump185 utility, the Berkeley DB version 1.85 code must already been
built and available on the system. If the Berkeley DB 1.85 header file is not found in a
standard place, or if the library is not part of the standard libraries used for loading, you
will need to edit your Makefile, and change the following lines:

DB185INC=
DB185LIB=

So that the system Berkeley DB 1.85 header file and library are found; for example:

DB185INC=/usr/local/include
DB185LIB=-ldb185

AIX

1. I can't compile and run multithreaded applications.

Special compile-time flags are required when compiling threaded applications on AIX. If
you are compiling a threaded application, you must compile with the _THREAD_SAFE flag
and load with specific libraries; for example, "-lc_r". Specifying the compiler name with a
trailing "_r" usually performs the right actions for the system.

xlc_r ...
cc -D_THREAD_SAFE -lc_r ...

The Berkeley DB library will automatically build with the correct options.

2. I can't run using the DB_SYSTEM_MEM option to DB_ENV->open().

../api_reference/C/db_dump.html
../api_reference/C/db_dump.html
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 50

AIX 4.1 allows applications to map only 10 system shared memory segments. In AIX 4.3,
this has been raised to 256K segments, but only if you set the environment variable
"export EXTSHM=ON".

3. On AIX 4.3.2 (or before) I see duplicate symbol warnings when building the C++ shared
library and when linking applications.

We are aware of some duplicate symbol warnings with this platform, but they do not
appear to affect the correct operation of applications.

4. On AIX 4.3.3 I see undefined symbols for DbEnv::set_error_stream,
Db::set_error_stream or DbEnv::verify when linking C++ applications. (These
undefined symbols also appear when building the Berkeley DB C++ example
applications).

By default, Berkeley DB is built with _LARGE_FILES set to 1 to support the creation of
"large" database files. However, this also affects how standard classes, like iostream, are
named internally. When building your application, use a "-D_LARGE_FILES=1" compilation
option, or insert "#define _LARGE_FILES 1" before any #include statements.

5. I can't create database files larger than 1GB on AIX.

If you're running on AIX 4.1 or earlier, try changing the source code for os/os_open.c to
always specify the O_LARGEFILE flag to the open(2) system call, and recompile Berkeley
DB from scratch.

Also, the documentation for the IBM Visual Age compiler states that it does not not
support the 64-bit filesystem APIs necessary for creating large files; the ibmcxx product
must be used instead. We have not heard whether the GNU gcc compiler supports the 64-
bit APIs or not.

Finally, to create large files under AIX, the filesystem has to be configured to support
large files and the system wide user hard-limit for file sizes has to be greater than 1GB.

6. I see errors about "open64" when building Berkeley DB applications.

System include files (most commonly fcntl.h) in some releases of AIX, HP-UX and Solaris
redefine "open" when large-file support is enabled for applications. This causes problems
when compiling applications because "open" is a method in the Berkeley DB APIs. To work
around this problem:

a. Avoid including the problematical system include files in source code files which also
include Berkeley DB include files and call into the Berkeley DB API.

b. Before building Berkeley DB, modify the generated include file db.h to itself include
the problematical system include files.

c. Turn off Berkeley DB large-file support by specifying the --disable-largefile
configuration option and rebuilding.

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 51

7. I see the error "Redeclaration of lseek64" when building Berkeley DB with the --
enable-sql and --enable-test options.

In some releases of AIX, the system include files (most commonly unistd.h) redefine
lseek to lseek64 when large-file support is enabled even though lseek may have
already been defined when the _LARGE_FILE_API macro is on. To work around this
problem, do either one of the following:

a. Disable large-file support in Berkeley DB by specifying the --disable-largefile
configuration option and rebuilding.

b. Edit db.h manually after running the configure command, and remove the line that
includes unistd.h.

FreeBSD

1. I can't compile and run multithreaded applications.

Special compile-time flags are required when compiling threaded applications on
FreeBSD. If you are compiling a threaded application, you must compile with the
_THREAD_SAFE and -pthread flags:

cc -D_THREAD_SAFE -pthread ...

The Berkeley DB library will automatically build with the correct options.

2. I see fsync and close system call failures when accessing databases or log files on NFS-
mounted filesystems.

Some FreeBSD releases are known to return ENOLCK from fsync and close calls on NFS-
mounted filesystems, even though the call has succeeded. The Berkeley DB code should
be modified to ignore ENOLCK errors, or no Berkeley DB files should be placed on NFS-
mounted filesystems on these systems.

HP-UX

1. I can't specify the DB_SYSTEM_MEM flag to DB_ENV->open().

The shmget(2) interfaces are not always used on HP-UX, even though they exist, because
anonymous memory allocated using shmget(2) cannot be used to store the standard
HP-UX msemaphore semaphores. For this reason, it may not be possible to specify the
DB_SYSTEM_MEM flag on some versions of HP-UX. (We have seen this problem only on HP-
UX 10.XX, so the simplest workaround may be to upgrade your HP-UX release.)

2. I can't specify both the DB_PRIVATE and DB_THREAD flags to DB_ENV->open().

It is not possible to store the standard HP-UX msemaphore semaphores in memory
returned by malloc(3) in some versions of HP-UX. For this reason, it may not be possible
to specify both the DB_PRIVATE and DB_THREAD flags on some versions of HP-UX. (We
have seen this problem only on some older HP-UX platforms, so the simplest workaround
may be to upgrade your HP-UX release.)

../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/dbopen.html#open_DB_THREAD
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/dbopen.html#open_DB_THREAD

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 52

3. I can't compile and run multithreaded applications.

Special compile-time flags are required when compiling threaded applications on HP-UX.
If you are compiling a threaded application, you must compile with the _REENTRANT flag:

cc -D_REENTRANT ...

The Berkeley DB library will automatically build with the correct options.

4. An ENOMEM error is returned from DB_ENV->open() or DB_ENV->remove().

Due to the constraints of the PA-RISC memory architecture, HP-UX does not allow a
process to map a file into its address space multiple times. For this reason, each Berkeley
DB environment may be opened only once by a process on HP-UX; that is, calls to DB_ENV-
>open() will fail if the specified Berkeley DB environment has been opened and not
subsequently closed.

5. When compiling with gcc, I see the following error:

#error "Large Files (ILP32) not supported in strict ANSI mode."

We believe this is an error in the HP-UX include files, but we don't really understand it.
The only workaround we have found is to add -D__STDC_EXT__ to the C preprocessor
defines as part of compilation.

6. When using the Tcl or Perl APIs (including running the test suite), I see the error "Can't
shl_load() a library containing Thread Local Storage".

This problem happens when HP-UX has been configured to use pthread mutex locking, and
an attempt is made to call Berkeley DB using the Tcl or Perl APIs. We have never found
any way to fix this problem as part of the Berkeley DB build process. To work around the
problem, rebuild tclsh or Perl, and modify its build process to explicitly link it against the
HP-UX pthread library (currently /usr/lib/libpthread.a).

7. When running an executable that has been dynamically linked against the Berkeley DB
library, I see the error "Can't find path for shared library" even though I correctly set
the SHLIB_PATH environment variable.

By default, some versions of HP-UX ignore the dynamic library search path specified by
the SHLIB_PATH environment variable. To work around this, specify the "+s" flag to ld
when linking, or run the following command on the executable that is not working:

chatr +s enable -l /full/path/to/libdb-3.2.sl ...

8. When building for an IA64 processor, I see either bus errors or compiler warnings
about converting between unaligned types (#4232). How can I resolve them?

Berkeley DB requires that data types containing members with different sizes be aligned
in a consistent way. The HP-UX compiler does not provide this alignment property by
default.

The compiler can be made to generate adequately aligned data by passing the +u1 option
to the compiler. See the HP documentation about the +u1 flag for more information.

../api_reference/C/envopen.html
../api_reference/C/envremove.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html
http://docs.hp.com/en/10946/options.htm#opt+u

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 53

9. I see errors about "open64" when building Berkeley DB applications.

System include files (most commonly fcntl.h) in some releases of AIX, HP-UX and Solaris
redefine "open" when large-file support is enabled for applications. This causes problems
when compiling applications because "open" is a method in the Berkeley DB APIs. To work
around this problem:

a. Avoid including the problematical system include files in source code files which also
include Berkeley DB include files and call into the Berkeley DB API.

b. Before building Berkeley DB, modify the generated include file db.h to itself include
the problematical system include files.

c. Turn off Berkeley DB large-file support by specifying the --disable-largefile
configuration option and rebuilding.

IRIX

1. I can't compile and run multithreaded applications.

Special compile-time flags are required when compiling threaded applications on IRIX. If
you are compiling a threaded application, you must compile with the _SGI_MP_SOURCE
flag:

cc -D_SGI_MP_SOURCE ...

The Berkeley DB library will automatically build with the correct options.

Linux

1. I can't compile and run multithreaded applications.

Special compile-time flags are required when compiling threaded applications on Linux. If
you are compiling a threaded application, you must compile with the _REENTRANT flag:

cc -D_REENTRANT ...

The Berkeley DB library will automatically build with the correct options.

2. I see database corruption when accessing databases.

Some Linux filesystems do not support POSIX filesystem semantics. Specifically, ext2
and early releases of ReiserFS, and ext3 in some configurations, do not support "ordered
data mode" and may insert random data into database or log files when systems crash.
Berkeley DB files should not be placed on a filesystem that does not support, or is not
configured to support, POSIX semantics.

3. What scheduler should I use?

In some Linux kernels you can select schedulers, and the default is the "anticipatory"
scheduler. We recommend not using the "anticipatory" scheduler for transaction
processing workloads.

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 54

Mac OS X

1. When trying to link multiple Berkeley DB language interfaces (for example, Tcl, C++,
Java, Python) into a single process, I get "multiple definitions" errors from dyld.

To fix this problem, set the environment variable MACOSX_DEPLOYMENT_TARGET to 10.3
(or your current version of OS X), and reconfigure and rebuild Berkeley DB from scratch.
See the OS X ld(1) and dyld(1) man pages for information about how OS X handles symbol
namespaces, as well as undefined and multiply-defined symbols.

2. When trying to use system-backed shared memory on OS X I see failures about "too
many open files".

The default number of shared memory segments on OS X is too low. To fix this problem,
edit the file /etc/rc, changing the kern.sysv.shmmax and kern.sysv.shmseg values as
follows:

*** /etc/rc.orig Fri Dec 19 09:34:09 2003
--- /etc/rc Fri Dec 19 09:33:53 2003

*** 84,93 ****
 # System tuning
 sysctl -w kern.maxvnodes=$(echo $(sysctl -n hw.physmem) '33554432 /
512 * 1024 +p'|dc)
! sysctl -w kern.sysv.shmmax=4194304
 sysctl -w kern.sysv.shmmin=1
 sysctl -w kern.sysv.shmmni=32
! sysctl -w kern.sysv.shmseg=8
 sysctl -w kern.sysv.shmall=1024
 if [-f /etc/sysctl-macosxserver.conf]; then
 awk '{ if (!-1 && -1) print $1 }' <
/etc/sysctl-macosxserver.conf | while read
--- 84,93 ----
 # System tuning
 sysctl -w kern.maxvnodes=$(echo $(sysctl -n hw.physmem) '33554432 /
512 * 1024 +p'|dc)
! sysctl -w kern.sysv.shmmax=134217728
 sysctl -w kern.sysv.shmmin=1
 sysctl -w kern.sysv.shmmni=32
! sysctl -w kern.sysv.shmseg=32
 sysctl -w kern.sysv.shmall=1024
 if [-f /etc/sysctl-macosxserver.conf]; then
 awk '{ if (!-1 && -1) print $1 }' <
 /etc/sysctl-macosxserver.conf | while read

and then reboot the system.

OSF/1

1. I can't compile and run multithreaded applications.

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 55

Special compile-time flags are required when compiling threaded applications on OSF/1.
If you are compiling a threaded application, you must compile with the _REENTRANT flag:

cc -D_REENTRANT ...

The Berkeley DB library will automatically build with the correct options.

QNX

1. To what versions of QNX has DB been ported?

Berkeley DB has been ported to the QNX Neutrino technology which is commonly referred
to as QNX RTP (Real-Time Platform). Berkeley DB has not been ported to earlier versions
of QNX, such as QNX 4.25.

2. Building Berkeley DB shared libraries fails.

The /bin/sh utility distributed with some QNX releases drops core when running the
GNU libtool script (which is used to build Berkeley DB shared libraries). There are two
workarounds for this problem: First, only build static libraries. You can disable building
shared libraries by specifying the configuration flag when configuring Berkeley DB.

Second, build Berkeley DB using an alternate shell. QNX distributions include an
accessories disk with additional tools. One of the included tools is the GNU bash shell,
which is able to run the libtool script. To build Berkeley DB using an alternate shell, move
/bin/sh aside, link or copy the alternate shell into that location, configure, build and
install Berkeley DB, and then replace the original shell utility.

3. Are there any QNX filesystem issues?

Berkeley DB generates temporary files for use in transactionally protected file system
operations. Due to the filename length limit of 48 characters in the QNX filesystem,
applications that are using transactions should specify a database name that is at most 43
characters.

4. What are the implications of QNX's requirement to use shm_open(2) in order to use
mmap(2)?

QNX requires that files mapped with mmap(2) be opened using shm_open(2). There are
other places in addition to the environment shared memory regions, where Berkeley DB
tries to memory map files if it can.

The memory pool subsystem normally attempts to use mmap(2) even when using private
memory, as indicated by the DB_PRIVATE flag to DB_ENV->open(). In the case of QNX, if an
application is using private memory, Berkeley DB will not attempt to map the memory and
will instead use the local cache.

5. What are the implications of QNX's mutex implementation using microkernel
resources?

../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 56

On QNX, the primitives implementing mutexes consume system resources. Therefore,
if an application unexpectedly fails, those resources could leak. Berkeley DB solves this
problem by always allocating mutexes in the persistent shared memory regions. Then, if
an application fails, running recovery or explicitly removing the database environment by
calling the DB_ENV->remove() method will allow Berkeley DB to release those previously
held mutex resources. If an application specifies the DB_PRIVATE flag (choosing not to use
persistent shared memory), and then fails, mutexes allocated in that private memory may
leak their underlying system resources. Therefore, the DB_PRIVATE flag should be used
with caution on QNX.

6. The make clean command fails to execute when building the Berkeley DB SQL
interface.

Remove the build directory manually to clean up and proceed.

SCO

1. If I build with gcc, programs such as db_dump and db_stat core dump immediately
when invoked.

We suspect gcc or the runtime loader may have a bug, but we haven't tracked it down. If
you want to use gcc, we suggest building static libraries.

Solaris

1. I can't compile and run multithreaded applications.

Special compile-time flags and additional libraries are required when compiling threaded
applications on Solaris. If you are compiling a threaded application, you must compile
with the D_REENTRANT flag and link with the libpthread.a or libthread.a libraries:

cc -mt ...
cc -D_REENTRANT ... -lthread
cc -D_REENTRANT ... -lpthread

The Berkeley DB library will automatically build with the correct options.

2. I've installed gcc on my Solaris system, but configuration fails because the compiler
doesn't work.

On some versions of Solaris, there is a cc executable in the user's path, but all it does is
display an error message and fail:

% which cc
/usr/ucb/cc
% cc
/usr/ucb/cc: language optional software package not installed

Because Berkeley DB always uses the native compiler in preference to gcc, this is a fatal
error. If the error message you are seeing is the following, then this may be the problem:

../api_reference/C/envremove.html
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html#envopen_DB_PRIVATE

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 57

checking whether the C compiler (cc -O) works... no
configure: error: installation or configuration problem: C compiler
cannot create executables.

The simplest workaround is to set your CC environment variable to the system compiler
and reconfigure; for example:

env CC=gcc ../dist/configure

If you are using the --configure-cxx option, you may also want to specify a C++ compiler,
for example the following:

env CC=gcc CCC=g++ ../dist/configure

3. I see the error "libc internal error: _rmutex_unlock: rmutex not held", followed by a
core dump when running threaded or JAVA programs.

This is a known bug in Solaris 2.5 and it is fixed by Sun patch 103187-25.

4. I see error reports of nonexistent files, corrupted metadata pages and core dumps.

Solaris 7 contains a bug in the threading libraries (-lpthread, -lthread), which causes the
wrong version of the pwrite routine to be linked into the application if the thread library
is linked in after the C library. The result will be that the pwrite function is called rather
than the pwrite64. To work around the problem, use an explicit link order when creating
your application.

Sun Microsystems is tracking this problem with Bug Id's 4291109 and 4267207, and patch
106980-09 to Solaris 7 fixes the problem:

Bug Id: 4291109
Duplicate of: 4267207
Category: library
Subcategory: libthread
State: closed
Synopsis: pwrite64 mapped to pwrite
Description:
When libthread is linked after libc, there is a table of functions in
libthread that gets "wired into" libc via _libc_threads_interface().
The table in libthread is wrong in both Solaris 7 and on28_35 for the
TI_PWRITE64 row (see near the end).

5. I see corrupted databases when doing hot backups or creating a hot failover archive.

The Solaris cp utility is implemented using the mmap system call, and so writes are
not blocked when it reads database pages. See Berkeley DB recoverability for more
information.

6. Performance is slow and the application is doing a lot of I/O to the disk on which the
database environment's files are stored.

../programmer_reference/transapp_reclimit.html

Building Berkeley DB for UNIX/POSIX

11/8/2010 DB Installation Guide Page 58

By default, Solaris periodically flushes dirty blocks from memory-mapped files to the
backing filesystem. This includes the Berkeley DB database environment's shared memory
regions and can affect Berkeley DB performance. Workarounds include creating the
shared regions in system shared memory (DB_SYSTEM_MEM) or application private memory
(DB_PRIVATE), or configuring Solaris to not flush memory-mapped pages. For more
information, see the "Solaris Tunable Parameters Reference Manual: fsflush and Related
Tunables".

7. I see errors about "open64" when building Berkeley DB applications.

System include files (most commonly fcntl.h) in some releases of AIX, HP-UX and Solaris
redefine "open" when large-file support is enabled for applications. This causes problems
when compiling applications because "open" is a method in the Berkeley DB APIs. To work
around this problem:

a. Avoid including the problematical system include files in source code files which also
include Berkeley DB include files and call into the Berkeley DB API.

b. Before building Berkeley DB, modify the generated include file db.h to itself include
the problematical system include files.

c. Turn off Berkeley DB large-file support by specifying the --disable-largefile
configuration option and rebuilding.

SunOS

1. I can't specify the DB_SYSTEM_MEM flag to DB_ENV->open().

The shmget(2) interfaces are not used on SunOS releases prior to 5.0, even though they
apparently exist, because the distributed include files did not allow them to be compiled.
For this reason, it will not be possible to specify the DB_SYSTEM_MEM flag to those
versions of SunOS.

Ultrix

1. Configuration complains that mmap(2) interfaces aren't being used.

The mmap(2) interfaces are not used on Ultrix, even though they exist, because they are
known to not work correctly.

../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM

11/8/2010 DB Installation Guide Page 59

Chapter 7. Building Berkeley DB for VxWorks

Building for VxWorks 5.4 and 5.5

The build_vxworks directory in the Berkeley DB distribution contains a workspace and project
files for Tornado 2.0/VxWorks 5.4 and Tornado 2.2/VxWorks 5.5.

File Description

BerkeleyDB20.wsp Berkeley DB Workspace file for Tornado 2.0

BerkeleyDB20.wpj Berkeley DB Project file for Tornado 2.0

BerkeleyDB22.wsp Berkeley DB Workspace file for Tornado 2.2

BerkeleyDB22.wpj Berkeley DB Project file for Tornado 2.2

dbdemo/dbdemo20.wpj VxWorks notes (page 61) project file for
Tornado 2.0

dbdemo/dbdemo22.wpj VxWorks notes (page 61) project file for
Tornado 2.2

db_*/*20.wpj VxWorks notes (page 61) project files for
Tornado 2.0

db_*/*22.wpj VxWorks notes (page 61) project files for
Tornado 2.2

Building With Tornado 2.0 or Tornado 2.2

Open the workspace BerkeleyDB20.wsp or BerkeleyDB22.wsp. The list of projects in this
workspace will be shown. These projects were created for the x86 BSP for VxWorks.

The remainder of this document assumes that you already have a VxWorks target and a target
server, both up and running. It also assumes that your VxWorks image is configured properly
for your needs. It also assumes that you have an acceptable file system already available. See
VxWorks FAQ (page 62) for more information about file system requirements. See VxWorks
notes (page 61) for more information about building a small footprint version of Berkeley
DB.

First, you need to set the include directories. To do this, go to the Builds tab for the
workspace. Open up Berkeley DB Builds. You will see several different builds, containing
different configurations. All of the projects in the Berkeley DB workspace are created to be
downloadable applications.

Build Description

PENTIUM_debug x86 BSP with debugging

PENTIUM_release x86 BSP no debugging

You have to add a new build specification if you use a different BSP, want to add a build for
the simulator or want to customize further. For instance, if you have the Power PC (PPC) BSP,

Building Berkeley DB for VxWorks

11/8/2010 DB Installation Guide Page 60

you need to add a new build for the PPC tool chain. To do so, select the "Builds" tab, select
the Berkeley DB project name, and right-click. Choose the New Build... selection and create
the new build target. For your new build target, you need to decide whether it should be built
for debugging. See the properties of the Pentium builds for ways to configure for each case.
After you add this build you, you still need to configure correctly the include directories, as
described in the sections that follow.

If you are running with a different BSP, you should remove the build specifications that do
not apply to your hardware. We recommend that you do this after you configure any new
build specifications first. The Tornado tools will get confused if you have a PENTIUMgnu build
specification for a PPC BSP, for instance.

Select the build you are interested in, and right-click. Choose the Properties... selection. At
this point, a tabbed dialog should appear. In this new window, choose the C/C++ compiler
tab. In the edit box, you need to modify the full pathname of the build_vxworks subdirectory
of Berkeley DB, followed by the full pathname of Berkeley DB. Then, click OK. Note that
some versions of Tornado (such as the version for Windows) do not correctly handle relative
pathnames in the include paths.

To build and download the Berkeley DB downloadable application for the first time requires
several steps:

1. Select the build you are interested in, and right-click. Choose the Set... as Active Build
selection.

2. Select the build you are interested in, and right-click. Choose the Dependencies...
selection. Run dependencies over all files in the Berkeley DB project.

3. Select the build you are interested in, and right-click. Choose the Rebuild All (Berkeley
DB.out) selection.

4. Select the Berkeley DB project name, and right-click. Choose the Download "Berkeley
DB.out" selection.

Note that the output file listed about will really be listed as BerkeleyDB20.out or
BerkeleyDB22.out depending on which version of Tornado you are running. You need to repeat
this procedure for all builds you are interested in building, as well as for all of the utility
project builds you want to run.

Building for VxWorks 6.x

Building With Wind River Workbench using the Makefile

In VxWorks6.x, developers use Wind River Workbench for software development. Two
makefiles are provided in the db/build_vxworks directory. Use them to build Berkeley DB or
Berkeley DB small build, using the build chain provided with Wind River Workbench.

We assume that you have installed all necessary VxWorks6.x software including the Wind River
Workbench, and that you know how to use it.

Use the following steps to build Berkeley DB:

Building Berkeley DB for VxWorks

11/8/2010 DB Installation Guide Page 61

1. Setting variables in the Makefile. Open the Makefile and modify the BDB_ROOT variable to
the path of your Berkeley DB source tree's root directory. You may need to set other variables
when you build on different platforms, such as BUILD_SPEC, DEBUG_MODE, PROJECT_TYPE,
CC_ARCH_SPEC, VXVER, build tool flags, and BUILD_SPEC specific settings. Please refer to the
documentation of the Workbench for a complete list of available values of each variable. You
can also find out the list of values by creating a project using the Workbench. Each variable's
available values will be listed in the GUI window which assigns values to that variable.

2. Make sure "make" can be found. Basically you need to set the make utility's path to
environment variables.

3. Start up the wrenv utility of the Wind River Workbench.

4. In the command console, move to the $(BDB_ROOT)/build_vxworks/ directory, rename the
target makefile (Makefile.6x or Makefile.6x.small) to "Makefile", and run "make". The make
process will start and create the directory "bdbvxw". It will contain all intermediate object
files as well as the final built image "bdbvxw.out".

5. After the "bdbvxw.out" image is built, you can use command tools or the Workbench IDE to
download and run it.

6. Test and Verification. There is a dbdemo and test_micro, which you can run to verify
whether everything works fine.

VxWorks notes

Berkeley DB currently disallows the DB_TRUNCATE flag to the DB->open() method on VxWorks
because the operations this flag represents are not fully supported under VxWorks.

The DB->sync() method is implemented using an ioctl call into the file system driver with the
FIOSYNC command. Most, but not all file system drivers support this call. Berkeley DB requires
the use of a file system that supports FIOSYNC.

Building and Running the Demo Program

The demo program should be built in a manner very similar to building Berkeley DB. If you
want different or additional BSP build specifications you should add them by following the
directions indicated in Building for VxWorks 5.4 and 5.5 (page 59).

The demo program can be downloaded and run by calling the entry function dbdemo with the
pathname of a database to use. The demo program will ask for some input keys. It creates
a database and adds those keys into the database, using the reverse of the key as the data
value. When complete you can either enter EOF (control-D) or quit and the demo program will
display all of the key/data items in the database.

Building and Running the Utility Programs

The Berkeley DB utilities can be downloaded and run by calling the function equivalent to
the utility's name. The utility functions take a string containing all the supported arguments.
The program will then decompose that string into a traditional argc/argv used internally.
For example, to execute db_stat utility on a database within an environment you would

../api_reference/C/dbopen.html#open_DB_TRUNCATE
../api_reference/C/dbopen.html
../api_reference/C/dbsync.html
../api_reference/C/db_stat.html

Building Berkeley DB for VxWorks

11/8/2010 DB Installation Guide Page 62

execute the following from the windsh prompt. Obviously you would change the pathname and
database name to reflect your system.
> db_stat "-h /tmp/myenvhome -d mydatabase.db"

VxWorks 5.4/5.5: shared memory

The memory on VxWorks is always resident and fully shared among all tasks running on the
target. For this reason, the DB_LOCKDOWN flag has no effect and the DB_SYSTEM_MEM
flag is implied for any application that does not specify the DB_PRIVATE flag. Note that the
DB_SYSTEM_MEM flag requires all applications use a segment ID to ensure the applications do
not overwrite each other's database environments: see the DB_ENV->set_shm_key() method
for more information.

VxWorks 5.4/5.5: building a small memory footprint library

A default small footprint build is provided. This default provides equivalent to the --enable-
smallbuild configuration option described in Building a small memory footprint library (page
41). In order to build the small footprint, you should move db_config.h aside and copy
db_config_small.h to db_config.h. Then open up the appropriate small workspace file via
Tornado and build as usual.

Support for Replication Manager

The Berkeley DB Replication Manager component is available on Vxworks 6.x because it
provides support for TCP/IP sockets and POSIX 1003.1 style networking and threads. You
must build Berkley DB for Vxworks using the command line. Prior to building Berkeley DB,
ensure you set appropriate values for the variables specified in Step 1 of Building for VxWorks
6.x (page 60). To use Berkeley DB Replication Manager, netLib and ioLib must be present
in the Vxworks image.

To use the Berkeley DB on Vxworks 5.x, make the following manual changes.

• Undefine the HAVE_GETADDRINFO, HAVE_REPLICATION_THREADS, and HAVE_SYS_SOCKET_H
macros in the Berkeley DB include files db_config.h and db_config_small.h.

• Remove this line: #include <pthread.h>, present in the Berkeley DB include file db.h.

VxWorks FAQ

• I get the error "Workspace open failed: This project workspace is an older format.",
when trying to open the supplied workspace on Tornado 2.0 under Windows.

This error will occur if the files were extracted in a manner that adds a CR/LF to lines
in the file. Make sure that you download the Berkeley DB ".zip" version of the Berkeley
DB distribution, and, when extracting the Berkeley DB sources, that you use an unzipper
program that will not do any conversion.

• I sometimes see spurious output errors about temporary directories.

These messages are coming from the stat(2) function call in VxWorks. Unlike other
systems, there may not be a well known temporary directory on the target. Therefore, we

../api_reference/C/envopen.html#envopen_DB_LOCKDOWN
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envset_shm_key.html

Building Berkeley DB for VxWorks

11/8/2010 DB Installation Guide Page 63

highly recommend that all applications use DB_ENV->set_tmp_dir() to specify a temporary
directory for the application.

• How can I build Berkeley DB without using Tornado?

The simplest way to build Berkeley DB without using Tornado is to configure Berkeley DB on
a UNIX system, and then use the Makefile and include files generated by that configuration
as the starting point for your build. The Makefile and include files are created during
configuration, in the current directory, based on your configuration decisions (for example,
debugging vs. non-debugging builds), so you'll need to configure the system for the way you
want Berkeley DB to be built.

Additionally, you'll need to account for the slight difference between the set of source
files used in a UNIX build and the set used in a VxWorks build. You can use the following
command to create a list of the Berkeley DB VxWorks files. The commands assume you are
in the build_vxworks directory of the Berkeley DB distribution:

% cat > /tmp/files.sed
s/<BEGIN> FILE_//
s/_objects//
^D
% grep FILE_ BerkeleyDB.wpj | grep _objects | sed -f /tmp/files.sed \
> /tmp/db.files

You will then have a template Makefile and include files, and a list of VxWorks-specific
source files. You will need to convert this Makefile and list of files into a form that is
acceptable to your specific build environment.

• Does Berkeley DB use floating point registers?

Yes, there are a few places in Berkeley DB where floating point computations are
performed. As a result, all applications that call taskSpawn should specify the VX_FP_TASK
option.

• Can I run the test suite under VxWorks?

The test suite requires the Berkeley DB Tcl library. In turn, this library requires Tcl 8.4 or
greater. In order to run the test suite, you would need to port Tcl 8.4 or greater to VxWorks.
The Tcl shell included in windsh is not adequate for two reasons. First, it is based on Tcl 8.0.
Second, it does not include the necessary Tcl components for adding a Tcl extension.

• Are all Berkeley DB features available for VxWorks?

All Berkeley DB features are available for VxWorks with the exception of the DB_TRUNCATE
flag for DB->open(). The underlying mechanism needed for that flag is not available
consistently across different file systems for VxWorks.

• Are there any constraints using particular filesystem drivers?

There are constraints using the dosFs filesystems with Berkeley DB. Namely, you must
configure your dosFs filesystem to support long filenames if you are using Berkeley DB
logging in your application. The VxWorks' dosFs 1.0 filesystem, by default, uses the old MS-

../api_reference/C/envset_tmp_dir.html
../api_reference/C/dbopen.html#open_DB_TRUNCATE
../api_reference/C/dbopen.html

Building Berkeley DB for VxWorks

11/8/2010 DB Installation Guide Page 64

DOS 8.3 file-naming constraints, restricting to 8 character filenames with a 3 character
extension. If you have configured with VxWorks' dosFs 2.0 you should be compatible with
Windows FAT32 filesystems which supports long filenames.

• Are there any dependencies on particular filesystem drivers?

There is one dependency on specifics of filesystem drivers in the port of Berkeley DB to
VxWorks. Berkeley DB synchronizes data using the FIOSYNC function to ioctl() (another
option would have been to use the FIOFLUSH function instead). The FIOSYNC function was
chosen because the NFS client driver, nfsDrv, only supports it and doesn't support FIOFLUSH.
All local file systems, as of VxWorks 5.4, support FIOSYNC -- with the exception of rt11fsLib,
which only supports FIOFLUSH. To use rt11fsLib, you will need to modify the os/os_fsync.c
file to use the FIOFLUSH function; note that rt11fsLib cannot work with NFS clients.

• Are there any known filesystem problems?

During the course of our internal testing, we came across three problems with the dosFs
2.0 filesystem that warranted patches from Wind River Systems. We strongly recommend
you upgrade to dosFs 2.2, SPR 79795 (x86) and SPR 79569 (PPC) which fixes all of these
problems and many more. You should ask Wind River Systems for the patches to these
problems if you encounter them and are unable to upgrade to dosFs 2.2.

The first problem is that files will seem to disappear. You should look at SPR 31480 in the
Wind River Systems' Support pages for a more detailed description of this problem.

The second problem is a semaphore deadlock within the dosFs filesystem code. Looking at
a stack trace via CrossWind, you will see two or more of your application's tasks waiting in
semaphore code within dosFs. The patch for this problem is under SPR 33221 at Wind River
Systems. There are several SPR numbers at Wind River Systems that refer to this particular
problem.

The third problem is that all tasks will hang on a dosFs semaphore. You should look at SPR
72063 in the Wind River Systems' Support pages for a more detailed description of this
problem.

• Are there any filesystems I cannot use?

Currently both the Target Server File System (TSFS) and NFS are not able to be used.

The Target Server File System (TSFS) uses the netDrv driver. This driver does not support any
ioctl that allows flushing to the disk, nor does it allow renaming of files via FIORENAME. The
NFS file system uses nfsDrv and that driver does not support FIORENAME and cannot be used
with Berkeley DB.

• What VxWorks primitives are used for mutual exclusion in Berkeley DB?

Mutexes inside of Berkeley DB use the basic binary semaphores in VxWorks. The mutexes are
created using the FIFO queue type.

• What are the implications of VxWorks' mutex implementation using microkernel
resources?

Building Berkeley DB for VxWorks

11/8/2010 DB Installation Guide Page 65

On VxWorks, the semaphore primitives implementing mutexes consume system resources.
Therefore, if an application unexpectedly fails, those resources could leak. Berkeley
DB solves this problem by always allocating mutexes in the persistent shared memory
regions. Then, if an application fails, running recovery or explicitly removing the database
environment by calling the DB_ENV->remove() method will allow Berkeley DB to release
those previously held mutex resources. If an application specifies the DB_PRIVATE flag
(choosing not to use persistent shared memory), and then fails, mutexes allocated in that
private memory may leak their underlying system resources. Therefore, the DB_ENV->open()
flag should be used with caution on VxWorks.

../api_reference/C/envremove.html
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html

11/8/2010 DB Installation Guide Page 66

Chapter 8. Upgrading from previous versions of
Berkeley DB

Library version information

Each release of the Berkeley DB library has a major version number, a minor version number,
and a patch number.

The major version number changes only when major portions of the Berkeley DB functionality
have been changed. In this case, it may be necessary to significantly modify applications in
order to upgrade them to use the new version of the library.

The minor version number changes when Berkeley DB interfaces have changed, and the new
release is not entirely backward-compatible with previous releases. To upgrade applications
to the new version, they must be recompiled and potentially, minor modifications made (for
example, the order of arguments to a function might have changed).

The patch number changes on each release. If only the patch number has changed in a
release, applications do not need to be recompiled, and they can be upgraded to the new
version by installing the new version of a shared library or by relinking the application to the
new version of a static library.

Internal Berkeley DB interfaces may change at any time and during any release, without
warning. This means that the library must be entirely recompiled and reinstalled when
upgrading to new releases of the library because there is no guarantee that modules from the
current version of the library will interact correctly with modules from a previous release.

To retrieve the Berkeley DB version information, applications should use the DB_ENV-
>version() function. In addition to the previous information, the DB_ENV->version() function
returns a string encapsulating the version information, suitable for display to a user.

Upgrading Berkeley DB installations

The following information describes the general process of upgrading Berkeley DB
installations. There are four areas to be considered when upgrading Berkeley DB applications
and database environments: the application API, the database environment's region files, the
underlying database formats, and, in the case of transactional database environments, the
log files. The upgrade procedures required depend on whether or not the release is a major
or minor release (in which either the major or minor number of the version changed), or a
patch release (in which only the patch number in the version changed). Berkeley DB major and
minor releases may optionally include changes in all four areas, that is, the application API,
region files, database formats, and log files may not be backward-compatible with previous
releases.

Each Berkeley DB major or minor release has information in this chapter of the Reference
Guide, describing how to upgrade to the new release. The section describes any API changes
made in the release. Application maintainers should review the API changes and update
their applications as necessary before recompiling with the new release. In addition, each

../api_reference/C/envversion.html
../api_reference/C/envversion.html
../api_reference/C/envversion.html

Upgrading from previous versions of Berkeley DB

11/8/2010 DB Installation Guide Page 67

section includes a page specifying whether the log file format or database formats changed in
non-backward-compatible ways as part of the release. Because there are several underlying
Berkeley DB database formats, and they do not all necessarily change in the same release,
changes to a database format in a release may not affect any particular application. Further,
database and log file formats may have changed but be entirely backward-compatible, in
which case no upgrade will be necessary.

A Berkeley DB patch release will never modify the API, regions, log files, or database formats
in incompatible ways, and so applications need only be relinked (or, in the case of a shared
library, pointed at the new version of the shared library) to upgrade to a new release. Note
that internal Berkeley DB interfaces may change at any time and in any release (including
patch releases) without warning. This means the library must be entirely recompiled and
reinstalled when upgrading to new releases of the library because there is no guarantee that
modules from one version of the library will interact correctly with modules from another
release. We recommend using the same compiler release when building patch releases as was
used to build the original release; in the default configuration, the Berkeley DB library shares
data structures from underlying shared memory between threads of control, and should the
compiler re-order fields or otherwise change those data structures between the two builds,
errors may result.

If the release is a patch release, do the following:

1. Shut down the old version of the application.

2. Install the new version of the application by relinking or installing a new version of the
Berkeley DB shared library.

3. Restart the application.

Otherwise, if the application does not have a Berkeley DB transactional environment, the
application may be installed in the field using the following steps:

1. Shut down the old version of the application.

2. Remove any Berkeley DB environment using the DB_ENV->remove() method or an
appropriate system utility.

3. Recompile and install the new version of the application.

4. If necessary, upgrade the application's databases. See Database upgrade for more
information.

5. Restart the application.

Otherwise, if the application has a Berkeley DB transactional environment, but neither the log
file nor database formats need upgrading, the application may be installed in the field using
the following steps:

1. Shut down the old version of the application.

2. Run recovery on the database environment using the DB_ENV->open() method or the
db_recover utility.

../api_reference/C/envremove.html
../programmer_reference/am_upgrade.html
../api_reference/C/envopen.html
../api_reference/C/db_recover.html

Upgrading from previous versions of Berkeley DB

11/8/2010 DB Installation Guide Page 68

3. Remove any Berkeley DB environment using the DB_ENV->remove() method or an
appropriate system utility.

4. Recompile and install the new version of the application.

5. Restart the application.

If the application has a Berkeley DB transactional environment, and the log files need
upgrading but the databases do not, the application may be installed in the field using the
following steps:

1. Shut down the old version of the application.

2. Still using the old version of Berkeley DB, run recovery on the database environment using
the DB_ENV->open() method, or the db_recover utility.

3. If you used the DB_ENV->open() method to run recovery, make sure that the Berkeley DB
environment is removed using the DB_ENV->remove() method or an appropriate system
utility.

4. Archive the database environment for catastrophic recovery. See Database and log file
archival for more information.

5. Recompile and install the new version of the application.

6. Force a checkpoint using the DB_ENV->txn_checkpoint() method or the db_checkpoint
utility. If you use the db_checkpoint utility, make sure to use the new version of the
utility; that is, the version that came with the release of Berkeley DB to which you are
upgrading.

7. Remove unnecessary log files from the environment using the -d option on the db_archive
utility, or from an application which calls the DB_ENV->log_archive() method with the
DB_ARCH_REMOVE flag.

Note that if you are upgrading a replicated application, then you should not perform
this step until all of the replication sites have been upgraded to the current release
level. If you run this site before all your sites are upgraded, then errors can occur in your
replication activities because important version information might be lost.

8. Restart the application.

Otherwise, if the application has a Berkeley DB transactional environment and the databases
need upgrading, the application may be installed in the field using the following steps:

1. Shut down the old version of the application.

2. Still using the old version of Berkeley DB, run recovery on the database environment using
the DB_ENV->open() method, or the db_recover utility.

3. If you used the DB_ENV->open() method to run recovery, make sure that the Berkeley DB
environment is removed using the DB_ENV->remove() method or an appropriate system
utility.

../api_reference/C/envremove.html
../api_reference/C/envopen.html
../api_reference/C/db_recover.html
../api_reference/C/envopen.html
../api_reference/C/envremove.html
../programmer_reference/transapp_archival.html
../programmer_reference/transapp_archival.html
../api_reference/C/txncheckpoint.html
../api_reference/C/db_checkpoint.html
../api_reference/C/db_checkpoint.html
../api_reference/C/db_checkpoint.html
../api_reference/C/db_archive.html
../api_reference/C/db_archive.html
../api_reference/C/logarchive.html
../api_reference/C/logarchive.html#archive_DB_ARCH_REMOVE
../api_reference/C/envopen.html
../api_reference/C/db_recover.html
../api_reference/C/envopen.html
../api_reference/C/envremove.html

Upgrading from previous versions of Berkeley DB

11/8/2010 DB Installation Guide Page 69

4. Archive the database environment for catastrophic recovery. See Database and log file
archival for more information.

5. Recompile and install the new version of the application.

6. Upgrade the application's databases. See Database upgrade for more information.

7. Archive the database for catastrophic recovery again (using different media than before,
of course). Note: This archival is not strictly necessary. However, if you have to perform
catastrophic recovery after restarting the application, that recovery must be done based
on the last archive you have made. If you make this second archive, you can use it as the
basis of that catastrophic recovery. If you do not make this second archive, you have to
use the archive you made in step 4 as the basis of your recovery, and you have to do a full
upgrade on it before you can apply log files created after the upgrade to it.

8. Force a checkpoint using the DB_ENV->txn_checkpoint() method or the db_checkpoint
utility. If you use the db_checkpoint utility, make sure to use the new version of the
utility; that is, the version that came with the release of Berkeley DB to which you are
upgrading.

9. Remove unnecessary log files from the environment using the -d option on the db_archive
utility, or from an application which calls the DB_ENV->log_archive() method with the
DB_ARCH_REMOVE flag.

Note that if you are upgrading a replicated application, then you should not perform
this step until all of the replication sites have been upgraded to the current release
level. If you run this site before all your sites are upgraded, then errors can occur in your
replication activities because important version information might be lost.

10. Restart the application.

Finally, Berkeley DB supports the live upgrade of a replication group, by allowing mixed
version operation (replication sites running at the newer software version can inter-operate
with older version sites). All client sites must be upgraded first; the master site must be
upgraded last. In other words, at all times the master must be running the lowest version of
Berkeley DB. To upgrade a replication group, you must:

1. Bring all clients up to date with the master (that is, all clients must be brought up to the
most current log record as measured by the master's log sequence number (LSN)).

2. Perform the upgrade procedures described previously on each of the individual database
environments that are part of the replication group. Each individual client may be
upgraded and restarted to join the replication group.

3. Shut down the master site and upgrade that site last.

During live replication upgrade, while sites are running at different versions, adding new
(empty) clients to the replication group is not allowed. Those empty client environments must
be added after the entire group is upgraded.

Also, all removal of log files must be suspended throughout this entire procedure, so that
there is no chance of a client needing internal initialization.

../programmer_reference/transapp_archival.html
../programmer_reference/transapp_archival.html
../programmer_reference/am_upgrade.html
../api_reference/C/txncheckpoint.html
../api_reference/C/db_checkpoint.html
../api_reference/C/db_checkpoint.html
../api_reference/C/db_checkpoint.html
../api_reference/C/db_archive.html
../api_reference/C/db_archive.html
../api_reference/C/logarchive.html
../api_reference/C/logarchive.html#archive_DB_ARCH_REMOVE

Upgrading from previous versions of Berkeley DB

11/8/2010 DB Installation Guide Page 70

Alternatively, it may be simpler to discard the contents of all of the client database
environments, upgrade the master database environment, and then re-add all of the clients to
the replication group using the standard replication procedures for new sites.

11/8/2010 DB Installation Guide Page 71

Chapter 9. Upgrading Berkeley DB 4.8
applications to Berkeley DB 11gR2

Introduction

The following pages describe how to upgrade applications coded against the Berkeley DB 4.8
release interfaces to the Berkeley DB 11g Release 2 interfaces. (Library version 11.2.5.0). This
information does not describe how to upgrade Berkeley DB 1.85 release applications.

db_sql Renamed to db_sql_codegen

The db_sql utility is now called db_sql_codegen. This command line utility is not built by
default. To build db_sql_codegen, specify --enable-sql_codegen when configuring Berkeley
DB.

DB_REP_CONF_NOAUTOINIT Replaced

In this release, the DB_REP_CONF_NOAUTOINIT flag is replaced by the DB_REP_CONF_AUTOINIT
flag. This option is ON by default. To turn off automatic internal initialization, call the
DB_ENV->rep_set_config method with the which parameter set to DB_REP_CONF_AUTOINIT
and the onoff parameter set to zero.

Support for Multiple Client-to-Client Peers

A Berkeley DB Replication Manager application can now designate one or more remote sites
(called its "peers") to receive client-to-client requests.

In previous releases, there could be only one peer at a time. If you called the DB_ENV-
>repmgr_add_remote_site method specifying site "A" as a peer and you made another call
specifying site "B" as a peer, site "B" would become the only peer, and site "A" would no longer
be a peer.

Starting with Berkeley DB 11gR2, the same sequence of calls results in both site "A" and site
"B" being possible peers. Replication Manager may select any of a site's possible peers to use
for client-to-client requests. If the first peer that the Replication Manager selects cannot be
used (for example, it is unavailable or it is the current master), Replication Manager attempts
to use a different peer if there is more than one peer.

To get the pre-11gR2 peer behavior in this example, you must make an additional call to the
DB_ENV->repmgr_add_remote_site method, specifying site "A" and a flag value that excludes
the DB_REPMGR_PEER bit value to remove site "A" as a possible peer.

Cryptography Support

In this release, the configuration options, --disable-cryptography and --enable-cryptography
are deprecated. --disable-cryptography is replaced by --with-cryptography=no and --enable-
cryptography is replaced by --with-cryptography=yes.

Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11gR2

11/8/2010 DB Installation Guide Page 72

To build Berkeley DB with support for cryptography, enter --with-cryptography=yes as an
argument to configure instead of --enable-cryptography.

To build Berkeley DB without support for cryptography, enter --with-cryptography=no as an
argument to configure instead of --disable-cryptography.

Berkeley DB now supports encryption using Intel's Performance Primitive (IPP) on Linux. To
build Berkeley DB with support for cryptography using Intel's Performance Primitive (IPP)
library, enter --with-cryptography=ipp as an argument to configure.

Note: The --with-cryptography=ipp argument works only on Linux.

DB_NOSYNC Flag to Flush Files

Applications must now pass the DB_NOSYNC flag to the methods - DB->remove, DB->rename,
DB_ENV->dbremove, and DB_ENV->dbrename, to avoid a multi-database file to be flushed
from cache. This flag is applicable if you have created the database handle in a non-
transactional environment.

By default, all non-transactional database remove/rename operations cause data to be synced
to disk. This can now be overridden using the DB_NOSYNC flag so that files can be accessed
outside the environment after the database handles are closed.

Dropped Support

Berkeley DB no longer supports Visual Studio 6.0. The earliest version supported is Visual
Studio 2005. The build files for Windows Visual Studio 6.0 are removed.

Berkeley DB no longer supports Win9X, Windows Me (Millenium edition), and Windows NT 4.0.
The minimum supported windows platform is Windows 2000.

Changing Stack Size

Prior to the 11gR2 release, Berkeley DB limited the stack size for threads it created using
the POSIX thread API to 128 KB for 32-bit platforms and 256 KB for 64-bit platforms. In this
release, the system default stack size is used unless you run the Berkeley DB configure script
with the --with-stacksize=SIZE argument to override the default.

Berkeley DB 11g Release 2 Change Log

Changes between 11.2.5.0.26 and 11.2.5.0.32

1. Added Visual Studio 2010 support. Users can find Visual Studio 2010 solutions and projects
on build_windows. [#18889]

2. Fixed a leak of log file ids when a database is closed before the end of a transaction that
references it. [#15957]

3. Fixed a race condition that was causing an "unable to allocate space from the buffer
cache" error. The error can only be triggered when multiple mpool regions are used

Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11gR2

11/8/2010 DB Installation Guide Page 73

and there is a periodic gathering and clearing of statistics. This also fixes a second bug
where if you compile without statistics and explicitly set the mpool default pagesize,
other environment handles to that environment would not see the correct mpool default
pagesize. [#18386]

4. Fix failure to flush pages to disk. [#18760]

5. Fix a general I/O problem on Windows where system doesn't always return ENOENT when
file is missing. [#18762]

6. Fixed locking bugs: [#18789]

• Db->compact of BTREE with MVCC could return an unpinned page.

• RECNO would fail to lock the next page when splitting a leaf page.

7. Don't await ack if message not sent due to queue limit exceeded. [#18682]

8. Fixed a bug that could cause data to not be returned in a HASH database that was one
of multiple databases in a file and it was opened prior to running DB->compact on that
database in another thread of control [#18824]

9. Return HANDLE_DEAD on cursor creation that names a specific txn after client callback.
[#18862]

10. Remove parting_shot rep_start(CLIENT) in election thread because it can occasionally
conflict with rep_start(MASTER) in another thread. [#18946]

11. Fixed a bug that would cause handle locks to be left referencing the wrong metadata
page if DB->compact moved the metadata page of a sub-database. [#18944]

12. Fixed a bug that might cause an update to a HASH database to fail with an "unpinned page
returned" error if it first gets an I/O error while logging. [#18985]

13. Fixed a bug that failed to dirty a page when DB->compact moved records within a hash
bucket [#18994]

14. Fixed a bug in page allocation where if a non-transactional update was being done, then
we release the metadata page lock too early possibly leading to the corruption of the in
memory page list used by DB->compact. [#19036]

15. A log write failure on a replication master will now cause a panic since the transaction
may be committed on some clients. [#19054]

16. Removed the possibility that checkpoints will overlap in the log, decreasing the time to
recover [#19062]

17. Fixed a bug that could leave a hash bucket overflow page not linked to the bucket if the
unlink of that page aborted. [#19001]

18. Fixed a bug that would leave the next page pointer of a hash bucket that was removed
pointing to an invalid page. [#19004]

Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11gR2

11/8/2010 DB Installation Guide Page 74

19. Fixed several bugs that could cause an update running with MVCC to get the wrong version
of a page or improperly update the metadata last page number. [#19063]

20. Fixed a bug where an error during an update to a hash database with DB_NOOVERWRITE
set could return DB_KEYEXIST rather than the correct error. [#19077]

21. Fixed a bug where an updater supporting DB_READ_UNCOMMITED might downgrade its
lock too soon if there was an error during the update [#19155]

22. Fixed a bug that could cause the wrong page number to be on a root or metadata page if
DB->compact moved the page and the operation was later rolled forward [#19167]

23. Fixed a bug that could cause the close of a secondary index database to fail if the
transaction doing the open aborted [#19169]

24. The database open code will no longer log the open and close of the master database in a
file when opening a sub database in that file [#19071]

Changes between 11.2.5.0.21 and 11.2.5.0.26

1. Fixed a bug that might cause recovery to fail if processed part of the log that had
previously been recovered and a database which was not present was opened in the log
and not closed. [#18459]

2. Fixed a bug which could occur when using bulk transfer with Replication Manager. When
closing a DB_ENV handle, any remaining bulk buffer contents are flushed, and Replication
Manager could have tried to send the resulting messages even though its connections had
already been closed, leading in rare circumstances to spurious EBADF error reports, or
possibly even arbitrary memory corruption. [#18469]

3. Fixed a bug in C# HasMultiple() that this function always throws exceptions when there
are multiple databases in a single db file. [#18483]

4. Fixed the '--enable-dbm' argument to configure. [#18497]

5. Fixed a bug in the Java API where populating a SecondaryDatabase on open could lead to
an OutOfMemoryException. [#18529]

6. Fixed a bug where DB SQL reports "The database disk image is malformed" in "group by"
operations. [#18531]

7. Fixed a bug that prevented the same process from reconnecting to the database when
DB_REGISTER is being used. [#18535]

8. Fix a race between opening and closing SQL databases from multiple threads that
could lead to the error "DB_REGISTER limits processes to one open DB_ENV handle per
environment". [#18538]

9. Fixed some bugs that could cause a panic or a DB_RUN_RECOVERY error if the sync of the
transaction log failed. [#18588]

10. Fixed a bug which would occur when recovery checkpoint was not written because the
cache ran out of space attempting to flush the mpool cache. The environment was

Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11gR2

11/8/2010 DB Installation Guide Page 75

recovered and all database where made available, but some databases were incorrectly
closed. This would cause a subsequent recovery to fail on its backward pass with the error
"PANIC: No such file or directory". [#18590]

11. Fixed a bug that segementation fault would occur if DB->set_partition_dirs was called
before DB->set_partition. [#18591]

12. Fixed a bug that the error of "unknown path" would occur if putting duplicate records to
duplicated sorted hash database with DB_OVERWRITE_DUP.[#18607]

13. Fixed a bug where DatabaseConfig.getUnsortedDuplicates() returned true when the
datbase had been configured for sorted duplicates. [#18612]

14. Fixed a bug that could cause recovery to fail with the error "DB_LOGC->get: log record
LSN %u/%u: checksum mismatch" if the last log file was nearly full and ended with a
partially written log record which was smaller than a checkpoint record. It now erases the
invalid partial record before switching to the new log file. [#18651]

15. Initialize DatabaseConfig.pageSize so that it can be queried from Java. [#18691]

16. Fixed a bug that might cause an aborting transaction to fail if it aborted while a DB-
>compact of the same HASH database was compacting the dynamic hash table [#18695]

Changes between 4.8 and 11.2.5.0.21

Database or Log File On-Disk Format Changes

1. The log file format changed in 11.2.5.0.21

New Features

1. Replication Manager sites can specify one or more possible client-to-client peers. [#14776]

2. Added resource management feature in all Berkeley DB APIs to automatically manage
cursor and database handles by closing them when they are not required, if they are not
yet closed.[#16188]

3. Added a SQL interface to the Berkeley DB library. The interface is based on - and a drop-
in-replacement for - the SQLite API. It can be accessed via a command line utility, a C
API, or existing APIs built for SQLite. [#16809]

4. Added hash databases support to the DB->compact interface. [#16936]

5. Renamed the "db_sql" utility to "db_sql_codegen". This utility is not built by default. To
build this utility, enter --enable-sql_codegen as an argument to configure. [#18265]

6. Added transactional support in db_sql_codegen utility. Specify TRANSACTIONAL or
NONTRANSACTIONAL in hint comments in SQL statement, db_sql_codegen enable/disable
transaction in generated code accordingly. [#17237]

7. Added the feature read-your-writes consistency that allows client application to check, or
wait for a specific transaction to be replicated from the master before reading database.
[#17323]

Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11gR2

11/8/2010 DB Installation Guide Page 76

8. Added DB log verification feature, accessible via the API and a new utility. This feature
can help debugging and analysis. [#17420]

9. Added support for applications to assign master/client role explicitly at any time.
Replication Manager can now be configured not to initiate elections. [#17484]

10. Enhanced the DB->compact method so that it can reassign metadata and root pages from
subdatabases to lower numbered pages while compacting a database file that contains
multiple databases. This feature helps to free the higher numbered pages and truncate
the file. [#17554]

11. Added system diagnostic messages that are ON by default. [#17561]

12. Added the feature to assign a priority level to transactions. When resolving a deadlock:

• if the transactions have differing priority, the lowest priority transaction is aborted

• if all transactions have the same priority, the same poilcy that existed before priorities
were introduced is used [#17604]

13. Added a feature in which log_archive uses group-wide information for archiving purposes
if Replication Manager is in use. [#17664]

14. Added a feature by which the Replication Manager application clients now automatically
request any missing information, even when there is no master transaction activity.
[#17665]

15. Added support for sharing logs across mixed-endian systems. [#18032]

16. Added an option to specify the first and last pages to the db_dump utility. You can do this
by providing -F and -L flags to the db_dump -d option. [#18072]

17. Added Intel Performance Primitive (IPP) AES encryption support. [#18110]

18. Removed support for the configuration option --with-mutex=UNIX/fcntl as of version 4.8.
If Berkeley DB was configured to use this type of mutex in an earlier release, switch to a
different mutex type or contact Oracle for support. [#18361]

Database Environment Changes

1. Fixed a bug to reflect the correct configuration of the logging subsystem when the
DB_ENV->log_set_config method is called with the DB_LOG_ZERO flag in a situation where
a DB_ENV handle is open and an environment exists. [#17532]

2. Fixed a bug to prevent memory leak caused when the environment is closed by the named
in-memory database in a private database environment which has open named in-memory
databases. [#17816]

3. Fixd a race condition in an internal directory-scanning function that returns the ENOENT
("No such file or directory") error, if a file is removed just before a call to stat() or its
eqivalent. [#17850]

Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11gR2

11/8/2010 DB Installation Guide Page 77

Access Method Changes

1. Fixed a bug to prevent a page in the hash database from carrying the wrong header
information when a group allocation is rolled forward by recovery. [#15414]

2. Improved the sort function for bulk put operations. [#17440]

3. Fixed a bug in the DB->compact method to ensure locking of leaf pages when merging
higher level interior nodes or when freeing interior nodes when descending to find a non-
zero length key. [#17485][#16466]

4. Fixed a bug to prevent a trap if a cursor is opened or closed when another thread is
adjusting cursors due to an update in the same database. [#17602]

5. Fixed a bug that incorrectly lead to the error message "library build did not include
support for the Hash access method" [#17672]

6. Fixed a bug to ensure that the DB->exists method accepts the DB_AUTO_COMMIT flag.
[#17687]

7. In the past, removing a database from a multi-database file that was opened in an
environment always caused dirty pages in the file to be flushed from the cache. In this
release, there is no implicit flush as part of a DB->remove for handles opened in an
environment. Applications that expect the database file to be flushed will need to add an
explicit flush. [#17775]

8. Fixed a bug so that the code does not loop if a DB->compact operation processed a 3 or
more level non-sorted off page duplicate tree. [#17831]

9. Fixed a bug that could leave pages pinned in the cache if an allocation failed during a DB-
>compact operation. [#17845]

10. Fixed a bug to ensure sequences are closed when an EntityStore is closed. [#17951]

11. Fixed a bug that prevented retrieval of a non-duplicate record with DB_GET_BOTH_RANGE
in hash sorted duplicate db. In a database configured with sorted duplicate support, when
the DBcursor->get method is passed the DB_GET_BOTH_RANGE flag, the data item should
be retrieved that is the smallest value greater than or equal to the value provided by the
data parameter (as determined by the comparison function). [#17997]

12. Fixed a bug that causes the wrong file to be removed if multiple cascading renames are
done in the same transaction. [#18069]

13. Fixed a bug to prevent the DB->compact method specified with the DB_AUTO_COMMIT
flag from acquiring too many locks. [#18072]

14. Fixed a bug that might cause DB->compact on a DB_BTREE database to get a spurious
read lock on the metadata page. If the database was opened non-transactionally the lock
would get left behind. [#18257]

15. Fixed a bug that could lead to btree structure corruption if the DB->compact method ran
out of locks [#18361]

Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11gR2

11/8/2010 DB Installation Guide Page 78

16. Fixed a bug that would generate an error if a non-BDB file was used to create a database
and the DB_TRUNCATE flag was specified. [#18373]

17. Fixed a bug that might cause a trap reading unitialized memory when backing out a merge
of a duplicate tree leaf page during DB->compact. [#18461]

Locking Subsystem Changes

1. Fixed a bug to ensure deadlock detection works even when there are blocked
transactions, configured with and without timeouts. [#17555]

2. Fixed a bug to ensure a call to the DB->key_range method from outside a transaction does
not lock pages. [#17930]

3. Fixed a bug that could cause a segmentation fault if the lock manager ran out of mutexes
[#18428]

Logging Subsystem Changes

1. Limited the size of a log record generated by freeing pages from a database, so that it fits
in the log file size. [#17313]

Memory Pool Subsystem Changes

1. Fixed a bug to ensure mulitple versions of a buffer are not created when MVCC is not set.
[#17495]

2. Fixed a bug to detect if cache size is being set when the cache is not configured. [#17556]

3. Fixed a bug to ensure the error message "unable to allocate space from the buffer cache"
generated when there is still some space available, can be cleared by running recovery.
[#17630]

4. Fixed a race condition that causes an operation to return EPERM when the buffer cache is
nearly filled with pages belonging to recently closed queue extents. [#17840]

5. Fixed a bug that could cause a page needed by a snapshot reader to be overwritten rather
than copied when it was freed. [#17973]

6. Enabled set_mp_pagesize to be specified in the DB_CONFIG file. [#18015]

7. Fixed a bug to ensure single-version or obsolete buffers were selected over any
intermediate version. [#18114]

Mutex Subsystem Changes

1. Fixed a bug on HP-UX when specifying --with-mutex=HP/msem_init during configure.
It would generate the error "TAS: mutex not appropriately aligned" at runtime, when
initializing the first mutex. [#17489]

2. Fixed a race condition which could cause unnecessary retrying of btree searches when
several threads simulatenously attempted to get a shared latch. [#18078]

Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11gR2

11/8/2010 DB Installation Guide Page 79

3. Exclusive Transactions have been implemented for the SQL API. See the documentation
for details on the behavior of this feature. [#17822]

Tcl-specific API Changes

1. Fixed a bug in Tcl API to prevent a segmentation fault from occurring when the
get_dbname method is called to get the db name and the db handle is opened without
providing either the filename or dbname. [#18037]

C#-specific API Changes

1. Fixed a bug in C# to prevent a System.AccessViolationException from occurring on
Windows7 when trying to open new database. [#18422]

2. Fixed a bug in the C# API to make DB_COMPACT consistent with __db_compact in teh C
API. [#18246]

API Changes

1. Added the dbstl_thread_exit method to release thread specific resouces on thread exit.
[#17595]

2. Fixed the parser to allow configuration API flags set in the DB_CONFIG file to accept an
optional ON/OFF string. The DB_REP_CONF_NOAUTOINIT flag has been removed. It is
replaced by DB_REP_CONF_AUTOINIT. However, replication's default behavior remains the
same. [#17795]

Replication Changes

1. Fixed bug where a not-in-sync client could service a peer request. [#18279]

2. Fixed bug where page gaps, once filled, would not immediately request the next page gap
it finds. This was already fixed for logs. [#18219]

3. Fixed a bug so that only one thread waits for the meta-page lock during internal
initialization and broadcasts out the information rather than all threads waiting. Removed
the former retry code. [#17871]

4. Added a feature by which the DB->open method now allows the DB_CREATE flag on a
replication client. It is ignored, but this allows a replication application to make one call
that can work on either master or client. It fixes a possible race that could develop in a
Replication Manager application if a call to DB->open is made around the same time as a
master/client role change. [#15167]

5. The DB_ENV->repmgr_site_list method now returns an indication on whether the site is a
client-to-client peer. [#16113]

6. Fixed a bug that could occasionally lead to elections failing to complete. [#17105]

7. Fixed a bug that could cause DB_ENV->txn_stat to trap. [#17198]

8. Added a new JOIN_FAILURE event to notify Replication Manager applications which refuse
auto-initialization. [#17319]

Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11gR2

11/8/2010 DB Installation Guide Page 80

9. Fixed a bug where a failed master lease check at a client site causes an ASSERT when
processing a master lease grant at the master site. [#17869]

10. Fixed a bug to ensure a second simultaneous call to the DB_ENV->rep_elect method does
not incorrectly clear a bit flag. [#17875]

11. Fixed a bug in client-side autoremoval of log files. [#17899]

12. Removed the likelihood of dual data streams to enhance network traffic. [#17955]

13. Fixed a bug such that non-txn dup cursors are accounted for in the replication API
lockout. [#18080]

14. Fixed a bug to ensure checking for other sync states for the rerequest thread. [#18126]

15. Fixed a bug to avoid getting stuck in an election forever. [#18151]

16. Fixed a bug where using client-to-client synchronization with Master Leases could have
resulted in failure of a new master to get initial lease grants from sufficient number of
clients, resulting in a master environment panic. [#18254]

17. Fixed a bug which had prevented Replication Manager socket operations from working on
HP/UX systems. [#18382]

18. Fixed a bug where starting as a client in multiple threads after receiving dupmaster
messages could have resulted in a failure to find a new log file, resulting in a panic.
[#18388]

19. The default thread stack size is no longer overridden by default for Berkeley DB threads.
[#18383]

Transaction Subsystem Changes

1. Fixed a bug that caused transactions to deadlock on the mutex in the sequence object.
[#17731]

2. Fixed a bug to ensure that the failure checking mechanism reconstructs child transactions
correctly when a process dies with active sub-transactions. [#18154]

3. Removed a memory leak during recovery related to a deleted database [#18273]

Utility Changes

1. Fixed compiler warnings in the db_sql_codegen utility. [#17503]

2. Enhanced the db_recover -v utility to display the message, "No log files found", if no logs
are present. [#17504]

3. Modified the db_verify utility to verify all files instead of aborting on the first failure.
[#17513]

4. Modified the db_verify utility to display a message after verification is completed.
[#17545]

Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11gR2

11/8/2010 DB Installation Guide Page 81

5. Fixed a bug in the db_sql_codegen utility where the primary key is stored in both key and
data fields. Removed it from the data field. [#17925]

Example Changes

1. Fixed a bug that causes the ex_txn C# example to hang. [#17376]

2. Fixed Solaris alignment issues in Stl port test code. [#17459]

3. Added GCC 4.4 compatibility support for all examples. [#17584]

4. Added new command line arguments(-h and -d) to the env examples. [#17624]

5. Fixed configuration problems related to running java API tests. [#17625]

6. Updated the bench_001 example to include bulk testing examples. [#17766]

7. Added a new Stl example to demo advanced feature usage. The Stl test cases referred
earlier are replaced by these new examples in the Stl reference document. [#18175]

Deprecated Features

1. The configuration options --disable-cryptography and --enable-cryptoraphy are being
deprecated. [#18110]

Configuration, Documentation, Sample Apps, Portability and Build Changes

1. Remove build files for Windows Visual Studio 6.0. [#16848]

2. Added an API, DBENV->db_full_version, to return db full version.

3. Berkeley DB no longer supports Win9X, Windows Me (Millenium edition) and NT 4.0. The
minimum supported windows platform is Win 2k.

4. Berkeley DB no longer supports Visual Studio 6.0. The earliest version supported is Visual
Studio 2005.

5. Added "+u1" to CFLAGS for HP ANSI C Compiler on HP-UX(IA64) to fix the alignment issue
found with the allocation functions DB->set-alloc and DB_ENV->set_alloc. [#17257]

6. Fixed a bug such that the thread local storage (TLS) definition modifier is correctly
deduced from the m4 script on all platforms. [#17609][#17713]

7. Fixed a bug such that TLS key is not initialized on platforms which do not support thread
local storage (TLS) keywords, such as MAC OSX, and where TLS is implemented using
pthread API. [#18001]

8. Fixed a bug to ensure that when using Intel C++ compiler (icpc), the TLS code builds
successfully. A stricter criteria is adopted to deduce the TLS keyword, and hence pthread
API is more likely to be used to implement TLS. [#18038]

9. Adding new configuration option, --with-cryptography={yes|no|ipp}. Using --with-
cryptography=yes, will give equivalent behavior to the old --enable-cryptography

Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11gR2

11/8/2010 DB Installation Guide Page 82

option. Using --with-cryptography=no, will give equivalent behavior to the old --disable-
cryptography option. Using --with-cryptograhy=ipp will enable Intel's Performance
Primitive (IPP) encryption on linux. [#18110]

Known Bugs

1. The configure option --with-uniquename may cause macro redefinition warnings on
platforms where BDB implements parts of the standard C library. These warnings (e.g.,
'"db_int_def.h", line 586: warning: macro redefined: strsep') may occur when functions in
the "clib" directory are included during configuration. This cosmetic affect does not affect
the correct operation of the library. [#17172]

2. A multithreaded application using a private environment and multi-version concurrency
control could, on very rare occasions, generate an illegal pointer access error during the
final steps of a clean environment shutdown. [#17507]

3. Although rare, it is possible for a partial log record header at the end of a transaction log
to be erroneously accepted as if it were valid, causing the error "Illegal record type 0 in
log" during recovery. [#17851]

4. It is possible to get the error "unable to allocate space from the buffer cache" when there
are disk errors on the freezer files used by multi-version concurrency control . [#17902]

5. Java API does not support partitioning by keys and the C# API doesn't support partitioning.
[#18350]

6. If a database is removed from an environment and it was still opened transactionally and
recovery is run, then a future recovery that must process that part of the log may fail.
[#18459]

7. Replication "bulk transfer" does not work if Berkeley DB is unable to determine, at
environment open time, whether the Replication Manager will be used. To work
around this problem, an application using the Replication Manager should call DB_ENV-
>repmgr_set_local_site() before opening the environment. An application using the
replication Base API should call DB_ENV->rep_set_transport() before opening the
environment. [#18476]

8. The BTree prefix comparison function behaves slightly differently in the C API vs the C#
API. In the C# API it returns a signed int and in the C API it returns an unsigned int. This
can be a problem if the application needs to save more than 2^31 bytes.

11/8/2010 DB Installation Guide Page 83

Chapter 10. Upgrading Berkeley DB 4.7
applications to Berkeley DB 4.8

Introduction

The following pages describe how to upgrade applications coded against the Berkeley DB
4.7 release interfaces to the Berkeley DB 4.8 release interfaces. This information does not
describe how to upgrade Berkeley DB 1.85 release applications.

Registering DPL Secondary Keys

Entity subclasses that define secondary keys must now be registered prior to storing an
instance of the class. This can be done in two ways:

• The EntityModel.registerClass() method may be called to register the subclass before
opening the entity store.

• The EntityStore.getSubclassIndex() method may be called to implicitly register the
subclass after opening the entity store.

Failure to register the entity subclass will result in an IllegalArgumentException the first
time an attempt is made to store an instance of the subclass. An exception will not occur if
instances of the subclass have previously been stored, which allows existing applications to
run unmodified in most cases.

This behavioral change was made to increase reliability. In several cases, registering an entity
subclass has been necessary as a workaround. The requirement to register the subclass will
ensure that such errors do not occur in deployed applications.

Minor Change in Behavior of DB_MPOOLFILE->get

DB 4.8 introduces some performance enhancements, based on the use of shared/exclusive
latches instead of locks in some areas of the internal buffer management code. This change
will affect how the DB_MPOOL interface handles dirty buffers.

Because of these changes, DB_MPOOLFILE->get will now acquire an exclusive latch on the
buffer if the DB_MPOOL_DIRTY or DB_MPOOL_EDIT flags are specified. This could lead to an
application deadlock if the application tries to fetch the buffer again, without an intervening
DB_MPOOLFILE->put call.

If your application uses the DB_MPOOL interface, and especially the DB_MPOOL_DIRTY and
DB_MPOOL_EDIT flags, you should review your code to ensure that this behavior change does
not cause your application to deadlock.

Dropped Support for fcntl System Calls

Berkeley DB no longer supports mutex implementations based on the fcntl system call. If you
have been configuring Berkeley DB to use this type of mutex, you need to either switch to a
different mutex type or contact the Berkeley DB team for support.

Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

11/8/2010 DB Installation Guide Page 84

Upgrade Requirements

The log file format changed in the Berkeley DB 4.8 release.

No database formats changed in the Berkeley DB 4.8 release.

The Berkeley DB 4.8 release does not support live replication upgrade from the 4.2 or 4.3
releases, only from the 4.4 and later releases.

For further information on upgrading Berkeley DB installations, see Upgrading Berkeley DB
installations (page 66).

Berkeley DB 4.8.28 Change Log

Changes between 4.8.26 and 4.8.28:

1. Limit the size of a log record generated by freeing pages from a database so it fits in the
log file size. [#17313]

2. Fix a bug that could cause a file to be removed if it was both the source and target of two
renames within a transaction. [#18069]

3. Modified how we go about selecting a usable buffer in the cache. Place more emphasis on
single version and obsolete buffers. [#18114]

Known bugs in 4.8

1. Sharing logs across mixed-endian systems does not work.[#18032]

Changes between 4.8.24 and 4.8.26:

1. Fixed a bug where the truncate log record could be too large when freeing too many
pages during a compact. [#17313]

2. Fixed a bug where the deadlock detector might not run properly. [#17555]

3. Fixed three bugs related to properly detecting thread local storage for DbStl. [#17609]
[#18001] [#18038]

4. Fixed a bug that prevented some of our example code from running correctly in a
Windows environment. [#17627]

5. Fixed a bug where a "unable to allocate space from buffer cache" error was improperly
generated. [#17630]

6. Fixed a bug where DB->exists() did not accept the DB_AUTO_COMMIT flag. [#17687]

7. Fixed a bug where DB_TXN_SNAPSHOT was not getting ignored when DB_MULTIVERSION
not set. [#17706]

8. Fixed a bug that prevented callback based partitioning through the Java API. [#17735]

Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

11/8/2010 DB Installation Guide Page 85

9. Fixed a replication bug where log files were not automatically removed from the client
side. [#17899]

10. Fixed a bug where code generated from db_sql stored the key in both the data and key
DBTs. [#17925]

11. Fixed a bug that prevented a sequence from closing properly after the EntityStore closed.
[#17951]

12. Fixed a bug where gets fail if the DB_GET_BOTH_FLAG is specified in a hash, sorted
duplicates database.[#17997]

Changes between 4.8.21 and 4.8.24:

1. Fixed a bug in the C# API where applications in a 64-bit environment could hang. [#17461]

2. Fixed a bug in MVCC where an exclusive latch was not removed when we couldn't obtain a
buffer. [#17479]

3. Fixed a bug where a lock wasn't removed on a non-transactional locker. [#17509]

4. Fixed a bug which could trigger an assertion when performing a B-tree page split and
running out of log space or with MVCC enabled. [#17531]

5. Fixed a bug in the repquote example that could cause the application to crash. [#17547]

6. Fixed a couple of bugs when using the GCC 4.4 compiler to build the examples and the
dbstl API. [#17504] [#17476]

7. Fixed an incorrect representation of log system configuration info. [#17532]

Changes between 4.7 and 4.8.21:

Database or Log File On-Disk Format Changes:

1. The log file format changed in 4.8.

New Features:

1. Improved scalability and throughput when using BTree databases especially when running
with multiple threads that equal or exceed the number of available CPUs.

2. Berkeley DB has added support for C#. In addition to the new C# api, C# specific tests and
sample applications were also added. [#16137]

3. Berkeley DB has added an STL API, which is compatible with and very similar to C++
Standard Template Library (STL). Tests and sample applications and documentation were
also added. [#16217]

4. Berkeley DB has added database partitioning. BTree or Hash databases may now be
partitioned across multiple directories. Partitioned databases can be used to increase

Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

11/8/2010 DB Installation Guide Page 86

concurrency and to improve performance by spreading access across disk subsystems.
[#15862]

5. Berkeley DB now supports bulk insertion and deletion of data. Similar to the bulk get
interface, the bulk put and bulk delete allow the developer to populate a buffer of key-
value pairs and then pass it to the BDB library with a single API call.

6. Berkeley DB now supports compression when using BTree.

7. Berkeley DB introduces a new utility named db_sql which replaces db_codegen. Similar
to db_codegen, db_sql accepts an input file with DDL statements and generates a
Berkeley DB application using the C API that creates and performs CRUD operations on the
defined tables. The developer can then use that code as a basis for further application
development.

8. The Replication Manager now supports shared access to the Master database environment
from multiple processes. In earlier versions, multiple process support on the Master
required use of the Base Replication API. [#15982]

9. Foreign Key Support has been added to Berkeley DB.

10. Several enhancements were made to DB_REGISTER & DB_ENV->failchk().

11. Berkeley now supports 100% in-memory replication.

12. Berkeley DB now has the ability to compare two cursors for equality. [#16811]

Database Environment Changes:

1. Fixed a bug that could cause an allocation error while trying to allocate thread tracking
information for the DB_ENV->failcheck system. [#16300]

2. Fixed a bug that could cause a trap if an environment open failed and failchk thread
tracking was enabled.[#16770]

Concurrent Data Store Changes:

None.

General Access Method Changes:

1. Fixed a bug where doing an insert with secondary indices and the NOOVERWRITE flag
could corrupt the secondary index. [#15912]

2. Fixed a possible file handle leak that occurred while aborting the create of a database
whose metadata page was not initialized. [#16359]

3. Fixed a bug so that we now realloc the filename buffer only if we need it to grow.
[#16385] [#16219]

4. Fixed a race freeing a transaction object when using MVCC. [#16381]

Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

11/8/2010 DB Installation Guide Page 87

5. Added missing get methods for the DB and DB_ENV classes where there already was a
corresponding set method. [#16505]

6. Fixed a bug to now ensure that DB_STAT_SUBSYSTEM is distinct from other stat flags.
[#16798]

7. Fixed a bug related to updating multiple secondary keys (using DB_MULTIPLE). [#16885]

8. Fixed a bug so that verify (db->verify, db_verify) will now report when it cannot read a
page rather than just saying the database is bad. [#16916]

9. Fixed a bug that could cause memory corruption if a transaction allocating a page aborted
while DB->compact was running on that database. [#16862]

10. Fixed a bug where logging was occurring during remove of an in-memory database when
the DB_TXN_NOT_DURABLE flag was set. [#16571]

11. Fixed a bug to remove a race condition during database/file create. [#17020]

12. Fixed a bug where a call to DB->verify and specifying DB_SALVAGE could leak memory
when the call returned. [#17161]

13. Fixed a bug to avoid accessing freed memory during puts on primaries with custom
comparators. [#17189]

14. Fixed a bug that could cause old versions of pages to be written over new versions if an
existing database is opened with the DB_TRUNCATE flag. [#17191]

Btree Access Method Changes:

1. Fixed a bug which could cause DB->compact to fail with DB_NOTFOUND or
DB_PAGE_NOTFOUND if the height of the tree was reduced by another thread while
compact was active. The bug could also cause a page split to trigger splitting of internal
nodes which did not need to be split. [#16192]

2. Fixed a bug that caused Db->compact to loop if run on an empty RECNO database when
there were pages in the free list. [#16778]

3. Added a new flag, DB_OVERWRITE_DUP, to DB->put and DBC->put. This flag is equivalent
to DB_KEYLAST in almost all cases: the exception is that with sorted duplicates, if a
matching key/data pair exists, we overwrite it rather than returning DB_KEYEXIST.
[#16803]

Hash Access Method Changes:

1. Fixed a bug to now force a group allocation that rolls forward to reinit all the pages.
Otherwise a previous aborted allocation may change the header. [#15414]

2. Fixed a bug to now return the expected buffer size on a DB_BUFFER_SMALL condition.
[#16881]

Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

11/8/2010 DB Installation Guide Page 88

Queue Access Method Changes:

1. Fixed a bug that would cause the LSN reset functionality to not process queue extents.
[#16213]

2. Fixed a bug that prevented a partial put on a queue database with secondaries
configured. [#16460]

3. Fixed a bug to now prevent an unpinned page to be returned if a delete from a HASH
database deadlocked. [#16371]

4. Fixed a bug that could cause a queue extent to be recreated if an application deleted a
record that was already deleted in that extent. [#17004]

5. Added the DB_CONSUME flag to DB->del and DBC->del to force adjustment of the head of
the queue. [#17004]

Recno Access Method Changes:

1. Fixed a bug which could cause DB->compact of a RECNO database to loop if the number of
pages on the free list was reduced by another thread while compact was active. [#16199]

2. Fixed a bug that occurs when deleting from a Recno database and using
DB_READ_UNCOMMITTED where we could try to downgrade a lock twice. [#16347]

3. Fixed a bug to now disallow passing DB_DUP and DB_RECNUM together to __db_set_flags.
[#16585]

C-specific API Changes:

1. Add get functions for each set functions of DB and DB_ENV structures which didn't have
one.[#16505]

C++-specific API Changes:

1. The get and set_lk_partitions methods are now available.

2. Add get functions for each set functions of Db and DbEnv classes which didn't have one.
[#16505]

3. Fixed a memory leak when using nested transactions.[#16956]

Java-specific API Changes:

1. Fixed a bug where the replication finer-grained verbose flags were not available in the
Java API. [#15419]

2. Fixed a bug in the BTree prefix compression API when called from the Java API. DBTs were
not properly initialized. [#16417]

3. Fixed a bug so that LogCursor will work correctly from the Java API. [#16827]

Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

11/8/2010 DB Installation Guide Page 89

4. Fixed a bug so that position(), limit() and capacity() of ByteBuffers are obeyed by
DatabaseEntry objects. [#16982]

Direct Persistence Layer (DPL), Bindings and Collections API:

1. The StoredMap class now implements the standard java.util.concurrent.ConcurrentMap
interface. [#15382]

2. Report a meaningful IllegalArgumentException when @Persistent is incorrectly declared
on an enum class. Before, the confusing message Persistent class has non-persistent
superclass: java.lang.Enum was reported. [#15623]

3. Report a meaningful IllegalArgumentException when @Persistent is incorrectly declared
on an interface. Before, a NullPointerException was reported. [#15841]

4. Several validation checks have been added or corrected having to do with entity
subclasses, which are @Persistent classes that extend an @Entity class. [#16077]

5. Optimized marshaling for large numbers of embedded objects improving performance.
[#16198]

6. The StoredMap class now implements the Java 1.5 ConcurrentMap interface. [#16218]

7. Fix a DPL bug that caused exceptions when using a class Converter for an instance
containing non-simple fields. [#16233]

8. Add EntityCursor.setCacheMode and getCacheMode. See the com.sleepycat.je.CacheMode
class for more information. [#16239]

9. Fix a bug that prevents evolution of @SecondaryKey information in an entity subclass (a
class that extends an @Entity class). [#16253]

10. Report a meaningful IllegalArgumentException when @Persistent or @Entity is incorrectly
used on an inner class (a non-static nested class). Before, the confusing message No
default constructor was reported. [#16279]

11. Improved the reliability of Entity subclasses that define secondary keys by requiring that
they be registered prior to storing an instance of the class. [#16399]

12. Fix a bug that under certain circumstances causes "IllegalArgumentException: Not a
key class" when calling EntityStore.getSubclassIndex, EntityStore.getPrimaryConfig,
EntityStore.getSecondaryConfig, or PrimaryIndex.put, and a composite key class is used.
[#16407]

13. Fixed a bug so that one can now compile DPL in the Java API on Windows. [#16570]

14. The com.sleepycat.collections.TransactionRunner.handleException method has been
added to allow overriding the default transaction retry policy. See the javadoc for this
method for more information. [#16574]

15. Fix a bug that causes an assertion to fire or a NullPointerException (when assertions are
disabled) from the EntityStore constructor. The problem occurs only when the previously

Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

11/8/2010 DB Installation Guide Page 90

created EntityStore contains an entity with a secondary key definition in which the key
name has been overridden and is different than the field name. [#16819]

16. Key cursors have been optimized to significantly reduce I/O when the
READ_UNCOMMITTED isolation mode is used. See EntityIndex.keys for more information.
[#16859]

17. Report a meaningful IllegalArgumentException when NULLIFY is used with a
@SecondaryKey and the field is a primitive type. Before, the confusing message Key field
object may not be null was reported. [#17011]

18. Enum fields may now be used as DPL keys, including primary keys, secondary keys, and
fields of composite key classes. Comparators are supported for composite key classes
containing enum fields. [#17140]

19. Fix a bug that prevented the use of custom key comparisons (composite key classes that
implement Comparable) for secondary keys defined as ONE_TO_MANY or MANY_TO_MANY.
[#17207]

20. The db.jar file now contains a Premain class which enables bytecode enhancement
using the JVM instrumentation commands. The built-in proxy classes are also now
enhanced in the db.jar file, which enables off-line bytecode enhancement. For more
information on DPL bytecode enhancement and how to use both instrumentation and off-
line enhancement, please see the com.sleepycat.persist.model.ClassEnhancer javadoc.
[#17233]

Tcl-specific API Changes:

1. The mutex API is now available when using Tcl. [#16342]

RPC-specific Client/Server Changes:

• RPC support has been removed from Berkeley DB. [#16785]

Replication Changes:

1. Improved testing of initial conditions for rep and repmgr APIs and added heartbeat
timeouts to rep_get_timeout.[#14977]

2. Added DB_REP_CONF_INMEM replication configuration flag to store replication
information exclusively in-memory without creating any files on-disk. [#15257]

3. Added repmgr support for multi-process shared env [#15982]

4. Fixed a bug where opening a cursor from a database handle failed to check whether
the database handle was still fresh. If the database handle had been invalidated by a
replication client synchronizing with a new master, it could point to invalid information.
[#15990]

5. Fixed a bug so that if LOG_REQ gets an archived LSN, replication sends VERIFY_FAIL.
[#16004]

Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

11/8/2010 DB Installation Guide Page 91

6. Added timestamp and process/thread id to replication verbose messages. [#16098]

7. Fixed a bug where, in very rare circumstances, two repmgr sites could connect to each
other at the exact same time, the connection attempts "collide" and fail, and the same
collision repeats in time synchronization indefinitely. [#16114]

8. Fixed a bug where a missing database file (FILE_FAIL error condition) can interrupt a
client synchronization without restarting it. [#16130]

9. Fixed a bug by adding REP_F_INREPSTART flag to prevent racing threads in rep_start.
[#16247]

10. Fixed a bug to not return HOLDELECTION if we are already in the middle of an election.
Updated the egen so the election thread will notice. [#16270]

11. Fixed a bug in buffer space computation, which could have led to memory corruption in
rare circumstances, when using bulk transfer. [#16357]

12. Fixed a bug that prevented replication clients from opening a sequence. The sequence is
opened for read operations only. [#16406]

13. Fixed a bug by removing an assertion about priority in elections. It is not correct because
it could have changed by then. Remove unused recover_gen field. [#16412]

14. Fixed a bug to now ignore a message from client if it is an LSN not recognized in a
LOG_REQ. [#16444]

15. Fixed a bug so that on POSIX systems, repmgr no longer restores default SIGPIPE action
upon env close, if it was necessary to change it during start-up. This allows remaining
repmgr environments within the same process, if any, to continue operating after one of
them is closed. [#16454]

16. After a replication client restarts with recovery, any named in-memory databases are
now re-materialized from the rest of the replication group upon synchronization with the
master. [#16495]

17. Fixed a bug by adding missing rep_get_config flags. [#16527]

18. Instead of sleeping if the bulk buffer is in transmission, return so that we can send as a
singleton. [#16537]

19. Fixed a bug by changing __env_refresh to not hit assert on -private -rep env with an in-
memory database. [#16546]

20. Fixed a bug in the Windows implementation of repmgr where a large number of commit
threads concurrently awaiting acknowledgments could result in memory corruption, and
leaking Win32 Event Objects. [#16548]

21. Fixed a bug by changing repmgr to count a dropped connection when noticing a lacking
heartbeat; fixed hearbeat test to check for election, rather than connection drop count,
and more reasonable time limit; fixed test to poll until desired result, rather than always
sleeping max possible time. [#16550]

Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

11/8/2010 DB Installation Guide Page 92

22. Fixed "master changes" stat to count when local site becomes master too. [#16562]

23. Fixed a bug where a c2c client would send UPDATE_REQ to another client [#16592]

24. Removed code to proactively expire leases when we don't get acks. Leases maintain their
own LSNs to know. [#16494]

25. Fixed a bug where a client may not sync pages during internal init. [#16671]

26. Fixed a bug where a client that received and skipped a log record from the master during
an election, then won the election, could then try to request a copy of the skipped log
record. The result was an attempt to send a request to the local site, which is invalid:
this could confuse a replication Base API application, or cause the Replication Manager to
crash. [#16700]

27. Fixed a bug which could have caused data loss or corruption (at the client only) if a
replication client rolled back existing transactions in order to synchronize with a new
master, and then crashed/recovered before a subsequent checkpoint operation had been
replicated from the master. [#16732]

28. Fixed a bug so that replication now retries on DB_LOCK_NOTGRANTED. [#16741]

29. Fixed a potential deadlock in rep_verify_fail. [#16779]

30. Fixed a bug so that an application will no longer segv if nsites given was smaller than
number of sites that actually exists. [#16825]

XA Resource Manager Changes:

1. The XA Resource Manager has been removed from Berkeley DB. [#6459]

Locking Subsystem Changes:

1. Fixed a bug to prevent unlocking a mutex twice if we ran out of transactional locks.
[#16285]

2. Fixed a bug to prevent a segmentation trap in __lock_open if there were an error during
the opening of an environment. [#16307]

3. Fixed a bug to now avoid a deadlock if user defined locks are used only one lock partition
is defined.[#16415]

4. Fixed concurrency problems in __dd_build, __dd_abort by adding LOCK_SYSTEM_LOCK()
calls to __dd_build and __dd_abort. [16489]

5. Fixed a bug that could cause a panic if a transaction which updated a database that was
supporting READ_UNCOMMITED readers aborted and it hit a race with a thread running the
deadlock detector. [#16490]

6. Fixed a race condition in deadlock detection that could overwrite heap. [#16541]

7. Fixed a bug so that DB_STAT_CLEAR now restores the value of st_partitions. [#16701]

Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

11/8/2010 DB Installation Guide Page 93

Logging Subsystem Changes:

1. Fixed a bug so that the header checksum is only ignored when the log is from a previous
version [#16281]

2. Fixed a bug by removing a possible race condition with logc_get(DB_FIRST) and log
archiving. [#16387]

3. Fixed a bug that could cause a recovery failure of a create of a database that was
aborted. [#16824]

4. An in-memory database creation has an intermediate phase where we have a semi-open
DBP. If we crash in that state, then recovery was failing because it tried to use a partically
open database handle. This fix checks for that case, and avoids trying to undo page writes
for databases in that interim step. [#17203]

Memory Pool Subsystem Changes:

1. Fixed a bug that occurred after all open handles on a file are closed. Needed to clear the
TXN_NOT_DURABLE flag (if set) and mark the file as DURABLE_UNKNOWN in the memory
pool. [#16091]

2. Fixed a possible race condition between dirtying and freeing a buffer that could result in
a panic or corruption. [#16530]

3. Fixed a memory leak where allocated space for temporary file names are not released.
[#16956]

Mutex Subsystem Changes:

1. Fixed a bug when using mutexes for SMP MIPS/Linux systems. [#15914]

2. POSIX mutexes are now the default on Solaris. [#16066]

3. Fixed a bug in mutex allocation with multiple cache regions. [#16178]

4. Fixed MIPS/Linux mutexes in 4.7. [#16209]

5. Fixed a bug that would cause a mutex to be unlocked a second time if we ran out of space
while tracking pinned pages. [#16228]

6. Fixed a bug Sparc/GCC when using test-and-set mutexes. They are now aligned on an 8-
byte boundary. [#16243]

7. Fixed a bug to now prevent a thread calling DB_ENV->failcheck to hang on a mutex held
by a dead thread. [#16446]

8. Fixed a bug so that __db_pthread_mutex_unlock() now handles the failchk case of finding
a busy mutex which was owned by a now-dead process. [#16557]

9. Removed support for the mutex implementation based on the "fcntl" system call. Anyone
configuring Berkeley DB to use this type of mutex in an earlier release will need to either
switch to a different mutex type or contact Oracle for support. [#17470]

Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

11/8/2010 DB Installation Guide Page 94

Test Suite Changes

1. Fixed a bug when using failchk(), where a mutex was not released. [#15982]

2. Added a set of basic repmgr tests to run_std and run_all. [#16092]

3. Added control wrapper for db_reptest to test suite. [#16161]

4. Fixed a bug to now skip tests if db_reptest is not configured. [#16161]

5. Changed name of run_db_in_mem to run_inmem_db, and run_inmem to run_inmem_log
and made the arg orders consistent. [#16358]

6. Fixed a bug to now clean up stray handles when rep_verify doesn't work. [#16390]

7. Fixed a bug to avoid db_reptest passing the wrong flag to repmgr_start when there is
already a master. [#16475]

8. Added new tests for abbreviated internal init. Fixed test not to expect in-memory
database to survive recovery. [#16495]

9. Fix a bug, to add page size for txn014 if the default page size is too small. Move files
instead of renaming directory for env015 on QNX. [#16627]

10. Added new rep088 test for log truncation integrity. [#16732]

11. Fixed a bug by adding a checkpoint in rep061 to make sure we have messages to process.
Otherwise we could hang with client stuck in internal init, and no incoming messages to
trigger rerequest. [#16781]

Transaction Subsystem Changes:

1. Fixed a bug to no longer generate an error if DB_ENV->set_flags (DB_TXN_NOSYNC) was
called after the environment was opened. [#16492]

2. Fixed a bug to remove a potential hang condition in replication os_yield loops when
DB_REGISTER used with replication by adding PANIC_CHECKS. [#16502]

3. Fix a bug to now release mutex obtained before special condition returns in
__db_cursor_int and __txn_record_fname. [#16665]

4. Fixed a leak in the transaction region when a snapshot update transaction accesses more
than 4 databases. [#16734]

5. Enabled setting of set_thread_count via the DB_CONFIG file. [#16878]

6. Fixed a mutex leak in some corner cases. [#16665]

Utility Changes:

1. The db_stat utility with the -RA flags will now print a list of known remote replication
flags when using repmgr. [#15484]

Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

11/8/2010 DB Installation Guide Page 95

2. Restructured DB salvage to walk known leaf pages prior to looping over all db pages.
[#16219]

3. Fixed a problem with upgrades to 4.7 on big endian machines. [#16411]

4. Fixed a bug so that now db_load consistently returns >1 on failure. [#16765]

5. The db_dump utility now accepts a "-m" flag to dump information from a named in-
memory database. [#16896]

6. Fixed a bug that would cause db_hotbackup to fail if a database file was removed while it
was running. [#17234]

Configuration, Documentation, Sample Application, Portability and Build
Changes:

1. Fixed a bug to now use the correct Perl include path. [#16058]

2. Updated the version of the Microsoft runtime libraries shipped. [#16058]

3. Upgraded the Visual Studio build files to be based on Visual Studio 8 (2005+). The build is
now simplified. Users can still upgrade the Visual Studio 6.0 project files, if they want to
use Visual Studio .NET (7.1) [#16108]

4. Expanded the ex_rep example with checkpoint and log archive threads, deadlock
detection, new options for acknowledgment policy and bulk transfer, and use of
additional replication features and events. [#16109]

5. Fixed a bug so that optimizations on AIX are re-enabled, avoiding incorrect code
generation. [#16141]

6. Removed a few compiler warnings and three type redefinitons when using vxworks and
the GNU compiler. [#16341]

7. Fixed a bug on Sparc v9 so that MUTEX_MEMBAR() now uses membar_enter() to get a
#storeload barrier rather than just stbar's #storestor. [#16468]

8. Berkeley DB no longer supports Win9X and Windows Me (Millenium edition).

9. Fixed lock_get and lock_vec examples from the Java (and C#) API. Updated the Java lock
example. [#16506]

10. Fixed a bug to correctly handle the TPC-B history record on 64-bit systems. [#16709]

11. Add STL API to Linux build. Can be enabled via the --enable-stl flag. [#16786]

12. Add STL API to Windows build, by building the db_stl project in the solution. There are
also stl's test and examples projects in this solution. [#16786]

13. Add support to build dll projects for WinCE, in order to enable users to build DB into a dll
in addition to a static library.[#16625]

Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

11/8/2010 DB Installation Guide Page 96

14. Fixed a weakness where several malloc/realloc return values are not checked before use.
[#16664]

15. Enabled DB->compact for WinCE.[#15897]

16. HP-UX 10 is no longer supported.

11/8/2010 DB Installation Guide Page 97

Chapter 11. Upgrading Berkeley DB 4.6
applications to Berkeley DB 4.7

Introduction

The following pages describe how to upgrade applications coded against the Berkeley DB
4.6 release interfaces to the Berkeley DB 4.7 release interfaces. This information does not
describe how to upgrade Berkeley DB 1.85 release applications.

Run-time configuration

In historic Berkeley DB releases, there were separate sleep and yield functions to be
configured at run-time using the db_env_set_func_sleep and db_env_set_func_yield functions.
These functions have been merged in the Berkeley DB 4.7 release. The replacement function
should always yield the processor, and optionally wait for some period of time before allowing
the thread to run again.

Applications using the Berkeley DB run-time configuration interfaces should merge the
functionality of their sleep and yield functions into a single configuration function.

In the 4.7 Berkeley DB release, the db_env_set_func_map and db_env_set_func_unmap
functions have been replaced. This change fixes problems where applications using the
Berkeley DB run-time configuration interfaces could not open multiple DB_ENV class
handles for the same database environment in a single application or join existing database
environments from within multiple processes.

Applications wanting to replace the Berkeley DB region creation functionality should
replace their db_env_set_func_map and db_env_set_func_unmap calls with a call to the
db_env_set_func_region_map function. Applications wanting to replace the Berkeley
DB region file mapping functionality should replace their db_env_set_func_map and
db_env_set_func_unmap calls with a call to the db_env_set_func_file_map function.

Replication API

The Berkeley DB base replication API DB_ENV->rep_elect(), DB_ENV->rep_get_nsites() DB_ENV-
>rep_set_nsites(), DB_ENV->rep_get_priority() and DB_ENV->rep_set_priority() methods
now take arguments of type u_int32_t rather than int. Applications may need to change the
types of arguments to these methods, or cast arguments to these methods to avoid compiler
warnings.

Tcl API

The Berkeley DB Tcl API does not attempt to avoid evaluating input as Tcl commands. For this
reason, it may be dangerous to pass unreviewed user input through the Berkeley DB Tcl API,
as the input may subsequently be evaluated as a Tcl command. To minimize the effectiveness
of a Tcl injection attack, the Berkeley DB Tcl API in the 4.7 release routine resets process'
effective user and group IDs to the real user and group IDs.

../api_reference/C/db_env_set_func_yield.html
../api_reference/C/env.html
../api_reference/C/db_env_set_func_region_map.html
../api_reference/C/db_env_set_func_file_map.html
../api_reference/C/repelect.html
../api_reference/C/repget_nsites.html
../api_reference/C/repnsites.html
../api_reference/C/repnsites.html
../api_reference/C/repget_priority.html
../api_reference/C/reppriority.html

Upgrading Berkeley DB 4.6 applications to
Berkeley DB 4.7

11/8/2010 DB Installation Guide Page 98

DB_ENV->set_intermediate_dir

Historic releases of Berkeley DB contained an undocumented DB_ENV method named
DB_ENV->set_intermediate_dir, which configured the creation of any intermediate
directories needed during recovery. This method has been standardized as the DB_ENV-
>set_intermediate_dir_mode() method.

Applications using DB_ENV->set_intermediate_dir should be modified to use the DB_ENV-
>set_intermediate_dir_mode() method instead.

Log configuration

In the Berkeley DB 4.7 release, the logging subsystem is configured using the DB_ENV-
>log_set_config() method instead of the previously used DB_ENV->set_flags() method.

The DB_ENV->set_flags() method no longer accepts the flags DB_DIRECT_LOG, DB_DSYNC_LOG,
DB_LOG_INMEMORY or DB_LOG_AUTOREMOVE. Applications should be modified to use the
equivalent flags accepted by the DB_ENV->log_set_config() method.

Previous DB_ENV->set_flags() flag Replacement DB_ENV->log_set_config() flag

DB_DIRECT_LOG DB_LOG_DIRECT

DB_DSYNC_LOG DB_LOG_DSYNC

DB_LOG_INMEMORY DB_LOG_IN_MEMORY

DB_LOG_AUTOREMOVE DB_LOG_AUTO_REMOVE

Upgrade Requirements

The log file format changed in the Berkeley DB 4.7 release.

No database formats changed in the Berkeley DB 4.7 release.

The Berkeley DB 4.7 release does not support live replication upgrade from the 4.2 or 4.3
releases, only from the 4.4 and later releases.

For further information on upgrading Berkeley DB installations, see Upgrading Berkeley DB
installations (page 66).

Berkeley DB 4.7.25 Change Log

Database or Log File On-Disk Format Changes:

1. The log file format changed in 4.7.

New Features:

1. The lock manager may now be fully partitioned, improving performance on some multi-
CPU systems. [#15880]

../api_reference/C/env.html
../api_reference/C/envset_intermediate_dir_mode.html
../api_reference/C/envset_intermediate_dir_mode.html
../api_reference/C/envset_intermediate_dir_mode.html
../api_reference/C/envset_intermediate_dir_mode.html
../api_reference/C/envlog_set_config.html
../api_reference/C/envlog_set_config.html
../api_reference/C/envset_flags.html
../api_reference/C/envset_flags.html
../api_reference/C/envlog_set_config.html
../api_reference/C/envset_flags.html
../api_reference/C/envlog_set_config.html

Upgrading Berkeley DB 4.6 applications to
Berkeley DB 4.7

11/8/2010 DB Installation Guide Page 99

2. Replication groups are now architecture-neutral, supporting connections between
differing architectures (big-endian or little-endian, independent of structure padding).
[#15787] [#15840]

3. Java: A new Direct Persistence Layer adds a built-in Plain Old Java Object (POJO)-based
persistent object model, which provides support for complex object models without
compromises in performance. For an introduction to the Direct Persistence Layer API, see
Getting Started with Data Storage. [#15936]

4. Add the DB_ENV->set_intermediate_dir_mode method to support the creation of
intermediate directories needed during recovery. [#15097]

5. The DB_ENV->failchk method can now abort transactions for threads, which have failed
while blocked on a concurrency lock. This significantly decreases the need for database
environment recovery after thread of control failure. [#15626]

6. Replication Manager clients now can be configured to monitor the connection to the
master using heartbeat messages, in order to promptly discover connection failures.
[#15714]

7. The logging system may now be configured to pre-zero log files when they are created,
improving performance on some systems. [#15758]

Database Environment Changes:

1. Restructure aborted page allocation handling on systems without an ftruncate system call.
This enables the Berkeley DB High Availability product on systems, which do not support
ftruncate. [#15602]

2. Fix a bug where closing a database handle after aborting a transaction which included a
failed open of that handle could result in application failure. [#15650]

3. Fix minor memory leaks when closing a private database environment. [#15663]

4. Fix a bug leading to a panic of "unpinned page returned" if a cursor was used for a delete
multiple times and deadlocked during one of the deletes. [#15944]

5. Optionally signal processes still running in the environment before running recovery.
[#15984]

Concurrent Data Store Changes:
None.

General Access Method Changes:

1. Fix a bug where closing a database handle after aborting a transaction which included a
failed open of that database handle could result in application failure. [#15650]

2. Fix a bug that could cause panic in a database environment configured with POSIX-style
thread locking, if a database open failed. [#15662]

Upgrading Berkeley DB 4.6 applications to
Berkeley DB 4.7

11/8/2010 DB Installation Guide Page 100

3. Fix bug in the DB->compact method which could cause a panic if a thread was about to
release a page while another thread was truncating the database file. [#15671]

4. Fix an obscure case of interaction between a cursor scan and delete that was prematurely
returning DB_NOTFOUND. [#15785]

5. Fix a bug in the DB->compact method where if read-uncommitted was configured, a
reader reading uncommitted data my see an inconsistent entry between when the
compact method detects an error and when it aborts the enclosing transaction. [#15856]

6. Fix a bug in the DB->compact method where a thread of control mail fail if two threads
are compacting the same section of a Recno database. [#15856]

7. Fix a bug in DB->compact method, avoid an assertion failure when zero pages can be
freed. [#15965]

8. Fix a bug return a non-zero error when DB->truncate is called with open cursors. [#15973]

9. Fix a bug add HANDLE_DEAD checking for DB cursors. [#15990]

10. Fix a bug to now generate errors when DB_SEQUENCE->stat is called without first opening
the sequence. [#15995]

11. Fix a bug to no longer dereference a pointer into a hash structure, when hash
functionality is disabled. [#16095]

Btree Access Method Changes:
None.

Hash Access Method Changes:

1. Fix a bug where a database store into a Hash database could self-deadlock in a database
environment configured for the Berkeley DB Concurrent Data Store product, and with a
free-threaded DB_ENV or DB handle. [#15718]

Queue Access Method Changes:

1. Fix a bug that could cause a put or delete of a queue element to return a
DB_NOTGRANTED error, if blocked. [#15933]

Recno Access Method Changes:

1. Expose db_env_set_func_malloc, db_env_set_func_realloc, and db_env_set_func_free
through the Windows API for the DB dll. [#16045]

C-specific API Changes:
None.

Java-specific API Changes:

1. Fix a bug where enabling MVCC on a database through the Java API was ignored. [#15644]

Upgrading Berkeley DB 4.6 applications to
Berkeley DB 4.7

11/8/2010 DB Installation Guide Page 101

2. Fixed memory leak bugs in error message buffering in the Java API. [#15843]

3. Fix a bug where Java SecondaryConfig was not setting SecondaryMultiKeyCreator from the
underlying db handle [OTN FORUM]

4. Fix a bug so that getStartupComplete will now return a boolean instead of an int.
[#16067]

5. Fix a bug in the Java API, where Berkeley DB would hang on exit when using replication.
[#16142]

Direct Persistence Layer (DPL), Bindings and Collections API:

1. A new Direct Persistence Layer adds a built-in Plain Old Java Object (POJO)-based
persistent object model, which provides support for complex object models without
compromises in performance. For an introduction to the Direct Persistence Layer API, see
Getting Started with Data Storage. [#15936]

2. Fixed a bug in the remove method of the Iterator instances returned by the
StoredCollection.iterator method in the collections package. This bug caused
ArrayIndexOutOfBoundsException in some cases when calling next, previous, hasNext or
hasPrevious after calling remove. (Note that this issue does not apply to StoredIterator
instances returned by the StoredCollection.storedIterator method.) This bug was reported
in this forum thread: http://forums.oracle.com/forums/thread.jspa?messageID=2187896
[#15858]

3. Fixed a bug in the remove method of the StoredIterator instances returned by
StoredCollection.storedIterator method in the collections package. If the sequence
of methods next-remove-previous was called, previous would sometimes return the
removed record. If the sequence of methods previous-remove-next was called, next
would sometimes return the removed record. (Note that this issue does not apply to
Iterator instances returned by the StoredCollection.iterator method.) [#15909]

4. Fixed a bug that causes a memory leak for applications where many Environment objects
are opened and closed and the CurrentTransaction or TransactionRunner class is used.
The problem was reported in this JE Forum thread: http://forums.oracle.com/forums/
thread.jspa?messageID=1782659 [#15444]

5. Added StoredContainer.areKeyRangesAllowed method. Key ranges and the methods in
SortedMap and SortedSet such as subMap and subSet are now explicitly disallowed for
RECNO and QUEUE databases -- they are only supported for BTREE databases. Before,
using key ranges in a RECNO or QUEUE database did not work, but was not explicitly
prohibited in the Collections API. [#15936]

Tcl-specific API Changes:

1. The Berkeley DB Tcl API does not attempt to avoid evaluating input as Tcl commands. For
this reason, it may be dangerous to pass unreviewed user input through the Berkeley DB
Tcl API, as the input may subsequently be evaluated as a Tcl command. To minimize the
effectiveness of a Tcl injection attack, the Berkeley DB Tcl API in the 4.7 release routine
resets process' effective user and group IDs to the real user and group IDs. [#15597]

http://forums.oracle.com/forums/thread.jspa?messageID=2187896
http://forums.oracle.com/forums/thread.jspa?messageID=1782659
http://forums.oracle.com/forums/thread.jspa?messageID=1782659

Upgrading Berkeley DB 4.6 applications to
Berkeley DB 4.7

11/8/2010 DB Installation Guide Page 102

RPC-specific Client/Server Changes:
None.

Replication Changes:

1. Fix a bug where a master failure resulted in multiple attempts to perform a "fast
election"; subsequent elections, when necessary, now use the normal nsites value.
[#15099]

2. Replication performance enhancements to speed up failover. [#15490]

3. Fix a bug where replication could self-block in a database environment configured for in-
memory logging. [#15503]

4. Fix a bug where replication would attempt to read log file version numbers in a database
configured for in-memory logging. [#15503]

5. Fix a bug where log files were not removed during client initialization in a database
configured for in-memory logging. [#15503]

6. The 4.7 release no longer supports live replication upgrade from the 4.2 or 4.3 releases,
only from the 4.4 and later releases. [#15602]

7. Fix a bug where replication could re-request missing records on every arriving record.
[#15629]

8. Change the DB_ENV->rep_set_request method to use time, not the number of messages,
when re-requesting missed messages on a replication client. [#15629]

9. Fix a minor memory leak on the master when updating a client during internal
initialization. [#15634]

10. Fix a bug where a client error when syncing with a new replication group master could
result in an inability to ever re-join the group. [#15648]

11. Change dbenv->rep_set_request to use time-based values instead of counters. [#15682]

12. Fix a bug where a LOCK_NOTGRANTED error could be returned from the DB_ENV-
>rep_process_message method, instead of being handled internally by replication.
[#15685]

13. Fix a bug where the Replication Manager would reject a fresh connection from a remote
site that had crashed and restarted, displaying the message: "redundant incoming
connection will be ignored". [#15731]

14. The Replication Manager now supports dynamic negotiation of the best available wire
protocol version, on a per-connection basis. [#15783]

15. Fix a bug, which could lead to slow performance of internal initialization under the
Replication Manager, as evidenced by "queue limit exceeded" messages in verbose
replication diagnostic output. [#15788]

Upgrading Berkeley DB 4.6 applications to
Berkeley DB 4.7

11/8/2010 DB Installation Guide Page 103

16. Fix a bug where replication control message were not portable between replication
clients with different endian architectures. [#15793]

17. Add a configuration option to turn off Replication Manager's special handling of elections
in 2-site groups. [#15873]

18. Fix a bug making it impossible to call replicationManagerAddRemoteSite in the Java API
after having called replicationManagerStart. [#15875]

19. Fix a bug where the DB_EVENT_REP_STARTUPDONE event could be triggered too early.
[#15887]

20. Fix a bug where the rcvd_ts timestamp is reset when the user just changes the threshold.
[#15895]

21. Fix a bug where the master in a 2-site replication group might wait for client
acknowledgement, even when there was no client connected. [#15927]

22. Fix a bug, clean up and restart internal init if master log is gone. [#16006]

23. Fix a bug, ignore page messages that are from an old internal init. [#16075] [#16059]

24. Fix a bug where checkpoint records do not indicate a database was a named in-memory
database. [#16076]

25. Fix a bug with in-memory replication, where we returned with the log region mutex held
in an error path, leading to self-deadlock. [#16088]

26. Fix a bug which causes the DB_REP_CHECKPOINT_DELAY setting in rep_set_timeout() to be
interpreted in seconds, rather than microseconds. [#16153]

XA Resource Manager Changes:

1. Fix a bug where the DB_ENV->failchk method and replication in general could fail in
database environments configured for XA. [#15654]

Locking Subsystem Changes:

1. Fix a bug causing a lock or transaction timeout to not be set properly after the first
timeout triggers on a particular lock id. [#15847]

2. Fix a bug that would cause a trap if DB_ENV->lock_id_free was passed an invalid locker id.
[#16005]

3. Fix a bug when thread tracking is enabled where an attempt is made to release a mutex
that is not lock. [#16011]

Logging Subsystem Changes:

1. Fix a bug, handle zero-length log records doing HA sync with in-memory logs. [#15838]

2. Fix a bug that could cause DB_ENV->failcheck to leak log region memory. [#15925]

Upgrading Berkeley DB 4.6 applications to
Berkeley DB 4.7

11/8/2010 DB Installation Guide Page 104

3. Fix a bug where the abort of a transaction that opened a database could leak log region
memory. [#15953]

4. Fix a bug that could leak memory in the DB_ENV->log_archive interface if a log file was
not found. [#16013]

Memory Pool Subsystem Changes:

1. Fix multiple MVCC bugs including a race, which could result in incorrect data being
returned to the application. [#15653]

2. Fixed a bug that left an active file in the buffer pool after a database create was aborted.
[#15918]

3. Fix a bug where there could be uneven distribution of pages if a single database and
multiple cache regions are configured. [#16015]

4. Fix a bug where DB_MPOOLFILE->set_maxsize was dropping the wrong mutex after open.
[#16050]

Mutex Subsystem Changes:

1. Fix a bug where mutex contention in database environments configured for hybrid mutex
support could result in performance degradation. [#15646]

2. Set the DB_MUTEX_PROCESS_ONLY flag on all mutexes in private environments, they
can't be shared and so we can use the faster, intra-process only mutex implementations
[#16025]

3. Fix a bug so that mutexes are now removed from the environment signature if mutexes
are disabled. [#16042]

Transaction Subsystem Changes:

1. Fix a bug that could cause a checkpoint to selfblock attempting to flush a file, when the
file handle was closed by another thread during the flush. [#15692]

2. Fix a bug that could cause DB_ENV->failcheck to hang if there were pending prepared
transactions in the environment. [#15925]

3. Prepared transactions will now use the sync setting from the environment. Default to
flushing the log on commit (was nosync). [#15995]

4. If __txn_getactive fails, we now return with the log region mutex held. This is not a bus
since __txn_getactive cannot really fail. [#16088]

Utility Changes:

1. Update db_stat with -x option for mutex stats

2. Fix an incorrect assumption about buffer size when getting an overflow page in db_verify.
[#16064]

Upgrading Berkeley DB 4.6 applications to
Berkeley DB 4.7

11/8/2010 DB Installation Guide Page 105

Configuration, Documentation, Sample Application, Portability and Build
Changes:

1. Fix an installation bug where the Berkeley DB PHP header file was not installed in the
correct place.

2. Merge the run-time configuration sleep and yield functions. [#15037]

3. Fix Handle_DEAD and other expected replication errors in the C++ sample application
ReqQuoteExample.cpp. [15568]

4. Add support for monotonic timers. [#15670]

5. Fix bugs where applications using the db_env_func_map and db_env_func_unmap run-
time configuration functions could not join existing database environments, or open
multiple DB_ENV handles for a single environment. [#15930]

6. Add documentation about building Berkeley DB for VxWorks 6.x.

7. Remove the HAVE_FINE_GRAINED_LOCK_MANAGER flag, it is obsolete in 4.7.

8. Fix a bug in ex_rep, add a missing break which could cause a segment fault.

9. Fix build warnings from 64 bit Windows build. [#16029]

10. Fix an alignment bug on ARM Linux. Force the assignment to use memcpy. [#16125]

11. Fix a bug in the Windows specific code of ex_sequence.c, where there was an invalide
printf specifier. [#16131]

12. Improve the timer in ex_tpcb to use high resolution timers. [#16154]

13. Mention in the documentation that env->open() requires DB_THREAD to be specified when
using repmgr. [#16163]

14. Disable support for mmap on Windows CE. The only affect is that we do not attempt to
mmap small read only databases into the mpool. [#16169]

11/8/2010 DB Installation Guide Page 106

Chapter 12. Upgrading Berkeley DB 4.5
applications to Berkeley DB 4.6

Introduction

The following pages describe how to upgrade applications coded against the Berkeley DB
4.5 release interfaces to the Berkeley DB 4.6 release interfaces. This information does not
describe how to upgrade Berkeley DB 1.85 release applications.

C API cursor handle method names

In the Berkeley DB 4.6 release, the C API DBC handle methods have been renamed for
consistency with the C++ and Java APIs. The change is the removal of the leading "c_" from
the names, as follows:
DBC->c_close

Renamed DBC->close
DBC->c_count

Renamed DBC->count
DBC->c_del

Renamed DBC->del
DBC->c_dup

Renamed DBC->dup
DBC->c_get

Renamed DBC->get
DBC->c_pget

Renamed DBC->pget
DBC->c_put

Renamed DBC->put

The old DBC method names are deprecated but will continue for work for some number of
future releases.

DB_MPOOLFILE->put

The DB_MPOOLFILE->put() method takes a new parameter in the Berkeley DB 4.6 release, a
page priority. This parameter allows applications to specify the page's priority when returning
the page to the cache.

Applications calling the DB_MPOOLFILE->put() method can upgrade by adding a
DB_PRIORITY_UNCHANGED parameter to their calls to the DB_MPOOLFILE->put() method. This
will result in no change in the application's behavior.

B_MPOOLFILE->set

The DB_MPOOLFILE->set method has been removed from the Berkeley DB 4.6 release.
Applications calling this method can upgrade by removing all calls to the method. This will
result in no change in the application's behavior.

../api_reference/C/dbc.html
../api_reference/C/dbc.html
../api_reference/C/mempput.html
../api_reference/C/mempput.html
../api_reference/C/mempput.html#fput_DB_PRIORITY_UNCHANGED
../api_reference/C/mempput.html

Upgrading Berkeley DB 4.5 applications to
Berkeley DB 4.6

11/8/2010 DB Installation Guide Page 107

Replication Events

It is now guaranteed the DB_EVENT_REP_STARTUPDONE event will be presented to the
application after the corresponding DB_EVENT_REP_NEWMASTER event, even in the face of
extreme thread-scheduling anomalies. (In previous releases, if the thread processing the
NEWMASTER message was starved, and STARTUPDONE occurred soon after, the order might
have been reversed.)

In addition, the DB_EVENT_REP_NEWMASTER event is now presented to all types of replication
applications: users of either the Replication Framework or the Base Replication API. In both
cases, the DB_EVENT_REP_NEWMASTER event always means that a site other than the local
environment has become master.

The envid parameter to DB_ENV->rep_process_message() has been changed to be of type "int"
rather than "int *", and the environment ID of a new master is presented to the application
along with the DB_EVENT_REP_NEWMASTER event. Replication applications should be modified
to use the DB_EVENT_REP_NEWMASTER event to determine the ID of the new master.

The envid parameter has been removed from the DB_ENV->rep_elect() method and a
new event type has been added. The DB_EVENT_REP_ELECTED event is presented to the
application at the site which wins an election. In the Berkeley DB 4.6 release, the normal
result of a successful election is either the DB_EVENT_REP_NEWMASTER event (with the
winner's environment ID), or the DB_EVENT_REP_ELECTED event. Only one of the two events
will ever be delivered.

The DB_REP_NEWMASTER return code has been removed from the DB_ENV-
>rep_process_message() method. Replication applications should be modified to use the
DB_EVENT_REP_NEWMASTER and DB_EVENT_REP_ELECTED events to determine the existence
of a new master.

DB_REP_FULL_ELECTION

The DB_REP_FULL_ELECTION flag historically specified to the DB_ENV->repmgr_start() method
has been removed from the 4.6 release.

In the Berkeley DB 4.6 release, a simpler and more flexible implementation of this
functionality is available. Applications needing to configure the first election of a replication
group differently from subsequent elections should use the DB_REP_FULL_ELECTION_TIMEOUT
flag to the DB_ENV->rep_set_timeout() method to specify a different timeout for the first
election.

Verbose Output

When an error occurs in the Berkeley DB library, an exception is thrown or an error return
value is returned by the interface. In some cases, however, the exception or returned value
may be insufficient to completely describe the cause of the error, especially during initial
application debugging. Applications can configure Berkeley DB for verbose messages to be
output when an error occurs, but it's a common cause of confusion for new users that no
verbose messages are available by default.

../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_STARTUPDONE
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_NEWMASTER
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_NEWMASTER
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_NEWMASTER
../api_reference/C/repmessage.html
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_NEWMASTER
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_NEWMASTER
../api_reference/C/repelect.html
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_ELECTED
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_NEWMASTER
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_ELECTED
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_NEWMASTER
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_ELECTED
../api_reference/C/repmgrstart.html
../api_reference/C/repset_timeout.html#set_timeout_DB_REP_FULL_ELECTION_TIMEOUT
../api_reference/C/repset_timeout.html

Upgrading Berkeley DB 4.5 applications to
Berkeley DB 4.6

11/8/2010 DB Installation Guide Page 108

In the Berkeley DB 4.6 release, verbose messages are configured by default. For the C and
C++ APIs, this means the default configuration when applications first create DB or DB_ENV
handles is as if the DB_ENV->set_errfile() or DB->set_errfile() methods were called with the
standard error output (stderr) specified as the FILE * argument. Applications wanting no
output at all can turn off this default configuration by calling the DB_ENV->set_errfile() or DB-
>set_errfile() methods with NULL as the FILE * argument. Additionally, explicitly configuring
the error output channel using any of the DB_ENV->set_errfile(), DB_ENV->set_errcall(),
DbEnv::set_error_stream() or Db::set_error_stream() methods will also turn off this default
output for the application.

Applications which configure Berkeley DB with any error output channel should not require any
changes.

Applications which depend on having no output from the Berkeley DB library by default,
should be changed to call the DB_ENV->set_errfile() or DB->set_errfile() methods with NULL as
the FILE * argument.

DB_VERB_REPLICATION

The DB_VERB_REPLICATION flag no longer requires the Berkeley DB library be built with the --
enable-diagnostic configuration option to output additional replication logging information.

Windows 9X

Berkeley DB no longer supports process-shared database environments on Windows 9X
platforms; the DB_PRIVATE flag must always be specified to the DB_ENV->open() method.

Upgrade Requirements

The log file format changed in the Berkeley DB 4.6 release.

The format of Hash database pages was changed in the Berkeley DB 4.6 release, and items are
now stored in sorted order. The format changes are entirely backward-compatible, and no
database upgrades are needed. However, upgrading existing databases can offer significant
performance improvements. Note that databases created using the 4.6 release may not be
usable with earlier Berkeley DB releases.

For further information on upgrading Berkeley DB installations, see Upgrading Berkeley DB
installations (page 66).

Berkeley DB 4.6.21 Change Log

4.6.21 Patches:

1. Fix a bug where mutex contention in database environments configured for hybrid mutex
support could result in performance degradation. [#15646]

2. Fix a bug where closing a database handle after aborting a transaction which included a
failed open of that database handle could result in application failure. [#15650]

../api_reference/C/db.html
../api_reference/C/env.html
../api_reference/C/envset_errfile.html
../api_reference/C/dbset_errfile.html
../api_reference/C/envset_errfile.html
../api_reference/C/dbset_errfile.html
../api_reference/C/dbset_errfile.html
../api_reference/C/envset_errfile.html
../api_reference/C/envset_errcall.html
../api_reference/CXX/envset_error_stream.html
../api_reference/CXX/dbset_error_stream.html
../api_reference/C/envset_errfile.html
../api_reference/C/dbset_errfile.html
../api_reference/C/envset_verbose.html#set_verbose_DB_VERB_REPLICATION
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html

Upgrading Berkeley DB 4.5 applications to
Berkeley DB 4.6

11/8/2010 DB Installation Guide Page 109

3. Fix multiple MVCC bugs including a race which could result in incorrect data being
returned to the application. [#15653]

4. Fix a bug where a database store into a Hash database could self-deadlock in a database
environment configured for the Berkeley DB Concurrent Data Store product and with a
free-threaded DB_ENV or DB handle. [#15718]

5. Fix an installation bug where Berkeley DB's PHP header file was not installed in the
correct place.

4.6.19 Patches

1. Fix a bug where a client in a two-site replication group could become master, after failure
of the existing master, even if the client had priority 0. [#15388]

2. Fix a bug where 32-bit builds on 64-bit machines could immediately core dump because of
a misaligned access. [#15643]

3. Fix a bug where attempts to configure a database for MVCC in the Java API were silently
ignored. [#15644]

4. Fix a bug where database environments configured for replication and verbose output
could drop core. [#15651]

Database or Log File On-Disk Format Changes:

1. The on-disk log format has changed.

2. The format of Hash database pages was changed in the Berkeley DB 4.6 release, and items
are now stored in sorted order. The format changes are entirely backward-compatible,
and no database upgrades are needed. However, upgrading existing databases can offer
significant performance improvements. Note that databases created using the 4.6 release
may not be usable with earlier Berkeley DB releases.

New Features:

1. Add support for a cursor DB_PREV_DUP flag, which moves the cursor to the previous key/
data pair if it's a duplicate of the current key/data pair. [#4801]

2. Add the ability to set cache page priority on a database or cursor handle. [#11886]

3. Add verbose output tracing for filesystem operations. [#13760]

4. Port Berkeley DB to Qualcomm's Binary Runtime Environment for Wireless (BREW).
[#14562]

5. Port Berkeley DB to WinCE. [#15312]

6. Port Berkeley DB to S60. [#15371]

7. Add a key_exists method to the DB handle. [#15374]

Upgrading Berkeley DB 4.5 applications to
Berkeley DB 4.6

11/8/2010 DB Installation Guide Page 110

8. Applications may now begin processing new transactions while previously prepared, but
unresolved, transactions are still pending. [#14754]

9. Significant performance improvements in the Hash access method. [#15017]

Database Environment Changes:

1. Add support to close open file handles in the case of catastrophic database environment
failure so applications that do not exit and restart on failure won't leak file handles.
[#6538]

2. Replace the Berkeley DB shared memory allocator with a new implementation, intended
to decrease the performance drop-off seen in database environments having working sets
that are larger than the cache, especially database environments with multiple cache
page sizes. [#13122]

3. Fix a bug that would incorrectly cause a thread to appear to be in the Berkeley DB API
after a call to db_create. [#14562]

4. Allow database close prior to resolving all transactions updating the database. [#14785]

5. Fix a bug where the db_stat utility -Z flag and the statistics method's DB_STAT_CLEAR
flag could clear mutex statistics too quickly, leading to incorrect values being displayed.
[#15032]

6. Fix a bug where removal of a file after and open/close pair spanning the most recent
checkpoint log-sequence-numbers made recovery fail. [#15092]

7. Fix a bug that could leave an environment unrecoverable if FTRUNCATE was not set and
a roll-forward to a timestamp was interrupted between the truncation of the log and the
recording of aborted allocations. [#15108]

8. Fix a bug where recovery of a rename operation could fail if the rename occurred in a
directory that no longer existed. [#15119]

9. Fix a bug that could cause recovery to report a "File exists" error if a committed create
was partially recovered by a previously failed recovery operation. [#15151]

10. Fix a bug where the DbEnv.get_thread_count method implementation was missing from
the Berkeley DB 4.5 release. [#15201]

11. Fix a bug where replication operations were not reported properly when the DbEnv.failchk
method was called. [#15094]

12. Fixed a bug that caused SEQ->remove not to use a transaction if the sequence was opened
on a transactional database handle but no transaction was specified on the call. [#15235]

13. Fix a bug where accesses to the database environment reference count could race,
causing the DB_ENV->remove method to incorrectly remove or not remove a database
environment. [#15240]

Upgrading Berkeley DB 4.5 applications to
Berkeley DB 4.6

11/8/2010 DB Installation Guide Page 111

14. Fix a bug that could cause a recovery failure if a partial record was written near the end
of a log file before a crash and then never overwritten after recovery runs and before a
log file switch occurs. [#15302]

15. Fix a bug that could fire a diagnostic assertion if an error occurred during a database
environment open. [#15309]

16. Fix a bug where memp_trickle attempts to flush an infinite number of buffers. [#15342]

17. Cause application updates of the DB_ENV->set_mp_max_write values to affect already
running cache flush operations. [#15342]

18. Fix a bug which could cause system hang if a checkpoint happened at the same time as a
database file create or rename. [#15346]

19. Fix a bug which could cause application failure if the open of a subdatabase failed while
other database opens were happening. [#15346]

20. Fix a bug that could cause recovery to not process a transaction properly if the
transaction was started before the transaction IDs were reset but did not put its first
record into the log until after the txn_recycle record. [#15400]

21. Fix a bug that could cause a thread in cache allocation to loop infinitely. [#15406]

22. Fix a bug that could cause recovery to report a Log Sequence Error on systems without
the ftruncate system call where a page allocation occurred and the database metadata
page was forced out of cache without being marked dirty and then had to be recovered.
[#15441]

23. Fix a bug on systems lacking the ftruncate system call, where a page may be improperly
linked into the free list if archive recovery was done in multiple steps, that is, applying
additional logs to the same databases. [#15557]

Concurrent Data Store Changes:
None.

General Access Method Changes:

1. Add a feature where applications can specify a custom comparison function for the Hash
access method [#4109]

2. Open, create, close and removal of non-transactional databases is are longer logged in
transactional database environments unless debug logging is enabled. [#8037]

3. Add the ability to set cache page priority on a database or cursor handle. [#11886]

4. fix a bug where the DB_ENV->fileid_reset method failed when called on on encrypted or
check-summed databases. [#13990]

5. Fix a bug where the DB->fd method failed when called on in-memory databases. [#14157]

Upgrading Berkeley DB 4.5 applications to
Berkeley DB 4.6

11/8/2010 DB Installation Guide Page 112

6. Fix a bug where an attempt to open a Recno database with a backing file that does not
exist could report an error because it couldn't remove a temporary file. [#14160]

7. Reverse a change found in previous releases which disallowed setting "partial" flags on key
DBTs for DB and DbCursor put method calls. [#14520]

8. Fix a bug where transactional file operations, such as remove or rename, could leak file
handles. [#15222]

9. Fix a bug that could cause the in-memory sorted freelist used by the DB->compact method
not to be freed if transaction or lock timeouts were set in the environment. [#15292]

10. Add the DB->get_multiple method, which returns if the DB handle references a "master"
database in the physical file. [#15352]

11. Fix a bug that could cause an DB_INORDER, DB->get method DB_CONSUME operation to
loop if the Queue database was missing a record due to a rollback by a writer or a non-
queue insert in the queue. [#15452]

12. Fix a bug preventing database removal after application or system failure in a database
environment configured for in-memory logging. [#15459]

Btree Access Method Changes:
None.

Hash Access Method Changes:

1. Change the internal format of Hash database pages, storing items in sorted order. There
are no externally visible changes, and hash databases using historic on-page formats
do not require an explicit upgrade. (However, upgrading existing databases can offer
significant performance improvements.) [#15017]

2. Fix a bug preventing LSNs from being reset on hash databases when the databases were
configured with a non-standard hash function. [#15567]

Queue Access Method Changes:

1. Fix a bug which could cause a Queue extent file to be incorrectly removed if an empty
extent file was being closed by one thread and being updated by another thread (which
was using random access operations). [#9101]

Recno Access Method Changes:
None.

C++-specific API Changes:
None.

Java-specific API Changes:

1. Add a feature where an exception is thrown by the Java API, the Berkeley DB error
message is now included in the exception object. [#11870]

Upgrading Berkeley DB 4.5 applications to
Berkeley DB 4.6

11/8/2010 DB Installation Guide Page 113

2. Fix a bug which can cause a JVM crash when doing a partial get operation. [#15143]

3. Fix a bug which prevented the use of Berkeley DB sequences from Java. [#15220]

4. Fix multiple bugs where DBTs were not being copied correctly in the Java replication APIs.
[#15223]

5. Add transaction.commitWriteNoSync to the Java API. [#15376]

Java collections and bind API Changes:

1. Change SerialBinding to use the current thread's context class loader when loading
application classes. This allows the JE jar file to be deployed in application servers and
other containers as a shared library rather than as an application jar. [#15447]

2. Tuple bindings now support the java.math.BigInteger type. Like other
tuple binding values, BigInteger values are sorted in natural integer order
by default, without using a custom comparator. For details please see
the Javadoc for: com.sleepycat.bind.tuple.TupleInput.readBigInteger
com.sleepycat.bind.tuple.TupleOutput.writeBigInteger
com.sleepycat.bind.tuple.BigIntegerBinding [#15244]

3. Add tuple binding methods for reading and writing packed int and long values.
Packed integer values take less space, but take slightly more processing time to
read and write. See: TupleInput.readPackedInt TupleInput.getPackedIntByteLength
TupleInput.readPackedLong TupleInput.getPackedLongByteLength
TupleOutput.writePackedInt TupleOutput.writePackedLong PackedInteger [#15422]

4. The Collections API has been enhanced so that auto-commit works for the standard Java
Iterator.remove(), set() and add() methods. Previously it was necessary to explicitly begin
and commit a transaction in order to call these methods, when the underlying Database
was transactional. Note that starting a transaction is still necessary when calling these
methods if the StoredCollection.storedIterator method is used. [#15401]

5. Fix a bug that causes a memory leak for applications where both of the following are
true: many Environment objects are opened and closed, and the CurrentTransaction or
TransactionRunner class is used. [#15444]

Tcl-specific API Changes:
None.

RPC-specific Client/Server Changes:
None.

Replication Changes:

1. Fix a bug where transactions could be rolled-back if an existing replication group master
was partitioned and unable to participate in an election. [#14752]

2. Add a new event when a replication manager framework master fails to send and confirm
receipt by clients of a "permanent" message. [#14775]

Upgrading Berkeley DB 4.5 applications to
Berkeley DB 4.6

11/8/2010 DB Installation Guide Page 114

3. Fix a race where multiple threads might attempt to process a LOGREADY condition.
[#14902]

4. Change the DB_VERB_REPLICATION flag to no longer require the Berkeley DB library be
built with the --enable-diagnostic configuration option to output additional replication
logging information. [#14991]

5. Fix a bug with elections occurring during internal init of a replication client site. [#15057]

6. Fix lockout code to lockout message threads and API separately. Send indication that log
requests is for internal init. [#15067]

7. Replication manager changed to retry host-name look-up failures, since they could be
caused by transient name server outage. [#15081]

8. Fix a bug which led to memory corruption when the sending of a bulk buffer resulted in
an error. [#15100]

9. A throttling limit of 10 megabytes is now set by default in a newly created database
environment (see the DbEnv.rep_set_limit method). [#15115]

10. Fix a bug in ALL_REQ handling where master could get a DB_NOTFOUND. [#15116]

11. Fix a bug which could lead to client sites repeatedly but unproductively calling for an
election, when a master site already exists. [#15128]

12. Modify gap processing algorithms so XXX_MORE messages ask for data beyond what it just
processed, not an earlier gap that might exist. [#15136]

13. Fixed a bug in the ex_rep example application which could cause the last few transactions
to disappear when shutting down the sites of the replication group gracefully. [#15162]

14. Fix a bug where if a client crashed during internal init, its database environment would
be left in a confused state, making it impossible to synchronize again with the master.
[#15177]

15. Fix a bug where election flags are not cleared atomically with the setting of the new
master ID. [#15186]

16. Fix a bug which would cause Berkeley DB to crash if an internal init happened when there
were no database files at the master. [#15227]

17. It is now guaranteed that the DB_EVENT_REP_STARTUPDONE event will be presented to
the application after the corresponding DB_EVENT_REP_NEWMASTER event, even in the
face of extreme scheduling anomalies. [#15265]

18. Fix minor memory leaks in the replication manager. [#15239] [#15256]

19. Fix a bug which caused the replication manager to lose track of a failed connection,
resulting in the inability to accept a replacement connection. [#15311]

20. Fix a bug where a client starting an election when the rest of the replication group
already had an established master could confuse replication management at the other

Upgrading Berkeley DB 4.5 applications to
Berkeley DB 4.6

11/8/2010 DB Installation Guide Page 115

client sites, leading to failure to properly acknowledge PERM transactions from the
master. [#15428]

21. Add support for reporting Replication Manager statistics. [#15430]

22. Fix a bug where a send failure during processing of a request message from a client could
erroneously appear to the application as an EPERM system error. [#15436]

23. Client now sets STARTUPDONE at the end of the synchronization phase when it has caught
up to the end of the master's transaction log, without requiring ongoing transactions at
the master. [#15542]

24. Fix a bug in sleep-time calculation which could cause a Replication Manager failure.
[#15552]

XA Resource Manager Changes:
None.

Locking Subsystem Changes:

1. Change the DB_ENV->lock_detect method to return the number of transactions timed out
in addition to those were rejected due to deadlock. [#15281]

Logging Subsystem Changes:
None.

Memory Pool Subsystem Changes:

1. Fix a bug that could cause a checkpoint to hang if a database was closed while the
checkpoint was forcing that file to disk and all the pages for that database were replaced
in the cache. [#15135]

2. Fix a bug where a system error in closing a file could result in a core dump. [#15137]

3. Fix MVCC statistics counts for private database environments. [#15218]

Transaction Subsystem Changes:

1. Fix a bug where creating a database with the DB_TXN_NOTDURABLE flag set would still
write a log record. [#15386]

2. Change transaction checkpoint to wait only for pages being updated during the
checkpoint. [#14710]

Utility Changes:

1. Fix a bug that prevented db_load from handling subdatabase names that were of zero
length. [#8204]

2. Fix a bug where the db_hotbackup utility did not clean out and record the log file
numbers in the backup directory when both the -u and -D flags were specified. [#15395]

Upgrading Berkeley DB 4.5 applications to
Berkeley DB 4.6

11/8/2010 DB Installation Guide Page 116

Configuration, Documentation, Portability and Build Changes:

1. Berkeley DB no longer supports process-shared database environments on Windows 9X
platforms; the DB_PRIVATE flag must always be specified to the DB_ENV->open method.
[#13766]

2. Port Berkeley DB to Qualcomm's Binary Runtime Environment for Wireless (BREW).
[#14562]

3. Compile SWIG-generated code with the -fno-strict-aliasing flag when using the GNU gcc
compiler. [#14953]

4. Changed include files so ENOENT is resolved on Windows. [#15078]

5. Port Berkeley DB to WinCE. [#15312]

6. Port Berkeley DB to S60. [#15371]

7. Add the db_hotbackup executable to the Windows MSI installer. [#15372]

8. Change the db_hotbackup utility to use the Berkeley DB library portability layer. [#15415]

9. Re-write the GNU gcc mutex implementation on the x86 platform to avoid compiler
errors. [#15461]

10. Fix a bug with non-HFS filesystems under OS X which could affect data durability.
[#15501]

11/8/2010 DB Installation Guide Page 117

Chapter 13. Upgrading Berkeley DB 4.4
applications to Berkeley DB 4.5

Introduction

The following pages describe how to upgrade applications coded against the Berkeley DB
4.4 release interfaces to the Berkeley DB 4.5 release interfaces. This information does not
describe how to upgrade Berkeley DB 1.85 release applications.

deprecated interfaces

Some previously deprecated interfaces were removed from the Berkeley DB 4.5 release:

• The DB_ENV->set_lk_max method was removed. This method has been deprecated and
undocumented since the Berkeley DB 4.0 release.

• The DB->stat method flags DB_CACHED_COUNT and DB_RECORDCOUNT were removed.
These flags have been deprecated and undocumented since the Berkeley DB 4.1 release.

• The -w option to the db_deadlock utility was removed. This option has been deprecated and
undocumented since the Berkeley DB 4.0 release.

DB->set_isalive

In previous releases, the function specified to the DB_ENV->set_isalive() method did not take
a flags parameter. In the Berkeley DB 4.5 release, an additional flags argument has been
added: DB_MUTEX_PROCESS_ONLY.

Applications configuring an is-alive function should add a flags argument to the function, and
change the function to ignore any thread ID and return the status of just the process, when
the DB_MUTEX_PROCESS_ONLY flag is specified.

DB_ENV->rep_elect

Two of the historic arguments for the DB_ENV->rep_elect() method have been moved from
the interface to separate methods in order to make them available within the new replication
manager framework.

The priority parameter should now be explicitly set using the DB_ENV->rep_set_priority()
method. To upgrade existing replication applications to the Berkeley DB 4.5 DB_ENV-
>rep_elect() interface, it may be simplest to insert a call to DB_ENV->rep_set_priority()
immediately before the existing call to DB_ENV->rep_elect(). Alternatively, it may make
more sense to add a single call to DB_ENV->rep_set_priority() during database environment
configuration.

The timeout parameter should now be explicitly set using the DB_ENV->rep_set_timeout()
method. To upgrade existing replication applications to the Berkeley DB 4.5 DB_ENV-
>rep_elect() interface, it may be simplest to insert a call to DB_ENV->rep_set_timeout()
immediately before the existing call to DB_ENV->rep_elect(). Alternatively, it may make

../api_reference/C/db_deadlock.html
../api_reference/C/envset_isalive.html
../api_reference/C/envset_isalive.html#isalive_DB_MUTEX_PROCESS_ONLY
../api_reference/C/envset_isalive.html#isalive_DB_MUTEX_PROCESS_ONLY
../api_reference/C/repelect.html
../api_reference/C/reppriority.html
../api_reference/C/repelect.html
../api_reference/C/repelect.html
../api_reference/C/reppriority.html
../api_reference/C/repelect.html
../api_reference/C/reppriority.html
../api_reference/C/repset_timeout.html
../api_reference/C/repelect.html
../api_reference/C/repelect.html
../api_reference/C/repset_timeout.html
../api_reference/C/repelect.html

Upgrading Berkeley DB 4.4 applications to
Berkeley DB 4.5

11/8/2010 DB Installation Guide Page 118

more sense to add a single call to DB_ENV->rep_set_timeout() during database environment
configuration.

Replication method naming

The method names DB_ENV->set_rep_limit, DB_ENV->get_rep_limit and DB_ENV-
>set_rep_transport have been changed to DB_ENV->rep_set_limit(), DB_ENV->rep_get_limit()
and DB_ENV->rep_set_transport() in order to be consistent with the other replication method
names. That is, the characters "set_rep" and "get_rep" have been changed to "rep_set" and
"rep_get".

Applications should modify the method names, no other change is required.

Replication events

One of the informational returns from the DB_ENV->rep_process_message() method found in
previous releases of Berkeley DB has been changed to an event. The DB_REP_STARTUPDONE
return from DB_ENV->rep_process_message() is now the DB_EVENT_REP_STARTUPDONE value
to the DB_ENV->set_event_notify() callback.

Applications should update their handling of this event as necessary.

Memory Pool API

As part of implementing support for multi-version concurrency control, the DB_MPOOL_DIRTY
flag is now specified to the DB_MPOOLFILE->get() instead of DB_MPOOLFILE->put(), and
the DB_MPOOLFILE->set method has been removed. In addition, a new transaction handle
parameter has been added to the DB_MPOOLFILE->get() method.

The DB_MPOOL_CLEAN flag is no longer supported.

Applications which use the memory pool API directly should update to the new API in order to
use 4.5.

DB_ENV->set_paniccall

In previous Berkeley DB releases, the DB_ENV->set_paniccall and DB->set_paniccall methods
were used to register a callback function, called if the database environment failed. In the
4.5 release, this functionality has been replaced by a general-purpose event notification
callback function, set with the DB_ENV->set_event_notify() method. Applications should be
updated to replace DB_ENV->set_paniccall and DB->set_paniccall calls with a call to DB_ENV-
>set_event_notify(). This also requires the callback function itself change, as the callback
signatures are different.

The DB_ENV->set_paniccall and DB->set_paniccall calls are expected to be removed in a
future release of Berkeley DB.

DB->set_pagesize

In previous releases, when creating a new database in a physical file which already contained
databases, it was an error to specify a page size different from the existing databases in the

../api_reference/C/repset_timeout.html
../api_reference/C/repset_limit.html
../api_reference/C/repget_limit.html
../api_reference/C/reptransport.html
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_STARTUPDONE
../api_reference/C/envevent_notify.html
../api_reference/C/mempfget.html#fget_DB_MPOOL_DIRTY
../api_reference/C/mempfget.html
../api_reference/C/mempput.html
../api_reference/C/mempfget.html
../api_reference/C/envevent_notify.html
../api_reference/C/envevent_notify.html
../api_reference/C/envevent_notify.html

Upgrading Berkeley DB 4.4 applications to
Berkeley DB 4.5

11/8/2010 DB Installation Guide Page 119

file. In the Berkeley DB 4.5 release, any page size specified is ignored if the file in which the
database is being created already exists.

Collections API

The changes to the Collections API are compatible with prior releases, with one exception: the
Iterator object returned by the StoredCollection.iterator() method can no longer be explicitly
cast to StoredIterator because a different implementation class is now used for iterators. If
you depend on the StoredIterator class, you must now call StoredCollection.storedIterator()
instead. Note the StoredIterator.close(Iterator) static method is compatible with the new
iterator implementation, so no changes are necessary if you are using that method to close
iterators.

--enable-pthread_self

In previous releases, the --enable-pthread_self configuration option was used to force
Berkeley DB to use the POSIX pthread pthread_self function to identify threads of control
(even when Berkeley DB was configured for test-and-set mutexes). In the 4.5 release, the
--enable-pthread_self option has been replaced with the --enable-pthread_api option. This
option has the same effect as the previous option, but configures the Berkeley DB build for
a POSIX pthread application in other ways (for example, configuring Berkeley DB to use the
pthread_self function).

Recno backing text source files

In previous releases of Berkeley DB, Recno access method backing source text files were
opened using the ANSI C fopen function with the "r" and "w" modes. This caused Windows
systems to translate carriage-return and linefeed characters on input and output and could
lead to database corruption.

In the current release, Berkeley DB opens the backing source text files using the "rb" and
"wb" modes, consequently carriage-return and linefeed characters will not be translated on
Windows systems.

Applications using the backing source text file feature on systems where the "r/w" and "rb/wb"
modes differ should evaluate their application as part of upgrading to the 4.5 release. There is
the possibility that characters have been translated or stripped and the backing source file has
been corrupted. (Applications on other systems, for example, POSIX-like systems, should not
require any changes related to this issue.)

Application-specific logging

In previous releases of Berkeley DB, "BEGIN" lines in the XXX.src files used to build application-
specific logging support only required a log record number. In the 4.5 release, those lines
require a Berkeley DB library version as well. For example, the entry:

BEGIN mkdir 10000

must now be:

Upgrading Berkeley DB 4.4 applications to
Berkeley DB 4.5

11/8/2010 DB Installation Guide Page 120

BEGIN mkdir 44 10000

that is, the version of the Berkeley DB release where the log record was introduced must be
included. The version is the major and minor numbers for the Berkeley DB library, with all
punctuation removed. For example, Berkeley DB version 4.2 should be 42, version 4.5 should
be 45.

Upgrade Requirements

The log file format changed in the Berkeley DB 4.5 release. No database formats changed in
the Berkeley DB 4.5 release.

For further information on upgrading Berkeley DB installations, see Upgrading Berkeley DB
installations (page 66).

Berkeley DB 4.5.20 Change Log

Database or Log File On-Disk Format Changes:

1. The on-disk log format has changed.

New Features:

1. Multi-Version Concurrency Control for the Btree/Recno access methods.

2. A new replication framework with a default TCP/IP setup.

3. Online replication upgrades for high availability replicated 24/7 systems.

4. A new event-style notification.

5. Several enhancements to the Java Collections API including the implementation of the
size() method.

Database Environment Changes:

1. Update the DB_ENV->failchk method to garbage collect per-process mutexes stranded
after unexpected process failure. [#13964]

2. Fix a bug that could cause memory used to track threads for DB_ENV->failchk to not be
reused when a thread no longer exists. [#14425]

3. Add set_event_notify behavior as part of new event notification in Berkeley DB. [#14534]

4. Fix a bug so that we no longer panic on DB_ENV->close() if a previous environment close
failed to log. This condition will now return an error. [#14693]

5. Created os_getenv, removed clib/getenv, implemented Windows specific behavior.
[#14942]

Upgrading Berkeley DB 4.4 applications to
Berkeley DB 4.5

11/8/2010 DB Installation Guide Page 121

6. Fix a bug where it was possible to corrupt the DB_REGISTER information file, making it
impossible for Berkeley DB applications to join database environments. [#14998]

Concurrent Data Store Changes:

1. Fix a bug where renaming a subdatabase in a Concurrent Data Store environment could
fail. [#14185]

General Access Method Changes:

1. Fix a bug that could leave extra unallocated pages at the end of a database file. [#14031]

2. Optimize secondary updates when overwriting primary records. [#14075]

3. Fix a bug to prevent a trap when creating a named in-memory database and there are
already temporary files open. [#14133]

4. Fix a bug which caused a trap if the key parameter to DBC->c_get was omitted with
DB_CURRENT. [#14143]

5. Fix a bug with secondary cursors when the secondary has off-page duplicates. This bug
resulted in incorrect primary data being returned. [#14240]

6. Improve performance when removing a subdatabase by not locking every page. [#14366]

7. Fix a bug that would not properly upgrade database files from releases 3.2.9 (and earlier)
to releases 4.0 (and greater). [#14461]

8. Fix a bug that could cause a DB_READ_UNCOMMITTED get through a secondary index to
return DB_SECONDARY_CORRUPT. [#14487]

9. Fix a bug so that non-transactional cursor updates of a transactional database will
generate an error. [#14519]

10. Add a message when the system panics due to a page in the wrong state at its time of
allocation. [#14527]

11. Fix a remove failure when attempting to remove a file that is open in another thread of
control. [#14780]

12. Fix a bug where the key was not ignored when doing a cursor put with the DB_CURRENT
flag. [#14988]

Btree Access Method Changes:

a. When deleting a page don't check the next key in the parent if we are going to delete the
parent too.

b. Need to check that the tree has not collapsed between dropping a read lock and getting
the write lock. If it has collapsed we will fetch the root of the tree.

c. Fix a case where we fail to lock the next page before reading it.

Upgrading Berkeley DB 4.4 applications to
Berkeley DB 4.5

11/8/2010 DB Installation Guide Page 122

1. Changed the implementation of internal nodes in btrees so that they no longer share
references to overflow pages with leaf nodes. [#10717]

2. Fix a bug that could cause a diagnostic assertion by setting the deleted bit on a record in
an internal node. [#13944]

3. Fix three problems in BTREE compaction: [#14238]

4. Fix a bug that could cause the compaction of a Btree with sorted duplicates to fail when
attempting to compact an off page duplicate tree if a key could not fit in an internal
node. [#14771]

5. Fix a bug that causes a loop if an empty Btree was compacted. [#14493]

Hash Access Method Changes:

1. Fix a bug to allow creation of hash pages during truncate recovery. [#14247]

Queue Access Method Changes:

1. Fix a bug where reads of data items outside the range of the queue were not kept locked
to the end of the transaction, breaking serializability. [#13719]

2. Fix a bug that could cause corruption in queue extent files if multiple processes tried to
open the same extent at the same time. [#14438]

3. Improve concurrency for in-place updates in queue databases. [#14918]

Recno Access Method Changes:
None.

C++-specific API Changes:

1. C++ applications that check the error code in exceptions should note that
DbMemoryException has been changed to have the error code DB_BUFFER_SMALL rather
than ENOMEM, to match the error returned by the C API. DbMemoryException will be
thrown when a Dbt is too small to contain data returned by Berkeley DB. When a call to
malloc fails, or some other resource is exhausted, a plain DbException will be thrown with
error code set to ENOMEM. [#13939]

Java-specific API Changes:

1. Database.verify may now be called. This method is now static and takes a DatabaseConfig
parameter. [#13971]

2. Add DB_ENV->{fileid_reset, lsn_reset} to the public API. [#14076]

Java collections and bind API Changes:

1. The com.sleepycat.collections package is now fully compatible with the Java Collections
framework. [#14732]

Upgrading Berkeley DB 4.4 applications to
Berkeley DB 4.5

11/8/2010 DB Installation Guide Page 123

Tcl-specific API Changes:

1. Fix a conflicting variable, sysscript.tcl. [#15051]

RPC-specific Client/Server Changes:
None.

Replication Changes:

1. Fix a bug when running with DEBUG_ROP or DEBUG_WOP. [#13394]

2. Add live replication upgrade support [#13670]

3. Fix a bug so that client databases are removed at the start of internal initialization.
[#14147]

4. Fix a bug in replication internal initialization so that data_dir will be handled correctly.
Make internal initialization resilient to multiple data_dir calls with the same directory.
[#14489]

5. Fix a bug in the 4.2 sync-up algorithm that could result in no open files. [#14552]

6. Fix a bug when clients decide to re-request. [#14642]

7. Fix a bug where a PERM bulk buffer could have a zero LSN passed to the application
callback. [#14675]

8. Change names of some existing replication API methods as described in "Replication
Method Naming" page of the "Upgrading Berkeley DB Applications to Release 4.5" section
of Berkeley DB Reference Guide. [#14723]

9. Fix a bug which could cause an election to succeed only after waiting for the timeout to
expire, even when all sites responded in a timely manner. The bug was most easily visible
in an election between 2 sites. [#14752]

10. Fix a bug where a process could have an old file handle to a log file. [#14797]

11. Fix a bug where a "log_more" message could be on a log file boundary. [#15034]

12. Fix a bug that could cause log corruption if a database open operation were attempted
during a call to rep_start in another thread. [#15035]

13. Fix a bug during elections where a vote2 arrives before its vote1. [#15055]

14. Fix a bug to make sure we are a client if sending a REP_REREQUEST. [#15066]

XA Resource Manager Changes:
None.

Locking Subsystem Changes:

1. Fix a bug that could cause a write to hang if DB_READ_UNCOMMITTED is enabled and it
tries to reacquire a write lock. [#14919]

Upgrading Berkeley DB 4.4 applications to
Berkeley DB 4.5

11/8/2010 DB Installation Guide Page 124

Logging Subsystem Changes:

1. Fix a bug so that log headers are now included in the checksum. This avoids a possible
race in doing hot backups. [#11636].

2. Add a check so that some log sequence errors are diagnosed at run time rather than
during recovery. [#13231]

3. Fix a bug where recovery fails if there is no disk space for the forced checkpoint that
occurs at the end of processing the log. [#13986]

4. Fix a bug which could cause a page to be missing from the end of a database file if
the page at the end of the file was freed while it contained data and the system was
restarted before the log record for that free was flushed to disk. [#14090]

5. Fix a bug that could cause log files to be incorrectly removed by log_archive if it was run
immediately after recovery. [#14874]

Memory Pool Subsystem Changes:

1. Fix a bug that could cause corruption to the buffer pool cache if a race condition was hit
while using DB->compact. [#14360]

2. Fix a bug where cache pages could be leaked in applications creating temporary files for
which the DB_MPOOL_NOFILE flag was set. [#14544]

Transaction Subsystem Changes:

1. Fix a bug that could cause extra empty pages to appear in a database file after recovery.
[#11118]

2. Fix a bug triggered when running recovery with a feedback function that could cause a
NULL pointer dereference. [#13834]

3. Fix a bug where running recovery could create duplicate entries in the data directory list.
[#13884]

4. Fix a bug to not trade locks if a write lock is already owned. [#13917]

5. Fix a bug that could cause traps or hangs if the DB_TXN->set_name function is used in a
multithreaded application. [#14033]

6. Fix a bug so that a transaction can no longer be committed after it had deadlocked.
[#14037]

7. Fix a bug that could cause a trap during recovery if multiple operations that could remove
the same extent are recovered. [#14061]

8. Fix a bug that could cause an extent file to be deleted after the last record in the extent
was consumed but the consuming transaction was aborted. [#14179]

9. Fix a bug where the parent database would not use DB_READ_UNCOMMITTED in certain
cases when calling DBC->c_pget. [#14361]

Upgrading Berkeley DB 4.4 applications to
Berkeley DB 4.5

11/8/2010 DB Installation Guide Page 125

10. Fix a bug so that it is no longer possible to do a non-transactional cursor update on a
database that is opened transactionally. [#14519]

11. Fix a bug that causes a sequence to ignore the DB_AUTO_COMMIT settings. [#14582]

12. Fix a bug, change txn_recover so that multiple processes will recover prepared
transactions without requiring that the first process stay active. [#14707]

13. Fix a bug that could cause the wrong record to be deleted if a transaction had a cursor on
a record with a pending delete and then replaced a record that contained overflow data
or replaced a record with overflow data and that replace failed. [#14834]

Utility Changes:

1. Fix a bug that caused db_verify to not check the order on leaf pages which were the
leftmost children of an internal node. [#13004]

2. Fix a bug that caused db_hotbackup to not backup queue extent files. [#13848]

3. Fix a bug so that db_verify no longer reports that an unused hash page is not fully zeroed.
[#14030]

4. Fix a bug where db_stat ignored the -f option to return "fast statistics". [#14283]

5. Fix a bug that prevented the db_stat utility from opening database files with write
permission so that meta data statistics would be updated. [#14755]

6. Fix a bug in db_hotbackup related to windows. Sub-directories are now ignored. [#14757]

Configuration, Documentation, Portability and Build Changes:

1. The Berkeley DB 4.3 and 4.4 releases disallowed using the --with-uniquename
configuration option with the C++, Java, or RPC --enable-XXX options. The 4.5 release
returns to the 4.2 release behavior, allowing those combinations of configuration options.
[#14067]

2. Fix build issues when CONFIG_TEST is not enabled for Tcl. [#14507]

3. There are updated build instructions for Berkeley DB PHP module on Linux. [#14249]

4. Use libtool's "standard" environment variable names so that you can set "AR" to "ar -X64"
for example, and modify both libtool and the Makefile commands. Remove the install-
strip target from the Makefile, it is no longer used. [#14726]

5. Fix a bug where, when a database is opened with the DB_THREAD flag (the default in
Java), and an operation in one thread causes the database to be truncated (typically
when the last page in the database is freed) concurrently with a read or write in another
thread, there can be arbitrary data loss, as Windows zeros out pages from the read/write
location to the end of the file. [#15063]

11/8/2010 DB Installation Guide Page 126

Chapter 14. Upgrading Berkeley DB 4.3
applications to Berkeley DB 4.4

Introduction

The following pages describe how to upgrade applications coded against the Berkeley DB
4.3 release interfaces to the Berkeley DB 4.4 release interfaces. This information does not
describe how to upgrade Berkeley DB 1.85 release applications.

DB_AUTO_COMMIT

In previous Berkeley DB releases, the DB_AUTO_COMMIT flag was used in the C and C+
+ Berkeley DB APIs to wrap operations within a transaction without explicitly creating a
transaction and passing the TXN handle as part of the operation method call. In the 4.4
release, the DB_AUTO_COMMIT flag no longer needs to be explicitly specified.

In the 4.4 release, specifying the DB_AUTO_COMMIT flag to the DB_ENV->set_flags() method
causes all database modifications in that environment to be transactional; specifying
DB_AUTO_COMMIT to the DB->open() method causes all modifications to that database to be
transactional; specifying DB_AUTO_COMMIT to the DB_ENV->dbremove() methods causes those
specific operations to be transactional.

No related application changes are required for this release, as the DB_AUTO_COMMIT flag is
ignored where it is no longer needed. However, application writers are encouraged to remove
uses of the DB_AUTO_COMMIT flag in places where it is no longer needed.

Similar changes have been made to the Berkeley DB Tcl API. These changes are not optional,
and Tcl applications will need to remove the -auto_commit flag from methods where it is no
longer needed.

DB_DEGREE_2, DB_DIRTY_READ

The names of two isolation-level flags changed in the Berkeley DB 4.4 release. The
DB_DEGREE_2 flag was renamed to DB_READ_COMMITTED, and the DB_DIRTY_READ flag was
renamed to DB_READ_UNCOMMITTED, to match ANSI standard names for isolation levels.
The historic flag names continue to work in this release, but may be removed from future
releases.

DB_JOINENV

The semantics of joining existing Berkeley DB database environments has changed in the 4.4
release. Previously:

1. Applications joining existing environments, but not configuring some of the subsystems
configured in the environment when it was created, would not be configured for those
subsystems.

../api_reference/C/envset_flags.html#envset_flags_DB_AUTO_COMMIT
../api_reference/C/txn.html
../api_reference/C/envset_flags.html#envset_flags_DB_AUTO_COMMIT
../api_reference/C/envset_flags.html#envset_flags_DB_AUTO_COMMIT
../api_reference/C/envset_flags.html
../api_reference/C/envset_flags.html#envset_flags_DB_AUTO_COMMIT
../api_reference/C/dbopen.html
../api_reference/C/envset_flags.html#envset_flags_DB_AUTO_COMMIT
../api_reference/C/envdbremove.html
../api_reference/C/envset_flags.html#envset_flags_DB_AUTO_COMMIT
../api_reference/C/envset_flags.html#envset_flags_DB_AUTO_COMMIT
../api_reference/C/dbcget.html#dbcget_DB_READ_COMMITTED
../api_reference/C/dbopen.html#dbopen_DB_READ_UNCOMMITTED

Upgrading Berkeley DB 4.3 applications to
Berkeley DB 4.4

11/8/2010 DB Installation Guide Page 127

2. Applications joining existing environments, but configuring additional subsystems in
addition to the subsystems configured in the environment when it was created, would
cause additional subsystems to be configured in the database environment.

In the 4.4 release, the semantics have been simplified to make it easier to write robust
applications. In the 4.4 release:

1. Applications joining existing environments, but not configuring some of the subsystems
configured in the environment when it was created, will now automatically be configured
for all of the subsystems configured in the environment.

2. Applications joining existing environments, but configuring additional subsystems in
addition to the subsystems configured in the environment when it was created, will fail,
as no additional subsystems can be configured for a database environment after it is
created.

In other words, the choice of subsystems initialized for a Berkeley DB database environment is
specified by the thread of control initially creating the environment. Any subsequent thread of
control joining the environment will automatically be configured to use the same subsystems
as were created in the environment (unless the thread of control requests a subsystem not
available in the environment, which will fail). Applications joining an environment, able to
adapt to whatever subsystems have been configured in the environment, should open the
environment without specifying any subsystem flags. Applications joining an environment,
requiring specific subsystems from their environments, should open the environment
specifying those specific subsystem flags.

The DB_JOINENV flag has been changed to have no effect in the Berkeley DB 4.4 release.
Applications should require no changes, although uses of the DB_JOINENV flag may be
removed.

mutexes

The DB_ENV>set_tas_spins and DB_ENV>get_tas_spins methods have been renamed to DB_ENV-
>mutex_set_tas_spins() and DB_ENV->mutex_set_tas_spins() to match the new mutex support
in the Berkeley DB 4.4 release. Applications calling the old methods should be updated to use
the new method names.

For backward compatibility, the string "set_tas_spins" is still supported in DB_CONFIG files.

The --with-mutexalign="ALIGNMENT" compile-time configuration option has been removed
from Berkeley DB configuration. Mutex alignment should now be configured at run-time, using
the DB_ENV->mutex_set_align() method.

DB_MPOOLFILE->set_clear_len

The meaning of a 0 "clear length" argument to the DB_MPOOLFILE->set_clear_len() method
changed in the Berkeley DB 4.4 release. In previous releases, specifying a length of 0 was
equivalent to the default, and the entire created page was cleared. Unfortunately, this left no
way to specify that no part of the page needed to be cleared. In the 4.4 release, specifying a
"clear length" argument of 0 means that no part of the page need be cleared.

../api_reference/C/mutexset_tas_spins.html
../api_reference/C/mutexset_tas_spins.html
../api_reference/C/mutexset_tas_spins.html
../programmer_reference/env_db_config.html
../api_reference/C/mutexset_align.html
../api_reference/C/mempset_clear_len.html

Upgrading Berkeley DB 4.3 applications to
Berkeley DB 4.4

11/8/2010 DB Installation Guide Page 128

Applications specifying a 0 "clear length" argument to the DB_MPOOLFILE->set_clear_len()
method should simply remove the call, as the default behavior is to clear the entire created
page.

lock statistics

The names of two fields in the lock statistics changed in the Berkeley DB 4.4 release. The
st_nconflicts field was renamed to be st_lock_wait, and the st_nnowaits field was renamed
to be st_lock_nowait. The meaning of the fields is unchanged (although the documentation
has been updated to make it clear what these fields really represent).

Upgrade Requirements

The log file format changed in the Berkeley DB 4.4 release. No database formats changed in
the Berkeley DB 4.4 release.

For further information on upgrading Berkeley DB installations, see Upgrading Berkeley DB
installations (page 66).

Berkeley DB 4.4.16 Change Log

Database or Log File On-Disk Format Changes:

1. The on-disk log format has changed.

New Features:

1. Add support to compact an existing Btree database. [#6750]

2. Add support for named in-memory databases. [#9927]

3. Add support for database environment recovery serialization. This simplifies multiprocess
application architectures. Add DB_REGISTER flag to DB_ENV->open(). [#11511]

4. Add utility for performing hot backups of a database environment. [#11536]

5. Add replication configuration API. [#12110]

6. Add replication support to return error instead of waiting for client sync to complete.
[#12110]

7. Add replication support for delayed client synchronization. [#12110]

8. Add replication support for client-to-client synchronization. [#12110]

9. Add replication support for bulk transfer. [#12110]

10. Add new flags DB_DSYNC_DB and DB_DSYNC_LOG [12941]

11. Add DbEnv.log_printf, a new DbEnv method which logs printf style formatted strings into
the Berkeley DB database environment log. [#13241]

../api_reference/C/mempset_clear_len.html

Upgrading Berkeley DB 4.3 applications to
Berkeley DB 4.4

11/8/2010 DB Installation Guide Page 129

Database Environment Changes:

1. Add a feature to support arbitrary alignment of mutexes in order to minimize cache line
collisions. [#9580]

2. Change cache regions on 64-bit machines to allow regions larger than 4GB. [#10668]

3. Fix a bug where a loop could occur if the application or system failed during modification
of the linked list of shared regions. [#11532]

4. Fix mutex alignment on Linux/PA-RISC, add test-and-set mutexes for MIPS and x86_64.
[#11575]

5. Fix a bug where private database environments (DB_PRIVATE) on 64-bit machines would
core dump because of 64-bit address truncation. [#11983]

6. Fix a bug where freed memory is accessed when DB_PRIVATE environments are closed.
This can happen on systems where the operating system holds mutex resources that must
be freed when the mutex is destroyed. [#12591]

7. Fix a bug where the DbEnv.stat_print method could self-deadlock and hang. The
DbEnv.stat_print method no longer displays statistics for any of the database
environments databases. [#12039]

8. Fix a bug where Berkeley DB could create fragmented filesystem-backed shared region
files. [#12125]

9. Fix a bug where Berkeley DB stat calls could report a cache size of 0 after the statistics
were cleared. [#12307]

10. Threads of control joining database environments are now configured for all of the
subsystems (lock, log, cache, or transaction) for which the environment was originally
configured, it is now an error to attempt configuration of additional subsystems after an
environment is created. [#12422]

11. Fix a bug where negative percentages could be displayed in statistics output. [#12673]

12. Fix a bug that could cause a panic if the cache is filled with non-logging updated pages.
[#12763]

13. Fix a bug that could cause an unreported deadlock if the application was using the
DB_DIRTY_READ flag and the record was an off page duplicate record. [#12893]

14. Fix a bug where a handle lock could be incorrectly retained during a delete or rename
operation. [#12906]

Concurrent Data Store Changes:

1. Lock upgrades and downgrades are now accounted for separately from lock requests and
releases. [#11155]

Upgrading Berkeley DB 4.3 applications to
Berkeley DB 4.4

11/8/2010 DB Installation Guide Page 130

2. Fix a bug where a second process joining a Concurrent Data Store environment, with
the DB_CDB_ALLDB flag set, would fail. This would happen if the first thread were not
entirely finished with initialization. [#12277]

General Access Method Changes:

1. Fix a bug where filesystem operations are improperly synchronized. [#10564]

2. Add support for database files larger than 2GB on Windows. [#11839]

3. Rename DB_DEGREE_2 (and all related flags) to DB_READ_COMMITTED. Rename DB_DIRTY
(and all related flags) to DB_READ_UNCOMMITTED. [#11776]

4. Fix a bug where wrapping of sequences was incorrect when the cache size is smaller than
the range of the maximum value minus the minimum value. [#11997]

5. Fix a bug that could result in a hot backup having a page missing from a database file if a
file truncation was in progress during the backup but was then aborted. [#12017]

6. Fix a bug where a long filename could cause one too few bytes to be allocated when
opening a file. [#12085]

7. Fix a bug in secondary cursor code if a write lock is not granted. [#12109]

8. Fix a bug in secondary cursors where the current record would change on error. [#12141]

9. Fix a bug in Db->truncate where the method was not checking to see if the handle was
opened read-only. [#12179]

10. Fix a bug in sequences so that they are now platform independent, taking into account
little-endian and big-endian architectures. They will be automatically upgraded in 4.4.
[#12202]

11. Fix a bug with non-wrapping sequences when initial value was INT64_MIN. [#12390]

12. Add a retry for operating system operations that return EIO (IO Error) to better support
NFS mounted filesystems. [#12426]

13. Fix sequence wrapping at INT64 limits. [#12520]

14. Fix a bug where errors during DB->associate could leave secondaries half associated.
[#13173]

15. Fix a bug so that we no longer will update in CDS and DS if the file size limit will be
exceeded. [#13222]

Btree Access Method Changes:

1. Remove maxkey configuration. [#8904]

2. Fix a memory leak in operations on large Btrees. [#12000]

Upgrading Berkeley DB 4.3 applications to
Berkeley DB 4.4

11/8/2010 DB Installation Guide Page 131

Hash Access Method Changes:

1. Fix a bug where access to HASH or encrypted database pages might be blocked during a
checkpoint. [#11031]

2. Fix a bug where recovery would fail when a database has a hash page on the free list
and that hash page was freed without using transactions and later allocated and aborted
within a transaction. [#11214]

3. Fix a bug in hash duplicates where if the caller left garbage in the partial length field, we
were using it. Fix a bug where a replacement of a hash item that should have gone on an
overflow page, did not. [#11966]

4. Fix a bug where free space was miscalculated when adding the first duplicate to an
existing item and the existing item plus the new item does not fit on a page. [#12270]

5. Fix a bug where allocations of hash buckets are not recovered correctly. [#12846]

Queue Access Method Changes:

1. Improve performance of deletes from a QUEUE database that does not have a secondary
index. [#11538]

2. Fix a bug where updates that do not use transactions, but do enable locking, failed to
release locks. [#11669]

3. Fix a bug where a transaction might not be rolled forward if the site was performing hot
backups and an application aborted a prepared but not committed transaction. [#12181]

4. Fix a bug with queue extents not being reclaimed. [#12249]

5. Fix a bug where a record being inserted before the head of the queue could appear
missing if DB_CONSUME is not specified. [#12919]

6. Fix a bug that might cause recovery to move the head or tail of the queue to exclude a
record that was deleted but whose transaction did not commit. [#13256]

7. Fix a bug that could cause recovery to move the head or tail pointer beyond a record that
was aborted but was rolled backward by recovery. [#13318]

Recno Access Method Changes
None.

C++-specific API Changes:

1. Fix a bug so that a DbMemoryException will be raised during a DB_BUFFER_SMALL error.
[#13273]

Java-specific API Changes:

1. Add VersionMismatchException to map the DB_VERSION_MISMATCH error. [#11429]

Upgrading Berkeley DB 4.3 applications to
Berkeley DB 4.4

11/8/2010 DB Installation Guide Page 132

2. Fix a bug in Environment.getConfiguration() method in non-crypto builds. [#11752]

3. Fix a bug that caused a NullPointerException when using the MultipleDataEntry default
constructor. [#11753]

4. Fix handling of replication errors. [#11822]

5. Remove EnvironmentConfig.setReadOnly() method. [#11882]

6. Fix a bug where prefix strings in the error handler may be corrupted. [#11967]

7. Fix a bug so that nested exceptions will appear in stack traces. [#11992]

8. Fix a bug on LogSequenceNumber objects in the Java API. [#12223]

9. Fix a bug when no files are returned from a call to DB_ENV->log_archive. [#12383]

10. Fix a bug when multiple verbose flags are set. [#12383]

11. Fix a bug so that an OutOfMemoryError is thrown when allocation fails in the JNI layer.
[#13434]

Java collections and bind API Changes:

1. Binding performance has been improved by using System.arraycopy in the
FastOutputStream and FastInputStream utility classes. [#12002]

2. The objectToEntry method is now implemented in all TupleBinding subclasses
(IntegerBinding, etc) so that tuple bindings are fully nestable. An example of this usage
is a custom binding that dynamically discovers the data types of each of the properties of
a Java bean class. For each property, it calls TupleBinding.getPrimitiveBinding using the
property's type (class). When the custom binding's objectToEntry method is called, it in
turn calls the objectToEntry method of the nested bindings for each property. [#12124]

3. The getCause method for IOExceptionWrapper and RuntimeExceptionWrapper is now
defined so that nested exceptions appear in stack traces for exceptions thrown by the
collections API. [#11992]

4. TupleBinding.getPrimitiveBinding can now be passed a primitive type class as well as a
primitive wrapper class. The return value for Integer.TYPE and Integer.class, for example,
will be the same binding. [#12035]

5. Improvements have been made to prevent the buffer used in serial and tuple bindings
from growing inefficiently, and to provide more alternatives for the application to
specify the desired size. For details see com.sleepycat.bind.serial.SerialBase and
com.sleepycat.bind.tuple.TupleBase. [#12398]

6. Add StoredContainer.getCursorConfig, deprecate isDirtyRead. Deprecate
StoredCollections.dirtyReadMap (dirtyReadSet, etc) which is replaced by
configuredMap (configuredSet, etc). Deprecated StoredContainer.isDirtyReadAllowed
with no replacement (please use DatabaseConfig.getDirtyRead). Also note that

Upgrading Berkeley DB 4.3 applications to
Berkeley DB 4.4

11/8/2010 DB Installation Guide Page 133

StoredCollections.configuredMap (configuredSet, etc) can be used to configure read
committed and write lock containers, as well as read uncommitted containers, since all
CursorConfig properties are supported. [#11776]

7. Add the protected method SerialBinding.getClassLoader so that subclasses may return
a specific or dynamically determined class loader. Useful for applications which use
multiple class loaders, including applications that serialize Groovy-defined classes.
[#12764] [#12749]

Tcl-specific API Changes:

1. Fix a bug that could cause a memory leak in the replication test code. [#13436]

RPC-specific Client/Server Changes:

1. Fix double-free in RPC server when handling an out-of-memory error. [#11852]

Replication Changes:

1. Fix race condition (introduced in 4.3) in rep_start function. [#11030]

2. Changed internal initialization to no longer store records. [#11090]

3. Add support for replication bulk transfer. [#11099]

4. Berkeley DB now calls check_doreq function for MASTER_REQ messages. [#11207]

5. Fix a bug where transactions could be counted incorrectly during txn_recover. [#11257]

6. Add DB_REP_IGNORE flag so that old messages (especially PERM messages) can be ignored
by applications. [#11585]

7. Fix a bug where op_timestamp was not initialized. [#11795]

8. Fix a bug in db_refresh where a client would write a log record on closing a file. [#11892]

9. Fix backward arguments in C++ rep_elect API. [#11906]

10. Fix a bug where a race condition could happen between downgrading a master and a
database update operation. [#11955]

11. Fix a bug on VERIFY_REQ. We now honor wait recs/rcvd. [#12097]

12. Fix a bug in rebroadcast of verify_req by initializing lp->wait_recs when finding a new
master. [#12097]

13. Fix a bug by adding lockout checking to __env_rep_enter since rename/remove now call
it. [#12192]

14. Fix a bug so that we now skip __db_chk_meta if we are a rep client. [#12316]

15. Fix a replication failure on Windows. [#12331]

Upgrading Berkeley DB 4.3 applications to
Berkeley DB 4.4

11/8/2010 DB Installation Guide Page 134

16. Remove master discovery phase from rep_elect as a performance improvement to speed
up elections. [#12551]

17. Fix a bug to avoid multiple data streams when issuing al ALL_REQ. [#12595]

18. Fix a bug to request the remaining gap again if the gap record is dropped after we receive
the singleton. [#12974]

19. Fix a bug in internal initialization when master changes in the middle of initializing.
[#13074]

20. Fix a bug in replication/archiving with internal init. [#13110]

21. Fix pp handling of db_truncate. [#13115]

22. Fix a bug where rep_timestamp could be updated when it should not be updated.
[#13331]

23. Fix a bug with bulk transfer when toggling during updates. [#13339]

24. Change EINVAL error return to DB_REP_JOIN_FAILURE. [#12110]

25. Add C++ exception for DB_REP_HANDLE_DEAD. [#13361]

26. Fix a bug where starting an election concurrently with processing a NEWMASTER message
could cause the send function to be called with an invalid eid. [#13403]

XA Resource Manager Changes:
None.

Locking Subsystem Changes:
None.

Logging Subsystem Changes:

1. Add set_log_filemode for applications that need to set an absolute file mode on log files.
[#8747]

2. Fix a bug that caused Not Found to be returned if a log file exists but is not readable.
[#11185]

3. Removed checksum of records with an in-memory log buffer. [#11280]

4. Fix a bug so that the DB_LOG_INMEMORY flag can no longer be set after calling DB_ENV-
>open. [#11436]

5. Fix a bug introduced after release 4.0 where two simultaneous checkpoints could cause
ckp_lsn values to be out of order. [#12094]

6. Fix a bug when in debug mode and using the DEBUG_ROP which will now log read
operations in __dbc_logging. [#12303]

Upgrading Berkeley DB 4.3 applications to
Berkeley DB 4.4

11/8/2010 DB Installation Guide Page 135

7. Fix a bug where failing to write a log record on a file close would result in a core dump
later. [#12460]

8. Fix a bug where automatic log file removal, or the return of log files using an absolute
path, could fail silently if the applications current working directory could not be reached
using the systems getcwd library call. [#12505]

9. Avoid locking the log region if we are not going to flush the log. This can improve
performance for some write-intensive application workloads. [#13090]

10. Fix a bug with a possible segment fault when memp_stat_print is called on a temporary
database. [#13315]

11. Fix a bug where log_stat_print could deadlock with threads during a checkpoint. [#13315]

Memory Pool Subsystem Changes:

1. Fix a bug where modified database pages might not be flushed if recovery were run and
all pages from a database were found in the system cache and up to date, followed by a
system crash. [#11654]

Transaction Subsystem Changes:

1. Add new DbTxn class methods allowing applications to set/get a descriptive name
associated with a transaction. The descriptive name is also displayed by the db_stat
utility. [#0382]

2. Fix a bug where aborting a transaction with a large number of nested transactions could
take a long time. [#10972]

3. Add support to allow the TXN_WRITE_NOSYNC flag to be specified on the transaction
handle. [#11151]

4. Fix a bug that could cause a page to be on the free list twice if it was originally put on
the free list by a non-transactional update and then reallocated in a transaction that
aborts. [#11159]

5. Remove the requirement for the DB_AUTO_COMMIT flag to make database operations
transactional. Specifying the database environment as transactional or opening the
database handle transactionally is sufficient. [#11302]

6. Fix a bug so that environments created from errant programs that called dbp->close while
transactions were still active can now be recovered. [#11384]

7. Fix a bug that caused free pages at the end of a file to be truncated during recovery
rather than placed on the free page list. [#11643]

8. Fix a bug that caused a page to have the wrong type if the truncate of a BREE or RECNO
database needed to be rolled forward. [#11670]

9. Fix a bug when manually undoing a subdb create, dont try to free a root page that has not
been allocated. [#11925]

Upgrading Berkeley DB 4.3 applications to
Berkeley DB 4.4

11/8/2010 DB Installation Guide Page 136

10. Add a check on database open to see if log files were incorrectly removed by system
administration mistakes. [#12178]

11. Fix a bug when calling DB->pget and then specifying the DB_READ_COMMITTED
(DB_DEGREE_2) on a cursor. If followed by a DBC->c_pget, the primary database would
incorrectly remain locked. [#12410]

12. Fix a bug where the abort of a transaction in which a sub database was opened with the
DB_TXN_NOT_DURABLE flag could fail. [#12420]

13. Fix a bug that could cause an abort transaction that allocated new pages to a file that
were not flushed to disk prior to the abort transaction to report out of disk space.
[#12743]

14. Fix a bug that could prevent multiple creates and destroys of the same file to be
recovered correctly. [#13026]

15. Fix a bug when recovery previously handled a section of the log that did not contain any
transactions. [#13139]

16. Fix a bug that could result in the loss of durability in Transactional Environments on Mac
OS X. [#13149]

17. Fix a bug that could cause the improper reuse of a transaction id when recovery restores
prepared transactions. [#13256]

Utility Changes:

1. Add utility for performing hot backups of a database environment. [#11536]

2. Change the Verify utility to now identify any nodes that have incorrect record counts.
[#11934]

3. Fix a bug in the 1.85 compatibility code supporting per-application Btree comparison
and prefix compression functions. The functions would not work on big-endian 64-bit
hardware. [#13316]

Configuration, Documentation, Portability and Build Changes:

1. Change the ex_tpcb sample application to no longer displays intermediate results. It
displays results at the end of the run. [#11259]

2. Change the Visual Studio projects on Windows so that each is in an intermediate
directory. [#11441]

3. Fix errors in test subdb011. [#11799]

4. Fix a bug that could cause applications using gcc on Power PC platforms to hang. [#12233]

5. Fix a bug where installation will fail if a true program cannot be found. [#12278]

6. Fix a bug that prevented C++ applications from configuring XA [#12300].

Upgrading Berkeley DB 4.3 applications to
Berkeley DB 4.4

11/8/2010 DB Installation Guide Page 137

7. Fix a race condition in the Windows mutex implementation found on 8-way Itanium
systems. [#12417]

8. Add pthread mutex support for IBM OS/390 platform (z/OS or MVS). [#12639]

9. Fix a bug where the Tcl API did not configure on OS X 10.4. [#12699]

10. Fix portability issues with queue or recno primary databases. [#12872]

11. Fix a bug where utility attempted to send replication message. [#13446]

Berkeley DB 4.4.20 Change Log

Changes since Berkeley DB 4.4.16:

1. Add support for Visual Studio 2005. [#13521]

2. Fix a bug with in-memory transaction logs when files wrapped around the buffer. [#13589]

3. Fix a bug where we needed to close replications open files during replication
initialization. [#13623]

4. Fix a bug which could leave locks in the environment if database compaction was run in
a transactional environment on a non-transactional database. This might have also have
triggered deadlocks if the database was opened transactionally. [#13680]

5. Fix a bug where setting the DB_REGISTER flag could result in unnecessarily running
recovery, or corruption of the registry file on Windows systems. [#13789]

6. Fix a bug in Database.compact that could cause JVM crashes or NullPointerException.
[#13791]

7. Fix a bug that would cause a trap if an environment was opened specifying DB_REGISTER
and the environment directory could not be found. [#13793]

8. Fix a buffer overflow bug when displaying process and thread IDs in the Berkeley DB
statistics output. [#13796]

9. Fix a bug where if there is insufficient memory for a database key in a DBT configured to
return a key value into user-specified memory, the cursor is moved forward to the next
entry in the database, which can cause applications to skip key/data pairs. [#13815]

10. Fix a bug that could cause the loss of an update to a QUEUE database in a hot backup.
[#13823]

11. Fix a bug where retrieval from a secondary index could result in a core dump. [#13843]

12. Fix a bug that could cause part of the free list to become unlinked if a btree compaction
was rolled back due to a transaction abort. [#13891]

13. Fix a bug with in-memory logging that could cause a race condition to corrupt the logs.
[#13919]

11/8/2010 DB Installation Guide Page 138

Chapter 15. Upgrading Berkeley DB 4.2
applications to Berkeley DB 4.3

Introduction

The following pages describe how to upgrade applications coded against the Berkeley DB
4.2 release interfaces to the Berkeley DB 4.3 release interfaces. This information does not
describe how to upgrade Berkeley DB 1.85 release applications.

Java

The Berkeley DB Java API has changed significantly in the 4.3 release, in ways incompatible
with previous releases. This has been done to provide a consistent Java-like API for Berkeley
DB as well as to make the Berkeley DB Java API match the API in Berkeley DB Java Edition, to
ease application-porting between the two libraries.

Here is a summary of the major changes:

• Db -> Database

• Dbc -> Cursor

• Dbt -> DatabaseEntry

• DbEnv -> Environment

• DbTxn -> Transaction

• Db.cursor -> Database.openCursor

• Dbc.get(..., DbConstants.DB_CURRENT) -> Cursor.getCurrent(...)

1. The low-level wrapper around the C API has been moved into a package called
com.sleepycat.db.internal.

2. There is a new public API in the package com.sleepycat.db.

3. All flags and error numbers have been eliminated from the public API. All configuration is
done through method calls on configuration objects.

4. All classes and methods are named to Java standards, matching Berkeley DB Java Edition.
For example:

5. The statistics classes have "getter" methods for all fields.

6. In transactional applications, the Java API infers whether to auto-commit operations: if
an update is performed on a transactional database without supplying a transaction, it is
implicitly auto-committed.

7. The com.sleepycat.bdb.* packages have been reorganized so that the binding
classes can be used with the base API in the com.sleepycat.db package. The

Upgrading Berkeley DB 4.2 applications to
Berkeley DB 4.3

11/8/2010 DB Installation Guide Page 139

bind and collection classes are now essentially the same in Berkeley DB and
Berkeley DB Java Edition. The former com.sleepycat.bdb.bind.* packages
are now the com.sleepycat.bind.* packages. The former com.sleepycat.bdb,
com.sleepycat.bdb.collections, and com.sleepycat.bdb.factory packages are now
combined in the new com.sleepycat.collections package.

8. A layer of the former collections API has been removed to simplify the API and to remove
the redundant implementation of secondary indices. The former DataStore, DataIndex,
and ForeignKeyIndex classes have been removed. Instead of wrapping a Database in a
DataStore or DataIndex, the Database object is now passed directly to the constructor of
a StoredMap, StoredList, etc.

DB_ENV->set_errcall, DB->set_errcall

The signature of the error callback passed to the DB_ENV->set_errcall() and DB->set_errcall()
methods has changed in the 4.3 release. For example, if you previously had a function such as
this:

void handle_db_error(const char *prefix, char *message);

it should be changed to this:

void handle_db_error(const DB_ENV *dbenv,
 const char *prefix, const char *message);

This change adds the DB_ENV handle to provide database environment context for the
callback function, and incidentally makes it clear the message parameter cannot be changed
by the callback.

DBcursor->c_put

The 4.3 release disallows the DB_CURRENT flag to the DBC->put() method after the current
item referenced by the cursor has been deleted. Applications using this sequence of
operations should be changed to do the put without first deleting the item.

DB->stat

The 4.3 release adds transactional support to the DB->stat() method.

Application writers can simply add a NULL txnid argument to the DB->stat() method calls in
their application to leave the application's behavior unchanged.

DB_ENV->set_verbose

The 4.3 release removes support for the DB_ENV->set_verbose() method flag
DB_VERB_CHKPOINT. Application writers should simply remove any use of this flag from their
applications.

The 4.3 release redirects output configured by the DB_ENV->set_verbose() method from the
error output channels (see the DB_ENV->set_errfile() and DB_ENV->set_errcall() methods for

../api_reference/C/envset_errcall.html
../api_reference/C/dbset_errcall.html
../api_reference/C/env.html
../api_reference/C/dbcget.html#dbcget_DB_CURRENT
../api_reference/C/dbcput.html
../api_reference/C/dbstat.html
../api_reference/C/dbstat.html
../api_reference/C/envset_verbose.html
../api_reference/C/envset_verbose.html
../api_reference/C/envset_errfile.html
../api_reference/C/envset_errcall.html

Upgrading Berkeley DB 4.2 applications to
Berkeley DB 4.3

11/8/2010 DB Installation Guide Page 140

more information) to the new DB_ENV->set_msgcall() and DB_ENV->set_msgfile() message
output channels. This change means the error output channels are now only used for errors,
and not for debugging and performance tuning messages as well as errors. Application writers
using DB_ENV->set_verbose() should confirm that output is handled appropriately.

Logging

In previous releases, the DB_ENV->set_flags() method flag DB_TXN_NOT_DURABLE specified
that transactions for the entire database environment were not durable. However, it was not
possible to set this flag in environments that were part of replication groups, and physical
log files were still created. The 4.3 release adds support for true in-memory logging for both
replication and non-replicated sites.

Existing applications setting the DB_TXN_NOT_DURABLE flag for database environments should
be upgraded to set the DB_LOG_INMEMORY flag instead.

In previous releases, log buffer sizes were restricted to be less than or equal to the log file
size; this restriction is no longer required.

DB_FILEOPEN

The 4.3 release removes the DB_FILEOPEN error return. Any application check for the
DB_FILEOPEN error should be removed.

ENOMEM and DbMemoryException

In versions of Berkeley DB before 4.3, the error ENOMEM was used to indicate that the buffer
in a DBT configured with DB_DBT_USERMEM was too small to hold a key or data item being
retrieved. The 4.3 release adds a new error, DB_BUFFER_SMALL, that is returned in this case.

The reason for the change is that the use of ENOMEM was ambiguous: calls such as DB->get()
or DBC->get() could return ENOMEM either if a DBT was too small or if some resource was
exhausted.

The result is that starting with the 4.3 release, C applications should always treat ENOMEM as
a fatal error. Code that checked for the ENOMEM return and allocated a new buffer should be
changed to check for DB_BUFFER_SMALL.

In C++ applications configured for exceptions, a DbMemoryException will continue to be
thrown in both cases, and applications should check the errno in the exception to determine
which error occurred.

In Java applications, a DbMemoryException will be thrown when a Dbt is too small to hold a
return value, and an OutOfMemoryError will be thrown in all cases of resource exhaustion.

Replication

The 4.3 release removes support for logs-only replication clients. Use of the
DB_REP_LOGSONLY flag to the DB_ENV->rep_start() should be replaced with the
DB_REP_CLIENT flag.

../api_reference/C/envset_msgcall.html
../api_reference/C/envset_msgfile.html
../api_reference/C/envset_verbose.html
../api_reference/C/envset_flags.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html#dbt_DB_DBT_USERMEM
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbt.html
../api_reference/CXX/dbmemory.html
../api_reference/C/repstart.html
../api_reference/C/repmgrstart.html#repmgrstart_DB_REP_CLIENT

Upgrading Berkeley DB 4.2 applications to
Berkeley DB 4.3

11/8/2010 DB Installation Guide Page 141

The 4.3 release adds two new arguments to the DB_ENV->rep_elect() method, nvotes and
flags. The nvotes argument sets the required number of replication group members that must
participate in an election in order for a master to be declared. For backward compatibility,
set the nvotes argument to 0. The flags argument is currently unused and should be set to 0.
See DB_ENV->rep_elect() method or "Replication Elections" for more information.

In the 4.3 release it is no longer necessary to do a database environment hot backup
to initialize a replication client. All that is needed now is for the client to join the
replication group. Berkeley DB will perform an internal backup from the master to the client
automatically and will run recovery on the client to bring it up to date with the master.

Run-time configuration

The signatures of the db_env_set_func_ftruncate and db_env_set_func_seek functions have
been simplified to take a byte offset in one parameter rather than a page size and a page
number.

Upgrade Requirements

The log file format changed in the Berkeley DB 4.3 release. No database formats changed in
the Berkeley DB 4.3 release.

For further information on upgrading Berkeley DB installations, see Upgrading Berkeley DB
installations (page 66).

Berkeley DB 4.3.29 Change Log

Database or Log File On-Disk Format Changes:

1. The on-disk log format has changed.

New Features:

1. Add support for light weight, transactionally protected Sequence Number generation.
[#5739]

2. Add support for Degree 2 isolation. [#8689]

3. Add election generation information to replication to support Paxos compliance. [#9068]

4. Add support for 64-bit and ANSI C implementations of the RPCGEN utility. [#9548]

Database Environment Changes:

1. Fix a bug where the permissions on system shared memory segments did not match the
mode specified in the DB_ENV->open() method. [#8921]

2. Add a new return error from the DB_ENV->open() method call, DB_VERSION_MISMATCH,
which is returned in the case of an application compiled under one version of Berkeley DB
attempting to open an environment created under a different version. [#9077]

../api_reference/C/repelect.html
../api_reference/C/repelect.html
../api_reference/C/db_env_set_func_ftruncate.html
../api_reference/C/db_env_set_func_seek.html

Upgrading Berkeley DB 4.2 applications to
Berkeley DB 4.3

11/8/2010 DB Installation Guide Page 142

3. Add support for importing databases from a transactional database environment into a
different environment. [#9324]

4. Fix a bug where a core dump could occur if a zero-length database environment name was
specified. [#9233]

5. Increase the number of environment regions to 100. [#9297]

6. Remove the DB_ENV->set_verbose() method flag DB_VERB_CHKPOINT. [#9405]

7. Fix bugs where database environment getters could return incorrect information after the
database environment was opened, if a different thread of control changed the database
environment values. Fix bugs where database environment getter/setter functions could
race with other threads of control. [#9724]

8. Change the DbEnv.set_lk_detect method to match the DbEnv.open semantics. That is,
DbEnv.set_lk_detect may be called after the database environment is opened, allowing
applications to configure automatic deadlock detection if it has not yet been configured.
[#9724]

9. Fix cursor locks for environments opened without DB_THREAD so that they use the same
locker ID. This eliminates many common cases of application self-deadlock, particularly in
CDS. [#9742]

10. Fix a bug in DB->get_env() in the C API where it could return an error when it should only
return the DB_ENV handle. C++ and Java are unchanged. [#9828]

11. Fix a bug where we only need to initialize the cryptographic memory region when MPOOL,
Log or Transactions have been configured. [#9872]

12. Change private database environments at process startup to only allocate the heap
memory required at any particular time, rather than always allocating the maximum
amount of heap memory configured for the environment. [#9889]

13. Add a method to create nonexistent intermediate directories when opening database
files. [#9898]

14. Add support for in-memory logging within database environments. [#9927]

15. Change Berkeley DB so configuring a database environment for automatic log file
removal affects all threads in the environment, not just the DbEnv handle in which the
configuration call is made. [#9947]

16. Change the signature of the error callback passed to the DB_ENV->set_errcall and DB-
>set_errcall methods to add a DB_ENV handle, to provide database environment context
for the callback function. [#10025]

17. Fix a race condition between DB->close and DB->{remove,rename} on filesystems that
don't allow file operations on open files (such as Windows). [#10180]

18. Add a DB_DSYNC_LOG flag to the DbEnv::set_flags method, which configures O_DSYNC
on POSIX systems and FILE_FLAG_WRITE_THROUGH on Win32 systems. This offers

Upgrading Berkeley DB 4.2 applications to
Berkeley DB 4.3

11/8/2010 DB Installation Guide Page 143

significantly better performance for some applications on certain Solaris/filesystem
combinations. [#10205]

19. Fix a bug where calling the DB or DBEnv database remove or rename methods could cause
a transaction checkpoint or cache flush to fail. [#10286]

20. Change file operations not to flush a file if it hasn't been written. [#10537]

21. Remove 4GB restriction on region sizes on 64 bit machines. [#10668]

22. Simplify the signature of substitute system calls for ftruncate and seek. [#10668]

23. Change Berkeley DB so that opening an environment without specifying a home directory
will cause the DB_CONFIG file in the current directory to be read, if it exists. [#11424]

24. Fix a bug that caused a core dump if DB handles without associated database
environments were used for database verification. [#11649]

25. Fix Windows mutexes shared between processes run as different users. [#11985]

26. Fix Windows mutexes for some SMP machines. [#12417]

Concurrent Data Store Changes:

1. Fix cursor locks for environments opened without DB_THREAD so that they use the same
locker ID. This eliminates many common cases of application self-deadlock, particularly in
CDS. [#9742]

General Access Method Changes:

1. Fix a bug where Berkeley DB log cursors would close and reopen the underlying log file
each time the log file was read. [#8934]

2. Improve performance of DB->open() for existing subdatabases maintained within the same
database file. [#9156]

3. Add a new error, DB_BUFFER_SMALL, to differentiate from ENOMEM. The new error
indicates that the supplied DBT is too small. ENOMEM is now always fatal. [#9314]

4. Fix a bug when an update through a secondary index is deadlocked it is possible for the
deadlock to be ignored, resulting in a partial update to the data. [#9492]

5. Fix a bug where a record could get inserted into the wrong database when a page was
deallocated from one subdatabase and reallocated to another subdatabase maintained
within the same database file. [#9510]

6. Enhance file allocation so that if the operating system supports decreasing the size of
a file and the last page of the file is freed, it will be returned to the operating system.
[#9620]

7. Fix a bug where DB_RUNRECOVERY could be returned if there was no more disk space
while aborting the allocation of a new page in a database. [#9643]

Upgrading Berkeley DB 4.2 applications to
Berkeley DB 4.3

11/8/2010 DB Installation Guide Page 144

8. Fix a bug where the cryptographic code could memcpy too many bytes. [#9648]

9. Fix a bug with DB->join() cursors that resulted in a memory leak and incomplete results.
[#9763]

10. Disallow cursor delete, followed a cursor put of the current item across all access
methods. [#9900]

11. Fix a bug where recovery of operations on unnamed databases that were never closed,
could fail. [#10118]

12. Fix a bug where DB->truncate of a database with overflow records that spanned more
than one page would loop. [#10151]

13. Improve performance in the database open/close path. [#10266]

14. Fix a bug that restricted the number of temporary files that could be created to 127.
[#10415]

15. Fix a bug which could cause a Too many files error when trying to create temporary files.
Limit the number of temporary file creation retries. [#10760] [#10773]

16. Fix a memory leak bug with Sequence Numbers. [#11589]

17. Fix a bug on Windows platforms that prevents database files from growing to over 2GB.
[#11839]

18. Fix a platform independence bug with sequence numbers. Existing sequence numbers will
be automatically upgraded upon next access. [#12202]

19. Fix a race between truncate and read/write operations on Windows platforms that could
cause corrupt database files. [#12598]

Btree Access Method Changes:

1. Fix a bug where a record could get placed on the wrong page when two threads are
simultaneously trying to split a four level (or greater) Btree. [#9542]

2. Fix a bug where calling DB->truncate() on a Btree which has duplicate keys that overflow
the leaf page would not properly free the overflow pages and possibly loop. [#10666]

Hash Access Method Changes:

1. Fix a bug where a delete to a HASH database with off page duplicates could fail to have
the proper lock when deleting an off page duplicate tree. [#9585]

2. Fix a bug where a dirty reader using a HASH database would leave a lock on the meta
page. [#10105]

3. Fix a bug where a DB->del() on a HASH database supporting dirty reads could fail to
upgrade a WWRITE lock to a WRITE lock when deleting an off page duplicate. [#10649]

Upgrading Berkeley DB 4.2 applications to
Berkeley DB 4.3

11/8/2010 DB Installation Guide Page 145

Queue Access Method Changes:

1. Fix a bug where DB_CONSUME_WAIT may loop rather than wait for a new record to enter
the queue, if the queue gets into a state where there are only deleted records between
the head and the end of queue. [#9215]

2. Fix a bug where a Queue extent file could be closed when it was empty, even if a thread
was still accessing a page from that file. [#9291]

3. Fix a bug where DBC->c_put(key, data, DB_CURRENT) where inserting a new record after
the current record had been deleted was returning DB_KEYEMPTY. [#9314]

4. Fix a bug where a Queue extent file could be reported as not found if a race condition
was encountered between removing the file and writing out a stale buffer. [#9462]

5. Fix a bug where the Queue access method might fail to release a record lock when
running without transactions. [#9487]

6. Add DB_INORDER flag for Queue databases to guarantee FIFO (First In, First Out) ordering
when using DB_CONSUME or DB_CONSUME_WAIT. [#9689]

7. Fix a bug where remove and rename calls could fail with a "Permission denied" error.
[#9775]

8. Fix a bug where aborting a transaction that opened and renamed a queue database using
extents could leave some of the extent files with the wrong name on Windows. [#9781]

9. Fix a bug where a db_dump of a queue database could return an error at the end of the
queue if the head or tail of the queue is the first record on a page. [#10215]

10. Fix a race condition which would leave a Queue extent file open until the database
handle was closed, preventing it from being removed. [#10591]

11. Fix a bug where a deadlock of a put on a database handle with dirty readers could
generate a lock downgrade error. [#10678]

12. Fix a bug which caused DB_SET_RANGE and DB_GET_BOTH_RANGE to not return the next
record when an exact match was not found. [#10860]

Recno Access Method Changes

1. Fix a bug where the key/data counts returned by the Db->stat method for Recno
databases did not match the documentation. [#8639]

2. Fix a bug where DBC->c_put(key, data, DB_CURRENT) where inserting a new record after
the current record had been deleted was returning DB_KEYEMPTY. [#9314].

C++-specific API Changes:

1. Change DbException to extend std::exception, making it possible for applications to catch
all exceptions in one place. [#10022]

Upgrading Berkeley DB 4.2 applications to
Berkeley DB 4.3

11/8/2010 DB Installation Guide Page 146

2. Fix a bug where errors during transaction destructors (commit, abort) could cause an
invalid memory access. [#10302]

3. Fix a bug that could lead to a read through an uninitialized pointer when a
DbLockNotGrantedException is thrown. [#10470]

4. Fix a bug in the C++ DbEnv::rep_elect method API where the arguments were swapped,
leading to an "Invalid Argument" return when that method is called. [#11906]

Java-specific API Changes:

1. Fix a bug where the Java API did not respect non-zero return values from
secondaryKeyCreate, including DB_DONOTINDEX. [#9474]

2. Fix a bug where a self-deadlock occurred with a non-transactional class catalog database
used in a transactional environment. The bug only occurred when the collections API was
not used for starting transactions. [#9521]

3. Improve Javadoc for the Java API. [#9614]

4. Improve memory management and performance when large byte arrays are being passed
to DB methods. [#9801]

5. Improve performance of accessing statistics information from the Java API. [#9835]

6. Allow Java application to run without DB_THREAD so they can be used as RPC clients.
[#10097]

7. Fix a bug where an uninitialized pointer is dereferenced for
logArchive(Db.DB_ARCH_REMOVE). [#10225]

8. Fix a bug in the Collections API where a deadlock exception could leave a cursor open.
[#10516]

9. Fix the replication callback in the Java API so that the parameter names match the C API.
[#10550]

10. Add get methods to the Java statistics classes. [#10807]

11. Fix bugs in the Java API handling of null home directories and environments opened
without a memory pool. [#11424]

12. Fix the Java API in the non-crypto package. [#11752]

13. Fix a bug that would cause corruption of error prefix strings. [#11967]

14. Fix handling of LSNs in the Java API. [#12223]

15. Dont throw a NullPointerException if the list of files returned by log_archive is empty.
[#12383]

Tcl-specific API Changes:
None.

Upgrading Berkeley DB 4.2 applications to
Berkeley DB 4.3

11/8/2010 DB Installation Guide Page 147

RPC-specific Client/Server Changes:

1. Add support for 64-bit and ANSI C implementations of the RPCGEN utility. [#9548]

2. Fix a small memory leak in RPC clients. [#9595]

3. Fix a bug in the RPC server to avoid self-deadlock by always setting DB_TXN_NOWAIT.
[#10181]

4. Fix a bug in the RPC server so that if it times out an environment, it first closes all the
Berkeley DB handles in that environment. [#10623]

Replication Changes:

1. Add an Environment ID to distinguish between clients from different replication groups.
[#7786]

2. Add number of votes required and flags parameters to DB_ENV->rep_elect() method.
[#7812]

3. Fix a bug where a client's env_openfiles pass could start with the wrong LSN. This could
result in very long initial sync-up times for clients joining a replication group. [#8635]

4. Add election generation information to replication to support Paxos compliance. [#9068]

5. Add rep019 to test running normal recovery on clients to make sure we synch to the
correct LSNs. [#9151]

6. Remove support for logs-only replication clients. Use of the DB_REP_LOGSONLY flag to the
DB_ENV->rep_start() method should be replaced with the DB_REP_CLIENT flag. [#9331]

7. Fix a bug where replication clients fail to lock all the necessary pages when applying
updates when there are more than one database in the transaction. [#9569]

8. Fix a bug in replication elections where when elections are called by multiple threads the
wrong master could get elected. [#9770]

9. Fix a bug where the master could get a DB_REP_OUTDATED error. Instead send an
OUTDATED message to the client. [#9881]

10. Add support for automatic initialization of replication clients. [#9927]

11. Modify replication timestamp so that non-replication client applications can get a
DB_REP_HANDLE_DEAD. [#9986]

12. Add a new DB_REP_STARTUPDONE return value for rep_process_message() and
st_startup_done to rep_stat() to indicate when a client has finished syncing up to a
master and is processing live messages. [#10310]

13. Add _pp to secondary handles, add RPRINT, fix a deadlock. [#10429]

14. Fix a bug where an old client (and no master) that dropped the ALIVE message would
never update to the current generation. [#10469]

Upgrading Berkeley DB 4.2 applications to
Berkeley DB 4.3

11/8/2010 DB Installation Guide Page 148

15. Fix a bug where a message could get sent to a new client before NEWSITE has been
returned to the application. Broadcast instead. [#10508]

16. Fix a crash when verbose replication messages are configured and a NULL DB_LSN pointer
is passed to rep_process_message. [#10508]

17. Add code to respect set_rep_limit in LOG_REQ processing. [#10716]

18. Fix a synchronization problem between replication recovery and database open. [#10731]

19. Change elections to adjust timeout if egen changes while we are waiting. [#10686]

20. Client perm messages now return ISPERM/NOTPERM instead of 0. [#10855] [#10905]

21. Fix a race condition during rep_start when a role change occurs. Fix memory leaks.
[#11030]

22. Fix problems with duplicate records. A failure will no longer occur if the records are old
records (LOG_MORE) and archived. [#11090]

23. Fix a bug where the replication temporary database would grow during automatic client
initialization. [#11090]

24. Add throttling to PAGE_REQ. [#11130]

25. Remove optimization-causing problems with racing threads in rep_verify_match. [#11208]

26. Fix memory leaks. [#11239]

27. Fix an initialization bug when High Availability configurations are combined with private
database environments, which can cause intermittent failures. [#11795]

28. Fix a bug in the C++ DbEnv::rep_elect method API where the arguments were swapped,
leading to an "Invalid Argument" return when that method is called. [#11906]

XA Resource Manager Changes:
None.

Locking Subsystem Changes:

1. Fix a bug where a deadlock of an upgrade from a dirty read to a write lock during an
aborted transaction, may not be detected. [#7143]

2. Add support for Degree 2 isolation. [#8689]

3. Change the system to return DB_LOCK_DEADLOCK if a transaction attempts to get new
locks after it has been selected as the deadlock victim. [#9111]

4. Fix a bug where when configured to support dirty reads, a writer may not downgrade a
write lock as soon as possible, potentially blocking dirty readers. [#9197]

5. Change the test-and-set mutex implementation to avoid interlocked instructions when we
know the instruction is unlikely to succeed. [#9204]

Upgrading Berkeley DB 4.2 applications to
Berkeley DB 4.3

11/8/2010 DB Installation Guide Page 149

6. Fix a bug where a thread supporting dirty readers can get blocked while trying to get a
write lock. It will allocate a new lock rather than using an existing WAS_WRITE lock when
it becomes unblocked, causing the application to hang. [#10093]

7. The deadlock detector will now note that a parent transaction should be considered in
abort if one of its children is. [#10394]

8. Remove a deadlock where database closes could deadlock with page acquisition. [#10726]

9. Fix a bug where a dirty reader could read an overflow page that was about to be deleted.
[#10979]

10. Fix a bug that failed to downgrade existing write locks during a btree page split when
supporting dirty reads. [#10983]

11. Fix a bug that would fail to upgrade a write lock when moving a cursor off a previously
deleted record. [#11042]

Logging Subsystem Changes:

1. Fix a bug where recovery could leave too many files open. [#9452]

2. Fix a bug where aborting a transaction with a file open in it could result in an
unrecoverable log file. [#9636]

3. Fix a bug where recovery would not return a fatal error if the transaction log was
corrupted. [#9841]

4. Fix a bug in recovery so that the final checkpoint no longer tries to flush the log. This will
permit recovery to complete even if there is no disk space to grow the log file. [#10204]

5. Improve performance of log flushes by pre-allocating log files and using fdatasync() in
preference to fsync(). [#10228]

6. Fix a bug where recovery of a page split after a non-transactional update to the next page
would fail to update the back pointer. [#10421]

7. Fix a bug in log_archive() where __env_rep_enter() was called twice. [#10577]

8. Fix a bug with in-memory logs that could cause a memory leak in the log region. [#11505]

Memory Pool Subsystem Changes:

1. Fix a bug in the MPOOLFILE file_written flag value so that checkpoint doesn't repeatedly
open, flush and sync files in the cache for which there are no active application handles.
[#9529]

Transaction Subsystem Changes:

1. Fix a bug where the same transaction ID could get allocated twice if you wrapped the
transaction ID space twice and then had a very old transaction. [#9036]

Upgrading Berkeley DB 4.2 applications to
Berkeley DB 4.3

11/8/2010 DB Installation Guide Page 150

2. Fix a bug where a transaction abort that contained a page allocation could loop if the
filesystem was full. [#9461]

3. Fix implementation of DB->get_transactional() to match documentation: there is no
possibility of error return, only 0 or 1. [#9526]

4. Fix a bug where re-setting any of the DB_TXN_NOSYNC, DB_TXN_NOT_DURABLE and
DB_TXN_WRITE_NOSYNC flags could fail to clear previous state, potentially leading to
incorrect transactional behavior in the application. [#9947]

5. Add a feature to configure the maximum number of files that a checkpoint will hold open.
[#10026]

6. An aborting transaction will no longer generate an undetected deadlock. [#10394]

7. Fix a bug that prevented a child transaction from accessing a database handle that was
opened by its parent transaction. [#10783]

8. Fix a bug where a checkpoint or a delayed write in another process could raise an EINVAL
error if the database had been opened with the DB_TXN_NOT_DURABLE flag. [#10824]

9. Fix private transactional environments on 64-bit systems. [#11983]

Utility Changes:

1. Add debugging and performance tuning information to db_stat. Add new Berkeley DB
handle methods to output debugging and performance tuning information to a C library
FILE handle (C and C++ APIs only). [#9204]

2. Fix a bug where db_stat could drop core if DB->open fails and no subdatabase was
specified. [#9273]

3. Add command-line arguments to the db_printlog utility to restrict the range of log file
records that are displayed. [#9307]

4. Fix a bug in the locking statistics where current locks included failed lock requests.
[#9314]

5. Fix a bug where db_archive would remove all log files when --enable-diagnostic and
DB_NOTDURABLE were both specified. [#9459]

6. Fix a bug where db_dump with the -r flag would output extra copies of the subdatabase
information. [#9808]

7. Fix a bug in db_archive that would cause log file corruption if the application had
configured the environment with DB_PRIVATE. [#9841]

8. Add support in db_load for resetting database LSNs and file IDs without having to reload
the database. [#9916]

9. Change the DB->stat() method to take a transaction handle as an argument, allowing DB-
>stat() to be called from within a transaction. [#9920]

Upgrading Berkeley DB 4.2 applications to
Berkeley DB 4.3

11/8/2010 DB Installation Guide Page 151

10. Fix a bug in db_printlog where only the first filewould be displayed for in-memory logs.
[#11505]

11. Fix a bug that prevented database salvage from working in Berkeley DB 4.3.21. [#11649]

12. Fix a bug in db_load which made it impossible to specify more than a single option on the
command line. [#11676]

Configuration, Documentation, Portability and Build Changes:

1. Add pread and pwrite to the list of system calls applications can replace at run-time.
[#8954]

2. Add support for UTF-8 encoding of filenames on Windows. [#9122]

3. Remove C++ dependency on snprintf. Compilers on HPUX 10.20 are missing header file
support for snprintf(). [#9284]

4. Change Berkeley DB to not use the open system call flag O_DIRECT, unless DB configured
using --enable-o_direct. [#9298]

5. Fix several problems with mutex alignment on HP/UX 10.20. [#9404]

6. Fix a memory leak when HAVE_MUTEX_SYSTEM_RESOURCES is enabled. [#9546]

7. Fix a bug in the sec002.tcl test for binary data. [#9626]

8. Fix a bug where filesystem blocks were not being zeroed out in the On-Time embedded
Windows OS. [#9640]

9. Fix build problems with the Java API in Visual Studio .NET 2003. [#9701]

10. Add support for the gcc compiler on the Opteron platform. [#9725]

11. Add support for the small_footprint build option for VxWorks. [#9820]

12. Add support for linking of DLLs with MinGW. [#9957]

13. Remove the make target which builds the RPM package from the Berkeley DB distribution.
[#10233]

14. Add a C++/XML example for ex_repquote. [#10380]

15. Fix a bug to link with lrt only if detected by configure (Mac OS X issue). [#10418]

16. Fix a bug and link Java and Tcl shared libraries with lpthread if required, for mutexes.
[#10418]

17. Add support for building Berkeley DB on the HP NonStop OSS (Tandem) platform. [10483]

18. Change Berkeley DB to ignore EAGAIN from system calls. This fixed problems on NFS
mounted databases. [#10531]

Upgrading Berkeley DB 4.2 applications to
Berkeley DB 4.3

11/8/2010 DB Installation Guide Page 152

19. Remove a line with bt_compare and bt_prefix from the db_dump recovery test suite,
which can cause failures on OpenBSD. [#10567]

20. Fix a conflict with the lock_init for building Berkeley DB on Cygwin. [#10582]

21. Add Unicode support for the Berkeley DB Windows API. [#10598]

22. Add support for 64-bit builds on Windows. [#10664]

23. Libtool version is now 1.5.8. [#10950]

24. Remove mt compilation flag for HP-UX 11.0. [#11427]

25. Fix a bug to link with lrt on Solaris to support fdatasync. [#11437]

11/8/2010 DB Installation Guide Page 153

Chapter 16. Upgrading Berkeley DB 4.1
applications to Berkeley DB 4.2

Introduction

The following pages describe how to upgrade applications coded against the Berkeley DB
4.1 release interfaces to the Berkeley DB 4.2 release interfaces. This information does not
describe how to upgrade Berkeley DB 1.85 release applications.

Java

There are a number of major changes to the Java support in Berkeley DB in this release.
Despite that we have tried to make this a bridge release, a release where we don't require you
to change anything. We've done this using the standard approach to deprecation in Java. If you
do not compile with deprecation warnings on, your existing sources should work with this new
release with only minor changes despite the large number of changes. Expect that in a future
release we will remove all the deprecated API and only support the new API names.

This is a list of areas where we have broken compatibility with the 4.1 release. In most cases
it is a name change in an interface class.

• DbAppDispatch.app_dispatch(DbEnv,Dbt,DbLsn,int)

is now: DbAppDispatch.appDispatch(DbEnv,Dbt,DbLsn,int)

• DbAppendRecno.db_append_recno(Db,Dbt,int)

is now: DbAppendRecno.dbAppendRecno(Db,Dbt,int)

• DbBtreeCompare.bt_compare(Db,Dbt,Dbt)

is now: DbBtreeCompare.compare(Db,Dbt,Dbt)

• DbBtreeCompare.dup_compare(Db,Dbt,Dbt)

is now: DbBtreeCompare.compareDuplicates(Db,Dbt,Dbt)

• DbBtreePrefix.bt_prefix(Db,Dbt,Dbt)

is now: DbBtreePrefix.prefix(Db,Dbt,Dbt)

• DbSecondaryKeyCreate.secondary_key_create(Db,Dbt,Dbt,Dbt)

is now: DbSecondaryKeyCreate.secondaryKeyCreate(Db,Dbt,Dbt,Dbt)

The 4.2 release of Berkeley DB requires at minimum a J2SE 1.3.1 certified Java virtual
machine and associated classes to properly build and execute. To determine what version
virtual machine you are running, enter:

java -version

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 154

at a command line and look for the version number. If you need to deploy to a version 1.1
or 1.0 Java environment, it may be possible to do so by not including the classes in the
com.sleepycat.bdb package in the Java build process (however, that workaround has not been
tested by us).

A few inconsistent methods have been cleaned up (for example, Db.close now returns void;
previously, it returned an int which was always zero). The synchronized attributed has been
toggled on some methods -- this is an attempt to prevent multithreaded applications from
calling close or similar methods concurrently from multiple threads.

The Berkeley DB API has up until now been consistent across all language APIs. Although
consistency has is benefits, it made our Java API look strange to Java programmers. Many
methods have been renamed in this release of the Java API to conform with Java naming
conventions. Sometimes this renaming was simply "camel casing", sometimes it required
rewording. The mapping file for these name changes is in dist/camel.pm. The Perl script
we use to convert code to the new names is called dist/camelize.pl, and may help with
updating Java applications written for earlier versions of Berkeley DB.

Berkeley DB has a number of places where as a C library it uses function pointers to move
into custom code for the purpose of notification of some event. In Java the best parallel is
the registration of some class which implements an interface. In this version of Berkeley DB
we have made an effort to make those interfaces more uniform and predictable. Specifically,
DbEnvFeedback is now DbEnvFeedbackHandler, DbErrcall is DbErrorHandler and DbFeedback is
DbFeedbackHandler. In every case we have kept the older interfaces and the older registration
methods so as to allow for backward compatibility in this release. Expect them to be removed
in future releases.

As you upgrade to this release of Berkeley DB you will notice that we have added an entirely
new layer inside the package com.sleepycat.bdb. This was formerly the Greybird project by
Mark Hayes. Sleepycat Software and Mark worked together to incorporate his work. We have
done this in hopes of reducing the learning curve when using Berkeley DB in a Java project.
When you upgrade you should consider switching to this layer as over time the historical
classes and the new bdb package classes will be more and more integrated providing a simple
yet powerful interface from Java into the Berkeley DB library.

Berkeley DB's Java API is now generated with SWIG. The new Java API is significantly faster for
many operations.

Some internal methods and constructors that were previously public have been hidden or
removed.

Packages found under com.sleepycat are considered different APIs into the Berkeley DB
system. These include the core db api (com.sleepycat.db), the collections style access layer
(com.sleepycat.bdb) and the now relocated XA system (com.sleepycat.xa).

Queue access method

We have discovered a problem where applications that specify Berkeley DB's encryption or
data checksum features on Queue databases with extent files, the database data will not
be protected. This is obviously a security problem, and we encourage you to upgrade these
applications to the 4.2 release as soon as possible.

http://www.swig.org

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 155

The Queue databases must be dumped and reloaded in order to fix this problem. First build
the Berkeley DB 4.2 release, then use your previous release to dump the database, and the 4.2
release to reload the database. For example:

db-4.1.25/db_dump -P password -k database | \
db-4.2.xx/db_load -P password new_database

Note this is only necessary for Queue access method databases, where extent files were
configured along with either encryption or checksums.

DB_CHKSUM_SHA1

The flag to enable checksumming of Berkeley DB databases pages was renamed from
DB_CHKSUM_SHA1 to DB_CHKSUM, as Berkeley DB uses an internal function to generate hash
values for unencrypted database pages, not the SHA1 Secure Hash Algorithm. Berkeley DB
continues to use the SHA1 Secure Hash Algorithm to generate hashes for encrypted database
pages. Applications using the DB_CHKSUM_SHA1 flag should change that use to DB_CHKSUM;
no other change is required.

DB_CLIENT

The flag to create a client to connect to a RPC server was renamed from DB_CLIENT to
DB_RPCCLIENT, in order to avoid confusion between RPC clients and replication clients.
Applications using the DB_CLIENT flag should change that use to DB_RPCCLIENT; no other
change is required.

DB->del

In previous releases, the C++ Db::del and Java Db.delete() methods threw exceptions
encapsulating the DB_KEYEMPTY error in some cases when called on Queue and Recno
databases. Unfortunately, this was undocumented behavior.

For consistency with the other Berkeley DB methods that handle DB_KEYEMPTY, this is no
longer the case. Applications calling the Db::del and Java Db.delete() methods on Queue or
Recno databases, and handling the DB_KEYEMPTY exception specially, should be modified to
check for a return value of DB_KEYEMPTY instead.

DB->set_cache_priority

In previous releases, applications set the priority of a database's pages in the Berkeley DB
buffer cache with the DB->set_cache_priority method. This method is no longer available.
Applications wanting to set database page priorities in the buffer cache should use the
mempset_priority() method instead. The new call takes the same arguments and behaves
identically to the old call, except that a DB_MPOOLFILE buffer cache file handle is used
instead of the DB database handle.

DB->verify

In previous releases, applications calling the DB->verify() method had to explicitly discard the
DB handle by calling the DB->close() method. Further, using the DB handle in other ways after

../api_reference/C/dbset_flags.html#dbset_flags_DB_CHKSUM
../api_reference/C/dbset_flags.html#dbset_flags_DB_CHKSUM
../api_reference/CXX/dbdel.html
../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY
../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY
../api_reference/CXX/dbdel.html
../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY
../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY
../api_reference/C/mempset_priority.html
../api_reference/C/memp.html
../api_reference/C/db.html
../api_reference/C/dbverify.html
../api_reference/C/db.html
../api_reference/C/dbclose.html
../api_reference/C/db.html

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 156

calling the DB->verify() method was not prohibited by the documentation, although such use
was likely to lead to problems.

For consistency with other Berkeley DB methods, DB->verify() method has been documented
in the current release as a DB handle destructor. Applications using the DB handle in any way
(including calling the DB->close() method) after calling DB->verify() should be updated to
make no further use of any kind of the DB handle after DB->verify() returns.

DB_LOCK_NOTGRANTED

In previous releases, configuring lock or transaction timeout values or calling the DB_ENV-
>txn_begin() method with the DB_TXN_NOWAIT flag caused database operation methods
to return DB_LOCK_NOTGRANTED, or throw a DbLockNotGrantedException exception. This
required applications to unnecessarily handle multiple errors or exception types.

In the Berkeley DB 4.2 release, with one exception, database operations will no longer return
DB_LOCK_NOTGRANTED or throw a DbLockNotGrantedException exception. Instead, database
operations will return DB_LOCK_DEADLOCK or throw a DbDeadlockException exception.
This change should require no application changes, as applications must already be dealing
with the possible DB_LOCK_DEADLOCK error return or DbDeadlockException exception from
database operations.

The one exception to this rule is the DB->get() method using the DB_CONSUME_WAIT flag
to consume records from a Queue. If lock or transaction timeouts are set, this method and
flag combination may return DB_LOCK_NOTGRANTED or throw a DbLockNotGrantedException
exception.

Applications wanting to distinguish between true deadlocks and timeouts can
configure database operation methods to return DB_LOCK_NOTGRANTED or throw a
DbLockNotGrantedException exception using the DB_TIME_NOTGRANTED flag.

The DB_ENV->lock_get() and DB_ENV->lock_vec() methods will continue to return
DB_LOCK_NOTGRANTED, or throw a DbLockNotGrantedException exception as they have
previously done.

Replication

Replication initialization

In the Berkeley DB 4.2 release, replication environments must be specifically initialized by any
process that will ever do anything other than open databases in read-only mode (that is, any
process which might call any of the Berkeley DB replication interfaces or modify databases).
This initialization is done when the replication database environment handle is opened, by
specifying the DB_INIT_REP flag to the DB_ENV->open() method.

Database methods and replication clients

All of the DB object methods may now return DB_REP_HANDLE_DEAD when a replication client
changes masters. When this happens the DB handle is no longer able to be used and the
application must close the handle using the DB->close() method and open a new handle. This

../api_reference/C/dbverify.html
../api_reference/C/dbverify.html
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/dbclose.html
../api_reference/C/dbverify.html
../api_reference/C/db.html
../api_reference/C/dbverify.html
../api_reference/C/txnbegin.html
../api_reference/C/txnbegin.html
../api_reference/C/txnbegin.html#txnbegin_DB_TXN_NOWAIT
../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED
../api_reference/CXX/dblocknotgranted.html
../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED
../api_reference/CXX/dblocknotgranted.html
../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK
../api_reference/CXX/dbdeadlock.html
../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK
../api_reference/CXX/dbdeadlock.html
../api_reference/C/dbget.html
../api_reference/C/dbget.html#dbget_DB_CONSUME_WAIT
../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED
../api_reference/CXX/dblocknotgranted.html
../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED
../api_reference/CXX/dblocknotgranted.html
../api_reference/C/envset_flags.html#envset_flags_DB_TIME_NOTGRANTED
../api_reference/C/lockget.html
../api_reference/C/lockvec.html
../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED
../api_reference/CXX/dblocknotgranted.html
../api_reference/C/envopen.html#envopen_DB_INIT_REP
../api_reference/C/envopen.html
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/dbclose.html

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 157

new return value is returned when a client unrolls a transaction in order to synchronize with
the new master. Otherwise, if the application was permitted to use the original handle, it's
possible the handle might attempt to access nonexistent resources.

DB_ENV->rep_process_message()

The DB_ENV->rep_process_message() method has new return values and an log sequence
number (LSN) associated with those return values. The new argument is ret_lsnp, which is the
returned LSN when the DB_ENV->rep_process_message() method returns DB_REP_ISPERM or
DB_REP_NOTPERM. See Transactional guarantees for more information.

Client replication environments

In previous Berkeley DB releases, replication clients always behaved as if DB_TXN_NOSYNC
behavior was configured, that is, clients would not write or synchronously flush their log when
receiving a transaction commit or prepare message. However, applications needing a high
level of transactional guarantee may need a write and synchronous flush on the client. By
default in the Berkeley DB 4.2 release, client database environments write and synchronously
flush their logs when receiving a transaction commit or prepare message. Applications
not needing such a high level of transactional guarantee should use the environment's
DB_TXN_NOSYNC flag to configure their client database environments to not do the write or
flush on transaction commit, as this will increase their performance. Regardless of the setting
of the DB_TXN_NOSYNC flag, clients will always write and flush on transaction prepare.

Tcl API

The Tcl API included in the Berkeley DB 4.2 release requires Tcl release 8.4 or later.

Upgrade Requirements

The log file format changed in the Berkeley DB 4.2 release. No database formats changed in
the Berkeley DB 4.2 release.

For further information on upgrading Berkeley DB installations, see Upgrading Berkeley DB
installations (page 66).

Berkeley DB 4.2.52 Change Log

Database or Log File On-Disk Format Changes:

1. Queue databases that use encryption or data checksum features with extent files will
need to be dumped and reloaded prior to using with release 4.2. For more details please
see the "Upgrading Berkeley DB Applications, Queue Access Method" in the Berkeley DB
Reference Guide included in your download package. [#8671]

2. The on-disk log format changed.

New Features:

1. Add support for a reduced memory footprint build of the Berkeley DB library. [#1967]

../api_reference/C/repmessage.html
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html#repmsg_DB_REP_ISPERM
../api_reference/C/repmessage.html#repmsg_DB_REP_NOTPERM
../programmer_reference/rep_trans.html
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 158

2. Add the DB_MPOOLFILE->set_flags interface which disallows the creation of backing
filesystem files for in-memory databases. [#4224]

3. Add cache interfaces to limit the number of buffers written sequentially to allow
applications to bound the time they will monopolize the disk. [#4935]

4. Support auto-deletion of log files. [#0040] [#6252]

5. The new Java DBX API for Berkeley DB allows Java programmers to use a familiar Java
Collections style API, including Map, while interacting with the transactional Berkeley DB
core engine. [#6260]

6. Support auto-commit with the DB->get method's consume operations. [#6954]

7. Add "get" methods to retrieve most settings. [#7061]

8. Add Javadoc documentation to the Berkeley DB release. [#7110]

9. Add support to Concurrent Data Store to allow duplication of write cursors. [#7167]

10. Add C++ utility classes for iterating over multiple key and data items returned from a
cursor when using the DB_MULTIPLE or DB_MULTIPLE_KEY flags. [#7351]

11. Add CamelCased methods to the Java API. [#7396]

12. Add the DB_MPOOLFILE->set_maxsize interface to enforce a maximum database size.
[#7582]

13. Add a toString() method for all Java *Stat classes (DbBtreeStat, DbHashStat, DbMpoolStat,
etc.). This method creates a listing of values of all of the class member variables. [#7712]

Database Environment Changes:

1. Add cache interfaces to limit the number of buffers written sequentially to allow
applications to bound the time they will monopolize the disk. [#4935]

2. Fix a bug which could cause database environment open to hang, in database
environments supporting cryptography. [#6621]

3. Fix a bug where a database environment panic might result from an out-of-disk-space
error while rolling back a page allocation. [#6694]

4. Fix a bug where a database page write failure, in a database environment configured for
encryption or byte-swapping, could cause page corruption. [#6791]

5. Fix a bug where DB->truncate could drop core if there were active cursors in the
database. [#6846]

6. Fix a bug where for databases sharing a physical file required a file descriptor per
database. [#6981]

7. Fix a bug where the panic callback routine was only being called in the first thread of
control to detect the error when returning DB_RUNRECOVERY. [#7019]

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 159

8. Fix a bug where a transaction which contained a remove of a subdatabase and an
allocation to another subdatabase in the same file might not properly be aborted. [#7356]

9. Fix a bug to now disallow DB_TRUNCATE on opens in locking environments, since we
cannot prevent race conditions. In the absence of locking and transactions, DB_TRUNCATE
will truncate ANY file for which the user has appropriate permissions. [#7345]

10. Fix several bugs around concurrent creation of databases. [#7363]

11. Change methods in DbEnv that provide access to statistics information so that they now
return instances of the proper classes. [#7395]

12. Replace the DB->set_cache_priority API with the DB_MPOOLFILE->set_priority API. [#7545]

13. Fix a bug where a failure during a creation of a subdatabase could then fail in the
dbremove cleanup, causing a crash. [#7579]

14. Allow creating into a file that was renamed within the same transaction. [#7581]

15. Fix a bug where DB_ENV->txn_stat could drop core if there are more-than-expected
active transactions. [#7638]

16. Change Berkeley DB to ignore user-specified byte orders when creating a database in an
already existing physical file. [#7640]

17. Fix a bug where a database rename that is aborted would leak some memory. [#7789]

18. Fix a bug where files could not be renamed or removed if they were not writable. [#7819]

19. Fix a bug where an error during a database open may leak memory in the mpool region.
[#7834]

20. Fix a bug where the DB_ENV->trickle_sync method could flush all of the dirty buffers in
the cache rather than a subset. [#7863]

21. Fix a bug where an attempt to rename or remove an open file in the same transaction
could succeed, even though this is not allowed and will not work on Windows. [#7917]

22. Fix a bug where if a recovery interval in the log contained only database opens then a
recovery might report "Improper file close". [#7886]

23. Add a flag, DB_INIT_REP to DB_ENV->open to initialize Replication subsystem. [#8299]

24. Fix a bug where file remove and rename operations would not block each other if they
were in different transactions. [#8340]

25. Change Berkeley DB to not propagate error returns from the application's rep_send
function out of the Berkeley DB API. [#8496] [#8522]

26. Remove restriction that DB_TRUNCATE is not allowed on files with subdatabases. This
restriction was introduced in 4.1.25. [#8852]

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 160

Concurrent Data Store Changes:

1. Fix a bug where opens with other threads/processes actively acquiring locks on database
handles could deadlock. [#6286]

2. Add support to Concurrent Data Store to allow duplication of write cursors. [#7167]

General Access Method Changes:

1. Fix a bug where the truncate of a database with associated secondary databases did not
truncate the secondaries. [#6585]

2. Fix a bug in which an out-of-disk condition during a transactional database create,
remove, or rename could cause a crash. [#6695]

3. Fix a bug where system errors unknown to the C library could cause Berkeley DB utilities
to drop core on Solaris. [#6728]

4. Fix a bug where Berkeley DB could overwrite incorrectly formatted files rather than
returning an error to the application during open. [#6769]

5. Fix a bug DB handle reference counts were incorrect, leading to spurious warning about
open DB handles. [#6818]

6. Fix a bug where cursor adjustments across multiple DB handles could fail. [#6820]

7. Fix a bug where a failure during open could result in a hang. [#6902]

8. Fix a bug where repeated failures during certain stages of opens could cause error
messages to appear during recovery. [#7008]

9. Fix a bug in secondary indices with multiple threads calling DBC->put that resulted in
DB_NOTFOUND being returned. [#7124]

10. Fix a bug where database verification might reference memory which was previously
freed after reporting an error. [#7137]

11. Rename the DB_CHKSUM_SHA1 to DB_CHKSUM as Berkeley DB only uses SHA1 for
encrypted pages, not for clear text pages. [#7095]

12. Fix a bug where DB->rename could fail silently if the underlying system rename call
failed. [#7322]

13. Fix a bug where Berkeley DB failed to open a file with FCNTL locking and 0-length files.
[#7345]

14. Prohibit the use of the DB_RMW flag on get operations for DB handles opened in
transactional mode. [#7407]

15. Standardize when Berkeley DB will return DB_LOCK_NOTGRANTED, or throw
DbLockNotGrantedException, versus returning DB_LOCK_DEADLOCK or throwing
DbDeadlockException. Fix bugs in the C++ and Java APIs where DbException was thrown,

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 161

encapsulating DB_LOCK_NOTGRANTED, rather than throwing DbLockNotGrantedException.
[#7549]

16. Fix a bug where Berkeley DB could hang on a race condition if a checkpoint was running at
the same time another thread was closing a database for the last time. [#7604]

17. Fix several bugs that made multiple filesystem level operations inside a single transaction
break. [#7728]

18. Fix a memory leak in the abort path of a sub-database create. [#7790]

19. Fix a race condition with file close that could cause NULL pointer deference under load.
[#8235]

20. Fix a bug to correct the calculation of the amount of space needed to return off page
duplicates using the DB_MULTIPLE interface. [#8437]

21. Fix a bug where the duplicate data item count could be incorrect if a cursor was used to
first overwrite and then delete a duplicate which was part of a set of duplicates large
enough to have been stored outside the standard access method pages. [#8445]

22. Fix a bug where The DB_MULTIPLE interface might fail to return the proper duplicates in
some edge cases. [#8485]

23. Fix a bug where DB->get(...DB_MULTIPLE) would not return a reasonable estimate of the
buffer size required to return a set of duplicates. [#8513]

24. Fix a bug where the DbCursor.count method could return the wrong count in the case of
small (on-page) duplicate sets, where a still-open cursor has been used to delete one of
the duplicate data items. [#8851]

25. Fix a bug where a non-transactional cursor using DB_MULTIPLE_KEY could briefly be left
pointing at an unlocked page. This could lead to a race condition with another thread
deleting records resulting in the wrong record being deleted. [#8926]

26. Fix a bug where a key/data item could be lost if a cursor is used to do a delete, and then
immediately used to do an insert which causes a set of duplicates to be shifted to an off-
page Btree. [#9085]

Btree Access Method Changes:

1. Fix a bug where a deleted item could be left on a database page causing database
verification to fail. [#6059]

2. Fix a bug where a page may be left pinned in the cache if a deadlock occurs during a DB-
>put operation. [#6875]

3. Fix a bug where a deleted record may not be removed from a Btree page if the page is
split while another cursor is trying to delete a record on the page. [#6059]

4. Fix a bug where records marked for deletion were incorrectly counted when retrieving in
a Btree by record number. [#7133]

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 162

5. Fix a bug where a page and lock were left pinned if an application requested a record
number past the end of the file when retrieving in a Btree by record number. [#7133]

6. Fix a bug where deleted keys were included in the key count for the DB->stat call.
[#7133]

7. Fix a bug where specifying MULTIPLE_KEY and NEXT_DUP to the bulk get interfaces might
return the wrong data if all the duplicates could not fit in a single buffer. [#7192]

8. Remove assertions that triggered failures that were correct executions. [#8032]

9. Fix a bug where duplicate data items were moved onto overflow pages before it was
necessary. [#8082]

10. Fix a bug where the DB->verify method might incorrectly complain about a tree's overflow
page reference count. [#8061]

11. Fix a bug that could cause DB_MULTIPLE on a Btree database to return an incorrect data
field at the end of buffer. [#8442]

12. Fix a bug where DBC->c_count was returning an incorrect count if the cursor was
positioned on an item that had just been deleted. [#8851]

13. Remove the test for bt_maxkey in the Btree put code. If it is set to 1 it can cause an
infinite loop. [#8904]

Hash Access Method Changes:

1. Fix a bug where Hash databases could be corrupted on filesystems that do not zero-fill
implicitly created blocks. [#6588]

2. Fix a bug where creating a Hash database with an initial size larger than 4GB would fail.
[#6805]

3. Fix a bug where a page in an unused hash bucket might not be empty if there was a disk
error while writing the log record for the bucket split. [#7035]

4. Fix a bug where two threads opening a hash database at the same time might deadlock.
[#7159]

5. Fix a bug where a hash cursor was not updated properly when doing a put with
DB_NODUPDATA specified. [#7361]

6. Fix a bug that could cause DB_MULTIPLE_KEY on Hash databases to return improper
results when moving from a key with duplicates to a key without duplicates. [#8442]

Queue Access Method Changes:

1. Fix a bug where opening an in-memory Queue database with extent size specified will
dump core. [#6795]

2. Support auto-commit with the DB->get method's consume operations. [#6954]

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 163

3. Fix a bug where calling the sync method on a queue database with extents may hang if
there are active consumers. [#7022]

4. Fix a bug where a get(...MULTIPLE...) might lead to an infinite loop or return the wrong
record number(s) if there was a deleted record at the beginning of a page or the buffer
was filled exactly at the end of a page. [#7064]

5. Fix a bug where a database environment checkpoint might hang if a thread was blocked
waiting for a record while doing a DB_CONSUME_WAIT on a Queue database. [#7086]

6. Fix a bug where queue extent files would not be removed if a queue with extents was
removed and its record numbers wrapped around the maximum record number. [#7191]

7. Fix a bug where a DB->remove of an extent based Queue with a small number of pages
per extent would generate a segmentation fault. [#7249]

8. Fix a bug where verify and salvage on queues with extent files did not consider the extent
files. [#7294]

9. Fix a bug when transaction timeouts are set in the environment they would get applied to
some non-transactional operations and could cause a failure during the abort of a queue
operation. [#7641]

10. Fix a bug when the record numbers in a queue database wrap around at 232, a cursor
positioned on a record near the head of the queue that is then deleted, may return
DB_NOTFOUND when get is specified with DB_NEXT rather than the next non-deleted
record. [#7979]

11. Fix a bug where a record lock will not be removed when the first record in the queue is
deleted without a transaction (not using DB_CONSUME). [#8434]

12. Fix a bug where byte swapping was not handled properly in queue extent files. [#8358]

13. Fix a bug where Queue extent file pages were not properly typed, causing the extent files
not to use encryption or checksums, even if those options had been specified. This fix
requires a database upgrade for any affected Queue databases. [#8671]

14. Fix a bug where truncating a queue with extents may fail to remove the last extent file.
[#8716]

15. Fix a bug where a rename or remove of a QUEUE database with extents might leave
empty extent files behind. [#8729]

16. Fix a bug where on Windows operating systems a "Permission denied" error may be raised
if a Queue extent is reopened while it is in the process of being unlinked. [#8710]

Recno Access Method Changes:

1. Fix a bug where the DB->truncate method may return the wrong record count if there are
deleted records in the database. [#6788]

2. Fix a bug where internal nodes of Recno trees could get wrong record count if a log write
failed and the log was later applied during recovery. [#6841]

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 164

3. Fix a bug where a cursor next operation could infinitely loop after deleting a record,
when the deleted record was immediately followed by implicitly created records. [#8133]

C++-specific API Changes:

1. Document the DB->del method can return DB_KEYEMPTY for Queue or Recno databases.
The C++ and Java APIs now return this value rather than throwing an exception. [#7030]

2. Add "get" methods to retrieve most settings. [#7061]

3. Fix a bug where applications calling DB->verify from the C++ or Java APIs could drop core.
Change the DB->verify method API to act as a DB handle destructor. [#7418]

4. Add utility classes for iterating over multiple key and data items returned from
a cursor when using the DB_MULTIPLE or DB_MULTIPLE_KEY flags. These classes,
DbMultipleDataIterator, DbMultipleKeyDataIterator, and DbMultipleRecnoDataIterator,
mirror the DB Java API and are provided as replacements for the C macros,
DB_MULTIPLE_INIT, DB_MULTIPLE_NEXT, DB_MULTIPLE_KEY_NEXT, and DB_MULTIPLE.
[#7351]

5. Fix a bug DbException was thrown, encapsulating DB_LOCK_NOTGRANTED, rather than
throwing DbLockNotGrantedException. [#7549]

6. Add the DbEnv handle to exceptions thrown by the C++ and Java APIs, where possible.
[#7303]

7. Fix a bug in the C++ DbEnv::set_rep_transport signature so that the envid parameter is
signed. [#8303]

8. Make the fields of DB_LSN public in the DbLsn class. [#8422]

Java-specific API Changes:

a. Db.put(), Dbc.get() and Dbc.put() preserve key size

b. Dbc.get() returns DB_KEYEMPTY rather than throwing an exception

c. The return type of Db.close() is now void. [#7002]

1. New Java API (com.sleepycat.dbx.*) for the transactional storage of data using the Java
Collections design pattern. [#6569]

2. Fix a bug in the Java Dbt.get_recno_key_data() method when used inside callbacks.
[#6668]

3. Fix Java DbMpoolStat class to match the DB_MPOOL_STAT struct. [#6821]

4. Fix a bug where Dbc.put expected key data even if the key was unused. [#6932]

5. Fix a bug in the Java API secondary_key_create callback where memory was freed
incorrectly, causing JVM crashes. [#6970]

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 165

6. Re-implement the Java API to improve performance and maintenance. Fix several
inconsistencies in the Java API:

7. Document the DB->del method can return DB_KEYEMPTY for Queue or Recno databases.
The C++ and Java APIs now return this value rather than throwing an exception. [#7030]

8. Add "get" methods to retrieve most settings. [#7061]

9. Add Javadoc documentation to the Berkeley DB release. [#7110]

10. Fix a bug that caused potential memory corruption when using the Java API and specifying
the DB_DBT_REALLOC flag. [#7215]

11. Add the DbEnv handle to exceptions thrown by the C++ and Java APIs, where possible.
[#7303]

12. Map existing c-style API to a more Java camel case API with Java style naming. Retained
deprecated older API for the 4.2 release for backwards support in all cases except
callback interfaces. Also overloaded methods such as get/pget() into multiple different
get() calls to clean up call structure. [#7378]

13. Add CamelCased methods to the Java API. [#7396]

14. Fix a bug where applications calling DB->verify from the C++ or Java APIs could drop core.
Change the DB->verify method API to act as a DB handle destructor. [#7418]

15. Fix a bug DbException was thrown, encapsulating DB_LOCK_NOTGRANTED, rather than
throwing DbLockNotGrantedException. [#7549]

16. Add a toString() method for all Java *Stat classes (DbBtreeStat, DbHashStat, DbMpoolStat,
etc.). This method creates a listing of values of all of the class member variables. [#7712]

17. Remove Db.fd() method from Java API as it has no value to a Java programmer. [#7716]

18. Add an accessible timeout field in the DbLockRequest class, needed for the
DB_LOCK_GET_TIMEOUT operation of DbEnv.lockVector. [#8043]

19. Fix replication method calls from Java API. [#8467]

20. Fix a bug where exception returns were inconsistent. [#8622]

21. Change the Java API so that it throws an IllegalArgumentException rather than a
DbException with the platform-specific EINVAL. [#8978]

Tcl-specific API Changes:

1. Add "get" methods to retrieve most settings. [#7061]

2. Brought Tcl's $env set_flags command up to date with available flags. [#7385]

3. Update Berkeley DB to compile cleanly against the Tcl/Tk 8.4 release. [#7612]

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 166

4. Made txn_checkpoint publicly available. [#8594]

RPC-specific Client/Server Changes:

1. Fix two bugs in the RPC server where incorrect handling of illegal environment home
directories caused server crashes. [#7075]

2. Fix a bug where the DB_ENV->close method would fail in RPC clients if the DB_ENV->open
method was never called. [#8200]

Replication Changes:

1. Write prepare records synchronously on replication clients so that prepare operations are
always honored in the case of failure. [#6416]

2. Change replication elections so that the client with the biggest LSN wins, and priority is a
secondary factor. [#6568]

3. Fix a bug where replicas could not remove log files because the checkpoint lsn was not
being updated properly. [#6620]

4. Force prepare records out to disk regardless of the setting of the DB_TXN_NOSYNC flag.
[#6614]

5. Add a new flag, DB_REP_NOBUFFER, which gets passed to the rep_send function specified
in DBENV->rep_set_transport, to indicate that the message should not be buffered on the
master, but should be immediately transmitted to the client(s). [#6680]

6. Fix a replication election bug where Berkeley DB could fail to elect a master even if a
master already existed. [#6702]

7. Allow environment wide setting of DB_AUTO_COMMIT on replication clients. [#6732]

8. Fix a replication bug where a client coming up in the midst of an election might not
participate in the election. [#6826]

9. Add log_flushes when sites become replication masters. If log_flush fails, panic the
environment since the clients already have the commits. [#6873]

10. Fix a replication bug where a brand new client syncing up could generate an error on the
master. [#6927]

11. Fix a bug where clients synchronize with the master when they come up with the same
master after a client-side disconnect or failures. [#6986]

12. Fix several bugs in replication elections turned up by test rep005. [#6990]

13. Fix a bug where aborted hash group allocations were not properly applied on replicas.
[#7039]

14. Fix race conditions between running client recovery and other threads calling replication
and other Berkeley DB functions. [#7402] [#8035]

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 167

15. Use shared memory region for all replication flags. [#7573]

16. Fix a bug where log archive on clients could prematurely remove log files. [#7659]

17. Return an error if a non-replication dbenv handle attempts to write log records to a
replication environment. [#7752]

18. Fix a race condition when clients applied log records, where we would store a log record
locally and then never notice we have it, and need to re-request it from the master,
causing the client to get far behind the master. [#7765]

19. Fix inconsistencies between the documentation and actual code regarding when
replication methods can be called. [#7775]

20. Fix a bug where Berkeley DB would wait forever if a NEWMASTER message got dropped.
[#7897]

21. Fix a bug where the master environment ID did not get set when you called DBENV-
>rep_start as a master. [#7899]

22. Fix a bug where operations on a queue database will not get replicated if the transactions
that include the operations are committed out of order with the operations. [#7904]

23. Fix bugs in log_c_get where an invalid LSN could access invalid addresses. Fix bug in
elections where a client upgrading to master didn't write a txn_recycle record. [#7964]

24. Fix a bug where REP_VERIFY_FAIL during client recovery wasn't being handled. [#8040]

25. Return an error if the application calls rep_process_message before calling rep_start
when starting. [#8057]

26. Fix a bug to ensure that replication generation numbers always increase and are never
reset to 1. [#8136]

27. Modify log message retransmission protocol to efficiently handle the case where a large
number of contiguous messages were dropped at once. [#8182] [#8169] [#8188]

28. Fix a bug where using the wrong mutex in replication which under certain conditions
could cause replication to hang. Also fix a bug where incorrectly setting the checkpoint
LSN could cause recovery to take a very long time. [#8183]

29. Fix bug where a message could get sent to an invalid master. [#8184]

30. Fix a bug where a local variable in log_archive was not initialized. [#8230]

31. Fix a bug where elections could hang. [#8254]

32. Fix a bug to ensure that we can always remove/re-create the temporary replication
database after a failure. [#8266]

33. Add a flag, DB_INIT_REP to DB_ENV->open to initialize Replication subsystem. [#8299]

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 168

34. Add new ret_lsnp argument to rep_process_message so that LSNs can be returned to
clients on permanent records. Add new lsnp arg to the send callback function so that the
master can know the LSNs of records as well. [#8308]

35. Narrow the window where we block due to client recovery. [#8316]

36. Fix a bug in log_c_incursor where we would not detect that a record was already in the
buffer. [#8330]

37. Fix a bug that would allow elections to be managed incorrectly. [#8360]

38. Fix a bug where replicas were not maintaining meta->last_pgno correctly. [#8378]

39. Fix a bug in truncating log after recovery to a timestamp or replication-based recovery.
[#8387]

40. Fix a bug where a checkpoint record written as the first record in a log could cause
recovery to fail. [#8391]

41. Fix a bug where a client would return DB_NOTFOUND instead of DB_REP_OUTDATED when
it was unable to synchronize with the master because it ran out of log records. [#8399]

42. Fix a bug where log file changes were not handled properly in replication. [#8400] [#8420]

43. Fix a bug where checking for invalid log header data could fail incorrectly. [#8460]

44. Fix a bug where DB_REP_PERMANENT was not being set when log records were re-
transmitted. [#8473]

45. Modify elections so that all participants elect in the same election generation. [#8590]

46. Fix bug where rep_apply was masking an error return. Also return DB_RUNRECOVERY if
the replication client cannot commit or checkpoint. [#8636]

47. Fix a bug to update the last_pgno on the meta page on free as well as alloc. [#8637]

48. Fix a bug to roll back the LSN on a queue database metapage if we're going to truncate
the log. Fix a bug in MASTER_CHECK so we don't apply log messages from an unknown
master. Fix a bug to perform a sync on rep_close. [#8601]

49. Fix a bug so that we reset the LSN when putting pages on the free list. [#8685]

50. Fix a bug where replication was not properly calling db_shalloc. [#8811]

51. Fix a bug where replication flags were getting set in multiple steps which could cause an
Assertion Failure in log_compare. [#8889]

52. Fix a bug where open database handles could cause problems on clients. [#8936]

53. Fix a bug where in dbreg code where an fnp with an invalid fileid could be found on the
lp->fq list. [#8963]

54. Fix a bug where a reader on a replication client could see partial updates when
replicating databases with off page duplicates or overflow records. [#9041]

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 169

55. Fix a bug that could result in a self deadlock in dbreg under replication. [#9138]

56. Fix a memory leak in replication. [#9255]

XA Resource Manager Changes:

1. Fix a bug where a failed write during XA transaction prepare could result in a checksum
error in the log. [#6760]

2. Fix a bug where we were not properly handling DB_AUTO_COMMIT in XA transactions and
where we were not honoring the XA transaction during an XA-protected open. [#6851]

3. Add infrastructure support for multithreaded XA. [#6865]

4. Display XA status and ID as part of db_stat -t output. [#6413]

Locking Subsystem Changes:

a. failure to remove dirty read locks prior to aborting a transaction,

b. calling upgrade on other than WWRITE locks,

c. failure to remove expired locks from the locker queue,

d. clearing the lock timeout before looking at it. [#7267]

1. Fix a bug where locks were not cleared in an off-page duplicate cursor. [#6950]

2. Fix a bug where a deadlock may not be detected if dirty reads are enabled and the
deadlock involves an aborting transaction. [#7143]

3. Fix a bug where a transaction doing updates while using dirty read locking might fail while
aborting the transaction with a deadlock. Several other locking issues were also fixed:

4. Fix a bug when dirty reads are enabled a writer might be blocked on a lock that it had
previously obtained. Dirty readers would also wait behind regular readers when they
could have safely read a page. [#7502]

5. Fix a bug where a DB->put using CDB gets a lock timeout then the error "Closing already
closed cursor". [#7597]

6. Modify the maximum test-and-set mutex sleep for logical page locks at 10ms, everything
else at 25ms. [#7675]

7. Fix a bug where the DB_LOCK_TIMEOUT mode of env->lock_vec could hang. [#7682]

8. Fix a bug where running with only transaction timeouts for deadlock detection might
deadlock without being detected if more than one transaction times out while trying to
avoid searching a Btree on repeated inserts. [#7787]

9. Fix a bug that could cause detection to not run when there was a lock that should be
timed out. [#8588]

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 170

10. Fix a bug with using dirty reads with subtransactions. If a writing subtransaction aborts
and then is blocked, the deadlock may not be detected. [#9193]

11. Fix a bug where handle locks were not being correctly updated when releasing read locks
during transaction prepare. [#9275]

Logging Subsystem Changes:

1. Fix a bug where if a write error occurred while committing a transaction with
DB_WRITE_NOSYNC enabled the transaction may appear to be committed in the log while
it was really aborted. [#7034]

2. Fix a bug where multiprocess applications could violate write-ahead logging requirements
if one process wrote a log record but didn't flush it, the current log file then changed, and
another process wrote a database page before the log record was written to disk. [#6999]

3. Fix a bug where fatal recovery could fail with a "Transaction already committed" error
if recovery had been run and there are no active transactions in the part of the log
following the last checkpoint. [#7234]

4. Fix a bug where recovery would fail to put freed pages onto the free list, when both
committed and aborted subtransactions that allocated new pages were present. This only
affected prepared transactions. [#7403]

5. Fix a bug where open errors during recovery get propagated unless they are reporting
missing files, which might correctly have been removed. [#7578]

6. Fix a bug so that we now validate a log file before writing to it. [#7580]

7. Fix a bug where Berkeley DB could display the unnecessary error message "DB_LOGC->get:
short read" during recovery. [#7700]

8. Fix a bug where recovery may fail if it tries to reallocate a page to a file that is out of
space. [#7780]

9. Change Berkeley DB so that operations on databases opened in a non-transactional mode
do not write records into the database logs. [#7843]

10. Fix a bug where Berkeley DB could timeout waiting for locks (on Queue databases) during
recovery. [#7927]

11. Fix a bug in truncating log after recovery to a timestamp or replication-based recovery.
[#8387]

12. Fix a bug where recovery can be slow if the log contains many opens of files which
contain multiple databases. [#8423]

13. Fix a bug where a file id could be used before its open was logged. [#8496]

14. Fix a bug where recovery would partially undo a database create if the transaction which
created it spanned log files and not all of the log files were present during recovery.
[#9039]

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 171

Memory Pool Subsystem Changes:

1. Fix a bug where checksummed files could not be read on different endian systems.
[#6429]

2. Fix a bug where read-only databases were not mapped into memory but were instead
read through the Berkeley DB buffer cache. [#6671]

3. Fix a bug where Berkeley DB could loop infinitely if the cache was sized so small that all
of its pages were simultaneously pinned by the application. [#6681]

4. Fix a bug where DbEnv.sync could fail to write a page if another thread unpinned the page
at the same time and there were no other pages in that hash bucket. [#6793]

5. Fix a bug where threads of control may hang if multiple threads of control are opening
and closing a database at the same time. [#6953]

6. Fix a bug where a database created without checksums but later opened with checksums
would result in a checksum error. [#6959]

7. Fix a bug where a multiprocess application suite could see incorrect data if one process
opened a non-checksummed database

8. Change to avoid database open and flush when handles are discarded, if the handle was
never used to write anything. [#7232]

9. Fix a bug where applications dirtying the entire cache in a single database operation
would see large performance degradation. [#7273]

10. Fix a bug where contention in the buffer pool could cause the buffer allocation algorithm
to unnecessarily sleep waiting for buffers to be freed. [#7572]

Transaction Subsystem Changes:

1. Fix a bug where disk write errors in encrypted database environments, causing
transaction abort, could corrupt the log. [#6768]

2. Fix a bug where catastrophic recovery may fail on a log which has a prepared transaction
which aborted the allocation of a new page and was rolled forward previously by another
recovery session. [#6790]

3. Fix a bug where a transaction that contains a database truncate followed by page
allocations, may not properly undo the truncate if aborted. [#6862]

4. Fix a bug which causes Berkeley DB to checkpoint quiescent database environments.
[#6933]

5. Fix a bug where if a transaction prepare fails while writing the prepare log record, and it
contains a subtransaction which did an allocation later, recovery of the database may fail
with a log sequence error. [#6874]

6. Do not abort prepared but not yet completed transactions when closing an environment.
[#6993]

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 172

7. Fix a bug where operations on the source of a rename in the same transaction would fail.
[#7537]

8. Fix a bug where a parent transaction which aborts when it tries to write its commit
record could fail with a log sequence error, if the parent transaction has an aborted child
transaction which allocated a new page from the operating system. [#7251]

9. Fix a bug where Berkeley DB could try to abort a partial transaction because it contained
a partial subtransaction. [#7922]

10. Fix a bug where Berkeley DB could drop core when transactions were configured without
locking support. [#9255]

Utility Changes:

1. Fix a bug where db_load could core dump or corrupt record numbers by walking off the
end of a string. [#6985]

2. Fix a bug where db_load could run out of locks when loading large numbers of records.
[#7173]

3. Fix a bug where db_dump could drop core when salvaging unaligned entries on a Btree
page. [#7247]

4. Fix a bug where hash statistics did not include overflow items in the count of database
data elements. [#7473]

5. Fix a bug where an corruption in an overflow page list could cause DB->verify to infinitely
loop. [#7663]

6. Fix a bug where verify could display extraneous error messages when verifying a Btree
with corrupt or missing pages. [#7750]

7. Fix a bug that could cause the db_stat utility to display values larger than 100 for various
percentages. [#7779]

8. Fix a memory overflow bug in db_load. [#8124]

9. Fix a minor leak when verifying queue databases. [#8620]

Configuration, Documentation, Portability and Build Changes:

1. Add support for a reduced memory footprint build of the Berkeley DB library. [#1967]

2. Change DB_SYSTEM_MEM on Windows to fail immediately when opening an environment
whose regions were deleted on last close. [#4882]

3. Update queue.h to current FreeBSD version. [#5494]

4. Support for and certification under Tornado 2.2/VxWorks 5.5. [#5522]

5. Add support for IBM OS/390 using the IBM C compiler. [#6486]

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 173

6. Specify -pthread as a compile flag for Tru64 systems, not just as a linker flag. [#6637]

7. Remove automatic aggregate initialization for non-ANSI compilers. [#6664]

8. Fix a link error ("GetLongPathNameA could not be located in the dynamic link library
KERNEL32.dll") that prevented Berkeley DB from loading on Windows NT. [#6665]

9. Remove use of U suffix in crypto build to denote unsigned integers for non-ANSI
compilers. [#6663]

10. Fix Java API documentation problems where API return values were int and should have
been void, or vice versa. [#6675]

11. Add an include of <sys/fcntl.h> for old Solaris systems with the directio call. [#6707]

12. Fix Java API documentation problem where the Db.associate call was missing a DbTxn
handle. [#6714]

13. Clean up source based on gcc's -Wmissing-prototypes option. [#6759]

14. Ignore pread/pwrite interfaces on NCR's System V R 4.3 system. [#6766]

15. Fix an interface compatibility with Sendmail and Postfix releases. [#6769]

16. Fix warnings when the Tcl API was built without TEST_CONFIG defined. [#6789]

17. Change Win32 mutexes to use the shared code for all mutexes to fix handle leak. [#6822]
[#6853]

18. Fix the Windows/Tcl API export list for Berkeley DB XML. [#6931]

19. Add the --enable-mingw configuration option to build Berkeley DB for MinGW. [#6973]

20. Add a CPU pause to the mutex spinlock code to improve performance on newer Pentium
CPUs. [#6975]

21. Upgrade read-only file descriptors to read-write during checkpoint, it's an error to call
FlushFileBuffers on a read-only Windows file handle. [#7051]

22. Fix configure so that Java applications on HP/UX can access RPC environments. [#7066]

23. Update Berkeley DB to use libtool 1.5 to allow building of shared libraries on various
platforms. This should not be visible except for changes to the Makefile and internal build
procedures. [#7080]

24. Fix a bug where the configure script displayed incorrect default installation directory
information. [#7081]

25. Fix a signed/unsigned warning with some Windows compilers. [#7100]

26. Fix macro redefinition conflicts between queue.h and Vc7\PlatformSDK\Include\WinNT.h
when building with Visual Studio.NET 7.0. [#7103]

Upgrading Berkeley DB 4.1 applications to
Berkeley DB 4.2

11/8/2010 DB Installation Guide Page 174

27. Add a loop to retry system calls that return EBUSY. Also limit retries on EINTR to 100
times. [#7118]

28. Fix a bug in our use of GetDiskFreeSpace that caused access violations on some versions of
Windows with DB_DIRECT_DB. [#7122]

29. Fix a bug where regions in system memory on Windows were incorrectly reinitialized
because the magic number was overwritten. [#7127]

30. Change version provided to Tcl's package system to reflect Berkeley DB's major and minor
number. [#7174]

31. Support for the Berkeley DB Embedix port has been removed. [#7209]

32. Merge all public C++ headers into db_cxx.h, which fixes name clashes between Berkeley
DB headers and system headers (specifically mutex.h). [#7221]

33. Fix a bug where the configured Makefile could try and build objects for which there were
no existing rules. [#7227]

34. Port the ex_repquote example to Windows. [#7328]

35. Fix a race in the ARM/gcc mutex code which could cause almost anything bad you can
imagine. [#7468]

36. Fix a bug where shared region removal could hang. [#7613]

37. Fix a bug so that when using Java in Debug mode on Windows, automatically pick the
Debug DLL. [#7722]

38. Fix configure --disable-shared so that it now creates a Makefile that installs static
libraries that look the same as a regular shared build. This flag will create a
libdb<major>.<minor>.a and make a libdb.a that is a symlink to it. [#7755]

39. Add support for OS/390 2.10 and all versions of z/OS. [#7972]

40. Support Java builds on Windows with spaces in the project path. [#8141]

41. Fix a bug where Berkeley DB mutex locking code for OS X was not multiprocessor safe.
[#8255]

42. Add an error to DB_ENV->set_flags if the OS does not support Direct

43. Enable verbose error logging from the test suite on Windows. [#8634]

44. Fix a bug with DLL linking on Cygwin under Windows. [#8628]

45. Add support for JDK on HP/UX. [#8813]

46. Fix a bug where pathnames longer than 2KB could cause processes to core dump. [#8886]

47. Fix a bug in VxWorks when yielding the CPU, so that we delay at least one tick. [#9061]

11/8/2010 DB Installation Guide Page 175

Chapter 17. Upgrading Berkeley DB 4.0
applications to Berkeley DB 4.1

Introduction

The following pages describe how to upgrade applications coded against the Berkeley DB
4.0 release interfaces to the Berkeley DB 4.1 release interfaces. This information does not
describe how to upgrade Berkeley DB 1.85 release applications.

DB_EXCL

The DB_EXCL flag to the DB->open() method now works for subdatabases as well as physical
files, and it is now possible to use the DB_EXCL flag to check for the previous existence of
subdatabases.

DB->associate, DB->open, DB->remove, DB->rename

Historic releases of Berkeley DB transaction-protected the DB->open(), DB->remove(), and
DB->rename() methods, but did it in an implicit way, that is, applications did not specify the
TXN handles associated with the operations. This approach had a number of problems, the
most significant of which was there was no way to group operations that included database
creation, removal or rename. For example, applications wanting to maintain a list of the
databases in an environment in a well-known database had no way to update the well-known
database and create a database within a single transaction, and so there was no way to
guarantee the list of databases was correct for the environment after system or application
failure. Another example might be the creation of both a primary database and a database
intended to serve as a secondary index, where again there was no way to group the creation
of both databases in a single atomic operation.

In the 4.1 release of Berkeley DB, this is no longer the case. The DB->open() and DB-
>associate() methods now take a TXN handle returned by DB_ENV->txn_begin() as an optional
argument. New DB_ENV->dbremove() and DB_ENV->dbrename() methods taking a TXN handle
as an optional argument have been added.

To upgrade, applications must add a TXN parameter in the appropriate location for the
DB->open() method calls, and the DB->associate() method calls (in both cases, the second
argument for the C API, the first for the C++ or Java APIs).

Applications wanting to transaction-protect their DB->open() and DB->associate() method
calls can add a NULL TXN argument and specify the DB_AUTO_COMMIT flag to the two calls,
which wraps the operation in an internal Berkeley DB transaction. Applications wanting to
transaction-protect the remove and rename operations must rewrite their calls to the DB-
>remove() and DB->rename() methods to be, instead, calls to the new DB_ENV->dbremove()
and DB_ENV->dbrename() methods. Applications not wanting to transaction-protect any of the
operations can add a NULL argument to their DB->open() and DB->associate() method calls and
require no further changes.

For example, an application currently opening and closing a database as follows:

../api_reference/C/dbopen.html#open_DB_EXCL
../api_reference/C/dbopen.html
../api_reference/C/dbopen.html#open_DB_EXCL
../api_reference/C/dbopen.html
../api_reference/C/dbremove.html
../api_reference/C/dbrename.html
../api_reference/C/txn.html
../api_reference/C/dbopen.html
../api_reference/C/dbassociate.html
../api_reference/C/dbassociate.html
../api_reference/C/txn.html
../api_reference/C/txnbegin.html
../api_reference/C/envdbremove.html
../api_reference/C/envdbrename.html
../api_reference/C/txn.html
../api_reference/C/txn.html
../api_reference/C/dbopen.html
../api_reference/C/dbassociate.html
../api_reference/C/dbopen.html
../api_reference/C/dbassociate.html
../api_reference/C/txn.html
../api_reference/C/envset_flags.html#envset_flags_DB_AUTO_COMMIT
../api_reference/C/dbremove.html
../api_reference/C/dbremove.html
../api_reference/C/dbrename.html
../api_reference/C/envdbremove.html
../api_reference/C/envdbrename.html
../api_reference/C/dbopen.html
../api_reference/C/dbassociate.html

Upgrading Berkeley DB 4.0 applications to
Berkeley DB 4.1

11/8/2010 DB Installation Guide Page 176

DB *dbp;
DB_ENV *dbenv;
int ret;

if ((ret = db_create(&dbp, dbenv, 0)) != 0)
 goto err_handler;

if ((ret = dbp->open(dbp, "file", NULL, DB_BTREE,
 DB_CREATE, 0664)) != 0) {
 (void)dbp->close(dbp);
 goto err_handler;
}

could transaction-protect the DB->open() call as follows:

DB *dbp;
DB_ENV *dbenv;
int ret;

if ((ret = db_create(&dbp, dbenv, 0)) != 0)
 goto err_handler;

if ((ret = dbp->open(dbp,
 NULL, "file", NULL, DB_BTREE, DB_CREATE |
 DB_AUTO_COMMIT, 0664)) != 0) {
 (void)dbp->close(dbp);
 goto err_handler;
}

An application currently removing a database as follows:

DB *dbp;
DB_ENV *dbenv;
int ret;

if ((ret = db_create(&dbp, dbenv, 0)) != 0)
 goto err_handler;

if ((ret = dbp->remove(dbp, "file", NULL, 0)) != 0)
 goto err_handler;

could transaction-protect the database removal as follows:

DB *dbp;
DB_ENV *dbenv;
int ret;

if ((ret =
 dbenv->dbremove(dbenv, NULL, "file", NULL, DB_AUTO_COMMIT)) != 0)
 goto err_handler;

An application currently renaming a database as follows:

../api_reference/C/dbopen.html

Upgrading Berkeley DB 4.0 applications to
Berkeley DB 4.1

11/8/2010 DB Installation Guide Page 177

DB *dbp;
DB_ENV *dbenv;
int ret;

if ((ret = db_create(&dbp, dbenv, 0)) != 0)
 goto err_handler;

if ((ret = dbp->rename(dbp, "file", NULL, "newname", 0)) != 0)
 goto err_handler;

could transaction-protect the database renaming as follows:

DB *dbp;
DB_ENV *dbenv;
int ret;

if ((ret = dbenv->dbrename(
 dbenv, NULL, "file", NULL, "newname", DB_AUTO_COMMIT)) != 0)
 goto err_handler;

These examples are the simplest possible translation, and will result in behavior matching that
of previous releases. For further discussion on how to transaction-protect DB->open() method
calls, see Opening the databases.

DB handles that will later be used for transaction-protected operations must be opened within
a transaction. Specifying a transaction handle to operations using handles not opened within
a transaction will return an error. Similarly, not specifying a transaction handle to operations
using handles that were opened within a transaction will also return an error.

DB_ENV->log_register

The DB_ENV->log_register and DB_ENV->log_unregister interfaces were removed from the
Berkeley DB 4.1 release. It is very unlikely application programs used these interfaces. If your
application used these interfaces, please contact us for help in upgrading.

st_flushcommit

The DB_ENV->log_stat "st_flushcommits" statistic has been removed from Berkeley DB, as it is
now the same as the "st_scount" statistic. Any application using the "st_flushcommits" statistic
should remove it, or replace it with the "st_count" statistic.

DB_CHECKPOINT, DB_CURLSN

The DB_CHECKPOINT flag has been removed from the DB_LOGC->get() and DB_ENV->log_put()
methods. It is very unlikely application programs used this flag. If your application used this
flag, please contact us for help in upgrading.

The DB_CURLSN flag has been removed from the DB_ENV->log_put() method. It is very unlikely
application programs used this flag. If your application used this flag, please contact us for
help in upgrading.

../api_reference/C/dbopen.html
../programmer_reference/transapp_data_open.html
../api_reference/C/db.html
../api_reference/C/logcget.html
../api_reference/C/logput.html
../api_reference/C/logput.html

Upgrading Berkeley DB 4.0 applications to
Berkeley DB 4.1

11/8/2010 DB Installation Guide Page 178

DB_INCOMPLETE

The DB_INCOMPLETE error has been removed from the 4.1 release, and is no longer returned
by the Berkeley DB library. Applications no longer need to check for this error return, as the
underlying Berkeley DB interfaces that could historically fail to checkpoint or flush the cache
and return this error can no longer fail for that reason. Applications should remove all uses of
DB_INCOMPLETE.

Additionally, the DbEnv.checkpoint and Db.sync methods have been changed from returning int
to returning void.

DB_ENV->memp_sync

Historical documentation for the DB_ENV->memp_sync() method stated:
In addition, if DB_ENV->memp_sync() returns success, the value of lsn will be overwritten with
the largest log sequence number from any page that was written by DB_ENV->memp_sync() to
satisfy this request.

This functionality was never correctly implemented, and has been removed in the Berkeley DB
4.1 release. It is very unlikely application programs used this information. If your application
used this information, please contact us for help in upgrading.

DB->stat.hash_nelem

The hash_nelem field of the DB->stat() method for Hash databases has been removed from
the 4.1 release, this information is no longer available to applications.

Java exceptions

The Java DbEnv constructor is now marked with "throws DbException". This means applications
must construct DbEnv objects in a context where DbException throwables are handled (either
in a try/catch block or in a method that propagates the exception up the stack). Note that
previous versions of the Berkeley DB Java API could throw this exception from the constructor
but it was not marked.

C++ exceptions

With default flags, the C++ DbEnv and Db classes can throw exceptions from their
constructors. For example, this can happen if invalid parameters are passed in or the
underlying C structures could not be created. If the objects are created in an environment
that is not configured for exceptions (that is, the DB_CXX_NO_EXCEPTIONS flag is specified),
errors from the constructor will be returned when the handle's open method is called.

In addition, the behavior of the DbEnv and Db destructors has changed to simplify exception
handling in applications. The destructors will now close the handle if the handle's close
method was not called prior to the object being destroyed. The return value of the call is
discarded, and no exceptions will be thrown. Applications should call the close method in
normal situations so any errors while closing can be handled by the application.

../api_reference/C/mempsync.html
../api_reference/C/mempsync.html
../api_reference/C/mempsync.html
../api_reference/C/dbstat.html
../api_reference/CXX/env.html
../api_reference/CXX/db.html
../api_reference/CXX/envcreate.html#env_DB_CXX_NO_EXCEPTIONS
../api_reference/CXX/env.html
../api_reference/CXX/db.html

Upgrading Berkeley DB 4.0 applications to
Berkeley DB 4.1

11/8/2010 DB Installation Guide Page 179

This change allows applications to be structured as follows:

try {
 DbEnv env(0);
 env.open(/* ... */);
 Db db(&env, 0);
 db.open(/* ... */);
 /* ... */
 db.close(0);
 env.close(0);
} catch (DbException &dbe) {
 // Handle the exception, the handles have already been closed.
}

Application-specific logging and recovery

The application-specific logging and recovery tools and interfaces have been reworked
in the 4.1 release to make it simpler for applications to use Berkeley DB to support
their own logging and recovery of non-Berkeley DB objects. Specifically, the DB_ENV-
>set_recovery_init and DB_ENV->set_tx_recover interfaces have been removed, replaced
by DB_ENV->set_app_dispatch(). Applications using either of the removed interfaces should
be updated to call DB_ENV->set_app_dispatch(). For more information see Introduction to
application specific logging and recovery and the DB_ENV->set_app_dispatch() documentation.

Upgrade Requirements

The log file format changed in the Berkeley DB 4.1 release.

All of the access method database formats changed in the Berkeley DB 4.1 release (Btree/
Recno: version 8 to version 9, Hash: version 7 to version 8, and Queue: version 3 to version
4). The format changes are entirely backward-compatible, and no database upgrades are
needed. Note that databases created using the 4.1 release may not be usable with earlier
Berkeley DB releases.

For further information on upgrading Berkeley DB installations, see Upgrading Berkeley DB
installations (page 66).

Berkeley DB 4.1.24 and 4.1.25 Change Log

Database or Log File On-Disk Format Changes:

1. All of the access method database formats changed in the Berkeley DB 4.1 release (Btree/
Recno: version 8 to version 9, Hash: version 7 to version 8, and Queue: version 3 to
version 4). The format changes are entirely backward-compatible, and no database
upgrades are needed.

Major New Features:

1. Berkeley DB now includes support for database encryption using the AES encryption
standard. [#1797]

../api_reference/C/envset_app_dispatch.html
../api_reference/C/envset_app_dispatch.html
../programmer_reference/apprec.html#apprec_intro
../programmer_reference/apprec.html#apprec_intro
../api_reference/C/envset_app_dispatch.html

Upgrading Berkeley DB 4.0 applications to
Berkeley DB 4.1

11/8/2010 DB Installation Guide Page 180

2. Berkeley DB now includes support for database page checksums to allow detection of
database corruption during I/O. [#1797]

3. The shared memory buffer pool code base was substantially reworked in the 4.1 release
to improve concurrent throughput. [#4655]

General Environment Changes:

1. Allow applications to specify transaction handles to the DB->open method call, so
database creation can be grouped with other Berkeley DB calls in a single transaction.
[#4257]

2. Add the DB_ENV->remove and DB_ENV->rename method calls that support transactional
protection of database removal and renaming. [#4257]

3. Add the DB_ENV->set_flags flags DB_DIRECT_DB and DB_DIRECT_LOG, which disable the
system's buffer cache where possible. [#4526]

4. Unlock the pthread mutex if pthread_cond_wait() returns an error. [#4872]

5. Fix a memory leak caused by running recovery. [#4913]

6. Fix a bug in which closing an environment with open database handles could result in
application crashes. [#4991]

7. Fix a bug where DB_CONFIG files were ignored if the database environment defaulted to
the application's current working directory. [#5265]

8. Fix a bug where transaction abort or commit could fail to destroy the handle. [#5633]

9. Fix a set of bugs where the Berkeley DB API could return DB_RUNRECOVERY without panic-
ing the database environment itself or calling the application's panic-callback function.
[#5743]

10. Fix a bug in where DB=>rename and DB->remove method calls could leak a transaction
and its locks. [#5824]

11. Fix a bug where recovery feedback could return values greater than 100. [#6193]

12. Fix a bug where a page allocated by a transaction, eventually aborted because of
application or system failure, could appear twice in the free list, if catastrophic recovery
was performed. [#6222]

13. Add a new flag, DB_AUTO_COMMIT, that wraps all database modification operations inside
a transaction, to the DB_ENV->set_flags method. [#6395]

14. Fix a bug where recovery could fail when upgrading between releases. [#6372]

15. Fix a recovery bug where pages that were repeatedly freed and allocated could be lost.
[#6479] [#6501]

16. Change DB_CONFIG reading to handle non-<newline> terminated last line. [#6490]

Upgrading Berkeley DB 4.0 applications to
Berkeley DB 4.1

11/8/2010 DB Installation Guide Page 181

General Access Method Changes:

1. Allow applications to specify transaction handles to the DB->associate method call,
so secondary index creation can be grouped with other Berkeley DB calls in a single
transaction. [#4185]

2. Add a new flag, DB_AUTO_COMMIT, that wraps single database operations inside
a transaction. This flag is supported by the DB->del, DB->open, DB->put, DB-
>truncate,DB_ENV->remove, and DB_ENV->rename methods. [#4257]

3. The DB_EXCL DB->open method flag has been enhanced to work on subdatabases. [#4257]

4. Fix a bug in which a DB->put(DB_APPEND) could result in leaked memory or a corruption
in the returned record number. [#5002]

5. Fix a bug in the database salvage code that could leave pages pinned in the cache.
[#5037]

6. Add a flag to the DB->verify method to output salvaged key/data pairs in printable
characters. [#5037]

7. Fix a bug in which DB->verify() might continue and report extraneous database corruption
after a fatal error. [#5131]

8. Fix a bug where calling the DB->stat method before the DB->open method could drop
core. [#5190]

9. Fix a bug in which a DB->get, DBcursor->c_get, or DBcursor->c_pget on a secondary index,
in the Concurrent Data Store product, could result in a deadlock. [#5192]

10. Fix a bug in which DB->verify() could correctly report errors but still return success.
[#5297]

11. Add support for the DB->set_cache_priority interface, that allows applications to set the
underlying cache priority for their database files. [#5375]

12. Fix a bug where calling DBcursor->c_pget with a database that is not a secondary index
would drop core. [#5391]

13. Fix a bug where a bug in the DB->truncate method could cause recovery to fail. [#5679]

14. Fix a bug where DB_GET_RECNO would fail if specified to a secondary index. [#5811]

15. Fix a bug where building a secondary index for an existing primary database could fail in
Concurrent Data Store environments. [#5811]

16. Fix a bug where the DB->rename method could fail, causing a problem during recovery.
[#5893]

17. Fix a bug in which a DB->get or DB->pget call on a secondary index could fail when done
with a handle shared among multiple threads. [#5899]

Upgrading Berkeley DB 4.0 applications to
Berkeley DB 4.1

11/8/2010 DB Installation Guide Page 182

18. Fix a bug in which a DB->put operation on a database with off-page duplicates could leak
a duplicate cursor, thereby preventing transactions being able to commit. [#5936]

19. Fix a bug where overflow page reference counts were not properly maintained when
databases were truncated. [#6168]

20. Fix a bug where the bulk get APIs could allocate large amounts of heap memory. [#6439]
[#6520]

Btree Access Method Changes:

1. Fix a bug that prevented loads of sorted data, with duplicates at the end of the tree,
from creating compact trees. [#4926]

2. No longer return a copy of the key if the DB_GET_BOTH or DB_GET_BOTH_RANGE flags are
specified. [#4470]

3. Fix a bug where the fast-search code could hold an unlocked reference to a page, which
could lead to recovery failure. [#5518]

4. Fix a bug where some cursor operations on a database, for which the bt_minkey size had
been specified, could fail to use the correct overflow key/data item size. [#6183]

5. Fix a bug where the recovery of an aborted transaction that did a reverse Btree split
might leave a page in an inconsistent state. [#6393]

Hash Access Method Changes:

1. Fix bugs that could cause hash recovery to drop core. [#4978]

2. Use access method flags instead of interface flags to check for read-only access to a hash
database with an application-specified hash function. [#5121]

3. Fix a bug where a hash database allocation of a new set of buckets may be improperly
recovered by catastrophic recovery if the transaction is split across log files and the
beginning segment of the transaction is not included in the set of logs to be recovered.
[#5942]

4. Fix a bug where aborting particular hash allocations could lead to a database on which
the verifier would loop infinitely. [#5966]

5. Fix a bug where a memory allocation failure could result in a system hang. [#5988]

6. Remove nelem from the Hash access method statistics (the value was incorrect once
items had been added or removed from the database). [#6101]

7. Fix a bug where a page allocated by an aborted transaction might not be placed on the
free list by recovery, if the file holding the page was created as part of recovery, and a
later page was part of a hash bucket allocation. [#6184]

8. Fix a bug where allocated pages could be improperly recovered on systems that require
explicit zero-ing of filesystem pages. [#6534]

Upgrading Berkeley DB 4.0 applications to
Berkeley DB 4.1

11/8/2010 DB Installation Guide Page 183

Queue Access Method Changes:

1. No longer return a copy of the key if the DB_SET_RANGE flag is specified. [#4470]

2. Fix a bug where DBcursor->c_get (with DB_MULTIPLE or DB_MULTIPLE_KEY specified) could
fail on a Queue database if the record numbers had wrapped. [#6397]

Recno Access Method Changes:

1. No longer return a copy of the key if the DB_GET_BOTH or DB_GET_BOTH_RANGE flags are
specified. [#4470]

2. Fix a bug where non-transactional locking applications could leak locks when modifying
Recno databases. [#5766]

3. Fix a bug where DBcursor->c_get with the DB_GET_RECNO flag would panic the
environment if the cursor was uninitialized. [#5935]

4. Fix a bug where deleting pages from a three-level Recno tree could cause the database
environment to panic. [#6232]

C++-specific API Changes:

1. C++ DbLock::put is replaced by DbEnv::lock_put to match the C and Java API change in
Release 4.0. [#5170]

2. Declared destructors and methods within Db and DbEnv classes to be virtual, making
subclassing safer. [#5264]

3. Fixed a bug where Dbt objects with no flags set would not be filled with data by some
operations. [#5706]

4. Added DbDeadlockException, DbRunRecoveryException, and DbLockNotGrantedException
classes to C++, and throw them accordingly. [#6134]

5. Added C++ methods to support remaining conversions between C++ classes and C
structs where appropriate. In particular, DbTxn/DB_TXN conversions and DbMpoolFile/
DB_MPOOLFILE were added. [#6278]

6. Fix a bug in DbEnv::~DbEnv() that could cause memory corruption if a DbEnv was deleted
without being closed. [#6342]

7. Reordered C++ class declarations to avoid a GCC g++ warning about function inlining.
[#6406]

8. Fix a bug in the DbEnv destructor that could cause memory corruption when an
environment was destroyed without closing first. [#6342]

9. Change DbEnv and Db destructor behavior to close the handle if it was not already closed.
[#6342]

Upgrading Berkeley DB 4.0 applications to
Berkeley DB 4.1

11/8/2010 DB Installation Guide Page 184

Java-specific API Changes:

1. Added check for system property "sleepycat.Berkeley DB.libfile" that can be used to
specify a complete pathname for the JNI shared library. This is needed as a workaround
on Mac OS X, where libtool cannot currently create a library with a .jnilib extension which
is what the current JDK expects by default. [#5664]

2. Fixed handling of JVM out of memory conditions, when some JNI methods return NULL.
When the JVM runs out of memory, calls should consistently fail with OutOfMemoryErrors.
[#5995]

3. Added Dbt.get_object and Dbt.set_object convenience routines to the Java API to make
using serialization easier. [#6113]

4. Fixed a bug that prevented Java's Db.set_feedback from working, fixed document for
Java's Db.set_feedback, some callback methods were misnamed. [#6137]

5. Fix a NullPointerException in Db.finalize() if the database had been closed. [#6504]

6. Marked DbEnv constructor with "throws DbException". [#6342]

Tcl-specific API Changes:
None.

RPC-specific Client/Server Changes:

1. Fix a bug where Db and DbEnv handles were not thread-safe. [#6102]

Replication Changes:

1. A large number of replication bugs were fixed in this release. The replication support is
now believed to be production quality.

2. Add the DB_ENV->set_rep_limit interface, allowing applications to limit the data sent in
response to a single DB_ENV->rep_process_message call. [#5999]

3. Add the DB_ENV->set_rep_stat interface, returning information from the replication
subsystem [#5919]

XA Resource Manager Changes:

1. Added support for multithreaded XA. Environments can now have multiple XA transactions
active. db_env_xa_attach() can be used to get a DB_TXN that corresponds to the XA
transaction in the current thread. [#5049]

2. Added a com.sleepycat.Berkeley DB.xa package that implements J2EE support for XA.
This includes new DbXAResource, DbXid classes that implement the XAResource and Xid
interfaces. [#5049]

3. Fix a bug where aborting a prepared transaction after recovery may fail. [#6383]

Upgrading Berkeley DB 4.0 applications to
Berkeley DB 4.1

11/8/2010 DB Installation Guide Page 185

4. Fix a bug where recovery might fail if a prepared transaction had previously extended the
size of a file and then was aborted. [#6387]

5. Fix a bug where if the commit of a prepared transaction fails the transaction would be
aborted. [#6389]

Locking Subsystem Changes:

1. Fix a bug where lock counts were incorrect if a lock request returned
DB_LOCK_NOTGRANTED or an error occurred. [#4923]

2. Fix a bug where lock downgrades were counted as releases, so the lock release statistics
could be wrong. [#5762]

3. Fix a bug where the lock and transaction timeout values could not be reset by threads of
control joining Berkeley DB database environments. [#5996]

4. Fix a bug where applications using lock and/or transaction timeouts could hit a race
condition that would lead to a segmentation fault. [#6061]

Logging Subsystem Changes:

1. DB_ENV->log_register and DB_ENV->log_unregister have been removed from the interface.
[#0046]

2. Fix a bug where creating a database environment with a nonexistent logging directory
could drop core. [#5833]

3. Add support allowing applications to change the log file size in existing database
environments. [#4875]

4. Fix a bug where a write error on a log record spanning a buffer could cause transaction
abort to fail and the database environment to panic. [#5830]

Memory Pool Subsystem Changes:

1. The DB_INCOMPLETE error has been removed, as cache flushing can no longer return
without completing. [#4655]

2. Fix a bug where Berkeley DB might refuse to open a file if the open was attempted while
another thread was writing a large buffer. [#4885]

3. Prefer clean buffers to dirty buffers when selecting a buffer for eviction. [#4934]

4. Fix a bug where transaction checkpoint might miss flushing a buffer to disk. [#5033]

5. Fix a bug where Berkeley DB applications could run out of file descriptors. [#5535]

6. Fix bugs where Berkeley DB could self-deadlock on systems requiring mutex resource
reclamation after application failure. [#5722] [#6523]

Upgrading Berkeley DB 4.0 applications to
Berkeley DB 4.1

11/8/2010 DB Installation Guide Page 186

Transaction Subsystem Changes:

1. Go back only one checkpoint, not two, when performing normal recovery. [#4284]

2. Fix a bug where an abort of a transaction could fail if there was no disk space for the log.
[#5740]

3. Fix a bug where the checkpoint log-sequence-number could reference a nonexistent log
record. [#5789]

4. Fix a bug where subtransactions which allocated pages from the filesystem and
subsequently aborted could cause other pages allocated by sibling transactions to not be
freed if the parent transaction then aborted. [#5903]

5. Fix a bug where transactions doing multiple updates to a queue database which spanned a
checkpoint could be improperly handled by recovery. [#5898]

Utility Changes:

1. Fix a bug where the -p option could not be specified with the -R or -r options. [#5037]

2. The utilities were modified to correctly size their private caches in order to handle
databases with large page sizes. [#5055]

3. Fix a bug in which utilities run with the -N option would fail to ignore the environment's
panic flag. [#5082]

4. Fix a bug where invalid log records could cause db_printlog to drop core. [#5173]

5. Add a new option to the db_verify utility to support verification of files that include
databases having non-standard sorting or hash functions. [#5237]

Configuration, Documentation, Portability and Build Changes:

1. Replace test-and-set mutexes on Windows with a new mutex implementation that signals
an event to wake blocked threads. [#4413]

2. Support configuration of POSIX pthread mutexes on systems where the pthread mutexes
do not support inter-process locks. [#4942]

3. Add mutex support for the ARM architecture using the gcc compiler. [#5018]

4. On Windows NT/2000/XP, switched to atomic seek-and-read/write operations to improve
performance of concurrent reads [#0654].

5. Support cross-compilation using the GNU compiler tool chain. [#4558]

6. Fix a bug where libraries were always installed read-only. [#5096]

7. Fix a bug where temporary files on VxWorks could fail. [#5160]

8. Fix a bug where Berkeley DB did not install correctly if the system cp utility did not
support the -f option. [#5111]

Upgrading Berkeley DB 4.0 applications to
Berkeley DB 4.1

11/8/2010 DB Installation Guide Page 187

9. Correct the documentation for the Queue access method statistics field qs_cur_recno to
be the "Next available record number". [#5190]

10. Fix a bug where file rename could fail on Windows/9X. [#5223]

11. Removed support for Microsoft Visual Studio 5.0 [#5231]

12. Switched to using HANDLEs for all I/O operations on Windows to overcome a hard limit of
2048 open file descriptors in Microsoft's C runtime library. [#5249]

13. Fix a bug where Berkeley DB error message routines could drop core on the PowerPC and
UltraSPARC architectures. [#5331]

14. Rename OSTREAMCLASS to __DB_OSTREAMCLASS in db_cxx.h to avoid stepping on
application name space. [#5402]

15. Support Linux on the S/390 architecture. [#5608]

16. Work around a bug in Solaris where the pthread_cond_wait call could return because a
signal was delivered to the application. [#5640]

17. Fix build line for loadable libraries to include -module to support Mac OS X. [#5664]

18. Fix a bug in the PPC mutex support for the Mac OS X system. [#5781]

19. Added support for Java on Mac OS X. A workaround on the Java command line is currently
necessary; it is documented. [#5664]

20. Added support for Tcl on Mac OS X. [#5664]

21. Update Windows build instructions to cover Visual C++ .NET. [#5684]

22. AIX configuration changes for building on AIX 4.3.3 and 5 with both standard and Visual
Age compilers. [#5779]

23. Add a new UNIX configuration argument, --with-mutex=MUTEX, to allow applications to
select a mutex implementation. [#6040]

24. Changed libtool and configure so we can now correctly build and install Tcl and Java
loadable shared libraries that work on Mac OS X. [#6117]

25. Fix mutex alignment problems on historic HP-UX releases that could make multiprocess
applications fail. [#6250]

26. Installed static .a archives on Mac OS X need to be built with the ranlib -c option so linked
applications will not see undefined __db_jump errors. [#6215]

27. Upgrade pthread and mmap support in the uClibc library to support Berkeley DB. [#6268]

28. Fixed error in determining include directories during configuration for --enable-java. The
error can cause compilation errors on certain systems with newer versions of gcc. [#6445]

Upgrading Berkeley DB 4.0 applications to
Berkeley DB 4.1

11/8/2010 DB Installation Guide Page 188

Berkeley DB 4.1.25 Change Log
Berkeley DB version 4.1.25 is version 4.1.24 with all public patches applied. There were no
public interface changes or new features.

11/8/2010 DB Installation Guide Page 189

Chapter 18. Upgrading Berkeley DB 3.3
applications to Berkeley DB 4.0

Introduction

The following pages describe how to upgrade applications coded against the Berkeley DB
3.3 release interfaces to the Berkeley DB 4.0 release interfaces. This information does not
describe how to upgrade Berkeley DB 1.85 release applications.

db_deadlock

The -w option to the db_deadlock utility has been deprecated. Applications can get the
functionality of the -w option by using the -t option with an argument of .100000.

lock_XXX

The C API for the Berkeley DB Locking subsystem was reworked in the 4.0 release as follows:

Historic functional interface Berkeley DB 4.X method

lock_detect DB_ENV->lock_detect()

lock_get DB_ENV->lock_get()

lock_id DB_ENV->lock_id()

lock_put DB_ENV->lock_put()

lock_stat DB_ENV->lock_stat()

lock_vec DB_ENV->lock_vec()

Applications calling any of these functions should update their calls to use the enclosing
DB_ENV handle's method (easily done as the first argument to the existing call is the correct
handle to use).

In addition, the DB_ENV->lock_stat() call has been changed in the 4.0 release to take a
flags argument. To leave their historic behavior unchanged, applications should add a final
argument of 0 to any calls made to DB_ENV->lock_stat().

The C++ and Java APIs for the DbLock::put (DbLock.put) method was reworked in the 4.0
release to make the lock put interface a method of the DB_ENV handle rather than the DbLock
handle. Applications calling the DbLock::put or DbLock.put method should update their calls
to use the enclosing DB_ENV handle's method (easily done as the first argument to the existing
call is the correct handle to use).

log_XXX

The C API for the Berkeley DB Logging subsystem was reworked in the 4.0 release as follows:

Historic functional interface Berkeley DB 4.X method

log_archive DB_ENV->log_archive()

../api_reference/C/db_deadlock.html
../api_reference/C/lockdetect.html
../api_reference/C/lockget.html
../api_reference/C/lockid.html
../api_reference/C/lockput.html
../api_reference/C/lockstat.html
../api_reference/C/lockvec.html
../api_reference/C/env.html
../api_reference/C/lockstat.html
../api_reference/C/lockstat.html
../api_reference/C/env.html
../api_reference/C/env.html
../api_reference/C/logarchive.html

Upgrading Berkeley DB 3.3 applications to
Berkeley DB 4.0

11/8/2010 DB Installation Guide Page 190

Historic functional interface Berkeley DB 4.X method

log_file DB_ENV->log_file()

log_flush DB_ENV->log_flush()

log_get DB_ENV->log_cursor()

log_put DB_ENV->log_put()

log_register DB_ENV->log_register

log_stat DB_ENV->log_stat()

log_unregister DB_ENV->log_unregister

Applications calling any of these functions should update their calls to use the enclosing
DB_ENV class handle's method (in all cases other than the log_get call, this is easily done as
the first argument to the existing call is the correct handle to use).

Application calls to the historic log_get function must be replaced with the creation of a
log file cursor (a DB_LOGC class object), using the DB_ENV->log_cursor() method to retrieve
log records and calls to the DB_LOGC->close() method to destroy the cursor. It may also be
possible to simplify some applications. In previous releases of Berkeley DB, the DB_CURRENT,
DB_NEXT, and DB_PREV flags to the log_get function could not be used by a free-threaded
DB_ENV class handle. If their DB_ENV class handle was free-threaded, applications had to
create an additional, unique environment handle by separately calling DB_ENV->open(). This is
no longer an issue in the log cursor interface, and applications may be able to remove the now
unnecessary creation of the additional DB_ENV class object.

Finally, the DB_ENV->log_stat() call has been changed in the 4.0 release to take a flags
argument. To leave their historic behavior unchanged, applications should add a final
argument of 0 to any calls made to DB_ENV->log_stat().

memp_XXX

The C API for the Berkeley DB Memory Pool subsystem was reworked in the 4.0 release as
follows:

Historic functional interface Berkeley DB 4.X method

memp_register DB_ENV->memp_register()

memp_stat DB_ENV->memp_stat()

memp_sync DB_ENV->memp_sync()

memp_trickle DB_ENV->memp_trickle()

memp_fopen DB_ENV->memp_fcreate()

DB_MPOOL_FINFO: ftype DB_MPOOLFILE->set_ftype()

DB_MPOOL_FINFO: pgcookie DB_MPOOLFILE->set_pgcookie()

DB_MPOOL_FINFO: fileid DB_MPOOLFILE->set_fileid()

DB_MPOOL_FINFO: lsn_offset DB_MPOOLFILE->set_lsn_offset()

DB_MPOOL_FINFO: clear_len DB_MPOOLFILE->set_clear_len()

../api_reference/C/logfile.html
../api_reference/C/logflush.html
../api_reference/C/logcursor.html
../api_reference/C/logput.html
../api_reference/C/logstat.html
../api_reference/C/env.html
../api_reference/C/logc.html
../api_reference/C/logcursor.html
../api_reference/C/logcclose.html
../api_reference/C/env.html
../api_reference/C/env.html
../api_reference/C/envopen.html
../api_reference/C/env.html
../api_reference/C/logstat.html
../api_reference/C/logstat.html
../api_reference/C/mempregister.html
../api_reference/C/mempstat.html
../api_reference/C/mempsync.html
../api_reference/C/memptrickle.html
../api_reference/C/mempfcreate.html
../api_reference/C/mempset_ftype.html
../api_reference/C/mempset_pgcookie.html
../api_reference/C/mempset_fileid.html
../api_reference/C/mempset_lsn_offset.html
../api_reference/C/mempset_clear_len.html

Upgrading Berkeley DB 3.3 applications to
Berkeley DB 4.0

11/8/2010 DB Installation Guide Page 191

Historic functional interface Berkeley DB 4.X method

memp_fopen DB_MPOOLFILE->open()

memp_fclose DB_MPOOLFILE->close()

memp_fput DB_MPOOLFILE->put()

memp_fset DB_MPOOLFILE->set

memp_fsync DB_MPOOLFILE->sync()

Applications calling any of the memp_register, memp_stat, memp_sync or memp_trickle
functions should update those calls to use the enclosing DB_ENV class handle's method (easily
done as the first argument to the existing call is the correct DB_ENV class handle).

In addition, the DB_ENV->memp_stat() call has been changed in the 4.0 release to take a
flags argument. To leave their historic behavior unchanged, applications should add a final
argument of 0 to any calls made to DB_ENV->memp_stat().

Applications calling the memp_fopen function should update those calls as follows: First,
acquire a Cache chapter handle using the DB_ENV->memp_fcreate() method. Second, if the
DB_MPOOL_FINFO structure reference passed to the memp_fopen function was non-NULL, call
the Cache chapter method corresponding to each initialized field in the DB_MPOOL_FINFO
structure. Third, call the DB_MPOOLFILE->open() method method to open the underlying file.
If the DB_MPOOLFILE->open() method call fails, then DB_MPOOLFILE->close() method must be
called to destroy the allocated handle.

Applications calling the memp_fopen, memp_fclose, memp_fput, memp_fset, or memp_fsync
functions should update those calls to use the enclosing Cache chapter handle's method.
Again, this is easily done as the first argument to the existing call is the correct Cache
chapter handle. With one exception, the calling conventions of the old and new interfaces
are identical; the one exception is the DB_MPOOLFILE->close() method, which requires an
additional flag parameter that should be set to 0.

txn_XXX

The C API for the Berkeley DB Transaction subsystem was reworked in the 4.0 release as
follows:

Historic functional interface Berkeley DB 4.X method

txn_abort DB_TXN->abort()

txn_begin DB_ENV->txn_begin()

txn_checkpoint DB_ENV->txn_checkpoint()

txn_commit DB_TXN->commit()

txn_discard DB_TXN->discard()

txn_id DB_TXN->id()

txn_prepare DB_TXN->prepare()

txn_recover DB_TXN->recover()

../api_reference/C/mempfopen.html
../api_reference/C/mempfclose.html
../api_reference/C/mempput.html
../api_reference/C/mempfsync.html
../api_reference/C/env.html
../api_reference/C/env.html
../api_reference/C/mempstat.html
../api_reference/C/mempstat.html
../api_reference/C/memp.html
../api_reference/C/mempfcreate.html
../api_reference/C/memp.html
../api_reference/C/mempfopen.html
../api_reference/C/mempfopen.html
../api_reference/C/mempfclose.html
../api_reference/C/memp.html
../api_reference/C/memp.html
../api_reference/C/memp.html
../api_reference/C/mempfclose.html
../api_reference/C/txnabort.html
../api_reference/C/txnbegin.html
../api_reference/C/txncheckpoint.html
../api_reference/C/txncommit.html
../api_reference/C/txndiscard.html
../api_reference/C/txnid.html
../api_reference/C/txnprepare.html
../api_reference/C/txnrecover.html

Upgrading Berkeley DB 3.3 applications to
Berkeley DB 4.0

11/8/2010 DB Installation Guide Page 192

Historic functional interface Berkeley DB 4.X method

txn_stat DB_TXN->stat()

Applications calling any of these functions should update their calls to use the enclosing
DB_ENV class handle's method (easily done as the first argument to the existing call is the
correct handle to use).

As a special case, since applications might potentially have many calls to the txn_abort,
txn_begin and txn_commit functions, those functions continue to work unchanged in the
Berkeley DB 4.0 release.

In addition, the DB_TXN->stat() call has been changed in the 4.0 release to take a flags
argument. To leave their historic behavior unchanged, applications should add a final
argument of 0 to any calls made to DB_TXN->stat().

db_env_set_XXX

The db_env_set_region_init function was removed in the 4.0 release and replaced with
the DB_REGION_INIT flag to the DB_ENV->set_flags() method. This is an interface change:
historically, the db_env_set_region_init function operated on the entire Berkeley DB
library, not a single environment. The new method only operates on a single DB_ENV class
handle (and any handles created in the scope of that handle). Applications calling the
db_env_set_region_init function should update their calls: calls to the historic routine with an
argument of 1 (0) are equivalent to calling DB_ENV->set_flags() with the DB_REGION_INIT flag
and an argument of 1 (0).

The db_env_set_tas_spins function was removed in the 4.0 release and replaced
with the DB_ENV->set_tas_spins method. This is an interface change: historically, the
db_env_set_tas_spins function operated on the entire Berkeley DB library, not a single
environment. The new method only operates on a single DB_ENV class handle (and any handles
created in the scope of that handle). Applications calling the db_env_set_tas_spins function
should update their calls: calls to the historic routine are equivalent to calling DB_ENV-
>set_tas_spins with the same argument. In addition, for consistent behavior, all DB_ENV class
handles opened by the application should make the same configuration call, or the value will
need to be entered into the environment's DB_CONFIG file.

Also, three of the standard Berkeley DB debugging interfaces changed in the 4.0 release. It is
quite unlikely that Berkeley DB applications use these interfaces.

The DB_ENV->set_mutexlocks method was removed in the 4.0 release and replaced with the
DB_NO_LOCKING flag to the DB_ENV->set_flags() method. Applications calling the DB_ENV-
>set_mutexlocks method should update their calls: calls to the historic routine with an
argument of 1 (0) are equivalent to calling DB_NO_LOCKING flag and an argument of 1 (0).

The db_env_set_pageyield function was removed in the 4.0 release and replaced with the
DB_YIELDCPU flag to the DB_ENV->set_flags() method. This is an interface change: historically,
the db_env_set_pageyield function operated on the entire Berkeley DB library, not a single
environment. The new method only operates on a single DB_ENV class handle (and any
handles created in the scope of that handle). Applications calling the db_env_set_pageyield

../api_reference/C/txnstat.html
../api_reference/C/env.html
../api_reference/C/txnstat.html
../api_reference/C/txnstat.html
../api_reference/C/envset_flags.html
../api_reference/C/env.html
../api_reference/C/envset_flags.html
../api_reference/C/env.html
../api_reference/C/env.html
../programmer_reference/env_db_config.html
../api_reference/C/envset_flags.html
../api_reference/C/envset_flags.html
../api_reference/C/env.html

Upgrading Berkeley DB 3.3 applications to
Berkeley DB 4.0

11/8/2010 DB Installation Guide Page 193

function should update their calls: calls to the historic routine with an argument of 1 (0) are
equivalent to calling DB_ENV->set_flags() with the DB_YIELDCPU flag and an argument of 1
(0). In addition, all DB_ENV class handles opened by the application will need to make the
same call, or the DB_YIELDCPU flag will need to be entered into the environment's DB_CONFIG
file.

The db_env_set_panicstate function was removed in the 4.0 release, replaced
with the DB_PANIC_ENVIRONMENT flags to the DB_ENV->set_flags() method. (The
DB_PANIC_ENVIRONMENT flag will cause an environment to panic, affecting all threads of
control using that environment. The DB_ENV->set_flags() handle to ignore the current panic
state of the environment.) This is an interface change: historically the db_env_set_panicstate
function operated on the entire Berkeley DB library, not a single environment. Applications
calling the db_env_set_panicstate function should update their calls, replacing the historic
call with a call to DB_ENV->set_flags() and the appropriate flag, depending on their usage of
the historic interface.

DB_ENV->set_server

The DB_ENV->set_server() method has been replaced with the DB_ENV-
>set_rpc_server() method. The DB_ENV->set_server() method can be easily converted to
the DB_ENV->set_rpc_server() method by changing the name, and specifying a NULL for the
added argument, second in the argument list.

DB_ENV->set_lk_max

The DB_ENV->set_lk_max method has been deprecated in favor of the DB_ENV-
>set_lk_max_locks(), DB_ENV->set_lk_max_lockers(), and DB_ENV->set_lk_max_objects()
methods. The DB_ENV->set_lk_max method continues to be available, but is no longer
documented and is expected to be removed in a future release.

DB_ENV->lock_id_free

A new locker ID related API, the DB_ENV->lock_id_free() method, was added to Berkeley DB
4.0 release. Applications using the DB_ENV->lock_id() method to allocate locker IDs may want
to update their applications to free the locker ID when it is no longer needed.

Java CLASSPATH environment variable

The Berkeley DB Java class files are now packaged as jar files. In the 4.0 release, the
CLASSPATH environment variable must change to include at least the db.jar file. It can
optionally include the dbexamples.jar file if you want to run the examples. For example, on
UNIX:

export CLASSPATH="/usr/local/BerkeleyDB.4.8/lib/db.jar: \
/usr/local/BerkeleyDB.4.8/lib/dbexamples.jar"

For example, on Windows:

set CLASSPATH="D:\db\build_windows\Release\db.jar;

../api_reference/C/envset_flags.html
../api_reference/C/env.html
../programmer_reference/env_db_config.html
../api_reference/C/envset_flags.html
../api_reference/C/envset_flags.html
../api_reference/C/envset_flags.html
../api_reference/C/envset_lk_max_locks.html
../api_reference/C/envset_lk_max_locks.html
../api_reference/C/envset_lk_max_lockers.html
../api_reference/C/envset_lk_max_objects.html
../api_reference/C/lockid_free.html
../api_reference/C/lockid.html

Upgrading Berkeley DB 3.3 applications to
Berkeley DB 4.0

11/8/2010 DB Installation Guide Page 194

D:\db\build_windows\Release\dbexamples.jar"

For more information on Java configuration, please see Java configuration and Building the
Java API (page 19).

C++ ostream objects

In the 4.0 release, the Berkeley DB C++ API has been changed to use the ISO standard C++ API
in preference to the older, less portable interfaces, where available. This means the Berkeley
DB methods that used to take an ostream object as a parameter now expect a std::ostream.
Specifically, the following methods have changed:

DbEnv::set_error_stream
Db::set_error_stream
Db::verify

On many platforms, the old and the new C++ styles are interchangeable; on some platforms
(notably Windows systems), they are incompatible. If your code uses these methods and you
have trouble with the 4.0 release, you should update code that looks like this:

#include <iostream.h>
#include <db_cxx.h>

void foo(Db db) {
 db.set_error_stream(&cerr);
}

to look like this:

#include <iostream>
#include <db_cxx.h>

using std::cerr;

void foo(Db db) {
 db.set_error_stream(&cerr);
}

application-specific recovery

If you have created your own logging and recovery routines, you may need to upgrade them to
the Berkeley DB 4.0 release.

First, you should regenerate your logging, print, read and the other automatically generated
routines, using the dist/gen_rec.awk tool included in the Berkeley DB distribution.

Next, compare the template file code generated by the gen_rec.awk tool against the code
generated by the last release in which you built a template file. Any changes in the templates
should be incorporated into the recovery routines you have written.

Third, if your recovery functions refer to DB_TXN_FORWARD_ROLL (that is, your code checks
for that particular operation code), you should replace it with DB_REDO(op) which compares

../programmer_reference/java.html#java_conf
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_FORWARD_ROLL

Upgrading Berkeley DB 3.3 applications to
Berkeley DB 4.0

11/8/2010 DB Installation Guide Page 195

the operation code to both DB_TXN_FORWARD_ROLL and DB_TXN_APPLY. (DB_TXN_APPLY is a
potential value for the operation code as of the 4.0 release.)

Finally, if you have created your own logging and recovery routines, we recommend you
contact us and ask us to review those routines for you.

Upgrade Requirements

The log file format changed in the Berkeley DB 4.0 release. No database formats changed in
the Berkeley DB 4.0 release.

For further information on upgrading Berkeley DB installations, see Upgrading Berkeley DB
installations (page 66).

4.0.14 Change Log

Major New Features:

1. Group commit. [#42]

2. Single-master replication. [#44]

3. Support for VxWorks AE; Vxworks support certified by WindRiver Systems Inc. [#4401]

General Environment Changes:

1. The db_env_set_pageyield interface has been replaced by a new flag (DB_YIELDCPU) for
the DB_ENV->set_flags interface.

2. The db_env_set_panicstate interface has been replaced by a new flag (DB_PANIC_STATE)
for the DB_ENV->set_flags interface.

3. The db_env_set_region_init interface has been replaced by a new flag (DB_REGION_INIT)
for the DB_ENV->set_flags interface.

4. The db_env_set_tas_spins interface has been replaced by the DB_ENV->set_tas_spins
method.

5. The DB_ENV->set_mutexlocks interface has been replaced by a new flag (DB_NOLOCKING)
for the DB_ENV->set_flags interface.

6. Fix a bug where input values from the DB_CONFIG file could overflow.

7. The C API lock, log, memory pool and transaction interfaces have been converted to
method based interfaces; see the Upgrade documentation for specific details. [#920]

8. Fix a bug in which some DB_ENV configuration information could be lost by a failed
DB_ENV->open command. [#4608]

9. Fix a bug where Berkeley DB could fail if the application attempted to allocate new
database pages while the system was unable to write new log file buffers. [#4928]

../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_FORWARD_ROLL
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_APPLY
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_APPLY

Upgrading Berkeley DB 3.3 applications to
Berkeley DB 4.0

11/8/2010 DB Installation Guide Page 196

General Access Method Changes:

1. Add a new flag (DB_GET_BOTH_RANGE) that adds support for range searches within sorted
duplicate data sets. [#3378]

2. Fix a bug in which the DB->get or DB->pget methods, when used with secondary indices,
could incorrectly leave an internally-created database cursor open. [#4465]

3. The DB->set_alloc method can no longer be called when the database is part of a
database environment. [#4599]

Btree Access Method Changes:

1. Fix a bug where a lock could be leaked when a thread calling DB->stat on a Btree
database was selected to resolve a deadlock. [#4509]

Hash Access Method Changes:

1. Fix a bug where bulk return using the MULTIPLE_KEY flag on a Hash database would only
return entries from a single bucket. [#4313]

Queue Access Method Changes:

1. Delete extent files whenever the leading record is deleted, instead of only when a
DB_CONSUME operation was performed. [#4307]

Recno Access Method Changes:

1. Fix a bug where the delete of a record in a Recno database could leak a lock in non-
transactional applications. [#4351]

2. Fix a bug where the DB_THREAD flag combined with a backing source file could cause an
infinite loop. [#4581]

C++ API Changes:

Java API Changes:

1. Added implementation of DbEnv.lock_vec for Java. [#4094] Added some minimal
protection so that the same Java Dbt cannot be used twice in the same API call, this will
often catch multithreading programming errors with Dbts. [#4094]

2. Fix a bug in which a Db.put call with the Db.DB_APPEND would fail to correctly return the
newly put record's record number. [#4527]

3. Fixed problems occurring in multithreaded java apps that use callbacks. [#4467]

Tcl API Changes:

1. Fix a bug in which large integers could be handled incorrectly by the Tcl interface on 64-
bit machines. [#4371]

Upgrading Berkeley DB 3.3 applications to
Berkeley DB 4.0

11/8/2010 DB Installation Guide Page 197

RPC Client/Server Changes:

1. The DB_ENV->set_server interface has been removed.

XA Resource Manager Changes:

Locking Subsystem Changes:

1. The C++ (Java) API DbLock::put (DbLock.put) method has been changed to be a method
off the DbEnv handle rather than the DbLock handle.

2. Locker IDs may now wrap-around. [#864]

3. Explicitly allocated locker IDs must now be freed. [#864]

4. Add per-environment, per-lock and per-transaction interfaces to support timeout based
lock requests and "deadlock" detection. [#1855]

5. Add support for interrupting a waiting locker. [#1976]

6. Implemented DbEnv.lock_vec for Java. [#4094]

Logging Subsystem Changes:

1. Fix a bug where the size of a log file could not be set to the default value. [#4567]

2. Fix a bug where specifying a non-default log file size could cause other processes to be
unable to join the environment and read its log files. [#4567]

3. Fix a bug where Berkeley DB could keep open file descriptors to log files returned by the
DB_ENV->log_archive method (or the db_archive utility), making it impossible to move or
remove them on Windows systems. [#3969]

4. Replace the log_get interface with a cursor into the log file. [#0043]

Memory Pool Subsystem Changes:

1. Add the DB_ODDFILESIZE flag to the DB_MPOOLFILE->open method supporting files not a
multiple of the underlying page size in length.

2. Convert memp_XXX functional interfaces to a set of methods, either base methods off the
DB_ENV handle or methods off of a DB_MPOOLFILE handle. [#920]

3. Add the DB_ODDFILESIZE flag to the DB_MPOOLFILE->open method supporting files not a
multiple of the underlying page size in length.

4. Fix a bug where threads of control could deadlock opening a database environment with
multiple memory pool caches. [#4696]

5. Fix a bug where the space needed for per-file memory pool statistics was incorrectly
calculated. [#4772]

Upgrading Berkeley DB 3.3 applications to
Berkeley DB 4.0

11/8/2010 DB Installation Guide Page 198

Transaction Subsystem Changes:

1. Transaction IDs may now wrap-around. [#864]

2. Release read locks before performing logging operations at commit. [#4219]

Utility Changes:

1. Fix a bug in which the db_dump utility would incorrectly attach to transaction, locking,
or logging regions when salvaging, and thus could not be used to salvage databases in
environments where these regions were present. [#4305]

2. Fix a bug in which the DB salvager could produce incorrectly formatted output for certain
classes of corrupt database. [#4305]

3. Fix a bug in which the DB salvager could incorrectly salvage files containing multiple
databases. [#4305]

4. Fix a bug where unprintable characters in subdatabase names could cause a dump of a
database that could not then be loaded. [#4688]

5. Increase the size of the cache created by the db_stat and db_verify utilities to avoid
failure on large databases. [#4688] [#4787]

6. Fix a bug in which a database verification performed with the DB_ORDERCHKONLY flag
could fail incorrectly. [#4757]

7. Fix a bug which caused db_stat to display incorrect information about GB size caches.
[#4812]

Database or Log File On-Disk Format Changes:

1. The on-disk log format changed.

Configuration, Documentation, Portability and Build Changes:

1. Fix a bug where Win9X systems region names could collide.

2. Fix a bug where configuring Berkeley DB to build the C++ API without also configuring for
a shared library build would fail to build the C++ library. [#4343]

3. Change Berkeley DB installation to not strip binaries if --enable-debug was specified as a
configuration option. [#4318]

4. Add the -pthread flag to AIX, FreeBSD and OSF/1 library loads. [#4350]

5. Fix a bug where the Berkeley DB 1.85 compatibility API failed to load in the 3.3.11
release. [#4368]

6. Port the Berkeley DB utility programs to the VxWorks environment. [#4378]

7. Made change to configuration so that dynamic libraries link correctly when C++ is used on
AIX. [#4381]

Upgrading Berkeley DB 3.3 applications to
Berkeley DB 4.0

11/8/2010 DB Installation Guide Page 199

8. Fix a variety of problems that prevented the Berkeley DB source tree from building on
systems without ANSI C compiler support (for example, SunOS 4.X). [#4398]

9. Added missing DbMultiple*Iterator Java files to Makefile.in. [#4404]

10. Fix a bug that could prevent the db_dump185 utility from dumping Berkeley DB version
1.86 hash databases. [#4418]

11. Reduce the number of calls setting the errno value, to improve performance on Windows/
NT in MT environments. [#4432]

12. Fix for Darwin (and probably some other) OS's that were getting 'yes' or other garbage in
generated makefiles in place of a shared library name. [#4453]

13. C++: Remove inlining for constructor of tmpString internal class. This fixes warnings on
Solaris profiling builds. [#4473]

14. DB now restarts system calls that are interrupted by signals. [#4480]

15. Fixed warnings for compiling Java native code on Solaris and OSF/1. [#4571]

16. Added better configuration for Java on Tru64 (OSF/1), Solaris,

17. Java files are now built as jar files. Berkeley DB classes are put into db.jar (which is an
installed file on UNIX) and examples are put into dbexamples.jar. The classes directory is
now a subdirectory of the build directory, rather than in java/classes. [#4575]

18. Support Cygwin installation process. [#4611]

19. Correct the Java secondary_key_create method signature. [#4777]

20. Export additional Berkeley DB interfaces on Windows to support application-specific
logging and recovery. [#4827]

21. Always complain when using version 2.96 of the gcc compiler. [#4878]

22. Add compile and load-time flags to configure for threads on UnixWare and OpenUNIX.
[#4552] [#4950]

11/8/2010 DB Installation Guide Page 200

Chapter 19. Upgrading Berkeley DB 3.2
applications to Berkeley DB 3.3

introduction

The following pages describe how to upgrade applications coded against the Berkeley DB
3.2 release interfaces to the Berkeley DB 3.3 release interfaces. This information does not
describe how to upgrade Berkeley DB 1.85 release applications.

DB_ENV->set_server

The DB_ENV->set_server method has been deprecated and replaced with the DB_ENV-
>set_rpc_server() method. The DB_ENV->set_server method will be removed in a future
release, and so applications using it should convert. The DB_ENV->set_server method can
be easily converted to the DB_ENV->set_rpc_server() method by changing the name, and
specifying a NULL for the added argument, second in the argument list.

DB->get_type

The DB->get_type() method method can return an error in the Berkeley DB 3.3 release, and so
requires an interface change. C and C++ applications calling DB->get_type() should be changed
to treat the method's return as an error code, and to pass an additional second argument of
type DBTYPE * to the method. The additional argument is used as a memory location in which
to store the requested information.

DB->get_byteswapped

The DB->get_byteswapped() method method can return an error in the Berkeley DB
3.3 release, and so requires an interface change. C and C++ applications calling DB-
>get_byteswapped() should be changed to treat the method's return as an error code, and to
pass an additional second argument of type int * to the method. The additional argument is
used as a memory location in which to store the requested information.

DB->set_malloc, DB->set_realloc

There are two new methods in the Berkeley DB 3.3 release: DB_ENV->set_alloc(). These
functions allow applications to specify a set of allocation functions for the Berkeley DB library
to use when allocating memory to be owned by the application and when freeing memory that
was originally allocated by the application.

The new methods affect or replace the following historic methods:

DB->set_malloc
The DB->set_malloc method has been replaced in its entirety. Applications using this
method should replace the call with a call to DB->set_alloc().

DB->set_realloc
The DB->set_realloc method has been replaced in its entirety. Applications using this
method should replace the call with a call to DB->set_alloc().

../api_reference/C/dbget_type.html
../api_reference/C/dbget_type.html
../api_reference/C/dbget_byteswapped.html
../api_reference/C/dbget_byteswapped.html
../api_reference/C/dbget_byteswapped.html
../api_reference/C/envset_alloc.html
../api_reference/C/dbset_alloc.html
../api_reference/C/dbset_alloc.html

Upgrading Berkeley DB 3.2 applications to
Berkeley DB 3.3

11/8/2010 DB Installation Guide Page 201

DB->stat() method
has been replaced. Applications using this method should do as follows: if the
argument is NULL, it should simply be removed. If non-NULL, it should be replaced
with a call to DB->set_alloc().

lock_stat
The historic db_malloc argument to the lock_stat function has been replaced.
Applications using this function should do as follows: if the argument is NULL, it
should simply be removed. If non-NULL, it should be replaced with a call to DB_ENV-
>set_alloc().

log_archive
The historic db_malloc argument to the log_archive function has been replaced.
Applications using this function should do as follows: if the argument is NULL, it
should simply be removed. If non-NULL, it should be replaced with a call to DB_ENV-
>set_alloc().

log_stat
The historic db_malloc argument to the log_stat function has been replaced.
Applications using this function should do as follows: if the argument is NULL, it
should simply be removed. If non-NULL, it should be replaced with a call to DB_ENV-
>set_alloc().

memp_stat
The historic db_malloc argument to the memp_stat function has been replaced.
Applications using this function should do as follows: if the argument is NULL, it
should simply be removed. If non-NULL, it should be replaced with a call to DB_ENV-
>set_alloc().

txn_stat
The historic db_malloc argument to the txn_stat function has been replaced.
Applications using this function should do as follows: if the argument is NULL, it
should simply be removed. If non-NULL, it should be replaced with a call to DB_ENV-
>set_alloc().

One potential incompatibility for historic applications is that the allocation functions for
a database environment must now be set before the environment is opened. Historically,
Berkeley DB applications could open the environment first, and subsequently call the DB-
>set_malloc and DB->set_realloc methods; that use is no longer supported.

DB_LOCK_CONFLICT

The DB_LOCK_CONFLICT flag has been removed from the lock_detect function. Applications
specifying the DB_LOCK_CONFLICT flag should simply replace it with a flags argument of 0.

memp_fget, EIO

Previous releases of Berkeley DB returned the system error EIO when the memp_fget function
was called to retrieve a page, the page did not exist, and the DB_MPOOL_CREATE flag was not
set. In the 3.3 release, the error DB_PAGE_NOTFOUND is returned instead, to allow applications
to distinguish between recoverable and non-recoverable errors. Applications calling the

../api_reference/C/dbstat.html
../api_reference/C/dbset_alloc.html
../api_reference/C/envset_alloc.html
../api_reference/C/envset_alloc.html
../api_reference/C/envset_alloc.html
../api_reference/C/envset_alloc.html
../api_reference/C/envset_alloc.html
../api_reference/C/envset_alloc.html
../api_reference/C/envset_alloc.html
../api_reference/C/envset_alloc.html
../api_reference/C/envset_alloc.html
../api_reference/C/envset_alloc.html

Upgrading Berkeley DB 3.2 applications to
Berkeley DB 3.3

11/8/2010 DB Installation Guide Page 202

memp_fget function and checking for a return of EIO should check for DB_PAGE_NOTFOUND
instead.

Previous releases of Berkeley DB treated filesystem I/O failure (the most common of which
the filesystem running out of space), as a fatal error, returning DB_RUNRECOVERY. When a
filesystem failure happens in the 3.3 release Berkeley DB returns the underlying system error
(usually EIO), but can continue to run. Applications should abort any enclosing transaction
when a recoverable system error occurs in order to recover from the error.

txn_prepare

An additional argument has been added to the txn_prepare function. If your application calls
txn_prepare (that is, is performing two-phase commit using Berkeley DB as a local resource
manager), see the section titled Distributed Transactions in versions of this book that existed
prior to release 4.8.

--enable-dynamic, --enable-shared

In previous releases, Berkeley DB required separate configuration and builds to create both
static and shared libraries. This has changed in the 3.3 release, and Berkeley DB now builds
and installs both shared and static versions of the Berkeley DB libraries by default. This
change was based on Berkeley DB upgrading to release 1.4 of the GNU Project's Libtool
distribution. For this reason, Berkeley DB no longer supports the previous --enable-dynamic
and --enable-shared configuration options. Instead, as Berkeley DB now builds both static and
shared libraries by default, the useful options are Libtool's --disable-shared and --disable-
static options.

--disable-bigfile

In previous releases, Berkeley DB UNIX used the --disable-bigfile configuration option for
systems that could not, for whatever reason, include large file support in a particular
Berkeley DB configuration. However, large file support has been integrated into the autoconf
configuration tool as of version 2.50. For that reason, Berkeley DB configuration no longer
supports --disable-bigfile, the autoconf standard --disable-largefile should be used instead.

Upgrade Requirements

No database formats or log file formats changed in the Berkeley DB 3.3 release.

For further information on upgrading Berkeley DB installations, see Upgrading Berkeley DB
installations (page 66).

../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY

11/8/2010 DB Installation Guide Page 203

Chapter 20. Upgrading Berkeley DB 3.1
applications to Berkeley DB 3.2

introduction

The following pages describe how to upgrade applications coded against the Berkeley DB
3.1 release interfaces to the Berkeley DB 3.2 release interfaces. This information does not
describe how to upgrade Berkeley DB 1.85 release applications.

DB_ENV->set_flags

A new method has been added to the Berkeley DB environment handle, DB_ENV->set_flags().
This method currently takes three flags: DB_CDB_ALLDB, DB_NOMMAP, and DB_TXN_NOSYNC.
The first of these flags, DB_CDB_ALLDB, provides new functionality, allowing Berkeley DB
Concurrent Data Store applications to do locking across multiple databases.

The other two flags, DB_NOMMAP and DB_TXN_NOSYNC, were specified to the DB_ENV->open()
method in previous releases. In the 3.2 release, they have been moved to the DB_ENV-
>set_flags() method because this allows the database environment's value to be toggled
during the life of the application as well as because it is a more appropriate place for them.
Applications specifying either the DB_NOMMAP or DB_TXN_NOSYNC flags to the DB_ENV-
>open() method should replace those flags with calls to the DB_ENV->set_flags() method.

DB callback functions, app_private field

In the Berkeley DB 3.2 release, four application callback functions (the callback functions set
by DB->set_bt_compare(), DB->set_bt_prefix(), DB->set_dup_compare() and DB->set_h_hash())
were modified to take a reference to a DB object as their first argument. This change allows
the Berkeley DB Java API to reasonably support these interfaces. There is currently no need
for the callback functions to do anything with this additional argument.

C and C++ applications that specify their own Btree key comparison, Btree prefix comparison,
duplicate data item comparison or Hash functions should modify these functions to take a
reference to a DB structure as their first argument. No further change is required.

The app_private field of the DBT structure (accessible only from the Berkeley DB C API) has
been removed in the 3.2 release. It was replaced with app_private fields in the DB_ENV
handles. Applications using this field will have to convert to using one of the replacement
fields.

Logically renumbering records

In the Berkeley DB 3.2 release, cursor adjustment semantics changed for Recno databases
with mutable record numbers. Before the 3.2 release, cursors were adjusted to point to the
previous or next record at the time the record to which the cursor referred was deleted. This
could lead to unexpected behaviors. For example, two cursors referring to sequential records
that were both deleted would lose their relationship to each other and would refer to the
same position in the database instead of their original sequential relationship. There were

../api_reference/C/envset_flags.html
../api_reference/C/envset_flags.html#set_flags_DB_CDB_ALLDB
../api_reference/C/dbopen.html#open_DB_NOMMAP
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/envset_flags.html#set_flags_DB_CDB_ALLDB
../api_reference/C/dbopen.html#open_DB_NOMMAP
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/envopen.html
../api_reference/C/envset_flags.html
../api_reference/C/envset_flags.html
../api_reference/C/dbopen.html#open_DB_NOMMAP
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/envopen.html
../api_reference/C/envopen.html
../api_reference/C/envset_flags.html
../api_reference/C/dbset_bt_compare.html
../api_reference/C/dbset_bt_prefix.html
../api_reference/C/dbset_dup_compare.html
../api_reference/C/dbset_h_hash.html
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/dbt.html
../api_reference/C/env.html

Upgrading Berkeley DB 3.1 applications to
Berkeley DB 3.2

11/8/2010 DB Installation Guide Page 204

also command sequences that would have unexpected results. For example, DB_AFTER and
DB_BEFORE cursor put operations, using a cursor previously used to delete an item, would
perform the put relative to the cursor's adjusted position and not its original position.

In the Berkeley DB 3.2 release, cursors maintain their position in the tree regardless of
deletion operations using the cursor. Applications that perform database operations, using
cursors previously used to delete entries in Recno databases with mutable record numbers,
should be evaluated to ensure that the new semantics do not cause application failure.

DB_INCOMPLETE

There are a number of functions that flush pages from the Berkeley DB shared memory
buffer pool to disk. Most of those functions can potentially fail because a page that needs
to be flushed is not currently available. However, this is not a hard failure and is rarely
cause for concern. In the Berkeley DB 3.2 release, the C++ API (if that API is configured to
throw exceptions) and the Java API have been changed so that this failure does not throw an
exception, but rather returns a non-zero error code of DB_INCOMPLETE.

The following C++ methods will return DB_INCOMPLETE rather than throw an
exception: Db::close, Db::sync, DbEnv::memp_sync, DbEnv::txn_checkpoint, and
DbMpoolFile::memp_fsync.

The following Java methods are now declared "public int" rather than "public void", and will
return Db.DB_INCOMPLETE rather than throw an exception: Db.close(), Db.sync(), and
DbEnv.checkpoint().

It is likely that the only change required by any application will be those currently checking
for a DB_INCOMPLETE return that has been encapsulated in an exception.

DB_ENV->set_tx_recover

The info parameter of the function passed to DB_ENV->set_tx_recover is no longer needed. If
your application calls DB_ENV->set_tx_recover, find the callback function referred to by that
call and remove the info parameter.

In addition, the called function no longer needs to handle Berkeley DB log records, Berkeley
DB will handle them internally as well as call the application-specified function. Any handling
of Berkeley DB log records in the application's callback function may be removed.

In addition, the callback function will no longer be called with the DB_TXN_FORWARD_ROLL
flag specified unless the transaction enclosing the operation successfully committed.

DB_ENV->set_mutexlocks

Previous Berkeley DB releases included the db_env_set_mutexlocks function, intended
for debugging, that allows applications to always obtain requested mutual exclusion
mutexes without regard for their availability. This function has been replaced with
dbenv_set_mutexlocks, which provides the same functionality on a per-database environment
basis. Applications using the old function should be updated to use the new one.

../api_reference/CXX/dbclose.html
../api_reference/CXX/dbsync.html
../api_reference/CXX/mempsync.html
../api_reference/CXX/txncheckpoint.html
../api_reference/CXX/mempfsync.html
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_FORWARD_ROLL

Upgrading Berkeley DB 3.1 applications to
Berkeley DB 3.2

11/8/2010 DB Installation Guide Page 205

Java and C++ object reuse

In previous releases of Berkeley DB, Java DbEnv and Db objects, and C++ DbEnv and Db objects
could be reused after they were closed, by calling open on them again. This is no longer
permitted, and these objects no longer allow any operations after a close. Applications
reusing these objects should be modified to create new objects instead.

Java java.io.FileNotFoundException

The Java DbEnv.remove, Db.remove and Db.rename methods now throw
java.io.FileNotFoundException in the case where the named file does not exist. Applications
should be modified to catch this exception where appropriate.

db_dump

In previous releases of Berkeley DB, the db_dump utility dumped Recno access method
database keys as numeric strings. For consistency, the db_dump utility has been changed in
the 3.2 release to dump record numbers as hex pairs when the data items are being dumped
as hex pairs. (See the -k and -p options to the db_dump utility for more information.) Any
applications or scripts post-processing the output of the db_dump utility for Recno databases
under these conditions may require modification.

Upgrade Requirements

Log file formats and the Queue Access Method database formats changed in the Berkeley
DB 3.2 release. (The on-disk Queue format changed from version 2 to version 3.) Until the
underlying databases are upgraded, the DB_OLD_VERSION error.

For further information on upgrading Berkeley DB installations, see Upgrading Berkeley DB
installations (page 66).

../api_reference/CXX/env.html
../api_reference/CXX/db.html
../api_reference/C/db_dump.html
../api_reference/C/db_dump.html
../api_reference/C/db_dump.html
../api_reference/C/db_dump.html

11/8/2010 DB Installation Guide Page 206

Chapter 21. Upgrading Berkeley DB 3.0
applications to Berkeley DB 3.1

introduction

The following pages describe how to upgrade applications coded against the Berkeley DB
3.0 release interfaces to the Berkeley DB 3.1 release interfaces. This information does not
describe how to upgrade Berkeley DB 1.85 release applications.

DB_ENV->open, DB_ENV->remove

In the Berkeley DB 3.1 release, the config argument to the DB_ENV->open() and DB_ENV-
>remove() methods has been removed, replaced by additional methods on the DB_ENV handle.
If your application calls DB_ENV->open() or DB_ENV->remove() with a NULL config argument,
find those functions and remove the config argument from the call. If your application has
non-NULL config argument, the strings values in that argument are replaced with calls to
DB_ENV methods as follows:

Previous config string Berkeley DB 3.1 version method

DB_DATA_DIR DB_ENV->set_data_dir()

DB_LOG_DIR DB_ENV->set_lg_dir()

DB_TMP_DIR DB_ENV->set_tmp_dir()

DB_ENV->set_tx_recover

The redo parameter of the function passed to DB_ENV->set_tx_recover used to be an integer
set to any one of a number of #defined values. In the 3.1 release of Berkeley DB, the redo
parameter has been replaced by the op parameter which is an enumerated type of type
db_recops.

If your application calls DB_ENV->set_tx_recover, then find the function referred to by the
call. Replace the flag values in that function as follows:

Previous flag Berkeley DB 3.1 version flag

TXN_BACKWARD_ROLL DB_TXN_BACKWARD_ROLL

TXN_FORWARD_ROLL DB_TXN_FORWARD_ROLL

TXN_OPENFILES DB_TXN_OPENFILES

TXN_REDO DB_TXN_FORWARD_ROLL

TXN_UNDO DB_TXN_ABORT

DB_ENV->set_feedback, DB->set_feedback

Starting with the 3.1 release of Berkeley DB, the DB_ENV->set_feedback() and DB-
>set_feedback() methods may return an error value, that is, they are no longer declared as

../api_reference/C/envopen.html
../api_reference/C/envremove.html
../api_reference/C/envremove.html
../api_reference/C/env.html
../api_reference/C/envopen.html
../api_reference/C/envremove.html
../api_reference/C/env.html
../api_reference/C/envset_data_dir.html
../api_reference/C/envset_lg_dir.html
../api_reference/C/envset_tmp_dir.html
../api_reference/C/envset_feedback.html
../api_reference/C/dbset_feedback.html
../api_reference/C/dbset_feedback.html

Upgrading Berkeley DB 3.0 applications to
Berkeley DB 3.1

11/8/2010 DB Installation Guide Page 207

returning no value, instead they return an int or throw an exception as appropriate when an
error occurs.

If your application calls these functions, you may want to check for a possible error on return.

DB_ENV->set_paniccall, DB->set_paniccall

Starting with the 3.1 release of Berkeley DB, the DB_ENV->set_paniccall and DB->set_paniccall
methods may return an error value, that is, they are no longer declared as returning no value,
instead they return an int or throw an exception as appropriate when an error occurs.

If your application calls these functions, you may want to check for a possible error on return.

DB->put

For the Queue and Recno access methods, when the DB_APPEND flag is specified to the DB-
>put() method, the allocated record number is returned to the application in the key DBT
argument. In previous releases of Berkeley DB, this DBT structure did not follow the usual
DBT conventions. For example, it was not possible to cause Berkeley DB to allocate space for
the returned record number. Rather, it was always assumed that the data field of the key
structure referred to memory that could be used as storage for a db_recno_t type.

As of the Berkeley DB 3.1.0 release, the key structure behaves as described in the DBT C++/
Java class or C structure documentation.

Applications which are using the DB_APPEND flag for Queue and Recno access method
databases will require a change to upgrade to the Berkeley DB 3.1 releases. The simplest
change is likely to be to add the DB_DBT_USERMEM flag to the key structure. For example,
code that appears as follows:

DBT key;
db_recno_t recno;

memset(&key, 0, sizeof(DBT));
key.data = &recno;
key.size = sizeof(recno);
DB->put(DB, NULL, &key, &data, DB_APPEND);
printf("new record number is %lu\n", (u_long)recno);

would be changed to:

DBT key;
db_recno_t recno;

memset(&key, 0, sizeof(DBT));
key.data = &recno;
key.ulen = sizeof(recno);
key.flags = DB_DBT_USERMEM;
DB->put(DB, NULL, &key, &data, DB_APPEND);
printf("new record number is %lu\n", (u_long)recno);

Note that the ulen field is now set as well as the flag value. An alternative change would be:

../api_reference/C/dbput.html#dbput_DB_APPEND
../api_reference/C/dbput.html
../api_reference/C/dbput.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html
../api_reference/C/dbput.html#dbput_DB_APPEND
../api_reference/C/dbt.html#dbt_DB_DBT_USERMEM

Upgrading Berkeley DB 3.0 applications to
Berkeley DB 3.1

11/8/2010 DB Installation Guide Page 208

DBT key;
db_recno_t recno;

memset(&key, 0, sizeof(DBT));
DB->put(DB, NULL, &key, &data, DB_APPEND);
recno = *(db_recno_t *)key->data;
printf("new record number is %lu\n", (u_long)recno);

identical duplicate data items

In previous releases of Berkeley DB, it was not an error to store identical duplicate data
items, or, for those that just like the way it sounds, duplicate duplicates. However, there were
implementation bugs where storing duplicate duplicates could cause database corruption.

In this release, applications may store identical duplicate data items as long as the data items
are unsorted. It is an error to attempt to store identical duplicate data items when duplicates
are being stored in a sorted order. This restriction is expected to be lifted in a future release.
See Duplicate data items for more information.

DB->stat

For Btree database statistics, the DB->stat() method field bt_nrecs has been removed,
replaced by two fields: bt_nkeys and bt_ndata. The bt_nkeys field returns a count of the
unique keys in the database. The bt_ndata field returns a count of the key/data pairs in the
database. Neither exactly matches the previous value of the bt_nrecs field, which returned
a count of keys in the database, but, in the case of Btree databases, could overcount as it
sometimes counted duplicate data items as unique keys. The application should be searched
for any uses of the bt_nrecs field and the field should be changed to be either bt_nkeys or
bt_ndata, whichever is more appropriate.

For Hash database statistics, the DB->stat() method field hash_nrecs has been removed,
replaced by two fields: hash_nkeys and hash_ndata. The hash_nkeys field returns a count
of the unique keys in the database. The hash_ndata field returns a count of the key/data
pairs in the database. The new hash_nkeys field exactly matches the previous value of the
hash_nrecs field. The application should be searched for any uses of the hash_nrecs field,
and the field should be changed to be hash_nkeys.

For Queue database statistics, the DB->stat() method field qs_nrecs has been removed,
replaced by two fields: qs_nkeys and qs_ndata. The qs_nkeys field returns a count of the
unique keys in the database. The qs_ndata field returns a count of the key/data pairs in the
database. The new qs_nkeys field exactly matches the previous value of the qs_nrecs field.
The application should be searched for any uses of the qs_nrecs field, and the field should be
changed to be qs_nkeys.

DB_SYSTEM_MEM

Using the DB_SYSTEM_MEM option on UNIX systems now requires the specification of a base
system memory segment ID, using the DB_ENV->set_shm_key() method. Any valid segment ID
may be specified, for example, one returned by the UNIX ftok(3) function.

../programmer_reference/general_am_conf.html#am_conf_dup
../api_reference/C/dbstat.html
../api_reference/C/dbstat.html
../api_reference/C/dbstat.html
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envset_shm_key.html

Upgrading Berkeley DB 3.0 applications to
Berkeley DB 3.1

11/8/2010 DB Installation Guide Page 209

log_register

The arguments to the log_register and log_unregister interfaces have changed. Instead of
returning (and passing in) a logging file ID, a reference to the DB structure being registered
(or unregistered) is passed. The application should be searched for any occurrences of
log_register and log_unregister. For each one, change the arguments to be a reference to the
DB structure being registered or unregistered.

memp_register

An additional argument has been added to the pgin and pgout functions provided to
the memp_register function. The application should be searched for any occurrences of
memp_register. For each one, if pgin or pgout functions are specified, the pgin and pgout
functions should be modified to take an initial argument of a DB_ENV *. This argument is
intended to support better error reporting for applications, and may be entirely ignored by
the pgin and pgout functions themselves.

txn_checkpoint

An additional argument has been added to the txn_checkpoint function.

The application should be searched for any occurrences of txn_checkpoint. For each one, an
argument of 0 should be appended to the current arguments.

environment configuration

A set of DB_ENV configuration methods which were not environment specific, but which
instead affected the entire application space, have been removed from the DB_ENV object
and replaced by static functions. The following table lists the DB_ENV methods previously
available to applications and the static functions that should now be used instead.

DB_ENV method Berkeley DB 3.1 function

DB_ENV->set_func_close db_env_set_func_close

DB_ENV->set_func_dirfree db_env_set_func_dirfree

DB_ENV->set_func_dirlist db_env_set_func_dirlist

DB_ENV->set_func_exists db_env_set_func_exists

DB_ENV->set_func_free db_env_set_func_free

DB_ENV->set_func_fsync db_env_set_func_fsync

DB_ENV->set_func_ioinfo db_env_set_func_ioinfo

DB_ENV->set_func_malloc db_env_set_func_malloc

DB_ENV->set_func_map dbenv_set_func_map

DB_ENV->set_func_open db_env_set_func_open

DB_ENV->set_func_read db_env_set_func_read

DB_ENV->set_func_realloc db_env_set_func_realloc

../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/env.html
../api_reference/C/env.html
../api_reference/C/env.html
../api_reference/C/env.html
../api_reference/C/db_env_set_func_close.html
../api_reference/C/db_env_set_func_dirfree.html
../api_reference/C/db_env_set_func_dirlist.html
../api_reference/C/db_env_set_func_exists.html
../api_reference/C/db_env_set_func_free.html
../api_reference/C/db_env_set_func_fsync.html
../api_reference/C/db_env_set_func_ioinfo.html
../api_reference/C/db_env_set_func_malloc.html
../api_reference/C/db_env_set_func_open.html
../api_reference/C/db_env_set_func_read.html
../api_reference/C/db_env_set_func_realloc.html

Upgrading Berkeley DB 3.0 applications to
Berkeley DB 3.1

11/8/2010 DB Installation Guide Page 210

DB_ENV method Berkeley DB 3.1 function

DB_ENV->set_func_rename db_env_set_func_rename

DB_ENV->set_func_seek db_env_set_func_seek

DB_ENV->set_func_sleep db_env_set_func_sleep

DB_ENV->set_func_unlink db_env_set_func_unlink

DB_ENV->set_func_unmap dbenv_set_func_unmap

DB_ENV->set_func_write db_env_set_func_write

DB_ENV->set_func_yield db_env_set_func_yield

DB_ENV->set_pageyield dbenv_set_pageyield

DB_ENV->set_region_init dbenv_set_region_init

DB_ENV->set_mutexlocks dbenv_set_mutexlocks

DB_ENV->set_tas_spins dbenv_set_tas_spins

Tcl API

The Berkeley DB Tcl API has been modified so that the -mpool option to the berkdb env
command is now the default behavior. The Tcl API has also been modified so that the -txn
option to the berkdb env command implies the -lock and -log options. Tcl scripts should be
updated to remove the -mpool, -lock and -log options.

The Berkeley DB Tcl API has been modified to follow the Tcl standard rules for integer
conversion, for example, if the first two characters of a record number are "0x", the record
number is expected to be in hexadecimal form.

DB_TMP_DIR

This change only affects Win/32 applications that create in-memory databases.

On Win/32 platforms an additional test has been added when searching for the appropriate
directory in which to create the temporary files that are used to back in-memory databases.
Berkeley DB now uses any return value from the GetTempPath interface as the temporary file
directory name before resorting to the static list of compiled-in pathnames.

If the system registry does not return the same directory as Berkeley DB has been using
previously, this change could cause temporary backing files to move to a new directory when
applications are upgraded to the 3.1 release. In extreme cases, this could create (or fix)
security problems if the file protection modes for the system registry directory are different
from those on the directory previously used by Berkeley DB.

log file pre-allocation

This change only affects Win/32 applications.

On Win/32 platforms Berkeley DB no longer pre-allocates log files. The problem was a
noticeable performance spike as each log file was created. To turn this feature back on,

../api_reference/C/env.html
../api_reference/C/db_env_set_func_rename.html
../api_reference/C/db_env_set_func_seek.html
../api_reference/C/db_env_set_func_unlink.html
../api_reference/C/db_env_set_func_write.html
../api_reference/C/db_env_set_func_yield.html

Upgrading Berkeley DB 3.0 applications to
Berkeley DB 3.1

11/8/2010 DB Installation Guide Page 211

search for the flag DB_OSO_LOG in the source file log/log_put.c and make the change
described there, or contact us for assistance.

Upgrade Requirements

Log file formats and the Btree, Queue, Recno and Hash Access Method database formats
changed in the Berkeley DB 3.1 release. (The on-disk Btree/Recno format changed from
version 7 to version 8. The on-disk Hash format changed from version 6 to version 7. The on-
disk Queue format changed from version 1 to version 2.) Until the underlying databases are
upgraded, the DB->open() method will return a DB_OLD_VERSION error.

An additional flag, DB_DUPSORT, has been added to the DB->upgrade() method for this
upgrade. Please review the DB->upgrade() documentation for further information.

For further information on upgrading Berkeley DB installations, see Upgrading Berkeley DB
installations (page 66).

../api_reference/C/dbopen.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_DUPSORT
../api_reference/C/dbupgrade.html
../api_reference/C/dbupgrade.html

11/8/2010 DB Installation Guide Page 212

Chapter 22. Upgrading Berkeley DB 2.X
applications to Berkeley DB 3.0

introduction

The following pages describe how to upgrade applications coded against the Berkeley DB
2.X release interfaces to the Berkeley DB 3.0 release interfaces. This information does not
describe how to upgrade Berkeley DB 1.85 release applications.

environment open/close/unlink

The hardest part of upgrading your application from a 2.X code base to the 3.0 release is
translating the Berkeley DB environment open, close and remove calls.

There were two logical changes in this part of the Berkeley DB interface. First, in Berkeley
DB 3.0, there are no longer separate structures that represent each subsystem (for example,
DB_LOCKTAB or DB_TXNMGR) and an overall DB_ENV environment structure. Instead there is
only the DB_ENV references should be passed around by your application instead of passing
around DB_LOCKTAB or DB_TXNMGR references. This is likely to be a simple change for most
applications as few applications use the lock_XXX, log_XXX, memp_XXX or txn_XXX interfaces
to create Berkeley DB environments.

The second change is that there are no longer separate open, close, and unlink interfaces to
the Berkeley DB subsystems. For example, in previous releases, it was possible to open a lock
subsystem either using db_appinit or using the lock_open call. In the 3.0 release the XXX_open
interfaces to the subsystems have been removed, and subsystems must now be opened using
the 3.0 replacement for the db_appinit call.

To upgrade your application, first find each place your application opens, closes and/or
removes a Berkeley DB environment. This will be code of the form:

db_appinit, db_appexit
lock_open, lock_close, lock_unlink
log_open, log_close, log_unlink
memp_open, memp_close, memp_unlink
txn_open, txn_close, txn_unlink

Each of these groups of calls should be replaced with calls to db_env_create(), DB_ENV-
>open(), DB_ENV->close(), and DB_ENV->remove().

The db_env_create() call and the call to the DB_ENV->open() method replace the db_appinit,
lock_open, log_open, memp_open and txn_open calls. The DB_ENV->close() method replaces
the db_appexit, lock_close, log_close, memp_close and txn_close calls. The DB_ENV-
>remove() call replaces the lock_unlink, log_unlink, memp_unlink and txn_unlink calls.

Here's an example creating a Berkeley DB environment using the 2.X interface:

/*
 * db_init --
 * Initialize the environment.

../api_reference/C/env.html
../api_reference/C/env.html
../api_reference/C/envcreate.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html
../api_reference/C/envclose.html
../api_reference/C/envremove.html
../api_reference/C/envcreate.html
../api_reference/C/envopen.html
../api_reference/C/envclose.html
../api_reference/C/envremove.html
../api_reference/C/envremove.html

Upgrading Berkeley DB 2.X applications to
Berkeley DB 3.0

11/8/2010 DB Installation Guide Page 213

 */
DB_ENV *
db_init(home)
 char *home;
{
 DB_ENV *dbenv;

 if ((dbenv = (DB_ENV *)calloc(sizeof(DB_ENV), 1)) == NULL)
 return (errno);

 if ((errno = db_appinit(home, NULL, dbenv,
 DB_INIT_LOCK | DB_INIT_LOG | DB_INIT_MPOOL | DB_INIT_TXN |
 DB_USE_ENVIRON)) == 0)
 return (dbenv);

 free(dbenv);
 return (NULL);
}

In the Berkeley DB 3.0 release, this code would be written as:

/*
 * db_init --
 * Initialize the environment.
 */
int
db_init(home, dbenvp)
 char *home;
 DB_ENV **dbenvp;
{
 int ret;
 DB_ENV *dbenv;

 if ((ret = db_env_create(&dbenv, 0)) != 0)
 return (ret);

 if ((ret = dbenv->open(dbenv, home, NULL,
 DB_INIT_LOCK | DB_INIT_LOG | DB_INIT_MPOOL | DB_INIT_TXN |
 DB_USE_ENVIRON, 0)) == 0) {
 *dbenvp = dbenv;
 return (0);
 }

 (void)dbenv->close(dbenv, 0);
 return (ret);
}

As you can see, the arguments to db_appinit and to DB_ENV->open() are largely the same.
There is some minor re-organization: the mapping is that arguments #1, 2, 3, and 4 to
db_appinit become arguments #2, 3, 1 and 4 to DB_ENV->open(). There is one additional

../api_reference/C/envopen.html
../api_reference/C/envopen.html

Upgrading Berkeley DB 2.X applications to
Berkeley DB 3.0

11/8/2010 DB Installation Guide Page 214

argument to DB_ENV->open(), argument #5. For backward compatibility with the 2.X Berkeley
DB releases, simply set that argument to 0.

It is only slightly more complex to translate calls to XXX_open to the DB_ENV->open() method.
Here's an example of creating a lock region using the 2.X interface:

lock_open(dir, DB_CREATE, 0664, dbenv, ®ionp);

In the Berkeley DB 3.0 release, this code would be written as:

if ((ret = db_env_create(&dbenv, 0)) != 0)
 return (ret);

if ((ret = dbenv->open(dbenv,
 dir, NULL, DB_CREATE | DB_INIT_LOCK, 0664)) == 0) {
 *dbenvp = dbenv;
 return (0);
}

Note that in this example, you no longer need the DB_LOCKTAB structure reference that was
required in Berkeley DB 2.X releases.

The final issue with upgrading the db_appinit call is the DB_MPOOL_PRIVATE option previously
provided for the db_appinit call. If your application is using this flag, it should almost
certainly use the new DB_PRIVATE flag to the DB_ENV->open() method. Regardless, you should
carefully consider this change before converting to use the DB_PRIVATE flag.

Translating db_appexit or XXX_close calls to DB_ENV->close() is equally simple. Instead of
taking a reference to a per-subsystem structure such as DB_LOCKTAB or DB_TXNMGR, all calls
take a reference to a DB_ENV structure. The calling sequence is otherwise unchanged. Note
that as the application no longer allocates the memory for the DB_ENV structure, application
code to discard it after the call to db_appexit() is no longer needed.

Translating XXX_unlink calls to DB_ENV->remove() is slightly more complex. As with DB_ENV-
>close(), the call takes a reference to a DB_ENV structure instead of a per-subsystem
structure. The calling sequence is slightly different, however. Here is an example of removing
a lock region using the 2.X interface:

DB_ENV *dbenv;

ret = lock_unlink(dir, 1, dbenv);

In the Berkeley DB 3.0 release, this code fragment would be written as:

DB_ENV *dbenv;

ret = dbenv->remove(dbenv, dir, NULL, DB_FORCE);

The additional argument to the DB_ENV->remove() function is a configuration argument
similar to that previously taken by db_appinit and now taken by the DB_ENV->open() method.
For backward compatibility this new argument should simply be set to NULL. The force
argument to XXX_unlink is now a flag value that is set by bitwise inclusively OR'ing it the
DB_ENV->remove() flag argument.

../api_reference/C/envopen.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envclose.html
../api_reference/C/env.html
../api_reference/C/envremove.html
../api_reference/C/envclose.html
../api_reference/C/envclose.html
../api_reference/C/env.html
../api_reference/C/envremove.html
../api_reference/C/envopen.html
../api_reference/C/envremove.html

Upgrading Berkeley DB 2.X applications to
Berkeley DB 3.0

11/8/2010 DB Installation Guide Page 215

function arguments

In Berkeley DB 3.0, there are no longer separate structures that represent each subsystem (for
example, DB_LOCKTAB or DB_TXNMGR), and an overall DB_ENV environment structure. Instead
there is only the DB_ENV references should be passed around by your application instead of
passing around DB_LOCKTAB or DB_TXNMGR references.

Each of the following functions:

lock_detect
lock_get
lock_id
lock_put
lock_stat
lock_vec

should have its first argument, a reference to the DB_LOCKTAB structure, replaced with a
reference to the enclosing DB_ENV structure. For example, the following line of code from a
Berkeley DB 2.X application:

DB_LOCKTAB *lt;
DB_LOCK lock;

ret = lock_put(lt, lock);

should now be written as follows:

DB_ENV *dbenv;
DB_LOCK *lock;

ret = lock_put(dbenv, lock);

Similarly, all of the functions:

log_archive
log_compare
log_file
log_flush
log_get
log_put
log_register
log_stat
log_unregister

should have their DB_LOG argument replaced with a reference to a DB_ENV structure, and the
functions:

memp_fopen
memp_register
memp_stat
memp_sync
memp_trickle

../api_reference/C/env.html
../api_reference/C/env.html
../api_reference/C/env.html
../api_reference/C/env.html

Upgrading Berkeley DB 2.X applications to
Berkeley DB 3.0

11/8/2010 DB Installation Guide Page 216

should have their DB_MPOOL argument replaced with a reference to a DB_ENV structure.

You should remove all references to DB_LOCKTAB, DB_LOG, DB_MPOOL, and DB_TXNMGR
structures from your application, they are no longer useful in any way. In fact, a simple way
to identify all of the places that need to be upgraded is to remove all such structures and
variables they declare, and then compile. You will see a warning message from your compiler
in each case that needs to be upgraded.

DB_ENV structure

The DB_ENV structure is now opaque for applications in the Berkeley DB 3.0 release. Accesses
to any fields within that structure by the application should be replaced with method calls.
The following example illustrates this using the historic errpfx structure field. In the Berkeley
DB 2.X releases, applications set error prefixes using code similar to the following:

DB_ENV *dbenv;

dbenv->errpfx = "my prefix";

in the Berkeley DB 3.X releases, this should be done using the DB_ENV->set_errpfx() method,
as follows:

DB_ENV *dbenv;

dbenv->set_errpfx(dbenv, "my prefix");

The following table lists the DB_ENV fields previously used by applications and the methods
that should now be used to set them.

DB_ENV field Berkeley DB 3.X method

db_errcall DB_ENV->set_errcall()

db_errfile DB_ENV->set_errfile()

db_errpfx DB_ENV->set_errpfx()

db_lorder This field was removed from the DB_ENV
structure in the Berkeley DB 3.0 release
as no application should have ever used it.
Any code using it should be evaluated for
potential bugs.

db_paniccall DB_ENV->set_paniccall

db_verbose DB_ENV->set_verbose()

Note: the db_verbose field was a simple
boolean toggle, the DB_ENV->set_verbose()
method takes arguments that specify exactly
which verbose messages are desired.

lg_max DB_ENV->set_lg_max()

lk_conflicts DB_ENV->set_lk_conflicts()

../api_reference/C/env.html
../api_reference/C/env.html
../api_reference/C/envset_errpfx.html
../api_reference/C/env.html
../api_reference/C/env.html
../api_reference/C/envset_errcall.html
../api_reference/C/envset_errfile.html
../api_reference/C/envset_errpfx.html
../api_reference/C/env.html
../api_reference/C/envset_verbose.html
../api_reference/C/envset_verbose.html
../api_reference/C/envset_lg_max.html
../api_reference/C/envset_lk_conflicts.html

Upgrading Berkeley DB 2.X applications to
Berkeley DB 3.0

11/8/2010 DB Installation Guide Page 217

DB_ENV field Berkeley DB 3.X method

lk_detect DB_ENV->set_lk_detect()

lk_max dbenv->set_lk_max

lk_modes DB_ENV->set_lk_conflicts()

mp_mmapsize DB_ENV->set_mp_mmapsize()

mp_size DB_ENV->set_cachesize()

Note: the DB_ENV->set_cachesize() function
takes additional arguments. Setting both the
second argument (the number of GB in the
pool) and the last argument (the number of
memory pools to create) to 0 will result in
behavior that is backward-compatible with
previous Berkeley DB releases.

tx_info This field was used by applications as an
argument to the transaction subsystem
functions. As those functions take references
to a DB_ENV structure as arguments in the
Berkeley DB 3.0 release, it should no longer
be used by any application.

tx_max DB_ENV->set_tx_max()

tx_recover dbenv->set_tx_recover

database open/close

Database opens were changed in the Berkeley DB 3.0 release in a similar way to environment
opens.

To upgrade your application, first find each place your application opens a database, that is,
calls the db_open function. Each of these calls should be replaced with calls to db_create()
and DB->open().

Here's an example creating a Berkeley DB database using the 2.X interface:

DB *dbp;
DB_ENV *dbenv;
int ret;

if ((ret = db_open(DATABASE,
 DB_BTREE, DB_CREATE, 0664, dbenv, NULL, &dbp)) != 0)
 return (ret);

In the Berkeley DB 3.0 release, this code would be written as:

DB *dbp;
DB_ENV *dbenv;
int ret;

../api_reference/C/env.html
../api_reference/C/envset_lk_detect.html
../api_reference/C/envset_lk_conflicts.html
../api_reference/C/envset_mp_mmapsize.html
../api_reference/C/envset_cachesize.html
../api_reference/C/envset_cachesize.html
../api_reference/C/env.html
../api_reference/C/envset_tx_max.html
../api_reference/C/dbcreate.html
../api_reference/C/dbopen.html

Upgrading Berkeley DB 2.X applications to
Berkeley DB 3.0

11/8/2010 DB Installation Guide Page 218

if ((ret = db_create(&dbp, dbenv, 0)) != 0)
 return (ret);

if ((ret = dbp->open(dbp,
 DATABASE, NULL, DB_BTREE, DB_CREATE, 0664)) != 0) {
 (void)dbp->close(dbp, 0);
 return (ret);
}

As you can see, the arguments to db_open and to DB->open() are largely the same. There is
some re-organization, and note that the enclosing DB_ENV structure is specified when the
DB object is created using the db_create() function. There is one additional argument to DB-
>open(), argument #3. For backward compatibility with the 2.X Berkeley DB releases, simply
set that argument to NULL.

There are two additional issues with the db_open call.

First, it was possible in the 2.X releases for an application to provide an environment that did
not contain a shared memory buffer pool as the database environment, and Berkeley DB would
create a private one automatically. This functionality is no longer available, applications must
specify the DB_INIT_MPOOL flag if databases are going to be opened in the environment.

The final issue with upgrading the db_open call is that the DB_INFO structure is no longer
used, having been replaced by individual methods on the DB handle. That change is discussed
in detail later in this chapter.

db_xa_open

The following change applies only to applications using Berkeley DB as an XA Resource
Manager. If your application is not using Berkeley DB in this way, you can ignore this change.

The db_xa_open function has been replaced with the DB_XA_CREATE flag to the db_create()
function. All calls to db_xa_open should be replaced with calls to db_create() with the
DB_XA_CREATE flag set, followed by a call to the DB->open() function.

A similar change has been made for the C++ API, where the DB_XA_CREATE flag should be
specified to the Db constructor. All calls to the Db::xa_open method should be replaced with
the DB_XA_CREATE flag to the Db constructor, followed by a call to the DB::open method.

DB structure

The DB structure is now opaque for applications in the Berkeley DB 3.0 release. Accesses to
any fields within that structure by the application should be replaced with method calls. The
following example illustrates this using the historic type structure field. In the Berkeley DB 2.X
releases, applications could find the type of an underlying database using code similar to the
following:

DB *db;
DB_TYPE type;

../api_reference/C/dbopen.html
../api_reference/C/env.html
../api_reference/C/db.html
../api_reference/C/dbcreate.html
../api_reference/C/dbopen.html
../api_reference/C/dbopen.html
../api_reference/C/envopen.html#envopen_DB_INIT_MPOOL
../api_reference/C/db.html
../api_reference/C/dbcreate.html
../api_reference/C/dbcreate.html
../api_reference/C/dbopen.html
../api_reference/C/db.html

Upgrading Berkeley DB 2.X applications to
Berkeley DB 3.0

11/8/2010 DB Installation Guide Page 219

type = db->type;

in the Berkeley DB 3.X releases, this should be done using the DB->get_type() method, as
follows:

DB *db;
DB_TYPE type;

type = db->get_type(db);

The following table lists the DB fields previously used by applications and the methods that
should now be used to get or set them.

DB field Berkeley DB 3.X method

byteswapped DB->get_byteswapped()

db_errcall DB->set_errcall()

db_errfile DB->set_errfile()

db_errpfx DB->set_errpfx()

db_paniccall DB->set_paniccall

type DB->get_type()

DBINFO structure

The DB_INFO structure has been removed from the Berkeley DB 3.0 release. Accesses to any
fields within that structure by the application should be replaced with method calls on the DB
handle. The following example illustrates this using the historic db_cachesize structure field.
In the Berkeley DB 2.X releases, applications could set the size of an underlying database
cache using code similar to the following:

DB_INFO dbinfo;

memset(dbinfo, 0, sizeof(dbinfo));
dbinfo.db_cachesize = 1024 * 1024;

in the Berkeley DB 3.X releases, this should be done using the DB->set_cachesize() method, as
follows:

DB *db;
int ret;

ret = db->set_cachesize(db, 0, 1024 * 1024, 0);

The DB_INFO structure is no longer used in any way by the Berkeley DB 3.0 release, and should
be removed from the application.

The following table lists the DB_INFO fields previously used by applications and the methods
that should now be used to set them. Because these calls provide configuration for the
database open, they must precede the call to DB->open(). Calling them after the call to DB-
>open() will return an error.

../api_reference/C/dbget_type.html
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/dbget_byteswapped.html
../api_reference/C/dbset_errcall.html
../api_reference/C/dbset_errfile.html
../api_reference/C/dbset_errpfx.html
../api_reference/C/dbget_type.html
../api_reference/C/db.html
../api_reference/C/dbset_cachesize.html
../api_reference/C/dbopen.html
../api_reference/C/dbopen.html
../api_reference/C/dbopen.html

Upgrading Berkeley DB 2.X applications to
Berkeley DB 3.0

11/8/2010 DB Installation Guide Page 220

DB_INFO field Berkeley DB 3.X method

bt_compare DB->set_bt_compare()

bt_minkey DB->set_bt_minkey()

bt_prefix DB->set_bt_prefix()

db_cachesize DB->set_cachesize()

Note: the DB->set_cachesize() function takes
additional arguments. Setting both the second
argument (the number of GB in the pool) and
the last argument (the number of memory
pools to create) to 0 will result in behavior
that is backward-compatible with previous
Berkeley DB releases.

db_lorder DB->set_lorder()

db_malloc DB->set_malloc

db_pagesize DB->set_pagesize()

dup_compare DB->set_dup_compare()

flags DB->set_flags()

Note: the DB_DELIMITER, DB_FIXEDLEN and
DB_PAD flags no longer need to be set as
there are specific methods off the DB handle
that set the file delimiter, the length of
fixed-length records and the fixed-length
record pad character. They should simply be
discarded from the application.

h_ffactor DB->set_h_ffactor()

h_hash DB->set_h_hash()

h_nelem DB->set_h_nelem()

re_delim DB->set_re_delim()

re_len DB->set_re_len()

re_pad DB->set_re_pad()

re_source DB->set_re_source()

DB->join

Historically, the last two arguments to the DB->join() method were a flags value followed
by a reference to a memory location to store the returned cursor object. In the Berkeley DB
3.0 release, the order of those two arguments has been swapped for consistency with other
Berkeley DB interfaces.

The application should be searched for any occurrences of DB->join(). For each of these, the
order of the last two arguments should be swapped.

../api_reference/C/dbset_bt_compare.html
../api_reference/C/dbset_bt_minkey.html
../api_reference/C/dbset_bt_prefix.html
../api_reference/C/dbset_cachesize.html
../api_reference/C/dbset_cachesize.html
../api_reference/C/dbset_lorder.html
../api_reference/C/dbset_pagesize.html
../api_reference/C/dbset_dup_compare.html
../api_reference/C/dbset_flags.html
../api_reference/C/db.html
../api_reference/C/dbset_h_ffactor.html
../api_reference/C/dbset_h_hash.html
../api_reference/C/dbset_h_nelem.html
../api_reference/C/dbset_re_delim.html
../api_reference/C/dbset_re_len.html
../api_reference/C/dbset_re_pad.html
../api_reference/C/dbset_re_source.html
../api_reference/C/dbjoin.html
../api_reference/C/dbjoin.html

Upgrading Berkeley DB 2.X applications to
Berkeley DB 3.0

11/8/2010 DB Installation Guide Page 221

DB->stat

The bt_flags field returned from the DB->stat() method for Btree and Recno databases has
been removed, and this information is no longer available.

DB->sync and DB->close

In previous Berkeley DB releases, the DB->close() and DB->sync() methods discarded any return
of DB_INCOMPLETE from the underlying buffer pool interfaces, and returned success to its
caller. (The DB_INCOMPLETE error will be returned if the buffer pool functions are unable to
flush all of the database's dirty blocks from the pool. This often happens if another thread is
reading or writing the database's pages in the pool.)

In the 3.X release, DB->sync() and DB->close() will return DB_INCOMPLETE to the application.
The best solution is to not call DB->sync() with the DB_NOSYNC flag to the DB->close() method
when multiple threads are expected to be accessing the database. Alternatively, the caller
can ignore any error return of DB_INCOMPLETE.

lock_put

An argument change has been made in the lock_put function.

The application should be searched for any occurrences of lock_put. For each one, instead of
passing a DB_LOCK variable as the last argument to the function, the address of the DB_LOCK
variable should be passed.

lock_detect

An additional argument has been added to the lock_detect function.

The application should be searched for any occurrences of lock_detect. For each one, a NULL
argument should be appended to the current arguments.

lock_stat

The st_magic, st_version, st_numobjs and st_refcnt fields returned from the lock_stat
function have been removed, and this information is no longer available.

log_register

An argument has been removed from the log_register function. The application should be
searched for any occurrences of log_register. In each of these, the DBTYPE argument (it is the
fourth argument) should be removed.

log_stat

The st_refcnt field returned from the log_stat function has been removed, and this
information is no longer available.

../api_reference/C/dbstat.html
../api_reference/C/dbclose.html
../api_reference/C/dbsync.html
../api_reference/C/dbsync.html
../api_reference/C/dbclose.html
../api_reference/C/dbsync.html
../api_reference/C/dbclose.html#dbclose_DB_NOSYNC
../api_reference/C/dbclose.html

Upgrading Berkeley DB 2.X applications to
Berkeley DB 3.0

11/8/2010 DB Installation Guide Page 222

memp_stat

The st_refcnt field returned from the memp_stat function has been removed, and this
information is no longer available.

The st_cachesize field returned from the memp_stat function has been replaced with two
new fields, st_gbytes and st_bytes.

txn_begin

An additional argument has been added to the txn_begin function.

The application should be searched for any occurrences of txn_begin. For each one, an
argument of 0 should be appended to the current arguments.

txn_commit

An additional argument has been added to the txn_commit function.

The application should be searched for any occurrences of txn_commit. For each one, an
argument of 0 should be appended to the current arguments.

txn_stat

The st_refcnt field returned from the txn_stat function has been removed, and this
information is no longer available.

DB_RMW

The following change applies only to applications using the Berkeley DB Concurrent Data Store
product. If your application is not using that product, you can ignore this change.

Historically, the DB->cursor() method took the DB_RMW flag to indicate that the created
cursor would be used for write operations on the database. This flag has been renamed to the
DB_WRITECURSOR flag.

The application should be searched for any occurrences of DB_RMW. For each of these,
any that are arguments to the DB->cursor() function should be changed to pass in the
DB_WRITECURSOR flag instead.

DB_LOCK_NOTHELD

Historically, the Berkeley DB lock_put and lock_vec interfaces could return the
DB_LOCK_NOTHELD error to indicate that a lock could not be released as it was held by
another locker. This error can no longer be returned under any circumstances. The application
should be searched for any occurrences of DB_LOCK_NOTHELD. For each of these, the test and
any error processing should be removed.

../api_reference/C/dbcursor.html
../api_reference/C/dbcursor.html

Upgrading Berkeley DB 2.X applications to
Berkeley DB 3.0

11/8/2010 DB Installation Guide Page 223

EAGAIN

Historically, the Berkeley DB interfaces have returned the POSIX error value EAGAIN to
indicate a deadlock. This has been removed from the Berkeley DB 3.0 release in order to make
it possible for applications to distinguish between EAGAIN errors returned by the system and
returns from Berkeley DB indicating deadlock.

The application should be searched for any occurrences of EAGAIN. For each of these, any
that are checking for a deadlock return from Berkeley DB should be changed to check for the
DB_LOCK_DEADLOCK return value.

If, for any reason, this is a difficult change for the application to make, the include/db.src
distribution file should be modified to translate all returns of DB_LOCK_DEADLOCK to EAGAIN.
Search for the string EAGAIN in that file, there is a comment that describes how to make the
change.

EACCES

There was an error in previous releases of the Berkeley DB documentation that said that the
lock_put and lock_vec interfaces could return EACCES as an error to indicate that a lock could
not be released because it was held by another locker. The application should be searched for
any occurrences of EACCES. For each of these, any that are checking for an error return from
lock_put or lock_vec should have the test and any error handling removed.

db_jump_set

The db_jump_set interface has been removed from the Berkeley DB 3.0 release, replaced by
method calls on the DB_ENV handle.

The following table lists the db_jump_set arguments previously used by applications and the
methods that should now be used instead.

db_jump_set argument Berkeley DB 3.X method

DB_FUNC_CLOSE db_env_set_func_close

DB_FUNC_DIRFREE db_env_set_func_dirfree

DB_FUNC_DIRLIST db_env_set_func_dirlist

DB_FUNC_EXISTS db_env_set_func_exists

DB_FUNC_FREE db_env_set_func_free

DB_FUNC_FSYNC db_env_set_func_fsync

DB_FUNC_IOINFO db_env_set_func_ioinfo

DB_FUNC_MALLOC db_env_set_func_malloc

DB_FUNC_MAP dbenv_set_func_map

DB_FUNC_OPEN db_env_set_func_open

DB_FUNC_READ db_env_set_func_read

../api_reference/C/env.html
../api_reference/C/db_env_set_func_close.html
../api_reference/C/db_env_set_func_dirfree.html
../api_reference/C/db_env_set_func_dirlist.html
../api_reference/C/db_env_set_func_exists.html
../api_reference/C/db_env_set_func_free.html
../api_reference/C/db_env_set_func_fsync.html
../api_reference/C/db_env_set_func_ioinfo.html
../api_reference/C/db_env_set_func_malloc.html
../api_reference/C/db_env_set_func_open.html
../api_reference/C/db_env_set_func_read.html

Upgrading Berkeley DB 2.X applications to
Berkeley DB 3.0

11/8/2010 DB Installation Guide Page 224

db_jump_set argument Berkeley DB 3.X method

DB_FUNC_REALLOC db_env_set_func_realloc

DB_FUNC_RUNLINK The DB_FUNC_RUNLINK functionality has been
removed from the Berkeley DB 3.0 release,
and should be removed from the application.

DB_FUNC_SEEK db_env_set_func_seek

DB_FUNC_SLEEP db_env_set_func_sleep

DB_FUNC_UNLINK db_env_set_func_unlink

DB_FUNC_UNMAP dbenv_set_func_unmap

DB_FUNC_WRITE db_env_set_func_write

DB_FUNC_YIELD db_env_set_func_yield

db_value_set

The db_value_set function has been removed from the Berkeley DB 3.0 release, replaced by
method calls on the DB_ENV handle.

The following table lists the db_value_set arguments previously used by applications and the
function that should now be used instead.

db_value_set argument Berkeley DB 3.X method

DB_MUTEX_LOCKS dbenv_set_mutexlocks

DB_REGION_ANON The DB_REGION_ANON functionality has
been replaced by the DB_SYSTEM_MEM and
DB_PRIVATE flags to the DB_ENV->open()
function. A direct translation is not available,
please review the DB_ENV->open() manual
page for more information.

DB_REGION_INIT dbenv_set_region_init

DB_REGION_NAME The DB_REGION_NAME functionality has
been replaced by the DB_SYSTEM_MEM and
DB_PRIVATE flags to the DB_ENV->open()
function. A direct translation is not available,
please review the DB_ENV->open() manual
page for more information.

DB_TSL_SPINS dbenv_set_tas_spins

DbEnv class for C++ and Java

The DbEnv::appinit() method and two constructors for the DbEnv class are gone. There is
now a single way to create and initialize the environment. The way to create an environment
is to use the new DbEnv constructor with one argument. After this call, the DbEnv can be
configured with various set_XXX methods. Finally, a call to DbEnv::open is made to initialize
the environment.

../api_reference/C/db_env_set_func_realloc.html
../api_reference/C/db_env_set_func_seek.html
../api_reference/C/db_env_set_func_unlink.html
../api_reference/C/db_env_set_func_write.html
../api_reference/C/db_env_set_func_yield.html
../api_reference/C/env.html
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html
../api_reference/C/envopen.html

Upgrading Berkeley DB 2.X applications to
Berkeley DB 3.0

11/8/2010 DB Installation Guide Page 225

Here's a C++ example creating a Berkeley DB environment using the 2.X interface

int dberr;
DbEnv *dbenv = new DbEnv();

dbenv->set_error_stream(&cerr);
dbenv->set_errpfx("myprog");

if ((dberr = dbenv->appinit("/database/home",
 NULL, DB_CREATE | DB_INIT_LOCK | DB_INIT_MPOOL)) != 0) {
 cerr << "failure: " << strerror(dberr);
 exit (1);
}

In the Berkeley DB 3.0 release, this code would be written as:

int dberr;
DbEnv *dbenv = new DbEnv(0);

dbenv->set_error_stream(&cerr);
dbenv->set_errpfx("myprog");

if ((dberr = dbenv->open("/database/home",
 NULL, DB_CREATE | DB_INIT_LOCK | DB_INIT_MPOOL, 0)) != 0) {
 cerr << "failure: " << dbenv->strerror(dberr);
 exit (1);
}

Here's a Java example creating a Berkeley DB environment using the 2.X interface:

int dberr;
DbEnv dbenv = new DbEnv();

dbenv.set_error_stream(System.err);
dbenv.set_errpfx("myprog");

dbenv.appinit("/database/home",
 null, Db.DB_CREATE | Db.DB_INIT_LOCK | Db.DB_INIT_MPOOL);

In the Berkeley DB 3.0 release, this code would be written as:

int dberr;
DbEnv dbenv = new DbEnv(0);

dbenv.set_error_stream(System.err);
dbenv.set_errpfx("myprog");

dbenv.open("/database/home",
 null, Db.DB_CREATE | Db.DB_INIT_LOCK | Db.DB_INIT_MPOOL, 0);

In the Berkeley DB 2.X release, DbEnv had accessors to obtain "managers" of type DbTxnMgr,
DbMpool, DbLog, DbTxnMgr. If you used any of these managers, all their methods are now
found directly in the DbEnv class.

Upgrading Berkeley DB 2.X applications to
Berkeley DB 3.0

11/8/2010 DB Installation Guide Page 226

Db class for C++ and Java

The static Db::open method and the DbInfo class have been removed in the Berkeley DB
3.0 release. The way to open a database file is to use the new Db constructor with two
arguments, followed by set_XXX methods to configure the Db object, and finally a call to
the new (nonstatic) Db::open(). In comparing the Berkeley DB 3.0 release open method with
the 2.X static open method, the second argument is new. It is a database name, which can
be null. The DbEnv argument has been removed, as the environment is now specified in the
constructor. The open method no longer returns a Db, since it operates on one.

Here's a C++ example opening a Berkeley DB database using the 2.X interface:

// Note: by default, errors are thrown as exceptions
Db *table;
Db::open("lookup.db", DB_BTREE, DB_CREATE, 0644, dbenv, 0, &table);

In the Berkeley DB 3.0 release, this code would be written as:

// Note: by default, errors are thrown as exceptions
Db *table = new Db(dbenv, 0);
table->open("lookup.db", NULL, DB_BTREE, DB_CREATE, 0644);

Here's a Java example opening a Berkeley DB database using the 2.X interface:

// Note: errors are thrown as exceptions
Db table = Db.open("lookup.db", Db.DB_BTREE, Db.DB_CREATE, 0644, dbenv, 0);

In the Berkeley DB 3.0 release, this code would be written as:

// Note: errors are thrown as exceptions
Db table = new Db(dbenv, 0);
table.open("lookup.db", null, Db.DB_BTREE, Db.DB_CREATE, 0644);

Note that if the dbenv argument is null, the database will not exist within an environment.

additional C++ changes

The Db::set_error_model method is gone. The way to change the C++ API to return errors
rather than throw exceptions is via a flag on the DbEnv or Db constructor. For example:

int dberr;
DbEnv *dbenv = new DbEnv(DB_CXX_NO_EXCEPTIONS);

creates an environment that will never throw exceptions, and method returns should be
checked instead.

There are a number of smaller changes to the API that bring the C, C++ and Java APIs
much closer in terms of functionality and usage. Please refer to the pages for upgrading C
applications for further details.

additional Java changes

There are several additional types of exceptions thrown in the Berkeley DB 3.0 Java API.

Upgrading Berkeley DB 2.X applications to
Berkeley DB 3.0

11/8/2010 DB Installation Guide Page 227

DbMemoryException and DbDeadlockException can be caught independently of DbException
if you want to do special handling for these kinds of errors. Since they are subclassed from
DbException, a try block that catches DbException will catch these also, so code is not
required to change. The catch clause for these new exceptions should appear before the catch
clause for DbException.

You will need to add a catch clause for java.io.FileNotFoundException, since that can be
thrown by Db.open and DbEnv.open.

There are a number of smaller changes to the API that bring the C, C++ and Java APIs
much closer in terms of functionality and usage. Please refer to the pages for upgrading C
applications for further details.

Upgrade Requirements

Log file formats and the Btree, Recno and Hash Access Method database formats changed
in the Berkeley DB 3.0 release. (The on-disk Btree/Recno format changed from version 6 to
version 7. The on-disk Hash format changed from version 5 to version 6.) Until the underlying
databases are upgraded, the DB->open() method will return a DB_OLD_VERSION error.

For further information on upgrading Berkeley DB installations, see Upgrading Berkeley DB
installations (page 66).

../api_reference/C/dbopen.html

11/8/2010 DB Installation Guide Page 228

Chapter 23. Upgrading Berkeley DB 1.85 or 1.86
applications to Berkeley DB 2.0

Introduction

The following pages describe how to upgrade applications coded against the Berkeley DB 1.85
and 1.86 release interfaces to the Berkeley DB 2.0 release interfaces. They do not describe
how to upgrade to the current Berkeley DB release interfaces.

It is not difficult to upgrade Berkeley DB 1.85 applications to use the Berkeley DB version 2
library. The Berkeley DB version 2 library has a Berkeley DB 1.85 compatibility API, which you
can use by either recompiling your application's source code or by relinking its object files
against the version 2 library. The underlying databases must be converted, however, as the
Berkeley DB version 2 library has a different underlying database format.

System Integration

1. It is possible to maintain both the Berkeley DB 1.85 and Berkeley DB version 2 libraries on
your system. However, the db.h include file that was distributed with Berkeley DB 1.85 is
not compatible with the db.h file distributed with Berkeley DB version 2, so you will have
to install them in different locations. In addition, both the Berkeley DB 1.85 and Berkeley
DB version 2 libraries are named libdb.a.

As the Berkeley DB 1.85 library did not have an installation target in the Makefile, there's
no way to know exactly where it was installed on the system. In addition, many vendors
included it in the C library instead of as a separate library, and so it may actually be part
of libc and the db.h include file may be installed in /usr/include.

For these reasons, the simplest way to maintain both libraries is to install Berkeley
DB version 2 in a completely separate area of your system. The Berkeley DB version 2
installation process allows you to install into a standalone directory hierarchy on your
system. See the Building for UNIX/POSIX (page 32) documentation for more information
and instructions on how to install the Berkeley DB version 2 library, include files and
documentation into specific locations.

2. Alternatively, you can replace Berkeley DB 1.85 on your system with Berkeley DB version
2. In this case, you'll probably want to install Berkeley DB version 2 in the normal place
on your system, wherever that may be, and delete the Berkeley DB 1.85 include files,
manual pages and libraries.
To replace 1.85 with version 2, you must either convert your 1.85 applications to use
the version 2 API or build the Berkeley DB version 2 library to include Berkeley DB 1.85
interface compatibility code. Whether converting your applications to use the version 2
interface or using the version 1.85 compatibility API, you will need to recompile or relink
your 1.85 applications, and you must convert any persistent application databases to the
Berkeley DB version 2 database formats.

If you want to recompile your Berkeley DB 1.85 applications, you will have to change
them to include the file db_185.h instead of db.h. (The db_185.h file is automatically

Upgrading Berkeley DB 1.85 or 1.86 applications
to Berkeley DB 2.0

11/8/2010 DB Installation Guide Page 229

installed during the Berkeley DB version 2 installation process.) You can then recompile
the applications, linking them against the Berkeley DB version 2 library.

For more information on compiling the Berkeley DB 1.85 compatibility code into the
Berkeley DB version 2 library, see Building for UNIX/POSIX (page 32).

For more information on converting databases from the Berkeley DB 1.85 formats to
the Berkeley DB version 2 formats, see the db_dump185 utility and the db_load utility
documentation.

3. Finally, although we certainly do not recommend it, it is possible to load both Berkeley DB
1.85 and Berkeley DB version 2 into the same library. Similarly, it is possible to use both
Berkeley DB 1.85 and Berkeley DB version 2 within a single application, although it is not
possible to use them from within the same file.
The name space in Berkeley DB version 2 has been changed from that of previous Berkeley
DB versions, notably version 1.85, for portability and consistency reasons. The only
name collisions in the two libraries are the names used by the historic dbm and hsearch
interfaces, and the Berkeley DB 1.85 compatibility interfaces in the Berkeley DB version 2
library.

If you are loading both Berkeley DB 1.85 and Berkeley DB version 2 into a single library,
remove the historic interfaces from one of the two library builds, and configure the
Berkeley DB version 2 build to not include the Berkeley DB 1.85 compatibility API,
otherwise you could have collisions and undefined behavior. This can be done by editing
the library Makefiles and reconfiguring and rebuilding the Berkeley DB version 2 library.
Obviously, if you use the historic interfaces, you will get the version in the library from
which you did not remove them. Similarly, you will not be able to access Berkeley DB
version 2 files using the Berkeley DB 1.85 compatibility interface, since you have removed
that from the library as well.

Converting Applications

Mapping the Berkeley DB 1.85 functionality into Berkeley DB version 2 is almost always
simple. The manual page DB->open() replaces the Berkeley DB 1.85 manual pages dbopen(3),
btree(3), hash(3) and recno(3). You should be able to convert each 1.85 function call into a
Berkeley DB version 2 function call using just the DB->open() documentation.

Some guidelines and things to watch out for:

1. Most access method functions have exactly the same semantics as in Berkeley DB 1.85,
although the arguments to the functions have changed in some cases. To get your code
to compile, the most common change is to add the transaction ID as an argument (NULL,
since Berkeley DB 1.85 did not support transactions.)

2. You must always initialize DBT structures to zero before using them with any Berkeley DB
version 2 function. (They do not normally have to be reinitialized each time, only when
they are first allocated. Do this by declaring the DBT structure external or static, or by
calling the C library routine bzero(3) or memset(3).)

3. The error returns are completely different in the two versions. In Berkeley DB 1.85, < 0
meant an error, and > 0 meant a minor Berkeley DB exception. In Berkeley DB 2.0, > 0

../api_reference/C/db_dump.html
../api_reference/C/db_load.html
../api_reference/C/dbm.html
../api_reference/C/hsearch.html
../api_reference/C/dbopen.html
../api_reference/C/dbopen.html

Upgrading Berkeley DB 1.85 or 1.86 applications
to Berkeley DB 2.0

11/8/2010 DB Installation Guide Page 230

means an error (the Berkeley DB version 2 functions return errno on error) and < 0 means
a Berkeley DB exception. See Program returns to applications for more information.

4. The Berkeley DB 1.85 DB->seq function has been replaced by cursors in Berkeley DB
version 2. The semantics are approximately the same, but cursors require the creation of
an extra object (the DBC object), which is then used to access the database.
Specifically, the partial key match and range search functionality of the R_CURSOR flag in
DB->seq has been replaced by the DB_SET_RANGE flag in DBC->get().

5. In version 2 of the Berkeley DB library, additions or deletions into Recno (fixed and
variable-length record) databases no longer automatically logically renumber all records
after the add/delete point, by default. The default behavior is that deleting records does
not cause subsequent records to be renumbered, and it is an error to attempt to add new
records between records already in the database. Applications wanting the historic Recno
access method semantics should call the DB->set_flags() method with the DB_RENUMBER
flag.

6. Opening a database in Berkeley DB version 2 is a much heavier-weight operation than
it was in Berkeley DB 1.85. Therefore, if your historic applications were written to
open a database, perform a single operation, and close the database, you may observe
performance degradation. In most cases, this is due to the expense of creating the
environment upon each open. While we encourage restructuring your application to avoid
repeated opens and closes, you can probably recover most of the lost performance by
simply using a persistent environment across invocations.

While simply converting Berkeley DB 1.85 function calls to Berkeley DB version 2 function calls
will work, we recommend that you eventually reconsider your application's interface to the
Berkeley DB database library in light of the additional functionality supplied by Berkeley DB
version 2, as it is likely to result in enhanced application performance.

Upgrade Requirements

You will need to upgrade your on-disk databases, as all access method database formats
changed in the Berkeley DB 2.0 release. For information on converting databases from
Berkeley DB 1.85 to Berkeley DB 2.0, see the db_dump185 utility and db_load utility
documentation. As database environments did not exist prior to the 2.0 release, there is no
question of upgrading existing database environments.

../programmer_reference/program_errorret.html
../api_reference/C/dbcget.html#dbcget_DB_SET_RANGE
../api_reference/C/dbcget.html
../api_reference/C/dbset_flags.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER
../api_reference/C/db_dump.html
../api_reference/C/db_load.html

11/8/2010 DB Installation Guide Page 231

Chapter 24. Test Suite

Running the test suite

Once you have started tclsh and have loaded the test.tcl source file (see Running the test
suite under UNIX (page 45) and Running the test suite under Windows (page 24) for more
information), you are ready to run the test suite. At the tclsh prompt, to run the standard test
suite, enter the following:

% run_std

A more exhaustive version of the test suite runs all the tests several more times, testing
encryption, replication, and different page sizes. After you have a clean run for run_std, you
may choose to run this lengthier set of tests. At the tclsh prompt, enter:

% run_all

Running the standard tests can take from several hours to a few days to complete, depending
on your hardware, and running all the tests will take at least twice as long. For this reason,
the output from these commands are redirected to a file in the current directory named
ALL.OUT. Periodically, a line will be written to the standard output, indicating what test is
being run. When the test suite has finished, a final message will be written indicating the test
suite has completed successfully or that it has failed. If the run failed, you should review the
ALL.OUT file to determine which tests failed. Errors will appear in that file as output lines,
beginning with the string "FAIL".

Tests are run in the directory TESTDIR, by default. However, the test files are often large, and
you should use a filesystem with at least several hundred megabytes of free space. To use a
different directory for the test directory, edit the file include.tcl in your build directory, and
change the following line to a more appropriate value for your system:

set testdir ./TESTDIR

For example, you might change it to the following:

set testdir /var/tmp/db.test

Alternatively, you can create a symbolic link named TESTDIR in your build directory to an
appropriate location for running the tests. Regardless of where you run the tests, the TESTDIR
directory should be on a local filesystem. Using a remote filesystem (for example, an NFS
mounted filesystem) will almost certainly cause spurious test failures.

Running SQL Test Suite on Unix

Once the test suite is built (see Building SQL Test Suite on Unix (page 46) for more
information), run the entire test suite by executing the following command in the ../
build_unix/sql directory:

sh ../../sql/adapter/bdb-test.sh

This runs a set of tests and lists the errors each test encountered, if any. A detailed list of the
test results is written to test.log.

Test Suite

11/8/2010 DB Installation Guide Page 232

To run an individual test, such as insert.test, execute the following command in the ../
build_unix/sql directory:

./textfixture ../../sql/sqlite/test/insert.test

Running SQL Test Suite on Windows

After the test suite is built (see Building the software needed by the SQL tests (page 25) for
more information) and before running the entire test suite, go to ../sql/adapter/bdb-
test.sh and edit the line:

echo $t: `alarm $TIMEOUT ./testfixture.exe
$tpath 2>&1 | tee -a test.log | grep "errors out of"
|| echo "failed"`

to

echo $t: `alarm $TIMEOUT Win32/Debug/testfixture.exe
$tpath 2>&1 | tee -a test.log | grep "errors out of"
|| echo "failed"`

Running the test suite requires an Unix emulator, such as Cygwin. In a Cygwin window go to
the ../build_windows directory and execute the command:

sh ../sql/adapter/bdb-test.sh

This runs a set of tests and lists errors that each test encountered, if any. A detailed list of the
test results is written to test.log.

To run an individual test, such as insert.test, execute the following command in the ../
build_windows directory:

Win32/Debug/testfixture.exe ../sql/sqlite/test/insert.test

Test suite FAQ

1. The test suite has been running for over a day. What's wrong?

The test suite can take anywhere from some number of hours to several days to run,
depending on your hardware configuration. As long as the run is making forward progress
and new lines are being written to the ALL.OUT files, everything is probably fine.

	Berkeley DB Installation and Build Guide
	Table of Contents
	Preface
	Conventions Used in this Book
	For More Information

	Chapter 1. Introduction
	Installation Overview

	Chapter 2. System Installation Notes
	File utility /etc/magic information
	Magic information
	Big-endian magic information
	Little-endian magic information

	Building with multiple versions of Berkeley DB

	Chapter 3. Debugging Applications
	Introduction to debugging
	Compile-time configuration
	Run-time error information
	Reviewing Berkeley DB log files
	Augmenting the Log for Debugging
	Extracting Committed Transactions and Transaction Status
	Extracting Transaction Histories
	Extracting File Histories
	Extracting Page Histories
	Other log processing tools

	Chapter 4. Building Berkeley DB for Windows
	Building Berkeley DB for 32 bit Windows
	Visual C++ .NET 2008
	Visual C++ .NET 2005
	Build results

	Building Berkeley DB for 64-bit Windows
	x64 build with Visual Studio 2005 or newer

	Building Berkeley DB with Cygwin
	Building the C++ API
	Building the C++ STL API
	Building the Java API
	Building the C# API
	Building the SQL API
	Binary Compatibility With SQLite
	Enabling Extensions
	Building the JDBC Driver
	Building the ODBC Driver
	Configuring Your System
	Building the Library
	Installing the Library
	Testing the ODBC Install

	Building the Tcl API
	Distributing DLLs
	Building a small memory footprint library
	Running the test suite under Windows
	Building the software needed by the tests
	Visual Studio 2005 or newer

	Running the test suite under Windows
	Building the software needed by the SQL tests
	Visual Studio 2005 or newer

	Windows notes
	Windows FAQ

	Chapter 5. Building Berkeley DB for Windows Mobile
	Building for Windows Mobile
	Building Berkeley DB for Windows Mobile
	Visual Studio 2005
	Build results

	Changing Build Configuration Type
	Building Berkeley DB for different target platforms
	Visual Studio 2005

	Windows Mobile notes
	Windows Mobile FAQ

	Chapter 6. Building Berkeley DB for UNIX/POSIX
	Building for UNIX/POSIX
	Building the Berkeley DB SQL Interface

	Configuring Berkeley DB
	Configuring the SQL Interface
	Enabling Extensions
	Building the JDBC Driver
	Building the ODBC Driver
	Configuring Your System
	Building the Library
	Testing the ODBC Driver

	Building a small memory footprint library
	Changing compile or load options
	Installing Berkeley DB
	Dynamic shared libraries
	Running the test suite under UNIX
	Building SQL Test Suite on Unix

	Architecture independent FAQ
	AIX
	FreeBSD
	HP-UX
	IRIX
	Linux
	Mac OS X
	OSF/1
	QNX
	SCO
	Solaris
	SunOS
	Ultrix

	Chapter 7. Building Berkeley DB for VxWorks
	Building for VxWorks 5.4 and 5.5
	Building With Tornado 2.0 or Tornado 2.2

	Building for VxWorks 6.x
	Building With Wind River Workbench using the Makefile

	VxWorks notes
	Building and Running the Demo Program
	Building and Running the Utility Programs
	VxWorks 5.4/5.5: shared memory
	VxWorks 5.4/5.5: building a small memory footprint library
	Support for Replication Manager

	VxWorks FAQ

	Chapter 8. Upgrading from previous versions of Berkeley DB
	Library version information
	Upgrading Berkeley DB installations

	Chapter 9. Upgrading Berkeley DB 4.8 applications to Berkeley DB 11gR2
	Introduction
	db_sql Renamed to db_sql_codegen
	DB_REP_CONF_NOAUTOINIT Replaced
	Support for Multiple Client-to-Client Peers
	Cryptography Support
	DB_NOSYNC Flag to Flush Files
	Dropped Support
	Changing Stack Size
	Berkeley DB 11g Release 2 Change Log
	Changes between 11.2.5.0.26 and 11.2.5.0.32
	Changes between 11.2.5.0.21 and 11.2.5.0.26
	Changes between 4.8 and 11.2.5.0.21
	Database or Log File On-Disk Format Changes
	New Features
	Database Environment Changes
	Access Method Changes
	Locking Subsystem Changes
	Logging Subsystem Changes
	Memory Pool Subsystem Changes
	Mutex Subsystem Changes
	Tcl-specific API Changes
	C#-specific API Changes
	API Changes
	Replication Changes
	Transaction Subsystem Changes
	Utility Changes
	Example Changes
	Deprecated Features
	Configuration, Documentation, Sample Apps, Portability and Build Changes

	Known Bugs

	Chapter 10. Upgrading Berkeley DB 4.7 applications to Berkeley DB 4.8
	Introduction
	Registering DPL Secondary Keys
	Minor Change in Behavior of DB_MPOOLFILE->get
	Dropped Support for fcntl System Calls
	Upgrade Requirements
	Berkeley DB 4.8.28 Change Log
	Changes between 4.8.26 and 4.8.28:
	Known bugs in 4.8
	Changes between 4.8.24 and 4.8.26:
	Changes between 4.8.21 and 4.8.24:
	Changes between 4.7 and 4.8.21:
	Database or Log File On-Disk Format Changes:
	New Features:
	Database Environment Changes:
	Concurrent Data Store Changes:
	General Access Method Changes:
	Btree Access Method Changes:
	Hash Access Method Changes:
	Queue Access Method Changes:
	Recno Access Method Changes:
	C-specific API Changes:
	C++-specific API Changes:
	Java-specific API Changes:
	Direct Persistence Layer (DPL), Bindings and Collections API:
	Tcl-specific API Changes:
	RPC-specific Client/Server Changes:
	Replication Changes:
	XA Resource Manager Changes:
	Locking Subsystem Changes:
	Logging Subsystem Changes:
	Memory Pool Subsystem Changes:
	Mutex Subsystem Changes:
	Test Suite Changes
	Transaction Subsystem Changes:
	Utility Changes:
	Configuration, Documentation, Sample Application, Portability and Build Changes:

	Chapter 11. Upgrading Berkeley DB 4.6 applications to Berkeley DB 4.7
	Introduction
	Run-time configuration
	Replication API
	Tcl API
	DB_ENV->set_intermediate_dir
	Log configuration
	Upgrade Requirements
	Berkeley DB 4.7.25 Change Log
	Database or Log File On-Disk Format Changes:
	New Features:
	Database Environment Changes:
	Concurrent Data Store Changes:
	General Access Method Changes:
	Btree Access Method Changes:
	Hash Access Method Changes:
	Queue Access Method Changes:
	Recno Access Method Changes:
	C-specific API Changes:
	Java-specific API Changes:
	Direct Persistence Layer (DPL), Bindings and Collections API:
	Tcl-specific API Changes:
	RPC-specific Client/Server Changes:
	Replication Changes:
	XA Resource Manager Changes:
	Locking Subsystem Changes:
	Logging Subsystem Changes:
	Memory Pool Subsystem Changes:
	Mutex Subsystem Changes:
	Transaction Subsystem Changes:
	Utility Changes:
	Configuration, Documentation, Sample Application, Portability and Build Changes:

	Chapter 12. Upgrading Berkeley DB 4.5 applications to Berkeley DB 4.6
	Introduction
	C API cursor handle method names
	DB_MPOOLFILE->put
	B_MPOOLFILE->set
	Replication Events
	DB_REP_FULL_ELECTION
	Verbose Output
	DB_VERB_REPLICATION
	Windows 9X
	Upgrade Requirements
	Berkeley DB 4.6.21 Change Log
	4.6.21 Patches:
	4.6.19 Patches
	Database or Log File On-Disk Format Changes:
	New Features:
	Database Environment Changes:
	Concurrent Data Store Changes:
	General Access Method Changes:
	Btree Access Method Changes:
	Hash Access Method Changes:
	Queue Access Method Changes:
	Recno Access Method Changes:
	C++-specific API Changes:
	Java-specific API Changes:
	Java collections and bind API Changes:
	Tcl-specific API Changes:
	RPC-specific Client/Server Changes:
	Replication Changes:
	XA Resource Manager Changes:
	Locking Subsystem Changes:
	Logging Subsystem Changes:
	Memory Pool Subsystem Changes:
	Transaction Subsystem Changes:
	Utility Changes:
	Configuration, Documentation, Portability and Build Changes:

	Chapter 13. Upgrading Berkeley DB 4.4 applications to Berkeley DB 4.5
	Introduction
	deprecated interfaces
	DB->set_isalive
	DB_ENV->rep_elect
	Replication method naming
	Replication events
	Memory Pool API
	DB_ENV->set_paniccall
	DB->set_pagesize
	Collections API
	--enable-pthread_self
	Recno backing text source files
	Application-specific logging
	Upgrade Requirements
	Berkeley DB 4.5.20 Change Log
	Database or Log File On-Disk Format Changes:
	New Features:
	Database Environment Changes:
	Concurrent Data Store Changes:
	General Access Method Changes:
	Btree Access Method Changes:
	Hash Access Method Changes:
	Queue Access Method Changes:
	Recno Access Method Changes:
	C++-specific API Changes:
	Java-specific API Changes:
	Java collections and bind API Changes:
	Tcl-specific API Changes:
	RPC-specific Client/Server Changes:
	Replication Changes:
	XA Resource Manager Changes:
	Locking Subsystem Changes:
	Logging Subsystem Changes:
	Memory Pool Subsystem Changes:
	Transaction Subsystem Changes:
	Utility Changes:
	Configuration, Documentation, Portability and Build Changes:

	Chapter 14. Upgrading Berkeley DB 4.3 applications to Berkeley DB 4.4
	Introduction
	DB_AUTO_COMMIT
	DB_DEGREE_2, DB_DIRTY_READ
	DB_JOINENV
	mutexes
	DB_MPOOLFILE->set_clear_len
	lock statistics
	Upgrade Requirements
	Berkeley DB 4.4.16 Change Log
	Database or Log File On-Disk Format Changes:
	New Features:
	Database Environment Changes:
	Concurrent Data Store Changes:
	General Access Method Changes:
	Btree Access Method Changes:
	Hash Access Method Changes:
	Queue Access Method Changes:
	Recno Access Method Changes
	C++-specific API Changes:
	Java-specific API Changes:
	Java collections and bind API Changes:
	Tcl-specific API Changes:
	RPC-specific Client/Server Changes:
	Replication Changes:
	XA Resource Manager Changes:
	Locking Subsystem Changes:
	Logging Subsystem Changes:
	Memory Pool Subsystem Changes:
	Transaction Subsystem Changes:
	Utility Changes:
	Configuration, Documentation, Portability and Build Changes:

	Berkeley DB 4.4.20 Change Log
	Changes since Berkeley DB 4.4.16:

	Chapter 15. Upgrading Berkeley DB 4.2 applications to Berkeley DB 4.3
	Introduction
	Java
	DB_ENV->set_errcall, DB->set_errcall
	DBcursor->c_put
	DB->stat
	DB_ENV->set_verbose
	Logging
	DB_FILEOPEN
	ENOMEM and DbMemoryException
	Replication
	Run-time configuration
	Upgrade Requirements
	Berkeley DB 4.3.29 Change Log
	Database or Log File On-Disk Format Changes:
	New Features:
	Database Environment Changes:
	Concurrent Data Store Changes:
	General Access Method Changes:
	Btree Access Method Changes:
	Hash Access Method Changes:
	Queue Access Method Changes:
	Recno Access Method Changes
	C++-specific API Changes:
	Java-specific API Changes:
	Tcl-specific API Changes:
	RPC-specific Client/Server Changes:
	Replication Changes:
	XA Resource Manager Changes:
	Locking Subsystem Changes:
	Logging Subsystem Changes:
	Memory Pool Subsystem Changes:
	Transaction Subsystem Changes:
	Utility Changes:
	Configuration, Documentation, Portability and Build Changes:

	Chapter 16. Upgrading Berkeley DB 4.1 applications to Berkeley DB 4.2
	Introduction
	Java
	Queue access method
	DB_CHKSUM_SHA1
	DB_CLIENT
	DB->del
	DB->set_cache_priority
	DB->verify
	DB_LOCK_NOTGRANTED
	Replication
	Replication initialization
	Database methods and replication clients
	DB_ENV->rep_process_message()

	Client replication environments
	Tcl API
	Upgrade Requirements
	Berkeley DB 4.2.52 Change Log
	Database or Log File On-Disk Format Changes:
	New Features:
	Database Environment Changes:
	Concurrent Data Store Changes:
	General Access Method Changes:
	Btree Access Method Changes:
	Hash Access Method Changes:
	Queue Access Method Changes:
	Recno Access Method Changes:
	C++-specific API Changes:
	Java-specific API Changes:
	Tcl-specific API Changes:
	RPC-specific Client/Server Changes:
	Replication Changes:
	XA Resource Manager Changes:
	Locking Subsystem Changes:
	Logging Subsystem Changes:
	Memory Pool Subsystem Changes:
	Transaction Subsystem Changes:
	Utility Changes:
	Configuration, Documentation, Portability and Build Changes:

	Chapter 17. Upgrading Berkeley DB 4.0 applications to Berkeley DB 4.1
	Introduction
	DB_EXCL
	DB->associate, DB->open, DB->remove, DB->rename
	DB_ENV->log_register
	st_flushcommit
	DB_CHECKPOINT, DB_CURLSN
	DB_INCOMPLETE
	DB_ENV->memp_sync
	DB->stat.hash_nelem
	Java exceptions
	C++ exceptions
	Application-specific logging and recovery
	Upgrade Requirements
	Berkeley DB 4.1.24 and 4.1.25 Change Log
	Database or Log File On-Disk Format Changes:
	Major New Features:
	General Environment Changes:
	General Access Method Changes:
	Btree Access Method Changes:
	Hash Access Method Changes:
	Queue Access Method Changes:
	Recno Access Method Changes:
	C++-specific API Changes:
	Java-specific API Changes:
	Tcl-specific API Changes:
	RPC-specific Client/Server Changes:
	Replication Changes:
	XA Resource Manager Changes:
	Locking Subsystem Changes:
	Logging Subsystem Changes:
	Memory Pool Subsystem Changes:
	Transaction Subsystem Changes:
	Utility Changes:
	Configuration, Documentation, Portability and Build Changes:

	Berkeley DB 4.1.25 Change Log

	Chapter 18. Upgrading Berkeley DB 3.3 applications to Berkeley DB 4.0
	Introduction
	db_deadlock
	lock_XXX
	log_XXX
	memp_XXX
	txn_XXX
	db_env_set_XXX
	DB_ENV->set_server
	DB_ENV->set_lk_max
	DB_ENV->lock_id_free
	Java CLASSPATH environment variable
	C++ ostream objects
	application-specific recovery
	Upgrade Requirements
	4.0.14 Change Log
	Major New Features:
	General Environment Changes:
	General Access Method Changes:
	Btree Access Method Changes:
	Hash Access Method Changes:
	Queue Access Method Changes:
	Recno Access Method Changes:
	C++ API Changes:
	Java API Changes:
	Tcl API Changes:
	RPC Client/Server Changes:
	XA Resource Manager Changes:
	Locking Subsystem Changes:
	Logging Subsystem Changes:
	Memory Pool Subsystem Changes:
	Transaction Subsystem Changes:
	Utility Changes:
	Database or Log File On-Disk Format Changes:
	Configuration, Documentation, Portability and Build Changes:

	Chapter 19. Upgrading Berkeley DB 3.2 applications to Berkeley DB 3.3
	introduction
	DB_ENV->set_server
	DB->get_type
	DB->get_byteswapped
	DB->set_malloc, DB->set_realloc
	DB_LOCK_CONFLICT
	memp_fget, EIO
	txn_prepare
	--enable-dynamic, --enable-shared
	--disable-bigfile
	Upgrade Requirements

	Chapter 20. Upgrading Berkeley DB 3.1 applications to Berkeley DB 3.2
	introduction
	DB_ENV->set_flags
	DB callback functions, app_private field
	Logically renumbering records
	DB_INCOMPLETE
	DB_ENV->set_tx_recover
	DB_ENV->set_mutexlocks
	Java and C++ object reuse
	Java java.io.FileNotFoundException
	db_dump
	Upgrade Requirements

	Chapter 21. Upgrading Berkeley DB 3.0 applications to Berkeley DB 3.1
	introduction
	DB_ENV->open, DB_ENV->remove
	DB_ENV->set_tx_recover
	DB_ENV->set_feedback, DB->set_feedback
	DB_ENV->set_paniccall, DB->set_paniccall
	DB->put
	identical duplicate data items
	DB->stat
	DB_SYSTEM_MEM
	log_register
	memp_register
	txn_checkpoint
	environment configuration
	Tcl API
	DB_TMP_DIR
	log file pre-allocation
	Upgrade Requirements

	Chapter 22. Upgrading Berkeley DB 2.X applications to Berkeley DB 3.0
	introduction
	environment open/close/unlink
	function arguments
	DB_ENV structure
	database open/close
	db_xa_open
	DB structure
	DBINFO structure
	DB->join
	DB->stat
	DB->sync and DB->close
	lock_put
	lock_detect
	lock_stat
	log_register
	log_stat
	memp_stat
	txn_begin
	txn_commit
	txn_stat
	DB_RMW
	DB_LOCK_NOTHELD
	EAGAIN
	EACCES
	db_jump_set
	db_value_set
	DbEnv class for C++ and Java
	Db class for C++ and Java
	additional C++ changes
	additional Java changes
	Upgrade Requirements

	Chapter 23. Upgrading Berkeley DB 1.85 or 1.86 applications to Berkeley DB 2.0
	Introduction
	System Integration
	Converting Applications
	Upgrade Requirements

	Chapter 24. Test Suite
	Running the test suite
	Running SQL Test Suite on Unix
	Running SQL Test Suite on Windows

	Test suite FAQ

