AddSpecialGapOfNumericalSemigroup
5.1-2AmbientNumericalSemigroupOfIdeal
7.1-5AnIrreducibleNumericalSemigroupWithFrobeniusNumber
6.1-4AperyListOfNumericalSemigroupAsGraph
3.1-6AperyListOfNumericalSemigroupWRTElement
3.1-4ArfNumericalSemigroupClosure
8.2-2BelongsToIdealOfNumericalSemigroup
7.1-7BelongsToNumericalSemigroup
2.2-6BezoutSequence
A.1-1BlowUpIdealOfNumericalSemigroup
7.1-13CeilingOfRational
A.1-3DecomposeIntoIrreducibles
6.1-6DifferenceOfIdealsOfNumericalSemigroup
7.1-11DrawAperyListOfNumericalSemigroup
3.1-5FortenTruncatedNCForNumericalSemigroups
4.1-1FrobeniusNumber
3.2-2FrobeniusNumberOfNumericalSemigroup
3.2-1FundamentalGapsOfNumericalSemigroup
3.3-2GapsOfNumericalSemigroup
3.3-1GeneratorsOfIdealOfNumericalSemigroup
7.1-4GeneratorsOfIdealOfNumericalSemigroupNC
7.1-4GeneratorsOfNumericalSemigroup
3.1-2GeneratorsOfNumericalSemigroupNC
3.1-2GraphAssociatedToElementInNumericalSemigroup
4.1-3HilbertFunctionOfIdealOfNumericalSemigroup
7.1-12IdealOfNumericalSemigroup
7.1-1IntersectionOfNumericalSemigroups
5.1-3IrreducibleNumericalSemigroupsWithFrobeniusNumber
6.1-5IsAperyListOfNumericalSemigroup
2.2-4IsArfNumericalSemigroup
8.2-1IsBezoutSequence
A.1-2IsIdealOfNumericalSemigroup
7.1-2IsIrreducibleNumericalSemigroup
6.1-1IsMEDNumericalSemigroup
8.1-1IsModularNumericalSemigroup
2.2-1IsNumericalSemigroup
2.2-1IsNumericalSemigroupByAperyList
2.2-1IsNumericalSemigroupByFundamentalGaps
2.2-1IsNumericalSemigroupByGaps
2.2-1IsNumericalSemigroupByGenerators
2.2-1IsNumericalSemigroupByInterval
2.2-1IsNumericalSemigroupByMinimalGenerators
2.2-1IsNumericalSemigroupByOpenInterval
2.2-1IsNumericalSemigroupBySmallElements
2.2-1IsNumericalSemigroupBySubAdditiveFunction
2.2-1IsProportionallyModularNumericalSemigroup
2.2-1IsPseudoSymmetricNumericalSemigroup
6.1-3IsSubsemigroupOfNumericalSemigroup
2.2-5IsSymmetricNumericalSemigroup
6.1-2MaximalIdealOfNumericalSemigroup
7.1-14MEDNumericalSemigroupClosure
8.1-2MinimalArfGeneratingSystemOfArfNumericalSemigroup
8.2-3MinimalGeneratingSystemOfIdealOfNumericalSemigroup
7.1-3MinimalGeneratingSystemOfNumericalSemigroup
3.1-2MinimalMEDGeneratingSystemOfMEDNumericalSemigroup
8.1-3MinimalPresentationOfNumericalSemigroup
4.1-2ModularNumericalSemigroup
2.1-2MultipleOfIdealOfNumericalSemigroup
7.1-9MultiplicityOfNumericalSemigroup
3.1-1NumericalSemigroup
2.1-1NumericalSemigroupByAperyList
2.1-4NumericalSemigroupByFundamentalGaps
2.1-4NumericalSemigroupByGaps
2.1-4NumericalSemigroupByGenerators
2.1-4NumericalSemigroupByInterval
2.1-4NumericalSemigroupByMinimalGenerators
2.1-4NumericalSemigroupByMinimalGeneratorsNC
2.1-4NumericalSemigroupByOpenInterval
2.1-4NumericalSemigroupBySmallElements
2.1-4NumericalSemigroupBySubAdditiveFunction
2.1-4NumericalSemigroupsWithFrobeniusNumber
5.2-2OverSemigroupsNumericalSemigroup
5.2-1ProportionallyModularNumericalSemigroup
2.1-3PseudoFrobeniusOfNumericalSemigroup
3.2-3QuotientOfNumericalSemigroup
5.1-4RandomListForNS
B.1-2RandomListRepresentingSubAdditiveFunction
B.1-5RandomModularNumericalSemigroup
B.1-3RandomNumericalSemigroup
B.1-1RandomProportionallyModularNumericalSemigroup
B.1-4RemoveMinimalGeneratorFromNumericalSemigroup
5.1-1RepresentsGapsOfNumericalSemigroup
2.2-3RepresentsPeriodicSubAdditiveFunction
A.2-1RepresentsSmallElementsOfNumericalSemigroup
2.2-2SmallElementsOfIdealOfNumericalSemigroup
7.1-6SmallElementsOfNumericalSemigroup
3.1-3SpecialGapsOfNumericalSemigroup
3.3-3SubtractIdealsOfNumericalSemigroup
7.1-10SumIdealsOfNumericalSemigroup
7.1-8
generated by GAPDoc2HTML