
Lire Developer’s Manual

Joost van Baal

Egon L. Willighagen

Francis J. Lacoste

Lire Developer’s Manual
by Joost van Baal, Egon L. Willighagen, and Francis J. Lacoste

Copyright © 2000, 2001, 2002 Stichting LogReport Foundation

This manual is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free

Software Foundation; either version 2 of the License, or (at your option) any later version.

This is distributed in the hope that it will be useful, butwithout any warranty; without even the implied warranty ofmerchantabilityor fitness for a

particular purpose. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this manual (see COPYING); if not, check with

http://www.gnu.org/copyleft/gpl.html (http://www.gnu.org/copyleft/gpl.html) or write to the Free Software Foundation, Inc., 59 Temple Place -

Suite 330, Boston, MA 02111, USA.

Revision History

Revision 1.1 $Date: 2002/08/18 23:37:45 $
$Id: dev-manual.dbx,v 1.55 2002/08/18 23:37:45 flacoste Exp $

Table of Contents
Preface...i

What This Book Contains...i
How Is This Book Organized?..i
Conventions Used...i
If You Don’t Find Something In This Manual..i

I. Lire Architecture ...i

1. Architecture Overview...1
Lire’s Design Patterns...2
Log File Normalisation...2
Log Analysis...4
Report Generation..5
Report Formatting and Other Post-Processing...6
Going Further...8

II. Using the Lire Framework ...1

2. Writing a New Superservice..2
DLF Design..3
The DLF Schema..3

3. Writing New Service..4
Writing a Log File to DLF Converter...4
API for 2DLF Scripts...4

4. Writing a New Report..5
Report Information...5
Report’s Display Specification...5
Filter Specification..5
Calculation Specification..5

5. Writing Advanced Reports...6
Using a Derived Schema..6
Writing Extension Reports...6

III. Developer’s Reference...7

6. Schemas Reference..8
Schemas for the database Superservice..8

DLF Schema for Database service..8
Extended Schemas for the database Superservice..10

Query Type Extended Schema for Database Superservice.................................10
Schemas for the dialup Superservice..10

DLF Schema for Dialup service...11
Schemas for the dns Superservice..13

DLF Schema for DNS service..13
Schemas for the dnszone Superservice...14

DLF Schema for DNS Zone service...15
Schemas for the email Superservice...17

DLF Schema for Email service...17
Extended Schemas for the email Superservice...21

Email Extended Schema for Email service...22

iii

Schemas for the firewall Superservice..22
DLF Schema for Firewall service...22

Schemas for the ftp Superservice...26
DLF Schema for FTP service...26

Schemas for the msgstore Superservice...30
DLF Schema for Message Store service...30

Schemas for the print Superservice..33
DLF Schema for Print service...33
Extended Schemas for the print Superservice..35

Sheet Count Extended Schema for Print service...36
Schemas for the proxy Superservice..36

DLF Schema for Proxy superservice..36
Schemas for the syslog Superservice...42

DLF Schema for Syslog superservice...43
Schemas for the www Superservice...44

DLF Schema for WWW service...44
Extended Schemas for the www Superservice...47

Attack Extended Schema for WWW service..47
Domain Extended Schema for WWW service..48
Robot Extended Schema for WWW service...48
Search Engine Extended Schema for WWW service..49
URL Extended Schema for WWW service...50
User Agent Extended Schema for WWW service..51

Derived Schemas for the www Superservice..52
User Session Derived Schema for WWW service..52

IV. Lire Developers’ Conventions..56

7. Contributing Code to Lire..57
8. Developers’ Toolbox..58

Required Tools To Build From CVS..58
Accessing Lire’s CVS...58

CVS primer...58
SourceForge..59
Mailing Lists...59

9. Coding Standards...60
Shell Coding Standards..60
Perl Coding Standards..60

10. Commit Policy...61
CVS Branches..61

Hands-on example..61
Naming, what it looks like..61
Creating a Branch...62
Accessing a Branch...62
Merging Branches on the Trunk...62

11. Testing..64
12. Making a Release...65

Setting version in NEWS file...65
Tagging the CVS..65

iv

Building The "Standard" Tarball..65
Building The "Full" Tarball..66
Building The Debian Package..67
Building The RPM Package...68
Uploading The Release...68

The LogReport Webserver..68
Advertising The Release...69

SourceForge..69
Freshmeat.net..70

13. Website Maintenance...71
Documentation on the LogReport Website..71

Publishing the DTD’s..71
14. Writing Documentation..72

Plain Text..72
Perl’s Plain Old Documentation: maintaining manpages...72
Docbook XML: Reference Books and Extensive User Manuals...72
UML Diagrams...73

UML Editing...73
Diagram Types..73

V. Implementation Details ..74

15. Issues with Report Merging...75
16. Overview of Lire scripts...78
17. Source Tree Layout..80

Glossary..81

v

List of Figures
1-1. Log Processing in the Lire’s Framework..1
1-2. The Log Normalisation Process...3
1-3. The Log Analysis Process..4
1-4. Report Generation Process...5
1-5. XSLT Processing of the XML Report..6
1-6. Processing of the XML Report Using The APIs..7

List of Examples
1. DNS DLF Excerpts..81

vi

Preface
Log file analysis is both an essential and tedious part of system administration. It is essential because it’s
the best way of profiling the usage of the service installed on the network. It’s tedious because programs
generate a lot of data and tools to report on this data are often unavailable or incomplete. When such
tools exist, they are generally specific to one product, which means that you can’t compare e.g. your
Qmail and Exim mail servers.

Lire is a software package developed by the Stichting LogReport Foundation to generate useful reports
from raw log files of various network programs. Multiple programs are supported for various types of
network services. Lire also supports various output formats for the generated reports.

What This Book Contains
This book is theLire Developer’s Manual. Its purpose is to present Lire as a log analysis framework. To
this ends, it describes the architecture and design of Lire and contains comprehensive instructions on
how to use it. Its intended audience is system administrators or programmers who want to extend Lire or
want to understand its internals.

There is another book, theLire User’s Manualwhich describes how to install, configure and use Lire, as
a “off-the-shelf” log analyzer. Its intended audience is system administrators who want to install and use
Lire to gather information about the services operating on their network.

How Is This Book Organized?
This book is divided in five parts.Part Igives an overview of the architecture and design of Lire.

You will find in Part II information on extending Lire. In this part, you will learn how to add a new DLF
format to Lire, write log file converters and add reports for a superservice.

Part III is a reference section which gives comprehensive details about the various XML formats used by
Lire and gives in-depth descriptions of its various APIs.

Part IV is targeted at developers who want to participate in Lire’s development. It contains information
about CVS access, coding conventions, tools needed to build from CVS, release management and other
aspects important to those part of the Lire development team. Furthermore, it gives some information on
how to contribute code to Lire, as an external party.

Finally, Part Vcontains various implementation details that may be interesting to people wanting to learn
more about Lire internals.

Conventions Used

i

Preface

If You Don’t Find Something In This Manual
You can report typos, incorrect grammar or any other editorial problems to <bugs@logreport.org >.
We welcome reader’s feedback. If you feel that certain parts of this manual aren’t clear, are missing
information or lacking in any other aspect, please tell us. Of course, if you feel like writing the missing
information yourself, we’ll very happily accept your patch. We will make our best effort to improve this
manual.

Remember, that there is another manual, theLire User’s Manualwhich contains comprehensive
information on how to install, use and configure Lire. It also contains reference information about all of
Lire’s standard reports and supported services.

There are various public mailing lists for Lire’s users. There is a general users’ discussion list where you
can find help on how to install and use Lire. You can subscribe to this list by sending an empty email
with a subject ofsubscribeto <questions-request@logreport.org >. Email for the list should be
sent to <questions@logreport.org >.

You can keep track of Lire’s new release by subscribing to the announcement mailing list. You can
subscribe yourself by sending an empty email with a subject ofsubscribeto
<announcement-request@logreport.org >.

Finally, if you’re interested in Lire’s development, there is a development mailing list to which you can
subscribe by sending an empty email with a subject ofsubscribeto
<development-request@logreport.org >. Email to the list should be sent to
<development@logreport.org >.

All posts on these lists are archived on a public website.

ii

I. Lire Architecture

Chapter 1. Architecture Overview
From a developer’s point of view, Lire intends to be the universal log analysis framework. To this end, it
provides a reliable, complete, framework upon which to build log analysis and reporting solution. Lire,
the tool, is a proof of the versality and extendability of the framework as it is able to produce reports for
many of the services that run in today’s heterogeneous networks in a variety of output formats.

As a framework, Lire is the best choice to replace all those home-grown scripts developed to produce
reports from all the log files from the little-known products or custom-developed programs that run on
your system. Leveraging Lire framework will make those scripts a lot more versatile while not being
really more complicated to develop. It will be easier to add new reports or to support multiple report
formats.

Figure 1-1. Log Processing in the Lire’s Framework

Normalisation

Analysis

Report
Generation

Formatting &
 Post-Processing

1

Chapter 1. Architecture Overview

The Lire’s framework divides log analysis in four different processes. The figureFigure 1-1shows those
four processes:

1. Log Normalisation. The first process normalise logs from different products into a generic format
that can be shared by all products that have similar functionality. For example, log files from
products as different as Apache and Microsoft Internet Information Server will be transformed into
an identical format.

2. Log Analysis. In the analysis process, other information is created, inferred or extracted from the
normalised data. For example, an anlyser in the www superservice infers the browser used by the
client from the referrer information.

3. Report Generation.The third process generates a report from the normalised and analysed data.
This process is done by a generic report engine that computes the report based on specifications
describing what and how the information should appear in the report. The report is generated in a
generic XML format.

4. Report Post-processing and Formatting.The last process converts the generic report into a
specific format like ASCII, PDF, HTML but other kind of post-processing (like charts generation)
can also be accomplished in this stage.

Before going into a more detailed description of each of these procesesses, we’ll introduce some of the
common design’s patterns that you’ll find throughout the Lire’s framework.

Lire’s Design Patterns
At the center of each of these processes is an XML based file format. Having things specified in data files
makes it easier to extend. For example, the reports are built using a generic report builder which finds the
instructions on how to build the reports in XML files. So this makes it easy to add new information to a
report: you just have to write an XML file. The fact that there are a lot of tools to process XML files is
also an interesting aspect. For example, emacs lovers will appreciate the help that its psgml module gives
them in writing report specifications.

Another important aspects is that we tried to interoperate and to build upon other standards while
defining our XML formats . The best illustration of this is that in all the XML file formats that Lire use, a
DocBook subset is used for all elements related to narrative descriptions.

Another common aspect you’ll encounter is that each of these processes and XML file formats come
with an API to manipulate them, making it easy to add functionalities at each processing stage. APIs are
also a good thing because, even if in theory an open file format somewhat constitutes an API, having
libraries that provide convenient access to the file formats makes it a lot easier to write new components
providing new functionalities.

2

Chapter 1. Architecture Overview

Log File Normalisation

Figure 1-2. The Log Normalisation Process

Service Level

Superservice Level

DLF Converter

Native Log File

Base DLF Data

DLF Converter
API

Base DLF Schema

The first process of the Lire log analysis framework is the log file normalisation process. That process is
summarized in theFigure 1-2figure. This process is centered around theDLF concept which is kind of a
universal log format. DLF stands for Distilled Log Format. The concept is that each product specific log
file is transformed into a log format that can be common to all the products providing similar
functionalities. In Lire’s terminology, a class of applications providing similar functionality (e.g. MTA’s
supplying email) is called asuperservice. Still in Lire’s terminology, theservicefrom which the super is
derived (e.g. postfix or sendmail) refers to the native log format that is converted in the superservice’s
DLF. One can view the DLF as a table where the rows are the logged events and the fields are logged
information related to each event.

Since the information logged by an email server is totally different from a web server, each superservice
should have its own data models. In Lire, the data model is called a DLFschema. The DLF schemas are
defined in XML files using the DLF Schema Markup Language. The schema describes what fields are
available for each logged events.

One interesting aspect of Lire, is that altough the email DLF is used by all email servers, the email DLF
data model isn’t restricted to the lowest common denominator across the log formats supported by each
email servers. In the Lire’s architecture, the superservice’s schema can represent the information logged
by the most sophisticated product. When some part of the information isn’t available in one log format,
the DLF log file will contain this information and the reports that needs this information won’t be
included.

This architecture means that to support a new service, i.e. a new log format, in Lire you just need to write

3

Chapter 1. Architecture Overview

a plugin, called a DLF converter. This is just a simple perl script that parses the native log format and
maps the information according to the schema.

Log Analysis
After normalisation, comes the analysis process. The analysis process responsability is to extracts, infers
or derives other information from the logged data. Since the superservice’s logged data is in a standard
format, the analysers are generic in the sense that they can operate for all the superservice’s supported
log formats, if the product’s was clever enough to log the information required by the analyser. The
analysis process is shown in theFigure 1-3figure.

Figure 1-3. The Log Analysis Process

Base DLF Data

Analysis APIExtended
Analyser

Derived
Analyser

Extended
DLF Schema

Derived
DLF Schema

Extended
 DLF Data

Derived
DLF Data

Since each analyser can add information to or create a new DLF, each analyser will generate data
according to special kind of schemas.

Lire’s framework include two kind of analysers. The difference between the two resides in the mapping
between the source data and the new data they generate. Extended analysers generate new data for each
DLF record whereas derived analysers are used when the new data doesn’t have a one-to-one mapping
with the source data.

The analysers produce data according to a data model which is specified in other DLF schemas. There
areextendedschemas andderivedschemas. An extended schema simply adds new fields to the base

4

Chapter 1. Architecture Overview

superservice’s schema. For example, in the web superservice’s schema, a lot of information can be
obtained from the referer field. From this information, it is possible to guess the user’s browser, language
or operating system. Those fields are specified in the www-referer extended schema; one analyser is
responsible for extracting this information from the referer field.

But sometimes the analysis cannot just simply add information to each event record, an altogether
different schema is needed then. For those cases, there is the derived schema. An example of the use of
such a schema in the current Lire distribution is the analyser which creates user sessions based on the
logged client IP address and user agent. This analyser defines the www-session derived schema.

Analysers are simple perl modules that receive the base superservice’s DLF records and output DLF
records in the extended or derived schema. The architecture supports cascading of schemas; this feature
isn’t used anywhere now.

Report Generation
Once you have all this data, it’s time to generate some useful reports out of it. Lire’s framework includes
a generic report builder. What Lire calls areport is actually acollectionof what one may understand as
reports; Lire however speaks about asubreports. For example, the proxy’s superservice report will
contain subreports about the top visited sites, another subreport on the cache hit ratio, as well as several
others. The subreports are defined using theReport Specification Markup Language. This markup
language contains elements for several things: information regarding the schema on which it operates;
descriptions that should be included in the generated report to help in the interpretation of the data;
parameters that can be used to modify the generated report (for example, to generate a top 20 subreport
instead of a top 10); a filter that selects the records that will be used for the subreport; and finally the
operations that make up the subreport: grouping, summing, counting, etc. The report markup language
covers most simple needs and there is an extension element as well as an API that can be used to hook in
more fancy computations. There are no subreport specifications in the current distribution that make use
of this feature yet, however. You can see an overview of this process in theFigure 1-4figure.

5

Chapter 1. Architecture Overview

Figure 1-4. Report Generation Process

Report Specification
API

Report
Specification

Report
Specification

Report
Specification

Report
Specification

 DLF Data

XML Report

ASCII Implementation

SQL Implementation

The actual computation of the subreport is delegated to another module of the framework. Presently, the
DLF concept is implemented as simple space delimited log files. This makes it very portable and very
simple, but for huge amounts of log data this isn’t necessarily the best solution. But it would be easy to
switch to a database driven backend where the DLF records are hold in tables and the subreport
specifications are mapped to SQL queries.

The generated report is another XML file that uses another markup language, this time called the Lire’s
Report Markup Language. An actual report contains the help descriptions from the report specifications,
information on the subreport specifications used, as well as the actual subreport’s data.Using another
intermediary XML file as output format makes all sort of things possible in the formatting and
post-processing stage.

Report Formatting and Other Post-Processing
The last process works with the generic XML report. Using a domain-specific XML format for the
generated format makes it easy for the framework to support multiple different formats. Supporting a
new output format is just a matter of writing a new module that processes the XML report file.

6

Chapter 1. Architecture Overview

Figure 1-5. XSLT Processing of the XML Report

XML Report

XSLT
Stylesheet

DocBook XML
Report

XML Report

XSLT
Stylesheet

HTML Report

There are many ways to do this. Of course, there is the XSLT way which can be used to format the report
using stylesheets to convert to other XML formats. That’s how we support the HTML, XHTML, LogML
and PDF formats. FigureFigure 1-5gives an example of such processing.

7

Chapter 1. Architecture Overview

Figure 1-6. Processing of the XML Report Using The APIs

XML Report

Report APIChart
Generator

Excel
Formatter

ChartChartChart XML Report

XML ReportXML ReportXML Report

As shown in theFigure 1-6figure, you can also process the XML files using the APIs to the XML report
format. That’s how charts generation and the Excel backend are implemented. There’s actually two APIs
to process XML reports; one is event based and the other is object based. That’s making different styles
of programming possible. That’s the equivalent of the SAX vs DOM model in the XML world.

Going Further
As you can see form this overview, the Lire framework provides a powerful architecture to use for your
log analysis needs. The architecture provides extensibility from log normalisation to post-processing of
the reports. Exactly how to use the framework is the topic of the next part.

8

II. Using the Lire Framework

Chapter 2. Writing a New Superservice
Writing a new superservice involves several things:

1. Making new directories in CVS:

• /service/<superservice>/

• /service/<superservice>/script/

• /service/<superservice>/reports/

2. Adding several files:

• /service/<superservice>/Makefile.am

• /service/<superservice>/reports/Makefile.am

• /service/<superservice>/script/Makefile.am

• /service/<superservice>/<superservice>.cfg

• /service/<superservice>/<superservice>.xml This file specifies the DLF format of the
superservice. Ideally, it should offer a place for each and every snippet of information which will
ever be found in a logfile from a program which offers functionality defined by the superservice.
This file should have documentation embedded; this will show up in this manual.

3. Writing service plugins (2dlf scripts):

• /service/<superservice>/script/<service>2dlf.in

4. Adapting several files:

• /service/configure.in (add the Makefiles and 2dlf script to AC_OUTPUT, to get them
converted from <service>2dlf.in to <service>2dlf.)

• /service/Makefile.am (add the superservice directory to SUBDIRS, so that make gets run
there too, when called from the root source directory.)

• /service/all/etc/address.cf (to make the new service known as a member of a
superservice.)

5. Update Documentation:

• User Manual: Chapter "Supported Applications".

• Add manpages for scripts

• This document: add a referal to the superservice-schemas.dbx file, which gets build from
superservice.xml.

• The User Manual: add referals to superservice-reports-infos.dbx and
superservice-filters-infos.dbx.

6. Updatelr_config

2

Chapter 2. Writing a New Superservice

DLF Design

The DLF Schema

3

Chapter 3. Writing New Service
Since Lire 1.1, adding a service is as simple as sticking your 2dlf script in
libexec/lire/convertors/ and registering it as belonging to a superservice inaddress.cf .

Writing a Log File to DLF Converter

API for 2DLF Scripts

4

Chapter 4. Writing a New Report
Writing a new report involves writing a report specification, e.g.
/service/<superservice>/reports/top-foo-by-bar.xml , and adding this report along with
possible configuration parameters to<service>.cfg . E.g., to create a new report, based upon
email/from-domain.xml : copy the file/usr/local/etc/lire/email.cfg to
~/.lire/etc/email.cfg . Copy the file
/usr/local/share/lire/reports/email/top-from-domain.xml to e.g.
/usr/local/share/lire/reports/email/from-domain.xml . Edit the last file to your needs, and
enable it by listing it in your~/.lire/etc/email.cfg .

Beware! The name of the report generally consists of alphanumerics and ’-’, but the name of parameters
maynot contain any ’-’ characters. It generally consists of alphanumerics and ’_’ characters.

Report Information

Report’s Display Specification

Filter Specification
For now, you’ll have to refer to the example filters as found in the current report specification files. We’ll
give one other example here: specifying a time range.

Suppose you want to be able to report on only a specific time range. You could build a (possibly global
and reused) filter like:

<filter-spec>
<and>

<ge arg1="$timestamp" arg2="$period-start"/>
<le arg1="$period-end" arg2="$timestamp"/>

</and>
</filter-spec>

Calculation Specification

5

Chapter 5. Writing Advanced Reports

Using a Derived Schema

Writing Extension Reports

6

III. Developer’s Reference

Chapter 6. Schemas Reference
This chapter documents the available schemas in the standard Lire suite. For each superservice, the base
schema is explained, followed by any extended and derived schemas.

Schemas for the database Superservice

DLF Schema for Database service

Schema ID: database

Timestamp Field: time

A record in the database DLF schema represents one event in the database. This may be a connection
from a client, a SQL query, etc.

Fields in the Schema

time

Type: timestamp
Defaults: 0

The time at which the event occured.

user

Type: string
Defaults: -

The name of the user who executed the command.

remote_host

Type: hostname
Defaults: -

The host from which the user executed the command.

8

Chapter 6. Schemas Reference

action

Type: string
Defaults: -

The command that was executed. Commands you are likely to encounter areconnect ,
disconnect , shutdown andquery .

database

Type: string
Defaults: -

The database name on which the command was executed.

query

Type: string
Defaults: -

When thecommandfield is aquery , this field contains the actual SQL query that was executed.

success

Type: bool
Defaults: -

Did the command succeeded?

result

Type: string
Defaults: -

9

Chapter 6. Schemas Reference

When thesuccess field is false , i.e. when the command failed, this field should contains the
logged error message.

connection_id

Type: int
Defaults: -

An "appropriate" "connection label" for the backend that can be used for session analysis in
conjunction with thetimestamp , username anddatabase fields. This can be a connection
identifier, a PID, a real session ID or whatever makes sense in the particular backend.

Extended Schemas for the database Superservice

Query Type Extended Schema for Database Superservice

Schema ID: database-querytype

Base Schema: database

Module: Lire::Extensions::Database::DatabaseSchema

Required Fields: query

An extended schema for the database superservice which extracts the query type from the query that was
made.

Fields in the Schema

querytype

Type: string
Defaults: -

The type of SQL query that was made. This will be usually be something likeSELECT, INSERT,
UPDATE, DELETEor other administrative commands. In the case of nested queries, this will be the
type of the outer-most query.

10

Chapter 6. Schemas Reference

Schemas for the dialup Superservice

DLF Schema for Dialup service

Schema ID: dialup

Timestamp Field: time

The dialup DLF schema represents each connection attempt with one DLF record.

Fields in the Schema

time

Type: timestamp
Defaults: 0

The time at which the dial up connection started.

local_number

Type: string
Defaults: -

Telephone number of the local telephone.

telephone_number

Type: string
Defaults: -

Telephone number which is being called.

connection_time

Type: duration
Defaults: 0

11

Chapter 6. Schemas Reference

The duration of the dial up connection.

direction

Type: string
Defaults: -

Direction of the connection.Inbound connections are those in which is machine on which the log
is recorded is called, while inoutbound connections the machine makes the call.

connection_type

Type: string
Defaults: -

The type of the connection:speech or data .

connect_status

Type: string
Defaults: -

The status of the connection:busy , ring , failed or connected . A failed connection happens
when the dialed telephone number does not exist (is unallocated).

hangup_status

Type: string
Defaults: -

The status of the connection:no_answer , unallocated or normal . An unallocated telephone
number is a number that does not exist.

12

Chapter 6. Schemas Reference

cost

Type: number
Defaults: 0

The total cost of the dial up connection.

cost_currency

Type: string
Defaults: -

The currency in which the cost is expressed.

Schemas for the dns Superservice

DLF Schema for DNS service

Schema ID: dns

Timestamp Field: time

Each records in the DNS DLF schema represents a query that was made to the DNS server, zone
transfers or other types of administrative information isn’t represented in the schema.

Fields in the Schema

time

Type: timestamp
Defaults: 0

The time at which the query was processed by the server.

13

Chapter 6. Schemas Reference

requesting_host

Type: hostname
Defaults: -

The host that made the request.

request

Type: hostname
Defaults: -

The content of the DNS request. DNS queries are usually about an hostname.

type

Type: string
Defaults: -

The record type that was requested. Common DNS record types are PTR, A, CNAME, etc.

resolver

Type: string
Defaults: -

This field containsrecurs if the requests was recursive, that is probably made by a client for which
we are configured as primary DNS server. Otherwise this field containsnorecurs to denotes that
the request wasn’t recursive. Non-recursive requests are usually made by a DNS server which is
processing a recursive request from one client.

14

Chapter 6. Schemas Reference

Schemas for the dnszone Superservice

DLF Schema for DNS Zone service

Schema ID: dnszone

Timestamp Field: time

This DLF file is adequate to represent most common information about dnszone operations:
approved/denied AXFR requests, completed zone transfers, loaded master and slave zones and denied
dynamic DNS updates. See also the bind8_named2dlf manpage for some more info on the dnszone DLF
format.

Fields in the Schema

server

Type: hostname
Defaults: -

Name of the DNS server.

time

Type: timestamp
Defaults: 0

The time of the event.

axfr_host

Type: ip
Defaults: -

IP address of the host requesting the AXFR.

axfr_zone

Type: hostname

15

Chapter 6. Schemas Reference

Defaults: -

Name of the zone being requested. E.g. foo.example.com.

axfr_what

Type: string
Defaults: -

Either approved, denied or axfr.

loaded_zone

Type: hostname
Defaults: -

Name of the zone just loaded. E.g. foo.example.com.

loaded_serial

Type: number
Defaults: 0

Serial of the zone just loaded, as in the DNS SOA record. E.g. 2002071301 or 1024654055.

loaded_role

Type: string
Defaults: -

Either master or slave.

16

Chapter 6. Schemas Reference

updatedenied_host

Type: ip
Defaults: -

IP address of the host requesting the update.

updatedenied_zone

Type: hostname
Defaults: -

Name of the zone being updated.

Schemas for the email Superservice

DLF Schema for Email service

Schema ID: email

Timestamp Field: time

The email DLF schema represents delivery done by an mail transfer agent between oneonerecipient.
Each DLF record contains the information related to the process of delivering between one sender and
one recipient. Each exchange between one sender and one recipient will results inone and only oneDLF
record. If one sender is sending to multiple recipients, the DLF file should contains one record for each
recipient.

Warning
This DLF schema is different from the other ones because it contains pre-analysed
data. It is currently in redesign and will become something that will more closely
resemble what you can usually find in an email log file. Different information for
each phase of the mail delivery process.

That schema will probably become a derived schema from the new base schema.

17

Chapter 6. Schemas Reference

Fields in the Schema

time

Type: timestamp
Defaults: 0

The time of the first event regarding that delivery. That should be the time the email enter the
delivery process.

logrelay

Type: hostname
Defaults: -

The hostname on which the MTA is running.

Warning
That original intent of that field was to analyse email servers’ farm which
used syslog to centralize their logs. This method of analysis for multiple
servers was never actually used and is considerd obsolete.

queueid

Type: string
Defaults: -

The queue identifier. This should be the identifier that can be used to reconstitute the delivery
process from the native log file regarding the delivery that this DLF record represents.

msgid

Type: string
Defaults: -

The content of the Message-ID header of the delivered message.

18

Chapter 6. Schemas Reference

from_user

Type: string
Defaults: -

The local part of the sender’s email address.

from_domain

Type: hostname
Defaults: -

The hostname of the sender’s email address.

from_relay_host

Type: hostname
Defaults: -

The hostname from which the email was received. For email submitted via thesendmail interface
or other similar mechanism, this should belocalhost .

from_relay_ip

Type: ip
Defaults: -

The ip address from which the email was received. For email submitted via thesendmail interface
or other similar mechanism, this should be127.0.0.1 .

size

Type: bytes
Defaults: 0

19

Chapter 6. Schemas Reference

The size of the message.

delay

Type: duration
Defaults: 0

The time that it took to deliver the message. This should be equivalent to the time of the delivery
event minus the value of thetime field.

xdelay

Type: duration
Defaults: 0

Warning
This field was never actually used and is obsolete.

to_user

Type: string
Defaults: -

The local part of the recipient’s email address.

to_domain

Type: hostname
Defaults: -

The hostname of the recipient’s email address.

20

Chapter 6. Schemas Reference

to_relay_host

Type: hostname
Defaults: -

The hostname to which the email was delivered. If the recipient is a local user and this was the
"final" delivery, this should belocalhost .

to_relay_ip

Type: ip
Defaults: -

The ip address to which the email was delivered. If the recipient is a local user and this was the
"final" delivery, this should be127.0.0.1 .

stat

Type: string
Defaults: -

The status code of the delivery. Only standardized code aresent which is used when the delivery
succeeded without error anddeferred for when the email still wasn’t delivered at the end of the
log file. Other values are specific to each service.

xstat

Type: string
Defaults: -

The complete native status message related to the email’s delivery.

21

Chapter 6. Schemas Reference

Extended Schemas for the email Superservice

Email Extended Schema for Email service

Schema ID: email-email

Base Schema: email

Module: Lire::Extensions::Email::EmailSchema

Required Fields: from_user, from_domain, to_user, to_domain

This is an extended schema for the Email service which adds fields containing the complete email.

Fields in the Schema

from_email

Type: email
Defaults: -

The sender’s email address. That value is thefrom_user joined to thefrom_domain by an@.

to_email

Type: email
Defaults: -

The recipient’s email address. That value is theto_user joined to theto_domain by an@.

Schemas for the firewall Superservice

DLF Schema for Firewall service

Schema ID: firewall

Timestamp Field: time

The firewall schema can be used for three types of logs: packet filtering firewall, intrusion detection
system events and packet accounting devices.

22

Chapter 6. Schemas Reference

Fields in the Schema

time

Type: timestamp
Defaults: 0

The time of the event.

action

Type: string
Defaults: -

What action was associated with that packet. Eitherdenied or permitted .

protocol

Type: string
Defaults: -

The procotol of the packet. Common protocols are TCP, UDP or ICMP. This should be the IP
protocol not higer-level application protocol.

from_ip

Type: ip
Defaults: -

The source ip address on the packet.

from_port

Type: port
Defaults: -

23

Chapter 6. Schemas Reference

The source port (in the case of the TCP or UDP) protocol. This should be the ICMP type when the
protocol is ICMP.

from_host

Type: hostname
Defaults: -

The hostname associated with the source IP.

rcv_intf

Type: string
Defaults: -

The receiving interface. That should be the network interface on which the packet was received.
That field should contains the logical name or type of the interface.

rcv_hwaddr

Type: string
Defaults: -

The hardware address of the receiving interface. That’s the MAC address in the case of an ethernet
device.

to_ip

Type: ip
Defaults: -

The destination ip address on the packet.

24

Chapter 6. Schemas Reference

to_port

Type: port
Defaults: -

The destination port (in the case of the TCP or UDP) protocol. This should be the ICMP code when
the protocol is ICMP.

to_host

Type: hostname
Defaults: -

The hostname associated with the destination IP.

snt_intf

Type: string
Defaults: -

The sending interface. That should be the network interface on which the packet was sent (i.e. the
outgoing interface).

length

Type: bytes
Defaults: 0

The packet length (that is the header and payload length). This should be the total length of the
stream when the event represent multiple packets, for example, in the case of packet accounting
done on streams.

rule

Type: string
Defaults: -

25

Chapter 6. Schemas Reference

The rule that triggered that packet to be logged, denied, permitted, etc.

msg

Type: string
Defaults: -

A message associated with that packet. This could be an attack signature detected by a Network
Intrusion Detection System or anything of similar nature.

count

Type: int
Defaults: 1

The number of packets described by this event. This will be 1 in the case of a single packet. It can
be higher in the case where multiple packets are compressed into one event. Remember that the
length values should reflect the length of all those packets.

Schemas for the ftp Superservice

DLF Schema for FTP service

Schema ID: ftp

Timestamp Field: time

This DLF file is adequate to represent most common informations about ftp transfers. It has the
equivalent information of the xferlog format supported by many ftp servers.

Each DLF record in the FTP schema reprensents one FTP transfer, this schema isn’t adequate to
represents complete FTP session.

26

Chapter 6. Schemas Reference

Fields in the Schema

time

Type: timestamp
Defaults: 0

The time at which the transfer started.

transfer_time

Type: duration
Defaults: 0

The time taken by the transfer.

remote_host

Type: hostname
Defaults: -

The hostname of the client that initiated the transfer.

file_size

Type: bytes
Defaults: -

The number bytes transferred.

filename

Type: filename
Defaults: -

The filename that was transferred.

27

Chapter 6. Schemas Reference

transfer_type

Type: string
Defaults: -

The method used for the transfer. This willascii when ASCII conversion is used during the
transfer andbinary otherwise.

special_action_flag

Type: string
Defaults: -

A code used to represent special action accomplished by the server during the transfer. Valid codes
besides the default arecompress , uncompress andtar .

direction

Type: string
Defaults: -

This should beupload for incoming transfer anddowload for outgoing transfer.

access_mode

Type: string
Defaults: -

The type of authentication used. Valid values areanonymous when the use used anonymous login;
guest for guest login andauthenticated for when the user was authenticated through valid
credentials.

28

Chapter 6. Schemas Reference

username

Type: string
Defaults: -

The name of the authenticated user. In the case of guest or anonymous logins, this should be the
email address or other identifier given by the user on logon.

service_name

Type: string
Defaults: -

That’s the name through which the service was invoked. This will usually be FTP.

auth_method

Type: string
Defaults: -

Additional authentication that was done on the connection. The only defined value besides the
default isident for the case when the connection was authenticated through RFC1931
authentication.

auth_user_id

Type: string
Defaults: -

The user identification related to theauth_method mode of authentication.

completion_status

Type: string
Defaults: -

29

Chapter 6. Schemas Reference

This will be complete when the transfer completed successfully andincomplete when the
transfer was aborted before it completes.

Schemas for the msgstore Superservice

DLF Schema for Message Store service

Schema ID: msgstore

Timestamp Field: time

Each DLF records in the msgstore schema represents one command on the server. Not all fields will be
meaningful for every type of action.

Fields in the Schema

time

Type: timestamp
Defaults: 0

The timestamp of the event.

localserver

Type: hostname
Defaults: -

The hostname on which the message store is running. In the case of message store proxies, this will
be the target server.

client_name

Type: hostname
Defaults: -

The host name of the client related to the event.

30

Chapter 6. Schemas Reference

client_ip

Type: ip
Defaults: -

The ip address of the client related to the event.

user

Type: string
Defaults: -

The user name of the authenticated user associated with the connection.

protocol

Type: string
Defaults: -

The protocol used to access the message store. This will be usually one ofpop or imap .

prot_cmd

Type: string
Defaults: -

The command executed by the client. Defined commands arelogin , badlogin , select , create ,
etc.

session

Type: string
Defaults: -

31

Chapter 6. Schemas Reference

A session identifier used to relate the different records to one sesssion. Session identifier can be
reused.

messages_downloaded

Type: int
Defaults: 0

Number of messages downloaded.

bytes_downloaded

Type: bytes
Defaults: -

Number of bytes downloaded messages.

stored_messages

Type: int
Defaults: 0

Number of messages stored on the server.

stored_size

Type: int
Defaults: 0

Size of the messages stored on the server.

session_duration

Type: duration
Defaults: 0

32

Chapter 6. Schemas Reference

The length of the session.

Note: FIXME: When this field should be defined. On all events or only on the quit event?

status

Type: string
Defaults: -

The status of the event. This includes the error messages or other success information (like an MMP
redirection).

Schemas for the print Superservice

DLF Schema for Print service

Schema ID: print

Timestamp Field: time

Each record in a the print schema contains the information about one print job.

Fields in the Schema

time

Type: timestamp
Defaults: 0

The time at which the print job started printing.

33

Chapter 6. Schemas Reference

duration

Type: timestamp
Defaults: 0

The time the print job took to print.

client_host

Type: hostname
Defaults: -

The client hostname (or ip address) that requested the print job.

user

Type: string
Defaults: -

The name of the user who requested the print job.

job-id

Type: string
Defaults: -

The identifier assigned to the job by the printing system. No uniqueness constraint are placed on
this field. For example, it is possible for a printing system to reset the job identifiers after each
restart of the system.

printer

Type: string
Defaults: -

34

Chapter 6. Schemas Reference

The printer’s name on which the job was printed.

num_copies

Type: int
Defaults: 1

The number of copies of the job that were printed.

num_pages

Type: int
Defaults: 0

The number of pages contained in the requested print jobnot counting the copies, i.e. the number of
pages in one copies of the print job.

size

Type: bytes
Defaults: -

The size of requested print job.

billing

Type: string
Defaults: -

An identifier used to relate the job to an billing account.

35

Chapter 6. Schemas Reference

Extended Schemas for the print Superservice

Sheet Count Extended Schema for Print service

Schema ID: print-sheets

Base Schema: print

Module: Lire::Extensions::Print::PrintSchema

Required Fields: num_pages

This is an extended schema for the Print service which adds a field that gives the number of physical
sheets printed for a job.

Fields in the Schema

num_sheets

Type: int
Defaults: 1

The total number of pages printed in the print job. That is thenum_copies timesnum_pages .

Schemas for the proxy Superservice

DLF Schema for Proxy superservice

Schema ID: proxy

Timestamp Field: time

This DLF file is adequate to represent most common informations about web proxy events. It has the
same information as found in most proxy-like servers log files.

This schema is adequate for proxy servers beyond web proxys servers. It can be used for socks and other
types of connection-level proxies.

The DLF schema was designed by studying the WebTrends Enhanced Log Format, squid log files and
thinking about SOCKS type of server.

36

Chapter 6. Schemas Reference

Fields in the Schema

time

Type: timestamp
Defaults: 0

The time at which the request was initiated.

client_ip

Type: ip
Defaults: -

The IP address of the client.

client_host

Type: hostname
Defaults: -

The hostname of the client.

user

Type: string
Defaults: -

If the client was authenticated, this field should contains the authenticated username.

duration

Type: duration
Defaults: 0

The time taken by the connection.

37

Chapter 6. Schemas Reference

cache_result

Type: string
Defaults: -

Result code for the cache TCP_MISS, TCP_HIT, etc. List is available on Squid page, and in
squid_access2dlf(1). All DLF converter should map their native value to the squid’s one which is
very complete and exhaustive.

req_result

Type: int
Defaults: -

HTTP result of the request. e.g. 200 or 404.

protocol

Type: string
Defaults: -

The protocol of the proxied request: ftp, http, https, telnet, etc.

transport

Type: string
Defaults: -

The protocol used between the client and the proxy server. This is probably TCP, but can be UDP in
some case (like SOCKS or ICP).

dst_ip

Type: ip

38

Chapter 6. Schemas Reference

Defaults: -

The ip address of the destination.

dst_host

Type: hostname
Defaults: -

The hostname of the destination. In the case of web proxy, that will be the website

dst_port

Type: port
Defaults: -

Port of the destination used in IP session

operation

Type: string
Defaults: -

This field should only be defined in the case of web proxy requests. This should contains the HTTP
method requested likeGETor POST.

requested_url

Type: url
Defaults: -

This field should only be defined in the case of web proxy request. It should contains the URL
requested on the remote server.

39

Chapter 6. Schemas Reference

bytes

Type: bytes
Defaults: -

The number of bytes transferred from proxy server to the client

type

Type: string
Defaults: -

This field should only be defined for web proxy servers, it should contains the MIME type of the
HTTP request’s result (e.g. text/html or image/jpeg).

rule

Type: string
Defaults: -

This field contains the configuration rule’s name that was used to accept or deny to request.

useragent

Type: string
Defaults: -

The useragent used by the client. E.g. ’Mozilla/4.0 (compatible; MSIE 5.0; Win32)’ or ’Outlook
Express/5.0 (MSIE 5.0; Windows 98; DigExt)’

result_src_code

Type: string
Defaults: -

40

Chapter 6. Schemas Reference

Code qualifying the next two fields. (i.e. NONE, DIRECT, PARENT_HIT, etc.) All DLF converter
should map their native value to the squid’s one which is very complete and exhaustive.

result_src_ip

Type: ip
Defaults: -

The IP address of the server which handled the request, i.e. destination or other cache

result_src_host

Type: hostname
Defaults: -

The hostname of the server that handled the request and gave the result.

result_src_port

Type: port
Defaults: -

Port on referring host used in IP session.

cat_action

Type: string
Defaults: -

This field contains either the valueblock or pass . It is used when access control is based on
content filtering.

41

Chapter 6. Schemas Reference

cat_site

Type: string
Defaults: -

If the proxy server is doing content analysis, this field should contains the category for the requested
website.

catlevel_site

Type: int
Defaults: -

Level can be 1 or 2. 1 meaning "no no" categories. 2 meaning "family fun" categories. This was
taken from the WELF specification.

cat_page

Type: string
Defaults: -

Like cat_site , but for the actual page.

catlevel_page

Type: int
Defaults: -

Like catlevel_site , but for the actual page.

42

Chapter 6. Schemas Reference

Schemas for the syslog Superservice

DLF Schema for Syslog superservice

Schema ID: syslog

Timestamp Field: timestamp

This is a DLF schema that can be used to represent most messages logged through syslog-like daemon.

Fields in the Schema

timestamp

Type: timestamp
Defaults: 0

The timestamp of the logged event.

hostname

Type: hostname
Defaults: localhost

The hostname or ip address from which the message was received.

process

Type: string
Defaults: -

The "process" that logged the event.

pid

Type: int
Defaults: 0

43

Chapter 6. Schemas Reference

The PID of the originating process that was included in the message.

facility

Type: string
Defaults: -

The syslog facility (kern , mail , local7 , etc.) to which the message was logged. This information
isn’t present in all syslog file formats.

level

Type: string
Defaults: -

The syslog level (emerg , notice , debug , etc.) to which the message was logged. This information
isn’t present in all syslog file formats.

message

Type: string
Defaults: -

The logged event message (after theprocess andpid parts are removed).

Schemas for the www Superservice

DLF Schema for WWW service

Schema ID: www

Timestamp Field: time

In this DLF schema, each record represents a request to the web server. It has the equivalent information
than the common log format supported by most web servers.

44

Chapter 6. Schemas Reference

Fields in the Schema

client_host

Type: hostname
Defaults: -

The hostname (or ip address) of the clients that made the request.

who

Type: string
Defaults: -

If the request was authenticated, this field should contains the name of the authenticated user. Not
that there is no indication of which authentication method was used (RFC1531, WWW
authentication, etc.).

http_result

Type: string
Defaults: -

The numeric result code of the request. That’s is200 , 301 , etc.

requested_page_size

Type: bytes
Defaults: -

The number of bytes sent to the client during the request.

http_action

Type: string
Defaults: -

45

Chapter 6. Schemas Reference

The method used by the client for the request. That is usually one ofGET, HEAD, POST, etc.

requested_page

Type: url
Defaults: -

The URL that was requested by the client.

http_protocol

Type: string
Defaults: -

The protocol used by the client. It should usually be one ofHTTP/1.0 or HTTP/1.1 .

time

Type: timestamp
Defaults: 0

The time of the request.

referer

Type: string
Defaults: -

The content of theReferer header that was sent along the request. That usually represents the
referring URL, that’s the URL which the user was browsing when this URL was requested.

46

Chapter 6. Schemas Reference

useragent

Type: string
Defaults: -

The content of theUser-Agent header that was sent along the request. That usually contains
information the web browser used by the client.

gzip_result

Type: string
Defaults: -

When automatic compression is used, this should contains the result code from the compression
submodule.

compression

Type: int
Defaults: 0

When automatic compression of the results is used, this field should contains the compression ratio
achieved.

Extended Schemas for the www Superservice

Attack Extended Schema for WWW service

Schema ID: www-attack

Base Schema: www

Module: Lire::Extensions::WWW::AttackSchema

Required Fields: requested_page

This is an extended schema for the WWW service which tries to find common web attack based on the
requested URL.

47

Chapter 6. Schemas Reference

Fields in the Schema

attack

Type: string
Defaults: Unknown/No Attack

The type of attack that this request represents.

Domain Extended Schema for WWW service

Schema ID: www-domain

Base Schema: www

Module: Lire::Extensions::WWW::DomainSchema

Required Fields: client_host

This is an extended schema for the WWW service which adds a country and client_domain fields based
on the client host.

Fields in the Schema

client_domain

Type: hostname
Defaults: -

The domain of the client host.

country

Type: string
Defaults: Unknown

The country of the client host as determined by the top-level domain.

48

Chapter 6. Schemas Reference

Robot Extended Schema for WWW service

Schema ID: www-robot

Base Schema: www

Module: Lire::Extensions::WWW::RobotSchema

Required Fields: None

This is an extended schema for the WWW service which adds a robot field based on information from
the domain name or theuser_agent string.

Fields in the Schema

robot

Type: string
Defaults: Unknown/No Robot

The name of the robot that made the request.

Search Engine Extended Schema for WWW service

Schema ID: www-search

Base Schema: www

Module: Lire::Extensions::WWW::SearchSchema

Required Fields: referer

This is an extended schema for the WWW service which analyze the referrals. It extract the referring
sites and it also determines if it was a request from a search engine.

Fields in the Schema

referring_site

Type: string
Defaults: -

The site which reffered that request. This is usually an hostname, but it can also bebookmarks for
when the user used a bookmark.

49

Chapter 6. Schemas Reference

search_engine

Type: string
Defaults: -

The name of the search engine, when the request was referred through a search engine.

keywords

Type: string
Defaults: -

The search phrase used when the request was referred through a search engine.

URL Extended Schema for WWW service

Schema ID: www-url

Base Schema: www

Module: Lire::Extensions::WWW::URLSchema

Required Fields: requested_page

This is an extended schema for the WWW service which parses the requested URL and adds several
fields based on this information.

Fields in the Schema

requested_file

Type: filename
Defaults: -

The portion of the requested URL that represents a filename. That is everything that comes before
the? which starts theQUERY_STRING.

requested_page_ext

Type: string
Defaults: -

50

Chapter 6. Schemas Reference

The extension of the requested file.

directory

Type: filename
Defaults: -

The directory portion of the URL.

User Agent Extended Schema for WWW service

Schema ID: www-user_agent

Base Schema: www

Module: Lire::Extensions::WWW::UserAgentSchema

Required Fields: useragent

This is an extended schema for the WWW service which adds fields to access information from the
user_agent field.

Fields in the Schema

browser

Type: string
Defaults: Unknown

The browser that was probably used to make the request as guessed from theuser_agent field.

os

Type: string
Defaults: Unknown

The client’s operating system as guessed from theuser_agent field.

51

Chapter 6. Schemas Reference

lang

Type: string
Defaults: Unknown

The client’s language as guessed from the locale’s information contained in theuser_agent field.

Derived Schemas for the www Superservice

User Session Derived Schema for WWW service

Schema ID: www-user_session

Base Schema: www

Module: Lire::Extensions::WWW::UserSessionSchema

Required Fields: time, client_host
Timestamp Field: session_start

This is a derived schema for the WWW service which represents user session. User sessions tracks the
traversal of users through the web site. Users are tracked using their IP address and their user agent
information. This is not a full proof method. For one thing, it clearly fails in the case of users having an
homogeneous environment and browsing from behing a proxy server.

Possible enhancements would be to use tracking information from a cookie.

The session represent all the consequential requests made by a user. The session will end after 30
minutes where no requests was made by the user.

Fields in the Schema

session_id

Type: string
Defaults: -

This field contains an arbitrary session identifier.

session_start

Type: timestamp
Defaults: 0

52

Chapter 6. Schemas Reference

The time at which the session started.

session_end

Type: timestamp
Defaults: 0

The time of the last request in the session.

session_length

Type: duration
Defaults: 0

The length elapsed between the first and last requests.

page_count

Type: int
Defaults: 0

The number of pages requested by the user in this session. (This excludes requests ending in.png ,
.jpg , .jpeg , .gif and.css .)

req_count

Type: int
Defaults: 0

This gives the number of requests by the user

53

Chapter 6. Schemas Reference

first_page

Type: filename
Defaults: -

The first page requested by the user. (See page_count for exlusion.)

page_2

Type: filename
Defaults: -

The 2nd page requested by the user.

page_3

Type: filename
Defaults: -

The 3rd page requested by the user.

page_4

Type: filename
Defaults: -

The 4th page requested by the user.

page_5

Type: filename
Defaults: -

The 5th page requested by the user.

54

Chapter 6. Schemas Reference

last_page

Type: filename
Defaults: -

The last page requested by the user.

completed

Type: bool
Defaults: -

Was this session completed? A completed session is one that we know for sure that if the user made
another request, it would have been in a new sesssion. Concretely, all requests made in the last 30
minutes of the period covered by the log file will be part of uncompleted sessions.

visit_number

Type: int
Defaults: 0

This starts at 1 for the first session of a user in the log file and will be incremented for each new
session started by that user in the same log file.

55

IV. Lire Developers’ Conventions

Chapter 7. Contributing Code to Lire
The LogReport team invites you to contribute code to Lire. We’re very happy with any code
contributions which work for you: it’ll very likely will make life easier for other people too! We ask you
to consider some points, when writing code to get distributed with Lire.

When adding new scripts, or extending and improving current Lire code, make sure you’re working with
the current Lire code. (When working with old code, the bug you’re working on might be fixed already
by somebody else.) You can get the current code by fetching our CVS from SourceForge, using the
anonymously accessible pserver:

cvs -d:pserver:anonymous@cvs.logreport.sourceforge.net:/cvsroot/logreport login

When prompted for a password for anonymous, simply press the Enter key.

cvs -z3 -d:pserver:anonymous@cvs.logreport.sourceforge.net:/cvsroot/logreport co service

See also the instructions on the SourceForge website (http://sourceforge.net/cvs/?group_id=5049).
Alternatively, you can peek at the Lire CVS (http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/logreport/)
using your webbrowser.

When you’d like to change e.g./usr/local/bin/lr_log2report , you’ll have to hack on
cvs/sourceforge/logreport/service/all/script/lr_log2report.in . This file will get
converted tolr_log2report by running./configure . Of course, when adding scripts or extending
scripts, be sure to update the scripts’ manpage too.

If you’d like the LogReport team to distribute your contribution, be sure to offer it to the team under a
suitable software license. Refer to the Licensing section in theLire FAQ for details.

Once you’ve tested your script, you can send it too the LogReport development list on
development@logreport.org. The LogReport team will be happy to ship your contribution with the next
Lire release.

57

Chapter 8. Developers’ Toolbox

Required Tools To Build From CVS
In order to be able to build the program from the CVS tree and make a tarball distribution the following
tools are needed:

• DocBook XML 4.1.2 (http://www.oasis-open.org/docbook/)

• DocBook DSSSL stylesheets (http://docbook.sourceforge.net/projects/dsssl/)

• autotools

• Jade (http://www.jclark.com/jade/) or OpenJade

• lynx (http://lynx.isc.org/)

• GNU make

• Perl’s XML::Parser module

• dia

• epsffit

• epstopdf

• xsltproc

• xmllint

For Debian woody the packages are: docbook-utils
(http://packages.debian.org/testing/text/docbook-utils.html), docbook-xml-stylesheets, autoconf
(http://packages.debian.org/testing/devel/autoconf.html), automake
(http://packages.debian.org/testing/devel/automake.html), autotools-dev
(http://packages.debian.org/testing/devel/autotools-dev.html), jade
(http://packages.debian.org/testing/text/jade.html), lynx
(http://packages.debian.org/testing/web/lynx.html), make
(http://packages.debian.org/testing/devel/make.html) and libxml-parser-perl.

Accessing Lire’s CVS
Make sure you’ve got an account onSourceForge(http://www.sourceforge.net). Get yourself added to
the logreport project. (Joost van Baal joostvb@logreport.org can do this for you.) Make sure your ssh
public key is on the sourceforge server.

A full backup of the complete LogReport CVS as hosted on SourceForge is made weekly and written to
hibou:/data/backup/cvs/ .

58

Chapter 8. Developers’ Toolbox

CVS primer
If you have a Unix like system, make sure you have this

CVSROOT=:ext:cvs.logreport.sourceforge.net:/cvsroot/logreport
CVS_RSH=ssh

in your shell environment.

Of course, you could do something like

$ eval ‘ssh-agent‘
$ ssh-add

to get a nice ssh-agent running.

Now do something like

$ cd ~/cvs-sourceforge/logreport
$ cvs co service

There are also repositories called ’docs’ and ’package’. In the former the webpages are located and in the
latter the package files for Debian GNU/Linux and other distributions are kept.

Files can then be edited and commited:

$ vi somefile
$ cvs commit somefile

and get flamed ;)

Subscribe yourself to the commit list (commit-request@logreport.org), to get all commit messages,
along with unified diffs.

SourceForge

Mailing Lists

59

Chapter 9. Coding Standards
Indentation should be four spaces. No tabs please.

See also Message-Id: <1028238571.1085.185.camel@Arendt.Contre.COM> on the development
mailing list for some rationale on coding standards.

Shell Coding Standards
Shell scripts should run -e. Shell script should be portable. Refer to
http://doc.mdcc.cx/doc/autobook/html/autobook_208.html
(http://doc.mdcc.cx/doc/autobook/html/autobook_208.html).

Perl Coding Standards
Perl scripts should use strict, and run -w. Documentation should come in .pod format, documentation
about script internals should be in perl comments.

No & in function call unless necessary.

Split long lines using hard return; try to respect the 72th column margin (this is kind of a soft limit).

60

Chapter 10. Commit Policy
Make sure your changes run on your own platform before committing. Try not to break things for other
platforms though. Currently, Lire supported platforms are GNU/Linux (Debian GNU/Linux, Red Hat
Linux, Mandrake Linux), FreeBSD, OpenBSD and Solaris.

Documentation should be updated ASAP, in case it’s obsolete or incomplete by new commits.

CVS Branches
When doing major architectural changes to Lire, branches in CVS are created to make it possible to
continue to fix bugs and to add small enhancements to the stable version while development continues on
the unstable version. This applies mainly to the service repository. The doc and package repositories
generally don’t need branching.

BTW: A nice CVS tutorial is available in the Debian cvsbook package.

Hands-on example
A branching gets announced. Be sure to have all your pending changes commited before the branching
occurs. After a branch has been made, one can do this:

$ cd ~/cvs-sourceforge/logreport
$ mv service service-HEAD
$ cvs co -r lire-20010924 service
$ mv service service-lire-20010924

or (with the same result)

$ mv service service-HEAD
$ cvs co -r lire-20010924 -d service-lire-20010924 service

Now, when working on stuff which should be shipped in the coming release, one should work in
service-lire-20010924. When working on stuff which is rather fancy and experimental, and which needs
a lot of work to get stabilized, one should work in service-HEAD.

Naming, what it looks like
Here is what branches schematically look like:

release-20010629_1 ---> lire-unstable-20010703 ---> HEAD
\

\
lire-20010630 ---> lire-stable-20010701

61

Chapter 10. Commit Policy

In this diagram a branch namedlire-20010630 was created from therelease-20010629_1 tag.
lire-unstable-20010703 is another tag on thetrunk (thetrunk is the main branch).HEADisn’t a real
tag, it always points to latest version on the trunk.

Creating a Branch
To create a branch, one runs the commandcvs rtag -b -r release-tag branch-name
module . Note that this command doesn’t need a checkout version of the repository. For example, to
create therelease-20010629_1-bugfixes branch in the service repository, e.g. to backport bugfixes
to version 20010629_1, one would usecvs rtag -b -r release-20010629_1
release-20010629_1-bugfixes service . When ready for release, this could get tagged as
release-20010629_2 .

Therelease-tag should exist before creating the branch. In case you want to branch from HEAD,
use-r HEAD . E.g.cvs rtag -b -r HEAD release_1_1-branch service . Once Lire 1.1
gets released, tag it asrelease_1_1 .

Accessing a Branch
To start working on a particular branch, you docvs update -r branch-name . For example, to
work on therelease_1_1-branch branch, you do in your checked out version,cvs update -r
release_1_1-branch . This will update your copy to the versionrelease_1_1-branch and will
commit all future changes on that branch.

Alternatively, you can also specify a branch when checking out a module usingcvs co -r
branch-name module . For example, you could checkout the stable version of Lire by usingcvs
co -r release_1_1-branch service .

To see if you are working on a particular branch, you can use thecvs status file command. For
example, runningcvs status NEWS could show:

===
File: NEWS Status: Up-to-date

Working revision: 1.74
Repository revision: 1.74 /cvsroot/logreport/service/NEWS,v
Sticky Tag: lire-stable
Sticky Date: (none)
Sticky Options: (none)

The branch is indicated by theSticky Tag: keyword. If its value is(none) you are working on the
HEADbranch.

To work on theHEAD, you remove the sticky tag by using the commandcvs update -A .

62

Chapter 10. Commit Policy

Merging Branches on the Trunk
You can bring bug fixes and small enhancements that were made on a branch into the unstable version on
the trunk by doing a merge. You do a merge by using the commandcvs update -j
branch-to-merge in your working directory of the trunk. Conflicts are resolved in the usual CVS
way. For example, to merge the changes of the stable branch in the development branch, you would use
cvs update -j lire-stable .

You should tag the branch after each successful merge so that future changes can be easily merged. For
example, after merging, you do in a checked out copy of thelire-stable branch:cvs tag
lire-stable-merged-20010715 . In this way, one week later we can merge the week’s changes
of the stable branch into the unstable branch by doingcvs update -j
lire-stable-merged-20010715 -j lire-stable .

63

Chapter 11. Testing
One week before release the software should be tested on all supported platforms. In between releases
the system gets tested on various platforms on an ad hoc basis. When testing, use the to-be-released
tarball. Runmake dist to generate such a tarball. Releases are done about every month.

64

Chapter 12. Making a Release
Before making an official Lire release, it should have been tested on all supported platforms. A release
shouldn’t be made unless Lire builds, installs and generates an ASCII report from all supported log files
on all supported platforms. If this is not the case, the release should be delayed untill this is fixed.

Making a new release of Lire involves many steps:

1. Writing the final version number in NEWS.

2. Tagging the CVS tree.

3. Building the "Standard" Lire tarball.

4. Building the "Full" Lire tarball.

5. Building the Debian GNU/Linux package.

6. Building the RPM package.

7. Uploading the tarballs and making packages available.

8. Advertising the release.

Setting version in NEWS file
Inbetween releases, the NEWS file generally reads "version in cvs". This should of course be changed to
e.g. "version 20011205".

Tagging the CVS
Run e.g.cvs tag release-20011017 .

Building The "Standard" Tarball
The "Standard" tarball is the one that contains only the code needed to build and install Lire. It doesn’t
contain required libraries like expat or XML::Parser. There is also a "Full" version of the tarball that
includes those libraries.

1. Start from a fresh copy by running the commandmake maintainer-clean-recursive in
the directory where you checked out Lire’s source code.

a. Make sure that there are no tarballs in theextras subdirectory.

2. Set the version and prepare the source tree by running the command./bootstrap . (You can
overwrite the pre-cooked version by doing e.g.echo ‘date +%Y%m%d‘-R-f-jvb-1 >
VERSION . Make sure your version hasn’t got too many characters. Non-GNU tar chokes if
pathnames in the archive are too long.)

65

Chapter 12. Making a Release

3. Generate Makefiles

a. Run./configure

4. Build Lire and create the tarball by running the commandmake distcheck .

This will build a tarballlire- version .tar.gz and then make sure that the content of this tarball
can be built and installed. If that command fails, Lire isn’t ready to be released. Fix the errors before
making the release.

5. Sign Lire’s tarball with your public key. To do this with GnuPG, rungpg --detach-sign
--armor lire- version .tar.gz .

A file lire- version .tar.gz.asc will be created. Publish this file together with the tarball. Now,
people downloading the tarball can verify its integrity by downloading the .asc as well as your
public key, and runninggpg --verify lire- version .tar.gz.asc .

Building The "Full" Tarball
The "Full" tarball is the one that contains the required Perl and XML libraries along with Lire’s source
code. This tarball should be calledlire-full- version .tar.gz .

1. If you built the "Standard" tarball, you should move it someplace else along with its signature,
because this procedure will overwrite it.

2. Start from a fresh copy by running the commandmake maintainer-clean-recursive in
the directory where you checked out Lire’s source code.

3. Add the tarballs of the required libraries in theextras subdirectory. These tarballs can be
downloaded usingwget.

a. wget
http://www.cpan.org/modules/by-module/XML/XML-Parser.2.30.tar.gz

b. wget
http://prdownloads.sourceforge.net/expat/expat-1.95.2.tar.gz

4. Set the version and prepare the source tree by running the command./bootstrap .

5. Build Lire.

a. Run./configure

b. Runmake

6. Create the tarball by running the commandmake followed by the commandmake distcheck .

This will build a tarball and then make sure that the content of this tarball can be built and installed.
If that command fails, Lire isn’t ready to be released. Fix the errors before making the release.

7. Rename the generated tarball tolire-full- version .tar.gz .

8. Sign Lire’s tarball with your public key. To do this with GnuPG, rungpg --detach-sign
--armor lire-full- version .tar.gz .

66

Chapter 12. Making a Release

A file lire-full- version .tar.gz.asc will get created. Publish this file, together with the
tarball. Now, people downloading the tarball can verify its integrity by downloading the .asc along
with it, as well as your public key and runninggpg --verify
lire-full- version .tar.gz.asc .

Building The Debian Package
This is a raw unformatted dump of what we did to build and upload the Lire .deb.

$ cd ~/cvs-sourceforge/logreport/package/debian
$ vi changelog

:r !date --rfc

$ cd /usr/local/src/debian/lire/debian/20010219

Run something like ’DIB_V=20020214 DIB_P=lire DIB_TARDIR=../archive/ ./debian-install-build’.
This does:

$ cd /usr/local/src/debian/lire/debian/20010219
$ cp \

~/cvs-sourceforge/logreport/service/lire-20010219.tar.gz .

$ tar zxf lire-20010219.tar.gz
$ cd lire/20010418
$ mv lire-20010418 lire-20010418.orig
$ tar zxf lire-20010418.tar.gz
$ cd lire-20010418
$ mkdir debian
$ cp \

~/cvs-sourceforge/logreport/package/debian/[^C]* debian/

Export the shell environment variable EMAIL, it should hold your email address, as it is to appear in the
maintainers field of the package. (One could use ’dh_make --copyright gpl -s’ on first time debianizing.)
Build the .deb by running:

$ debuild 2>&1 | tee /tmp/build

Check the .deb:

$ debc | less

After havingreally tested it (dpkg -i, purge, etc.), optionally install it on any local apt-able websites you
might have (Joost has one on http://mdcc.cx/debian/) and upload it to hibou’s apt-able archive:

$ scp lire_20010418-1_all.deb \

67

Chapter 12. Making a Release

hibou.logreport.org:/var/www/logreport.org/pub/debian/dists/local/contrib/binary-all/admin/

$ scp lire_20010418*.gz \
hibou.logreport.org:/var/www/logreport.org/pub/debian/dists/local/contrib/source/admin/

$ scp lire_20010418*.*s* \
hibou.logreport.org:/var/www/logreport.org/pub/debian/dists/local/contrib/source/admin/

Move the old debian stuff on hibou to hibou:/pub/archive/debian/ . Update the Packages file by running

$ cd /var/www/logreport.org/pub/debian
$ make

To upload it to the official debian mirrors:

vanbaal@gelfand:/usr...src/debian/lire/20010418% date; \
dupload lire_20010418-1_i386.changes

Thu Apr 19 14:27:38 CEST 2001
Uploading (ftp) to ftp.uk.debian.org:debian/UploadQueue/
[job lire_20010418-1_i386 from lire_20010418-1_i386.changes New dpkg-dev, announcement will NOT be sent

lire_20010418.orig.tar.gz, md5sum ok
lire_20010418-1.diff.gz, md5sum ok
lire_20010418-1_all.deb, md5sum ok
lire_20010418-1.dsc, md5sum ok
lire_20010418-1_i386.changes ok]

Uploading (ftp) to uk (ftp.uk.debian.org)
lire_20010418.orig.tar.gz 163.1 kB , ok (12 s, 13.59 kB/s)
lire_20010418-1.diff.gz 32.6 kB , ok (3 s, 10.88 kB/s)
lire_20010418-1_all.deb 222.4 kB , ok (16 s, 13.90 kB/s)
lire_20010418-1.dsc 0.6 kB , ok (0 s, 0.60 kB/s)
lire_20010418-1_i386.changes 1.2 kB , ok (1 s, 1.22 kB/s)]

check ftp://ftp.uk.debian.org/debian/UploadQueue/

Building The RPM Package

Uploading The Release
To release a new distribution, publish the tarball on various places and send an announcement to the
<announcement@logreport.org > mailinglist, stating the most interesting new features. Furthermore,
add a newsitem to the news list of the website. We’ll describe how to upload the tarball to various places.

68

Chapter 12. Making a Release

The LogReport Webserver
Upload the tarball to the LogReport webserver like this:

$ scp lire-20001211.tar.gz hibou.logreport.org:/var/www/logreport.org/pub/

On hibou, do:

$ cd /var/www/logreport.org/pub
$ chown .www lire-20010525.tar.gz
$ chmod g+w lire-20010525.tar.gz

$ tar zxf lire-20001211.tar.gz
$ rm current && ln -s lire-20001211 current
$ rm current.tar.gz && ln -s lire-20001211.tar.gz current.tar.gz
$ rm -rf lire-20001205
$ mv lire-20001205.tar.gz archive

Update theREADME.txt file: Run

$ cd /var/www/logreport.org/pub
$ (echo \

’current is the latest official release’; echo; ls -lF c*) > README.txt

Check the symlink to the documentation stuff in the tarball.

Check if the stuff in http://logreport.org/pub/docs is still up to date.

Advertising The Release

SourceForge
In order to release a distribution on SourceForge (SF), you login with your SF account on the SF website.
Once logged in you go to the project webpage (https://sourceforge.net/projects/logreport/) and choose
Admin. Down at the bottom of that page is a a[Edit/Add File Releases]link (click it
(https://sourceforge.net/project/admin/editpackages.php?group_id=5049)).

You are able to edit packages, like the Lire package in the LogReport project. To add a new release,
choose[Add Release]. As a release name uses the date, like 20010407, assign it to the Lire package and
then use theCreate This Releasebutton to makes it effective.

The next page shows 4 steps of which only one (step 2) is not straightforward. In that step you assign
files to a release (.tar.gz, .deb, .rpm). These files should be uploaded to SF’s Upload anonymous FTP site
at ftp://upload.sourceforge.net/incoming/. Make sure the file is placed in the/incoming directory. Click
Refresh Viewin Step 2 to add the files you uploaded to the FTP site. Check the files belonging to the

69

Chapter 12. Making a Release

release and ClickAdd Files. In step 3, set Processor to any. Set file type to .deb and source.gz. Click
update/refresh. Step 4: send notice. Done.

Freshmeat.net
On Freshmeat.net, releases are not released, but get announced only. These announcements attract a lot
of attention. The webpage for the Lire package can be found at http://freshmeat.net/projects/lire/.

To announce a new release go to Lire - development branch (http://freshmeat.net/branches/14593/)
webpage. ChooseAdd Releasefrom the Project pull down menu in the light blue area. The rest is very
straightforward.

70

Chapter 13. Website Maintenance
We give hints on how to upgrade the website: installing stuff from current CVS on http://logreport.org
(http://logreport.org/).

Commits to the CVS tree of the website are automatically propagated to hibou. For more information on
the markup language of the website, see the WJML documentation (http://logreport.org/doc/wjml/).

Documentation on the LogReport Website
Be sure the links to stuff under/pub/current are still alive. E.g. the filesTODO, dev-manual.html

anduser-manual.html are linked to.

Publishing the DTD’s
The DTD’s are published as HTML on the website by using
hibou:/usr/local/src/dtdparse/dtdparse-2.0b2-LogReportPatched.tar.gz , which is a
patched version of Norman Walsh’s dtdparse utility. Before the utility is run, make sure that the
DocBook DTD is not included in the parsing process, because the DocBook DTD should not be
published. This is done by changing the line:

<!ENTITY % load.docbookx "INCLUDE" >

into:

<!ENTITY % load.docbookx "IGNORE" >

The webpages are then generated with:

perl ~/dtdparse-2.0b2-patched/dtdparse.pl --title "XML Lire Report Markup Language" --output lire.xml lire.dtd
perl ~/dtdparse-2.0b2-patched/dtdformat.pl --html lire.xml

The resultinglire directory can be tar-ed, gziped and unpacked again on hibou in the directory
/var/www/logreport.org/pub/docs/dtd/ .

The other two DTD’s are HTML-ized similarly, but remember to change the title when running
dtdparse.pl.

71

Chapter 14. Writing Documentation
Documentation which comes with the Lire tarball is maintained in four formats: plain text, Perl POD,
DocBook XML and UML diagrams. We’ll talk about all four of these here.

Plain Text
Small files likeREADME, NEWS, AUTHORS, doc/BUGS, anddoc/TODO are traditionally maintained in
plain text format. We adhere to this common practice.

Perl’s Plain Old Documentation: maintaining manpages
We use Perl’s pod (plain old documentation) for manpages. Every file installed with Lire in/usr/bin/

must have a manpage. Every file installed in/usr/share/perl5/Lire/ and/usr/lib/lire/

should have a manpage. It would be nice if the files in/etc/lire/ were documented in manpages too.
And perhaps for some files in/usr/share/lire/xml/ , /usr/share/lire/reports/ ,
/usr/share/lire/filters/ and/usr/share/lire/schemas/ manpages could be useful.

Since the files in/usr/bin/ are commands, ran by Lire users, the manpages describing these should
focus on the user perspective. Describing the inner workings and implementations of the commands is
less important than describing why someone would want to run the specific command. If there’s need to
make some remarks on the internals of these scripts, a section called DEVELOPERS could be added to
the manpage. The perl modules installed in/usr/share/perl5/Lire/ and the commands in
/usr/lib/lire/ are not intended as interfaces for the user. Only people wanting to change or study
the operation of Lire itself will interact with these files; therefore, the manpages should explain the inner
workings and implementations of these files. The configuration files in/etc/lire/ might be changed
by users. These should be properly documented: in manpages or in theLire User’s Manual.

Docbook XML: Reference Books and Extensive User
Manuals

The main documentation of the Lire project is done in DocBook XML 4.1.2. E.g. this document is
maintained in DocBook XML, as is theLire User’s Manualand theLire FAQ. TheLire User’s Manual
has more information about DocBook.

After editing theLire Developer’s Manualor theLire User’s Manual, you should runmake
check-xml to make sure the document is still a valid DocBook document. You should fix any errors
before committing your changes.

If everything went right, documentation is built in txt, tex, html and pdf format by runningmake dist ,
or justmake in doc/ . We give some hints which might be helpful in case you have to build the
documentation manually.

To generate PDF:

72

Chapter 14. Writing Documentation

$ jade -t tex -d /path/to/DSSSL/docbook/print/docbook.dsl roadmap.xml
$ pdfjadetex roadmap.tex

The last step is actually done two or three times to resolve page numbers.

To generate HTML:

$ jade -t sgml -d html.dsl roadmap.xml

And now you can use thehtml.dsl in thedoc/source directory. (If necessary, adjust it to reflect the
location of your DSSSL stylesheets). Use lynx to generate TXT output from HTML with:

$ lynx -nolist -dump roadmap.html > roadmap.txt

UML Diagrams
The Unified Modelling Language (UML) is a set of definitions on how design diagrams are composed.
These diagrams will help to document and understand the internals of Lire, and are used as such in this
manual.

UML Editing
Several UML editors are available, but few are open source. Among these are Dia (general diagram editor
for Gnome), ArgoUML (written in Java) and UML Modeler (http://uml.sf.net/) (UML specific editor for
KDE). The latter was used to draw the diagrams found in CVS/service/doc/uml-diagrams .

Diagram Types
UML supports several diagram types. Two important ones areclass diagramsandsequence diagrams.
The former is used to depict the relations and associations between classes. Classes can be programs or
modules. The latter is used to show how certain tasks are performed in time, and can be used to model
the sequence of events.

73

V. Implementation Details

Chapter 15. Issues with Report Merging
In some cases, a merged report doesn’t display the right information. We outline some worst case
scenarios, and justify our implementation.

Suppose log file 1 (“requests” with “sizes”) looks like:

request size

A 12

B 11

C 10

while log file 2 looks like:

request size

D 3

E 2

F 1

We report on the top 2 biggest requests, so the report from log 1 looks like:

request size

A 12

B 11

while the report from log 2 would look like:

request size

D 3

E 2

Now we change the superservice.cfg file to list the top-4 biggest items. A naive merge would lead to:

request size

A 12

B 11

D 3

E 2

Of course, this should’ve been:

request size

75

Chapter 15. Issues with Report Merging

request size

A 12

B 11

C 10

D 3

This effect does not occur when keeping the top-limit to the same value. However, when we’re not
reporting on distinct values in the log, but are summing, more horrible things might happen. Consider
this: We want to report on the total size by client. Logs look like:

client size

a 12

b 11

c 10

and

client size

d 4

e 4

c 3

Reports from these logs would look like:

client size

a 12

b 11

client size

d 4

e 4

After naively merging, one would get:

client size

a 12

b 11

In fact, the complete report should look like:

client size

76

Chapter 15. Issues with Report Merging

client size

c 13

a 12

Luckily, the Lire merging algorithm is notthisnaive: in fact, the XML reports store a little more records
than actually needed. This heuristic trick leads to sane merged reports in most cases. However, since this
is merely a heuristic trick, it is no waterproof guarantee.

See the description of the guess_extra_entries routine in the Lire::AsciiDlf::Group manpage for more
implementation details.

77

Chapter 16. Overview of Lire scripts
An overview of the main scripts involved.lr_spoold is the engine behind a Lire Online Responder.
lr_log2report is the main Lire command line interface. Thelr_log2xml command is a helper scripts.
The lr_xml2report command can be used by the user to merge XML reports. Thelr_sql2report is not
yet fully integrated in the Lire system. Thelr_rawmail2mail command manages a Lire client setup. The
lr_cron is fired of bycron, in a cron-driven setup.

lr_spoold
|
_ lr_check_service
_ lr_spool

|
_ lr_processmail

_ lr_getbody
|
_ lr_log2mail

|
_ lr_inflate
_ lr_log2xml
|
_ lr_xml2mail
| _ lr_xml2report
| _ lr_mail
|
_ lr_archive_log

lr_log2report
_ lr_inflate
_ lr_log2xml
_ lr_xml2report

lr_log2xml
_ <LR_SERVICE>2dlf
_ lr_dlf2xml
_ (lr_dlf2sql)

lr_xml2report
_ lr_xml_merge
_ lr_xml2<OUTPUTFORMAT>

lr_sql2report
_ lr_sql2dlf
_ lr_dlf2xml
_ lr_xml2report

lr_rawmail2mail
_ lr_getbody
_ lr_deanonymize
_ lr_xml2mail

lr_cron

78

Chapter 16. Overview of Lire scripts

_ lr_log2mail

lr_spoold monitors a Maildir spool for each responder address. lr_processmail processes an email
message with a compressed log file attached. Refer to the manpages for the gory details.

79

Chapter 17. Source Tree Layout
Service specific scripts should reside in $CVSROOT/service/<service>/script/. Configuration data
should be in <service>/etc/. Service specific documentation in <service>/doc/.

Furthermore, in each subdirectory there should be a Makefile.am.

80

Glossary
Definitions of particular terms used in Lire.

DLF

See:Distilled Log Format

Distilled Log Format

Example 1. DNS DLF Excerpts

1010912574 10.0.0.2 121.68.134.195.in-addr.arpa PTR recurs
1010912574 10.0.0.2 121.68.134.195.in-addr.arpa PTR recurs
1010912592 10.0.0.2 120.67.123.212.in-addr.arpa PTR recurs
1010912600 10.0.0.2 207.7.178.212.in-addr.arpa PTR recurs
1010912600 10.0.0.2 tr16.kennisnet.nl A recurs
1010912616 10.0.0.2 120.67.123.212.in-addr.arpa PTR recurs
1010912630 10.0.0.2 207.7.178.212.rbl.maps.vix.com ANY recurs
1010912630 10.0.0.2 NLnet.nl ANY recurs

This is the generic log format used by Lire to normalise the log files from different products.

Currenlty, this normalised log is a simple ASCII format where each event is represented by one line.
The information about the event is represented by fields separated by spaces. All non-printable
ASCII characters are replaced by?. Spaces in a field’s value are replaced by_ (an underscore).
Each line must have the same number of fields. A DLF file doesn’t contain any header information.
Example 1shows an excerpt of a DNS DLF file.

See Also:Superservice, DLF Schema.

DLF Schema

Information about the order of the fields in a DLF file, their types and what they represent is
specified in the DLF’s schema. Schemas are defined in XML files using the Lire DLF Schema
Markup Language (LDSML). Lire’s offers an API (only in Perl for now) to programmatically
access the information of a schema.

Log files of many different products can share a common DLF schema that makes Lire’sreports
easily comparable.

Report

A report is what is generated by Lire. It consists of severalsubreports. Those subreports can be
grouped into sections. The report is computed from the DLF file (and not the native log file) based
on a configuration file which describes the subreports that make up the final report along with their
parameters. (Consult theLire User’s ManualsectionCustomizing Lirefor more information.)

81

Glossary

Service

Put simply, a service is a specific application that produces log files. It is usually the case that one
application will be equivalent to one service. For example, the mysql service is used to process
MySQL’s log files.

But more precisely, a service is a specific log format. For example, the common service can be used
for all web servers that support the Common Log Format. Similarly, the welf service can be used to
process firewall log files written using WebTrends Enhanced Log Format.

In order to generate areporton it, the native log will be converted to the appropriatesuperservice’s
DLF schema

Subreport

A subreport is a particular view on the DLF log’s data. Subreports are defined in XML files using
the Lire Report Specification Markup Language (LRSML). (Although it defines subreports, it is
called a Report Specification because a report is made up out of several subreports.) Example of a
subreport would beRequests by Hours of the Day.

Subreports are defined for a particularDLF schema.

Superservice

A superservice is a collection of services that share the sameDLF schemaandreport. It is used to
group together applications (services) that offer the same kind of functionality.

Lire currently supports eight superservices: database, dns, email, firewall, ftp, print, proxy, and
www.

82

