Drawing graphs with dot

Eleftherios Koutsofios and Stephen North
February 4, 2002

Abstract

dot draws directed graphs as hierarchies. It runs as a command line pro-
gram, web visualization service, or with a compatible graphical interface.
Its features include well-tuned layout algorithms for placing nodes and edge
splines, edge labels, “record” shapes with “ports” for drawing data struc-
tures; cluster layouts; and an underlying file language for stream-oriented
graph tools. Below is a reduced module dependency graph of an SML-NJ
compiler that took 0.98 seconds of user time on a 1.4 Ghz AMD Athlon.

o~
S

dot User’'s Manual, February 4, 2002 2

1 Basic Graph Drawing

dot draws directed graphs. It reads attributed graph text files and writes drawings,
either as graph files or in a graphics format such as GIF, PNG, SVG or PostScript
(which can be converted to PDF).

dot draws a graph in four main phases. Knowing this helps you to understand
what kind of layouts dot makes and how you can control them. The layout proce-
dure used by dot relies on the graph being acyclic. Thus, the first step is to break
any cycles which occur in the input graph by reversing the internal direction of
certain cyclic edges. The next step assigns nodes to discrete ranks or levels. In a
top-to-bottom drawing, ranks determine Y coordinates. Edges that span more than
one rank are broken into chains of “virtual” nodes and unit-length edges. The third
step orders nodes within ranks to avoid crossings. The fourth step sets X coordi-
nates of nodes to keep edges short, and the final step routes edge splines. This is
the same general approach as most hierarchical graph drawing programs, based on
the work of Warfield [War77], Carpano [Car80] and Sugiyama [STT81]. We refer
the reader to [GKNV93] for a thorough explanation of dot’s algorithms.

dot accepts input in the DOT language (cf. Appendix A). This language de-
scribes three kinds of objects: graphs, nodes, and edges. The main (outermost)
graph can be directed (di gr aph) or undirected gr aph. Because dot makes lay-
outs of directed graphs, all the following examples use di gr aph. (A separate
layout utility, neato, draws undirected graphs [Nor92].) Within a main graph, a
subgr aph defines a subset of nodes and edges.

Figure 1 is an example graph in the DOT language. Line 1 gives the graph
name and type. The lines that follow create nodes, edges, or subgraphs, and set
attributes. Names of all these objects may be C identifiers, numbers, or quoted C
strings. Quotes protect punctuation and white space.

A node is created when its name first appears in the file. An edge is created
when nodes are joined by the edge operator - >. In the example, line 2 makes
edges from main to parse, and from parse to execute. Running dot on this file (call
itgraphl. dot)

$ dot -Tps graphl.dot -o graphl.ps

yields the drawing of Figure 2. The command line option - Tps selects PostScript
(EPSF) output. gr aphl. ps may be printed, displayed by a PostScript viewer, or
embedded in another document.

It is often useful to adjust the representation or placement of nodes and edges
in the layout. This is done by setting attributes of nodes, edges, or subgraphs in
the input file. Attributes are name-value pairs of character strings. Figures 3 and 4

dot User’'s Manual, February 4, 2002

1: digraph G {

2: mai n -> parse -> execute;
3: main ->init;

4. mai n -> cl eanup;

5: execute -> make_string;
6: execute -> printf

7. init -> make_string;

8: main -> printf;

9: execute -> conpare;

10: }

Figure 1: Small graph

Figure 2: Drawing of small graph

dot User’'s Manual, February 4, 2002 4

illustrate some layout attributes. In the listing of Figure 3, line 2 sets the graph’s
si ze to 4, 4 (in inches). This attribute controls the size of the drawing; if the
drawing is too large, it is scaled as necessary to fit.

Node or edge attributes are set off in square brackets. In line 3, the node nai n
is assigned shape box. The edge in line 4 is straightened by increasing its wei ght
(the default is 1). The edge in line 6 is drawn as a dotted line. Line 8 makes edges
from execut e to make_stri ngand pri nt . Inline 10 the default edge color
is set to r ed. This affects any edges created after this point in the file. Line 11
makes a bold edge labeled 100 ti nmes. Inline 12, node make_stri ngis given
a multi-line label. Line 13 changes the default node to be a box filled with a shade
of blue. The node conpar e inherits these values.

2 Drawing Attributes

The complete list of attributes that affect graph drawing is summarized in Tables 1,
2 and 3.

2.1 Node Shapes

Nodes are drawn, by default, with shape=el | i pse,wi dt h=. 75,hei ght =. 5
and labeled by the node name. Other common shapes include box, circl e,
recor dandpl ai nt ext . Acomplete list of node shapes is given in Appendix E.
The node shape pl ai nt ext is of particularly interest in that it draws a node with-
out any outline, an important convention in some kinds of diagrams. In cases where
the graph structure is of main concern, and especially when the graph is moderately
large, the poi nt shape reduces nodes to display minimal content. When drawn, a
node’s actual size is the greater of the requested size and the area needed for its text
label, unless f i xedsi ze=t r ue, in which case the wi dt h and hei ght values
are enforced.

Node shapes fall into two broad categories: polygon-based and record-based.
All node shapes except r ecord and M ecor d are considered polygonal, and
are modeled by the number of sides (ellipses and circles being special cases), and
a few other geometric properties. Some of these properties can be specified in
a graph. If regul ar =t r ue, the node is forced to be regular. The parameter
peri pheri es sets the number of boundary curves drawn. For example, a dou-

! There is a way to implement custom node shapes, using shape=epsf and the shapefil e
attribute, and relying on PostScript output. The details are beyond the scope of this user’s guide.
Please contact the authors for further information.

dot User’'s Manual, February 4, 2002 5

1: digraph G {

2 size ="4, 4",

3 mai n [shape=box]; /* this is a conment */

4: mai n -> parse [wei ght=8];

5. parse -> execute;

6: main -> init [style=dotted];

7 mai n -> cl eanup

8: execute -> { make_string; printf}

9: init -> make_string;

10: edge [col or=red]; /1l sois this

11: main -> printf [style=bold,|abel="100 tines"];
12: make_string [l abel ="make a\nstring"];

13: node [shape=box, style=filled,color=".7 .3 1.0"];
14: execute -> conpare;

15: }

Figure 3: Fancy graph

main

Figure 4. Drawing of fancy graph

dot User’'s Manual, February 4, 2002 6

blecircle has peri pheri es=2. The ori ent at i on attribute specifies a clock-
wise rotation of the polygon, measured in degrees.

The shape pol ygon exposes all the polygonal parameters, and is useful for
creating many shapes that are not predefined. In addition to the parametersr egul ar,
peri pheries and ori ent ati on, mentioned above, polygons are parameter-
ized by number of sides si des, skewand di storti on. skew s a floating
point number (usually between —1.0 and 1.0) that distorts the shape by slanting
it from top-to-bottom, with positive values moving the top of the polygon to the
right. Thus, skewcan be used to turn a box into a parallelogram. di storti on
shrinks the polygon from top-to-bottom, with negative values causing the bottom
to be larger than the top. di st ort i on turns a box into a trapezoid. A variety of
these polygonal attributes are illustrated in Figures 5 and 6.

Record-based nodes form the other class of node shapes. These include the
shapes r ecor d and M ecor d. The two are identical except that the latter has
rounded corners. These nodes represent recursive lists of fields, which are drawn
as alternating horizontal and vertical rows of boxes. The recursive structure is
determined by the node’s | abel , which has the following schema:

rlabel — field (’|” field)*
field — boxLabel |’ rlabel *’
boxLabel — [’<’string’>"]][string]

Literal braces, vertical bars and angle brackets must be escaped. Spaces are
interpreted as separators between tokens, so they must be escaped if they are to
appear literally in the text. The first string in a boxLabel gives a name to the field,
and serves as a port name for the box (cf. Section 3.1). The second string is used
as a label for the field; it may contain the same escape sequences as multi-line
labels (cf. Section 2.2. The example of Figures 7 and 8 illustrates the use and some
properties of records.

2.2 Labds

As mentioned above, the default node label is its name. Edges are unlabeled by
default. Node and edge labels can be set explicitly using the | abel attribute as
shown in Figure 4.

Though it may be convenient to label nodes by name, at other times labels
must be set explicitly. For example, in drawing a file directory tree, one might have
several directories named sr ¢, but each one must have a unique node identifier.

dot User’'s Manual, February 4, 2002 7

/ hello world /

Figure 5. Example of polygonal shapes for nodes

di graph G {

a->b->c¢;

b -> d;

[shape=pol ygon, si des=5, peri pheri es=3, col or=blue_Ilight,style=filled];
[shape=pol ygon, si des=4, skew=. 4, | abel ="hell o0 wor| d"]

[shape=i nvtriangl e];

[shape=pol ygon, si des=4, di stortion=.7];

NN
"o

Figure 6: Graph with polygonal shapes

dot User’'s Manual, February 4, 2002 8

di graph structs {
node [shape=record];
struct1l [shape=record, | abel ="<f0> | eft|<f1> m d\ dle|<f2> right"];
struct 2 [shape=record, | abel ="<f 0> one| <f 1> two"];
struct 3 [shape=record, | abel ="hello\nworld |{ b |{c|<here> d|e}| f}| g | h"];
structl -> struct2;
structl -> struct3;

NN R

Figure 7: Records with nested fields

left | middle | right

4
hell :
0
one | two world LS ? elgl|h

Figure 8: Drawing of records

dot User’'s Manual, February 4, 2002 9

The inode number or full path name are suitable unique identifiers. Then the label
of each node can be set to the file name within its directory.

Multi-line labels can be created by using the escape sequences\ n,\' | ,\r to
terminate lines that are centered, or left or right justified.?

The node shape Mli anmond, Msquar e and Mci r ¢l e use the attributes t opl abel
and bot t ol abel to specify additional labels appearing near the top and bottom
of the nodes, respectively.

Graphs and cluster subgraphs may also have labels. Graph labels appear, by
default, centered below the graph. Setting | abel | oc=t centers the label above
the graph. Cluster labels appear within the enclosing rectangle, in the upper left
corner. The value | abel | oc=b moves the label to the bottom of the rectangle.
The setting | abel j ust =r moves the label to the right.

The default font is 14-point Times-Roman, in black. Other font families,
sizes and colors may be selected using the attributes f ont name, f ont si ze and
f ont col or. Font names should be compatible with the target interpreter. It is
best to use only the standard font families Times, Helvetica, Courier or Symbol
as these are guaranteed to work with any target graphics language. For example,
Times-1talic,Ti mes-Bol d,and Couri er are portable; Avant eGar de-
Dem bl i que isn’t.

For bitmap output, such as GIF or JPG, dot relies on having these fonts avail-
able during layout. The f ont pat h attribute can specify a list of directories?
which should be searched for the font files. If this is not set, dot will use the
DOTFONTPATH environment variable or, if this is not set, the GDFONTPATH
environment variable. If none of these is set, dot uses a built-in list.

Edge labels are positioned near the center of the edge. Usually, care is taken to
prevent the edge label from overlapping edges and nodes. It can still be difficult,
in a complex graph, to be certain which edge a label belongs to. If the decor at e
attribute is set to true, a line is drawn connecting the label to its edge. Sometimes
avoiding collisions among edge labels and edges forces the drawing to be bigger
than desired. If | abel f | oat =t r ue, dot does not try to prevent such overlaps,
allowing a more compact drawing.

An edge can also specify additional labels, using headl abel andt ai | | abel
which are be placed near the ends of the edge. The characteristics of these la-
bels are specified using the attributes | abel f ont nane, | abel f ont si ze and
| abel f ont col or. These labels are placed near the intersection of the edge and

2The escape sequence \N is an internal symbol for node names.
3For Unix-based systems, this is a concatenated list of pathnames, separated by colons. For
Windows-based systems, the pathnames are separated by semi-colons.

dot User’'s Manual, February 4, 2002 10

the node and, as such, may interfere with them. To tune a drawing, the user can set
the | abel angl e and | abel di st ance attributes. The former sets the angle,
in degrees, which the label is rotated from the angle the edge makes incident with
the node. The latter sets a multiplicative scaling factor to adjust the distance that
the label is from the node.

2.3 Graphics Styles

Nodes and edges can specify a col or attribute, with black the default. This is the
color used to draw the node’s shape or the edge. A col or value can be a hue-
saturation-brightness triple (three floating point numbers between 0 and 1, sepa-
rated by commas); one of the colors names listed in Appendix G (borrowed from
some version of the X window system); or a red-green-blue (RGB) triple* (three
hexadecimal number between 00 and FF, preceded by the character '#’). Thus,
the values " or chi d"," 0. 8396, 0. 4862, 0. 8549" and #DA70D6 are three
ways to specify the same color. The numerical forms are convenient for scripts or
tools that automatically generate colors. Color name lookup is case-insensitive and
ignores non-alphanumeric characters, so war ngr ey and War m_Gr ey are equiv-
alent.

We can offer a few hints regarding use of color in graph drawings. First, avoid
using too many bright colors. A “rainbow effect” is confusing. It is better to
choose a narrower range of colors, or to vary saturation along with hue. Sec-
ond, when nodes are filled with dark or very saturated colors, labels seem to be
more readable with f ont col or =whi t e and f ont nanme=Hel veti ca. (We
also have PostScript functions for dot that create outline fonts from plain fonts.)
Third, in certain output formats, you can define your own color space. For exam-
ple, if using PostScript for output, you can redefine nodecol or, edgecol or,
or gr aphcol or in a library file. Thus, to use RGB colors, place the following
lineinafileli b. ps.

/ nodecol or {setrgbcol or} bind def
Use the - I command line option to load this file.
dot -Tps -| lib.ps file.dot -0 file.ps

The st yl e attribute controls miscellaneous graphics features of nodes and
edges. This attribute is a comma-separated list of primitives with optional argu-
ment lists. The predefined primitives include sol i d, dashed, dot t ed, bol d

4A fourth form, RGBA, is also supported, which has the same format as RGB with an additional
fourth hexadecimal number specifying alpha channel or transparency information.

dot User’'s Manual, February 4, 2002

11

Name Default Values

bot t onl abel auxiliary label for nodes of shape M*
col or bl ack node shape color

comment any string (format-dependent)
distortion |0.0 node distortion for shape=pol ygon
fillcolor I'i ght grey/ bl ack | node fill color

fixedsize false label text has no affect on node size
fontcol or bl ack type face color

f ont nane Ti mes- Roman font family

fontsize 14 point size of label

group name of node’s group

hei ght .5 height in inches

| abel node name any string

| ayer overlay range al |l ,idorid:id

orientation| 0.0 node rotation angle

peri pheries
regul ar
shape
shapefile
si des

skew

style

t opl abel
URL

wi dt h

z

shape- dependent
false
el lipse

4
0.0

number of node boundaries

force polygon to be regular

node shape; see Section 2.1 and Appendix E
external EPSF or SVG custom shape file
number of sides for shape=pol ygon
skewing of node for shape=pol ygon
graphics options, e.g. bol d, dotted,
fill ed;cf. Section 2.3

auxiliary label for nodes of shape M*

URL associated with node (format-dependent)
width in inches

z coordinate for VRML output

Table 1: Node attributes

dot User’'s Manual, February 4, 2002

12

Name Default Values

ar r owhead normal style of arrowhead at head end

arrowsi ze 1.0 scaling factor for arrowheads

arrowt ai | normal style of arrowhead at tail end

col or bl ack edge stroke color

comrent any string (format-dependent)

constraint true use edge to affect node ranking

decorate if set, draws a line connecting labels with their edges
dir forward f orwar d, back, bot h, or none

fontcol or bl ack type face color

f ont nane Ti mes- Rorman | font family

fontsize 14 point size of label

headl abel label placed near head of edge

headpor t n, ne, e, se, s, sw, W, n\w

headURL URL attached to head label if output format isi srmap

| abel edge label

| abel angl e -25.0 angle in degrees which head or tail label is rotated off edge
| abel di stance |1.0 scaling factor for distance of head or tail label from node
| abel f | oat false lessen constraints on edge label placement

| abel f ont col or | bl ack type face color for head and tail labels

| abel f ont nane
| abel font si ze
| ayer

| head

I tail

m nl en
samehead

sanet ai |
style
taill abel
tail port

tail URL
wei ght

Ti nes- Ronan

14
overlay range

font family for head and tail labels

point size for head and tail labels

al I ,idorid:id

name of cluster to use as head of edge

name of cluster to use as tail of edge

minimum rank distance between head and tail

tag for head node; edge heads with the same tag are
merged onto the same port

tag for tail node; edge tails with the same tag are merged
onto the same port

graphics options, e.g. bol d, dotted,
Section 2.3

label placed near tail of edge

n, ne, e, se, s, SwW, w, nw

URL attached to tail label if output format is i smap
integer cost of stretching an edge

filled; cf.

Table 2: Edge attributes

dot User’'s Manual, February 4, 2002 13

Name Default Values

bgcol or background color for drawing, plus initial fill color

center false center drawing on page

cl usterrank | ocal may be gl obal ornone

col or bl ack for clusters, outline color, and fill color if fi | | col or not defined

comment any string (format-dependent)

conpound false allow edges between clusters

concentrate false enables edge concentrators

fillcolor bl ack cluster fill color

fontcol or bl ack type face color

f ont nane Ti mes- Roman | font family

fontpath list of directories to such for fonts

fontsize 14 point size of label

| abel any string

| abel j ust left-justified ”r” for right-justified cluster labels

| abel | oc top ”r” for right-justified cluster labels

| ayers id:id:id...

margi n .5 margin included in page, inches

nclimt 1.0 scale factor for mincross iterations

nodesep .25 separation between nodes, in inches.

nslimt if set to f, bounds network simplex iterations by (f)(number of nodes)
when setting x-coordinates

nslimtl if set to f, bounds network simplex iterations by (f)(number of nodes)
when ranking nodes

ordering if out out edge order is preserved

orientation portrait if r ot at e is not used and the value is | andscape, use landscape
orientation

page unit of pagination, eg. " 8. 5, 11"

pagedir BL traversal order of pages

quant um if guant umg 0.0, node label dimensions will be rounded to integral
multiples of quant um

rank same, nm n, max, sour ce or si nk

rankdir B LR (left to right) or TB (top to bottom)

ranksep .75 separation between ranks, in inches.

ratio approximate aspect ratio desired, fi | | oraut o

rem ncross if true and there are multiple clusters, re-run crossing minimization

rotate If 90, set orientation to landscape

sanpl epoints | 8 number of points used to represent ellipses and circles on output (cf.
Appendix C

searchsi ze 30 maximum edges with negative cut values to check when looking for a

si ze
style
URL

minimum one during network simplex
maximum drawing size, in inches

graphics options, e.g. fi I | ed for clusters
URL associated with graph (format-dependent)

Table 3: Graph attributes

dot User’'s Manual, February 4, 2002 14

and i nvi s. The first four control line drawing in node boundaries and edges
and have the obvious meaning. The value i nvi s causes the node or edge to be
left undrawn. The style for nodes can also include fi | | ed, di agonal s and
rounded. fil | ed shades inside the node using the color fi | | col or. If this
is not set, the value of col or is used. If this also is unset, light grey® is used as the
default. The di agonal s style causes short diagonal lines to be drawn between
pairs of sides near a vertex. The r ounded style rounds polygonal corners.

User-defined style primitives can be implemented as custom PostScript proce-
dures. Such primitives are executed inside the gsave context of a graph, node,
or edge, before any of its marks are drawn. The argument lists are translated to
PostScript notation. For example, a node with st yl e="set| i newi dt h(8)"
is drawn with a thick outline. Here, set | i newi dt h is a PostScript built-in, but
user-defined PostScript procedures are called the same way. The definition of these
procedures can be given in a library file loaded using - | as shown above.

Edges have a di r attribute to set arrowheads. di r may be f or war d (the
default), back, bot h, or none. This refers only to where arrowheads are drawn,
and does not change the underlying graph. For example, setting di r =back causes
an arrowhead to be drawn at the tail and no arrowhead at the head, but it does not
exchange the endpoints of the edge. The attributes ar r owhead and ar r ow ai |
specify the style of arrowhead, if any, which is used at the head and tail ends of
the edge. Allowed values are nor nal , i nv, dot, i nvdot, odot, i nvodot
and none (cf. Appendix F). The attribute ar r owsi ze specifies a multiplica-
tive factor affecting the size of any arrowhead drawn on the edge. For example,
arrowsi ze=2. 0 makes the arrow twice as long and twice as wide.

In terms of style and color, clusters act somewhat like large box-shaped nodes,
in that the cluster boundary is drawn using the cluster’s col or attribute and, in
general, the appearance of the cluster is affected the st yl e,col or andfi | | col or
attributes.

If the root graph has a bgcol or attribute specified, this color is used as the
background for the entire drawing, and also serves as the default fill color.

2.4 Drawing Orientation, Size and Spacing

Two attributes that play an important role in determining the size of a dot drawing
are nodesep and r anksep. The first specifies the minimum distance, in inches,
between two adjacent nodes on the same rank. The second deals with rank sepa-
ration, which is the minimum vertical space between the bottoms of nodes in one

5The default is black if the output format is MIF, or if the shape is poi nt .

dot User’'s Manual, February 4, 2002 15

rank and the tops of nodes in the next. The r anksep attribute sets the rank separa-
tion, in inches. Alternatively, one can have r anksep=equal | y. This guarantees
that all of the ranks are equally spaced, as measured from the centers of nodes on
adjacent ranks. In this case, the rank separation between two ranks is at least the
default rank separation. As the two uses of r anksep are independent, both can
be set at the same time. For example, r anksep="1. 0 equal | y" causes ranks
to be equally spaced, with a minimum rank separation of 1 inch.

Often a drawing made with the default node sizes and separations is too big
for the target printer or for the space allowed for a figure in a document. There
are several ways to try to deal with this problem. First, we will review how dot
computes the final layout size.

A layout is initially made internally at its “natural” size, using default settings
(unless r at i o=conpr ess was set, as described below). There is no bound on
the size or aspect ratio of the drawing, so if the graph is large, the layout is also
large. If you don’t specify si ze or r at i 0, then the natural size layout is printed.

The easiest way to control the output size of the drawing isto setsi ze="z, y"
in the graph file (or on the command line using - G). This determines the size of the
final layout. For example, si ze="7.5, 10" fits on an 8.5x11 page (assuming
the default page orientation) no matter how big the initial layout.

rat i o also affects layout size. There are a number of cases, depending on the
settings of si zeandrati o.

Case 1. r at i o was not set. If the drawing already fits within the given si ze,
then nothing happens. Otherwise, the drawing is reduced uniformly enough to
make the critical dimension fit.

If rat i o was set, there are four subcases.

Case 2a. If rati o=z where z is a floating point number, then the drawing
is scaled up in one dimension to achieve the requested ratio expressed as drawing
height /width. For example, r at i 0=2. 0 makes the drawing twice as high as it
is wide. Then the layout is scaled using si ze as in Case 1.

Case 2b. Ifratio=fill| and si ze=z,y was set, then the drawing is scaled
up in one dimension to achieve the ratio y/z. Then scaling is performed as in Case
1. The effect is that all of the bounding box given by si ze is filled.

Case 2c. Ifrat i o=conpr ess and si ze=z, y was set, then the initial layout
is compressed to attempt to fit it in the given bounding box. This trades off lay-
out quality, balance and symmetry in order to pack the layout more tightly. Then
scaling is performed as in Case 1.

Case 2d. If r at i o=aut o and the page attribute is set and the graph cannot
be drawn on a single page, then si ze is ignored and dot computes an “ideal” size.
In particular, the size in a given dimension will be the smallest integral multiple

dot User’'s Manual, February 4, 2002 16

of the page size in that dimension which is at least half the current size. The two
dimensions are then scaled independently to the new size.

If rot at e=90 is set, or ori ent at i on=| andscape, then the drawing is
rotated 90° into landscape mode. The X axis of the layout would be along the Y
axis of each page. This does not affect dot’s interpretation of si ze, rati o or
page.

At this point, if page is not set, then the final layout is produced as one page.

If page=z,y is set, then the layout is printed as a sequence of pages which
can tiled or assembled into a mosaic. Common settings are page="8. 5, 11" or
page="11, 17". These values refer to the full size of the physical device; the
actual area used will be reduced by the margin settings. (For printer output, the
default is 0.5 inches; for bitmap-output, the X and Y margins are 10 and 2 points,
respectively.) For tiled layouts, it may be helpful to set smaller margins. This can
be done by using the mar gi n attribute. This can take a single number, used to set
both margins, or two numbers separated by a comma to set the x and y margins
separately. As usual, units are in inches. Although one can set mar gi n=0, un-
fortunately, many bitmap printers have an internal hardware margin that cannot be
overridden.

The order in which pages are printed can be controlled by the pagedi r at-
tribute. Output is always done using a row-based or column-based ordering, and
pagedi r is set to a two-letter code specifying the major and minor directions. For
example, the default is BL, specifying a bottom-to-top (B) major order and a left-
to-right (L) minor order. Thus, the bottom row of pages is emitted first, from left
to right, then the second row up, from left to right, and finishing with the top row,
from left to right. The top-to-bottom order is represented by T and the right-to-left
order by R

If cent er =t r ue and the graph can be output on one page, using the default
page size of 8.5 by 11 inches if page is not set, the graph is repositioned to be
centered on that page.

A common problem is that a large graph drawn at a small size yields unreadable
node labels. To make larger labels, something has to give. There is a limit to the
amount of readable text that can fit on one page. Often you can draw a smaller
graph by extracting an interesting piece of the original graph before running dot.
We have some tools that help with this.

sccmap decompose the graph into strongly connected components
tred compute transitive reduction (remove edges implied by transitivity)

gpr graph processor to select nodes or edges, and contract or remove the rest of

dot User’'s Manual, February 4, 2002 17

the graph
unflatten improve aspect ratio of trees by staggering the lengths of leaf edges
With this in mind, here are some thing to try on a given graph:
1. Increase the node f ont si ze.
2. Use smaller r anksep and nodesep.
3. Userati o=aut o.
4. User ati o=conpr ess and give a reasonable si ze.

5. Asans serif font (such as Helvetica) may be more readable than Times when
reduced.

2.5 Node and Edge Placement

Attributes in dot provide many ways to adjust the large-scale layout of nodes and
edges, as well as fine-tune the drawing to meet the user’s needs and tastes. This
section discusses these attributes®.

Sometimes it is natural to make edges point from left to right instead of from
top to bottom. If rankdi r =LR in the top-level graph, the drawing is rotated
in this way. TB (top to bottom) is the default. (BT seems potentially useful for
drawing upward-directed graphs, but hasn’t been implemented. In some graphs,
you could achieve the same effect by reversing the endpoints of edges and setting
their di r =back.) We note that the setting of r ankdi r is complementary to how
the final drawing may be rotated by ori ent ati onorr ot at e.

In graphs with time-lines, or in drawings that emphasize source and sink nodes,
you may need to constrain rank assignments. The r ank of a subgraph may be set
to samer ank, m nr ank, sour ce, maxr ank or si nk. A value samer ank
causes all the nodes in the subgraph to occur on the same rank. If setto m nr ank,
all the nodes in the subgraph are guaranteed to be on a rank at least as small as
any other node in the layout”. This can be made strict by setting r ank=sour ce,
which forces the nodes in the subgraph to be on some rank strictly smaller than
the rank of any other nodes (except those also specified by mi nr ank or sour ce

SFor completeness, we note that dot also provides access to various parameters which play techni-
cal roles in the layout algorithms. These includenclimt,nslinmit,nslimtl,rem ncross
and sear chsi ze.

"Recall that the minimum rank occurs at the top of a drawing.

dot User’'s Manual, February 4, 2002 18

subgraphs). The values maxr ank or si nk play an analogous role for the maxi-
mum rank. Note that these constraints induce equivalence classes of nodes. If one
subgraph forces nodes A and B to be on the same rank, and another subgraph forces
nodes Cand B to share a rank, then all nodes in both subgraphs must be drawn on
the same rank. Figures 9 and 10 illustrate using subgraphs for controlling rank
assignment.

In some graphs, the left-to-right ordering of nodes is important. If a subgraph
has or der i ng=out , then out-edges within the subgraph that have the same tail
node wll fan-out from left to right in their order of creation. (Also note that flat
edges involving the head nodes can potentially interfere with their ordering.)

There are many ways to fine-tune the layout of nodes and edges. For example,
if the nodes of an edge both have the same gr oup attribute, dot tries to keep
the edge straight and avoid having other edges cross it. The wei ght of an edge
provides another way to keep edges straight. An edge’s wei ght suggests some
measure of an edge’s importance; thus, the heavier the weight, the closer together
its nodes should be. dot causes edges with heavier weights to be drawn shorter and
straighter.

Edge weights also play a role when nodes are constrained to the same rank.
Edges with non-zero weight between these nodes are aimed across the rank in
the same direction (left-to-right, or top-to-bottom in a rotated drawing) as far as
possible. This fact may be exploited to adjust node ordering by placing invisible
edges (st yl e="i nvi s")where needed.

The end points of edges adjacent to the same node can be constrained using the
sanmehead and sanet ai | attributes. Specifically, all edges with the same head
and the same value of sanmehead are constrained to intersect the head node at the
same point. The analogous property holds for tail nodes and sanet ai | .

During rank assignment, the head node of an edge is constrained to be on a
higher rank than the tail node. If the edge has const r ai nt =f al se, however,
this requirement is not enforced.

In certain circumstances, the user may desire that the end points of an edge
never get too close. This can be obtained by setting the edge’s m nl en attribute.
This defines the minimum difference between the ranks of the head and tail. For
example, if m nl en=2, there will always be at least one intervening rank between
the head and tail. Note that this is not concerned with the geometric distance be-
tween the two nodes.

Fine-tuning should be approached cautiously. dot works best when it can
makes a layout without much “help” or interference in its placement of individual
nodes and edges. Layouts can be adjusted somewhat by increasing the wei ght of
certain edges, or by creating invisible edges or nodes using st yl e=i nvi s, and

dot User’'s Manual, February 4, 2002 19

di graph asde91 {
ranksep=. 75; size = "7.5,7.5";

{
node [shape=pl ai ntext, fontsize=16];
/* the tine-line graph */
past -> 1978 -> 1980 -> 1982 -> 1983 -> 1985 -> 1986 ->
1987 -> 1988 -> 1989 -> 1990 -> "future";
/* ancestor prograns */
"Bourne sh"; "nmake"; "SCCS"'; "yacc"; "cron"; "Reiser cpp";
"Cshell"; "emacs"; "build"; "vi"; "<curses>"; "RCS"; "C";
}
{ rank = sane;
"Software I'S"; "Configuration Mygt"; "Architecture & Libraries";
"Process"”;
H
node [shape=box];
{ rank = sane; "past"; "SCCS"; "make"; "Bourne sh"; "yacc"; "cron"; }
{ rank = sane; 1978; "Reiser cpp"; "Cshell"; }
{ rank = sane; 1980; "build"; "emacs"; "vi"; }
{ rank = sane; 1982; "RCS"; "<curses>"; "IMX"'; "SYNED'; }
{ rank = sane; 1983; "ksh"; "IFS"; "TTU'; }
{ rank = sane; 1985; "nmake"; "Peggy"; }
{ rank = same; 1986; "C*"; "ncpp"; "ksh-i"; "<curses-i>"; "P&"; }
{ rank = sane; 1987; "Ansi cpp"; "nmeke 2.0"; "3D File Systent; "fdelta";

"DAG'; "CSAS';}
{ rank = sane; 1988; "ClA"; "SBCS'; "ksh-88"; "PEGASUS/ PM."; "PAX";

"backtal k"; }

{ rank = sane; 1989; "Cl A++"; "APP"; "SH P"; "DataShare"; "ryacc";
"Mpsai c"; }

{ rank = sane; 1990; "libft"; "CoShell"; "D A"; "IFS-i"; "kyacc"; "sfio";
"yeast"; "M-X'; "DOT"; }

{ rank = sane; "future"; "Adv. Software Technol ogy"; }

"PEGASUS/ PML" -> "M.-X';
"SCCS" -> "nmake";

"SCCS" -> "3D File Systent;
"SCCs" -> "RCS";

"make" -> "nmake";

"make" -> "build";

Figure 9: Graph with constrained ranks

dot User’'s Manual, February 4, 2002

past

1978

future

RCS

Reiser cpp

nepp

ScCs make

build

Configuration Mgt Architecture & Libraries

20

Bourne sh yacc cron

Cshell

vi emacs

Adv. Software Technology

Figure 10: Drawing with constrained ranks

dot User’'s Manual, February 4, 2002 21

sometimes even by rearranging the order of nodes and edges in the file. But this can
backfire because the layouts are not necessarily stable with respect to changes in
the input graph. One last adjustment can invalidate all previous changes and make
a very bad drawing. A future project we have in mind is to combine the mathemat-
ical layout techniques of dot with an interactive front-end that allows user-defined
hints and constraints.

3 Advanced Features

3.1 Node Ports

A node port is a point where edges can attach to a node. (When an edge is not
attached to a port, it is aimed at the node’s center and the edge is clipped at the
node’s boundary.)

Simple ports can be specified by using the headport and t ai | port at-
tributes. These can be assigned one of the 8 compass points "n", "ne", "e",
"se","s","sw',"w' or"nw'. The end of the node will then be aimed at that
position on the node. Thus, if t ai | port =se, the edge will connect to the tail
node at its southeast “corner”.

Nodes with a r ecor d shape use the record structure to define ports. As noted
above, this shape represents a record as recursive lists of boxes. If a box defines
a port name, by using the construct < port_.name > in the box label, the cen-
ter of the box can be used a port. (By default, the edge is clipped to the box’s
boundary.) This is done by modifying the node name with the port name, using the
syntax node_name: port_name, as part of an edge declaration. Figure 11 illustrates
the declaration and use of port names in record nodes, with the resulting drawing
shown in Figure 12.

DISCLAIMER: At present, simple ports don’t work as advertised, even
when they should. There is also the case where we might not want them to
work, e.g., when the tailport=n and the headport=s. Finally, in theory, dot
should be able to allow both types of ports on an edge, since the notions are
orthogonal. There is still the question as to whether the two syntaxes could
be combined, i.e., treat the compass points as reserved port names, and allow
nodename:portname:compassname.

Figures 13 and 14 give another example of the use of record nodes and ports.
This repeats the example of Figures 7 and 8 but now using ports as connectors
for edges. Note that records sometimes look better if their input height is set to a
small value, so the text labels dominate the actual size, as illustrated in Figure 11.
Otherwise the default node size (.75 by .5) is assumed, as in Figure 14. The

dot User’'s Manual, February 4, 2002

di graph g {
node [shape
nodeO[| abel
nodel[| abel
node?2[| abel
node3[| abel
node4[| abel
node5[| abel
node6[| abel
node7[| abel
node8[| abel
"node0": f2
"node0":f0
"nodel": fO0
"nodel": f2
"node2":f2
"node2":f0
"node4": f2
"node4":f0

}

"<f 0>
"<f 0>
"<f 0>
"<f 0>
"<f 0>
"<f 0>
"<f 0>
"<f 0>
"<f 0>

| <f 1>
| <f 1>
| <f1>
| <f1>
| <f 1>
| <f1>
| <f1>
| <f 1>
| <f 1>

-> "node4":f1;
-> "nodel":f1;
-> "node2":f1;
-> "node3":f1;
-> "node8":f1;
-> "node7":f1;
-> "node6":f1;
-> "node5":f1;

record, hei ght=.1];
g<fa2>"
E| <f2> "

B| <f 2>

F| <f2> "
R <f2> "

H| <f 2>

Y| <f2> "
Al <f2> "

Cl <f 2>

e et e e e e e

Figure 11: Binary search tree using records

/

\

Figure 12: Drawing of binary search tree

22

dot User’'s Manual, February 4, 2002 23

di graph structs {

node [shape=record];
struct1l [shape=record, | abel
struct 2 [shape=record, | abel
struct 3 [shape=record, | abel
structl:f1 -> struct2:f0
struct1:f2 -> struct3: here

"<fO> left|<f1> nmiddl el <f2> right"];
"<f 0> one| <f 1> two"];
"hello\nworld |{ b |{c|<here> d|e}| f}| g | h"];

NN R

Figure 13: Records with nested fields (revisited)

left | middle | right

N
hello
one | two world LS ? elgl|h

Figure 14: Drawing of records (revisited)

dot User’'s Manual, February 4, 2002 24

example of Figures 15 and 16 uses left-to-right drawing in a layout of a hash table.

3.2 Clusters

A cluster is a subgraph placed in its own distinct rectangle of the layout. A sub-
graph is recognized as a cluster when its name has the prefix cl ust er. (If the
top-level graph has cl ust er r ank=none, this special processing is turned off).
Labels, font characteristics and the | abel | oc attribute can be set as they would
be for the top-level graph, though cluster labels appear above the graph by default.
For clusters, the label is left-justified by default; if | abel j ust ="r ", the label is
right-justified. The col or attribute specifies the color of the enclosing rectangle.
In addition, clusters may have styl e="fil | ed", in which case the rectangle
is filled with the color specified by fi I | col or before the cluster is drawn. (If
fill col or isnot specified, the cluster’s col or attribute is used.)

Clusters are drawn by a recursive technique that computes a rank assignment
and internal ordering of nodes within clusters. Figure 17 through 19 are cluster
layouts and the corresponding graph files.

dot User’'s Manual, February 4, 2002 25

1. digraph G{

2: nodesep=. 05;

3: rankdi r =LR;

4: node [shape=record, wi dth=.1, hei ght=.1];
5:

6: nodeO [l abel = "<f0> |<f1> |<f2> |<f3> |<f4> | <f5> |<f6> | ", height=2.5];
7: node [width = 1.5];

8: nodel [l abel = "{<n> nl4 | 719 |<p> }"];
9: node2 [l abel = "{<n> al | 805 |<p> }"];
10: node3 [l abel = "{<n>i9 | 718 |<p> }"];
11: node4 [l abel = "{<n>e5 | 989 |<p> }"];
12: node5 [l abel = "{<n>t20 | 959 |<p> }"] ;
13: node6 [l abel = "{<n> 015 | 794 |<p> }"]
14: node7 [l abel = "{<n> s19 | 659 |<p> }"] ;
15:

16: node0: f0 -> nodel: n;

17: nodeO: f1 -> node2: n;

18: nodeO: f2 -> node3: n;

19: node0: f5 -> node4: n;

20: nodeO: f6 -> node5: n;

21: node2: p -> node6: n;

22: node4: p -> node7:n;

23: }

Figure 15: Hash table graph file

nl4 | 719
= al | 805 > 015 | 794
—=1 19 | 718

ed | 989 > s19 | 659
= t20 | 959

Figure 16: Drawing of hash table

dot User’'s Manual, February 4, 2002

di graph G {
subgraph cluster0 {

node [style=filled, color=white];

style=filled;

col or=lightgrey;

a0 -> al -> a2 -> a3;
| abel = "process #1"

}

subgraph clusterl {
node [style=filled];
b0 -> bl -> b2 -> b3;
| abel = "process #2";
col or =bl ue

}

start -> a0;

start -> bO;

al -> b3;

b2 -> a3;

a3 -> a0;

a3 -> end;

b3 -> end;

start [shape=Mli anond] ;
end [shape=Msquare];

process #1

a0

N\

start

rocess #2

b0

bl

b2

b3

/

end

Figure 17: Process diagram with clusters

26

dot User’'s Manual, February 4, 2002 27

If the top-level graph has the conpound attribute set to true, dot will allow
edges connecting nodes and clusters. This is accomplished by an edge defining
an | heador | tail attribute. The value of these attributes must be the name of
a cluster containing the head or tail node, respectively. In this case, the edge is
clipped at the cluster boundary. All other edge attributes, such as ar r owhead
or di r, are applied to the truncated edge. For example, Figure 20 shows a graph
using the conmpound attribute and the resulting diagram.

3.3 Concentrators

Setting concent r at e=t r ue on the top-level graph enables an edge merging
technique to reduce clutter in dense layouts. Edges are merged when they run
parallel, have a common endpoint and have length greater than 1. A beneficial
side-effect in fixed-sized layouts is that removal of these edges often permits larger,
more readable labels. While concentrators in dot look somewhat like Newbery’s
[New89], they are found by searching the edges in the layout, not by detecting
complete bipartite graphs in the underlying graph. Thus the dot approach runs
much faster but doesn’t collapse as many edges as Newbery’s algorithm.

4 Command Line Options

By default, dot operates in filter mode, reading a graph from st di n, and writing
the graph on st dout in the DOT format with layout attributes appended. dot
supports a variety of command-line options:

- Tformat sets the format of the output. Allowed values for format are:

canon Prettyprint input; no layout is done.

dot Attributed DOT. Prints input with layout information attached as attributes,
cf. Appendix C.

fi g FIG output.

gd GD format. This is the internal format used by the GD Graphics Library. An
alternate format is gd2.

gi f GIF output.

hpgl HP-GL/2 vector graphic printer language for HP wide bed plotters.

dot User’'s Manual, February 4, 2002 28

o di

N>R R ONE

graph G {
size="8,6"; ratio=fill; node[fontsize=24];

ci af an- >conput ef an; fan->i ncrenent; conputefan->fan; stringdup->fatal;

mai n->exit; main->interp_err; main->ciafan; main->fatal; main->malloc

mai n- >strcpy; main->getopt; main->init_index; main->strlen; fan->fatal;

fan->ref; fan->interp_err; ciafan->def; fan->free; conputefan->stdprintf;
conput ef an->get _sym fields; fan->exit; fan->nmalloc; increnent->strcnp;
conput ef an->mal | oc; fan->stdsprintf; fan->strlen; conputefan->strcnp;
conput ef an->real | oc; conput ef an->strl en; debug->sfprintf; debug->strcat;
stringdup->mal l oc; fatal->sfprintf; stringdup->strcpy; stringdup->strlen
fatal ->exit;

subgraph "cluster_error.h" { label="error.h"; interp_err; }
subgraph "cluster_sfio.h" { label="sfio.h"; sfprintf; }

subgraph "cluster_ciafan.c" { |abel ="ciafan.c"; ciafan; conputefan;
increment; }

subgraph "cluster _util.c" { label="util.c"; stringdup; fatal; debug; }
subgraph "cluster_query.h" { | abel ="query.h"; ref; def; }
subgraph "cluster_field.h" { get_symfields; }

subgraph "cluster_stdio.h" { | abel ="stdio.h"; stdprintf; stdsprintf; }

subgraph "cluster_<libc.a>" { getopt; }

subgraph "cluster_stdlib.h" { |abel ="stdlib.h"; exit; malloc; free; realloc

subgraph "cluster_main.c" { main; }
subgraph "cluster _index.h" { init_index; }

subgraph "cluster_string.h" { label="string.h"; strcpy; strlen; strcnp;

Figure 18: Call graph file

dot User’'s Manual, February 4, 2002 29

y

G ||

error.

computefan

Figure 19: Call graph with labeled clusters

dot User’'s Manual, February 4, 2002

di graph G {

compound=t r ue;

subgraph cl uster0 { o

a ->b;
a -> c;

b -> d;
c ->d, °°

. »
subgraph clusterl {

<
e -> f;

} NIWA'R!
b ->f [l head=cluster1];
c ->g [ltail=clusterO,
| head=cl uster1];
c ->e [ltail=clusterQ]; o o
d -> h;

Figure 20: Graph with edges on clusters

30

dot User’'s Manual, February 4, 2002 31

i map Produces HTML map files for client and server-side image maps. This
can be combined with a graphical form of the output, e.g., using - Tgi f or
- Tj pg, in web pages to attach links to nodes and edges. The formati smap
is a predecessor of the i map format.

j pg JPEG output. j peg is a synonym for j pg.

m f FrameMaker MIF format. In this format, graphs can be loaded into FrameMaker
and edited manually. MIF is limited to 8 basic colors.

np MetaPost output.
pcl PCL-5 output for HP laser writers.
pi ¢ PIC output.

pl ai n Simple, line-based ASCII format. Appendix B describes this output. An
alternate format is pl ai n- ext , which provides port names on the head and
tail nodes of edges.

png PNG (Portable Network Graphics) output.
ps PostScript (EPSF) output.

ps2 PostScript (EPSF) output with PDF annotations. Itis assumed that this output
will be distilled into PDF.

svg SVG output. The alternate form svgz produces compressed SVG.
vrim VRML output.
vt x VTX format for r Confluents’s Visual Thought.

wbnp Wireless BitMap (WBMP) format.

- Ghame=value sets a graph attribute default value. Often it is convenient to set
size, pagination, and related values on the command line rather than in the graph
file. The analogous flags - N or - E set default node or edge attributes. Note that
file contents override command line arguments.

- | libfile specifies a device-dependent graphics library file. Multiple libraries
may be given. These names are passed to the code generator at the beginning of
output.

- ooutfile writes output into file outfile.

dot User’'s Manual, February 4, 2002 32

- V requests verbose output. In processing large layouts, the verbose messages
may give some estimate of dot’s progress.
- V prints the version number and exits.

5 Miscellaneous

In the top-level graph heading, a graph may be declared a stri ct di graph.
This forbids the creation of self-arcs and multi-edges; they are ignored in the input
file.

Nodes, edges and graphs may have a URL attribute. In certain output formats
(ps2,i map, i smap or svg), this information is integrated in the output so that
nodes, edges and clusters become active links when displayed with the appropriate
tools. Typically, URLs attached to top-level graphs serve as base URLS, support-
ing relative URLs on components. When the output format is i map, a similar
processing takes place with the headURL and t ai | URL attributes.

For certain formats (ps, fi g, m f, np, vt x or svg), conment attributes
can be used to embed human-readable notations in the output.

6 Conclusions

dot produces pleasing hierarchical drawings and can be applied in many settings.

Since the basic algorithms of dot work well, we have a good basis for fur-
ther research into problems such as methods for drawing large graphs and on-line
(animated) graph drawing.

7 Acknowledgements

We thank Emden Gansner and Phong Vo for their advice about graph drawing al-
gorithms and programming. The graph library uses Phong’s splay tree dictionary
library. Also, the users of dag, the predecessor of dot, gave us many good sug-
gestions. Emden Gansner, Guy Jacobson, and Randy Hackbarth reviewed earlier
drafts of this manual, and Emden contributed substantially to the current revision.
John Ellson wrote the generalized polygon shape and spent considerable effort to
make it robust and efficient. He also wrote the GIF and ISMAP generators and
other tools to bring graphviz to the web.

dot User’'s Manual, February 4, 2002 33

References

[Car80]

[GKNV93]

[News89]

[Nor92]

[STT81]

[War77]

M. Carpano. Automatic display of hierarchized graphs for computer
aided decision analysis. IEEE Transactions on Software Engineering,
SE-12(4):538-546, April 1980.

Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Kiem-Phong Vo. A Technique for Drawing Directed Graphs. IEEE
Trans. Sofware Eng., 19(3):214-230, May 1993.

Frances J. Newbery. Edge Concentration: A Method for Clustering
Directed Graphs. In 2nd International Workshop on Software Con-
figuration Management, pages 76-85, October 1989. Published as
ACM SIGSOFT Software Engineering Notes, vol. 17, no. 7, Novem-
ber 1989.

Stephen C. North. Neato User’s Guide. Technical Report 59113-
021014-14TM, AT&T Bell Laboratories, Murray Hill, NJ, 1992.

K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual Under-
standing of Hierarchical System Structures. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-11(2):109-125, February 1981.

John Warfield. Crossing Theory and Hierarchy Mapping. IEEE Trans-
actions on Systems, Man, and Cybernetics, SMC-7(7):505-523, July
1977.

dot User’'s Manual, February 4, 2002 34

A Graph File Grammar

The following is an abstract grammar for the DOT language. Terminals are shown
in bold font and nonterminals in italics. Literal characters are given in single
quotes. Parentheses (and) indicate grouping when needed. Square brackets [
and] enclose optional items. Vertical bars | separate alternatives.

graph — [strict] (digraph | graph)id ** stmt-list *’

stmt-list — [stmt[’;’] [stmt-list]]

stmt — attr-stmt | node-stmt | edge-stmt | subgraph | id =" id
attr-stmt — (graph | node | edge attr-list

attr-list — [[a-list]'] [attr-list]

a-list — id’="id[’,][attr-list]

node-stmt — node-id [attrs-list]

node-id — id [port]

port — port-location [port-angle]| port-angle [port-location]
port-location — *:’id |’ ’(Cid’id’)’

port-angle — '@’id

edge-stmt — (node-id | subgraph) edgeRHS [attr-list]

edgeRHS — edgeop (node-id | subgraph) [edgeRHS]

subgraph — [subgraph id]’ stmt-list ** | subgraph id

An id is any alphanumeric string not beginning with a digit, but possibly in-
cluding underscores; or a number; or any quoted string possibly containing escaped
quotes.

An edgeop is - > in directed graphs and - - in undirected graphs.

The language supports C++-style comments: / * */ and/ /.

Semicolons aid readability but are not required except in the rare case that a
named subgraph with no body immediate preceeds an anonymous subgraph, be-
cause under precedence rules this sequence is parsed as a subgraph with a heading
and a body.

Complex attribute values may contain characters, such as commas and white
space, which are used in parsing the DOT language. To avoid getting a parsing
error, such values need to be enclosed in double quotes.

dot User’'s Manual, February 4, 2002 35

B Plain Output File Format (- Tpl ai n)

The “plain” output format of dot lists node and edge information in a simple, line-
oriented style which is easy to parse by front-end components. All coordinates and
lengths are unscaled and in inches.
The first line is:

gr aph scalefactor width height
The width and height values give the width and the height of the drawing; the
lower-left corner of the drawing is at the origin. The scalefactor indicates how
much to scale all coordinates in the final drawing.
The next group of lines lists the nodes in the format:

node name x y xsize ysize label style shape color fillcolor
The name is a unique identifier. If it contains whitespace or punctuation, it is
quoted. The x and y values give the coordinates of the center of the node; the width
and height give the width and the height. The remaining parameters provide the
node’s | abel ,styl e,shape,col or andfi | | col or attributes, respectively.
If the node does not have a st yl e attribute, " sol i d" is used.
The next group of lines lists edges:

edge tail head n z1 y1 T2 yo - - - ,, Yy, [1abel Ix ly] style color
n IS the number of coordinate pairs that follow as B-spline control points. If the
edge is labeled, then the label text and coordinates are listed next. The edge de-
scription is completed by the edge’s styl e and col or. As with nodes, if a
styl e isnot defined, " sol i d" is used.
The last line is always:

stop

dot User’'s Manual, February 4, 2002 36

C Attributed DOT Format (- Tdot)

This is the default output format. It reproduces the input, along with layout infor-
mation for the graph. Coordinate values increase up and to the right. Positions
are represented by two integers separated by a comma, representing the X and Y’
coordinates of the location specified in points (1/72 of an inch). A position refers
to the center of its associated object. Lengths are given in inches.

A bb attribute is attached to the graph, specifying the bounding box of the
drawing. If the graph has a label, its position is specified by the | p attribute.

Each node gets pos, wi dt h and hei ght attributes. If the node is a record,
the record rectangles are given in the r ect s attribute. If the node is polygonal
and the ver t i ces attribute is defined in the input graph, this attribute contains
the vertices of the node. The number of points produced for circles and ellipses is
governed by the sanpl epoi nt s attribute.

Every edge is assigned a pos attribute, which consists of a list of 3n + 1
locations. These are B-spline control points: points pg, p1, p2, p3 are the first Bezier
spline, ps, p4, p5, pe are the second, etc. Currently, edge points are listed top-to-
bottom (or left-to-right) regardless of the orientation of the edge. This may change.

In the pos attribute, the list of control points might be preceded by a start
point p, and/or an end point p.. These have the usual position representation with a
"s, " or"e, " prefix, respectively. A start point is present if there is an arrow at p.
In this case, the arrow is from pg to ps, Where p; is actually on the node’s boundary.
The length and direction of the arrowhead is given by the vector (ps — pg). If there
IS no arrow, pq is on the node’s boundary. Similarly, the point p. designates an
arrow at the other end of the edge, connecting to the last spline point.

If the edge has a label, the label position is given in | p.

dot User’'s Manual, February 4, 2002 37

D Layers

dot has a feature for drawing parts of a single diagram on a sequence of overlapping
“layers.” Typically the layers are overhead transparencies. To activate this feature,
one must set the top-level graph’s | ayer s attribute to a list of identifiers. A node
or edge can then be assigned to a layer or range of layers using its | ayer attribute..
al | is areserved name for all layers (and can be used at either end of a range, e.g
desi gn: al |l oral | : code). For example:

| ayers = "spec: desi gn: code: debug: ship";
node90 [l ayer = "code"];

node91 [l ayer = "design: debug"];

node90 -> node9l [layer = "all"];
node92 [l ayer = "all:code"];

In this graph, node91 is in layers desi gn, code and debug, while node92 is
in layers spec, desi gn and code.

In a layered graph, if a node or edge has no layer assignment, but incident
edges or nodes do, then its layer specification is inferred from these. To change the
default so that nodes and edges with no layer appear on all layers, insert near the
beginning of the graph file:

node [l ayer=all];
edge [l ayer=all];

There is currently no way to specify a set of layers that are not a continuous
range.

When PostScript output is selected, the color sequence for layers is set in the
array | ayer col or seq. This array is indexed starting from 1, and every ele-
ment must be a 3-element array which can interepreted as a color coordinate. The
adventurous may learn further from reading dot’s PostScript output.

dot User’'s Manual, February 4, 2002 38

E Node Shapes
box polygon ellipse circle
O A plaintext
°
point triangle plaintext
diamond trapezium parallelogram house
hexagon octagon doublecircle doubleoctagon
tripleoctagon invtriangle invtrapezium invhouse
© Z\ @
N/
Mdiamond Msquare Mcircle
/
1o fe| (Y |3
2|2 2|2
3| |32] (3] |22

record Mrecord

dot User’'s Manual, February 4, 2002 39

normal odot

—(_

inv invdot invodot

F Arrowhead Types

ééé

none

dot User’'s Manual, February 4, 2002

G Color Names

Whites
antiquewhite[1-4]
azure[1-4]
bisque[1-4]
blanchedalmond
cornsilk[1-4]
floralwhite
gainsboro
ghostwhite
honeydew[1-4]
ivory[1-4]
lavender
lavenderblush[1-4]
lemonchiffon[1-4]
linen

mintcream
mistyrose[1-4]
moccasin
navajowhite[1-4]
oldlace
papayawhip
peachpuff[1-4]
seashell[1-4]
snow[1-4]
thistle[1-4]
wheat[1-4]

white
whitesmoke

Greys
darkslategray[1-4]
dimgray

gray

gray[0-100]
lightgray
lightslategray
slategray[1-4]

Blacks
black

Reds

coral[1-4]
crimson
darksalmon
deeppink[1-4]
firebrick[1-4]
hotpink[1-4]
indianred[1-4]
lightpink[1-4]
lightsalmon[1-4]
maroon[1-4]
mediumvioletred
orangered[1-4]
palevioletred[1-4]
pink[1-4]
red[1-4]
salmon[1-4]
tomato[1-4]
violetred[1-4]

Browns

beige
brown[1-4]
burlywood[1-4]
chocolate[1-4]
darkkhaki
khaki[1-4]

peru
rosybrown[1-4]
saddlebrown
sandybrown
sienna[1-4]
tan[1-4]

Oranges
darkorange[1-4]
orange[1-4]
orangered[1-4]

Yellows
darkgoldenrod[1-4]
gold[1-4]
goldenrod[1-4]
greenyellow
lightgoldenrod[1-4]

lightgoldenrodyellow

lightyellow[1-4]
palegoldenrod
yellow[1-4]
yellowgreen

Greens
chartreuse[1-4]
darkgreen
darkolivegreen[1-4]
darkseagreen[1-4]
forestgreen
green[1-4]
greenyellow
lawngreen
lightseagreen
limegreen
mediumseagreen
mediumspringgreen
mintcream
olivedrab[1-4]
palegreen[1-4]
seagreen[1-4]
springgreen[1-4]
yellowgreen

Cyans
aquamarine[1-4]
cyan[1-4]
darkturquoise
lightcyan[1-4]
mediumaquamarine
mediumturquoise
paleturquoise[1-4]

40

turquoise[1-4]

Blues

aliceblue
blue[1-4]
blueviolet
cadetblue[1-4]
cornflowerblue
darkslateblue
deepskyblue[1-4]
dodgerblue[1-4]
indigo
lightblue[1-4]
lightskyblue[1-4]
lightslateblue[1-4]
mediumblue
mediumslateblue
midnightblue
navy

navyblue
powderblue
royalblue[1-4]
skyblue[1-4]
slateblue[1-4]
steelblue[1-4]

M agentas
blueviolet
darkorchid[1-4]
darkviolet
magenta[1-4]
mediumorchid[1-4]
mediumpurple[1-4]
mediumvioletred
orchid[1-4]
palevioletred[1-4]
plum[1-4]
purple[1-4]

violet
violetred[1-4]

