"""Threaded Application Server
The AppServer is the main process of WebKit. It handles requests for
servlets from webservers.
ThreadedAppServer uses a threaded model for handling multiple requests.
At one time there were other experimental execution models for AppServer,
but none of these were successful and have been removed.
The ThreadedAppServer/AppServer distinction is thus largely historical.
ThreadedAppServer takes the following command line arguments:
start: start the AppServer (default argument)
stop: stop the currently running Apperver
daemon: run as a daemon
ClassName.SettingName=value: change configuration settings
When started, the app server records its pid in appserver.pid.
"""
from marshal import dumps, loads
import threading, Queue, select, socket, errno, traceback
from Common import *
import AppServer as AppServerModule
from PidFile import ProcessRunning
from AutoReloadingAppServer import AutoReloadingAppServer as AppServer
from ASStreamOut import ASStreamOut, ConnectionAbortedError
from MiscUtils.Funcs import timestamp
from WebUtils.Funcs import requestURI
debug = False
defaultConfig = {
'Host': 'localhost',
'EnableAdapter': True,
'AdapterPort': 8086,
'EnableMonitor': False,
'MonitorPort': 8085,
'EnableHTTP': True,
'HTTPPort': 8080,
'StartServerThreads': 10,
'MinServerThreads': 5,
'MaxServerThreads': 20,
'RequestQueueSize': 0,
'RequestBufferSize': 8*1024,
'ResponseBufferSize': 8*1024,
'AddressFiles': '%s.address',
}
intLength = len(dumps(int(1)))
server = None
exitStatus = 0
class NotEnoughDataError(Exception):
pass
class ProtocolError(Exception):
pass
class ThreadedAppServer(AppServer):
"""Threaded Application Server.
`ThreadedAppServer` accepts incoming socket requests, spawns a
new thread or reuses an existing one, then dispatches the request
to the appropriate handler (e.g., an Adapter handler, HTTP handler,
etc., one for each protocol).
The transaction is connected directly to the socket, so that the
response is sent directly (if streaming is used, like if you call
``response.flush()``). Thus the ThreadedAppServer packages the
socket/response, rather than value being returned up the call chain.
"""
def __init__(self, path=None):
"""Setup the AppServer.
Create an initial thread pool (threads created with `spawnThread`),
and the request queue, record the PID in a file, and add any enabled
handlers (Adapter, HTTP, Monitor).
"""
self._threadPool = []
self._threadCount = 0
self._threadUseCounter = []
self._addr = {}
self._requestID = 0
self._socketHandlers = {}
self._handlerCache = {}
self._sockets = {}
self._defaultConfig = None
AppServer.__init__(self, path)
try:
threadCount = self.setting('StartServerThreads')
self._maxServerThreads = self.setting('MaxServerThreads')
self._minServerThreads = self.setting('MinServerThreads')
self._requestQueueSize = self.setting('RequestQueueSize')
if not self._requestQueueSize:
self._requestQueueSize = 2 * self._maxServerThreads
elif self._requestQueueSize < self._maxServerThreads:
self._requestQueueSize = self._maxServerThreads
self._requestBufferSize = self.setting('RequestBufferSize')
self._responseBufferSize = self.setting('ResponseBufferSize')
self._requestQueue = Queue.Queue(self._requestQueueSize)
out = sys.stdout
out.write('Creating %d threads' % threadCount)
for i in range(threadCount):
self.spawnThread()
out.write(".")
out.flush()
out.write("\n")
if self.setting('EnableAdapter'):
self.addSocketHandler(AdapterHandler)
if self.setting('EnableMonitor'):
self.addSocketHandler(MonitorHandler)
if self.setting('EnableHTTP'):
from HTTPServer import HTTPAppServerHandler
self.addSocketHandler(HTTPAppServerHandler)
self.readyForRequests()
except:
AppServer.initiateShutdown(self)
raise
def addSocketHandler(self, handlerClass, serverAddress=None):
"""Add socket handler.
Adds a socket handler for `serverAddress` -- `serverAddress`
is a tuple (*host*, *port*), where *host* is the interface
to connect to (for instance, the IP address on a machine with
multiple IP numbers), and *port* is the port (e.g. HTTP is on
80 by default, and Webware adapters use 8086 by default).
The `handlerClass` is a subclass of `Handler`, and is used to
handle the actual request -- usually returning control back
to ThreadedAppServer in some fashion. See `Handler` for more.
"""
if serverAddress is None:
serverAddress = self.address(handlerClass.settingPrefix)
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
try:
sock.bind(serverAddress)
sock.listen(1024)
except:
print "Error: Can not listen for %s on %s" % (
handlerClass.settingPrefix, str(serverAddress))
sys.stdout.flush()
raise
serverAddress = sock.getsockname()
self._socketHandlers[serverAddress] = handlerClass
self._handlerCache[serverAddress] = []
self._sockets[serverAddress] = sock
adrStr = ':'.join(map(str, serverAddress))
print "Listening for %s on %s" % (handlerClass.settingPrefix, adrStr)
adrFile = self.addressFileName(handlerClass)
if os.path.exists(adrFile):
print "Warning: %s already exists" % adrFile
try:
os.unlink(adrFile)
except OSError:
if open(adrFile).read() == adrStr:
return
else:
print "Error: Could not remove", adrFile
sys.stdout.flush()
raise
try:
f = open(adrFile, 'w')
f.write(adrStr)
f.close()
except IOError:
print "Error: Could not write", adrFile
sys.stdout.flush()
raise
def isPersistent(self):
return True
def defaultConfig(self):
"""The default AppServer.config."""
if self._defaultConfig is None:
self._defaultConfig = AppServer.defaultConfig(self).copy()
self._defaultConfig.update(defaultConfig)
return self._defaultConfig
def mainloop(self, timeout=1):
"""Main thread loop.
This is the main thread loop that accepts and dispatches
socket requests.
It goes through a loop as long as ``self._running > 2``.
Setting ``self._running = 2`` asks the the main loop to end.
When the main loop is finished, it sets ``self._running = 1``.
When the AppServer is completely down, it sets ``self._running = 0``.
The loop waits for connections, then based on the connecting
port it initiates the proper Handler (e.g.,
AdapterHandler, HTTPHandler). Handlers are reused when possible.
The initiated handlers are put into a queue, and
worker threads poll that queue to look for requests that
need to be handled (worker threads use `threadloop`).
Every so often (every 5 loops) it updates thread usage
information (`updateThreadUsage`), and every
``MaxServerThreads`` * 2 loops it it will manage
threads (killing or spawning new ones, in `manageThreadCount`).
"""
threadCheckInterval = self._maxServerThreads * 2
threadUpdateDivisor = 5
threadCheck = 0
self._running = 3
try:
while self._running > 2:
try:
input, output, exc = select.select(
self._sockets.values(), [], [], timeout)
except select.error, e:
if e[0] == errno.EINTR:
continue
else:
raise
for sock in input:
self._requestID += 1
client, addr = sock.accept()
serverAddress = sock.getsockname()
try:
handler = self._handlerCache[serverAddress].pop()
except IndexError:
handler = self._socketHandlers[serverAddress](self,
serverAddress)
handler.activate(client, self._requestID)
self._requestQueue.put(handler)
if threadCheck % threadUpdateDivisor == 0:
self.updateThreadUsage()
if threadCheck > threadCheckInterval:
threadCheck = 0
self.manageThreadCount()
else:
threadCheck += 1
self.restartIfNecessary()
finally:
self._running = 1
def updateThreadUsage(self):
"""Update the threadUseCounter list.
Called periodically from `mainloop`.
"""
count = self.activeThreadCount()
if len(self._threadUseCounter) > self._maxServerThreads:
self._threadUseCounter.pop(0)
self._threadUseCounter.append(count)
def activeThreadCount(self):
"""Get a snapshot of the number of threads currently in use.
Called from `updateThreadUsage`.
"""
count = 0
for i in self._threadPool:
if i._processing:
count += 1
return count
def manageThreadCount(self):
"""Adjust the number of threads in use.
From information gleened from `updateThreadUsage`, we see about how
many threads are being used, to see if we have too many threads or
too few. Based on this we create or absorb threads.
"""
average = max = 0
if debug:
print "ThreadUse Samples:", self._threadUseCounter
for i in self._threadUseCounter:
average += i
if i > max:
max = i
average /= len(self._threadUseCounter)
if debug:
print "Average Thread Use: ", average
print "Max Thread Use: ", max
print "ThreadCount: ", self._threadCount
if len(self._threadUseCounter) < self._maxServerThreads:
return
margin = self._threadCount / 2
if debug:
print "Margin:", margin
if average > self._threadCount - margin and \
self._threadCount < self._maxServerThreads:
n = min(self._threadCount,
self._maxServerThreads - self._threadCount)
if debug:
print "Adding %s threads" % n
for i in range(n):
self.spawnThread()
elif average < self._threadCount - margin and \
self._threadCount > self._minServerThreads:
n = min(self._threadCount - self._minServerThreads,
self._threadCount - max)
self.absorbThread(n)
else:
self.absorbThread(0)
def spawnThread(self):
"""Create a new worker thread.
Worker threads poll with the `threadloop` method.
"""
if debug:
print "Spawning new thread"
t = threading.Thread(target=self.threadloop)
t._processing = False
t.start()
self._threadPool.append(t)
self._threadCount += 1
if debug:
print "New thread spawned, threadCount =", self._threadCount
def absorbThread(self, count=1):
"""Absorb a thread.
We do this by putting a None on the Queue.
When a thread gets it, that tells it to exit.
We also keep track of the threads, so after killing
threads we go through all the threads and find the
thread(s) that have exited, so that we can take them
out of the thread pool.
"""
for i in range(count):
self._requestQueue.put(None)
self._threadCount -= 1
for i in self._threadPool:
if not i.isAlive():
rv = i.join()
self._threadPool.remove(i)
if debug:
print "Thread absorbed, real threadCount =", len(self._threadPool)
def threadloop(self):
"""The main loop for worker threads.
Worker threads poll the ``_requestQueue`` to find a request handler
waiting to run. If they find a None in the queue, this thread has
been selected to die, which is the way the loop ends.
The handler object does all the work when its `handleRequest` method
is called.
`initThread` and `delThread` methods are called at the beginning and
end of the thread loop, but they aren't being used for anything
(future use as a hook).
"""
self.initThread()
t = threading.currentThread()
t._processing = False
try:
while 1:
try:
handler = self._requestQueue.get()
if handler is None:
if debug:
print "Thread retrieved None, quitting."
break
t._processing = True
try:
handler.handleRequest()
except Exception:
traceback.print_exc(file=sys.stderr)
t._processing = False
handler.close()
except Queue.Empty:
pass
finally:
self.delThread()
if debug:
print threading.currentThread(), "Quitting."
def initThread(self):
"""Initialize thread.
Invoked immediately by threadloop() as a hook for subclasses.
This implementation does nothing and subclasses need not invoke super.
"""
pass
def delThread(self):
"""Delete thread.
Invoked immediately by threadloop() as a hook for subclasses.
This implementation does nothing and subclasses need not invoke super.
"""
pass
def shutDown(self):
"""Called on shutdown.
Also calls `AppServer.shutDown`, but first closes all sockets
and tells all the threads to die.
"""
print "ThreadedAppServer is shutting down..."
if self._running > 2:
self._running = 2
self.awakeSelect()
sys.stdout.flush()
for i in range(30):
if self._running < 2:
break
time.sleep(0.1)
if self._sockets:
for sock in self._sockets.values():
sock.close()
if self._socketHandlers:
for handler in self._socketHandlers.values():
adrFile = self.addressFileName(handler)
if os.path.exists(adrFile):
try:
os.unlink(adrFile)
except OSError:
print "Warning: Could not remove", adrFile
for i in range(self._threadCount):
self._requestQueue.put(None)
for i in self._threadPool:
try:
i.join()
except Exception:
pass
AppServer.shutDown(self)
def awakeSelect(self):
"""Awake the select() call.
The ``select()`` in `mainloop()` is blocking, so when
we shut down we have to make a connect to unblock it.
Here's where we do that.
"""
for host, port in self._sockets.keys():
if host == '0.0.0.0':
host = '127.0.0.1'
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
try:
sock.connect((host, port))
sock.close()
except Exception:
pass
def address(self, settingPrefix):
"""Get host address.
The address for the Adapter (Host/interface, and port),
as taken from ``Configs/AppServer.config``,
settings ``Host`` and ``AdapterPort``.
"""
try:
return self._addr[settingPrefix]
except KeyError:
host = self.setting(settingPrefix + 'Host', self.setting('Host'))
if settingPrefix == 'Adapter':
port = self.setting('Port', None)
if port is None:
port = self.setting(settingPrefix + 'Port')
else:
print "WARNING:", \
"The 'Port' setting has been renamed to 'AdapterPort'."
print "Please update your AppServer.config file."
else:
port = self.setting(settingPrefix + 'Port')
self._addr[settingPrefix] = (host, port)
return self._addr[settingPrefix]
def addressFileName(self, handlerClass):
"""Get the name of the text file with the server address."""
return self.serverSidePath(
self.setting('AddressFiles') % handlerClass.protocolName)
class Handler:
"""A very general socket handler.
Handler is an abstract superclass -- specific protocol implementations
will subclass this. A Handler takes a socket to interact with, and
creates a raw request.
Handlers will be reused. When a socket is received `activate` will be
called -- but the handler should not do anything, as it is still running
in the main thread. The handler is put into a queue, and a worker thread
picks it up and runs `handleRequest`, which subclasses should override.
Several methods are provided which are typically used by subclasses.
"""
def __init__(self, server, serverAddress):
"""Create a new socket handler.
Each handler is attached to a specific host and port,
and of course to the AppServer.
"""
self._server = server
self._serverAddress = serverAddress
def activate(self, sock, requestID):
"""Activate the handler for processing the request.
`sock` is the incoming socket that this handler will work with,
and `requestID` is a serial number unique for each request.
This isn't where work gets done -- the handler is queued after this,
and work is done when `handleRequest` is called.
"""
self._requestID = requestID
self._sock = sock
def close(self):
"""Close the socket.
Called when the handler is finished. Closes the socket and
returns the handler to the pool of inactive handlers.
"""
self._sock = None
self._server._handlerCache[self._serverAddress].append(self)
def handleRequest(self):
"""
Subclasses should override this -- this is where
work gets done.
"""
pass
def receiveDict(self):
"""Receive a dictionary from the socket.
Utility function to receive a marshalled dictionary from
the socket. Returns None if the request was empty.
"""
chunk = ''
missing = intLength
while missing > 0:
block = self._sock.recv(missing)
if not block:
self._sock.close()
if len(chunk) == 0:
return None
else:
raise NotEnoughDataError, 'received only %d of %d bytes' \
' when receiving dictLength' % (len(chunk), intLength)
chunk += block
missing = intLength - len(chunk)
try:
dictLength = loads(chunk)
except ValueError, msg:
if chunk[:3] == 'GET':
self._sock.sendall('''\
HTTP/1.0 505 HTTP Version Not Supported\r
Content-type: text/plain\r
\r
Error: Invalid AppServer protocol: %s.\r
Sorry, I don't speak HTTP. You must connect via an adapter.\r
See the Troubleshooting section of the WebKit Install Guide.\r
''' % msg)
self._sock.close()
return None
print "ERROR:", msg
print "ERROR: you can only connect to", self._serverAddress[1], \
"via an adapter,"
print " like mod_webkit or wkcgi, not with a browser."
raise
if type(dictLength) != type(1):
self._sock.close()
raise ProtocolError, "Invalid AppServer protocol"
chunk = ''
missing = dictLength
while missing > 0:
block = self._sock.recv(missing)
if not block:
self._sock.close()
raise NotEnoughDataError, 'received only %d of %d bytes' \
' when receiving dict' % (len(chunk), dictLength)
chunk += block
missing = dictLength - len(chunk)
return loads(chunk)
class MonitorHandler(Handler):
"""Monitor server status.
Monitor is a minimal service that accepts a simple protocol,
and returns a value indicating the status of the server.
The protocol passes a marshalled dict, much like the Adapter
interface, which looks like ``{'format': 'CMD'}``, where CMD
is a command (``STATUS`` or ``QUIT``). Responds with a simple
string, either the number of requests we've received (for
``STATUS``) or ``OK`` for ``QUIT`` (which also stops the server).
"""
protocolName = 'monitor'
settingPrefix = 'Monitor'
def handleRequest(self):
verbose = self._server._verbose
startTime = time.time()
if verbose:
print "BEGIN REQUEST"
print asclocaltime(startTime)
conn = self._sock
if verbose:
print "receiving request from", conn
requestDict = self.receiveDict()
if requestDict['format'] == "STATUS":
conn.send(str(self._server._requestID))
elif requestDict['format'] == 'QUIT':
conn.send("OK")
conn.close()
self._server.shutDown()
silentErrnos = []
for e in 'EPIPE', 'ECONNABORTED', 'ECONNRESET':
try:
silentErrnos.append(getattr(errno, e))
except AttributeError:
pass
class TASStreamOut(ASStreamOut):
"""Response stream for ThreadedAppServer.
The `TASStreamOut` class streams to a given socket, so that when `flush`
is called and the buffer is ready to be written, it sends the data from the
buffer out on the socket. This is the response stream used for requests
generated by ThreadedAppServer.
"""
def __init__(self, sock, autoCommit=False, bufferSize=8192):
"""Create stream.
We get an extra `sock` argument, which is the socket which we'll
stream output to (if we're streaming).
"""
ASStreamOut.__init__(self, autoCommit, bufferSize)
self._socket = sock
def flush(self):
"""Flush stream.
Calls `ASStreamOut.ASStreamOut.flush`, and if that returns True
(indicating the buffer is full enough) then we send data from
the buffer out on the socket.
"""
result = ASStreamOut.flush(self)
if result:
reslen = len(self._buffer)
sent = 0
bufferSize = self._bufferSize
while sent < reslen:
try:
sent += self._socket.send(
self._buffer[sent:sent+bufferSize])
except socket.error, e:
if debug or e[0] not in silentErrnos:
print "StreamOut Error:", e
self._closed = True
raise ConnectionAbortedError
self.pop(sent)
class AdapterHandler(Handler):
"""Adapter handler.
Handles the Adapter protocol (as used in mod_webkit, wkcgi,
WebKit.cgi, HTTPAdapter, etc). This protocol passes a marshalled
dictionary which contains the keys ``format`` and ``environ``.
``format`` is currently always the string ``CGI``, and ``environ``
is a dictionary of string: string, with values like those passed
in the environment to a CGI request (QUERY_STRING, HTTP_HOST, etc).
The handler adds one more key, ``input``, which contains a file
object based off the socket, which contains the body of the
request (the POST data, for instance). It's left to Application
to handle that data.
"""
protocolName = 'adapter'
settingPrefix = 'Adapter'
def handleRequest(self):
"""Handle request.
Creates the request dictionary, and creates a `TASStreamOut` object
for the response, then calls `Application.dispatchRawRequest`, which
does the rest of the work (here we just clean up after).
"""
verbose = self._server._verbose
self._startTime = time.time()
requestDict = self.receiveDict()
if not requestDict:
return
if verbose:
uri = requestDict.has_key('environ') \
and requestURI(requestDict['environ']) or '-'
sys.stdout.write('%5i %s %s\n'
% (self._requestID, timestamp()['pretty'], uri))
requestDict['input'] = self.makeInput()
requestDict['requestID'] = self._requestID
streamOut = TASStreamOut(self._sock, bufferSize=self._server._responseBufferSize)
transaction = self._server._app.dispatchRawRequest(requestDict, streamOut)
try:
streamOut.close()
aborted = False
except ConnectionAbortedError:
aborted = True
try:
self._sock.shutdown(1)
self._sock.close()
except Exception:
pass
if verbose:
duration = ('%0.2f secs' % (time.time() - self._startTime)).ljust(19)
sys.stdout.write('%5i %s %s\n\n' % (self._requestID, duration,
aborted and '*connection aborted*' or uri))
transaction._application = None
transaction.die()
del transaction
def makeInput(self):
"""Create a file-like object from the socket."""
return self._sock.makefile("rb", self._server._requestBufferSize)
def runMainLoopInThread():
return os.name == 'nt'
doesRunHandleExceptions = True
class RestartAppServerError(Exception):
"""Raised by DebugAppServer when needed."""
pass
_chdir = os.chdir
def chdir(path, force=False):
"""Execute os.chdir() with safety provision."""
assert force, \
"You cannot reliably use os.chdir() in a threaded environment.\n" \
+ 16*" " + "Set force=True if you want to do it anway (using a lock)."
_chdir(path)
def run(workDir=None):
"""Start the server (`ThreadedAppServer`).
`workDir` is the server-side path for the server, which may not be
the ``Webware/WebKit`` directory (though by default it is).
After setting up the ThreadedAppServer we call `ThreadedAppServer.mainloop`
to start the server main loop. It also catches exceptions as a last resort.
"""
global server
server = None
global exitStatus
exitStatus = 0
os.chdir = chdir
runAgain = True
while runAgain:
try:
try:
runAgain = False
server = ThreadedAppServer(workDir)
if runMainLoopInThread():
def _windowsmainloop():
global exitStatus
try:
server.mainloop()
except SystemExit, e:
exitStatus = e[0]
t = threading.Thread(
target=_windowsmainloop)
t.start()
try:
while server._running > 1:
try:
time.sleep(1)
except Exception:
if server._running < 3:
raise
finally:
t.join()
else:
server.mainloop()
sys.exit(exitStatus)
except RestartAppServerError:
print
print "Restarting AppServer:"
sys.stdout.flush()
sys.stderr.flush()
runAgain = True
except SystemExit, e:
print
print "Exiting AppServer%s." % (
e[0] == 3 and ' for reload' or '')
exitStatus = e[0]
except KeyboardInterrupt:
print
print "Exiting AppServer due to keyboard interrupt."
exitStatus = 0
except Exception, e:
if isinstance(e, IOError) and e[0] == errno.EINTR:
print
print "Exiting AppServer due to interrupt signal."
exitStatus = 0
else:
if doesRunHandleExceptions:
if not server and isinstance(e, ProcessRunning):
print "Error:", str(e)
else:
print
traceback.print_exc()
print
print "Exiting AppServer due to above exception."
exitStatus = 1
else:
raise
finally:
sys.stdout.flush()
sys.stderr.flush()
if server and server._running:
server.initiateShutdown()
server._closeThread.join()
AppServerModule.globalAppServer = None
sys.stdout.flush()
sys.stderr.flush()
os.chdir = _chdir
return exitStatus
def shutDown(signum, frame):
"""Signal handler for shutting down the server."""
print
print "App server has been signaled to shutdown."
if server and server._running > 2:
print "Shutting down at", asclocaltime()
sys.stdout.flush()
server._running = 2
if signum == SIGINT:
raise KeyboardInterrupt
elif signum == SIGHUP:
sys.exit(3)
else:
sys.exit(0)
else:
print "No running app server was found."
try:
import threadframe
def threadDump(signum, frame):
"""Signal handler for dumping thread stack frames to stdout."""
print
print "App server has been signaled to attempt a thread dump."
print
print "Thread stack frame dump at", asclocaltime()
sys.stdout.flush()
frames = threadframe.dict()
items = frames.items()
items.sort()
print
print "-" * 79
print
for threadId, frame in items:
print "Thread ID: %d (reference count = %d)" % (
threadId, sys.getrefcount(frame))
print ''.join(traceback.format_list(traceback.extract_stack(frame)))
items.sort()
print "-" * 79
sys.stdout.flush()
except ImportError:
threadDump = None
import signal
try:
SIGHUP = signal.SIGHUP
signal.signal(SIGHUP, shutDown)
except AttributeError:
SIGHUP = None
try:
SIGTERM = signal.SIGTERM
signal.signal(SIGTERM, shutDown)
except AttributeError:
SIGTERM = None
try:
SIGINT = signal.SIGINT
signal.signal(SIGINT, shutDown)
except AttributeError:
SIGINT = None
if threadDump:
try:
SIGQUIT = signal.SIGQUIT
signal.signal(SIGQUIT, threadDump)
except AttributeError:
SIGQUIT = None
try:
SIGBREAK = signal.SIGBREAK
signal.signal(SIGBREAK, threadDump)
except AttributeError:
SIGBREAK = None
import re
settingRE = re.compile(r'^(?:--)?([a-zA-Z][a-zA-Z0-9]*\.[a-zA-Z][a-zA-Z0-9]*)=')
from MiscUtils import Configurable
usage = re.search('\n.* arguments:\n\n(.*\n)*?\n', __doc__).group(0)
def main(args):
"""Command line interface.
Run by `Launch`, this is the main entrance and command-line interface
for ThreadedAppServer.
"""
function = run
daemon = False
workDir = None
for i in args[:]:
if settingRE.match(i):
match = settingRE.match(i)
name = match.group(1)
value = i[match.end():]
Configurable.addCommandLineSetting(name, value)
elif i == "stop":
function = AppServerModule.stop
elif i == "daemon":
daemon = True
elif i == "start":
pass
elif i[:8] == "workdir=":
workDir = i[8:]
else:
print usage
return
if daemon:
if os.name == "posix":
pid = os.fork()
if pid:
sys.exit()
else:
print "Daemon mode not available on your OS."
return function(workDir=workDir)