
Getting Started with CUT

Sergei Gnezdov

November 19, 2004

1 Introduction

Cut is a unit testing framework for C, C++ and Objective-C. This document
covers version 2.3 of CUT. Our goal is to help you to get started with CUT.
To download CUT, go to http://www.falvotech.com/projects/cut.php .

2 Getting Ready

Cut comes in source code form. You will have to compile it to start us-
ing. You should have no problem to compile it on BSD (FreeBSD) or Linux
machines.
To compile run

make

command without arguments. This should create cutgen application.

3 Test Driven Development in C with CUT

3.1 Overview

To show the usage of CUT we will create a very simple C project. You
will have to create a directory for your project. It is referenced as Project
directory further on. The directory will contain the following files:

• Makefile

• Main.c

• Compute.h

1

• TestCompute.c

• Compute.c

• cut.h

3.2 Creating Makefile

Create Makefile with the following content:

CC = gcc
LD = gcc
MODULES = Compute
OBJS = $ (MODULES:%=%.o)
TESTS = $ (MODULES:%=Test%.c)
TESTS OBJS = $ (MODULES:%=Test%.o)
LIBS =
CCOPTS = −c
DEBUG =

d e f a u l t t a r g e t
he lp :

echo ” Type ’ make a p p l i c a t i o n ’ to bu i ld the a p p l i c a t i o n . ”
echo ” Type ’ make check ’ to b iu ld the a p p l i c a t i o n . ”

top l e v e l t a r g e t to c r e a t e product ion a p p l i c a t i o n
a p p l i c a t i o n : $ (OBJS) Main . o

$ (LD) $ (LDOPTS) $ (MODULES:%=%.o) Main . o $ (LIBS) −o app

top l e v e l t a r g e t to run t e s t ca s e s
t e s t : cutcheck

. / cutcheck

top l e v e l t a r g e t to c l ean up the p r o j e c t d i r e c t o r y
c l ean :

−rm ∗ . o app cutcheck

cutcheck . c : $ (TESTS)
cutgen −o cutcheck . c $ (TESTS)

cutcheck : $ (OBJS) $ (TESTS OBJS) cutcheck . o
$ (LD) $ (LDOPTS) $ (OBJS) $ (TESTS OBJS) $ (LIBS)\

2

cutcheck . o −o cutcheck

. c . o :
$ (CC) $ (CCOPTS) $ (DEBUG) −o $@ $<

3.3 Defining Sum Function

Compute.h header defines a function we want to test:

#i f n d e f COMPUTE H INCLUDED
#d e f i n e COMPUTE H INCLUDED

/∗ Summarizes two numbers ∗/
i n t sum(i n t , i n t) ;

#e n d i f

3.4 Creating Test Case

For consistency, the test file name is based on the name of the header file
beeing tested. Append Test prefix and replace h with c extension. TestCom-
pute.c file has the following content:

#inc lude < s t d i o . h>
#inc lude ” cut . h”
#inc lude ” Compute . h”

void CUT Sum (void)
{

ASSERT(3 == sum (1 , 2) , ” Check sum ”) ;
}
TestCompute.c does not compile yet. See it for yourself with the following
command:

make TestCompute.o

The compileation fails because the compiler can’t find cut.h file. Copy cut.h
file from the cut-2.3 project directory into our project directory.
Run

make TestCompute.o

again. This should create TestCompute.o file.

3

4 Implementing sum Function

Create Compute.c file:

i n t sum(i n t a , i n t b)
{

re turn 0 ;
}
Run

make test

now. It should fail with the message similar to the following:

TestCompute.c(7): Check sum

TestCompute.c(7): Failed expression: 3 == sum(1,2)

This is because we did not implement sum function yet.
Change Compute.c to contain the following code:

i n t sum(i n t a , i n t b)
{

re turn a+b ;
}
and run make test again. The test should pass now.

4.1 Creating main application

Since our function operates as expected we can create a main application
now:

#inc lude < s t d i o . h>
#inc lude ” Compute . h”

i n t main (void)
{

p r i n t f (”% i \n ” , sum (3 , 2)) ;
r e turn 0 ;

}
Run make application to see the result.

4

